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SHUBHAM CHAUDHRY

RÉSUMÉ

L’objectif de la thèse présentée est la modélisation numérique et l’optimisation du processus de

fabrication additive (AM) par laser (Selective Laser Melting SLM). Les utilisateurs du procédé

de fusion sélective au laser (plus généralement de fabrication additive) dépendent principalement

des expériences pour comprendre et prédire les processus. Les techniques traditionnelles d’essai

et d’erreur pour déterminer les résultats du processus d’AM pourraient être longues et coûteuses.

De plus, la simulation numérique prend beaucoup de temps à calculer. Une nouvelle approche

basée sur des techniques de l’apprentissage automatique (ML) pourrait contribuer à accélérer le

processus de fabrication et réduire le coût d’exploitation.

Dans ce contexte, un modèle de simulation numérique du processus SLM a été développé à

l’aide du logiciel ANSYS. Une nouvelle technique d’étalonnage des paramètres du procédé a été

développée. L’efficacité du modèle numérique est évaluée et comparée à trois cas tests pour

lesquels des données expérimentales sont disponibles. Les études expérimentales impliquent un

prisme vertical, un prisme horizontal et une structure en forme de L. Un autre modèle numérique

par éléments finis a été développé avec le logiciel ANSYS Workbench Additive pour modéliser

une pièce fabriquée par le processus SLM et pour laquelle des données sont du domaine public.

Afin d’analyser la sensibilité et la propagation des incertitudes des paramètres d’entrée, un

modèle rapide dit de substitution a été développé. L’approche basée sur les données combine des

techniques d’apprentissage automatique avec des simulations numériques d’haute-fidélité pour

analyser plus efficacement le processus SLM et ce cadre peut être utilisé dans l’optimisation des

processus. Les travaux de recherche ont considéré la vitesse du laser, l’éclosion, l’espacement,

l’épaisseur de la couche, le module d’Young et le coefficient de Poisson comme paramètres

d’entrée, tandis qu’à la sortie, les variables sont des prédictions de déformations normales dans

la pièce fabriquée. Un modèle de substitution a été construit avec un réseau neuronal profond

(DNN) et une expansion du chaos polynomial (PCE) pour créer une surface de réponse entre la

sortie et les variables d’entrée. L’analyse a révélé que tous les paramètres étaient importants

dans le processus. Par la suite, le modèle de substitution a été intégré avec des algorithmes

d’optimisation non intrusifs (tels que les algorithmes génétiques (AG), l’évolution différentielle

(DE) et l’optimisation des essais de particules (PSO)) pour effectuer une analyse inverse qui a

aidé à trouver les paramètres optimaux. Parmi tous les modèles, le PSO a donné de bons résul-

tats, et le modèle DNN s’est avéré être le modèle de substitution le plus efficace par rapport au PCE.

Une autre contribution de cette thèse est l’introduction de deux types de modèles réduits non

intrusifs et fondés sur des données, le premier est nommé l’auto-encodeur convolutif-perceptron

multicouche (CAE- MLP) et le deuxième est une combinaison de la décomposition orthogonale

et de réseaux de neurones artificiels (POD-ANN). Le POD-ANN extrait la base d’ordre réduit à
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partir de la matrice des données d’haute-fidélité. Après cela, un réseau de neurones artificiels

a été construit pour former un modèle de substitution entre la base réduite et les paramètres

d’entrée. De même, le CAE-MLP utilise une méthode de convolution unidimensionnelle

pour extraire une base réduite dite l’espace latent. Un modèle de régression basée sur un

réseau de neurones multicouches (MLP) est construit entre les paramètres d’entrée et l’espace

latent. L’efficacité et la précision de ces les méthodes sont quantifiées sur la base de l’analyse

thermomécanique d’une pièce fabriquée. Une bonne comparaison entre les moments statistiques

des résultats des simulations haute-fidélité et les prédictions des ROM confirment la capacité

des méthodes proposées à prédire avec précision. De plus, les prédictions sont comparées aux

résultats expérimentaux à différents endroits. Bien que les deux modèles aient montré une bonne

corrélation avec les résultats expérimentaux, le modèle CAE-MLP s’est avéré plus performant

que le modèle POD-ANN.

Mots-clés: Fusion laser sélective, Optimisation, Modélisation d’ordre réduit, Décomposi-

tion orthogonale propre, Auto-encodeur, Réseau de neurones profonds, Expension du chaos

polynomial
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ABSTRACT

The goal of the presented thesis is computational modeling and optimization of selective

laser melting (SLM), which is an additive manufacturing(AM) process, using data-driven

non-intrusive machine learning techniques. The selective laser melting process mostly depends

on experiments to understand and predict the process. The use of traditional trial and error

techniques to determine the AM process outputs could be time-consuming and costly. In addition,

the numerical simulation takes a significantly longer time to compute. A new framework and

techniques like machine learning (ML) are an urgent requirement of the AM industry to speed

up the manufacturing process and reduce operational costs.

In this context, a numerical simulation model of SLM process was developed using the ANSYS

additive software. To fasten the numerical convergence, a new calibration technique was

developed, which not only improves the convergence but also improves the output results. The

computation efficiency is assessed and compared with the three different experimental studies.

The experimental studies involve a vertical prism, a horizontal prism, and an L-shaped structure.

Later another SLM numerical model developed with ANSYS workbench additive, and a data-

driven framework was proposed to analyze the sensitivity and uncertainty in SLM input and

output parameters. The proposed data-driven approach combines machine learning techniques

with high-fidelity numerical simulations to analyze the SLM process more efficiently and this

framework can be used in process optimization. Research work considers laser speed, hatch

spacing, layer thickness, Young modulus, and Poisson ratio as input parameters, while the output

variables are normal strains predictions in the built part. A surrogate model was constructed with

a deep neural network (DNN) and polynomial chaos expansion (PCE) to create a response surface

between the process output and the input variables. The analysis found that all the considered

parameters were important in the process. Subsequently, the surrogate model was integrated with

non-intrusive optimization algorithms such as genetic algorithms (GA), differential evolution

(DE), and particle swarm optimization (PSO) to perform an inverse analysis which helped in

finding the optimal parameters setting for the building. Among all the models, the PSO performed

well, and the DNN model was found to be the most efficient surrogate model compared to the PCE.

Another contribution from this thesis is the introduction of two data-driven, non-intrusive,

reduced-order models (ROMs) named convolutional autoencoder- multilayer perceptron (CAE-

MLP) and a combined proper orthogonal decomposition- artificial neural network (POD -ANN).

The POD-ANN uses proper orthogonal decomposition-based, reduced-order modeling which

extracts the reduced order basis for the given high-fidelity input snapshot matrix. After that,

an artificial neural network was constructed to form a surrogate model between the reduced
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order bases and the input parameters. Similarly, the CAE-MLP uses a 1D convolutional

autoencoder for the reduction of a high-fidelity spatial dimension snapshot matrix constructed

from high-fidelity numerical simulations. The reduced latent space is projected to the input

variables using a multilayer perceptron (MLP) regression model. The efficiency and accuracy

of these methods are quantified based on the thermo-mechanical analysis of an AM-built part.

A good comparison between the statistical moments from the high-fidelity simulation results

and the ROMs predictions confirms the ability of the proposed methods to accurately predict

the SLM outputs. Additionally, the predictions are compared with the experimental results at

different locations. While both models have shown a good correlation with the experimental

results, the CAE-MLP performed better than the POD-ANN.

Keywords: Selective laser melting, Optimization, Reduced order modeling, proper orthogonal

decomposition, Autoencoder, Deep neural network, Polynomial chaos expension
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INTRODUCTION

Additive Manufacturing(AM) is one of the growing manufacturing techniques- that provides an

opportunity to construct a complex and customized geometry with significantly less material

wastage (Aboutaleb et al., 2017). In the early stage, AM was known as rapid prototyping or 3D

printing because it was mostly used to build prototype designs. However, later, it was realized

that the technology could produce a fully functional part, and that is how the term ’Additive

Manufacturing’ became popular (Gu, Meiners, Wissenbach & Poprawe, 2012). AM process

decimates the traditional forms of manufacturing like moulds, dyes, milling and machining etc.

Furthermore, AM encompasses a wide range of materials ranging from plastic, composites,

metals, and many more. Nowadays, the most recent and advanced AM system, Laser-Based

Additive Manufacturing (LBAM), also known as a Laser Powder-bed Fusion (LPBF), is widely

used to fabricate geometrically complex metallic parts (Wohler, 2013). Due to the potential of

working with different materials and the capability of design flexibility, there is a growing number

of applications in various industries, especially aerospace and medical fields, for improving

performance and reducing weight (Horn & Harrysson, 2012).

In the context of LBAM, especially Selective Laser Melting (SLM) can achieve up to 99%

density in a built part with the help of fine features (Wang, 2012), and it can use a wide range

of alloys. In SLM, a 3D model is manufactured by selectively melting the material powder

layers with a high-energy laser beam. The structure of each layer is a 2D cross-section of the

main computer-aided design (CAD) model. Every layer incorporates line tracks which are

deposited adjacent to each other. Therefore, unlike the conventional manufacturing methods, the

SLM process makes products straight from the digital copy without acquiring the tool and the

fabrication sequence.
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As SLM provides new opportunities, process optimization is ideal for SLM because it can help

achieve high-performance design and fully utilize the fabrication freedom provided by the AM.

Additionally, process optimization can help reduce the AM process’s limitations by reviewing

the manufacturing constrain in the design phase and the mechanical properties, such as proper

compensation of the final AM part deformations and cutting down the residual stresses in the

processed part. The quality of the built part depends on the material properties, the process

parameters and the surrounding environment. Thus, a large number of parameters (around 19)

could affect the final constructed structure, which poses a significant challenge to the building

process. So, by optimizing these SLM process parameters, the residual stress and deformations

can be reduced.

0.1 Research Challenges

Even though LBAM has many advantages, its low build quality and poor process reliability

remain a great weakness for LBAM and limit its widespread commercial applications. Depending

on the material type and the process inputs, the major quality issues for LBAM-constructed parts

are inaccurate geometry, high surface roughness, improper relative density, and poor mechanical

properties (e.g. tensile strength). In this research, a new framework and methodology are

developed to optimize the LBAM process to find the set of optimal parameters that improve the

LBAM product quality, such as tensile properties, porosity and geometric characteristics.

Chapter 2 presents an extensive literature review regarding the effect of input parameters on

the LBAM process outputs. It is found that many process variables, namely laser speed,

hatch spacing, laser diameter, layer thickness, laser power, and scan pattern, can influence the

construction process and the final fabricated part quality. Additionally, the high-temperature

gradient during the heating and cooling process gives rise to residual stress, leading to the

improper shape of the built product and sometimes the immature termination of the building
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process. The process involves various time and length scales, making the LBAM complex. For

example, the steep increase in the melt pool’s temperature takes a few seconds and milliseconds

to interact between the laser beam and the material powder. Whereas a layer’s heating takes

minutes, the global heating treatment during fabrication can take hours. Hence, it is difficult

to identify an optimal set of process variables due to the high dimensionality of parameter

space. This challenge becomes complicated considering the interaction between the process

parameters. In other words, one variable’s effect is connected with another process variable’s

effect. Moreover, the multi-physic of the thermo-mechanical process is very complex, and a math-

ematical relation between the process parameters and the properties of the built part is not known.

The majority of relevant research studies use an extensive experimental approach to find the opti-

mal process parameters. However, studying the process parameters and their mutual interactions

becomes impossible as the AM experimental process is very costly and time-consuming. So, it

is not recommended to use Design of Experiment (DOE) methods (e.g., full factorial, fractional

etc.). Another problem with this approach is that the optimal parameters of one process cannot

be applied to another similar process because of the different experimental conditions (like

material powder, machine type etc). Therefore, there is an urgent requirement to develop a

global optimization framework which can construct a relationship between the input variables

and the desired properties of the final built part. It is also required to speed up the optimization

process by leveraging existing studies.

Numerical models provide an alternative to experimental methods, and many research studies

have cited them. A numerical process can help us generate a large number of data sets at a

significantly lower cost than traditional experimental models. However, SLM involves complex

multiphysics and multiscale phenomena (Horn & Harrysson, 2012) with several uncertainties,
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from the material powder bed to the melting and solidification processes. These uncertainties

come from an insufficient understanding of the process, measurement, scaling, sampling errors,

and lack of information about the material properties(Ngo, Kashani, Imbalzano, Nguyen & Hui,

2018). Additionally, the discretization of the SLM problem needs a fine spatial mesh and requires

a large number of time steps. The overwhelming requirements for computational resources

make high-fidelity simulations too expensive in the context of optimization and uncertainty

quantification. These challenges can be overcome with the use of data-driven surrogate modelling.

The surrogate method approach works in two stages 1) A dataset of solutions matrix computed

for several input samples in the offline stage that allows a surrogate model to be obtained using a

regression approach; 2) predictions on the new data set are performed online stage using the

surrogate model. The data-driven approach does not require any modification of the high-fidelity

source codes; these are used as a black box. However, the solutions database should be computed

in a reasonable timeframe.

0.2 Thesis Objectives

The primary aim of this work is to form a system for uncertainty propagation and optimization

for SLM. This structure can help researchers and industries take full advantage of SLM by provid-

ing information about deformations, residual stress, temperature profile and process optimization.

To fulfill these requirements, the objectives for this research work are as follows:

1. Develop a preliminary structure for numerical modeling and optimization of SLM.

2. Build a computational numerical model to understand the SLM process better and validate

the results with the experimental results.

3. Investigate new mathematical approaches to speed up the SLM simulation process to predict

the mechanical properties of the built part.
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4. Implement a non-intrusive surrogate model for the stochastic processing of the output from

the SLM model and construct a map between the input and the output parameters.

5. Construct a non-intrusive data-driven surrogate framework to analyze the SLM process’s

uncertainty propagation and implement a suitable sampling technique (like: Latin hypercube

sampling (LHS) )to achieve this goal.

6. Conduct a sensitivity and uncertainty analysis with the SLM input variables and find the

most critical parameters to the process.

7. Propose an optimization technique and find the SLM process’s optimal parameters.

8. Implement a new data-driven framework using a reduced order non-intrusive surrogate

approach to analyze a dataset of high-fidelity solutions computed at large nodes during the

SLM process. Also, compare the predictions with experimental results.

0.3 Proposed Approach

The methodology and framework proposed in the research significantly contribute to analyzing

the uncertainties and sensitivity and optimizing the SLM process. Following are the significant

contributions and originalities presented in this thesis.

1. After an extensive survey, a 3D numerical model of the SLM process is constructed using

the Workbench additive and Ansys additive software. The validation of the simulations was

performed by comparing the simulation results with the experimental results.

2. In this research, two different sampling techniques, Sobol and LHS, have been used to

conduct uncertainty and sensitivity analysis and optimize the SLM process. A Monte Carlo

method is also used to find the number of samples required to perform these statistical.

3. As an original contribution, a new numerical model for the better convergence of the Ansys

additive model was developed. The new convergence technique provides better results and

significantly reduces the computation time. The results obtained from the new method were
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validated with the experimental results. This work has been published in the following journal:

International Journal of Manufacturing Research https://doi.org/10.1504/ĲMR.2022.127090

4. Secondly, the additive model was used to build high fidelity data matrix of numerical

solutions from the SLM simulations. A random set of input parameters was generated using

the Sobol sampling method, and the built part’s mechanical properties (like strains and

deformations) were extracted as output over a cross-section. The obtained output data matrix

was then used to construct a surrogate model between input and output parameters using the

Polynomial chaos expansion (PCA) and Deep Neural Network (DNN). Surrogate models

were combined with non-intrusive optimization algorithms such as genetic algorithms (GA),

differential evolution (DE), and particle swarm optimization (PSO) to perform an inverse

analysis and find the optimal parameters for the SLM process. The work has been published

in the following journal: Applied sciences https://doi.org/10.3390/app12052324

5. In the continuity of previous work, a data-driven, non-intrusive, reduced order model (ROM)

constructed with the convolution autoencoder (CAE-MLP) and the linear reduced-order

technique-based artificial neural network (POD-ANN) has been proposed for additive

manufacturing (AM) process. The research considers the whole geometry nodes to construct

the high-fidelity matrix instead of cross-sections. The performance of both models was

compared with the experimental results and the results from the second paper. The new

framework significantly improved the predictions and increased the accuracy by 60%

-80%. The third publication with the new approach has been submitted to Computer and

Mathermatics with application on May 11, 2023 for evaluation by the journal.

6. Finally, the development of the SLM simulation model and the stochastic analysis techniques

allows a more reliable prediction that accounts for the variabilities in the input parameters.

These frameworks and tools help speed up the SLM computation and build trust in the SLM

part before going to the actual production.
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0.4 Thesis Organizarion

This thesis is presented in the format of articles with four chapters. A chapter dedicated to the

literature review and two articles have already been published, presented in chapters 2 and 3.

Article 4 has been submitted to a journal for evaluation and is presented in chapter 4.

Chapter 1 provides a comprehensive review of AM process, SLM mathematical modelling,

different numerical software, uncertainty and sensitivity analysis of AM process, the effectiveness

of process parameters on the AM output, surrogate modelling of AM systems, optimization of

AM process, optimization techniques and reduced order modelling. Chapter 2 illustrates the

mathematical modelling of the SLM process using Ansys additive and presents a new convergence

method for faster and better SLM simulation results. In Chapter 3, a parametric analysis of

the SLM process is carried out using Sobol sampling with the help of workbench additive

software. A systematically data-driven, non-intrusive surrogate model is constructed between

the input and output parameters. The surrogate model is then used to conduct the uncertainty

and sensitivity analysis of the SLM-built part. The framework presents two different techniques

using a convolution autoencoder and proper orthogonal decomposition. The framework helped

in finding the essential parameters in SLM building operation and then used those parameters to

find the optimal solutions using a suitable optimization technique. Chapter 4 is dedicated to the

development of a reduced-order model (ROM) method for the SLM-built part. The prediction

from both models was compared with the experimental results at different locations and with the

projections from the surrogate model constructed in the third chapter. Finally, the concluding

remarks and the future works are listed.





CHAPTER 1

LITERATURE REVIEW

This chapter provides a comprehensive introduction to the general Additive Manufacturing (AM)

process and its different types, with a specific focus on the Laser Based Additive Manufacturing

(LBAM) process. The numerical modelling of the LBAM process being specific to Selective

Laser Melting (SLM), the effect of process parameters, surrogate modelling of the SLM method

and optimization techniques for the SLM have been highlighted.

1.1 Additive manufacturing

Additive manufacturing provides a new way of part fabrication. It fabricates components directly

from a 3D computer model by selectively curing, depositing or consolidating material layers

with the successive layer. Every layer is a representation of the cross-sectional geometry of

the built part at a given height. These techniques provide a construction method other than the

traditional manufacturing sources like forming. Casting and machining as it doesn’t require

tooling to produce a component. Thus additive manufacturing is changing the way we construct

parts in the manufacturing industries. Some of the major advantages of AM process are as

follows:

1. Components with complex geometry like internal channels, lattice structure and many other

properties can be fabricated.

2. It reduces material wastage and can save industries a lot of money.

3. The number of resources required in the construction process has been significantly reduced.

4. It provides customers with the freedom to get a personalized product in a short period of

time and thus, it increases the production demand.

5. The product can be manufactured where needed, reducing the transportation cost significantly.

There are mainly seven major categories of AM techniques depending on the processing

mechanism. These categories are defined in the following sections.
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VAT Photopolymerization: Vat Photopolymerization constructs a structure layer by layer

using a vat of liquid photopolymer resin. During the process, ultraviolet (UV) light is used to

harden the resin while depositing a layer. When the layer is cured, the substrate moves the object

made downwards for the deposition of new layer deposition (Skoog, Goering & Narayan, 2014).

Material Extrusion: Material extrusion uses a thermoplastic material as the primary material

for the construction process. The process is famous for materials like polylactic acid (PLA),

Acrylonitrile Butadiene Styrene (ABS) etc. The material filament is heated in the chamber and

fed through a heated coil known as an extruder head. The molten material is moved out of the

nozzle using hydraulic pressure, and it is deposited on the building plate. Once the deposition of

a layer is completed, the extruder and the platform are parted away, and the platform is moved

lower for deposition of the next layer (Gibson et al., 2021a).

Material Jetting: Material jetting creates a 3D structure by ejecting material droplets from the

heated nozzle; the process is similar to 2D inkjet printing. The droplets are deposited on each

other layer by layer. As the process requires material to be in a droplet form, the number of

suitable materials for the procedure are limited. Polymers and waxes are ideal for the process

due to their viscous nature, and they turn into drops quickly (Gülcan, Günaydın & Tamer, 2021).

Binder Jetting: Binder jetting is similar to the material jetting process, droplets from the heated

nozzle are deposited, but the droplets are not made of the material of the actual part to be printed.

The droplets comprise a particular binder selectively deposited over the material powder bed

to construct a 3D structure layer by layer. The commonly used material in the process is sand,

ceramics and metals that come in a granular form (Ziaee & Crane, 2019).

Sheet lamination: In sheet lamination, the material sheets are bounded together layer by layer

to form a 3d object. It uses various materials like paper, polymers and metals, but each requires

a different binding process. For example, a paper sheet involves heat and pressure to bind two

sheets coated with an adhesive. Similarly, heat and pressure are added to melt the sheets together

for polymers. For metals, the sheets are joined together using ultrasonic vibrations with the

proper pressure (Gibson et al., 2021c).
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Direct energy deposition: A direct energy deposition is a group of AM processes where the

material powder and heat input are added simultaneously over the building plate. The heat

source can be a laser, electron beam or plasma etc, where as the material can be a metal powder

or wire (Ahn, 2021).

Powder Bed Fusion Process: In the powder bed fusion (PBF) process, material powder

(stainless steel 316L) is selectively fused together layer-by-layer into a 3D structure. The powder

bed fusion can be broadly classified as: i) direct metal laser sintering (DMLS); ii) selective

electron beam melting (SEBM); iii) selective heat sintering (SHS); iv) selective laser melting

(SLM); and v) selective laser sintering (SLS). The heat source in the fusion process can be either

a high-intensity laser or an electron beam. Selective laser melting (SLM) uses a laser beam as

the heat source and selective electron beam melting (SEBM) utilizes an electron beam as the

heat source. SLM is slower than SEBM but provides a better surface finish than SEBM. In

addition, SEBM can be used with fewer metal powders than SLM. DMLS is similar to SLS but

uses metals instead of plastics (Gibson et al., 2021b).

1.2 Selective laser Melting (SLM)

The SLM process is comprised of four major phases: i) conceptualization; ii) pre-processing; iii)

manufacturing; and iv) post-processing. The conceptualization and pre-processing phases create

a geometry of the component in a computer using some software, such as ANSYS-Additive.

Based on the pre-specified layer thickness, the constructed geometry is then transformed into

several slices, usually from 20 to 100 micrometres thick, and subsequently converted into a

machine-friendly file format (.stl). A thin metal powder layer is evenly distributed over the

substrate plate that moves in the vertical direction (z-direction). When the component is in the

manufacturing phase, each layer is melted one by one using a specific scan strategy. Once the

melting of a layer is complete, the processing platform is reduced by one layer of thickness.

A new layer of the powder is applied over the previous layer using a roller or a rake, and the

heating process is continued. These steps are repeated until the desired structure is produced.

After completion, the component is removed from the base plate for post-processing, where
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Figure 1.1 SLM process

the quality of the product is examined using neutron diffraction or a similar technique. The

physical properties, such as absorption/reflection, phase transitions, melt pool dynamics and

others, influence the quality of the final component an the stability of the process. The following

subsections highlight the essential aspects of the SLM process and the challenges associated

with its computational modeling.

1.2.1 SLM Process Variables

The efficiency and accuracy of additive manufacturing can be improved by using suitable material

and process parameters. Broadly, the properties of a material, the process, and the environment

define a large number of the parameters which affect the final product (Gu et al., 2012), including

laser speed, layer thickness, hatch spacing, laser diameter, chamber temperature, etc. Besides

this, the scan pattern, for instance, a chess board, strip, etc., determine the final properties of

the built part. Setting up a proper parameter setup is a tedious job, but it is essential to build a

design geometry as the microstructure, geometry shape, mechanical properties, deformations,

surface roughness etc, can be affected by the process parameters (Tapia & Elwany, 2014).
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1.2.2 SLM Defects and Imperfections

The SLM process is highly complex; the physic behind the process consists of many phenomena’s

microstructure evolution, melt pool dynamics, rapid heating and cooling of the powder bed,

absorption and reflection of the laser beam by the material powder and material evaporation (Li,

Liang, Liou & Park, 2018) etc. The constant heating and cooling with high thermal gradient

give rise to the residual stresses in the built part, leading to deformations, cracks, porosity

and dimensional inaccuracy, etc (Zhang, Li & Bai, 2017). In (Zaeh & Branner, 2010) (Kruth

et al., 2010) a T-shaped cantilever and a bridge structure were constructed with the SLM. Both

the structures showed deflections in the geometry once they were cooled down to ambient

temperature and the supports were removed. Sometimes the building part can break from the

substrate during fabrication due to internal stresses (Wang, Yang, Yi & Su, 2013). Aboulkhair,

Everitt, Ashcroft & Tuck (2014) proposed a process map to get the high-density parts with

AlSi10Mg alloy. The work demonstrated the correlations between the laser speed, laser power,

and the porosities types. Similarly, many studies have been conducted in the past to find a

relation between the process parameters and the properties of the built part to improve the quality

of construction (Salem, Carter, Attallah & Salem, 2019) (Delgado, Ciurana & Rodríguez, 2012).

1.2.3 Materials processed by Selective Laser Melting

The majority of the SLM work uses metals like iron, titanium and nickel, because of their large

applications and material cost. But as research progressed, different types of metal such as

tungsten, copper, aluminum and magnesium have also been used for the SLM process. One of

the famous metal alloys is 316L stainless steel which was first considered by (Abe, Osakada,

Shiomi, Uematsu & Matsumoto, 2001) in 2001 but couldn’t produce the desired results because

of the balling effects. Later on, Jandin, Bertin, Dembinski & Coddet (2005) successfully

reported SLM products with 316L stainless steel powder. The experiments found that low laser

power and high scanning speed result in partial melting of the material powder; thus, it leads

to high porosity components. However, it can be overcome by increasing the laser power and

decreasing the scanning speed. Finally, in 2010 (Tolosa, Garciandía, Zubiri, Zapirain & Esnaola,
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2010) achieved 99.9% relative density in the SLM process with the 316L stainless steel powder.

Other variants of steel have been used and investigated by SLM, including M2 high-speed steel

(tool steel), H13 tool steel, 314S stainless steel, inox904L stainless steel. AISI maraging 300

steel etc. Besides steel, iron and titanium-based alloys have also been reported by SLM like:

Fe-Ni-Cr Fe-Ni-Cu-P, Fe-Al, Fe-Ni, Fe-Cr-Al Ti-6Al-7Nb, Ti-24Nb-4Zr-8Sn, Ti-13Zr-Nb, and

Ti-13Nb-13Zr alloys. Another popular alloy is nickel-based and most of the research work

is centred around Inconel, a nickel-based alloy family, mostly required in high-temperature

applications. Some of the highly used nickel alloys are Inconel 625, Inconel 718, IN738LC,

MAR-M 247, Chromel, Hastelloy X, and Nimonic 263 (Yap et al., 2015) etc.

1.2.4 SLM post processing

The final step in the SLM process is post-processing, where the built part undergoes support

removal, heat treatment and surface finishing. There could be two types of supports during the

building process: the natural support provided by the material powder surrounding the building

part and the stiff structures built alongside the actual geometry to give extra stability to the

built part. The part could be removed easily from the powder supports, but the rigid supports

must be removed from the part during the post-processing. Once the supports are removed,

the surface still has some irregulates and to improve the surface quality, the SLM surfaces are

treated by several methods like shoot peening, sand blasting, chemical polishing, Barrel finishing,

electropolishing and grinding (Boschetto, Bottini, Macera & Veniali, 2020) (Löber, Flache,

Petters, Kühn & Eckert, 2013). In post-processing the structure undergoes heat treatment too.

The heat treatment can potentially reduce the residual stresses in the final structure and improve

the product’s capabilities (Baghi, Nafisi, Hashemi, Ebendorff-Heidepriem & Ghomashchi, 2021).

1.3 Computation modeling of SLM process

Understanding the SLM process and the effect of its input variables on the output using a

traditional experimental path could be very expensive and time-consuming. Therefore SLM
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computational modeling has been introduced to study the SLM process. This will not only boost

the SLM process understanding but will help us optimize the process too.

1.3.1 Analytical solutions

An analytical method for a moving heat source was first introduced for welding by Rosenthal

and after some time, the heat source model is modified to a 2D Gaussian distributed heat source

model (Huang, Khamesee & Toyserkani, 2016). Thĳs, Kempen, Kruth & Van Humbeeck (2013)

used the moving Gaussian heat source and provided an analytical solution to the thermal field.

However, this model has limitations, and one of the major drawbacks is the oversimplification of

the SLM physical mechanism. The model considered only the thermal conduction phenomena,

and thus, it could not provide accurate results for a complex problem like SLM. (Peligrad,

Zhou, Morton & Li, 2001) presented an analytical solution for melt pool depth during laser

glazing, which matched the experimental results. But the prediction seemed to be accurate

for a short range of parameters. King et al. (2014) proposed a normalized enthalpy that helps

identify the transition between the conduction mode and the keyhole model. (Liu, Fang & Lei,

2021) later used the normalized enthalpy to predict the melt pool depth by considering the

laser absorption behaviour. However, the model seems weak if the material properties change

a lot. (Yang & Ayas, 2017) suggested a new analytical model for rapidly predicting the melt

pool geometry and characterizes the depression shape formed under the influence of surface

tension thermal dynamics and recoil pressure. A semi-analytical thermal model for LPBF

process was proposed by Yang, Knol, Van Keulen & Ayas (2018) (Ning et al., 2019) to study the

influence of powder bed dimension and the related boundary conditions, which were solved

using the finite difference method. Ning et al. (2019) introduced an analytical model with

the pseudo heat sink and found a good match of melt pool dimensions with the experimental

results. Moreover, the deformation induced due to the residual stresses was calculated using the

analytical and finite element method (FEM) (Afazov, Denmark, Toralles, Holloway & Yaghi,

2017) (Gusarov & Kovalev, 2009). The proposed models can provide promising analytical

results for thermal simulations, but they rely on FEM for mechanical simulations. Also, in
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some cases, the melt pool might not be in conduction mode or the material properties can be

temperature dependent (Körner, Attar & Heinl, 2011), and in that case, the analytical model will

need more validation proof.

1.3.2 Powder level modelling

SLM is a complicated process as it includes multiple physics: heat conduction, heat convection,

radiation, photon absorption, hydrodynamics, phase change dynamics and solid mechanics

etc. Thus, some researchers study particle-level SLM models to investigate the melt pool

dynamics and heat flow, that includes many details such as laser-ray through the powder particle,

computation fluid dynamics (CFD) model. Some of the particle-level methods and the challenges

associated with them are provided in the following sub-sections.

Powder absorptivity modeling: During the SLM process, the powder bed is exposed to a laser

beam, causing the photons to be transformed into thermal energy. The surface is highly reflective

so that most of the beam’s intensity is reflected from the surface and only a small fraction of the

photons are absorbed. Generally, the first few nanometers of a surface absorb most of the photons

(Tveito & Bruaset, 2006). The powder bed’s relative density and reflectivity affect thermal energy

absorption. The energy absorption in the deeper of the powder layer is higher than the coefficient

of absorption of the material due to the multiple reflections of the photons by the powder particles.

The popular model for laser absorption proposed by Schoinochoritis, Chantzis & Salonitis (2017)

can be used for modeling thick and high-porosity metal powder and ceramic powders. However,

the approach is inadequate for modelling low-porosity metal powder layers. The distribution of

particle size, the laser beam’s size and its profile are some factors that affect the absorption of

the powder material. Diffusive radiation transported through metal powder and a volumetric

heat source are two of the approximations used in Gursarov’s ray-tracing method for calculating

the absorption of a powder bed (Gu et al., 2012). But the work neglects the incident ray’s
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polarization and angular absorption dependency. The significant challenges in the ray tracing

method are considering the power, the polarization and the reflection/refraction of each ray.

Melt pool dynamics: Melt pool dynamics can be interpreted using the powder scale or contin-

uum approaches. The powder scale approach deals with the dynamics at a particle level. The

major forces driving melt pool dynamics are capillary action and the Marangoni effect. Two other

factors that strongly influence a melt pool are the evaporation pressure and the wetting ability of

the powder in the last layer. Körner et al. (2011) developed a two-dimensional numerical method

that considers a lattice Boltzmann (LB) (Tveito & Bruaset, 2006) model to analyze the SLM pro-

cess at the powder scale. This method has been modified to incorporate the free surface boundary

conditions that help to model the phase change, wetting and surface tension (Ziaee & Crane, 2019).

In another approach, the powder bed is treated as a continuum (Schoinochoritis et al., 2017).

Such simplification reduces the computational costs and complexity of the interface between

the atmosphere and the powder material. However, the continuum approach does not model

the surface tension or the wetting effects between the material and the atmosphere. The study

of melt pool at the macroscopic level requires a solution of the heat equation, with the laser

as an energy source term. Gusarov, Yadroitsev, Bertrand & Smurov (2007) studied the melt

pool properties in a selective melting process of steel 316 and successfully predicted the melt

pool length and circumference. His work shows that at 45W if the scan speed is reduced

from 2.4m/s to 1.2m/s, the process is stabilized by increasing the contact area available to the

substrate. Zäh & Lutzmann (2010) study the single-layer melting of 316L steel powder using a

finite element model. Their model only includes the heat radiation from the upper surface and

the thermodynamics of the heat source. Their study estimated the formation of melt balls by

analyzing the length-to-width ratio at different scanning speeds and beam powers.

Heat source: Heat source modeling or temperature distribution modeling is an essential part of

the SLM process, as most of the material properties, such as density, surface tension and heat

conductivity, are temperature-dependent. The metal powder absorbs only a small amount of
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incident energy during the process, whereas the rest of the intensity is reflected (Fischer et al.,

2003). Throughout the process, it is vital to expose the material to the laser intensity for a

sufficient time so that it melts appropriately and solidifies accurately. Different combinations of

laser power and velocity may result in other physical and mechanical characteristics of the built

part. For instance, higher laser power and higher laser velocity lead to a finer microstructure and

a higher cooling rate. On the other hand, higher laser power combined with lower laser velocity

introduces a lower cooling rate and a coarser microstructure.

The heat energy source can be classified as the area heat and the volume heat flux. If the heat

flux is applied over the material’s surface, it is known as area heat flux; if the flux is applied to a

volume, it is termed as volume-related heat flux. In SLM, the heat flux is considered a function

of space and time. To simplify the process, the scanning vector is modeled with a scanning area

rather than the exact scanning path (Neugebauer et al., 2014) and the thermal heat is applied

over the whole layer to substitute the scanning path.

Porosity: Porosity occurs due to the presence of large temperature gradients. During the

melting and solidification processes, inert gases such as Nitrogen and Argon trapped inside the

molten pool fail to escape the melt pool, resulting in porosity. Using a numerical model at the

powder scale makes it possible to predict and analyze the morphology and evolution of the

residual porosity within a bulk material. Teng et al. (2017) studied the formation of porosity in

cobalt-chromium components using the 3DSIM tool. Using the SLM technique, their model can

accurately predict the porosity and metal pool trends in CoCr parts.

Bauereiß, Scharowsky & Körner (2014) studied the defect formation and propagation mechanism

using SEBM and the LB model proposed by Körner et al. (2011). They compared cubes of

Ti6Al4V manufactured with a laser scan speed of 0.8m/s at different laser beam powers against

numerical results. With a beam power of 90W, channels of high porosity are observed across

many layers. They found that inadequate melt depth and the random nature of a powder layer
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lead to irregularities in the melted layer. During the melting process, thermal diffusion is slower

than the hydrodynamic motion driven by the surface tension. Therefore, the molten particles

merge with neighbouring solid material.

Surface Roughness:

The irregularities present over the surface of a built component are known as surface roughness.

They may be useful, depending on the final application of the component; for instance, in

contact/coupling between bones and implants (Deligianni et al., 2001). However, surface

roughness is not always desirable, as it negatively affects the component mechanical properties,

leading to cracks (Cansizoglu, Harrysson, Cormier, West & Mahale, 2008). The built orientation,

an important factor affecting the AM component, also affects the surface roughness. Strano,

Hao, Everson & Evans (2013) found that all the parameters that affect the heat distribution over

the surface will also significantly affect the surface roughness of an SLM component. Their

study also reveals the dependence of the surface roughness on the slope angle. Their results

show that the roughness increases as the inclination angle increases from 0°. The roughness

then remains constant between 5°and 45°, followed by a slight decrease in roughness between

50°and 90°.

Qiu et al. (2015) discovered that melt pool stability affects surface roughness the most. Marangoni

forces and recoil pressure influence the melt pool stability. Their study also reveals that poor

finish, high scan speeds and larger layer thickness affect the surface roughness. Panwisawas

et al. (2015) used a finite volume (FV) model to study the dependency of melt pool motion and

the surface structure in SLM-manufactured cubes. The simulation setup considered the laser

power and velocity to be 400 W and between 2m/s and 4m/s, respectively.

1.3.3 Part level modelling

Although understanding the physics at the powder level is essential, the model used in these

studies has a dimension of 1 mm compared to the AM part of 10cm. The part-level simulation
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requires the inclusion of the deposition process, and thus, it may not be feasible to use those

methods to simulate a part-level model. Therefore, the exclusion of particle-level modelling can

reduce the computation cost and to further reduce the cost, some other assumptions are taken

into account.

A simple SLM process simulation involving a coupled thermo-mechanical analysis and a

fine mesh may take considerable time to solve (Cheng, Shrestha & Chou, 2016). Numerous

assumptions that can simplify the representation and accelerate the SLM process computations

are possible. In specific scenarios, the convection of liquid inside the melt pool and the heat

loss from the base plate is usually ignored (Zhang, Li, Li & Zhao, 2011) (Cheng et al., 2016)

(Dai & Shaw, 2006). In other cases, the evaporation of the metal is not considered during the

solidification and heating process (Dai & Shaw, 2002) (Tolochko et al., 2003) (Dai & Gu, 2014).

During the heating of the metal powder layer, the radiation effect of the heat source and heat

loss from the base plate is usually ignored. The inclusion of the radiation loss term increases

the nonlinearity of the problem (Yin et al., 2012) (Roberts et al., 2009). In the part level or

continuum approach, the fluid dynamics of the melt pool are usually ignored, and the simulation

only considers the thermo-mechanical model. Such simplifications help to bypass the surface

tension and the wetting effects between the environment and the melt pool.

The quality of products using SLM depends on the material, the machine parameters, and their

interactions during the process. The major challenges associated with SLM are: 1) the complexity

in formulating the problem – it may take significant time and effort to solve a simple SLM

process; and 2) the variations in the results from one machine to the other and the differences in

material properties, both of which make it difficult to generalize the SLM process. Mathematical

modeling provides an essential means for understanding the procedure and the material behaviour.

The AM community has been using the finite element (FE) and finite difference approaches for

SLM thermal simulations, with scenarios solved as 1D, 2D, and 3D problems. A 1D model has
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the clear advantage of reduced computing cost. In (Childs, Hauser & Badrossamay, 2004), the

SLM process was simulated by a 1D FE using Bisphenol-a polycarbonate. That work examined

the effects of primary parameters like beam velocity, scanning length and the laser beam spot

size over the as-built part. The disadvantage of 1D is that it lacks the ability to provide enough

details about the thermal behaviour. For example, studying thermal distribution in a melt pool

would not be possible. A 2D model can provide more insights than 1D modeling. A heat

transfer model considering radiation and convective factors with a single line scab layer of steel

316L powder was studied in (Aboulkhair et al., 2014). A similar study was done in(Matsumoto,

Shiomi, Osakada & Abe, 2002), where a 2D model of the SLM process of the single layer

formation of a nickel layer is studied. That study shows the possibilities for and the locations of

future cracks in the layer.

While 2D modeling is mostly used to study the melting in a single layer case, for multiple layers

a 3D model provides better accuracy. 3D modeling of a heat source was applied for the first

time in (Goldak, Chakravarti & Bibby, 1984). The temperature field was calculated using a

finite element model (FEM) and the laser beam was modeled as a double ellipsoidal heat source.

The ellipsoidal shape allows the size and shape of the heat source to be modified, which helps to

model a shallow penetration welding process or the deeper penetration laser and electron melting

processes. In (Kolossov, Boillat, Glardon, Fischer & Locher, 2004), a three-dimensional FEM

model of SLS was constructed. The model incorporates the nonlinearity of the specific heat and

thermal conductivity during the phase changes. An important challenge here is to simulate and

monitor the transient temperature history, as this history is required in order to calculate the

residual stress states and the thermal stress distribution during the process. In (Roberts et al.,

2009) a 3D model is developed to calculate the temperature field in the multiple layers of an

SLM process using the element birth and death technique. In this technique, the elements are

activated or considered in the simulation process only when needed. In the process, zones of

high heat flux are modeled with a fine mesh and the mesh density is increased only in specific

areas of high flux. Such techniques save considerable computation time compared to having the
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finer mesh everywhere.

The discretization of a problem domain is vital for accuracy and computational cost. It is well

known that when a coarse mesh is used, it can reduce the computing time but may lead to a

significant discretization error. While finer meshes can provide better accuracy, they often require

much more time to solve. In such a context, it becomes imperative to choose an appropriate

mesh size that reduces the computational time without adversely affecting the accuracy of the

simulation.

The temperature gradients under a laser beam are extremely high, but a dynamic adaptive mesh

refinement (AMR) scheme can be used in the simulation process to capture the temperature field

correctly while moving (Afazov et al., 2017) (Gusarov & Kovalev, 2009) (Pal et al., 2016). A

dynamic adaptive mesh scheme can provide more precise results than static non-uniform mesh

(Berger & Oliger, 1984). Dynamic AMR is a robust approach that has been widely applied in

the study of fluid dynamics and forge forming. A similar dynamic approach, AMR modeling,

was developed by Patil et al. (2015) for the simulation of SLM additive manufacturing processes.

AMR modeling includes a box of finer mesh representing a melt pool area that moves throughout

the coarser mesh domain. While the box is moving, the properties of all the elements within

the box are calculated using the previous elements. During the process simulation, the element

quantity remains the same, which keeps the model size constant.

As stated earlier, it is important to know the transient temperature history of the melting powder

layer, as this helps to calculate the residual stress and temperature distribution in the SLM

product. In the thermo-mechanical modeling of the SLM process, J2-plasticity and a heat

conduction model can be used to represent the mechanical behaviour.
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The temperature can vary from 100°C to 2000°C in the SLM process. Such drastic changes in

the temperature of the process affects the mechanical properties of the metal powder and makes

it essential to use an efficient model for the cooling and heating cycles of the process (Fu & Guo,

2014). For example, for Titanium alloy the density of the powder bed decreases with the increase

of temperature until the melting point, after which it starts decreasing sharply. An inverse

relation of the powder density with the temperature change between the solid and the liquid state

is presented in (Childs, Hauser & Badrossamay, 2005). Masubuchi (2013) showed how the

thermal stress of a material depends on the temperature of the material. Additionally, all the

physical properties and mechanical behaviours of powder particles and the same bulk metals are

different (Gusarov & Kruth, 2005) (Gusarov & Kovalev, 2009). In numerous cases, the material

properties are considered independent of temperature to minimize the computational time

(Deligianni et al., 2001) (Strano et al., 2013). However, solid and powder material properties

can be defined as a function of temperature (Cheng et al., 2016) (Hussein, Hao, Yan & Everson,

2013). An overview of the thermo-mechanical modeling of the SLM process is presented in the

following section.

1.3.4 Numerical Software

There has been a great advancement in the numerical modelling of SLM. A number of software

has been available to simulate the SLM process and some of them are listed in table 1.1.

1.4 Data-driven non-intrusive modelling of SLM

AM is a highly complex process comprising electronics, optics, mechanics and material science.

Due to such complexity, the AM-built product is affected by several factors like material

properties, laser parameters, working environment, etc. The mathematical modelling of AM

system becomes difficult because the related factors are from diverse perspectives and different

stages. Also, the physical-based model are usually too complicated due to the uncertainties in the

process parameters, which further requires high computation cost. Another challenge associated

with the AM process is the integration of different digital models for other phenomena and at
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Table 1.1 Available software for the SLM simulation

description References
3DSim/ A software developed

Ansys additive by Prof. Stucker and www.ansys.com

later acquired by ansys in 2017 /products/structures/additive

/manufacturing

Flow3D An american based company www.flow3d.com

which simulates different /products/flow3d-am/

types of LBPF process

Additive Keller introduced it www.additive.works

Works first for the SLM simulation

Netfabb Strong mesh operation ability www.autodesk.com

Acquired by Autodesk /products netfabb

overview

Ansys workbench ansys provide another www.ansys.com

simulation model for the /products/

LPBF process by combing the

thermal and structural models of the

ANSYS software

Abaqus Users built the LPBF models Favaloro & Pipes (2017)

Comsol Strong multi-physic simulation Masoomi (2018)

with part level and particle

level simulation abilities

Comet FE software developed at the www.cimne.upc.edu

International Center for

Numerical Methods in Engineering

ALE3D Particle-level model Khairallah & Anderson (2014)

by Lawrence Livermore

National Laboratory

CUBES Developed by Pan Computing Denlinger (2016)

LLC and acquired by Autodesk

Simufact Mainly based on the inherent www.mscsoftware.com

Additive strain method /product

/simufact-additive

Deal.II Open-source code. Strong ability Bruna-Rosso (2018)

in the adaptive mesh that

is necessary for the LPBF

process simulation

Diablo Thermo-mechanical www.esi-group.com/

simulation for LPBF software-solutions/virtual-

manufacturing

/additive-manufacturing

ESI France company particle simulation
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multiple scales in one united model (Smith et al., 2016). Machine learning (ML) applications

have been spread to a wide range of fields, such as computer since, aerospace, manufacturing

and healthcare industries. The advancement of data storage and acquisition has increased the

adaptation of ML system-based data-driven models to uncover complex relationships and hidden

knowledge in digital manufacturing systems (Lasi, Fettke, Kemper, Feld & Hoffmann, 2014).

The use of a reliable ML model and dataset can learn hidden patterns and reveal the important

latent understanding, which can help process optimization, system improvement and quality

control. Thus, many researchers have used data-driven ML algorithms to counter the AM

process challenges, including process modelling, design optimization, energy management and

in-situ monitoring. This section provides a comprehensive literature review on the application

of ML models in AM process.

The SLM process is an essential branch of additive manufacturing for the metal industry. The

applications of machine learning in SLM technology are divided into three phases. The first

phase is the pre-process, which is termed a "digital phase"; it consists of file preparation and

part design. The second phase is the "manufacturing stage," which includes in-situ monitoring

and process parameters optimization. The final step is post-processing, where the mechanical

properties and the built part’s quality are analyzed. All these stages are discussed in the

subsequent.

Digital phase: The design of the L-PBF part corresponds to the design concept for additive

manufacturing(DfAM). Initially, at the design phase, most designers consider the design

according to their experience and knowledge. Thus, the AM professional lacks advanced

intelligent techniques to help explore the AM-enabled design field. Therefore to address this

issue (Salonitis, Chantzis & Kappatos, 2017) proposed a hybrid ML approach for selecting

design features at the conceptual stage in the AM process. The research considers the AM

design features and the target outputs were classified into loading, objectives and properties.

An SVM model was considered to train and predict the final cluster with the recommended

AM design features for the process. Zhang, Yang, Dong & Zhao (2021). used a convolution
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neural network (CNN) and neural network (NN) to study the manufacturing abilities and the

potential failure area with a specific build design for an L-PBF process. In another similar study,

Andrew et al. presented a framework using variational autoencoder(VAE) and Ml techniques

for the cantilever design optimization. The process consists of the long short-term memory

neural network and VAE to transform the cantilever structures to a 2d latent space and make

a surrogate model for the latent space corresponding to the topology optimization process.

(Després, Cyr, Setoodeh & Mohammadi, 2020) used the NN model with the genetic algorithm

(GA) to optimize the micro lattice architectures in AM. They used GA to generate data set

for the micro-lattice structures and performed a finite element analysis model to calculate the

corresponding mechanical properties. The generated data was used as a training set for the graph

convolution network and asymmetric auto-encoder for constructing micro lattice structures. The

framework was able to predict mechanical properties with an accuracy of 93.72% for a given

micro lattices structure. In (Zhang, Harik, Fadel & Bernard, 2018a) the authors used K-means

clustering method to generate an efficient build orientation. The stereolithography (STL) models

were decomposed into k facet cluster using the k-means clustering method along with the

Davies-Bouldin criterion. The normal vector of every facet normal cluster were considered

a different build orientations and the optimal orientation was calculated with the statistical

evaluation method.

In-situ monitoring: Currently, in-situ monitoring is the highly focused area of ML applications

in AM process. The technology has grown rapidly and now it uses advanced equipment like

thermocouples, photo-detectors, high-speed optical cameras and pyrometers etc. (Angelone

et al., 2020). In-situ, monitoring is acquiring data from the multiple sensors attached during

the AM building process to provide first-hand product quality information. The analysis of

real-time data during the manufacturing process helps increase the quality of the built product

and reduce material wastage and manufacturing costs. However, the process of accomplishing

accurate time control on the AM is still at the developing phase, irrespective of the avail-

ability of big, multi-modal and high-quality data. This could be because of the following

reasons. First, it is still not documented which sensor data is most useful for implementation
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in control strategies. Secondly, ML methods require to consider that fused data exist, but

they’re only been implemented recently. Finally, the data fusion methods needed to accept that

all the sensor data is unavailable or doesn’t exist (Razvi, Feng, Narayanan, Lee & Witherell, 2019).

The data for In-situ monitoring is divided into three types: one-dimensional (1D) data like

spectra, 2D data corresponding to images and finally 3D data such as tomography. During

the high-temperature melting of material powder in the SLM process, plumes can be formed

because of the ionization of metallic vapour in the melt pool. Also, the recoiled pressure could

drive the liquid drop to move upward with high speed and thus creates spattering. Even though

the formation of plumes and spattering interrupted the melt pool, they could give useful incites

about the melting process. Therefore grasso et.al conducted an experiment where a set of 14

non-consecutive layers in SLM for the plume images were captured in IR image streams. Each

image had a sampling frequency of 50 Hz and a spatial resolution of 320 × 240 pixels. The data

set was analyzed using an unsupervised ML technique where the first four layers at the bottom

were used to train the model and the rest of the 10 layers helped monitor the process with the help

of a control chart. Zhang, Hong, Ye, Zhu & Fuh (2018b) proposed a vision framework with a

high-speed camera to track the images during the SLM process’s sequential melting of the powder

layer. The work was based on finding valuable information on melt pool, spatters and plumes.

The features were extracted based on the physical mechanism phenomena during the process,

using the PCA method and the SVM classification. This framework achieved an accuracy level

of 90.1% for quality-level classification. The convolution neural network(CNN) can correctly

monitor the real-time building process with 92.5% accuracy without the h feature selection

method. CNN models can learn features automatically from the raw data and are primarily

used in image analysis. Caggiano et al. (2019) proposed a modified version of CNN called

deep CNN (DCNN) that used a hierarchical structure for multilevel feature extraction during

the online image detection in the SLM. Similarly, Scime & Beuth (2018) presented another

advanced version of CNN called multi-scale CNN (MsCNN), which further improved the flexi-
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bility and classification quality of the traditional CNN methods for the anomaly detection process.

Acoustic signals provide another way to monitor the manufacturing process and have advantages

over optical signal, like it can accurately provide a defect’s location (Shevchik, Kenel, Leinen-

bach & Wasmer, 2018). Additionally, the 1D acoustic method is faster than the 2D image or 3D

tomography technique. However, this process faces challenges due to the background noises,

which are noticeable in AM process, especially in the SLM process. But, the challenges can

be handled using ML-based monitoring and could provide good results. The acoustic signals

generated from the plasma created during the powder layer melting have gained popularity for

in-suite monitoring. The overheating or the underheating of the powder layer can cause a change

in the plasma density. Thus the change in the plasma density and the pressure fluctuation during

the melting process affect the acoustic intensity. Ye, Hong, Zhang, Zhu & Fuh (2018) used this

principle, collected acoustic signal using a microphone, and combined it with the deep belief

network (DBN) to analyze the melt tracts condition during the heating process. Shevchik et al.

(2018) another way, using a susceptible fibre Bragg grating sensor and a sample rate of 1MHz to

collect the acoustic signals for the SLM method.

Process parameters optimization:

The application of data-driven analysis in mapping the process parameters, final built part

properties, and the performance of the AM process has multiplied. Even though the Finite

element methods can accurately represent these relationships to some extent, the representation

of AM process through high-fidelity modelling is complex. The numerical modeling of AM

requires a deep understanding of material properties and the law of physics involved in AM

process. On the other hand, the low-fidelity methods don’t incorporate all the information

related to the physical poperies, mainly because of the variability from material to material or

machine to machine. Many studies have been conducted to introduce ML methods to counter

these challenges in the optimization of AM process.
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The earliest work of ANN use in process optimization was proposed by (Shen, Yao, Wang & Yang,

2004) to predict the part density in the built part. Xiong, Zhang, Hu & Wu (2014) used the

ANN model to find the effect of process parameters on the part density of SLM built part.

(Rong-Ji, Xin-Hua, Qing-Ding & Lingling, 2009) used this technique and combined it with the

genetic algorithm (GA) to find the optimal parameters like laser speed, hath spacing, laser power,

interval time and surrounding temperature to calculate the minimum shrinkage in the built part.

In another similar study, (Hertlein, Deshpande, Venugopal, Kumar & Anand, 2020) introduced

a new optimization framework to obtain the optimal process variables for the SLM process of

Ti-6Al-4V material with the 98% material density of the built part. (Lo, Liu & Tran, 2019)

studied the effect of hatch spacing and scan length on the melt pool temperature and depth in

an SLM process of SS316L material. The studies find the optimal combination of the input

variable and prove the capability of their technique with the experimental results.

During the melting building process, the melt pool properties like geometry, uniformity, and

depth can influence the end product properties. So, a multi-layer perceptron was used to analyze

the predict the melt pool dimensions for the powder fusion AM (Caiazzo & Caggiano, 2018)

and the wire-based DED (Xiong et al., 2014) process using the available experimental data

points. The study concluded that a desired melt pool geometry can be achieved by controlling

the input variable reversely. Tapia, Khairallah, Matthews, King & Elwany (2018) proposed

a surrogate model with the Gaussian process (GP) to analyze the melt pool depth with the

process parameters. The framework used 139 data points, some of which were collected from

the in-house experiments and others from the publicly available literature. The study used

ad-hoc filter to remove the outlier, providing 96 valid data points. The calculated error was

6.02𝜇m which was under the acceptable limit. (Hertlein et al., 2020) presented a technique

to link the process parameters with the part properties with the help of a Bayesian network

(BN). The research work considered laser power, scan speed, hatch speed and layer thickness as

the input variables. In contrast, the ultimate tensile strength, yield strength, hardness, surface

roughness and density were taken as the output variables. The analysis used data from different
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publications related to manufacturing AM parts built with 316 L material to train the BN model.

The BN model was continuously trained and used to improve the accuracy.

Mechanical property and quality control

The major limitation to AM’s large-scale production at the global level is the quality of the built

product, which varies from machine to machine, even for the same process or build to build

with one machine. These irregularities in the process may cause inaccurate geometry, process

instability, product density and mechanical properties. Therefore extensive research has been

carried out to monitor and improve AM-built quality using ML models.

Kusano et al. (2020) presented a prediction analysis for the tensile properties of a built part

and their relation with the microstructural feature after the heat treatment. The research work

includes the SLM process and the Ti6Al-4V alloy powder. The microstructures in the built

part were observed using scanning electron microscopy(SEM) and micro-focus X-ray CT along

the cross-section and parallel length, respectively. The ML-based regression model was used

to predict the tensile properties based on the microstructure features. The model shows good

prediction performance for yield strength and the ultimate tensile strength. (Özel et al., 2020)

proposed a framework with ML methods like ANN and generic programming to find the relation

between the process parameters such as energy density and scan speed with the built part surface

quality. The surface quality can influence the mechanical properties and corrosion resistance. In

another similar study, Zouhri et al. (2021) used ML methods to predict the built part properties

in SLM. The study used an SVM classifier and statistical features to analyze and predict the

density in an SLM-built part. The analysis finds that SVM has an accuracy of 93% with the

training set, whereas 99% with validation and 90% with the test set. Hassanin et al. introduced

framework with deep learning method to predict mechanical properties of cellular structure built

with SLM process by controlling the unit cell geometry.
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Chowdhury & Anand (2016) used a feed-forward neural network(NN) to analyze and correct

the geometry inaccuracies caused by the residual stress in a built part. The NN model was

trained with the geometry inputs and the compensated point cloud. The model provides the

optimized compensated point cloud, which is then post-processed to get new geometry inputs

and used in the final printing process. (Zhu, Anwer, Huang & Mathieu, 2018) introduced an

ML-based technique to model in-plane deviation in the AM process. A numerical relation was

constructed between the designed and final geometry to capture the trend in shape deviation. A

multi-task Gaussian process(GP) was used to understand the unexplained deviation data and

model the local deviation. The presented methodology proved effective and provided 90%

prediction accuracy. (Ferreira, Sabbaghi & Huang, 2019) proposed another approach to model

the shape deviation using a Bayesian neural network and transfer learning technique for different

geometries in AM process. (Samie Tootooni et al., 2017) presented a using the spectral graph

theory and ML techniques to analyze the dimensional variation in AM-built parts. The research

work has proven to be effective in reducing the post-processing quality assurance burden. (Shen

et al., 2019) introduced a convolution neural network (CNN) technique to optimize the final

built part geometry. In this technique, the 3D model was encoded into a probabilistic binary

distribution and used as an input in the CNN to capture the deformation features, and then an

inverse analysis was used to obtain a compensated geometry for the final built geometry.

Liu et al. (2020) predicted the porosity in the SLM built due to the physical effect of the process

parameters. The study considers the effects of the process variables like energy density distribu-

tion instead of using the input variable directly to build the process porosity correlation model in

AM community. Forming a fully dense built part has become a primary objective because it has

the potential to influence the mechanical properties of the AM products (Lewandowski & Seifi,

2016). An MLP method can model highly complex and non-linear relationships, and the GP

is capable of performing the uncertainty analysis, but it is very computationally expensive

compared to MLP. So a combination of MLP along with the GP was coupled with the Bayesian

methods to predict the porosity due to the effect of process parameters in SLM process (Tapia
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et al., 2018). (Srinivasan, Swick & Groeber, 2020) integrated the ML regression methods

with the physical-based methods for dimensionality reduction and optimization of the process

parameters to build a more uniform part.

(Koeppe, Padilla, Voshage, Schleifenbaum & Markert, 2018) presents a framework by combing

experimental studies with numerical simulation and deep learning(DL) methods to predict

the maximum von mises and equivalent principal stresses in the SLM-built part. The study

used experimental results to verify the numerical simulation and then the numerical simulation

was used to generate a dataset, which was used to train the LSTM model. (Baturynska, 2019)

developed ML-based methods for built-part mechanical properties(e.g. tensile modulus and

nominal stress). The research work considers the geometry location, Orientation and the STL

model properties as inputs. Zhang, Wang & Gao (2019b) proposed a neural network with the

LSTM network to predict the tensile strength in the AM process built part. The LSTM model

was used to process the temperature, vibration and sensing signals in the sequential inter-layer

connections during the FDM process. The other variables like speed, layer height, temperature

and material properties were used as an output for the ANN model and the outputs from the

LSTM were used as the output for the ANN model to predict the final quality of the built part.

1.4.1 Deep neural nework

Deep neural networks (DNNs) are part of artificial neural networks (ANNs), similar to a human

brain’s neuronal system. The basic unit of an ANN structure is called a node, and it takes

information from one end and passes to the next node from the other end. A DNN model

contains three layers, with the first being the input layer and the last is the output layer. The

layers between input and output are called hidden layers, which are more than one number

for the DNN model. Each layer has a number of nodes or neurons connected with each other

(Bishop & Nasrabadi, 2006). The node contains the values of inputs, sums their weighted values,

and then uses an activation function to produce an output (Goodfellow, Bengio & Courville,

2016). An activation function is a nonlinear transformation over the input variables of each
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neuron that controls the activation of the neuron. The activation function performs an important

role in the ANN model because if there is no activation function, then the model will be a

linear regression and will not be able to learn the non-linear complex behaviours of the input

and output parameters. Some of the primarily used activation functions are Sigmoid, Tanh and

ReLU. The mathematical form of these activation functions is shown, and a simple structure of a

deep neural network is presented in Fig. 1.2.

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

1 + 𝑒−𝑥
(1.1)

𝑇𝑎𝑛ℎ(𝑥) =
2

1 + 𝑒−2𝑥
− 1 (1.2)

𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (1.3)

Figure 1.2 Representation of six layer DNN model

The AM community has widely used the ANN method to understand the relationship between

process variables and the properties of the final built part. An ANN model can potentially

represent the highly non-linear complex relations between the input and output parameters. A
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simple ANN model with one hidden layer but enough neurons can define any random function,

but the optimal values of ANN parameters can lead to better results also, it protects the model

from overfitting or underfitting. (Chen & Zhao, 2015) analyzed the effect of layer thickness,

printing saturation, heater power ratio, and drying time on the dimensional accuracy surface

roughness of the binder jetting process using the ANN network. Similarly in (Shen et al., 2004)

(Li, Dong & Zhang, 2009) (Kim, Shen, Nagy & Braatz, 2013) studied the effect of laser power,

scan speed spacing, layer thickness, volume, bounding box, hatch spacing, scan mode and

temperature on the density, dimension, built time, shrinkage ratio, density and tensile strength of

the built selective laser sintering built part.

During the training phase of ANN, the values of each neuron are mapped to the next neuron

with the help of some weights. The values are calculated using the following equation.

𝑦(𝑥) = 𝑓 (𝑤 � 𝑥 + 𝑏) (1.4)

where x, w, b, �, f, y represent the input vector, weight vector, neuron bias, element-wise

multiplication, activation function, and neuron output, respectively.To optimize the DNN

network, we need to determine the optimal weights and biases by minimizing the loss function.

The form of loss function depends on the nature of the problem. For example, mean absolute

error(MAE) and root mean square error(RMSE) represent the distance between two vectors and

are widely used as loss functions. The mathematical form for both errors are:

𝑅𝑀𝑆𝐸 =

√∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑡)

2

𝑛
(1.5)

𝑀𝐴𝐸 =
|
∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑡) |

𝑛
(1.6)
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Where 𝑖 represents the sample index, 𝑦𝑖 denoted the predicted value and 𝑦𝑡 is the targeted value.

Since the RMSE squares the error, the modeling will consider larger error compare to the

MAE. Thus making RMSE a popular choice. In addition to protecting DNN from overfitting, a

regularization term (𝜆) is added to the loss function shown below.

𝑅𝑀𝑆𝐸 =

√∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑡)

2

𝑛
+ 𝜆 (1.7)

1.4.2 Polynomial Chaos Expansion

Polynomial chaos is the method used to compute parameter determination and surrogate mod-

elling. The Polynomial Chao expansion was initially introduced by Wiener in 1938 for turbulence

flow (Blatman & Sudret, 2010). The use of PCE became popular after the increased efficiencies

of the computer due to the use of parallel computing. Later in the years, using PCE as a Hermite

polynomial for linear elastic problems strengthened the use of PCE in different areas. Most

recently the potential use of PCE as an uncertain model with an extended number of variables

has been used in a variety of computational modeling of other fields like mechanical engineering

(Prabhakar, Fisher & Bhattacharya, 2010), aerospace application (Hosder, Walters & Perez,

2006), chemical processes and computational fluid dynamics (Najm, 2009) (Nagy & Braatz,

2007). PCE could offer some advantages such as, it can use a small number of parameters hence

it leads to better efficiency in utilizing experimental data, it has the ability to include information

regarding the variable uncertainty and has an expansion structure which can further incorporate

non-linear terms if the data needs.

In a PCE, a deterministic map, M, is considered such that 𝑌 = 𝑀 (𝑋) where 𝑥 ∈ 𝑅𝑚, 𝑌 ∈ 𝑅𝑛, 𝑚,

and 𝑛 define the input and output variables respectively. In order to simplify the equation, let us

consider 𝑛 to be 1 then the probability distribution of𝑋 is provided by the probability density

function 𝑓𝑋 (𝑥) (Tan et al., 2019). So the polynomial expansion of 𝑌 can be expressed as:
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𝑌 (𝑋) =
𝑁𝑃∑
𝛼=1

𝑎𝛼Φ𝛼 (𝑋) (1.8)

In the above equation, 𝑎𝛼 is the expansion coefficient of 𝑌 (𝑋). The 𝑁𝑃 is calculated with

the order of polynomial 𝑝 and the size of input parameters 𝑚. Therefore, the value of 𝑁𝑃 is

determined by
(𝑚+𝑝)!
𝑚!𝑝!

. The term Φ𝛼, denotes the orthogonal multivariant basis functions, with

respect to the probability density function 𝑓𝑋 (𝑥), such that:∫
𝑅𝑚

Φ𝛼Φ𝛽 𝑓𝑋 (𝑥)𝑑𝑥 = 𝛿𝛼𝛽 (1.9)

where, 𝛿𝛼𝛽 is the Kronecker symbol. In the case of independent input variables, the values of

Φ𝛼 are obtained with the tensor product of the univariate orthogonal polynomials Φ𝛼
𝑝𝑖 (𝑋), as

shown in the equation below:

Φ𝛼(𝑋) =
𝑚∏
𝑖=1

Φ𝑝𝛼𝑖 (𝑋𝑖)
(1.10)

where, 𝑝𝛼𝑖 represents the multi-index vector. The selection of the univariate polynomial basis

function depends on the probability density function. Let us assume if there is a uniform

distribution; then the Legendre polynomial would be considered as the basis function. Now

the PCE coefficient 𝑎𝛼 can be calculated with the regression approach by minimizing the

mean square error
∑𝑁
𝑗=1(𝑦

𝑗
𝐷 − 𝑦(𝑥

𝑗
𝐷))

2 + 𝛾𝑎𝑇𝑎. For a data space 𝐷 of 𝑁 input parameters

𝑋𝐷 = (𝑥1
𝐷, 𝑥

2
𝐷, . . . , 𝑥

𝑁
𝐷) and their corresponding output vector 𝑌𝐷 = (𝑦1

𝐷, 𝑦
2
𝐷, . . . , 𝑦

𝑁
𝐷), the

expansion coefficients are determined by the following equation:

𝑎 = (𝜃𝑇𝜃 + 𝛾𝐼)−1𝜃𝑇𝑌𝐷 (1.11)

Where 𝛾 denotes the regularization factor, 𝐼 represents the identity matrix, and 𝜃 is the design

matrix with components Φ 𝑗 (𝑥
𝑖
𝐷) (𝑖 = 1, ..., 𝑁; 𝑗 = 1, .., 𝑁𝑃). The total number of sample inputs
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are 𝑁 = 𝛾𝑁𝑃, while 𝛾 ≥ 1 is the oversampling parameter which controls the quality and

accuracy of the PCE.

1.4.3 Polynomial orthogonal decomposition

Reduced-order modelling (ROM) has gained popularity in the computational community as

a means to reduce high computation costs without compromising accuracy, especially where

dimensionality is a big challenge. ROM gives a faster surrogate model for computationally

expensive simulations. Such speed is especially useful for optimizations of real-time tracking

tasks that require significantly large model iterations or rapid online predictions in industrial

applications and in fundamental science.

One of the more popular ROM methods to convert a high dimensional problem to a low-

dimensional problem is proper orthogonal decomposition (POD). POD was initially presented

by (Pearson, 1901) in 1901, and has since been developed and improved to provide an effective

and efficient technique for ROM analysis for several applications (Xiao, Fang, Pain & Navon,

2017). Recent developments have provided many non-intrusive methods to calculate the

coefficients of linear POD approximations with the help of data-driven approaches without

compromising the governing equations (Chatterjee, 2000). This method consists of a stochastic

framework, such as POD with polynomial chaos expansion (POD-PCA) or POD coupled

with an artificial neural network (POD-ANN), which constructs a regression framework with

the reduced-order modelling between the input parameters and the coefficients of POD basis

(El Moçayd, Mohamed, Ouazar & Seaid, 2020) (Abdedou & Soulaïmani, 2021) (Jacquier,

Abdedou, Delmas & Soulaïmani, 2021) (Sun & Choi, 2021).

POD initially originated from the turbulence flow field with the concept of forming deterministic

functions by decomposing the random vector fields of turbulence fluid motion and representing

fluctuating kinetic energy in the flow (Lumley, 1967) (Weiss, 2019). The expectation was that

this finite number of deterministic functions, also known as POD modes, would be able to

describe the flow structure. This approach has been widely adopted in other fields. The POD
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compresses two essential properties: optimality and orthogonality. Optimality ensures that the

POD provides the most efficient decomposition, which means the leading modes possess the

highest possible energy compared to all the linear decompositions during projection over the

subspace. Orthogonality indicates that the time series of the coefficients are linearly uncorrelated,

an important property for making reduced-order models.

Zhao et al. (2021) used POD for the thermal study of the electron beam melting system. Their

investigation used the ABAQUS model and POD to study the temperature distribution of a

moving energy source in the EBM process. Likewise, (Gaonkar & Kulkarni, 2015) (Fic,

Białecki & Kassab, 2005) (Białecki, Kassab & Fic, 2005) developed POD-based ROM methods

to solve the linear and non-linear transit heat transfer problem and presented a good correlation

of the standard FEM code and POD-FEM results. The central core of POD application is

building a high-fidelity snapshot matrix to obtain a small set of eigenmodes and the coefficients

of the linear basis constructed with these modes. (Liu & Liu, 2023) performed a ROM with POD

and generated a map for input parameters and the POD bases with the help of the regression

tree method. The constructed map was later used to project the outcomes for a new set of

input variables. In two different studies (Abdedou & Soulaïmani, 2021) (Jacquier et al., 2021)

POD modes are combined with ML models, including artificial neural networks (ANNs). The

POD and ML algorithms have proven effective and productive in analyzing large data sets and

processes. Our study uses a POD-ANN method that constructs a regression surrogate model for

the ROM to learn and predict the strains in an SLM-built part.

Let us suppose 𝑌 = [𝑦1, 𝑦2, .....𝑦𝑛] is a real valued 𝑚 × 𝑛 matrix whose rank is 𝑑 ≤ 𝑚𝑖𝑛(𝑚, 𝑛)

with columns 𝑦 𝑗 ∈ 𝑅
𝑚, 1 ≤ 𝑗 ≤ 𝑛. POD is combined with a singular value decomposition

(SVD) to obtain the reduced order model and a low rank approximation that is easy to compute

(Weiss). The SVD assures that there are real numbers 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑑 > 0 and orthogonal

matrices Ψ ∈ 𝑅𝑚×𝑚, with columns {Ψ𝑖}𝑚𝑖=1
, and Φ ∈ 𝑅𝑛×𝑛, with columns {𝜙 𝑗 }

𝑛
𝑗=1

, such that

Ψ𝑇𝑌Φ = ��	
𝐷 0

0 0


�� (1.12)
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Here, 𝐷 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2. . . 𝜎𝑑) ∈ 𝑅
𝑑×𝑑 . The zero blocks in equation 1.12 have the appropriate

dimensions, and 𝑇 represents the matrix transpose. In addition, {Ψ𝑖}𝑑𝑖=1
and {𝜙𝑖}

𝑑
𝑗=1

satisfy the

properties

𝑌𝜙𝑖 = 𝜎𝑖𝜓𝑖 𝑎𝑛𝑑 𝑌
𝑇𝜓 = 𝜎𝑖𝜙 (1.13)

where 𝑖 = 1, 2, ....𝑑, and which these are eigenvector of 𝑌𝑌𝑇 and 𝑌𝑇𝑌 , respectively, with the

eigenvalues 𝜆𝑖 = 𝜎2
𝑖 > 0, 𝑖 = 1, 2. . . .𝑑. Also, {𝜓𝑖}

𝑚
𝑖=𝑑+1

and {𝜙𝑖}
𝑚
𝑖=𝑑+1

are eigenvectors with the

eigenvalue 0 of 𝑌𝑌𝑇 and 𝑌𝑇𝑌 (if 𝑑 < 𝑚 and 𝑑 < 𝑛). From equation 1.12 we can write

𝑌 = Ψ ��	
𝐷 0

0 0


��Φ𝑇 (1.14)

For a finite number of initial 𝐿 modes, the truncation criteria are imposed on the singular values

as shown below:

∑𝑟
𝑙=𝐿+1 𝜎

2
𝑙∑𝑟

𝑙=1 𝜎
2
𝑙

≤ 𝛿 (1.15)

where 𝛿 is a small parameter. So, every mode vector 𝑉𝑗 may be calculated from the 𝑗 𝑡ℎ column

of 𝜙 as

𝑣 𝑗 =
1

𝜎𝑖
𝑌Φ 𝑗 (1.16)

Thus, the POD mode matrix can be constructed as below

𝑉 = [𝑉1 |......|𝑉𝑗 |....|𝑣𝐿] ∈ 𝑅
𝑚×𝐿 (1.17)

Once the POD modes are obtained, they are then used to calculate the projection coefficients 𝜈

for the snapshot matrix as shown:
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𝜈 = 𝑉𝑇𝑌 (1.18)

Similarly, the POD bases and the projection coefficients can be used to find the approximation

matrix of 𝑌 :

𝑌 ∗ = 𝑉𝑉𝑇𝑌 = 𝑉𝜈 (1.19)

The quality of the compression/expansion process can be captured by the relative projection

error shown in the equation:

𝑅𝐸𝑃𝑂𝐷 =
𝑛∑
𝑗=1

| |𝑦 𝑗 − 𝑦
∗
𝑗 | |2

| |𝑌𝑗 | |2
(1.20)

where 𝑗 represents the 𝑗 𝑡ℎ column of the targeted matrix and | |.| |2 is the 𝐿2- norm.

1.4.4 Convolution autoencoder

One of the traditional methods for reduced order modeling is the projection-based technique

is one of the conventional ways to create a reduced order modeling, that assumes a low rank

approximation with a linear combination of basis functions (Quarteroni, Rozza et al., 2014).

Such basis functions are created using a fully order model snapshot matrix. For example,

Proper orthogonal decomposition Ravindran (2000) is one such methods, which forms a linear

reduced-order model by breaking down the snapshot matrix into principal components and

employs Galerkin projection (Carlberg, Barone & Antil, 2015). But, for many real-life problems

and non-linear phenomena, linear reduced-order models don’t produce significantly accurate

results (Unger & Gugercin, 2019). Thus it is recommended to use the nonlinear reduced-order

modeling techniques like auto-encoders (Hinton & Salakhutdinov, 2006) and kernel PCA to

reduce the dimension. However, these projection-based methods are essential in dimensionality
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reduction, but, they depend on the controlling differential equations and difficult to solve with

spatiotemporal data where equations are not known. Machine-learning algorithms require data

to mimic a certain task and make them appropriate to strengthen spatiotemporal data and connect

with measurement results. These data-driven techniques are instrumental in the offline–online

strategy for active control by integrating with measurement data. The data-driven models can

create a low-dimension approximation from large data in the offline stage, and it can provide

real-time scalable while the data-driven model can be trained to learn a reduced representation

from the high-dimensional physical data in the offline stage, the reduced model in the online

stage can provide nearly real-time and scalable projections for control and optimization tasks.

An autoencoder is a type of deep neural network that is useful for unsupervised feature extraction.

The architecture has the potential for modal decomposition because it provides a framework that

includes non-linearity in the mapping by using a nonlinear activation function. However, the

modal decomposition of an input field that contains multiscale coherent features is challenging

for a neural network autoencoder. This challenge can be overcome by using convolution layers

in the autoencoder to process the input information.

Convolutional autoencoders (CAEs) have gained popularity in image recognition as powerful

techniques for non-linear reduced-order modelling. The convolution layers provide an alternative

approach to the limitations that a classical autoencoder based on deep neural networks (i.e. fully

connected layers) faces for high dimensional inputs (Gonzalez & Balajewicz, 2018). (Tan et al.,

2019) presented a convolutional neural network (CNN)-based autoencoder (CAE) model to

detect anomalies in an AM-built part for reduced order modeling. CNN autoencoders include

different operations like convolution, multilayer perceptron, upscaling and pooling (He, Shi,

Tan, Song & Zhu, 2021) (Gonzalez & Balajewicz, 2018), thereby helping to reduce the number

of training parameters required. In similar studies (Shi, Mamun, Kan, Tian & Liu, 2022)

(Siddalingappa & Kanagaraj, 2021) (Tang, Vian, Tang & Yang, 2021), a CAE is combined with

Long Short-Term Memory (LSTM) networks to build a framework for surrogate modelling
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projections, especially for time-dependent predictions in AM-built parts.

A CAE has two parts, an encoder and a decoder. The encoder part reduces the input matrix

dimension and maps it to a latent space using a composition of convolutions, pooling, and

densely connected layers. The decoder uses convolutions, upscaling, and dense layers to map

the latent space to the original dimension of the input matrix.

A convolution layer is a feature map representation in which a selected part of a previous layer is

fully connected with each unit of the next layer with the help of an activation function and a

kernel. This connection permits the calculation of the most significant features from the input

matrix with the help of the kernel. A mathematical representation of a 1D convolution layer is

given by (Maulik, Lusch & Balaprakash, 2021):

ℎ𝑙𝑖 = 𝜎(𝐻
𝑙−1 ∗ 𝑓 𝑙𝑖 + 𝑏

𝑙
𝑖 ) (1.21)

in which the ∗ denotes the 1D convolution operator, ℎ𝑙𝑖 ∈ 𝑅𝐷𝑙×1 represents the 𝑖𝑡ℎ feature

of the 𝑙𝑡ℎ, 𝜎 is the nonlinear activation function, 𝐻𝑙−1 = [ℎ𝑙−1
1
, ℎ𝑙−1

2
. . . ℎ𝑙−1

𝑁 𝑓𝑙−1
] represents the

convolution layer 𝑙 − 1, 𝑏𝑙𝑖 gives bias value with 𝑖 ∈ 𝑁 𝑓𝑙 , 𝑓
𝑙
𝑖 represents kernel for layer 𝑙 and

𝑙 ∈ (1, 𝑛). The depth of the convolution layer is represented by the total number of layers. After

each layer, the pooling layers are inserted to decrease the dimension of the features by an amount

that is defined by the kernel size of the pooling layer.

As presented in the previous section, the snapshot matrix consists of a set of n high-fidelity

solutions obtained from the numerical simulation 𝑌 (𝛼𝑠) ∈ 𝑅
𝑚, 𝑠 = 1, . . . .𝑛. In this solver, 𝛼𝑠 is

the 𝑠𝑡ℎ value of the random variable 𝛼 in its data sample with size 𝑛, which follows a probability

density function 𝜑(𝛼). All these vectors’ solutions are combined and form a global snapshot

matrix:
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𝑌 = [𝑦1...𝑦𝑠...𝑦𝑛]𝜈𝑅
𝑚×𝑛 (1.22)

Where 𝑚 is the total number of computational nodes in the spatial domain. The global snapshot

matrix created above is divided into two sets, one with 80% and the other with 20% of the data

for training and validation, respectively.

The CAE framework is divided into three parts: 1) spatial compression, 2) a regression-based

multilayer perceptron (MLP), and 3) online surrogate predictions. The spatial compression

provides the dimension reduction of the input data matrix from 𝑛 to 𝐿 along the spatial dimension

where 𝐿 represents the latent space dimension. The snapshot matrix 𝑌 is reshaped using the

space encoder 𝐹𝑥𝑒𝑛𝑐 part of the CAE along the spatial dimension, as given:

𝑉𝑥𝐿 = 𝐹𝑥𝑒𝑛𝑐 (𝑌 ) ∈ 𝑅
𝑚×𝐿 (1.23)

where 𝑉𝑥𝐿 represents the snapshot matrix with reduced dimension. The detailed structures

for every autoencoder in the test set and the benchmark problem are given in appendices A1

and A3. Once the latent space is constructed, the next level of the CAE framework is applied:

the implementation of MLP in the latent space. The MLP maps the latent space 𝑉𝑥𝐿 to the

input variables 𝛼. The MLP model consists of multiple fully connected neuron layers. The

detailed structures of the MLP applied for each case are given in appendices A2 and A4. The

compression of the spatial dimension and the MLP are classified as an offline phase of the

CAE. It must be noted that the framework presented here is built using the open source package

TensorFlow with the Adam optimizer and its default parameters. The input snapshot parameters

are normalized to accelerate the optimization and the convergence of the training process, and

the coefficients of the snapshot matrix are normalized between [-0.5 0.5], as:

𝑌𝑠𝑖 − 𝑚𝑖𝑛(𝑌𝑠)

𝑚𝑎𝑥(𝑌𝑠) − 𝑚𝑖𝑛(𝑌𝑠)
(1.24)
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where 𝑠 = 1, ....𝑛, 𝑖 = 1.....𝑚, 𝑢𝑠𝑖 is the normalized outptu for the 𝑠𝑡ℎ input parameter and the 𝑖𝑡ℎ

mesh node.

The final step is the online surrogate prediction of a new data set.

A new set of input variables is constructed using the Latin hypercube sampling (LHS) algorithm

. For each value of the new data set, a spatial latent vector (𝑉∗
𝑥𝐿 ) is generated using the trained

MLP regression model. The predicted latent space is then transformed back to the original

dimension using the spatial decoder function (𝐹𝑥𝑑𝑒𝑐 ),𝑌
∗ = 𝐹𝑥𝑑𝑒𝑐 (𝑉

∗
𝑥𝐿 ).

1.5 Sensitivity and uncertainty analysis

Uncertainty sources can be classified into two categories: epistemic and aleatory uncertainty.

Aleatory uncertainty in a system occurs due to natural causes such as fluctuation in the laser

power, etc. The sources of epistemic uncertainty, meanwhile, are an incomplete understanding

or a lack of knowledge, which can be further divided into two types, data uncertainty and model

uncertainty. Data uncertainty arises because of improper measurements and an insufficient

amount of measured data. Model uncertainty is used to quantify the difference between

experimental data and numerical simulation models. For example, model uncertainty may occur

due to the assumptions made to simplify the numerical model (Hu & Mahadevan, 2017). To

understand the relationship between uncertainties in input and output parameters, we proposed

performing a sensitivity analysis (SA). These can be divided into two types, local and global

sensitivity analyses. Local sensitivity analysis is derivative-based; this technique analyzes the

effect of one parameter on the process by keeping other parameters constant. In global sensitivity

analysis, all the input parameters are varied simultaneously, and the sensitivity is calculated over

the whole sample space of each input.

There are different approaches to performing sensitivity and uncertainty analysis in SLM. The

most popular method is trial and error experimentation. Delgado et al. (2012) conducted an

experimental investigation to determine the influences of input parameters (laser speed, build

direction, and layer thickness) on SLM output. They used a full factorial experimental design

technique with three factors, and two levels for each factor. The dimensional accuracy, roughness,
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and mechanical properties were considered to measure the effect of input parameters. UA

and SA of the AM process using experiments may give good results to some extent, but these

analyses have various disadvantages. For example, experiments on a large scale lead to material

wastage and a delay in final product delivery, subsequently increasing the product and process

cost. Additionally, one component’s results may not be applicable to other SLM products, as

results may vary with the problems (Hu & Mahadevan, 2017).

Criales, Arısoy & Özel (2016) used finite element modeling to analyze 2D temperature profiles

and melt pool geometry. They performed a sensitivity analysis by changing one input parameter

at a time while keeping the other parameters constant and found that the powder reflectivity affects

the melt pool geometry the most. However, changing parameters one at a time does not always

provide good results, as this process fails to consider the interaction of parameters. Bruna-Rosso,

Demir, Vedani & Previtali (2018) conducted a global sensitivity analysis for SLM using a 2D

numerical simulation model. They used 26 input parameters and calculated their influence on

melt pool width, length, and maximum temperature. The effect on the output was calculated by

changing the input parameters simultaneously instead of changing one at a time. They used the

elementary effect technique and found that 16 of the parameters did not significantly affect the

process output. Similarly, Lopez, Witherell & Lane (2016) used a numerical model for single-

track simulation to identify uncertainties in the SLM process. Moser, Fish, Beaman & Murthy

(2014) performed a sensitivity and uncertainty analysis by developing a numerical model of SLS

process using the ANSYS Fluent software. The study considered powder density, average particle

diameter, powder conductivity, simulation time and powder specific heat as the input parameters

and there effect on the temperature distribution was investigated. The sensitivity analysis finds

that specific heat is the most sensitive parameter. The model finds the peak temperature rise

for a stationary laser stays within one standard deviation of the mean calculated by the framework.

Recently, surrogate models have gained popularity for UA in the AM process. The most

commonly used surrogate models in AM are support vector machines (SVM), neural networks
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(NNs), Gaussian process (GA) models, and polynomial chaos expansion Hu & Mahadevan

(2017). Cai & Mahadevan (2016) developed a methodology to study the uncertainty in a final

product’s microstructure via the construction process parameters and environmental changes.

They replaced the finite element model with the Gaussian surrogate model and applied it to

study the relationship between the cooling rate and the final product’s microstructure. A similar

methodology was adopted by Sankararaman, Ling & Mahadevan (2011), who used a surrogate

model to quantify the uncertainties in fatigue crack growth in AM. Tapia et al. (2018) proposed

a Gaussian process-based surrogate model to make a response surface between the SLM process

output and the input parameters. Their surrogate model was constructed using 96-single-track

experimental data to predict the melt pool depth. The model was then used to calculate the

melt pool depth at unobserved input process parameters. Kamath (2016) performed uncertainty

and sensitivity analysis of the SLM process by combining numerical and surrogate models to

reduce the computation time. The research used the Eagar-Tsai model to simulate the melt

pool dimensions given the laser speed, power, absorptivity and beam size. A large data set was

constructed with a numerical model, and then the regression tree and Gaussian process models

were used to construct two separate surrogate models for the process.

1.6 Optimization of SLM process

Optimization is the process of finding the best solution in a pool of possible solution for a given

problem. The optimized solution could be minimizing and maximizing the cost and efficiency

of a problem respectively or it could any other desired results according to the problem. For

example a machine allocation problem, where optimum job is to assign separate machines with

different capacity and performance along with independent operating cost, so that the production

can be increased with the minimum cost. In present time the optimization techniques have

been spread across all the fields such as economics, sciences and engineering etc. Due to such

popularity in all the areas, the use of optimization techniques has become more substantial

as industries want to focus on minimizing the cost or need to distribute resources judiciously.

The optimization problems these days are multiobjective and multidisciplinary type. These
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problems are too complex to solve, which don’t only require gradient-based algorithms but also

consider non-traditional methods such as ant colony optimization, particle swarm optimization

and genetic algorithms.

Additive manufacturing(AM) has been growing at a rapid rate and over the last decade, more

attention has been paid to the development of this process. To find specific design requirements in

the AM built part, it is essential to optimize the process parameters. Even though a physical-based

models are important to learn about the AM process, their construction is extremely complex. In

contrast, the traditional experimental methods to understand the process are very expensive and

time-consuming. Singh & Prakash (2009) performed optimization analysis using a two-level

factorial design of experiment (DOE) and studied the most essential process variable that affects

the most built part density. The research concluded that laser power is the most significant

variable among the scan speed, laser power, scan spacing and scan velocity. Based on this

analysis, a regression model was developed with the optimized and most significant parameter.

The density prediction was found to be in good accordance with the published experimental

results.

Highly efficient machine learning models have provided an alternative framework for optimizing

the AM process Wang, Tan, Tor & Lim (2020). Rong-Ji et al. (2009) used an NN framework to

optimize the selective laser sintering process parameters by minimizing the shrinkage. They

trained the NN with experimental data and then combined it with the genetic algorithm to

find the input parameters’ optimal values. The proposed structure can be used to optimize

any nonlinear and multitudinous system. Tapia, Elwany & Sang (2016) used this approach to

predict the porosity of an SLM-built part using a Gaussian process-based model. Additionally,

they provided a Bayesian framework to estimate the statistical model’s parameters and then

used the Kriging method to predict the given parameter settings’ porosity. This study primary

disadvantage was that only two parameters were used as input variables, whereas the SLM can
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be affected by many factors, including the materials and environment.

NNs and GAs are the most widely used methods for the optimization, modeling, and prediction

of process parameters. Some of the popular GA methods used in AM are multi-genetic program-

ming (MGGP), the multi-objective particle swarm optimizer (MOPSO), the non-dominated

genetic algorithm, etc. (Padhye & Deb, 2011). The study used MOPSO and a non-dominated

sorting genetic algorithm (NSGA-II) to minimize the surface roughness and built time in the

selective laser sintering (SLS) process.

The surface roughness and the built time are functions of the “build direction,” and so minimizing

them aids in finding the optimal build orientation. A study by Padhye & Deb (2011) also found

that the NSGA-II outperforms the MOPSO in finding optimal results. In a similar study by

Singhal, Jain, Pandey & Nagpal (2009), a conventional optimization algorithm based on a trust

region method was used to optimize the stereolithography (SL) and the SLS process. The

objective of the Singhal et al. (2009) study was to increase the quality of the built surface and

the support structure by determining the optimum deposition orientation for a building part.

Below is a review of some of the data-driven optimization methods that have been applied in the

process optimization of SLM studies.

1.6.1 Genetic algorithms

Genetic algorithms(GAs) are search algorithms with the principle of natural selection. The

algorithm is inspired by the darwin’s theory: of survival of the fittest. At the global level the

population is submitted for many transformations and after some generations, where the popula-

tion is not enduring anymore, then the best population set is considered to be the best solution.

GA compies the working principle of the genetic process, in which the parents’ characteristics

are transferred to their offspring. These genes correspond to a specific characteristics like eys,

height etc., and are present in the chromosome. For example, in humans, we have 23 pairs of
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chromosomes and one chromosome in each pair comes from the maternal side, and the other

comes from the paternal side. So after crossover, some characteristics of both parents transfer to

the child. Also, sometimes there are naturally some genes randomly mutate, and the offspring

can have some characteristics different than the parents. These mutation carries the changes in

offspring and improves the chance of survivability.

In gradient-based models, the solution runs from one point to another with the help of gradient

and Hessian information. However, in GA, one works with a population of points rather than

a single point. A GA mimics the genetic process where the characteristics from parents are

transferred to the children. It is divided into four phases: initialization, fitness, selection, and

combination. At the start of the GA, a sample set of the starting population or a sample set is

created, and then for each input parameter, their fitness value (the value of the objective function)

is computed. The lowest values are taken as the parents’ for the subsequent iterations, and

they will produce new offspring for the next iteration. Similarly to the human genes, in a GA,

individuals with the least function value will undergo crossovers and mutations to produce better

offspring than the parents. By better, we mean their function value is less than their parents’

function value(s). A single-point cross-over of 0.8 was established in our present case, and the

mutation probability was taken as 0.1 to obtain the best results.

1.6.2 Particle Swarm Optimization

Similar to GA, particle swarm optimization(PSO) carried out search operations simultaneously

at large points in the iteration. The PSO technique is motivated by a group of individual

and their wisdom, like flock birds or a group of fish moving together. The technique keeps

track of the best position among all individual along with the whole population in terms

of the objective function. The best values of the objective function for the group and the

individual is represented by ‘𝑔𝑏𝑒𝑠𝑡′ and ‘𝑝𝑏𝑒𝑠𝑡′ respectively. (Arora, 2015). Each individual

in the group moves with a certain velocity which is dependent on the ‘𝑝𝑏𝑒𝑠𝑡′, ‘𝑔𝑏𝑒𝑠𝑡′, and

their initial velocity. The new position for each individual is determined based on their ini-
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tial positions and velocity. After this value on new objective function is calculated based on

the new positions and the PSO steps are repeated. Each step for the PSO algorithm is given below.

If we assume the ‘nth’ individual in a set, then its initial position is calculated by:

𝑥𝑖,𝑛 = 𝑥𝑖,𝑚𝑖𝑛 + (𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛)𝑢𝑖 (1.25)

The 𝑥𝑖,𝑚𝑖𝑛 and 𝑥𝑖,𝑚𝑖𝑛 are the bounds for 𝑥𝑖, and 𝑢𝑖 variables, represent a random number between

0 and 1. Computing the fitness value for nth individual:

𝐴𝑖,𝑛 = 𝑓 (𝑥𝑖,𝑛) (1.26)

In the beginning, the best fitness value 𝑝𝑏𝑒𝑠𝑡𝑖,𝑛 for each individual is 𝐴𝑖,𝑛 and the global best

value can be calculated as:

𝑔𝑏𝑒𝑠𝑡𝑖 = 𝑚𝑖𝑛(𝑝𝑏𝑒𝑠𝑡𝑖,𝑛) (1.27)

The new velocity for the individual can then be calculated as:

𝑣𝑖+1,𝑛 = 𝜑𝑖𝑣𝑖,𝑛 + 𝜓1(𝑝𝑏𝑒𝑠𝑡𝑥,𝑖,𝑛 − 𝑥𝑖,𝑛)𝑢𝑖 + 𝜓2(𝑔𝑏𝑒𝑠𝑡𝑥,𝑖 − 𝑥𝑖,𝑛)𝑢𝑖 (1.28)

where 𝜑1, 𝜓1 and 𝜓2 are the tuning factors, which are 0.8, 2, and 2, respectively, in our study.

Now, the new position can be calculated as:

𝑥𝑖+1,𝑛 = 𝑥𝑖,𝑚𝑖𝑛 + (𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛)𝑢𝑖 (1.29)
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Based on the new position, we can evaluate the new fitness value, which is:

𝐴𝑖+1,𝑛 = 𝑓 (𝑥𝑖+1, 𝑛) (1.30)

If the new fitness value is less than that of 𝑝𝑏𝑒𝑠𝑡𝑖,𝑛, then it is replaced with the 𝐴𝑖+1,𝑛. The global

fitness value is computed as:

𝑔𝑏𝑒𝑠𝑡𝑖+1 = 𝑚𝑖𝑛(𝑝𝑏𝑒𝑠𝑡𝑖+1,𝑛) (1.31)

1.6.3 Differential Evolution(DE)

Differential evolution (DE) is another optimization algorithm that, similar to GAs, is based on an

evolutionary process. DE has gained in popularity in recent years for its success in optimization

problems in different fields of science and engineering. The algorithm was first introduced by

(Storn & Price, 1995) in 1995 to optimize the non-differentiable and non-linear continuous

function. DE algorithms are based on stochastic population-driven evolution methods similar to

the other evolution methods. This approach uses a population set and searches the whole design

space to find the optimal solution using crossover, mutation, and selection operators. One of the

differences between DE and the other evolution methods is the mutation strategy used by DE,

which applies to each point and explores the whole design space based on other individuals’

solutions. (Georgioudakis & Plevris, 2020) presented several DE algorithms based on different

crossover and mutation strategies. There are three controlling factors in a DE algorithm: the

crossover rate, the population size, and scaling factors, which all must be controlled to get the

best performance (Storn & Price, 1997). Figure 1.3 outlines the functioning of a DE algorithm.

From mutation to selection, all steps are repeated until the termination criteria are reached. Our

study considers the crossover and the scaling factor to be 0.8 and 0.6, respectively.
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Figure 1.3 Differential Evolution

Research Gap

After completing a detailed literature review, it was found that the final built part of AM process

depends on many parameters such as layer thickness, scanning length, hatch spacing etc. these

parameters directly or indirectly affect the end product, for example, thinner layer thickness leads

to higher stress and deformation whereas higher scan length is responsible for high-temperature

gradient and stress in the built process. To find the relation between input and output parameters,

the researchers have conducted sensitivity and uncertainty analyses for different case studies.

Most of these works are either focused on melt pool studies or single-layer powder melting.

There is a significant gap in the research areas, where sensitivity and uncertainty analysis is
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performed with a whole geometry constructed using the SLM process.

A 3D numerical analysis of AM process has the potential to provide more realistic results for the

built part than 1D or 2D analysis. The traditional ways to understand the physic behind the SLM

process are experimental and numerical studies. However, performing sensitivity and uncertainty

analysis with these methods could be time-consuming and computationally expensive. So, based

on the literature review, it is recommended to use a combination of machine learning (ML)

algorithms with numerical modeling and then verify those results with experimental results.

The ML methods have the capability to reduce the computation cost and can provide good

predictions. Also, significantly less attention has been given to the applications of ML methods

in AM analysis. If a framework can be provided to the AM community, it can not only speed up

the SLM analysis but can also provide better predictions for given input parameters, eliminating

the use of traditional methods.

Also, ML models have been widely used for optimization in different research areas, and some

of the applications have been implemented in SLM too. However, The lack of numeral modeling

for whole geometry and the availability of experimental data to verify such studies have limited

the use of ML for whole geometry. So, another essential framework is presented in this research

work which again uses ML methods to find the optimal parameters for the optimal SLM outputs.

subsequently, a new approach using reduced-order surrogate models is suggested for the analysis

of a large number of high-fidelity snapshot matrices. this approach would help handle the big

spatial and temporal data matrices during the building process.
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Abstract

Additive manufacturing (AM) is a technology that can create 3D structures by depositing or

melting material in a layer-by-layer manner. This paper focuses on the metal-based powder bed

fusion AM approach, specifically the selective laser melting (SLM) technique. The repetitive

hot and cold cycles associated with AM cause localized compression and tension giving rise

to significant residual stresses, which can lead to shape loss, structural failure, etc. Numerous

parameters determine the thermal gradient; these include the thermal characteristics of the

powder, the bed temperature, and the part size. This investigation describes the associated

problem formulation and numerical resolution in the SLM simulation. An ANSYS-Additive

model is developed to determine the parameter dependence on the process. An efficient parameter

calibration algorithm is proposed to generate an accurate numerical model. Three numerical

studies are conducted using a vertical prism, a horizontal prism, and an L-shaped structure also

compared with the experimental data.
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2.1 Introduction

Additive manufacturing (AM) is the process of constructing 3D structures by fusing layers of

material powder together. There has been considerable interest in AM in industrial manufac-

turing, as AM allows the fabrication of more complex shapes and lighter products without any

significant material wastage. This ability is beyond the scope of traditional dies, molds, milling

and machining. Due to these advantages, AM has been applied in the aerospace and automotive

industries, and in the healthcare sector (Horn & Harrysson, 2012). The AM process can be

categorized as material jetting, material droplet printing, material extrusion, sheet lamination,

powder bed fusion and direct energy deposition. Among these techniques, powder bed fusion is

the most widely used method.

In the powder bed fusion (PBF) process, material powder (for instance stainless steel 316L)

is selectively fused together layer-by-layer into a 3D structure. The powder bed fusion can be

broadly classified as: i) direct metal laser sintering (DMLS); ii) selective electron beam melting

(SEBM); iii) selective heat sintering (SHS); iv) selective laser melting (SLM); and v) selective

laser sintering (SLS). The heat source in the fusion process can be either a high intensity laser

or an electron beam. Selective laser melting (SLM) uses a laser beam as the heat source and

selective electron beam melting (SEBM) utilizes an electron beam as the heat source. SLM is

slower than SEBM, but it provides a better surface finish than SEBM. In addition, SEBM can be

used with fewer types of metal powders compared to SLM. DMLS is similar to SLS, but uses

metals instead of plastics. This work considers the SLM process.

One of the challenges associated with SLM is determining the best process parameters to ensure

the quality of the built part. The final product may have defects such as the balling effect, surface

irregularities, porosity, residual stress and cracks, etc.(Yang, Hwang & Lee, 2002) (Ippolito,

Iuliano & Gatto, 1995) (Körner et al., 2011). An understanding of the SLM process can provide

valuable insights into the performance margins, the uncertainties in those margins, and their
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sensitivities to process parameters. To study the sensitivity of process parameters we can use

the SLM process with different parameters and then analyze the properties of the final product.

Performing an assessment involves repeated experiments; a time-consuming exercise that leads

to material wastage, making the process expensive. Numerical modeling and simulation of the

SLM process can provide an efficient mechanism with which to develop this understanding.

SLM modeling involves numerous complexities and expert knowledge in heat transfer, solid

mechanics and phase change.

The effects of process parameters on the SLM product is difficult to determine because of the

high dimensionality of parameters’ spaces and their interaction(s) with one another. Broadly, the

properties of the material, the process, and the environment define a large number of parameters

(around 19 parameters) that affect the final product (Körner et al., 2011). In order to meet

specific design requirements, these material parameters and the shape of the component may

need to be optimized. These challenges can be addressed by utilizing machine-learning methods.

The modeling approach involves choosing an experimental design (such as a Taguchi design

(Ballantyne, Van Oorschot & Mitchell, 2008)) which takes machine and material parameters as

inputs and generates output data in the form of displacements and stress in the SLM product.

This technique is used to screen all the parameters simultaneously, thereby helping to identify

those that are more significant. Once the input and output data have been generated, a specific

model (such as a regression model) is applied to fit the dataset. This numerical model can then

be considered in the optimization process instead of the actual SLM model.

In this work, an ANSYS-Additive numerical model was developed to calculate the stress and

displacement fields during the SLM process. The ANSYS-Additive software uses a calibration

technique for the parameters. In this paper, we have developed a new calibration algorithm which

is more precise and faster than the one provided by ANSYS-Additive. Section 2.2 provides

the thermo-mechanical mathematical governing equations in an SLM process. The proposed

calibration algorithm is then detailed in section 2.3. In next section, three numerical benchmark
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tests are conducted using a vertical prism, a horizontal prism and an L-shaped structure and the

numerical results are compared with experimental data. Finally, some concluding remarks are

drawn in section 2.5.

2.2 Mathematical Modelling

The mathematical modeling of the SLM process includes a balanced study of the thermal and

mechanical analyses of the process. In thermal analysis, a better understanding of the interaction

between the energy source and the powder bed provides improved results about the temperature

distribution in the process. When the heat energy from the laser interacts with the powder, most

of it will be reflected due to the lustrous nature of the material. The rest of the energy travels

through and escapes the system to the surroundings by conduction, radiation and convection.

The absorptivity of the energy is controlled by the powder’s and the material’s morphology. A

complete mechanism of the heat transfer in the SLM process is shown in Fig 2.1. This figure

shows the melting of a Ti-alloy powder with an Nd:YAG pulse laser source in an SLM process.

The heat equation and the boundary conditions with the convection, radiation and conduction

are described below.

According to the first law of thermodynamics and Fourier’s law, the energy balance equation is

given by:

𝜕
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(2.1)

where 𝑘 is the thermal conductivity, 𝑇 the object temperature, 𝜌 the material density, 𝑡 the

time, �𝑄 the internal heat intensity and 𝑐𝑝 the specific heat capacity. The primary unknown

here is the temperature 𝑇 . In this equation 𝑘 is the thermal conductivity that depends on the

temperature. However, the effective thermal conductivity of the powder can be a function of

other factors like particle shape and size, the thermal conductivity of a gaseous medium or the
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Figure 2.1 Heat transfer during the SLM process taken from

Roberts et al.(2009, p. 917)

thermal conductivity of a solid. An effective thermal conductivity model of a packed powder

bed is derived as a function of local relative density in (Yagi & Kunii, 1957):

𝑘𝑒 𝑓 𝑓 =
𝜌𝑟 𝑘𝑠 (𝑇)

1 + 𝜑𝑘𝑠 (𝑇)/𝑘𝑔
(2.2)

where 𝜑 is the empirical coefficient, which is equal to 0.02 ∗ 102(0.7−𝜌𝑟 ) , 𝜌𝑟 is the powder’s

relative density, 𝑘𝑠 (𝑇) the temperature-dependent solid thermal conductivity, and 𝑘𝑔 the thermal

conductivity of the chamber gas. Another model for effective thermal conductivity is presented

in (Childs et al., 2005), as a function of the porosity 𝛽:

𝑘𝑒 𝑓 𝑓 = 𝑘𝑠 (𝑇) (1 − 0.2𝛽 − 1.73𝛽2) (2.3)
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where the temperature-dependent conductivity of solid material 𝑘𝑠 (𝑇) is (Sun, Nelson, Bea-

man & Barlow, 1991):

𝑘𝑒 (𝑇) = 0.02504 + 0.0005𝑇 (2.4)

The heat transfer during the SLM process requires two boundary conditions and one initial

condition, which are sufficient to model the thermal behavior of the process. The corresponding

boundary and initial conditions of the model are Initial condition:

𝑇 (𝑥, 𝑦, 𝑧, 0) = 𝑇𝑏𝑎𝑠𝑒 (2.5)

Boundary conditions:

1. Surface convection and radiation:

−𝑘
𝜕𝑇

𝜕𝑧
= 𝜙𝜎(𝑇4 − 𝑇4

𝑒 ) + ℎ(𝑇 − 𝑇𝑒) (2.6)

2. No heat loss at the bottom:

−𝑘
𝜕𝑇

𝜕𝑧

����
𝑧=0

= 0 (2.7)

where 𝜙 is the thermal radiation coefficient, 𝜎 the Stefan-Boltzmann constant, ℎ the convection

coefficient, 𝑇𝑒 the room temperature and 𝑇𝑏𝑎𝑠𝑒 the temperature of the base plate.

Another important aspect in the thermal equation is the modeling of the laser beam as a heat

source. The heat source in an SLM process can be modeled as a volumetric heat source or as a

heat flux load. In the case of a heat flux load the Gaussian distribution heat source model is

generally used. An example of the Gaussian heat source distribution is shown in Fig 2.2. In

(Luo & Zhao, 2018) the heat source is modeled as a temperature load to the elements. That work

shows the laser heating represented by the internal heat generation term of the thermal equation.

The material properties such as surface tension, density(𝜌), heat conduction, heat capacity (𝑐𝑝)
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and thermal diffusivity (𝑘) are temperature-dependent; all of these properties affect the quality

of the component. Because they exert such a major influence, it is very important to calculate

the temperature and its gradient precisely. The Gaussian heat source can be modeled as:

𝑞(𝑟) =
2𝐴𝑃

𝜋𝑟2
0

𝑒
− 2𝑟2

𝑟2
0 (2.8)

Figure 2.2 Distribution of the Gaussian heat source taken

from Luo & Zhao (2018, p. 323)

where 𝐴 is the powder material absorptivity, 𝑃 is the power of the laser, 𝑟0 represents the radius

of the laser beam, and 𝑟 denotes the radius from the center of the laser to the exposure. The

important factors are the laser power 𝑃 and the radius of the laser beam 𝑟0 that define the

Gaussian model. Once the temperature field is calculated, the stress and the deformation in

the geometry are calculated using a mechanical analysis model. A thermal-mechanical model

can be coupled or uncoupled. In coupled analysis, the thermal and the mechanical analyses

are executed simultaneously at each time step, whereas in an uncoupled model the thermal

and mechanical analyses are not interconnected and so both are performed successively. If the
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material behaviour is considered to be elastoplastic then the governing equations for the stress

and strain can be written as (Luo & Zhao, 2018):

𝜎 = 𝐷𝜀𝑒 (2.9)

where 𝜀𝑒,𝜎 are the second-order elastic strain tensor and the material stress of the system,

respectively, and 𝐷 represents the material stiffness tensor of order four. The total strain tensor

in the material is the combination of the elastic strain 𝜀𝑒, the plastic strain 𝜀𝑝 and the thermal

strain 𝜀𝑡ℎ:

𝜀 = 𝜀𝑒 + 𝜀𝑝 + 𝜀𝑡ℎ (2.10)

In the case of homogeneous and isotropic material:

𝜀 =
1 + 𝜈

𝐸
𝜎 −

𝜈

𝐸
𝑡𝑟 (𝜎) (2.11)

𝜀𝑝 = 𝑔(𝜎𝑌 ) (2.12)

𝜀𝑡ℎ = 𝜑(𝑇 − 𝑇0) (2.13)

where 𝜈, 𝐸 and 𝜑 is the Poisson’s ratio, Young’s modulus, and the thermal expansion coefficient,

respectively, 𝑇4 and 𝑇0 are the nodal and initial temperature, respectively, and 𝑔(𝜎𝑌 ) represents

the function of yield strength 𝜎𝑌 . In this work, we have used the ANSYS-Additive software to

solve the governing equations.
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The ANSYS-additive solver is a macroscopic additive manufacturing solver and which considers

the melt pool dynamics. The ANSYS-additive has three modules, which include 1) Assumed

strain-Uniform strain 2) Scan pattern strain-anisotropic and 3) thermal strain -Anisotropic.

The assumed strain is the fastest Ansys additive simulation available. It assumes an isotropic

average strain at each point in the geometry. The in the geometry is calculated by dividing the

yield strength (𝜎𝑦𝑖𝑒𝑙𝑑) with the elastic modulus(𝐸) and multiplying the ratio with Strain scale

factor(𝑆𝑆𝐹).

𝜀 = 𝑆𝑆𝐹 ×
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
(2.14)

In the Scan pattern strain module, the average stain magnitude is the same as the assumed

uniform strain, but the strain magnitude is divided into different anisotropic components, which

is calculating using the local orientation of the scan vectors. The magnitude of each strain

component is calculated as follow:

𝜀𝑥𝑥 = 𝑆𝑆𝐹 × 𝐴𝑆𝐶𝑥
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
(2.15)

𝜀𝑦𝑦 = 𝑆𝑆𝐹 × 𝐴𝑆𝐶𝑦
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
(2.16)

𝜀𝑧𝑧 = 𝑆𝑆𝐹 × 𝐴𝑆𝐶𝑧
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
(2.17)

Here 𝐴𝑆𝐶 is the anisotropic strain coefficients and 𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝑎𝑛𝑑𝜀𝑧𝑧 represent the longitudinal

strains in 𝑥, 𝑦, 𝑧 directions, respectively. Both the modules are fast because it reduces the

complexity of thermo-mechanical simulation to solo mechanical only. To calculate the strain

results in the building part, we have to calibrate the 𝑆𝑆𝐹 and anisotropic coefficients for a given
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machine and material. Once the coefficients are calculated, then we can predict the strain results

for any parameters in a given machine.

The third and final module is the thermal strain, which we have used in this paper. It has higher

accuracy than the other two modules as it predicts the accumulation of strains in the building part

due to thermal cycling. During the layer-by-layer process, the thermal strain module uses the

inherent strain and modifies the strain values using a thermal ratcheting algorithm. The thermal

ratcheting algorithm of the solver assigns base strain values to each location as it solidifies.

During the process, when each position in the building part is heated above the temperature

threshold(approximately 0.4 of the melting temperature), an increase in the strain will occur.

Every time a location is heated above the threshold, it leads to the accumulation of the strain at

that location, and if the location is re-melted, then the strain value of that location would be set

as a base value. After the calculation of strain value at every position, that strain is passed to the

mechanic’s solver. The strain values will be applied as an anisotropic strain, which is based

on the local orientation and the local strain magnitude. In the case of isotropic material, the

values of the 𝐴𝑆𝐶𝑠 are equal to one. In contrast, for an anisotropic case, we have to calibrate

the exact values using a calibration algorithm. The values of 𝑆𝑆𝐹 and 𝐴𝑆𝐶 are different for

different machines and materials. In this work, the experimental tests of (Wu et al., 2014) are

used to validate the proposed calibration algorithm.

2.3 Calibration procedures

For complex modeling problems such as the SLM process, any numerical model requires a

calibration method to adjust the process and material properties. In ANSYS-Additive, the

values of the Strain Scale Factor (𝑆𝑆𝐹) and the Anisotropic Coefficients (𝐴𝑆𝐶) are important

to improve the accuracy of the simulation. The 𝑆𝑆𝐹 is a direct multiplier of the predicted

strain values in the simulation, while the 𝐴𝑆𝐶𝑥 , 𝐴𝑆𝐶𝑦, and 𝐴𝑆𝐶𝑧 correct the predicted strain

values along the longitudinal, the transverse and the depth direction. The 𝑆𝑆𝐹 and the 𝐴𝑆𝐶𝑠

must be adjusted to calibrate the numerical model when some measurements are available.

The calibration process is iterated with updated values of the 𝑆𝑆𝐹 and 𝐴𝑆𝐶 until the desired
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results of the comparison between simulated and experimental results are found. The calibration

algorithms 2.1 provided by ANSYS-Additive, (Ansys) and the one proposed here are described

below. Both calibration techniques have the following assumptions:

• The anisotropic coefficient in the 𝑧 direction is always equal to 1, and the sum of the

anisotropic coefficients in the 𝑥 and 𝑦 directions (𝐴𝑆𝐶𝑥1
, 𝐴𝑆𝐶𝑦1

) is equal to 2; and

• The ratio of anisotropic coefficients in the 𝑥 and 𝑦 directions are a linear function of the

difference of distortion in the corresponding directions.

Algorithm 2.1 Calibration process proposed in ANSYS-Additive

1 Get the maximum measured experimental displacements 𝑢𝑚𝑥 𝑢
𝑚
𝑦 and 𝑢𝑚𝑧

2 Set 𝑆𝑆𝐹1 = 1, 𝐴𝑆𝐶𝑥1
= 1.5, 𝐴𝑆𝐶𝑦1

= 0.5, 𝐴𝑆𝐶𝑧1 = 1

3 Get values of maximum simulation displacements 𝑢𝑠𝑥1
, 𝑢𝑠𝑦1

and 𝑢𝑠𝑧1
4 for For i=2 number of iterations, calculate new values of 𝑆𝑆𝐹, 𝐴𝑆𝐶𝑥, 𝐴𝑆𝐶𝑦, 𝐴𝑆𝐶𝑧

using do
5 𝑆𝑆𝐹𝑖 = 1

2
×
(
𝑢𝑚𝑥
𝑢𝑠𝑥𝑖−1

+
𝑢𝑚𝑦
𝑢𝑠𝑦𝑖−1

)
6 𝐴𝑆𝐶𝑥𝑖 = 1

𝑆𝑆𝐹𝑖
×
(
𝑢𝑚𝑥
𝑢𝑠𝑥𝑖−1

)
7 𝐴𝑆𝐶𝑦𝑖 = 1

𝑆𝑆𝐹𝑖
×
(
𝑢𝑚𝑦
𝑢𝑠𝑦𝑖−1

)
8 𝐴𝑆𝐶𝑧𝑖 = 1

9 Convergence criteria: if the desired error between experimental and numerical

displacements is not satisfied: Run new simulation and get 𝑢𝑠𝑥1
, 𝑢𝑠𝑦1

and 𝑢𝑠𝑧1
10 end for

In our proposed calibration method, the algorithm described below is adapted from the initial

calibration procedure where a relaxation factor 𝛼 is introduced to improve the convergence of

the iterations. The can be between 0 and 1 which varies from machine to machine and material

to material.

2.4 Benchmark tests

The validation tests are based on relevant experimental results from the work of (Wu et al., 2014),

which have become benchmarks for validating numerical results. The objectives of that paper
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Algorithm 2.2 calibration procedure with relaxation

1 Set 𝑆𝑆𝐹1 = 1, 𝐴𝑆𝐶𝑥1
= 1.5, 𝐴𝑆𝐶𝑦1

= 0.5, 𝐴𝑆𝐶𝑧1 = 1

2 Get the maximum measured experimental displacements 𝑢𝑚𝑥 𝑢
𝑚
𝑦 and 𝑢𝑚𝑧

3 Run first thermo-mechanical simulation and get displacements 𝑢𝑠𝑥1
, 𝑢𝑠𝑦1

and 𝑢𝑠𝑧1 and

compute

4 𝑆𝑆𝐹2 = 1
2
×
(
𝑢𝑚𝑥
𝑢𝑠𝑥𝑖−1

+
𝑢𝑚𝑦
𝑢𝑠𝑦𝑖−1

)
5 𝐴𝑆𝐶𝑥2

= 1
𝑆𝑆𝐹𝑖

×
(
𝑢𝑚𝑥
𝑢𝑠𝑥𝑖−1

)
6 𝐴𝑆𝐶𝑦2

= 1
𝑆𝑆𝐹𝑖

×
(
𝑢𝑚𝑦
𝑢𝑠𝑦𝑖−1

)
7 𝐴𝑆𝐶𝑧2 = 1

8 for Run second simulation and get displacements 𝑢𝑠𝑥1
, 𝑢𝑠𝑦1

and 𝑢𝑠𝑧1 Set a value for the
relaxation factor 𝛼 (for example 3

4
which can be different for different machine and

material) and compute do
9 𝑢𝑠𝑥𝑖 = 𝛼(𝑢𝑠𝑥1

+𝑢𝑠𝑥𝑖−1
+ (1 - 𝛼)𝑢𝑠𝑥2

10 𝑢𝑠𝑦𝑖 = 𝛼(𝑢𝑠𝑦1
+𝑢𝑠𝑦𝑖−1

+ (1 - 𝛼)𝑢𝑠𝑦2

11 𝑆𝑆𝐹3 = 1
2
×
(
𝑢𝑚𝑥
𝑢𝑠𝑥𝑖−1

+
𝑢𝑚𝑦
𝑢𝑠𝑦𝑖−1

)
12 𝐴𝑆𝐶𝑥3

= 1
𝑆𝑆𝐹𝑖

×
(
𝑢𝑚𝑥
𝑢𝑠𝑥𝑖−1

)
13 𝐴𝑆𝐶𝑦3

= 1
𝑆𝑆𝐹𝑖

×
(
𝑢𝑚𝑦
𝑢𝑠𝑦𝑖−1

)
14 𝐴𝑆𝐶𝑧3 = 1

15 end for
16 for for 𝑖 = 3 maximum number of iterations do
17 𝑢𝑠𝑥𝑖 = 𝛼(𝑢

𝑠
𝑥1
+ 𝑢𝑠𝑥𝑖−1

+ (1 − 𝛼)𝑢𝑠𝑥2

18 𝑢𝑠𝑦𝑖 = 𝛼(𝑢
𝑠
𝑦1
+ 𝑢𝑠𝑦𝑖−1

+ (1 − 𝛼)𝑢𝑠𝑦2

19 𝑆𝑆𝐹3 = 1
2
×
(
𝑢𝑚𝑥
𝑢𝑠𝑥𝑖−1

+
𝑢𝑚𝑦
𝑢𝑠𝑦𝑖−1

)
20 𝐴𝑆𝐶𝑥3

= 1
𝑆𝑆𝐹𝑖

×
(
𝑢𝑚𝑥
𝑢𝑠𝑥𝑖−1

)
21 𝐴𝑆𝐶𝑦3

= 1
𝑆𝑆𝐹𝑖

×
(
𝑢𝑚𝑦
𝑢𝑠𝑦𝑖−1

)
22 𝐴𝑆𝐶𝑧3 = 1

23 end for
24 Convergence criteria: if the desired error between experimental and numerical

displacements is not satisfied:

25 Run new simulation and get 𝑢𝑠𝑥1
, 𝑢𝑠𝑦1

and 𝑢𝑠𝑧1

were two-fold: to measure the surface deformations associated with the sectioning of a part by

image correlation (DIC), and to measure the internal stresses of a part by neutron-diffraction.
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2.4.1 Description of the geometries and scanning strategy

Simple stainless steel 316L specimens were tested as shown in Figure 2.3. The prism specimen

was constructed in two configurations, horizontal and vertical. The information required to

understand the construction and testing performed on these samples is very well detailed in the

original reference (Wu et al., 2014).

Figure 2.3 (a) L cross section sample dimensions, (b) Prism

sample dimensions, and (c) Built plate containing vertical and

horizontal prisms taken from Wu et al. (2014, p. 6262)

There are several laser-scanning strategies for the additive manufacturing of parts. Some machine

builders use island scanning, as shown in Figure 2.4(a), where the islands are placed at random

until the complete transformation of the cross section has been achieved. Random-island scan

strategy cannot be reproduced in ANSYS-Additive software (used in our study), and so we have

approximated the laser’s path by equating it into a monolithic serpentine path (shown in Figure

2.4(b)), similar to the approximation adopted by (Hodge et al., 2016). The units used for the

deformations and the stresses are in millimeters and mega Pascal (MPa), respectively.
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Figure 2.4 (a) Island scanning strategy used by many

manufacturers, and (b) Monolithic serpentine approximation

used in the present study taken from Hodge et al. (2016,

p. 160)

2.4.2 Numerical experiments

Our simulations deal with three geometries: a horizontal prism, a vertical prism and an L-shaped

part. To start a simulation in ANSYS-Additive, we need different types of data, including the

properties of the material used, the configuration parameters of the additive manufacturing

machine, the STL file of the part to be manufactured and the initial information on the structure

supports. All tests were performed on a PC running under Windows 7 using a 4-core CPU

(Intel® Core ™ I7-3770 CPU @ 3.40 GHz with a RAM of 8.00 GB). The duration of an iteration

(simulation) in the calibration process was estimated at about 2 hours (for the L-shape specimen),

5 hours (for the vertical prism specimen) and 6 ½ hours (for the horizontal prism specimen)

using 4 cores. In addition, it took an average of 7 to 15 simulations (using the new calibration

formulation developed during this study) to obtain a convergence in the displacement results. To

reduce the computational time, the software can be run on a 12-core computer.
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The material properties and the configuration parameters of the machine are shown in Tab 2.1

and 2.2, respectively.

Table 2.1 Material properties

Quantities Values
Powder absorptivity 0.66

Solid absorptivity 0.4

Thermal expansion coefficient 19.23×10−6/𝐾
Elastic modulus (GPa) 187𝐺𝑝𝑎

Solid absorptivity 0.265<𝜃<0.275

Material yield strength (MPa) 422𝑀𝑃𝑎
Support yield strength ratio 0.66

Hardening factor 0.0198

Strain scaling factor To calibrate

Anisotropic strain coefficients (x-longitudinal) To calibrate

Anisotropic strain coefficients (y-transversal) To calibrate

Anisotropic strain coefficients (z-printing) 1

Table 2.2 Machine configuration settings

Parameters Values
Powder Layer thickness 30𝜇𝑚

Layer thickness 0 ◦

Layer rotation angle 0 ◦

Hatch spacing 100𝜇𝑚
Slicing stripe width 5𝜇𝑚

Laser wattage 400𝑊
Hardening factor 0.0198

Scan speed 1800𝑚𝑚/𝑠
Baseplate temperature 303𝐾

For the horizontal and vertical prisms, quantified experimental displacement results were

obtained from (Wu et al., 2014). The meshes of all of the geometric models presented in this

study were chosen so that there are at least four voxels (cubic mesh elements) in the thinnest

thickness of the geometry. For these two cases, we performed a mesh convergence study using

three mesh sizes (0.35 mm, 0.30 mm and 0.22 mm); the comparisons are detailed first for the
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medium mesh (0.30 mm.).

2.4.2.1 Horizontal prism

The first comparison is focused on horizontal prism. Tab 2.3 summarizes the comparison for the

medium mesh.

Table 2.3 Comparisons of numerical and experimental

results for a horizontal prism with a medium mesh

Mesh size 0.30mm UXmin UXmax UYmin UYmax UZmin UZmax
Wu et al. (2014). -0.045 0.045 -0.07 0.04 -0.05 0.08

Present results -0.035 0.035 -0.094 0.061 -0.048 0.2

Hodge et al. (2016) - - - - -0.04562 0.09029

The following figures present the results concerning the compression displacements. We could

not obtain convergence in the results when we used the calibration procedure of the anisotropic

coefficients and the scale factor proposed in ANSYS’ documentation, as shown in Fig 2.5:

Figure 2.5 Evolution of the maximum displacements using

the calibration proposed by ANSYS: horizontal prism

Here UXS, and UXE represent the maximum displacements in x-direction obtained using

simulation and experiment. Similar notation is used for the displacements in y and z directions.
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However, the new calibration procedure described in section 4 makes it possible to have a

simultaneous convergence of the displacements along the three axes (x, y and z), as shown in

Fig 2.6.

Figure 2.6 Evolution of the maximum displacements using the proposed calibration

procedure: horizontal prism

Fig 2.7 shows the displacements in the x, y and z directions associated with the removal of the

horizontal prism from its base. The final anisotropic coefficients used to obtain our results are

0.676 along the x axis, 1.324 along the y axis and 1 along the z axis. The strain scaling factor

(SSF) used for our results was 0.256.

By comparing the displacements along each axis (x, y or z), we observe that the distribution

of the simulation results corresponds well to those of the experimental results, even though

the amplitudes of displacement are not always as close as we would wish. However, since the

calibration procedure used here is based exclusively on the experimental data in compression, we

can observe a consistency between the compression displacement amplitudes of the experimental

and simulation results, as shown in Fig 2.8,2.9, and 2.10.

(Hodge et al., 2016) used the experimental results of (Wu et al., 2014) to validate the ability of

their code (Diablo) to predict deformations and stresses on the benchmark tests. We compare

our results with those of (Hodge et al., 2016) in the following paragraphs.
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Figure 2.7 Displacements resulting from the removal of the horizontal prism from its

base: (a), (b) and (c) – experimental results of the displacement along the x, y and z axes,

respectively; - (d), (e) and (f) – displacement results along the x, y and z axes,

respectively, obtained by calibrated simulations in ANSYS Additive

Figure 2.8 Evolution of the maximum displacement of the horizontal prism along the

x-axis with the number of iterations
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Figure 2.9 Evolution of the displacement of the horizontal prism along the y-axis with

the number of iterations

Figure 2.10 Evolution of the displacement of the horizontal prism along the z-axis with

the number of iterations

Fig 2.11 shows that the displacement distribution along the z-axis that we obtained with the

medium mesh is closer to the distribution obtained experimentally than that obtained by (Hodge

et al., 2016). With respect to the displacement amplitudes, we obtained a good prediction of the

maximum displacement in compression (0.05 mm), which is equal to the experimental value



74

Figure 2.11 z-axis displacements after moving the horizontal prism from its base: (a)

experimental z-axis displacements, (b) z-axis displacements obtained in the present study

using the medium mesh, and (c) numerical z-axis displacements obtained by Hodge et al.
(2016, p. 164)

(0.05 mm) and close to the maximum displacement in compression (0.04562 mm). However, the

amplitudes found by (Hodge et al., 2016) seem to be closer to the experimental amplitudes than

ours for the maximum amplitude in traction. Our calibration method does not take into account

the values of tensile displacements, since it is based solely on the values of displacements in

compression. This limitation makes its prediction of the maximum displacement in traction

further from the experimental value. The Ansys additive uses an adaptive mesh refinement

technique during the laser movement where as the (Hodge et al., 2016) used a staggered mesh .

The staggered mesh reduces the simulation complexity but the computation cost will increase

if make the decrease in mesh size. (Hodge et al., 2016) did not present the x- and y-axis
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results; however, we present the results for all three axes (x, y and z) and compare them with the

experimental results.

2.4.2.2 Vertical prism

We used the new calibration formulation for the following tests on the vertical prism displacement.

As shown in Fig 2.12, this calibration allowed us to obtain convergence. Table 2.4 summarizes

the comparison.

Table 2.4 Comparison of numerical and experimental

results for the vertical prism

Mesh size 0.30mm UXmin UXmax UYmin UYmax UZmin UZmax
Wu et al. (2014). -0.009 0.009 -0.025 0.025 -0.00427 0.00657

Present results -0.0087 0.0085 -0.012 0.034 -0.007 0.0067

Hodge et al. (2016) -0.01079 0.01088 -0.01428 0.01405 - -

Figure 2.12 Evolution of the maximum displacements of the vertical prism using the

proposed calibration procedure

Fig 2.13 shows the displacements in the x, y and z directions associated with the removal of the

vertical prism from its base. The final anisotropic coefficients obtained were 0.485 along the x
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axis, 1.515 along the y axis and 1 along the z axis. The strain scaling factor (SSF) used for our

results was 0.107.

Figure 2.13 Displacements after moving the vertical prism from its base: (a), (b) and

(c) – experimental displacements in the x, y and z directions, respectively; (d), (e) and (f)

– predicted displacements in the x, y and z directions, respectively (mesh size = 0.30 mm)

In Fig 2.13, we can observe that the numerical result distributions correspond well to those

of the experimental results, although the amplitudes of displacement are not always as close

as we wish. There is clearly a good displacement prediction for the x-component (for both

distribution and amplitude). For the z-component, there is a good prediction for the amplitude,

but the distribution for the experimental case seems not to be well reproduced. We further

present a comparison between our results and those of Hodge et al. (2016). It is clear that the

distributions and the amplitudes obtained in the present study for x-displacements (Fig 2.14) are

closer to the experimental ones than those obtained by Hodge et al. (2016). The amplitudes of

the y-displacements of Hodge et al. (2016) are symmetrical, as is the case for those obtained
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experimentally, but our distribution does not provide symmetrical amplitudes in traction. This

observation is very likely due to the island scanning strategy used in Hodge et al. (2016); our

study uses ANSYS-Additive 19.2, in which it is not possible to use such a strategy. It is not

possible to present the comparisons for the z-displacements here because they are not shown in

Hodge et al. (2016).

Figure 2.14 x-axis displacements after moving the vertical prism from its base: (a)

experimental x-displacements, (b) numerical x-displacements obtained in the present

study, and (c) numerical x-displacements presented in Hodge et al. (2016, p. 161)

2.4.2.3 The L-shaped cross-section

The dimensions of the sample are shown in Fig 2.16; the manufacturing direction (z-axis) is

normal to the L-shaped cross-section. For this case, the measured normal stresses 𝜎𝑧𝑧 are at the

level (z = 15 mm) and are given in Wu et al. (2014). As shown in Fig 2.16, most of the section

is in compression and the maximum stress is around -200 MPa in both the experimental and the

simulation results. There is clearly a similarity between the stress distributions of these two

results. While the maximum stress in compression is similar in both cases, there are differences
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Figure 2.15 y-axis displacements after moving the vertical prism: (a) experimental

y-axis displacements, (b) numerical y-axis displacements obtained in the present study,

and (c) numerical y-axis displacements presented in Hodge et al. (2016, p. 162)

in the maximum tensile stress.

It should be noted that in addition to predicting displacements and constraints, the ANSYS-

Additive software used in this study is able to generate compensated geometries that take into

account residual distortions and stresses, as well as optimized geometries of the supports required

for obtaining a good quality piece at the end of the additive manufacturing process. Another

advantage is that it not only makes it possible to visualize the deformed part after fabrication, it

also allows the visualization of the distortions and the residual stresses layer by layer during the

manufacturing process, thereby making it possible to observe the zones of greater deformations.
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Figure 2.16 L-shaped cross-section displacement: (a) axial

constraints obtained by simulation in ANSYS Additive at Z =

15 mm, (b) experimental axial residual stresses measured at Z

= 15 mm

In the appendix, some plots of the displacements and stresses along cuts are presented to serve

as quantitative comparisons for future comparisons.

2.4.3 Mesh convergence analysis

We can show that the mesh size chosen is acceptable by comparing the results obtained with

two other meshes of different sizes. It is important to mention that the mesh size of 0.22 mm is

the minimum size recommended by the ANSYS-Additive software to obtain reasonable results

while considering the capacity of our computing computer. However, while it is possible to

set mesh sizes smaller than 0.22 mm, it is not recommended, as it may introduce errors. Our

convergence study focuses on three mesh sizes: 0.22 mm, 0.3 mm and 0.35 mm.

2.4.3.1 Case of horizontal prism

As we can see in Table 2.5, the values of the displacements do not vary much with changes in

the mesh size. We choose the size 0.3 mm to display our results.
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Table 2.5 Mesh convergence study of horizontal prism

Mesh size (mm) UXS UYS UZS Number of iteration
0.22 0.09 0.093 0.05 8

0.3 0.039 0.094 0.05 12

0.35 0.035 0.093 0.044 18

2.4.3.2 Mesh convergence study of vertical prism

As we can see in Table 2.6, the values of the displacements do not vary much between the

different mesh sizes

Table 2.6 Mesh convergence study of horizontal prism

Mesh size (mm) UXS UYS UZS Number of iteration
0.22 0.0086 0.012 0.0068 7

0.3 0.0087 0.012 0.007 10

0.35 0.0088 0.012 0.0072 14

2.5 Conclusion

After a literature review on the main challenges faced in the numerical modeling of the SLM

process, this paper uses experimental data to validate the ANSYS-Additive package. The

definition of the process and the material properties’ values are crucial for obtaining accurate

results. This work proposes a new calibration technique for these parameters when experimental

data are available. The validation tests presented in this study are based on experimental data

from the work of Wu et al. (2014). Three geometries are simulated. The displacement and the

stress analysis of the SLM products show a good comparison between the numerical and the

experimental results. It is important to mention that the simulations were executed with some

simplifications, such as the scan strategy used in the process is monolithic serpentine instead of

island strategy; the latter was used in the actual experiments. Such approximations give rise to

some discrepancies.
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The new calibration strategy significantly improves the convergence time, and the results are

close to the experimental values. The relaxation factor is considered to be 3/4, which helps

to consider the deformation history of the product in order to calculate the new SSF and the

anisotropic coefficients for the next iteration. To visualize the deformations and the stresses in

more detail, a region is considered in all three specimens. Appendix A provides a visualization

of the associated deformations. Future work will involve an analysis of the effects of the process

parameters using machine-learning algorithms.
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Abstract

Selective laser melting (SLM) is a metal-based additive manufacturing (AM) technique. Many

factors contribute to the output quality of SLM, particularly the machine and material parameters.

Analysis of the parameters’ effects is critical, but using traditional experimental and numerical

simulation can be expensive and time-consuming. This paper provides a framework to analyze

the sensitivity and uncertainty in SLM input and output parameters, which can then be used to

find the optimum parameters. The proposed data-driven approach combines machine learning

algorithms with high-fidelity numerical simulations to study the SLM process more efficiently.

We have considered laser speed, hatch spacing, layer thickness, Young modulus, and Poisson

ratio as input variables, while the output variables are numerical predicted normal strains in

the building part. A surrogate model was constructed with a deep neural network (DNN) or

polynomial chaos expansion (PCE) to generate a response surface between the SLM output

and the input variables. The surrogate model and the sensitivity analysis found that all five

parameters were important in the process. The surrogate model was combined with non-intrusive

optimization algorithms such as genetic algorithms (GA), differential evolution (DE), and particle

swarm optimization (PSO) to perform an inverse analysis and find the optimal parameters for

the SLM process. Of the three al-gorithms, the PSO performed well, and the DNN model was

found to be the most efficient surro-gate model compared to the PCE.
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3.1 Introduction

Selective laser melting (SLM) is an additive manufacturing (AM) process in which a 3D

structure is constructed by successively melting material powder layers. The SLM process uses a

high-energy laser beam to melt the powder, making it accessible to different materials, including

metals. This technique can help to construct lighter, more complex geometries that are more

robust, without any significant material wastage. Due to such advantages, SLM technology

has increased in popularity and has made its way into large manufacturing industries such as

aerospace, medical implants, automobiles, etc. Ngo et al. (2018). However, many challenges

are associated with SLM products, including dimensional accuracy, part distortion, premature

process termination, and mechanical properties, thus requiring further research and analysis

(Ngo et al., 2018) (Abdulhameed, Al-Ahmari, Ameen & Mian, 2019).

Additive manufacturing (AM) efficiency and accuracy can be improved by using suitable

material and process parameters. Broadly, the properties of a material, the process, and the

environment define a large number of the parameters which affect the final product (Bian,

Shamsaei & Usher, 2017) , including laser speed, layer thickness, chamber temperature, etc.

Therefore, it is important to understand each parameter’s impact on the AM process; there could

also be possible interactions between the parameters. To meet specific design requirements in

the AM, these material parameters and the process parameters may need to be optimized. SLM

is a multiphysics process that occurs over different time and length scales (Markl & Körner,

2016). Among the major physical phenomena that occur during the process are radiation,

convection phase change, absorption and phase change, etc. (Tapia & Elwany, 2014). Our
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understanding of the SLM process can be improved by using the design of experimental methods

(Tapia & Elwany, 2014). However, experimenting on a large scale is time-consuming and

costly. Such challenges can be addressed using a realistic numerical model of the process. A

numerical model can help us generate a large number of data sets at a significantly lower cost

than traditional experimental methods. However, SLM involves complex multiphysics and

multiscale phenomena (Markl & Körner, 2016) with many uncertainties, from the material

powder bed to the melting and solidification processes. These uncertainties come from an

insufficient understanding of the process, measurement error, scaling error, sampling error, and

lack of information about the material properties (Hu & Mahadevan, 2017). All these elements

contribute to the model’s confidence level, which may limit SLM applications.

To increase the SLM product quality and production, we need to understand the sources of

uncertainties; how they grow, and how they affect the final product quality. Two methods can

be considered to tackle these issues and to increase trust in the SLM numerical model (Saltelli

et al., 2010) or the process: (1) uncertainty analysis (UA), and (2) sensitivity analysis (SA).

Uncertainty analysis aids in understanding the uncertainty in model outputs due to the uncer-

tainties in the model inputs; whereas, sensitivity analysis gives insight into how uncertainties

in the model inputs and outputs are related to each other. Most of the reported UA and SA

methods in AM are experiment-based, which leads to a high material wastage and makes the

process expensive (Hu & Mahadevan, 2017). In another approach, numerical models can be

used to quantify the uncertainties in the SLM process. However, a full-scale (such as a finite

elements-based) model could be computationally expensive and may take hours or days to

complete depending on the simulation type. In addition, numerical models are deterministic, and

usually do not consider the input variables’ uncertainties (Asserin, Loredo, Petelet & Iooss, 2011).

This paper provides a framework to optimize the SLM process and study uncertainty and

sensitivity analyses using a data-driven approach along with a 3D finite element model. As

the discretization of SLM problems requires fine spatial meshes and a high number of time
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steps, the overwhelming demand for computational resources makes high-fidelity simulations

too expensive computationally in the con-texts of uncertainty propagation or inverse analysis

studies. To alleviate this difficulty, we advocate the use of the data-driven approach, which

consists of two major stages: (1) A database of high-fidelity solutions computed for a certain

number of samples of the input data in the offline stage, which allows a surrogate model to be

obtained using a regression method on a reduced basis; (2) Predictions on new data performed

on the online stage using the surrogate model.

It is possible to a priori prescribe a reduced basis such as in the well-known polynomial chaos

expansion (PCE), or to use neural networks for which the reduced basis is obtained adaptively.

The data-driven approach does not require any modification of the high-fidelity source codes;

these are used as a black box. However, the solutions da-tabase should be computed in a

reasonable timeframe, for which parallel computing is deemed essential. We used PCE and

neural network methods to build an efficient ma-chine learning model. Genetic and evolutionary

optimization algorithms were then used to find the optimal parameters. These models were

validated on a benchmark SLM test (Phan et al., 2019) for which the high-fidelity solutions were

obtained using Ansys additive software.

After this introduction, Section 3.2 gives an overview of the mathematical methods used for

statistical analysis, surrogate modeling, and optimization. The results of the benchmark test are

discussed in Section 3.3. Finally, concluding remarks are given in Section 3.4.

3.2 Mathematical Model

A global sensitivity analysis considers the uncertainty in the input parameters and their influence

on the uncertainty of the process output to rank the importance of each input parameter (Bruna-

Rosso et al., 2018). In this paper, we have used a variance-based global sensitivity analysis

(GSA), which is commonly used to quantify the sensitivity of output to input parameters. The
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basic concept behind the variance-based method is to decompose the output variance among

each model input. To explain the variance-based GSA, let us consider the following model:

𝑌 = 𝑓 (𝑋1, ......𝑋𝑝) (3.1)

where 𝑌 is the system output and 𝑋1, . . . ..𝑋𝑝 represents the independent input variables, which

can be defined by a known probability distribution. If we compare this equation with our case,

then 𝑌 can be seen as the strain value, and the inputs are the machine properties, such as laser

speed and layer thickness, etc. To calculate the effect of input parameters 𝑋𝑛 on the variance of

𝑌 , we assume that the actual value of 𝑋𝑛 is 𝑥∗𝑛. The following conditional variance gives the

change in the variance of 𝑌 :

𝑂𝑋−𝑛 (𝑌 |𝑋𝑛 = 𝑥
∗
𝑛) (3.2)

In the above Equation, 𝑂𝑋−𝑛 represents the conditional variance over the (𝑝 − 1) input parameter

space, including all the input parameters except 𝑥𝑛∗ . As the exact value of 𝑋𝑛 is unknown, we

will take an average over all the potential values of 𝑋𝑛, which is given by:

𝐸𝑋𝑛 (𝑂𝑋−𝑛 (𝑌 |𝑋𝑛)) (3.3)

The smaller value of 𝐸𝑋𝑛 (𝑂𝑋−𝑛 (𝑌 |𝑋𝑛)) represents the greater importance of 𝑋𝑛 in the variance

of 𝑌 . If we use the law of total variance, then we can write:

𝑂 (𝑌 ) = 𝑂𝑋𝑛 (𝐸𝑋−𝑛 (𝑌 |𝑋𝑛)) + 𝐸𝑋𝑛 (𝑂𝑋−𝑛 (𝑌 |𝑋𝑛)) (3.4)

After a normalization, this Equation can be written as:

1 =
𝑂𝑋𝑛 (𝐸𝑋−𝑛 (𝑌 |𝑋𝑛))

𝑂 (𝑌 )
+
𝐸𝑋𝑛 (𝑂𝑋−𝑛 (𝑌 |𝑋𝑛))

𝑂 (𝑌 )
(3.5)
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𝑆𝑛 =
𝑂𝑋𝑛 (𝐸𝑋−𝑛 (𝑌 |𝑋𝑛))

𝑂 (𝑌 )
(3.6)

𝑆𝑛 represents the first-order sensitivity index for the parameter 𝑋𝑛. The remaining terms in

equation 3.6 will help in calculating the total order index. Equation 3.1 is further decomposed

into increasing orders of dimension, as:

𝑓 (𝑋1, ......𝑋𝑝) = 𝑓0 +

𝑝∑
𝑖=1

𝑓𝑖 (𝑋𝑖) +
∑

1≤𝑖< 𝑗≤𝑝

𝑓𝑖 𝑗 (𝑋𝑖, 𝑋𝑗 ) + ... + 𝑓1,...,𝑝 (𝑋1, ...., 𝑋𝑝) (3.7)

In the above equation, if we assume that all the input factors are mutually independent, then

there exists a simple decomposition where all the terms will be mutually orthogonal, and so the

variance of the output (𝑂 (𝑌 )) can be written as follows:

𝑂 (𝑌 ) =
𝑝∑
𝑖=1

𝑂𝑖 +
∑

1≤𝑖< 𝑗≤𝑝

𝑂𝑖 𝑗 + .... +𝑂1,...𝑝 (3.8)

where 𝑂𝑖, 𝑂𝑖, 𝑗 , . . . , 𝑂1,. . . ,𝑝 represents the variance of 𝑓𝑖, 𝑓𝑖, 𝑗 , . . . , 𝑓1,. . . ,𝑝, respectively. The

first-order sensitivity index shown in Equation (6) can be obtained by using the first p term of

the above decomposition.

3.2.1 Surrogate Modeling

A surrogate model is a mathematical representation of the relationship between the input and

output parameters; it provides approximate outputs for new input values without explicitly

solving the process. In the present study, we have used a deep neural network and polynomial

chaos expansion to build our surrogate models.

3.2.1.1 Deep Neural Networks

Deep neural networks (DNNs) are a class of artificial neural networks (ANNs), similar to a

human brain’s neuronal network. The basic unit of an ANN is called a node, which collects
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information from one end and passes it to another node at the other end. A node contains the

values of inputs, sums their weighted values, and then uses an activation function to produce an

output (Goodfellow et al., 2016). A simple structure of a neural network is shown in Figure

3.1a. The nodes are arranged in a number of layers. Each layer is fully connected with its

subsequent layer, but the nodes in a layer are not interconnected. The first and last layers of an

ANN structure are called the input and output layers. The number of nodes in the input and

output layers is equal to the number of input and output variables, respectively. After the first

layer, there are one or more layers called the hidden layers (Bishop & Nasrabadi, 2006). A

neural network model with more than two hidden layers and many nodes is referred to as a deep

neural network (Singh, Pal, Yadav & Singla, 2020). The values from each layer are mapped to

the nodes in the successive hidden layers by being multiplied by some weights. The new value

in each node is given by the equation:

𝑑𝑘𝑗 = 𝑔(
𝑛∑
𝑖=1

𝑊𝑘
𝑗𝑖𝑥𝑖 + 𝑏

𝑘
𝑗 ) (3.9)

where 𝑘 represents the number of layers and𝑊𝑘
𝑗𝑖 are the weight parameters associated with each

node 𝑖 whose state is given by 𝑥𝑖. The 𝑔 is the activation function that helps to introduce the

non-linearity and 𝑏𝑘𝑗 are the biases parameters. The sigmoid and hyperbolic tangents are the

most widely used activation functions. Once the activation function is selected, we need to

determine the optimal weights and biases by minimizing the loss function. The mean square

error (MSE) is used as a loss function in the present study:

𝑀𝑆𝐸 =
1

𝑁

𝑛∑
𝑖=1

( 𝑚∑
𝑗=1

[𝑦𝑖𝑗 − 𝑦
𝑖
𝑃, 𝑗 ]

2

)
(3.10)

where 𝑁 represents the total number of input parameters:𝑥1
𝑃, 𝑥

2
𝑃, . . . , 𝑥

𝑁
𝑃 . The 𝑃 represents a

dataset for a given input sample vector. The corresponding target outputs are represented by

𝑦1
𝑃, 𝑦

2
𝑃, . . . , 𝑦

𝑁
𝑃 , and 𝑦𝑖𝑃, 𝑗 represents the desired output. In the MSE equation, a regularization
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term is added to prevent the neural network model from overfitting. Thus, a complete MSE

equation can be written as:

𝑀𝑆𝐸 =
1

𝑁

𝑛∑
𝑖=1

( 𝑚∑
𝑗=1

[𝑦𝑖𝑗 − 𝑦
𝑖
𝑃, 𝑗 ]

2

)
+𝜆

2∑
𝑙,𝛼,𝛽

(3.11)

a) Single layer neural network(32)

b) six-layers deep neural network used in the present study

Figure 3.1 Pictorial representation of ANN and DNN models
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3.2.1.2 Polynomial Chaos Expansion

A polynomial chaos expansion (PCE) is a way of constructing an analytical model that maps the

outputs of interest to inputs using a predefined basis of polynomials. The function is represented

in the form of a polynomial expansion (Blatman & Sudret, 2010). In a PCE, we assume a

deterministic map, 𝑀, such that the response is 𝑌 = 𝑀 (𝑋) where 𝑥 ∈ 
𝑚,𝑌 ∈ 
𝑛, 𝑚, and 𝑛

represents the input and output variables respectively For simplicity let us consider 𝑛 to be 1.

The probability distribution of 𝑋 is given by the probability density function 𝑓𝑋 (𝑥) (O’Hagan

et al., 2013). Thus, the polynomial expansion of Y can be written as the following equation:

𝑦(𝑋) =
𝑁𝑃∑
𝛼=1

𝑎𝛼𝜙𝛼 (𝑋) (3.12)

where 𝑎𝛼 represents the expansion coefficients. The value of 𝑁𝑃 depends on the order of

polynomial 𝑝 and the number of input variables𝑚. Thus, the exact value of 𝑁𝑃 can be calculated

by 𝑁𝑃 = ((𝑚 + 𝑝)!)/𝑚!𝑝!. The other term in Equation 3.12, 𝜙𝛼, represents the multivariant

basis functions, which are orthogonal with respect to the probability density function 𝑓𝑋 (𝑥),

that is:

∫
𝑅𝑚
𝜙𝛼𝜙𝛽 𝑓𝑋 (𝑥)𝑑𝑥 = 𝛿𝛼𝛽 (3.13)

Here, 𝛿𝛼𝛽 represents the Kronecker symbol. For independent input variables, the value of 𝜙𝛼

can be obtained by the tensor product of the univariate orthogonal polynomials 𝜙𝑝𝛼𝑖 (𝑋), as in:

𝜙𝛼 (𝑋) =
𝑚∏
1

𝜙𝑝𝛼𝑖 (𝑋𝑖) (3.14)

where, 𝑝𝛼𝑖 represents the multi-index vector. The univariate polynomial basis function was

selected with respect to the type of probability density function. For example, if we have a
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uniform distribution, the Legendre polynomial is considered the optimal basis function. The

PCE coefficient 𝑎𝛼 can be computed using a regression approach, by minimizing the mean square

error
∑𝑁
𝑗=1(𝑦

𝑗
𝐷 −𝑌 (𝑥

𝑗
𝐷))

2−𝛾𝑎𝑇 ). Given a dataset D of N input variables 𝑋𝐷 = (𝑥1
𝐷, 𝑥

2
𝐷, . . . , 𝑥

𝑁
𝐷)

and their corresponding output vector 𝑌𝐷 = 𝑦1
𝐷, 𝑦

2
𝐷, . . . , 𝑦

𝑁
𝐷 , the expansion coefficients can be

calculated by solving the following problem:

𝑎 = (𝜃𝑇𝜃 + 𝛾𝐼)−1𝜃𝑇𝑌𝐷 (3.15)

where 𝛾 is the regularization factor, 𝐼 is the identity matrix and 𝜃 is the design matrix, whose

components are 𝜙 𝑗 (𝑥𝐷𝑖 ) (𝑖 = 1, .., 𝑁; 𝑗 = 1, .., 𝑁𝑃). The total number of sample input points are

calculated using 𝑁 = Υ𝑁𝑃, while Υ ≥ 1 represents the oversampling parameters that control

the accuracy of the PCE. To generate the dataset, we can use any sampling method, including

Latin hypercube or Sobol (Saliby & Pacheco, 2002). Once we obtain the expansion coefficients,

we can use the relationship 3.12 to approximate the outputs for any input variables.

3.2.2 Optimization

To find the optimum parameters for an SLM process, we considered three different optimization

algorithms: genetic algorithm, particle swarm optimization (PSO), and differential evolution.

These algorithms are briefly described in the following subsections.

3.2.2.1 Genetic Algorithm(GA)

Genetic algorithms(GAs) are search algorithms with the principle of natural selection. The

algorithm is inspired by the darwin’s theory: of survival of the fittest. At the global level, the

population is submitted for many transformations and after some generations, where the popula-

tion is not enduring anymore, then the best population set is considered to be the best solution.

GA compies the working principle of the genetic process, in which the parents’ characteristics

are transferred to their offspring. These genes correspond to specific characteristics like eys,
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height etc, and are present in the chromosome. For example, in humans, we have 23 pairs of

chromosomes and one chromosome in each pair comes from the maternal side and the other

comes from the paternal side. So after crossover, some characteristics of both parents transfer to

the child. Also, sometimes there is naturally, some genes randomly mutate and the offspring

can have some characteristics different than the parents. These mutation carries the changes in

offspring and improves the chance of survivability.

In gradient-based models, the solution runs from one point to another with the help of gradient

and the Hessian information (Arora, 2015). However, in GA, one works with a population of

points rather than a single point. A GA mimics the genetic process where the characteristics

from parents are transferred to the children (Holland, 1992). As shown in the flow chart of

a GA presented in Figure 3.2, it is divided into four phases: initialization, fitness, selection,

and combination. At the start of the GA, a sample set of the staring population or a sample

set is created, and then for each input parameter, their fitness value (the value of the objective

function) is computed. The lowest values are taken as the parents’ for the subsequent iterations,

and they will produce new offspring for the next iteration. Similarly to the human genes, in a

GA, individuals with the least function value will undergo crossovers and mutations to produce

better offspring than the parents (Wilson & Mantooth, 2013). By better, we mean their function

value is less than their parents’ function value(s). In our present case, a single-point cross-

over of 0.8 was established, and the mutation probability was taken as 0.1 to obtain the best results.

3.2.2.2 Particle Swarm Optimization(PSO)

The PSO technique uses a large number of samples to explore the optimal solution, as with GA

techniques. A GA is based on a biological evolution process, whereas PSO is based on natural

phenomena such as birds flocking or fish moving in a group together. PSO keeps a record of the

best position of the individual and of the population using the objective function. In a PSO, ‘pbest’

and ‘gbest’ denote the best objective function for the population and for the group, respectively
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Figure 3.2 Genetic Algorithm

(Arora, 2015). The velocity for each individual in a population is calculated using ‘𝑝𝑏𝑒𝑠𝑡′,

‘𝑔𝑏𝑒𝑠𝑡′, and its initial velocity. The new position for each individual is then calculated with the

help of the initial positions and their velocity. Each step for the PSO algorithm is described below.

If we assume the ‘nth’ individual in a set, then its position is given by:

𝑥𝑖,𝑛 = 𝑥𝑖,𝑚𝑖𝑛 + (𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛)𝑢𝑖 (3.16)

where 𝑥𝑖,𝑚𝑖𝑛 and 𝑥𝑖,𝑚𝑖𝑛 are the bounds for a variable 𝑥𝑖, and 𝑢𝑖 represents a random number

between 0 and 1. The fitness value of the nth individual can be calculated by:

𝐴𝑖,𝑛 = 𝑓 (𝑥𝑖,𝑛) (3.17)

In the beginning, the best fitness value 𝑝𝑏𝑒𝑠𝑡𝑖,𝑛 for each individual is 𝐴𝑖,𝑛 and the global best

value can be calculated as:
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𝑔𝑏𝑒𝑠𝑡𝑖 = 𝑚𝑖𝑛(𝑝𝑏𝑒𝑠𝑡𝑖,𝑛) (3.18)

The new velocity for the individual can then be calculated as:

𝑣𝑖+1,𝑛 = 𝜑𝑖𝑣𝑖,𝑛 + 𝜓1(𝑝𝑏𝑒𝑠𝑡𝑥,𝑖,𝑛 − 𝑥𝑖,𝑛)𝑢𝑖 + 𝜓2(𝑔𝑏𝑒𝑠𝑡𝑥,𝑖 − 𝑥𝑖,𝑛)𝑢𝑖 (3.19)

where 𝜑1, 𝜓1 and 𝜓2 are the tuning factors, which are 0.8, 2, and 2, respectively, in our study.

Now, the new position can be calculated as:

𝑥𝑖+1,𝑛 = 𝑥𝑖,𝑚𝑖𝑛 + (𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛)𝑢𝑖 (3.20)

Based on the new position, we can evaluate the new fitness value, which is:

𝐴𝑖+1,𝑛 = 𝑓 (𝑥𝑖+1, 𝑛) (3.21)

If the new fitness value is less than that of 𝑝𝑏𝑒𝑠𝑡𝑖,𝑛, then it is replaced with the 𝐴𝑖+1,𝑛. The global

fitness value is computed as:

𝑔𝑏𝑒𝑠𝑡𝑖+1 = 𝑚𝑖𝑛(𝑝𝑏𝑒𝑠𝑡𝑖+1,𝑛) (3.22)

3.2.2.3 Differential Evolution (DE)

Differential evolution (DE) is another optimization algorithm that, similar to GAs, is based on an

evolutionary process. DE has gained in popularity in recent years for its success in optimization

problems in different fields of science and engineering. The algorithm was first introduced by

(Storn & Price, 1995) in 1995 to optimize the non-differentiable and non-linear continuous



96

function. DE algorithms are based on stochastic population-driven evolution methods similar to

the other evolution methods. This approach uses a population set and searches the whole design

space to find the optimal solution using crossover, mutation, and selection operators. One of the

differences between DE and the other evolution methods is the mutation strategy used by DE,

which applies to each point and explores the whole design space based on other individuals’

solutions. (Georgioudakis & Plevris, 2020) presented several DE algorithms based on different

crossover and mutation strategies. There are three controlling factors in a DE algorithm: the

crossover rate, the population size, and scaling factors, which all must be controlled to get the

best performance (Storn & Price, 1997). Figure 3.3 outlines the functioning of a DE algorithm.

From mutation to the selection, all steps are repeated until the termination criteria are reached.

Our study considers the crossover and the scaling factor to be 0.8 and 0.6, respectively.

Figure 3.3 Differential Evolution
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3.3 Application to an Additive Manufacturing Benchmark Test

To model the SLM process, we used Ansys additive software (ANSYS) that employs a thermo-

mechanical coupling method to simulate the SLM process, as shown in Figure 3.4 The heat

transfer analysis provides the transient temperature field that is transferred to the mechani-

cal analysis model (ANSYS). The same workbench additive model has been used in many

similar studies (Heinrich, Feldhausen, Saleeby, Saldana & Kurfess, 2021) (Weinhold et al.,

2021) (Tupac-Yupanqui & Armani, 2021) to validate the code and to optimize the SLM build part.

Figure 3.4 Flow chart of Ansys additive simulation

To set up an AM simulation in Ansys, we can either create our geometry in the software or

we can import the stl. format of the geometry. In addition, the software gives the freedom to

create supports during the simulation, or it can generate them automatically depending upon

the given conditions. However, in this study we did not consider any support structure. After

the geometry setup, the whole domain was divided into several layers depending on the layer

thickness. To simulate each layer, we used the cartesian coordinate mesh with an element birth

method to activate the elements in each building step. The numerical model sets the elements in

the whole layer to the melting temperature at once, assuming that the developed temperature is

always at or above the melting temperature but it does not significantly exceed it. During the

melting of the powder, the scan pattern is not considered as an input parameter. Additionally,
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the unmelted surrounding powder is not explicitly modeled, instead the heat loss between the

powder and the solid material boundary is simplified using the convection boundary condition

at the interface. A convection boundary condition was used for each heating and cooling step,

but the radiation boundary condition is not considered in the model. The powder and the gas

convection coefficients were 1.8 × 10−5 𝑊/𝑚𝑚2 ◦C and 2.4 × 10−8𝑊/𝑚𝑚2 ◦C respectively.

The pre-heat powder temperature was set at 80 ◦C whereas, the chamber and the base plate

temperature were maintained at 40 ◦C and 80◦C respectively. The other process parameters

related to the machine and the material are described in the following subsections. Further

details can be found in (Carraturo et al., 2020) (Phan et al., 2019).

To validate the numerical results presented in this work, we compared the strains and the part

deflection results with the experimental data of a benchmark case, AMB2018-1, provided by the

National Institute of Standards and Technology (NIST) (Phan et al., 2019). In 2018, the NIST

provided a set of experimental results for different additive manufacturing processes, including

SLM. All the details about the experimental setup and the operations for AMB2018-1 are

available on the NIST website (torey.liepa@nist.gov). This benchmark study aimed to provide

reliable stress, strain, and deflection benchmark data in a bridge-like structure.

A brief description of this benchmark case, shown in Figure 3.5a,b, is provided here. The

residual stress and strain data were measured using x-ray diffraction and neutron diffraction

methods. For the part deflection measurement, the bridge was partially separated from the

base plate, and then a coordinate measurement machine was used to measure the deflection.

The AM part was constructed using two different machines: the NIST in-house-built machine

AMMT (additive manufacturing metrology testbed) and the EOS M270. In the present study, we

considered only the EOS M270 machine, as the measurement results for the part deflection were

not available for the structure constructed with the AMMT. More details on the process can be

found in (Phan et al., 2019). The test case comprised four bridge structures on a build plate, as

shown in Figure 3.5b. All four bridges and the substrate were constructed using IN625 material
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with a powder bed fusion process. During the process, the bridges were built with some spacing

(Figure 3.5b). As the bridges’ construction process does not affect the other bridges’ properties,

we considered only one bridge on the substrate for our numerical simulations as shown in Figure

3.5c. This simplification significantly reduced the computation time. The bridge and the build

plate’s final dimensions were 75 × 5 × 12.5 (mm × mm × mm) and 81 × 12.7 × 11 (mm × mm ×

mm), respectively. Our primary objective was to investigate the strain within the build-part in

the validation study. In addition, we verified the geometry deflection in the z-direction after part

of the bridge was separated from the substrate.

3.3.0.1 Baseline Machine Parameters

The AM part and the substrate were constructed using a Nickel alloy, IN625. In the experiment,

the part was built at the center of the substrate, with odd and even layers that were melted using

horizontal and vertical scan strategies. However, because of the software constraint, we only

considered the horizontal strategy for all the layers. Table 1 shows the machine parameters that

were used during the SLM experiment.

Table 3.1 Machine configuration settings

Machine Parameters Values
Laser Power 195 W

Laser speed 800 mm/s

Hatch spacing 0.1 mm

Layer thickness 0.02 mm

Base plate temperature 80 𝐶◦

Chamber temperature 40 𝐶◦

3.3.1 Baseline Material Parameters

IN625 is a very common alloy used in manufacturing. Therefore, its properties are easily

available and well-known. In this work, we considered the temperature-dependent material

properties.
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a) Plan (top) and elevation (bottom) views of the AMB2018-01 bridge

structure geometry

b) AMB2018-01 bridge

c) AMB2018-01 bridge geometry constructed with Ansys additive

software

Figure 3.5 Pictorial representation AMB2018-01 bridge structure
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Figure 3.6 Material properties of IN625 (a Nickel alloy)

3.3.1.1 Mesh Convergence Study

A mesh convergence study was first conducted to evaluate the effect of the mesh size of the 3D

finite element model on the simulation results. We selected three different mesh sizes, compared

their results with the experimental results, and concluded that a mesh of size 0.3 𝑚𝑚 was best

suited for further studies. The comparison study was conducted using the residual strain results

at 𝑧 = 9.536𝑚𝑚. In Fig 3.7, the numerical results are similar to the experimental results. Table

2 presents the decrease in error norm between the experimental and numerical results with mesh

size. For the error analysis, we used the 𝐿2 relative error norm which is defined as

𝐿2 =

√∑𝑛
𝑖=1(𝑢𝐸 (𝑖) − 𝑢 − 𝑠(𝑖))

2∑𝑛
𝑖=1(𝑢𝐸 (𝑖))

2
(3.23)
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in which 𝑢𝐸 and 𝑢𝑠 are the experimental and simulation data, respectively, whereas the total

number of data is represented by 𝑛. Each simulation was performed on 32 CPUs that each

had an Intel E5-2683 v4 processor. From Table 3.7, it is clear that the error decreases with

the decrease in mesh size, but at the same time, the computation cost increases. Therefore, we

chose a 0.3 𝑚𝑚 mesh for our simulations, as it provides better results than the 0.4 𝑚𝑚 mesh

size, while it is much less computationally expensive than the 0.2 𝑚𝑚 mesh size.

Figure 3.7 Heat transfer during the SLM process

Table 3.2 Discrepancy in different mesh size results

Mesh size (mm) Relative L2 error Norm Computation Time(Minutes)
0.4 0.9924 45

0.3 0.9642 60

0.2 0.8588 155

3.3.2 Validation of the Finite Element Model

Using the baseline parameters, the simulation results were validated using two different analyses.

In the first case study, the normal residual elastic strains were compared with the experimental

results at two specific locations (𝑧 = 9.536𝑎𝑛𝑑2.216) in the bridge. Figure 3.8 show a

comparison of normal strains in the 𝑥, 𝑦, and 𝑧-directions, respectively, at the line 𝑧 = 9.536,
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whereas Fig 3.9 show that comparison at 𝑧 = 2.216. The simulation results at both values

show a good correlation with the experimental results. It is essential to mention here that the

experimental strain results at 𝑧 = 9.536 were extracted only up to the 60 𝑚𝑚 length of the bridge.

The relative L2 norm error values for the 𝑥, 𝑦, and 𝑧-direction strains at 𝑧 = 9.536 were 0.4041,

0.6202, and 0.7820, respectively. The small difference in the results may be due to the different

scan strategies used in the experimental and numerical simulations.

Figure 3.8 The figure a, b and c represents the comparison of

experimental and simulation residual strain at z = 9.536 in the

x, y, and z-directions respectively

For the second validation case study, we analyzed the deflection of a partially separated bridge

from the baseplate as shown in Fig 3.10, in which all 12 bridge legs were separated from the

substrate. The partially separated bridge was then allowed to move upwards without any external

force, except for the internal residual stresses. The deflection of the bridge in the z-direction was

measured at 11 ridges on the bridge’s top surface. In Figure 3.11, we show the comparison of

the deflection results from a simula-tion and an experimental study. The relative L2 error norm

between the simulation and experimental results is 0.0629, proving a good correlation between

the results.
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Figure 3.9 The figure a, b and c represents the comparison of

experimental and simulation residual strain at z = 2.216 in the

x, y, and z-directions respectively

Figure 3.10 The NIST AMB2018-1 bridge geometry

3.3.3 Deep Neural Network (DNN) Surrogate Modeling

A surrogate model was constructed using DNN regression to build a surface map between the

input and the output data set. The DNN has six hidden layers, where the first and the last layers
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Figure 3.11 Comparison of the part deflection results from

experimental and simulation data

have 800 neurons and the middle four layers have 500 neurons each. To construct our DNN

model, we used Matlab’s deep learning toolbox.

In the present study, we considered five uncertain parameters, where three are the machine

parameters and two relate to material properties. To change the values of Young’s modulus

and the Poisson ratio, we multiplied their baseline values by factors 𝑐𝑌 and 𝑐𝜈, respectively.

The input variables were laser speed, layer thickness, hatch spacing, 𝑐𝑌 , and 𝑐𝜈. A dataset was

generated with a sample of 360 input variables using a Sobol sampling technique. Initially,

the sample set responses were obtained using the finite element model, and the normal strains

were calculated at z = 9.536 (build direction). Later, the outputs from the 360-sample set

were used to construct a DNN model, where 70 percent of the data was used to train the
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DNN, 15 percent was used to test it, and another 15 percent was used to validate the DNN

model. Fig 3.12 shows the loss drop during training, testing, and validation of the DNN

model, and Fig 3.13 shows the plot between the exact and predicted values during training,

testing, and validation of the model, using x-strains. The DNN model was developed sep-

arately to train and predict the outputs of each normal directional strain at 𝑧 = 9.536. Fig

3.14 compares the DNN outputs and the simulation outputs for each directional strain at 𝑧 = 9.536.

Figure 3.12 Error graph during the training, testing and

validation of the DNN model

Once the neural network surrogate model is developed, it can be used to perform statistical

and calibration studies. For this purpose, a sample of sufficient size must be generated. We

used the Monte Carlo method to perform the convergence analysis using standard deviation

(Std) for different numbers of sample sets, including 12, 48, 84, 120, 192, 264, 336, 516, 732,

1020, 1524, 2028, 2532, 3000, 4008, 5016, 8004, and 9588, and the standard deviation was

calculated for each sample set. The convergence study was performed for individual directional
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Figure 3.13 Comparison of the exact and predicted results

during training, testing and validation of the DNN model

strains at two locations. Fig 3.15a shows the results for the x strain at 15 and 45 mm, while

3.15b and 3.15c present convergence plots for the y and z directional strain at the 15 and 45mm

locations, respectively. From the figures, we concluded that a set of 6000 samples was enough

to perform the sensitivity and uncertainty analysis for an SLM process, as described in the

following sections.
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a) DNN Test predictions for y strains b) DNN test predictions for z strains

Figure 3.14 DNN predictions

3.3.4 Polynomial Chaos Expansion

Along with the DNN, we used a PCE model to construct a surrogate model for our SLM process.

We conducted this comparative study to determine the best surrogate model for our problem,

one that can simultaneously reduce the computation time and increase the accuracy of the

predictions. Thus, similar to the DNN, the PCE was trained and tested with outputs of 360

samples calculated using the Ansys additive software. For the comparison, we generated a data

set of 6000 input samples with the Sobol sampling technique, and then used our trained PCE

and DNN surrogate models to predict normal strains as outputs for the points at z = 9.536. Fig

3.16 shows a comparison between the DNN and PCE models, and we can conclude that the

results are very close to each other. The mean square error between the PCE and the DNN is

7.17 × 10−11, proving that both models are equally adequate for prediction. In Table 3.3, we

present a comparison of the computational cost for both models, and Table 3.4 presents the error

between experimental and predicted values. The results show that the PCE is faster than the

DNN in training , but almost three times slower than the DNN in prediction. Considering the
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a) Convergence plot at x=15 mm and 45mm for x strains

b) Convergence plot at x=15 mm and 45mm for x strains

c) Convergence plot at x=15 mm and 45mm for x strains

Figure 3.15 Represent the convergence of standard deviation with the increase in

sample size for x, y and z strains

overall time, the DNN is faster than the PCE. Therefore, in conclusion, we proceeded with our

investigation using a DNN instead of a PCE.
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a) PCE and DNN comparison for x strains b) PCE and DNN comparision for z strains

Figure 3.16 Training and prediction time for each model

Table 3.3 Comparison of numerical and experimental results for the vertical prism

x-strain Y-strain Z-strain
Methods Training Prediction Training Prediction Training Prediction

Time Time Time Time Time Time

ANN 160.09 155.87 115.22 160.81 248.25 156.06

PCE 11.56 515.76 8.14 552.28 7.25 552.26

3.3.5 Uncertainty Quantification

For the uncertainty quantification, we used the normal strains in the x, y, and z directions at z =

9.536. The analysis was conducted using Python libraries, which include Numpy, statistics, and

other libraries. To begin, a set of 6000 input samples was generated using a Sobol sampling

technique. Next, the trained DNN model was used to calculate the x-directional strains along the

line z = 9.536 for these input variables. The samples were generated under ±15% bound on the

baseline input values, which are shown in Table 5. As mentioned before, the values of Young’s

Table 3.4 L2-error norm between predicted and experimental values

Method X-strain Y-strains Z-strains
ANN 0.2714 0.6583 0.8730

PCE 0.2677 0.6466 0.8640
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modulus and the Poisson ratio were modified by multiplying them with the factors 𝑐𝑌 and 𝑐𝜈,

respectively. The values of these factors lie between 0.85 and 1.15, representing ± 15% variation.

Figure 18a illustrates the uncertainties in the process outputs, which shows that the mean of the

data was very close to the actual results; the grey area represents the confidence interval of 95%.

The confidence interval was equal to the ±2x standard deviation. A similar study was performed

with y- and z-directional strains at the exact location and their analysis plots are shown in Figure

18b,c, respectively. The L2 error norm between the mean value and the experimental results for

Y strains was 0.6662, whereas, for the z strains, the value was 0.8764. The experimental results

for Y strains lay in the 95% confidence interval, but for the z strain, they did not. This may be

explained by the simplifications and modeling hypotheses used in the numerical software of

the model limitations; for example, the model does not consider the anisotropy in the material

properties or the laser power.

Table 3.5 Lower and upper bound for the input variables

Input Variables Lower Bound Upper Bound
laser speed 680 mm/s 920 mm/s

layer thickness 0.085 mm 0.115

hatch spacing 0.017 mm 0.023

CY 0.085 mm 0.115

C𝜈 0.085 mm 0.115

3.3.6 Sensitivity Analysis

For sensitivity analysis, we considered five input parameters: three machine pa-rameters and

two material parameters. The study considers the primary parameters of layer thickness, laser

speed, hatch spacing, Young’s modulus, and Poisson ratio. The input parameters’ effects were

measured using the normal strains, and by calculating the first-order Sobol indices for each node.

Similar to the uncertainty analysis, the normal strains were calculated at z = 9.536 along the

bridge direction in each simula-tion.
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a) Uncertainty propagation along the length of the

bridge

b) Uncertainty propagation along the widths of

the bridge

c) Uncertainty propagation along the height of the

bridge

Figure 3.17 Uncertainty quantification along the three sides of the AMB2018-01 bridge

structure

Fig 3.18 presents the variation in the Sobol indices along the bridge length. A pie chart is

provided for each parameter, representing the importance of each parameter as a percentage.

From Figure 3.18, we can conclude that the Young modulus and the Poisson ratio are the most

critical parameters for the SLM and that hatch spacing is the least important parameter among the

five parameters considered. If we consider the x-directional strains, then the Poisson ratio and the

Young modulus are the most im-portant parameters. While both parameters’ influence changes

along the bridge length, both contribute 30% to 65% in the SLM output. The three machine

parameters are less influential than the material parameters, but they contribute significantly

to the directional strains. Fig 4.8b shows the effect of input variables on y-directional strains,

indicating that the Poisson ratio is the most dominating factor among the input varia-bles. The
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Poisson ratio contributes between 86 and 90% in the y-directional strains. The other four

parameters are equally essential and make contributions of 2 to 5% to the normal strain in

the y-direction. However, the situation is the opposite in the case of z strains, where the most

dominating factor is Young’s modulus instead of the Poisson ratio. Young’s modulus is 65 to

68% more important than the other parameters for z strains, while the Poisson ratio is the second

most dominant factor.

If we look at all the results we find that the machine parameters are less influen-tial than the

material parameters. However, the machine parameters’ effects are still significant in the SLM

process. Thus, we cannot ignore their importance in the SLM output, and we need to consider

these machine parameters to optimize the SLM out-put. In the next section, we consider all

five parameters and perform an optimization analysis to find the best configuration of the input

variables to obtain the optimal SLM to build-part.

3.3.7 Optimization

We performed an optimization analysis to find the optimized parameters for an SLM process,

using GA, PSO, and GE as our optimization algorithms, and the ANN model to generate the

required data set for the optimization process, as it is faster than the PCA model. From our

sensitivity analysis, we found that all five parameters are es-sential for the process, and so we

considered all five parameters as the input variables. We used 100 as the initial population for

the GA algorithm, with 0.8 and 0.1 as the crossover and the mutation probability, respectively.

However, in the DE, we took 0.6 for the scaling factor and 0.8 for the crossover. Table 3.6 presents

the optimized parameters for the SLM process with the different optimization algorithms. From

this Table, we can conclude that all the algorithms provide similar fitness values and that the

optimized parameters are also very similar. However, the PSO produces results much faster than

the other two algorithms. Therefore, using a PSO optimization algorithm with the DNN model

to obtain the optimal parameters is highly efficient and less computationally expensive than the
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a) b)

c) d)

e) f)

Figure 3.18 Variation in sensitivity indices along the length of the bridge (x-direction)

at z = 9.536 are pre-sented in figures (a), (c) and (e) for the x, y, and z-directional strains,

respectively. Where-as the figures (b) (d) and (f) represents the importance of each

parameter in a percentile form for x, y and z directional strains respectively
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other options.

In Figure 3.19 we present the SLM outputs for the optimized parameters obtained from all

three optimization algorithms. We used Ansys additive simulation for each set of optimized

parameters obtained from all three algorithms and plotted the normal strains along with the

experimental results. From Figure 3.19a,b, we can conclude that the results are similar and

very close to the experimental results. Figure 3.20 compares the optimized output results

obtained from the simulation and from the DNN model. The L2 error norm between simulation

and a surrogate model is 0.0965 and 0.2264 for x and y directional strains, respectively. The

figure proves the efficiency of the DNN model and the optimized results, which lie in the 95%

confidence interval.

Table 3.6 Optimized parameters

Parameters Layer hatch Laser n m Fitness Time
Thickness spacing Speed Value Elapsed(sec)

GA 0.0170 0.1033 760.1680 1.15 1.15 2.2962× 10−5 14,019.56

PSO 0.0170 0.09713 735.3737 1.15 1.1379 2.3043× 10−5 75.00

DE 0.0170 0.1032 757.5025 1.15 1.15 2.229402× 10−5 13,108.4366

Figure 3.19 Comparison of simulation results from DNN model using the optimized

parameters obtained by GA, PSO, and DE
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a)

b)

Figure 3.20 Confidence intervals of simulation results from DNN model and for the

optimized parameters obtained from PSO. (a,b) represent the x and y strains, respectively

3.4 Conclusions

In this paper, we presented a framework to analyze and optimize the SLM process other than

the more widely-used experimental and numerical techniques. We used machine learning

(ML) methods with the SLM numerical model to study the sensitivi-ty and uncertainty during

the additive process. Neural networks and polynomial chaos expansions were the primary

machine learning methods that we considered. The da-taset of full-order numerical solutions

was performed using ANSYS additive software and the results were validated using publicly

available experimental results. The 3D thermo-mechanical finite element model was used to
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solve a set of 360 samples created using the Sobol sampling technique. The outputs from the

360 samples were then used to train and test the surrogate models. We found that the deep neural

network model was faster than the PCE model, so we adopted the DNN model for the rest of the

anal-yses. Once the DNN model was trained, it was combined with the Monte Carlo tech-nique

to find the number of simulations needed to perform the sensitivity and uncer-tainty analyses

in the SLM process. The standard deviation convergence plots for each sample set helped us

to conclude that 6000 samples are sufficient to perform the study. The sensitivity analysis

revealed that the Young’s modulus and Poisson coefficient are the most critical parameters

during the process, while the layer thickness, laser speed, and hatch spacing are less important.

However, the machine parameters still hold sig-nificant importance (5% to 10%). As all the

parameters hold significant importance in the SLM process, we considered all five parameters

for the optimization analysis. The surrogate DNN model was utilized to optimize with three

different algorithms: GA, PSO, and DE. The results were compared, and all three algorithms

were found to be equally good at calculating the optimal solution; however, PSO took the least

time. The combination of DNN and PSO for optimization provided good results and incurred

significantly less computation cost. In the future, as an extension of this study, we will work

with the physically informed machine learning models to improve results.
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Abstract

Two data-driven, non-intrusive, reduced-order models (ROMs): a convolutional autoencoder-

multilayer perceptron (CAE-MLP) and a combined proper orthogonal decomposition-artificial

neural network (POD-ANN) are proposed and compared for additive manufacturing (AM)

processes. The CAE-MLP uses a 1D convolutional autoencoder for spatial dimension reduction

of a high-fidelity snapshot matrix constructed from high-fidelity numerical simulations. The

reduced latent space after compression is projected to the input variables using a multilayer per-

ceptron (MLP) regression model. The POD-ANN uses proper orthogonal decomposition-based,

reduced-order modeling with the artificial neural network to construct a surrogate model between

the snapshot matrix and the input parameters. The accuracy and efficiency of both models are

compared based on the thermo-mechanical analysis of an AM-built part . A comparison between

the statistical moments from the high-fidelity simulations results and the ROMs predictions

reveals a good correlation. Additionally, the predictions are compared with the experimental

results at different locations. While both models show good comparison with the experimental re-

sults, the CAE-MLP predictions have proven to be better performing than those of the POD-ANN.

Keyword
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4.1 Introduction

Laser powder bed fusion (L-PBF) is an Additive manufacturing (AM) technology, in which

a 3D part is manufactured by successfully fusing material powder layers with a high-energy

beam laser. L-PBF can be divided into two types: Electron beam melting (EBM), wherein a

high-energy electron beam melts powder layers, and Selective laser melting (SLM), which uses

a high-power photon to bond powder layers together. This technology can help build complex

and robust geometries with less material wastage and thereby reduce part manufacturing costs.

However, many challenges, including part distortion, built part accuracy, and the premature

termination of a built part, still require further investigation. As part of the current study, the

SLM process is considered with the evolution of temperature, and the strain in the built part is

analysed to understand the building process better.

The SLM process undergoes a high-temperature gradient during the melting process. The

melt pool temperature can reach several thousand degrees celsius, whereas the temperature

surrounding the solidified regions remains close to that of the environment or the preheat

temperature. The cyclic cooling and heating of the powder material leads to residual stresses,

resulting in an incompatible built part. The high-temperature gradient is directly attached to the

moving high-power laser, and so a highly nonlinear and very fine mesh around the melt pool is

required to obtain an accurate numerical model.

Similarly, the process involves several length and time scales, which makes the numerical

simulation even more complex. For example, the steep increase in the melt pool’s temperature

takes a few seconds, whereas the layer-to-layer building method takes several hours or days to

finish; the cooling of the built part may take even more time. Other difficulties that must be

considered in the SLM simulation are the phase transformations and the latent heat associated
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with the phase change, which transforms the powder into a liquid and then a solid phase. These

challenges in the building process make the SLM thermal analysis complex and computationally

expensive. The SLM community is in dire need of an advanced numerical simulation or a new

approach that can significantly reduce the computation cost.

A high-fidelity, data-driven machine learning model can provide an alternative approach to

studying the SLM process (Meng et al., 2020) (Wang et al., 2020). Ravichander et al. (2021)

presented a neural network model for the SLM output predictions, where the model was trained

over experimental data points and then applied to find a new dataset. Chaudhry & Soulaïmani

(2022) presented a framework with machine learning (ML) to construct a surrogate model for

SLM and used it to optimize the built part. Similarly, (Francis & Bian, 2019) (Mozaffar et al.,

2018) (Rong-Ji et al., 2009) (Zhang, Liu & Shin, 2019a) (Meng & Zhang, 2020) also provided

ML models for the additive manufacturing process. However, the complexity is compounded

when the dimensionality of a data set expands. For example, in (Chaudhry & Soulaïmani, 2022),

the dimension of the data matrix used for training the deep neural network (DNN) model was

360*287. If the dimension of the matrix is increased to 360*97650, then the DNN would not be

a likely approach with which to construct a ML model, because the trainable parameters would

reach a million or a billion depending upon the depth and the size of the neural network. Recently,

reduced-order modelling (ROM) has gained popularity in the computational community as a

means to reduce high computation costs without compromising accuracy, especially where

dimensionality is a big challenge. ROM gives a faster surrogate model for computationally

expensive simulations. Such speed is especially useful for optimizations of real-time tracking

tasks that require significantly large model iterations or rapid online predictions in industrial

applications and in fundamental science.

One of the more popular ROM methods to convert a high dimensional problem to a low-

dimensional problem is proper orthogonal decomposition (POD). POD was initially presented

by (Pearson, 1901) in 1901, and has since been developed and improved to provide an ef-
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fective and efficient technique for ROM analysis for several applications (Xiao et al., 2017).

Recent developments have provided many non-intrusive methods to calculate the coefficients

of linear POD approximations with the help of data-driven approaches without compromising

the governing equations (Chatterjee, 2000). This method consists of a stochastic framework,

such as POD with polynomial chaos expansion (POD-PCA) or POD coupled with an artificial

neural network (POD-ANN), which constructs a regression framework with the reduced-order

modelling between the input parameters and the coefficients of POD basis (El Moçayd et al.,

2020) (Abdedou & Soulaïmani, 2021) (Jacquier et al., 2021) (Sun & Choi, 2021) (Abde-

dou & Soulaimani, 2019).

(Zhao et al., 2021) POD for thermal study of the electron beam melting system. Their investiga-

tion used the ABAQUS model and POD to study the temperature distribution of a moving energy

source in the EBM process. Likewise, (Gaonkar & Kulkarni, 2015) (Fic et al., 2005) (Białecki

et al., 2005) developed POD-based ROM methods to solve the linear and non-linear transit heat

transfer problem and presented a good correlation of the standard FEM code and POD-FEM

results. The central core of POD application is the building of a high-fidelity snapshot matrix

to obtain a small set of eigen modes and the coefficients of the linear basis constructed with

these modes. (Liu & Liu, 2023) performed a ROM with POD and generated a map for input

parameters and the POD bases with the help of the regression tree method. The constructed

map was later used to project the outcomes for a new set of input variables. In two different

studies (Abdedou & Soulaïmani, 2021)(Jacquier et al., 2021) POD modes are combined with

ML models, including artificial neural networks (ANNs). The POD and ML algorithms have

proven effective and productive in analysing large data sets and processes. In our study, we use

a POD-ANN method that constructs a regression surrogate model for the ROM to learn and

predict the strains in an SLM-built part.

POD has attracted much attention recently, it is a linear procedure. Although linearity is part of

the POD method’s strength it is also its biggest limitation, as the POD lacks the accuracy to
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capture complex dynamic systems Abdedou & Soulaimani (2023). To address these limitations,

non-linear manifolds have been considered as an alternative for dimensional reduction problems,

and some of these approaches are based on deep learning technology (Zhu, Shi, Song, Tan & Tao,

2020a) (Zhu, Shi, Song, Tao & Tan, 2020b). Autoencoder is one such method, consisting of

two segments, an encoder and a decoder. (Tan et al., 2019) presented a convolutional neural

network (CNN)-based autoencoder (CAE) model to detect anomalies in an AM-built part. CNN

autoencoders include different operations like convolution, multilayer perceptron, upscaling and

pooling (He et al., 2021) (Gonzalez & Balajewicz, 2018), thereby helping to reduce the number

of training parameters required. In similar studies (Shi et al., 2022) (Siddalingappa & Kanagaraj,

2021) (Tang et al., 2021), a CAE is combined with Long Short-Term Memory (LSTM) networks

to build a framework for surrogate modelling projections, especially for time dependent predic-

tions in AM-built parts.

The present study proposes a framework of non-intrusive reduced-order models for the parametric

analysis of the SLM building process. This data-driven framework uses POD and convolution

autoencoders (CAE) in two different approaches to decrease the high-fidelity matrix dimension

obtained by finite element numerical solutions. The solution matrices are the normal directional

strains calculated using Workbench additive software(ANSYS). It should be noted that the

complexities of these models are not the same, and the goal for this comparison is to evaluate

how the model designs and the training procedures affect the learned latent modes and the

quality of the reconstructions and predictions. In the first approach, the POD bases of the strain

matrices are calculated and then a surface is created between the input variables and the POD

bases using an artificial neural network. The constructed surrogate model is used to calculate

the strains over a new data set of input parameters. In the other approach, the dimensionality of

the snapshot matrix is reduced using the CAE method, where the spatial dimension is reduced

by encoding the data to create a latent space. The generated latent space is related to the input

variables with a multilayer perceptron network (MLP). The decoder part of the 1D autoencoder

maps the latent space to the previous dimension. The trained MLP and 1D decoder help to
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reconstruct the original spatial dimension of the SLM built part from the latent space for the new

set of input process parameters. The proposed framework is applied for the stochastic treatment

of the benchmark case of an SLM-built part, AMB2018-1, produced by the National Institute of

Standards and Technology (NIST) (Phan et al., 2019). The study provides new features for the

reduced-order modelling of complex physical problems.

The chapter is divided into the following sections. Section 4.2 presents a short description of the

mathematical backgrounds of the POD and the CAE. Section 4.3 evaluates the performance of the

proposed framework by comparing the numerical results from the benchmark case. Concluding

remarks and recommendations are presented in Section 4.4.

4.2 Mathematical modelling

4.2.1 Proper orthogonal decomposition(POD)

POD initially originated from the turbulence flow field with the concept of forming deterministic

functions by decomposing the random vector fields of turbulence fluid motion and representing

fluctuating kinetic energy in the flow (Lumley, 1967) (Weiss, 2019).The expectation was that

this finite number of deterministic functions, also known as POD modes, would be able to

describe the flow structure. This approach has been widely adopted in other fields. The POD

compresses two essential properties: optimality and orthogonality. Optimality ensures that the

POD provides the most efficient decomposition, which means the leading modes possess the

highest possible energy compared to all the linear decompositions during projection over the

subspace. Orthogonality indicates that the time series of the coefficients are linearly uncorrelated,

an important property for making reduced-order models.

Let us suppose 𝑌 = [𝑦1, 𝑦2, ....𝑦𝑛] is a real-valued 𝑚 × 𝑛 matrix whose rank is 𝑑 ≤ 𝑚𝑖𝑛(𝑚, 𝑛)

with columns 𝑦 𝑗 ∈ 𝑅
𝑚, 1 ≤ 𝑗 ≤ 𝑛. POD is combined with singular value decomposition (SVD)
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to obtain the reduced order model and a low-rank approximation that is easy to compute. The

SVD assures that there are real numbers 𝜎1 ≥ 𝜎2 ≥ . . . . . . ≥ 𝜎𝑑 > 0 and orthogonal matrices

Ψ ∈ 𝑅𝑚×𝑚, with columns {Ψ𝑖}𝑚𝑖=1
, and Φ ∈ 𝑅𝑛×𝑛, with columns {𝜙 𝑗 }

𝑛
𝑗=1

, such that

Ψ𝑇𝑌Φ =
��	
𝐷 0

0 0


�� (4.1)

Here, 𝐷 = 𝑑𝑖𝑎𝑔((𝜎1, 𝜎(2). . . 𝜎𝑑) ∈ 𝑅
𝑑×𝑑 . The zero blocks in equation 4.1 have the appropriate

dimensions, and 𝑇 represents the matrix transpose. In addition, {Ψ𝑖}𝑑𝑖=1
and {𝜙𝑖}

𝑑
𝑗=1

satisfy the

properties

𝑌𝜙𝑖 = 𝜎𝑖𝜓𝑖 𝑎𝑛𝑑 𝑌
𝑇𝜓 = 𝜎𝑖𝜙 (4.2)

where 𝑖 = 1, 2, ....𝑑, and which these are eigenvector of 𝑌𝑌𝑇 and 𝑌𝑇𝑌 , respectively, with the

eigenvalues 𝜆𝑖 = 𝜎2
𝑖 > 0, 𝑖 = 1, 2. . . .𝑑. Also, {𝜓𝑖}

𝑚
𝑖=𝑑+1

and {𝜙𝑖}
𝑚
𝑖=𝑑+1

are eigenvectors with the

eigenvalue 0 of 𝑌𝑌𝑇 and 𝑌𝑇𝑌 (if 𝑑 < 𝑚 and 𝑑 < 𝑛). From equation 4.1 we can write

𝑌 = Ψ ��	
𝐷 0

0 0


��Φ𝑇 (4.3)

For a finite number of initial 𝐿 modes, the truncation criteria are imposed on the singular values

as shown below:

∑𝑟
𝑙=𝐿+1 𝜎

2
𝑙∑𝑟

𝑙=1 𝜎
2
𝑙

≤ 𝛿 (4.4)

where 𝛿 is a small parameter. So, every mode vector 𝑉𝑗 may be calculated from the 𝑗 𝑡ℎ column

of 𝜙 as
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𝑣 𝑗 =
1

𝜎𝑖
𝑌Φ 𝑗 (4.5)

Thus, the POD mode matrix can be constructed as below

𝑉 = [𝑉1 |......|𝑉𝑗 |....|𝑣𝐿] ∈ 𝑅
𝑚×𝐿 (4.6)

Once the POD modes are obtained, they are then used to calculate the projection coefficients 𝜈

for the snapshot matrix as shown:

𝜈 = 𝑉𝑇𝑌 (4.7)

Similarly, the POD bases and the projection coefficients can be used to find the approximation

matrix of 𝑌 :

𝑌 ∗ = 𝑉𝑉𝑇𝑌 = 𝑉𝜈 (4.8)

The quality of the compression/expansion process can be captured by the relative projection

error shown in the equation:

𝑅𝐸𝑃𝑂𝐷 =
𝑛∑
𝑗=1

| |𝑦 𝑗 − 𝑦
∗
𝑗 | |2

| |𝑌𝑗 | |2
(4.9)

where 𝑗 represents the 𝑗 𝑡ℎ column of the targeted matrix and | |.| |2 is the 𝐿2- norm.
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4.2.2 Proper orthogonal decomposition and artificial neural network(POD-ANN)

A pictorial representation of the POD-ANN method is shown in Fig 4.1. In the first step, the

POD algorithm is used to find the POD modes from the snapshot matrix. These modes are then

used to obtain the projection coefficients 𝜈 for the snapshot matrix, which are a low-dimensional

representation of the original data. Next, an artificial neural network (ANN) is trained to

create a mapping between the input variables and the projection coefficients 𝜈. The POD-ANN

framework is divided into two parts; the training part is called an offline phase, during which the

ANN model is trained and where the input parameters are the physical algorithm variables 𝛼 and

the outputs are the projection coefficients 𝜈. Eighty percent of the data is used to train the model

and 20% is used for testing. The other part of the POD-ANN framework is the online phase,

where the trained ANN model is used to predict the new projection coefficients 𝜈∗ for a new set

of physical parameters 𝛼∗. The coefficients calculated on the POD basis are then expanded to

the original dimension using the format shown in algorithm 4.1.

Algorithm 4.1 Flowchart of the POD-ANN method

1 Function POD-ANN

2 V ← POD(Y)

3 𝜈 ← 𝑉𝑇 Y

4 𝜈 ← ANN(𝛼)(Training of ANN model with 𝛼 inputs and 𝜈 outputs)

5 𝜈∗ ← ANN(𝛼∗)(Predicition)

6 𝑌 ∗ ← V𝜈∗

7 Return 𝑌 ∗

4.2.3 Convolution autoencoder

An autoencoder is a type of deep neural network that is useful for unsupervised feature extraction.

The architecture has the potential for modal decomposition because it provides a framework that

includes non-linearity in the mapping by using a nonlinear activation function. However, the

modal decomposition of an input field that contains multiscale coherent features is challenging

for a neural network autoencoder. This challenge can be overcome by using convolution layers
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Figure 4.1 Sketch of the POD-ANN process

in the autoencoder to process the input information.

Convolutional autoencoders (CAEs) have gained popularity in image recognition as powerful

techniques for non-linear reduced-order modelling. The convolution layers provide an alternative

approach to the limitations that a classical autoencoder based on deep neural networks (i.e. fully

connected layers) faces for high dimensional inputs (Gonzalez & Balajewicz, 2018). A CAE has

two parts, an encoder and a decoder. The encoder part reduces the input matrix’s dimension and

maps it to a latent space using a composition of convolutions, pooling, and densely connected

layers. The decoder uses convolutions, upscaling, and dense layers to map the latent space to the

original dimension of the input matrix. The architecture of a CAE is presented in figure 4.2, and

a similar CAE approach is applied here for the encoding and decoding of the spatial dimension

of the input snapshot matrix.

A convolution layer is a feature map representation in which a selected part of a previous layer is

fully connected with each unit of the next layer with the help of an activation function and a

kernel. This connection permits the calculation of the most significant features from the input
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matrix with the help of the kernel. A mathematical representation of a 1D convolution layer is

given by (Maulik et al., 2021):

ℎ𝑙𝑖 = 𝜎(𝐻
𝑙−1 ∗ 𝑓 𝑙𝑖 + 𝑏

𝑙
𝑖 ) (4.10)

in which the ∗ denotes the 1D convolution operator, ℎ𝑙𝑖 ∈ 𝑅
𝐷𝑙×1 represents the 𝑖𝑡ℎ feature of

the 𝑙𝑡ℎ, 𝜎 is the nonlinear activation function, 𝐻𝑙−1 = [ℎ𝑙−1
1
, ℎ𝑙−1

2
. . . .ℎ𝑙−1

𝑁 𝑓𝑙−1
] represents the

convolution layer 𝑙 − 1, 𝑏𝑙𝑖 gives bias value with 𝑖 ∈ 𝑁 𝑓𝑙 , 𝑓
𝑙
𝑖 represents kernel for layer 𝑙 and

𝑙 ∈ (1, 𝑛). The depth of the convolution layer is represented by the total number of layers. After

each layer, the pooling layers are inserted to decrease the dimension of the features by an amount

that is defined by the kernel size of the pooling layer.

As presented in the previous section, the snapshot matrix consists of a set of n high-fidelity

solutions obtained from the numerical simulation 𝑌 (𝛼𝑠) ∈ 𝑅
𝑚, 𝑠 = 1, . . . .𝑛. In this solver, 𝛼𝑠 is

the 𝑠𝑡ℎ value of the random variable 𝛼 in its data sample with size 𝑛, which follows a probability

density function 𝜑(𝛼). All these vectors’ solutions are combined and form a global snapshot

matrix:

𝑌 = [𝑦1...𝑦𝑠...𝑦𝑛] ∈ 𝑅
𝑚×𝑛 (4.11)

Where 𝑚 is the total number of computational nodes in the spatial domain. The global snapshot

matrix created above is divided into two sets, one with 80% and the other with 20% of the data

for training and validation, respectively.

The CAE framework is divided into three parts: 1) spatial compression, 2) a regression-based

multilayer perceptron (MLP), and 3) online surrogate predictions. The spatial compression

provides the dimension reduction of the input data matrix from 𝑛 to 𝐿 along the spatial dimension
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Figure 4.2 Pictorial representation of a1D convolution autoencoder architecture, where

K and F represent the maxpool kernel and convolution filters, respectively. The colour

coding for each layer is: 1D convo layer, Prelu activation function, max pooling, flatten,

dense , reshape upscaling

where 𝐿 represents the latent space dimension. The snapshot matrix 𝑌 is reshaped using the

space encoder 𝐹𝑥𝑒𝑛𝑐 part of the CAE along the spatial dimension, as given:

𝑉𝑥𝐿 = 𝐹𝑥𝑒𝑛𝑐 (𝑌 ) ∈ 𝑅
𝑚×𝐿 (4.12)

where 𝑉𝑥𝐿 represents the snapshot matrix with reduced dimension. The detailed structures for

every autoencoder in the test set and the benchmark problem are given in appendices I-1 I-2

I-4 I-5. Once the latent space is constructed, the next level of the CAE framework is applied:

the implementation of MLP in the latent space. The MLP maps the latent space 𝑉𝑥𝐿 to the

input variables 𝛼. The MLP model consists of multiple fully connected neuron layers. The

detailed structures of the MLP applied for each case are given in appendices I-3 and I-6. The

compression of the spatial dimension and the MLP are classified as an offline phase of the

CAE as shown in fig 4.3. It must be noted that the framework presented here is built using the

open source package TensorFlow (Abadi et al., 2016) with the Adam optimizer and its default

parameters. The input snapshot parameters are normalized to accelerate the optimization and the
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convergence of the training process, and the coefficients of the snapshot matrix are normalized

between [-0.5 0.5], as:

𝑌𝑠𝑖 − 𝑚𝑖𝑛(𝑌𝑠)

𝑚𝑎𝑥(𝑌𝑠) − 𝑚𝑖𝑛(𝑌𝑠)
(4.13)

where 𝑠 = 1, ....𝑛, 𝑖 = 1.....𝑚, 𝑢𝑠𝑖 is the normalized outptu for the 𝑠𝑡ℎ input parameter and the 𝑖𝑡ℎ

mesh node. The final step is the online surrogate prediction of a new data set.

A new set of input variables is constructed using the Latin hypercube sampling (LHS) algorithm

(Saliby & Pacheco, 2002). For each value of the new data set, a spatial latent vector (𝑉∗
𝑥𝐿 ) is

generated using the trained MLP regression model. The predicted latent space is then transformed

back to the original dimension using the spatial decoder function (𝐹𝑥𝑑𝑒𝑐 ), 𝑌
∗ = 𝐹𝑥𝑑𝑒𝑐 (𝑉

∗
𝑥𝐿 ). The

flowchart of this framework is presented in Fig4.3 and algorithm 4.2.

Algorithm 4.2 Flowchart of the POD-ANN method

1 Function POD-ANN

2 𝑉𝑥𝐿 ← 𝐹𝑥𝑒𝑛𝑐 (𝑌 ) (Encoding snapshot matrix to latent space)

3 𝑉𝑥𝐿 ← MLP(𝛼) (Training of MLP model with 𝛼 inputs and 𝑉𝑥𝐿 outputs)

4 𝑉∗
𝑥𝐿 ← MLP(𝛼∗)(Prediction with new input parameters)

5 𝑌 ∗ ← 𝐹𝑥𝑑𝑒𝑐 (𝑉
∗
𝑥𝐿)(Decoding latent space to orignal diamension)

6 Return 𝑌 ∗

4.3 Results and Discussion

This section is devoted to the assessment of the POD-ANN and the autoencoder models on a 2D-

dimensional heat transfer test case and a 3D additive manufacturing test case. The comparison of

the results obtained from the proposed models with the experimental results shows the efficiency

and accuracy of the proposed reduced- order models.
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Figure 4.3 Flow chart of the CAE with its online and offline

phases
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4.3.1 2D heat transfer test case

This simple test case considers the heat transfer over a plate of thickness 𝑒 in a steady state. The

purpose is to validate the implementation of the different algorithms. The governing equation

and the boundary conditions are described by the linear heat equation:

𝑑𝑖𝑣( �𝑞) =
2ℎ

𝑒
(𝑇𝑒𝑥 − 𝑇) (4.14)

where, 𝑑𝑖𝑣( �𝑞) is the conduction flux given by Fourier’s law 𝑑𝑖𝑣( �𝑞) = −𝐾∇𝑇 (𝐾 is the conduc-

tivity, ℎ is the coefficient of convection and 𝑇𝑒𝑥 = 100◦𝐶 represents the given temperature at one

side. The boundary condition at the edges is �𝑞.�𝑛 = ℎ(𝑇 − 𝑇𝑒𝑥). The temperature is 22◦C at the

base (𝑥 = 0). In this test case, the coefficients of convection and the conductivity are constant and

are considered the input parameters, and the temperature over the whole domain is considered the

output. A total of 300 samples were generated for the input parameters using the LHS algorithm,

with the samples collected uniformly in the intervals [61, 51] and [57.5, 42.5] for 𝐾 and ℎ ,

respectively. For each input set, the heat equation was solved using an in-house code based on

the finite element method. The mesh is constituted of quadrilateral elements with a total of 289

nodes as shown in figure 4, and the output snapshot matrix was used to train the POD-ANN and

CAE-MLP models. The data set of 300 samples was divided into 80% and 20% for training

and testing, respectively. Once the training was completed, the predictions from both models

with a new set of input parameters were compared with the original snapshot matrix. A set of

5000 samples was generated, using the LHS method, and the surrogate models (POD-ANN and

CAE) were run to obtain new predictions. A statistical analysis of the outputs was then performed.

The POD-ANN model consists of 3 hidden layers with 50 neurons in each layer. The model found

that 3 POD modes were sufficient to predict the accurate outputs of the heat transfer problem.

The CAE-MLP model transforms the spatial dimension from 288 to the reduced-order latent

space dimension of 5. More details on the encoder and decoder structure are presented in table
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I-1 I-2. This process produces a total of 140,587 trainable parameters. The constructed spatial

latent space is then mapped to the input variables using a multilayer perceptron with 34,053

trainable parameters; the detailed structure is presented in table I-3. The MLP and the CAE are

trained for 5000 and 500 epochs, respectively, and the loss convergence graphs are shown in fig 4.5.

The comparison of the CAE-MLP and the POD-ANN with the snapshot matrix is performed

using the standard deviation (std) and the mean of the predicted temperature distribution of the

whole domain. The outputs are compared in Fig 4.6; the graph shows a good comparison between

the temperature profiles predicted from the POD-ANN and the CAE-MLP with the original

snapshot matrix. The relative L2 error norm between the mean of the predicted temperature

profile for the 300-snapshot matrix and each of the 5000 realizations of the POD-ANN and

the CAE-MLP are 2.88e-07 and 5.76e-08, respectively. It is essential to mention that the 5000

realizations are the new input parameters and not those used in the training phase. Fig 4.6a

shows the mean temperature variation between 100 and 80◦C over the whole domain, while

fig 4.6b indicates the variation of the temperature profile for each node in the set for a given

number of input parameters. Both models required similar times to train and predict the outputs;

however, the relative L2 error norm for the CAE-MLP is less than that of the POD-ANN. This

difference shows that the CAE-MLP predictions are better than those of the POD-ANN. Table4.1

presents more details about each model.

Table 4.1 Comparison between the POD-ANN and the CAE-MLP

POD mode Training Prediction Relative L2 Relative L2
Latent space time(sec) Time(sec) error mean error std

POD-ANN 3 422.37 4.15 2.8810−07 9.0210−05

CAE-MLP 5 444.743 5.89 2.8810−07 3.0510−05

4.3.2 Additive manufacturing benchmark test

The National Institute of Standards and Technology (NIST) released in 2018 a number of

standard benchmark tests for different AM processes to support the community in verifying their
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Figure 4.4 Pictorial representation of the mesh structure and

temperature distribution throughout the plate

numerical simulations. The AMB2018-01 test is one such case, designed for the selective laser

melting process with the material IN625. AMB2018-01 is a bridge structure of 75 ×5 ×12.5

(mm × mm × mm) dimension built over an 81×12.7×11(mm × mm ×mm) substrate as shown in

Figure 4.7a and 4.7b. The case study aimed to provide reliable data for the residual stresses,

strains and deflections in the built part. The residual stresses and strains were calculated using

the neutron diffraction and x-ray methods, whereas the defection was measured after partially

cutting the bridge from the base plate. More details on the experimental processor and the

geometry can be found on the NIST website (torey.liepa@nist.gov).

The additive manufacturing numerical simulation is constructed using the workbench additive

software. The validation of the workbench model was conducted in a previous publication

(Chaudhry & Soulaïmani, 2022), for details on the workbench additive model readers are referred
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a)

b)

Figure 4.5 Loss function evolution with epochs for the POD-ANN (a), CAE (b) and the

MLP (c) networks

to (ANSYS). The simulation took 1 hour on 32 CPUs with an Intel E5-2683 v4 processor.

The layer thickness, hatch spacing, laser speed, Poisson’s coefficient and Young’s modulus

were considered the random input parameters, whereas the strain in the whole domain was

considered as the output variable. The output strains were calculated over 97360 nodes in the

entire three-dimensional mesh, as shown in figure 4.7c. To eliminate edge or boundary error, the

nodes near the boundary were not considered. This simplification reduces the number of nodes,

which helps to minimize the computation cost. The five input parameters were selected from
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Figure 4.6 Loss function evolution with epochs for the

POD-ANN (a), CAE (b) and the MLP (c) networks

within the bounds listed in table 4.7a to create a data space of 360 samples randomly selected by

the LHS sampling method. The Young’s modulus and the Poisson ratio were multiplied with

scaling variables 𝑐1 and 𝑐2 , respectively, which helps in changing the values of these inputs.

Also, the normal directional strains over the 97360 nodes were calculated for each input sample

and the solutions obtained from each input sample were combined to construct a high-fidelity

snapshot matrix which was later used to train the POD-ANN and CAE-MLP models.

Table 4.2 Lower and upper bound for the input variables

Input Variables Lower Bound Upper Bound
laser speed 680 mm/s 920 mm/s

layer thickness 0.085 mm 0.115

hatch spacing 0.017 mm 0.023

CY 0.085 mm 0.115

C𝜈 0.085 mm 0.115

A total of three snapshot matrices of dimension 360*97360 were generated for the x, y, and z

normal strains. For each matrix, the POD-ANN and CAE-MLP models were trained separately.

The performance of both models was evaluated by comparing the statistical moments with the

original snapshot matrix. Figure 4.8 shows the training and testing of the POD-ANN models

for all three normal stains, and figure 4.9 represents the comparisons between the POD-ANN



138

a) 2D representation of the AMB2018-01 bridge geometry from a plan and an elevation view.

b) Mesh of the bridge and the substrate using workbench additive software.

c) Representation of nodes considered to extract the strain results.

Figure 4.7 Pictorial representation AMB2018-01 bridge structure
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predictions and the snapshot matrix for the whole domain and with different directional strains.

The POD-ANN uses the Adam optimizer and the ReLu activation function to get the better

results during the learning and prediction phases. The number of POD modes for each normal

strain are calculated using the truncation error 𝛿,which is e-05, e-06, and e-07 for the x, y and

z directional strains, respectively. It is found that 19, 42 and 66 POD modes are sufficient to

make a surrogate model for the given snapshot matrix; the error graph in fig 4.8 proves the same.

Figure 4.9 shows that the mean and the std results correlate well with the original snapshot

matrix. The strain graphs prove that the body has undergone compression at some locations

and expansion in others. The comparison between the mean and std results suggests that the

predictions are accurate. This model can be used to calculate the strain at any given point in

the geometry and for an unseen input parameter within the training intervals. The results along

a random cross-section of the bridge are provided in figure 4.10. Other details related to the

POD-ANN structure and effects are presented in table 4.3.

Table 4.3 POD-ANN structure

POD Hidden Neurons Training Prediction Relative Relative
mode layer in each time(sec) time(sec) L2 error L2 error

of ANN layer mean std
X strain 19 4 100 413.024 40.96 3.7210-05 0.0148

Y strain 42 5 30 226.7586 39.6269 6.9810-06 0.00871

Z strain 66 5 50 290.95 37.41 1.89810-05 0.0040

Similar to the heat transfer test case, the spatial autoencoder structure is composed of 1D convo-

lution layers with 10 and 15 channels along with the max pooling layers and non-linear activation

function (Prelu), which help to reduce the spatial dimension from 97360 to 19, 40 and 60 for the x,

y, and z directional strains, respectively. The reduced dimensions represent the spatial latent space

and are directly connected to the input parameters with an MLP model. Figure 4.2 shows a work-

ing flowchart of the CAE-MLP working model, and the detailed architecture of the CAE-spatial

and the MLP are presented in appendix Tables I-4 I-5 and I-6. During the training process, the

CAE is trained for 500 epochs, followed by the MLP for 1000 epochs. The convergence history
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a) b)

c)

Figure 4.8 Error graphs for the POD-ANN for the x, y and z strains represented by

figure (a), (b) and (c), respectively

of the CAE and the MLP for the x, y and z strains is presented in Figures I-1 I-2 I-3 in the appendix.

The CAE-MLP model is trained over the original snapshot matrices for x, y, and z separately,

and the calculated outputs are presented in terms of standard deviation and mean. Similar to

the POD-ANN process, the trained CAE-MLP model is applied to find the outputs for a new

data set of 5000 samples, and the variations in the statistical moments are compared with the

original snapshot matrices for each normal strain. Figures 4.9 and 4.10 show the variations in

the CAE-MLP predictions, for the original snapshot matrices for the whole domain and for a
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random cross-section of AMB2018-01, respectively, to better visualize the results. The results

from the CAE-MLP are also compared with those of the POD-ANN in figures 4.9 and 4.10, and

listed in table 4.4. A complete architecture of the CAE-MLP model for different strains is shown

in appendix Tables I-4 I-5 and I-6. Both models are trained with 80% of the initial snapshot

matrix; the rest of the information, 20%, is used to test the models. Compared to the POD-ANN,

the CAE-MLP model takes more time to train and predict, but the CAE-MLP predictions are

better than those of the POD-ANN. The L2 norm between the statistical moments of CAE-MLP

predictions and the snapshot matrix is less than the POD-ANN prediction for all the strains.

Table 4.4 lists the results of both models for easy comparison.

Table 4.4 Comparison of POD-ANN and CAE-MLP results

Modes Relative L2 error for mean Relative L2 error for std
POD-ANN x strain 19 0.00037 0.0149

CAE-MLP x strain 19 0.0001 0.0038

POD-ANN y strain 44 0.0006 0.0088

CAE-MLP y strain 40 0.0001 0.0014

POD-ANN z strain 66 0.000017 0.0039

CAE-MLP z strain 60 0.0002 0.00049

4.3.3 Comparison with experimental results

This section compares both the models and the experimental outputs. The means of the 5000

sample outputs from both models are compared with the experimental data at location z = 9.536,

as shown in Fig 4.5. These outcomes are also compared with the outputs generated from the DNN

model in (Chaudhry & Soulaïmani, 2022) over the same cross-section. Chaudhry & Soulaïmani

(2022) constructed a surrogate model using the DNN model for the normal strains over the

experimental location z = 9.536 with only 251 nodes. Comparing the three models indicates

that the reduced-order models constructed over the whole geometry provide better results than

the DNN model built with just a cross-section. The new approaches improve the accuracy of the

results by 60%-80%. The CAE-MLP offered significantly better results than the DNN, and even

improved on the POD-ANN, providing better results for all three normal strains. The relative



142

a)

b)

c)

Figure 4.9 Comparison of POD-ANN and CAE-MLP with the snapshot matrices of the

x, y and z strain represented in a, b and c, respectively, for the whole domain
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a)

b)

c)

Figure 4.10 Comparison of POD-ANN and CAE-MLP with the snapshot matrices of

the x, y and z strain represented in a, b and c, respectively, for a cross-section
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L2 norm values for the models and the experimental data are presented in Table 4.5 for each

directional strain.

In addition, the prediction results for normal directions with the POD-ANN and CAE-MLP are

compared with the experimental results at three different locations. Fig 4.12 shows the good

correlation between the experimental outputs and the predictions at z= 8.25 mm, 8.75mm and

9.25mm. These results prove the abilities of the proposed technique to accurately predict strain

values across the whole domain.

Table 4.5 Comparison of the POD-ANN and CAE-MLP models with the experimental

results for normal strains in the x, y, and z directions

POD-ANN CAE-MLP DNN
x strain 0.040 0.039 0.271

CAE-MLP x strain 0.234 0.212 0.658

POD-ANN y strain 0.789 0.74 0.873

4.4 Conclusion

This study presented the non-intrusive reduced-order models POD-ANN and CAE-MLP to

analyse the selective laser melting process. The use of proper orthogonal decomposition and a

deep convolution autoencoder to construct the reduced order models has proven to be efficient

and effective approaches.

The models are entirely data-driven and combine several techniques from reduced-order

modelling and machine learning. Both models work in two phases, with the first being an offline

phase and the other an online phase. The offline phase uses a high-fidelity 97360×360 snapshot

matrix of normal strains created using the workbench additive software. In the offline phase,

proper orthogonal decomposition for POD-ANN and an autoencoder for the CAE-MLP are used

to reduce the snapshot matrix’ dimension. The autoencoder consists of two levels; the first

is the encoder, which performs the compression along the spatial dimension and generates a

low-dimensional latent space of the snapshot matrix. The second level is the decoder, which



145

a)

b)

c)

Figure 4.11 Comparison of POD-ANN and CAE-MLP with the snapshot matrices of

the x, y and z strain represented in a, b and c, respectively, for a cross-section

converts the latent space back to the original dimension. In the offline phase, the reduced

dimension of the latent space is used as an output and is projected to the input variables with
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a)

b) c)

Figure 4.12 Comparison of the x strains found with the POD-ANN and CAE-MLP

models with the experimental results at z = 8.25, 8.75 and 9.25, in a, b and c, respectively

the help of the multilayer perceptron (MLP). Once the training is completed in the offline

phase, the second, online phase is initiated. The online stage is provided with a new data set of

input variables, and the trained offline step is used to predict the outputs on those points. The

outputs from the trained MLP are used as inputs for the decoder in the CAE-MLP, and are then

transferred from the spatial dimension back to their original dimension.

The efficiency and performance of the proposed approaches are evaluated using a heat transfer

test case and an SLM benchmark test case provided by the NIST. Both cases are parameterized

with the input variables in a ±15% range. The first test case concerns heat transfer through a fin.

The excellent correlation of the POD-ANN and CAE-MLP predictions with the high-fidelity

numerical results validates the models’ implementation. In the AMB2018-01 SLM benchmark
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test case, the CAE-MLP provides a satisfactory approximation of the statistical moments with

respect to the original snapshot matrix compared to the POD-ANN for a new input set generated

with the LHS sampling method. The relative error norm of the CAE-MLP is less than that

of the POD-ANN, which further proves its ability to model a nonlinear complex problem.

In addition, the statistical moments of the predictions from both approaches were compared

with the experimental data and the results were calculated using a DNN model over a single

cross-section at z=9.536mm in (Chaudhry & Soulaïmani, 2022). Interestingly, the predictions

from both approaches correlate better with the experimental results than the DNN method used

in that study (Chaudhry & Soulaïmani, 2022). The new approach increases the prediction

accuracy by 60%-80%. The outputs from the predictions are further compared with the other

experimental results at different locations, and, as with other studies, both the models provide a

good comparison; however, CAE-MLP gives a better comparison than the POD-ANN. Thus, the

proposed non-intrusive reduced-order model based on proper orthogonal decomposition and

a convolution autoencoder provides a powerful tool with which to study the highly nonlinear

and complex physical problem by reducing the problem’s dimension. Both models offer better

surrogate models with high precision and good efficiency.





CONCLUSION AND RECOMMENDATIONS

The research work presented in this thesis is focused on the construction of numerical modeling

and optimization of the selective laser melting (SLM) process using data-driven machine learning

methods. The additive manufacturing industry is in need of new techniques or framework to

reduce operational costs, and material wastage and increase production with better quality of the

built part. Thus, this thesis work contributes multiple advantages to the research community

by providing a detailed framework for faster numerical simulation, uncertainty propagation

and sensitivity analysis, along with optimizing the SLM process. The framework implements

effective procedures and already existing methods and also proposes new approaches whose

effectiveness has been demonstrated and whose implementations can be extended to other

research areas in engineering.

Initially, a numerical model of SLM process is constructed with the ANSYS additive software

to analyze the mechanical properties of the SLM-built part. However, the numerical model

works with some hyperparameters, like SSF and anisotropic coefficients, that must be calibrated

precisely to construct a better simulation model of an SLM process. A new and efficient calibra-

tion technique was introduced, which has the potential to predict the mechanical properties of a

given experimental SLM study. The abilities of the proposed method have been assessed by

comparing the prediction with three different experimental studies. The new calibration strategy

significantly improves the convergence time, and the results are close to the experimental values.

The relaxation factor is considered to be 3/4, which helps to consider the deformation history of

the product in order to calculate the new SSF and the anisotropic coefficients for the next iteration.

Subsequently, a framework is proposed to analyze and optimize the SLM process other than the

more widely used experimental and numerical techniques. The approach combines machine
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learning (ML) methods with the SLM numerical model to study mechanical properties in the

SLM-built part and optimize the process parameters. The neural networks and polynomial

chaos expansions (PCE) were considered to be the primary machine learning methods. At first

a dataset of full-order numerical solutions was performed using ANSYS workbench additive

software. The simulation results were validated using publicly available experimental results.

After the validation, the 3D thermo-mechanical finite element model was used to solve a set

of 360 samples created using the Sobol sampling technique. A data-driven surrogate model

is constructed between the SLM inputs and outputs with the help of data generated from 360

samples. Both the primary ML models were trained and tested with the 80% of and 20% of

the constructed simulation results. It was found that the deep neural network model performed

better and faster than the PCE model, so the DNN model was adopted for the rest of the analyses.

After the DNN model was selected, it was combined with the Monte Carlo technique to find the

number of simulations sufficient to perform the sensitivity and uncertainty analyses in the SLM

process. We calculated the standard deviation for each sample set and performed a convergence

analysis to find the exact number of samples, which found that a set of 6000 samples was

sufficient to perform the study. The sensitivity analysis revealed that the Young’s modulus and

Poisson coefficient are the most critical parameters during the process, while the layer thickness,

laser speed, and hatch spacing are less important. However, the machine parameters still hold

significant importance (5% to 10%). So it is advisable not to discard the machine parameters

from the process, and we considered all five parameters for the optimization analysis too. In

order to perform the reverse analysis for the optimized parameter, the DNN model was taken as

a black box for the SLM process and it was incorporated with three different algorithms: GA,

PSO, and DE. Firstly, all three algorithms performed equally well at calculating the optimal

solution; however, PSO was faster and took the least time. Also, the results with the optimized

parameter have shown good correlation with the experimental results too. The limitation of this



151

approach was that we considered only a cross-section of the built part and considered only 251

nodes in the numerical simulation. But, if we have to consider the whole geometry, the number

of models will be around 97360. For that, only a DNN model will not be enough to construct

a surrogate model between the input parameters and the output parameters as the trainable

parameters will reach millions in number, and the calculation will be computationally impossible.

To address this issue, two non-intrusive reduced-order models POD-ANN and CAE-MLP were

introduced. The data-driven models combine several techniques from reduced-order modeling

and machine learning. The models work in two phases, where the first is the online phase and

the second is the offline phase. Initially, a high fidelity 97360×360 snapshot matrix of normal

strains was created using the workbench additive software. Then in the offline phase proper

orthogonal decomposition for POD-ANN and an autoencoder for the CAE-MLP are used to

reduce the snapshot matrix’ dimension. The proper orthogonal decomposition constructs the

reduced order bases for the snapshot matrix and then an ANN model was developed to create

a surrogate model between the input variables and the reduced order bases. In another case,

The autoencoder consists of two levels; the first is the encoder, which performs the compression

along the spatial dimension and generates a low-dimensional latent space of the snapshot matrix.

In the next level, the latent space was converted back to the original dimension. Similar to the

POD-ANN process, in the offline phase, the reduced dimension of the latent space is used as an

output and is projected to the input variables with the help of the multilayer perceptron (MLP).

Once the training is completed in the offline phase, the second online phase is initiated. In the

online phase, a new data set of input variables is provided and new predictions are calculated

on them. These outputs from the trained MLP were then used as input for the decoder and

transferred back to the original dimension.
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The performance efficiency of both models was evaluated with a heat transfer test case and an

SLM benchmark test case provided by the NIST. In the first case, a heat transfer model of a fin

was considered, and the excellent correlation of the statistical moments from POD-ANN and

CAE-MLP predictions with the high-fidelity numerical results validates the models’ implemen-

tation. In the SLM benchmark test case, the CAE-MLP provides a satisfactory approximation of

the statistical moments with respect to the original snapshot matrix compared to the POD-ANN

for a new input set generated with the LHS sampling method. The relative L2 error norm of the

CAE-MLP is less compared to the POD-ANN and thus proves the abilities of non-linear reduced

order models to capture nonlinear complex problems. In addition, the statistical moments of the

predictions from both approaches were compared with the experimental data and the results were

calculated using a DNN model over a single cross-section at z=9.536mm in the previous study

(Chaudhry & Soulaïmani, 2022). The predictions from both approaches correlate better with the

experimental results than the DNN method used in that study (Chaudhry & Soulaïmani, 2022).

The new approach increases the prediction accuracy by 60%-80% and proves that if the nodes for

the whole geometry are considered rather than just a cross-section, we can get better predictions

from the surrogate models. The predictions from both the models were compared with the other

experimental results at different locations, and both models provide a good comparison; however,

as proven before, the CAE-MLP gives a better comparison than the POD-ANN. Therefore, the

proposed non-intrusive reduced-order model based on a convolution autoencoder and proper

orthogonal decomposition provides a powerful tool to study the highly nonlinear and complex

physical problem. Thus the proposed methodologies and frameworks in this thesis have proven

to be efficient not only for the SLM process but can be used for all the other research fields too.
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Future work

In our current thesis work, we proposed a framework to optimize and construct a data-driven

non-intrusive surrogate model for SLM to fasten and improve the quality of the built part.

However, the study considers the spatial dimension during reduced-order modeling. The future

aspect of the work would be to consider the temporal dimension, which will help us monitor the

mechanical properties during the construction phase. Also, it will be possible to stop the process

in the early stage in case of any defect detection, which will save operational costs and time.

In addition, this research considered only five parameters because of the software limitations.

So, using an advanced version of SLM simulation software is recommended, where it is possible

to consider more input variables. for example, a specific scan pattern is recommended instead of

melting the whole layer at once. Also, the present study didn’t consider laser power or intensity,

laser diameter, etc., So the laser parameters must be considered for future work. The large

number of variables will provide more insights into the SLM process, and the same framework

can be used to find the essential parameters for the process and then optimize them for a better

SLM output product.

The framework uses ML-based methods to optimize and speed up the procedure. However, there

is significant concern about using ML algorithms due to the discrepancy in their predictions,

which can lead to AM process loss or vandalism. Thus, robust transferable and big data-driven

ML algorithms are suggested to minimize or eliminate any machine and process errors. Another

way to eliminate these errors is by considering newly emerged ML algorithms like few-shot

learning, which only requires a small dataset and can provide better results.

In general, the experimental approach is time-consuming and expensive; on the other hand, the

simulation approach may not provide reliable physics due to the simplification and assumptions

that were considered during the simulation process. For the future, an ML-assisted simulation

approach is recommended. The synergy of ML-assisted simulation can reduce the computation

cost significantly, and it is possible to explore the AM modeling and simulation at a large scale
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and for more variables. Some examples of such techniques are physics-informed ML models.

There are a number of research areas and questions that can be answered with the relationship

between AM and ML. Such as

• thermophysical properties

• microstructure prediction

• surface finish

• topology optimization

• material powder effect on SLM output

• support structure optimization

The application of ML for AM is still rarely explored. For example, deep-learning methods have

been implemented for AM topology optimization(TO); however, most work is done only in 2D

structures. As AM is a group of 3D manufacturing technologies, only TO for 3D geometries is

helpful for the process. The methodology and the framework used in current research work can

be extended to topology optimization of AM process for 3D geometries. Also, the framework is

not only limited to the AM process but it can also be used to explore other research areas too.



APPENDIX I

APPENDIX EXAMPLE

1. Architecture of reduced order modeling

Table-A I-1 CAE space encoder architecture for the heat

transfer test case

Filters Activation function Kernel shape
Input - - -

conv-pooling 32 Prelu 3×2

conv-pooling 68 Prelu 3×2

conv-pooling 128 Prelu 3 ×2

Flatten - - -

Dense - Prelu -

dense(output-𝐿𝑥) - Prelu -

Table-A I-2 CAE space decoder architecture for the heat

transfer test case

Filters Activation function Kernel shape
Input - - -

Dense - Prelu -

Reshape - Prelu -

conv-upsamp 128 Prelu 3×2

conv-upsam 68 Prelu 3×2

conv-upsamp 32 Prelu 3×2

Output 1 Prelu 3

Table-A I-3 MLP architecture for heat transfer case

Layer type Output Size Activation function
Input layer 2 Prelu

Dense layer 128 Prelu

Dense layer 128 Prelu

Dense layer 128 Prelu

Output layer 𝐿𝑥=5 Linear
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Table-A I-4 CAE space encoder architecture for

AMB2018-01 benchmark case

Filters Activation function Kernel shape
Input - - -

conv-pooling 10 Prelu 3×2

conv-pooling 15 Prelu 3×2

Flatten - - -

Dense - Prelu -

dense(output-𝐿𝑥) - Prelu -

Table-A I-5 CAE space decoder architecture for

AMB2018-01 benchmark case

Filters Activation function Kernel shape
Input - - -

Dense - Prelu -

Reshape - Prelu -

conv-upsamp 15 Prelu 3×2

conv-upsamp 10 Prelu 3×2

Output 1 Prelu 3

Table-A I-6 MLP architecture for AMB2018-01

benchmark case

Layer type Output Size Activation function
Input layer 5 Prelu

Dense layer 128 Prelu

Dense layer 128 Prelu

Dense layer 128 Prelu

Output layer 6𝐿𝑥=19,40,60 Linear
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Figure-A I-1 Evolution of the training and validation error

for the x-strain in the AMB2018-01 benchmark case

Figure-A I-2 Evolution of the training and validation error

for the y-strain in the AMB2018-01 benchmark case
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Figure-A I-3 Evolution of the training and validation error

for the z-strain in the AMB2018-01 benchmark case
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