

 Multi-objective mechanisms for dynamic resource adaptation
in virtualized network environments

by

Mirna AWAD

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE
TECHNOLOGIE SUPÉRIEURE IN PARTIAL FULFILLMENT FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, AUGUST 08, 2023

ECOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

 Mirna Awad, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mrs. Nadjia Kara, Thesis Supervisor
Department of Software Engineering and IT, École de technologie supérieure

Mr. Aris Leivadeas, Thesis Co-supervisor
Department of Software Engineering and IT, École de technologie supérieure

Mr. Zbigniew Duong, President of the Board of Examiners
Department of Electrical Engineering, École de technologie supérieure

Mr. Abdelouahed Gherbi, Member of the jury
Department of Electrical Engineering, École de technologie supérieure

Mr. Mohammad Hamdaqa, External Examiner
Department of Computer Engineering and Software Engineering, École Polytechnique de
Montréal

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND PUBLIC

ON AUGUST 04, 2023

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

FOREWORD

The present thesis extensively explores various aspects of resource management in virtualized

network environments, which has been and is still a challenging and broad subject. It addresses

this problem from multiple perspectives and targets various sub-research problems, resulting

in the production of three journal articles. Two of these articles have already been published

in top journals, while the third is currently under review. Throughout the thesis, aside from the

introductory and literature review chapters that provide an explanation of the research

objectives and position them within the most recent state-of-the-art, the subsequent chapters

present the journal articles without any modifications. Although each article discusses different

contributions, they are all closely interconnected and complement one another.

ACKNOWLEDGMENTS

I am deeply grateful to the countless persons who have supported and guided me throughout

my PHD journey. Without their unwavering assistance, this work would not have come to

fruition.

First and foremost, I express my heartfelt appreciation to my family for their constant support

and unwavering encouragement. Their presence and understanding have been instrumental in

keeping me resilient, especially during the challenging times we faced, such as the COVID

pandemic. Their patience and belief in me have been a constant source of strength, and I am

forever grateful.

I extend my sincere thanks to my supervisors, for their financial support and invaluable

contributions to this research endeavor. Their insightful feedback and guidance have

consistently pushed me to elevate the quality of the work. Special thanks to Ericsson Canada

for their collaboration in this research work.

I am immensely grateful for the professors at ETS who bestowed upon me the honor of

teaching their courses and laboratories. I am truly appreciative of the valuable opportunities

they presented me to enrich my curriculum vitae. Their trust in my teaching abilities, evident

in their willingness to entrust me with classes of approximately 40 students, is something for

which I am deeply thankful.

I would like to express my appreciation to my professors in the IT department at Lebanese

University, and to Dr. Azzam Mourad, for recommending and encouraging me to pursue this

study. Their support and belief in my potential to become a future professor have been

invaluable.

Finally, I would like to thank all my friends who have shared joyful moments with me and

engaged in activities that have enriched my life outside of studying and working. Their

VIII

companionship and support have brought balance and joy to this journey, and I am truly

grateful for their presence.

Mécanismes multi-objectifs pour l'adaptation dynamique des ressources

dans les environnements de réseaux virtualisés

Mirna AWAD

RÉSUMÉ

La croissance des technologies de virtualisation et des solutions cloud a fondamentalement
transformé la gestion et l'utilisation des ressources informatiques. Ces avancées ont permis aux
fournisseurs de cloud d'offrir des services évolutifs, flexibles et rentables à leurs clients.
Cependant, avec la demande croissante de services cloud, la gestion efficace des ressources est
devenue une préoccupation majeure. Pour relever ce défi, diverses stratégies, telles que la
consolidation des ressources, la prédiction de l'utilisation des ressources et les techniques
d’élasticité et de migration des ressources, ont été proposées afin d'optimiser la gestion des
ressources dans les environnements virtualisés. Cette thèse présente un ensemble novateur de
techniques adaptatives de gestion des ressources, conçues pour maximiser l'utilisation des
ressources, réduire la consommation d'énergie et garantir la conformité aux exigences des
contrats de service (SLA).

En tenant compte des défis inhérents à la variabilité des charges de trafic, à la diversité des
applications et aux objectifs d'optimisation contradictoires, cette recherche englobe plusieurs
contributions significatives, chacune se concentrant sur un aspect spécifique de la gestion des
ressources. Tout d'abord, le problème d'adaptation dynamique des ressources dans les
environnements de virtualisation des fonctions réseau (NFV) est exploré, en intégrant des
stratégies d’élasticité et de migration des ressources pour les chaînes de fonctions virtualisées
(SFC). Ce problème d'allocation des ressources est abordé sous un angle innovant, formulé
comme un modèle de programmation linéaire (ILP) et développé pour générer des solutions
optimales. Deuxièmement, des algorithmes décisionnels métaheuristiques innovants et multi-
objectifs, basés sur NSGAII, CRO et PSO, sont proposés pour adapter les ressources en temps
réel avec des solutions sous-optimales. Troisièmement, la réallocation proactive des ressources
est étudiée grâce au développement d'un modèle de prédiction des charges de trafic multi-
ressources et multi-étapes. En intégrant le filtre de Kalman et la régression par vecteur de
support (SVR), ce modèle anticipe avec précision la consommation des ressources des hôtes,
y compris le CPU, la mémoire et la bande passante. Quatrièmement, en s'appuyant sur cette
capacité prédictive, une approche de consolidation optimisée est présentée, incorporant des
stratégies d'estimation proactive de l'état des hôtes pour la détection de la surcharge et de la
sous-charge. Pour valider l'efficacité des techniques proposées, des expérimentations
approfondies sont menées en utilisant des ensembles de données divers tels que Planetlab,
Materna et Bitbrains, couplés au simulateur Cloudsim. Les résultats démontrent le potentiel de
ces techniques pour améliorer la gestion des ressources dans les environnements virtualisés.

Mots-clés : gestion et réallocation des ressources, élasticité et migration des ressources,
virtualisation des fonctions réseau, infonuagique, méta-heuristique, algorithme génétique

X

NSGAII, optimisation des réactions chimiques CRO, optimisation des essaims de particules
PSO, modèle ILP, chaînes de services, prédiction des charges de trafic, consolidation,
régression vectorielle de support SVR, filtre de Kalman, Cloudsim.

Multi-objective mechanisms for dynamic resource adaptation in
virtualized network environments

Mirna AWAD

ABSTRACT

The growth of virtualization technologies and cloud solutions has fundamentally transformed
the management and utilization of computing resources. These advancements have empowered
cloud providers to offer scalable, flexible, and cost-effective services to their customers.
However, with the ever-increasing demand for cloud services, effective resource management
has become a critical concern. To address this challenge, various strategies, such as workload
consolidation, resource utilization prediction, and resource scaling and migration techniques,
have been proposed to optimize resource management in virtualized environments. This thesis
presents a pioneering set of adaptive multi-objective resource management techniques
designed to maximize resource utilization, reduce energy consumption, and ensure compliance
with Service Level Agreement (SLA) requirements.

Considering the inherent challenges of workload variability, application diversity, and
conflicting optimization goals, the research encapsulates several significant contributions, each
focusing on a specific aspect of resource management. First, the dynamic resource adaptation
problem within Network Function Virtualization (NFV)-cloud environments is explored,
incorporating resource scaling and migration strategies for service function chains (SFCs).
This resource allocation problem is tackled from a novel perspective, formulated as Integer
Linear Programming (ILP) model and developed to generate optimal solutions. Second,
innovative multi-objective decision-making metaheuristic algorithms, based on NSGAII,
CRO, and PSO, are proposed to enable real-time resource adaptation with sub-optimal
solutions. Third, proactive resource reallocation is investigated through the development of a
multi-resource and multi-step-ahead workload prediction model. By integrating the Kalman
filter and support vector regression, this model accurately anticipates host resource utilization,
including CPU, memory, and bandwidth. Fourth, building upon this predictive capability, an
optimized consolidation approach is introduced, incorporating proactive host state estimation
strategies for overload and underload detection. To validate the effectiveness of the proposed
techniques, extensive experiments are conducted employing diverse datasets such as Planetlab,
Materna, and Bitbrains, coupled with the Cloudsim simulator. The experimental results
demonstrate the potential of these techniques to enhance resource management in virtualized
environments.

Keywords: resource management and reallocation, resource scaling and migration, network
function virtualization, cloud computing, meta-heuristics, genetic algorithm NSGAII,
chemical reaction optimization CRO, Particle swarm optimization PSO, ILP model, Service
chains, workload prediction, workload consolidation, Support vector regression SVR, Kalman
filter, Cloudsim.

Page

INTRODUCTION ...1
0.1 Context ...1
0.2 Problem statement and challenges ...2
0.3 Research Objectives ...7
0.4 Contributions..9
0.5 Methodology ..14
0.6 Publications ..17
0.7 Thesis Organization ...18

CHAPTER 1 LITERATURE REVIEW ..19
1.1 Resource Adaptation ..19
1.2 Workload prediction ..22
1.3 Resource Consolidation ...24

CHAPTER 2 SLO-AWARE DYNAMIC SELF-ADAPTATION OF RESOURCES28
2.1 Abstract ..28
2.2 Introduction ..29
2.3 Related work ..33
2.4 Problem formulation ..39

2.4.1 Decision variables ... 40
2.4.2 Constraints .. 40
2.4.3 Cost functions ... 42

2.5 Algorithms ...44
2.5.1 Common strategies.. 45
2.5.2 NSGA-based algorithm ... 47
2.5.3 CRO-based algorithm ... 49
2.5.4 NBPSO-based algorithm ... 51
2.5.5 CRO-NBPSO algorithm.. 53

2.6 Experiments ...55
2.6.1 Experimental design.. 55
2.6.2 Implementation ... 56
2.6.3 Results and discussion .. 58

2.7 Conclusion ...65

CHAPTER 3 UTILIZATION PREDICTION-BASED VM CONSOLIDATION
APPROACH ..67

3.1 Abstract ..67
3.2 Introduction ..68
3.3 Related work ..71

XIV

3.4 Prediction strategy .. 77
3.4.1 Kalman Filter .. 78
3.4.2 SVR regression ... 79

3.5 Prediction-aware consolidation approach ... 81
3.5.1 Overload detection algorithm ... 82
3.5.2 Underload detection algorithm ... 83
3.5.3 VM migration and placement ... 84
3.5.4 Complexity Analysis ... 87
3.5.5 Performance Metrics ... 89

3.6 Experiments .. 92
3.6.1 Setup ... 92
3.6.2 Results and discussion .. 95

3.7 Conclusion .. 107

CHAPTER 4 MULTI-RESOURCE PREDICTIVE WORKLOAD
CONSOLIDATION APPROACH IN VIRTUALIZED
ENVIRONMENTS ... 109

4.1 Abstract ... 109
4.2 Introduction ... 110
4.3 Related work ... 113
4.4 Workload Prediction Model .. 118

4.4.1 Kalman Filter .. 119
4.4.2 Support Vector Regression ... 120
4.4.3 MSPR Algorithm .. 122

4.5 Workload consolidation approach .. 123
4.5.1 Overload detection algorithm ... 123
4.5.2 Underload detection algorithm ... 125
4.5.3 Migration and placement .. 127
4.5.4 Overall approach ... 129
4.5.5 Complexity Analysis ... 130
4.5.6 Performance Metrics ... 132

4.6 Experiments .. 136
4.6.1 Setup ... 136
4.6.2 Results and discussion .. 139

4.7 Conclusion .. 146

CONCLUSION ... 149

LIST OF BIBLIOGRAPHICAL REFERENCES ... 151

LIST OF TABLES

Page

Table 0.1 Prediction errors under different Planetlab workloads.14

Table 2.1 Notations ..39

Table 2.2 Meta-Heuristic Parameters ...55

Table 2.3 Worst Standard Deviation obtained ...56

Table 2.4 Latency Thresholds in scenarios 1, 2 and 3 ...57

Table 2.5 Scenario 4 test results ...63

Table 3.1 Power consumption of servers according to their CPU utilization
(in watts) ..91

Table 3.2 VM instances characteristics ..93

Table 3.3 Algorithms parameters ...93

Table 3.4 Planetlab workloads characteristics (CPU utilization)94

Table 3.5 Testing results of different windows size values96

Table 3.6 Detailed energy measurements of executing our technique106

Table 4.1 Power consumption of hosts according to their CPU usage (in watts) ...135

Table 4.2 VM instances characteristics ..136

Table 4.3 Testing Parameters ...137

Table 4.4 Datasets characteristics ..138

LIST OF FIGURES

Page

Figure 0.1 Virtualization technologies ..4

Figure 0.2 Examples of service function chains ..6

Figure 0.3 Architectural diagram illustrating the resource management
components and their interactions ...13

Figure 2.1 Flow chart CRO - Binary PSO ...54

Figure 2.2 Average runtime of the NSGAII, CRO, NBPSO, CRO-NBPSO and
ILP algorithms in scenarios 1 (left-side fig.), 2 (middle fig.) and 3
(right-side fig.), respectively ..59

Figure 2.3 Clearer view of the average runtime for NSGAII, CRO and CRO-
NBPSO in scenarios 1, 2 and 3, respectively ...60

Figure 2.4 Comparison of the average CPU utilization for NSGAII, CRO,
NBPSO, CRO-NBPSO and ILP in scenarios 1, 2 and 3, respectively64

Figure 2.5 Comparison of energy consumption for NSGAII, CRO, NBPSO,
CRO-NBPSO and ILP in scenarios 1, 2 and 3, respectively64

Figure 2.6 Comparison of the average end-to-end delay/latency for NSGAII,
CRO, NBPSO, CRO-NBPSO and ILP in scenarios 1, 2 and 3, respectively
 ..64

Figure 2.7 Comparison of the average number of servers used by the NSGA,
CRO, NBPSO, CRO-NBPSO and ILP in scenarios 1, 2, and 3,
respectively ..65

Figure 3.1 CPU utilization trace of a cloud server Taken from Hieu et al. (2020,
p. 190) ..71

Figure 3.2 Workflow diagram of the proposed VM consolidation approach86

Figure 3.3 Comparison of energy consumption for 4 workloads - experiment 298

Figure 3.4 Comparison of the SLAVO metric for 4 workloads - experiment 299

Figure 3.5 Comparison of the SLAVM metric for 4 workloads- experiment 299

Figure 3.6 Comparison of the SLAV metric for 4 workloads - experiment 299

XVIII

Figure 3.7 Comparison of number of VM migrations for 4 workloads100

Figure 3.8 Comparison of runtime for 4 workloads - experiment 2100

Figure 3.9 Comparison of energy consumption for 4 workloads-experiment 3102

Figure 3.10 Comparison of the SLAVO metric for 4 workloads-experiment 3102

Figure 3.11 Comparison of the SLAVM metric for 4 workloads-experiment 3103

Figure 3.12 Comparison of the SLAV metric for 4 workloads - experiment 3103

Figure 3.13 Comparison of number of VM migrations for 4 workloads –103

Figure 3.14 Comparison of runtime for 4 workloads - experiment 3104

Figure 3.15 Comparison of energy consumed by the simulation106

Figure 3.16 Comparison of energy consumed by the VM consolidation106

Figure 4.1 CPU utilization trace of a cloud server Taken from Hieu et al. (2020,
p. 190) ..124

Figure 4.2 Comparison of energy consumption for 5 workloads- experiment 1141

Figure 4.3 Comparison of SLOH metric for 5 workloads- experiment 1141

Figure 4.4 Comparison of the SLOVM metric for 5 workloads- experiment 1141

Figure 4.5 Comparison of number of migrations for 5 workloads - experiment 1 ...142

Figure 4.6 Comparison of execution time for 5 workloads - experiment 1142

Figure 4.7 Comparison of energy consumption for 5 workloads- experiment 2144

Figure 4.8 Comparison of SLOH metric for 5 workloads- experiment 2144

Figure 4.9 Comparison of SLOVM metric for 5 workloads- experiment 2145

Figure 4.10 Comparison of number of migrations for 5 workloads- experiment 2145

Figure 4.11 Comparison of execution time for 5 workloads- experiment 2145

LIST OF ABREVIATIONS

ETS École de Technologie Supérieure

VM Virtual Machine

PM Physical Machine

IaaS Infrastructure as a Service

NFV Network Function Virtualization

SLA Service Level Agreement

SLO Service Level Objective

SFC Service Function Chain

VNF Virtual Network Function

NSGA II Non-Dominated Sorting Genetic Algorithm-II

CRO Chemical Reaction Optimization

PSO Particle Swarm Optimization

BPSO Binary Particle Swarm Optimization

ILP Integer Linear Programming

NP Non-Polynomial

QoS Quality of Service

CPU Central Processing Unit

MIPS Million Instructions per second

RAM Random Access Memory

IoT Internet of Things

HS Horizontal Scaling

XX

VS Vertical Scaling

M Migration

OD Overload Detection

UD Underload Detection

HUX Half-uniform crossover

PE Potential Energy

KE kinetic energy

SVR Support Vector Regression

SVM Support Vector Machine

WS Window size

RBF Radial Basis Function

MMT Minimum Migration Time

PABFD Power Aware Best Fit Decreasing

MAD Median Absolute Deviation

IQR Interquartile Range

ARIMA Autoregressive Integrated Moving Average

NSERC Natural Sciences and Engineering Research Council of Canada

LIST OF ALGORITHMS

Page

Algorithm 3.1 K-SVR prediction algorithm ...81

Algorithm 3.2 Overload_detection ...83

Algorithm 3.3 Underload_detection ...84

Algorithm 3.4 MMT VM selection ..85

Algorithm 3.5 PABFD ..86

Algorithm 3.6 Predictive VM consolidation ..88

Algorithm 4.1 MSPR prediction algorithm ..122

Algorithm 4.2 OD-MSPR ...125

Algorithm 4.3 UD-MSPR ...126

Algorithm 4.4 MMT-MSPR algorithm ..127

Algorithm 4.5 PABFD-MSPR ..128

Algorithm 4.6 Workload consolidation approach ..130

INTRODUCTION

0.1 Context

In recent years, the rapid advancement of virtualization technologies and cloud solutions has

brought about a significant revolution in the field of computing. Virtualization, a technique

that enables the creation of virtual versions of physical resources, has paved the way for the

development of cloud computing, enabling the efficient utilization of resources in data centers.

It has transformed the way computational resources are provisioned, deployed, and managed.

By abstracting physical resources such as servers, storage, and networks into virtual entities,

virtualization enables multiple virtual machines (VMs) or containers to run on a single physical

server. This consolidation of resources allows for better utilization of hardware, leading to

increased efficiency and cost savings. With the revolution of these technologies over the past

years, cloud computing has become a paramount platform for hosting enterprise systems or

infrastructures and delivering a wide range of services and applications (i.e., IoT and 5G

applications) to users over Internet. As a model that delivers on-demand access to shared

computing resources over the internet, cloud solutions offer scalable and elastic services,

enabling organizations to quickly adapt to changing demands and scale their resources

accordingly. Virtualization facilitates this dynamic allocation and provisioning of resources,

enabling on-demand scalability and agility in cloud environments. However, this paradigm

shift has led to a growing need for proposing and implementing efficient resource management

techniques. These techniques mainly aim to enhance resource utilization, minimize energy

consumption, and ensure compliance with Service Level Agreement (SLA) requirements. By

effectively allocating resources to meet the demands of applications and users, resource

management techniques optimize the utilization of available resources, thereby reducing

wastage and enhancing overall system efficiency.

2

0.2 Problem statement and challenges

In virtualized environments such as cloud infrastructures, efficient resource management have

become crucial in addressing the challenges posed by the rapid growth of virtualization and

cloud technologies. Resource consolidation approaches, resource utilization prediction,

resource scaling, and migration techniques are interrelated mechanisms that play integral roles

in managing resources effectively within these environments:

1. Resource Scaling (Al-Dhuraibi, Paraiso, Djarallah, & Merle, 2018) (Singh, Gupta,

Jyoti, & Nayyar, 2019) is an essential aspect of resource management in virtualized

environments. It involves dynamically adjusting the allocation of resources to meet

varying workload demands. Scaling techniques encompass vertical scaling (increasing

or decreasing the resources allocated to individual VMs or containers) and horizontal

scaling (adding or removing VMs or containers). By dynamically scaling resources,

virtualized environments can adapt to workload fluctuations, ensure optimal

performance, and prevent resource underutilization or contention. Resource scaling can

also be interrelated with resource consolidation and resource utilization prediction, as

it can allow efficient resource provisioning based on predicted resource needs and

consolidated resources.

2. Resource migration techniques (Choudhary et al., 2017) (Silva Filho, Monteiro, Inácio,

& Freire, 2018) play a vital role in optimizing resource allocation and balancing in

virtualized environments. These techniques enable the live migration of VMs or

containers across physical servers without disrupting running applications. By

leveraging migration algorithms and intelligent resource placement strategies,

resources can be dynamically repositioned to rebalance workloads, optimize resource

utilization, and accommodate variations in resource demands. Resource migration is

also interrelated with resource consolidation and resource scaling, as it allows for

efficient resource utilization by rebalancing resources across servers where VM or

containers can be added or removed.

3

3. Resource consolidation approaches (Dias, Correia, & Malheiros, 2022) (Khan, Tian,

Zhou, et al., 2022) involve analyzing the characteristics and resource requirements of

individual workloads (e.g., of running VMs or containers) and consolidating them onto

a reduced number of physical servers. By consolidating resources, redundant hardware

utilization can be minimized, and underutilized resources can be efficiently

redistributed. The main objectives of resource consolidation are to optimize resource

utilization, reduce energy consumption, and minimize operational costs while meeting

SLA requirements.

4. Resource utilization prediction techniques (Masdari & Khoshnevis, 2020) are used to

forecast future resource demands in virtualized environments. These techniques

leverage historical resource usage patterns, workload profiles, and predictive

algorithms to anticipate future resource requirements. By accurately predicting

resource needs, resource allocation decisions (scaling and migrations) can be made

proactively, avoiding potential performance bottlenecks, ensuring SLA compliance,

and enabling efficient resource provisioning (Radhika & Sadasivam, 2021). Resource

utilization prediction is also crucial in workload consolidation, as it helps to anticipate

the server state, whether it will be overloaded or underloaded in the near-future, for

optimally consolidating workloads.

Employing resource consolidation approaches, resource utilization prediction, resource

scaling, and migration techniques together is crucial in providing efficient resource

management in virtualized environments like the cloud. These mechanisms are highly

interrelated and complementary, and their combination enables providers to optimize resource

utilization, reduce energy consumption, and meet SLA requirements. Coherence between these

mechanisms is essential, and their collective utilization can contribute to the ongoing evolution

and advancements in cloud computing technologies. However, the complexity of creating such

an efficient resource management framework in the dynamic cloud environment arises due to

multiple challenges. These challenges include:

4

1. Complexity: The process of reallocating resources in virtualized environments

becomes complex due to the huge number of physical servers, virtual machines (VMs)

and/or containers involved. This challenge is considered NP-hard, meaning that finding

the optimal solution becomes computationally intensive and time-consuming. (Mai et

al., 2021) (Laaziz, Kara, Rabipour, Edstrom, & Lemieux, 2019)

2. Heterogeneity and Compatibility: To create an efficient resource management system,

cloud service providers need to ensure that their system is compatible with a wide range

of virtualization technologies (VMs, containers, etc.), operating systems, and hardware

configurations. Figure 0.1 shows the architectural difference between virtualization via

VMs only, containers only and by combining both (VM hosting containers). This

entails find generic and adaptive solutions able to manage resources across these

different platforms. This can be challenging due to the complex and heterogeneous

nature of modern data center environments.

3. Dynamic Workloads and SLA management: To meet SLA requirements and respond

quickly to changes in demand, cloud service providers need to be able to manage

resources in real-time. This means that the resource management system needs to be

able to dynamically adjust resource allocation in real-time based on workload patterns,

Figure 0.1 Virtualization technologies

5

user demand, and other factors. The main challenge is to maintain optimal resource

utilization and meet SLA requirements under different and dynamic workloads.

4. Elasticity: Cloud environments are designed to be elastic, meaning that resources can

be scaled up or down vertically or horizontally or migrated as demand changes. An

efficient resource management system should be capable of selecting the optimal

adaptation method for each scenario that can meet running application demands while

minimizing resource waste.

5. Applications diversity: Cloud environments host a diverse set of applications or

services with varying resource demands and characteristics. This diversity poses

challenges in developing a resource reallocation framework that can accommodate

these heterogeneous needs effectively. Additionally, in Network Function

Virtualization (NFV)-enabled networks, an application involves a service function

chain (SFC) of an interconnected set of virtual network functions (VNFs). These

service function chains (SFCs) may vary in size and have different topologies, such as

linear or non-linear forwarding graphs, introducing further challenges, constraints, and

costs for their resource management. Figure 0.2 represents some examples of SFC

topologies. Moreover, an SFC may have special connection constraints between its

VNFs (e.g., affinity and anti-affinity constraints) that restrict their placement location

and resource reallocation decisions. The resource management system should account

for the diverse requirements of different applications or SFCs, optimizing resource

allocation to ensure optimal performance and resource utilization for each service.

6. Conflicting objectives: Different cloud providers may have varying priorities and

optimization goals. Even within the same provider, there may be a need to balance

conflicting objectives and constraints. For example, service providers may aim to

minimize resource utilization and energy consumption while meeting Quality of

Service (QoS) requirements specified in SLAs. Designing a resource management

system that can effectively address these conflicting objectives requires sophisticated

algorithms and optimization techniques that consider multiple criteria and trade-offs.

7. Interdependent resource management techniques: Resource management techniques

such as workload consolidation, resource scaling, resource migration, resource

6

utilization prediction, and monitoring are interdependent and need to be carefully

coordinated and optimized to achieve the desired performance objectives. However,

coordinating these techniques can be difficult due to the complex interdependencies

between them. For example, a workload consolidation approach aimed at minimizing

the number of active servers may inadvertently result in resource underutilization,

necessitating resource scaling or migration to maintain performance levels. Balancing

these interdependencies and optimizing resource management strategies in a

dynamically changing cloud environment requires advanced algorithms, intelligent

decision-making mechanisms, and effective coordination between different resource

management techniques. This complexity makes it challenging to develop an efficient

and effective resource management system. This challenge is not addressed in current

implementations because our resource consolidation and adaptation strategies work

separately to manage resources. However, this challenge is one of our future works.

Figure 0.2 Examples of service function chains

7

Despite these challenges, the importance of designing an efficient resource management

system for the cloud cannot be overstated. Cloud computing has become an integral part of

modern computing, and efficient resource management is critical for ensuring optimal

performance, reducing energy consumption, and meeting SLA requirements. Furthermore,

with the increasing adoption of cloud computing, the need for energy-efficient resource

management becomes more pressing, as the energy consumption of cloud data centers has a

significant impact on the environment. Hence, there is a need for continued research on this

topic to develop more efficient and sustainable resource management systems for the cloud.

0.3 Research Objectives

The primary aim of this thesis is to develop innovative techniques to manage resources

dynamically and efficiently in virtualized and distributed environments. The research objective

is to propose novel solutions that automate resource adaptation, ensuring compliance with

Service Level Agreements (SLAs) while minimizing energy costs and resource consumption.

To address this research problem, we approach it from different perspectives, introducing: i)

efficient decision-making algorithms for dynamic adaptation of resources for SFCs

requirements; ii) resource utilization prediction techniques to anticipate future resource

demands and proactively reallocate the resources; iii) resource consolidation methods to

optimize resource utilization in data centers using detection algorithms that leverage prediction

techniques to proactively identify overloaded or underloaded servers, preventing SLA

violations and saving energy. Each specific topic within this thesis has its own defined

objectives, which are specified in the subsequent chapters. However, the overall research

objective is to propose solutions that meet the following criteria:

1. Generic techniques: The choice of our proposed techniques and algorithms was

motivated by the desire to provide portable and adaptable approaches suitable for

deployment in diverse environments and compatible with various systems. They are

intended to be independent of the workload, application types, virtualization

technologies (such as VMs or containers), and host configurations, etc. All research

8

proposals put forth in this thesis have a generic nature, in the sense that these techniques

can be adapted to be used in different virtualized systems or data centre architecture

(e.g., SFCs, microservices, VMs or containerized applications, etc.)

2. Dynamic: the developed techniques possess the capability to dynamically adjust

resource allocation, according to workload fluctuations. We tested our reactive and

proactive techniques using randomized workloads (Chapter 2) and real-world datasets

(Chapter 3 and 4) and validated the ability of these algorithms to dynamically make

resource management decisions required to meet those workload requirements and

update the infrastructure accordingly.

3. Proactive: by integrating reliable resource utilization prediction techniques, the

proposed resource reallocation mechanism can proactively anticipate future demands

and issues, allowing for proactive resource reallocation.

4. Scalable: As cloud computing environments continue to grow in size and complexity,

a significant research objective is to address scalability issues associated with resource

management. This involves developing techniques that can handle large-scale

virtualized environments while maintaining performance, efficiency, and reliability. In

chapters 3 and 4, we have tested our proposed mechanisms on infrastructures of up to

800 servers and up to 1500 VMs.

5. Multi-objective: Our key research objectives focus on reducing energy consumption,

meeting SLA requirements, and optimizing resource utilization in virtualized

environments. The proposed techniques aim to achieve a balance among these

objectives, allowing for energy-efficient resource allocation while satisfying SLA

commitments and maximizing resource utilization.

6. Time-efficient: The proposed algorithms generate sub-optimal solutions to the research

problems within a reasonable execution time. The execution time is considered as one

of the performance metrics in the experiments.

By adhering to these research objectives, this thesis aims to contribute to the advancement of

resource management in virtualized and distributed environments, addressing critical

challenges and proposing innovative solutions for efficient resource adaptation.

9

0.4 Contributions

Resource management and adaptation in virtualized environments encompass a broad and

intricate field of research, encompassing various sub-topics. Within this realm, we can discern

resource consolidation approaches, resource utilization prediction, resource scaling, and

migration techniques as distinct strategies for resource adaptation. Each of these research

topics represents a fertile ground for individual study and analysis, meriting complete theses

in their own right. This thesis addresses and investigates the aforementioned topics, proposing

distinct techniques that have yielded valuable insights and outcomes. Our contributions, as

outlined in the subsequent chapters, have been distilled and succinctly summarized in this

section.

Our investigations into resource scaling and migration techniques have led to the development

of innovative methods for dynamically adjusting the resource allocation in a virtualized

environment based on workload demands. For instance, our research work titled "SLO-aware

dynamic self-adaptation of resources" (chapter 2), tackles the complex problem of dynamic

resource adaptation in NFV-cloud environments. Dynamic resource management in NFV-

cloud settings poses challenges, given the variability of workloads, the diversity of applications

or service chains (SFCs), and the need to pick the appropriate method among horizontal scaling

(HS), vertical scaling (VS), and migration (M) for adapting VNF resources, and to balance

conflicting optimization goals.

While vertical scaling is limited by the capacities of physical machines, horizontally scaling

all instances or migrating them can result in high operational costs. Existing research often

focuses on one adaptation mechanism, neglecting the full range of possibilities. One of our key

contributions lies in our innovative formulation of the problem, which adopts a novel and

unique perspective, taking into account all three adaptation strategies, their associated costs,

and subsequently determining the most appropriate approach for each given scenario.

10

To solve the resource allocation problem, we employ an Integer Linear Programming (ILP)

model, which provides the optimal solution. However, the computational complexity of the

ILP model is time-consuming. As a result, several decision-making metaheuristic algorithms

are proposed based on Non-dominated Sorting Genetic Algorithm (NSGAII), Chemical

Reaction Optimization (CRO), and Binary Particle Swarm Optimization (NBPSO). These

algorithms offer efficient and effective solutions, enabling real-time resource adaptation

decisions to manage resources of Service Function Chains (SFCs) based on real-time demands

and performance requirements.

Moreover, we emphasize the importance of balancing conflicting optimization objectives in

resource adaptation by integrating multiple objectives, including meeting Service Level

Objectives (SLOs), optimizing resource utilization, and reducing energy consumption. SLO, a

vital component of an SLA, comprises specific QoS measurements and constraints. In addition,

our proposal addresses the variability of SFCs by considering different SFC sizes, and both

linear and non-linear SFC topologies. The proposed algorithms are extensively evaluated

through experiments conducted on various scenarios. The results demonstrate the effectiveness

of the metaheuristic techniques in reducing SLO latency while approximating optimal

solutions in terms of resource utilization and energy consumption.

By meticulously examining proactive resource reallocation approaches, we have also explored

resource utilization prediction techniques. In our research work titled "Utilization Prediction-

based VM Consolidation Approach", we develop a multi-step-ahead workload prediction

model called K-SVR, which combines the power of Kalman filter and support vector

regression (SVR). By integrating Kalman filter for data pre-processing, we achieve improved

accuracy in predicting host CPU utilization and estimating their states. The primary objective

of this research part is to overcome the limitations of existing approaches that solely rely on

real-time workload variations to adapt resources and take the related decisions (Songara &

Jain, 2023) (Xiao, Hu, & Li, 2019). These approaches often result in unreliable resource

adaptation decisions, leading to energy waste, performance degradation, and violations of

service-level agreements (SLAs). Table 0.1 represents some prediction errors of our technique

11

under different Planetlab workloads. It indicates that the prediction error is less than 10%. It

can be improved by combining an adaptive window size technique that can handle variations

in traffic loads. Such a technique can be considered as future work.

Furthermore, our research delves into the domain of workload consolidation strategies,

shedding light on overload and underload detection techniques to accurately estimate the host

state and efficiently trigger reliable migration decisions. Migration techniques facilitate the

movement of virtualized workloads across physical hosts in order to consolidate the resources.

Overload (OD) and underload detection (UD) algorithms enable migrations from overloaded

servers to meet SLA requirements and migrations from under-utilized servers to conserve

energy. Combining K-SVR prediction model with the proposed OD and UD algorithms, we

build a predictive workload consolidation approach. Our consolidation framework

dynamically determines overloaded and underloaded hosts by considering both current and

near-future resource utilization. The main objective is to ensure reliable decision-making,

avoiding unnecessary VM migrations and associated costs. Moreover, we have implemented

an alternative consolidation approach employing an Autoregressive Integrated Moving

Average (ARIMA) prediction model, replacing the K-SVR model. To evaluate the

effectiveness of this approach, we have conducted simulations using real-world PlanetLab

workloads on the well-known Cloudsim simulation platform. The evaluation is focused on

essential metrics such as SLA violation rates, the number of VM migrations, and energy

consumption in the data center. Compared to original and modified versions of benchmark

algorithms (local regression, static threshold, Mean Absolute Deviation, Interquartile Range

based consolidation approaches) and to ARIMA-based approach, the proposed consolidation

technique exhibits a substantial reduction in SLA violations, VM migrations, and energy

consumption. Besides the performed experiments, a detailed time complexity analysis for the

entire framework is provided, and an analysis study is carried out on the energy consumption

resulting from the execution of our proposed algorithms.

Lastly, building upon the previous work on "Utilization Prediction-based VM Consolidation

Approach", the research titled " multi-resource predictive workload consolidation approach in

12

virtualized environments" aims to optimize and enhance the proposed consolidation technique

by introducing a multi-resource and multi-step resource utilization prediction model. The

optimized version of K-SVR model, called MSPR, forecasts the future workload of servers,

taking into account CPU, memory, bandwidth received, and bandwidth transmitted. One

limitation of our previous work, and of some existing consolidation schemes, is that they often

consider only one type of resource, such as CPU utilization, while making decisions about

server states. However, with the diversity of user applications and their variable workloads,

this approach may not be efficient. Different applications may have different resource

requirements, necessitating the consideration of multiple resource types for accurate decision-

making. By considering a broader range of resources, the proposed approach becomes more

versatile and applicable to various types of applications and workloads.

In this last work, the OD-MSPR and UD-MSPR algorithms consider all types of resources

when making decisions. This adaptation ensures that the detection algorithms accurately assess

the overall host state based on a combination of resource utilizations. Additionally, the

previous static threshold for overload detection has been replaced with adaptive thresholds for

each resource type, enabling more dynamic and responsive decision-making. This approach

allows for distinct underload thresholds and prediction window sizes to be specified for each

resource type. By accommodating this flexibility, we ensure adaptability to different scenarios

and requirements. We have also refined our objective metrics (energy consumption and SLA

violation) to encompass all considered resource types. To establish a fair and rigorous

evaluation, we have updated and optimized ARIMA-based predictive consolidation technique

and Cloudsim benchmark consolidation algorithms to incorporate multi-resource aspects. In

our experimentation, we have used two real-world datasets, Materna and bitbrains, in place of

the previously employed planetlab dataset.

The diagram depicted in Figure 0.3 illustrates the current interactions among the implemented

entities in this thesis for resource management. For data collection, we have used existing real-

world datasets and random workloads. Details on the potential enhancements of the proposed

framework are given in section conclusion and future works. Overall, the culmination of all

13

these research efforts has resulted in the production of three distinct journal papers, each

representing a significant contribution to the field of resource adaptation and optimization in

Figure 0.3 Architectural diagram illustrating the resource management components
and their interactions

14

virtualized environments. The subsequent chapters delve into the specifics of our findings and

the techniques employed, highlighting the significance and impact of our research contribution

and the potential future optimizations.

Table 0.1 Prediction errors under different Planetlab workloads

Workload MAPE MAE MSE MFE
Execution

Time (ms)

20110303 6.643 0.621 1.215 -0.053 13.617

20110306 7.016 0.614 1.227 -0.051 15.073

20110309 7.693 0.667 1.304 -0.076 17.982

20110322 7.329 0.571 0.955 -0.054 15.093

20110325 6.783 0.596 1.047 -0.047 17.789

20110403 6.555 0.654 1.258 -0.039 19.704

20110409 7.176 0.659 1.311 -0.047 13.575

20110411 6.837 0.667 1.335 -0.047 16.003

20110412 6.911 0.663 1.278 -0.054 19.649

20110420 8.028 0.768 1.780 -0.042 22.989

**Mean Absolute Percentage Error (MAPE); Mean Squared Error (MSE); Mean Absolute Error (MAE); Mean Forecast Error

(MFE)

0.5 Methodology

The methodology pursued to perform this research work involves the following steps:

1. Literature review: This step involves conducting a comprehensive review of existing

literature, research papers, books, and other relevant sources to gain a deep

understanding of the research topic. The literature review helps identify gaps in

knowledge, establish the current state of research, and gather insights that inform

subsequent steps.

2. Problem formulation: Based on the findings from the literature review, the research

problem or research question is formulated. This step involves formulating a

mathematical model by clearly defining the objective functions and the constraints of

15

the study. The problem formulation stage ensures that the research is focused and

addresses a specific issue or gap in the field.

3. Data collection: Once the research problem is defined, the next step is to collect

relevant data. The data collected should be appropriate and sufficient to address the

research problem and support the subsequent analysis. In this work, random workloads

on resource utilization are generated, and existing real-world datasets are used. Three

datasets are utilized to evaluate the proposed algorithms, namely, Planetlab, Materna

and Bitbrains datasets.

4. Data preprocessing when needed: The collected data is preprocessed to ensure its

quality and suitability for analysis. This step involves cleaning the data by removing

duplicates, errors, missing values, or irrelevant information. Data preprocessing also

involves normalizing data to make it consistent and ready for analysis (chapter4).

5. Algorithms Implementation: In this step, the proposed algorithms or techniques are

developed to solve the research problem. The implementation stage is crucial for

generating insights and results. In the context of this thesis, several resource adaptation

algorithms have been proposed and implemented to address the research problem.

These algorithms include:

a. A set of meta-heuristic decision-making techniques for resource reallocation in

the cloud: The thesis proposes and implements NSGAII-based, CRO-based,

PSO-based, and CRO-PSO-based algorithms. These meta-heuristic algorithms

are designed to optimize the allocation of resources for the service function

chains (SFCs) hosted in the cloud environment (chapter 2).

b. Mathematical model implementation using Gurobi solver: In addition to the

meta-heuristic algorithms, the thesis also implements a mathematical model

using the Gurobi solver. This approach aims to obtain the exact solution for the

addressed research problem (resource adaptation for SFCs), providing a precise

evaluation and optimal comparison with the proposed techniques (chapter 2).

c. Resource utilization prediction technique: The thesis implements a multi-

resource and multi-step-ahead prediction technique for resource utilization

prediction. This technique leverages the Kalman Filter algorithm and SVR to

16

accurately predict resource utilization, enabling proactive resource reallocation

based on anticipated needs (chapters 3 and 4).

d. Predictive workload consolidation mechanism: Another algorithm

implemented in the thesis is a predictive workload consolidation mechanism.

This mechanism uses multi-resource historical workload data and predictive

analytics to identify opportunities for workload consolidation, optimizing

resource utilization and enhancing overall performance in the data center

(chapters 3 and 4).

6. Evaluation and validation: The proposed resource management techniques are

evaluated and validated using appropriate performance metrics to ensure that they meet

the defined objectives, such as improving resource utilization, enhancing SLA

guarantees, reducing energy consumption, and enhancing overall performance within

a moderate execution time, etc. Cloudsim simulator is used to test some of the proposed

algorithms, specifically those related to the predictive workload consolidation

mechanism. Validation ensures the reliability and credibility of the results.

7. Results interpretation and comparison with benchmarks techniques: Once the

evaluation is complete, the results are compared with existing benchmarks or some

previous studies from the state-of-the-art to assess the novelty or improvement of the

research. For example, our workload consolidation technique based on Kalman-SVR

prediction model is compared to the original and modified versions of existing

Cloudsim benchmarks, specifically, static-threshold-based and adaptive-thresholds-

based consolidation approaches, predictive ARIMA-based consolidation technique etc.

(chapters 3 and 4). Whereas, the proposed set of meta-heuristic algorithms for SFC’s

resource adaptations are compared to each other’s performance, and to the optimal

solution generated by the Gurobi solver (chapter 2).

8. Complexity and other analyses: Detailed analyses are conducted to assess various

aspects of some implemented algorithms or models. One key aspect examined is the

computational time complexity of the algorithms. The time complexity analysis

provides insights into the efficiency and scalability of the implemented approaches. By

understanding the computational time complexity, the thesis aims to evaluate the

17

feasibility of the algorithms for large-scale resource adaptation scenarios. Furthermore,

the thesis also delves into analysis related to power consumption resulting from the

execution of the proposed algorithms. This analysis focuses on quantifying the energy

requirements and power consumption associated with the resource reallocation process.

Understanding the power consumption implications is crucial for optimizing resource

utilization while considering energy efficiency goals. Both the computational time

complexity analysis and power consumption analysis contribute to a comprehensive

understanding of the implemented algorithms' performance and impact. These analyses

are discussed in chapters 3 and 4.

9. Optimization and fine-tuning: Based on the performed analysis and the evaluation

results, areas for improvement and optimization are identified. This step involves

refining the algorithms, models, or methodologies to enhance their performance,

efficiency, or accuracy. Fine-tuning may include parameters tuning, mathematical

model adjustments by considering more objective metrics or constraints, or further

optimization of the proposed techniques to consider missing aspects. Chapter 4

illustrates optimizations or enhancements of the techniques proposed in chapter 3.

Each step in the research methodology, discussed above, contributes to the overall process of

conducting this thesis work and ensuring its validity, reliability, and contribution to this

research field.

0.6 Publications

The research contributions discussed in this thesis are either published or submitted as follows:

1. Mirna Awad et al. (2022). SLO-aware dynamic self-adaptation of resources. Future

Generation Computer Systems, 133, 266‑280. (IF-7.5)

This work has been done in collaboration with Ericsson Canada.

2. Mirna Awad et al. (2022). Utilization prediction-based VM consolidation approach.

Journal of Parallel and Distributed Computing, 170, 24-38. (IF-4.542)

18

3. Mirna Awad et al. (2023). Multi-resource predictive workload consolidation approach

in virtualized environments. Journal of Computer Networks. Journal Article under

review (IF-5.6)

0.7 Thesis Organization

This work is presented in the form of a thesis by articles. An introduction showing the

motivations behind this research subject and a general literature review are detailed in the first

two chapters. Then, each journal article is presented in a dedicated chapter. Finally, the main

insights are summarized, and some future works are suggested.

CHAPTER 1

LITERATURE REVIEW

This chapter aims to present and emphasize the newest approaches addressing the dynamic

adaptation of resources in virtualized environments. It is divided into three parts: the first part

discusses solutions proposed for resource adaptation techniques such as scaling and migration;

the second part explores workload prediction techniques; and the third part delves into resource

consolidation strategies. While each journal article in the subsequent chapters provides an

extensive review of the existing literature, our discussion primarily focuses on more recent

research works in this field.

1.1 Resource Adaptation

Resource adaptation plays a crucial role in ensuring efficient utilization of virtualized

infrastructure while meeting the varying demands of applications and services. In the context

of NFV, applications consist of SFC chains that connect a set of VNFs.

Three adaptation mechanisms can be used to address the resource adaptation issue including

horizontal scaling (HS), vertical scaling (VS), and migration (M). Horizontal scaling involves

adjusting the number of allocated virtual resources, such as VMs or containers hosting these

VNFs, to dynamically accommodate the changing workload requirements. Vertical scaling, on

the other hand, focuses on modifying the computing capacity of individual VNF instances. It

involves scaling up, which refers to increasing the resources (e.g., CPU, memory) allocated to

a VNF, or scaling down, which involves decreasing the resources allocated to a VNF. Vertical

scaling is typically limited by the capacities of the physical machines hosting the VNF

instances. Migration, the third adaptation mechanism, involves the movement of VNFs or

entire SFCs from one physical machine to another. Migration techniques can be categorized

into different types, such as post-copy, pre-copy, or hybrid migration, depending on the

approach used to transfer the VNF or SFC from the source to the destination server. While

20

existing research has explored various aspects of resource adaptation problem, many proposals

tend to focus on specific mechanisms or prioritize one adaptation technique over others.

Chouliaras et al. (Chouliaras & Sotiriadis, 2022) present a framework called PACE

(Performance-aware Auto-scaler for Cloud Elasticity) for auto-scaling containerized cloud

applications. This framework includes both reactive and proactive vertical auto-scaling

techniques. The reactive approach uses threshold-based scaling rules to dynamically adjust

cloud resources based on predefined thresholds, preventing system failures. The proactive

approach utilizes convolutional neural networks (CNN) for time series forecasting and K-

means for clustering. This approach clusters future workload demands into High, Medium, and

Low categories and generates elastic scaling policies accordingly. However, this work

addresses solely vertical scaling method.

Rahman et al. (Rahman, Ahmed, Huynh, Tornatore, & Mukherjee, 2018) propose a proactive

machine learning approach for auto-scaling VNFs to improve QoS and reduce costs. They

convert the auto-scaling problem into a supervised ML classification problem, training a

classifier with past scaling decisions and network load data. The classifier predicts the number

of VNF instances required to serve the traffic while meeting QoS requirements. The study

compares four virtualization technologies (Xen, KVM, Docker, and LXC) and analyzes their

impact on auto-scaling performance. However, their work focuses solely on horizontal scaling

of VNFs.

Some studies have incorporated a combination of vertical and horizontal scaling to create a

hybrid auto-scaling mechanism. Jeong et al. (Jeong, Baek, Park, Jeon, & Jeong, 2023) present

an approach called Proactive Hybrid Pod Autoscaling (ProHPA) as a solution to pod

autoscaling in cloud computing. ProHPA utilizes a bidirectional long short-term memory (Bi-

LSTM) model with attention mechanism to forecast future CPU and memory usage. Then,

based on these forecasted resource usages, ProHPA sequentially performs three steps: reducing

excessive resource usage with vertical pod autoscaling (ReVPA), preventing overload with

horizontal pod autoscaling (HPA) (PoHPA), and adjusting the initial resource allocation. The

21

evaluation shows that ProHPA significantly improves CPU and memory utilization compared

to conventional HPA provided by Kubernetes. Other researchers concentrate on virtual

resources migration or re-placement problem without considering the full spectrum of

adaptation methods (T. Z. He, Toosi, & Buyya, 2021) (Duong-Ba, Nguyen, Bose, & Tran,

2018). Consequently, a holistic approach that takes into account all adaptation techniques (HS,

VS, and M) is necessary to cover the diverse resource adaptation scenarios that can arise.

Other significant limitations of existing techniques are adapting the resources of individual

VNFs without considering their connectivity or assuming them connected in a linear chain.

SFCs can exhibit different topologies, including both linear and non-linear structures. A linear

SFC topology refers to a chain-like structure where each VNF in the chain is connected to at

most two neighboring VNFs. This topology is characterized by a sequential arrangement of

VNF instances, creating a straightforward flow of data through the chain. On the other hand,

non-linear SFC topologies allow for more complex interconnections among VNFs. In this type

of topology, VNFs can have multiple instances and multiple connections with other VNFs

within the chain. Nadjaran Toosi et al. (Nadjaran Toosi, Son, Chi, & Buyya, 2019) introduce

an auto-scaling algorithm that optimizes end-to-end latency by considering vertical and

horizontal scaling, migration, and flow scheduling. The main objective is to dynamically

allocate CPU resources and network bandwidth for service chains while meeting latency

requirements. It first attempts to vertically scale up the resources, if this is not feasible due to

limitations in available resources, it explores horizontal scaling by adding more instances of

VNFs. To handle bandwidth adaptation, the algorithm utilizes flow scheduling techniques. It

redirects traffic to alternative network paths that can deliver the required bandwidth while

maintaining the desired latency. In cases where no suitable path is found, VNF migration is

employed.

In light of the aforementioned limitations in the existing literature, our work aims to contribute

to the state-of-the-art by formulating the SFC resource adaptation problem as an ILP model

that explicitly considers all three adaptation techniques (HS, VS, and M). This unique

formulation sets our work apart from previous approaches that have often focused on one

22

adaptation mechanism or neglected to differentiate between them. By incorporating decision

variables for each adaptation method, our ILP model enables us to evaluate and compare the

associated costs and benefits of each approach. This allows us to make informed decisions on

selecting the most appropriate resource adaptation method for a given scenario. Moreover, by

defining objective functions based on these decisions, we can effectively optimize the

allocation of resources and identify the optimal combination of adaptation techniques needed

to satisfy the resource requirements of incoming SFC requests. Furthermore, we propose novel

decision-making meta-heuristic algorithms based on NSGAII, CRO, Binary PSO, and a

combination of CRO and Binary PSO. Our algorithms can handle both linear and non-linear

SFC topologies of various size (number of VNFs), and strive to balance multiple objectives,

including energy savings, improved CPU utilization, and minimized SLO violation (end-to-

end latency).

1.2 Workload prediction

The workload prediction problem is extensively addressed in the state-of-the-art for various

contexts, including proactive auto-scaling (S. Luo et al., 2022) (Radhika & Sadasivam, 2021),

predictive resource consolidation (Chaurasia, Kumar, Vidyarthi, Pal, & Alkhayyat, 2023) (H.

Sayadnavard, Toroghi Haghighat, & Rahmani, 2022), workload modeling (St-Onge et al.,

2021), anomaly detection (Benmakrelouf et al., 2020) etc. Researchers are continuously

proposing new methodologies to enhance accuracy and effectiveness in workload prediction.

In this section, we discuss some new proposals in this area.

Devi et al. (Devi & Valli, 2023) develop a hybrid model for predicting future CPU and memory

utilization in a cloud data center. The proposed model combines ARIMA and ANN (Artificial

Neural Network) techniques to forecast both linear and nonlinear components of CPU and

memory utilization patterns. The ARIMA model detects linear components in workload

patterns, while the ANN leverages residuals derived from ARIMA model to capture nonlinear

components. Dogani et al. (Dogani, Khunjush, & Seydali, 2023) aim to improve host workload

prediction in cloud computing by proposing a hybrid approach that combines Discrete Wavelet

23

Transformation (DWT), Bidirectional Gated-Recurrent Unit (BiGRU), and an attention

mechanism. The DWT is used to decompose the data into sub-bands, allowing for the

extraction of patterns from nonlinear and nonstationary data. The decomposed data is then fed

into a BiGRU model, enhanced by an attention mechanism to capture temporal correlation

features. The study specifically focuses on predicting CPU usage. In the research work

conducted by Malik et al. (Malik, Tahir, Sardaraz, & Alourani, 2022), a novel approach for

predicting multi-resource utilization based on the Functional Link Neural Network (FLNN) is

introduced. To enhance the prediction accuracy, the researchers develop a hybrid model that

combines the genetic algorithm (GA) with the particle swarm optimization (PSO) algorithm to

train the neural network. The fitness function for the GA is determined as the Mean Absolute

Error (MAE). The experimental analysis primarily focuses on CPU and memory utilization of

virtual machines (VMs). St-Onge et al. (St-Onge et al., 2021) propose a hybrid approach for

workload modeling in cloud environments, aiming to generate generic CPU workload models

that can fit various workload domains. The authors present two approaches: one combining

Hull-White modeling with a genetic algorithm, and another combining a SVR model with

Kalman filter. Janjanam et al. (Janjanam, Siram, & Kollu, 2023) utilize a SVR model combined

with M/M/c queuing model, to predict the workload of web servers based on historical data.
The Last Value model, Moving Average model, and Auto Regression model are compared

with SVR models using different kernels. The obtained results conclude that the SVR-based

models, especially those with RBF kernel, are better at forecasting server workload compared

to basic forecasting models.

In our work, we propose, a multi-step ahead prediction model for forecasting the utilization of

server resources, encompassing CPU, memory, received bandwidth, and transmitted

bandwidth. We predict the future trend of each resource type instead of a single future value.

By capturing the trends, we provide valuable insights into how the utilization of these resources

is expected to evolve over time. Our model leverages a combination of SVR and Kalman Filter

algorithms to accurately forecast future resource utilization. By integrating the Kalman Filter

as a pre-processing step, we improve the accuracy of SVR predictions. The motivation behind

our approach stems from the workload modeling research work mentioned earlier (St-Onge et

24

al., 2021), where the combination of SVR and Kalman Filter has shown promise. However,

we target a different research context: estimating the state of hosts and optimizing resource

consolidation in virtualized environments. Notably, our model predicts multiple resources

simultaneously, and it is suitable for a variety of systems such as servers, virtual machines

(VMs), and containers.

1.3 Resource Consolidation

Resource consolidation is a vital strategy for optimizing resource allocation and achieving

energy efficiency in cloud environments. Its objective is to host workloads onto a reduced

number of physical machines, maximizing resource utilization and minimizing energy

consumption (Panwar, Rauthan, & Barthwal, 2022) (Bharany et al., 2022). Researchers have

explored various approaches to effectively address this problem. These approaches include

algorithms for VM or container replacement, techniques for detecting overloading and

underloading states, and strategies for selecting VMs or containers for migration. The detection

of host overloading and underloading conditions significantly impacts the performance and

efficiency of the consolidation system. Overloaded hosts may suffer from resource scarcity,

leading to degraded performance and potential violations of SLA. On the other hand,

underloaded hosts indicate the underutilization of resources, resulting in resource wastage and

unnecessary costs.

Some State-of-the-art approaches rely on actual resource utilization data to assess the current

state of hosts, determining if they are overloaded or underloaded. Songara et al. (Songara &

Jain, 2023) propose a multi-resource VM consolidation approach called MRA-VC. The

underloaded hosts are classified into different categories: severe load, moderate load, or low

load based on their current multi-resource utilization score and predefined thresholds. The

overload detection algorithm assigns dynamic weights to each resource based on their

importance in the decision-making process. If the calculated weighted score exceeds an upper

threshold (80%), the host is considered overloaded. Regarding VM selection and placement,

the authors propose a modified VM selection and placement algorithm based on a particle

25

swarm optimization. Yadav et al. (Yadav, Zhang, Li, Liu, & Laghari, 2021) suggest GradCent,

an algorithm based on Stochastic Gradient Descent technique, for detecting overloaded hosts

in cloud data centers. It determines an upper CPU utilization threshold based on CPU

utilization history. They also introduce the Minimum Size Utilization (MSU) Algorithm, which

prioritizes VMs with high CPU utilization and small sizes for migration from overloaded hosts.

Hariharan et al. (Hariharan, Siva, Kaliraj, & Prakash, 2023) develop an adaptive beetle swarm

optimization (ABSO) algorithm that combines the strengths of particle swarm optimization

and beetle swarm optimization to optimize the placement and consolidation of virtual machines

in a cloud environment. The fitness function considers energy consumption, migration cost,

and utilization metrics.

In contrast, other approaches leverage the power of predictive models in resource

consolidation. These models utilize historical data and machine learning algorithms to forecast

whether a server is likely to encounter overloading or underloading conditions in the near

future. By predicting future resource demands, these models enable proactive decision-making,

helping to prevent unnecessary migrations and optimize resource allocation. Sayadnavard et

al. (H. Sayadnavard et al., 2022) present a multi-objective approach for dynamic VM

consolidation in cloud data centers. Their approach combines Discrete Time Markov Chain

(DTMC) and Continuous Time Markov Chain (CTMC) for PM categorization, employs a

heuristic VM selection algorithm based on task completion time, and utilizes a ɛ-dominance-

based multi-objective artificial bee colony algorithm for VM placement. The proposed

approach aims to reduce energy consumption, improve system reliability, and minimize

resource wastage. Chaurasia et al. (Chaurasia et al., 2023) also utilize the Markov chain

principle for server transition to optimize the consolidation process. Banerjee et al. (Banerjee,

Roy, & Khatua, 2021) present a framework for efficient resource utilization in cloud

environments by utilizing a multi-step-ahead workload prediction technique. The framework

encompasses three key components: workload characterization, where agglomerative

hierarchical clustering is used to identify VMs with similar resource usage patterns; workload

prediction, employing and comparing a set of supervised machine learning models such as

linear regression, k-nearest neighbor, decision tree, support vector machine, and gradient

26

boosting to forecast future resource consumption (CPU and memory); and VM placement,

which utilizes a modified Best Fit Decreasing algorithm to allocate VMs based on predicted

resource consumption values. Farahnakian et al. (Farahnakian et al., 2019) present a utilization

prediction-aware VM consolidation approach in cloud data centers called UP-VMC. The

problem is formulated as bi-dimensional vector packing problem as two types of resource are

considered: CPU and memory. Two regression-based prediction models are used for resource

utilization prediction: Linear Regression (LR) and K-Nearest Neighbor Regression (K-NNR).

A PM is considered as overloaded if its current or its predicted CPU or memory utilization

exceeds its resource capacity. Their approach identifies the underloaded PM by comparing the

current load of the PMs and selecting the PM with the lowest load.

In our research, we propose a novel resource consolidation mechanism that combines the

strengths of actual resource utilization analysis and predictive modeling. Building upon our

MSPR prediction model discussed in the previous sub-section, our consolidation approach

leverages both the current resource utilization and the predicted utilization trends to accurately

identify overloading and underloading states in hosts. It considers multiple resource types, such

as CPU, memory, and bandwidth, when making migration decisions. For overload detection,

we calculate adaptive MAD thresholds that are specifically tailored to each resource type.

Additionally, our approach offers flexibility by allowing the specification of distinct underload

thresholds and prediction window sizes for each resource type. This adaptability allows for

fine-grained customization to match the specific requirements of different resources. In

addition to our primary approach utilizing the MSPR model, we implement an alternative

consolidation approach that utilizes an ARIMA multi-resource prediction model. This

alternative model serves as a replacement for the MSPR model, providing a comparative basis

for evaluating the performance of our proposed mechanism. To evaluate the efficacy of our

approach, we conduct extensive experiments comparing the MSPR-based consolidation

approach with the ARIMA-based approach, as well as modified versions of benchmark

consolidation algorithms in Cloudsim.

CHAPTER 2

SLO-AWARE DYNAMIC SELF-ADAPTATION OF RESOURCES

Mirna Awad a, Nadjia Kara a, and Claes Edstrom b

a Department of Software Engineering and IT, École de Technologie Supérieure,
1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

b Ericsson Canada,
8275 route Transcanadienne, Saint-Laurent, Québec, Canada, H4S 0B6

Published in Journal of Future Generation Computer Systems, March 2022.
(https://doi.org/10.1016/j.future.2022.03.018)

2.1 Abstract

Cloud computing and Network Function Virtualization (NFV) are two complementary

technologies. Virtual network functions (VNFs) provided by NFV are connected in the form

of service function chains (SFCs) and typically hosted on the cloud. Dynamic resource

adaptation in NFV-cloud settings remains a challenging research problem. VNF resources can

be adapted by performing either vertical scaling (VS), horizontal scaling (HS), or Migration

(M). Deciding on the optimum strategy among these three approaches (VS, HS, M) may face

several challenges, including the dynamicity of the cloud environment; the sheer multiplicity

of SFC topologies (e.g., linear, or non-linear SFCs); potentially conflicting optimization

objectives, and the substrate network configuration. Considering the challenges introduced, we

propose decision-making algorithms that make the best adaptation decisions for the SFCs

dynamically, while balancing a set of cost functions, such as energy consumption, resource

utilization, and Service Level Objective (SLO) violation. We first formulate the problem as an

integer linear programming (ILP) model to compute the optimal solution. Then, because

solving an ILP model is time-consuming, we adopt multi-objective metaheuristic algorithms

based on Non-dominated Sorting Genetic Algorithm (NSGAII), Chemical Reaction

Optimization (CRO), Binary Particle Swarm Optimization (NBPSO), and the combination

CRO-NBPSO to solve this problem. Experimental results demonstrate the effectiveness of the

29

proposed meta-heuristic algorithms in reducing the end-to-end latency while achieving

performance similar to optimal solutions in terms of resource utilization and energy

consumption.

Keywords: Dynamic resource adaptation, NFV, service chain, CRO, NSGAII, Binary PSO.

2.2 Introduction

Today, cloud computing has become an essential need and a popular technology both in

academia and in industry. Among the main purposes of cloud platforms is the delivery of

computing resources on-demand on a pay-for-use basis. The pay-for-use pricing model allows

the user to only pay for the resource used. On-demand resource provisioning and release boil

down to the ability to provide resources dynamically according to the application’s needs (Al-

Dhuraibi et al., 2018). Coupled with the pricing model offered, elastic resources constitute one

of the main attractive benefits of cloud computing. On the other hand, the Network Function

Virtualization (NFV) (Yi, Wang, Li, Das, & Huang, 2018) provides a wide range of network

functions as virtual software components typically hosted on virtual machines (VM) or

containers in the cloud, instead of on traditional hardware components. The ordered

interconnection of these virtual network functions (VNFs) forms a service function chain

(SFC) for each specific application (e.g., IoT-based applications, 5G applications) (Medhat et

al., 2016). For example, a web application may consist of at least three connected VNF types,

such as a load balancer, web services, and a database. Despite the cost savings and flexibility

provided by the VNFs, several research problems related to dynamic resource management in

NFV-cloud settings still need to be addressed. Indeed, the performance of running applications

is mainly impacted by the dynamicity of the cloud environment (e.g., variability of workloads,

diversity of applications, etc.). Having an automated system to dynamically assign cloud

resources for the VNFs in real time according to the workload fluctuation still faces numerous

challenges. A wrong resource allocation decision may lead to an over-provisioning state,

leading to extra costs being paid to rent unnecessary amounts of resources exceeding

application needs. Conversely, an under-provisioning state may degrade the service

30

performance due to a lack of resources required to process incoming and ongoing requests

within a reasonable timeframe. Moreover, a dynamic resource adaptation system does not only

maintain the service performance and decrease the expenses of its deployment on the cloud,

but also by releasing unused cloud resources the providers can save energy consumption or

can increase their revenue by using these resources to serve new requests.

One of the challenges in building such a system is to choose the appropriate method to adapt

the VNF resources at each moment. Three possible mechanisms can be used to adapt resources

for a VNF in the cloud: Horizontal scaling (HS), Vertical scaling (VS), and Migration (M).

Horizontal scaling consists in scaling in (removing VNF instances) or out (adding new VNF

instances). Vertical scaling consists in scaling up (increasing the VNF’s computing capacity,

such as the CPU) or down (decreasing the capacity of a VNF). Migration involves moving a

VNF or an SFC from the current hosting server to another one. Relying on only one of these

adaptation mechanisms will lead to a non-efficient resource adaptation technique. Vertical

scaling is limited to the capacities of the physical machines, while horizontally scaling all the

instances or migrating them may lead to high operational costs. Many researchers have

addressed the dynamic resource allocation (Gil Herrera & Botero, 2016) issue in the cloud.

However, some proposals prioritize one adaptation mechanism over another. For instance, they

utilize vertical scaling as much as possible. Then, they apply horizontal scaling when the

vertical one becomes impossible. Others focus on migration or re-placement of the VNF where

the decision is either to migrate the VNF to another host or keep it in place. The re-placement

decisions are most often made without considering other types of adaptation methods (VS and

HS). Consequently, we need a decision-making approach that takes the three possible resource

adaptation techniques (HS, VS, M) into account to cover various resource adaptation scenarios

while selecting the best one for each of them. Additionally, deciding on the optimum strategy

among those three mechanisms is not obvious because of potentially conflicting resource

optimization goals. For instance, the service provider may need to minimize resource

utilization and energy consumption, while providing the required Quality of Service (QoS)

(Mostafavi, Hakami, & Sanaei, 2021) defined in the Service Level Agreement (SLA)

established with the customer. Service Level Objective (SLO) is a key element of SLA

31

composed of one or more QoS measurements and constraints. For example, the service

provider may be obliged to adhere to a maximum tolerated latency or service availability pre-

specified in the SLO to avoid penalties (e.g., latency or availability of highly sensitive SFC).

Another challenge is to adapt the resources of service chains of VNFs rather than individual

VNFs. Each SFC may consist of a different number of VNFs connected in a linear or non-

linear chain. The topology is linear when each VNF in the chain has only one instance and is

connected to two VNFs peers at the most. Such limitations do not exist in non-linear chains,

where each VNF may have many instances and multiple peers. Thus, resource adaptation

requirements vary from one SFC to another. Some existing work on resource allocation treats

individual VNFs without considering their full chain and connectivity, while other proposals

only target linear SFC topologies. For this reason, it is important to consider the SFC topology,

as well as its type (linear or nonlinear) and size (number of VNF instances), when adapting

resources.

To contribute a solution to this problem, we consider the challenges introduced and propose

multi-objective meta-heuristic scaling algorithms to help in automating resource adaptation for

SFCs according to workload variations. The main objective of our algorithms is to select the

best adaptation mechanism (VS, HS, or M) that meets the SFC's needs, while balancing a set

of cost functions, such as energy consumption, SLO violation, and resource utilization. The

main contributions of our work can be summarized as follows:

1. The resource allocation problem is NP-hard (Rodriguez, Alkmim, Da Fonseca, &

Batista, 2017)(Houidi et al., 2017). We first formulate the problem as an Integer Linear

Programming (ILP) model to find the exact solution. The solver Gurobi

(http://www.gurobi.com) is used for implementation. In particular, the model takes a

set of SFC requests as input and provides the optimal resource adaptation decisions to

fulfill their resource needs. Contrary to existing work, in our problem formulation, we

consider and distinguish the three possible adaptation strategies, including vertical

elasticity, horizontal elasticity, and Migration, and calculate cost functions based on

each. To the best of our knowledge, we are the first to formulate this problem from this

32

perspective. We also target both linear and non-linear SFC chains, of different sizes

and graphs.

2. Because solving the ILP model is a time-consuming process (Rodriguez et al.,

2017)(Junjie Liu Fen Zhou, Ping Lu, Zuqing Zhu, 2017)(Laaziz et al., 2019), it is more

efficient to use heuristic-based techniques to solve the problem. We propose several

meta-heuristic algorithms based on the multi-objective nondominated sorting genetic

algorithm (NSGAII), the chemical reaction optimization (CRO) framework, the binary

particle swarm optimization (NBPSO), and a combined technique CRO-NBPSO. To

the best of our knowledge CRO, binary PSO and their combination have not been

considered in the literature to address the discussed research problems.

3. We design all our approaches to find optimum resource adaptation decisions (VS, HS,

M) for the SFC requests dynamically, irrespective of their types and their sizes, while

balancing a set of objective functions composed of CPU utilization, energy

consumption, and SLO violation.

4. We verify the effectiveness of our algorithms through extensive experiments on

different scenarios, including different numbers of SFC requests, different SFC sizes,

and considering both linear and non-linear topologies. We compare and analyze their

performance in terms of mentioned objective functions, number of servers used, and

their run time to find solutions. Through test experiments, our proposed meta-heuristic

techniques demonstrate their ability in reducing SLO latency and prove their

effectiveness in approximating the optimal solution in a much shorter runtime.

The rest of the paper is organized as follows: Section 2.3 reviews the literature on dynamic

resource adaptation in the cloud and highlights the novelty of this work. Section 2.4 describes

the problem formulation as an ILP model. Section 2.5 explains in detail the proposed meta-

heuristic algorithms. Section 2.6 presents our experimental setup, discusses the results

obtained, and compares the performance of our approaches. Finally, section 2.7 concludes this

paper and summarizes the main insights.

33

2.3 Related work

VNF resource adaptation problem is computationally hard. Solving such complex optimization

problems using exact methods such as Integer Linear/Non-linear Programming (ILP/NILP),

Mixed Integer Linear/Non-linear Programming (MILP/MINLP), SMT solvers, etc. requires a

long execution time, which makes these techniques unsuitable for dynamic or real-time

problems. For this reason, researchers generally look instead for approximation methods to

find near-optimal solutions in a shorter time. Nowadays, meta-heuristic algorithms have

become a powerful choice to solve complex research problems (Siddique & Adeli, 2017)

(Emmerich & Deutz, 2018)(Olivas, Valdez, Melin, Sombra, & Castillo, 2019) (Astudillo,

Melin, & Castillo, 2015)(Melin, Astudillo, Castillo, Valdez, & Garcia, 2013)(Olivas, Valdez,

Castillo, & Melin, 2016). Many research works have addressed the dynamic resource

allocation problem in the cloud and proposed different mechanisms to solve it (Al-Dhuraibi et

al., 2018)(Yang, Li, Trajanovski, Yahyapour, & Fu, 2021)(Gil Herrera & Botero,

2016)(Schardong, Nunes, & Schaeffer-Filho, 2021)(Singh et al., 2019). However, the existing

contributions suffer from many limitations.

To adapt resources for a VNF in the cloud, three techniques are possible: Horizontal scaling

(HS), Vertical scaling (VS), and Migration (M). Several proposals focus mainly on horizontal

elasticity [(Bouabdallah, Lajmi, & Ghedira, 2016), (Santhosh & Binu, 2016), (F. Huang, Li,

Yuan, & Li, 2017), (Y. Li & Xia, 2017), (Kan, 2016), (Hu, Bo, & Fuyang, 2016), (Shariffdeen,

Munasinghe, Bhathiya, Bandara, & Dilum Bandara, 2016), (Meng, Rao, Zhang, & Hong,

2016), (Aslanpour & Branch, 2016), (Z. Luo & Wu, 2020), (X. Wang et al., 2016) and (Yi,

Wang, & Huang, 2017)], where the number of allocated virtual resources (VMs or containers)

should change dynamically according to application demands. For example, The author in

(Kan, 2016) proposes DoCloud, a horizontal elasticity platform for web applications running

on Docker containers. After predicting the incoming workload using the ARMA technique and

estimating the number of containers needed, scale-out actions are triggered when the

monitoring system detects that the resource utilization of some containers exceeds a specific

threshold. They argue that scale-out actions should be fast enough to ensure QoS of web

34

applications, while scale-in should not be as fast to avoid oscillations in the number of

containers. For this reason, the elasticity controller triggers scale-in actions only if the

predicted number of containers is always less than the current number of running containers

for k continuous periods. Results show that the proposed platform can dynamically allocate

required resources to applications and improve container resource utilization. In (Yi et al.,

2017), the authors target the scalable SFC provision problem in the sense of adding or

removing functions to/from the service chains as needed. The problem is first formulated as an

ILP model and then two heuristic schemes (reactive and proactive) are proposed to handle

Scale-in (SI) and Scale-out (SO) requests. The reactive scheme scales the SFC without

changing its Service Function Path (SFP) while the proactive scheme aims to optimize the SFP

graph of SFC to a better one for the purpose of minimizing bandwidth consumption. Their

objective function is to reduce the total cost including resource consumption, VNF deployment

and SFC recomposition cost. Other researchers utilize only vertical elasticity to dynamically

increase or decrease the resources allocated to computational units, such as the CPU, memory,

storage, etc., to handle a varying workload [(Alzahrani et al., 2016), (Moghaddassian,

Bannazadeh, & Leon-Garcia, 2017)]. For instance, an Energy-based Auto-scaling (EBAS)

approach is presented in (Alzahrani et al., 2016) to proactively scale the number and frequency

of CPU cores to containers. Their method incorporates the dynamic voltage and frequency

scaling (DVFS) technique to dynamically adapt CPU frequencies, and a prediction model

based on Autoregressive Integrated Moving Average (ARIMA) to anticipate future CPU

utilization. The best allocation plan that has the lowest energy consumption and meets the SLA

requirement (latency) is selected. In (Moghaddassian et al., 2017), the authors create VM

scaling method based on the threshold-based approach using adaptive thresholds. Up and down

vertical scaling thresholds are dynamically updated according to the real-time data utilization

(CPU or memory) of VMs. Specifically, when the monitored data utilization of a VM is still

greater than the initial threshold for β seconds, the algorithm increases the threshold value by

α percent as long as the threshold doesn’t attend a hundred percent. This process is repeated

until the threshold can’t increase anymore. At this point, the algorithm triggers the scale-up

action if the metric crossed the threshold. Similarly, if the real-time data utilization of a VM is

still smaller than the threshold for β seconds, the algorithm decreases the threshold by α percent

35

so long as the threshold is still greater than a minimum possible tolerance level (Tmin). When

the threshold can no longer decrease and the measured metric still below Tmin for β seconds,

the scale down action is triggered. Some existing works combine the two types of elasticity

(VS and HS) and build a hybrid auto-scaling mechanism [(G. Huang et al., 2016), (Hirashima,

Yamasaki, & Nagura, 2016), (Ye, Guangtao, Shiyou, & Minglu, 2017), (Hirashima, 2016),

(Sotiriadis, Bessis, Amza, & Buyya, 2016), (Q. Zhang, Chen, & Yin, 2017), (Rankothge, Le,

Russo, & Lobo, 2017)]. (Ye et al., 2017) designs a hybrid auto-scaling framework for

containerized elastic applications. They employ a prediction technique based on Auto-

Regression Moving Average (ARMA) to forecast applications’ future resource demands.

Then, because vertical elasticity is faster than horizontal one, they suggest scaling up the

resources vertically to handle real-time load variations and scaling them out horizontally to

meet future resource needs. However, horizontal scale-in is used to release resources in both

scenarios by reducing the number of containers, because horizontal scaling is more cost-aware

than vertical one. In their implementation, they focus on scaling containers’ CPU resources

specifically and they intend to minimize SLA violations (response time). (Rankothge et al.,

2017) presents two resource allocation algorithms based on genetic programming, for VNFs

initial placement and VNFs scaling. These algorithms are compared with the ILP model

implemented in CPLEX. In the context of VNF initial placement, the main objective is to

minimize the number of servers used and the network resources. For VNF scaling part, in

addition to the previously mentioned objectives, the aim is to reduce the number of changes in

server and links configurations. The algorithms support both horizontal and vertical scaling

and target VNF chains. However, they assume that each VNF in a chain can have only one

successor, which is not the case in non-linear SFC topologies.

Elasticity is not the only way to adapt resources in the cloud. Some proposals, such as

[(Chaloemwat & Kitisin, 2016), (Al-Dhuraibi, Paraiso, Djarallah, & Merle, 2017), (Nadjaran

Toosi et al., 2019), (Rankothge, Ramalhinho, & Lobo, 2019), (Jia, Wu, Li, Le, & Liu, 2018),

(Liu, Lu, Zhou, Lu, & Zhu, 2017)], include a mix of elasticity and migration mechanisms.

(Chaloemwat & Kitisin, 2016) introduces a combination of horizontal auto-scaling and

migration techniques for cloud services with a skewness algorithm. Skewness algorithm aims

36

to measure the unevenness of resource utilization on a physical machine. Minimizing the

skewness value leads to an improvement in overall resource utilization on the physical host. If

the current resource utilization of a VM exceeds the predefined thresholds, it is considered

overloaded, then the processes running on this VM should be migrated to another available

VM or a new VM. An equation is also defined to measure the pressure which means the

overloading degree of a VM. Processes running on the VM with the highest pressure should

migrate to an idle VM whose skewness value increases the least due to this migration. If no

potential destination VM is found, the processes are migrated to a new VM. On the other hand,

the duration of being in an idle state is measured for the VM, and if the remaining processes

running on this VM can be migrated to other available VMs without overloading them, the idle

VM can be scaled down. The authors in (Al-Dhuraibi et al., 2017) create ElasticDocker system,

which combines vertical elasticity and live migration for Docker containers. When there are

not enough resources to scale containers vertically, live migration is triggered to move the

container to another host. Vertical elasticity scales up and down both CPU and memory of

containers. Live migration technique is based on CRIU functionality in Linux systems.

Evaluation results demonstrate that ElasticDocker can minimize customer expenses, improve

resource utilization, enhance the quality of experience (QoE) for end-users and achieve better

results compared to Kubernetes elasticity. Extending this solution to support horizontal

elasticity may produce a more efficient and a complete resource adaptation system for Docker

containers. (Nadjaran Toosi et al., 2019) presents a heuristic end-to-end latency-aware auto-

scaling algorithm called ElasticSFC that considers vertical and horizontal scaling, migration,

and flow scheduling. They focus on the dynamic allocation of CPU resources and network

bandwidth for the service chains while meeting the required latency requirements. To adjust

the VNF computing resources, the algorithm first attempts to vertically scale up the resources.

If vertical scaling is impossible due to resource constraints, it tries horizontal scaling by adding

VNF instances. For bandwidth adaptation, flow scheduling is used to redirect traffic to an

alternate network path capable of providing the requested bandwidth and satisfying the

required latency. If no potential path is available, VNF migration is adopted to move either of

the two end VNF instances of the link or both to new destination hosts. (Rankothge et al., 2019)

formulates the resource reallocation problem of VNFs as an ILP model. Their optimization

37

goal is to minimize the bandwidth dropped defined as the requested bandwidth that cannot be

fulfilled by the allocated resources. Because optimal solutions are time-consuming, they

develop an approximation algorithm based on the meta-heuristic Iterated Local Search (ILS)

to solve the VNFs scaling problem. Their ILS technique handles the three scaling methods

(vertical scaling, horizontal scaling, and migration) focusing essentially on satisfying the

bandwidth demands of the VNF policies. In (Liu et al., 2017), the authors study the problem

of the deployment of new users’ SFCs and the readjustment of in-service users’ SFCs while

finding a trade-off between resource consumption and operational overhead. The operational

overhead for a new user equals the number of VNFs required in its SFC request, while for an

in-service user, it equals the number of migrated and newly added VNFs since the last service

time. The problem is first formulated as an ILP model to find the exact solution. Then, to

reduce the time complexity of ILP, they design a column generation model and implement an

approximation algorithm based on it to solve the problem. The optimization goal is to

maximize the service provider’s profit which is equal to the total profit gained from serving

SFC requests minus the total deployment cost.

In the context of VM migration, some authors propose different migration techniques (e.g.,

post-copy, pre-copy, or hybrid migration) to move the application from one physical machine

to another one that has enough capacity to host it [(S. He, Hu, Shi, Wo, & Li, 2016), (F. Zhang,

Fu, & Yahyapour, 2017), (Level, 2016), (Wahab, Kara, Edstrom, & Lemieux, 2019), and

(Eramo, Miucci, Ammar, & Lavacca, 2017)]. The authors in (Choudhary et al., 2017) present

a critical review of state-of-the-art live VM migration techniques, their strengths, and

weaknesses. One of the main challenges in VNF migration is the VNF placement or bin

packing problem. This problem consists of embedding the VNFs into the physical

infrastructure while selecting the best server to host each VNF. Specifically, such proposals

decide if a VNF will remain on the same server or will be migrated to another one while

specifying the new destination [(Silva Filho et al., 2018), (Tavakoli-Someh & Rezvani, 2019),

(Khebbache, Hadji, & Zeghlache, 2018), (El Mensoum, Wahab, Kara, & Edstrom, 2020),

(Zhiyong Li, Li, Yuan, Chen, & Jiang, 2019), (Laaziz et al., 2019), (Abdelaal, Ebrahim, &

Anis, 2021), and (Mai et al., 2021)]. Many algorithms are suggested to select the destination

38

servers such as NSGAII [(Tavakoli-Someh & Rezvani, 2019), (Khebbache et al., 2018),

(Laaziz et al., 2019)] and CRO [(Zhiyong Li et al., 2019), (El Mensoum et al., 2020)].

However, they don’t differentiate the three-adaptation technique. On the one hand, we may

decide to keep a VNF on its current server while scaling it vertically (increasing the resources

of this VNF instance) or horizontally (adding a new VNF instance on the same server). On the

other hand, we may choose a new destination server for the designated VNF instance if we

decided to migrate it, or for the newly added VNF instance if we decided to scale it

horizontally. Each adaptation technique involves different costs in terms of CPU, energy, etc.

and we should distinguish between them.

In this paper, we formulate the resource allocation problem as an ILP model to find the exact

solutions. Contrary to existing works, in our formulation, a decision variable is set for each

resource adaptation method (HS, VS, and migration) and the objective functions are calculated

according to these decisions. The output of our model is the set of resource adaptation methods

decided to satisfy the resource requirements for the received SFC requests. To the best of our

knowledge, we are the first to formulate the problem in this way. We also design decision-

making meta-heuristic algorithms based on NSGAII, CRO, Binary PSO, and the combination

(CRO - Binary PSO) techniques. Our algorithms benefit from several advantages compared to

the state of the art, which are: (1) they consider the three possible resource adaptation

mechanisms to cover various overloading server states while selecting the best one for each of

them. (2) they target both linear and non-linear SFC topologies; (3) they aim to balance a set

of objectives, including saving energy, improving resource utilization (CPU), and minimizing

SLO violation (end-to-end latency); (4) the proposed idea is generic enough to be used in

various SFCs and virtualized system or data center architecture. Finally, to the best of our

knowledge CRO, binary PSO and their combination have not been considered in the literature

to address these research challenges.

39

2.4 Problem formulation

Let Gp = (S, Ep) be an undirected graph representing the physical network, where S is the set

of servers and Ep is the set of links connecting them. On the other hand, Gv = (C, Ev) is a

directed graph of an SFC, where C is the set of VNF instances and Ev is the set of virtual links

among these instances. In the following, we describe our ILP formulation of the resource

Table 2.1 Notations

Symbol Description

S Set of servers in the substrate network

R Set of SFC requests

V Set of VNF types in an SFC request

C Set of VNF instances in an SFC request

 Decision variable indicates if VNF instance in an SFC request will be migrated

 Decision variable indicates if VNF instance in an SFC request will be scaled vertically

 Decision variable indicates if VNF instance in an SFC request will be scaled horizontally

 Decision variable that indicates if VNF instance in an SFC request will be placed on server

 Decision variable that indicates whether a server is used

 The time taken while scaling a VNF instance in an SFC request vertically

 The time taken while scaling a VNF instance in an SFC request horizontally

 The time taken while migrating a VNF instance in an SFC request

 Power consumed by a VNF instance on its current server

 Power consumed by a server when scaling a VNF instance vertically

 Power consumed by a server when scaling a VNF instance horizontally

 Power consumed by a VNF instance on destination server after migration

 The power consumed by the load balancer

 The power consumed by a server in idle state

 CPU utilization (%) of a VNF instance on its current server

 CPU (%) consumed by a server when scaling a VNF instance vertically

 CPU (%) consumed by a server when scaling a VNF instance horizontally

 CPU usage (%) when a VNF instance is running on a remote server after migration

 CPU (%) consumed by the load balancer

 CPU utilization of a server in idle state

 Number of CPU cores requested by a VNF instance

 The server available capacity (Number of CPU cores)

 Binary variable indicates if a VNF instance in an SFC request is initially placed on a server

 Number of CPU cores allocated for a VNF instance on its current/original server

 Set of links connecting the instances of a pair of VNF types and in an SFC

 Latency on a link connecting a pair of VNF types and in an SFC

 Set of paths in an SFC topology

 The worst latency found among the set of received SFC requests

40

adaptation problem in detail. The notations used in the problem formulation are described in

Table 2.1.

2.4.1 Decision variables

A binary variable is used for each possible resource adaptation strategy, namely, migration,

horizontal scaling, and vertical scaling. Two variables are added, one to specify the VNF

instance replacement resulting from the decision taken, and another, to indicate whether a

server is used.

(2.1)

(2.2)

(2.3)

(2.4)

 is used (2.5)

2.4.2 Constraints

We consider the following constraints:

 (2.6)

41

(2.7)

 (2.8)

 (2.9)

(2.10)

 (2.11)

Constraint (2.6) ensures that only one resource adaptation strategy will be chosen for each VNF

instance. Constraint (2.7) guarantees that only one server can be chosen as the destination of

each VNF instance. Constraint (2.8) determines that the VNF instance should remain on its

original server, in the case of vertical scaling. Contrary to the previous constraint, constraint

(2.9) determines that the selected destination server to host the VNF instance in case of

migration should be different from its original host. Constraint (2.10) guarantees that the

amount of resources requested by VNF instances should not exceed the available capacity of

the server. In this paper, we focus on one of the most critical metrics in cloud settings, CPU

utilization. Other metrics such as memory, disk and I/O may be added to our formulation in

future work. We consider that some resources will become free upon migration processes and

will thus be added to the available server capacity. Note that in the case of migration, the

requested CPU cores include not only the number of CPU cores needed by the VNF instance

but also its allocated CPU cores that will be migrated to the destination server. Constraint

(2.11) ensures that the worst end-to-end delay/latency found among the set of received SFC

requests does not exceed the tolerance threshold based on SLO. The detailed calculation of

is explained in the next sub-section.

42

2.4.3 Cost functions

Essentially, our model targets three different objectives: minimizing energy consumption, SLO

violation, and resource consumption in terms of CPU.

2.4.3.1 Resource consumption

Resource consumption represents the total CPU utilization consumed by the target VNF, as

well as the servers, in addition to the CPU consumed by the resources added during vertical

scaling; the computational units added and the load balancer during horizontal scaling, and the

migrated instance on the destination machine, in the case of migration.

(2.12)

2.4.3.2 Power consumption

Saving energy is a major concern for today’s cloud data centers. Since greater CPU

consumption will increase power electricity and cooling costs, and generate more heat in the

cloud environment, in this article, we mainly focus on processing power. Optimizing the

calculation of energy consumption while taking into account other resources (e.g., memory,

I/O in addition to CPU) is one of our future work steps. In our formulation, energy consumption

represents the energy consumed by the CPU of the current server and the target VNF, plus the

energy consumed by the resources added during vertical scaling; the servers added, the VNF

instances and the load balancer, in the case of horizontal scaling; and the migrated instance on

the destination machine after migration.

43

(2.13)

As the maximum () and the idle () power consumption of a server are known, the

power consumed by a VNF instance hosted on this server is calculated by the following

formula (Beloglazov, Abawajy, & Buyya, 2012):

 (2.14)

Where is the total number of CPU cores of the server,

 represents the number of cores allocated to the VNF instance, and u is the CPU

utilization of this VNF.

2.4.3.3 SLO violation

To avoid SLO violations, we minimize the end-to-end delay/latency of the SFC requests.

Particularly, we calculate the total delay consumed on the physical links that connect the source

VNF to the destination VNF of an SFC request. We consider linear and non-linear SFC

topologies. In non-linear chains, each VNF type in the chain may have many instances,

and each of these instances may be hosted on a different server. We assume that the delay

between a pair of VNF types is equal to the max delay on the links connecting all their instances

(Eq. 2.15). Also, the VNF may have more than two successors, and so many paths are possible

for traffic. We first calculate the total end-to-end delay of each path in the SFC topology .

The total delay of a path in an SFC represents the sum of the delays between all VNF

peers on this path (Eq. 2.16). Then, we take the max path delay as the SFC latency (Eq.

44

2.16). In the end, our objective is to minimize the max or the worst SFC latency found by

the algorithm among the set of SFC requests (Eq. 2.18).

 (2.15)

(2.16)

 (2.17)

 (2.18)

Consequently, the algorithm searches for a resource adaptation solution that has the least bad

SFC latency, coupled with minimal CPU utilization and energy consumption.

2.5 Algorithms

Finding an optimal resource allocation solution is computationally hard. Solving the ILP

problem is a time-consuming process and is consequently not suitable to meet traffic

fluctuations in real-time. Hence, it is more practical to look for approximations using heuristic-

based techniques. In this section, we provide a detailed presentation of our proposed multi-

objective resource adaptation algorithms based on NSGAII (Deb, Pratap, Agarwal, &

Meyarivan, 2002), Chemical reaction optimization (CRO) [(Lam & Li, 2012), (Islam,

Saifullah, & Mahmud, 2019)], Binary Particle Swarm Optimization (NBPSO) [(D. Wang, Tan,

& Liu, 2018), (Nezamabadi-Pour, Rostami-Shahrbabaki, & Maghfoori-Farsangi, 2008)] and

the combination CRO-NBPSO. All proposed algorithms are population-based optimization

techniques that start by the initialization of a set of random solutions, then iteratively

manipulate some of them to generate new ones using specific operators, and generate the best

solution found in terms of cost functions while respecting the constraints discussed in section

2.4. The termination condition is the max number of iterations. In this section, we first discuss

the common strategies used in our algorithms, related to solution representation and population

45

initialization. Then, we explain the working principles and the operators used in each algorithm

to manipulate the solutions.

2.5.1 Common strategies

2.5.1.1 Solution encoding

In our problem, a solution consists of resource adaptation decisions for all the SFC requests

received. As mentioned earlier, each SFC is a chain of network functions (NFs) connected to

each other. In the case of a non-linear chain, each network function may have many instances

(copies) hosted on different virtual machines. For this reason, we represent a solution as a

multidimensional array that includes a resource adaptation decision for each VNF instance in

each SFC request. To represent the adaptation strategies, we used a binary representation with

2 bits, as follows: Do Nothing N = 00, Vertical Scaling V = 01, Horizontal Scaling H = 10,

Migration M = 11. For instance, if the received SFC consists of 4 chained VNFs, namely,

Cache Firewall PDI Video Streaming, with Cache has one instance, Firewall and PDI

have 2 instances each, and video streaming has 3 instances, a possible solution may look like

[[11], [01, 10], [10, 11], [01, 01, 11]], with 11 (M) being the decision taken for the first VNF

(Cache), 01 (V) and 10 (H) being the decisions for the Firewall instances, 10 (H) and 11 (M)

being the decisions for the PDI instances and so on. Therefore, for each SFC, the solution’s

length is equivalent to 2 bits* SFC size, where the SFC size represents the number of VNF

instances composing the chain. In fact, the algorithm generates a solution for a set of SFC

requests instead of one. If there are m number of SFC requests deployed in our environment,

then a full solution contains m number of partial solutions, each representing the resource

adaptation decisions for the VNFs sequence of each SFC. Consequently, the individual’s

length depends on the number of SFC requests to be adapted and on the size of each one:

, where R is the number of requests.

To evaluate the feasibility of the solutions and compute the resulting costs, we need to know

the destination servers for the decisions taken. In particular, to verify the latency constraint,

46

we need to calculate it according to the modified SFC topologies and the chosen hosting

servers. The decisions taken can modify the SFC graph by adding for example new VNF

instances in case of horizontal scaling. Also, In the case of vertical scaling, the instance remains

on the same server, but for horizontal scaling and migration, a destination server may be needed

to host the newly added or the migrated VNF instance. Thus, to test our decision-making

proposals, we need a strategy to choose the destinations servers. Because SLO violation

avoidance is one of our main objectives, we adopt a server selection strategy that intends to

minimize the latency for each partial solution. Briefly, for each SFC request, we choose the

first server that has enough capacity to host the first VNF instance of the chain. Then, for the

next instance, we select the server that has not only a sufficient capacity but also, minimal

latency with the one already chosen to host the previous instance of the same chain and so on.

Although this placement strategy is used in our testing experiments, our decision-making

algorithms can be combined with another more advanced placement strategy (host selection

strategy) to optimize their performance and accuracy in selecting adaptation decisions.

2.5.1.2 Population initialization

The population consists of “n” possible solutions. At first, we initialized these solutions

randomly. The algorithms were able to find sub-optimal solutions for our problem quickly

unless we added the latency constraint (Equation 2.11). Using very stressful latency thresholds

in some scenarios results in our algorithms being unable to find any feasible solution, while an

ILP solution is found. To solve this discrepancy, we initialize the population with random, but

feasible solutions. Specifically, we generate a random solution, adjust its adaptation decisions

in terms of resource availability, and then check its feasibility in terms of latency before adding

it to the initial population. This is done by the feasibility operator described in the next sub-

section. Adopting this initialization strategy increases the runtime of our algorithms a little bit

but avoids their failure.

47

2.5.1.3 Feasibility operator

The solutions in the initial population are manipulated randomly by operators (e.g., in NSGAII

and CRO) or by equations (e.g., in NBPSO) to create new ones without considering the

constraints imposed by our research problem. This operator is implemented to verify the

feasibility of the newly generated solutions specifically in terms of resource availability and

tolerated latency. In terms of resource availability, we check if there are inapplicable random

vertical scaling decisions taken in the solution. If resources are insufficient, we randomly

change this decision to horizontal scaling or migration. Once the decisions are adjusted and

their destination servers are chosen, we calculate and check the latency constraint. Only

feasible solutions are added to the population.

2.5.2 NSGA-based algorithm

2.5.2.1 Working principles

The non-dominated sorting genetic algorithm (NSGAII) aims to find a trade-off between the

three cost functions defined in section 2.4, namely, Equation (2.12) for the CPU utilization,

(2.13) for the Energy consumption, and (2.18) for the Latency. In each iteration, the algorithm

applies two essential sorting mechanisms: non-dominant and crowding distance sorting. The

first mechanism ranks the individuals according to their fitness functions and divides the

population into several subsets/fronts. Whereas the second sorting technique ranks the

solutions in each front according to their crowding distance values. Based on the rank and the

crowding distance parameters, the best individuals (called parents) are selected from the

population. Then, the genetic operators, namely, the crossover and the mutation, which will be

discussed in detail in a later section, are applied to the selected individuals to produce an

offspring population. Each cycle will produce a new population that converges more toward

the best solution. The output of the algorithm is a Pareto front of sub-optimal solutions with

their cost function values.

48

2.5.2.2 Genetic operators

Crossover: To perform this process, we use a modified Half-uniform crossover (HUX)

operator. This operator randomly swaps non-matching adaptation decisions between the two

parents. For instance, there are four non-matching adaptation decisions between the parents P1

and P2, particularly on the following indexes: (0, 1), (1, 0), (1, 2), (2, 1), and (2, 2). The

operator randomly chooses to swap the decisions of the indexes (0, 1), (1, 2), and (2, 2) to

produce the children R1 and R2.

P1 : [[11, 01, 10], [10, 01, 10],[01, 11, 11]]

P2: [[11, 10, 10], [11, 01, 11],[01, 01, 10]]

R1 : [[11, 10, 10],[10, 01, 11],[01, 11, 10]]

R2: [[11, 01, 10],[11, 01, 10],[01, 01, 11]]

Mutation: For mutation, we adopt an operator similar to the concept of BitFlip mutation. It

selects random positions in the chromosome and then changes its adaptation decisions. As

shown in the example below, the decisions on the indexes (0, 0), (1, 1), and (2, 2) are randomly

changed.

P : [[11, 01, 10],[10, 01, 10], [01, 11, 11]]

P' : [[10, 01, 10],[10, 10, 10], [01, 11, 01]]

As the end goal is to converge toward the best solution, crossover happens more frequently,

and its probability is higher than mutation. These probabilities are specified as input and can

easily be changed at any time.

49

2.5.3 CRO-based algorithm

2.5.3.1 Working principles

Our second algorithm is based on Chemical reaction optimization (CRO). Since its appearance,

CRO has demonstrated its power to solve different kinds of optimization problems, which is

what motivated us to choose it as a base technique to develop our decision-making algorithm.

Unlike genetic algorithms, the population size in CRO varies through iterations. Each molecule

(solution) in the population is characterized by its molecular structure (W), potential energy

(PE), kinetic energy (KE), total hits number, minimum hits number, etc. In our algorithm, W

is the multidimensional array of potential resource adaptation mechanisms for the received

SFC requests. PE represents the objective function value of the solution W. In contrast, CRO

is not a multi-objective algorithm as is NSGA, and so instead of using our three cost functions

independently, we are minimizing the summation of these functions (Equation 2.19). KE states

a tolerance of accepting a worse solution than the existing one. Hits_number records the total

number of times a molecule has collided and min_hits_number indicates the number of

collisions when it achieves the min PE. Collisions happen when molecules interact with each

other due to chemical reactions in order to reach an equilibrium state of minimal PE. There are

four essential elementary reactions, namely, On-wall ineffective collision, Inter-molecular

ineffective collision, Decomposition, and Synthesis. The two ineffective collisions perform the

local search (intensification) while decomposition and synthesis implement the diversification

effect. The intensification and diversification are controlled by parameters α and β.

 (2.19)

2.5.3.2 Operators

In the following, we explain in detail the four operators used in our algorithm to perform the

CRO chemical reactions. As we mentioned, the solution is encoded in binary format, but for

50

simplicity, and to clearly explain the chosen operators, we used the symbols V = Vertical

Scaling, H = Horizontal Scaling, and M= Migration in our examples.

1. On-wall ineffective collision: This occurs when a molecule hits an external substance

(e.g., the wall of the container), resulting in a subtle change in its molecular structure

from ω to ω’. For this operator, we randomly pick one VNF instance from each SFC

chain in the solution and change its adaptation decision.

2. Decomposition: This takes place when a molecule hits a wall and then splits into several

parts. For simplicity, we assumed each molecule ω breaks into two parts ω1 and ω2. In

this reaction, we adopt the half-total change operator and apply it to manipulate the

resource adaptation decisions taken for each SFC request. In general, this operator

generates a new solution ω’ from an existing one ω, by keeping one-half of its values

and assigning the other half with new values. Specifically, we first copy all the

decisions taken in molecule ω to ω1 and ω2. Then in each, we randomly select [n/2]

VNF instances from each SFC chain and offer them new adaptation decisions. Note

that ‘n’ represents the number of VNF instances in the SFC or what we called the SFC

size. Let us suppose we try to adjust the resources for three SFC requests of the same

size (e.g., four VNF instances each). In that case, after copying the values of ω to ω1

and ω2, we need to assign new decisions for two random VNF instances in each SFC.

For example:

ω : [[M, M, V, H], [H, M, V, H], [V, M, H, M]]

ω1: [[M, H, V, M],[V, M, V, M], [V, M, V, H]]

ω2: [[V, M, V, M], [H, V, H, H], [V, H, M, M]]

3. Inter-molecular ineffective collision: This refers to the situation when multiple

molecules (let us assume two) collide with each other. As a result, their molecular

structures ω1 and ω2 are perturbed and slightly change to ω'1 and ω'2, respectively. This

51

collision is performed in our algorithm by selecting two random positions in the vector

of each SFC. Then, we exchange the adaptation decisions located between the selected

positions in ω1 and ω2 to produce ω'1 and ω'2. As shown below, for the first SFC, the

decisions between the two chosen indexes 0 and 3 are exchanged.

ω1: [[M, H, H, M], [V, M, V, M], [V, M, V, H]]

ω2: [[V, M, V, M], [H, V, H, H], [V, H, M, M]]

ω’1: [[M, M, V, M], [V, V, V, M], [V, M, M, H]]

ω’2: [[V, H, H, M], [H, M, H, H], [V, H, V, M]]

4. Synthesis: Contrary to the decomposition, synthesis is the situation when many

molecules hit each other to fuse together into one new molecule. Thus, two existing

solutions ω1 and ω2 are merged into a new solution ω’, different from them

individually. For this reaction, we used the Probabilistic select operator that randomly

chooses values from ω1 and ω2 to generate ω’. Each decision ω’(i) is equal to either

ω1(i) or ω2(i), with the same probability.

ω1: [[M, H, H, M], [V, M, V, M], [V, M, V, H]]

ω2: [[V, M, V, M], [H, V, H, H], [V, H, M, M]]

ω’: [[M, M, H, M], [V, M, H, H], [V, H, M, H]]

2.5.4 NBPSO-based algorithm

Particle swarm optimization (PSO) is a population-based optimization technique inspired by

the behavior of bird flocking. Due to our binary representation of the solutions, the binary

version of PSO, discussed in (Nezamabadi-Pour et al., 2008), is adopted to solve the problem.

Each solution or particle in PSO is characterized by its position and velocity . The

position is the binary set of adaptation decisions while the velocity is the probability of

52

changing the position bit values. The velocity boundaries are [,] where is

typically set to 6. Unlike genetic and CRO algorithms, PSO does not have operators to

manipulate the solutions, it applies certain equations instead. In every iteration, each particle

updates itself depending on the two best positions and . The first is the best position the

particle has achieved so far, in terms of cost function values. The second is the best position

obtained so far among the particles in the population. The cost function represents the overall

costs calculated in (Equation 2.19). After updating the velocity of the particle and calculating

the sigmoid (Equations 2.20, 2.21, and 2.22), we compare the rand () value to and

then decide if each position bit value will be switched from 0 to 1 or vice versa, or will remain

unchanged (Equation 2.23). These bit changes refer to manipulations in adaptation decisions.

 (2.20)

 (2.21)

 (2.22)

(2.23)

 , and rand () are random numbers in the range [0,1], and are positive constants,

and is the inertia weight which describes the effect of the previous velocity on the new one.

 is calculated and updated in each iteration using the following formula:

 (2.24)

Typically, = 0.9, =0.4; t is the current iteration number; is the maximum

number of iterations.

53

2.5.5 CRO-NBPSO algorithm

A good optimization technique should perform well at both global (exploration) and local

(exploitation) searches. In this section, we implement an algorithm based on balanced local

and global search. The idea is inspired by (Nguyen, Li, Zhang, & Truong, 2014). This

algorithm combines the PSO’s strong global search ability with the CRO’s local search

performance. Contrary to (Nguyen et al., 2014), we combine CRO with a binary version of

PSO and apply the technique to solve the resource allocation problem. We re-use the same

CRO collision operators described in section 2.5.3 and the same objective function (Equation

2.19). However, CRO’s global search operators (Decomposition and Synthesis) are replaced

by the Binary PSO algorithm described previously. To the best of our knowledge, we are the

first to adopt such a combination technique (CRO - binary PSO) to address this research

problem.

Contrary to CRO, the population size in this technique doesn’t vary through iterations. Each

molecule represents a particle at the same time. All parameters related to CRO’s global

operators are removed, and new parameters are added including PSO parameters and a control

parameter ɣ. Figure 2.1 shows a modified flow chart of the algorithm (Nguyen et al., 2014).

In each iteration, a random molecule is selected from the population. Then we compare its

number of hits to ɣ. The number of hits means the number of times this molecule has undergone

collisions (On-wall ineffective collision, Inter-molecular ineffective collision). According to

the comparison result between its MolHits and ɣ, we decide whether the molecule will be

manipulated by PSO or by CRO collisions. In the case of CRO manipulation, there are two

types of collisions. To choose one of them, a random number r in the range [0,1] is compared

to CollRate. If r is larger than CollRate, Inter-molecular ineffective collision is triggered, and

the molecule will collide with another one randomly chosen. Otherwise, On-wall ineffective

collision will take place. Each time the molecule collides, its MolHits increase by one. When

its MolHits become higher than ɣ, PSO equations are applied to manipulate the molecule’s

structure and its MolHits are reset to zero.

54

Figure 2.1 Flow chart CRO - Binary PSO

55

2.6 Experiments

2.6.1 Experimental design

In this study, we sequentially implemented an ILP model, NSGA-based, CRO-based, BPSO-

based, and CRO_BPSO decision-making algorithms to dynamically find the optimal resource

adaptation techniques for the service function chains in different scenarios. The algorithms

were tested on a machine with an 8×Intel core i7-7700 CPU processor, 15.5 GB of RAM, and

Ubuntu 18.04.2 LTS 64-bits. All programs were written using Python and executed on

PyCharm IDE. NSGAII was implemented based on the Platypus Library

(https://github.com/Project-Platypus/Platypus). Gurobi was used to solve the ILP formulation

and find the exact solution to the problem. Due to the long convergence time required by the

ILP approach and to compare the performance of our heuristic algorithms in finding a near-

optimal solution, we limited the network size to 20 servers. The servers each have 16 CPU

cores and peak and idle power consumption of 135W and 93.7W, respectively. We assumed

that the average CPU utilization of servers is around 20% in their common state. Additionally,

they consume 70% of their peak energy consumption in their idle state (Basmadjian,

Niedermeier, & De Meer, 2012)(Hsieh, Liu, Buyya, & Zomaya, 2020). We generated the

Table 2.2 Meta-Heuristic Parameters

NSGAII
Mut_rate Cross_rate

0.3 0.8

CRO
InitialKE CollRate KELossRate α β

100 0.2 0.2 100 100

NBPSO w

2 1 (Eq. 2.24) 6
CRO-

NBPSO
ɣ

2
Common

criteria
Popsize

100 100

Mut_rate = Mutation rate; Cross_rate = Crossover rate; Popsize =
population size; = maximum number of iterations

56

network topology using NetworkX library and set the delays on the links connecting the servers

randomly between 0.01 and 0.06 seconds.

Moving on to the virtual network side, we varied the incoming number of SFC requests

between 5 and 20 chains, and the SFC sizes between 3 and 10 VNF instances. The SFCs were

generated using the same library NetworkX and initially placed in the infrastructure randomly.

Each VNF in an SFC initially has one CPU core each. Both linear and non-linear SFC

topologies were considered. Also, one load balancer was added to the network to balance the

traffic between the VNF instances in the case of horizontal scaling. The parameters of our

meta-heuristic algorithms are summarized in Table 2.2. Note that CRO-NBPSO takes as input

the parameter ɣ as well as all NBPSO parameters and CRO parameters except α and β related

to global search. It is worth mentioning that each experiment was repeated 10 times and we

report the average results. Table 2.3 represents the worst or the highest standard deviation of

the results of each algorithm in each test scenario.

Table 2.3 Worst Standard Deviation obtained
 Scenario 1 Scenario 2 Scenario 3 Scenario 4

NSGAII 2.145 2.001 1.671 1.918
CRO 0.213 0.243 0.281 0.248

NBPSO 0.174 0.128 0.151 0.119
CRO-NBPSO 0.318 0.245 0.251 0.291

2.6.2 Implementation

We evaluated the performance of our algorithms based on the cost functions defined in section

2.4, including, CPU utilization (Eq. 2.12), energy consumption (Eq. 2.13), and end-to-end SFC

Latency (Eq. 2.18). Moreover, we compared their execution time to find solutions and the total

number of servers used to adapt the requests received. We chose the following test cases for

the assessments:

57

Scenario 1: in this scenario, we compared the performance of our algorithms while increasing

the number of incoming SFC requests. We assumed that all SFC requests received consist of

linear topologies of 5 VNF instances each. The number of incoming SFC requests was varied

between 5 and 20 chains

Scenario 2: it is similar to scenario 1 in receiving 5 to 20 SFC requests for resource adaptation.

However, the SFCs have non-linear graphs of connected VNFs (5 VNFs each).

Scenario 3: we used this scenario to compare the effectiveness of our algorithms while

receiving SFC chains of different sizes. For this reason, we set the number of incoming requests

to 10 SFCs and varied the SFC sizes between 3 and 10 VNF instances. All SFCs in this scenario

consist of linear graphs.

Scenario 4: in this scenario, we combined both linear and non-linear SFC requests. We varied

the number of requests between 4 and 20 chains of 5 VNFs each, with approximately 50% of

them being linear SFCs and 50% non-linear. Table 2.5 illustrates detailed results of

performance metrics for many test cases including the number of SFC requests received and

the SLO delay threshold (D) in each. To represent more testing results and confirm our

observations, we chose different test cases than previous scenarios.

All these scenarios were tested in the same test environment, including the physical and virtual

network characteristics described in the previous sub-section. Note that our implementation is

not limited to these scenarios, because our algorithms can accept a mixed set of linear and non-

linear SFCs of different sizes. But we selected the testing scenarios described above to compare

Table 2.4 Latency Thresholds in scenarios 1, 2 and 3
Scenarios 1 & 2 Scenario 3

Number of SFCs Thresh. SFC Sizes Thresh.

5 0.25 3 0.4

10 0.45 5 0.45

15 0.5 7 0.7

20 0.6 10 0.9

Thresh = SLO latency threshold in seconds.

58

the performance of our algorithms easily and clearly. After performing many experiments with

different latency thresholds in each study case, we adopted the thresholds given in Table 2.4

for scenarios 1, 2 and 3, and Table 2.5 for scenario 4. For scenario 3, we had to set higher SLO

thresholds than other scenarios, because the SFC chains are longer (higher SFC size). In other

words, due to the higher number of VNF instances connected linearly, the end-to-end latencies

of SFCs increased and therefore we needed to increase the latency thresholds. In our tests, we

also assumed that it takes one second to scale or migrate a VNF instance, but this input value

can be changed easily. In the next sub-sections, we discuss the experimental results obtained

in the testing scenarios and illustrated by figures 2.2 to 2.7 and Table 2.5. Note that in these

figures, scenario 1 corresponds to the left-side figure, scenario 2 to the middle one, and scenario

3 to the right-side one.

2.6.3 Results and discussion

2.6.3.1 Execution time

Through the experiments, we compare the runtime taken by the algorithms to find a solution

for the resource adaptation requests. It is worth mentioning that for the meta-heuristic

algorithms, the total time includes both (a) the population initialization process, and (b) the

solution searching process over 100 generations. Based on the results obtained in Figure 2.2,

we can see the big difference in time between ILP computation and all meta-heuristic

algorithms. For some cases, while the ILP takes about hundreds and maybe thousands of

seconds to generate a solution, the metaheuristics (specifically NSGA, CRO, and CRO-

NBPSO) run for a few seconds and even less than 1 second to solve the problem. NBPSO has

the highest execution time among the meta-heuristics. We mention that when we increased the

SFC size to 10 VNFs in scenario 3, the ILP approach ran for a long time (many hours) in the

case of 10 incoming requests, which prevents us from illustrating it in the graph. However,

NSGA, CRO, CRO-NBPSO, and NBPSO could normally find a solution for this case in 2.54,

2.25, 2.7, and 36.15 seconds respectively. For this reason, we argue that the ILP approach is

not suitable to solve the dynamic resource adaptation problem. A clearer view of NSGA, CRO,

59

and CRO-NBPSO runtime is given in Figure 2.3. According to their results, CRO has the

lowest execution time in most cases. We argue that this is quite normal as the non-domination

optimization feature of NSGA requires additional time for the searching process, which is not

the case for CRO. Also, the high computation time taken by the NBPSO algorithm increases

the runtime of the CRO-NBPSO.

Another aspect to clarify is the significant variation of the algorithm runtime, depending on the

scenario. We can notice that a higher number of SFC requests did not necessarily result in a

higher execution time. Time is affected by the SLO latency threshold specified in each case.

Targeting a stressful latency threshold increases the execution time of the algorithms to search

for a feasible solution and avoid SLO violation. We have selected a stressful latency in the case

of 5 SFC requests for scenarios 1 and 2 to demonstrate this fact. Figures 2.2 and 2.3 show the

high execution time of the algorithms when receiving 5 SFC requests and the targeted latency

threshold is 0.25 seconds. Thus, a higher number of SFC requests, coupled with a low-pressure

SLO threshold, can be adapted in a lower runtime than what is needed to adapt a few requests

with a stressful one. Furthermore, in Table 2.5, the case of 8 SFC requests received is tested

with two different latency thresholds (0.35 and 0.4 seconds). The time taken by the algorithms

to find solutions when the threshold is 0.35 sec is higher than when it is 0.4 seconds. In other

words, the execution time of the algorithms decreases while processing the same number of

requests but with a higher latency threshold.

Figure 2.2 Average runtime of the NSGAII, CRO, NBPSO, CRO-NBPSO and ILP
algorithms in scenarios 1 (left-side fig.), 2 (middle fig.) and 3 (right-side fig.), respectively

60

Figure 2.3 Clearer view of the average runtime for NSGAII, CRO and CRO-NBPSO in
scenarios 1, 2 and 3, respectively

2.6.3.2 Solution accuracy

Besides the execution time, we compare the quality of the solutions generated by our five

approaches in terms of the total CPU utilization, the energy consumption, and the end-to-end

delay/latency. Section 2.4 already explained how we calculated these costs. In addition to the

objective values, we analyze the number of servers used to adapt the resources in the solutions.

Regarding the CPU consumption, we can notice in Figure 2.4 the accurate performance of

CRO, NBPSO, and CRO-NBPSO, as they generate solutions with CPU cost values very close

to ILP solutions. They have approximately similar performance in terms of CPU consumption

with slight differences. According to the detailed testing of scenario 4 in Table 2.5, NBPSO

can achieve a little bit less CPU and power than CRO and CRO-NBPSO in almost all cases

and even less than ILP when we increase the number of SFC requests (more than 4 SFCs). For

its part, NSGA has higher CPU utilization, as compared to the other approaches. Similarly,

CRO, NBPSO, and CRO-NBPSO exhibit approximately similar performance to the ILP

model, while minimizing the energy consumption, as shown in Figure 2.5. Although NSGA

exhibits the highest power consumption, it converges toward the CRO and ILP solutions while

adapting 20 requests in scenarios 1 and 2 and adapting requests of 10 VNF instances in scenario

61

3. Table 2.5 also shows the high CPU and power consumption of NSGA compared to the other

approaches in scenario 4. The difference in power consumption between NSGA and the others

decreases with the increase in the number of requests. By adapting 20 SFCs, NSGA consumes

87.706% of power while ILP, CRO, NBPSO, and CRO-NBPSO consume 86.724%, 86.948%,

86.653%, and 86.916% respectively.

Conversely to the previous objective functions, Figure 2.6 and Table 2.5 show the ability of

NSGA to generate solutions with minimal latency cost versus ILP and other meta-heuristics.

In the second place, CRO, NBPSO and CRO-NBPSO can achieve lower latencies than ILP in

many test cases and similar latency in some cases. For instance, they can considerably

overcome the ILP in the second test scenario in Figure 2.6 while increasing the number of non-

linear SFC requests. Table 2.5 also shows many cases where these algorithms can achieve

lower latency than ILP such as testing 4 and 16 SFCs. Comparing these three meta-heuristics,

they have variable and competitive performance in terms of latency. CRO-NBPSO achieves

lower latency than CRO in scenario 3-Figure 2.6 while increasing the SFC Size. NBPSO has

sometimes slightly higher latency compared to CRO and CRO-NBPSO, but it converges

towards them at the end. Table 2.5 also shows that NBPSO can converge and overcome the

latencies provided by CRO and CRO-NBPSO when increasing the number of requests (e.g.,

20 SFCs). Note that the better performance of the metaheuristics algorithms in terms of latency

compared to ILP can be attributed to the help from the server selection strategy used in their

implementation. This strategy is described in section 2.5, “Solution encoding”. In contrast, it

is not the case in ILP, as nothing there prioritizes latency minimization.

Concerning the number of servers, we notice that all meta-heuristics usually use the same

number as the ILP model in their solutions. However, according to Figure 2.7 and Table 2.5,

NSGA sometimes involves an additional server, and rather, converges to operate the same

number as the other approaches, while increasing the number of VNFs to be adapted. It is

important to mention that the server involved in many adaptation decisions (HS, VS, and M)

was counted once. For example, migrating an instance does not necessarily increase the

62

number of servers used unless its destination sever has not been previously chosen for another

decision.

To summarize, the experimental results confirm that the time to solve ILP models renders ILP

not suitable for the dynamic resources adaptation of VNFs. On the other hand, they show that

the meta-heuristic algorithms can provide solutions close to optimal in a significantly shorter

amount of time. CRO first and NSGA second are the fastest in generating solutions while

NBPSO is the slowest. In terms of objective functions, NSGA has a little bit higher resource

and power consumption than others but can provide solutions with minimal end-to-end latency.

CRO, NBPSO, and CRO-NBPSO perform close to ILP in terms of CPU and energy

consumption while satisfying the latency tolerance threshold. They also achieve the same

latency as ILP in some cases and lower latency in other cases depending on the testing scenario

and the number of VNF resources to adapt. NBPSO provides slightly lower CPU and power

consumption than CRO and CRO-NBPSO. It also has a little bit higher latency compared to

them in some cases, but it converges towards them and can overcome them in terms of latency

as the size or number of requests increases. Accordingly, depending on the service provider's

optimization goals and priorities, the more suitable algorithm can be selected for resource

adaptation. For example, if the priority is to strictly achieve the least end-to-end latency, NSGA

can better serve this objective. If the priority is to reduce the resource utilization and energy

expenditure as much as possible while meeting the latency tolerance threshold agreed in the

SLO, other algorithms such as CRO, NBPSO or CRO-NBPSO can be used while considering

their runtime.

63

Table 2.5 Scenario 4 test results
Test case Performance metrics ILP NSGAII CRO NBPSO CRO-NBPSO

4 SFCs

D = 0.25

secs

CPU (%) 24.857 28.142 25.589 25.345 25.590

Power (%) 48.995 55.425 52.424 52.342 52.424

End-to-end latency (secs) 0.25 0.118 0.246 0.246 0.244

Execution time(secs) 38.433 1.877 1.210 10.496 2.170

Number of servers 14 15 14 14 14

8 SFCs

D = 0.35

secs

CPU (%) 39.174 42.099 39.382 38.190 39.174

Power (%) 66.128 68.953 66.222 65.871 66.167

End-to-end latency (secs) 0.35 0.229 0.341 0.35 0.349

Execution time(secs) 47.426 1.771 1.424 15.225 2.328

Number of servers 17 18 17 17 17

8 SFCs

D = 0.4 secs

CPU (%) 38.812 41.894 38.879 38.121 38.949

Power (%) 66.017 69.204 66.077 65.844 66.101

End-to-end latency (secs) 0.4 0.243 0.384 0.4 0.392

Execution time(secs) 23.186 0.528 0.366 9.720 0.660

Number of servers 17 18 17 17 17

12 SFCs

D = 0.45

secs

CPU (%) 51.073 54.1195 51.036 50.101 50.991

Power (%) 72.967 74.568 73.002 72.724 72.993

End-to-end latency (secs) 0.44 0.311 0.424 0.433 0.426

Execution time(secs) 48.608 0.539 0.486 20.762 0.926

Number of servers 18 18 18 18 18

16 SFCs

D = 0.55

secs

CPU (%) 62.907 66.328 63.576 62.476 63.445

Power (%) 79.779 81.200 80.061 79.740 80.019

End-to-end latency (secs) 0.55 0.361 0.531 0.523 0.522

Execution time(secs) 58.050 0.69 0.556 29.025 1.014

Number of servers 19 19 19 19 19

20 SFCs

D = 0.6 secs

CPU (%) 75.078 78.124 75.571 74.507 75.456

Power (%) 86.724 87.706 86.948 86.653 86.916

End-to-end latency (secs) 0.55 0.383 0.539 0.533 0.544

Execution time(secs) 66.918 0.756 0.628 35.282 1.582

Number of servers 20 20 20 20 20

64

Figure 2.4 Comparison of the average CPU utilization for NSGAII, CRO, NBPSO, CRO-
NBPSO and ILP in scenarios 1, 2 and 3, respectively

Figure 2.5 Comparison of energy consumption for NSGAII, CRO, NBPSO, CRO-NBPSO
and ILP in scenarios 1, 2 and 3, respectively

Figure 2.6 Comparison of the average end-to-end delay/latency for NSGAII, CRO, NBPSO,
CRO-NBPSO and ILP in scenarios 1, 2 and 3, respectively

65

Figure 2.7 Comparison of the average number of servers used by the NSGA, CRO, NBPSO,
CRO-NBPSO and ILP in scenarios 1, 2, and 3, respectively

2.7 Conclusion

In this article, we target the issues related to dynamic resource adaptation for service chains

hosted in the cloud. We have proposed multi-objective metaheuristic-based approaches to

dynamically find the optimum resource adaptation decisions that satisfy service needs while

minimizing the cost metrics. These approaches are based on the Genetic algorithm NSGAII,

Chemical Reaction Optimization (CRO), Binary Particle Swarm Optimization (BPSO), and

the combination CRO_BPSO. Our proposal enjoys several advantages, namely: (1) it

considers different potential resource adaptation techniques (Horizontal scaling, Vertical

Scaling, and Migration) and dynamically selects the best that fulfills request demands

according to traffic fluctuations; (2) its idea is generic enough to be used in any virtualized

system or data center architecture; (3) it tackles SFCs of different sizes and topologies,

including linear and non-linear ones; (4) it finds a trade-off between a set of cost metrics, such

as energy consumption, SLO violation, and CPU utilization.

The experimental results show the effectiveness of the proposed algorithms in generating

convenient adaptation solutions for incoming requests according to the network environment

and imposed constraints. Additionally, the meta-heuristic algorithms demonstrate their ability

66

to approximate the ILP performance with a much shorter runtime. Concerning the

metaheuristics techniques, we notice several observations. CRO had a lower execution time

than other meta-heuristics in almost all cases while NBPSO had the highest. CRO-NBSO and

NBPSO had competitive efficiency in terms of objective functions versus CRO. NSGAII

sometimes had a little bit higher CPU utilization and Power consumption than other meta-

heuristics. However, it could find feasible solutions with the shortest end-to-end delay

compared to them and ILP. We also notice that the pre-specified SLO latency threshold had a

significant influence on the results, especially on the algorithm’s runtime.

For future work, we intend first to optimize our algorithms and ILP model to support multi-

resources such as memory, disk, I/O, etc. instead of CPU only specifically in our constraints

and Power consumption computation. Second, we will extend our algorithms by targeting

more cost metrics, such as network bandwidth utilization, and constraints related to VNF

dependencies that may be agreed to in the SLA (e.g., affinity and anti-affinity constraints).

When two consecutive VNFs of the same SFC have a common affinity constraint, it means

that these VNFs exchange a lot of loads and need to be located on the same server. In contrast,

an anti-affinity constraint between two VNFs means that they are intensive-load VNFs, and

therefore need to be hosted on different servers. Considering such constraints and metrics will

influence the resource adaptation decisions suggested by our algorithms. Third, we want to test

our algorithms while combining them with other VNF placement strategies to select

destination servers for the adaptation decisions taken. Finally, we intend to combine our

algorithms with a resource prediction technique to anticipate future resource demands and

avoid delays in resource adaptation.

Acknowledgment

Special thanks to Ericsson Canada and the Natural Sciences and Engineering Research Council

of Canada (NSERC) for their support.

CHAPTER 3

UTILIZATION PREDICTION-BASED VM CONSOLIDATION APPROACH

Mirna Awad a, Nadjia Kara a, and Aris Leivadeas a

a Department of Software Engineering and IT, École de Technologie Supérieure,
1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Published in Journal of Parallel and Distributed Computing, August 2022.

(https://doi.org/10.1016/j.jpdc.2022.08.001)

3.1 Abstract

Reducing energy consumption and optimizing resource usage in large cloud data centers is still

an essential target for the current researchers and cloud providers. The state-of-the-art

highlights the effectiveness of VM consolidation and live migrations in achieving reasonable

solutions. However, most proposals consider only the real-time workload variations to decide

whether a host is overloaded or underloaded, or to trigger migration actions. Such approaches

may apply frequent and needless VM migrations leading to energy waste, performance

degradation, and service-level agreement (SLA) violations. In this paper, we propose a

consolidation approach based on the resource utilization prediction to determine the

overloaded and underloaded hosts. The prediction method combines a Kalman filter and

support vector regression (SVR) to forecast the host's future CPU utilization. Simulations are

conducted on Cloudsim using real PlanetLab workloads to verify the performance of our

proposal against existing benchmark algorithms. Experimental results demonstrate that our

consolidation technique significantly reduces the SLA violation rate, number of VM

migrations, and energy consumed in the datacenter.

Keywords: Utilization prediction, Kalman filter, Support vector regression, VM

consolidation, Cloud computing.

68

3.2 Introduction

The large-scale deployment of cloud data centers has led to a dramatic increase in energy

consumption and environmental pollutants. Implementing effective resource management in

the Cloud has become an increasingly urgent issue to be addressed. The challenge consists of

the dynamic workload fluctuations of the running applications which in turn causes a

continuous variation in resource utilization of virtual and physical machines. Thus, the main

objective in this research field is to reduce the energy consumed by these data centers and

utilize their physical resources efficiently, while maintaining the performance of the hosted

applications. According to the state-of-the-art, virtual machine (VM) consolidation is one of

the most productive methods that can achieve this goal (Helali & Omri, 2021a)(Chaurasia,

Kumar, Chaudhry, & Verma, 2021)(Zhou et al., 2020). At the same time, using live VM

migration techniques (F. Zhang, Liu, Fu, & Yahyapour, 2018)(Noshy, Ibrahim, & Ali,

2018)(Silva Filho et al., 2018), the VM consolidation strategy can be reinforced by hosting the

active VMs on fewer physical machines (PMs) and switching off idle servers. This VM

reallocation strategy should be employed dynamically to effectively redistribute load among

the servers, enhance the cloud resources utilization and meet the time-varying resource

requirements of the applications.

The main concern when jointly addressing the VM consolidation and VM migration is to

decide whether a host is overloaded or underloaded depending on the real-time VM workload

fluctuations. Migrating VMs from overloaded hosts helps reduce SLA violations. Whereas,

migrating VMs from under-utilized servers and then switching them into sleep mode avoids

energy waste. Several proposals have considered only the current host state and resource

utilization to take such decisions and trigger VM migrations. These approaches may lead to an

aggressive consolidation with frequent needless migrations. Excessively migrating the virtual

machines from one host to another to satisfy their resource demands may affect their

performance due to additional delays such as migration time and downtime. This decrease in

Quality-of-service (QoS) may violate the service level agreement (SLA) and cause some

penalties.

69

Consequently, more efficient solutions are needed to correctly make decisions regarding VM

migrations. In other words, overloaded and underloaded hosts should be reliably determined

to limit the frequency of VM migrations. Simple reactive methods that consider only the

current CPU utilization may lead to unreliable VM migration decisions. Sometimes, the CPU

utilization of the server may exceed a max threshold at the current time, but the load rapidly

decreases in the next time slots. In such a situation, the host should not be considered

overloaded and there is no need to migrate VMs from this server to release resources. Figure

3.1 borrowed from (Hieu, Francesco, & Yla-Jaaski, 2020) illustrates an example of a CPU

utilization trace of a server measured every 5 minutes over 24 hours. If we assume that the max

threshold is set to 80%, we can recognize many false overloading detection points (marked by

small circles) in which the reactive approach will make inefficient VM migration decisions

and eventually increase costs. For this reason, it is crucial to consider both current and future

utilizations of the server before taking such decisions. In this paper, we propose a prediction-

based VM consolidation approach that predicts the future host state and assigns VMs to hosts

based on both current and near-future resource utilization. For example, in the trace of Figure

3.1, our method will report an overloading state for the server only in the period between 600

and 670 minutes (marked by a rectangle) because its utilization exceeds the max threshold in

both the current and future period of time.

To do so, in this work, a multi-step prediction model that combines Kalman filter with Support

Vector Regression (SVR) is used to forecast the host’s future CPU utilization. Then, a VM

consolidation framework based on prediction is presented to decide the host state (overloaded

or underloaded) and then performs the required VM migrations. Our main contributions can

be summarized as follows:

1. An efficient multi-step-ahead workload prediction method called K-SVR based on

Kalman Filter and Support vector regression to forecast the host's future CPU

utilization is proposed. Kalman filter is integrated for data pre-processing to reduce

prediction error.

70

2. A dynamic VM consolidation approach is combined with the proposed prediction

model, which consists of host overloading and underloading detection algorithms. In

particular, the workload prediction model is distributed on all hosts to dynamically

anticipate the future utilizations of each host according to its historical data. Then,

overloading and underloading detection algorithms decide whether a host is

underloaded or overloaded depending on its current and predicted utilization.

According to the decisions taken about the host state, VM live migrations are

performed.

3. A trade-off between SLA violation and energy consumption is pursued while

minimizing the number of VM migrations and the runtime of resources allocations.

4. A comparative study is provided about the impact of prediction windows size (WS) on

the performance of our consolidation approach in terms of SLA violation and energy

consumption. This analysis shows the possibility to select the value of WS according

to the deployment constraints or the objective priorities of the service provider. The

service provider may aim for minimum power consumption, or to reduce SLA violation

as much as possible, or save energy while satisfying a tolerance threshold agreed upon

in the SLA. Host overloading and VM migrations may degrade the performance of the

service and violate some agreements related to the quality of service and service

availability. Respecting these constraints is mandatory to avoid penalties.

5. An analysis study is carried out on the energy consumption resulting from the execution

of the simulation of our consolidation approach and our prediction technique and

compared to existing benchmarks. Energy measurements are performed using the

JoularJX tool(Noureddine, 2022).

6. Several simulations are conducted on Cloudsim using PlanetLab real-world workloads

to validate the effectiveness of our proposed approach compared to the existing state-

of-the-art algorithms.

71

The rest of the paper is organized as follows: Section 3.3 reviews the literature on resource

utilization prediction and dynamic VM consolidation in the cloud. Section 3.4 explains in detail

the prediction model proposed. Section 3.5 describes the utilization prediction-aware

consolidation approach and analyses its time complexity. Section 3.6 presents our experimental

setup, discusses the results obtained and compares the performance of our proposal against

existing approaches. Finally, section 3.7 summarizes the paper and highlights our future

directions for this work.

3.3 Related work

 Resource management and reallocation in Cloud is a wide research problem that has been

divided into sub-problems and addressed by researchers from various perspectives (Silva Filho

et al., 2018)(Awad, Kara, & Edstrom, 2022) (B, Gounaris, & Sioutas, 2016) (Nadgowda,

Suneja, & Kanso, 2017)(Taherizadeh & Stankovski, 2018)(Nadgowda, Suneja, Bila, & Isci,

2017)(Hoseinyfarahabady, Taheri, Zomaya, & Tari, 2021).

VM consolidation is a resource reallocation problem that relies on replacing VMs in the

physical infrastructure in order to satisfy their resource needs while consolidating their

workloads on a fewer number of physical machines. Research works tackle the VM

consolidation problem from various perspectives such as VM placement (Bharanidharan &

Figure 3.1 CPU utilization trace of a cloud server
Taken from Hieu et al. (2020, p. 190)

72

Jayalakshmi, 2021)(Zhihua Li, Yu, Yu, Guo, & Chang, 2020)(Silva Filho et al., 2018),

overloading and underload detection (Beloglazov & Buyya, 2012) (Hsieh et al., 2020), VM

selection for migrations (Melhem, Agarwal, Goel, & Zaman, 2017)(Moghaddam, Piraghaj,

O’Sullivan, Walker, & Unsworth, 2018) etc. In our paper, we focus mainly on host overload

and underload detection. This decision-making problem is challenging and mainly sensitive to

the workload type and its variation over time. Several proposals decide whether a host is

overloaded or under-loaded by comparing its current resource utilization to two static

thresholds (hot and cold thresholds). For example, XIAO et al. (Xiao et al., 2019) present a

VM consolidation method based on thresholds and an Ant Colony system. The upper threshold

is set to 80% and the lower to 40%. If the current CPU utilization exceeds 80%, the host is

overloaded. Whereas, if it is lower than 40%, the host is considered under-utilized. Ant Colony

system is used to map the migrated VMs to appropriate destination hosts. Other researchers

suggest the usage of dynamic thresholds instead of static ones. According to these approaches,

static thresholds are not effective methods to deal with the workload dynamicity in cloud data

centers. For instance, Beloglazov et al. (Beloglazov & Buyya, 2012) present two adaptive

threshold methods based on a statistical analysis of the host historical data, namely,

Interquartile Range (IQR) and Median Absolute Deviation (MAD). In this case, the current

utilization of the host is compared to thresholds computed dynamically, to evaluate its state

over time. On the contrary to these approaches, several works propose predictive dynamic VM

consolidation algorithms. Indeed, relying on the current host state only to make decisions

regarding VM migrations may lead to unreliable decisions with excessive needless migrations.

Frequent VM migrations can affect their performance, impose additional delays and downtime,

and therefore risk more SLA violations. Hence, prediction techniques are widely investigated

in the pertinent literature to anticipate the future load variations (Benmakrelouf, Kara, Tout,

Rabipour, & Edstrom, 2019 ; Qiu, Zhang, & Guo, 2016), (Abdullah, Li, Al-Jamali, Al-Badwi,

& Ruan, 2020) and to adapt resources in the cloud according to the future resource demands

(Radhika & Sadasivam, 2021). In (Amiri & Mohammad-Khanli, 2017) a detailed survey of

application prediction schemes is presented, including the different prediction models

proposed in the state of the art, their main characteristics, and challenges. In general, in

predictive consolidation techniques, a workload forecasting model is used, and then VM live

73

migration is triggered considering the predicted host state, or both its current and future state.

For example, Hsieh et al. (Hsieh et al., 2020) present a utilization prediction-aware VM

consolidation strategy. In particular, a Gray model and Markov chain are combined to forecast

the short-term future CPU utilization of hosts. Then, overloaded and under-utilized hosts are

determined by comparing their current and estimated CPU utilization to given thresholds. A

dynamic threshold based on MAD is used for overload detection, and a static one is applied to

detect underload states. Li et al. (L. Li, Dong, Zuo, & Wu, 2019) employ an SLA and energy-

aware consolidation process based on the Robust Simple Linear Regression (RobustSLR)

prediction model. This model anticipates the host's future CPU usage, and it amends the

prediction by adding the error directly or indirectly to the prediction value. If the historical data

length is not sufficient to predict, the current CPU utilization of the host is compared to a static

threshold to verify whether it is overloaded or not. Otherwise, the predicted CPU utilization is

adopted to make the decision. Ding et al. (Ding et al., 2020) propose a performance-to-power-

ratio (PPR) aware VM consolidation approach. Their short-term workload prediction model

consists of the moving average (MA) and the interquartile range (IQR) techniques. Host

overload detection is based on the available residual computing capacity (RACC) evaluation

model. The RACC of a host is calculated based on its power consumption and PPR. The RACC

of the host with the maximum PPR is called optimum RACC and is used as the threshold to

detect overload. That is to say, a host is considered as overloaded if its RACC is lower than

the optimum RACC. Underload detection relies on a multi-criteria Z-score algorithm in which

a score is calculated for each host based on its CPU utilization and PPR, and so the host with

the highest score (minimum CPU usage and PPR) is declared as under-utilized. Unlike

resource utilization prediction methods, Li et al. (L. Li et al., 2018) rather predict the future

host states (overloaded or not) using Naïve Bayesian classifier. However, underloaded servers

are simply selected as the hosts with the minimum utilization compared to the others. Their

main target is the reduction of SLA violation level and power costs. Mahdhi et al. (Mahdhi &

Mezni, 2018) suggest predicting the host states based on the resource utilization history of

VMs and the past VM migration traffic. They create a weighted graph to model the history of

migration traffic between hosts. A Kernel Density Estimation (KDE) technique is used to

forecast the future resource usage of each VM, and an AKKA framework is adopted as actor-

74

based to allow exchanging information about the host’s states. The host is detected as

overloaded when one of its estimated requested resources (CPU, RAM, and Storage) exceeds

the available capacity. Otherwise, it is considered under-loaded. The new placement for the

migrated VMs is then decided according to the migration history. Shao et al. (Shao et al., 2020)

discuss a dynamic VM consolidation technique based on a Gray model and an improved

discrete particle swarm algorithm (GM-DPSO). Their objective is to minimize energy

consumption, SLA violations, and number of migrations. The Gray prediction model is used

for load detection, while an improved discrete particle swarm algorithm is employed for the

VM placement process. A host is determined to be overloaded if both the current load rate and

the predicted load rate are higher than the threshold. An adjustment mechanism based on MAD

is adopted to dynamically modify the upper threshold according to the load condition.

Regarding underload detection, the host with the lowest utilization rate is selected at each time

step. Finally, Witanto et al. (Witanto, Lim, & Atiquzzaman, 2018) implement an adaptive

selector based on neural network to select the appropriate consolidation technique adaptively

according to the cloud provider’s goal priority and environment parameters. It chooses between

the following four classes: (1) No migration; (2) Migration only for underloading; (3)

Migration for underloading and overloading, in this case, local regression (LR) is used for

detection and Guazzone for VM placement; (4) Migration for underloading and overloading,

using LR for detection and Shi-AC for VM placement. In contrast to the predictive

consolidation approaches previously discussed, Hieu et al. (Hieu et al., 2020) estimate the long-

term resource utilization of servers using multiple linear regression. They define a server as

overloaded if its multiple predicted resource usage exceeds a hot threshold (; and

as underloaded if its multiple predicted resource utilization is equal or less than its current

resource usage (). Sometimes, the workload trace of a host may occur false hot

increase detection points, and the load rapidly decreases in the short-term future. For this

reason, adopting a multi-step or a long-term prediction model to anticipate a sequence of future

host utilization values can be helpful to avoid unreliable decisions. Khoshkholghi et al.

(Khoshkholghi, Derahman, Abdullah, Subramaniam, & Othman, 2017) develop an iterative

weighted linear regression method that uses two utilization thresholds to detect overload

situations. This strategy does k iterations to find K future values of host utilization. A host is

75

declared as overloaded if its predicted utilization at step t+1 is higher than the total capacity

(100%). However, if other future values in host utilization (steps t+2 to t+k) are detected to be

higher than the total capacity, the host is considered under pressure and does not accept any

new VM. For underloading part, they propose an algorithm using vector magnitude squared of

multiple resources. The host is underloaded when its CPU, RAM, and BW utilizations are

lower than a threshold. The lower threshold is calculated as the lower quartile of the previous

host utilizations.

Resource reallocation and workload prediction are not limited to VMs. With the remarkable

evolution of Cloud computing solutions for hosting services, from the usage of virtual

machines (VMs) to containers, and recently to serverless platforms, more resource

management mechanisms are needed and still under study. Serverless platform benefits from

many advantages over the IaaS cloud (Rajan, 2018)(McGrath & Brenner, 2017). First, it allows

users to deploy highly scalable containerized services decomposed into a workflow of event-

driven stateless functions. Second, it offloads all management responsibilities to the cloud

provider, including resource provisioning, scheduling, scaling, etc., so organizations and

developers do not have to worry about these issues. Third, unlike the IaaS cloud where users

are charged for the number of rented VMs and their resources even if they are idle or unused,

in serverless platforms users are charged granularly for the compute and storage resources

needed to execute their computing tasks. This fact reduces the hosting costs but complicates

the billing estimation. Serverless billing models are multi-dimensional because a set of

functions are deployed individually and executed over heterogeneous resources. This

performance variance exhibits costs variance which motivates some researchers to introduce

tools for performance characterization, runtime prediction, and workload costs estimation for

Function-as-a-Service (FaaS) platforms (Cordingly, Shu, & Lloyd, 2020). In (Apostolopoulos,

Tsiropoulou, & Papavassiliou, 2019), the authors propose a distributed approach to determine

the optimal resource allocation strategy for users by helping them decide whether to offload

their computing tasks to virtual machines and/or serverless functions offered in the social cloud

computing environment. In (Bhattacharjee et al., 2019), the authors present a distributed and

scalable resource management system called Barista for serverless computing, specifically for

76

deep learning prediction services. The objective is to manage the compute resources for these

services while maintaining their SLO requirements (e.g., required prediction latency). Their

methodology includes: (a) an online rolling window based forecasting technique to predict

workload based on historical data; (b) a greedy heuristic to identify suitable compute resource

configuration; (c) an intelligent agent to proactively scale container resources horizontally and

vertically based on predicted workload. In (Ali, Pinciroli, Yan, & Smirni, 2018), the authors

focus on burstable performance instances, which are low-cost instances that can ramp up their

CPU performance using spare resources to treat a burst of heavy load for certain amounts of

time. These instances are typically used for applications like microservices that do not require

consistently high computational power but may need higher computational power from time

to time to satisfy a heavy load for a short time. In their work, they present an autonomic

scheduling framework for burstable performance instances that can maximize the efficiency

of the spare resources’ usage while meeting SLOs. In (Saha & Jindal, 2018), A resource

management system for serverless cloud computing is suggested with the goal to improve

memory allocation among containers. They built their solution on top of OpenLambda, an

open-source serverless platform.

In this article, we propose a novel multi-step-ahead workload prediction model that combines

Support Vector Regression with Kalman filter. Kalman is used as data preprocessing step to

improve the prediction accuracy. This proposal can be used to forecast any workload whether

it is received by servers, VMs, containers, microservices, serverless functions, etc. In this work,

we adopted and tested this prediction model to forecast the incoming workload of the servers

for the purpose of estimating their future states. In addition, a predictive consolidation

framework is represented to proactively make the necessary resource management decisions

and ensure that the SLOs are met. This framework is based on Overload and underload

detection algorithms that consider both the current and the set of predicted CPU utilization

values of hosts while making decisions. Moreover, we present a comparative study about the

selection of window size value according to the deployment constraints (e.g., meet the required

quality of service, avoid crossing tolerance thresholds agreed in SLA) and the cloud provider’s

objective priority (save energy or decrease SLA violation). Hence, we aim to find the best

77

trade-off between energy consumption and SLA violation, while minimizing the number of

VM migrations and the execution time of the resource re-allocation process. Furthermore, an

analysis study is performed to compare the energy consumption resulting from running the

simulation of our consolidation approach against existing benchmarks.

Serverless platforms allow users to deploy highly scalable and event-driven applications that

can be decomposed into a set of short-running and stateless functions. These functions are

typically hosted on a set of containers running on a cluster of VMs. For example, Kubernetes

host containerized applications into PODs which are allocated to nodes cluster. A POD consists

of a group of containers, while a node can be a virtual machine. Thus, A workload

consolidation technique or resource management requirements may involve the need of

migrating workloads from one VM to another in the same cluster, and even from one cluster

to another. The proposed consolidation framework can be optimized to support the migration

of PODs hosting microservices or serverless functions from one VM to another while taking

into account the deployment constraints and SLO metrics of these functions.

3.4 Prediction strategy

In this section, we introduce a novel multi-step-ahead CPU utilization prediction model called

K-SVR that combines Support Vector Regression (SVR) and Kalman Filter to proactively

forecast the future CPU utilization of servers hosted in the cloud. We argue that both selected

techniques are suitable for the dynamic cloud environment and the fluctuant loads in resource

usage of hosted applications. Kalman Filter (Kalman, 1960)(Zhang-Jian, Lee, & Hwang,

2013)(Kalyvianaki, Charalambous, & Hand, 2014) is originally developed to estimate time-

varying states in dynamic systems and is suitable for Cloud application’s load estimation. In

our work, Kalman is adopted as a data pre-processing step to enhance prediction accuracy. It

is used to filter the CPU historical data of the host s as shown in the pseudocode of

Algorithm 3.1. Then, the data is divided into training and testing sets and SVR is used to

perform multi-step ahead CPU load prediction. represents the training data size and is

the number of prediction steps. At each time t, we predict n CPU utilization values for each

78

host using its historical data. Forecasting multiple values allows us to estimate the future trend

in the CPU consumption of hosts and make the necessary resource management decisions

before encountering serious issues (e.g., SLA violation). In the following, we introduce the

working principles of the two aforementioned techniques.

3.4.1 Kalman Filter

Kalman Filter essentially provides estimates of unknown variables using a set of measurements

observed over time. The evolution of the state from time to time is defined in (1).

 (3.1)

This process model is paired with the measurement model given in (2).

 (3.2)

where is the state transition matrix from step to . is a matrix that relates the optional

control vector to the state . is a matrix that describes the relation between the state

and the measurement . In our test experiment, there is no control input (B=0), and

measurements are of the state directly (=1). We assume that the state does not change from

one time step to another (=1). and are white noises and represent process and

measurement noise respectively. They are random variables assumed to be independent of each

other, with and . is the process noise covariance matrix, while

 is the measurement noise covariance matrix. We assume that and are constant.

The algorithm iteratively applies two phases of computation: prediction and correction. The

prediction step projects the current state estimate ahead of time from to . The correction

phase adjusts the projected estimate by an actual measurement at that time.

Prediction phase (3.3)

 (3.4)

79

Correction phase (3.5)

 (3.6)

 (3.7)

Where represents the priori state estimate at time k, is the posteriori state estimate at

time k, denotes the priori estimate error covariance matrix, is the posteriori estimate

error covariance matrix, and is called the Kalman Gain matrix. Kalman gain illustrates the

weight given to the measurements and the priori state estimate . A high gain means that the

filter places more weight on the accurate measurements to estimate the state . Conversely, a

low gain means that the state estimate mostly depends on the model predictions derived from

the prediction phase .

3.4.2 SVR regression

Support Vector Machine (SVM) is a popular statistical learning technique widely used to solve

classification problems in machine learning. Support Vector Regression (SVR) has the same

principles as SVM, but it is developed specifically for regression problems. SVR is the

methodology by which a function is estimated using a dataset that trains the SVM. We

treat CPU utilization prediction as a time series prediction problem. To forecast the future CPU

values, the time series workload dataset is split into input and output vectors. Each input vector

 represents a finite set of sequential CPU utilization measurements of these series. The output

vector includes the observation, where n denotes the amount of historical data. Each

combination (,) is used as a training point. Eq. (3.8) defines the regression prediction

function.

 (3.8)

Where is a mapping function (kernel function) to non-linearly map from input space to

multi-dimensional feature space. The Radial Basis Function (RBF) kernel is used for its easier

computation and fewer parameters. is the predicted value, w is a weight coefficient, and

80

b is a bias. The basic idea behind SVR is to construct a hyperplane (best-fit line) that has

maximum data points. The key to achieve this goal is to find the flattest function that allows

the error to remain within a threshold epsilon . The flatness of the weights can be measured

by the Euclidean norm. Hence, the objective is to minimize the l2-norm of the coefficient

vector (minimize). Moreover, the error or the empirical risk generated by the

estimation process should be minimized. Thus, the overall objective is to reduce the regularized

risk that combines the two sub-objectives previously explained as follows:

(3.9)

Where

 (3.10)

 is calculated using the -insensitive loss function . and C are user-defined parameters.

C is a constant used to control the trade-off between the empirical and regularized risk. Finally,

Slack variables, and , are introduced to estimate the errors for underestimation and upper

estimation (above and below). Adding these variables optimizes the equations as displayed

in (3.11) and (3.12).

(3.11)

(3.12)

81

Algorithm 3.1 K-SVR prediction algorithm

1: Input: , ,
2: Output:
3: /* Preprocess data */

5: /* extract and divide training dataset into X and Y*/

7:
8: /* Train SVM model */

10: /* extract testing data */

 Return

3.5 Prediction-aware consolidation approach

According to (Beloglazov & Buyya, 2012), VM consolidation consists of four essential steps:

(a) overloaded hosts detection; (b) underloaded hosts detection; (c) VM selection for migration

and (d) VM placement. The workflow diagram presented in Figure 3.2, illustrates step by step

how our predictive consolidation approach works. Specifically, it is executed periodically to

optimize the reallocation and consolidate the resources. Firstly, it starts by detecting the

overloaded hosts based on their resource usage prediction (Algorithm 3.2). To maintain the

necessary QoS of running services and avoid SLA violation, some VMs from those overloaded

hosts are chosen for migration (Algorithm 3.4). Then, new destination hosts are selected for

the migrated VMs (Algorithm 3.5). If no active host with enough capacity is found by the

placement algorithm, an inactive host is initiated to place the migrated VM. On the other hand,

the underutilized hosts are also identified (Algorithm 3.3) and all VMs on those hosts are

migrated to others if possible (Algorithm 3.5). Then, the idle hosts are switched to a low-power

state to save energy. In this way, the VMs are consolidated into a minimum number of active

hosts. In this article, we focus mainly on the first two parts of the consolidation problem (steps

a and b). Precisely, we present overloading and underloading detection algorithms based on

the prediction strategy discussed previously in section 3.4. In this section, we describe the

different algorithms that constitute our VM consolidation framework, then we analyze its time

complexity.

82

3.5.1 Overload detection algorithm

The proposed overload detection technique is presented in Algorithm 3.2. It takes as input an

active server , and outputs a Boolean decision to indicate whether this server is

overloaded or not.

The algorithm starts by obtaining the recorded CPU utilization history of the server,

its current utilization , the prediction window size (), the number of prediction

steps (), and the upper threshold (). It is worth mentioning that the historical data is

recorded at a 5-minute interval. To forecast , sufficient historical data is required

to train the prediction model. If data is insufficient (), the decision

is taken based on the current utilization only. Thus, the host is considered overloaded if its

current CPU utilization is higher than the threshold () (Steps 3-10).

Otherwise, are predicted using our time-series prediction mechanism K-SVR

presented in section 3.4. In this case, the host is considered overloaded if the average of the

predicted CPU values is higher than (Steps 11-15). In another

word, the server can be overloaded in two possible scenarios: (1) if it is overloaded in both the

current and the future period of time (e.g.,

; or (2) it is currently operating normally but will be overloaded in the future period of

time (e.g., . According to the overload

decisions taken by this algorithm, migration actions will be taken. Precisely, VMs will be

selected from overloaded hosts and migrated to new destinations by the algorithms described

in the following sub-sections.

83

Algorithm 3.2 Overload_detection

1: Input:
2: Output: Boolean decision if s is overloaded or not
3: Get
4: Get
5: Get , , O_
6: if Length (< then
7: if then
8:
9: end
10: else
11: = K-SVR(, ,)
12: if Avg (> then
13:
14: end
15: end
16: Return

3.5.2 Underload detection algorithm

The main objective of algorithm 3.3 is to identify the underloaded servers. Their identification

will help us minimize the number of active hosts by switching under-utilized servers to a low-

power state. Thereby, the total energy consumption in the data center will reduce.

Its input includes a set of active hosts , and its output is the detected under-utilized

server. Note that the list of active hosts should exclude the overloaded hosts detected in

algorithm 3.2. If no sufficient historical data is available for prediction, the under-utilized

servers are simply those having minimum CPU utilization (Steps 6-9). Otherwise, the future

CPU values are predicted by our K-SVR technique described in section 3.4, while taking as

input the CPU historical data of the server, the prediction window size (), the number of

prediction steps (), and the lower threshold (). Then, the server with an average of

 lower than the threshold is considered underloaded (Steps 10-14).

84

Algorithm 3.3 Underload_detection

1: Input:
2: Output: Underloaded server U_server
3: Get , , U_
4: U_server = NULL
5: Get Length (/* */
6: if Length (< then
7: U_server = min_Utilization_host()
8: Return U_server
9: else
10: foreach do
11: = K-SVR(, ,)
12: if Avg (<= U_ then
13: U_server =s
14: Return U_server
15: end
16: end
17: end
18: Return U_server

3.5.3 VM migration and placement

To move a VM from one host to another, we have adopted the pre-copy VM live migration

algorithm. Migration time is calculated as the utilized RAM of VM divided by the available

network bandwidth. The time taken to migrate a VM can be formulated as

.

For VM selection and placement, we have reused the techniques proposed by (Beloglazov &

Buyya, 2012) to perform a formal comparison between our approach and theirs. Precisely, to

select the VMs to be migrated from an overloaded host, the Minimum Migration Time (MMT)

is used. MMT selects the VM that has the least migration time, as calculated by the equation

above, for migration. According to the formula, the VM that has the least RAM will also have

the least migration time. The VM selection algorithm is presented in Algorithm 3.4. After

selecting the candidate VM for migration among the set of VMs hosted on the server s, it

85

checks if this server will remain overloaded after deallocating the selected VM or not. The

function overloadedAfterDeallocation will simulate the VM deallocation from the server and

call our overload detection algorithm (Algorithm 3.2) to verify the server state. If the server is

still overloaded, another VM will be selected for migration. The output is the list of VMs to

migrate from the overloaded server .

Algorithm 3.4 MMT VM selection

1: Input:
2: Output: List vmsToMigrate
3: While (true) do
4: Set min_ram = MAX
5: CandidateVM = NULL
6: foreach do
7: ram = v.getRam()
8: if ram < min_ram then
9: min_ram = ram
10: CandidateVM =
11: end
12: end
13: vmsToMigrate.add (CandidateVM)
14: if overloadedAfterDeallocation (s, v) = false then
15: Break
16: end
17: end
18: Return vmsToMigrate

Once the VMs to be migrated are selected from all detected overloaded servers, the Power

Aware Best Fit Decreasing (PABFD) placement strategy is applied to find a destination server

for each migrated VM and then return the complete migration Map. PABFD in Algorithm 3.5

searches for each VM, a destination host that will be suitable in terms of resource capacity

requirements (Step 8), will not become overloaded after hosting the target VM (Steps 9-11)

and will have the least increase in its power consumption caused by this allocation. The

function overloadedAfterAllocation simulates the allocation of the VM on the server and then

calls our overload detection algorithm (Algorithm 3.2) to check its state after this allocation.

86

Algorithm 3.5 PABFD

1: Input: List vmsToMigrate
2: Output: Migration Map
3: foreach do
4: minPower = Max
5: destinationServer = NULL
6: foreach do
7: if s.isSuitableForVM(v) then
8: if overloadedAfterAllocation(v, s) then
9: Continue
10: end
11: oldPower = s.getPower()
12: newPower = estimatePowerAfterAllocation(v, s)
13: powerDiff = newPower – oldPower
14: if powerDiff < minPower then
15: minPower = powerDiff
16: destinationServer = s
17: end
18: end
19: end
20: if destinationServer is not NULL then
21: migrationMap.add(v, destinationServer)
22: end
23: end
24: Return migrationMap

Figure 3.2 Workflow diagram of the proposed VM consolidation approach

87

3.5.4 Complexity Analysis

The overall VM consolidation algorithm is described in the diagram in Figure 3.2 and is

presented in detail by Algorithm 3.6. It consists of two phases: (1) VM migrations due to

overloading detection (Steps 2-8); and (2) VM migrations due to underloading detection (Steps

9-25). In the first phase, the framework detects the overloaded servers, selects the VMs to

migrate from these servers, and constructs the migration map by finding new destination

servers for the migrated VMs. We have explained the algorithms responsible for each of these

steps in the previous sub-sections. Once overloading solutions are found, we move to the

second phase of underload detection. We exclude from our searching list, the overloaded

servers and the destination servers chosen for migrated VMs in phase 1 because those servers

cannot be turned off. Each detected under-utilized server is switched to low-power mode if and

only if all its running VMs can be migrated to other destination hosts. In the following, we

discuss the complexity time of each phase. Let us define as the number of active servers

 in the system; as the total number of VMs in the datacenter; as the number of

VMs hosted on a server s; is the number of VMs selected for migration; and as

the CPU historical data length of a server.

3.5.4.1 Complexity –Phase 1

Starting with line 2, the time complexity of the for loop is the same as the number of active

hosts

Inside the loop, algorithm 3.2 of overload detection is called. Its complexity is mainly based

on the complexity of K-SVR prediction approach (Algorithm 3.1). According to (Valade,

Acco, Grabolosa, & Fourniols, 2017), the Kalman filter complexity is where n is the

state vector size. As we are using kalman to filter or preprocess the CPU historical data, its

complexity in our case is . In (Abdiansah & Wardoyo, 2015), a time complexity

analysis of Support Vector Machine in LibSVM is provided. LibSVM is the library that we

88

used to implement the SVR prediction part. Their analysis shows that the worst complexity for

svmPredict and svmTrain is where n is the amount of data. In our work, the number of

training dataset is and the number of prediction steps is . Thus, the K-SVR complexity is

. In line 5, Algorithm 3.4 is called to select the VMs to migrate from

the server s. This algorithm loops over the set of VMs hosted on s and calls Algorithm 3.2

indirectly to check if the server remains overloaded after deallocation. Its time complexity can

be calculated by . The total time complexity of the for loop

becomes .

Algorithm 3.6 Predictive VM consolidation

1: Input: , V
2: foreach do
3: if then
4: .add (s)
5: vmsToMigrate.add(MMT_VM_selection ())
6: end
7: end
8: migrationMap = PABFD (, vmsToMigrate)
9:)
10: While (true) do
11: U_server = underload_detection()
12: if U_server = NULL then
13: Break
14: end
15: Exclude U_server from
16: .add(U_server)
17: MigrationMap2 = PABFD (,)
18: if migrationMap2 is complete then
19: migrationMap.addAll(migrationMap2)
20: U_server can be turned off after migrations
21: else
22: Discard migrationMap2
23: U_server will remain active
24: end
25: End

After collecting all VMs to migrate, Algorithm 3.5-PABFD is called in line 8. PABFD loops

over VMs to migrate and the active servers to find their appropriate destination. It also checks

if a server will become overloaded after allocating the target VM by an indirect call to

89

Algorithm 3.2. Its complexity is . Consequently, the

total complexity of Phase 1 (Steps 2-8) is

. However, , , and are typically small

numbers. Therefore, the complexity can be simplified to .

3.5.4.2 Complexity –Phase 2

In the second phase (Steps 9-25), we start by calling Algorithm 3.3 for underload detection. Its

complexity can be represented by . Then, for each underutilized

host, Algorithm 3.5-PABFD is called to find new destination servers for its set of VMs . In

this case, and the complexity of PABFD is

. Thus, the total complexity of this phase is . Again,

this complexity can be simplified to .

3.5.4.3 Overall Complexity

The overall complexity of Algorithm 3.6 will be the summation of the complexities of phases

1 and 2. Therefore it is . We can approximate

the number of active servers in the system by the total number of VMs divided by the number

of VMs that can be allocated on a server . In this case, the complexity becomes equal

to . Hence, the worst-case complexity is .

3.5.5 Performance Metrics

As stated in the previous sections, our approach aims to find a trade-off between energy

consumption and SLA violation. Hence, the following metrics are defined to evaluate the

performance of the algorithms:

90

1. SLA violation:

Service level agreement (SLA) is a contract established between the cloud service provider

and the customer about the required Quality of service (QoS). Service Level Objective (SLO)

is the key element of SLA that includes one or more QoS measurements and constraints.

Meeting the QoS requirements agreed upon in the SLA is extremely important for assessing

the quality of cloud service and avoiding penalties. As these requirements can vary from one

application to another, a workload independent metric called SLA violation () is used to

evaluate the SLA violation rate (Beloglazov & Buyya, 2012). It is measured by combining two

SLO parameters: SLA violation due to host overloading () and SLA violation due to

VM migration ().

 (3.13)

 indicates the average ratio for the period when the host is fully utilized. If the CPU

utilization of a host reaches 100%, it might not provide VMs with the required resources, which

will negatively affect the performance level. This metric can be calculated as follows:

(3.14)

Where represents the number of hosts; denotes the total time during which the host has

experienced 100% CPU utilization leading to an SLA violation; is the total time in which

host has been in an active state.

Whereas measures the overall performance degradation caused by VM migrations and

can be calculated as shown as follows:

(3.15)

Where is the number of VMs; denotes the performance degradation of VM due to

migrations; is the total CPU utilization demanded by VM during its lifetime. is set as

10% of the CPU utilization during all migrations of VM .

91

2. Energy consumption:

We consider the total energy consumed by the physical machines of a data center. Most studies

have determined that CPU consumes more power than memory, disk storage, and network

interface (Leivadeas, Papagianni, & Papavassiliou, 2015). CPU consumption is one of the

critical metrics in cloud environments that have an impact on power electricity and cooling

costs as well as on heat emission. In this article, we have mainly focused on processing power,

but optimizing the calculation of energy consumption while taking into account other resources

is one of our future works. Here, the energy consumption measurements are based on real data

provided by SPECpower benchmark results (« The SPECpower Benchmark », s.d.). Table 3.1

illustrates the power consumption of HP G4 and G5 servers at different load levels. Notably,

when under-utilized servers switch to sleep mode, energy consumption decreases significantly.

Therefore, reducing the number of active hosts is mandatory to minimize the energy

consumption of the data center.

3. Number of migrations

Live migration negatively affects the performance of applications running on a migrating VM.

It involves additional costs such as extra CPU utilization on the source host, network

bandwidth between the source and destination host, downtime of the applications during VM

migrations, and total migration time. Thus, reducing the number of VM migrations is essential

to avoid SLA violations.

4. Execution Time

In addition to the previously mentioned metrics, we compare the algorithms in terms of

execution time. Precisely, we consider the average execution time of each algorithm to perform

a VM consolidation cycle including the four steps: a) overloaded hosts detection; (b)

underloaded hosts detection; (c) VM selection for migration, and (d) VM placement.

Table 3.1 Power consumption of servers according to their CPU utilization (in watts)
Server Sleep 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP ProLiant
G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117

HP ProLiant
G5 10 93.7 97 101 105 110 116 121 125 129 133 135

92

3.6 Experiments

3.6.1 Setup

3.6.1.1 Environment

We have tested our proposed algorithms through simulations executed on CloudSim toolkit

(Calheiros, Ranjan, Beloglazov, Buyya, & De Rose, 2011). Our testing environment involves

800 heterogeneous servers as follows: 400 HP ProLiant ML110 G4 machines of dual-core with

1860 MIPS each, and 400 HP ProLiant ML110 G5 of dual-core with 2660 MIPS each. Both

server types have 4 GB of memory and support 1 GB/s of bandwidth. The power consumption

characteristics of these servers, based on the SPECpower benchmark, are given in Table 3.1.

The VM instances correspond to Amazon EC2, and their characteristics are listed in Table 3.2.

Our K-SVR prediction model is implemented in Java using the LibSVM library (Chang & Lin,

2011). The parameters used to test our algorithms are summarized in Table 3.3. In our testing,

we have set the upper threshold (U_TH) to 70% and the lower (O_TH) to 30%. To select these

thresholds, we have referred to the state of the art and tested our algorithm under different

inspired threshold values between 70% and 90% for overloading detection, and between 20%

and 30% for underloading detection. Then, we have selected the values that enhance the

efficiency of our algorithm, but these inputs can be easily modified. Also, we set the number

of prediction steps n to 3 to predict three future CPU utilization for the host. However, our

implementation is not limited to 3 and the value of n can be modified easily. The best historical

data length required for training the SVR model is chosen after a careful fine-tuning of the data

window size as later shown in sub-section 3.6.2. It is worth mentioning that each experiment

was repeated 10 times to report the average execution time of each algorithm.

93

Table 3.2 VM instances characteristics

VM Instance Type CPU (MIPS) RAM (GB)

High-CPU medium instance 2500 0.85

Extra-large instance 2000 3.75

Small instance 1000 1.7

Micro instance 500 0.613

Table 3.3 Algorithms parameters

Kalman
A H Q R

1 1 0.01 1

SVR
 kernel (parameter

of RBF) C

0.1 RBF 0.0625 1

Predictive

consolidation
U_TH O_TH WS n

0.3 0.7 20 3

Arima
p d q

1 0 1

3.6.1.2 Workload

Our simulation uses real-world workloads publicly available in the form of PlanetLab data.

PlanetLab data is provided as a part of the CoMon project, a monitoring infrastructure for

PlanetLab (Park & Pai, 2006). It comprises CPU utilization of more than a thousand VMs

hosted on servers located in more than 500 places around the World. The workload traces are

collected during March and April 2011. Each VM has 288 CPU utilization records measured

at 5 minutes intervals. The datasets tested in our experiments and their characteristics are

shown in Table 3.4. We have selected datasets according to the number of VMs deployed and

monitored in the infrastructure. In particular, we have selected the dataset with the highest

number of VMs (dataset W1), the least number of VMs (dataset W4), and two datasets in-

between (W2 and W3). These datasets allow us to verify if our approach performs well when

increasing the number of VMs to consolidate and limiting the capacity of the physical

infrastructure.

94

Table 3.4 Planetlab workloads characteristics (CPU utilization)

Dataset Number of
VMs

Number of
servers Date Mean St.dev. Quartile1 Median Quartile3

W1 1516 800 22/03/2011 9.26% 12.78% 2% 5% 12%

W2 1052 800 03/03/2011 12.31% 17.09% 2% 6% 15%

W3 1033 800 20/04/2011 10.43% 15.21% 2% 5% 12%

W4 898 800 06/03/2011 11.44% 16.83% 2% 5% 13%

3.6.1.3 Benchmarks comparison

To illustrate the efficiency of our approach, we compare it with the consolidation techniques

proposed in (Beloglazov & Buyya, 2012). These techniques are integrated into the Cloudsim

toolkit. In particular, the following four overload detection strategies are considered: Static

Threshold (THR), InterQuartile Range (IQR), Median Absolute Deviation (MAD), and Local

Regression (LR). Moreover, the proposed K-SVR based approach is tested using only SVR

(without Kalman filtering step) and using Arima for prediction for both overload and underload

detections instead of SVR.

Regarding VM selection, different methods are suggested in (Beloglazov & Buyya, 2012) to

select VMs for migration from overloaded hosts: (i) Minimum migration time (MMT); (ii)

Random Selection (RS); (iii) Maximum correlation (MC). Their extensive experiments to

compare the different combinations between overload detection techniques and VM selection

methods demonstrate that LR combined with MMT had the optimal results. To better verify

the effectiveness of our algorithms in a formal comparison with theirs, we reuse the same MMT

VM selection and VM placement methods explained in sub-section 3.5.3. Concerning the

parameter configurations of the benchmark algorithms, we applied the same values used in

their experiments. Note that by default, underloaded hosts in these consolidation policies are

simply those having the least CPU utilization. We have performed different experiments to

compare our consolidation approach to the default version and a modified version of the

Cloudsim benchmarks.

95

Consequently, our K-SVR based consolidation approach is compared against the following

policies: THR-MMT with an upper threshold of 80%, IQR-MMT, MAD-MMT, LR-MMT,

Arima-MMT, and SVR-MMT. Experiments are explained in the next sub-section.

3.6.2 Results and discussion

Four experiments are conducted to evaluate the performance of our consolidation approach

against the four benchmark algorithms introduced in the previous sub-section 3.6.1.3.

Experiment 1 analyses the impact of the prediction window size on the performance of our

consolidation technique. Its main target is to carefully select a WS value that can satisfy the

deployment constraints (e.g., avoid crossing the tolerance threshold of SLA) and the objective

metrics (save energy, reduce SLA). Experiment 2 compares the proposed consolidation

approach to the existing consolidation algorithms in Cloudsim, in addition to Arima-based and

SVR-based approaches. Note that the original implementation versions of the Cloudsim

benchmark algorithms are tested in this experiment, where underloaded hosts are those having

the least CPU utilization. Whereas experiment 3 performs this comparison but uses a modified

version of the cloudsim benchmarks. Precisely, their default underload detection method is

replaced by our prediction-based underload detection algorithm discussed in section 3.5.2.

Adopting a similar underload detection mechanism in the benchmarks strengthens the

comparison between the different overload detection techniques and allows a clearer

interpretation of the obtained results. All mentioned comparisons are performed according to

the performance metrics described in section 3.5.5. Finally, in experiment 4, we analyze the

energy consumption of executing the proposed predictive consolidation approach against the

benchmarks discussed in experiment 2.

3.6.2.1 Experiment 1- WS selection

In this simulation, our consolidation technique is tested under variable prediction window sizes

of lengths 4, 8, 12, 16, 20, 24, and 28. The purpose is to study the influence of WS on the

performance of our approach because it is based on the utilization prediction of the hosts to

96

determine overloading and underloading states and trigger VM migrations. It should be noted

that the same experiment is repeated for all datasets presented in Table 3.4. However, no

particular difference was observed. To this end, testing results for dataset W1 are given in

Table 3.5 as an example. Based on the results, we notice the contradiction between the two

resource optimization objectives (SLA and energy) and the importance of finding a solution

that provides a trade-off between them. Decreasing the energy consumption and reducing the

SLA violation at the same time is difficult and probably not possible. The SLA violation rate

of our approach increases progressively from 0.00004% to 0.00015% with the increase of the

WS value. Conversely, the total energy consumption in the datacenter is the highest (200.86

Kwh) when the WS is equal to 4. Then, it decreases progressively to 158.81 Kwh with the

increase of WS to 24. At the end, the energy re-increases slightly for WS 28 showing a

convergence of the energy consumption with respect to the WS. The observations demonstrate

that a trade-off between the SLA violations and energy consumption is occurred. Accordingly,

if the main target of the cloud service provider is to strictly achieve the least SLA violation

rate and avoid its resulting penalties, it is better to go with a small WS value. On the contrary,

if the priority is to reduce energy expenses in cloud data centers, higher WS can better serve

this objective. In this article, we do not prioritize an objective metric over another. However,

we intend to find the best trade-off between SLA violation and energy consumption. Through

our experiments, the consolidation technique achieves this trade-off and performs optimally at

WS 20 under different workloads. Thus, WS=20 is used for testing in the following

experiments.

Table 3.5 Testing results of different windows size values
WS Energy (Kwh) SLAV (%) SLAVO (%) SLAVM (%) Number of migrations

4 200.86 0.00004 0.69 0.01 2796

8 191.71 0.00004 0.78 0.01 2949

12 179.73 0.00005 0.87 0.01 3042

16 167.60 0.00007 1.12 0.01 3708

20 159.29 0.00012 1.5 0.01 4786

24 158.81 0.00013 1.55 0.01 4986

28 160.60 0.00015 1.59 0.01 5287

97

3.6.2.2 Experiment 2 – proposed approach vs. original benchmarks

Figs. 3-8 present the comparison results between our K-SVR based consolidation approach

and the four benchmarks discussed in subsection 3.6.1.3: THR-MMT, IQR-MMT, MAD-

MMT, and LR-MMT, in addition to our approach based on Arima for prediction, and our

approach based on SVR only without Kalman filtering.

Based on the results obtained in Figure 3.3, our K-SVR based consolidation approach

outperforms its energy results using SVR only, in all workloads. It also outperforms slightly

Arima based approach in most cases. Arima-based approach occupies the second place in

minimizing energy and outperforms SVR-based approach in most cases except for workload

W4. Moreover, we notice that our K-SVR based approach reduces the total energy consumed

in the datacenter by an average of 7.54 %, 18.86 %, 20.65 %, and 20.56 % compared to LR,

MAD, IQR, and THR respectively. LR outperforms all the threshold methods in terms of

energy. By employing our proposed algorithms to

select underloaded and overloaded hosts, such hosts are identified more precisely. Once

underloaded hosts are selected, all their hosted VMs can be migrated to other machines, and

then energy can be saved by switching idle hosts to sleep mode. Moreover, estimating the trend

of future CPU consumption of the hosts helps to anticipate the overloading situations and to

react proactively before a violation occurs. For this reason, our approach significantly

decreases the SLA violation due to host overloading (SLAVO) compared with Cloudsim

benchmarks, as shown in Figure 3.4. K-SVR has the best results in SLAVO reduction, then,

SVR-based approach, while Arima approach comes third. After identifying overloaded hosts,

some VM migration plans can be applied to re-adjust resources and overcome the issue.

Regarding the SLA violation due to migrations, Figure 3.5 reveals that K-SVR, SVR and

Arima based approaches achieve the lowest SLAVM versus the others for all tested datasets.

The reason refers to the substantial reduction in the number of VM migrations when using

predictive approaches (this metric is discussed later). Since SLAV represents the multiplication

of SLAVO and SLAVM, our proposed K-SVR approach considerably decreases SLAV as

well. Figure 3.6 demonstrates that K-SVR approach minimizes the SLA violation rate by an

98

average of 97.36%, 96.17%, 96.12%, and 96.21% compared with LR, MAD, IQR, and THR

respectively. It also reduces SLAV by an average of 24.5728% compared to SVR, and by

33.5233% compared to Arima.

Figure 3.7 illustrates the comparison results in terms of the number of migrations. Our K-SVR

approach dramatically reduces the number of migrations in all workloads compared to

Cloudsim benchmarks. For instance, K-SVR approach initiates 3632 migrations for dataset

W2, while the other techniques perform 27632 (LR), 26292 (MAD), 26476 (IQR), and 26634

(THR) migrations. It also has a lower number of migrations than SVR and Arima which

perform 4546 and 4896 migrations respectively for the same dataset (W2). Live VM migration

may cause overhead on the system, extra expenses, and more violations. Thus, a consolidation

mechanism that requires fewer migrations is much preferable. In addition, avoiding

unnecessary VM migrations minimizes the runtime of our re-allocation process (e.g., selection

of VMs to migrate and destination hosts). Figure 3.8 also indicates a lower execution time for

K-SVR and SVR based techniques compared to the others. K-SVR has a slightly lower runtime

compared to SVR in all workloads except W1. Using Arima for prediction to detect overloaded

and underloaded hosts longer time than SVR-based approaches. Overall, K-SVR approach

provides a successful trade-off between energy cost and SLA violation. It also outperforms

benchmark algorithms in almost all targeted cost metrics: energy, SLA, number of migrations,

and execution time.

Figure 3.3 Comparison of energy consumption for 4 workloads - experiment 2

99

Figure 3.4 Comparison of the SLAVO metric for 4 workloads - experiment 2

Figure 3.5 Comparison of the SLAVM metric for 4 workloads- experiment 2

Figure 3.6 Comparison of the SLAV metric for 4 workloads - experiment 2

100

Figure 3.7 Comparison of number of VM migrations for 4 workloads

- experiment 2

Figure 3.8 Comparison of runtime for 4 workloads - experiment 2

3.6.2.3 Experiment 3 – proposed approach vs. modified benchmarks

Figs. 9-14 illustrate the comparison results of our consolidation approach against the modified

version of Cloudsim benchmark algorithms. Note that testing results of K-SVR, SVR, and

Arima-based approaches are the same as experiment2. However, Cloudsim benchmarks (LR,

MAD, IQR, and THR) are modified to utilize our proposed underload detection algorithm

explained in sub-section 3.5.2. Therefore, the overload detection part only differentiates them.

That way we can focus our comparison on the overloading part and verify if the benchmark

algorithms combined with prediction-based underloading detection can outperform our

101

approach. Figure 3.9 exhibits competitive performance in terms of energy consumption,

specifically between LR, K-SVR, and Arima-based approaches. While K-SVR approach

consumes less power in W1 and W4, LR has lower consumption in W2 and Arima has lower

power in W3 with a very slight difference for both. Threshold techniques consume the highest

energy (THR, IQR, and MAD). Figure 3.10 demonstrates that K-SVR technique outperforms

others in terms of SLAVO in almost all datasets (except in W3). In W3, threshold techniques

(THR and MAD) provide a better SLAVO rate where they slightly outperform K-SVR

approach. Thus, our overload detection algorithm selects over-utilized machines more

efficiently than other algorithms and causes less SLAVO rate in most cases. Concerning

SLAVM, Figure 3.11 indicates that K-SVR, SVR, and Arima approaches provide the least

SLAVM in all datasets. Combining the two metrics SLAVM and SLAVO, the greater

performance of K-SVR approach in terms of SLAV compared to the benchmarks, is evidently

observed in Figure 3.12. In addition, it is important to realize the significant decrease in

SLAVO, SLAVM, and SLAV for all benchmark techniques when combined with our

underload detection algorithm, compared to the results in experiment 2. Figure 3.13 compares

the number of VM migrations. Explicitly, K-SVR based approach applies the lowest number

of VM migrations to re-allocate resources. The average difference in the number of migrations

is quite significant between our approach and the other techniques: 49.31% compared to LR,

48.78% compared to MAD, 49.38% compared to IQR, and 46.37% compared to THR.

However, the number of migrations for benchmark algorithms is considerably reduced

compared to experiment 2. In terms of execution time, Figure 3.14 shows competitive results,

especially between K-SVR approach, LR, and THR. Sometimes, K-SVR approach

outperforms THR in terms of runtime with a very slight difference (e.g., in W3 and W4), and

sometimes the inverse. LR has achieved a lower execution time than K-SVR approach in W1

only. We can also notice the reduction in runtime of the benchmark algorithms when combined

with our K-SVR based underload detection algorithm, compared to experiment 2. This

combination allows these benchmarks to outperform Arima-based approach in terms of

execution time. To summarize, adopting our underload detection algorithm in benchmark

approaches, improves their performance results, and considerably minimizes their SLA

violation rates, the number of VM migrations, and their runtime. Despite this, our approach

102

achieves the best results and outperforms these approaches specifically in terms of SLA

violation (SLAV) and the number of migrations, while maintaining an appropriate balance

with the power consumption.

Figure 3.9 Comparison of energy consumption for 4 workloads-experiment 3

Figure 3.10 Comparison of the SLAVO metric for 4 workloads-experiment 3

103

Figure 3.11 Comparison of the SLAVM metric for 4 workloads-experiment 3

Figure 3.12 Comparison of the SLAV metric for 4 workloads - experiment 3

Figure 3.13 Comparison of number of VM migrations for 4 workloads –

experiment 3

104

Figure 3.14 Comparison of runtime for 4 workloads - experiment 3

3.6.2.4 Experiment 4 – Energy consumption of our proposed performance profiling

and prediction

To measure the energy consumed by executing our proposed approach, JoularJX tool

(Noureddine, 2022) is used, a power monitoring tool at the source code level. It uses Intel

RAPL (powercap interface) to get the power consumed by a running java program using its

PID. On program exit, it outputs its total energy consumed in joules, in addition to the overall

energy consumed by every java method executed inside it.

We use this tool to obtain the energy consumed by the entire simulation on Cloudsim from the

instantiation phase until the termination time. Figure 3.15 illustrates the comparison of the total

energy consumed by the simulation using our K-SVR based consolidation methodology and

the benchmarks discussed in experiment 2. On the other hand, Figure 3.16 compares the overall

energy consumed by the VM consolidation algorithm (Algorithm 3.6) during the simulation.

As discussed previously, Algorithm 3.6 includes all decisions related to the consolidation

process (Overloaded Hosts detection, Underload detection, Selection of VMs to migrate and

their destination server). The complete simulation includes the instantiation phase, the

execution of Algorithm 3.6 and all its sub-algorithms, and the application of the decisions made

by this algorithm by updating the infrastructure and its resources. It is worth mentioning that

the simulation performs many consolidation cycles and so Algorithm 3.6 is executed many

105

times to take the relevant decisions. Precisely, in our testing results, the simulation performs

288 consolidation cycles which is equal to the PlanetLab dataset size taken as input. Based on

the results obtained, our approach reveals less energy consumption of running the complete

simulation or Algorithm 3.6 specifically compared to other benchmarks for all workloads. As

shown in Figure 3.7 of experiment 2, the other benchmarks may generate false overload and

underload detection decisions than our approach which involves a much higher number of VM

migrations. A higher number of VM migrations means more modifications in the

infrastructure, resource allocations and deallocations processes, more calls for VM selection

and VM placement algorithms, etc. and consequently a higher energy for executing these tasks.

In Table 3.6, we represent more details about the overall energy consumed by our Kalman-

SVR prediction part during the simulation, specifically Algorithm 3.1. Note that Algorithm 3.6

calls algorithm 3.1 each time it needs to predict host resource utilization for overloading and

underloading checking purposes. In the table, we also specify the number of times the

prediction algorithm has been called during the simulation. As mentioned previously, in our

simulation we execute Algorithm 3.6 for 288 times but in the first 20 times, there are no

prediction calls due to insufficient historical data for the hosts (Window Size for

prediction=20). For instance, Table 3.6 shows that for workload w1, the prediction algorithm

is called 101992 times during the simulation (for 288-20=268 cycles), and its overall energy

consumed is 52.825 joules which represent 36.72% of the energy consumed by Algorithm 3.6.

If we convert the energy unit to KWh, the results are too small, demonstrating that running our

proposed consolidation approach does not result in high energy consumption or overhead

despite its data filtering and prediction tasks.

106

Figure 3.15 Comparison of energy consumed by the simulation

execution for 4 workloads - experiment 4

Figure 3.16 Comparison of energy consumed by the VM consolidation

algorithm (Algorithm 3.6) for 4 workload-experiment 4

Table 3.6 Detailed energy measurements of executing our technique

WORKLOADS

OVERALL ENERGY MEASUREMENT (IN JOULES) NUMBER OF K-SVR PREDICTION
(ALGO. 3.1) RUNTIMES

WHOLE
SIMULATION

K-SVR
PREDICTION
ALGORITHM

3.1

VM
CONSOLIDATION
ALGORITHM 3.6

FOR
OVERLOAD
CHECKING

FOR
UNDERLOAD

CHECKING
TOTAL

W1 550.72 52.82 143.86 84613 17379 101992

W2 441.85 46.89 104.95 58276 18452 76728

W3 370.24 23.92 84.32 31640 10635 42275

W4 401.73 35.29 85.50 43859 12641 56500

107

3.7 Conclusion

In this paper, a predictive dynamic VM consolidation algorithm is proposed. Our multi-step

prediction model combines Kalman Filter with Support Vector Regression (SVR) to forecast

the future CPU utilization of the hosts. Considering current and predicted utilization, our

underload detection, and overload detection techniques make decisions about the host state

(overloaded or underloaded). Based on these decisions, VM re-allocations are planned, and

migrations are triggered. The main target is to find a trade-off between energy consumption

and SLA violation while minimizing the number of VM migrations and the runtime needed for

resource re-allocations.

Various Simulations are conducted using PlanetLab's real-world workload traces. The

experimental results demonstrate the ability of the proposed approach to significantly reduce

the SLA violation rate and the number of migrations, with an appropriate balance with the

energy consumption and very good execution time, compared to the existing benchmark

algorithms. For future work, we intend to optimize the costs computation formulas taking into

account additional factors and resources (memory, I/O, etc.) that may increase energy

consumption and SLA violation during migrations. We also plan to extend our prediction to

support multiple resources (e.g., memory, storage, and bandwidth) instead of a single resource

(CPU). Considering multiple resource types to determine accurately the host state may limit

the frequency of VM migrations and avoid hasty decisions.

Acknowledgment

This work has been supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC).

CHAPTER 4

MULTI-RESOURCE PREDICTIVE WORKLOAD CONSOLIDATION APPROACH
IN VIRTUALIZED ENVIRONMENTS

Mirna Awad a, and Aris Leivadeas a

a Department of Software Engineering and IT, École de Technologie Supérieure,
1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Submitted to Journal of Computer Networks, June 2023.

4.1 Abstract

The revolution of virtualization technologies and Cloud computing solutions has emphasized

the need for energy-efficient and Service level agreement (SLA)-aware resource management

techniques in cloud data centers. Workload consolidation in Infrastructure-as-a-Service (IaaS)

providers allows for efficient utilization of hardware resources and reduced energy

consumption by consolidating workloads onto fewer physical servers. To ensure successful

workload consolidation, it is crucial for IaaS providers to carefully estimate the host state and

identify overloaded and underloaded hosts, thereby avoiding overly aggressive consolidation.

Existing proposals determine the host state depending on its current resource utilization or a

single anticipated resource utilization value, and often consider only a single resource type of

the host, such as CPU. These limitations may lead to unreliable host state estimations, resulting

in excessive and needless service migrations between physical machines (PMs). This, in turn,

can lead to extra delays in service execution, degraded performance, increased power

consumption, and SLA violations. To address these challenges, we propose a workload

consolidation approach that leverages a multi-resource and multi-step resource utilization

prediction model. Based on this model, our overload and underload decision-making

algorithms consider the forecasted future trend (sequence of future value) of each host

resource's utilization, including CPU, memory, and bandwidth. Through extensive

experimentations conducted with two real-world datasets, we demonstrate that our approach

110

can significantly reduce power consumption, SLA violation rate, and the number of migrations

compared to existing benchmarks.

Keywords: Multi-resource, workload prediction, Kalman filter, Support vector regression,

consolidation approach, Cloud computing.

4.2 Introduction

With the remarkable evolution of cloud computing solutions for hosting services, from the

usage of Virtual Machines (VMs) to containers, and recently to serverless platforms, an

effective resource management remains a significant challenge (Khan, Tian, Zhou, et al.,

2022)(Awad, Kara, & Edstrom, 2022)(McGrath & Brenner, 2017). The dynamic workload

fluctuations of running services leads to high variations in virtual and physical resource

consumption in the cloud. By consolidating workloads onto a minimal number of physical

servers, Infrastructure-as-a-Service (IaaS) providers can optimize the utilization of their

hardware resources while reducing energy consumption through the powering off of under-

utilized servers(Panwar et al., 2022). In virtualized data centers, this consolidation is possible

through the live migration of VMs or containers hosting the running services, between physical

machines (PMs) (F. Zhang et al., 2018). While workload consolidation optimizes resource

utilization and reduces the energy consumed, it can negatively affect the performance

requirements of applications defined in the Service level agreement (SLA). Thus, striking the

right balance is essential.

For instance, implementing an excessively aggressive consolidation approach can lead to

violations and performance degradation for the applications running on the servers.

Accordingly, many concerns should be addressed to tackle such a research problem. First, to

achieve an effective workload consolidation, it is crucial to carefully estimate the host state

and identify overloaded and underloaded hosts in order to make informed decisions about

workload redistribution. Underloaded hosts that have excess available resources can be utilized

for consolidating additional workloads from overloaded hosts to improve overall resource

111

utilization and mitigate the risk of SLA violations. Alternatively, they can be turned off for

minimizing energy consumption. The second concern involves selecting the right virtual

resources (VMs or containers) to migrate from a server (Melhem et al., 2017)(Moghaddam et

al., 2018). Lastly, a placement strategy is needed to select the best destination servers that can

handle these migrated workloads (Nath, Addya, Chakraborty, & Ghosh, 2020). Each of these

concerns poses its own challenges.

Regarding overload and underload detection concern, existing workload consolidation

approaches often rely on current resource utilization of servers to determine their state and

trigger the required migrations (Xiao et al., 2019)(Beloglazov & Buyya, 2012). However, such

proposals may result in unreliable host state estimations and excessive needless migrations. An

increase in the current server utilization does not necessarily reveal an overloading state, as the

load may rapidly decrease in the next time slot. To make accurate estimations and limit the

frequency of migrations, it is crucial to consider not only the current host workload but also its

future resource utilization. Moreover, relying on a single future resource utilization value to

judge the host state, may be also insufficient to perform reliable estimations. Therefore, it is

important to anticipate and consider the future trend (as a sequence of multiple future values)

of the host’s resource usage.

Furthermore, some existing consolidation schemes focus on the utilization of a single resource

type (i.e., CPU) while deciding whether a server is overloaded or underloaded (L. Li et al.,

2019)(Hsieh et al., 2020). Due to the sheer multiplicity and heterogeneity of running

applications (e.g., IoT-based applications, 5G applications, web etc.) that may be hosted in the

cloud, and the variability of their workloads, considering only one resource type can lead to a

non-efficient decision-making strategy. Different applications may have different resource

requirements, such as CPU-intensive, memory-intensive, or bandwidth-sensitive workloads,

and so on. Therefore, it is necessary to consider all these resource types in order to build a

technique able to correctly detect overloaded and underloaded servers across different

application types and workloads.

112

In this article, we present a predictive workload consolidation mechanism based on prediction

model called MSPR. This mechanism incorporates overload detection and underload detection

algorithms, which take into account the current and predicted trend (instead of a single future

value) of resource utilization to determine if a host is experiencing overloading or underloading

issue. Unlike some existing techniques, our approach considers many resource types, including

CPU, memory, and bandwidth, when making host state estimation. For overload detection, we

calculate adaptive Mean Absolute Deviation (MAD) thresholds tailored to each resource type.

Moreover, our approach offers flexibility by allowing the specification of distinct underload

thresholds and prediction window sizes for each resource type. Our evaluation involves

comparing our approach with an optimized multi-resource versions of benchmark

consolidation algorithms integrated into Cloudsim, including Mean Absolute Deviation MAD-

based, Interquartile Range IQR-based, Static threshold THR-based, and Local Regression LR-

based approaches, in addition to our alternative consolidation approach that uses

Autoregressive Integrated Moving Average (Arima) multi-resource prediction model,

replacing MSPR model. In summary, our contributions include:

1. A multi-resource and multi-step workload prediction model called MSPR is proposed,

to anticipate the future resource utilization trends of servers in terms of CPU, memory,

bandwidth received, and bandwidth transmitted. This model combines the well-known

algorithms Support Vector Regression (SVR) and Kalman Filter. Kalman Filter is used

as a data filtering pre-processing step to enhance the accuracy of SVR prediction

process.

2. A workload consolidation approach is combined with the MSPR predictive model to

reduce the total energy consumption in data center, limiting the frequency of virtual

resource migrations, and decreasing SLA violations. This approach includes OD-

MSPR and UD-MSPR algorithms for overload and underload detection, considering

both current and predicted multi-resource utilization trends of servers. Our approach

also offers the flexibility to specify different overload and underload thresholds for

each resource type. Adaptive thresholds for overload detection, based on MAD, are

calculated for each resource type based on historical utilization data.

113

3. Extensive experiments are conducted on Cloudsim using Bitbrains (Shen, Van Beek,

& Iosup, 2015) and Materna (Kohne, Spohr, Nagel, & Spinczyk, 2014)(Kohne,

Pasternak, Nagel, & Spinczyk, 2016) datasets to validate the effectiveness of our

proposed approach compared to optimized multi-resource versions of state-of-the-art

consolidation techniques, in addition to an alternative consolidation approach that

replaces the MSPR model with an ARIMA multi-resource prediction model. Moreover,

a detailed time complexity analysis of our predictive workload consolidation approach

is provided

The rest of the article is organized as follows: Section 4.3 discusses the existing workload

consolidation approaches in the state-of-the-art and highlights their limitations. Section 4.4

describes the proposed resource utilization prediction technique. Section 4.5 explains in detail

the predictive workload consolidation approach proposed and analyzes its time complexity.

Section 4.6 presents the experimental setup and compares the results obtained by our proposal

with existing benchmarks. Section 4.7 summarizes the main insights and the future directions

for this work.

4.3 Related work

Workload consolidation and resource utilization prediction constitute two major research

problems that can be tackled separately. In this section, we review some related proposals that

address workload consolidation problem alone, workload prediction problem alone, or both

combined.

Numerous studies about workload prediction has been provided in the pertinent literature

(Masdari & Khoshnevis, 2020). Qui et al. (Qiu et al., 2016) present a novel method for

predicting the CPU utilization of VMs in a cloud computing environment. The proposed

approach utilizes a deep learning model consisting of a Deep Belief Network (DBN) and a

logistic regression layer. The parameters of the entire model are fine-tuned using the

Backpropagation (BP) algorithm. The proposed approach is compared to other prediction

114

methods, using PlanetLab dataset in Cloudsim. Experimental results demonstrate that the

proposed method outperforms existing prediction approaches in terms of prediction accuracy.

Malik et al. (Malik et al., 2022) present a multi-resource utilization prediction technique based

on Functional Link Neural Network (FLNN). A hybrid model, that combines genetic algorithm

(GA) with particle swarm optimization (PSO) algorithm, is used to train the neural network

and thus, improve its prediction accuracy. Mean Absolute Error (MAE) is calculated as fitness

function for GA. Their experiments are carried out using a Google cluster workload and are

focused mainly on CPU and memory utilization of VMs. Xie et al.(Xie et al., 2022) propose a

hybrid model of ARIMA and triple exponential smoothing to accurately predict both linear

and nonlinear relationships in container resource load sequence. The weighting values of the

two single models in the hybrid model are chosen according to the sum of squares of their

predicted errors for a period of time. They also introduce a real-time resource prediction system

for Docker container that optimizes CPU and memory resource usage based on predicted

values. Khan et al. (Khan, Tian, Ilager, & Buyya, 2022) propose an intelligent prediction model

based on machine learning for workload prediction and energy state estimation for VMs in

cloud data centers. The model explores different Machine Learning (ML) algorithms for

workload prediction including Linear Regression (LR), Ridge Regression (RR), ARD

Regression (ARDR), ElasticNet (EN) and deep learning algorithm called Gated Recurrent Unit

(GRU). The obtained results show that the GRU achieved the most negligible root mean square

error (RMSE) value compared to other ML algorithms. In addition to workload prediction, the

authors propose four different clustering algorithms including semi-supervised affinity

propagation based on transfer learning (TSSAP), CLA based on transfer learning (TCLA), k-

means based on transfer learning (TKmeans), and P-teda based on transfer learning (TP-teda),

for identifying similar groups of VMs with different energy-consuming states. Based on their

experiments, the TSSAP outperformed other methods by achieving the highest accuracy in

clustering.

In this article, we present a prediction approach called MSPR, for forecasting the utilization of

server resources, encompassing CPU, memory, received bandwidth, and transmitted

bandwidth. The proposed model leverages a combination of Support Vector Regression (SVR)

115

and Kalman Filter algorithms to accurately predict future resource utilization. Kalman Filter

acts as a pre-processing step to improve the accuracy of SVR predictions. This predictive

model can be employed to anticipate workload of diverse systems, including servers, virtual

machines (VMs), and containers etc. In our work, we concentrate on utilizing this model to

forecast incoming workload for servers, thereby enabling reliable estimation of their future

states.

Workload consolidation is a crucial strategy for optimizing resource re-allocation and

achieving energy efficiency in cloud environments (Chaurasia et al., 2021)(Helali & Omri,

2021b)(Zolfaghari & Rahmani, 2020). It involves the consolidation of workloads onto a

reduced number of physical machines, thereby maximizing the utilization of available

resources, and minimizing the energy consumed. Researchers have explored different

approaches and perspectives to address this problem effectively. Some of these include VM or

container placement algorithms, techniques for detecting overloading and underloading states,

and strategies for selecting VMs or containers to migrate. For instance, Nath et al. (Nath et al.,

2020) propose EASY, an energy-efficient approach for container consolidation in cloud data

centers. EASY utilizes a Bayesian optimization-based algorithm for container placement, to

minimize energy consumption while considering trade-offs with service response time. The

authors compare the performance of the EASY algorithm with baseline methods, including

Consecutive Allocation, Best Fit, and First Fit Decreasing mechanisms. Simulation results

demonstrate the effectiveness of EASY approach in reducing energy consumption, although

slightly increasing average response time.

In this paper, our primary focus is on the detection of host overloading and underloading

conditions. We recognize the significance of accurately identifying these states as they have a

direct impact on the performance and efficiency of the consolidation system. Overloaded hosts

may experience resource scarcity and can lead to degraded performance and potential SLA

violations. On the other hand, underloaded hosts indicate underutilization of resources, which

results in resource wastage and unnecessary costs. State-of-the-art employs three primary

approaches: Static Threshold, Dynamic Threshold, and Predictive Models, to identify

116

overloaded and underloaded hosts. The Static Threshold approaches set fixed upper and lower

thresholds on resource utilization to determine whether a server is overloaded or underloaded.

Conversely, Dynamic Threshold approaches dynamically adjust the thresholds based on the

observed workload historical data. For example, the authors in (Beloglazov & Buyya, 2012)

propose the utilization of two statistical estimators, namely Median Absolute Deviation

(MAD) and Interquartile Range (IQR). By comparing the current utilization of the host to these

dynamically computed thresholds, the methods provide an evaluation of the host's state over

time. Predictive models play a crucial role in resource consolidation by predicting whether a

server will experience overloading or underloading conditions in the near-future. This

prediction aids in avoiding unnecessary migrations that can lead to significant overhead. In

(Beloglazov & Buyya, 2012) two predictive models are proposed, the Local Regression (LR)

technique which estimates future server resource utilization, and its enhanced version Robust

Local Regression (LRR) which is designed to be more robust against outliers.

The workload trace of a server may falsely indicate an increase in resource usage, but the load

rapidly decreases in the near future. To address this issue, the adoption of a multi-step

prediction model is more accurate, as it can anticipate a sequence of future host utilization

values. This method aims to avoid unreliable decisions based on temporary fluctuations in

resource utilization. Hieu et al. (Hieu et al., 2020) propose a VM consolidation technique based

on a multiple resource usage prediction model. The prediction technique employs multiple

linear regression to forecast future resource utilization of servers. A server is detected as

overloaded in a resource if its multiple predicted resource utilization exceeds a hot

threshold . Whereas, it is defined as under-utilized in a resource when its multiple predicted

resource utilization is less or equal to its current utilization . Minarolli et al. (Minarolli,

Mazrekaj, & Freisleben, 2017) address the challenge of detecting overloaded hosts in cloud

computing by making long-term predictions of resource demands for VMs. The authors

employ Gaussian processes as a machine learning approach for time series forecasting. The

approach constructs a probability distribution model of the prediction error, to quantify the

uncertainty associated with the long-term predictions. Based on this model, a decision-

theoretic approach utilizing a utility function is introduced to address the impact of live

117

migration overheads in VMs. This approach selectively initiates live migration actions only

when the anticipated penalty associated with SLA violations outweighs the utility value

attributed to live migration overhead. Arshad et al. (Arshad, Aleem, Srivastava, & Lin, 2022)

propose a scheduling mechanism called Energy Efficiency Heuristic using VM Consolidation

(EEHVMC), which consolidates VMs on host machines. By setting two thresholds and

, EEHVMC mechanism classifies hosts in a cloud data center into three main categories:

Host Over-Loaded, Host Medium-Loaded, and Host Under-Loaded. The mechanism identifies

host state by comparing its CPU and memory utilizations to defined thresholds. Once

overloaded and underloaded hosts are identified, specific VMs are selected for migration to

medium-loaded hosts using a method called Maximum ratio of CPU utilization to memory

utilization (MRCU). If a VM is identified as being CPU-bound or memory-intensive, it is

considered as a candidate for migration. Sayadnavard et al. (H. Sayadnavard et al., 2022)

present a multi-objective approach for dynamic VM consolidation in cloud data centers. The

main objectives are to reduce energy consumption, improve system reliability, and minimize

resource wastage. The proposed consolidation approach includes: a model that combines

Discrete Time Markov Chain (DTMC) and Continuous Time Markov Chain (CTMC) for

physical machines (PMs) categorization, a heuristic VM selection algorithm considering the

task completion time, and a VM placement strategy using ɛ-dominance-based multi-objective

artificial bee colony (ɛ-MOABC) algorithm. The approach is compared to traditional

consolidation approaches integrated into CloudSim simulation platform. The comparison

demonstrates the superiority of the proposed approach in achieving the defined objectives.

In our previous work (Awad, Kara, & Leivadeas, 2022), we proposed a consolidation approach

based on a multi-step-ahead workload prediction model that combines Support Vector

Regression with Kalman filter. However, the limitations of our proposed algorithms were

evident as they focused solely on CPU utilization forecast and on static thresholds to make

underload and overload decisions. In our current work, we have made significant

enhancements to address these limitations. Firstly, we have optimized the prediction technique

to forecast future utilization trends of multiple resources, including CPU, memory, and

bandwidth. Additionally, we have revamped the underload and overload techniques to consider

118

all these resource types when estimating the host state. Moreover, instead of using static

thresholds, we now calculate adaptive Median Absolute Deviation (MAD) thresholds for

overload detection, which vary for each resource type. These thresholds are determined based

on historical utilization data for each specific resource. Another different aspect of our work is

the redefinition of underloaded hosts. In our previous approach, hosts with the minimum CPU

utilization were considered underloaded when there was insufficient data for prediction. With

the integration of multi-resource considerations, we have redefined underloaded hosts to

include those with actual resource utilizations falling below the underloaded thresholds for all

resources. Furthermore, we have refined our objective metrics to include all considered

resource types in the calculation of energy consumption and SLA violation. To ensure a formal

comparative study, we have also improved the implementation of other approaches such as

LR, THR, MAD, IQR, and Arima-based methods. Similar to our approach, these approaches

now consider multi-resources in their overload and underload decisions. Lastly, for testing

purposes, we have utilized two datasets, namely Materna and bitbrains, instead of the

previously used planetlab dataset (Park & Pai, 2006).

4.4 Workload Prediction Model

This section explains our suggested Multi-Resource and multi-Step-ahead Prediction model,

called MSPR, for forecasting host resource utilizations based on Support vector regression

(SVR) and Kalman. SVR (Abdullah et al., 2020) is a well-known machine learning technique

derived from Support Vector Machine (SVM) specifically to solve regression problems. It is

suitable for the complex and dynamic cloud environment and is mainly used in our work to

proactively predict future host resource utilization. Kalman Filter (Kalyvianaki et al., 2014) is

also a famous algorithm originally built to estimate the time-varying states in dynamic systems,

which makes it suitable for the dynamic load estimation of cloud applications. Our prediction

model integrates Kalman Filter as a data pre-processing step which aims to filter data, eliminate

noises, and enhance the SVR prediction accuracy. In the following, the working principles of

the aforementioned techniques are explained.

119

4.4.1 Kalman Filter

Kalman filter aims to estimate the state x of a discrete-time controlled process using a set of

measurements observed over time. The following linear stochastic difference equation shows

the evolution of the state x from time k-1 to time k:

 (4.1)

The above equation can be combined with a measurement z, as follows:

 (4.2)

Where A is the state transition matrix from time k-1 to time k. B is a control matrix that relates

the control vector u to x. H is a matrix that illustrates the relation between and . In our

work, there is no control input (B=0), and the measurement z is the state directly (H=1).

Assuming that the state does not change from time step to another, A is set to 1. and

represent the process and measurement noises respectively. They are random variables

assumed to be white and independent of each other, with and .

Q and R represent the process noise covariance matrix and the measurement noise covariance

matrix respectively. In our approach, we integrate Kalman Filter as a data pre-processing step,

to benefit essentially from its filtering technique that may eliminate noises from resource usage

data, whatever these noises are coming from the measurements technique or other factors,

while still discovering the main load fluctuations.

To estimate a process, Kalman filter iteratively applies two computation steps: (a) the

prediction step that projects the state estimation ahead of time, and (b) the correction step that

adjusts the projected estimate based on an actual measurement value at that time. The equations

used in each of the mentioned steps are as follows:

Prediction phase (4.3)

 (4.4)

120

Correction phase (4.5)

 (4.6)

 (4.7)

Where denotes the priori state estimate and denotes the posteriori estimate at time k.

Similarly, is the priori estimate error covariance matrix, while is the posteriori estimate

error covariance matrix. represents the Kalman Gain matrix. A high gain means that the

filter mostly depends on the accurate measurements to estimate . Conversely, a low gain

means that the state estimation mostly depends on the model predictions calculated in the

prediction phase.

4.4.2 Support Vector Regression

SVR is a statistical learning method that estimates a function f(x) by training a SVM model

using observed data. In our case, the observed data represent the historical host resource

utilizations. By performing time series forecasts, the workload data are first divided into input

and output datasets (X and Y respectively). Each combination of input/output vectors (x_i, y_i)

represents a training point. Eq. (4.8) defines both linear and non-linear regression prediction

functions:

 (4.8)

Where is a mapping function that non-linearly maps from “input space” to higher

dimension feature space. To simplify the mapping, a Radial Basis Function (RBF) is employed

for its easier computation and fewer parameters compared to other functions. denotes the

predicted value, w is a weight coefficient, and b is a bias. The main goal is to find the optimal

weights and thresholds according to two essential criteria. The first is the flatness of the

weights, which is defined in terms of minimum Euclidean norm (e.g., minimize).

The second is the empirical risk minimization, which denotes the error generated by the

prediction process of the value. is computed using the -insensitive loss function .

Combining the mentioned two sub-objectives, the overall objective is to minimize the

121

regularized risk defined in Eq. (4.9) in order to find the flattest function that allows the

error to remain within a threshold epsilon .

(4.9)

Where

 (4.10)

Where and C are user-defined constants. C determines the trade-off between the empirical

and regularized risk. Finally, Slack variables, and should be added to estimate the error

for underestimation and upper estimation of the actual value. In other terms, slack variables

allow regression errors to exist up to the value of and , yet still satisfying the required

conditions. Consequently, the equations are updated as follows:

(4.11)

(4.12)

122

Algorithm 4.1 MSPR prediction algorithm

1: Input: , ,
2: Output: /* set of n predicted values */
3: /* Preprocess data */

5: /* extract and divide training dataset into X and Y*/

7:
8: /* Train SVM model */

10: /* extract testing data */

 Return

4.4.3 MSPR Algorithm

In our work, the MSPR workload forecasting model is multi-resource in the sense that it is

used to predict multiple types of resources including CPU and memory host utilizations, and

the network bandwidth received and transmitted. For each resource type , a different

window size and a number of prediction steps can be set. MSPR model performs also

multi-step-ahead predictions, meaning that it forecasts multiple future resource utilization

values instead of just one value. Relying on one future resource utilization value to judge the

host state, may lead to inaccurate estimations. For this fact, at each time t, our algorithm

predicts values of resource usage in order to estimate the future trend of the host resource

consumption allowing us to perform the required resource management actions before

encountering serious problems (e.g., SLA violation, QoS degradation, etc.). As shown in

Algorithm 4.1, for each resource , MSPR takes as input the host's historical data ,

the pre-specified and . The data are first filtered by Kalman filter and then divided into

X and Y to train the SVM model as explained previously. Finally, the trained model is used to

predict the future values of the host’s resource usage.

123

4.5 Workload consolidation approach

In this section, we present our workload consolidation approach based on the multi-resource

and multi-step prediction model discussed in the previous section. We first describe all

algorithms that constitute this approach, namely, the proposed Overload Detection algorithm

based on MSPR prediction model (OD-MSPR), and Underload Detection algorithm based on

MSPR prediction model (UD-MSPR), and the placement strategy. Then, we analyze the

overall time complexity of this proposal.

4.5.1 Overload detection algorithm

In our approach, a server s is considered overloaded, if one of the following situations is met:

 It is overloaded in both current and future utilizations of at least one of its resources .

Precisely, if its current utilization and the average of its predicted utilizations

 of any of its resources exceed the upper threshold .

:

 It is currently working normally but will be overloaded in the future time slots in at
least one resource type .

:

 is an upper adaptive threshold based on the Median Absolute Deviation technique. We

assumed that a different upper threshold for each resource type may be needed. The resources

considered in our decision-making process are: CPU, memory, and bandwidth received by the

server and transmitted. An overloading situation is detected when a server is overloaded in at

least one of these resources (e.g., if Avg (> or Avg (> or Avg

(> or Avg (>).

124

As discussed previously, relying only on the current resource utilization of the host to decide

its stats, may lead to unreliable decisions. An example of a CPU utilization trace of a cloud

server is shown in Figure 4.1, borrowed from (Hieu et al., 2020). Assuming that the upper

threshold for overload detection is set to 80%, depending on only the current server utilization

will result in many false overloading detection decisions marked by circles due to sudden

increases in its utilization. We can recognize that the load in all these time slots decreases

rapidly in the next slots and there is no real overloading problem on the server. An effective

approach should detect an overloading state for this server only in the period between 600 and

670 minutes (marked by a rectangle) because its utilization exceeds the threshold in both the

current and future periods of time. The pseudocode of the proposed overload detection

algorithm (OD-MSPR) is given in Algorithm 4.2. It takes an active server as input,

and then decides whether it is overloaded or not. In particular, for each resource , it

verifies if there is sufficient historical data for prediction. If data is not sufficient, the decision

is made by comparing the current resource utilization with the threshold (Steps 5-8).

Otherwise, it predicts the future utilizations of this resource using MSPR prediction model

and compares the average of these predicted values with the threshold (Steps 9-14). At the end,

the algorithm returns true if an overloading problem is detected in one of the server’s resources.

Figure 4.1 CPU utilization trace of a cloud server
Taken from Hieu et al. (2020, p. 190)

125

Algorithm 4.2 OD-MSPR

1: Input:
2: Output: Boolean decision if s is overloaded or not
3: For
4: Get , ,
5:
6: if Length (< then
7: if then
8:
9: end
10: else
11: = MSPR (, ,)
12: if Avg (> then
13:
14: end
15: end
16: End
17: Return

4.5.2 Underload detection algorithm

In this algorithm, a server s is defined as underloaded, if one of the following conditions is

satisfied:

 It is underloaded in both current and future utilizations of all its resources . In

particular, if its current utilization and the average of its multiple predicted

utilization values for each of its resources are below the lower

thresholds .

 It is predicted to be underloaded in the future in all its resources .

In our approach, includes CPU, memory, and bandwidth received and transmitted. Thus, an

underloading state is detected, if and only if the server is underloaded in all these resources

(e.g., if Avg(<= and Avg (<= and Avg (<=

126

 and Avg (<=)). We assumed that a different lower threshold may

be required for each resource. If an underloaded server is found, all VMs or containers hosted

on this server should be migrated to other hosts if possible, and consequently, it will be

switched to a low-power mode to save energy. The detailed pseudocode of the underload

detection algorithm based on MSPR prediction model is illustrated in Algorithm 4.3. It iterates

through the set of active servers and searches if there is any underloaded host. Note that

the overloaded servers detected by Algorithm 4.2 are excluded from . To check a server

state, it iterates through each of its resources and verifies if the available historical data

are enough for prediction. If no sufficient data are available to predict the resource, the

algorithm compares the server's current utilization with the threshold. Otherwise, it compares

the average of the future utilizations predicted by MSPR model, with the pre-specified

threshold. The server is not considered underloaded if one of its resources exceeds its lower

threshold.

Algorithm 4.3 UD-MSPR

19: Input:
20: Output: An underloaded server
21: For do
22: IsUnderloaded = true
17: For
23: Get , , ,
18: if Length (< then
19: if then
24: IsUnderloaded = false
25: Break
26: end
20: else
27: = MSPR (, ,)
28: if Avg (> then
29: IsUnderloaded = false
30: Break
31: end
32: End
33: if (IsUnderloaded) then
34: Return s
35: end
36: End
37: Return Null

127

4.5.3 Migration and placement

After detecting overloaded and underloaded servers, the next step is to perform some

migrations for the VMs or containers hosting the running applications on these servers. To

perform a formal comparison between our approach and the techniques proposed in

(Beloglazov & Buyya, 2012), we have re-used their VM selection approach and placement

strategy. In particular, we have used the Minimum Migration Time (MMT) to select the VMs

to migrate from overloaded hosts, and the Power Aware Best Fit Decreasing (PABFD) strategy

to find destination servers for migrated VMs. However, these algorithms are modified to use

our OD-MSPR algorithm. MMT-MSPR algorithm (Algorithm 4.4) iterates through the list of

VMs hosted on an overloaded server and then selects for migration the VMs that have the

least migration time. Migration time is measured by dividing the RAM utilized by a VM by

the available network bandwidth: . A set of VMs may be selected until the

overloading issue is solved. Thus, after each VM selection, the algorithm verifies if the server

will remain overloaded after deallocating the selected VM or not (Steps 14-17). This

verification is done by calling our OD-MSPR algorithm explained in section 4.5.1.

Algorithm 4.4 MMT-MSPR algorithm
1: Input:
2: Output: List vmsToMigrate
3: While (true) do
4: Set min_time = MAX
5: CandidateVM = NULL
6: foreach do
7:

8: if < min_ time then
9: min_ time =
10: CandidateVM =
11: end
12: end
13: vmsToMigrate.add (CandidateVM)
14: /* implicity call OD-MSPR(s) *
15: if overloadedAfterDeallocation (s, v) = false then
16: Break
17: end
18: end
19: Return vmsToMigrate

128

PABFD-MSPR strategy (Algorithm 4.5) iterates through the list of VMs to migrate and tries

to find a destination server for each that meets certain criteria. First, the destination host should

have sufficient capacity to meet the VM resource requirements in terms of CPU, memory,

bandwidth, and disk (Step 7). Second, the candidate server should not become overloaded after

hosting the VM (Steps 9-11). To verify the host state, the algorithm simulates the VM

allocation and then uses OD-MSPR algorithm (Algorithm 4.2) to check the server state. Third,

the selected server should have the least increase in its power consumption caused by this

allocation because energy consumption is one of our main objectives in this work (Steps 12-

17). At the end, the algorithm returns the migration map that includes the suitable destination

hosts for the target VMs. Once the VMs to be migrated and their destinations are selected, a

pre-copy live migration is applied to move them from their current hosts to the chosen ones.

Algorithm 4.5 PABFD-MSPR

1: Input: List vmsToMigrate
2: Output: Migration Map
3: For do
4: minPower = Max
5: destinationServer = NULL
6: For do
7: if s.hasSufficientCapacity(v) then
8: /* implicity call OD-MSPR(s) */
9: if overloadedAfterAllocation(v, s) then
10: Continue
11: end
12: oldPower = s.getPower()
13: newPower = estimatePowerAfterAllocation(v, s)
14: powerDiff = newPower – oldPower
15: if powerDiff < minPower then
16: minPower = powerDiff
17: destinationServer = s
18: end
19: end
20: end
21: if destinationServer is not NULL then
22: migrationMap.add(v, destinationServer)
23: end
24: End
25: Return migrationMap

129

Note that, in this work, we have focused mainly on resource prediction, overload detection,

and underload detection parts. We have combined our proposed techniques (MSPR model,

OD-MSPR, UD-MSPR) with simple VM selection and placement strategies to conduct our

test experiments. However, our techniques can be combined with other advanced strategies,

and be employed to consolidate workloads for other types of applications or services (e.g.,

containerized applications by using container migration strategies, virtual network functions

consolidation by considering some migration constraints related to their service function chain

requirements, etc.).

4.5.4 Overall approach

The overall predictive workload consolidation approach is presented in Algorithm 4.6. It is

executed periodically to manage the cloud resources in two sequential procedures: (a)

Overload Avoidance Phase (OAP) (Steps 2-10); and (b) Resource Wastage Avoidance Phase

(RWAP) (Steps 11-27). OAP aims to release some resources from overloaded servers to avoid

SLA violations. It starts by checking the hosts’ states and detecting overloaded ones using

Algorithm 4.2 (OD-MSPR). Then, it selects the virtual resources to migrate from these servers

using Algorithm 4.4 (MMT) and chooses the destination hosts for the migrated VMs by

executing Algorithm 4.5 (PABFD-MSPR). To start RWAP, the list of active servers is

first updated to exclude the overloaded servers list and the destination hosts

selected in OAP phase, because these servers should not be turned off (Step 11). RWAP aims

to switch off the underloaded servers to optimize resource utilization in the data center and

save energy. Through continuous iterations, the algorithm checks if there is any underloaded

server in the data center using Algorithm 4.3 (UD-MSPR). If an underloaded server is detected,

it tries to find destination hosts for all virtual resources running on this server using Algorithm

4.5 (PABFD-MSPR). If and only if all hosted VMs can be migrated to other destinations, the

underloaded server can be turned off. Otherwise, the server remains active and all migrations

planned from this server are canceled. In the following, the time complexity of the overall

approach is detailed.

130

Algorithm 4.6 Workload consolidation approach

1: Input: , V
2: /* start of OAP Phase */
3: for do
4: if OD-MSPR(s) then
5: .add (s)
6: vmsToMigrate.add (MMT-MSPR())
7: end
8: end
9: migrationMap = PABFD-MSPR (, vmsToMigrate)
10:)
11: /* Start of RWAP Phase */
12: While (true) do
13: U_server = UD-MSPR ()
14: if U_server = NULL then
15: Break
16: end
17: Exclude U_server from
18: .add(U_server)
19: MigrationMap2 = PABFD-MSPR (,)
20: if migrationMap2 is complete then
21: migrationMap.addAll(migrationMap2)
22: U_server can be turned off after migrations
23: else
24: Discard migrationMap2
25: U_server will remain active
26: end
27: End

4.5.5 Complexity Analysis

In this section, we analyze step by step the time complexity of the overall predictive workload

consolidation approach and its main phases (OAP and RWAP phases) described in section

4.5.4 and Algorithm 4.6. The following notation is used to facilitate the complexity analysis:

 is the number of active servers in the system; denotes the total number of virtual resources

(VMs or containers), represents the number of virtual resources running on a server s;

is the number of virtual resources selected for migrations; and is the historical data

length of each resource of a server s; is the dimensions or the number of considered

resources

131

4.5.5.1 Complexity – OAP Phase

Starting with line 3 of Algorithm 4.6, the time complexity of the for loop is equal to the number

of active servers Inside the loop, Algorithm 4.2 (OD-MSPR) is called. Its time

complexity depends mainly on MSPR algorithm (Algorithm 4.1). The time complexity of

Kalman Filter is analyzed in (Valade et al., 2017) as with n is the state vector size. In

our approach, kalman is used to filter historical data before proceeding with SVR prediction,

and so its complexity is . In (Abdiansah & Wardoyo, 2015), the time complexity of

SVM in LibSVM library which was used to complete our implementation is discussed.

According to their analysis, the worst complexity for svmPredict and svmTrain is where

 is the amount of data used in training and in prediction respectively. In our prediction model,

 represents the prediction window size and is the number of prediction steps. Thus, the

complexity of MSPR is . Going back to Algorithm 4.2 (OD-MSPR),

the algorithm iterates through the R resources of the server (dimensions) and calls MSPR to

predict each of them. Its complexity is then . In line 6, MMT

algorithm (Algorithm 4.4) is used to choose the VMs to migrate from an overloaded server.

This algorithm also calls (OD-MSPR) to verify if the server remains overloaded after the

deallocation of each selected VM. Its complexity is .

Therefore, the total complexity of the for loop (lines 3-8) is

.

After the loop, Algorithm 4.5 (PABFD-MSPR) at line 9 is called to select destination hosts for

migrated VM. Its complexity is because it also uses

OD-MSPR algorithm to check the status of the potential destination server after allocating the

target VM. Hence, the total complexity of OAP phase is

. However, , , , and are typically

small numbers and the complexity can be represented by .

132

4.5.5.2 Complexity – RWAP Phase

In RWAP phase (lines 12-27), Algorithm 4.3 (UD-MSPR) is called to find underloaded hosts.

Its complexity is based also on MSPR model and can be illustrated by

. Then, Algorithm 4.5 (PABFD-MSPR) is executed to find destination

hosts for the VMs running on the detected underloaded host. In this case, and

the complexity of the latest algorithm is . Therefore,

the complexity of this phase is , and can be

simplified to .

4.5.5.3 Overall Complexity

The overall complexity can be calculated by the summation of the complexities of OAP and

RWAP phases. Consequently, it is equal to

Again, to simplify it, the total number of active servers can be approximated by dividing the

total number of VMs by the number of VMs that can be allocated to a server (). The

modified complexity will be . Finally, the worst-case

complexity is .

4.5.6 Performance Metrics

In this study, our main objective is to decrease energy consumption and minimize the violations

rate of service level agreements (SLAs). To assess the effectiveness of our algorithms, we

utilize the following metrics.

1. SLA violation

SLA represents a contractual agreement between a cloud service provider and its customers,

defining the desired quality of service (QoS). Within the SLA, Service Level Objectives

133

(SLOs) specify the QoS measurements and constraints. Meeting these requirements is crucial

for evaluating the quality of the cloud service and avoiding penalties. We evaluate SLA

violations based on two SLO parameters: SLA violation due to host overloading issue ()

and SLA violation due to resource under-provisioning per VM ().

 measures the average ratio of time during which a host is fully utilized. When a host's

resource utilization (e.g., CPU, memory, bandwidth) reaches 100%, it may fail to provide VMs

with the necessary resources, resulting in degraded performance. can be calculated using

the following formula:

(4.13)

Where is the number of hosts; is the total time during which the host experiences 100%

utilization of resource ; is the total time in which host is active.

 measures the average violation caused by resource under-provisioning to VMs. It is

calculated by comparing the allocated amount of each resource to the requested amount. The

formula is as follows:

(4.14)

Where represents the number of VMs.

2. Energy consumption

We evaluate the total energy consumed by the physical machines in a data center. The energy

consumed by each server is calculated by summing the power consumption of each resource

type including CPU, memory, and bandwidth (equation 4.16). The power consumed by

each resource type is calculated using the formulas 4.17-4.22.

134

(4.15)

(4.16)

 (4.17)

 (4.18)

 (4.19)

 (4.20)

(4.21)

 (4.22)

 (4.23)

The processing power measurements (consumed by CPU) are derived from real data obtained

from SPECpower benchmark results (« The SPECpower Benchmark », s.d.). Table 4.1

provides the power consumption of the servers HP G4 and G5 at various loads. The power

consumed by the RAM is calculated by multiplying the RAM utilization of the server by the

maximum potential power consumption of this resource (equation 4.18). Equation 4.19 is used

to calculate this maximum power, where represents the total memory of server , and

is an input value that can be easily updated (Lin, Xu, He, & Li, 2017). To provide a specific

135

input value, we assume that each 3 GB of RAM consumes 1 watt. The power consumed by the

bandwidth consists of static and dynamic power components. The static power is considered

constant and is calculated by summing the idle power of the network card with the power

increase in relation to the number of active links L (equation 4.21). In our testing, we assume

that the utilized NIC is an intel Multiport (4*1G) with only one active link, and the idle power

consumption is 9 watts (Sohan, Rice, Moore, & Mansley, 2010). Whereas, the dynamic power

is associated to the bandwidth utilization of the server and is calculated using equation 4.22.

The maximum potential power for this resource is calculated by dividing the total bandwidth

of the server by an input value . To specify this input value, we consider that the max

active power of intel multiport (4*1G) NIC is 1 watt for 0.45 Gbps (Sohan et al., 2010).

3. Number of migrations

Minimizing the number of VM migrations is important to avoid negative impacts on

application performance. Live migrations incur additional costs, including increased resource

utilization on the source host, network bandwidth usage, service delay due to downtime during

migration, and total migration time.

4. Execution Time

We also compare the algorithms based on their execution time. Specifically, we measure the

average time required to complete an entire consolidation cycle, including the steps of

overloaded host detection, underloaded host detection, VM selection for migration, and VM

placement.

Table 4.1 Power consumption of hosts according to their CPU usage (in watts)
Server Sleep 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP ProLiant
G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117

HP ProLiant
G5 10 93.7 97 101 105 110 116 121 125 129 133 135

136

4.6 Experiments

4.6.1 Setup

4.6.1.1 Environment

We have conducted simulations using the CloudSim toolkit (Calheiros et al., 2011) to test our

proposed algorithms. Our testing environment consists of 800 heterogeneous servers divided

as follows: 400 HP ProLiant ML110 G4 machines with dual-core processors, each having 1860

MIPS, and 400 HP ProLiant ML110 G5 machines with dual-core, each having 2660 MIPS.

Both server types are equipped with 4 GB of memory and 1 GB/s of bandwidth. The

characteristics of VM instances are provided in Table 4.2. To implement our MSPR prediction

model, LibSVM library (Chang & Lin, 2011) is used in Java. We have conducted tests using

different threshold values (ranging from 20% to 30%) for underload detection, and different

windows sizes (8, 12, 16, 20, 24, and 28) for prediction. The underload threshold is set

to 30% and the prediction window size to 20 for all resources. However, it is possible to

set different threshold and window size for each resource . Additionally, we have set the

number of prediction steps n to 3, to predict three future utilizations of each resource type for

the host. Nevertheless, our implementation is not limited to 3, and the value of can be easily

adjusted. All testing parameters are summarized in Table 4.3. These input values can be easily

modified according to specific requirements.

Table 4.2 VM instances characteristics

VM Instance Type CPU (MIPS) RAM (GB) Bandwidth
(Mbits/s)

High-CPU medium instance 2500 0.85 100

Extra-large instance 2000 3.75 100

Small instance 1000 1.7 100

Micro instance 500 0.613 100

137

Table 4.3 Testing Parameters

Kalman filter
A H Q R

1 1 0.01 1

SVR
 kernel C

0.1 RBF 0.0625 1

Consolidation

and prediction

30% 20 3

Arima
p d q

1 0 1

4.6.1.2 Datasets

Our simulation utilizes two publicly available real-world datasets: Bitbrains (Shen et al., 2015)

and Materna (Kohne et al., 2014)(Kohne et al., 2016). The fastStorage trace in the Bitbrains

dataset comprises 1,250 VMs connected to high-speed storage area network (SAN) devices.

The Rnd trace in the same dataset consists of 500 VMs that are connected to either fast SAN

devices or slower Network Attached Storage (NAS) devices. The Rnd trace is further divided

into three sub-traces, each corresponding to a specific month when the metrics were recorded.

The Materna dataset includes three distinct traces, each representing one month of data

collection. The first trace comprises 520 VMs, the second trace consists of 527 VMs, and the

third trace encompasses 547 VMs. These traces are recorded over a three-month duration. To

ensure an adequate number of VMs for testing purposes, we have combined certain traces, as

indicated in Table 4.4. Before conducting the testing process, we have carried out a pre-

processing phase on the datasets. This phase involves converting the datasets into a suitable

format. Furthermore, by using the following linear transformation formula, we have

normalized the resource utilization data.

 (4.24)

138

where represents the normalized resource utilization value calculated based on the original

data . and are the minimum and maximum values of , respectively.

Furthermore, we have performed data cleaning procedures to remove histories with insufficient

data or null values. After completing the pre-processing phase, the obtained resource utilization

dataset is used to conduct our testing.

Table 4.4 Datasets characteristics

Workloads Datasets Traces Number of VMs Number of servers

W1 Bitbrains Trace Fast storage 1237 800

W2 Bitbrains Rnd (3 traces) 1500 800

W3 Materna Traces 1-3 1063 800

W4 Materna Traces 1-2 1043 800

W5 Materna Traces 3-2 1074 800

4.6.1.3 Benchmarks comparison

To demonstrate the efficiency of our approach, we have conducted a comparison with modified

versions of consolidation techniques integrated into the Cloudsim toolkit (Beloglazov &

Buyya, 2012). Specifically, we consider four consolidation strategies where overload detection

depends on: Static Threshold (THR), InterQuartile Range (IQR), Median Absolute Deviation

(MAD), and Local Regression (LR). These approaches have been adapted to be multi-resource

and to consider all resources in their overload and underload decisions. Similar to our

approach, they detect an overloading situation when a server is overloaded in at least one of its

resources, including CPU, memory, and bandwidth. An underloading state is detected only if

the server is underloaded in all of these resources. Two different versions of underload

detection is considered for these benchmarks. In the first experiment, underloaded hosts are

identified as those whose actual resource utilizations are lower than the underload thresholds

for all resources. In the second experiment, our predictive underload detection algorithm, UD-

MSPR, discussed in section 4.5.2., is incorporated into these benchmarks. This integration

allows a stronger comparison between different overload detection techniques and a clearer

interpretation of the obtained results. To perform a formal comparison, all algorithms use a

common VM selection strategy, Minimum migration time (MMT), and employ the same VM

139

placement method explained in sub-section 4.5.3. All evaluations are made based on the

performance metrics described in section 4.5.6.

In addition to the benchmark algorithms mentioned, we test our proposed consolidation

approach against an Arima-based multi-resource consolidation technique. Instead of using the

Kalman-SVR combination for resource utilization prediction, our consolidation technique is

updated to employ Arima. The purpose of implementing this alternative technique is to

evaluate our proposed approach against another predictive consolidation mechanism. Details

of the experimental results are presented in the following sub-section.

4.6.2 Results and discussion

4.6.2.1 Experiment 1

Figures 4.2-4.6 illustrate a comparison of our MSPR-based consolidation approach with an

alternative Arima-based consolidation approach and optimized multi-resource versions of

Cloudsim benchmarks discussed in subsection 4.6.1.3. In this experiment, Cloudsim

benchmarks identify underloaded hosts as those whose actual resource usage are below the

underload thresholds for all resources.

From the results depicted in Figure 4.2, our MSPR-based consolidation approach outperforms

all approaches in term of energy consumption reduction. It demonstrates a noteworthy

reduction in total energy consumed in the datacenter, averaging 9.384%, 14.126%, 19.270%,

and 23.223% lower compared to LR, MAD, IQR, and THR, respectively. Arima-based

approach ranks second in minimizing energy consumption. Among the benchmark algorithms,

LR performs optimally in terms of energy optimization. Notably, our UD-MSPR and OD-

MSPR algorithms effectively identify underloaded and overloaded hosts, enabling the

migration of VMs from these hosts to alternate machines and transitioning idle hosts into sleep

mode to conserve energy.

140

Moreover, by estimating the trend of future resource utilizations, our approach allows for

proactive measures to prevent overloading situations and potential SLA violations.

Consequently, our approach significantly reduces SLA violations resulting from host

overloading () compared to the other Cloudsim benchmarks, as shown in Figure 4.3.

MSPR-based approach yields the best outcomes in reducing , with the Arima-based

approach ranking second. LR is the worst among the benchmarks in reducing in the first

two workloads, but THR is the worst in the others. In terms of the average SLA violation per

VM caused by resource under-provisioning (), Figure 4.4 demonstrates that both the

MSPR and Arima-based approaches outperform the other methods across all tested datasets.

The MSPR-based approach reduces the by an average of 95.871%, 77.953%,

81.075%, and 87.188% compared to LR, MAD, IQR, and THR, respectively. Moreover, it

achieves a 15.278% average reduction in compared to the Arima-based approach.

Once overloaded and underloaded hosts are identified, effective VM migration plans can be

applied to readjust resource allocations and alleviate the issue. Figure 4.5 presents the

comparison results in terms of the number of migrations. Remarkably, our MSPR-based

approach dramatically minimizes the number of migrations across all datasets compared to the

Cloudsim benchmarks. For example, for dataset W1, the MSPR-based technique initiates 6378

migrations, while the other approaches perform 18695 (LR), 16940 (MAD), 18027 (IQR),

17944 (THR), and 7273 (Arima) migrations. Minimizing the number of migrations is desirable

as it reduces system overhead, extra expenses, and potential violations. Furthermore, avoiding

unnecessary migrations contributes to a more efficient reallocation process, resulting in

reduced runtime encompassing VM selection and destination host determination. Figure 4.6

provides insights into the runtime performance, indicating that MSPR-based technique

achieves lower execution time compared to other approaches. Arima-based technique occupies

the second-best runtime. Overall, MSPR-based approach strikes a favorable balance between

energy consumption and SLA violation, outperforming the compared algorithms in almost all

studied metrics.

141

Figure 4.2 Comparison of energy consumption for 5 workloads- experiment 1

Figure 4.3 Comparison of SLOH metric for 5 workloads- experiment 1

Figure 4.4 Comparison of the SLOVM metric for 5 workloads- experiment 1

142

Figure 4.5 Comparison of number of migrations for 5 workloads - experiment 1

Figure 4.6 Comparison of execution time for 5 workloads - experiment 1

4.6.2.2 Experiment 2

Figures 4.7-4.11 provide a comparison of our consolidation approach with another modified

versions of Cloudsim benchmark algorithms. In this experiment, these benchmark algorithms

incorporate our proposed underload detection algorithm UD-MSPR explained in subsection

4.5.2. As a result, the differentiation lies only in the overload detection part, allowing us to

focus on comparing the performance in handling overloading and verifying if the benchmark

algorithms combined with our predictive underload detection can outperform our approach. It

143

is important to note that the testing results for the MSPR and Arima-based approaches remain

the same as in experiment 1.

Figure 4.7 reveals that MSPR-based approach obtains the best results in terms of energy

reduction. It also exhibits competitive performance, between Arima-based and LR-based

techniques in the first two workloads (W1 and W2), and between Arima-based and MSPR-

based approaches in the last three workloads (W3, W4 and W5). Threshold techniques (THR,

IQR, and MAD) consume the highest amount of energy, with THR having the worst results.

Figure 4.8 highlights the superior performance of MSPR-based technique in minimizing

across most datasets. Figure 4.9 also indicates that MSPR achieves the lowest in all

datasets. However, it is worth noting that the average difference in results between our

approach and the other techniques is relatively smaller compared to experiment 1. This is

primarily because the combination of our underload detection algorithm (UD-MSPR) with

other approaches has reduced their and violation rates.

In Figure 4.10, the number of VM migrations is compared among the different techniques. Our

MSPR-based approach consistently performs the lowest number of migrations for resource

reallocation. The difference in the average number of migrations is substantial between our

approach and the other techniques: 76.486% compared to LR, 84.113% compared to MAD,

89.664% compared to IQR, and 91.111% compared to THR. It is worth noting that the

benchmark algorithms also exhibit a reduction in the number of migrations compared to the

results of experiment 1. Arima-based approach also performs significantly fewer migrations

than these benchmarks.

Figure 4.11 reveals that LR and THR have competitive execution time and they outperform

MSPR in terms of runtime. MSPR ranks the third. It is important to note that combining our

UD-MSPR algorithm with the benchmark approaches results in reduced runtime compared to

the results of experiment 1. This combination enables the benchmark algorithms to outperform

also Arima-based approach in terms of execution time.

144

In summary, incorporating our underload detection algorithm into the benchmark approaches

leads to improved performance results, significant reduction in SLA violation rates, the number

of VM migrations, and runtime. However, our approach achieves the best overall results and

outperforms these approaches, in terms of SLA violations, number of migrations, and power

consumption.

Figure 4.7 Comparison of energy consumption for 5 workloads- experiment 2

Figure 4.8 Comparison of SLOH metric for 5 workloads- experiment 2

145

Figure 4.9 Comparison of SLOVM metric for 5 workloads- experiment 2

Figure 4.10 Comparison of number of migrations for 5 workloads- experiment 2

Figure 4.11 Comparison of execution time for 5 workloads- experiment 2

146

4.7 Conclusion

In this paper, we propose a predictive workload consolidation mechanism that aims to reduce

energy consumption, minimize SLA violations, and optimize the resource re-allocation

process. Our approach consists of several components. Firstly, we introduce a multi-step-ahead

and multi-resource prediction model, called MSPR that combines the Kalman Filter with

Support Vector Regression (SVR). This model allows us to forecast the future resource

utilization of hosts, including CPU, memory, and bandwidth. By leveraging historical data and

utilizing the strengths of both Kalman Filter and SVR, we can accurately predict resource

demands. Secondly, we present novel techniques based on MSPR model, for detecting

underload and overload states of hosts. These techniques consider the current and predicted

resource utilization trend across all resource types (CPU, memory and bandwidth) for each

host to proactively estimate its state. To make informed decisions about host states, we

calculate an adaptive upper-threshold for overload detection using Median Absolute Deviation

(MAD) based on historical data for each resource type. Additionally, we provide the flexibility

to specify different underload thresholds and prediction window sizes for each resource type.

To pursue testing experiments, we combined our proposed techniques with existing VM

selection and VM placement strategies. It is worth noting that our techniques are not limited

to VMs and can be combined with other selection and placement methods, such as those

designed for containers. Although VM placement is re-used from Cloudsim platform, we

updated it to incorporate our overload detection technique for the identification of potential

overloading issues on candidate destination hosts after migrating a VM.

To evaluate our proposed techniques, we conducted simulations using real-world workload

traces from Bitbrains and Materna. We compared our approach against modified and optimized

versions of benchmark algorithms integrated into Cloudsim, including MAD-based, IQR-

based, THR-based, and LR-based approaches. These benchmarks are updated to consider

multi-resource aspects in their host state estimation. In addition to these approaches, we

implemented another predictive consolidation technique by combining our overload and

underload techniques with a multi-resource Arima prediction model, as an alternative to the

147

Kalman-SVR model. This allowed us to compare the performance of our proposal against

another predictive consolidation mechanism. Our experimental results demonstrated the

effectiveness of the Kalman-SVR-based consolidation approach in minimizing defined cost

metrics and outperforming the other algorithms. For future work, we aim to combine our

proposed algorithms with more advanced selection and placement strategies for VMs or

containers. These strategies play a crucial role in resource reallocation decisions and can affect

the overall system performance. Future work can also involve testing our proposals on real

Cloud environment using monitoring tools instead of relying on existing resource utilization

datasets.

Acknowledgment

This work is supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC), Grant no. RGPIN-2019-05250.

CONCLUSION

In recent years, virtualization technologies and cloud solutions have revolutionized the way

computing resources are managed and utilized. Virtualization technologies like virtual

machines (VMs), containers, and serverless architectures have enabled cloud providers to offer

scalable, flexible, and cost-effective services to their customers. However, with the increasing

demand for cloud services, resource management has become a critical issue in the cloud.

Workload consolidation approaches, resource utilization prediction, resource scaling and

migration are some of the mechanisms that have been proposed to manage resources in

virtualized environments like the cloud. Workload consolidation approaches aim to maximize

the utilization of resources by consolidating multiple workloads on a smaller number of

physical servers. Resource utilization prediction techniques anticipate the future resource

usage based on historical data. Resource scaling techniques dynamically adjust the amount of

resources allocated to an application based on its current usage. Resource migration techniques

allow applications to be moved between physical servers to optimize resource utilization. To

create an efficient resource management system, these techniques need to be employed

together in a coherent and interrelated manner.

The objective of this thesis is to propose generic resource management techniques that can be

applied in virtualized environments, independent of the type of executed services or the

virtualization technology used. These techniques aim to ensure efficient resource utilization,

reduce energy consumption, and meet Service Level Agreement (SLA) requirements. To

achieve this objective, the thesis presents several significant contributions. It proposes

innovative techniques for dynamic resource adaptation in NFV-cloud environments, including

resource scaling and migration. The research addresses the challenges of variability in

workloads, diversity in applications, and conflicting optimization goals. It formulates the

resource adaptation problem by integrating horizontal scaling, vertical scaling, and migration

strategies, and develops an Integer Linear Programming (ILP) model to provide optimal

solutions. Additionally, multi-objectives decision-making metaheuristic algorithms based on

NSGAII, CRO, and PSO are proposed for real-time resource adaptation decisions. Moreover,

150

the thesis explores proactive resource reallocation by combining a multi-step-ahead workload

prediction model. By integrating Kalman filter and support vector regression, host resource

utilization including CPU, memory and bandwidth, are accurately anticipated. Building upon

this work, an optimized predictive consolidation approach is introduced, considering proactive

host state estimation strategies (overload and underload detection) and incorporating adaptive

thresholds. It aims to overcome the limitations of existing approaches, ensures accurate

assessment of the overall host state and reliable migration decisions, prevent energy waste,

avoid performance degradation, and SLA violations. The effectiveness of the proposed

techniques is validated through extensive experiments, using various datasets (Planetlab,

Materna, and Bitbrains) and simulator (Cloudsim) demonstrating their potential to enhance

resource management in virtualized environments.

These contributions are presented as three distinct journal papers. It is important to

acknowledge that building a complete resource management system may require additional

techniques and further research. One potential area for future exploration is the development

of advanced virtual machine or container selection strategy for migration and placement

technique. These strategies can significantly impact the effectiveness and efficiency of the

resource management system. Another possible enhancement is integrating the prediction

model with the resource adaptation meta-heuristic algorithms. This integration would enable

proactive decision-making by allowing the algorithms to utilize the predicted resource needs

in their resource adaptation processes. In addition, a coordination entity can be added to filter

the decisions made by both the consolidation framework and the resource adaptation

algorithms. This coordination entity would generate the final decisions and apply them

accordingly. Moreover, the framework can benefit from incorporating monitoring tools instead

of using existing datasets or generating random workloads. By gradually adding these

elements, the current resource management capabilities of the system can be further refined.

Furthermore, future research can involve investigating how to efficiently manage resources in

hybrid cloud-edge environments (Zhao, 2023) or serverless architectures (Hoseinyfarahabady

et al., 2021)(Cordingly et al., 2020). These environments introduce new challenges and

constraints for the resource reallocation problem in a virtualized environment(Gill et al., 2022).

LIST OF BIBLIOGRAPHICAL REFERENCES

Abdelaal, M. A., Ebrahim, G. A., & Anis, W. R. (2021). Efficient placement of service function
chains in cloud computing environments. Electronics (Switzerland), 10(3), 1‑22.
https://doi.org/10.3390/electronics10030323

Abdiansah, A., & Wardoyo, R. (2015). Time Complexity Analysis of Support Vector
Machines (SVM) in LibSVM. International Journal of Computer Applications, 128(3),
28‑34. https://doi.org/10.5120/ijca2015906480

Abdullah, L., Li, H., Al-Jamali, S., Al-Badwi, A., & Ruan, C. (2020). Predicting Multi-
Attribute Host Resource Utilization Using Support Vector Regression Technique. IEEE
Access, 8, 66048‑66067. https://doi.org/10.1109/ACCESS.2020.2984056

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., & Merle, P. (2017). Autonomic Vertical Elasticity
of Docker Containers with ELASTICDOCKER. IEEE International Conference on
Cloud Computing, CLOUD, 2017-June, 472‑479.
https://doi.org/10.1109/CLOUD.2017.67

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., & Merle, P. (2018). Elasticity in Cloud Computing:
State of the Art and Research Challenges IEEE TRANSACTIONS ON SERVICES
COMPUTING, MANUSCRIPT ID 1 Elasticity in Cloud Computing: State of the Art and
Research Challenges. IEEE Transactions on Services Computing (TSC), 11(2), 430‑447.
https://doi.org/10.1109/TSC.2017.2711009

Ali, A., Pinciroli, R., Yan, F., & Smirni, E. (2018). CEDULE: A scheduling framework for
burstable performance in cloud computing. Proceedings - 15th IEEE International
Conference on Autonomic Computing, ICAC 2018, 141‑150.
https://doi.org/10.1109/ICAC.2018.00024

Alzahrani, E. J., Tari, Z., Zeephongsekul, P., Lee, Y. C., Alsadie, D., & Zomaya, A. Y. (2016).
SLA-Aware Resource Scaling for Energy Efficiency. Proceedings - 18th IEEE
International Conference on High Performance Computing and Communications, 14th
IEEE International Conference on Smart City and 2nd IEEE International Conference on
Data Science and Systems, HPCC/SmartCity/DSS 2016, 852‑859.
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0123

Amiri, M., & Mohammad-Khanli, L. (2017). Survey on prediction models of applications for
resources provisioning in cloud. Journal of Network and Computer Applications,
82(December 2016), 93‑113. https://doi.org/10.1016/j.jnca.2017.01.016

Apostolopoulos, P. A., Tsiropoulou, E. E., & Papavassiliou, S. (2019). Risk-aware social cloud
computing based on serverless computing model. 2019 IEEE Global Communications
Conference, GLOBECOM 2019 - Proceedings.
https://doi.org/10.1109/GLOBECOM38437.2019.9013182

152

Arshad, U., Aleem, M., Srivastava, G., & Lin, J. C. W. (2022). Utilizing power consumption
and SLA violations using dynamic VM consolidation in cloud data centers. Renewable
and Sustainable Energy Reviews, 167(July), 112782.
https://doi.org/10.1016/j.rser.2022.112782

Aslanpour, M. S., & Branch, S. (2016). SLA-Aware Resource Allocation for Application
Service Providers in the Cloud. Second International Conference on Web Research
(ICWR) SLA-Aware, 31‑42.

Astudillo, L., Melin, P., & Castillo, O. (2015). Introduction to an optimization algorithm based
on the chemical reactions. Information Sciences, 291(C), 85‑95.
https://doi.org/10.1016/j.ins.2014.08.043

Awad, M., Kara, N., & Edstrom, C. (2022). SLO-aware dynamic self-adaptation of resources.
Future Generation Computer Systems, 133, 266‑280.
https://doi.org/10.1016/j.future.2022.03.018

Awad, M., Kara, N., & Leivadeas, A. (2022). Utilization prediction-based VM consolidation
approach. Journal of Parallel and Distributed Computing, 170, 24‑38.
https://doi.org/10.1016/j.jpdc.2022.08.001

B, A. N., Gounaris, A., & Sioutas, S. (2016). Cloud Elasticity: A Survey, 10230, 151‑167.
https://doi.org/10.1007/978-3-319-57045-7

Banerjee, S., Roy, S., & Khatua, S. (2021). Efficient resource utilization using multi-step-
ahead workload prediction technique in cloud. Journal of Supercomputing, 77(9),
10636‑10663. https://doi.org/10.1007/s11227-021-03701-y

Basmadjian, R., Niedermeier, F., & De Meer, H. (2012). Modelling and analysing the power
consumption of idle servers. 2012 Sustainable Internet and ICT for Sustainability,
SustainIT 2012.

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics
for efficient management of data centers for Cloud computing. Future Generation
Computer Systems, 28(5), 755‑768. https://doi.org/10.1016/j.future.2011.04.017

Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual machines
in Cloud data centers. Concurrency and Computation: Practice and Experience, 24(13),
1397‑1420. https://doi.org/10.1002/cpe

Benmakrelouf, S., Kara, N., Tout, H., Rabipour, R., & Edstrom, C. (2019). Resource needs
prediction in virtualized systems: Generic proactive and self-adaptive solution. Journal
of Network and Computer Applications, 148(102443).
https://doi.org/10.1016/j.jnca.2019.102443

153

Benmakrelouf, S., St-Onge, C., Kara, N., Tout, H., Edstrom, C., & Lemieux, Y. (2020).
Abnormal behavior detection using resource level to service level metrics mapping in
virtualized systems. Future Generation Computer Systems, 102, 680‑700.
https://doi.org/10.1016/j.future.2019.07.051

Bharanidharan, G., & Jayalakshmi, S. (2021). Predictive virtual machine placement for energy
efficient scalable resource provisioning in modern data centers. Proceedings of the 2021
8th International Conference on Computing for Sustainable Global Development,
INDIACom 2021, 299‑305. https://doi.org/10.1109/INDIACom51348.2021.00052

Bharany, S., Sharma, S., Khalaf, O. I., Abdulsahib, G. M., Al Humaimeedy, A. S., Aldhyani,
T. H. H., … Alkahtani, H. (2022). A Systematic Survey on Energy-Efficient Techniques
in Sustainable Cloud Computing. Sustainability (Switzerland), 14(10), 1‑89.
https://doi.org/10.3390/su14106256

Bhattacharjee, A., Chhokra, A. D., Kang, Z., Sun, H., Gokhale, A., & Karsai, G. (2019).
BARISTA: Efficient and scalable serverless serving system for deep learning prediction
services. Proceedings - 2019 IEEE International Conference on Cloud Engineering, IC2E
2019, 23‑33. https://doi.org/10.1109/IC2E.2019.00-10

Bouabdallah, R., Lajmi, S., & Ghedira, K. (2016). Use of reactive and proactive elasticity to
adjust resources provisioning in the cloud provider. Proceedings - 18th IEEE
International Conference on High Performance Computing and Communications, 14th
IEEE International Conference on Smart City and 2nd IEEE International Conference on
Data Science and Systems, HPCC/SmartCity/DSS 2016, 1155‑1162.
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0162

Calheiros, R. N., Ranjan, R., Beloglazov, A., Buyya, R., & De Rose, C. A. F. (2011).
CloudSim: a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software - Practice and Experience,
41(1), 23‑50. https://doi.org/10.1002/spe

Chaloemwat, W., & Kitisin, S. (2016). Horizontal auto-scaling and process migration
mechanism for cloud services with skewness algorithm. 2016 13th International Joint
Conference on Computer Science and Software Engineering, JCSSE 2016, 0‑5.
https://doi.org/10.1109/JCSSE.2016.7748936

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3), 1‑39.
https://doi.org/10.1145/1961189.1961199

Chaurasia, N., Kumar, M., Chaudhry, R., & Verma, O. P. (2021). Comprehensive survey on
energy-aware server consolidation techniques in cloud computing. Journal of
Supercomputing, 77(10), 11682‑11737. https://doi.org/10.1007/s11227-021-03760-1

154

Chaurasia, N., Kumar, M., Vidyarthi, A., Pal, K., & Alkhayyat, A. (2023). An efficient and
optimized Markov chain-based prediction for server consolidation in cloud environment.
Computers and Electrical Engineering, 108.
https://doi.org/10.1016/j.compeleceng.2023.108707

Choudhary, A., Govil, M. C., Singh, G., Awasthi, L. K., Pilli, E. S., & Kapil, D. (2017). A
critical survey of live virtual machine migration techniques. Journal of Cloud Computing,
6(1), 1‑41. https://doi.org/10.1186/s13677-017-0092-1

Chouliaras, S., & Sotiriadis, S. (2022). Auto-scaling containerized cloud applications: A
workload-driven approach. Simulation Modelling Practice and Theory, 121.
https://doi.org/10.1016/j.simpat.2022.102654

Cordingly, R., Shu, W., & Lloyd, W. J. (2020). Predicting Performance and Cost of Serverless
Computing Functions with SAAF. Proceedings - IEEE 18th International Conference on
Dependable, Autonomic and Secure Computing, IEEE 18th International Conference on
Pervasive Intelligence and Computing, IEEE 6th International Conference on Cloud and
Big Data Computing and IEEE 5th Cybe, 640‑649. https://doi.org/10.1109/DASC-
PICom-CBDCom-CyberSciTech49142.2020.00111

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2),
182‑197. https://doi.org/10.1109/4235.996017

Devi, K. L., & Valli, S. (2023). Time series-based workload prediction using the statistical
hybrid model for the cloud environment. Computing, 105(2), 353‑374.
https://doi.org/10.1007/s00607-022-01129-7

Dias, A. H. T., Correia, L. H. A., & Malheiros, N. (2022). A Systematic Literature Review on
Virtual Machine Consolidation. ACM Computing Surveys, 54(8).
https://doi.org/10.1145/3470972

Ding, W., Luo, F., Han, L., Gu, C., Lu, H., & Fuentes, J. (2020). Adaptive virtual machine
consolidation framework based on performance-to-power ratio in cloud data centers.
Future Generation Computer Systems, 111, 254‑270.
https://doi.org/10.1016/j.future.2020.05.004

Dogani, J., Khunjush, F., & Seydali, M. (2023). Host load prediction in cloud computing with
Discrete Wavelet Transformation (DWT) and Bidirectional Gated Recurrent Unit
(BiGRU) network. Computer Communications, 198, 157‑174.
https://doi.org/10.1016/j.comcom.2022.11.018

Duong-Ba, T. H., Nguyen, T., Bose, B., & Tran, T. T. (2018). A Dynamic Virtual Machine
Placement and Migration Scheme For Data Centers. IEEE Transactions on Services
Computing, 1374(c), 1‑14. https://doi.org/10.1109/TSC.2018.2817208

155

El Mensoum, I., Wahab, O. A., Kara, N., & Edstrom, C. (2020). MuSC: A multi-stage service
chains embedding approach. Journal of Network and Computer Applications, 159(April
2019), 102593. https://doi.org/10.1016/j.jnca.2020.102593

Emmerich, M. T. M., & Deutz, A. H. (2018). A tutorial on multiobjective optimization:
fundamentals and evolutionary methods. Natural Computing, 17(3), 585‑609.
https://doi.org/10.1007/s11047-018-9685-y

Eramo, V., Miucci, E., Ammar, M., & Lavacca, F. G. (2017). An approach for service function
chain routing and virtual function network instance migration in network function
virtualization architectures. IEEE/ACM Transactions on Networking, 25(4), 2008‑2025.
https://doi.org/10.1109/TNET.2017.2668470

Farahnakian, F., Pahikkala, T., Liljeberg, P., Plosila, J., Hieu, N. T., & Tenhunen, H. (2019).
Energy-aware VM consolidation in cloud data centers using utilization prediction model.
IEEE Transactions on Cloud Computing, 7(2), 524‑536.
https://doi.org/10.1109/TCC.2016.2617374

Gil Herrera, J., & Botero, J. F. (2016). Resource Allocation in NFV: A Comprehensive Survey.
IEEE Transactions on Network and Service Management, 13(3), 518‑532.
https://doi.org/10.1109/TNSM.2016.2598420

Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., … Uhlig, S. (2022).
AI for next generation computing: Emerging trends and future directions. Internet of
Things (Netherlands), 19(March), 100514. https://doi.org/10.1016/j.iot.2022.100514

H. Sayadnavard, M., Toroghi Haghighat, A., & Rahmani, A. M. (2022). A multi-objective
approach for energy-efficient and reliable dynamic VM consolidation in cloud data
centers. Engineering Science and Technology, an International Journal, 26, 100995.
https://doi.org/10.1016/j.jestch.2021.04.014

Hariharan, B., Siva, R., Kaliraj, S., & Prakash, P. N. S. (2023). ABSO: an energy-efficient
multi-objective VM consolidation using adaptive beetle swarm optimization on cloud
environment. Journal of Ambient Intelligence and Humanized Computing, 14(3),
2185‑2197. https://doi.org/10.1007/s12652-021-03429-w

He, S., Hu, C., Shi, B., Wo, T., & Li, B. (2016). Optimizing virtual machine live migration
without shared storage in hybrid clouds. Proceedings - 18th IEEE International
Conference on High Performance Computing and Communications, 14th IEEE
International Conference on Smart City and 2nd IEEE International Conference on Data
Science and Systems, HPCC/SmartCity/DSS 2016, 921‑928.
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0132

He, T. Z., Toosi, A. N., & Buyya, R. (2021). SLA-aware multiple migration planning and
scheduling in SDN-NFV-enabled clouds. Journal of Systems and Software, 176, 110943.
https://doi.org/10.1016/j.jss.2021.110943

156

Helali, L., & Omri, M. N. (2021a). A survey of data center consolidation in cloud computing
systems. Computer Science Review, 39, 100366.
https://doi.org/10.1016/j.cosrev.2021.100366

Helali, L., & Omri, M. N. (2021b). A survey of data center consolidation in cloud computing
systems. Computer Science Review, 39, 100366.
https://doi.org/10.1016/j.cosrev.2021.100366

Hieu, N. T., Francesco, M. Di, & Yla-Jaaski, A. (2020). Virtual Machine Consolidation with
Multiple Usage Prediction for Energy-Efficient Cloud Data Centers. IEEE Transactions
on Services Computing, 13(1), 186‑199. https://doi.org/10.1109/TSC.2017.2648791

Hirashima, Y. (2016). Parameter Optimization for Hybrid Auto-scaling Mechanism, 111‑116.

Hirashima, Y., Yamasaki, K., & Nagura, M. (2016). Proactive-reactive auto-scaling
mechanism for unpredictable load change. Proceedings - 2016 5th IIAI International
Congress on Advanced Applied Informatics, IIAI-AAI 2016, 861‑866.
https://doi.org/10.1109/IIAI-AAI.2016.180

Hoseinyfarahabady, M. R., Taheri, J., Zomaya, A. Y., & Tari, Z. (2021). Data-Intensive
Workload Consolidation in Serverless (Lambda/FaaS) Platforms. 2021 IEEE 20th
International Symposium on Network Computing and Applications, NCA 2021.
https://doi.org/10.1109/NCA53618.2021.9685244

Houidi, O., Soualah, O., Louati, W., Mechtri, M., Zeghlache, D., & Kamoun, F. (2017). An
Efficient Algorithm for Virtual Network Function Scaling. 2017 IEEE Global
Communications Conference, GLOBECOM 2017 - Proceedings, 2018-Janua, 1‑7.
https://doi.org/10.1109/GLOCOM.2017.8254727

Hsieh, S. Y., Liu, C. S., Buyya, R., & Zomaya, A. Y. (2020). Utilization-prediction-aware
virtual machine consolidation approach for energy-efficient cloud data centers. Journal
of Parallel and Distributed Computing, 139, 99‑109.
https://doi.org/10.1016/j.jpdc.2019.12.014

Hu, Y., Bo, D., & Fuyang, P. (2016). Autoscaling prediction models for cloud resource
provisioning. 2016 2nd IEEE International Conference on Computer and
Communications, ICCC 2016 - Proceedings, 1364‑1369.
https://doi.org/10.1109/CompComm.2016.7924927

Huang, F., Li, H., Yuan, Z., & Li, X. (2017). An Application Deployment Approach Based on
Hybrid Cloud. Proceedings - 3rd IEEE International Conference on Big Data Security
on Cloud, BigDataSecurity 2017, 3rd IEEE International Conference on High
Performance and Smart Computing, HPSC 2017 and 2nd IEEE International Conference
on Intelligent Data and Securit, 74‑79. https://doi.org/10.1109/BigDataSecurity.2017.54

157

Huang, G., Wang, S., Zhang, M., Li, Y., Qian, Z., Chen, Y., & Zhang, S. (2016). Auto scaling
virtual machines for web applications with queueing theory. 2016 3rd International
Conference on Systems and Informatics, ICSAI 2016, (Icsai), 433‑438.
https://doi.org/10.1109/ICSAI.2016.7810994

Islam, M. R., Saifullah, C. M. K., & Mahmud, M. R. (2019). Chemical reaction optimization:
survey on variants. Evolutionary Intelligence, 12(3), 395‑420.
https://doi.org/10.1007/s12065-019-00246-1

Janjanam, T. S., Siram, K. S., & Kollu, P. K. (2023). Cloud Resources Forecasting based on
Server Workload using ML Techniques. Dans IDCIoT 2023 - International Conference
on Intelligent Data Communication Technologies and Internet of Things, Proceedings
(pp. 427‑433). Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/IDCIoT56793.2023.10053532

Jeong, B., Baek, S., Park, S., Jeon, J., & Jeong, Y. S. (2023). Stable and efficient resource
management using deep neural network on cloud computing. Neurocomputing, 521,
99‑112. https://doi.org/10.1016/j.neucom.2022.11.089

Jia, Y., Wu, C., Li, Z., Le, F., & Liu, A. (2018). Online Scaling of NFV Service Chains Across
Geo-Distributed Datacenters. IEEE/ACM Transactions on Networking, 26(2), 699‑710.
https://doi.org/10.1109/TNET.2018.2800400

Junjie Liu Fen Zhou, Ping Lu, Zuqing Zhu, W. L. (2017). On Dynamic Service Function Chain
Deployment and Readjustment. Ieee Transactions on Network and Service Management,
14(3), 543‑553.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of
Fluids Engineering, Transactions of the ASME, 82(1), 35‑45.
https://doi.org/10.1115/1.3662552

Kalyvianaki, E., Charalambous, T., & Hand, S. (2014). Adaptive resource provisioning for
virtualized servers using kalman filters. ACM Transactions on Autonomous and Adaptive
Systems, 9(2). https://doi.org/10.1145/2626290

Kan, C. (2016). Docloud: an elastic cloud platform for web applications based on Docker. 2016
18th International Conference on Advanced Communication Technology (ICACT),
478‑483.

Khan, T., Tian, W., Ilager, S., & Buyya, R. (2022). Workload forecasting and energy state
estimation in cloud data centres: ML-centric approach. Future Generation Computer
Systems, 128, 320‑332. https://doi.org/10.1016/j.future.2021.10.019

Khan, T., Tian, W., Zhou, G., Ilager, S., Gong, M., & Buyya, R. (2022). Machine learning
(ML)-centric resource management in cloud computing: A review and future directions.
Journal of Network and Computer Applications, 204(March), 103405.

158

Khebbache, S., Hadji, M., & Zeghlache, D. (2018). A multi-objective non-dominated sorting
genetic algorithm for VNF chains placement. CCNC 2018 - 2018 15th IEEE Annual
Consumer Communications and Networking Conference, 2018-Janua, 1‑4.
https://doi.org/10.1109/CCNC.2018.8319250

Khoshkholghi, M. A., Derahman, M. N., Abdullah, A., Subramaniam, S., & Othman, M.
(2017). Energy-Efficient Algorithms for Dynamic Virtual Machine Consolidation in
Cloud Data Centers. IEEE Access, 5, 10709‑10722.
https://doi.org/10.1109/ACCESS.2017.2711043

Kohne, A., Pasternak, D., Nagel, L., & Spinczyk, O. (2016). Evaluation of SLA-based decision
strategies for VM scheduling in cloud data centers. 3rd Workshop on CrossCloud
Infrastructures and Platforms, CrossCloud 2016 - Colocated with EuroSys 2016, 1(212).
https://doi.org/10.1145/2904111.2904113

Kohne, A., Spohr, M., Nagel, L., & Spinczyk, O. (2014). FederatedCloudSim: A SLA-aware
federated cloud simulation framework. Proceedings of the 2nd International Workshop
on Cross-Cloud Systems, CrossCloud Brokers 2014 - Held in conjunction with the 15th
ACM/IFIP/USENIX International Middleware Conference, Middleware 2014.
https://doi.org/10.1145/2676662.2676674

Laaziz, L., Kara, N., Rabipour, R., Edstrom, C., & Lemieux, Y. (2019). FASTSCALE: A fast
and scalable evolutionary algorithm for the joint placement and chaining of virtualized
services. Journal of Network and Computer Applications, 148(July).
https://doi.org/10.1016/j.jnca.2019.102429

Lam, A. Y. S., & Li, V. O. K. (2012). Chemical Reaction Optimization: A tutorial. Memetic
Computing, 4(1), 3‑17. https://doi.org/10.1007/s12293-012-0075-1

Leivadeas, A., Papagianni, C., & Papavassiliou, S. (2015). Going Green with the Networked
Cloud: Methodologies and Assessment. Dans Quantitative Assessments of Distributed
Systems: Methodologies and Techniques (pp. 351‑374). (S.l.) : (s.n.).

Level, S. (2016). An Efficient Resource Utilization Technique for Consolidation of Virtual
Machines in Cloud Computing Environments. 33 rd NATIONAL RADIO SCIENCE
CONFERENCE Nrsc, 316‑324.

Li, L., Dong, J., Zuo, D., & Liu, J. (2018). SLA-aware and energy-efficient VM consolidation
in cloud data centers using host states naive Bayesian prediction model. Dans 2018 IEEE
Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing
& Communications, Big Data & Cloud Computing, Social Computing & Networking,
Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom) (pp. 80‑87). IEEE.
https://doi.org/10.1109/BDCloud.2018.00025

159

Li, L., Dong, J., Zuo, D., & Wu, J. (2019). SLA-Aware and Energy-Efficient VM
Consolidation in Cloud Data Centers Using Robust Linear Regression Prediction Model.
IEEE Access, 7, 9490‑9500. https://doi.org/10.1109/ACCESS.2019.2891567

Li, Y., & Xia, Y. (2017). Auto-scaling web applications in hybrid cloud based on docker.
Proceedings of 2016 5th International Conference on Computer Science and Network
Technology, ICCSNT 2016, 75‑79. https://doi.org/10.1109/ICCSNT.2016.8070122

Li, Zhihua, Yu, X., Yu, L., Guo, S., & Chang, V. (2020). Energy-efficient and quality-aware
VM consolidation method. Future Generation Computer Systems, 102, 789‑809.
https://doi.org/10.1016/j.future.2019.08.004

Li, Zhiyong, Li, Y., Yuan, T., Chen, S., & Jiang, S. (2019). Chemical reaction optimization for
virtual machine placement in cloud computing. Applied Intelligence, 49(1), 220‑232.
https://doi.org/10.1007/s10489-018-1264-5

Lin, W., Xu, S., He, L., & Li, J. (2017). Multi-resource scheduling and power simulation for
cloud computing. Information Sciences, 397‑398, 168‑186.
https://doi.org/10.1016/j.ins.2017.02.054

Liu, J., Lu, W., Zhou, F., Lu, P., & Zhu, Z. (2017). On Dynamic service function chain
deployment and readjustment. IEEE Transactions on Network and Service Management,
14(3), 543‑553. https://doi.org/10.1109/TNSM.2017.2711610

Luo, S., Xu, H., Ye, K., Xu, G., Zhang, L., Yang, G., & Xu, C. (2022). The Power of Prediction:
Microservice Auto Scaling via Workload Learning. SoCC 2022 - Proceedings of the 13th
Symposium on Cloud Computing, 355‑369. https://doi.org/10.1145/3542929.3563477

Luo, Z., & Wu, C. (2020). An online algorithm for VNF service chain scaling in datacenters.
IEEE/ACM Transactions on Networking, 28(3), 1061‑1073.
https://doi.org/10.1109/TNET.2020.2979263

Mahdhi, T., & Mezni, H. (2018). A prediction-Based VM consolidation approach in IaaS
Cloud Data Centers. Journal of Systems and Software, 146, 263‑285.
https://doi.org/10.1016/j.jss.2018.09.083

Mai, L., Ding, Y., Zhang, X., Fan, L., Yu, S., & Xu, Z. (2021). Energy efficiency with service
availability guarantee for Network Function Virtualization. Future Generation Computer
Systems, 119, 140‑153. https://doi.org/10.1016/j.future.2021.02.002

Malik, S., Tahir, M., Sardaraz, M., & Alourani, A. (2022). A Resource Utilization Prediction
Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning
Techniques. Applied Sciences, 12(4), 2160. https://doi.org/10.3390/app12042160

Masdari, M., & Khoshnevis, A. (2020). A survey and classification of the workload forecasting
methods in cloud computing. Cluster Computing, 23(4), 2399‑2424.
https://doi.org/10.1007/s10586-019-03010-3

160

McGrath, G., & Brenner, P. R. (2017). Serverless Computing: Design, Implementation, and
Performance. Proceedings - IEEE 37th International Conference on Distributed
Computing Systems Workshops, ICDCSW 2017, 405‑410.
https://doi.org/10.1109/ICDCSW.2017.36

Medhat, A. M., Taleb, T., Elmangoush, A., Carella, G. A., Covaci, S., & Magedanz, T. (2016).
Service Function Chaining in Next Generation Networks: State of the Art and Research
Challenges, 2‑9.

Melhem, S. B., Agarwal, A., Goel, N., & Zaman, M. (2017). Selection process approaches in
live migration: A comparative study. 2017 8th International Conference on Information
and Communication Systems, ICICS 2017, 23‑28.
https://doi.org/10.1109/IACS.2017.7921940

Melin, P., Astudillo, L., Castillo, O., Valdez, F., & Garcia, M. (2013). Optimal design of type-
2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed
torques using a new chemical optimization paradigm. Expert Systems with Applications,
40(8), 3185‑3195. https://doi.org/10.1016/j.eswa.2012.12.032

Meng, Y., Rao, R., Zhang, X., & Hong, P. (2016). CRUPA: A container resource utilization
prediction algorithm for auto-scaling based on time series analysis. PIC 2016 -
Proceedings of the 2016 IEEE International Conference on Progress in Informatics and
Computing, 468‑472. https://doi.org/10.1109/PIC.2016.7949546

Minarolli, D., Mazrekaj, A., & Freisleben, B. (2017). Tackling uncertainty in long-term
predictions for host overload and underload detection in cloud computing. Journal of
Cloud Computing, 6(1). https://doi.org/10.1186/s13677-017-0074-3

Moghaddam, S. M., Piraghaj, S. F., O’Sullivan, M., Walker, C., & Unsworth, C. P. (2018).
Energy-efficient and SLA-aware virtual machine selection algorithm for dynamic
resource allocation in cloud data centers. Proceedings - 11th IEEE/ACM International
Conference on Utility and Cloud Computing, UCC 2018, 103‑113.
https://doi.org/10.1109/UCC.2018.00019

Moghaddassian, M., Bannazadeh, H., & Leon-Garcia, A. (2017). Adaptive auto-scaling for
virtual resources in software-defined infrastructure. Proceedings of the IM 2017 - 2017
IFIP/IEEE International Symposium on Integrated Network and Service Management,
548‑551. https://doi.org/10.23919/INM.2017.7987326

Mostafavi, S., Hakami, V., & Sanaei, M. (2021). Quality of service provisioning in network
function virtualization: a survey. Computing (Vol. 103). (S.l.) : Springer Vienna.
https://doi.org/10.1007/s00607-021-00925-x

Nadgowda, S., Suneja, S., Bila, N., & Isci, C. (2017). Voyager: Complete Container State
Migration. Proceedings - International Conference on Distributed Computing Systems,
(Section III), 2137‑2142. https://doi.org/10.1109/ICDCS.2017.91

161

Nadgowda, S., Suneja, S., & Kanso, A. (2017). Comparing scaling methods for linux
containers. Proceedings - 2017 IEEE International Conference on Cloud Engineering,
IC2E 2017, 266‑272. https://doi.org/10.1109/IC2E.2017.42

Nadjaran Toosi, A., Son, J., Chi, Q., & Buyya, R. (2019). ElasticSFC: Auto-scaling techniques
for elastic service function chaining in network functions virtualization-based clouds.
Journal of Systems and Software, 152, 108‑119. https://doi.org/10.1016/j.jss.2019.02.052

Nath, S. B., Addya, S. K., Chakraborty, S., & Ghosh, S. K. (2020). Green Containerized
Service Consolidation in Cloud. IEEE International Conference on Communications,
2020-June. https://doi.org/10.1109/ICC40277.2020.9149173

Nezamabadi-Pour, H., Rostami-Shahrbabaki, M., & Maghfoori-Farsangi, M. M. (2008).
Binary Particle Swarm Optimization: challenges and New Solutions. The Journal of
Computer Society of Iran (CSI) On Computer Science and Engineering (JCSE), 6(May
2014), 21‑32. Repéré à https://www.researchgate.net/publication/258456389

Nguyen, T. T., Li, Z., Zhang, S., & Truong, T. K. (2014). A hybrid algorithm based on particle
swarm and chemical reaction optimization. Expert Systems with Applications, 41(5),
2134‑2143. https://doi.org/10.1016/j.eswa.2013.09.012

Noshy, M., Ibrahim, A., & Ali, H. A. (2018). Optimization of live virtual machine migration
in cloud computing: A survey and future directions. Journal of Network and Computer
Applications, 110(March), 1‑10. https://doi.org/10.1016/j.jnca.2018.03.002

Noureddine, A. (2022). PowerJoular and JoularJX : Multi-Platform Software Power
Monitoring Tools. Dans 18th International Conference on Intelligent Environments.
Biarritz, France.

Olivas, F., Valdez, F., Castillo, O., & Melin, P. (2016). Dynamic parameter adaptation in
particle swarm optimization using interval type-2 fuzzy logic. Soft Computing, 20(3),
1057‑1070. https://doi.org/10.1007/s00500-014-1567-3

Olivas, F., Valdez, F., Melin, P., Sombra, A., & Castillo, O. (2019). Interval type-2 fuzzy logic
for dynamic parameter adaptation in a modified gravitational search algorithm.
Information Sciences, 476, 159‑175. https://doi.org/10.1016/j.ins.2018.10.025

Panwar, S. S., Rauthan, M. M. S., & Barthwal, V. (2022). A systematic review on effective
energy utilization management strategies in cloud data centers. Journal of Cloud
Computing, 11(1). https://doi.org/10.1186/s13677-022-00368-5

Park, K., & Pai, V. S. (2006). CoMon: A Mostly-Scalable Monitoring System for PlanetLab.
ACM SIGOPS Operating Systems Review, 40(1), 65‑74.
https://doi.org/10.1145/1113361.1113374

162

Qiu, F., Zhang, B., & Guo, J. (2016). A deep learning approach for VM workload prediction
in the cloud. 2016 IEEE/ACIS 17th International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2016,
319‑324. https://doi.org/10.1109/SNPD.2016.7515919

Radhika, E. G., & Sadasivam, G. S. (2021). A review on prediction based autoscaling
techniques for heterogeneous applications in cloud environment. Materials Today:
Proceedings, 45, 2793‑2800. https://doi.org/10.1016/j.matpr.2020.11.789

Rahman, S., Ahmed, T., Huynh, M., Tornatore, M., & Mukherjee, B. (2018). Auto-Scaling
VNFs Using Machine Learning to Improve QoS and Reduce Cost. IEEE International
Conference on Communications ICC, 2018-May, 1‑6.
https://doi.org/10.1109/ICC.2018.8422788

Rajan, R. A. P. (2018). Serverless Architecture - A Revolution in Cloud Computing. 2018 10th
International Conference on Advanced Computing, ICoAC 2018, 88‑93.
https://doi.org/10.1109/ICoAC44903.2018.8939081

Rankothge, W., Le, F., Russo, A., & Lobo, J. (2017). Optimizing Resource Allocation for
Virtualized Network Functions in a Cloud Center Using Genetic Algorithms. IEEE
Transactions on Network and Service Management, 14(2), 343‑356.
https://doi.org/10.1109/TNSM.2017.2686979

Rankothge, W., Ramalhinho, H., & Lobo, J. (2019). On the scaling of virtualized network
functions. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management,
IM 2019, 125‑133.

Rodriguez, E., Alkmim, G. P., Da Fonseca, N. L. S., & Batista, D. M. (2017). Energy-Aware
Mapping and Live Migration of Virtual Networks. IEEE Systems Journal, 11(2), 637‑648.
https://doi.org/10.1109/JSYST.2015.2467159

Saha, A., & Jindal, S. (2018). EMARS: Efficient Management and Allocation of Resources in
Serverless. IEEE International Conference on Cloud Computing, CLOUD, 2018-July,
827‑830. https://doi.org/10.1109/CLOUD.2018.00113

Santhosh, S., & Binu, A. (2016). Auto scaling for various patterns of workflow within deadline
time and energy aware VM allocation in cloud environment. Proceedings of the 2016
International Conference on Data Science and Engineering, ICDSE 2016, 0‑4.
https://doi.org/10.1109/ICDSE.2016.7823941

Schardong, F., Nunes, I., & Schaeffer-Filho, A. (2021). NFV Resource Allocation: a
Systematic Review and Taxonomy of VNF Forwarding Graph Embedding. Computer
Networks, 185(July 2020), 107726. https://doi.org/10.1016/j.comnet.2020.107726

163

Shao, Y., Yang, Q., Gu, Y., Pan, Y., Zhou, Y., & Zhou, Z. (2020). A Dynamic Virtual Machine
Resource Consolidation Strategy Based on a Gray Model and Improved Discrete Particle
Swarm Optimization. IEEE Access, 8, 228639‑228654.
https://doi.org/10.1109/ACCESS.2020.3046318

Shariffdeen, R. S., Munasinghe, D. T. S. P., Bhathiya, H. S., Bandara, U. K. J. U., & Dilum
Bandara, H. M. N. (2016). Workload and resource aware proactive auto-scaler for PaaS
cloud. IEEE International Conference on Cloud Computing, CLOUD, 11‑18.
https://doi.org/10.1109/CLOUD.2016.10

Shen, S., Van Beek, V., & Iosup, A. (2015). Statistical characterization of business-critical
workloads hosted in cloud datacenters. Proceedings - 2015 IEEE/ACM 15th International
Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, 465‑474.
https://doi.org/10.1109/CCGrid.2015.60

Siddique, N., & Adeli, H. (2017). Nature-Inspired Chemical Reaction Optimisation
Algorithms. Cognitive Computation, 9(4), 411‑422. https://doi.org/10.1007/s12559-017-
9485-1

Silva Filho, M. C., Monteiro, C. C., Inácio, P. R. M., & Freire, M. M. (2018). Approaches for
optimizing virtual machine placement and migration in cloud environments: A survey.
Journal of Parallel and Distributed Computing, 111, 222‑250.
https://doi.org/10.1016/j.jpdc.2017.08.010

Singh, P., Gupta, P., Jyoti, K., & Nayyar, A. (2019). Research on auto-scaling of web
applications in cloud: Survey, trends and future directions. Scalable Computing, 20(2),
399‑432. https://doi.org/10.12694/scpe.v20i2.1537

Sohan, R., Rice, A., Moore, A. W., & Mansley, K. (2010). Characterizing 10 Gbps Network
Interface Energy Consumption Abstract—This paper quantifies the energy consumption
in six 10 Gbps and four 1 Gbps interconnects at a fine-grained level, introducing two
metrics for calculating the energy efficiency of a netw. IEEE Local Computer Network
Conference, 268‑271. Repéré à https://www.cl.cam.ac.uk/~acr31/pubs/sohan-
10gbpower.pdf

Songara, N., & Jain, M. K. (2023). MRA-VC: multiple resources aware virtual machine
consolidation using particle swarm optimization. International Journal of Information
Technology (Singapore), 15(2), 697‑710. https://doi.org/10.1007/s41870-022-01102-9

Sotiriadis, S., Bessis, N., Amza, C., & Buyya, R. (2016). Vertical and horizontal elasticity for
dynamic virtual machine reconfiguration. IEEE Transactions on Services Computing,
1374(c), 1‑1. https://doi.org/10.1109/TSC.2016.2634024

St-Onge, C., Benmakrelouf, S., Kara, N., Tout, H., Edstrom, C., & Rabipour, R. (2021).
Generic SDE and GA-based workload modeling for cloud systems. Journal of Cloud
Computing, 10(1). https://doi.org/10.1186/s13677-020-00223-5

164

Taherizadeh, S., & Stankovski, V. (2018). Dynamic Multi-level Auto-scaling Rules for
Containerized Applications. The Computer Journal, (June).
https://doi.org/10.1093/comjnl/bxy043

Tavakoli-Someh, S., & Rezvani, M. H. (2019). Multi-objective virtual network function
placement using NSGA-II meta-heuristic approach. Journal of Supercomputing (Vol. 75).
(S.l.) : Springer US. https://doi.org/10.1007/s11227-019-02849-y

The SPECpower Benchmark. (s.d.). http://www.spec.org/power_ssj2008/.

Valade, A., Acco, P., Grabolosa, P., & Fourniols, J. Y. (2017). A study about kalman filters
applied to embedded sensors. Sensors (Switzerland), 17(12), 1‑18.
https://doi.org/10.3390/s17122810

Wahab, O. A., Kara, N., Edstrom, C., & Lemieux, Y. (2019). MAPLE: A Machine Learning
Approach for Efficient Placement and Adjustment of Virtual Network Functions. Journal
of Network and Computer Applications, 142(October 2018), 37‑50.
https://doi.org/10.1016/j.jnca.2019.06.003

Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft
Computing, 22(2), 387‑408. https://doi.org/10.1007/s00500-016-2474-6

Wang, X., Wu, C., Le, F., Liu, A., Li, Z., & Lau, F. (2016). Online VNF scaling in datacenters.
IEEE International Conference on Cloud Computing, CLOUD, (1), 140‑147.
https://doi.org/10.1109/CLOUD.2016.26

Witanto, J. N., Lim, H., & Atiquzzaman, M. (2018). Adaptive selection of dynamic VM
consolidation algorithm using neural network for cloud resource management. Future
Generation Computer Systems, 87, 35‑42. https://doi.org/10.1016/j.future.2018.04.075

Xiao, H., Hu, Z., & Li, K. (2019). Multi-objective vm consolidation based on thresholds and
ant colony system in cloud computing. IEEE Access, 7, 53441‑53453.
https://doi.org/10.1109/ACCESS.2019.2912722

Xie, Y., Jin, M., Zou, Z., Xu, G., Feng, D., Liu, W., & Long, D. (2022). Real-Time Prediction
of Docker Container Resource Load Based on a Hybrid Model of ARIMA and Triple
Exponential Smoothing. IEEE Transactions on Cloud Computing, 10(2), 1386‑1401.
https://doi.org/10.1109/TCC.2020.2989631

Yadav, R., Zhang, W., Li, K., Liu, C., & Laghari, A. A. (2021). Managing overloaded hosts
for energy-efficiency in cloud data centers. Cluster Computing, 24(3), 2001‑2015.
https://doi.org/10.1007/s10586-020-03182-3

Yang, S., Li, F., Trajanovski, S., Yahyapour, R., & Fu, X. (2021). Recent Advances of
Resource Allocation in Network Function Virtualization. IEEE Transactions on Parallel
and Distributed Systems, 32(2), 295‑314. https://doi.org/10.1109/TPDS.2020.3017001

165

Ye, T., Guangtao, X., Shiyou, Q., & Minglu, L. (2017). An Auto-Scaling Framework for
Containerized Elastic Applications. Proceedings - 2017 3rd International Conference on
Big Data Computing and Communications, BigCom 2017, 422‑430.
https://doi.org/10.1109/BIGCOM.2017.40

Yi, B., Wang, X., & Huang, M. (2017). Design and evaluation of schemes for provisioning
service function chain with function scalability. Journal of Network and Computer
Applications, 93(June), 197‑214. https://doi.org/10.1016/j.jnca.2017.05.013

Yi, B., Wang, X., Li, K., Das, S. k., & Huang, M. (2018). A comprehensive survey of Network
Function Virtualization. Computer Networks, 133, 212‑262.
https://doi.org/10.1016/j.comnet.2018.01.021

Zhang-Jian, D.-J., Lee, C.-N., & Hwang, R.-H. (2013). An energy-saving algorithm for cloud
resource management using a Kalman filte. International Journal of Communication
Systems, 27, 4078‑4091. https://doi.org/10.1002/dac

Zhang, F., Fu, X., & Yahyapour, R. (2017). CBase: A new paradigm for fast virtual machine
migration across data centers. Proceedings - 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017, 284‑293.
https://doi.org/10.1109/CCGRID.2017.26

Zhang, F., Liu, G., Fu, X., & Yahyapour, R. (2018). A Survey on Virtual Machine Migration:
Challenges, Techniques, and Open Issues, 20(2), 1206‑1243.
https://doi.org/10.1109/COMST.2018.2794881

Zhang, Q., Chen, H., & Yin, Z. (2017). PRMRAP: A Proactive Virtual Resource Management
Framework in Cloud. Proceedings - 2017 IEEE 1st International Conference on Edge
Computing, EDGE 2017, 120‑127. https://doi.org/10.1109/IEEE.EDGE.2017.24

Zhao, S. (2023). Energy efficient resource allocation method for 5G access network based on
reinforcement learning algorithm. Sustainable Energy Technologies and Assessments,
56(April 2022), 103020. https://doi.org/10.1016/j.seta.2023.103020

Zhou, Q., Xu, M., Singh Gill, S., Gao, C., Tian, W., Xu, C., & Buyya, R. (2020). Energy
Efficient Algorithms based on VM Consolidation for Cloud Computing: Comparisons
and Evaluations. Proceedings - 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing, CCGRID 2020, 489‑498.
https://doi.org/10.1109/CCGrid49817.2020.00-44

Zolfaghari, R., & Rahmani, A. M. (2020). Virtual Machine Consolidation in Cloud Computing
Systems: Challenges and Future Trends. Wireless Personal Communications (Vol. 115).
(S.l.) : Springer US. https://doi.org/10.1007/s11277-020-07682-8

