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Une approche basée sur les données utilisant des modèles de substitution et des techniques
d’optimisation non déterministes pour l’étalonnage des paramètres du sol et l’analyse de

sensibilité : application à un barrage en enrochement

GULLNAZ SHAHZADI

RÉSUMÉ
Le développement de modèles numériques avancés pour la conception et l’évaluation de la

sécurité de structures complexes telles que les barrages en enrochement dépend fortement de

la disponibilité de ressources de calcul importantes. La structure complexe des barrages en

enrochement, qui se compose de diverses zones avec des paramètres de sol variables, rend les

modèles très incertains. Des variations mineures de certains paramètres du sol peuvent avoir

un impact significatif sur l’ensemble de la structure, ce qui rend difficile la détermination des

paramètres géomécaniques nécessaires à une modélisation efficace. Cependant, les tests en

laboratoire ou in situ et les relations empiriques de la littérature sont les approches générales

pour estimer ces paramètres. Néanmoins, ces mesures ne reflètent pas fidèlement la situation

réelle.

Dans ce contexte, une analyse d’incertitude et une analyse de sensibilité globale ont été réalisées

pour évaluer l’effet des paramètres constitutifs du sol sur le comportement d’un barrage en

enrochement. Les modèles de substitution se rapprochent efficacement de la relation entre les

paramètres de sol d’entrée et les déplacements, réduisant ainsi les coûts de calcul des études

paramétriques. L’expansion du chaos polynomial et les réseaux de neurones profonds sont

utilisés pour construire des modèles de substitution pour calculer les indices de Sobol nécessaires

pour identifier l’impact des paramètres du sol sur le comportement du barrage. Deux paramètres,

le module de cisaillement et les poids spécifiques, sont considérés comme des variables aléatoires

d’entrée plus sensibles à partir desquelles des incertitudes surviennent.

Cette thèse propose une approche très efficace axée sur les données qui utilise des réseaux de

neurones profonds et des algorithmes d’optimisation pour identifier avec précision les paramètres

du sol pour un barrage en enrochement situé au Québec. Une analyse approfondie des mesures de

déplacement de l’inclinomètre a été réalisée à l’aide d’un modèle d’éléments finis 2D, le domaine

de calcul étant méticuleusement divisé en sous-domaines pour tenir compte de l’hétérogénéité

des matériaux. Afin d’accélérer les calculs, des modèles de substitution ont été utilisés à la place

du modèle d’éléments finis (FEM) complet. Pour résoudre le problème de minimisation, des

algorithmes d’optimisation stochastique tels que l’algorithme génétique (GA), l’optimisation de

l’essaim de particules (PSO) et l’évolution différentielle (DE) ont été soigneusement évalués et

comparés.

Une autre contribution de cette thèse est de présenter une nouvelle technique pour améliorer

les analyses de sécurité et de stabilité en identifiant des paramètres grâce à une méthode

d’optimisation hybride. Un modèle de substitution de réseau neuronal profond est établi et

une formulation de fonction multi-objectifs est utilisée pour mesurer la différence entre les

déplacements prédits et réels. Les paramètres du sol sont identifiés à l’aide d’un algorithme
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hybride Particle Swarm-Genetic Algorithm appliqué aux données de quatre inclinomètres

installés dans deux sections différentes du barrage. L’étude compare l’efficacité des modèles

Mohr-Coulomb (MC) et Hardening Soil (HS), montrant que le modèle HS fournit les valeurs

des déplacements les plus proches des données mesurées sur site. La recherche se termine par

la présentation des paramètres optimaux pour le barrage de la Romaine-2 et met en évidence

l’efficacité des réseaux profonds et de l’optimisation hybride dans la résolution de problèmes

inverses.

Mots-clés: Analyse de sensibilité, analyse d’incertitude, modélisation de substitution, expansion

du chaos polynomial, réseau de neurones profonds, analyse inverse, techniques d’optimisation,

fonctions multi-objectifs



A Data-driven Approach using Surrogate Models and Non-deterministic Optimization
Techniques for Calibration of Soil Parameters and Sensitivity Analysis: Application to a

Rockfill Dam

GULLNAZ SHAHZADI

ABSTRACT
The development of advanced numerical models for designing and assessing the safety of complex

structures such as rockfill dams heavily relies on the availability of significant computational

resources. The intricate structure of rockfill dams, which consists of various zones with varying

soil parameters, makes the models highly uncertain. Minor variations in some soil parameters

can significantly impact the expected behaviour of the structure, making it challenging to

determine the geomechanical parameters required for effective modelling. However, laboratory

or in situ tests and empirical relationships from the literature are the general approaches to

estimating these parameters. Nonetheless, these measures do not accurately depict the insitu

characteristics of the dam.

In this context, uncertainty and global sensitivity analysis have been carried out to determine the

influence of constitutive soil parameters on the behaviour of a rockfill dam. In parametric studies,

surrogate models are helpful in approximating the relationship between inputs (soil parameters)

and outputs (displacement) and thus effectively reduce computational costs. Surrogate models,

built using methods such as polynomial chaos expansion and deep neural networks, calculate

the Sobol indices required for identifying the impact of soil parameters on dam behaviour. Two

parameters, Shear modulus and specific weights, are considered more sensitive input random

variables from which uncertainties occur.

This thesis proposes a highly effective data-driven approach that utilizes deep neural networks

and optimization algorithms to estimate in situ values of soil parameters for a rockfill dam

located in Quebec. Extensive analysis of inclinometer displacement measurements was carried

out using a 2D finite element model, with the computational domain being meticulously divided

into subdomains to account for the variability of material properties. In order to expedite

computations, surrogate models were employed in lieu of the complete FEM model. To solve

the minimization problem, stochastic optimization algorithms such as Genetic algorithm (GA),

Particle Swarm Optimization (PSO), and Differential evolution (DE) were thoroughly evaluated

and compared.

Another contribution of this thesis is to present a novel technique for enhancing safety and

stability analyses by identifying parameters through a hybrid optimization method. A deep

neural network surrogate model is established and a multi-objective function formulation is

used to weigh the difference between predicted and actual displacements. The soil parameters

are identified using a hybrid Particle Swarm-Genetic Algorithm applied to data from four

inclinometers installed in two different cross-sections of the dam. The study compares the

effectiveness of the Mohr-Coulomb (MC) and Hardening Soil (HS) models, showing that the

HS model provides the closest values to the measured onsite data. The research concludes by



X

presenting the optimal soil parameters for the Romaine-2 dam and highlights the effectiveness

of DNNs and hybrid optimization in solving inverse problems.

Keywords: Senstivity analysis, uncertainty analysis, surrogate modelling, polynomial chaos

expansion, deep neural network, inverse analysis, optimization techniques, multi-objective

functions
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INTRODUCTION

0.1 Research context

In the late 19th and early 20th centuries, rockfill has been widely used as an engineering material

for the construction of dams. Initially, performance was excellent, but excessive deformation

limited its use in high embankments or dams (Sherard & Cooke, 1987; Oldecop & Alonso,

2001; Alonso & Cardoso, 2010). However, with improved compaction techniques, the use of

rockfill in high dams (such as rockfill dams) accelerated, and several kinds of research have been

done on the deformation behaviours of rockfill (Rahmani & Panah, 2020; Xiao et al., 2020;

Zhou, Ma & Zhang, 2019). A rockfill dam is an embankment dam constructed primarily using

compacted rock materials. It is designed to impound water and create a reservoir by confining

the water within the dam’s structure. Rockfill dams have two principal parts: the central rockfill

zone and the impervious zone. Nowadays, these Dams are among the most popular and highest

dams in the world. However, the safety of the dams is the essential factor. Nevertheless, the

analysis of rockfill dams is difficult due to the uncertainties and variability in material properties.

Over the years, the finite element method (FEM) has become one of the most advanced engineering

numerical modelling methods used in design. This successful use of the FEM can be attributed

to its ability to provide better accuracy and effectively deal with complex geometries, boundary

conditions, and material (rock/soil) nonlinearities (Wei, Xiaolin, Chuangbing & Xinghong,

2010; Saberi, Annan & Konrad, 2018). To accurately model a dam, all the material properties

of the constitutive models in every zone within the dam structure must be known. Still, this can

be challenging as limited information regarding the soil materials used in the dam structures and

restricted recorded instrumentation data from in situ. Additionally, obtaining soil samples for

testing, particularly from the central impervious part, is typically complex, costly effecting and

may impact the dam’s performance and safety. Hydro-Québec, a diligent and well-informed

owner, strictly enforces compliance with the Dam Safety Act (Konard, Soulaimani, Lefebvre,
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Leger & Nguyen, 2014a,b). Thus, the dam owners require predicting the behaviour of each

high-capacity dam to improve the design for upcoming constructions. Therefore, the dam must

be modelled accurately, and a proper constitutive model has to be chosen for every part of the

dam. In addition, it is required to calibrate the parameters in various sections of the dam and

discuss the impact of each parameter’s variation.

Currently, earth-rockfill embankments are well-equipped with instruments that gather valuable

data for dam owners and their consultants. This data includes pore pressures, deformations,

total stresses, and seepage. It is, therefore judicious to collect this information and use it to

evaluate the behavioural law used to model the mechanical behaviour of the different types of

rockfill structures. One question that comes to mind is whether a method exists to identify the

dam’s material properties from the recorded data obtained from these instruments. However,

the understanding of behaviour is not as advanced for the new mixed structures built in the last

ten years, such as embankment dams with an upstream concrete mask (Toulnustouc (Rochon,

Morneau & Lefebvre, 2001)) and rockfill dams with an asphalt core (Romaine-2 (Longtin et al.,

2012)). Inverse analysis, also known as back analysis, is undoubtedly considered the most

effective technique for parameter identification (Zentar, Hicher & Moulin, 2001). It enables the

calibration of soil parameters by meticulously analyzing the relationship between a conceptual

model and the physical system. The parameters are adjusted automatically by minimizing the

measure of the difference between the finite element results and the measured data. However,

factors such as the number of parameters, choice of constitutive model, numerical modelling,

and framework for inverse analysis can affect calibration accuracy.

It would also be interesting to examine the possibility of distinguishing displacement’s vertical

and horizontal components. In addition, It is necessary to understand how input parameters

affect outputs to understand the performance of these structural systems during the construction

and impoundment phases. Therefore, uncertainty and sensitivity analysis has become a vital
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task to evaluate. This research will concentrate on numerical modelling and identification of

parameters of appropriate soil models for an asphaltic core rockfill dam, which will enhance the

accuracy of dam behaviour prediction, leading to improved dam design and safety assessment.

0.2 Thesis objectives

This thesis contributes to analyzing the sensitivity, propagation of uncertainties and calibration

of the soil parameters through numerical models of a rockfill dam. To model a dam, all the

properties of soil constitutive models in each zone of the dam structure are required. However,

due to the complexity or age of the dams, soil parameters are not always available or obtained

through mathematical expressions.

The specific objectives of this work are as follows:

1. Carry out a literature review, as exhaustive as possible, of the different parametric uncertainty

propagation, sensitivity and calibration methods.

2. Develop an interface between the FEM model and Python code to generate a simulated data

set.

3. Implement the classical techniques for propagation uncertainty by executing sampling

methods such as Monte Carlo (MC) through the numerical model of a rockfill dam.

4. Implement a non-intrusive stochastic approach Polynomial chaos expansion (PCE) and

a deep neural network-based data-driven surrogate model to analyze the propagation of

parametric uncertainties that overcome the limitations of other techniques.

5. Conduct the sensitivity analysis and compute the sobol indices to identify the impact of soil

parameters on dam response.

6. Exploit the different approaches implemented and developed for identifying the soil

parameters through the application of the dam with real data, allowing the establishment

of a reliable data-driven framework using the non-intrusive surrogate approach with a
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considerably reduced computational effort. Also, compare the results for optimal parameters

with available measurements.

0.3 Proposed approach

Briefly, the thesis proposes the methodology and framework that significantly contribute to

uncertainty propagation, sensitivity and inverse analysis. The following contributions are made

in order to address the significant and challenging issues:

1. A numerical model of the highest rockfill dam is built layer by layer using appropriate con-

stitutive soil models. Also, an interface between the numerical model and the programming

code is created to perform the simulations. The credibility of the numerical simulations was

assessed by comparing them with the experimental data sets.

2. In this research, the sobol sampling technique (Sobol, 1993) has been used to generate the

simulation data sets. The convergence study is conducted using the Monte Carlo method to

get an accurate sample size.

3. A data set of the numerical simulations at specific positions in the dam is generated and

compared with the measured data.

4. An original contribution, the sensitivity and uncertainty analysis, has been conducted for

an application of rockfill dam after construction using surrogate modelling techniques,

polynomial chaos expansion and deep neural network. Their results are compared with the

classical Monte Carlo (MC) sampling technique. The results show that surrogate models

play a significant role in reducing the computational cost of numerical models. The work is

published in

Water (Special issue: Soft Computing and Machine Learning in Dam Engineering);

https://doi.org/10.3390/w13131830

5. Secondly, the FEM model for two different cross-sections of the dam containing horizontal

and vertical inclinometers has been built to get the numerical simulations for all inclinometers
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at the exact positions of measured data. A comparative study is performed to account for the

heterogeneity of the materials by decomposing the computational domain into subdomains.

A data-driven approach using deep neural networks and non-deterministic optimization

algorithms has been proposed to identify the soil parameters leading to the results that best

approximate the measured. The originality of this work is in the evaluation process in the

following journal,

KSCE Journal of Civil Engineering, https://www.springer.com/journal/12205

6. In continuity, a comparative study of constitutive soil models, the Mohr-Coulomb (MC) and

Hardening Soil (HS) model, is conducted and the soil parameters are identified through a

hybrid optimization technique by reducing the error of multi-objective function. This work

has been submitted for evaluation in the journal,

Structures https://www.sciencedirect.com/journal/structures

0.4 Thesis organization

This thesis is formatted into three articles. The first chapter is dedicated to the literature review

and an article already published is presented in the second chapter. There are two submitted

articles presented in the third and fourth chapters. Chapter 1 illustrates the comprehensive

literature review of the following subjects,

• Romaine-2 dam

• Finite element modelling (FEM)

• Constitutive soil models: Mohr-Coulomb (MC) and Hardening Soil (HS) model

• Surrogate modelling: Polynomial chaos expansion (PCE) and Deep neural network (DNN)

• Uncertainty analysis

• Sensitivity analysis

• The inverse analysis

• Optimization techniques and their implementation
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Chapter 2 explicitly compares deep neural network and Polynomial chaos expansion-based

surrogate models for the sensitivity and uncertainty propagation for the Romaine-2 dam. In

moving on to Chapter 3, a data-driven approach with deep neural network and optimization

techniques has been proposed to identify the optimal parameters of the Mohr-coulomb constitutive

soil model for different subdomains in the dam. The measured data were recorded on four

different inclinometers installed in two different cross-sections of the dam. Chapter 4 is

exclusively dedicated to the comparative analysis of constitutive soil models for inverse analysis.

The hybrid optimization technique is applied to minimize the multi-objective function; the

accuracy and efficiency of constitutive soil models are compared. It is found that the HS model

analysis results are the closest to the values measured onsite. Chapter 5 presents a discussion of

the results and recommendations for future works.



CHAPTER 1

LITERATURE REVIEW AND FUNDAMENTAL CONCEPTS

1.1 Introduction

The literature review discussed in this chapter highlights the challenges associated with modelling

the structure and analyzing the behaviour by identifying soil parameters, with a significant

emphasis on the Romaine-2 dam. The methods used to identify the soil parameters, and to

analyze their uncertainty and sensitivity, are explicitly described and reviewed in this chapter.

1.2 Rockfill and asphalt core dams

Canada is unquestionably a top 10 global dam builder, with over 10,000 dams. Of these, 933

are classified as "large" dams, boasting a reservoir of over 3 million 𝑚3. Quebec province is

responsible for a third of these large dams, comprising 6,000 dams and dikes. It is worth noting

that Hydro Quebec manages 10% of these dams. Fig.1.1 indicates that 72% of Hydro Quebec

dams are embankment dams (earth and rockfill dams). Rockfill dams are common due to their

versatility and cost-effectiveness and are increasingly utilized for various purposes, such as

irrigation, power generation, and flood control. These dams are typically constructed on multiple

sites and foundations using compacted rockfill. An impermeable core or layer is installed on the

dam’s upstream face to prevent seepage through the porous core. The impervious components

are typically reinforced concrete, asphaltic concrete, or clay. Moreover, the construction process

of the dam can be streamlined through mechanization, significantly reducing labour costs.

The ICOLD Bulletin 84 (Stateler & Sundaram, 2013) provides an extensive account of earth

dams constructed between 1948 and 1991, utilizing various bituminous core types, such as

hand-placed and machine-placed. In 1962 Germany achieved a significant milestone by building

the first earth dam with a machine-compacted asphalt core (Höeg, Valstad & AM Ruud, 2007).

Since then, over 100 asphalt core dams have been erected worldwide, including in China,

Brazil, Iran, and Canada, as documented by Hydropower and Dam’s journal (Konard et al.,
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Figure 1.1 This data displays the proportion of dams controlled by Hydro

Quebec categorized by their type

2014a). The reports indicate that asphalt-concrete core dams operate satisfactorily thanks to

their impermeability, flexibility, resistance to erosion, and self-healing properties (Saxegaard,

2003). The asphalt-concrete core can respond to induced deformation as a whole or due to

foundation settlement, primarily due to its viscoelastic plastic features (Creegan & Monismith,

1996; Gopi, 2010). Furthermore, the asphalt-concrete core is strong enough to withstand

earthquake excitations without cracking or material degradation (Hoeg, 2005).

1.2.1 Romaine-2 dam

The Romaine-2 dam, situated on the Romaine River in Quebec’s North shore region, was

constructed in 2014. It is one of North America’s tallest dams and is considered the most

significant hydroelectric development globally, utilizing the asphalt core rockfill design (Jean,

2011). The decision to use asphalt core rockfill dam structures was based on their economic

viability over earth core dams, considering the distance required to reach appropriate till borrow

areas in the Romaine-2 region.
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Designing the retaining structures for Romaine-2 was challenging. For the past half-century,

Hydro-Quebec has relied on glacial till as its waterproofing material for embankment dams.

However, the company was determined to develop new dam designs, particularly for locations

where natural waterproofing materials are either unavailable or of inferior quality (Jean, 2011).

Multiple specialized studies were thoroughly reviewed to ensure an economically sound and

state-of-the-art design for the rockfill dam while maintaining strict standards. Additionally, the

design elements of the Norwegian structures were thoroughly analyzed and compared to ensure

confidence in constructing the Romaine-2. The specialized studies program conducted four

interrelated activities to guide design and engineering decisions, as illustrated in Fig.1.2. A

Figure 1.2 Four specialized interrelated activities

comprehensive literature review was conducted to identify the crucial design and construction

elements of asphalt core rockfill dams. The study included global experiences from countries

such as China, Germany, Norway, and Austria. In addition, data and insights from the Nemiscau-1

project, a small asphalt core rockfill dam in North America, were used to incorporate international

standards into construction practices in Quebec (Longtin et al., 2012). Furthermore, the primary

goals of conducting laboratory tests on the asphaltic core and rockfill material were to identify

their origin and formulate a preliminary mix for bituminous concrete used in construction. The

objective was to determine the mechanical properties of the dam fills and core, which will
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serve as inputs for numerical modelling. In order to assess the influence of rockfill properties

on placement and compaction methods, as well as to compare Norwegian dam construction

practices to those of Hydro Quebec, the test fill objectives were established. Additionally, the

mechanical properties of the rockfill were determined to define input parameters for numerical

modelling. The primary goal of the numerical analysis was to evaluate and understand the

magnitude and mechanism of movements within the structure (Konard et al., 2014a,b). This

research program identified the optimal rockfill placements and compaction requirements to

guarantee the dam’s and its core’s high performance.

Six dikes, with a height of up to 80 meters, were constructed as part of the project. A

hydrological study conducted at a supply level of 243.8 meters found that the reservoir area

spans approximately 81 𝑘𝑚2. The dam, measuring 514 meters long and with a maximum height

of 110 meters, is a zoned rockfill dam with an asphalt-concrete core. A comprehensive analysis

of the plan for the dam and dikes of the Romaine-2 project is presented in Fig.1.3. The dam’s

fill volume is approximately 4,475,500 𝑚3, and the spillway has a capacity of 2976 𝑚3/𝑠 during

flood conditions (Vannobel, Smith, Lefebvre, Karray & Éthier, 2013).

The cross-section of the Romaine-2 dam is illustrated in Fig.1.4. The asphalt core boasts a

variable width, measuring 85 cm at the base and 50 cm at the top. It is flanked on both sides

by a support zone M of crushed stone with a maximum particle size of 80 mm. The transition

zone N comprises crushed stone with a maximum particle size of 200 mm. The O internal shell

zone can accommodate rock particles of up to 600 mm, while the P external shell zone can

accommodate particles of up to 1200 mm (Smith, 2015). Ensuring the safety of a dam requires

a highly emphasized monitoring program. The Romaine-2 dam, designed by Hydro Quebec, is

the world’s largest asphalt core rockfill dam. The innovative requirements for rockfill placement

and compaction, along with a thin impervious barrier, make the instrumentation provided for

the dam significant.

The monitoring program comprises various instruments such as vertical inclinometers (INV-01

and INV0-2) on both sides of the core, vertical and horizontal inclinometers (INV-03, INV-04,
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Figure 1.3 An overview of the layout for the dam and dikes of the

Romaine-2 development taken from Longtin et al.(2012, p. 2)

INH-01, and INH-02) in the downstream shells (Vannobel et al., 2013). To visualize the vertical

and horizontal inclinometer positions, refer to Fig.1.4. This installation offered comprehensive

information that helps to understand the dam’s ongoing performance (Stateler & Sundaram,

2013). With the use of advanced instrumentation, it became possible to conduct numerical back

analysis and gain a deeper understanding of the factors influencing the behaviour of the structure

(Adamo, Al-Ansari, Sissakian, Laue & Knutsson, 2021). This aims to expand knowledge about

modelling and create digital tools to help engineers better comprehend, interpret, and model the

typical behaviour of retaining structures. This will aid in accurately diagnosing issues, estimating

damage progression, and designing effective corrective measures or recommendations.
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Figure 1.4 Cross section of Romaine-2 dam (cad drawing)
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1.3 Finite element modelling (FEM)

Geotechnical engineering has significantly benefited from the advancements in numerical

modelling techniques, particularly finite elements. These methods have been proven to be a

more cost-effective approach to scientific research than experimental techniques. Despite the

advancements in numerical modelling techniques, accurately describing the behaviour of dams

during construction and impoundment stages continues to be challenging. Even though there are

several constitutive soil models available, each comes with its own set of limitations in hypothesis.

It must be emphasized that constitutive soil model parameters and their determination through

tests may not accurately reflect real-life field conditions.

When it comes to granular materials or rockfills, choosing the right constitutive model is

crucial as it greatly impacts the effectiveness of numerical modelling. The process of selecting

such a model requires intricate and elaborate arrangements. Various modelling techniques

are utilized in geotechnical studies of rockfill dams to mimic the behaviour of the rockfill;

finite element methods are most common (Varadarajan, Sharma & AK Gupta, 2003; Xing,

Gong & Hai-Feng Fu, 2006; Costa & Alonso, 2009; Pramthawee, Jongpradist & Kongkitkul,

2011; Akbari Hamed, 2017). However, the outcomes of FEM modelling methods depend

on various factors considered during calculations, including physical input parameters, initial

conditions, and boundary conditions. In some cases, these processes are subject to uncertainties

that must be considered to achieve the most precise results. Barcelona’s basic model was used to

simulate the mechanical behaviour of the core, shoulder, and filter materials of the Lechago

dam (built in Spain) and achieved agreement between the laboratory results and the numerical

simulations (Costa & Alonso, 2009). A constitutive model that accounts for the elastoplasticity

of rockfill was employed to study its properties. The rockfill parameters were defined using

extensive triaxial tests, and the researchers found that the model could accurately predict rockfill

behaviour (Varadarajan, Sharma, Abbas & Dhawan, 2006). The utilization of the Duncan change

model is common in rockfill simulations (Duncan & Chang, 1970; Xing et al., 2006). The input

parameters in this model are straightforward and have clear physical significance. As a result, the

Duncan and Chang model has been employed by researchers to examine the static and seismic
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loading behaviours that occur when constructing rockfill dams, as well as during impoundment

(Xing et al., 2006; Özkuzukiran, Özkan, Özyazicioğlu & Yildiz, 2006; Dakoulas, 2012). The

deformation and stability of dams were assessed by studying the traits of weak rockfill during its

placement and compaction in three Chinese dam projects. Further, the results were compared

with field measurements. Several numerical simulations have assessed the performance of

asphalt concrete core dams (Akhtarpour & Khodaii, 2009; Hoeg, 2005; Vannobel et al., 2013).

1.4 Constitutive soil models

A constitutive model is a set of equations intended to reproduce soil behaviour using stress-strain

relations. However, the multi-physical nature of soils is complex, exhibiting both elastic and

plastic non-linear deformations. Depending on the loading history, the soil can compact or

expand, and its stiffness varies significantly with the stress state, which in turn depends on the

pore pressure. After several decades of research, sophisticated constitutive laws are currently

available to model the various behaviours of soils. In addition, various constitutive equations

developed by (Varadarajan et al., 2003; Xing et al., 2006; Costa & Alonso, 2009; Pramthawee

et al., 2011) are frequently utilized to reproduce the behaviour of rockfill materials. The

equations or constitutive models listed below are commonly employed.

1.4.1 Mohr Coulomb (MC)

It is a perfectly plastic elastic model widely used for pulverulent soils (sand) and cohesive soils

in the short and long term (clay and silt). The load surface can be presented in the principal

stress space by the following equation:

𝐹 (𝜎𝑖 𝑗 ) = (𝜎1 − 𝜎3) − (𝜎1 + 𝜎3) sin 𝜙 − 2𝑪cos 𝜙 = 0 (1.1)

𝜎1 and 𝜎3 represent the major and minor principal stresses; the compression is positive. The

plastic potential function is defined by Eq.(1.2). The shape of the loading surface in the deviatory

plane is a hexagon Fig.1.5. The flow law is associated when the friction angle 𝜙 and the dilatancy
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angle 𝜓 are equal. Otherwise, the flow law is non-associated.

𝐺 (𝜎𝑖 𝑗 ) = (𝜎1 − 𝜎3) − (𝜎1 + 𝜎3) sin 𝜓 (1.2)

In the linear-elastic perfectly plastic Mohr coulomb model, there are a total of five parameters

Figure 1.5 Mohr-Coulomb criterion in the deviation

plane

which are very familiar in geotechnical. These parameters are determined from general laboratory

tests (triaxial or oedometer).

In general, three tests are carried out at different confining pressures to determine all the

parameters. Corresponding to stress states at failure, the cohesion and friction angle can also be

calculated in the Mohr plane. Fig.1.6 represents a simulation of a triaxial compression test by

the Mohr-Coulomb law. Similar to Duncan & Chang (1970), the Mohr coulomb model also

neglects the intermediate principal stress. The linear region is determined by Hooke’s law of
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Table 1.1 Basic parameters of Mohr Coulomb model

Parameters Symbols Units
young’s modulus 𝐸 𝐾𝑁𝑚−2

Poisson coefficient 𝜈 −−

Cohesion 𝐶 𝐾𝑁𝑚−2

Friction angle 𝜙 𝑑𝑒𝑔𝑟𝑒𝑒
Dilatancy angle 𝜓 𝑑𝑒𝑔𝑟𝑒𝑒

Figure 1.6 Modelling of a triaxial compression test by

the Mohr-Coulomb law, taken from Hicher & Shao(2002,

p. 118)

isotropic elasticity, whereas the plastic region is associated with the MC failure criterion (Ti,

Huat, Noorzaei, Jaafar & Sew, 2009). The stiffness modulus is not constant for real soil and

depends on the stress. When conducting triaxial testing on soil samples, the stress-strain curve’s

initial slope (𝐸0) and the secant modulus at 50% strength (𝐸50) are typically recorded. 𝐸0 is

suitable for materials with an extended linear elastic range, while 𝐸50 is preferred for soil loading

(Brinkgreve et al., 2016). However, when dealing with unloading concerns, such as tunnelling

or excavations, it is necessary to use the unload-reload modulus (𝐸𝑢𝑟) instead of 𝐸50, shown in
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Figure 1.7 The initial stiffness, secant modulus and

unload-reload modulus, taken from Brinkgreve et al.
(2016, p. 37)

Fig.1.7. For the MC model, in many cases, it is suggested to consider a Poisson’s ratio between

0.3 and 0.4 (Brinkgreve et al., 2016); hence a Poisson’s ratio of 0.35 is generally assumed.

1.4.2 Hardening Soil model (HS)

The HS model was initially designed by Schanz & Vermeer (1996), with further development by

Schanz, Vermeer & Bonnier (1999), using Vermeer’s Double Hardening model as the foundation.

Additionally, the HS integrates concepts from Kondner (1963); Duncan & Chang (1970); Janbu

(1963).

Unlike the elastic perfectly-plastic model, the hardening plasticity model’s yield surface is not

fixed in principal stress space. It can expand due to plastic deformation. Shear and compression

hardening are the two primary hardening forms in this model. Shear hardening results from

permanent strains caused by primary deviatoric loading, while compression hardening results

from permanent plastic strains caused by direct compression in the oedometer and isotropic

loading. The Hardening Soil model confidently relies on the hyperbolic correlation between
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the deviatoric stress 𝑞 and the vertical strain 𝜖1 in primary triaxial loading. This correlation

is consistently observed in drained triaxial tests, and the resulting curves can be accurately

represented by:

𝜖1 =
1

𝐸𝑖

𝑞

1 −
𝑞
𝑞𝑎

(1.3)

for 𝑞 < 𝑞 𝑓 , where 𝑞𝑎 and 𝐸𝑖 are the shear strength and initial stiffness. The initial stiffness 𝐸𝑖 is

related to the confining stress-dependent stiffness modulus 𝐸50 by,

𝐸𝑖 =
2𝐸50

2 − 𝑅 𝑓
(1.4)

𝐸50 = 𝐸
𝑟𝑒 𝑓
50

( 𝑐 cos(𝜙) − 𝜎
′

3
sin(𝜙)

𝑐 cos(𝜙) + 𝑝𝑟𝑒 𝑓 sin(𝜙)

)𝑚
(1.5)

The secant stiffness in a standard drained triaxial test is represented by 𝐸
𝑟𝑒 𝑓
50

and is associated

with the reference confining pressure. The default value for 𝑝𝑟𝑒 𝑓 in PLAXIS (Plaxis, 2017)

is 100 stress units. However, the actual stiffness is affected by the minor principal stress, 𝜎
′

3
,

which is the confining pressure in a triaxial test. It’s important to note that 𝜎
′

3
is negative when

subjected to compression. The extent of stress dependency is determined by the power 𝑚. To

simulate logarithmic compression behaviour, like the one observed in soft clays, 𝑚 should be set

at 1.0. Norwegian sands and silts have 𝑚 values around 0.5, according to (Janbu, 1963), while

(Von Soos, 1990) reports various values ranging from 0.5 to 1.0. The definitions of 𝑞 𝑓 , the

ultimate deviatoric stress, and the quantity 𝑞𝑎 specified in Eq.(1.5) are as follows:

𝑞 𝑓 = (𝑐 cot 𝜙 − 𝜎
′

3)
2 sin(𝜙)

1 − sin(𝜙)
(1.6)

𝑞𝑎 =
𝑞 𝑓

𝑅 𝑓
(1.7)

𝑅 𝑓 represents the failure ratio, while 𝐶, 𝜎
′

3
and 𝜙 refer to the cohesion, minor principal stress and

friction angle, respectively. When it comes to unloading and reloading stress paths, a different



19

stiffness modulus is utilized, as

𝐸𝑢𝑟 = 𝐸
𝑟𝑒 𝑓
𝑢𝑟

( 𝑐 cos(𝜙) − 𝜎
′

3
sin(𝜙)

𝑐 cos(𝜙) + 𝑝𝑟𝑒 𝑓 sin(𝜙)

)𝑚
(1.8)

The reference Young’s modulus, corresponding to the unloading and reloading reference pressure,

is denoted by 𝐸
𝑟𝑒 𝑓
𝑢𝑟 . Also, the oedometer stiffness is presented as,

𝐸𝑜𝑒𝑑 = 𝐸
𝑟𝑒 𝑓
𝑜𝑒𝑑

( 𝑐 cos(𝜙) − 𝜎
′

3
sin(𝜙)

𝑐 cos(𝜙) + 𝑝𝑟𝑒 𝑓 sin(𝜙)

)𝑚
(1.9)

The value of 𝐸
𝑟𝑒 𝑓
𝑜𝑒𝑑 represents the tangent stiffness modulus at vertical stress of 𝜎1 = 𝑝𝑟𝑒 𝑓 as

illustrated in Fig.1.8.

Figure 1.8 The hyperbolic stress-strain relationship is

observed during the primary loading of a drained triaxial

test, taken from Brinkgreve et al. (2016, p. 69)

A yield function that involves shear hardening is expressed as:

𝔣 = 𝔣 − 𝛾𝑝 (1.10)
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The function 𝔣 depends on stress, while 𝛾𝑝 is based on plastic strain. These relationships are

expressed in Eq.(1.11) and (1.12), respectively.

𝔣 =
1

𝐸50

𝑞

1 −
𝑞
𝑞𝑎

−
2𝑞

𝐸𝑢𝑟
(1.11)

𝛾𝑝 = E
𝑝
1
− E

𝑝
2
− E

𝑝
3

(1.12)

E
𝑝
𝑣 = E

𝑝
1
+ E

𝑝
2
+ E

𝑝
3

(1.13)

𝛾𝑝 = (2E
𝑝
1
− E

𝑝
𝑣 ) ≈ 2E

𝑝
1

(1.14)

where E
𝑝
1

refers to the axial plastic strain. According to studies by (Brinkgreve et al., 2016;

Obrzud, 2010), the plastic volume change E
𝑝
𝑣 is relatively negligible. Hence, we can assume

that 𝛾𝑝 is approximately equal to 2E
𝑝
1

in the abovementioned equation. To estimate the axial

elastic strain,

E𝑒
1 =

𝑞

𝐸𝑢𝑟
(1.15)

let’s suppose the yield condition 𝔣 = 0, then 𝔣 = 𝛾𝑝,

E
𝑝
1
=

1

2
𝔣 =

1

2

(
1

𝐸50

𝑞

1 −
𝑞
𝑞𝑎

−
2𝑞

𝐸𝑢𝑟

)
(1.16)

When equations (1.15) and (1.16) are combined, equation (1.17) is derived, which is used in

the triaxial test, where the axial strain is the sum of both the elastic and plastic components, as

expressed:

E1 = E𝑒
1 + E

𝑝
1
=

𝑞

𝐸𝑢𝑟
+

1

2

(
1

𝐸50

𝑞

1 −
𝑞
𝑞𝑎

−
2𝑞

𝐸𝑢𝑟

)
=

1

2𝐸50

𝑞

1 −
𝑞
𝑞𝑎

(1.17)

Eq.(1.14) provides the measure of plastic shear strain, and the explanation for volumetric plastic

strain is presented in detail. The plastic flow rule is firmly established based on the plastic

potential defined in Eq.(1.18) by (Obrzud, 2010). Eq.(1.19) makes calculating the rate of plastic
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volumetric strain for triaxial tests possible, demonstrating a linear correlation.

𝑔1 =
𝜎1 − 𝜎3

2
+

𝜎1 + 𝜎3

2
sinΨ𝑚 (1.18)

E1
. 𝑝 = sinΨ𝑚𝛾.𝑝 (1.19)

sinΨ𝑚 =
sin 𝜑𝑚 − sin 𝜑𝑐𝑣

1 − sin 𝜑𝑚 sin 𝜑𝑐𝑣
(1.20)

The mobilized friction angle is denoted by 𝜑𝑚.

sin 𝜑𝑚 =
𝜎

′

1
− 𝜎

′

3

𝜎
′

1
+ 𝜎

′

3
− 2 cot 𝜑

(1.21)

The parameter known as the critical state friction angle, with its symbol 𝜑𝑐𝑣 , is defined as,

sin 𝜑𝑐𝑣 =
sin 𝜑 − sinΨ

1 − sin 𝜑 sinΨ
(1.22)

The present hardening model shares specific parameters with the non-hardening Mohr-Coulomb

(MC) model, such as the failure parameters 𝐶, 𝜙, and 𝜓. The soil parameters of the HS model

are listed in the following table, In the HS model, the dilatancy cut-off is taken into consideration.

Table 1.2 Basic parameters of Hardening soil model

Parameters Symbols Units
Cohesion 𝐶 𝐾𝑁𝑚−2

Angle of internal friction 𝜙 𝑑𝑒𝑔𝑟𝑒𝑒
Dilatancy angle 𝜓 𝑑𝑒𝑔𝑟𝑒𝑒

Tension cut-off and tensile strength 𝜎𝑡 𝐾𝑁𝑚−2

Secant stiffness in standard drained triaxial test 𝐸
𝑟𝑒 𝑓
50

𝐾𝑁𝑚−2

Tangent stiffness for primary oedometer loading 𝐸
𝑟𝑒 𝑓
𝑜𝑒𝑑 𝐾𝑁𝑚−2

unloading/reloading stiffness 𝐸
𝑟𝑒 𝑓
𝑢𝑟 = 3𝐸

𝑟𝑒 𝑓
50

𝐸
𝑟𝑒 𝑓
𝑢𝑟 𝐾𝑁𝑚−2

Power for stress-level dependency of stiffness 𝑚 [-]

Failure ratio
𝑞 𝑓

𝑞𝑎
𝑅 𝑓 [-]

When materials undergo extensive shearing and reach a critical density, they stop dilating, as

depicted in Fig.1.9. The initial void ratio 𝑒𝑖𝑛𝑖𝑡 and maximum void ratio 𝑒𝑚𝑎𝑥 values are assigned
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Figure 1.9 The strain curve is obtained from a typical

drained triaxial test that incorporates a dilatancy cut-off,

taken from Brinkgreve et al. (2016, p. 78)

to determine this behaviour. When the maximum void ratio is reached, the mobilized dilatancy

angle Ψ𝑚𝑜𝑏 is set to zero (Brinkgreve et al., 2016).

For 𝑒 < 𝑒𝑚𝑎𝑥

sinΨ𝑚𝑜𝑏 =
sin 𝜑𝑚𝑜𝑏 − sin 𝜑𝑐𝑣

1 − sin 𝜑𝑚𝑜𝑏 sin 𝜑𝑐𝑣
(1.23)

For 𝑒 > 𝑒𝑚𝑎𝑥 , Ψ𝑚𝑜𝑏 = 0.

In addition, The correlation between void ratio and volumetric strain is demonstrated as

−(E𝑣 − E𝑖𝑛𝑖𝑡
𝑣 ) = ln (

1 + 𝑒

1 + 𝑒𝑖𝑛𝑖𝑡
) (1.24)

Fig.1.11 presents a shear yield surface that overlooks the plastic volume strain during isotropic

compression. (Brinkgreve et al., 2016) introduce a second yield surface that closes the elastic

region in the 𝑝 − 𝑎𝑥𝑖𝑠 direction to overcome this limitation. This cap yield surface allows for a

model with independent parameters, namely 𝐸
𝑟𝑒 𝑓
50

and 𝐸
𝑟𝑒 𝑓
𝑜𝑒𝑑 . The triaxial modulus 𝐸

𝑟𝑒 𝑓
50

regulates

the shear yield surface, while the oedometer modulus 𝐸
𝑟𝑒 𝑓
𝑜𝑒𝑑 controls the cap yield surface.

The yield cap is defined as,

𝔣𝔠 =
𝑞∼2

𝑀2
+ 𝑝2 − 𝑝2

𝑝 (1.25)
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Figure 1.10 The yield surface in the 𝑝 − 𝑞-plane.

Additionally, the elastic region can be further minimized

by implementing a tension cut-off, taken from Brinkgreve

et al. (2016, p. 80)

The equation above defines various parameters, including 𝑀, which is linked to 𝐾𝑛𝑐
0

, the

coefficient of lateral earth pressure during consolidation. 𝑝𝑝 represents the pre-consolidation

stress, while the remaining parameters are also defined as,

𝑝 = −
(𝜎1 + 𝜎2 + 𝜎3)

3
(1.26)

𝑞∼ = 𝜎1 + (𝛿 − 1)𝜎3 − (𝛿)𝜎3 (1.27)

𝛿 =
3 + sin 𝜑

3 − sin 𝜑
(1.28)

Fig.1.10 presents the entire yield lines, while Fig.1.11 displays the yield surfaces in the principal

stress space. The MC model distinctly demonstrates hexagonal shapes for the shear locus and

yield cap, as illustrated in Fig.1.11.

Schanz et al. (1999) have highlighted the advantages of utilizing the HS constitutive model. The

HS model’s yield surface can expand due to plastic straining, unlike an elastic-perfectly plastic

model with a stable yield surface in the principal stress space. Furthermore, the HS model
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Figure 1.11 A depiction of the complete yield contour of

the HS model in the principal stress space for soil without

cohesion, taken from Brinkgreve et al.(2016, p. 81)

includes both shear and compression hardening to simulate irreversible strain caused by primary

deviatoric loading and plastic strain caused by direct compression in oedometer loading.

Nevertheless, the HS constitutive model has some limitations, as listed by Obrzud (2010). Firstly,

the model is unable to reproduce softening impacts. Secondly, the model fails to replicate the

hysteretic soil behaviour during cyclic loading. Despite the soil’s limited elastic strain range, the

model assumes elastic material behaviour during unloading and reloading.

1.5 Surrogate modelling

Surrogate models are highly effective analytical models that can accurately imitate the input-

output behaviour of complex systems. By conducting computationally intensive simulations

at carefully chosen sample points, these models offer a simplified representation of a complex
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system with less precision in a specific domain while still providing accurate approximations

of the complex simulations’ behaviour. As a result, surrogate models are a powerful tool for

reducing computational demands and creating a more streamlined approach to analyzing complex

systems (Davis, Cremaschi & Eden, 2017). The surrogate-based methods are widely used in

geotechnical applications due to their efficiency and cost savings (Huang, Radi & El Hami, 2016;

Guo & Dias, 2020; Sargsyan, 2017; Stephens, Gorissen, Crombecq & Dhaene, 2011; Forrester,

Sobester & Keane, 2008).

1.5.1 Polynomial chaos expansion (PCE)

The polynomial chaos (PC) technique offers an alternative to sampling-based approaches for

analyzing uncertainties. PC methods fall under stochastic expansion methods, which rely on

Wiener homogeneous chaos theory (Wiener, 1938) to study the propagation of uncertainties. By

expanding the model response into a series of chaos polynomials as a function of random input

variables, this method provides an approximation of the reaction in the form:

𝑌 =
𝑁𝑃∑
𝑘=1

𝛽𝑘Φ𝑘 (𝜁) (1.29)

The multivariate bases, Φ𝑘 (𝜁), are created using the univariate bases, 𝜙 𝑗 (𝜁 𝑗 ), which are

chosen based on the probability density function of the input random variable 𝜁 𝑗 because the

convergence of these bases strongly depends on it (Xiu & Karniadakis, 2002). The coefficients

of a polynomial chaos approximation undergo evaluation through intrusive techniques in their

initial stages, detailed in 2.2.1.1. These techniques rely on the Galerkin projection, which

modifies the governing equations, leading to the need for solving a system of coupled equations.

The unknowns in this system are the coefficients, 𝛽𝑗 (Dinescu, Smirnov, Hirsch & Lacor, 2010;

Ghanem, 1999). While this method has good convergence, its intrusive nature can present a

challenge in specific configurations where extensive developments are necessary (Zokagoa,

2011). To overcome this drawback, non-intrusive methods have been developed that treat the

deterministic model as a black box. The fundamental concept of these methods is to estimate
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the coefficients based on a reduced number of solutions derived from the deterministic model.

This set of solutions comprises evaluations of the model’s response from a specific range of

values for the random input variables (Loeven, Witteveen & Bĳl, 2007).

Non-intrusive methods can be categorized into two main types: projection and regression.

The projection methods utilize the orthogonality property of polynomial basis functions to

determine the coefficients for approximating the model’s response (Ghiocel & Ghanem, 2002).

However, this technique can be pretty demanding regarding computational effort, especially

when the number of uncertain input parameters increases significantly (Blatman & Sudret,

2010b). However, the collocation method simplifies the process by using regression to determine

the coefficients that best approximate the output response. This is achieved through a limited

number of evaluations of the deterministic model, resulting in a system of algebraic equations.

The matrix in this system contains the values of the polynomial bases evaluated at the collocation

points, while the vector holds the responses of the model (Berveiller, Sudret & Lemaire, 2006).

When using regression-based non-intrusive methods, the selection of collocation points is a

critical step that strongly affects the efficiency and convergence of the method. The literature

proposes various techniques to choose these points optimally, which may inspire new collocation

methods. For instance, the probabilistic collocation method considers collocation points as roots

of orthogonal polynomial bases (Loeven et al., 2007). In contrast, the collocation point method

combines different sampling techniques with an oversampling coefficient to distribute the points

across the parametric domain (Hosder, Walters & Balch, 2007; Abdedou & Soulaimani, 2019).

The efficiency of stochastic approximations based on polynomial expansions of chaos depends

on several criteria, such as the polynomial order and the number of random variables, which

determine the size of the expansion. The construction of multivariate polynomial bases involves

introducing the notion of the multi-index and using the tensor product between the univariate

terms of the orthogonal base (Miller, Berg, Davison, Sudicky & Forsyth, 2018; Sudret, 2014).

Chaos polynomial methods offer an attractive feature of estimating the statistical moments of

the output response from previously calculated coefficients without additional computational

effort (Salehi, Raisee, Cervantes & Nourbakhsh, 2018). These coefficients also enable direct
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calculation of the Sobol sensitivity indices, identifying the random variables contributing the

most to the output response’s variability (Homma & Saltelli, 1996a). Compared to classical

sampling methods, these approaches substantially reduce computational effort, as they do

not require additional computations for sensitivity analysis (Shahzadi & Soulaïmani, 2021;

Rahman, 2011). The application of PCE in dam engineering has gained widespread popularity

in recent years. The PCE model for surrogate modelling of embankment dams was introduced by

(Ghanem, Saad & Doostan, 2007), later used to perform a reliability analysis on sliding stability

(Guo, Dias, Carvajal, Peyras & Breul, 2018). (Hariri-Ardebili, Mahdavi, Abdollahi & Amini,

2021) comprehensively quantified the uncertainty in dam engineering problems through PCE.

In addition, an adaptive PCE for sensitivity and reliability analysis of aging dams was applied

while investigating copula dependency among random variables (Amini, Abdollahi, Hariri-

Ardebili & Lall, 2021). (Shahzadi & Soulaïmani, 2021) constructed a surrogate model for rockfill

dams by combining PCE with deep neural networks. (Sevieri, Andreini, De Falco & Matthies,

2019) developed a generalized PCE-based probabilistic procedure in a Bayesian framework,

incorporating parameter identification and seismic fragility analysis for concrete gravity dams.

1.5.2 Machine Learning in modern computational geotechnics

Geotechnical materials are inherently complex, making it challenging for researchers to use

theoretical solutions to solve design problems and assessment issues. Geotechnical Engineers

are increasingly turning to soft computing techniques to tackle such problems (Goh & Zhang,

2014; Zhang, Goh & Zhang, 2016; Ray et al., 2021). ML algorithms have significant potential

to uncover correlations among information without any prior assumptions (Goh, Zhang, Zhang,

Xiao & Xiang, 2018; van Natĳne, Lindenbergh & Bogaard, 2020; Zhang et al., 2021a). Recent

advancements in computing efficiency have led to increased exploration of artificial intelligence

(AI), deep learning(DL) and deep neural network (DNN) (Da’u & Salim, 2020; Nguyen, Kashani,

Ngo & Bordas, 2019). AI is a science that studies ways to create intelligent programs capable

of creatively solving problems. At the same time, ML is a subset of AI that enables systems

to learn and improve from experience without explicit programming. DNN, a specific type
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of ML, can represent the world as a hierarchy of concepts without manual feature extraction.

DNN predictions’ accuracy gradually increases with dataset expansion, making it an efficient

tool for extracting useful information and making reliable decisions in geoengineering (Zhang

et al., 2022; Zhang, Xie, Zhang, Qiu & Wu, 2021b). However, geotechnical engineering is

still experiencing a significant lack of DNN applications. This is primarily due to the highly

dynamic and unpredictable nature of rocks and soil, which presents numerous challenges for

researchers. ML techniques such as Linear Regression analysis (LR), Support Vector Machine

(SVM), Artificial Neural Networks (ANN) and Random Forest (RF) acquire knowledge from

experiences, eliminating the need for hypothesizing about primary rules governing the problem

(Bishop, 2006). These techniques have demonstrated remarkable effectiveness in handling

nonlinear and plastic issues related to rock and soil. Many studies have explored the application

of ML in geotechnics, including predicting soil shear strength, developing statistical correlations

relating to geotechnical soil parameters of a specific region, pile capacity, foundation settlement,

slope stability, tunnels and predicting the ultimate bearing capacity of cohesionless soils,

(Yousefpour & Fallah, 2018; Adarsh, Dhanya, Krishna, Merlin & Tina, 2012; Puri, Prasad & Jain,

2018; Shahzadi & Soulaïmani, 2021). Several ML techniques are compared to analyze the

uncertainty in the soil parameters of the dam (Hariri-Ardebili, Chen & Mahdavi, 2022).

1.5.2.1 Deep neural network (DNN)

Deep learning has become immensely popular in both supervised and unsupervised problem-

solving. This is due to its ability to eliminate the need for extensive feature engineering or

domain expertise in processing raw data. The method employs representation learning techniques

that involve multiple levels of representation. Input data is transformed into a higher-level,

more abstract representation layer by layer, using simple yet non-linear modules (Goodfellow,

Bengio & Courville, 2016). Deep neural networks have proven to be highly effective in solving

problems in various domains, including science, business, and government (Alzubaidi et al.,

2021; Samek, Montavon, Lapuschkin, Anders & Müller, 2021). They are often used as a tool to

solve classification and regression issues. A standard neural network comprises interconnected
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processors called neurons, which produce a sequence of real-value activations. The calculation

from the previous layer to the next layer in a deep neural network can typically be represented as

follows:

𝑌 =
∑

(𝑖𝑛𝑝𝑢𝑡 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) + 𝑏𝑖𝑎𝑠 (1.30)

where, Y is an output vector. Every node has a non-linear activation function that can approximate

highly complex functions. This function decides the node’s output based on input data. The

goal is to transform the input signal into an output signal for the node, which will then act as

input for the following layer. A simple one-layer DNN is shown in the Fig.1.12.

Figure 1.12 One-layer neural network

The three most commonly used activation functions are sigmoid, tanh, and ReLU. The sigmoid

activation function is in the form, 𝑓 (𝑥) = 1
1+𝑒−𝑥 , hyperbolic tangent function (tanh) are defined

𝑓 (𝑥) = 1−𝑒−2𝑥

1+𝑒−2𝑥 and Rectifier linear units (ReLu) is presented as 𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥). Sigmoid and



30

tanh restrict the input to (0,1) and (-1,1), respectively. ReLU activates only the input values with

negative values, making the network sparse and increasing computational efficiency.

Recent research in geotechnics suggests that deep neural network(DNN) presents a promising

solution for addressing uncertainties in various geotechnical aspects. ANN has been widely

applied in geotechnical areas such as underground openings (Sterling & Lee, 1992), braced

excavation (Sou-Sen & Hsien-Chuang, 2004; Zhang et al., 2021b), slope stability (Asteris et al.,

2022), earth retaining structures (Pham, Tran & Vu, 2021), modelling tunnel boring machine

performance (Xu, Liu, Wang & Wang, 2021), and predicting geotechnical parameters (Wang,

2022).

1.6 Uncertainty analysis

Uncertainty pervades many characteristics of geotechnical engineering, particularly in the

classification of material properties of rockfill and earth dam foundation systems. Uncertainty in

geotechnics is presented in all aspects (Phoon et al., 2022; Iyengar, Rajaram, Decker & Mavris,

2023; Cao, Jiang & Zu, 2022). In general, some of this uncertainty may be due to the difficulty

in making accurate measurements. Some may be due to uncertainty in the models, equations,

and understanding of the systems involved. Additional uncertainty can result from the spatial

variability of the system (Hacıefendioğlu, Bayraktar & Başağa, 2010). Moreover, in some

instruments, especially those designed for likewise observations (Kovári & Amstad, 1993) the

errors in the measurements are not independent. For instance, if an inclinometer device measures

horizontal displacements along a borehole, the displacement value is based on all the previously

measured displacements. Also, some instruments are the cause of errors in the measured data.

Using non-intrusive chaos polynomial methods has become widespread for analyzing uncertainty

propagation and constructing stochastic surrogate models that efficiently estimate statistical

moments and distribution functions with low computational cost (Hariri-Ardebili et al., 2021;

Abdedou & Soulaimani, 2019).
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1.7 Sensitivity analysis

Engineers have shown interest in using sensitivity analysis to comprehend the complex behaviour

related to soil parameters. Sensitivity analysis is a powerful method for identifying crucial

input parameters significantly impacting model outcomes. The main purpose of employing

Sobol indices in sensitivity analysis is to determine the parameters that significantly impact

the output response variability (Homma & Saltelli, 1996b). Sensitivity analysis methods are

categorized into two main types, local and global sensitivity analysis (Saltelli et al., 2008).

Local sensitivity analysis measures the impact of an input parameter on a model in a specific

area. In contrast, global sensitivity analysis looks at the uncertainty in the output caused by

uncertainty in the input (Cacuci, Ionescu-Bujor & Navon, 2005). Global sensitivity analysis

treats each input as an independent variable by varying all inputs simultaneously. This technique

involves five essential steps: defining the computational model, identifying relevant inputs and

their limits, generating input samples using a sampling design method, evaluating the generated

input parameters, and analyzing uncertainty while calculating the importance of each input

through a sensitivity estimator. Various techniques, such as Monte Carlo sampling, have been

developed to obtain Sobol indices. Variance-based global sensitivity analysis determines the

parameters that affect dam stability the most (Dimov & Georgieva, 2010; Segura, Miquel,

Paultre & Padgett, 2021). However, these sensitivity analysis techniques often require a large

number of simulations (Branbo, Hassan et al., 2020). Surrogate-based methods are the most

commonly used due to their efficiency and cost-effectiveness. Polynomial chaos expansion with

Sobol’s indices is the most cost-effective method for conducting parameter sensitivity analysis

of the dam model (YiFei, MaoSen, Tran-Ngoc, Khatir & Wahab, 2023). A global sensitivity

analysis was conducted to determine the effect of soil parameters on rockfill dam behaviour by

calculating the Sobol indices (Das & Soulaïmani, 2019; Shahzadi & Soulaïmani, 2021).

1.8 Inverse analysis

Inverse analysis in the geotechnical community started in the early 80s. (Gioda & Maier, 1980;

Gioda & Sakurai, 1987) took the initiative to use inverse analysis to identify the rock mass
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parameters for a tunnel excavation application. The inverse analysis become popular in the

geotechnical community for identifying soil parameters for several applications of dams, tunnel

excavation, consolidation, and test embankment on soft clay deposits (Santos Rodríguez, 2015;

Das & Soulaimani, 2021; Hariri-Ardebili et al., 2022; Amini et al., 2021). (Calvello & Finno,

2004) calibrated soil parameters for different models using the results from triaxial comparison

tests performed on specimens and recalibrated using inclinometer data that recorded the

displacements of excavation. Malecot and his group (Malecot, Flavigny & Boulon, 2004) used

inverse analysis to calibrate the soil parameters of the Mohr-Coulomb (MC) model of synthetic

sheet pile wall for horizontal displacements. The optimization techniques based on genetic

algorithm and gradient were used and the results were compared. Later, Levasseur (Levasseur,

Malécot, Boulon & Flavigny, 2008) and Rechea (Rechea, Levasseur & Finno, 2008) used genetic

algorithms to optimize inverse analysis. Moreover, Levasseur utilized a genetic algorithm

post-process and introduced the concept of using a principal component analysis to better deal

with problems that are not unique and associated with the nature of geomechanics (Levasseur,

Malecot, Boulon & Flavigny, 2009, 2010). An inverse analysis was presented to identify the soil

parameters of the hardening soil model of a real supported excavation performed in five stages

(Finno & Calvello, 2005). A comparative study of optimization algorithms (genetic algorithm

and self learning simulation) was presented to identify the soil parameters in a deep excavation

(Hashash, Levasseur, Osouli, Finno & Malecot, 2010a). He suggests that the genetic algorithm

assists in the best selection of soil parameters for the constitutive model, as compared to this

self-learning simulation, allowing us to discover new soil behaviour. In order to improve the

accuracy, a hybrid Genetic algorithm as an application of simple synthetic tunnel excavation was

established for back analysis (Santos Rodríguez, 2015). The inverse analysis combines the PCE

with an optimization technique for the concrete dam (YiFei et al., 2023). The research review

shows that most of the back analysis effort has been focused on optimization techniques and

their applications to challenging real problems in the last decade. Indeed, the attempt to create

more robust and computationally efficient inverse analysis procedures is still vigorously pursued.

Like all inverse problems, parameters identification problems are often ill-posed, which shows
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that at least one of the given properties in Hadamard’s definition (Engl, Hanke & Neubauer,

1996) is violated for all admissible data,

1. The solution exists

2. The solution is unique.

3. The solution depends continuously on data.

The abovementioned properties are discussed in detail (Xiang, Swoboda & Cen, 2003).

1.8.1 Existence

In order to achieve a solution, it is imperative that the numerical model accurately describes the

physical problem and the measurements are sufficient. If a suitable numerical model cannot be

determined, the immediate issue remains unsolved and the identification of parameters cannot

be addressed. Mathematically, if a set is bounded convex and the function is continuous, at least

one solution must exist.

1.8.2 Uniqueness

In order to ensure a unique solution, it is necessary to have sufficient information in the

measurement data. While this is not always a requirement, the contraction mapping theorem

(Chicone et al., 1999) provides mathematical proof of the guarantee of uniqueness.

1.8.3 Stability

The discussion of the third property is directly related to evaluating the continuity of the

fitness function (objective function). Sometimes, the continuity of the objective function may

be disrupted. In such cases, regulations can be implemented to restore its smoothness and

compensate for any loss of continuity. This is probably the reason that parameter identification

problems are usually unstable (Engl et al., 1996).
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1.9 Optimization techniques and their implementation

Optimization techniques have become gradually popular and essential in different engineering

applications considering the advancement in computing systems (Eykhoff, 1974). Back analysis

problems can be reduced to minimize or maximize a function, the difference between measured

and calculated data. There are several optimization techniques available to search for the best

solution to a given problem. However, selecting a robust algorithm that provides the optimal

solution can be a complex process. These optimization techniques are categorized based on

gradients. Genetic algorithm, Swarm particle optimization, Ant algorithm and Simulated

annealing are some of the non-gradient optimization techniques preferred for non-smooth

functions (Eykhoff, 1974; Fletcher, 1981; Goldberg, 1989a). Different optimization techniques

are utilized in inverse analysis to identify the soil parameters of dams (Vahdati, Levasseur,

Mattsson & Knutsson, 2013; Vahdati, 2014; Dou, Li & Kang, 2017).

1.9.1 Genetic Algorithm

The search method of Genetic algorithms (GA) employs principles of natural evolution, such

as genetics and selection. Evolution is closely linked to Charles Darwin (Darwin, 1857), who

introduced the idea of natural selection to improve an organism’s fitness through slight, heritable

deviations. Later Gregor Mendel identified the basis of genetic inheritance, which formalized

Darwin’s theories (Mendel, 1865). Although, the concept of creating an artificial algorithm

that can imitate nature’s evolutionary process was first introduced by Holland (Holland, 1975).

However, his students at the University of Michigan (Goldberg, 1989b) explained this vision.

As a result of their research, the following characteristics were uncovered.

• Chromosomes play a crucial role in the process of evolution.

• Evolution only occurs during the moment of reproduction.

• Selection is the definitive process of choosing individuals for reproduction.

• Individuals with high fitness are the sole candidates to be selected for reproduction.

• The process of crossover, which combines the chromosomes of the selected parents, produces

new offspring.
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• Mutation is the only way to introduce new genetic material into the population.

• The genes contained within chromosomes hold all the necessary information for producing

the best individuals possible, and nothing else can

The primary advantage of utilizing genetic algorithms is their ability to handle complex and

diverse problems. However, this robustness often comes at the cost of increased computational

expenses compared to traditional optimization methods. Genetic algorithms possess several

unique characteristics, such as

• working with coded parameter sets rather than individual parameters

• searching from a population of points rather than a single point

• utilizing objective function information instead of derivatives or auxiliary knowledge

• implementing probabilistic transition rules instead of deterministic ones

It is better to use with success in all scientific fields. It is recognized to be highly efficient

in dealing with large, discrete, nonlinear and poorly understood optimization problems (Pal,

Wĳe Wathugala & Kundu, 1996). Although, the method does not guarantee the optimum

solution to a problem. Nevertheless, genetic mechanisms, such as reproductions, crossings and

mutations, permit localizing an optimum set of solutions close to the optimum in a given search

space (Gallagher, Sambridge & Drĳkoningen, 1991).

1.9.2 Particle Swarm Optimization

Swarm intelligence is the term used to describe the synchronized behaviour of decentralized

systems made up of multiple individuals who work together through self-organization (Cui & Gao,

2012). Particle swarm optimization (PSO) has undoubtedly demonstrated its effectiveness in a

wide range of fields, such as structural design (Perez & Behdinan, 2007), hydrogeology (Martínez,

Gonzalo, Álvarez, Kuzma & Pérez, 2010), environmental sciences (Najafzadeh & Tafarojnoruz,

2016; Ferdowsi, Mousavi, Mohamad Hoseini, Faramarzpour & Gandomi, 2022) and geotechnical

engineering (Hajihassani, Jahed Armaghani & Kalatehjari, 2018; Yin, Jin, Shen & Hicher, 2018),

among others. It has also been instrumental in the epidemic modelling of Sars-Cov-2 (Godio,
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Pace & Vergnano, 2020; Al-Qaness, Ewees, Fan & Abd El Aziz, 2020), reservoir engineering

(Shams, Ahmed & Sayyouh, 2020), computer vision (Nakane et al., 2020) and artificial neural

networks (Abdolrasol et al., 2021) etc. Particle swarm optimization (PSO) was suggested by

(Gao, 2006), while Cheng, Li, Sun & Au (2012) used a hybrid approach for handling pile

driving back analysis. An ANN for displacement back analysis of earth-rockfill dams was

utilized by (Yu, Zhang & Yuan, 2007). Hashash preferred optimization-based inverse analysis

for excavation response (Hashash, Levasseur, Osouli, Finno & Malecot, 2010b). An inverse

analysis for parameter identification performed in the simulation of excavation support systems

using optimization algorithms (Rechea, Levasseur & Finno, 2007). Lastly, (Moreira et al., 2013)

used an evolution strategy for back analysis of geomechanical parameters in underground work.

1.10 Objective function formulation for optimization techniques

Optimization techniques’ most critical and challenging task is defining an objective function

according to the problem requirements. There are numerous ways to define an objective function.

(Eykhoff, 1974) presented the most extended methods. The objective function can be defined as

minimizing the difference between the measurements and the numerical values. This dissertation

presents some methods, such as

• The least square method

• The Markov method

• Maximum likelihood method

• Maximum likelihood method with basic information

• Relative error objective function

• Objective function with instrumentation error

• Objective function to smooth the oscillations in measured data

The least square method is one of the most straightforward but comprehensive methods to define

an objective function. In the identification of parameters, the best parameters are those that
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minimize the objective function, which is defined as

𝑓𝑜𝑏 𝑗 =
𝑁∑
𝑖=1

(𝑌𝑖 − Ȳ𝑖) (1.31)

Where N is the number of measurements,𝑌𝑖 show the measurement data and Ȳ𝑖 are the calculated

values. In matrix notation,

𝑓𝑜𝑏 𝑗 = [𝑌 − Ȳ]𝑇 [𝑌 − Ȳ] (1.32)

Markov is regarded as a generalization of the least-squares method where the weighted diagonal

matrix W reflects the measurement quality.

𝑓𝑜𝑏 𝑗 = [𝑌 − Ȳ]𝑇W[𝑌 − Ȳ] (1.33)

The measurement process’s associated error is indicated by W, with higher weights given to

more reliable measurements. The definition of W is generally associated with the standard

deviation of the apparatus utilized to obtain the measurements. However, it can be adjusted as

needed to incorporate other factors that may affect the accuracy of the measurement extraction

process, such as the technician’s expertise or specific environmental conditions.

The maximum likelihood method assigns the differences between measurements and the model

to the observational procedure, treating it as a random variable with a determined probability

density function. This statistical approach provides a more comprehensive criterion than those

based on least-squares and Markov methods, making the objective function defined by the

maximum likelihood method more reliable. However, a deeper understanding of the issue is

necessary to define it adequately. The solution to the problem maximizes the probability of

obtaining the actual observed data or the likelihood estimation (Edwards, 1974; Tarantola, 2005).

Let X be the set of parameters and Y be the set of measurements; to determine the likelihood of

a hypothesis, one must consider the conditional probability of Y given a set of parameters X.
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This leads to the criterion being expressed as:

L ∝ 𝑓 (Y|X) (1.34)

L = 𝐾 𝑓 (Y|X) (1.35)

K is the constant of proportionality.

According to (Carrera, 1988), this formulation possesses theoretical and conceptual advantages:

• It is unnecessary to establish the probability of a hypothesis, as it has become a disputed

notion within probability theory.

• The model doesn’t necessarily have to replicate the accurate system precisely (Baram & Sandell,

1978).

Assuming that the error of the measurements follows the Gaussian distribution, the likelihood

function can be rewritten as,

𝑓 (Y|X) =
1√

(2𝜋)𝑁 |𝜎 |
exp (

−1

2
(𝑌 − Ȳ)𝑇 (𝜎)−1(𝑌 − Ȳ)) (1.36)

where N is the number of measurements, 𝜎 is the covariance matrix, representing the error

structure associated with measurements (Bishop, 2006). The solution to the problem is the

one that maximizes the probability of obtaining the field measurements observed. In other

words, the best parameter estimation is found by maximizing the likelihood L in Eq.1.36. The

log-likelihood can be expressed as,

𝑆 = −2 lnL = (𝑌 − Ȳ)𝑇 (𝜎)−1(𝑌 − Ȳ) + ln |𝜎 | + 𝑁 ln(2𝜋) − 2 ln 𝐾 (1.37)

On the assumption that the covariance matrix is fixed and the last three terms of Eq.(1.37) are

constant. The objective function using the maximum likelihood method can be finally defined

as:

𝑓𝑜𝑏 𝑗 = [𝑌 − Ȳ]𝑇 (𝜎)−1 [𝑌 − Ȳ] (1.38)



39

The "weighted" matrix has a clear statistical meaning in Eq.(1.38) represented by the inverted

measurements covariance matrix. In the case where measurements are independent among them,

(𝜎)−1 is a diagonal matrix, and the objective function obtained by the maximum likelihood

method (Eq.(1.38)) is equivalent to the one acquired by the Markov method (Eq.(1.33)). In

addition, if the values on the diagonal (𝜎)−1 are the same, the objective function achieved

through the maximum likelihood method (Equation (1.38)) is equal to that obtained from the

least-squares method (Equation (1.32)).

To expand the horizon of the objective function, it is possible to integrate prior information into

the problem (such as the a priori parameter values X). The updated objective function must

include a term that considers the error in estimating the prior parameter. Consequently, Eq.(1.35)

can be altered to Eq.(1.39), where the likelihood is proportional to the joint probability of the

measurements and the initial parameter values.

L = 𝐾 𝑓 (Y|X, X0) = 𝐾 𝑓 (Y|X) 𝑓 (X0) (1.39)

The probability functions 𝑓 (Y|X) and 𝑓 (X0) are considered Gaussians or normal. Therefore,

𝑓 (Y|X) = L =
1√

(2𝜋)𝑁 |𝜎 |
exp (

−1

2
(𝑌 − Ȳ)𝑇 (𝜎)−1(𝑌 − Ȳ)) (1.40)

and

𝑓 (X0) =
1√

(2𝜋)𝑛 |𝜎0 |
exp (

−1

2
(X0 − X)𝑇 (𝜎0)

−1(X0 − X)) (1.41)

where, N represents the number of measurements, n the number of parameters, 𝜎0 represents the

covariance matrix of priori parameters, and (X0 − X) represents a vector of differences between

prior and estimated parameters.

Working with supporting function S in Eq.(1.37) is more beneficial than working with function

L (1.39). To define the new supporting function, Eq.(1.40) and Eq.(1.41) can be utilized as
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follows:

𝑆 = (𝑌−Ȳ)𝑇 (𝜎)−1(𝑌−Ȳ)+(X0−X)𝑇 (𝜎0)
−1(X0−X)+ln 𝜎+ln 𝜎0+𝑁 ln(2𝜋)+𝑛 ln(2𝜋)−2 ln 𝐾

(1.42)

Assume that the covariance matrices 𝜎 and 𝜎0 are constant along with fixed last three terms in

Eq.(1.42), the objective function utilizing the maximum likelihood method with prior knowledge

can be defined as follows:

𝑓𝑜𝑏 𝑗 = [𝑌 − Ȳ]𝑇𝜎−1 [𝑌 − Ȳ] + [X0 − X]𝑇𝜎−1
0 [X0 − X] + ln |𝜎 | + ln |𝜎0 | (1.43)

The aforementioned objective functions are usually applied to cases where the exact measurements

are used (i.e. displacements). However, in cases where different kinds of measurements or

significant differences in the magnitude of the measurements are involved, an objective function

defined by the concept of relative error is considered appropriate. Using the structure of the

maximum likelihood method (Eq.(1.38)) and defining the components of as in (Eq.(1.44)),

an objective function in Eq.(1.45) is appropriately defined for cases where different kinds of

measurements or significant differences among the magnitude of the measurements are involved.

𝑅 =
(𝑌𝑖 − Ȳ𝑖)

2

(𝑌𝑖)2
(1.44)

𝑓𝑜𝑏 𝑗 = [𝑅]𝑇 (𝜎𝑐𝑣)
−1 [𝑅] (1.45)

The matrix (𝜎𝑐𝑣) contains the squared coefficient of variation of the measurements. It represents

the error structure related to the measurements, and its analysis is crucial for accurate results.

The mean square error method is a straightforward definition of an objective function.

𝑓𝑜𝑏 𝑗 =
1

𝑁

𝑁∑
𝑖=1

(𝑌𝑖 − 𝑌𝑖)
2 (1.46)



41

In this equation, 𝑁 represents the total number of measurement points, 𝑌𝑖 stands for the measured

data, and 𝑌𝑖 represents the numerical prediction. To generalize this equation weights 𝐶𝑖 are

added.

𝑓𝑜𝑏 𝑗 =
1

𝑁

𝑁∑
𝑖=1

𝐶𝑖 (𝑌𝑖 − 𝑌𝑖)
2 (1.47)

For accurate measurements, giving more importance to reliable data is crucial. Inevitable

uncertainties can affect the performance of inclinometers, causing significant fluctuations in

the measured displacement plots. These fluctuations can complicate the optimization process,

making it challenging to arrive at a reliable solution. To tackle this issue, the weights 𝐶𝑖 are

formulated as:

𝐶𝑖 = tanh(
1

𝛿𝑖
) (1.48)

𝛿𝑖 = 𝛽(
𝑌𝑖 − 𝑌𝑚

𝛾𝑚 + 𝜀
)2 (1.49)

𝑌𝑚 represents the mean displacement along the inclinometers, 𝛾𝑚 indicates standard deviation

of measured data, 𝛽 represents an empirical parameter (𝛽 = 3 is a typical value), and 𝜀 reflects

an avoidance factor. It is likely that 𝐶𝑖 will tend to zero when 𝛿𝑖 indicates a large amount of

uncertainty regarding the measured data. For small 𝛿𝑖, however, 𝐶𝑖 is close to 1. It is possible

to combine multi-error functions into a single composite function by using the weighted sum

method (Murata & Ishibuchi, 1995). According to (Gunantara, 2018), the higher the weight, the

higher the priority of the function.

1.11 Conclusion

This chapter presents a literature review on the different lines of research that is the subject of

this thesis. An exhaustive presentation of the various works that have dealt with soil models,

methods for analyzing non-intrusive techniques for surrogate models and inverse analysis. Some

other notions relating to fundamental concepts of the different approaches have been presented,

particularly the methods of polynomials of chaos, deep neural network, formulation of objective

functions and the optimization technique will be the subject of a detailed presentation in the

following chapters.
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Abstract

Computational modelling plays a significant role in the design of rockfill dams. Various

constitutive soil parameters are used to design such models, which often involve high uncertainties

due to the complex structure of rockfill dams comprising various zones of different soil parameters.

This study performs an uncertainty analysis and a global sensitivity analysis to assess the effect

of constitutive soil parameters on the behaviour of rockfill dams. A Finite Element code (Plaxis)

is utilized for the structure analysis. A database of the computed displacements at inclinometers

installed in the dam is generated and compared to in situ measurements. Surrogate models are

significant tools to approximate the relationship between input soil parameters and displacements

and thereby reduce the computational costs of parametric studies. Polynomial chaos expansion

and deep neural networks are used to build surrogate models to compute the Sobol indices

required to identify the impact of soil parameters on dam behaviour.

keywords

Sensitivity analysis, Polynomial Chaos Expansion, Uncertainty, Deep neural networks, rockfill

dams
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2.1 Introduction

To meet the new challenges faced by geotechnical engineers, the use of innovative computer-based

models has been growing exponentially. The complex structures and uncertainties comprised

in the design of rockfill dams are a major challenge in predicting dam behavior (Bowles et al.,

1996; Calvello & Finno, 2004). Numerical methods, computational statistics and machine

learning play a significant role in building improved, reliable rockfill dam models, helping to

predict their behavior and reduce the cost of construction. The use of sensitivity analysis has

attracted the interest of engineers seeking to understand the complex behavior associated with

soil parameters. The main rationale for a sensitivity analysis using Sobol indices is to identify

the most significant parameters in the variability of the output response (Homma & Saltelli,

1996b). Sensitivity analysis methods are usually categorized into local and global sensitivity

analysis (Saltelli et al., 2008). Local sensitivity analysis quantifies the local impact of an input

parameter on a model, whereas global sensitivity analysis is focused on the uncertainty in the

output due to the uncertainty in the input (Cacuci et al., 2005). Numerous techniques have been

developed for obtaining Sobol indices through variants of the Monte Carlo sampling technique

(Dimov & Georgieva, 2010) and variance-based global sensitivity analysis are performed to

identify the most affecting parameters to the dam stability (Segura et al., 2021), although these

techniques for sensitivity analysis often require a large number of simulations (Branbo et al.,

2020). The surrogate-based methods are the type more widely used, due to their efficiency and

cost savings (Huang et al., 2016; Guo & Dias, 2020; Sargsyan, 2017; Stephens et al., 2011;

Forrester et al., 2008). Polynomial Chaos expansion based surrogate models have been used

recently for the sensitivity analysis of dams (Hariri-Ardebili et al., 2021).

This work evaluates surrogate-based and variance-based global sensitivity analysis in the design

of a rockfill dam. Finite element method models (FEM) with appropriate soil parameters are often

utilized for dam modeling and design (Duncan, 1996; Owen & Hinton, 1980; Pietruszczak, 2010).

Various constitutive models exist, each involving a different set of parameters, tested and used

in several geotechnical problems (Pramthawee et al., 2011). In this study, A two-dimensional

plane-strain finite element-based model is used in Plaxis to compute the displacements and
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stresses for a vertical cross-section of the dam which employs a simple constitutive soil model,

the Mohr-Coulomb (MC) (Wood, 1990). The soil parameters cohesion(𝐶), specific weight (𝜌),

shear modulus (𝐺𝑟𝑒 𝑓 ), Poisson coefficient (𝜈), and friction angle (𝜙) are the input parameters

for the MC model (Labuz & Zang, 2012). Moreover, the Mohr-Coulomb constitutive model is

widely used in geotechnical engineering practice due to its simple nature, and fewer parameters

are required as compared to other more complex constitutive models such as the Hardening-Soil

model (HS) (Schanz et al., 1999). The Sobol sampling method is applied to generate the samples

of soil parameters as the input (Dige & Diwekar, 2018; Burhenne, Jacob & Henze, 2011).

Subsequently, the parameters are assigned to the numerical model and the displacements are

calculated at the positions of each of the inclinometers. Once the database of the inputs and

outputs has been produced, the dam response can be estimated with respect to the uncertainty

associated with the input parameters. The Polynomial chaos expansion (PCE) and deep neural

networks (DNN) techniques (Breiman, 1996; Goodfellow et al., 2016; Bishop, 2006; Hsieh,

2009) are used to build the surrogate models to evaluate the Sobol indices. The surrogate models

are trained by utilizing an error function measuring the difference between the computed and

measured displacements on the inclinometers.

2.2 Methodology

The methodology is comprised of two main phases: surrogate model approximation and

sensitivity-uncertainty analysis.

2.2.1 Surrogate models

In the current challenging and technically competitive environment, surrogate models can in-

crease efficiency and reduce the computational costs of a problem or design process. Several

surrogate-modeling techniques have been applied to uncertainty analysis, sensitivity analysis,

and optimization. Polynomial chaos, a probabilistic approach, and Deep neural networks are

used in this study.
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2.2.1.1 Polynomial Chaos Expansion (PCE)

Consider a physical model represented by a function 𝑦 = 𝑀 (𝑥), where 𝑥 ∈ �𝑛, 𝑦 ∈ �𝑚, and

𝑛 is the number of input quantities and 𝑚 the number of outputs. For simplicity, the m=1

case will be considered in the following description. The uncertainties in the input variables

and their propagation to the output lead to the description of 𝑥 and 𝑦 as random variables

𝑋 = (𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑛) and 𝑌 , respectively (Blatman & Sudret, 2010a; Xiu & Karniadakis,

2002; Hariri-Ardebili & Sudret, 2020). For a specific value of 𝑥, the corresponding response

(a realization) 𝑦 is actually computed by executing a deterministic numerical solver for the

non-intrusive variant of PCE. The joint probability density function (PDF) of the random vector

𝑋 is denoted by 𝜌𝑥 . Assuming that the input random variables 𝑋𝑖 are independent, then 𝜌𝑥

a multiplication of the marginal probabilities, 𝜌𝑥 (𝑋) =
∏𝑛

𝑖=1 𝜌𝑖 (𝑋𝑖). A polynomial Chaos

Expansion approximates the response 𝑌 as a linear combination of orthonormal polynomials

𝜑𝛼 (𝑋):

𝑌 (𝑋) =
𝑁𝑃∑
𝛼=1

𝑏𝛼𝜑𝛼 (𝑋) (2.1)

where 𝑏𝛼 are the expansion coefficients forming the vector 𝑏 = (𝑏1, 𝑏2, 𝑏3, ..., 𝑏𝑁𝑃)
𝑇 . In a full

PCE, the number of expansion factors 𝑁𝑃 depends on the polynomial order 𝑝 and the number of

random input parameters 𝑛, and is given by 𝑁𝑃 = (𝑛+𝑝)!
𝑝! 𝑛!

. The multivariate basis of polynomials

𝜑𝛼 (𝑋) can be constructed as a tensor product of univariate orthonormal polynomials 𝜑𝑝𝛼
𝑖
(𝑋),

that is, 𝜑𝛼 (𝑋) =
∏𝑛

𝑖=1 𝜑𝑝𝛼
𝑖
(𝑋𝑖), where 𝑝𝛼

𝑖 (𝑖 = 1, ..., 𝑛) is a multi-index vector. The optimal

choice of the univariate polynomial basis function is closely related to the probability density

functions 𝜌𝑖 (𝑋𝑖) (Xiu & Karniadakis, 2002). For instance, Legendre polynomials serve as an

optimal basis function for uniform distributions. The Polynomial Chaos Expansion coefficients

𝑏𝛼 can be computed in a non-intrusive and affordable way using a regression approach. A

data set 𝐷 is composed of 𝑁 input vectors 𝑋𝐷 = (𝑥 (1)𝐷 , 𝑥 (2)𝐷 , ..., 𝑥 (𝑁)
𝐷 )𝑇 sampled from the PDF

𝜌𝑥 , and their corresponding responses are put in a vector 𝑌𝐷 = (𝑦 (1)𝐷 , 𝑦 (2)𝐷 , ..., 𝑦 (𝑁)
𝐷 )

𝑇
, with

𝑦 (𝑖)𝐷 = 𝑀 (𝑥 (𝑖)𝐷 ). The expansion coefficients with a regularization term can be obtained by
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minimizing the error
∑𝑁

𝑖=1(𝑦
(𝑖)
𝐷 − 𝑌 (𝑥 (𝑖)𝐷 ))2 + 𝜆𝑃𝑏

𝑇𝑏. Defining 𝚽 as the design matrix whose

components are 𝜑 𝑗 (𝑥
(𝑖)
𝐷 ) (𝑖 = 1, ..., 𝑁; 𝑗 = 1, ..., 𝑁𝑃), the expansion coefficients vector is then

given as the solution of the ordinary least-squares system:

𝑏 = (Φ𝑇Φ + 𝜆𝑃𝐼)
−1Φ𝑇𝑌𝐷 (2.2)

where 𝜆𝑃 is a regularization parameter and I is the identity matrix. The number of sample points

is defined as 𝑁 = 𝛾 𝑁𝑃, with 𝛾 ≥ 1 an oversampling parameter used to control the accuracy of

the PCE (Hosder et al., 2007; Abdedou & Soulaimani, 2019). The sample input vectors can be

generated using efficient sampling algorithms, such as the Latin hypercube sampling algorithm

(LHS) or the Sobol scheme (Dige & Diwekar, 2018; Burhenne et al., 2011; Bratley & Fox, 1988).

Once the expansion coefficients are computed, the polynomial expansion defined in Eq.2.1 can

be used to predict the approximate response for any input variable (within the learning domain).

For instance, the mean and the variance of the response can be computed using the basis function

orthonormality property (Abdedou & Soulaimani, 2019). Their expressions are given by:

𝜇𝐷 =
∫

𝑌𝜌𝑥𝑑𝑋 =
∫

(

𝑁𝑃∑
𝛼=1

𝑏𝛼𝜑𝛼 (𝑋))𝜌𝑥𝑑𝑋 = 𝑏1 (2.3)

and

𝜎2
𝐷 =

∫
(𝑌 − 𝜇𝐷)

2𝜌𝑥𝑑𝑋 =
𝑁𝑃∑
𝛼=2

𝑏2
𝛼 (2.4)

Remark: The inputs variables are assumed to be independent in the above approach. However,

it is possible to use the Rosenblatt transformation (Lebrun & Dutfoy, 2009) to formulate the

problem as a function of auxiliary independent variables.

2.2.1.2 Deep neural networks

Deep neural networks (DNN) are widely considered to be a powerful and general numerical ap-

proach to building a nonlinear mapping between a set of inputs (features) and their corresponding

outputs (labels or targets). Deep neural networks are well-known in data science, with various



48

applications in science and engineering. In the PCE approach, the surrogate model comprises

linear combinations of fixed basis functions. Such models have useful practical applications, but

they may be limited by the curse of dimensionality for large data sets. It should be mentioned

that much effort has been invested in reducing the severity of the curse of dimensionality by

using sparse expansions (Papaioannou, Ehre & Straub, 2019). Furthermore, in order to apply

such models to large-scale problems, the basis functions must be adapted to the data. There

is a large body of literature on deep networks (Goodfellow et al., 2016; Bishop, 2006; Hsieh,

2009), and a brief description is given next. Deep neural networks use parametric forms for

basis functions, in which parameter values are adapted during training. Moreover, with respect

to these parameters, the model is nonlinear, as it uses nonlinear activation functions. Fig.2.1

illustrates a DNN with one hidden layer. The input data are mapped to the hidden layer (1) to

compute

ℎ(1)
𝑗 = 𝑓 (

𝑛∑
𝑖=1

𝑊 (1)
𝑗𝑖 𝑥𝑖 + 𝑎 (1)

𝑗 ) (2.5)

which are then fed to the output layer (𝑜) to compute the response

𝑦𝑘 = 𝑔(
∑
𝑗=1

𝑊 (0)
𝑘 𝑗 ℎ(1)

𝑗 + 𝑎 (0)
𝑘 ) (2.6)

where 𝑓 and 𝑔 are activation functions, 𝑊 (1)
𝑗𝑖 ,𝑊 (0)

𝑘 𝑗 are the weight parameters and 𝑎 (1)
𝑗 , 𝑎 (0)

𝑘

are the bias parameters. The number of neurons in the input layer is the number of input

features 𝑛, and 𝑚 is the dimension of the neural network response vector 𝑌𝑁𝑁 . The number

of hidden layers in a deep neural network and the number of neurons in each hidden layer

are hyperparameters optimized by experimentation guided by monitoring validation and test

errors. The network is trained on the data set to determine the weights and bias parameters by

minimizing the loss (error) function. As described earlier, a data set 𝐷 is composed of 𝑁 input

vectors 𝑋𝐷 = (𝑥 (1)𝐷 , 𝑥 (2)𝐷 , ..., 𝑥 (𝑁)
𝐷 )𝑇 , which are sampled from the PDF, and of the corresponding

targets, which are put in a vector 𝑌𝐷 = (𝑦 (1)𝐷 , 𝑦 (2)𝐷 , ..., 𝑦 (𝑁)
𝐷 )

𝑇
with 𝑦 (𝑖)𝐷 = 𝑀 (𝑥 (𝑖)𝐷 ). In regression

problems, the mean square error (MSE), also called the loss function, between the model outputs
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Figure 2.1 One-layer neural network

and the labels (targets) is used, along with a regularization term:

𝐽 =
1

𝑁

𝑁∑
𝑖=1

{
1

2

𝑚∑
𝑘=1

[
𝑦 (𝑖)𝑘 − 𝑦 (𝑖)𝐷,𝑘

]2
}
+ 𝜆

∑
𝑙,𝛼,𝛽

(𝑊 (𝑙)
𝛼𝛽 )

2
(2.7)

where 𝜆 is a regularization hyperparameter. An iterative approach based on the back-propagation

algorithm is used to minimize the loss function. The activation function 𝑓 is usually the sigmoid

or the rectified linear unit, while 𝑔 is the identity function for our regression problem. An example

of a deep network is presented in Fig.2.2, where five hidden layers are used; the input layer has

𝑛 = 5 input parameters, and the output layer has 𝑚 = 64 responses (𝑌𝑁𝑁 = (𝑦1, 𝑦2, ..., 𝑦64)
𝑇 ). It

can be shown that minimizing the error function 𝐸𝐷 in Eq.2.8 is equivalent to minimizing the

negative log of the likelihood function, under an assumed Gaussian distribution noise in the
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Figure 2.2 Five-layer Deep neural network

targets, with an assumed constant variance 𝜎2
𝐷 .

𝐸𝐷 =
1

𝑁

𝑁∑
𝑖=1

{
1

2

𝑚∑
𝑘=1

[
𝑦 (𝑖)𝑘 − 𝑦 (𝑖)𝐷,𝑘

]2
}
=

1

2𝑁

𝑁∑
𝑖=1

(𝑌𝐷 − 𝑌𝑁𝑁 )
2 (2.8)

Moreover, maximizing the log-likelihood with respect to the noise variance gives the solution

𝜎2
𝐷,𝑀𝐿 = 1

𝑁

∑𝑁
𝑖=1(𝑌𝐷−𝑌𝑁𝑁 )

2. Therefore, the prediction of the network for a given input parameter

vector 𝑋 is given by a Gaussian probability distribution with a mean 𝑌 (𝑋) = 𝑌𝑁𝑁 and a variance

𝜎2
𝐷,𝑀𝐿 , which represents the noise in the data. There are many public domain implementations

of (standard) Deep neural networks, such as the TensorFlow library (Abadi et al., 2016). In this

work, the Matlab deep learning neural toolbox is used (Beale, Hagan & Demuth, 2019).

2.2.1.3 Ensemble of models

In machine learning, ensembling is a technique used to improve the predictive performance

and reduce the generalization error by training several models separately, and subsequently

combining their solutions (Breiman, 1996; Goodfellow et al., 2016; Bishop, 2006; Hsieh, 2009).
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The idea here is that the ensemble (i.e., averaged solution) will perform at least as well as

any of its members. Given a data set, different neural network solutions can be obtained by

varying the number of layers, the number of neurons for each layer, the training algorithm, the

hyperparameters, etc. A simple and efficient approach is to use several random initializations of

the weights. This option has been proven efficient enough to generate an ensemble with partially

independent members (Jacquier, Abdedou, Delmas & Soulaïmani, 2021). Given a mixture of 𝐾

trained neural networks, each member outputs a solution with a mean𝑌 (𝑘)
𝑁𝑁 and a variance 𝜎 (𝑘)

𝐷,𝑀𝐿 ,

an averaged single normal mean distribution can be defined with a mean 𝑌 (𝑋) = 𝑌𝑒𝑛𝑠
𝑁𝑁 where:

𝑌𝑒𝑛𝑠
𝑁𝑁 =

1

𝐾

𝐾∑
𝑘=1

𝑌 (𝑘)
𝑁𝑁 (2.9)

and a variance given by:

𝜎2
𝑒𝑛𝑠 =

1

𝐾

𝐾∑
𝑘=1

{
(𝜎 (𝑘)

𝐷,𝑀𝐿)
2 + (𝑌 (𝑘)

𝑁𝑁 )
2

}
− (𝑌𝑒𝑛𝑠

𝑁𝑁 )
2 (2.10)

𝐾 is typically taken between 5 and 12 (in the following numerical results, it is assumed to be

equal to 10). Therefore, the numerical prediction of the network is represented by a Gaussian

with the mean 𝑌 (𝑋) and the variance 𝜎2
𝑒𝑛𝑠, which represents uncertainties in both the data and

in the weights.

2.2.2 Global sensitivity analysis

Sensitivity analysis provides a means of determining the effects of variations of input parameters

on the outputs of a model. If a small change in input parameters results in a relatively significant

difference in the output, then the parameter is considered significant for the model. In a global

sensitivity analysis, all the inputs are varied simultaneously over their range and are usually

considered independent. The fundamental steps constituting the global sensitivity analysis

technique are: i) specification of the computational model, ii) determination of relevant inputs

and their bounds, iii) input sample generation by a sampling design method, iv) evaluation
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utilizing the generated input parameters; and v) uncertainty analysis and calculation of the

relative importance of each input through a sensitivity estimator. For more mathematical details,

see (Das & Soulaïmani, 2019) and references therein. The code described in (Das & Soulaïmani,

2019) is also used for the present case study.

2.3 Case Study: Application to Romaine-2 Dam

A real rockfill dam was selected for a case study in order to illustrate the application of the

surrogate modelling methodology for global sensitivity analysis and uncertainty analysis. Fig.2.3

illustrates a 2D cross-section of the Romaine-2 dam built in Quebec (Canada) (Smith, 2015;

Vannobel et al., 2013). The dam is 112 m high, and has an asphalt core and is grouted on a

rock foundation. The asphalt core is surrounded by crushed stones having a maximum size of

80 mm, which act as supports. The transition zone (𝑁) lies next to the support region (𝑀),

composed of crushed stones having a maximum size of 200 mm. Moreover, the particles with

a maximum size of 600 mm are used in the inner shell zone (𝑂) and in the outer region (𝑃)

composed of rocks with a maximum size of 1200 mm. Two vertical inclinometers named

𝐼𝑁𝑉1 and 𝐼𝑁𝑉2 are installed at two different positions (see Fig.2.3(a)) to measure the vertical

displacements considered as the measured data in this study. Using the plane strain hypothesis,

a finite element of the dam structure was built using the commercial code Plaxis (Plaxis, 2017).

A mesh of (2187) triangular elements with 15 nodes each is presented in Fig.2.3(b), where

the different soil sub-domains are meshed accordingly, and more refinement is used around

the asphalt core. A mesh convergence study (Akbari Hamed, 2017) showed that the mesh is

fine enough. To simplify the study, the Mohr-Coulomb (𝑀𝐶) constitutive law was used, given

that the dam was heavily compacted during construction (Smith, 2015). Indeed, a detailed

numerical study (Akbari Hamed, 2017) showed that the discrepancies between the MC results

and those obtained with the more sophisticated Hardening-Soil model (Schanz et al., 1999) for

this rockfill dam are not significant. Several types of distributions could be utilized if more

data are available to generate the sample set of soil parameters. A datasets 𝐷 was built using

Sobol’s sampling algorithm to generate 𝑁 sets of 𝑛 = 5 physical parameters related to the
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sub-domain (𝑃). The parameters are the: cohesion(𝐶), specific weight (𝜌), shear modulus

(𝐺𝑟𝑒 𝑓 ), Poisson coefficient (𝜈), and friction angle (𝜙). For a sample (𝑖), the input vector is then

𝑥 (𝑖)𝐷 = (𝐶 (𝑖) , 𝜌(𝑖) , 𝐺 (𝑖)
𝑟𝑒 𝑓 , 𝜈

(𝑖) , 𝜙(𝑖))𝑇 . The parameters are supposed to follow a uniform distribution.

The dilatancy angle is set relative to the friction angle as 𝜓 = 𝜙 − 30 (in degrees). Only the

parameter variations in zone (𝑃) are considered in this study, as this domain covers the maximum

portion of the dam. Ideally, all sub-domain parameters could be included, but for the sake

of illustration, only zone (𝑃) is considered, as it is the most significant. The displacement

fields corresponding to 𝑁 sets of inputs 𝑥 (𝑖)𝐷 are obtained by running Plaxis (Plaxis, 2017).

The displacements on a number of points (32 in this case) on each inclinometer are extracted,

yielding a response vector 𝑌 (𝑖)
𝐷 of dimension 𝑚 = 64. Table.2.1 presents the parameter interval

Table 2.1 Soil parameter values or intervals of variations for zones P, N, O, and M

Soil parameters Units P N O M
LB UB

Cohesion (𝐶) 𝐾𝑁𝑚−2 10−3 0 0 0 0

Specific weights (𝜌) 𝐾𝑁𝑚−3 21.375 23.625 23.7 22.5 24.5

Shear modulus (𝐺𝑟𝑒 𝑓 ) 𝐾𝑁𝑚−2 25000 35000 64000 45000 110000

Poisson coefficient (𝜈) −− 0.234 0.3465 0.33 0.22 0.33

Friction angle (𝜙) 𝑑𝑒𝑔𝑟𝑒𝑒 40.85 45.15 47 45 47

of variations of zone 𝑃 and parameter values of zones 𝑁 , 𝑂 and 𝑀 . The parameter estimates in

Table.2.1 are based on a previous study conducted in (Smith, 2015; Akbari Hamed, 2017).

2.3.1 Sample size convergence study

The Sobol sampling technique (Joe & Kuo, 2008) was used to generate the samples by varying their

size N (𝑁 = 12, 48, 96, 156, 204, 252, 300, 348, 392, 444, 496, 512, 600, 720, 840, 900, 1080, 1500

and 3000). The corresponding numerical simulations were performed using Plaxis, which

required 587 CPU hours on an Intel-i7 PC, for 𝑁 = 3000. To build confidence in the generated

database, a convergence study with respect to N was performed for the standard deviation of

the vertical displacement at the 64 measurement points on the inclinometers. To check the

convergence for this statistical study, standard deviation plots were built for the sample size
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a) Cross-section of the Romaine-2 dam in Plaxis. Different zones of the dam are highlighted in

alphabet. The vertical inclinometers are denoted by INV1 and INV2

b) Mesh used for the computational domain

Figure 2.3 Romaine-2 dam

at three positions on each inclinometer: at the top, middle and bottom (see Fig.2.4). The

standard deviations show some fluctuations as the sample size is increased up to 1080; however,

between sample sizes 1080 and 3000, the standard deviation is close to constant (up to 1% of

variation), which implies that sample size 1080 is sufficient for subsequent sensitivity studies.

The confidence intervals for the displacements (mean ±2 standard deviation) obtained by using

this classical statistical analysis (which is a Monte Carlo simulation (MCS)) are shown in Fig.2.5.

The measured data for each inclinometer are also represented in this Fig., revealing fluctuations

that can be attributed to some external effects such as the installation process, calibrations,

temperature variations, and human factors, which may have influenced some probes in the

inclinometers. At the bottom, where the displacements should be zero, there is instead a 2.5 𝑐𝑚

displacement. Therefore, the uncertainty in the measured displacement is estimated to be at

least ±2.5 𝑐𝑚. Fig.2.5 shows that, considering the uncertainties, the measured data are mostly

within the predicted numerical confidence intervals, especially when the displacements are more
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a) Top section of the dam b) Middle section of the dam

c) Bottom section of the dam

Figure 2.4 Variations of standard deviation (of the vertical displacement) with respect

to the sample size for each inclinometer. The plots are built for the nodes close to the top,

middle, and bottom sections of the dam

significant. The statistical confidence intervals could be enlarged by changing the distribution

intervals of the input parameters. Indeed, we used a priori uniform distributions on estimated

input intervals (Smith, 2015).

2.3.2 Sobol indices

A Sobol index is defined as the ratio of partial variances to the total variance, and reflects the

relative importance of each input parameter (Li et al., 2010), as shown in Fig.2.6 for points
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a) Vertical displacements for inclinometer INV1 b) Vertical displacements for inclinometer INV2

Figure 2.5 Confidence intervals for numerical vertical displacements

located at the top, middle, and bottom of the inclinometers. The indices here range from 0 to 1.

It is evident from Fig.2.6 that the shear modulus is the dominant parameter, with a contribution

of 44% to 71% in the top sections of the dam, and that it diminishes gradually with the depth.

The Poisson’s coefficient is the second most significant parameter, with a smaller effect (24%)

on top, and a high impact (84%) close to the foundation. At 140m, there is the foundation (made

up of grouted rocks) of the dam, therefore the impact of soil parameters is abrupt in the bottom.

The first-order indices are calculated along the inclinometers, as shown in Fig.2.7. As stated

earlier, for both inclinometers, the shear modulus is dominant in the upper section of the dam.

The Poisson’s coefficient is another crucial parameter influencing the dam’s behaviour. While it

is less influential at the top section, its impact increases as we head towards the bottom part. The

specific weight only affects the lower section. Thus, the shear modulus and Poisson coefficients

are the most significant parameters, although their contributions vary with the elevation.

2.3.3 Surrogate Modeling

Surrogate modelling is an approach aimed at generating an approximate numerical model to

reduce the computing time, especially when a large number of simulations are required, as

is the case in uncertainty and sensitivity analysis. Instead of using the ‘full-order’ original
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a) INV1 top section of dam b) INV2 top section of dam

c) INV1 middle section of dam d) INV2 middle section of dam

e) INV1 bottom section of dam f) INV2 bottom section of dam

Figure 2.6 The pie charts show the sensitivity indices for INV1 and INV2 vertical

displacements, respectively

finite element model, an approximate one called a ‘surrogate model’ (or surface response) is

built using the input-output database. Many techniques could be used, but here we consider

Polynomial Chaos Expansions and Deep neural networks. Based on the convergence study in
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a) INV1 1st-order Sobol indices b) INV2 1st-order Sobol indices

Figure 2.7 First Sobol variations with respect to the elevation

Section.2.3.1, the 𝑁 = 1080 datasets are accurate enough to build the surrogate models. To

assess the accuracy of these models, we examine the residual errors (the root mean square error

(RMSE) and the coefficient of determination (𝑅2)).

2.3.3.1 Polynomial Chaos Expansion (PCE)

A Polynomial Chaos Expansion-based method (Wiener, 1938) is a probabilistic technique that

can be used to build an accurate surrogate model. The degree of the polynomials and the

regularization parameters are tuned for the best results. The PCE degree is varied from 2 to

6, and the regularization parameter 𝜆𝑃 is taken as 0.001, 0.01 and 0.1 respectively. The mean

and standard deviation are calculated using the surrogate model obtained by running a simple

Monte Carlo method on the PCE. The evaluation of the absolute mean error with respect to the

polynomial order and the regularization parameter for an output response is shown in Fig.2.8,

and is defined as:

𝐸1 =
1

𝑚

𝑚∑
𝑖=1

‖𝑌𝑖
𝑚𝑝 − 𝑌𝑖

𝑚𝑠‖ (2.11)

where 𝑚 is the number of nodes and 𝑌𝑚𝑝 denotes the mean of predicted displacement at the

same node as 𝑌𝑚𝑠, the simulated displacements. Ideally, 𝜆𝑃 is selected as the smallest value,



59

a) INV1 b) INV2

Figure 2.8 Absolute mean error for degree and regularization parameters

avoiding overfitting. Fig.2.8 shows that for 0.001, 0.01 and 0.1, the value 𝐸1 decreases with the

polynomial degree for both inclinometers. Therefore, the results for 𝑃 = 6 and 𝜆𝑃 = 0.001 are

considered as the most reliable.

a) Vertical displacements for inclinometer INV1 b) Vertical displacements for inclinometer INV2

Figure 2.9 Confidence intervals using Polynomial Chaos Expansion-based surrogate

model

Fig.2.9 shows that the measured and predicted displacements obtained using PCE trained

for data sets N=300 and N=1080 are in better agreement. Moreover, when considering the
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measurements along with their uncertainties, we see that they are mostly within the predicted

numerical confidence intervals of PCE, especially when the displacements are more significant.

The first-order indices along the inclinometers by using PCE are shown in Fig.2.10. As stated

earlier, for both inclinometers, the shear modulus is dominant in the upper section of the dam.

The Poisson’s coefficient is another crucial parameter influencing the dam behavior. While it is

less influential at the top section, its impact increases as we head towards the bottom part. The

specific weight only affects the lower section. Thus, the shear modulus and Poisson coefficients

are the most significant parameters, although their contributions vary with the elevation. The

Sobol indices at the top, middle and bottom of the dam are also recomputed based on the

PCE surrogate model, as shown in Fig.2.10 and Fig.2.11 , which illustrates almost the same

information and conclusions as those shown in Fig.2.6 and Fig.2.7.

The shear modulus is the dominant parameter, with a contribution of 50 to 70% in the top

sections of the dam, and whose influence diminishes gradually with the depth. The Poisson

coefficient is the second most significant parameter, with a smaller effect (18%) on top and a

high impact (90%) close to the foundation.

2.3.3.2 Deep neural network results

In order to fit the data, a MATLAB function ‘Neural Net Fitting’ is used with a five-layer

feedforward network, as shown in Fig.2.2. A scaled conjugate gradient algorithm was used for

the training. The (𝑁 = 1080 and 𝑁 = 300) datasets were divided into training, validation, and

testing subsets, at the following proportion: 70%, 15%, and 15% respectively. An ensemble

of 10 trained networks was created by randomly initializing the weights in the training, and

the outputs were predicted individually and averaged to get an ensemble output solution. An

example of plots for data sets 𝑁 = 300 and 𝑁 = 1080, showing the fitness variation with respect

to the training iterations (epochs) is presented in Fig.2.12.

The mean and standard deviation are calculated using the surrogate model obtained by running a

simple Monte Carlo method on the ensemble neural network model. The mean and variance for
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a) INV1 top section of dam b) INV2 top section of dam

c) INV1 middle section of dam d) INV2 middle section of dam

e) INV1 bottom section of dam f) INV2 bottom section of dam

Figure 2.10 The pie charts show the sensitivity indices based on PCE for INV1 and

INV2 vertical displacements, respectively

the ensemble model are computed by Eq.2.9 and Eq.2.10.

The displacements obtained with the ensemble neural network are shown in Fig.2.13, and are

very similar to those obtained with the statistical approach Fig.2.5, and are the pie charts and the
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a) INV1 1st-order Sobol indices b) INV2 1st-order Sobol indices

Figure 2.11 First Sobol index results obtained using PCE surrogate model

a) Convergence of the fitness function for

N=1080

b) Convergence of the fitness function for

N=300

Figure 2.12 Performance of NN

indices as shown in Fig.2.14 and Fig.2.15 respectively. The displacement standard deviations

calculated on the inclinometers using the statistical approach (MCS) and the PCE surrogate

models and DNN models are reported in Table.2.2, with a maximum standard deviation for all

methods close to 4 centimeters. Moreover, near the foundation of the dam the displacements are

almost zero. Fig.2.16 shows the computational efficiency for the CPU for one plaxis realizations
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Table 2.2 Comparative study of standard deviation in 𝑚 by numerical simulations and

surrogate models for top, middle and bottom sections of the dam

Inclinoimeters INV1 INV2
Approach Top Middle Bottom Top Middle Bottom
Statistical 0.0388 0.0282 0.0043 0.0292 0.0161 0.0028

approach (MCS)

Polynomial Chaos 0.0364 0.0291 0.0084 0.0313 0.0238 0.0079

Expansion(PCE)

Ensemble of Deep 0.0387 0.0311 0.00121 0.0285 0.0189 0.0042

neural networks

a) Vertical displacements for inclinometer INV1 b) Vertical displacements for inclinometer INV2

Figure 2.13 Confidence intervals using an ensemble of neural networks-based

and for the surrogate models with respect to the number of samples for soil parameters. It can

be observed that the surrogate models are more efficient to predict the results as compared

to getting the simulations by the FEM model. Noteworthy, this result will be helpful for an

upcoming study that consists of the identification of soil parameters by inverse analysis. In the

inverse analysis, the optimization algorithm makes hundreds of calls to obtain the numerical

solutions (Das & Soulaimani, 2021). Therefore, the surrogate models will be used instead of the

full-order original finite element model for computational efficiency. The outcome of this study

is that indeed NN requires much fewer samples to realize a sensitivity or identification analysis

compared to the full-order model.
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a) INV1 top section of dam b) INV2 top section of dam

c) INV1 middle section of dam d) INV2 middle section of dam

e) INV1 bottom section of dam f) INV2 bottom section of dam

Figure 2.14 The pie charts show the sensitivity indices based on DNN for INV1 and

INV2 vertical displacements, respectively
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a) INV1 1st-order Sobol indices b) INV2 1st-order Sobol indices

Figure 2.15 First Sobol variations with respect to the elevation

Figure 2.16 Computational Efficiency for the displacements obtained by

FEM, PCE and NN
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2.4 Conclusion

This paper contributes to rockfill dams’ sensitivity and uncertainty analysis using the surrogate

modelling approach. The approach was applied to an actual rockfill dam with an asphalt core.

Two surrogate models were developed, namely, a Polynomial Chaos Expansion (PCE) model and

a Deep Neural Network (DNN), by training for two data sets, N=300 and N=1080. Their results

were compared to those obtained with Monte Carlo simulations. The variance-based sensitivity

analysis reinforces that the shear modulus and the Poisson coefficient are the parameters that

play the most significant role in the dam’s behaviour. Therefore, when considering all material

sub-domains, these two parameters may be kept as the only significant uncertain parameters,

thereby significantly reducing the total number of uncertain inputs. A second analysis was

conducted by sampling the input parameters using a uniform probability distribution. The

statistical mean displacements, on two inclinometers, obtained with the PCE surrogate model,

were more consistent with the mean of the measured data than those computed with the DNN

model. Overall, this study shows that building surrogate models reduces the computational cost

of numerical models when a large number of simulations are required, as in sensitivity and

uncertainty analysis.



CHAPTER 3

DEEP NEURAL NETWORK-BASED INVERSE ANALYSIS WITH APPLICATION TO
A ROCKFILL DAM

Gullnaz Shahzadi1 , Azzeddine Soulaïmani1

1 Department of Mechanical Engineering, Ecole de Technologie Supérieure, 1100 Notre-Dame

W., Montreal (QC), Canada H3C 1K3

This article has been Submitted in:

KSCE Journal of Civil Engineering, on 27 February 2023

Abstract

The availability of significant computational resources has played an essential role in developing

advanced numerical models for the design and safety assessment of complex structures such as

rockfill dams. Determining the geomechanical parameters is a crucial but challenging task for

effective modelling. The general approach involves using laboratory or in situ tests or empirical

relationships from the literature to estimate these parameters. However, such measures lack

an accurate representation of the actual scenario. This paper proposes a data-driven approach

using deep neural networks and non-deterministic optimization algorithms to identify the soil

parameters leading to displacements that best approximate the measured data. The methodology

is applied to a rockfill dam recently built in Quebec, for which some measurements of inclinometer

displacements are available. A two-dimensional finite element model (FEM) generates the

numerical solutions. A comparative study is performed to account for the heterogeneity of

the materials by decomposing the computational domain into subdomains. Subsequently, the

inverse analysis uses the surrogate model instead of the full FEM model for rapid computations.

A suitable objective function is defined to account for large oscillations in the measurement

data. Non-intrusive stochastic optimization algorithms (Genetic algorithm (GA), Particle Swarm

Optimization (PSO), and Differential evolution (DE)) are evaluated for the minimization problem.

Finally, the case study confirms the capability of the proposed methodology to identify the

relevant dam parameters and provides insights into the performance of the three optimization

algorithms.
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3.1 Introduction

To overcome new challenges, engineers face the demand for innovative computational methods

in geotechnical engineering. These methods are essential in the design process and dam safety

assessments. A dam that relies on rocks compacted in layers or dumped in lifts is known

as a rockfill dam (Asthana & Khare, 2022). Rockfill dams are increasing in geotechnical

water conservation projects due to their low cost and short construction period. In the early

nineteens, to prevent seepage through rockfill, impervious membranes of asphaltic concrete or

cement concrete were used on the upstream face of the dam. However, geotechnical engineers

face significant challenges in designing rockfill dams due to the uncertainties in the material

properties used in their complex structures (Akbari Hamed, 2017). The finite element method

(FEM) combined with the appropriate soil constitutive laws is considered the most powerful

approach for dam modeling and design (Pietruszczak, 2010). However, the lack of information

on soil properties limits each constitutive model from representing the actual dam behavior.

Different materials are used for each zone in dam construction; therefore, identifying the material

parameters for each zone will help to improve the modelling. In this context, the inverse analysis

provides an easy and efficient way to identify the soil parameters when appropriate measurement

data is available (Yin et al., 2018; Carbonari, Dezi, Arezzo & Gara, 2022). Inverse analysis

tries to minimize a norm that defines the difference between the numerical solutions and the

measurements. However, this procedure may become time-consuming if a large-scale FEM

model is used during the iterative optimization process. Several methods have been developed

to improve efficiency by replacing the time-consuming FEM calculations for inverse analysis.

For instance, the finite element method can be replaced for parametric studies and calibration by

numerical methods based on suitable orthogonal decomposition in conjunction with radial basis

interpolation (Bolzon & Buljak, 2011).
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Geotechnical problems are characterized by significant uncertainties and involve various factors

that engineers cannot determine directly. Due to the inherent complexity of geotechnical

materials, researchers replace tedious theoretical solutions with flexible computational methods

to solve various geotechnical design and evaluation problems, a practice which has led to the

rapid popularity of machine learning (ML) methods (Zhang et al., 2021a; Zhang & Phoon,

2022). The popularity of ML and deep neural network (DNN) models in complex engineering

problems has also encouraged researchers in the field of geotechnics to apply these techniques

(Shahriari, Pardo, Moser & Sobieczky, 2020).

In the last decade, the use of surrogate modeling in geotechnical applications based on machine

learning (ML) methods has increased in popularity(Phoon & Zhang, 2022; Salazar & Hariri-

Ardebili, 2022; Kang, Liu, Li & Li, 2022). However, limited studies have been conducted on

actual data-based ML. Deep neural networks require less human guidance and vast amounts

of data compared to other ML methods to explore the complex, heterogeneous, and inherent

relationships hidden in the data (Zhang et al., 2022). Most ML algorithms build a surrogate

model and then optimize the objective function (or loss function) via optimization algorithms

to find the best model with the best performance. To improve the accuracy of establishing a

surrogate model in ML, ensemble learning trains multiple algorithms to gain complementary

advantages and achieve better prediction results than a single algorithm. The state-of-the-art

approach uses a regression model based on DNNs to approximate the original FEM model

(Shahzadi & Soulaïmani, 2021; He, Wang, Li & Sheng, 2022), due to its efficiency compared to

purely sampling methods.

Several constitutive models exist, and each involves different soil parameters. In addition, a dam

is constructed of several material zones; consequently, different soil parameter values must be

employed, which requires automatic calibration of soil parameters. However, several factors

affect the calibration process, such as the number of parameters and the smoothness of the data.

In recent research, optimization techniques have been widely used in inverse analysis to reduce

the computational cost and improve accuracy (Zhao & Yin, 2016; Das & Soulaimani, 2021;

Zhang et al., 2022).
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An inverse analysis based on the multi-output least-squares support vector regression machine

(MLSSVR) and improved differential evolution algorithm (IDE) is proposed in (Bao, Li, Lu & Gu,

2020) to map the relationship between numerical displacements of the dam and related soil

parameters. However, the above methods require establishing many inversion models with

different sample sizes for sufficient accuracy. A hybrid fireworks algorithm (FWA) with a

surrogate model based on radial basis functions was proposed in (Dou, Li & Kang, 2019)

to identify the elastic modulus of concrete dams. The radial basis function neural network

(RBFNN) model based on brainstorm optimization and genetic algorithm was developed to

predict slope stability(Shang et al., 2022). Although the surrogate models based on RBF

improve the efficiency and accuracy, those improvements have only been validated for pseudo

experiments, i.e., without using any measured data from real dams. Therefore, this technique

needs more verification for engineering practice.

Inverse analysis based on optimization techniques has been utilized in various applications

of geotechnical engineering (Hashash et al., 2010a; Kim & Finno, 2019; Levasseur et al.,

2010; Vahdati, Levasseur, Mattsson & Knutsson, 2014). The most common optimization

techniques to identify the optimal parameters are the Genetic Algorithm (GA) (Zhou et al.,

2016; Deng-gang, Ying-xi & Shou-ju, 2000; Vahdati et al., 2013), Particle swarm optimization

(Kennedy & Eberhart, 1995; Jia & Chi, 2015; Dou et al., 2017), and the Differential evolutionary

method (DE) and its modified forms (Yin et al., 2018). Moreover, the precise formulation of the

objective function according to the problem requirement is crucial to achieving the optimum,

particularly when the measurement data on the inclinometers present large oscillations. Hence,

there is a need to formulate an appropriate objective function that can be used as a prepossessing

phase in parameter identification (Hokes, Kral, Krnavek & Husek, 2017). (Eykhoff, 1974)

presents several methods used to define an objective function.

This paper proposes a data-driven approach using deep neural networks and non-deterministic

optimization algorithms to identify the best parameters to fit non-smooth measurements. The

methodology is applied to a rockfill dam recently built in Quebec, for which some measurements

of inclinometer displacements are available. A set of FEM numerical solutions is computed
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by sampling the input parameters using Sobol’s sampling technique (Sobol, 1993). A deep

neural network (DNN) with five layers is used to build a surrogate model of the FEM of the

dam. Consequently, a multi-objective function for the displacements of four inclinometers is

incorporated into a single error function by using the weighted sum method (Gunantara, 2018).

Non-intrusive optimization algorithms are then used to identify the soil parameters by minimizing

an error function measuring the difference between the numerical predictions (obtained online

using the surrogate model) and the measured data. As a benchmark, we consider the case of a

rockfill dam called Romaine-2 (Smith, 2015). More specifically, a two-dimensional plane-strain

finite element model is used in the geotechnical software Plaxis (Plaxis, 2017) to compute the

numerical displacements for two separate cross-sections of the dam where data are available.

The Mohr-Coulomb elastoplasticity model(MC) (Labuz & Zang, 2012) is employed to model

the nonlinearities. The Romaine-2 dam is composed of five different material zones.

The rest of this paper is organized as follows: the next section presents the methodology for

inverse analysis, including surrogate modelling, objective function formulation, and a brief

presentation of optimization algorithms. A case study of the Romaine-2 dam is then described

in the third section. Finally, the relevant dam parameters estimated by the analysis are presented

along with insights into the performance of the three procedures to solve the inverse problem.

The conclusion also proposes an avenue to explore to expand this approach.

3.2 Methodology

The parameters of the constitutive soil models used in the modelling of complex continuum

media are often associated with high degrees of uncertainty. The inverse analysis provides a

way to identify these parameters. The procedure involves using real measured or synthetic

data (stemming from multiple runs of a high-fidelity numerical model). Using optimization

methods and a reduced-order model for the system, it is possible to determine the values of

the parameters by minimizing the difference between simulated and observed results. As an

actual application, we consider the measured data from an actual rockfill dam in Quebec and
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propose a surrogate-assisted non-deterministic framework for the inverse analysis. The parameter

identification process is composed of three main steps: 1) a surrogate model is built by using

numerical simulations data sets to predict the numerical displacements; 2) the formulation of

an objective function, which measures the difference between the measured and the predicted

variables; and 3) the use of a robust optimization algorithm to minimize the objective function.

Fig.3.1 illustrates the flow chart of the methodology.

Figure 3.1 The flowchart of the proposed Methodology

3.2.1 Surrogate Modeling

Most continuum mechanical problems are described by parameterized nonlinear partial dif-

ferential equations (PDEs). The finite element and finite volume methods are among the

most popular approaches to discretizing these equations. When they are solved over fine

spatial meshes and for a high number of parameters, PDE discretizations lead to the so-called

high-fidelity numerical models. Furthermore, in the context of uncertainty or inverse analyses,
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the overwhelming demand for computational resources makes these high-fidelity computations

too expensive to allow repeated solutions for various parameters. Reduced-order modelling has

been considered a promising approach for learning and representing high-fidelity models through

a reduced-dimension manifold (or surrogate model). We adopt the non-intrusive paradigm,

in which a surrogate model is trained using existing data which works in a black-box manner

without requiring access to the source codes. This data-driven approach has been attracting

increased attention in various engineering fields, stimulated by the explosive development of

machine learning.

3.2.1.1 Deep neural networks

In modern research, deep neural networks (DNN) are widely used as a powerful and common

numerical approach to creating a non-linear mapping between inputs (features) and their

corresponding outputs (labels or targets). Deep neural networks are structured with nodes; a

node collects the inputs, sums the weights, and applies the activation functions to produce the

outputs. Nodes are arranged in several layers. The nodes in one layer are connected to the

nodes of the subsequent layer. However, the nodes in each layer are not interconnected. The

parametric forms for basis functions are used in deep neural networks, in which parameter values

are adapted during training. Moreover, the model is nonlinear, as it uses nonlinear activation

functions. Fig.3.2 illustrates a DNN with one hidden layer. The input data are mapped to the

hidden layer (1) to compute

ℎ(1)
𝑗 = 𝑓 (

𝑛∑
𝑖=1

𝑊 (1)
𝑗𝑖 𝑥𝑖 + 𝑎 (1)

𝑗 ) (3.1)

which are then delivered to the output layer (𝑜) to compute the response

𝑦𝑘 = 𝑔(
∑
𝑗=1

𝑊 (0)
𝑘 𝑗 ℎ(1)

𝑗 + 𝑎 (0)
𝑘 ) (3.2)

where 𝑓 and 𝑔 represent the activation functions, and where 𝑊 (1)
𝑗𝑖 ,𝑊 (0)

𝑘 𝑗 are the weight parameters

and 𝑎 (1)
𝑗 , 𝑎 (0)

𝑘 are the bias parameters.

An iterative technique based on the back propagation algorithm is used to minimize the error
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Figure 3.2 One-layer neural network

function 𝐽. Generally, the activation function 𝑓 is the sigmoid or the rectified linear unit;

however 𝑔 is the identity function for our regression problem. Fig.3.3 presents an example of a

deep network, where five hidden layers are used; the input layer has the dimension 𝑛 = 5 and the

output layer has 𝑚 = 128 nodes. There are many public domain implementations of a (standard)

deep neural network, such as the TensorFlow library, PyTorch and Keras. The Matlab deep

learning neural toolbox is used (Beale et al., 2019) in this study.

3.2.1.2 Ensemble of models

An ensemble learning technique is used in machine learning to improve the predictive performance

and reduce the model uncertainty, training various models separately and combining their
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Figure 3.3 A five-layer Deep neural network

solutions (Goodfellow et al., 2016; Bishop, 2006; Hsieh, 2009). The idea here is to obtain

different neural network solutions by varying the number of neurons in hidden layers, the training

algorithms and the hyper-parameters, etc. An efficient approach uses the random initialization of

weights, effectively generating an ensemble with partially independent members (Jacquier et al.,

2021). Given the combination of 𝐾-trained neural networks, each member develops a solution

with a mean 𝑌 (𝑘)
𝑁𝑁 and a variance (𝜎 (𝑘)

𝐷,𝑀𝐿)
2; an average single normal average distribution can be

defined with a mean 𝑌𝑒𝑛𝑠
𝑁𝑁 , where:

𝑌𝑒𝑛𝑠
𝑁𝑁 =

1

𝐾

𝐾∑
𝑘=1

𝑌 (𝑘)
𝑁𝑁 (3.3)

and variance is given by:

𝜎2
𝑒𝑛𝑠 =

1

𝐾

𝐾∑
𝑘=1

{
(𝜎 (𝑘)

𝐷,𝑀𝐿)
2 + (𝑌 (𝑘)

𝑁𝑁 )
2

}
− (𝑌𝑒𝑛𝑠

𝑁𝑁 )
2 (3.4)



76

𝐾 is usually taken between 5 and 12 (in the following numerical results, it is assumed to equal

10). Therefore, the numerical prediction of the network is represented by a Gaussian with the

mean 𝑌𝑒𝑛𝑠
𝑁𝑁 and the variance 𝜎2

𝑒𝑛𝑠, which represents uncertainties in both the data and the weights.

3.2.2 Formulation of the objective function for calibration

For rockfill dams, the constitutive soil parameters are the variables to be identified. In general,

the reliability of the identification process is a function of the quantity and the quality of the

measured data set. In the present work, some displacement measurements made by inclinometers

in a rockfill dam are available. The most straightforward method to define an objective function

is to use the mean square error:

𝐽𝑜𝑏 𝑗 =
1

𝑁𝑚

𝑁𝑚∑
𝑖=1

(𝑌𝑖 − 𝑌𝑖)
2 (3.5)

where 𝑁𝑚 is the number of measurement points, 𝑌𝑖 is the measured data, and 𝑌𝑖 is the numerical

prediction. A generalization of the above equation that considers additional weights 𝐶𝑖 is given

by:

𝐽𝑜𝑏 𝑗 =
1

𝑁𝑚

𝑁𝑚∑
𝑖=1

𝐶𝑖 (𝑌𝑖 − 𝑌𝑖)
2 (3.6)

More weight could thus be given to the more reliable measurements, as uncertainties are unavoid-

able due to several factors that affect the performance of inclinometers. These uncertainties may

be reflected in large fluctuations displayed in the measured displacement plots. Such fluctuations

may make the optimization iterative process difficult to converge or cause it to converge to an

unreliable solution. Therefore, the weights 𝐶𝑖 are formulated here as:

𝐶𝑖 = tanh(
1

𝛿𝑖
) (3.7)

𝛿𝑖 = 𝛽(
𝑌𝑖 − 𝑌𝑚

𝜎𝑚 + 𝜀
)2 (3.8)
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where𝑌𝑚 is the mean of the measured displacements along the inclinometers, 𝜎𝑚 is their standard

deviation, 𝛽 is an empirical parameter (𝛽 = 3 is a typical value), and 𝜀 is a small numerical

value to avoid a division by zero. A large value of 𝛿𝑖 indicates a large uncertainty affecting the

ith measured data, and when it is present, 𝐶𝑖 will tend to zero. However, for small 𝛿𝑖, indicating

less uncertainty, 𝐶𝑖 will be close to 1. To calibrate the soil parameters more accurately, the

objective functions corresponding to each inclinometer needs to be minimized simultaneously.

For a multi-objective problem, the weighted sum method can incorporate multi-error functions

into a single composite function (Murata & Ishibuchi, 1995). The greater the weight, the higher

the priority of the function compared to an objective function associated with a lower weight

(Gunantara, 2018). Several approaches are used to determine weights; in this study, we chose a

similar weights approach.

3.2.3 Selection of a robust optimization algorithm

A robust algorithm is required to obtain the global minimum for the objective function, considering

the data fluctuations. Previously, deterministic techniques were widely used in the application

of geotechnics for inverse problems due to their fast convergence (Nocedal & Wright, 2006).

However, these methods are insufficient to deal with nonlinear geotechnical applications. To

avoid the pitfalls of solution divergence or of a solution trapped in local minima, non-deterministic

or stochastic optimization techniques are preferred (Coello, Lamont, Van Veldhuizen et al.,

2007).

A variety of non-deterministic optimizers are available, such as Genetic Algorithms (GAs),

Particle Swarm Optimization (PSO), and Differential Evolution (DE), and have been applied

in several geotechnical applications (Yin et al., 2018; Boumezerane, 2022). These techniques

are briefly described in the following subsection. The algorithms are implemented in Matlab’s

optimization toolbox (MATLAB, 2016), which is used in this study.
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Figure 3.4 Flow diagrams of the GA, PSO and DE algorithms representing the different

steps associated with the three non-deterministic algorithms

3.2.3.1 Genetic Algorithm(GA)

The Genetic algorithm (GA), initially developed by (Holland et al., 1992), is defined as a search

procedure based on the mechanism of natural evolution and involves selection and genetics

(Darwin, 2007). Unlike gradient-based methods, the optimal solution of a GA is not a function

of the initial solutions, giving it a robustness that is the main reason for its popularity. However,

robustness is often associated with a higher computational cost than conventional optimization

procedures. The genetic algorithm flow chart is shown in Fig.3.4(a). It consists of four crucial

steps: initialization, evaluation, selection, and combination. An initial population set of possible

solutions is generated randomly by considering the specific bounds of each parameter in the

first step. Next, each individual’s fitness is evaluated to meet convergence criteria based on

stochastic principles. The chromosomes with the lowest functional values are selected as parents

for the next set of operations, where a crossover probability combines them to create offspring.

The idea is to imitate what occurs in nature, where the best chromosomes are passed onto new

offspring to secure an improved next generation. This study applies a single-point crossover
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approach with a 0.6 probability ratio. The mutation probability is defined as 0.1 to achieve the

global optimum. The pseudo-code for GA is summarized in Algorithm 3.1:

Algorithm 3.1 An algorithm of GA

1 Create the initial population

2 Evaluate the fitness function for each individual

3 while Termination is not met do
4 Selection

5 Crossover with a 0.6 probability ratio

6 Mutation (Probability ratio = 0.1)

7 Evaluate fitness

8 end while

3.2.3.2 Particle Swarm Optimization(PSO)

Particle Swarm is a nonlinear global optimization technique for continuous functions introduced

by (Kennedy & Eberhart, 1995), based on the theory of bird flocking, swarming, and fish

schooling. In PSO, various search points are explored together in each iteration. The design

variables in PSO can take any value based on their actual position in the search space and in the

velocity vector, compared to GA (binary encoding). Moreover, PSO is ideal for asynchronous

parallel implementation as it contains no evolution operators (mutation or crossover). Although

both GA and PSO have the same function in investigating the solution, the particle swarm

optimization algorithm is directed by the individual and global fitness of the particles and their

current position to obtain their following post in the search space. Individuals explore the search

space to achieve their target, and if any particle finds the source to reach the target, it starts to

chirp louder and louder, and as a result, the other birds/particles circle the area. If any particle

from the circle comes closer to the target, it chirps even louder, and the others veer towards

it. This tightening pattern continues until one of the birds/particles locates the food/target.

The algorithm keeps track of three global variables: 1) The Target value or condition, 2) The

Global best value indicating which particle’s data is currently closest to the Target, and 3) The

Stopping value, which indicates when the algorithm should stop if the Target is not found.
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The PSO algorithm generally seeks the global optimum among individuals by utilizing their

shared information and collaboration. The PSO algorithm works in the directions given by the

optimal position (𝑃𝑃𝑏𝑒𝑠𝑡) of each particle and the global best position (𝐺𝐿𝑏𝑒𝑠𝑡) of the whole

population. The movement of the particles indicates the next position in the search space. The

position vector and velocity of a 𝑗 particle are denoted by 𝑥 𝑗 and 𝑉𝑗 , respectively, and updated

for the 𝑘𝑡ℎ iteration using the following formulas (Arora, 2015):

𝑉𝑘
𝑗 = 𝑤1𝑉

𝑘−1
𝑗 + 𝑐1𝑟1(𝑃𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑘−1

𝑗 ) + 𝑐2𝑟2(𝐺𝐿𝑏𝑒𝑠𝑡 − 𝑥𝑘−1
𝑗 ) (3.9)

and

𝑥𝑘
𝑗 = 𝑥𝑘−1

𝑗 +𝑉𝑘
𝑗 (3.10)

where 𝑟1 and 𝑟2 𝜖 [0, 1] are random numbers, whereas 𝑐1, 𝑐2 and 𝑤1 are algorithmic tuning

parameters. In this study, the tuning parameters 𝑐1, 𝑐2 are set equal to 2 and 𝑤1 is 0.9. The

pseudo code for PSO is as follows:

Algorithm 3.2 An algorithm of PSO

1 Initialization of position and velocity of the particle

2 while Termination is not met do
3 For each particle

4 Evaluate the fitness function

5 Select the particle with the best fitness value

6 Compute velocity and position of particle by Eq.3.9 and 3.10

7 end while

3.2.3.3 Differential Evolution(DE)

The differential evolution (DE) algorithm is based on an evolutionary approach introduced by

(Storn & Price, 1997). DE is useful for non-differentiable, nonlinear, discontinuous functions,

and have many local minima. Several new differential evolution methods were introduced over

the past decade (Eltaeib & Mahmood, 2018). Recent studies (An, Kang, Kim & Song, 2019;
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An et al., 2020; Yang et al., 2019) have elevated the DE, making it a top-ranked optimization

technique. The differential mutation strategy of DE distinguishes it from other evolutionary

techniques; the technique applies to all individuals and explores the space based on other

individual solutions. The selection method and control parameters are the two main factors that

enhance the performance of DE. The DE strategy consists of mutation, crossover and selection

operators that are used for each iteration to find the global optimum. The population size,

scaling factor and the crossover rate are the control parameter components used in DE. Various

studies have aimed to improve DE by introducing some variations in the mutation or crossover

parameters (Yagiz, Yazitova & Karahan, 2020). The main steps of DE are presented in the flow

chart in Fig.3.4(c). Initially a population set is created randomly, and then three random vectors

are sampled to generate the mutant vector by equation

𝑀𝑘
𝑗 = 𝑥1

𝑗 + 𝐹 ∗ (𝑥2
𝑗 − 𝑥3

𝑗 ) (3.11)

Subsequently, the crossover in equation 3.11 is selected as a trial vector; either a mutant vector

or a parent vector based on the crossover rate.

𝑈𝑘
𝑗 =

{
𝑀𝑘

𝑗 , 𝑖 𝑓 𝑟𝑎𝑛𝑑 (0, 1) ≤ 𝐶𝑟

𝑥 𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.12)

In the selection process, the parent value is replaced by the trial vector if the fitness value for

the trial vector is less than the fitness value of the parent vector. The mutation, crossover and

selection processes, followed by the random initialization of the DE population, are repeated

until the termination criteria are met. This method includes several parameters, which must

be tuned to ensure it performs well. The control parameters’ crossover and scaling factor are

assigned the values of 0.7 and 0.6 in this study, which uses the trial and error approach. The

Pseudo code is summarized as follows:



82

Algorithm 3.3 An algorithm of DE

1 Randomly initialize the population

2 Evaluate the fitness function

3 while Termination is not met do
4 Select any three random vectors from the population

5 Determine the mutant vector by Eq.3.11 and 3.12 Evaluate the fitness values

6 If the parents’ fitness value is less than the individual fitness

7 Replace the parent vector with the individual in the next iteration

8 end while

3.3 Application to a rockfill dam

A rockfill dam called Romaine-2 (Smith, 2015; Vannobel et al., 2013) was selected as a case study

to demonstrate the application of the surrogate model-based inverse analysis. A 2D cross-section

of the Romaine-2 dam is illustrated in Fig.3.5. The dam is built on a rock foundation of 112

meters and has an asphaltic core. The core is surrounded by crushed stones with a maximum

size of 80 mm, which serve as its support. The transition region (𝑁) adjoins the support zone

(𝑀), comprised of crushed stones with a maximum size of 200 mm. In addition, particles with

a maximum length of 600 mm are used in the inner shell region (𝑂), and the outer area (𝑃) is

composed of rocks with a maximum size of 1200 mm.

Two vertical inclinometers named INV1 and INV2 are located at two different positions in

Fig.3.5(a) to measure the horizontal displacements, and inclinometers INH1 and INH2 are

installed horizontally on another cross-section to measure the vertical displacements, as shown

in Fig.3.5(b). The Plaxis code (Plaxis, 2017) is utilized to build the 2D finite element models,

in tandem with the plane strain hypothesis. A two-dimensional mesh of triangular elements

with 15 nodes is considered for both cross-sections. The different soil sub-domains are meshed

accordingly, and more refinement is used around the asphaltic core. A mesh convergence

study (Akbari Hamed, 2017) shows that this mesh is fine enough for these objectives. The

dam was strongly compressed during construction (Smith, 2015), so the Mohr-Coulomb (MC)

constitutive law is used to simplify the study. Previous numerical studies (Akbari Hamed, 2017)
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have shown that the discrepancies between the MC results and the results obtained with the

hardening soil model (Schanz et al., 1999) are not significant. Different zones of the dam are

highlighted by letters ( O, P, N, and M). Two different cases are discussed in this study: case 1

considers five uncertain parameters (cohesion(𝐶), specific weight (𝜌), shear modulus (𝐺𝑟𝑒 𝑓 ),

Poisson coefficient (𝜈), and friction angle (𝜙)) for the subdomain P of the dam, while case

2 contains twelve uncertain soil parameters (the specific weight (𝜌𝑃, 𝜌𝑁, 𝜌𝑂), shear modulus

(𝐺𝑟𝑒 𝑓 ,𝑃, 𝐺𝑟𝑒 𝑓 ,𝑁 , 𝐺𝑟𝑒 𝑓 ,𝑂), Poisson coefficient (𝜈𝑃, 𝜈𝑁, 𝜈𝑂), and friction angle (𝜙𝑃, 𝜙𝑁, 𝜙𝑂)) of

subdomains P, N and O. The samples of input parameters are generated by Sobol’s sampling

method (Dige & Diwekar, 2018). Subsequently, the soil parameters are assigned to the numerical

model, and the computed displacements are extracted for each inclinometer. Once the data set

of inputs and their corresponding outputs are produced, the deep neural network methodology is

used to build the surrogate model for each case (Goodfellow et al., 2016; Kang et al., 2022).

After establishing the response surface, the multi objective optimization techniques are applied

in order to get the optimal parameters.

3.3.1 Case I

Only the parameter variations in zone P are considered in this case since this domain covers

the maximum portion of the dam. Based on the convergence study in (Shahzadi & Soulaïmani,

2021), a data set of 300 samples is used to build the surrogate models. The parameter estimates

in Table.3.1 are based on a previous study conducted in (Smith, 2015), (Akbari Hamed, 2017).

The input vector is 𝑥 (𝑖)𝐷 = (𝐶 (𝑖) , 𝜌(𝑖) , 𝐺 (𝑖)
𝑟𝑒 𝑓 , 𝜈

(𝑖) , 𝜙(𝑖))𝑇 , for a sample (𝑖). The parameters are

assumed to follow a uniform distribution. The dilatancy angle is set relative to the friction angle

as 𝜓 = 𝜙 − 30 (in degrees). The numerical displacement fields are obtained by running Plaxis

(Plaxis, 2017). Next, the displacements are extracted at a number of points on each inclinometer,

yielding a response vector 𝑌 (𝑖)
𝐷 of dimension 𝑚 = 128. Consequently, a DNN model was

established using a data set of 300 input parameters and their corresponding displacements.

Moreover, several models were built to increase the response surface’s reliability by initializing
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a) Cross-section of the Romaine-2 dam. Different zones of the dam are highlighted in alphabets. The

vertical inclinometers are denoted by INV1 and INV2

b) Cross-section of the Romaine-2 dam. The horizontal inclinometers are denoted by INH1 and INH2

Figure 3.5 Romaine-2 dam

Table 3.1 Soil parameter values or intervals of variations for zones P, N, O, and M

Soil parameters Units P N O M
LB UB

Cohesion (𝐶) 𝐾𝑁𝑚−2 10−3 0 0 0 0

Specific weights (𝜌) 𝐾𝑁𝑚−3 21.375 23.625 23.7 22.5 24.5

Shear modulus (𝐺𝑟𝑒 𝑓 ) 𝐾𝑁𝑚−2 25000 35000 64000 45000 110000

Poisson coefficient (𝜈) −− 0.234 0.3465 0.33 0.22 0.33

Friction angle (𝜙) 𝑑𝑒𝑔𝑟𝑒𝑒 40.85 45.15 47 45 47

different weights. The performance of the DNN model is presented in Fig.3.6, showing almost

zero fitness variation with respect to the training iterations (epochs).
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Figure 3.6 The performance of DNN

3.3.1.1 Results and discussion

Inverse analysis was performed for the Romaine-2 dam using the data measured by inclinometers

INV1, INV2, INH1 and INH2 installed in two different cross-sections as shown in Fig.3.5(a) and

Fig.3.5(b). The confidence intervals for the displacements (mean±2 standard deviation), obtained

by using classical statistical analysis (a Monte Carlo simulation (MCS)) are represented in

Fig.3.7 and Fig.3.8. The behaviours of the numerical horizontal displacements and the measured

values in Fig.3.7 are similar, with the measured data showing large fluctuations. This may be due

to external effects such as the installation process, calibration, temperature changes, and human

factors, which may have affected some probes on the inclinometers. Nevertheless, Fig.3.7 and

Fig.3.8 show that considering their uncertainties, the measured data for all inclinometers are

mostly within the predicted numerical confidence intervals. An inverse analysis is then used to

identify the optimal physical parameters. The PSO, GA, and DE algorithms are used to minimize
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a) Horizontal displacements for INV1 b) Horizontal displacements for INV2

Figure 3.7 Confidence intervals for numerical horizontal displacements of vertical

inclinometers

a) Vertical displacements for INH1 b) Vertical displacements for INH2

Figure 3.8 Confidence intervals of numerical vertical displacements for horizontal

inclinometers

the objective function described by Eq.3.6. By employing the surrogate model, this analysis

allows computing the numerical displacements rapidly. Initially, a trial and error approach was

performed to estimate the parameters for each algorithm. The population size and the number of

iterations were varied to analyze the convergence. Once determined, the population size and
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iteration counts were set to 100 for all the selected techniques. The crossover and mutation

probabilities for GA and DE were set at 0.6 and 0.1, respectively, while for PSO, the learning

factors 𝑐1 and 𝑐2 were assumed as 2. The argument here is to have an iteration count in all

techniques, beyond which there is no significant improvement in convergence and a population

that achieves this goal without compromising performance or accuracy. Since these algorithms

are essentially stochastic, the computer codes were executed several times for each algorithm

(using an Intel-i7 processor compute machine with 32 GB RAM) to ascertain that there was not

a significant deviation in the results. The obtained optimal parameters and the time elapsed for

each algorithm are summarized in Table.3.2. It is clear that the PSO converges to the minimum

fitness in less time than the GA and DE. Moreover, the optimal parameter values obtained are

almost the same for all three algorithms, leading to similar predicted displacements for the deep

neural network surrogate model, as shown in Fig. 3.9. Overall, all the results demonstrate that

the PSO algorithm performs the best in identifying the parameters.

Table 3.2 Optimal parameters and minimum fitness values obtained using different

optimization algorithms and the deep neural network surrogate model

Parameters 𝐶 𝜌 𝐺𝑟𝑒 𝑓 𝜈 𝜙 Fitness time
Value elapsed

Units 𝐾𝑁𝑚−2 𝐾𝑁𝑚−3 𝐾𝑁𝑚−2 −− 𝑑𝑒𝑔𝑟𝑒𝑒 𝑚2 seconds

GA 6.3𝐸−09 22.06 3.07𝐸+04 0.33 45.14 5.89𝐸−05 446

DE 5.5𝐸−07 22.03 3.05𝐸+04 0.33 45.14 5.83𝐸−05 1572

PSO 4.6𝐸−08 21.8 3.02𝐸+04 0.33 44.09 5.85𝐸−05 191

3.3.2 Case II

The motivation for the present analysis is to increase the accuracy by considering parameter

variations in zones P, N, and O. Sobol’s sampling technique is used to build a data set 𝐷 of

the soil parameters (the specific weight (𝜌), shear modulus (𝐺𝑟𝑒 𝑓 ), Poisson coefficient (𝜈), and

the friction angle (𝜙)) for each sub-domain P, N and O. The size of the data set is 1508 for

12 physical parameters; each parameter has a value within the interval specified in Table. 3.3.

Each sample of inputs 𝑥 (𝑖)𝐷 is assigned to Plaxis to obtain the geomechanical displacements. The
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a) Plots of measured and predicted displacements

for optimal values (INV1)

b) Plots of measured and predicted displacements

for optimal values (INV2)

c) Plots of measured and predicted displacements

for optimal values (INH1)

d) Plots of measured and predicted displacements

for optimal values (INH2)

Figure 3.9 Displacements measured and predicted by surrogate models for optimal

parameter values are displayed by dotted and solid lines, respectively

displacements along the measurement lines (32 points in this case) are then extracted, yielding

a response vector 𝑌 (𝑖)
𝐷 of dimension 𝑚 = 128. A DNN model is created for the date set of

1508 input vectors and the corresponding displacements of each inclinometer. The data set was

split into training, validation, and testing subsets. The best validation performance of DNN

model is presented in Fig.3.10, showing the convergence of the error function with respect to the

training iterations (epochs). The random initialization of weights trained ten different networks,

and the outputs were predicted for each network. Next, the mean and standard deviation are
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Figure 3.10 The performance of DNN

calculated by employing a simple Monte Carlo method on the ensemble neural network model.

The mean and variance for the ensemble model are computed by Eq.3.3 and Eq.3.4. Finally,

the soil parameters are identified by minimizing the difference between the measured and the

numerically simulated displacements for each inclinometer.

Table 3.3 Soil parameter values or intervals of variations for

zones P, N, O, and M

Soil parameters Units P N O M
LB UB LB UB LB UB

Specific weights 𝐾𝑁𝑚−3 21.375 23.625 22.51 24.88 21.37 23.62 24.5

Shear modulus 𝐾𝑁𝑚−2 25000 35000 55000 74000 39000 52000 11000

Poisson coefficient −− 0.234 0.3465 0.212 0.345 0.227 0.253 0.33

Friction angle 𝑑𝑒𝑔𝑟𝑒𝑒 40.85 45.15 44.65 49.35 42.75 47.25 47
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3.3.2.1 Results and discussion

For uncertainty analysis, the confidence intervals (mean±2 standard deviation) are obtained using

the surrogate model and shown in Fig.3.11 for inclinometers INV1 and INV2, and the results for

horizontal inclinometers INH1 and INH2 are represented in Fig.3.12. While Fig.3.11 shows that

the confidence intervals for the displacements measured on INV1 and INV2 are quantitatively

reasonable, the measured and the predicted numerical displacements in Fig.3.12 are not in good

agreement. This could be attributed to the FEM modelling or various factors affecting the

measurement accuracy, such as changes in temperature, the inclinometers’ installation process,

etc. The soil parameters are calibrated by minimizing the multi-objective function. The

a) Horizontal displacements for INV1 b) Horizontal displacements for INV2

Figure 3.11 Confidence intervals of numerical horizontal displacements for vertical

inclinometers

population size and iteration count are set at 100 for all selected techniques. The crossover

and mutation probabilities for GA and DE were set at 0.6 and 0.1, respectively; and for PSO,

the learning factors 𝑐1 and 𝑐2 were assumed as 2. The search domains in all three algorithms

are presented in Table. 3.3. Each non-deterministic optimization algorithm was then executed

approximately ten times to get convergence. The optimal parameters and time elapsed for each

algorithm are presented in Tab.3.4.
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a) Vertical displacements for INH1 b) Vertical displacements for INH2

Figure 3.12 Confidence intervals of numerical vertical displacements for horizontal

inclinometers

Table 3.4 Optimal parameters and minimum fitness values obtained using

different optimization algorithms and the deep neural network surrogate

model

Soil Parameters Optimization Techniques
Sub-domains P,N and O GA PSO DE

𝜌(P) 23.08 22.98 23.12

𝐺𝑟𝑒 𝑓 (P) 2.9484E+04 2.8962E+04 2.886E+04

𝜈(P) 0.32 0.32 0.32

𝜙(P) 42.60 42.30 41.90

𝜌(N) 22.61 23.18 23.23

𝐺𝑟𝑒 𝑓 (N) 6.262E+04 6.14482E+04 6.1941E+04

𝜈(N) 0.27 0.28 0.27

𝜙(N) 49.22 48.98 49.14

𝜌(O) 22.13 22.30 22.62

𝐺𝑟𝑒 𝑓 (O) 4.7899E+04 4.6742E+04 4.7171E+04

𝜈(O) 0.23 0.243 0.22

𝜙(O) 46.32 45.74 46.75

Fitness value 5.66E-05 4.9155E-05 4.87.9162E-05

Time elapsed(sec) 2340 669 5489

The results in 3.4 show that the PSO attained the minimum fitness in less time compared to GA

and DE. However, more parameters are tuned for PSO compared to the GA and DE, which only
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a) Plots of measured and predicted displacements

for optimal values (INV1)

b) Plots of measured and predicted displacements

for optimal values (INV2)

c) Plots of measured and predicted displacements

for optimal values (INH1)

d) Plots of measured and predicted displacements

for optimal values (INH2)

Figure 3.13 Displacements measured and predicted for the optimal parameters values

are displayed in dotted and solid lines, respectively

have two parameters to adjust. Fig.3.13 presents the measured and predicted displacements of

the optimal parameters for both cases (case1: the optimal parameters of subdomain P, denoted by

1D; and case2: the optimal parameters of subdomains P, N and O, signified by 3D). The results

of case 2 are in better agreement for all inclinometers, providing better modelling of the dam.
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3.4 Conclusion

This paper contributes to the inverse analyses for rockfill dams using the surrogate modelling

approach. The approach was applied to identify the physical parameters of an actual rockfill

dam with an asphaltic core. Deep neural networks are used in place of the full-scale finite

element model to speed up the computations for the optimization process. A comparative study

of three non-intrusive optimization algorithms (GA, PSO, and DE) was conducted to identify

the constitutive soil parameters. Since the measured displacements show strong fluctuations

along the inclinometers, an objective function was developed to smooth out the oscillations and

improve the algorithms’ convergence. The optimal parameter values obtained by each algorithm

were almost identical, leading to similarly predicted displacements for both cases. The PSO

algorithm proved to be the most efficient approach in this study. While the measurement data

set is not very large, as is usually the case in machine learning studies, the results demonstrate

that the combination of deep neural networks and non-deterministic optimization algorithms

constitute valuable computational tools in this inverse analysis.

In future work, a comparative study will be done by considering the Hardening Soil model, as

the present study was limited to the Mohr-Coulomb model.
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Abstract

The inherent uncertainty of the material properties of rockfill dams makes computational

predictions of their structural behaviour particularly challenging. Inverse analysis may be a

practical solution for such problems. This paper presents a surrogate-assisted multi-objective

hybrid optimization approach, a novel parameter identification technique that can help to improve

safety and stability analyses. First, a deep neural network (DNN) surrogate model that reflects a

nonlinear mapping between the displacements of a dam and the soil parameters is established.

Second, a multi-objective function is framed as a weighted norm of the difference between the

predicted and the measured displacements. Next, a hybrid Particle Swarm-Genetic Algorithm

(PSOGA) is applied to the surrogate model proposed to identify the soil parameters; the PSOGA

combines the benefit of the lower computational expense of surrogate models and the prompt

convergence of search algorithms. The methodology is applied to a recently built rockfill dam

(Romaine-2) in Quebec, Canada. In two different cross-sections of the dam, four inclinometers

were installed vertically and horizontally in different locations to simultaneously collect measured

data. A comparative study of constitutive soil models, the Mohr-Coulomb (MC) and Hardening

Soil (HS) model, is also conducted. It is found that the MC model displacement predictions do

not match the actual displacements. In contrast, the HS model analysis results are the closest

displacements to the values measured onsite. Finally, this research presents the optimal set of
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parameters of the Romaine-2 dam assessed by the proposed analysis and offers insight into the

performance of DNNs and hybrid optimization to solve inverse problems.

keywords

Mohr-Coulomb (MC), Hardening soil models (HS), Deep learning, Inverse analysis, Hybrid

Optimization techniques, Rockfill dams

4.1 Introduction

As one type of high dam, rockfill dams are characterized by the fact that they have low technical

requirements, low construction costs, limited environmental effects, and the ability to self-operate.

However, dams undergo various structural and material changes throughout their lifetimes,

significantly impacting their performance. Based on the nature and position of the watertight

element, rockfill dams can be divided into two main types: (i) those containing relatively

impervious earth cores, either thick or thin; and (ii) those with concrete or asphalt cores. In

cases where suitable soil is unavailable, asphalt or concrete cores can be utilized. Asphalt cores

are generally narrow and almost one-meter wide (Asthana & Khare, 2022; Höeg, 1993). It is

well known that deformation can occur in rockfill dams during construction and due to reservoir

impoundment. Therefore, several techniques have been applied to control dam deformation, such

as structure design, foundation treatment, and material properties (Han, Jiankang, Shengwei,

Yazi & Beĳia, 2016). However, the inherent uncertainties in the material properties used in

their complex structure make the design of rockfill dams a challenging task (Akbari Hamed,

2017). To ensure the safety of dam operation, it is crucial to estimate soil parameters correctly.

Parameter identification is thus vital in the design stage for monitoring structural health and

damage detection in rockfill dams(Wang, Höeg & Zhang, 2010; Pramthawee et al., 2011).

Parameter identification in rockfill dams is particularly complicated, as different rock sizes

are used in their construction, with aggregates collected from various sources. In addition,

the rate of aging or deterioration varies at other dam locations due to external effects, such as
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temperature, stress state, humidity, etc. These factors lead to non-uniform conditions, resulting in

nonhomogeneous structures in which the material properties cannot be quantified or exemplified

correctly with limited samples. Identifying unknown parameters in a numerical dam model is a

relatively cost-effective method for solving this problem. An adequate approach to designing a

numerical model would be an effective solution for parameter identification.

The finite element method (FEM), combined with the appropriate soil constitutive laws, is widely

used to deal with nonlinear and complex dam structures. The FEM is already considered the most

powerful approach for dam modelling and design (Pietruszczak, 2010; Amouzou & Soulaïmani,

2021). Several finite element software approaches exist for geotechnical numerical modelling,

such as Plaxis (Plaxis, 2017) and Zsoil (Obrzud, Truty, Podles, Commend & Zimmermann,

2018), which offer a library of different constitutive models that can be utilized for various soils.

Starting from the linear elastic model, several advanced constitutive models are implemented.

Using a constitutive model suitable for a specific soil type and a set of loading conditions

depends on the availability of experimental data. The Mohr-Coulomb (MC) is one of the

simplest constitutive soil model that incorporates the nonlinear plastic deformation of rocks and

is commonly operated in geotechnical structures (Labuz & Zang, 2012). In spite of this, it is

widely known that the hardening soil (HS) constitutive model has overcome many of the issues

associated with the MC soil model (Pietruszczak, 2010). Bhutto et al. (Bhutto et al., 2019)

predicted the settlement of an embankment dam using the Mohr-Coulomb and Hardening Soil

Model. Also, Kim et al. (Kim & Jung, 2022) employed the Mohr-Coulomb (MC), hardening

soil (HS), and hardening soil with small strains (HSS) models for the inverse analysis of deep

excavation and compared the responses of each model.

A numerical analysis is carried out to conduct the simulations using both constitutive soil models,

Mohr-Coulomb (MC) and Hardening Soil (HS) of a rockfill dam. Regardless, formulating a

finite element model requires simplifying the physical model. Moreover, the lack of information

on soil properties and external factors, such as climate conditions, limits any constitutive model

from accurately representing dam behaviour. In such cases, the inverse analysis can help estimate
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the most reliable and relevant parameters when some measurements are available, thereby

improving the design or monitoring of the considered dam (Yin et al., 2018; Xu & Wu, 2022).

Inverse analyses have been used for decades to solve geotechnical problems (Hashash et al.,

2010a; Hashemi & Rahmani, 2018; Vahdati et al., 2014; Levasseur et al., 2010). The inverse

analysis involves two main components: an optimization algorithm that minimizes the error

function (a norm of the difference between the numerical solutions and the measurements) and a

numerical solver. It is very challenging to find global minima using classical gradient-based

algorithms if a function is highly irregular. Therefore, many stochastic optimization techniques

such as the Genetic algorithm (GA) (Deng-gang et al., 2000), Particle swarm optimization (PSO)

(Kennedy & Eberhart, 1995), the Differential evolutionary method (DE), the gravitational search

algorithm and their modified forms are widely used in inverse problems (Vahdati et al., 2013;

Levasseur et al., 2008). Su et al. (Su, Li & Wu, 2007) calibrated the soil parameters of a dam

and its foundation using the genetic simulated annealing optimization technique, and the results

confirmed the robustness and efficiency of the method. Bao et al. (Bao et al., 2020) implemented

a multi-output least-squares SVR machine incorporated with an upgraded differential evolution

algorithm to evaluate several parameters of the Jinping-I arch dam. Four different methods

were compared, and the proposed algorithm outperformed them all. Displacement inverse

analysis is widely used in geotechnics to verify and identify structural parameters (Sharifzadeh,

Tarifard & Moridi, 2013; Lin et al., 2020). Das and Soulaimani (Das & Soulaimani, 2021)

proposed a methodology to identify the parameters of the Mohr-coulomb constitutive soil model

for a rockfill dam based on a polynomial regression model coupled with optimization techniques

(GA, PSO and DE). In comparing particle swarm optimization and genetic algorithms, Kang et

al. (Kang, Wu, Li & Li, 2021) presented a methodology based on the Kriging and Jaya algorithm

for the rapid identification of the dynamic parameters of concrete dams. Kang et al. (Kang et al.,

2022) developed an accelerated Jaya algorithm that minimizes the objective function of dam

material using a kernel extreme learning machine. Song et al. (Song, Liu, Jiang & Yao, 2022)

identified the soil parameters of a constitutive model using the crossover real coded genetic
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algorithm (RCGA) coupled with machine learning. The accuracy of their proposed algorithm is

proven by comparing the optimal parameters with the real laboratory clay parameters.

Optimization algorithms are iterative processes that find optimal parameters where the numerical

model requires access more often. Such a crude operation is intricate for nonlinear and large-scale

structures such as rockfill dams. Therefore, a classical optimization algorithm may be inefficient

if the high-fidelity numerical finite element model is time-consuming. In addition, while PSO is

efficient in convergence, its population diversity decreases too quickly during searching, which,

coupled with its inability to perform global searches, results in premature convergence and poor

accuracy. The GA has a strong ability to perform global searches and cross-mutations, but its

local search ability is weak, which causes low efficiency. To avoid these shortcomings, a hybrid

optimization technique, the PSOGA, is utilized in this study, which combines the advantages of

both algorithms and yields efficiency and effectiveness in its results. (Shi, Gong & Zhai, 2022;

Li, Zhang, Xu & Zhong, 2019).

Surrogate modelling helps to reduce computational costs by replacing the FEM model with

an inexpensive surrogate model. Surrogate models can therefore play an essential role in

enhancing the efficiency if trained, tested and appropriately validated according to the model’s

dataset. Several methods have been developed to build surrogate models, such as Kriging

(Gaussian process regression), polynomial chaos expansion (PCE), support vector regression

(SVR) and deep learning(Shahzadi & Soulaïmani, 2021; Song et al., 2022; Li, Hariri-Ardebili,

Deng, Wei & Cao, 2023). Sun et al. (Sun, Jiang, Yin & Zhou, 2018) established the mapping

between the soil parameters and the displacements through an artificial neural network to

reduce the time consumption of FEM. Yang, Mei and Gange (Yang & Mei, 2022) proposed a

physics-informed neural network-based deep learning approach for a numerical investigation

of soil–water vertical infiltration and evaluated soil–water infiltration in different soil types.

Shahzadi and Soulaimani (Shahzadi & Soulaïmani, 2021) built and compared deep neural

network (DNN) and polynomial chaos expansion (PCE) based surrogate models. Their results

proved that deep neural network-based surrogate models are more efficient and accurate than

PCE-based models in representing nonlinear mappings (between input and output parameters).
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This paper describes a deep neural network-based hybrid optimization approach for inverse

analysis. A deep neural network with several hidden layers is used to build a surrogate model of

a dam. A multi-objective function for the displacements of vertical and horizontal inclinometers

is incorporated into a single error function using the weighted sum method (Gunantara, 2018).

A hybrid particle swarm optimization-genetic algorithm (HPSOGA) is utilized to obtain the

optimal soil parameters by minimizing the objective function. The methodology is applied to

the Romaine-2 rockfill dam built in Quebec, (Smith, 2015), for which the displacements are

measured on two vertical and two horizontal inclinometers installed in different locations. The

Romaine-2 dam comprises five different material zones and is the tallest asphalt core structure in

North, Central or South America. To build a surrogate model, a dataset of high-fidelity solutions

is obtained using a finite element plane strain model of two cross sections where measurements

were taken.

This paper is organized as follows: the next section presents the problem description and the

methodology, including constitutive soil models, finite element modelling, surrogate modelling,

cost function formulation, and a brief presentation of optimization algorithms. The uncertainty

and optimal results for the MC and HS constitutive models are then compared and discussed

in the third section. A promising avenue to expand this approach is presented as part of the

conclusion.

4.2 Methodology

A rockfill dam called Romaine-2(Smith, 2015; Vannobel et al., 2013) was chosen as a case study

to demonstrate the application of the surrogate model-based inverse analysis. The cross-section

of the Romaine-2 dam is illustrated in Fig.4.1. The dam, 112 meters in height, is built on a

rock foundation with an asphalt core. A crushed stone layer with a maximum size of 80 mm

surrounds the asphalt core, which serves as support. The transition region (𝑁) adjoins the

support zone (𝑀), comprised of crushed stones nearly 200 mm in diameter. The inner shell

region (𝑂) contains particles that are 600 mm long, and the outer area (𝑃) is formed of rocks of

mixed sizes, up to 1200 mm in diameter.
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The parameter identification process is composed of four steps: 1) finite element modelling and

simulations to obtain a high-fidelity dataset of solutions; 2) construction of a surrogate model to

predict the numerical displacements for the unseen values of input parameters; 3) the formulation

of a multi-objective function, which measures the difference between the measured and the

predicted results; and 4) the use of a hybrid optimization algorithm to identify the parameters by

minimizing the objective function. Fig.4.2 illustrates the flow chart of the methodology.

Figure 4.1 Cross section of Romaine-2 dam, taken from Lashin et al. (2022,

p. 717)

4.2.1 Constitutive soil models

The choice of the structural model and soil parameters will significantly affect the analyzed

results. The finite element method (FEM) can deal with nonlinear and complex geometries and

offers high accuracy in solving governing equations. FEM-based software, including GTS, Zsoil,

Flac and Plaxis, offer various constitutive models to simulate soil behaviour (Zukri & Nazir,

2018). It should be noted that each software platform differs in its abilities and limitations, so the

user should be aware of their possible impact on the accuracy of the investigation. The following
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Figure 4.2 The flowchart of the proposed methodology

sections briefly describe two constitutive soil models, Mohr-Coulomb (MC) and Hardening soil

(HS).

4.2.1.1 Mohr-Coulomb (MC) model

The Mohr-Coulomb model is a common and simple linear elastic perfectly plastic constitutive

soil model in geotechnics (Owen & Hinton, 1980), (Pietruszczak, 2010). As soon as the linear

elastic deformation reaches a certain point, Mohr-Coulomb’s failure criteria predict the failure of

the system. After the breaking point, the stress level remains unchanged since the deformation is

assumed to be perfectly plastic. The input (soil) parameters for an MC model are the cohesion

(𝐶), shear modulus (𝐺𝑟𝑒 𝑓 ), specific weight (𝜌), Poisson coefficient (𝜈), and friction angle (𝜙).

The shear modulus (𝐺𝑟𝑒 𝑓 ) and Poisson coefficient (𝜈) parameters are related to Hook’s law,

whereas the friction angle (𝜙) and cohesion(𝐶) are related to the Mohr-Coulomb criterion.
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4.2.1.2 Hardening Soil (HS) model

The hardening soil model is an effective stress model developed within the elastoplasticity

framework (Schanz et al., 1999). It is an advanced model that differs from the MC model in

several features, chiefly in its consideration of a hyperbolic stress-strain relationship (Duncan,

1996), the use of plasticity related to two types of isotropic hardening, and the implication

of the unloading/reloading relationship assumed to be elastic. Two expandable yield surfaces

are used to calculate the plastic strains. The plastic strains are included as three additional

parameters called the stiffness moduli (𝐸
𝑟𝑒 𝑓
50

, 𝐸
𝑟𝑒 𝑓
𝑢𝑟 and 𝐸

𝑟𝑒 𝑓
𝑜𝑒𝑑), used in this model at a reference

pressure of 100 KPa. Stiffness moduli 𝐸50 and 𝐸𝑜𝑒𝑑 control the plastic part of the model, which

hyperbolically rely on stress by means of a power law. The types of hardening, cap-hardening

(compression hardening) and cone-hardening (strain hardening) describe the plastic deformations

amassed by primary compression loading and primary deviatoric stress, respectively. In contrast,

cone hardness is dominated by 𝐸50, and 𝐸𝑜𝑒𝑑 dominates the rigour of the course. As with

the Mohr-Coulomb soil model, the failure surfaces are decided by the MC theory; the failure

surfaces presented in the HS model respect these constraints. In this work, for the inverse

analysis, 𝐸
𝑟𝑒 𝑓
50

is considered an imperative variable of the HS model, the parameters 𝐸
𝑟𝑒 𝑓
𝑢𝑟 and

𝐸
𝑟𝑒 𝑓
𝑜𝑒𝑑 are assumed to be in proportion to 𝐸

𝑟𝑒 𝑓
50

, as given by

𝐸
𝑟𝑒 𝑓
𝑢𝑟 = 3 ∗ 𝐸

𝑟𝑒 𝑓
50

(4.1)

and

𝐸
𝑟𝑒 𝑓
𝑜𝑒𝑑 = 0.8 ∗ 𝐸

𝑟𝑒 𝑓
50

(4.2)

Although these parameters should be mutually independent, the investigations in (Plaxis, 2017)

found that 𝐸
𝑟𝑒 𝑓
𝑢𝑟 is three times the value of 𝐸

𝑟𝑒 𝑓
50

, and 𝐸
𝑟𝑒 𝑓
𝑜𝑒𝑑 is almost linearly proportional to

𝐸
𝑟𝑒 𝑓
50

, as in (4.1) and (4.2), and so these assumptions are adopted.
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4.2.2 Finite element modeling and simulation

The finite element software (Plaxis2D) (Plaxis, 2017) is used to numerically solve the governing

partial differential equations along with the constitutive relations and boundary conditions.

Plaxis3D could be favoured instead of Plaxis 2D to enhance the accuracy (if more data are

available), but the efficiency would be diminished to achieve that increased precision. Moreover,

the 2D plane strain hypothesis is well-accepted for long structures.

Table 4.1 Mohr-Coulomb (MC) model parameter values and the bounds of

variations for different zones.

Soil parameters Units P N O M
LB UB LB UB LB UB

Specific weights 𝐾𝑁𝑚−3 21.375 23.625 22.51 24.88 21.37 23.62 24.5

Shear modulus 𝐾𝑁𝑚−2 25000 35000 55000 74000 39000 52000 11000

Poisson coefficient −− 0.234 0.3465 0.212 0.345 0.227 0.253 0.33

Friction angle 𝑑𝑒𝑔𝑟𝑒𝑒 40.85 45.15 44.65 49.35 42.75 47.25 47

The vertical and horizontal inclinometers, named INV1, INV2, INH1 and INH2, are located at

the positions indicated in Fig.4.3(a) and Fig.4.3(c) to measure the displacements. Different dam

zones are indicated by letters (P, N, O and M). Three subdomains, P, N and O, are considered

variation zones. Two meshes, of 2187 and 1891 triangular 15-node elements, are generated

for both cross-sections, as illustrated in Fig.4.3(b) and Fig.4.3(d). All the subdomains of the

different soils are meshed accordingly, and the surrounding asphalt core is well refined. The

mesh convergence study in (Akbari Hamed, 2017) shows that such mesh densities are fine

enough.

This study uses and compares the MC and HS constitutive laws. Table 4.1 presents the upper

and lower bounds of soil parameters for the Mohr-Coulomb model (the specific weight 𝜌, shear

modulus 𝐺𝑟𝑒 𝑓 , Poisson coefficient 𝜈, and friction angle 𝜙), while the bounds of the Hardening

soil model’s parameters (the secant stiffness 𝐸
𝑟𝑒 𝑓
50

, friction angle 𝜙, the exponent of the power

law 𝑚, the specific weight 𝜌 and dilation angle (𝜓)) are presented in Table 4.2. The values of soil

parameters in Table 4.1 and Table 4.2 are estimated based on the studies conducted in (Smith,
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a) Finite element model of the Romaine-2 dam. Different zones of the dam

are indicated by a letter code. INV1 and INV2 denote the vertical

inclinometers

b) Finite element mesh for the cross-section containing vertical inclinometers

c) Finite element model of the Romaine-2 dam. INH1 and INH2 denote the

horizontal inclinometers

d) Finite element mesh for the cross-section containing horizontal

inclinometers

Figure 4.3 Romaine-2 dam

2015; Akbari Hamed, 2017). The datasets are generated using Sobol’s sampling algorithm

(Joe & Kuo, 2008). The dataset sizes are 𝑁 = 1560 and 𝑁 = 1664 for the soil parameters of the
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Table 4.2 Hardening soil (HS) model’s soil parameter bounds for the P, N,

O, and M zones

Soil Units P N O M
Parameters LB UB LB UB LB UB

Secant

stiffness 𝐾𝑁𝑚−2 6.8E4 9.2E4 1.445E4 1.955E4 9.35E4 1.265E4 2.8E4

𝐸
𝑟𝑒 𝑓
50

Friction 𝑑𝑒𝑔𝑟𝑒𝑒 40.85 45.15 45.15 49.15 42.85 47.15 47

angle𝜙
Power −− 0.35 0.7 0.20 0.26 0.35 0.7 0.18

𝑚

Specific 𝐾𝑁𝑚−3 21.375 23.625 22.55 24.85 21.37 23.63 23.6

weights𝜌
dilation 𝑑𝑒𝑔𝑟𝑒𝑒 8.5 11.5 12.75 17.25 8.5 11.5 15

angle𝜓

MC and HS models, respectively. Based on the convergence study in (Shahzadi & Soulaïmani,

2021), these sizes are considered reliable for building surrogate models. Each soil parameter

has a value within a specified interval for both constitutive models.

Next, the soil parameters for both constitutive models are assigned to their corresponding

numerical models, and the computed displacements are extracted for each inclinometer. Once

the inputs and their corresponding outputs are produced, the deep neural network methodology

is used to build the surrogate model for each case (Goodfellow et al., 2016; Kang et al., 2022).

After establishing the response surface, a comparative inverse analysis study is performed for

both constitutive soil models.

4.2.3 The Deep Neural network (DNN)

In machine learning, neural networks are widely used to solve complex regression and clas-

sification problems (Goodfellow et al., 2016; Georgevici & Terblanche, 2019). To more

effectively manage information, deep neural network (DNN)-based models consist of multiple

interconnected layers that contain several nonlinear neurons. A DNN can capture a complicated

input-output relationship without knowing the precise mathematical expressions by extracting
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hidden underlying regularity from an array of training samples. Nodes are the building blocks

of deep neural networks. A node collects inputs, computes weights, and applies activation

functions to generate outputs. There are several layers of nodes; all nodes in one layer are

connected to nodes in the next layer, but the nodes in each layer are not interconnected. Deep

neural networks learn parameter values during training based on the parametric form of basis

functions. The model uses nonlinear activation functions, making it nonlinear. Fig.4.4 illustrates

a typical feed-forward neural network model consisting of three layers: an input layer, a hidden

layer and an output layer. The response vectors are computed by,

𝑦𝑘 = 𝑔(
∑
𝑗=1

𝑊 (0)
𝑘 𝑗 ℎ(1)

𝑗 + 𝑏 (0)
𝑘 ) (4.3)

where ℎ(1)
𝑗 is a hidden layer (1), which is used to compute the output from the input data, as

shown in:

ℎ(1)
𝑗 = 𝑓 (

𝑛∑
𝑖=1

𝑊 (1)
𝑗𝑖 𝑥𝑖 + 𝑏 (1)

𝑗 ) (4.4)

where 𝑊 (1)
𝑗𝑖 ,𝑊 (0)

𝑘 𝑗 are the weight parameters, and 𝑏 (1)
𝑗 , 𝑏 (0)

𝑘 are the bias parameters. The

activation functions are 𝑓 and 𝑔. The 𝑁 input vectors 𝑋𝐷 = (𝑥 (1)𝐷 , 𝑥 (2)𝐷 , ..., 𝑥 (𝑁)
𝐷 )𝑇 , and their

corresponding outputs 𝑌𝐷 = (𝑦 (1)𝐷 , 𝑦 (2)𝐷 , ..., 𝑦 (𝑁)
𝐷 )

𝑇
with 𝑦 (𝑖)𝐷 = 𝑀 (𝑥 (𝑖)𝐷 ) constitute a dataset 𝐷.

The error function is the mean square error (MSE), which is the difference between the outputs of

the model and the labels, such as shown in Eq.4.5. The error function is minimized to determine

the optimal weights and bias parameters. To avoid overfitting in the neural network model, a

regularization parameter 𝜆 is added to the error function, as in Eq.4.6

𝐸𝐷 =
1

2𝑁

𝑁∑
𝑖=1

(𝑌𝐷 − 𝑌𝑁𝑁 )
2 (4.5)

𝐸′ = 𝐸𝐷 + 𝜆
∑
𝑙,𝛼,𝛽

(𝑊 (𝑙)
𝛼𝛽 )

2 (4.6)
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Figure 4.4 A single-layer deep neural network

An iterative backpropagation process minimizes the error function 𝐸′. In this regression problem,

𝑓 is the Relu activation, and 𝑔 is the identity function. As an example, a neural network of five

hidden layers is presented in Fig.4.5 with five parameters in the input layer for each sample

and the corresponding outputs are 𝑚 = 128 in the output layer. There are many libraries for

implementing DNNs, including TensorFlow, PyTorch and Keras. Matlab’s Deep Learning

Neural Toolbox is used in this study (Beale et al., 2019).

4.2.4 Formulation of the cost function

The soil parameters of constitutive models to be identified are variables. The identification

process reliability depends upon the quality of the measured dataset. The dataset of displacements,

measured at different inclinometers installed at different locations of the rockfill dam, is available
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Figure 4.5 A five-layer deep neural network

for this study. The objective function can be defined as the mean square error:

𝐽𝑜𝑏 𝑗 =
1

𝑁𝑚

𝑁𝑚∑
𝑖=1

(𝑌𝑖 − 𝑌𝑖)
2 (4.7)

where 𝑁𝑚 is the number of measurement points, and 𝑌𝑖 and 𝑌𝑖 are the measured and predicted

displacements. The above equation can be generalized by adding some weights 𝐶𝑖, as given

below:

𝐽𝑜𝑏 𝑗 =
1

𝑁𝑚

𝑁𝑚∑
𝑖=1

𝐶𝑖 (𝑌𝑖 − 𝑌𝑖)
2 (4.8)

It is thus possible to give more weight to more reliable measurements, as uncertainty occurs due

to several factors that affect the performance of inclinometers. Measured displacement plots

show large fluctuations as a result of this uncertainty. An iterative optimization process can

become unreliable or difficult to converge with such fluctuations. Therefore, the weights 𝐶𝑖 are

formulated as:

𝐶𝑖 = tanh(
1

𝛿𝑖
) (4.9)
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𝛿𝑖 = 𝛽(
𝑌𝑖 − 𝑌𝑚

𝜎𝑚 + 𝜀
)2 (4.10)

where 𝑌𝑚 and 𝜎𝑚 are the mean and standard deviation of measured displacements along the

inclinometer. 𝛽 denotes the empirical parameter (𝛽 = 3 is a typical value), and 𝜀 → 0. A value of

𝛿𝑖 increases with the increasing effect of uncertainty in the 𝑖𝑡ℎ measured data; therefore, 𝐶𝑖 will

tend to zero if 𝛿𝑖 is large. However, 𝐶𝑖 will be close to 1 for small 𝛿𝑖, indicating less uncertainty.

The accuracy in the calibration process can be improved by minimizing the objective functions

simultaneously for each inclinometer. For a multi-objective problem, the weighted sum method

can incorporate multi-error functions into a single composite function (Marler & Arora, 2010),

defined in Eq.4.11.

𝐽 =
1

𝑁𝑚 ∗ 𝑁𝐼

𝑁𝐼∑
𝑖=1

𝑤𝑖 ∗ 𝐽𝑜𝑏 𝑗 𝑖 (4.11)

where 𝑁𝐼 is the number of objective functions along each inclinometer and 𝑤𝑖 is the weight

associated with each objective function. The greater the weight, the higher the priority of a

function compared to an objective function associated with a lower weight. Several approaches

can be used to determine weights; in this study, we chose a scalarization method that incorporates

the multi-objective function into a single function by assigning the weights to every function, as

detailed in (Gunantara, 2018).

4.2.5 Optimization methods

Optimization techniques have been widely used to identify soil parameters in geotechnics

(Nocedal & Wright, 2006). Several non-deterministic optimizers, such as Genetic Algorithms

(GAs), Particle Swarm Optimization (PSO), and Differential Evolution (DE), have been applied

in various geotechnical applications (Yin et al., 2018; Boumezerane, 2022). However, these

methods cannot address geotechnical applications involving nonlinearity. This paper aims to

develop a hybrid optimization technique, PSOGA, which combines the advantages of PSO and

GA algorithms to avoid the pitfalls of solution divergence and local minima. Local minima are a

problem in PSO due to the lack of crossover and mutation operators, and so GA operators are
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integrated into a PSO algorithm in the PSOGA. These techniques are briefly described in the

following subsection.

4.2.5.1 Particle Swarm Optimization (PSO)

Particle Swarm Optimization is a nonlinear global optimization technique for continuous

functions introduced by (Kennedy & Eberhart, 1995), inspired by bird flocking, swarming and

other bird behaviours. It is common practice for birds to share their locations with the flock

during collective feeding. This information-sharing mechanism enabled the flock to find large

amounts of food quickly. Although this algorithm has the flaw of going into local optimal

solutions when solving discrete optimization problems, it still works well in most optimization

scenarios and has been widely used in several fields. PSO is based on velocity and position

models, which use the velocity of particles to update particle positions, and it uses particle

positions to represent possible solutions in the search bounds. The fitness function determines

the adaptation value of each particle. A particle also keeps track of its previous best position and

the global best position found by the entire particle population. Initially, the particle positions

and velocities are randomly distributed within prescribed search bounds. The position vector

and velocity of a 𝑗 particle are denoted by 𝑥 𝑗 and 𝑉𝑗 , respectively, and updated for the 𝑘𝑡ℎ

iteration using the following formulas (Arora, 2015):

𝑉𝑘
𝑗 = 𝑤1𝑉

𝑘−1
𝑗 + 𝑐1𝑟1(𝑃𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑘−1

𝑗 ) + 𝑐2𝑟2(𝐺𝐿𝑏𝑒𝑠𝑡 − 𝑥𝑘−1
𝑗 ) (4.12)

and

𝑥𝑘
𝑗 = 𝑥𝑘−1

𝑗 +𝑉𝑘
𝑗 (4.13)

where 𝑟1 and 𝑟2 𝜖 [0, 1] are random numbers, whereas 𝑐1, 𝑐2 and 𝑤1 are algorithmic tuning

parameters.
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4.2.5.2 Genetic Algorithm (GA)

The Genetic algorithm (GA), originally developed by (Holland et al., 1992), is a search procedure

based on natural evolution that combines selection and genetics (Darwin, 2007). In contrast to

gradient-based methods, a GA does not determine the optimal solution based on initial solutions,

giving it a robustness that is a significant reason for its popularity. A GA consists of initialization,

evaluation, selection, and combination steps. In the first step, a set of possible solutions are

generated randomly based on the bounds of each parameter. The individual’s fitness is then

evaluated according to stochastic convergence criteria (Marappan & Sethumadhavan, 2020)

10−6. In the next set of operations, the chromosomes with the lowest functional values are

selected as parents, and then a crossover probability combines them to form offspring. The

process is intended to mimic nature, where the best chromosomes are passed on to new offspring

to ensure an improved next generation. An intermediate or heuristic crossover approach was

used, which arrived at a 0.8 probability ratio and a mutation probability set to 0.1 to achieve the

global optimum.

4.2.5.3 Hybrid PSOGA

A hybrid PSOGA optimization algorithm combines a particle swarm optimization (PSO) and a

genetic algorithm (GA) to capture each algorithm’s best properties and overcomes its drawbacks.

Its high convergence performance and ability to avoid being trapped in locally-optimal solutions

are attributable to the PSO and GA approaches. This hybrid approach thus provides a better way

to find the optimal solution (Li et al., 2019). In this study, the hybrid PSOGA technique is based

on a PSO in which GA is incorporated by crossover and mutation. This optimization technique

is realized through the following steps:

1) PSO is utilized as the first step due to its high convergence efficiency. Equ 4.12 updates the

position vector and velocity of every particle and 4.13 in each iteration. The tuning parameters

𝑐1𝑎𝑛𝑑𝑐2 are both set to 2, and 𝑤1 is 0.9.

2) To incorporate the GA into a PSO, a crossover and mutation of GA genes are introduced into
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Figure 4.6 Flowchart of a PSOGA algorithm

the PSO in each iteration to increase population diversity and prevent the PSO from falling into

a local optimum solution too quickly.

The flow chart illustrates the basic concept of a hybrid PSOGA presented in Fig.1.10.

The proposed PSO-GA algorithm is inspired by (Shi et al., 2022); however, the crossover and

mutation operators are modified to adapt it to this problem. The original hybrid optimization

PSOGA has proven its ability to achieve global optimum solutions in a shorter time than either

optimizer on its own (Shi et al., 2022; Torkashvand, Neshat, Javadi & Pradhan, 2021).

4.3 Parameter identification, results and discussion

This section presents a comparative study of the MC and HS constitutive models. The

input datasets 𝐷1 and 𝐷2 for the MC (𝑁 = 1560) and HS (𝑁 = 1664) models, respectively,

are built using Sobol’s sampling algorithm (Joe & Kuo, 2008). The input vectors for the

MC model are 𝑥 (𝑖)𝐷1
= (𝐶 (𝑖) , 𝜌(𝑖) , 𝐺 (𝑖)

𝑟𝑒 𝑓 , 𝜈
(𝑖) , 𝜙(𝑖))𝑇 , and for the HS model they are 𝑥 (𝑖)𝐷2

=
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Algorithm 4.1 A PSOGA algorithm

1 Initialization of the position and velocity of the particle

2 while Termination is not met do
3 Estimate the fitness function of each particle.

4 Select the particle with the best position by comparing the fitness value of each

particle. Compare the fitness value of each particle with the one that presents the

best global position.

5 Upgrade the velocity and position of each particle by Eq.4.12 and 4.13

6 Apply the crossover operator to all particles and produce the offspring.

7 Mutate the particles and evaluate their fitness

8 Update the best particle position and the best global position

9 end while

(𝐸
𝑟𝑒 𝑓
50

(𝑖)
, 𝜙(𝑖) ,m(𝑖) , 𝜌(𝑖) , 𝜓 (𝑖))𝑇 for a sample (𝑖) of each sub-domain P, N and O. It is assumed

that the parameters are distributed uniformly. The numerical displacements corresponding

to the 𝑁 and 𝑀 set of inputs 𝑥 (𝑖)𝐷1
and 𝑥 (𝑖)𝐷2

are obtained by running Plaxis2D (Plaxis, 2017).

The displacements are then extracted along the measurements’ line (32 points) for each

inclinometer (INV1, INV2, INH1 and INH2), yielding response vectors 𝑌 (𝑖)
𝐷1

and 𝑌 (𝑖)
𝐷2

of

dimension 𝑚1, 𝑚2 = 128 for both constitutive soil models.

The datasets are divided into three subsets, training, validation, and testing, in proportions of

70%, 15% and 15%, respectively. Several DNN architectures were tested by varying the number

of layers and nodes. The 5-layer architecture shown in Fig.4.5 provided good results; the mean

square error decreased by a factor of at least5𝑒 − 3 from its initial value, as shown in Fig.4.7,

which was the best validation performance of the DNN model and indicated the convergence of

the error function with the iterations (epochs).

In order to better assess the response surface, several models were constructed and then initialized

with random weight parameters. Fig.4.8 shows that the predicted and targeted datasets have

a reasonable correlation, which indicates a good response surface between the numerical

simulations and the DNN predictions. Indeed, the correlation coefficient 𝑅 is 0.99 for both
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a) Training, validation and test errors for the MC

model

b) Training, validation and test errors for the HS

model

Figure 4.7 Performance of deep neural network models

a) Fitted line plot for the MC soil model dataset b) Fitted line plot for the HS model dataset

Figure 4.8 Correlation between the targeted and predicted test data for the MC and HS

models

constitutive models. The DNN model is highly accurate, as the relative errors between the

predicted and observed outputs are only 10−4 and 10−5 for the MC and HS models, respectively.
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a) Horizontal displacements for inclinometer

INV1

b) Horizontal displacements for inclinometer

INV2

c) Vertical displacements for inclinometer INH1 d) Vertical displacements for inclinometer INH2

Figure 4.9 A comparison of the confidence intervals of numerical displacements for

MC and HS constitutive models

Uncertainty is inevitable due to a lack of knowledge or inherent noise in the measurements. The

uncertainty analysis quantifies the output uncertainty due to aleatoric variations in the input

parameters and can be performed using the Monte Carlo method if the sample size is large

enough. The confidence intervals for the displacements of the inclinometers for the MC and HS

soil models are shown in Fig.4.9.

While the numerical and measured displacements for the INV1 and INV2 (vertical) inclinometers

are within the predicted confidence intervals (mean ±2 standard deviation), the measured
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Table 4.3 Optimal parameters of the MC model and the minimum fitness values

obtained using different optimization algorithms

Soil Parameters Optimization Techniques
Sub-domains P,N and O PSO GA PSOGA

𝜌(P) 22.98 23.08 23.12

𝐺𝑟𝑒 𝑓 (P) 2.8962E+04 2.9484E+04 2.886E+04

𝜈(P) 0.32 0.32 0.32

𝜙(P) 42.30 42.60 41.90

𝜌(N) 23.18 22.61 23.23

𝐺𝑟𝑒 𝑓 (N) 6.14482E+04 6.262E+04 6.1941E+04

𝜈(N) 0.28 0.27 0.27

𝜙(N) 48.98 49.22 49.14

𝜌(O) 22.30 22.13 22.62

𝐺𝑟𝑒 𝑓 (O) 4.6742E+04 4.7899E+04 4.7171E+04

𝜈(O) 0.243 0.23 0.22

𝜙(O) 45.74 46.32 46.75

Fitness value 1.59E-04 1.733E-04 1.177E-04

Time elapsed(sec) 569 996 1190

Table 4.4 Optimal parameters of HS model and the minimum fitness values obtained

using different optimization algorithms

Soil Parameters Optimization Techniques
Sub-domains P,N and O PSO GA PSOGA

𝐸
𝑟𝑒 𝑓
50

(P) 8.849E+04 8.239E+04 7.3429E+04

𝜙(P) 43.24 44.20 44.37

𝑚(P) 0.43 0.47 0.57

𝜌(P) 23.30 22.49 23.16

𝜓(P) 10.09 10.75 8.50

𝐸
𝑟𝑒 𝑓
50

(N) 1.633E+04 1.541E+04 1.445E+04

𝜙(N) 48.41 47.09 49.14

𝑚(N) 0.20 0.21 0.22

𝜌(N) 23.35 22.75 23.18

𝜓(N) 16.82 15.41 12.75

𝐸
𝑟𝑒 𝑓
50

(O) 1.256E+04 1.2083E+04 1.265E+04

𝜙(O) 44.83 43.96 42.85

𝑚(O) 0.435 0.46 0.462

𝜌(O) 21.41 21.68 21.37

𝜓(O) 10.89 10.83 8.5

Fitness value 1.8759E-04 1.9046E-04 1.138E-04

Time elapsed(sec) 662.6 932 1070
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and numerical displacements of the horizontal inclinometers INH1 and INH2 show some

discrepancies. Nevertheless, the measured data for all inclinometers are mainly within the

predicted numerical confidence intervals.

a) Evaluation of fitness function versus iterations

for the MC model

b) Evaluation of fitness function versus iterations

for the HS model

Figure 4.10 A comparative study of convergence observed during the analysis of

optimization algorithms

The PSO, GA, and hybrid PSOGA algorithms are applied to identify soil parameters. Initially,

the parameters for each algorithm are tuned by a trial and error approach. In the present

study, the population sizes and the number of iterations are varied to analyze their optimal

convergence. Once determined, the population size and iteration count are set at 100 for all

optimization techniques. The crossover and mutation probabilities for the GA are set at 0.6

and 0.1, respectively; however, for PSO, the learning factors 𝑐1 and 𝑐2 are both assumed to

be 2. The objectives here are to have an iteration count in all techniques, beyond which there

is no significant improvement in convergence, and to assure the existence of a population

that accomplishes this terminus without compromising performance or accuracy. Computer

programs are executed several times with an Intel-i7 processor with 32 GB RAM to verify that

the results have no significant differences.

The fitness functions are evaluated with respect to each iteration in PSO, GA and hybrid PSOGA

for both constitutive soil models and the convergence trend is presented in Fig. 4.10. It is evident
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a) Plots for measured and predicted

displacements of optimal values (INV1)

b) Plots for measured and predicted

displacements of optimal values (INV2)

c) Plots for measured and predicted

displacements of optimal values INH1)

d) Plots for measured and predicted

displacements of optimal values (INH2)

Figure 4.11 Measured and predicted displacements for optimal parameter values of MC

and HS models: displayed in dotted and bold lines, respectively

from the above results that the hybrid PSOGA offers the best performance, as it reaches the

smallest fitness values first, followed by PSO and then GA.

The optimal parameters of MC and HS constitutive soil models, with minimum fitness values

and the time elapsed for each algorithm, are summarized in Table4.3 and Table4.4, respectively.

It can be seen that PSO converges in less time than the GA and hybrid PSOGA., but the hybrid

PSOGA attains the minimum fitness value before the other two approaches. Fig. 4.11 shows that

the predicted displacements for optimal parameters of the HS model best match the measured
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displacements. Moreover, the optimal parameter values obtained for both soil models are almost

the same for all algorithms, leading to similar behaviour of predicted displacements by the deep

neural network surrogate model, as shown in Fig. 4.11. Overall, the results demonstrate that

the HS model offers the best parameters to fit the oscillatory measurements, especially when

combined with hybrid PSOGA.
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4.4 Conclusion

This research aimed to present a framework to calibrate the parameters of different constitutive

soil models for rockfill dams. The computational burden of numerical analysis is the major

obstacle to the rapid determination of these parameters. Therefore, a DNN surrogate model

is fine tuned and utilized to reduce the computational cost. Moreover, an objective function is

formulated to smooth out the oscillations, as measured displacements show strong fluctuation

among the inclinometers. To increase efficiency and accuracy, non-intrusive optimization

algorithms (PSO, GA and hybrid PSOGA) are employed to minimize the error of the objective

function and attain the optimal parameters. The hybrid PSOGA leads the optimization process

to a global solution by maintaining the balance between PSO’s exploration and exploitation

capacity by adding GA operators. The method is applied to the calibration problem of Quebec’s

large rockfill dam, Romaine-2, which has an asphalt core. Two constitutive material models,

Mohr-Coulomb (MC) and Hardening Soil (HS), are employed, and their responses are compared.

The predicted displacements for the optimal parameters determined by the HS model are in better

agreement with the measured displacements than those of the MC model. Overall, the results

demonstrate that making use of the DNN surrogate model and the hybrid PSOGA optimization

algorithm constitutes an efficient tool in inverse analysis.





CONCLUSION AND RECOMMENDATIONS

This thesis mainly examined the parametric uncertainties, sensitivity, and parameter identification

of rockfill dams. It is important to note that the quality of sensitivity analysis, parameter

calibration, and uncertainty analysis can significantly impact the dam’s modelling. However,

several limitations to different methods can make it challenging to achieve satisfactory results,

especially when dealing with various sources of uncertainty.

The dam (Romaine-2) structure was initially numerically modelled using the plane strain

hypothesis with a finite element approach using the simple Mohr-Coulomb constitutive soil

parameters. The model consisted of triangular elements meshed to different soil sub-domains,

with additional refinement around the asphalt core. Chapter 2 used a classical uncertainty

propagation technique such as Monte Carlo on a numerical model describing dam behaviour.

Only one subdomain in the dam was considered in this study; therefore, only five soil parameters

were assumed as input parameters. A careful convergence study was conducted to determine

the optimal sample size to ensure acceptable convergence and precision. Although the Monte

Carlo approach is effective and easy to implement, its usefulness is limited when dealing with

problems that require extensive simulation time. The fact remains that this approach is widely

used as a reference solution with which all other methods have been tested and validated.

Additionally, the extensive need for computational resources renders high-fidelity computations

cost-prohibitive for multiple parameter solutions when conducting sensitivity or uncertainty

analyses. To address this challenge, surrogate modelling has emerged as a promising technique

for learning and representing high-fidelity models. Polynomial chaos expansion (PCE) and

deep neural network (DNN) methods were trained to overcome the limitations of sampling

methods and a surrogate model was developed to reduce the computational cost of numerical

models. Indeed, these techniques make it possible to efficiently approximate the variability of the

output responses of numerical models with a considerably reduced number of sampling points.
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Comparing results obtained from 𝑁 = 300 and 𝑁 = 1080 datasets to Monte Carlo simulations,

the statistical mean displacements on two inclinometers obtained with the PCE surrogate model

were more consistent with measured data than those computed with the DNN model. However,

DNN was proven to be efficient in predicting the numerical solution for any input data set.

Overall, this study showed that surrogate models can be used to reduce computational costs

when a large number of simulations are required. Moreover, variance-based sensitivity analysis

identified that the shear modulus and Poisson coefficient parameters of the Mohr-coulomb

constitutive soil model have the most significant impact on the dam’s behaviour.

In order to understand how constitutive soil models affect the behaviour of a structure, an

inverse analysis was conducted to examine its properties and parameters. The main priority

was identifying the parameters that accurately correspond to the physical system. This was

accomplished by minimizing discrepancies between the gathered measurements and numerical

data. In the instance of the Romaine-2 dam, the measurements were taken through four

inclinometers installed at different locations across the dam’s cross-sections. The computational

domain was decomposed into three subdomains to conduct a comparative study that accounted

for the heterogeneity of the materials, so the input parameters were increased to twelve. Due to

the high efficiency of deep neural networks, the surrogate model was built for input parameters

and corresponding displacements simulated through the finite element model to speed up

identification. A comparative study of three non-intrusive optimization algorithms (Genetic

algorithm (GA), Particle Swarm Optimization (PSO), and Differential evolution (DE)) were

conducted to determine the constitutive soil parameters. The measured displacements showed

significant fluctuations along the inclinometers, so an objective function was developed to smooth

out the oscillations and improve the algorithms’ convergence. The optimal parameter values

obtained by each algorithm were almost identical, resulting in similar predicted displacements

for both cases. Although the measurement data set was not very large, as is typical in machine
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learning studies, the findings demonstrate that combining deep neural networks and non-

deterministic optimization algorithms were valuable computational tools in this inverse analysis.

All the results are discussed in detail in Chapter 3. While this study found particle swarm

optimization (PSO) to be the most effective method, it’s essential to be aware of its limitations.

One significant concern is that PSO can become trapped in a local optimum when working

with high-dimensional spaces. Moreover, the convergence rate of the algorithm during iterative

processes is often below average. However, this issue was resolved using a hybrid method

that perfectly balances robustness and efficiency. A hybrid optimization technique that merges

particle swarm optimization (PSO) with a genetic algorithm (GA) incorporated by crossover and

mutation was developed. This innovative approach captured the best features of each algorithm,

thereby overcoming their limitations.

The high computational load of numerical analysis posed a significant challenge in updating every

particle’s position vector and velocity in each iteration. To alleviate this issue, a DNN surrogate

model was fine-tuned for the soil parameters of each constitutive model. A comparative study of

constitutive soil models Mohr-Coulomb (MC) and hardening soil (HS) models, was considered

to understand how the optimized parameter changes along the dam. In addition, a multi-objective

function was developed by combining the objective functions along each inclinometer. To

optimize efficiency and accuracy, non-intrusive optimization algorithms such as PSO, GA, and

hybrid PSOGA were employed to minimize the multi-objective function error and obtain optimal

parameters for each constitutive soil model. The hybrid PSOGA algorithm effectively achieved a

global solution by balancing PSO’s exploration and exploitation capabilities with GA operators.

The predicted displacements for the optimal parameters determined by the HS model were in

better agreement with the measured displacements than those of the MC model. The results

demonstrated that utilizing DNN surrogate models and hybrid PSOGA optimization algorithms

was an efficient tool in inverse analysis. The study’s objective was to devise a framework for the

calibration problem of Quebec’s Romaine-2 rockfill dam, which has an asphalt core.
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The methodology presented in this thesis for inverse analysis considering MC and HS models

was highly adaptable and efficient, allowing customization to suit specific problem requirements.

However, there are some limitations. The success of this adaptability is mainly dependent on

the numerical model, formulation of objective functions and optimization methods utilized

for the given problem. Sometimes, a robust algorithm can lead to unnecessary computational

costs, while other times, highly efficient ones may not be able to handle complex problems.

However, the main objective of this thesis is to define a methodology that can be applied to

numerous geotechnical problems. Therefore, while differential evolution (DE) has weaknesses

in terms of efficiency, it is essential to focus on improving it. Additionally, a 2D finite element

model was used throughout the study. Three dimensional modelling (provided that additional

measurement data are available) would help better understand dam behaviour. In order to

improve the reliability and adaptability of data-driven approaches for the Romaine-2 Dam and

related projects, one of the main future plans is to implement real-time monitoring systems. This

involves continuously collecting data from sensors and monitoring devices to update surrogate

models and calibrated parameters over time. Long-term monitoring will ensure that the approach

takes into account the actual behaviour and performance of the dam. Additionally, real-time

validation of manual measurements will allow any errors to be immediately identified and

corrected by the technicians on-site before making the final record. This will help to eliminate

errors resulting from human error or defects in measuring devices. Identifying potential failure

scenarios based on monitoring data would also be valuable.
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