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FOREWORD 

 

The present thesis extensively explores various aspects of resource management in virtualized 

network environments, which has been and is still a challenging and broad subject. It addresses 

this problem from multiple perspectives and targets various sub-research problems, resulting 

in the production of three journal articles. Two of these articles have already been published 

in top journals, while the third is currently under review. Throughout the thesis, aside from the 

introductory and literature review chapters that provide an explanation of the research 

objectives and position them within the most recent state-of-the-art, the subsequent chapters 

present the journal articles without any modifications. Although each article discusses different 

contributions, they are all closely interconnected and complement one another. 
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Mécanismes multi-objectifs pour l'adaptation dynamique des ressources 

dans les environnements de réseaux virtualisés 
 

Mirna AWAD 
 

RÉSUMÉ 
 
La croissance des technologies de virtualisation et des solutions cloud a fondamentalement 
transformé la gestion et l'utilisation des ressources informatiques. Ces avancées ont permis aux 
fournisseurs de cloud d'offrir des services évolutifs, flexibles et rentables à leurs clients. 
Cependant, avec la demande croissante de services cloud, la gestion efficace des ressources est 
devenue une préoccupation majeure. Pour relever ce défi, diverses stratégies, telles que la 
consolidation des ressources, la prédiction de l'utilisation des ressources et les techniques 
d’élasticité et de migration des ressources, ont été proposées afin d'optimiser la gestion des 
ressources dans les environnements virtualisés. Cette thèse présente un ensemble novateur de 
techniques adaptatives de gestion des ressources, conçues pour maximiser l'utilisation des 
ressources, réduire la consommation d'énergie et garantir la conformité aux exigences des 
contrats de service (SLA).  
 
En tenant compte des défis inhérents à la variabilité des charges de trafic, à la diversité des 
applications et aux objectifs d'optimisation contradictoires, cette recherche englobe plusieurs 
contributions significatives, chacune se concentrant sur un aspect spécifique de la gestion des 
ressources. Tout d'abord, le problème d'adaptation dynamique des ressources dans les 
environnements de virtualisation des fonctions réseau (NFV) est exploré, en intégrant des 
stratégies d’élasticité et de migration des ressources pour les chaînes de fonctions virtualisées 
(SFC). Ce problème d'allocation des ressources est abordé sous un angle innovant, formulé 
comme un modèle de programmation linéaire (ILP) et développé pour générer des solutions 
optimales. Deuxièmement, des algorithmes décisionnels métaheuristiques innovants et multi-
objectifs, basés sur NSGAII, CRO et PSO, sont proposés pour adapter les ressources en temps 
réel avec des solutions sous-optimales. Troisièmement, la réallocation proactive des ressources 
est étudiée grâce au développement d'un modèle de prédiction des charges de trafic multi-
ressources et multi-étapes. En intégrant le filtre de Kalman et la régression par vecteur de 
support (SVR), ce modèle anticipe avec précision la consommation des ressources des hôtes, 
y compris le CPU, la mémoire et la bande passante. Quatrièmement, en s'appuyant sur cette 
capacité prédictive, une approche de consolidation optimisée est présentée, incorporant des 
stratégies d'estimation proactive de l'état des hôtes pour la détection de la surcharge et de la 
sous-charge. Pour valider l'efficacité des techniques proposées, des expérimentations 
approfondies sont menées en utilisant des ensembles de données divers tels que Planetlab, 
Materna et Bitbrains, couplés au simulateur Cloudsim. Les résultats démontrent le potentiel de 
ces techniques pour améliorer la gestion des ressources dans les environnements virtualisés. 
 
 
Mots-clés : gestion et réallocation des ressources, élasticité et migration des ressources, 
virtualisation des fonctions réseau, infonuagique, méta-heuristique, algorithme génétique 
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NSGAII, optimisation des réactions chimiques CRO, optimisation des essaims de particules 
PSO, modèle ILP, chaînes de services, prédiction des charges de trafic, consolidation, 
régression vectorielle de support SVR, filtre de Kalman, Cloudsim. 
 



 

Multi-objective mechanisms for dynamic resource adaptation in 
virtualized network environments 

 
Mirna AWAD 

 
ABSTRACT 

 
The growth of virtualization technologies and cloud solutions has fundamentally transformed 
the management and utilization of computing resources. These advancements have empowered 
cloud providers to offer scalable, flexible, and cost-effective services to their customers. 
However, with the ever-increasing demand for cloud services, effective resource management 
has become a critical concern. To address this challenge, various strategies, such as workload 
consolidation, resource utilization prediction, and resource scaling and migration techniques, 
have been proposed to optimize resource management in virtualized environments. This thesis 
presents a pioneering set of adaptive multi-objective resource management techniques 
designed to maximize resource utilization, reduce energy consumption, and ensure compliance 
with Service Level Agreement (SLA) requirements.  
 
Considering the inherent challenges of workload variability, application diversity, and 
conflicting optimization goals, the research encapsulates several significant contributions, each 
focusing on a specific aspect of resource management. First, the dynamic resource adaptation 
problem within Network Function Virtualization (NFV)-cloud environments is explored, 
incorporating resource scaling and migration strategies for service function chains (SFCs). 
This resource allocation problem is tackled from a novel perspective, formulated as Integer 
Linear Programming (ILP) model and developed to generate optimal solutions. Second, 
innovative multi-objective decision-making metaheuristic algorithms, based on NSGAII, 
CRO, and PSO, are proposed to enable real-time resource adaptation with sub-optimal 
solutions. Third, proactive resource reallocation is investigated through the development of a 
multi-resource and multi-step-ahead workload prediction model. By integrating the Kalman 
filter and support vector regression, this model accurately anticipates host resource utilization, 
including CPU, memory, and bandwidth. Fourth, building upon this predictive capability, an 
optimized consolidation approach is introduced, incorporating proactive host state estimation 
strategies for overload and underload detection. To validate the effectiveness of the proposed 
techniques, extensive experiments are conducted employing diverse datasets such as Planetlab, 
Materna, and Bitbrains, coupled with the Cloudsim simulator. The experimental results 
demonstrate the potential of these techniques to enhance resource management in virtualized 
environments.   
 
 
Keywords:  resource management and reallocation, resource scaling and migration, network 
function virtualization, cloud computing, meta-heuristics, genetic algorithm NSGAII, 
chemical reaction optimization CRO, Particle swarm optimization PSO, ILP model, Service 
chains, workload prediction, workload consolidation, Support vector regression SVR, Kalman 
filter, Cloudsim.
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INTRODUCTION 

 

0.1 Context  

 

In recent years, the rapid advancement of virtualization technologies and cloud solutions has 

brought about a significant revolution in the field of computing. Virtualization, a technique 

that enables the creation of virtual versions of physical resources, has paved the way for the 

development of cloud computing, enabling the efficient utilization of resources in data centers. 

It has transformed the way computational resources are provisioned, deployed, and managed. 

By abstracting physical resources such as servers, storage, and networks into virtual entities, 

virtualization enables multiple virtual machines (VMs) or containers to run on a single physical 

server. This consolidation of resources allows for better utilization of hardware, leading to 

increased efficiency and cost savings. With the revolution of these technologies over the past 

years, cloud computing has become a paramount platform for hosting enterprise systems or 

infrastructures and delivering a wide range of services and applications (i.e., IoT and 5G 

applications) to users over Internet. As a model that delivers on-demand access to shared 

computing resources over the internet, cloud solutions offer scalable and elastic services, 

enabling organizations to quickly adapt to changing demands and scale their resources 

accordingly. Virtualization facilitates this dynamic allocation and provisioning of resources, 

enabling on-demand scalability and agility in cloud environments. However, this paradigm 

shift has led to a growing need for proposing and implementing efficient resource management 

techniques. These techniques mainly aim to enhance resource utilization, minimize energy 

consumption, and ensure compliance with Service Level Agreement (SLA) requirements. By 

effectively allocating resources to meet the demands of applications and users, resource 

management techniques optimize the utilization of available resources, thereby reducing 

wastage and enhancing overall system efficiency.  
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0.2 Problem statement and challenges 

 

In virtualized environments such as cloud infrastructures, efficient resource management have 

become crucial in addressing the challenges posed by the rapid growth of virtualization and 

cloud technologies. Resource consolidation approaches, resource utilization prediction, 

resource scaling, and migration techniques are interrelated mechanisms that play integral roles 

in managing resources effectively within these environments: 

 

1. Resource Scaling (Al-Dhuraibi, Paraiso, Djarallah, & Merle, 2018) (Singh, Gupta, 

Jyoti, & Nayyar, 2019) is an essential aspect of resource management in virtualized 

environments. It involves dynamically adjusting the allocation of resources to meet 

varying workload demands. Scaling techniques encompass vertical scaling (increasing 

or decreasing the resources allocated to individual VMs or containers) and horizontal 

scaling (adding or removing VMs or containers). By dynamically scaling resources, 

virtualized environments can adapt to workload fluctuations, ensure optimal 

performance, and prevent resource underutilization or contention. Resource scaling can 

also be interrelated with resource consolidation and resource utilization prediction, as 

it can allow efficient resource provisioning based on predicted resource needs and 

consolidated resources. 

2. Resource migration techniques (Choudhary et al., 2017) (Silva Filho, Monteiro, Inácio, 

& Freire, 2018) play a vital role in optimizing resource allocation and balancing in 

virtualized environments. These techniques enable the live migration of VMs or 

containers across physical servers without disrupting running applications. By 

leveraging migration algorithms and intelligent resource placement strategies, 

resources can be dynamically repositioned to rebalance workloads, optimize resource 

utilization, and accommodate variations in resource demands. Resource migration is 

also interrelated with resource consolidation and resource scaling, as it allows for 

efficient resource utilization by rebalancing resources across servers where VM or 

containers can be added or removed. 
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3. Resource consolidation approaches (Dias, Correia, & Malheiros, 2022) (Khan, Tian, 

Zhou, et al., 2022) involve analyzing the characteristics and resource requirements of 

individual workloads (e.g., of running VMs or containers) and consolidating them onto 

a reduced number of physical servers. By consolidating resources, redundant hardware 

utilization can be minimized, and underutilized resources can be efficiently 

redistributed. The main objectives of resource consolidation are to optimize resource 

utilization, reduce energy consumption, and minimize operational costs while meeting 

SLA requirements.  

4. Resource utilization prediction techniques (Masdari & Khoshnevis, 2020) are used to 

forecast future resource demands in virtualized environments. These techniques 

leverage historical resource usage patterns, workload profiles, and predictive 

algorithms to anticipate future resource requirements. By accurately predicting 

resource needs, resource allocation decisions (scaling and migrations) can be made 

proactively, avoiding potential performance bottlenecks, ensuring SLA compliance, 

and enabling efficient resource provisioning (Radhika & Sadasivam, 2021). Resource 

utilization prediction is also crucial in workload consolidation, as it helps to anticipate 

the server state, whether it will be overloaded or underloaded in the near-future, for 

optimally consolidating workloads. 

 

Employing resource consolidation approaches, resource utilization prediction, resource 

scaling, and migration techniques together is crucial in providing efficient resource 

management in virtualized environments like the cloud. These mechanisms are highly 

interrelated and complementary, and their combination enables providers to optimize resource 

utilization, reduce energy consumption, and meet SLA requirements. Coherence between these 

mechanisms is essential, and their collective utilization can contribute to the ongoing evolution 

and advancements in cloud computing technologies. However, the complexity of creating such 

an efficient resource management framework in the dynamic cloud environment arises due to 

multiple challenges. These challenges include: 
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1. Complexity: The process of reallocating resources in virtualized environments 

becomes complex due to the huge number of physical servers, virtual machines (VMs) 

and/or containers involved. This challenge is considered NP-hard, meaning that finding 

the optimal solution becomes computationally intensive and time-consuming. (Mai et 

al., 2021) (Laaziz, Kara, Rabipour, Edstrom, & Lemieux, 2019) 

2. Heterogeneity and Compatibility: To create an efficient resource management system, 

cloud service providers need to ensure that their system is compatible with a wide range 

of virtualization technologies (VMs, containers, etc.), operating systems, and hardware 

configurations. Figure 0.1 shows the architectural difference between virtualization via 

VMs only, containers only and by combining both (VM hosting containers). This 

entails find generic and adaptive solutions able to manage resources across these 

different platforms. This can be challenging due to the complex and heterogeneous 

nature of modern data center environments.  

3. Dynamic Workloads and SLA management: To meet SLA requirements and respond 

quickly to changes in demand, cloud service providers need to be able to manage 

resources in real-time. This means that the resource management system needs to be 

able to dynamically adjust resource allocation in real-time based on workload patterns, 

Figure 0.1  Virtualization technologies 
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user demand, and other factors. The main challenge is to maintain optimal resource 

utilization and meet SLA requirements under different and dynamic workloads. 

4. Elasticity: Cloud environments are designed to be elastic, meaning that resources can 

be scaled up or down vertically or horizontally or migrated as demand changes. An 

efficient resource management system should be capable of selecting the optimal 

adaptation method for each scenario that can meet running application demands while 

minimizing resource waste.  

5. Applications diversity: Cloud environments host a diverse set of applications or 

services with varying resource demands and characteristics. This diversity poses 

challenges in developing a resource reallocation framework that can accommodate 

these heterogeneous needs effectively. Additionally, in Network Function 

Virtualization (NFV)-enabled networks, an application involves a service function 

chain (SFC) of an interconnected set of virtual network functions (VNFs). These 

service function chains (SFCs) may vary in size and have different topologies, such as 

linear or non-linear forwarding graphs, introducing further challenges, constraints, and 

costs for their resource management. Figure 0.2 represents some examples of SFC 

topologies. Moreover, an SFC may have special connection constraints between its 

VNFs (e.g., affinity and anti-affinity constraints) that restrict their placement location 

and resource reallocation decisions. The resource management system should account 

for the diverse requirements of different applications or SFCs, optimizing resource 

allocation to ensure optimal performance and resource utilization for each service. 

6. Conflicting objectives: Different cloud providers may have varying priorities and 

optimization goals. Even within the same provider, there may be a need to balance 

conflicting objectives and constraints. For example, service providers may aim to 

minimize resource utilization and energy consumption while meeting Quality of 

Service (QoS) requirements specified in SLAs. Designing a resource management 

system that can effectively address these conflicting objectives requires sophisticated 

algorithms and optimization techniques that consider multiple criteria and trade-offs. 

7. Interdependent resource management techniques: Resource management techniques 

such as workload consolidation, resource scaling, resource migration, resource 
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utilization prediction, and monitoring are interdependent and need to be carefully 

coordinated and optimized to achieve the desired performance objectives. However, 

coordinating these techniques can be difficult due to the complex interdependencies 

between them. For example, a workload consolidation approach aimed at minimizing 

the number of active servers may inadvertently result in resource underutilization, 

necessitating resource scaling or migration to maintain performance levels. Balancing 

these interdependencies and optimizing resource management strategies in a 

dynamically changing cloud environment requires advanced algorithms, intelligent 

decision-making mechanisms, and effective coordination between different resource 

management techniques. This complexity makes it challenging to develop an efficient 

and effective resource management system. This challenge is not addressed in current 

implementations because our resource consolidation and adaptation strategies work 

separately to manage resources. However, this challenge is one of our future works. 

 
Figure 0.2  Examples of service function chains 
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Despite these challenges, the importance of designing an efficient resource management 

system for the cloud cannot be overstated. Cloud computing has become an integral part of 

modern computing, and efficient resource management is critical for ensuring optimal 

performance, reducing energy consumption, and meeting SLA requirements. Furthermore, 

with the increasing adoption of cloud computing, the need for energy-efficient resource 

management becomes more pressing, as the energy consumption of cloud data centers has a 

significant impact on the environment. Hence, there is a need for continued research on this 

topic to develop more efficient and sustainable resource management systems for the cloud.  

 

0.3 Research Objectives 

 

The primary aim of this thesis is to develop innovative techniques to manage resources 

dynamically and efficiently in virtualized and distributed environments. The research objective 

is to propose novel solutions that automate resource adaptation, ensuring compliance with 

Service Level Agreements (SLAs) while minimizing energy costs and resource consumption. 

To address this research problem, we approach it from different perspectives, introducing: i) 

efficient decision-making algorithms for dynamic adaptation of resources for SFCs 

requirements; ii) resource utilization prediction techniques to anticipate future resource 

demands and proactively reallocate the resources; iii) resource consolidation methods to 

optimize resource utilization in data centers using detection algorithms that leverage prediction 

techniques to proactively identify overloaded or underloaded servers, preventing SLA 

violations and saving energy. Each specific topic within this thesis has its own defined 

objectives, which are specified in the subsequent chapters. However, the overall research 

objective is to propose solutions that meet the following criteria: 

 

1. Generic techniques: The choice of our proposed techniques and algorithms was 

motivated by the desire to provide portable and adaptable approaches suitable for 

deployment in diverse environments and compatible with various systems. They are 

intended to be independent of the workload, application types, virtualization 

technologies (such as VMs or containers), and host configurations, etc. All research 
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proposals put forth in this thesis have a generic nature, in the sense that these techniques 

can be adapted to be used in different virtualized systems or data centre architecture 

(e.g., SFCs, microservices, VMs or containerized applications, etc.) 

2. Dynamic: the developed techniques possess the capability to dynamically adjust 

resource allocation, according to workload fluctuations. We tested our reactive and 

proactive techniques using randomized workloads (Chapter 2) and real-world datasets 

(Chapter 3 and 4) and validated the ability of these algorithms to dynamically make 

resource management decisions required to meet those workload requirements and 

update the infrastructure accordingly. 

3. Proactive: by integrating reliable resource utilization prediction techniques, the 

proposed resource reallocation mechanism can proactively anticipate future demands 

and issues, allowing for proactive resource reallocation. 

4. Scalable: As cloud computing environments continue to grow in size and complexity, 

a significant research objective is to address scalability issues associated with resource 

management. This involves developing techniques that can handle large-scale 

virtualized environments while maintaining performance, efficiency, and reliability. In 

chapters 3 and 4, we have tested our proposed mechanisms on infrastructures of up to 

800 servers and up to 1500 VMs. 

5. Multi-objective: Our key research objectives focus on reducing energy consumption, 

meeting SLA requirements, and optimizing resource utilization in virtualized 

environments. The proposed techniques aim to achieve a balance among these 

objectives, allowing for energy-efficient resource allocation while satisfying SLA 

commitments and maximizing resource utilization.  

6. Time-efficient: The proposed algorithms generate sub-optimal solutions to the research 

problems within a reasonable execution time. The execution time is considered as one 

of the performance metrics in the experiments.   

 

By adhering to these research objectives, this thesis aims to contribute to the advancement of 

resource management in virtualized and distributed environments, addressing critical 

challenges and proposing innovative solutions for efficient resource adaptation. 



9 

 

0.4 Contributions 

 

Resource management and adaptation in virtualized environments encompass a broad and 

intricate field of research, encompassing various sub-topics. Within this realm, we can discern 

resource consolidation approaches, resource utilization prediction, resource scaling, and 

migration techniques as distinct strategies for resource adaptation. Each of these research 

topics represents a fertile ground for individual study and analysis, meriting complete theses 

in their own right. This thesis addresses and investigates the aforementioned topics, proposing 

distinct techniques that have yielded valuable insights and outcomes. Our contributions, as 

outlined in the subsequent chapters, have been distilled and succinctly summarized in this 

section. 

 

Our investigations into resource scaling and migration techniques have led to the development 

of innovative methods for dynamically adjusting the resource allocation in a virtualized 

environment based on workload demands. For instance, our research work titled "SLO-aware 

dynamic self-adaptation of resources" (chapter 2), tackles the complex problem of dynamic 

resource adaptation in NFV-cloud environments. Dynamic resource management in NFV-

cloud settings poses challenges, given the variability of workloads, the diversity of applications 

or service chains (SFCs), and the need to pick the appropriate method among horizontal scaling 

(HS), vertical scaling (VS), and migration (M) for adapting VNF resources, and to balance 

conflicting optimization goals.  

 

While vertical scaling is limited by the capacities of physical machines, horizontally scaling 

all instances or migrating them can result in high operational costs. Existing research often 

focuses on one adaptation mechanism, neglecting the full range of possibilities. One of our key 

contributions lies in our innovative formulation of the problem, which adopts a novel and 

unique perspective, taking into account all three adaptation strategies, their associated costs, 

and subsequently determining the most appropriate approach for each given scenario.  
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To solve the resource allocation problem, we employ an Integer Linear Programming (ILP) 

model, which provides the optimal solution. However, the computational complexity of the 

ILP model is time-consuming. As a result, several decision-making metaheuristic algorithms 

are proposed based on Non-dominated Sorting Genetic Algorithm (NSGAII), Chemical 

Reaction Optimization (CRO), and Binary Particle Swarm Optimization (NBPSO). These 

algorithms offer efficient and effective solutions, enabling real-time resource adaptation 

decisions to manage resources of Service Function Chains (SFCs) based on real-time demands 

and performance requirements. 

 

Moreover, we emphasize the importance of balancing conflicting optimization objectives in 

resource adaptation by integrating multiple objectives, including meeting Service Level 

Objectives (SLOs), optimizing resource utilization, and reducing energy consumption. SLO, a 

vital component of an SLA, comprises specific QoS measurements and constraints. In addition, 

our proposal addresses the variability of SFCs by considering different SFC sizes, and both 

linear and non-linear SFC topologies. The proposed algorithms are extensively evaluated 

through experiments conducted on various scenarios. The results demonstrate the effectiveness 

of the metaheuristic techniques in reducing SLO latency while approximating optimal 

solutions in terms of resource utilization and energy consumption.  

 

By meticulously examining proactive resource reallocation approaches, we have also explored 

resource utilization prediction techniques. In our research work titled "Utilization Prediction-

based VM Consolidation Approach", we develop a multi-step-ahead workload prediction 

model called K-SVR, which combines the power of Kalman filter and support vector 

regression (SVR). By integrating Kalman filter for data pre-processing, we achieve improved 

accuracy in predicting host CPU utilization and estimating their states. The primary objective 

of this research part is to overcome the limitations of existing approaches that solely rely on 

real-time workload variations to adapt resources and take the related decisions (Songara & 

Jain, 2023) (Xiao, Hu, & Li, 2019). These approaches often result in unreliable resource 

adaptation decisions, leading to energy waste, performance degradation, and violations of 

service-level agreements (SLAs). Table 0.1 represents some prediction errors of our technique 
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under different Planetlab workloads. It indicates that the prediction error is less than 10%. It 

can be improved by combining an adaptive window size technique that can handle variations 

in traffic loads. Such a technique can be considered as future work. 

 

Furthermore, our research delves into the domain of workload consolidation strategies, 

shedding light on overload and underload detection techniques to accurately estimate the host 

state and efficiently trigger reliable migration decisions. Migration techniques facilitate the 

movement of virtualized workloads across physical hosts in order to consolidate the resources. 

Overload (OD) and underload detection (UD) algorithms enable migrations from overloaded 

servers to meet SLA requirements and migrations from under-utilized servers to conserve 

energy. Combining K-SVR prediction model with the proposed OD and UD algorithms, we 

build a predictive workload consolidation approach. Our consolidation framework 

dynamically determines overloaded and underloaded hosts by considering both current and 

near-future resource utilization. The main objective is to ensure reliable decision-making, 

avoiding unnecessary VM migrations and associated costs. Moreover, we have implemented 

an alternative consolidation approach employing an Autoregressive Integrated Moving 

Average (ARIMA) prediction model, replacing the K-SVR model. To evaluate the 

effectiveness of this approach, we have conducted simulations using real-world PlanetLab 

workloads on the well-known Cloudsim simulation platform. The evaluation is focused on 

essential metrics such as SLA violation rates, the number of VM migrations, and energy 

consumption in the data center. Compared to original and modified versions of benchmark 

algorithms (local regression, static threshold, Mean Absolute Deviation, Interquartile Range 

based consolidation approaches) and to ARIMA-based approach, the proposed consolidation 

technique exhibits a substantial reduction in SLA violations, VM migrations, and energy 

consumption. Besides the performed experiments, a detailed time complexity analysis for the 

entire framework is provided, and an analysis study is carried out on the energy consumption 

resulting from the execution of our proposed algorithms. 

 

Lastly, building upon the previous work on "Utilization Prediction-based VM Consolidation 

Approach", the research titled " multi-resource predictive workload consolidation approach in 
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virtualized environments" aims to optimize and enhance the proposed consolidation technique 

by introducing a multi-resource and multi-step resource utilization prediction model. The 

optimized version of K-SVR model, called MSPR, forecasts the future workload of servers, 

taking into account CPU, memory, bandwidth received, and bandwidth transmitted. One 

limitation of our previous work, and of some existing consolidation schemes, is that they often 

consider only one type of resource, such as CPU utilization, while making decisions about 

server states. However, with the diversity of user applications and their variable workloads, 

this approach may not be efficient. Different applications may have different resource 

requirements, necessitating the consideration of multiple resource types for accurate decision-

making. By considering a broader range of resources, the proposed approach becomes more 

versatile and applicable to various types of applications and workloads.  

 

In this last work, the OD-MSPR and UD-MSPR algorithms consider all types of resources 

when making decisions. This adaptation ensures that the detection algorithms accurately assess 

the overall host state based on a combination of resource utilizations. Additionally, the 

previous static threshold for overload detection has been replaced with adaptive thresholds for 

each resource type, enabling more dynamic and responsive decision-making. This approach 

allows for distinct underload thresholds and prediction window sizes to be specified for each 

resource type. By accommodating this flexibility, we ensure adaptability to different scenarios 

and requirements. We have also refined our objective metrics (energy consumption and SLA 

violation) to encompass all considered resource types. To establish a fair and rigorous 

evaluation, we have updated and optimized ARIMA-based predictive consolidation technique 

and Cloudsim benchmark consolidation algorithms to incorporate multi-resource aspects. In 

our experimentation, we have used two real-world datasets, Materna and bitbrains, in place of 

the previously employed planetlab dataset.  

 

The diagram depicted in Figure 0.3 illustrates the current interactions among the implemented 

entities in this thesis for resource management. For data collection, we have used existing real-

world datasets and random workloads. Details on the potential enhancements of the proposed 

framework are given in section conclusion and future works. Overall, the culmination of all 
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these research efforts has resulted in the production of three distinct journal papers, each 

representing a significant contribution to the field of resource adaptation and optimization in 

Figure 0.3  Architectural diagram illustrating the resource management components 
and their interactions 
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virtualized environments. The subsequent chapters delve into the specifics of our findings and 

the techniques employed, highlighting the significance and impact of our research contribution 

and the potential future optimizations.  

 

Table 0.1 Prediction errors under different Planetlab workloads 

Workload MAPE MAE MSE MFE 
Execution 

Time (ms) 

20110303 6.643 0.621 1.215 -0.053 13.617 

20110306 7.016 0.614 1.227 -0.051 15.073 

20110309 7.693 0.667 1.304 -0.076 17.982 

20110322 7.329 0.571 0.955 -0.054 15.093 

20110325 6.783 0.596 1.047 -0.047 17.789 

20110403 6.555 0.654 1.258 -0.039 19.704 

20110409 7.176 0.659 1.311 -0.047 13.575 

20110411 6.837 0.667 1.335 -0.047 16.003 

20110412 6.911 0.663 1.278 -0.054 19.649 

20110420 8.028 0.768 1.780 -0.042 22.989 

**Mean Absolute Percentage Error (MAPE); Mean Squared Error (MSE); Mean Absolute Error (MAE); Mean Forecast Error 

(MFE) 

 

0.5 Methodology 

 

The methodology pursued to perform this research work involves the following steps: 

1. Literature review: This step involves conducting a comprehensive review of existing 

literature, research papers, books, and other relevant sources to gain a deep 

understanding of the research topic. The literature review helps identify gaps in 

knowledge, establish the current state of research, and gather insights that inform 

subsequent steps. 

2. Problem formulation: Based on the findings from the literature review, the research 

problem or research question is formulated. This step involves formulating a 

mathematical model by clearly defining the objective functions and the constraints of 
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the study. The problem formulation stage ensures that the research is focused and 

addresses a specific issue or gap in the field. 

3. Data collection: Once the research problem is defined, the next step is to collect 

relevant data. The data collected should be appropriate and sufficient to address the 

research problem and support the subsequent analysis. In this work, random workloads 

on resource utilization are generated, and existing real-world datasets are used. Three 

datasets are utilized to evaluate the proposed algorithms, namely, Planetlab, Materna 

and Bitbrains datasets.  

4. Data preprocessing when needed: The collected data is preprocessed to ensure its 

quality and suitability for analysis. This step involves cleaning the data by removing 

duplicates, errors, missing values, or irrelevant information. Data preprocessing also 

involves normalizing data to make it consistent and ready for analysis (chapter4). 

5. Algorithms Implementation: In this step, the proposed algorithms or techniques are 

developed to solve the research problem. The implementation stage is crucial for 

generating insights and results. In the context of this thesis, several resource adaptation 

algorithms have been proposed and implemented to address the research problem. 

These algorithms include: 

a. A set of meta-heuristic decision-making techniques for resource reallocation in 

the cloud: The thesis proposes and implements NSGAII-based, CRO-based, 

PSO-based, and CRO-PSO-based algorithms. These meta-heuristic algorithms 

are designed to optimize the allocation of resources for the service function 

chains (SFCs) hosted in the cloud environment (chapter 2). 

b. Mathematical model implementation using Gurobi solver: In addition to the 

meta-heuristic algorithms, the thesis also implements a mathematical model 

using the Gurobi solver. This approach aims to obtain the exact solution for the 

addressed research problem (resource adaptation for SFCs), providing a precise 

evaluation and optimal comparison with the proposed techniques (chapter 2). 

c. Resource utilization prediction technique: The thesis implements a multi-

resource and multi-step-ahead prediction technique for resource utilization 

prediction. This technique leverages the Kalman Filter algorithm and SVR to 
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accurately predict resource utilization, enabling proactive resource reallocation 

based on anticipated needs (chapters 3 and 4). 

d. Predictive workload consolidation mechanism: Another algorithm 

implemented in the thesis is a predictive workload consolidation mechanism. 

This mechanism uses multi-resource historical workload data and predictive 

analytics to identify opportunities for workload consolidation, optimizing 

resource utilization and enhancing overall performance in the data center 

(chapters 3 and 4). 

6. Evaluation and validation: The proposed resource management techniques are 

evaluated and validated using appropriate performance metrics to ensure that they meet 

the defined objectives, such as improving resource utilization, enhancing SLA 

guarantees, reducing energy consumption, and enhancing overall performance within 

a moderate execution time, etc. Cloudsim simulator is used to test some of the proposed 

algorithms, specifically those related to the predictive workload consolidation 

mechanism. Validation ensures the reliability and credibility of the results. 

7. Results interpretation and comparison with benchmarks techniques: Once the 

evaluation is complete, the results are compared with existing benchmarks or some 

previous studies from the state-of-the-art to assess the novelty or improvement of the 

research. For example, our workload consolidation technique based on Kalman-SVR 

prediction model is compared to the original and modified versions of existing 

Cloudsim benchmarks, specifically, static-threshold-based and adaptive-thresholds-

based consolidation approaches, predictive ARIMA-based consolidation technique etc. 

(chapters 3 and 4). Whereas, the proposed set of meta-heuristic algorithms for SFC’s 

resource adaptations are compared to each other’s performance, and to the optimal 

solution generated by the Gurobi solver (chapter 2). 

8. Complexity and other analyses:  Detailed analyses are conducted to assess various 

aspects of some implemented algorithms or models. One key aspect examined is the 

computational time complexity of the algorithms. The time complexity analysis 

provides insights into the efficiency and scalability of the implemented approaches. By 

understanding the computational time complexity, the thesis aims to evaluate the 
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feasibility of the algorithms for large-scale resource adaptation scenarios. Furthermore, 

the thesis also delves into analysis related to power consumption resulting from the 

execution of the proposed algorithms. This analysis focuses on quantifying the energy 

requirements and power consumption associated with the resource reallocation process. 

Understanding the power consumption implications is crucial for optimizing resource 

utilization while considering energy efficiency goals. Both the computational time 

complexity analysis and power consumption analysis contribute to a comprehensive 

understanding of the implemented algorithms' performance and impact. These analyses 

are discussed in chapters 3 and 4. 

9. Optimization and fine-tuning: Based on the performed analysis and the evaluation 

results, areas for improvement and optimization are identified. This step involves 

refining the algorithms, models, or methodologies to enhance their performance, 

efficiency, or accuracy. Fine-tuning may include parameters tuning, mathematical 

model adjustments by considering more objective metrics or constraints, or further 

optimization of the proposed techniques to consider missing aspects. Chapter 4 

illustrates optimizations or enhancements of the techniques proposed in chapter 3. 

 

Each step in the research methodology, discussed above, contributes to the overall process of 

conducting this thesis work and ensuring its validity, reliability, and contribution to this 

research field. 

 

0.6 Publications 

 

The research contributions discussed in this thesis are either published or submitted as follows: 

1. Mirna Awad et al. (2022). SLO-aware dynamic self-adaptation of resources. Future 

Generation Computer Systems, 133, 266‑280. (IF-7.5) 

This work has been done in collaboration with Ericsson Canada. 

2. Mirna Awad et al. (2022). Utilization prediction-based VM consolidation approach. 

Journal of Parallel and Distributed Computing, 170, 24-38. (IF-4.542) 
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3. Mirna Awad et al. (2023). Multi-resource predictive workload consolidation approach 

in virtualized environments. Journal of Computer Networks. Journal Article under 

review (IF-5.6) 

 

0.7 Thesis Organization 

 

This work is presented in the form of a thesis by articles. An introduction showing the 

motivations behind this research subject and a general literature review are detailed in the first 

two chapters. Then, each journal article is presented in a dedicated chapter. Finally, the main 

insights are summarized, and some future works are suggested. 

 



 

CHAPTER 1      
 
 

LITERATURE REVIEW 

This chapter aims to present and emphasize the newest approaches addressing the dynamic 

adaptation of resources in virtualized environments. It is divided into three parts: the first part 

discusses solutions proposed for resource adaptation techniques such as scaling and migration; 

the second part explores workload prediction techniques; and the third part delves into resource 

consolidation strategies. While each journal article in the subsequent chapters provides an 

extensive review of the existing literature, our discussion primarily focuses on more recent 

research works in this field. 

 

1.1 Resource Adaptation  

Resource adaptation plays a crucial role in ensuring efficient utilization of virtualized 

infrastructure while meeting the varying demands of applications and services. In the context 

of NFV, applications consist of SFC chains that connect a set of VNFs.  

 

Three adaptation mechanisms can be used to address the resource adaptation issue including 

horizontal scaling (HS), vertical scaling (VS), and migration (M). Horizontal scaling involves 

adjusting the number of allocated virtual resources, such as VMs or containers hosting these 

VNFs, to dynamically accommodate the changing workload requirements. Vertical scaling, on 

the other hand, focuses on modifying the computing capacity of individual VNF instances. It 

involves scaling up, which refers to increasing the resources (e.g., CPU, memory) allocated to 

a VNF, or scaling down, which involves decreasing the resources allocated to a VNF. Vertical 

scaling is typically limited by the capacities of the physical machines hosting the VNF 

instances. Migration, the third adaptation mechanism, involves the movement of VNFs or 

entire SFCs from one physical machine to another. Migration techniques can be categorized 

into different types, such as post-copy, pre-copy, or hybrid migration, depending on the 

approach used to transfer the VNF or SFC from the source to the destination server. While 
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existing research has explored various aspects of resource adaptation problem, many proposals 

tend to focus on specific mechanisms or prioritize one adaptation technique over others. 

 

Chouliaras et al. (Chouliaras & Sotiriadis, 2022) present a framework called PACE 

(Performance-aware Auto-scaler for Cloud Elasticity) for auto-scaling containerized cloud 

applications. This framework includes both reactive and proactive vertical auto-scaling 

techniques. The reactive approach uses threshold-based scaling rules to dynamically adjust 

cloud resources based on predefined thresholds, preventing system failures. The proactive 

approach utilizes convolutional neural networks (CNN) for time series forecasting and K-

means for clustering. This approach clusters future workload demands into High, Medium, and 

Low categories and generates elastic scaling policies accordingly. However, this work 

addresses solely vertical scaling method. 

 

Rahman et al. (Rahman, Ahmed, Huynh, Tornatore, & Mukherjee, 2018) propose a proactive 

machine learning approach for auto-scaling VNFs to improve QoS and reduce costs. They 

convert the auto-scaling problem into a supervised ML classification problem, training a 

classifier with past scaling decisions and network load data. The classifier predicts the number 

of VNF instances required to serve the traffic while meeting QoS requirements. The study 

compares four virtualization technologies (Xen, KVM, Docker, and LXC) and analyzes their 

impact on auto-scaling performance. However, their work focuses solely on horizontal scaling 

of VNFs.  

 

Some studies have incorporated a combination of vertical and horizontal scaling to create a 

hybrid auto-scaling mechanism. Jeong et al. (Jeong, Baek, Park, Jeon, & Jeong, 2023) present 

an approach called Proactive Hybrid Pod Autoscaling (ProHPA) as a solution to pod 

autoscaling in cloud computing. ProHPA utilizes a bidirectional long short-term memory (Bi-

LSTM) model with attention mechanism to forecast future CPU and memory usage. Then, 

based on these forecasted resource usages, ProHPA sequentially performs three steps: reducing 

excessive resource usage with vertical pod autoscaling (ReVPA), preventing overload with 

horizontal pod autoscaling (HPA) (PoHPA), and adjusting the initial resource allocation. The 
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evaluation shows that ProHPA significantly improves CPU and memory utilization compared 

to conventional HPA provided by Kubernetes. Other researchers concentrate on virtual 

resources migration or re-placement problem without considering the full spectrum of 

adaptation methods (T. Z. He, Toosi, & Buyya, 2021) (Duong-Ba, Nguyen, Bose, & Tran, 

2018). Consequently, a holistic approach that takes into account all adaptation techniques (HS, 

VS, and M) is necessary to cover the diverse resource adaptation scenarios that can arise. 

 

Other significant limitations of existing techniques are adapting the resources of individual 

VNFs without considering their connectivity or assuming them connected in a linear chain. 

SFCs can exhibit different topologies, including both linear and non-linear structures. A linear 

SFC topology refers to a chain-like structure where each VNF in the chain is connected to at 

most two neighboring VNFs. This topology is characterized by a sequential arrangement of 

VNF instances, creating a straightforward flow of data through the chain. On the other hand, 

non-linear SFC topologies allow for more complex interconnections among VNFs. In this type 

of topology, VNFs can have multiple instances and multiple connections with other VNFs 

within the chain. Nadjaran Toosi et al. (Nadjaran Toosi, Son, Chi, & Buyya, 2019) introduce 

an auto-scaling algorithm that optimizes end-to-end latency by considering vertical and 

horizontal scaling, migration, and flow scheduling. The main objective is to dynamically 

allocate CPU resources and network bandwidth for service chains while meeting latency 

requirements. It first attempts to vertically scale up the resources, if this is not feasible due to 

limitations in available resources, it explores horizontal scaling by adding more instances of 

VNFs. To handle bandwidth adaptation, the algorithm utilizes flow scheduling techniques. It 

redirects traffic to alternative network paths that can deliver the required bandwidth while 

maintaining the desired latency. In cases where no suitable path is found, VNF migration is 

employed. 

 

In light of the aforementioned limitations in the existing literature, our work aims to contribute 

to the state-of-the-art by formulating the SFC resource adaptation problem as an ILP model 

that explicitly considers all three adaptation techniques (HS, VS, and M). This unique 

formulation sets our work apart from previous approaches that have often focused on one 
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adaptation mechanism or neglected to differentiate between them. By incorporating decision 

variables for each adaptation method, our ILP model enables us to evaluate and compare the 

associated costs and benefits of each approach. This allows us to make informed decisions on 

selecting the most appropriate resource adaptation method for a given scenario. Moreover, by 

defining objective functions based on these decisions, we can effectively optimize the 

allocation of resources and identify the optimal combination of adaptation techniques needed 

to satisfy the resource requirements of incoming SFC requests. Furthermore, we propose novel 

decision-making meta-heuristic algorithms based on NSGAII, CRO, Binary PSO, and a 

combination of CRO and Binary PSO. Our algorithms can handle both linear and non-linear 

SFC topologies of various size (number of VNFs), and strive to balance multiple objectives, 

including energy savings, improved CPU utilization, and minimized SLO violation (end-to-

end latency). 

 

1.2 Workload prediction 

The workload prediction problem is extensively addressed in the state-of-the-art for various 

contexts, including proactive auto-scaling (S. Luo et al., 2022) (Radhika & Sadasivam, 2021), 

predictive resource consolidation (Chaurasia, Kumar, Vidyarthi, Pal, & Alkhayyat, 2023) (H. 

Sayadnavard, Toroghi Haghighat, & Rahmani, 2022), workload modeling (St-Onge et al., 

2021), anomaly detection (Benmakrelouf et al., 2020) etc. Researchers are continuously 

proposing new methodologies to enhance accuracy and effectiveness in workload prediction. 

In this section, we discuss some new proposals in this area.  

 

Devi et al. (Devi & Valli, 2023) develop a hybrid model for predicting future CPU and memory 

utilization in a cloud data center. The proposed model combines ARIMA and ANN (Artificial 

Neural Network) techniques to forecast both linear and nonlinear components of CPU and 

memory utilization patterns. The ARIMA model detects linear components in workload 

patterns, while the ANN leverages residuals derived from ARIMA model to capture nonlinear 

components. Dogani et al. (Dogani, Khunjush, & Seydali, 2023) aim to improve host workload 

prediction in cloud computing by proposing a hybrid approach that combines Discrete Wavelet 
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Transformation (DWT), Bidirectional Gated-Recurrent Unit (BiGRU), and an attention 

mechanism. The DWT is used to decompose the data into sub-bands, allowing for the 

extraction of patterns from nonlinear and nonstationary data. The decomposed data is then fed 

into a BiGRU model, enhanced by an attention mechanism to capture temporal correlation 

features. The study specifically focuses on predicting CPU usage. In the research work 

conducted by Malik et al. (Malik, Tahir, Sardaraz, & Alourani, 2022), a novel approach for 

predicting multi-resource utilization based on the Functional Link Neural Network (FLNN) is 

introduced. To enhance the prediction accuracy, the researchers develop a hybrid model that 

combines the genetic algorithm (GA) with the particle swarm optimization (PSO) algorithm to 

train the neural network. The fitness function for the GA is determined as the Mean Absolute 

Error (MAE). The experimental analysis primarily focuses on CPU and memory utilization of 

virtual machines (VMs). St-Onge et al. (St-Onge et al., 2021) propose a hybrid approach for 

workload modeling in cloud environments, aiming to generate generic CPU workload models 

that can fit various workload domains. The authors present two approaches: one combining 

Hull-White modeling with a genetic algorithm, and another combining a SVR model with 

Kalman filter. Janjanam et al. (Janjanam, Siram, & Kollu, 2023) utilize a SVR model combined 

with M/M/c queuing model, to predict the workload of web servers based on historical data. 
The Last Value model, Moving Average model, and Auto Regression model are compared 

with SVR models using different kernels. The obtained results conclude that the SVR-based 

models, especially those with RBF kernel, are better at forecasting server workload compared 

to basic forecasting models. 

 

In our work, we propose, a multi-step ahead prediction model for forecasting the utilization of 

server resources, encompassing CPU, memory, received bandwidth, and transmitted 

bandwidth. We predict the future trend of each resource type instead of a single future value. 

By capturing the trends, we provide valuable insights into how the utilization of these resources 

is expected to evolve over time. Our model leverages a combination of SVR and Kalman Filter 

algorithms to accurately forecast future resource utilization. By integrating the Kalman Filter 

as a pre-processing step, we improve the accuracy of SVR predictions. The motivation behind 

our approach stems from the workload modeling research work mentioned earlier (St-Onge et 
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al., 2021), where the combination of SVR and Kalman Filter has shown promise. However, 

we target a different research context: estimating the state of hosts and optimizing resource 

consolidation in virtualized environments. Notably, our model predicts multiple resources 

simultaneously, and it is suitable for a variety of systems such as servers, virtual machines 

(VMs), and containers. 

 

1.3 Resource Consolidation 

Resource consolidation is a vital strategy for optimizing resource allocation and achieving 

energy efficiency in cloud environments. Its objective is to host workloads onto a reduced 

number of physical machines, maximizing resource utilization and minimizing energy 

consumption (Panwar, Rauthan, & Barthwal, 2022) (Bharany et al., 2022). Researchers have 

explored various approaches to effectively address this problem. These approaches include 

algorithms for VM or container replacement, techniques for detecting overloading and 

underloading states, and strategies for selecting VMs or containers for migration. The detection 

of host overloading and underloading conditions significantly impacts the performance and 

efficiency of the consolidation system. Overloaded hosts may suffer from resource scarcity, 

leading to degraded performance and potential violations of SLA. On the other hand, 

underloaded hosts indicate the underutilization of resources, resulting in resource wastage and 

unnecessary costs.  

 

Some State-of-the-art approaches rely on actual resource utilization data to assess the current 

state of hosts, determining if they are overloaded or underloaded. Songara et al. (Songara & 

Jain, 2023) propose a multi-resource VM consolidation approach called MRA-VC. The 

underloaded hosts are classified into different categories: severe load, moderate load, or low 

load based on their current multi-resource utilization score and predefined thresholds. The 

overload detection algorithm assigns dynamic weights to each resource based on their 

importance in the decision-making process. If the calculated weighted score exceeds an upper 

threshold (80%), the host is considered overloaded. Regarding VM selection and placement, 

the authors propose a modified VM selection and placement algorithm based on a particle 
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swarm optimization. Yadav et al. (Yadav, Zhang, Li, Liu, & Laghari, 2021) suggest GradCent, 

an algorithm based on Stochastic Gradient Descent technique, for detecting overloaded hosts 

in cloud data centers. It determines an upper CPU utilization threshold based on CPU 

utilization history. They also introduce the Minimum Size Utilization (MSU) Algorithm, which 

prioritizes VMs with high CPU utilization and small sizes for migration from overloaded hosts. 

Hariharan et al. (Hariharan, Siva, Kaliraj, & Prakash, 2023) develop an adaptive beetle swarm 

optimization (ABSO) algorithm that combines the strengths of particle swarm optimization 

and beetle swarm optimization to optimize the placement and consolidation of virtual machines 

in a cloud environment. The fitness function considers energy consumption, migration cost, 

and utilization metrics. 

 

In contrast, other approaches leverage the power of predictive models in resource 

consolidation. These models utilize historical data and machine learning algorithms to forecast 

whether a server is likely to encounter overloading or underloading conditions in the near 

future. By predicting future resource demands, these models enable proactive decision-making, 

helping to prevent unnecessary migrations and optimize resource allocation. Sayadnavard et 

al. (H. Sayadnavard et al., 2022) present a multi-objective approach for dynamic VM 

consolidation in cloud data centers. Their approach combines Discrete Time Markov Chain 

(DTMC) and Continuous Time Markov Chain (CTMC) for PM categorization, employs a 

heuristic VM selection algorithm based on task completion time, and utilizes a ɛ-dominance-

based multi-objective artificial bee colony algorithm for VM placement. The proposed 

approach aims to reduce energy consumption, improve system reliability, and minimize 

resource wastage. Chaurasia et al. (Chaurasia et al., 2023) also utilize the Markov chain 

principle for server transition to optimize the consolidation process. Banerjee et al. (Banerjee, 

Roy, & Khatua, 2021) present a framework for efficient resource utilization in cloud 

environments by utilizing a multi-step-ahead workload prediction technique. The framework 

encompasses three key components: workload characterization, where agglomerative 

hierarchical clustering is used to identify VMs with similar resource usage patterns; workload 

prediction, employing and comparing a set of supervised machine learning models such as 

linear regression, k-nearest neighbor, decision tree, support vector machine, and gradient 
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boosting to forecast future resource consumption (CPU and memory); and VM placement, 

which utilizes a modified Best Fit Decreasing algorithm to allocate VMs based on predicted 

resource consumption values. Farahnakian et al. (Farahnakian et al., 2019) present a utilization 

prediction-aware VM consolidation approach in cloud data centers called UP-VMC. The 

problem is formulated as bi-dimensional vector packing problem as two types of resource are 

considered: CPU and memory. Two regression-based prediction models are used for resource 

utilization prediction: Linear Regression (LR) and K-Nearest Neighbor Regression (K-NNR). 

A PM is considered as overloaded if its current or its predicted CPU or memory utilization 

exceeds its resource capacity. Their approach identifies the underloaded PM by comparing the 

current load of the PMs and selecting the PM with the lowest load.  

 

In our research, we propose a novel resource consolidation mechanism that combines the 

strengths of actual resource utilization analysis and predictive modeling. Building upon our 

MSPR prediction model discussed in the previous sub-section, our consolidation approach 

leverages both the current resource utilization and the predicted utilization trends to accurately 

identify overloading and underloading states in hosts. It considers multiple resource types, such 

as CPU, memory, and bandwidth, when making migration decisions. For overload detection, 

we calculate adaptive MAD thresholds that are specifically tailored to each resource type. 

Additionally, our approach offers flexibility by allowing the specification of distinct underload 

thresholds and prediction window sizes for each resource type. This adaptability allows for 

fine-grained customization to match the specific requirements of different resources. In 

addition to our primary approach utilizing the MSPR model, we implement an alternative 

consolidation approach that utilizes an ARIMA multi-resource prediction model. This 

alternative model serves as a replacement for the MSPR model, providing a comparative basis 

for evaluating the performance of our proposed mechanism. To evaluate the efficacy of our 

approach, we conduct extensive experiments comparing the MSPR-based consolidation 

approach with the ARIMA-based approach, as well as modified versions of benchmark 

consolidation algorithms in Cloudsim. 
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2.1 Abstract 

Cloud computing and Network Function Virtualization (NFV) are two complementary 

technologies. Virtual network functions (VNFs) provided by NFV are connected in the form 

of service function chains (SFCs) and typically hosted on the cloud. Dynamic resource 

adaptation in NFV-cloud settings remains a challenging research problem. VNF resources can 

be adapted by performing either vertical scaling (VS), horizontal scaling (HS), or Migration 

(M). Deciding on the optimum strategy among these three approaches (VS, HS, M) may face 

several challenges, including the dynamicity of the cloud environment; the sheer multiplicity 

of SFC topologies (e.g., linear, or non-linear SFCs); potentially conflicting optimization 

objectives, and the substrate network configuration. Considering the challenges introduced, we 

propose decision-making algorithms that make the best adaptation decisions for the SFCs 

dynamically, while balancing a set of cost functions, such as energy consumption, resource 

utilization, and Service Level Objective (SLO) violation. We first formulate the problem as an 

integer linear programming (ILP) model to compute the optimal solution. Then, because 

solving an ILP model is time-consuming, we adopt multi-objective metaheuristic algorithms 

based on Non-dominated Sorting Genetic Algorithm (NSGAII), Chemical Reaction 

Optimization (CRO), Binary Particle Swarm Optimization (NBPSO), and the combination 

CRO-NBPSO to solve this problem. Experimental results demonstrate the effectiveness of the 
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proposed meta-heuristic algorithms in reducing the end-to-end latency while achieving 

performance similar to optimal solutions in terms of resource utilization and energy 

consumption. 

 

Keywords: Dynamic resource adaptation, NFV, service chain, CRO, NSGAII, Binary PSO. 

 

2.2 Introduction 

Today, cloud computing has become an essential need and a popular technology both in 

academia and in industry. Among the main purposes of cloud platforms is the delivery of 

computing resources on-demand on a pay-for-use basis.  The pay-for-use pricing model allows 

the user to only pay for the resource used. On-demand resource provisioning and release boil 

down to the ability to provide resources dynamically according to the application’s needs (Al-

Dhuraibi et al., 2018). Coupled with the pricing model offered, elastic resources constitute one 

of the main attractive benefits of cloud computing. On the other hand, the Network Function 

Virtualization (NFV) (Yi, Wang, Li, Das, & Huang, 2018) provides a wide range of network 

functions as virtual software components typically hosted on virtual machines (VM) or 

containers in the cloud, instead of on traditional hardware components. The ordered 

interconnection of these virtual network functions (VNFs) forms a service function chain 

(SFC) for each specific application (e.g., IoT-based applications, 5G applications) (Medhat et 

al., 2016). For example, a web application may consist of at least three connected VNF types, 

such as a load balancer, web services, and a database. Despite the cost savings and flexibility 

provided by the VNFs, several research problems related to dynamic resource management in 

NFV-cloud settings still need to be addressed. Indeed, the performance of running applications 

is mainly impacted by the dynamicity of the cloud environment (e.g., variability of workloads, 

diversity of applications, etc.). Having an automated system to dynamically assign cloud 

resources for the VNFs in real time according to the workload fluctuation still faces numerous 

challenges. A wrong resource allocation decision may lead to an over-provisioning state, 

leading to extra costs being paid to rent unnecessary amounts of resources exceeding 

application needs. Conversely, an under-provisioning state may degrade the service 
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performance due to a lack of resources required to process incoming and ongoing requests 

within a reasonable timeframe. Moreover, a dynamic resource adaptation system does not only 

maintain the service performance and decrease the expenses of its deployment on the cloud, 

but also by releasing unused cloud resources the providers can save energy consumption or 

can increase their revenue by using these resources to serve new requests.  

 

One of the challenges in building such a system is to choose the appropriate method to adapt 

the VNF resources at each moment. Three possible mechanisms can be used to adapt resources 

for a VNF in the cloud: Horizontal scaling (HS), Vertical scaling (VS), and Migration (M). 

Horizontal scaling consists in scaling in (removing VNF instances) or out (adding new VNF 

instances). Vertical scaling consists in scaling up (increasing the VNF’s computing capacity, 

such as the CPU) or down (decreasing the capacity of a VNF). Migration involves moving a 

VNF or an SFC from the current hosting server to another one. Relying on only one of these 

adaptation mechanisms will lead to a non-efficient resource adaptation technique. Vertical 

scaling is limited to the capacities of the physical machines, while horizontally scaling all the 

instances or migrating them may lead to high operational costs. Many researchers have 

addressed the dynamic resource allocation (Gil Herrera & Botero, 2016) issue in the cloud. 

However, some proposals prioritize one adaptation mechanism over another. For instance, they 

utilize vertical scaling as much as possible. Then, they apply horizontal scaling when the 

vertical one becomes impossible. Others focus on migration or re-placement of the VNF where 

the decision is either to migrate the VNF to another host or keep it in place. The re-placement 

decisions are most often made without considering other types of adaptation methods (VS and 

HS). Consequently, we need a decision-making approach that takes the three possible resource 

adaptation techniques (HS, VS, M) into account to cover various resource adaptation scenarios 

while selecting the best one for each of them. Additionally, deciding on the optimum strategy 

among those three mechanisms is not obvious because of potentially conflicting resource 

optimization goals. For instance, the service provider may need to minimize resource 

utilization and energy consumption, while providing the required Quality of Service (QoS) 

(Mostafavi, Hakami, & Sanaei, 2021) defined in the Service Level Agreement (SLA) 

established with the customer. Service Level Objective (SLO) is a key element of SLA 
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composed of one or more QoS measurements and constraints. For example, the service 

provider may be obliged to adhere to a maximum tolerated latency or service availability pre-

specified in the SLO to avoid penalties (e.g., latency or availability of highly sensitive SFC). 

Another challenge is to adapt the resources of service chains of VNFs rather than individual 

VNFs. Each SFC may consist of a different number of VNFs connected in a linear or non-

linear chain. The topology is linear when each VNF in the chain has only one instance and is 

connected to two VNFs peers at the most. Such limitations do not exist in non-linear chains, 

where each VNF may have many instances and multiple peers. Thus, resource adaptation 

requirements vary from one SFC to another. Some existing work on resource allocation treats 

individual VNFs without considering their full chain and connectivity, while other proposals 

only target linear SFC topologies. For this reason, it is important to consider the SFC topology, 

as well as its type (linear or nonlinear) and size (number of VNF instances), when adapting 

resources. 

 

To contribute a solution to this problem, we consider the challenges introduced and propose 

multi-objective meta-heuristic scaling algorithms to help in automating resource adaptation for 

SFCs according to workload variations. The main objective of our algorithms is to select the 

best adaptation mechanism (VS, HS, or M) that meets the SFC's needs, while balancing a set 

of cost functions, such as energy consumption, SLO violation, and resource utilization. The 

main contributions of our work can be summarized as follows: 

 

1. The resource allocation problem is NP-hard (Rodriguez, Alkmim, Da Fonseca, & 

Batista, 2017)(Houidi et al., 2017). We first formulate the problem as an Integer Linear 

Programming (ILP) model to find the exact solution. The solver Gurobi 

(http://www.gurobi.com) is used for implementation.  In particular, the model takes a 

set of SFC requests as input and provides the optimal resource adaptation decisions to 

fulfill their resource needs. Contrary to existing work, in our problem formulation, we 

consider and distinguish the three possible adaptation strategies, including vertical 

elasticity, horizontal elasticity, and Migration, and calculate cost functions based on 

each. To the best of our knowledge, we are the first to formulate this problem from this 
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perspective. We also target both linear and non-linear SFC chains, of different sizes 

and graphs.  

2. Because solving the ILP model is a time-consuming process (Rodriguez et al., 

2017)(Junjie Liu Fen Zhou, Ping Lu, Zuqing Zhu, 2017)(Laaziz et al., 2019), it is more 

efficient to use heuristic-based techniques to solve the problem. We propose several 

meta-heuristic algorithms based on the multi-objective nondominated sorting genetic 

algorithm (NSGAII), the chemical reaction optimization (CRO) framework, the binary 

particle swarm optimization (NBPSO), and a combined technique CRO-NBPSO. To 

the best of our knowledge CRO, binary PSO and their combination have not been 

considered in the literature to address the discussed research problems.  

3. We design all our approaches to find optimum resource adaptation decisions (VS, HS, 

M) for the SFC requests dynamically, irrespective of their types and their sizes, while 

balancing a set of objective functions composed of CPU utilization, energy 

consumption, and SLO violation. 

4. We verify the effectiveness of our algorithms through extensive experiments on 

different scenarios, including different numbers of SFC requests, different SFC sizes, 

and considering both linear and non-linear topologies. We compare and analyze their 

performance in terms of mentioned objective functions, number of servers used, and 

their run time to find solutions. Through test experiments, our proposed meta-heuristic 

techniques demonstrate their ability in reducing SLO latency and prove their 

effectiveness in approximating the optimal solution in a much shorter runtime. 

 

The rest of the paper is organized as follows: Section 2.3 reviews the literature on dynamic 

resource adaptation in the cloud and highlights the novelty of this work. Section 2.4 describes 

the problem formulation as an ILP model. Section 2.5 explains in detail the proposed meta-

heuristic algorithms. Section 2.6 presents our experimental setup, discusses the results 

obtained, and compares the performance of our approaches. Finally, section 2.7 concludes this 

paper and summarizes the main insights. 
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2.3 Related work 

VNF resource adaptation problem is computationally hard. Solving such complex optimization 

problems using exact methods such as Integer Linear/Non-linear Programming (ILP/NILP), 

Mixed Integer Linear/Non-linear Programming (MILP/MINLP), SMT solvers, etc. requires a 

long execution time, which makes these techniques unsuitable for dynamic or real-time 

problems. For this reason, researchers generally look instead for approximation methods to 

find near-optimal solutions in a shorter time. Nowadays, meta-heuristic algorithms have 

become a powerful choice to solve complex research problems (Siddique & Adeli, 2017) 

(Emmerich & Deutz, 2018)(Olivas, Valdez, Melin, Sombra, & Castillo, 2019) (Astudillo, 

Melin, & Castillo, 2015)(Melin, Astudillo, Castillo, Valdez, & Garcia, 2013)(Olivas, Valdez, 

Castillo, & Melin, 2016). Many research works have addressed the dynamic resource 

allocation problem in the cloud and proposed different mechanisms to solve it (Al-Dhuraibi et 

al., 2018)(Yang, Li, Trajanovski, Yahyapour, & Fu, 2021)(Gil Herrera & Botero, 

2016)(Schardong, Nunes, & Schaeffer-Filho, 2021)(Singh et al., 2019). However, the existing 

contributions suffer from many limitations.  

 

To adapt resources for a VNF in the cloud, three techniques are possible: Horizontal scaling 

(HS), Vertical scaling (VS), and Migration (M). Several proposals focus mainly on horizontal 

elasticity [(Bouabdallah, Lajmi, & Ghedira, 2016), (Santhosh & Binu, 2016), (F. Huang, Li, 

Yuan, & Li, 2017), (Y. Li & Xia, 2017), (Kan, 2016), (Hu, Bo, & Fuyang, 2016), (Shariffdeen, 

Munasinghe, Bhathiya, Bandara, & Dilum Bandara, 2016), (Meng, Rao, Zhang, & Hong, 

2016), (Aslanpour & Branch, 2016), (Z. Luo & Wu, 2020), (X. Wang et al., 2016) and (Yi, 

Wang, & Huang, 2017)], where the number of allocated virtual resources (VMs or containers) 

should change dynamically according to application demands. For example, The author in 

(Kan, 2016) proposes DoCloud, a horizontal elasticity platform for web applications running 

on Docker containers. After predicting the incoming workload using the ARMA technique and 

estimating the number of containers needed, scale-out actions are triggered when the 

monitoring system detects that the resource utilization of some containers exceeds a specific 

threshold. They argue that scale-out actions should be fast enough to ensure QoS of web 
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applications, while scale-in should not be as fast to avoid oscillations in the number of 

containers. For this reason, the elasticity controller triggers scale-in actions only if the 

predicted number of containers is always less than the current number of running containers 

for k continuous periods. Results show that the proposed platform can dynamically allocate 

required resources to applications and improve container resource utilization. In (Yi et al., 

2017), the authors target the scalable SFC provision problem in the sense of adding or 

removing functions to/from the service chains as needed. The problem is first formulated as an 

ILP model and then two heuristic schemes (reactive and proactive) are proposed to handle 

Scale-in (SI) and Scale-out (SO) requests. The reactive scheme scales the SFC without 

changing its Service Function Path (SFP) while the proactive scheme aims to optimize the SFP 

graph of SFC to a better one for the purpose of minimizing bandwidth consumption. Their 

objective function is to reduce the total cost including resource consumption, VNF deployment 

and SFC recomposition cost. Other researchers utilize only vertical elasticity to dynamically 

increase or decrease the resources allocated to computational units, such as the CPU, memory, 

storage, etc., to handle a varying workload [(Alzahrani et al., 2016), (Moghaddassian, 

Bannazadeh, & Leon-Garcia, 2017)]. For instance, an Energy-based Auto-scaling (EBAS) 

approach is presented in (Alzahrani et al., 2016) to proactively scale the number and frequency 

of CPU cores to containers. Their method incorporates the dynamic voltage and frequency 

scaling (DVFS) technique to dynamically adapt CPU frequencies, and a prediction model 

based on Autoregressive Integrated Moving Average (ARIMA) to anticipate future CPU 

utilization. The best allocation plan that has the lowest energy consumption and meets the SLA 

requirement (latency) is selected. In (Moghaddassian et al., 2017), the authors create VM 

scaling method based on the threshold-based approach using adaptive thresholds. Up and down 

vertical scaling thresholds are dynamically updated according to the real-time data utilization 

(CPU or memory) of VMs. Specifically, when the monitored data utilization of a VM is still 

greater than the initial threshold for β seconds, the algorithm increases the threshold value by 

α percent as long as the threshold doesn’t attend a hundred percent. This process is repeated 

until the threshold can’t increase anymore. At this point, the algorithm triggers the scale-up 

action if the metric crossed the threshold. Similarly, if the real-time data utilization of a VM is 

still smaller than the threshold for β seconds, the algorithm decreases the threshold by α percent 
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so long as the threshold is still greater than a minimum possible tolerance level (Tmin). When 

the threshold can no longer decrease and the measured metric still below Tmin for β seconds, 

the scale down action is triggered. Some existing works combine the two types of elasticity 

(VS and HS) and build a hybrid auto-scaling mechanism [(G. Huang et al., 2016), (Hirashima, 

Yamasaki, & Nagura, 2016), (Ye, Guangtao, Shiyou, & Minglu, 2017), (Hirashima, 2016), 

(Sotiriadis, Bessis, Amza, & Buyya, 2016), (Q. Zhang, Chen, & Yin, 2017), (Rankothge, Le, 

Russo, & Lobo, 2017)]. (Ye et al., 2017) designs a hybrid auto-scaling framework for 

containerized elastic applications. They employ a prediction technique based on Auto-

Regression Moving Average (ARMA) to forecast applications’ future resource demands. 

Then, because vertical elasticity is faster than horizontal one, they suggest scaling up the 

resources vertically to handle real-time load variations and scaling them out horizontally to 

meet future resource needs. However, horizontal scale-in is used to release resources in both 

scenarios by reducing the number of containers, because horizontal scaling is more cost-aware 

than vertical one. In their implementation, they focus on scaling containers’ CPU resources 

specifically and they intend to minimize SLA violations (response time). (Rankothge et al., 

2017) presents two resource allocation algorithms based on genetic programming, for VNFs 

initial placement and VNFs scaling. These algorithms are compared with the ILP model 

implemented in CPLEX. In the context of VNF initial placement, the main objective is to 

minimize the number of servers used and the network resources. For VNF scaling part, in 

addition to the previously mentioned objectives, the aim is to reduce the number of changes in 

server and links configurations. The algorithms support both horizontal and vertical scaling 

and target VNF chains. However, they assume that each VNF in a chain can have only one 

successor, which is not the case in non-linear SFC topologies.  

 

Elasticity is not the only way to adapt resources in the cloud. Some proposals, such as 

[(Chaloemwat & Kitisin, 2016), (Al-Dhuraibi, Paraiso, Djarallah, & Merle, 2017), (Nadjaran 

Toosi et al., 2019), (Rankothge, Ramalhinho, & Lobo, 2019), (Jia, Wu, Li, Le, & Liu, 2018), 

(Liu, Lu, Zhou, Lu, & Zhu, 2017)], include a mix of elasticity and migration mechanisms. 

(Chaloemwat & Kitisin, 2016) introduces a combination of horizontal auto-scaling and 

migration techniques for cloud services with a skewness algorithm. Skewness algorithm aims 
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to measure the unevenness of resource utilization on a physical machine. Minimizing the 

skewness value leads to an improvement in overall resource utilization on the physical host. If 

the current resource utilization of a VM exceeds the predefined thresholds, it is considered 

overloaded, then the processes running on this VM should be migrated to another available 

VM or a new VM. An equation is also defined to measure the pressure which means the 

overloading degree of a VM. Processes running on the VM with the highest pressure should 

migrate to an idle VM whose skewness value increases the least due to this migration. If no 

potential destination VM is found, the processes are migrated to a new VM. On the other hand, 

the duration of being in an idle state is measured for the VM, and if the remaining processes 

running on this VM can be migrated to other available VMs without overloading them, the idle 

VM can be scaled down. The authors in (Al-Dhuraibi et al., 2017) create ElasticDocker system, 

which combines vertical elasticity and live migration for Docker containers. When there are 

not enough resources to scale containers vertically, live migration is triggered to move the 

container to another host. Vertical elasticity scales up and down both CPU and memory of 

containers. Live migration technique is based on CRIU functionality in Linux systems. 

Evaluation results demonstrate that ElasticDocker can minimize customer expenses, improve 

resource utilization, enhance the quality of experience (QoE) for end-users and achieve better 

results compared to Kubernetes elasticity. Extending this solution to support horizontal 

elasticity may produce a more efficient and a complete resource adaptation system for Docker 

containers. (Nadjaran Toosi et al., 2019) presents a heuristic end-to-end latency-aware auto-

scaling algorithm called ElasticSFC that considers vertical and horizontal scaling, migration, 

and flow scheduling. They focus on the dynamic allocation of CPU resources and network 

bandwidth for the service chains while meeting the required latency requirements. To adjust 

the VNF computing resources, the algorithm first attempts to vertically scale up the resources. 

If vertical scaling is impossible due to resource constraints, it tries horizontal scaling by adding 

VNF instances. For bandwidth adaptation, flow scheduling is used to redirect traffic to an 

alternate network path capable of providing the requested bandwidth and satisfying the 

required latency. If no potential path is available, VNF migration is adopted to move either of 

the two end VNF instances of the link or both to new destination hosts. (Rankothge et al., 2019) 

formulates the resource reallocation problem of VNFs as an ILP model. Their optimization 
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goal is to minimize the bandwidth dropped defined as the requested bandwidth that cannot be 

fulfilled by the allocated resources. Because optimal solutions are time-consuming, they 

develop an approximation algorithm based on the meta-heuristic Iterated Local Search (ILS) 

to solve the VNFs scaling problem. Their ILS technique handles the three scaling methods 

(vertical scaling, horizontal scaling, and migration) focusing essentially on satisfying the 

bandwidth demands of the VNF policies. In (Liu et al., 2017), the authors study the problem 

of the deployment of new users’ SFCs and the readjustment of in-service users’ SFCs while 

finding a trade-off between resource consumption and operational overhead. The operational 

overhead for a new user equals the number of VNFs required in its SFC request, while for an 

in-service user, it equals the number of migrated and newly added VNFs since the last service 

time. The problem is first formulated as an ILP model to find the exact solution. Then, to 

reduce the time complexity of ILP, they design a column generation model and implement an 

approximation algorithm based on it to solve the problem. The optimization goal is to 

maximize the service provider’s profit which is equal to the total profit gained from serving 

SFC requests minus the total deployment cost. 

 

In the context of VM migration, some authors propose different migration techniques (e.g., 

post-copy, pre-copy, or hybrid migration) to move the application from one physical machine 

to another one that has enough capacity to host it [(S. He, Hu, Shi, Wo, & Li, 2016), (F. Zhang, 

Fu, & Yahyapour, 2017), (Level, 2016), (Wahab, Kara, Edstrom, & Lemieux, 2019), and 

(Eramo, Miucci, Ammar, & Lavacca, 2017)]. The authors in (Choudhary et al., 2017) present 

a critical review of state-of-the-art live VM migration techniques, their strengths, and 

weaknesses. One of the main challenges in VNF migration is the VNF placement or bin 

packing problem. This problem consists of embedding the VNFs into the physical 

infrastructure while selecting the best server to host each VNF. Specifically, such proposals 

decide if a VNF will remain on the same server or will be migrated to another one while 

specifying the new destination [(Silva Filho et al., 2018), (Tavakoli-Someh & Rezvani, 2019), 

(Khebbache, Hadji, & Zeghlache, 2018), (El Mensoum, Wahab, Kara, & Edstrom, 2020), 

(Zhiyong Li, Li, Yuan, Chen, & Jiang, 2019), (Laaziz et al., 2019), (Abdelaal, Ebrahim, & 

Anis, 2021), and (Mai et al., 2021) ]. Many algorithms are suggested to select the destination 
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servers such as NSGAII [(Tavakoli-Someh & Rezvani, 2019), (Khebbache et al., 2018), 

(Laaziz et al., 2019)] and CRO [(Zhiyong Li et al., 2019), (El Mensoum et al., 2020)]. 

However, they don’t differentiate the three-adaptation technique. On the one hand, we may 

decide to keep a VNF on its current server while scaling it vertically (increasing the resources 

of this VNF instance) or horizontally (adding a new VNF instance on the same server). On the 

other hand, we may choose a new destination server for the designated VNF instance if we 

decided to migrate it, or for the newly added VNF instance if we decided to scale it 

horizontally. Each adaptation technique involves different costs in terms of CPU, energy, etc. 

and we should distinguish between them.  

 

In this paper, we formulate the resource allocation problem as an ILP model to find the exact 

solutions. Contrary to existing works, in our formulation, a decision variable is set for each 

resource adaptation method (HS, VS, and migration) and the objective functions are calculated 

according to these decisions. The output of our model is the set of resource adaptation methods 

decided to satisfy the resource requirements for the received SFC requests. To the best of our 

knowledge, we are the first to formulate the problem in this way. We also design decision-

making meta-heuristic algorithms based on NSGAII, CRO, Binary PSO, and the combination 

(CRO - Binary PSO) techniques. Our algorithms benefit from several advantages compared to 

the state of the art, which are: (1) they consider the three possible resource adaptation 

mechanisms to cover various overloading server states while selecting the best one for each of 

them. (2) they target both linear and non-linear SFC topologies; (3) they aim to balance a set 

of objectives, including saving energy, improving resource utilization (CPU), and minimizing 

SLO violation (end-to-end latency); (4) the proposed idea is generic enough to be used in 

various SFCs and virtualized system or data center architecture. Finally, to the best of our 

knowledge CRO, binary PSO and their combination have not been considered in the literature 

to address these research challenges. 
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2.4 Problem formulation 

Let Gp = (S, Ep) be an undirected graph representing the physical network, where S is the set 

of servers and Ep is the set of links connecting them. On the other hand, Gv = (C, Ev) is a 

directed graph of an SFC, where C is the set of VNF instances and Ev is the set of virtual links 

among these instances. In the following, we describe our ILP formulation of the resource 

 

Table 2.1  Notations 

Symbol Description 

S Set of servers in the substrate network 

R Set of SFC requests 

V Set of VNF types in an SFC request 

C Set of VNF instances in an SFC request 

 Decision variable indicates if VNF instance  in an SFC request will be migrated  

 Decision variable indicates if VNF instance  in an SFC request will be scaled vertically 

 Decision variable indicates if VNF instance  in an SFC request will be scaled horizontally 

 Decision variable that indicates if VNF instance  in an SFC request will be placed on server   

 Decision variable that indicates whether a server  is used 

 The time taken while scaling a VNF instance  in an SFC request  vertically  

 The time taken while scaling a VNF instance  in an SFC request horizontally   

 The time taken while migrating a VNF instance  in an SFC request  

 Power consumed by a VNF instance on its current server 

 Power consumed by a server when scaling a VNF instance vertically 

 Power consumed by a server when scaling a VNF instance horizontally 

 Power consumed by a VNF instance on destination server after migration 

 The power consumed by the load balancer  

 The power consumed by a server  in idle state 

 CPU utilization (%) of a VNF instance on its current server  

 CPU (%) consumed by a server when scaling a VNF instance vertically 

 CPU (%) consumed by a server when scaling a VNF instance horizontally 

 CPU usage (%) when a VNF instance is running on a remote server after migration 

 CPU (%) consumed by the load balancer 

 CPU utilization of a server  in idle state 

 Number of CPU cores requested by a VNF instance 

 The server available capacity (Number of CPU cores) 

 Binary variable indicates if a VNF instance  in an SFC request is initially placed on a server  

 Number of CPU cores allocated for a VNF instance on its current/original server  

 Set of links connecting the instances of a pair of VNF types  and   in an SFC 

 Latency on a link connecting a pair of VNF types   and   in an SFC 

 Set of paths in an SFC topology  

 The worst latency found among the set of received SFC requests  



40 

 

adaptation problem in detail. The notations used in the problem formulation are described in 

Table 2.1. 

 

2.4.1 Decision variables 

A binary variable is used for each possible resource adaptation strategy, namely, migration, 

horizontal scaling, and vertical scaling. Two variables are added, one to specify the VNF 

instance replacement resulting from the decision taken, and another, to indicate whether a 

server is used. 

 

   
 

(2.1) 

 

   
 

(2.2) 

 

   
 

(2.3) 

 

  
 

(2.4) 

 

  is used (2.5) 

 

2.4.2 Constraints 

We consider the following constraints: 

 

  (2.6) 
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(2.7) 

 

  (2.8) 

 

  (2.9) 

 

 

 

 

(2.10) 

 

  (2.11) 

 

Constraint (2.6) ensures that only one resource adaptation strategy will be chosen for each VNF 

instance. Constraint (2.7) guarantees that only one server can be chosen as the destination of 

each VNF instance. Constraint (2.8) determines that the VNF instance should remain on its 

original server, in the case of vertical scaling. Contrary to the previous constraint, constraint 

(2.9) determines that the selected destination server to host the VNF instance in case of 

migration should be different from its original host. Constraint (2.10) guarantees that the 

amount of resources requested by VNF instances should not exceed the available capacity of 

the server. In this paper, we focus on one of the most critical metrics in cloud settings, CPU 

utilization. Other metrics such as memory, disk and I/O may be added to our formulation in 

future work. We consider that some resources will become free upon migration processes and 

will thus be added to the available server capacity. Note that in the case of migration, the 

requested CPU cores include not only the number of CPU cores needed by the VNF instance 

but also its allocated CPU cores that will be migrated to the destination server. Constraint 

(2.11) ensures that the worst end-to-end delay/latency  found among the set of received SFC 

requests does not exceed the tolerance threshold based on SLO. The detailed calculation of  

is explained in the next sub-section. 
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2.4.3 Cost functions 

Essentially, our model targets three different objectives: minimizing energy consumption, SLO 

violation, and resource consumption in terms of CPU. 

 

2.4.3.1 Resource consumption 

 

Resource consumption represents the total CPU utilization consumed by the target VNF, as 

well as the servers, in addition to the CPU consumed by the resources added during vertical 

scaling; the computational units added and the load balancer during horizontal scaling, and the 

migrated instance on the destination machine, in the case of migration. 

 

 

 

(2.12) 

 

2.4.3.2 Power consumption 

 

Saving energy is a major concern for today’s cloud data centers. Since greater CPU 

consumption will increase power electricity and cooling costs, and generate more heat in the 

cloud environment, in this article, we mainly focus on processing power. Optimizing the 

calculation of energy consumption while taking into account other resources (e.g., memory, 

I/O in addition to CPU) is one of our future work steps. In our formulation, energy consumption 

represents the energy consumed by the CPU of the current server and the target VNF, plus the 

energy consumed by the resources added during vertical scaling; the servers added, the VNF 

instances and the load balancer, in the case of horizontal scaling; and the migrated instance on 

the destination machine after migration. 
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(2.13) 

 

As the maximum ( ) and the idle ( ) power consumption of a server are known, the 

power consumed by a VNF instance hosted on this server is calculated by the following 

formula (Beloglazov, Abawajy, & Buyya, 2012): 

 

  (2.14) 

 

Where  is the total number of CPU cores of the server, 

 represents the number of cores allocated to the VNF instance, and u is the CPU 

utilization of this VNF. 

 

2.4.3.3 SLO violation 

 

To avoid SLO violations, we minimize the end-to-end delay/latency of the SFC requests. 

Particularly, we calculate the total delay consumed on the physical links that connect the source 

VNF to the destination VNF of an SFC request. We consider linear and non-linear SFC 

topologies. In non-linear chains, each VNF type  in the chain may have many instances, 

and each of these instances may be hosted on a different server. We assume that the delay 

between a pair of VNF types is equal to the max delay on the links connecting all their instances 

(Eq. 2.15). Also, the VNF may have more than two successors, and so many paths are possible 

for traffic. We first calculate the total end-to-end delay of each path in the SFC topology . 

The total delay of a path  in an SFC represents the sum of the delays between all VNF 

peers on this path (Eq. 2.16). Then, we take the max path delay as the SFC latency  (Eq. 
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2.16).  In the end, our objective is to minimize the max or the worst SFC latency  found by 

the algorithm among the set of SFC requests (Eq. 2.18). 

 

  (2.15) 

 

 
 

(2.16) 

 

  (2.17) 

 

  (2.18) 

 

Consequently, the algorithm searches for a resource adaptation solution that has the least bad 

SFC latency, coupled with minimal CPU utilization and energy consumption. 

 

2.5 Algorithms 

Finding an optimal resource allocation solution is computationally hard. Solving the ILP 

problem is a time-consuming process and is consequently not suitable to meet traffic 

fluctuations in real-time. Hence, it is more practical to look for approximations using heuristic-

based techniques. In this section, we provide a detailed presentation of our proposed multi-

objective resource adaptation algorithms based on NSGAII (Deb, Pratap, Agarwal, & 

Meyarivan, 2002), Chemical reaction optimization (CRO) [(Lam & Li, 2012), (Islam, 

Saifullah, & Mahmud, 2019)], Binary Particle Swarm Optimization (NBPSO) [(D. Wang, Tan, 

& Liu, 2018), (Nezamabadi-Pour, Rostami-Shahrbabaki, & Maghfoori-Farsangi, 2008)] and 

the combination CRO-NBPSO. All proposed algorithms are population-based optimization 

techniques that start by the initialization of a set of random solutions, then iteratively 

manipulate some of them to generate new ones using specific operators, and generate the best 

solution found in terms of cost functions while respecting the constraints discussed in section 

2.4. The termination condition is the max number of iterations. In this section, we first discuss 

the common strategies used in our algorithms, related to solution representation and population 
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initialization. Then, we explain the working principles and the operators used in each algorithm 

to manipulate the solutions. 

 

2.5.1 Common strategies 

2.5.1.1 Solution encoding 

 

In our problem, a solution consists of resource adaptation decisions for all the SFC requests 

received. As mentioned earlier, each SFC is a chain of network functions (NFs) connected to 

each other. In the case of a non-linear chain, each network function may have many instances 

(copies) hosted on different virtual machines. For this reason, we represent a solution as a 

multidimensional array that includes a resource adaptation decision for each VNF instance in 

each SFC request. To represent the adaptation strategies, we used a binary representation with 

2 bits, as follows: Do Nothing N = 00, Vertical Scaling V = 01, Horizontal Scaling H = 10, 

Migration M = 11. For instance, if the received SFC consists of 4 chained VNFs, namely, 

Cache Firewall PDI Video Streaming, with Cache has one instance, Firewall and PDI 

have 2 instances each, and video streaming has 3 instances, a possible solution may look like 

[[11], [01, 10], [10, 11], [01, 01, 11]], with 11 (M) being the decision taken for the first VNF 

(Cache), 01 (V) and 10 (H) being the decisions for the Firewall instances, 10 (H) and 11 (M) 

being the decisions for the PDI instances and so on. Therefore, for each SFC, the solution’s 

length is equivalent to 2 bits* SFC size, where the SFC size represents the number of VNF 

instances composing the chain. In fact, the algorithm generates a solution for a set of SFC 

requests instead of one. If there are m number of SFC requests deployed in our environment, 

then a full solution contains m number of partial solutions, each representing the resource 

adaptation decisions for the VNFs sequence of each SFC. Consequently, the individual’s 

length depends on the number of SFC requests to be adapted and on the size of each one: 

, where R is the number of requests.  

 

To evaluate the feasibility of the solutions and compute the resulting costs, we need to know 

the destination servers for the decisions taken. In particular, to verify the latency constraint, 
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we need to calculate it according to the modified SFC topologies and the chosen hosting 

servers. The decisions taken can modify the SFC graph by adding for example new VNF 

instances in case of horizontal scaling. Also, In the case of vertical scaling, the instance remains 

on the same server, but for horizontal scaling and migration, a destination server may be needed 

to host the newly added or the migrated VNF instance. Thus, to test our decision-making 

proposals, we need a strategy to choose the destinations servers. Because SLO violation 

avoidance is one of our main objectives, we adopt a server selection strategy that intends to 

minimize the latency for each partial solution. Briefly, for each SFC request, we choose the 

first server that has enough capacity to host the first VNF instance of the chain. Then, for the 

next instance, we select the server that has not only a sufficient capacity but also, minimal 

latency with the one already chosen to host the previous instance of the same chain and so on. 

Although this placement strategy is used in our testing experiments, our decision-making 

algorithms can be combined with another more advanced placement strategy (host selection 

strategy) to optimize their performance and accuracy in selecting adaptation decisions. 

 

2.5.1.2 Population initialization 

 

The population consists of “n” possible solutions. At first, we initialized these solutions 

randomly. The algorithms were able to find sub-optimal solutions for our problem quickly 

unless we added the latency constraint (Equation 2.11). Using very stressful latency thresholds 

in some scenarios results in our algorithms being unable to find any feasible solution, while an 

ILP solution is found. To solve this discrepancy, we initialize the population with random, but 

feasible solutions. Specifically, we generate a random solution, adjust its adaptation decisions 

in terms of resource availability, and then check its feasibility in terms of latency before adding 

it to the initial population. This is done by the feasibility operator described in the next sub-

section. Adopting this initialization strategy increases the runtime of our algorithms a little bit 

but avoids their failure. 
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2.5.1.3 Feasibility operator 

 

The solutions in the initial population are manipulated randomly by operators (e.g., in NSGAII 

and CRO) or by equations (e.g., in NBPSO) to create new ones without considering the 

constraints imposed by our research problem. This operator is implemented to verify the 

feasibility of the newly generated solutions specifically in terms of resource availability and 

tolerated latency. In terms of resource availability, we check if there are inapplicable random 

vertical scaling decisions taken in the solution. If resources are insufficient, we randomly 

change this decision to horizontal scaling or migration. Once the decisions are adjusted and 

their destination servers are chosen, we calculate and check the latency constraint. Only 

feasible solutions are added to the population. 

 

2.5.2 NSGA-based algorithm 

2.5.2.1 Working principles 

 

The non-dominated sorting genetic algorithm (NSGAII) aims to find a trade-off between the 

three cost functions defined in section 2.4, namely, Equation (2.12) for the CPU utilization, 

(2.13) for the Energy consumption, and (2.18) for the Latency. In each iteration, the algorithm 

applies two essential sorting mechanisms: non-dominant and crowding distance sorting. The 

first mechanism ranks the individuals according to their fitness functions and divides the 

population into several subsets/fronts. Whereas the second sorting technique ranks the 

solutions in each front according to their crowding distance values. Based on the rank and the 

crowding distance parameters, the best individuals (called parents) are selected from the 

population. Then, the genetic operators, namely, the crossover and the mutation, which will be 

discussed in detail in a later section, are applied to the selected individuals to produce an 

offspring population. Each cycle will produce a new population that converges more toward 

the best solution. The output of the algorithm is a Pareto front of sub-optimal solutions with 

their cost function values. 
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2.5.2.2 Genetic operators 

 

Crossover: To perform this process, we use a modified Half-uniform crossover (HUX) 

operator. This operator randomly swaps non-matching adaptation decisions between the two 

parents. For instance, there are four non-matching adaptation decisions between the parents P1 

and P2, particularly on the following indexes: (0, 1), (1, 0), (1, 2), (2, 1), and (2, 2). The 

operator randomly chooses to swap the decisions of the indexes (0, 1), (1, 2), and (2, 2) to 

produce the children R1 and R2. 

 

P1 : [[11, 01, 10], [10, 01, 10],[01, 11, 11]] 

P2:  [[11, 10, 10], [11, 01, 11],[01, 01, 10]] 

 

R1 : [[11, 10, 10],[10, 01, 11],[01, 11, 10]] 

R2:  [[11, 01, 10],[11, 01, 10],[01, 01, 11]] 

 

Mutation: For mutation, we adopt an operator similar to the concept of BitFlip mutation. It 

selects random positions in the chromosome and then changes its adaptation decisions.  As 

shown in the example below, the decisions on the indexes (0, 0), (1, 1), and (2, 2) are randomly 

changed. 

 

P : [[11, 01, 10],[10, 01, 10], [01, 11, 11]] 

 

P' : [[10, 01, 10],[10, 10, 10], [01, 11, 01]] 

 

As the end goal is to converge toward the best solution, crossover happens more frequently, 

and its probability is higher than mutation. These probabilities are specified as input and can 

easily be changed at any time.  
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2.5.3 CRO-based algorithm 

2.5.3.1 Working principles 

 

Our second algorithm is based on Chemical reaction optimization (CRO). Since its appearance, 

CRO has demonstrated its power to solve different kinds of optimization problems, which is 

what motivated us to choose it as a base technique to develop our decision-making algorithm. 

Unlike genetic algorithms, the population size in CRO varies through iterations. Each molecule 

(solution) in the population is characterized by its molecular structure (W), potential energy 

(PE), kinetic energy (KE), total hits number, minimum hits number, etc. In our algorithm, W 

is the multidimensional array of potential resource adaptation mechanisms for the received 

SFC requests. PE represents the objective function value of the solution W. In contrast, CRO 

is not a multi-objective algorithm as is NSGA, and so instead of using our three cost functions 

independently, we are minimizing the summation of these functions (Equation 2.19). KE states 

a tolerance of accepting a worse solution than the existing one. Hits_number records the total 

number of times a molecule has collided and min_hits_number indicates the number of 

collisions when it achieves the min PE. Collisions happen when molecules interact with each 

other due to chemical reactions in order to reach an equilibrium state of minimal PE. There are 

four essential elementary reactions, namely, On-wall ineffective collision, Inter-molecular 

ineffective collision, Decomposition, and Synthesis. The two ineffective collisions perform the 

local search (intensification) while decomposition and synthesis implement the diversification 

effect. The intensification and diversification are controlled by parameters α and β. 

 

  (2.19) 

 

2.5.3.2 Operators 

 

In the following, we explain in detail the four operators used in our algorithm to perform the 

CRO chemical reactions. As we mentioned, the solution is encoded in binary format, but for 
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simplicity, and to clearly explain the chosen operators, we used the symbols V = Vertical 

Scaling, H = Horizontal Scaling, and M= Migration in our examples. 

 

1. On-wall ineffective collision: This occurs when a molecule hits an external substance 

(e.g., the wall of the container), resulting in a subtle change in its molecular structure 

from ω to ω’. For this operator, we randomly pick one VNF instance from each SFC 

chain in the solution and change its adaptation decision.  

 

2. Decomposition: This takes place when a molecule hits a wall and then splits into several 

parts. For simplicity, we assumed each molecule ω breaks into two parts ω1 and ω2. In 

this reaction, we adopt the half-total change operator and apply it to manipulate the 

resource adaptation decisions taken for each SFC request. In general, this operator 

generates a new solution ω’ from an existing one ω, by keeping one-half of its values 

and assigning the other half with new values. Specifically, we first copy all the 

decisions taken in molecule ω to ω1 and ω2. Then in each, we randomly select [n/2] 

VNF instances from each SFC chain and offer them new adaptation decisions. Note 

that ‘n’ represents the number of VNF instances in the SFC or what we called the SFC 

size. Let us suppose we try to adjust the resources for three SFC requests of the same 

size (e.g., four VNF instances each). In that case, after copying the values of ω to ω1 

and ω2, we need to assign new decisions for two random VNF instances in each SFC. 

For example: 

 

ω : [  [M, M, V, H], [H, M, V, H], [V, M, H, M] ] 

 

ω1: [  [M, H, V, M],[V, M, V, M], [V, M, V, H] ] 

ω2: [  [V, M, V, M], [H, V, H, H], [V, H, M, M] ] 

 

3.  Inter-molecular ineffective collision: This refers to the situation when multiple 

molecules (let us assume two) collide with each other. As a result, their molecular 

structures ω1 and ω2 are perturbed and slightly change to ω'1 and ω'2, respectively. This 
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collision is performed in our algorithm by selecting two random positions in the vector 

of each SFC. Then, we exchange the adaptation decisions located between the selected 

positions in ω1 and ω2 to produce ω'1 and ω'2. As shown below, for the first SFC, the 

decisions between the two chosen indexes 0 and 3 are exchanged. 

 

ω1:  [  [M, H, H, M], [V, M, V, M], [V, M, V, H] ] 

ω2:  [  [V, M, V, M], [H, V, H, H], [V, H, M, M] ] 

 

ω’1: [  [M, M, V, M], [V, V, V, M], [V, M, M, H] ] 

ω’2: [  [V, H, H, M], [H, M, H, H], [V, H, V, M] ] 

 

4. Synthesis: Contrary to the decomposition, synthesis is the situation when many 

molecules hit each other to fuse together into one new molecule.  Thus, two existing 

solutions ω1 and ω2 are merged into a new solution ω’, different from them 

individually. For this reaction, we used the Probabilistic select operator that randomly 

chooses values from ω1 and ω2 to generate ω’. Each decision ω’(i) is equal to either 

ω1(i) or ω2(i), with the same probability.  

 

ω1:  [  [M, H, H, M], [V, M, V, M], [V, M, V, H] ] 

ω2:  [  [V, M, V, M], [H, V, H, H], [V, H, M, M] ] 

 

ω’: [  [M, M, H, M], [V, M, H, H], [V, H, M, H] ] 

 

2.5.4 NBPSO-based algorithm 

Particle swarm optimization (PSO) is a population-based optimization technique inspired by 

the behavior of bird flocking. Due to our binary representation of the solutions, the binary 

version of PSO, discussed in (Nezamabadi-Pour et al., 2008), is adopted to solve the problem. 

Each solution or particle  in PSO is characterized by its position  and velocity . The 

position is the binary set of adaptation decisions while the velocity is the probability of 
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changing the position bit values. The velocity boundaries are [ , ] where  is 

typically set to 6. Unlike genetic and CRO algorithms, PSO does not have operators to 

manipulate the solutions, it applies certain equations instead. In every iteration, each particle 

updates itself depending on the two best positions  and . The first is the best position the 

particle has achieved so far, in terms of cost function values. The second is the best position 

obtained so far among the particles in the population. The cost function represents the overall 

costs calculated in (Equation 2.19). After updating the velocity of the particle and calculating 

the sigmoid (Equations 2.20, 2.21, and 2.22), we compare the rand () value to  and 

then decide if each position bit value will be switched from 0 to 1 or vice versa, or will remain 

unchanged (Equation 2.23). These bit changes refer to manipulations in adaptation decisions. 

 

  (2.20) 

 

  (2.21) 

 

  (2.22) 

 

 
 

(2.23) 

 

 ,  and rand () are random numbers in the range [0,1],   and  are positive constants, 

and  is the inertia weight which describes the effect of the previous velocity on the new one.  

 is calculated and updated in each iteration using the following formula: 

 

  (2.24) 

 

Typically, = 0.9, =0.4; t is the current iteration number;  is the maximum 

number of iterations. 
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2.5.5 CRO-NBPSO algorithm 

A good optimization technique should perform well at both global (exploration) and local 

(exploitation) searches. In this section, we implement an algorithm based on balanced local 

and global search. The idea is inspired by (Nguyen, Li, Zhang, & Truong, 2014). This 

algorithm combines the PSO’s strong global search ability with the CRO’s local search 

performance. Contrary to (Nguyen et al., 2014), we combine CRO with a binary version of 

PSO and apply the technique to solve the resource allocation problem. We re-use the same 

CRO collision operators described in section 2.5.3 and the same objective function (Equation 

2.19). However, CRO’s global search operators (Decomposition and Synthesis) are replaced 

by the Binary PSO algorithm described previously. To the best of our knowledge, we are the 

first to adopt such a combination technique (CRO - binary PSO) to address this research 

problem. 

 

Contrary to CRO, the population size in this technique doesn’t vary through iterations. Each 

molecule represents a particle at the same time. All parameters related to CRO’s global 

operators are removed, and new parameters are added including PSO parameters and a control 

parameter ɣ. Figure 2.1 shows a modified flow chart of the algorithm (Nguyen et al., 2014).  

 

In each iteration, a random molecule is selected from the population. Then we compare its 

number of hits to ɣ. The number of hits means the number of times this molecule has undergone 

collisions (On-wall ineffective collision, Inter-molecular ineffective collision). According to 

the comparison result between its MolHits and ɣ, we decide whether the molecule will be 

manipulated by PSO or by CRO collisions. In the case of CRO manipulation, there are two 

types of collisions. To choose one of them, a random number r in the range [0,1] is compared 

to CollRate. If r is larger than CollRate, Inter-molecular ineffective collision is triggered, and 

the molecule will collide with another one randomly chosen. Otherwise, On-wall ineffective 

collision will take place. Each time the molecule collides, its MolHits increase by one. When 

its MolHits become higher than ɣ, PSO equations are applied to manipulate the molecule’s 

structure and its MolHits are reset to zero. 
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Figure 2.1  Flow chart CRO - Binary PSO 
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2.6 Experiments 

2.6.1 Experimental design 

In this study, we sequentially implemented an ILP model, NSGA-based, CRO-based, BPSO-

based, and CRO_BPSO decision-making algorithms to dynamically find the optimal resource 

adaptation techniques for the service function chains in different scenarios. The algorithms 

were tested on a machine with an 8×Intel core i7-7700 CPU processor, 15.5 GB of RAM, and 

Ubuntu 18.04.2 LTS 64-bits. All programs were written using Python and executed on 

PyCharm IDE. NSGAII was implemented based on the Platypus Library 

(https://github.com/Project-Platypus/Platypus). Gurobi was used to solve the ILP formulation 

and find the exact solution to the problem. Due to the long convergence time required by the 

ILP approach and to compare the performance of our heuristic algorithms in finding a near-

optimal solution, we limited the network size to 20 servers. The servers each have 16 CPU 

cores and peak and idle power consumption of 135W and 93.7W, respectively. We assumed 

that the average CPU utilization of servers is around 20% in their common state. Additionally, 

they consume 70% of their peak energy consumption in their idle state (Basmadjian, 

Niedermeier, & De Meer, 2012)(Hsieh, Liu, Buyya, & Zomaya, 2020). We generated the 

Table 2.2  Meta-Heuristic Parameters 

 

NSGAII 
Mut_rate Cross_rate    

0.3 0.8    
 

CRO 
InitialKE CollRate KELossRate α β 

100 0.2 0.2 100 100 

NBPSO   w   

2 1 (Eq. 2.24) 6  
CRO-

NBPSO 
ɣ     

2     
Common 

criteria 
Popsize     

100 100    

Mut_rate = Mutation rate; Cross_rate = Crossover rate; Popsize = 
population size; = maximum number of iterations 
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network topology using NetworkX library and set the delays on the links connecting the servers 

randomly between 0.01 and 0.06 seconds.  

 

Moving on to the virtual network side, we varied the incoming number of SFC requests 

between 5 and 20 chains, and the SFC sizes between 3 and 10 VNF instances. The SFCs were 

generated using the same library NetworkX and initially placed in the infrastructure randomly. 

Each VNF in an SFC initially has one CPU core each. Both linear and non-linear SFC 

topologies were considered. Also, one load balancer was added to the network to balance the 

traffic between the VNF instances in the case of horizontal scaling. The parameters of our 

meta-heuristic algorithms are summarized in Table 2.2. Note that CRO-NBPSO takes as input 

the parameter ɣ as well as all NBPSO parameters and CRO parameters except α and β related 

to global search. It is worth mentioning that each experiment was repeated 10 times and we 

report the average results. Table 2.3 represents the worst or the highest standard deviation of 

the results of each algorithm in each test scenario. 

Table 2.3  Worst Standard Deviation obtained 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

NSGAII 2.145 2.001 1.671 1.918 
CRO 0.213 0.243 0.281 0.248 

NBPSO 0.174 0.128 0.151 0.119 
CRO-NBPSO 0.318 0.245 0.251 0.291 

 

2.6.2 Implementation 

We evaluated the performance of our algorithms based on the cost functions defined in section 

2.4, including, CPU utilization (Eq. 2.12), energy consumption (Eq. 2.13), and end-to-end SFC 

Latency (Eq. 2.18). Moreover, we compared their execution time to find solutions and the total 

number of servers used to adapt the requests received.  We chose the following test cases for 

the assessments: 
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Scenario 1: in this scenario, we compared the performance of our algorithms while increasing 

the number of incoming SFC requests. We assumed that all SFC requests received consist of 

linear topologies of 5 VNF instances each. The number of incoming SFC requests was varied 

between 5 and 20 chains  

 

Scenario 2: it is similar to scenario 1 in receiving 5 to 20 SFC requests for resource adaptation. 

However, the SFCs have non-linear graphs of connected VNFs (5 VNFs each). 

 

Scenario 3: we used this scenario to compare the effectiveness of our algorithms while 

receiving SFC chains of different sizes. For this reason, we set the number of incoming requests 

to 10 SFCs and varied the SFC sizes between 3 and 10 VNF instances. All SFCs in this scenario 

consist of linear graphs. 

 

Scenario 4: in this scenario, we combined both linear and non-linear SFC requests. We varied 

the number of requests between 4 and 20 chains of 5 VNFs each, with approximately 50% of 

them being linear SFCs and 50% non-linear. Table 2.5 illustrates detailed results of 

performance metrics for many test cases including the number of SFC requests received and 

the SLO delay threshold (D) in each. To represent more testing results and confirm our 

observations, we chose different test cases than previous scenarios. 

All these scenarios were tested in the same test environment, including the physical and virtual 

network characteristics described in the previous sub-section. Note that our implementation is 

not limited to these scenarios, because our algorithms can accept a mixed set of linear and non-

linear SFCs of different sizes. But we selected the testing scenarios described above to compare 

Table 2.4  Latency Thresholds in scenarios 1, 2 and 3 
Scenarios 1 & 2 Scenario 3 

Number of SFCs Thresh. SFC Sizes Thresh. 

5 0.25 3 0.4 

10 0.45 5 0.45 

15 0.5 7 0.7 

20 0.6 10 0.9 

Thresh = SLO latency threshold in seconds. 
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the performance of our algorithms easily and clearly. After performing many experiments with 

different latency thresholds in each study case, we adopted the thresholds given in Table 2.4 

for scenarios 1, 2 and 3, and Table 2.5 for scenario 4. For scenario 3, we had to set higher SLO 

thresholds than other scenarios, because the SFC chains are longer (higher SFC size). In other 

words, due to the higher number of VNF instances connected linearly, the end-to-end latencies 

of SFCs increased and therefore we needed to increase the latency thresholds. In our tests, we 

also assumed that it takes one second to scale or migrate a VNF instance, but this input value 

can be changed easily. In the next sub-sections, we discuss the experimental results obtained 

in the testing scenarios and illustrated by figures 2.2 to 2.7 and Table 2.5. Note that in these 

figures, scenario 1 corresponds to the left-side figure, scenario 2 to the middle one, and scenario 

3 to the right-side one. 

 

2.6.3 Results and discussion 

2.6.3.1 Execution time 

 

Through the experiments, we compare the runtime taken by the algorithms to find a solution 

for the resource adaptation requests. It is worth mentioning that for the meta-heuristic 

algorithms, the total time includes both (a) the population initialization process, and (b) the 

solution searching process over 100 generations. Based on the results obtained in Figure 2.2, 

we can see the big difference in time between ILP computation and all meta-heuristic 

algorithms. For some cases, while the ILP takes about hundreds and maybe thousands of 

seconds to generate a solution, the metaheuristics (specifically NSGA, CRO, and CRO-

NBPSO) run for a few seconds and even less than 1 second to solve the problem. NBPSO has 

the highest execution time among the meta-heuristics. We mention that when we increased the 

SFC size to 10 VNFs in scenario 3, the ILP approach ran for a long time (many hours) in the 

case of 10 incoming requests, which prevents us from illustrating it in the graph. However, 

NSGA, CRO, CRO-NBPSO, and NBPSO could normally find a solution for this case in 2.54, 

2.25, 2.7, and 36.15 seconds respectively. For this reason, we argue that the ILP approach is 

not suitable to solve the dynamic resource adaptation problem. A clearer view of NSGA, CRO, 
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and CRO-NBPSO runtime is given in Figure 2.3. According to their results, CRO has the 

lowest execution time in most cases. We argue that this is quite normal as the non-domination 

optimization feature of NSGA requires additional time for the searching process, which is not 

the case for CRO. Also, the high computation time taken by the NBPSO algorithm increases 

the runtime of the CRO-NBPSO.  

 

Another aspect to clarify is the significant variation of the algorithm runtime, depending on the 

scenario. We can notice that a higher number of SFC requests did not necessarily result in a 

higher execution time. Time is affected by the SLO latency threshold specified in each case. 

Targeting a stressful latency threshold increases the execution time of the algorithms to search 

for a feasible solution and avoid SLO violation. We have selected a stressful latency in the case 

of 5 SFC requests for scenarios 1 and 2 to demonstrate this fact. Figures 2.2 and 2.3 show the 

high execution time of the algorithms when receiving 5 SFC requests and the targeted latency 

threshold is 0.25 seconds. Thus, a higher number of SFC requests, coupled with a low-pressure 

SLO threshold, can be adapted in a lower runtime than what is needed to adapt a few requests 

with a stressful one. Furthermore, in Table 2.5, the case of 8 SFC requests received is tested 

with two different latency thresholds (0.35 and 0.4 seconds). The time taken by the algorithms 

to find solutions when the threshold is 0.35 sec is higher than when it is 0.4 seconds. In other 

words, the execution time of the algorithms decreases while processing the same number of 

requests but with a higher latency threshold. 

 

Figure 2.2  Average runtime of the NSGAII, CRO, NBPSO, CRO-NBPSO and ILP 
algorithms in scenarios 1 (left-side fig.), 2 (middle fig.) and 3 (right-side fig.), respectively 
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Figure 2.3  Clearer view of the average runtime for NSGAII, CRO and CRO-NBPSO in 
scenarios 1, 2 and 3, respectively 

 

2.6.3.2 Solution accuracy 

 

Besides the execution time, we compare the quality of the solutions generated by our five 

approaches in terms of the total CPU utilization, the energy consumption, and the end-to-end 

delay/latency. Section 2.4 already explained how we calculated these costs. In addition to the 

objective values, we analyze the number of servers used to adapt the resources in the solutions.  

 

Regarding the CPU consumption, we can notice in Figure 2.4 the accurate performance of 

CRO, NBPSO, and CRO-NBPSO, as they generate solutions with CPU cost values very close 

to ILP solutions. They have approximately similar performance in terms of CPU consumption 

with slight differences. According to the detailed testing of scenario 4 in Table 2.5, NBPSO 

can achieve a little bit less CPU and power than CRO and CRO-NBPSO in almost all cases 

and even less than ILP when we increase the number of SFC requests (more than 4 SFCs).  For 

its part, NSGA has higher CPU utilization, as compared to the other approaches. Similarly, 

CRO, NBPSO, and CRO-NBPSO exhibit approximately similar performance to the ILP 

model, while minimizing the energy consumption, as shown in Figure 2.5. Although NSGA 

exhibits the highest power consumption, it converges toward the CRO and ILP solutions while 

adapting 20 requests in scenarios 1 and 2 and adapting requests of 10 VNF instances in scenario 
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3. Table 2.5 also shows the high CPU and power consumption of NSGA compared to the other 

approaches in scenario 4. The difference in power consumption between NSGA and the others 

decreases with the increase in the number of requests. By adapting 20 SFCs, NSGA consumes 

87.706% of power while ILP, CRO, NBPSO, and CRO-NBPSO consume 86.724%, 86.948%, 

86.653%, and 86.916% respectively. 

 

Conversely to the previous objective functions, Figure 2.6 and Table 2.5 show the ability of 

NSGA to generate solutions with minimal latency cost versus ILP and other meta-heuristics. 

In the second place, CRO, NBPSO and CRO-NBPSO can achieve lower latencies than ILP in 

many test cases and similar latency in some cases. For instance, they can considerably 

overcome the ILP in the second test scenario in Figure 2.6 while increasing the number of non-

linear SFC requests. Table 2.5 also shows many cases where these algorithms can achieve 

lower latency than ILP such as testing 4 and 16 SFCs. Comparing these three meta-heuristics, 

they have variable and competitive performance in terms of latency. CRO-NBPSO achieves 

lower latency than CRO in scenario 3-Figure 2.6 while increasing the SFC Size. NBPSO has 

sometimes slightly higher latency compared to CRO and CRO-NBPSO, but it converges 

towards them at the end. Table 2.5 also shows that NBPSO can converge and overcome the 

latencies provided by CRO and CRO-NBPSO when increasing the number of requests (e.g., 

20 SFCs). Note that the better performance of the metaheuristics algorithms in terms of latency 

compared to ILP can be attributed to the help from the server selection strategy used in their 

implementation. This strategy is described in section 2.5, “Solution encoding”. In contrast, it 

is not the case in ILP, as nothing there prioritizes latency minimization. 

 

Concerning the number of servers, we notice that all meta-heuristics usually use the same 

number as the ILP model in their solutions. However, according to Figure 2.7 and Table 2.5, 

NSGA sometimes involves an additional server, and rather, converges to operate the same 

number as the other approaches, while increasing the number of VNFs to be adapted. It is 

important to mention that the server involved in many adaptation decisions (HS, VS, and M) 

was counted once. For example, migrating an instance does not necessarily increase the 
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number of servers used unless its destination sever has not been previously chosen for another 

decision. 

 

To summarize, the experimental results confirm that the time to solve ILP models renders ILP 

not suitable for the dynamic resources adaptation of VNFs. On the other hand, they show that 

the meta-heuristic algorithms can provide solutions close to optimal in a significantly shorter 

amount of time. CRO first and NSGA second are the fastest in generating solutions while 

NBPSO is the slowest. In terms of objective functions, NSGA has a little bit higher resource 

and power consumption than others but can provide solutions with minimal end-to-end latency. 

CRO, NBPSO, and CRO-NBPSO perform close to ILP in terms of CPU and energy 

consumption while satisfying the latency tolerance threshold. They also achieve the same 

latency as ILP in some cases and lower latency in other cases depending on the testing scenario 

and the number of VNF resources to adapt. NBPSO provides slightly lower CPU and power 

consumption than CRO and CRO-NBPSO. It also has a little bit higher latency compared to 

them in some cases, but it converges towards them and can overcome them in terms of latency 

as the size or number of requests increases. Accordingly, depending on the service provider's 

optimization goals and priorities, the more suitable algorithm can be selected for resource 

adaptation. For example, if the priority is to strictly achieve the least end-to-end latency, NSGA 

can better serve this objective. If the priority is to reduce the resource utilization and energy 

expenditure as much as possible while meeting the latency tolerance threshold agreed in the 

SLO, other algorithms such as CRO, NBPSO or CRO-NBPSO can be used while considering 

their runtime. 
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Table 2.5  Scenario 4 test results 
Test case Performance metrics ILP NSGAII CRO NBPSO CRO-NBPSO 

4 SFCs 

D = 0.25 

secs 

CPU (%) 24.857 28.142 25.589 25.345 25.590 

Power (%) 48.995 55.425 52.424 52.342 52.424 

End-to-end latency (secs) 0.25 0.118 0.246 0.246 0.244 

Execution time(secs) 38.433 1.877 1.210 10.496 2.170 

Number of servers 14 15 14 14 14 

8 SFCs 

D = 0.35 

secs 

CPU (%) 39.174 42.099 39.382 38.190 39.174 

Power (%) 66.128 68.953 66.222 65.871 66.167 

End-to-end latency (secs) 0.35 0.229 0.341 0.35 0.349 

Execution time(secs) 47.426 1.771 1.424 15.225 2.328 

Number of servers 17 18 17 17 17 

8 SFCs 

D = 0.4 secs 

CPU (%) 38.812 41.894 38.879 38.121 38.949 

Power (%) 66.017 69.204 66.077 65.844 66.101 

End-to-end latency (secs) 0.4 0.243 0.384 0.4 0.392 

Execution time(secs) 23.186 0.528 0.366 9.720 0.660 

Number of servers 17 18 17 17 17 

12 SFCs 

D = 0.45 

secs 

CPU (%) 51.073 54.1195 51.036 50.101 50.991 

Power (%) 72.967 74.568 73.002 72.724 72.993 

End-to-end latency (secs) 0.44 0.311 0.424 0.433 0.426 

Execution time(secs) 48.608 0.539 0.486 20.762 0.926 

Number of servers 18 18 18 18 18 

16 SFCs 

D = 0.55 

secs 

CPU (%) 62.907 66.328 63.576 62.476 63.445 

Power (%) 79.779 81.200 80.061 79.740 80.019 

End-to-end latency (secs) 0.55 0.361 0.531 0.523 0.522 

Execution time(secs) 58.050 0.69 0.556 29.025 1.014 

Number of servers 19 19 19 19 19 

20 SFCs 

D = 0.6 secs 

CPU (%) 75.078 78.124 75.571 74.507 75.456 

Power (%) 86.724 87.706 86.948 86.653 86.916 

End-to-end latency (secs) 0.55 0.383 0.539 0.533 0.544 

Execution time(secs) 66.918 0.756 0.628 35.282 1.582 

Number of servers 20 20 20 20 20 
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Figure 2.4  Comparison of the average CPU utilization for NSGAII, CRO, NBPSO, CRO-
NBPSO and ILP in scenarios 1, 2 and 3, respectively 

 

Figure 2.5  Comparison of energy consumption for NSGAII, CRO, NBPSO, CRO-NBPSO 
and ILP in scenarios 1, 2 and 3, respectively 

 

Figure 2.6  Comparison of the average end-to-end delay/latency for NSGAII, CRO, NBPSO, 
CRO-NBPSO and ILP in scenarios 1, 2 and 3, respectively 
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Figure 2.7  Comparison of the average number of servers used by the NSGA, CRO, NBPSO, 
CRO-NBPSO and ILP in scenarios 1, 2, and 3, respectively 

 

2.7 Conclusion 

In this article, we target the issues related to dynamic resource adaptation for service chains 

hosted in the cloud. We have proposed multi-objective metaheuristic-based approaches to 

dynamically find the optimum resource adaptation decisions that satisfy service needs while 

minimizing the cost metrics. These approaches are based on the Genetic algorithm NSGAII, 

Chemical Reaction Optimization (CRO), Binary Particle Swarm Optimization (BPSO), and 

the combination CRO_BPSO.  Our proposal enjoys several advantages, namely: (1) it 

considers different potential resource adaptation techniques (Horizontal scaling, Vertical 

Scaling, and Migration) and dynamically selects the best that fulfills request demands 

according to traffic fluctuations; (2) its idea is generic enough to be used in any virtualized 

system or data center architecture; (3) it tackles SFCs of different sizes and topologies, 

including linear and non-linear ones; (4) it finds a trade-off between a set of cost metrics, such 

as energy consumption, SLO violation, and CPU utilization. 

 

The experimental results show the effectiveness of the proposed algorithms in generating 

convenient adaptation solutions for incoming requests according to the network environment 

and imposed constraints. Additionally, the meta-heuristic algorithms demonstrate their ability 
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to approximate the ILP performance with a much shorter runtime. Concerning the 

metaheuristics techniques, we notice several observations. CRO had a lower execution time 

than other meta-heuristics in almost all cases while NBPSO had the highest. CRO-NBSO and 

NBPSO had competitive efficiency in terms of objective functions versus CRO. NSGAII 

sometimes had a little bit higher CPU utilization and Power consumption than other meta-

heuristics. However, it could find feasible solutions with the shortest end-to-end delay 

compared to them and ILP. We also notice that the pre-specified SLO latency threshold had a 

significant influence on the results, especially on the algorithm’s runtime. 

 

For future work, we intend first to optimize our algorithms and ILP model to support multi-

resources such as memory, disk, I/O, etc. instead of CPU only specifically in our constraints 

and Power consumption computation.  Second, we will extend our algorithms by targeting 

more cost metrics, such as network bandwidth utilization, and constraints related to VNF 

dependencies that may be agreed to in the SLA (e.g., affinity and anti-affinity constraints). 

When two consecutive VNFs of the same SFC have a common affinity constraint, it means 

that these VNFs exchange a lot of loads and need to be located on the same server. In contrast, 

an anti-affinity constraint between two VNFs means that they are intensive-load VNFs, and 

therefore need to be hosted on different servers. Considering such constraints and metrics will 

influence the resource adaptation decisions suggested by our algorithms. Third, we want to test 

our algorithms while combining them with other VNF placement strategies to select 

destination servers for the adaptation decisions taken. Finally, we intend to combine our 

algorithms with a resource prediction technique to anticipate future resource demands and 

avoid delays in resource adaptation. 
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3.1 Abstract 

Reducing energy consumption and optimizing resource usage in large cloud data centers is still 

an essential target for the current researchers and cloud providers. The state-of-the-art 

highlights the effectiveness of VM consolidation and live migrations in achieving reasonable 

solutions. However, most proposals consider only the real-time workload variations to decide 

whether a host is overloaded or underloaded, or to trigger migration actions. Such approaches 

may apply frequent and needless VM migrations leading to energy waste, performance 

degradation, and service-level agreement (SLA) violations. In this paper, we propose a 

consolidation approach based on the resource utilization prediction to determine the 

overloaded and underloaded hosts. The prediction method combines a Kalman filter and 

support vector regression (SVR) to forecast the host's future CPU utilization. Simulations are 

conducted on Cloudsim using real PlanetLab workloads to verify the performance of our 

proposal against existing benchmark algorithms. Experimental results demonstrate that our 

consolidation technique significantly reduces the SLA violation rate, number of VM 

migrations, and energy consumed in the datacenter. 

 

Keywords: Utilization prediction, Kalman filter, Support vector regression, VM 

consolidation, Cloud computing. 



68 

 

3.2 Introduction 

The large-scale deployment of cloud data centers has led to a dramatic increase in energy 

consumption and environmental pollutants. Implementing effective resource management in 

the Cloud has become an increasingly urgent issue to be addressed. The challenge consists of 

the dynamic workload fluctuations of the running applications which in turn causes a 

continuous variation in resource utilization of virtual and physical machines. Thus, the main 

objective in this research field is to reduce the energy consumed by these data centers and 

utilize their physical resources efficiently, while maintaining the performance of the hosted 

applications. According to the state-of-the-art, virtual machine (VM) consolidation is one of 

the most productive methods that can achieve this goal (Helali & Omri, 2021a)(Chaurasia, 

Kumar, Chaudhry, & Verma, 2021)(Zhou et al., 2020). At the same time, using live VM 

migration techniques (F. Zhang, Liu, Fu, & Yahyapour, 2018)(Noshy, Ibrahim, & Ali, 

2018)(Silva Filho et al., 2018), the VM consolidation strategy can be reinforced by hosting the 

active VMs on fewer physical machines (PMs) and switching off idle servers. This VM 

reallocation strategy should be employed dynamically to effectively redistribute load among 

the servers, enhance the cloud resources utilization and meet the time-varying resource 

requirements of the applications. 

 

The main concern when jointly addressing the VM consolidation and VM migration is to 

decide whether a host is overloaded or underloaded depending on the real-time VM workload 

fluctuations. Migrating VMs from overloaded hosts helps reduce SLA violations. Whereas, 

migrating VMs from under-utilized servers and then switching them into sleep mode avoids 

energy waste. Several proposals have considered only the current host state and resource 

utilization to take such decisions and trigger VM migrations. These approaches may lead to an 

aggressive consolidation with frequent needless migrations.  Excessively migrating the virtual 

machines from one host to another to satisfy their resource demands may affect their 

performance due to additional delays such as migration time and downtime. This decrease in 

Quality-of-service (QoS) may violate the service level agreement (SLA) and cause some 

penalties. 
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Consequently, more efficient solutions are needed to correctly make decisions regarding VM 

migrations. In other words, overloaded and underloaded hosts should be reliably determined 

to limit the frequency of VM migrations. Simple reactive methods that consider only the 

current CPU utilization may lead to unreliable VM migration decisions. Sometimes, the CPU 

utilization of the server may exceed a max threshold at the current time, but the load rapidly 

decreases in the next time slots. In such a situation, the host should not be considered 

overloaded and there is no need to migrate VMs from this server to release resources. Figure 

3.1 borrowed from (Hieu, Francesco, & Yla-Jaaski, 2020) illustrates an example of a CPU 

utilization trace of a server measured every 5 minutes over 24 hours. If we assume that the max 

threshold is set to 80%, we can recognize many false overloading detection points (marked by 

small circles) in which the reactive approach will make inefficient VM migration decisions 

and eventually increase costs. For this reason, it is crucial to consider both current and future 

utilizations of the server before taking such decisions. In this paper, we propose a prediction-

based VM consolidation approach that predicts the future host state and assigns VMs to hosts 

based on both current and near-future resource utilization. For example, in the trace of Figure 

3.1, our method will report an overloading state for the server only in the period between 600 

and 670 minutes (marked by a rectangle) because its utilization exceeds the max threshold in 

both the current and future period of time.  

 

To do so, in this work, a multi-step prediction model that combines Kalman filter with Support 

Vector Regression (SVR) is used to forecast the host’s future CPU utilization. Then, a VM 

consolidation framework based on prediction is presented to decide the host state (overloaded 

or underloaded) and then performs the required VM migrations. Our main contributions can 

be summarized as follows: 

 

1. An efficient multi-step-ahead workload prediction method called K-SVR based on 

Kalman Filter and Support vector regression to forecast the host's future CPU 

utilization is proposed. Kalman filter is integrated for data pre-processing to reduce 

prediction error.   
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2. A dynamic VM consolidation approach is combined with the proposed prediction 

model, which consists of host overloading and underloading detection algorithms. In 

particular, the workload prediction model is distributed on all hosts to dynamically 

anticipate the future utilizations of each host according to its historical data. Then, 

overloading and underloading detection algorithms decide whether a host is 

underloaded or overloaded depending on its current and predicted utilization. 

According to the decisions taken about the host state, VM live migrations are 

performed. 

3. A trade-off between SLA violation and energy consumption is pursued while 

minimizing the number of VM migrations and the runtime of resources allocations. 

4. A comparative study is provided about the impact of prediction windows size (WS) on 

the performance of our consolidation approach in terms of SLA violation and energy 

consumption. This analysis shows the possibility to select the value of WS according 

to the deployment constraints or the objective priorities of the service provider. The 

service provider may aim for minimum power consumption, or to reduce SLA violation 

as much as possible, or save energy while satisfying a tolerance threshold agreed upon 

in the SLA. Host overloading and VM migrations may degrade the performance of the 

service and violate some agreements related to the quality of service and service 

availability. Respecting these constraints is mandatory to avoid penalties.  

5. An analysis study is carried out on the energy consumption resulting from the execution 

of the simulation of our consolidation approach and our prediction technique and 

compared to existing benchmarks. Energy measurements are performed using the 

JoularJX tool(Noureddine, 2022). 

6. Several simulations are conducted on Cloudsim using PlanetLab real-world workloads 

to validate the effectiveness of our proposed approach compared to the existing state-

of-the-art algorithms. 
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The rest of the paper is organized as follows: Section 3.3 reviews the literature on resource 

utilization prediction and dynamic VM consolidation in the cloud. Section 3.4 explains in detail 

the prediction model proposed. Section 3.5 describes the utilization prediction-aware 

consolidation approach and analyses its time complexity. Section 3.6 presents our experimental 

setup, discusses the results obtained and compares the performance of our proposal against 

existing approaches. Finally, section 3.7 summarizes the paper and highlights our future 

directions for this work.  

 

3.3 Related work 

 Resource management and reallocation in Cloud is a wide research problem that has been 

divided into sub-problems and addressed by researchers from various perspectives (Silva Filho 

et al., 2018)(Awad, Kara, & Edstrom, 2022) (B, Gounaris, & Sioutas, 2016) (Nadgowda, 

Suneja, & Kanso, 2017)(Taherizadeh & Stankovski, 2018)(Nadgowda, Suneja, Bila, & Isci, 

2017)(Hoseinyfarahabady, Taheri, Zomaya, & Tari, 2021).  

 

VM consolidation is a resource reallocation problem that relies on replacing VMs in the 

physical infrastructure in order to satisfy their resource needs while consolidating their 

workloads on a fewer number of physical machines. Research works tackle the VM 

consolidation problem from various perspectives such as VM placement (Bharanidharan & 

Figure 3.1  CPU utilization trace of a cloud server 
Taken from Hieu et al. (2020, p. 190) 
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Jayalakshmi, 2021)(Zhihua Li, Yu, Yu, Guo, & Chang, 2020)(Silva Filho et al., 2018), 

overloading and underload detection (Beloglazov & Buyya, 2012) (Hsieh et al., 2020), VM 

selection for migrations (Melhem, Agarwal, Goel, & Zaman, 2017)(Moghaddam, Piraghaj, 

O’Sullivan, Walker, & Unsworth, 2018) etc. In our paper, we focus mainly on host overload 

and underload detection. This decision-making problem is challenging and mainly sensitive to 

the workload type and its variation over time. Several proposals decide whether a host is 

overloaded or under-loaded by comparing its current resource utilization to two static 

thresholds (hot and cold thresholds). For example, XIAO et al. (Xiao et al., 2019) present a 

VM consolidation method based on thresholds and an Ant Colony system. The upper threshold 

is set to 80% and the lower to 40%. If the current CPU utilization exceeds 80%, the host is 

overloaded. Whereas, if it is lower than 40%, the host is considered under-utilized. Ant Colony 

system is used to map the migrated VMs to appropriate destination hosts. Other researchers 

suggest the usage of dynamic thresholds instead of static ones. According to these approaches, 

static thresholds are not effective methods to deal with the workload dynamicity in cloud data 

centers. For instance, Beloglazov et al. (Beloglazov & Buyya, 2012) present two adaptive 

threshold methods based on a statistical analysis of the host historical data, namely, 

Interquartile Range (IQR) and Median Absolute Deviation (MAD). In this case, the current 

utilization of the host is compared to thresholds computed dynamically, to evaluate its state 

over time. On the contrary to these approaches, several works propose predictive dynamic VM 

consolidation algorithms. Indeed, relying on the current host state only to make decisions 

regarding VM migrations may lead to unreliable decisions with excessive needless migrations. 

Frequent VM migrations can affect their performance, impose additional delays and downtime, 

and therefore risk more SLA violations. Hence, prediction techniques are widely investigated 

in the pertinent literature to anticipate the future load variations (Benmakrelouf, Kara, Tout, 

Rabipour, & Edstrom, 2019 ; Qiu, Zhang, & Guo, 2016), (Abdullah, Li, Al-Jamali, Al-Badwi, 

& Ruan, 2020) and to adapt resources in the cloud according to the future resource demands 

(Radhika & Sadasivam, 2021). In (Amiri & Mohammad-Khanli, 2017) a detailed survey of 

application prediction schemes is presented, including the different prediction models 

proposed in the state of the art, their main characteristics, and challenges. In general, in 

predictive consolidation techniques, a workload forecasting model is used, and then VM live 
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migration is triggered considering the predicted host state, or both its current and future state. 

For example, Hsieh et al. (Hsieh et al., 2020) present a utilization prediction-aware VM 

consolidation strategy. In particular, a Gray model and Markov chain are combined to forecast 

the short-term future CPU utilization of hosts. Then, overloaded and under-utilized hosts are 

determined by comparing their current and estimated CPU utilization to given thresholds. A 

dynamic threshold based on MAD is used for overload detection, and a static one is applied to 

detect underload states.  Li et al. (L. Li, Dong, Zuo, & Wu, 2019) employ an SLA and energy-

aware consolidation process based on the Robust Simple Linear Regression (RobustSLR) 

prediction model. This model anticipates the host's future CPU usage, and it amends the 

prediction by adding the error directly or indirectly to the prediction value. If the historical data 

length is not sufficient to predict, the current CPU utilization of the host is compared to a static 

threshold to verify whether it is overloaded or not. Otherwise, the predicted CPU utilization is 

adopted to make the decision. Ding et al. (Ding et al., 2020) propose a performance-to-power-

ratio (PPR) aware VM consolidation approach. Their short-term workload prediction model 

consists of the moving average (MA) and the interquartile range (IQR) techniques. Host 

overload detection is based on the available residual computing capacity (RACC) evaluation 

model. The RACC of a host is calculated based on its power consumption and PPR. The RACC 

of the host with the maximum PPR is called optimum RACC and is used as the threshold to 

detect overload. That is to say, a host is considered as overloaded if its RACC is lower than 

the optimum RACC. Underload detection relies on a multi-criteria Z-score algorithm in which 

a score is calculated for each host based on its CPU utilization and PPR, and so the host with 

the highest score (minimum CPU usage and PPR) is declared as under-utilized. Unlike 

resource utilization prediction methods, Li et al. (L. Li et al., 2018) rather predict the future 

host states (overloaded or not) using Naïve Bayesian classifier. However, underloaded servers 

are simply selected as the hosts with the minimum utilization compared to the others. Their 

main target is the reduction of SLA violation level and power costs. Mahdhi et al. (Mahdhi & 

Mezni, 2018) suggest predicting the host states based on the resource utilization history of 

VMs and the past VM migration traffic. They create a weighted graph to model the history of 

migration traffic between hosts. A Kernel Density Estimation (KDE) technique is used to 

forecast the future resource usage of each VM, and an AKKA framework is adopted as actor-
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based to allow exchanging information about the host’s states. The host is detected as 

overloaded when one of its estimated requested resources (CPU, RAM, and Storage) exceeds 

the available capacity. Otherwise, it is considered under-loaded. The new placement for the 

migrated VMs is then decided according to the migration history. Shao et al. (Shao et al., 2020) 

discuss a dynamic VM consolidation technique based on a Gray model and an improved 

discrete particle swarm algorithm (GM-DPSO). Their objective is to minimize energy 

consumption, SLA violations, and number of migrations. The Gray prediction model is used 

for load detection, while an improved discrete particle swarm algorithm is employed for the 

VM placement process. A host is determined to be overloaded if both the current load rate and 

the predicted load rate are higher than the threshold. An adjustment mechanism based on MAD 

is adopted to dynamically modify the upper threshold according to the load condition. 

Regarding underload detection, the host with the lowest utilization rate is selected at each time 

step. Finally, Witanto et al. (Witanto, Lim, & Atiquzzaman, 2018) implement an adaptive 

selector based on neural network to select the appropriate consolidation technique adaptively 

according to the cloud provider’s goal priority and environment parameters. It chooses between 

the following four classes: (1) No migration; (2) Migration only for underloading; (3) 

Migration for underloading and overloading, in this case, local regression (LR) is used for 

detection and Guazzone for VM placement; (4) Migration for underloading and overloading, 

using LR for detection and Shi-AC for VM placement. In contrast to the predictive 

consolidation approaches previously discussed, Hieu et al. (Hieu et al., 2020) estimate the long-

term resource utilization of servers using multiple linear regression. They define a server as 

overloaded if its multiple predicted resource usage exceeds a hot threshold  ( ; and 

as underloaded if its multiple predicted resource utilization is equal or less than its current 

resource usage ( ). Sometimes, the workload trace of a host may occur false hot 

increase detection points, and the load rapidly decreases in the short-term future. For this 

reason, adopting a multi-step or a long-term prediction model to anticipate a sequence of future 

host utilization values can be helpful to avoid unreliable decisions. Khoshkholghi et al. 

(Khoshkholghi, Derahman, Abdullah, Subramaniam, & Othman, 2017) develop an iterative 

weighted linear regression method that uses two utilization thresholds to detect overload 

situations. This strategy does k iterations to find K future values of host utilization. A host is 
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declared as overloaded if its predicted utilization at step t+1 is higher than the total capacity 

(100%). However, if other future values in host utilization (steps t+2 to t+k) are detected to be 

higher than the total capacity, the host is considered under pressure and does not accept any 

new VM. For underloading part, they propose an algorithm using vector magnitude squared of 

multiple resources. The host is underloaded when its CPU, RAM, and BW utilizations are 

lower than a threshold. The lower threshold is calculated as the lower quartile of the previous 

host utilizations.  

 

Resource reallocation and workload prediction are not limited to VMs. With the remarkable 

evolution of Cloud computing solutions for hosting services, from the usage of virtual 

machines (VMs) to containers, and recently to serverless platforms, more resource 

management mechanisms are needed and still under study. Serverless platform benefits from 

many advantages over the IaaS cloud (Rajan, 2018)(McGrath & Brenner, 2017). First, it allows 

users to deploy highly scalable containerized services decomposed into a workflow of event-

driven stateless functions. Second, it offloads all management responsibilities to the cloud 

provider, including resource provisioning, scheduling, scaling, etc., so organizations and 

developers do not have to worry about these issues. Third, unlike the IaaS cloud where users 

are charged for the number of rented VMs and their resources even if they are idle or unused, 

in serverless platforms users are charged granularly for the compute and storage resources 

needed to execute their computing tasks. This fact reduces the hosting costs but complicates 

the billing estimation. Serverless billing models are multi-dimensional because a set of 

functions are deployed individually and executed over heterogeneous resources. This 

performance variance exhibits costs variance which motivates some researchers to introduce 

tools for performance characterization, runtime prediction, and workload costs estimation for 

Function-as-a-Service (FaaS) platforms (Cordingly, Shu, & Lloyd, 2020). In (Apostolopoulos, 

Tsiropoulou, & Papavassiliou, 2019), the authors propose a distributed approach to determine 

the optimal resource allocation strategy for users by helping them decide whether to offload 

their computing tasks to virtual machines and/or serverless functions offered in the social cloud 

computing environment. In (Bhattacharjee et al., 2019), the authors present a distributed and 

scalable resource management system called Barista for serverless computing, specifically for 
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deep learning prediction services. The objective is to manage the compute resources for these 

services while maintaining their SLO requirements (e.g., required prediction latency). Their 

methodology includes: (a) an online rolling window based forecasting technique to predict 

workload based on historical data; (b) a greedy heuristic to identify suitable compute resource 

configuration; (c) an intelligent agent to proactively scale container resources horizontally and 

vertically based on predicted workload. In (Ali, Pinciroli, Yan, & Smirni, 2018), the authors 

focus on burstable performance instances, which are low-cost instances that can ramp up their 

CPU performance using spare resources to treat a burst of heavy load for certain amounts of 

time. These instances are typically used for applications like microservices that do not require 

consistently high computational power but may need higher computational power from time 

to time to satisfy a heavy load for a short time. In their work, they present an autonomic 

scheduling framework for burstable performance instances that can maximize the efficiency 

of the spare resources’ usage while meeting SLOs. In (Saha & Jindal, 2018), A resource 

management system for serverless cloud computing is suggested with the goal to improve 

memory allocation among containers. They built their solution on top of OpenLambda, an 

open-source serverless platform.  

 

In this article, we propose a novel multi-step-ahead workload prediction model that combines 

Support Vector Regression with Kalman filter. Kalman is used as data preprocessing step to 

improve the prediction accuracy. This proposal can be used to forecast any workload whether 

it is received by servers, VMs, containers, microservices, serverless functions, etc. In this work, 

we adopted and tested this prediction model to forecast the incoming workload of the servers 

for the purpose of estimating their future states. In addition, a predictive consolidation 

framework is represented to proactively make the necessary resource management decisions 

and ensure that the SLOs are met. This framework is based on Overload and underload 

detection algorithms that consider both the current and the set of predicted CPU utilization 

values of hosts while making decisions.  Moreover, we present a comparative study about the 

selection of window size value according to the deployment constraints (e.g., meet the required 

quality of service, avoid crossing tolerance thresholds agreed in SLA) and the cloud provider’s 

objective priority (save energy or decrease SLA violation). Hence, we aim to find the best 
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trade-off between energy consumption and SLA violation, while minimizing the number of 

VM migrations and the execution time of the resource re-allocation process.  Furthermore, an 

analysis study is performed to compare the energy consumption resulting from running the 

simulation of our consolidation approach against existing benchmarks. 

 

Serverless platforms allow users to deploy highly scalable and event-driven applications that 

can be decomposed into a set of short-running and stateless functions. These functions are 

typically hosted on a set of containers running on a cluster of VMs. For example, Kubernetes 

host containerized applications into PODs which are allocated to nodes cluster. A POD consists 

of a group of containers, while a node can be a virtual machine. Thus, A workload 

consolidation technique or resource management requirements may involve the need of 

migrating workloads from one VM to another in the same cluster, and even from one cluster 

to another. The proposed consolidation framework can be optimized to support the migration 

of PODs hosting microservices or serverless functions from one VM to another while taking 

into account the deployment constraints and SLO metrics of these functions. 

 

3.4 Prediction strategy 

In this section, we introduce a novel multi-step-ahead CPU utilization prediction model called 

K-SVR that combines Support Vector Regression (SVR) and Kalman Filter to proactively 

forecast the future CPU utilization of servers hosted in the cloud. We argue that both selected 

techniques are suitable for the dynamic cloud environment and the fluctuant loads in resource 

usage of hosted applications. Kalman Filter (Kalman, 1960)(Zhang-Jian, Lee, & Hwang, 

2013)(Kalyvianaki, Charalambous, & Hand, 2014) is originally developed to estimate time-

varying states in dynamic systems and is suitable for Cloud application’s load estimation. In 

our work, Kalman is adopted as a data pre-processing step to enhance prediction accuracy. It 

is used to filter the CPU historical data of the host s as shown in the pseudocode of 

Algorithm 3.1. Then, the data is divided into training and testing sets and SVR is used to 

perform multi-step ahead CPU load prediction.  represents the training data size and  is 

the number of prediction steps. At each time t, we predict n CPU utilization values for each 
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host using its historical data. Forecasting multiple values allows us to estimate the future trend 

in the CPU consumption of hosts and make the necessary resource management decisions 

before encountering serious issues (e.g., SLA violation). In the following, we introduce the 

working principles of the two aforementioned techniques. 

 

3.4.1 Kalman Filter 

Kalman Filter essentially provides estimates of unknown variables using a set of measurements 

observed over time. The evolution of the state  from time  to time  is defined in (1). 

 

  (3.1) 

 

This process model is paired with the measurement model given in (2). 

  (3.2) 

 

where  is the state transition matrix from step  to .  is a matrix that relates the optional 

control vector  to the state .  is a matrix that describes the relation between the state  

and the measurement . In our test experiment, there is no control input (B=0), and 

measurements are of the state directly ( =1). We assume that the state does not change from 

one time step to another ( =1).  and  are white noises and represent process and 

measurement noise respectively. They are random variables assumed to be independent of each 

other, with  and .  is the process noise covariance matrix, while 

 is the measurement noise covariance matrix. We assume that  and  are constant. 

 

The algorithm iteratively applies two phases of computation: prediction and correction. The 

prediction step projects the current state estimate ahead of time from  to . The correction 

phase adjusts the projected estimate by an actual measurement at that time. 

 

Prediction phase  (3.3) 

 (3.4) 
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Correction phase  (3.5) 

 (3.6) 

 (3.7) 

 

Where represents the priori state estimate at time k,  is the posteriori state estimate at 

time k,  denotes the priori estimate error covariance matrix, is the posteriori estimate 

error covariance matrix, and  is called the Kalman Gain matrix. Kalman gain illustrates the 

weight given to the measurements and the priori state estimate . A high gain means that the 

filter places more weight on the accurate measurements to estimate the state . Conversely, a 

low gain means that the state estimate mostly depends on the model predictions derived from 

the prediction phase .  

 

3.4.2 SVR regression 

Support Vector Machine (SVM) is a popular statistical learning technique widely used to solve 

classification problems in machine learning. Support Vector Regression (SVR) has the same 

principles as SVM, but it is developed specifically for regression problems. SVR is the 

methodology by which a function  is estimated using a dataset that trains the SVM. We 

treat CPU utilization prediction as a time series prediction problem. To forecast the future CPU 

values, the time series workload dataset is split into input and output vectors. Each input vector 

 represents a finite set of sequential CPU utilization measurements of these series. The output 

vector  includes the  observation, where n denotes the amount of historical data. Each 

combination ( , ) is used as a training point. Eq. (3.8) defines the regression prediction 

function.  

  (3.8) 

 

Where  is a mapping function (kernel function) to non-linearly map  from input space to 

multi-dimensional feature space. The Radial Basis Function (RBF) kernel is used for its easier 

computation and fewer parameters.  is the predicted value, w is a weight coefficient, and 
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b is a bias. The basic idea behind SVR is to construct a hyperplane (best-fit line) that has 

maximum data points. The key to achieve this goal is to find the flattest function that allows 

the error to remain within a threshold epsilon . The flatness of the weights can be measured 

by the Euclidean norm. Hence, the objective is to minimize the l2-norm of the coefficient 

vector (minimize ). Moreover, the error or the empirical risk  generated by the 

estimation process should be minimized. Thus, the overall objective is to reduce the regularized 

risk that combines the two sub-objectives previously explained as follows: 

 

 
 

(3.9) 

 

Where  

  (3.10) 

 

 is calculated using the -insensitive loss function .  and C are user-defined parameters. 

C is a constant used to control the trade-off between the empirical and regularized risk. Finally, 

Slack variables,  and , are introduced to estimate the errors for underestimation and upper 

estimation (above and below ). Adding these variables optimizes the equations as displayed 

in (3.11) and (3.12). 

 

 
 

(3.11) 

 

 
 

(3.12) 
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Algorithm 3.1  K-SVR prediction algorithm 

1: Input: , ,  
2: Output:    
3: /* Preprocess data */ 

 
5: /* extract and divide training dataset into X and Y*/ 

 
7:   
8: /* Train SVM model */ 

 
10: /* extract testing data */ 

 
 
 Return 

 

3.5 Prediction-aware consolidation approach 

According to (Beloglazov & Buyya, 2012), VM consolidation consists of four essential steps: 

(a) overloaded hosts detection; (b) underloaded hosts detection; (c) VM selection for migration 

and (d) VM placement. The workflow diagram presented in Figure 3.2, illustrates step by step 

how our predictive consolidation approach works. Specifically, it is executed periodically to 

optimize the reallocation and consolidate the resources. Firstly, it starts by detecting the 

overloaded hosts based on their resource usage prediction (Algorithm 3.2). To maintain the 

necessary QoS of running services and avoid SLA violation, some VMs from those overloaded 

hosts are chosen for migration (Algorithm 3.4). Then, new destination hosts are selected for 

the migrated VMs (Algorithm 3.5). If no active host with enough capacity is found by the 

placement algorithm, an inactive host is initiated to place the migrated VM. On the other hand, 

the underutilized hosts are also identified (Algorithm 3.3) and all VMs on those hosts are 

migrated to others if possible (Algorithm 3.5). Then, the idle hosts are switched to a low-power 

state to save energy. In this way, the VMs are consolidated into a minimum number of active 

hosts. In this article, we focus mainly on the first two parts of the consolidation problem (steps 

a and b). Precisely, we present overloading and underloading detection algorithms based on 

the prediction strategy discussed previously in section 3.4. In this section, we describe the 

different algorithms that constitute our VM consolidation framework, then we analyze its time 

complexity. 
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3.5.1 Overload detection algorithm 

The proposed overload detection technique is presented in Algorithm 3.2. It takes as input an 

active server , and outputs a Boolean decision to indicate whether this server is 

overloaded or not.  

 

The algorithm starts by obtaining the recorded CPU utilization history  of the server, 

its current utilization , the prediction window size ( ), the number of prediction 

steps ( ), and the upper threshold ( ). It is worth mentioning that the historical data is 

recorded at a 5-minute interval. To forecast , sufficient historical data is required 

to train the prediction model. If data is insufficient ( ), the decision 

is taken based on the current utilization only. Thus, the host is considered overloaded if its 

current CPU utilization is higher than the threshold ( ) (Steps 3-10). 

Otherwise,  are predicted using our time-series prediction mechanism K-SVR 

presented in section 3.4. In this case, the host is considered overloaded if the average of the 

predicted  CPU values  is higher than  (Steps 11-15). In another 

word, the server can be overloaded in two possible scenarios: (1) if it is overloaded in both the 

current and the future period of time (e.g., 

; or (2) it is currently operating normally but will be overloaded in the future period of 

time  (e.g., . According to the overload 

decisions taken by this algorithm, migration actions will be taken. Precisely, VMs will be 

selected from overloaded hosts and migrated to new destinations by the algorithms described 

in the following sub-sections. 
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Algorithm 3.2  Overload_detection 

1: Input:    
2: Output: Boolean decision if s is overloaded or not 
3: Get          
4: Get    
5: Get  ,   ,   O_          
6: if  Length ( <  then    
7:       if   then 
8:               
9:       end 
10: else 
11:          = K-SVR( , , )  
12:        if   Avg (  >  then  
13:               
14:        end 
15: end 
16: Return  

 

 

3.5.2 Underload detection algorithm 

The main objective of algorithm 3.3 is to identify the underloaded servers. Their identification 

will help us minimize the number of active hosts by switching under-utilized servers to a low-

power state. Thereby, the total energy consumption in the data center will reduce.  

Its input includes a set of active hosts , and its output is the detected under-utilized 

server. Note that the list of active hosts should exclude the overloaded hosts detected in 

algorithm 3.2. If no sufficient historical data is available for prediction, the under-utilized 

servers are simply those having minimum CPU utilization (Steps 6-9). Otherwise, the future  

CPU values are predicted by our K-SVR technique described in section 3.4, while taking as 

input the CPU historical data of the server, the prediction window size ( ), the number of 

prediction steps ( ), and the lower threshold ( ). Then, the server with an average of 

 lower than the threshold is considered underloaded (Steps 10-14).  
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Algorithm 3.3  Underload_detection 

1: Input:  
2: Output: Underloaded server U_server 
3: Get   ,   ,   U_      
4: U_server = NULL 
5: Get Length (  /*  */ 
6: if  Length ( <  then    
7:        U_server = min_Utilization_host( ) 
8:        Return U_server 
9: else 
10:     foreach  do    
11:         = K-SVR( , , ) 
12:        if   Avg (  <= U_  then  
13:            U_server =s 
14:            Return U_server  
15:        end 
16:    end 
17:  end 
18:  Return U_server 

 

 

3.5.3 VM migration and placement 

To move a VM from one host to another, we have adopted the pre-copy VM live migration 

algorithm. Migration time is calculated as the utilized RAM of VM divided by the available 

network bandwidth. The time taken to migrate a VM  can be formulated as 

. 

 

For VM selection and placement, we have reused the techniques proposed by (Beloglazov & 

Buyya, 2012) to perform a formal comparison between our approach and theirs. Precisely, to 

select the VMs to be migrated from an overloaded host, the Minimum Migration Time (MMT) 

is used. MMT selects the VM that has the least migration time, as calculated by the equation 

above, for migration. According to the formula, the VM that has the least RAM will also have 

the least migration time. The VM selection algorithm is presented in Algorithm 3.4. After 

selecting the candidate VM for migration among the set of VMs   hosted on the server s, it 
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checks if this server will remain overloaded after deallocating the selected VM or not. The 

function overloadedAfterDeallocation will simulate the VM deallocation from the server and 

call our overload detection algorithm (Algorithm 3.2) to verify the server state. If the server is 

still overloaded, another VM will be selected for migration. The output is the list of VMs to 

migrate from the overloaded server . 

Algorithm 3.4  MMT VM selection 

1: Input:    
2: Output: List vmsToMigrate 
3: While (true) do 
4:      Set min_ram = MAX 
5:      CandidateVM = NULL 
6:      foreach  do    
7:           ram = v.getRam() 
8:           if ram < min_ram then 
9:                 min_ram = ram  
10:                 CandidateVM =  
11:           end 
12:      end 
13:      vmsToMigrate.add (CandidateVM) 
14:      if overloadedAfterDeallocation (s, v) = false then 
15:           Break 
16:      end 
17:    end 
18: Return vmsToMigrate 

 

Once the VMs to be migrated are selected from all detected overloaded servers, the Power 

Aware Best Fit Decreasing (PABFD) placement strategy is applied to find a destination server 

for each migrated VM and then return the complete migration Map.  PABFD in Algorithm 3.5 

searches for each VM, a destination host that will be suitable in terms of resource capacity 

requirements (Step 8), will not become overloaded after hosting the target VM (Steps 9-11) 

and will have the least increase in its power consumption caused by this allocation. The 

function overloadedAfterAllocation simulates the allocation of the VM on the server and then 

calls our overload detection algorithm (Algorithm 3.2) to check its state after this allocation. 
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Algorithm 3.5  PABFD 

1: Input:   List vmsToMigrate 
2: Output: Migration Map 
3: foreach  do 
4:      minPower = Max 
5:      destinationServer = NULL 
6:      foreach  do 
7:         if s.isSuitableForVM(v) then 
8:              if overloadedAfterAllocation(v, s) then 
9:                   Continue 
10:              end 
11:              oldPower = s.getPower() 
12:              newPower = estimatePowerAfterAllocation(v, s) 
13:               powerDiff = newPower – oldPower 
14:               if powerDiff < minPower then 
15:                      minPower = powerDiff 
16:                     destinationServer = s 
17:               end 
18:          end 
19:     end 
20:     if destinationServer is not NULL then 
21:            migrationMap.add(v, destinationServer) 
22:     end 
23: end 
24: Return migrationMap 

Figure 3.2  Workflow diagram of the proposed VM consolidation approach 
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3.5.4 Complexity Analysis 

The overall VM consolidation algorithm is described in the diagram in Figure 3.2 and is 

presented in detail by Algorithm 3.6. It consists of two phases: (1) VM migrations due to 

overloading detection (Steps 2-8); and (2) VM migrations due to underloading detection (Steps 

9-25). In the first phase, the framework detects the overloaded servers, selects the VMs to 

migrate from these servers, and constructs the migration map by finding new destination 

servers for the migrated VMs. We have explained the algorithms responsible for each of these 

steps in the previous sub-sections. Once overloading solutions are found, we move to the 

second phase of underload detection. We exclude from our searching list, the overloaded 

servers and the destination servers chosen for migrated VMs in phase 1 because those servers 

cannot be turned off. Each detected under-utilized server is switched to low-power mode if and 

only if all its running VMs can be migrated to other destination hosts. In the following, we 

discuss the complexity time of each phase. Let us define  as the number of active servers 

 in the system;  as the total number of VMs in the datacenter;  as the number of 

VMs hosted on a server s;  is the number of VMs selected for migration; and  as 

the CPU historical data length of a server.  

 

3.5.4.1 Complexity –Phase 1 

 

Starting with line 2, the time complexity of the for loop is the same as the number of active 

hosts   

 

Inside the loop, algorithm 3.2 of overload detection is called. Its complexity is mainly based 

on the complexity of K-SVR prediction approach (Algorithm 3.1). According to (Valade, 

Acco, Grabolosa, & Fourniols, 2017), the Kalman filter complexity is  where n is the 

state vector size. As we are using kalman to filter or preprocess the CPU historical data, its 

complexity in our case is . In (Abdiansah & Wardoyo, 2015), a time complexity 

analysis of Support Vector Machine in LibSVM is provided. LibSVM is the library that we 
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used to implement the SVR prediction part. Their analysis shows that the worst complexity for 

svmPredict and svmTrain is  where n is the amount of data. In our work, the number of 

training dataset is  and the number of prediction steps is . Thus, the K-SVR complexity is 

. In line 5, Algorithm 3.4 is called to select the VMs to migrate from 

the server s. This algorithm loops over the set of VMs hosted on s and calls Algorithm 3.2 

indirectly to check if the server remains overloaded after deallocation. Its time complexity can 

be calculated by . The total time complexity of the for loop 

becomes . 

Algorithm 3.6  Predictive VM consolidation 

1: Input:  , V 
2: foreach  do 
3:      if  then 
4:          .add (s) 
5:          vmsToMigrate.add(MMT_VM_selection (  ))   
6:      end 
7: end        
8: migrationMap = PABFD ( , vmsToMigrate) 
9: ) 
10: While (true) do 
11:       U_server = underload_detection( ) 
12:       if U_server = NULL then 
13:           Break 
14:       end 
15:       Exclude U_server from  
16:       .add(U_server) 
17:       MigrationMap2 = PABFD ( , ) 
18:       if migrationMap2 is complete then 
19:              migrationMap.addAll(migrationMap2)  
20:              U_server can be turned off after migrations 
21:       else 
22:               Discard migrationMap2 
23:               U_server will remain active 
24:       end 
25: End 

 

After collecting all VMs to migrate, Algorithm 3.5-PABFD is called in line 8. PABFD loops 

over VMs to migrate and the active servers to find their appropriate destination. It also checks 

if a server will become overloaded after allocating the target VM by an indirect call to 
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Algorithm 3.2. Its complexity is . Consequently, the 

total complexity of Phase 1 (Steps 2-8) is 

.  However, , , and  are typically small 

numbers. Therefore, the complexity can be simplified to . 

 

3.5.4.2 Complexity –Phase 2 

In the second phase (Steps 9-25), we start by calling Algorithm 3.3 for underload detection. Its 

complexity can be represented by . Then, for each underutilized 

host, Algorithm 3.5-PABFD is called to find new destination servers for its set of VMs . In 

this case,  and the complexity of PABFD is 

.  Thus, the total complexity of this phase is . Again, 

this complexity can be simplified to . 

 

3.5.4.3 Overall Complexity 

The overall complexity of Algorithm 3.6 will be the summation of the complexities of phases 

1 and 2. Therefore it is . We can approximate 

the number of active servers in the system by the total number of VMs divided by the number 

of VMs that can be allocated on a server . In this case, the complexity becomes equal 

to . Hence, the worst-case complexity is . 

 

3.5.5 Performance Metrics 

As stated in the previous sections, our approach aims to find a trade-off between energy 

consumption and SLA violation. Hence, the following metrics are defined to evaluate the 

performance of the algorithms: 
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1. SLA violation: 

Service level agreement (SLA) is a contract established between the cloud service provider 

and the customer about the required Quality of service (QoS). Service Level Objective (SLO) 

is the key element of SLA that includes one or more QoS measurements and constraints. 

Meeting the QoS requirements agreed upon in the SLA is extremely important for assessing 

the quality of cloud service and avoiding penalties. As these requirements can vary from one 

application to another, a workload independent metric called SLA violation ( ) is used to 

evaluate the SLA violation rate (Beloglazov & Buyya, 2012). It is measured by combining two 

SLO parameters: SLA violation due to host overloading ( ) and SLA violation due to 

VM migration ( ).  

  (3.13) 

 indicates the average ratio for the period when the host is fully utilized. If the CPU 

utilization of a host reaches 100%, it might not provide VMs with the required resources, which 

will negatively affect the performance level.  This metric can be calculated as follows: 

 
 

(3.14) 

Where  represents the number of hosts;  denotes the total time during which the host  has 

experienced 100% CPU utilization leading to an SLA violation;  is the total time in which 

host  has been in an active state.   

 

Whereas  measures the overall performance degradation caused by VM migrations and 

can be calculated as shown as follows: 

 
 

(3.15) 

Where  is the number of VMs;  denotes the performance degradation of VM  due to 

migrations;  is the total CPU utilization demanded by VM  during its lifetime.  is set as 

10% of the CPU utilization during all migrations of VM . 
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2. Energy consumption: 

We consider the total energy consumed by the physical machines of a data center. Most studies 

have determined that CPU consumes more power than memory, disk storage, and network 

interface (Leivadeas, Papagianni, & Papavassiliou, 2015). CPU consumption is one of the 

critical metrics in cloud environments that have an impact on power electricity and cooling 

costs as well as on heat emission. In this article, we have mainly focused on processing power, 

but optimizing the calculation of energy consumption while taking into account other resources 

is one of our future works. Here, the energy consumption measurements are based on real data 

provided by SPECpower benchmark results (« The SPECpower Benchmark », s.d.). Table 3.1 

illustrates the power consumption of HP G4 and G5 servers at different load levels. Notably, 

when under-utilized servers switch to sleep mode, energy consumption decreases significantly. 

Therefore, reducing the number of active hosts is mandatory to minimize the energy 

consumption of the data center. 

 

3. Number of migrations 

Live migration negatively affects the performance of applications running on a migrating VM. 

It involves additional costs such as extra CPU utilization on the source host, network 

bandwidth between the source and destination host, downtime of the applications during VM 

migrations, and total migration time. Thus, reducing the number of VM migrations is essential 

to avoid SLA violations. 

 

4. Execution Time 

In addition to the previously mentioned metrics, we compare the algorithms in terms of 

execution time. Precisely, we consider the average execution time of each algorithm to perform 

a VM consolidation cycle including the four steps: a) overloaded hosts detection; (b) 

underloaded hosts detection; (c) VM selection for migration, and (d) VM placement. 

Table 3.1  Power consumption of servers according to their CPU utilization (in watts) 
Server  Sleep 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
HP ProLiant 
G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HP ProLiant 
G5 10 93.7 97 101 105 110 116 121 125 129 133 135 
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3.6 Experiments 

3.6.1 Setup 

3.6.1.1 Environment 

 

We have tested our proposed algorithms through simulations executed on CloudSim toolkit 

(Calheiros, Ranjan, Beloglazov, Buyya, & De Rose, 2011). Our testing environment involves 

800 heterogeneous servers as follows: 400 HP ProLiant ML110 G4 machines of dual-core with 

1860 MIPS each, and 400 HP ProLiant ML110 G5 of dual-core with 2660 MIPS each. Both 

server types have 4 GB of memory and support 1 GB/s of bandwidth. The power consumption 

characteristics of these servers, based on the SPECpower benchmark, are given in Table 3.1. 

The VM instances correspond to Amazon EC2, and their characteristics are listed in Table 3.2. 

Our K-SVR prediction model is implemented in Java using the LibSVM library (Chang & Lin, 

2011). The parameters used to test our algorithms are summarized in Table 3.3. In our testing, 

we have set the upper threshold (U_TH) to 70% and the lower (O_TH) to 30%. To select these 

thresholds, we have referred to the state of the art and tested our algorithm under different 

inspired threshold values between 70% and 90% for overloading detection, and between 20% 

and 30% for underloading detection. Then, we have selected the values that enhance the 

efficiency of our algorithm, but these inputs can be easily modified. Also, we set the number 

of prediction steps n to 3 to predict three future CPU utilization for the host. However, our 

implementation is not limited to 3 and the value of n can be modified easily. The best historical 

data length required for training the SVR model is chosen after a careful fine-tuning of the data 

window size as later shown in sub-section 3.6.2. It is worth mentioning that each experiment 

was repeated 10 times to report the average execution time of each algorithm. 
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Table 3.2  VM instances characteristics 

VM Instance Type  CPU (MIPS) RAM (GB) 

High-CPU medium instance 2500 0.85 

Extra-large instance 2000 3.75 

Small instance 1000 1.7 

Micro instance 500 0.613 

 

Table 3.3  Algorithms parameters 

 

Kalman 
A H Q R 

1 1 0.01 1 

 

SVR 
 kernel  (parameter 

of RBF) C 

0.1 RBF 0.0625 1 

Predictive  

consolidation 
U_TH O_TH WS n 

0.3 0.7 20 3 

Arima 
p d q  

1 0 1  

 

3.6.1.2 Workload 

 

Our simulation uses real-world workloads publicly available in the form of PlanetLab data. 

PlanetLab data is provided as a part of the CoMon project, a monitoring infrastructure for 

PlanetLab (Park & Pai, 2006). It comprises CPU utilization of more than a thousand VMs 

hosted on servers located in more than 500 places around the World. The workload traces are 

collected during March and April 2011. Each VM has 288 CPU utilization records measured 

at 5 minutes intervals. The datasets tested in our experiments and their characteristics are 

shown in Table 3.4. We have selected datasets according to the number of VMs deployed and 

monitored in the infrastructure. In particular, we have selected the dataset with the highest 

number of VMs (dataset W1), the least number of VMs (dataset W4), and two datasets in-

between (W2 and W3). These datasets allow us to verify if our approach performs well when 

increasing the number of VMs to consolidate and limiting the capacity of the physical 

infrastructure. 
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Table 3.4  Planetlab workloads characteristics (CPU utilization) 

Dataset Number of 
VMs 

Number of 
servers Date Mean St.dev. Quartile1 Median Quartile3 

W1 1516 800 22/03/2011 9.26% 12.78% 2% 5% 12% 

W2 1052 800 03/03/2011 12.31% 17.09% 2% 6% 15% 

W3 1033 800 20/04/2011 10.43% 15.21% 2% 5% 12% 

W4 898 800 06/03/2011 11.44% 16.83% 2% 5% 13% 

 

3.6.1.3 Benchmarks comparison 

 

To illustrate the efficiency of our approach, we compare it with the consolidation techniques 

proposed in (Beloglazov & Buyya, 2012). These techniques are integrated into the Cloudsim 

toolkit. In particular, the following four overload detection strategies are considered: Static 

Threshold (THR), InterQuartile Range (IQR), Median Absolute Deviation (MAD), and Local 

Regression (LR). Moreover, the proposed K-SVR based approach is tested using only SVR 

(without Kalman filtering step) and using Arima for prediction for both overload and underload 

detections instead of SVR.     

 

Regarding VM selection, different methods are suggested in (Beloglazov & Buyya, 2012) to 

select VMs for migration from overloaded hosts: (i) Minimum migration time (MMT); (ii) 

Random Selection (RS); (iii) Maximum correlation (MC). Their extensive experiments to 

compare the different combinations between overload detection techniques and VM selection 

methods demonstrate that LR combined with MMT had the optimal results. To better verify 

the effectiveness of our algorithms in a formal comparison with theirs, we reuse the same MMT 

VM selection and VM placement methods explained in sub-section 3.5.3. Concerning the 

parameter configurations of the benchmark algorithms, we applied the same values used in 

their experiments. Note that by default, underloaded hosts in these consolidation policies are 

simply those having the least CPU utilization. We have performed different experiments to 

compare our consolidation approach to the default version and a modified version of the 

Cloudsim benchmarks. 
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Consequently, our K-SVR based consolidation approach is compared against the following 

policies: THR-MMT with an upper threshold of 80%, IQR-MMT, MAD-MMT, LR-MMT, 

Arima-MMT, and SVR-MMT. Experiments are explained in the next sub-section. 

 

3.6.2 Results and discussion 

Four experiments are conducted to evaluate the performance of our consolidation approach 

against the four benchmark algorithms introduced in the previous sub-section 3.6.1.3. 

Experiment 1 analyses the impact of the prediction window size on the performance of our 

consolidation technique. Its main target is to carefully select a WS value that can satisfy the 

deployment constraints (e.g., avoid crossing the tolerance threshold of SLA) and the objective 

metrics (save energy, reduce SLA). Experiment 2 compares the proposed consolidation 

approach to the existing consolidation algorithms in Cloudsim, in addition to Arima-based and 

SVR-based approaches. Note that the original implementation versions of the Cloudsim 

benchmark algorithms are tested in this experiment, where underloaded hosts are those having 

the least CPU utilization.  Whereas experiment 3 performs this comparison but uses a modified 

version of the cloudsim benchmarks. Precisely, their default underload detection method is 

replaced by our prediction-based underload detection algorithm discussed in section 3.5.2. 

Adopting a similar underload detection mechanism in the benchmarks strengthens the 

comparison between the different overload detection techniques and allows a clearer 

interpretation of the obtained results. All mentioned comparisons are performed according to 

the performance metrics described in section 3.5.5. Finally, in experiment 4, we analyze the 

energy consumption of executing the proposed predictive consolidation approach against the 

benchmarks discussed in experiment 2. 

 

3.6.2.1 Experiment 1- WS selection 

 

In this simulation, our consolidation technique is tested under variable prediction window sizes 

of lengths 4, 8, 12, 16, 20, 24, and 28. The purpose is to study the influence of WS on the 

performance of our approach because it is based on the utilization prediction of the hosts to 
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determine overloading and underloading states and trigger VM migrations. It should be noted 

that the same experiment is repeated for all datasets presented in Table 3.4. However, no 

particular difference was observed. To this end, testing results for dataset W1 are given in 

Table 3.5 as an example. Based on the results, we notice the contradiction between the two 

resource optimization objectives (SLA and energy) and the importance of finding a solution 

that provides a trade-off between them. Decreasing the energy consumption and reducing the 

SLA violation at the same time is difficult and probably not possible. The SLA violation rate 

of our approach increases progressively from 0.00004% to 0.00015% with the increase of the 

WS value. Conversely, the total energy consumption in the datacenter is the highest (200.86 

Kwh) when the WS is equal to 4. Then, it decreases progressively to 158.81 Kwh with the 

increase of WS to 24. At the end, the energy re-increases slightly for WS 28 showing a 

convergence of the energy consumption with respect to the WS. The observations demonstrate 

that a trade-off between the SLA violations and energy consumption is occurred. Accordingly, 

if the main target of the cloud service provider is to strictly achieve the least SLA violation 

rate and avoid its resulting penalties, it is better to go with a small WS value. On the contrary, 

if the priority is to reduce energy expenses in cloud data centers, higher WS can better serve 

this objective. In this article, we do not prioritize an objective metric over another. However, 

we intend to find the best trade-off between SLA violation and energy consumption. Through 

our experiments, the consolidation technique achieves this trade-off and performs optimally at 

WS 20 under different workloads. Thus, WS=20 is used for testing in the following 

experiments.  

Table 3.5  Testing results of different windows size values 
WS Energy (Kwh) SLAV (%) SLAVO (%) SLAVM (%) Number of migrations 

4 200.86 0.00004 0.69 0.01 2796 

8 191.71 0.00004 0.78 0.01 2949 

12 179.73 0.00005 0.87 0.01 3042 

16 167.60 0.00007 1.12 0.01 3708 

20 159.29 0.00012 1.5 0.01 4786 

24 158.81 0.00013 1.55 0.01 4986 

28 160.60 0.00015 1.59 0.01 5287 
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3.6.2.2 Experiment 2 – proposed approach vs. original benchmarks 

 

Figs. 3-8 present the comparison results between our K-SVR based consolidation approach 

and the four benchmarks discussed in subsection 3.6.1.3: THR-MMT, IQR-MMT, MAD-

MMT, and LR-MMT, in addition to our approach based on Arima for prediction, and our 

approach based on SVR only without Kalman filtering. 

 

Based on the results obtained in Figure 3.3, our K-SVR based consolidation approach 

outperforms its energy results using SVR only, in all workloads. It also outperforms slightly 

Arima based approach in most cases. Arima-based approach occupies the second place in 

minimizing energy and outperforms SVR-based approach in most cases except for workload 

W4. Moreover, we notice that our K-SVR based approach reduces the total energy consumed 

in the datacenter by an average of 7.54 %, 18.86 %, 20.65 %, and 20.56 % compared to LR, 

MAD, IQR, and THR respectively. LR outperforms all the threshold methods in terms of 

energy. By employing our proposed algorithms to  

select underloaded and overloaded hosts, such hosts are identified more precisely. Once 

underloaded hosts are selected, all their hosted VMs can be migrated to other machines, and 

then energy can be saved by switching idle hosts to sleep mode. Moreover, estimating the trend 

of future CPU consumption of the hosts helps to anticipate the overloading situations and to 

react proactively before a violation occurs. For this reason, our approach significantly 

decreases the SLA violation due to host overloading (SLAVO) compared with Cloudsim 

benchmarks, as shown in Figure 3.4. K-SVR has the best results in SLAVO reduction, then, 

SVR-based approach, while Arima approach comes third. After identifying overloaded hosts, 

some VM migration plans can be applied to re-adjust resources and overcome the issue. 

Regarding the SLA violation due to migrations, Figure 3.5 reveals that K-SVR, SVR and 

Arima based approaches achieve the lowest SLAVM versus the others for all tested datasets. 

The reason refers to the substantial reduction in the number of VM migrations when using 

predictive approaches (this metric is discussed later). Since SLAV represents the multiplication 

of SLAVO and SLAVM, our proposed K-SVR approach considerably decreases SLAV as 

well. Figure 3.6 demonstrates that K-SVR approach minimizes the SLA violation rate by an 
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average of 97.36%, 96.17%, 96.12%, and 96.21% compared with LR, MAD, IQR, and THR 

respectively. It also reduces SLAV by an average of 24.5728% compared to SVR, and by 

33.5233% compared to Arima. 

Figure 3.7 illustrates the comparison results in terms of the number of migrations. Our K-SVR 

approach dramatically reduces the number of migrations in all workloads compared to 

Cloudsim benchmarks. For instance, K-SVR approach initiates 3632 migrations for dataset 

W2, while the other techniques perform 27632 (LR), 26292 (MAD), 26476 (IQR), and 26634 

(THR) migrations. It also has a lower number of migrations than SVR and Arima which 

perform 4546 and 4896 migrations respectively for the same dataset (W2). Live VM migration 

may cause overhead on the system, extra expenses, and more violations. Thus, a consolidation 

mechanism that requires fewer migrations is much preferable. In addition, avoiding 

unnecessary VM migrations minimizes the runtime of our re-allocation process (e.g., selection 

of VMs to migrate and destination hosts). Figure 3.8 also indicates a lower execution time for 

K-SVR and SVR based techniques compared to the others. K-SVR has a slightly lower runtime 

compared to SVR in all workloads except W1. Using Arima for prediction to detect overloaded 

and underloaded hosts longer time than SVR-based approaches. Overall, K-SVR approach 

provides a successful trade-off between energy cost and SLA violation. It also outperforms 

benchmark algorithms in almost all targeted cost metrics: energy, SLA, number of migrations, 

and execution time. 

 

Figure 3.3  Comparison of energy consumption for 4 workloads - experiment 2 
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Figure 3.4  Comparison of the SLAVO metric for 4 workloads - experiment 2 

 

Figure 3.5  Comparison of the SLAVM metric for 4 workloads- experiment 2 

 

Figure 3.6  Comparison of the SLAV metric for 4 workloads - experiment 2 
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Figure 3.7  Comparison of number of VM migrations for 4 workloads 

- experiment 2 

 

Figure 3.8  Comparison of runtime for 4 workloads - experiment 2 

3.6.2.3 Experiment 3 – proposed approach vs. modified benchmarks 

Figs. 9-14 illustrate the comparison results of our consolidation approach against the modified 

version of Cloudsim benchmark algorithms. Note that testing results of K-SVR, SVR, and 

Arima-based approaches are the same as experiment2. However, Cloudsim benchmarks (LR, 

MAD, IQR, and THR) are modified to utilize our proposed underload detection algorithm 

explained in sub-section 3.5.2. Therefore, the overload detection part only differentiates them. 

That way we can focus our comparison on the overloading part and verify if the benchmark 

algorithms combined with prediction-based underloading detection can outperform our 
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approach. Figure 3.9 exhibits competitive performance in terms of energy consumption, 

specifically between LR, K-SVR, and Arima-based approaches. While K-SVR approach 

consumes less power in W1 and W4, LR has lower consumption in W2 and Arima has lower 

power in W3 with a very slight difference for both. Threshold techniques consume the highest 

energy (THR, IQR, and MAD). Figure 3.10 demonstrates that K-SVR technique outperforms 

others in terms of SLAVO in almost all datasets (except in W3). In W3, threshold techniques 

(THR and MAD) provide a better SLAVO rate where they slightly outperform K-SVR 

approach.  Thus, our overload detection algorithm selects over-utilized machines more 

efficiently than other algorithms and causes less SLAVO rate in most cases. Concerning 

SLAVM, Figure 3.11 indicates that K-SVR, SVR, and Arima approaches provide the least 

SLAVM in all datasets. Combining the two metrics SLAVM and SLAVO, the greater 

performance of K-SVR approach in terms of SLAV compared to the benchmarks, is evidently 

observed in Figure 3.12. In addition, it is important to realize the significant decrease in 

SLAVO, SLAVM, and SLAV for all benchmark techniques when combined with our 

underload detection algorithm, compared to the results in experiment 2. Figure 3.13 compares 

the number of VM migrations. Explicitly, K-SVR based approach applies the lowest number 

of VM migrations to re-allocate resources. The average difference in the number of migrations 

is quite significant between our approach and the other techniques: 49.31% compared to LR, 

48.78% compared to MAD, 49.38% compared to IQR, and 46.37% compared to THR. 

However, the number of migrations for benchmark algorithms is considerably reduced 

compared to experiment 2. In terms of execution time, Figure 3.14 shows competitive results, 

especially between K-SVR approach, LR, and THR.  Sometimes, K-SVR approach 

outperforms THR in terms of runtime with a very slight difference (e.g., in W3 and W4), and 

sometimes the inverse. LR has achieved a lower execution time than K-SVR approach in W1 

only. We can also notice the reduction in runtime of the benchmark algorithms when combined 

with our K-SVR based underload detection algorithm, compared to experiment 2. This 

combination allows these benchmarks to outperform Arima-based approach in terms of 

execution time. To summarize, adopting our underload detection algorithm in benchmark 

approaches, improves their performance results, and considerably minimizes their SLA 

violation rates, the number of VM migrations, and their runtime. Despite this, our approach 
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achieves the best results and outperforms these approaches specifically in terms of SLA 

violation (SLAV) and the number of migrations, while maintaining an appropriate balance 

with the power consumption. 

 

Figure 3.9  Comparison of energy consumption for 4 workloads-experiment 3 

 

Figure 3.10  Comparison of the SLAVO metric for 4 workloads-experiment 3 
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Figure 3.11  Comparison of the SLAVM metric for 4 workloads-experiment 3 

 

Figure 3.12  Comparison of the SLAV metric for 4 workloads - experiment 3 

 

Figure 3.13  Comparison of number of VM migrations for 4 workloads –  

experiment 3 
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Figure 3.14  Comparison of runtime for 4 workloads - experiment 3 

3.6.2.4 Experiment 4 – Energy consumption of our proposed performance profiling 

and prediction 

To measure the energy consumed by executing our proposed approach, JoularJX tool 

(Noureddine, 2022) is used, a power monitoring tool at the source code level. It uses Intel 

RAPL (powercap interface) to get the power consumed by a running java program using its 

PID. On program exit, it outputs its total energy consumed in joules, in addition to the overall 

energy consumed by every java method executed inside it.  

We use this tool to obtain the energy consumed by the entire simulation on Cloudsim from the 

instantiation phase until the termination time. Figure 3.15 illustrates the comparison of the total 

energy consumed by the simulation using our K-SVR based consolidation methodology and 

the benchmarks discussed in experiment 2. On the other hand, Figure 3.16 compares the overall 

energy consumed by the VM consolidation algorithm (Algorithm 3.6) during the simulation. 

As discussed previously, Algorithm 3.6 includes all decisions related to the consolidation 

process (Overloaded Hosts detection, Underload detection, Selection of VMs to migrate and 

their destination server). The complete simulation includes the instantiation phase, the 

execution of Algorithm 3.6 and all its sub-algorithms, and the application of the decisions made 

by this algorithm by updating the infrastructure and its resources. It is worth mentioning that 

the simulation performs many consolidation cycles and so Algorithm 3.6 is executed many 
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times to take the relevant decisions. Precisely, in our testing results, the simulation performs 

288 consolidation cycles which is equal to the PlanetLab dataset size taken as input. Based on 

the results obtained, our approach reveals less energy consumption of running the complete 

simulation or Algorithm 3.6 specifically compared to other benchmarks for all workloads. As 

shown in Figure 3.7 of experiment 2, the other benchmarks may generate false overload and 

underload detection decisions than our approach which involves a much higher number of VM 

migrations. A higher number of VM migrations means more modifications in the 

infrastructure, resource allocations and deallocations processes, more calls for VM selection 

and VM placement algorithms, etc. and consequently a higher energy for executing these tasks. 

 

In Table 3.6, we represent more details about the overall energy consumed by our Kalman-

SVR prediction part during the simulation, specifically Algorithm 3.1. Note that Algorithm 3.6 

calls algorithm 3.1 each time it needs to predict host resource utilization for overloading and 

underloading checking purposes. In the table, we also specify the number of times the 

prediction algorithm has been called during the simulation. As mentioned previously, in our 

simulation we execute Algorithm 3.6 for 288 times but in the first 20 times, there are no 

prediction calls due to insufficient historical data for the hosts (Window Size for 

prediction=20). For instance, Table 3.6 shows that for workload w1, the prediction algorithm 

is called 101992 times during the simulation (for 288-20=268 cycles), and its overall energy 

consumed is 52.825 joules which represent 36.72% of the energy consumed by Algorithm 3.6. 

If we convert the energy unit to KWh, the results are too small, demonstrating that running our 

proposed consolidation approach does not result in high energy consumption or overhead 

despite its data filtering and prediction tasks. 
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Figure 3.15  Comparison of energy consumed by the simulation  

execution for 4 workloads - experiment 4 

 
Figure 3.16  Comparison of energy consumed by the VM consolidation  

algorithm (Algorithm 3.6) for 4 workload-experiment 4 

Table 3.6  Detailed energy measurements of executing our technique 

WORKLOADS 

OVERALL ENERGY MEASUREMENT (IN JOULES) NUMBER OF K-SVR PREDICTION 
(ALGO. 3.1) RUNTIMES 

WHOLE 
SIMULATION 

K-SVR 
PREDICTION 
ALGORITHM 

3.1 

VM 
CONSOLIDATION 
ALGORITHM 3.6 

FOR 
OVERLOAD 
CHECKING 

FOR 
UNDERLOAD 

CHECKING 
TOTAL 

W1 550.72 52.82 143.86 84613 17379 101992 

W2 441.85 46.89 104.95 58276 18452 76728 

W3 370.24 23.92 84.32 31640 10635 42275 

W4 401.73 35.29 85.50 43859 12641 56500 
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3.7 Conclusion 

In this paper, a predictive dynamic VM consolidation algorithm is proposed. Our multi-step 

prediction model combines Kalman Filter with Support Vector Regression (SVR) to forecast 

the future CPU utilization of the hosts. Considering current and predicted utilization, our 

underload detection, and overload detection techniques make decisions about the host state 

(overloaded or underloaded). Based on these decisions, VM re-allocations are planned, and 

migrations are triggered. The main target is to find a trade-off between energy consumption 

and SLA violation while minimizing the number of VM migrations and the runtime needed for 

resource re-allocations.  

 

Various Simulations are conducted using PlanetLab's real-world workload traces. The 

experimental results demonstrate the ability of the proposed approach to significantly reduce 

the SLA violation rate and the number of migrations, with an appropriate balance with the 

energy consumption and very good execution time, compared to the existing benchmark 

algorithms. For future work, we intend to optimize the costs computation formulas taking into 

account additional factors and resources (memory, I/O, etc.) that may increase energy 

consumption and SLA violation during migrations. We also plan to extend our prediction to 

support multiple resources (e.g., memory, storage, and bandwidth) instead of a single resource 

(CPU). Considering multiple resource types to determine accurately the host state may limit 

the frequency of VM migrations and avoid hasty decisions. 
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4.1 Abstract 

The revolution of virtualization technologies and Cloud computing solutions has emphasized 

the need for energy-efficient and Service level agreement (SLA)-aware resource management 

techniques in cloud data centers. Workload consolidation in Infrastructure-as-a-Service (IaaS) 

providers allows for efficient utilization of hardware resources and reduced energy 

consumption by consolidating workloads onto fewer physical servers. To ensure successful 

workload consolidation, it is crucial for IaaS providers to carefully estimate the host state and 

identify overloaded and underloaded hosts, thereby avoiding overly aggressive consolidation. 

Existing proposals determine the host state depending on its current resource utilization or a 

single anticipated resource utilization value, and often consider only a single resource type of 

the host, such as CPU. These limitations may lead to unreliable host state estimations, resulting 

in excessive and needless service migrations between physical machines (PMs). This, in turn, 

can lead to extra delays in service execution, degraded performance, increased power 

consumption, and SLA violations. To address these challenges, we propose a workload 

consolidation approach that leverages a multi-resource and multi-step resource utilization 

prediction model. Based on this model, our overload and underload decision-making 

algorithms consider the forecasted future trend (sequence of future value) of each host 

resource's utilization, including CPU, memory, and bandwidth. Through extensive 

experimentations conducted with two real-world datasets, we demonstrate that our approach 



110 

 

can significantly reduce power consumption, SLA violation rate, and the number of migrations 

compared to existing benchmarks. 

 

Keywords: Multi-resource, workload prediction, Kalman filter, Support vector regression, 

consolidation approach, Cloud computing. 

 

4.2 Introduction 

With the remarkable evolution of cloud computing solutions for hosting services, from the 

usage of Virtual Machines (VMs) to containers, and recently to serverless platforms, an 

effective resource management remains a significant challenge (Khan, Tian, Zhou, et al., 

2022)(Awad, Kara, & Edstrom, 2022)(McGrath & Brenner, 2017). The dynamic workload 

fluctuations of running services leads to high variations in virtual and physical resource 

consumption in the cloud. By consolidating workloads onto a minimal number of physical 

servers, Infrastructure-as-a-Service (IaaS) providers can optimize the utilization of their 

hardware resources while reducing energy consumption through the powering off of under-

utilized servers(Panwar et al., 2022). In virtualized data centers, this consolidation is possible 

through the live migration of VMs or containers hosting the running services, between physical 

machines (PMs) (F. Zhang et al., 2018). While workload consolidation optimizes resource 

utilization and reduces the energy consumed, it can negatively affect the performance 

requirements of applications defined in the Service level agreement (SLA). Thus, striking the 

right balance is essential. 

 

For instance, implementing an excessively aggressive consolidation approach can lead to 

violations and performance degradation for the applications running on the servers. 

Accordingly, many concerns should be addressed to tackle such a research problem. First, to 

achieve an effective workload consolidation, it is crucial to carefully estimate the host state 

and identify overloaded and underloaded hosts in order to make informed decisions about 

workload redistribution. Underloaded hosts that have excess available resources can be utilized 

for consolidating additional workloads from overloaded hosts to improve overall resource 
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utilization and mitigate the risk of SLA violations. Alternatively, they can be turned off for 

minimizing energy consumption. The second concern involves selecting the right virtual 

resources (VMs or containers) to migrate from a server (Melhem et al., 2017)(Moghaddam et 

al., 2018). Lastly, a placement strategy is needed to select the best destination servers that can 

handle these migrated workloads (Nath, Addya, Chakraborty, & Ghosh, 2020). Each of these 

concerns poses its own challenges. 

 

Regarding overload and underload detection concern, existing workload consolidation 

approaches often rely on current resource utilization of servers to determine their state and 

trigger the required migrations (Xiao et al., 2019)(Beloglazov & Buyya, 2012). However, such 

proposals may result in unreliable host state estimations and excessive needless migrations. An 

increase in the current server utilization does not necessarily reveal an overloading state, as the 

load may rapidly decrease in the next time slot. To make accurate estimations and limit the 

frequency of migrations, it is crucial to consider not only the current host workload but also its 

future resource utilization. Moreover, relying on a single future resource utilization value to 

judge the host state, may be also insufficient to perform reliable estimations. Therefore, it is 

important to anticipate and consider the future trend (as a sequence of multiple future values) 

of the host’s resource usage. 

 

Furthermore, some existing consolidation schemes focus on the utilization of a single resource 

type (i.e., CPU) while deciding whether a server is overloaded or underloaded (L. Li et al., 

2019)(Hsieh et al., 2020). Due to the sheer multiplicity and heterogeneity of running 

applications (e.g., IoT-based applications, 5G applications, web etc.) that may be hosted in the 

cloud, and the variability of their workloads, considering only one resource type can lead to a 

non-efficient decision-making strategy. Different applications may have different resource 

requirements, such as CPU-intensive, memory-intensive, or bandwidth-sensitive workloads, 

and so on. Therefore, it is necessary to consider all these resource types in order to build a 

technique able to correctly detect overloaded and underloaded servers across different 

application types and workloads. 
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In this article, we present a predictive workload consolidation mechanism based on prediction 

model called MSPR. This mechanism incorporates overload detection and underload detection 

algorithms, which take into account the current and predicted trend (instead of a single future 

value) of resource utilization to determine if a host is experiencing overloading or underloading 

issue. Unlike some existing techniques, our approach considers many resource types, including 

CPU, memory, and bandwidth, when making host state estimation. For overload detection, we 

calculate adaptive Mean Absolute Deviation (MAD) thresholds tailored to each resource type. 

Moreover, our approach offers flexibility by allowing the specification of distinct underload 

thresholds and prediction window sizes for each resource type. Our evaluation involves 

comparing our approach with an optimized multi-resource versions of benchmark 

consolidation algorithms integrated into Cloudsim, including Mean Absolute Deviation MAD-

based, Interquartile Range IQR-based, Static threshold THR-based, and Local Regression LR-

based approaches, in addition to our alternative consolidation approach that uses 

Autoregressive Integrated Moving Average (Arima) multi-resource prediction model, 

replacing MSPR model. In summary, our contributions include: 

 

1. A multi-resource and multi-step workload prediction model called MSPR is proposed, 

to anticipate the future resource utilization trends of servers in terms of CPU, memory, 

bandwidth received, and bandwidth transmitted. This model combines the well-known 

algorithms Support Vector Regression (SVR) and Kalman Filter. Kalman Filter is used 

as a data filtering pre-processing step to enhance the accuracy of SVR prediction 

process. 

2. A workload consolidation approach is combined with the MSPR predictive model to 

reduce the total energy consumption in data center, limiting the frequency of virtual 

resource migrations, and decreasing SLA violations. This approach includes OD-

MSPR and UD-MSPR algorithms for overload and underload detection, considering 

both current and predicted multi-resource utilization trends of servers. Our approach 

also offers the flexibility to specify different overload and underload thresholds for 

each resource type. Adaptive thresholds for overload detection, based on MAD, are 

calculated for each resource type based on historical utilization data.  
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3. Extensive experiments are conducted on Cloudsim using Bitbrains (Shen, Van Beek, 

& Iosup, 2015) and Materna (Kohne, Spohr, Nagel, & Spinczyk, 2014)(Kohne, 

Pasternak, Nagel, & Spinczyk, 2016) datasets to validate the effectiveness of our 

proposed approach compared to optimized multi-resource versions of state-of-the-art 

consolidation techniques, in addition to an alternative consolidation approach that 

replaces the MSPR model with an ARIMA multi-resource prediction model. Moreover, 

a detailed time complexity analysis of our predictive workload consolidation approach 

is provided  

 

The rest of the article is organized as follows: Section 4.3 discusses the existing workload 

consolidation approaches in the state-of-the-art and highlights their limitations. Section 4.4 

describes the proposed resource utilization prediction technique. Section 4.5 explains in detail 

the predictive workload consolidation approach proposed and analyzes its time complexity. 

Section 4.6 presents the experimental setup and compares the results obtained by our proposal 

with existing benchmarks. Section 4.7 summarizes the main insights and the future directions 

for this work. 

 

4.3 Related work 

Workload consolidation and resource utilization prediction constitute two major research 

problems that can be tackled separately. In this section, we review some related proposals that 

address workload consolidation problem alone, workload prediction problem alone, or both 

combined. 

 

Numerous studies about workload prediction has been provided in the pertinent literature 

(Masdari & Khoshnevis, 2020). Qui et al. (Qiu et al., 2016) present a novel method for 

predicting the CPU utilization of VMs in a cloud computing environment. The proposed 

approach utilizes a deep learning model consisting of a Deep Belief Network (DBN) and a 

logistic regression layer. The parameters of the entire model are fine-tuned using the 

Backpropagation (BP) algorithm. The proposed approach is compared to other prediction 
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methods, using PlanetLab dataset in Cloudsim. Experimental results demonstrate that the 

proposed method outperforms existing prediction approaches in terms of prediction accuracy. 

Malik et al. (Malik et al., 2022) present a multi-resource utilization prediction technique based 

on Functional Link Neural Network (FLNN). A hybrid model, that combines genetic algorithm 

(GA) with particle swarm optimization (PSO) algorithm, is used to train the neural network 

and thus, improve its prediction accuracy. Mean Absolute Error (MAE) is calculated as fitness 

function for GA. Their experiments are carried out using a Google cluster workload and are 

focused mainly on CPU and memory utilization of VMs. Xie et al.(Xie et al., 2022) propose a 

hybrid model of ARIMA and triple exponential smoothing to accurately predict both linear 

and nonlinear relationships in container resource load sequence. The weighting values of the 

two single models in the hybrid model are chosen according to the sum of squares of their 

predicted errors for a period of time. They also introduce a real-time resource prediction system 

for Docker container that optimizes CPU and memory resource usage based on predicted 

values. Khan et al. (Khan, Tian, Ilager, & Buyya, 2022) propose an intelligent prediction model 

based on machine learning for workload prediction and energy state estimation for VMs in 

cloud data centers. The model explores different Machine Learning (ML) algorithms for 

workload prediction including Linear Regression (LR), Ridge Regression (RR), ARD 

Regression (ARDR), ElasticNet (EN) and deep learning algorithm called Gated Recurrent Unit 

(GRU). The obtained results show that the GRU achieved the most negligible root mean square 

error (RMSE) value compared to other ML algorithms. In addition to workload prediction, the 

authors propose four different clustering algorithms including semi-supervised affinity 

propagation based on transfer learning (TSSAP), CLA based on transfer learning (TCLA), k-

means based on transfer learning (TKmeans), and P-teda based on transfer learning (TP-teda), 

for identifying similar groups of VMs with different energy-consuming states. Based on their 

experiments, the TSSAP outperformed other methods by achieving the highest accuracy in 

clustering.  

 

In this article, we present a prediction approach called MSPR, for forecasting the utilization of 

server resources, encompassing CPU, memory, received bandwidth, and transmitted 

bandwidth. The proposed model leverages a combination of Support Vector Regression (SVR) 
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and Kalman Filter algorithms to accurately predict future resource utilization. Kalman Filter 

acts as a pre-processing step to improve the accuracy of SVR predictions. This predictive 

model can be employed to anticipate workload of diverse systems, including servers, virtual 

machines (VMs), and containers etc. In our work, we concentrate on utilizing this model to 

forecast incoming workload for servers, thereby enabling reliable estimation of their future 

states. 

 

Workload consolidation is a crucial strategy for optimizing resource re-allocation and 

achieving energy efficiency in cloud environments (Chaurasia et al., 2021)(Helali & Omri, 

2021b)(Zolfaghari & Rahmani, 2020). It involves the consolidation of workloads onto a 

reduced number of physical machines, thereby maximizing the utilization of available 

resources, and minimizing the energy consumed. Researchers have explored different 

approaches and perspectives to address this problem effectively. Some of these include VM or 

container placement algorithms, techniques for detecting overloading and underloading states, 

and strategies for selecting VMs or containers to migrate. For instance, Nath et al. (Nath et al., 

2020) propose EASY, an energy-efficient approach for container consolidation in cloud data 

centers. EASY utilizes a Bayesian optimization-based algorithm for container placement, to 

minimize energy consumption while considering trade-offs with service response time. The 

authors compare the performance of the EASY algorithm with baseline methods, including 

Consecutive Allocation, Best Fit, and First Fit Decreasing mechanisms. Simulation results 

demonstrate the effectiveness of EASY approach in reducing energy consumption, although 

slightly increasing average response time.   

 

In this paper, our primary focus is on the detection of host overloading and underloading 

conditions. We recognize the significance of accurately identifying these states as they have a 

direct impact on the performance and efficiency of the consolidation system. Overloaded hosts 

may experience resource scarcity and can lead to degraded performance and potential SLA 

violations. On the other hand, underloaded hosts indicate underutilization of resources, which 

results in resource wastage and unnecessary costs. State-of-the-art employs three primary 

approaches: Static Threshold, Dynamic Threshold, and Predictive Models, to identify 
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overloaded and underloaded hosts. The Static Threshold approaches set fixed upper and lower 

thresholds on resource utilization to determine whether a server is overloaded or underloaded. 

Conversely, Dynamic Threshold approaches dynamically adjust the thresholds based on the 

observed workload historical data. For example, the authors in (Beloglazov & Buyya, 2012) 

propose the utilization of two statistical estimators, namely Median Absolute Deviation 

(MAD) and Interquartile Range (IQR). By comparing the current utilization of the host to these 

dynamically computed thresholds, the methods provide an evaluation of the host's state over 

time. Predictive models play a crucial role in resource consolidation by predicting whether a 

server will experience overloading or underloading conditions in the near-future. This 

prediction aids in avoiding unnecessary migrations that can lead to significant overhead. In 

(Beloglazov & Buyya, 2012) two predictive models are proposed, the Local Regression (LR) 

technique which estimates future server resource utilization, and its enhanced version Robust 

Local Regression (LRR) which is designed to be more robust against outliers. 

 

The workload trace of a server may falsely indicate an increase in resource usage, but the load 

rapidly decreases in the near future. To address this issue, the adoption of a multi-step 

prediction model is more accurate, as it can anticipate a sequence of future host utilization 

values. This method aims to avoid unreliable decisions based on temporary fluctuations in 

resource utilization. Hieu et al. (Hieu et al., 2020) propose a VM consolidation technique based 

on a multiple resource usage prediction model. The prediction technique employs multiple 

linear regression to forecast  future resource utilization of servers. A server is detected as 

overloaded in a resource  if its multiple predicted resource utilization  exceeds a hot 

threshold . Whereas, it is defined as under-utilized in a resource  when its multiple predicted 

resource utilization  is less or equal to its current utilization . Minarolli et al. (Minarolli, 

Mazrekaj, & Freisleben, 2017) address the challenge of detecting overloaded hosts in cloud 

computing by making long-term predictions of resource demands for VMs. The authors 

employ Gaussian processes as a machine learning approach for time series forecasting. The 

approach constructs a probability distribution model of the prediction error, to quantify the 

uncertainty associated with the long-term predictions. Based on this model, a decision-

theoretic approach utilizing a utility function is introduced to address the impact of live 
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migration overheads in VMs. This approach selectively initiates live migration actions only 

when the anticipated penalty associated with SLA violations outweighs the utility value 

attributed to live migration overhead. Arshad et al. (Arshad, Aleem, Srivastava, & Lin, 2022) 

propose a scheduling mechanism called Energy Efficiency Heuristic using VM Consolidation 

(EEHVMC), which consolidates VMs on host machines. By setting two thresholds  and 

, EEHVMC mechanism classifies hosts in a cloud data center into three main categories: 

Host Over-Loaded, Host Medium-Loaded, and Host Under-Loaded. The mechanism identifies 

host state by comparing its CPU and memory utilizations to defined thresholds. Once 

overloaded and underloaded hosts are identified, specific VMs are selected for migration to 

medium-loaded hosts using a method called Maximum ratio of CPU utilization to memory 

utilization (MRCU). If a VM is identified as being CPU-bound or memory-intensive, it is 

considered as a candidate for migration. Sayadnavard et al. (H. Sayadnavard et al., 2022) 

present a multi-objective approach for dynamic VM consolidation in cloud data centers. The 

main objectives are to reduce energy consumption, improve system reliability, and minimize 

resource wastage. The proposed consolidation approach includes: a model that combines 

Discrete Time Markov Chain (DTMC) and Continuous Time Markov Chain (CTMC) for 

physical machines (PMs) categorization, a heuristic VM selection algorithm considering the 

task completion time, and a VM placement strategy using ɛ-dominance-based multi-objective 

artificial bee colony (ɛ-MOABC) algorithm. The approach is compared to traditional 

consolidation approaches integrated into CloudSim simulation platform. The comparison 

demonstrates the superiority of the proposed approach in achieving the defined objectives.  

 

In our previous work (Awad, Kara, & Leivadeas, 2022), we proposed a consolidation approach 

based on a multi-step-ahead workload prediction model that combines Support Vector 

Regression with Kalman filter. However, the limitations of our proposed algorithms were 

evident as they focused solely on CPU utilization forecast and on static thresholds to make 

underload and overload decisions. In our current work, we have made significant 

enhancements to address these limitations. Firstly, we have optimized the prediction technique 

to forecast future utilization trends of multiple resources, including CPU, memory, and 

bandwidth. Additionally, we have revamped the underload and overload techniques to consider 
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all these resource types when estimating the host state. Moreover, instead of using static 

thresholds, we now calculate adaptive Median Absolute Deviation (MAD) thresholds for 

overload detection, which vary for each resource type. These thresholds are determined based 

on historical utilization data for each specific resource. Another different aspect of our work is 

the redefinition of underloaded hosts. In our previous approach, hosts with the minimum CPU 

utilization were considered underloaded when there was insufficient data for prediction. With 

the integration of multi-resource considerations, we have redefined underloaded hosts to 

include those with actual resource utilizations falling below the underloaded thresholds for all 

resources. Furthermore, we have refined our objective metrics to include all considered 

resource types in the calculation of energy consumption and SLA violation. To ensure a formal 

comparative study, we have also improved the implementation of other approaches such as 

LR, THR, MAD, IQR, and Arima-based methods. Similar to our approach, these approaches 

now consider multi-resources in their overload and underload decisions. Lastly, for testing 

purposes, we have utilized two datasets, namely Materna and bitbrains, instead of the 

previously used planetlab dataset (Park & Pai, 2006). 

 

4.4 Workload Prediction Model  

This section explains our suggested Multi-Resource and multi-Step-ahead Prediction model, 

called MSPR, for forecasting host resource utilizations based on Support vector regression 

(SVR) and Kalman. SVR (Abdullah et al., 2020) is a well-known machine learning technique 

derived from Support Vector Machine (SVM) specifically to solve regression problems. It is 

suitable for the complex and dynamic cloud environment and is mainly used in our work to 

proactively predict future host resource utilization.  Kalman Filter (Kalyvianaki et al., 2014) is 

also a famous algorithm originally built to estimate the time-varying states in dynamic systems, 

which makes it suitable for the dynamic load estimation of cloud applications. Our prediction 

model integrates Kalman Filter as a data pre-processing step which aims to filter data, eliminate 

noises, and enhance the SVR prediction accuracy. In the following, the working principles of 

the aforementioned techniques are explained. 
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4.4.1 Kalman Filter 

Kalman filter aims to estimate the state x of a discrete-time controlled process using a set of 

measurements observed over time. The following linear stochastic difference equation shows 

the evolution of the state x from time k-1 to time k: 

 

  (4.1) 

 

The above equation can be combined with a measurement z, as follows: 

  (4.2) 

Where A is the state transition matrix from time k-1 to time k. B is a control matrix that relates 

the control vector u to x. H is a matrix that illustrates the relation between  and . In our 

work, there is no control input (B=0), and the measurement z is the state directly (H=1). 

Assuming that the state does not change from time step to another, A is set to 1.   and  

represent the process and measurement noises respectively.  They are random variables 

assumed to be white and independent of each other, with  and . 

Q and R represent the process noise covariance matrix and the measurement noise covariance 

matrix respectively. In our approach, we integrate Kalman Filter as a data pre-processing step, 

to benefit essentially from its filtering technique that may eliminate noises from resource usage 

data, whatever these noises are coming from the measurements technique or other factors, 

while still discovering the main load fluctuations.  

 

To estimate a process, Kalman filter iteratively applies two computation steps: (a) the 

prediction step that projects the state estimation ahead of time, and (b) the correction step that 

adjusts the projected estimate based on an actual measurement value at that time. The equations 

used in each of the mentioned steps are as follows:  

 

Prediction phase  (4.3) 

 (4.4) 
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Correction phase  (4.5) 

 (4.6) 

 (4.7) 

 

Where  denotes the priori state estimate and  denotes the posteriori estimate at time k. 

Similarly,  is the priori estimate error covariance matrix, while  is the posteriori estimate 

error covariance matrix.  represents the Kalman Gain matrix. A high gain means that the 

filter mostly depends on the accurate measurements to estimate . Conversely, a low gain 

means that the state estimation mostly depends on the model predictions  calculated in the 

prediction phase. 

 

4.4.2 Support Vector Regression 

SVR is a statistical learning method that estimates a function f(x) by training a SVM model 

using observed data. In our case, the observed data represent the historical host resource 

utilizations. By performing time series forecasts, the workload data are first divided into input 

and output datasets (X and Y respectively). Each combination of input/output vectors (x_i, y_i) 

represents a training point. Eq. (4.8) defines both linear and non-linear regression prediction 

functions: 

  (4.8) 

Where  is a mapping function that non-linearly maps  from “input space” to higher 

dimension feature space. To simplify the mapping, a Radial Basis Function (RBF) is employed 

for its easier computation and fewer parameters compared to other functions.  denotes the 

predicted value, w is a weight coefficient, and b is a bias. The main goal is to find the optimal 

weights and thresholds according to two essential criteria. The first is the flatness of the 

weights, which is defined in terms of minimum Euclidean norm (e.g., minimize  ). 

The second is the empirical risk  minimization, which denotes the error generated by the 

prediction process of the value.  is computed using the -insensitive loss function . 

Combining the mentioned two sub-objectives, the overall objective is to minimize the 
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regularized risk  defined in Eq. (4.9) in order to find the flattest function that allows the 

error to remain within a threshold epsilon . 

 

 
 

(4.9) 

Where  

  (4.10) 

 

Where  and C are user-defined constants. C determines the trade-off between the empirical 

and regularized risk. Finally, Slack variables,  and  should be added to estimate the error 

for underestimation and upper estimation of the actual value. In other terms, slack variables 

allow regression errors to exist up to the value of  and , yet still satisfying the required 

conditions. Consequently, the equations are updated as follows: 

 

 
 

(4.11) 

 

 
 

(4.12) 
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Algorithm 4.1  MSPR prediction algorithm 

1: Input: ,  ,  
2: Output:   /* set of n predicted values */ 
3: /* Preprocess data */ 

 
5: /* extract and divide training dataset into X and Y*/ 

  
7:   
8: /* Train SVM model */ 

 
10: /* extract testing data */ 

 
 
 Return 

 

 

4.4.3 MSPR Algorithm 

In our work, the MSPR workload forecasting model is multi-resource in the sense that it is 

used to predict multiple types of resources including CPU and memory host utilizations, and 

the network bandwidth received and transmitted. For each resource type , a different 

window size  and a number of prediction steps  can be set. MSPR model performs also 

multi-step-ahead predictions, meaning that it forecasts multiple future resource utilization 

values instead of just one value. Relying on one future resource utilization value to judge the 

host state, may lead to inaccurate estimations. For this fact, at each time t, our algorithm 

predicts  values of resource usage in order to estimate the future trend of the host resource 

consumption allowing us to perform the required resource management actions before 

encountering serious problems (e.g., SLA violation, QoS degradation, etc.). As shown in 

Algorithm 4.1, for each resource , MSPR takes as input the host's historical data , 

the pre-specified and . The data are first filtered by Kalman filter and then divided into 

X and Y to train the SVM model as explained previously. Finally, the trained model is used to 

predict the future  values of the host’s resource usage. 
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4.5 Workload consolidation approach 

In this section, we present our workload consolidation approach based on the multi-resource 

and multi-step prediction model discussed in the previous section. We first describe all 

algorithms that constitute this approach, namely, the proposed Overload Detection algorithm 

based on MSPR prediction model (OD-MSPR), and Underload Detection algorithm based on 

MSPR prediction model (UD-MSPR), and the placement strategy. Then, we analyze the 

overall time complexity of this proposal. 

 

4.5.1 Overload detection algorithm 

In our approach, a server s is considered overloaded, if one of the following situations is met: 

 It is overloaded in both current and future utilizations of at least one of its resources . 

Precisely, if its current utilization  and the average of its  predicted utilizations 

 of any of its resources  exceed the upper threshold .  

 

:  

 

 It is currently working normally but will be overloaded in the future time slots in at 
least one resource type . 
 

:   

 
 is an upper adaptive threshold based on the Median Absolute Deviation technique. We 

assumed that a different upper threshold for each resource type  may be needed. The resources 

considered in our decision-making process are: CPU, memory, and bandwidth received by the 

server and transmitted. An overloading situation is detected when a server is overloaded in at 

least one of these resources (e.g., if Avg (  >  or Avg (  >  or Avg 

(  >  or Avg (  >  ). 
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As discussed previously, relying only on the current resource utilization of the host to decide 

its stats, may lead to unreliable decisions. An example of a CPU utilization trace of a cloud 

server is shown in Figure 4.1, borrowed from (Hieu et al., 2020). Assuming that the upper 

threshold for overload detection is set to 80%, depending on only the current server utilization 

will result in many false overloading detection decisions marked by circles due to sudden 

increases in its utilization. We can recognize that the load in all these time slots decreases 

rapidly in the next slots and there is no real overloading problem on the server. An effective 

approach should detect an overloading state for this server only in the period between 600 and 

670 minutes (marked by a rectangle) because its utilization exceeds the threshold in both the 

current and future periods of time. The pseudocode of the proposed overload detection 

algorithm (OD-MSPR) is given in Algorithm 4.2. It takes an active server   as input, 

and then decides whether it is overloaded or not. In particular, for each resource , it 

verifies if there is sufficient historical data for prediction. If data is not sufficient, the decision 

is made by comparing the current resource utilization with the threshold  (Steps 5-8). 

Otherwise, it predicts the future  utilizations of this resource using MSPR prediction model 

and compares the average of these predicted values with the threshold (Steps 9-14). At the end, 

the algorithm returns true if an overloading problem is detected in one of the server’s resources. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  CPU utilization trace of a cloud server 
Taken from Hieu et al. (2020, p. 190) 
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Algorithm 4.2  OD-MSPR 

1: Input:    
2: Output: Boolean decision if s is overloaded or not 
3: For  
4:       Get  ,  ,         
5:        
6:       if  Length ( <  then   
7:             if   then  
8:                       
9:             end 
10:       else 
11:               = MSPR ( , , )  
12:             if   Avg (  > then  
13:                       
14:             end 
15:        end  
16:  End 
17:  Return  

 

4.5.2 Underload detection algorithm 

In this algorithm, a server s is defined as underloaded, if one of the following conditions is 

satisfied: 

 It is underloaded in both current and future utilizations of all its resources . In 

particular, if its current utilization  and the average of its multiple predicted 

utilization values  for each of its resources  are below the lower 

thresholds . 

  

 

 It is predicted to be underloaded in the future in all its resources . 
  

 

In our approach,  includes CPU, memory, and bandwidth received and transmitted. Thus, an 

underloading state is detected, if and only if the server is underloaded in all these resources 

(e.g., if Avg(  <=  and Avg (  <=   and Avg (  <= 
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 and Avg (  <=  ) ). We assumed that a different lower threshold may 

be required for each resource. If an underloaded server is found, all VMs or containers hosted 

on this server should be migrated to other hosts if possible, and consequently, it will be 

switched to a low-power mode to save energy. The detailed pseudocode of the underload 

detection algorithm based on MSPR prediction model is illustrated in Algorithm 4.3. It iterates 

through the set of active servers  and searches if there is any underloaded host. Note that 

the overloaded servers detected by Algorithm 4.2 are excluded from . To check a server 

state, it iterates through each of its resources  and verifies if the available historical data 

are enough for prediction. If no sufficient data are available to predict the resource, the 

algorithm compares the server's current utilization with the threshold. Otherwise, it compares 

the average of the future utilizations predicted by MSPR model, with the pre-specified 

threshold. The server is not considered underloaded if one of its resources exceeds its lower 

threshold.  

Algorithm 4.3  UD-MSPR 

19: Input:  
20: Output: An underloaded server  
21: For  do   
22: IsUnderloaded = true  
17:         For  
23:              Get ,  ,  ,   
18:              if Length ( <   then     
19:                  if   then  
24:            IsUnderloaded = false 
25:            Break 
26: end 
20:             else 
27:            = MSPR ( ,  , ) 
28:            if   Avg (  >  then  
29:    IsUnderloaded = false 
30:               Break 
31:           end 
32:   End 
33:   if (IsUnderloaded) then 
34: Return s 
35:     end 
36:  End 
37:  Return Null 
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4.5.3 Migration and placement 

After detecting overloaded and underloaded servers, the next step is to perform some 

migrations for the VMs or containers hosting the running applications on these servers. To 

perform a formal comparison between our approach and the techniques proposed in 

(Beloglazov & Buyya, 2012), we have re-used their VM selection approach and placement 

strategy. In particular, we have used the Minimum Migration Time (MMT) to select the VMs 

to migrate from overloaded hosts, and the Power Aware Best Fit Decreasing (PABFD) strategy 

to find destination servers for migrated VMs. However, these algorithms are modified to use 

our OD-MSPR algorithm. MMT-MSPR algorithm (Algorithm 4.4) iterates through the list of 

VMs  hosted on an overloaded server  and then selects for migration the VMs that have the 

least migration time. Migration time is measured by dividing the RAM utilized by a VM  by 

the available network bandwidth: .  A set of VMs may be selected until the 

overloading issue is solved. Thus, after each VM selection, the algorithm verifies if the server 

will remain overloaded after deallocating the selected VM or not (Steps 14-17). This 

verification is done by calling our OD-MSPR algorithm explained in section 4.5.1. 

Algorithm 4.4  MMT-MSPR algorithm 
1: Input:    
2: Output: List vmsToMigrate 
3: While (true) do 
4:      Set min_time = MAX 
5:      CandidateVM = NULL 
6:      foreach  do    
7:             

8:           if < min_ time then 
9:                 min_ time =  
10:                 CandidateVM =  
11:           end 
12:      end 
13:       vmsToMigrate.add (CandidateVM) 
14:       /* implicity call OD-MSPR(s) * 
15:      if overloadedAfterDeallocation (s, v) = false then 
16:           Break 
17:      end 
18:    end 
19: Return vmsToMigrate 
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PABFD-MSPR strategy (Algorithm 4.5) iterates through the list of VMs to migrate and tries 

to find a destination server for each that meets certain criteria. First, the destination host should 

have sufficient capacity to meet the VM resource requirements in terms of CPU, memory, 

bandwidth, and disk (Step 7). Second, the candidate server should not become overloaded after 

hosting the VM (Steps 9-11). To verify the host state, the algorithm simulates the VM 

allocation and then uses OD-MSPR algorithm (Algorithm 4.2) to check the server state. Third, 

the selected server should have the least increase in its power consumption caused by this 

allocation because energy consumption is one of our main objectives in this work (Steps 12-

17). At the end, the algorithm returns the migration map that includes the suitable destination 

hosts for the target VMs. Once the VMs to be migrated and their destinations are selected, a 

pre-copy live migration is applied to move them from their current hosts to the chosen ones. 

Algorithm 4.5  PABFD-MSPR 

1: Input:   List vmsToMigrate 
2: Output: Migration Map 
3: For   do 
4:      minPower = Max 
5:      destinationServer = NULL 
6:      For  do 
7:         if s.hasSufficientCapacity(v) then 
8:              /* implicity call OD-MSPR(s) */ 
9:              if overloadedAfterAllocation(v, s) then 
10:                   Continue 
11:              end 
12:              oldPower = s.getPower() 
13:              newPower = estimatePowerAfterAllocation(v, s) 
14:               powerDiff = newPower – oldPower 
15:               if powerDiff < minPower then 
16:                      minPower = powerDiff 
17:                     destinationServer = s 
18:               end 
19:          end 
20:     end 
21:     if destinationServer is not NULL then 
22:            migrationMap.add(v, destinationServer) 
23:     end 
24: End 
25: Return migrationMap 
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Note that, in this work, we have focused mainly on resource prediction, overload detection, 

and underload detection parts. We have combined our proposed techniques (MSPR model, 

OD-MSPR, UD-MSPR) with simple VM selection and placement strategies to conduct our 

test experiments. However, our techniques can be combined with other advanced strategies, 

and be employed to consolidate workloads for other types of applications or services (e.g., 

containerized applications by using container migration strategies, virtual network functions 

consolidation by considering some migration constraints related to their service function chain 

requirements, etc.). 

 

4.5.4 Overall approach 

The overall predictive workload consolidation approach is presented in Algorithm 4.6. It is 

executed periodically to manage the cloud resources in two sequential procedures: (a) 

Overload Avoidance Phase (OAP) (Steps 2-10); and (b) Resource Wastage Avoidance Phase 

(RWAP) (Steps 11-27). OAP aims to release some resources from overloaded servers to avoid 

SLA violations. It starts by checking the hosts’ states and detecting overloaded ones using 

Algorithm 4.2 (OD-MSPR). Then, it selects the virtual resources to migrate from these servers 

using Algorithm 4.4 (MMT) and chooses the destination hosts for the migrated VMs by 

executing Algorithm 4.5 (PABFD-MSPR). To start RWAP, the list of active servers  is 

first updated to exclude the overloaded servers list  and the destination hosts  

selected in OAP phase, because these servers should not be turned off (Step 11). RWAP aims 

to switch off the underloaded servers to optimize resource utilization in the data center and 

save energy. Through continuous iterations, the algorithm checks if there is any underloaded 

server in the data center using Algorithm 4.3 (UD-MSPR). If an underloaded server is detected, 

it tries to find destination hosts for all virtual resources running on this server using Algorithm 

4.5 (PABFD-MSPR). If and only if all hosted VMs can be migrated to other destinations, the 

underloaded server can be turned off. Otherwise, the server remains active and all migrations 

planned from this server are canceled. In the following, the time complexity of the overall 

approach is detailed. 
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Algorithm 4.6  Workload consolidation approach 

1: Input:  , V 
2: /* start of OAP Phase */ 
3: for  do  
4:      if OD-MSPR(s) then 
5:          .add (s) 
6:          vmsToMigrate.add (MMT-MSPR(  ))   
7:      end 
8: end        
9: migrationMap = PABFD-MSPR ( , vmsToMigrate) 
10: ) 
11:  /* Start of RWAP Phase */ 
12: While (true) do 
13:       U_server = UD-MSPR ( ) 
14:       if U_server = NULL then 
15:           Break 
16:       end 
17:       Exclude U_server from  
18:       .add(U_server) 
19:       MigrationMap2 = PABFD-MSPR ( , ) 
20:       if migrationMap2 is complete then 
21:              migrationMap.addAll(migrationMap2)  
22:              U_server can be turned off after migrations 
23:       else 
24:               Discard migrationMap2 
25:               U_server will remain active 
26:       end 
27: End 

 

4.5.5 Complexity Analysis 

In this section, we analyze step by step the time complexity of the overall predictive workload 

consolidation approach and its main phases (OAP and RWAP phases) described in section 

4.5.4 and Algorithm 4.6. The following notation is used to facilitate the complexity analysis: 

 is the number of active servers in the system;  denotes the total number of virtual resources 

(VMs or containers),  represents the number of virtual resources running on a server s; 

is the number of virtual resources selected for migrations; and  is the historical data 

length of each resource  of a server s;  is the dimensions or the number of considered 

resources  
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4.5.5.1 Complexity – OAP Phase 

 

Starting with line 3 of Algorithm 4.6, the time complexity of the for loop is equal to the number 

of active servers  Inside the loop, Algorithm 4.2 (OD-MSPR) is called. Its time 

complexity depends mainly on MSPR algorithm (Algorithm 4.1). The time complexity of 

Kalman Filter is analyzed in (Valade et al., 2017) as  with n is the state vector size. In 

our approach, kalman is used to filter historical data before proceeding with SVR prediction, 

and so its complexity is . In (Abdiansah & Wardoyo, 2015), the time complexity of 

SVM in LibSVM library which was used to complete our implementation is discussed. 

According to their analysis, the worst complexity for svmPredict and svmTrain is  where 

 is the amount of data used in training and in prediction respectively. In our prediction model, 

 represents the prediction window size and  is the number of prediction steps. Thus, the 

complexity of MSPR is . Going back to Algorithm 4.2 (OD-MSPR), 

the algorithm iterates through the R resources of the server (  dimensions) and calls MSPR to 

predict each of them. Its complexity is then . In line 6, MMT 

algorithm (Algorithm 4.4) is used to choose the VMs to migrate from an overloaded server. 

This algorithm also calls (OD-MSPR) to verify if the server remains overloaded after the 

deallocation of each selected VM. Its complexity is . 

Therefore, the total complexity of the for loop (lines 3-8) is 

. 

 

After the loop, Algorithm 4.5 (PABFD-MSPR) at line 9 is called to select destination hosts for 

migrated VM. Its complexity is  because it also uses 

OD-MSPR algorithm to check the status of the potential destination server after allocating the 

target VM. Hence, the total complexity of OAP phase is 

. However, , , , and  are typically 

small numbers and the complexity can be represented by  . 
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4.5.5.2 Complexity – RWAP Phase 

 

In RWAP phase (lines 12-27), Algorithm 4.3 (UD-MSPR) is called to find underloaded hosts. 

Its complexity is based also on MSPR model and can be illustrated by 

. Then, Algorithm 4.5 (PABFD-MSPR) is executed to find destination 

hosts for the VMs running on the detected underloaded host. In this case,  and 

the complexity of the latest algorithm is . Therefore, 

the complexity of this phase is , and can be 

simplified to . 

 

4.5.5.3 Overall Complexity 

 

The overall complexity can be calculated by the summation of the complexities of OAP and 

RWAP phases. Consequently, it is equal to  

Again, to simplify it, the total number of active servers can be approximated by dividing the 

total number of VMs by the number of VMs that can be allocated to a server ( ). The 

modified complexity will be . Finally, the worst-case 

complexity is . 

 

4.5.6 Performance Metrics 

In this study, our main objective is to decrease energy consumption and minimize the violations 

rate of service level agreements (SLAs). To assess the effectiveness of our algorithms, we 

utilize the following metrics. 

 

1. SLA violation 

SLA represents a contractual agreement between a cloud service provider and its customers, 

defining the desired quality of service (QoS). Within the SLA, Service Level Objectives 
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(SLOs) specify the QoS measurements and constraints. Meeting these requirements is crucial 

for evaluating the quality of the cloud service and avoiding penalties. We evaluate SLA 

violations based on two SLO parameters: SLA violation due to host overloading issue ( ) 

and SLA violation due to resource under-provisioning per VM ( ).  

 

 measures the average ratio of time during which a host is fully utilized. When a host's 

resource utilization (e.g., CPU, memory, bandwidth) reaches 100%, it may fail to provide VMs 

with the necessary resources, resulting in degraded performance.  can be calculated using 

the following formula: 

 
 

(4.13) 

 

Where  is the number of hosts;  is the total time during which the host  experiences 100% 

utilization of resource ;  is the total time in which host  is active.   

 

 measures the average violation caused by resource under-provisioning to VMs. It is 

calculated by comparing the allocated amount of each resource  to the requested amount. The 

formula is as follows: 

 

 

(4.14) 

Where  represents the number of VMs. 

 

2. Energy consumption 

We evaluate the total energy consumed by the physical machines in a data center. The energy 

consumed by each server  is calculated by summing the power consumption of each resource 

type  including CPU, memory, and bandwidth (equation 4.16). The power consumed by 

each resource type is calculated using the formulas 4.17-4.22. 
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(4.16) 

 

  (4.17) 

 

  (4.18) 

 

  (4.19) 

 

  (4.20) 

 

 
 

(4.21) 

 

  (4.22) 

 

  (4.23) 

 

The processing power measurements (consumed by CPU) are derived from real data obtained 

from SPECpower benchmark results (« The SPECpower Benchmark », s.d.). Table 4.1 

provides the power consumption of the servers HP G4 and G5 at various loads.  The power 

consumed by the RAM is calculated by multiplying the RAM utilization of the server by the 

maximum potential power consumption of this resource (equation 4.18). Equation 4.19 is used 

to calculate this maximum power, where  represents the total memory of server , and  

is an input value that can be easily updated (Lin, Xu, He, & Li, 2017). To provide a specific 



135 

input value, we assume that each 3 GB of RAM consumes 1 watt. The power consumed by the 

bandwidth consists of static and dynamic power components. The static power is considered 

constant and is calculated by summing the idle power of the network card with the power 

increase in relation to the number of active links L (equation 4.21). In our testing, we assume 

that the utilized NIC is an intel Multiport (4*1G) with only one active link, and the idle power 

consumption is 9 watts (Sohan, Rice, Moore, & Mansley, 2010). Whereas, the dynamic power 

is associated to the bandwidth utilization of the server and is calculated using equation 4.22. 

The maximum potential power for this resource is calculated by dividing the total bandwidth 

of the server  by an input value . To specify this input value, we consider that the max 

active power of intel multiport (4*1G) NIC is 1 watt for 0.45 Gbps (Sohan et al., 2010). 

 

3. Number of migrations 

Minimizing the number of VM migrations is important to avoid negative impacts on 

application performance. Live migrations incur additional costs, including increased resource 

utilization on the source host, network bandwidth usage, service delay due to downtime during 

migration, and total migration time. 

 

4. Execution Time 

We also compare the algorithms based on their execution time. Specifically, we measure the 

average time required to complete an entire consolidation cycle, including the steps of 

overloaded host detection, underloaded host detection, VM selection for migration, and VM 

placement. 

 

Table 4.1  Power consumption of hosts according to their CPU usage (in watts) 
Server  Sleep 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
HP ProLiant 
G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HP ProLiant 
G5 10 93.7 97 101 105 110 116 121 125 129 133 135 
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4.6 Experiments 

4.6.1 Setup 

4.6.1.1 Environment 

 

We have conducted simulations using the CloudSim toolkit (Calheiros et al., 2011) to test our 

proposed algorithms. Our testing environment consists of 800 heterogeneous servers divided 

as follows: 400 HP ProLiant ML110 G4 machines with dual-core processors, each having 1860 

MIPS, and 400 HP ProLiant ML110 G5 machines with dual-core, each having 2660 MIPS. 

Both server types are equipped with 4 GB of memory and 1 GB/s of bandwidth. The 

characteristics of VM instances are provided in Table 4.2. To implement our MSPR prediction 

model, LibSVM library (Chang & Lin, 2011) is used in Java. We have conducted tests using 

different threshold values (ranging from 20% to 30%) for underload detection, and different 

windows sizes (8, 12, 16, 20, 24, and 28) for prediction. The underload threshold  is set 

to 30% and the prediction window size  to 20 for all resources. However, it is possible to 

set different threshold and window size for each resource . Additionally, we have set the 

number of prediction steps n to 3, to predict three future utilizations of each resource type for 

the host. Nevertheless, our implementation is not limited to 3, and the value of  can be easily 

adjusted. All testing parameters are summarized in Table 4.3. These input values can be easily 

modified according to specific requirements. 

 

Table 4.2  VM instances characteristics 

VM Instance Type  CPU (MIPS) RAM (GB) Bandwidth 
(Mbits/s) 

High-CPU medium instance 2500 0.85 100 

Extra-large instance 2000 3.75 100 

Small instance 1000 1.7 100 

Micro instance 500 0.613 100 
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Table 4.3 Testing Parameters 

 

Kalman filter 
A H Q R 

1 1 0.01 1 

 

SVR 
  kernel   C 

0.1 RBF 0.0625 1 

Consolidation 

and prediction 
       

30% 20 3  

Arima 
p d q  

1 0 1  

 

 

4.6.1.2 Datasets 

 

Our simulation utilizes two publicly available real-world datasets: Bitbrains (Shen et al., 2015) 

and Materna (Kohne et al., 2014)(Kohne et al., 2016). The fastStorage trace in the Bitbrains 

dataset comprises 1,250 VMs connected to high-speed storage area network (SAN) devices. 

The Rnd trace in the same dataset consists of 500 VMs that are connected to either fast SAN 

devices or slower Network Attached Storage (NAS) devices. The Rnd trace is further divided 

into three sub-traces, each corresponding to a specific month when the metrics were recorded. 

The Materna dataset includes three distinct traces, each representing one month of data 

collection. The first trace comprises 520 VMs, the second trace consists of 527 VMs, and the 

third trace encompasses 547 VMs. These traces are recorded over a three-month duration. To 

ensure an adequate number of VMs for testing purposes, we have combined certain traces, as 

indicated in Table 4.4. Before conducting the testing process, we have carried out a pre-

processing phase on the datasets. This phase involves converting the datasets into a suitable 

format. Furthermore, by using the following linear transformation formula, we have 

normalized the resource utilization data. 

 

  (4.24) 
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where  represents the normalized resource utilization value calculated based on the original 

data .  and  are the minimum and maximum values of , respectively. 

Furthermore, we have performed data cleaning procedures to remove histories with insufficient 

data or null values. After completing the pre-processing phase, the obtained resource utilization 

dataset is used to conduct our testing. 

Table 4.4  Datasets characteristics 

Workloads Datasets Traces Number of VMs Number of servers 

W1 Bitbrains Trace Fast storage 1237 800 

W2 Bitbrains Rnd (3 traces)  1500 800 

W3 Materna Traces 1-3 1063 800 

W4 Materna Traces 1-2 1043 800 

W5 Materna Traces 3-2 1074 800 

 

4.6.1.3 Benchmarks comparison 

 

To demonstrate the efficiency of our approach, we have conducted a comparison with modified 

versions of consolidation techniques integrated into the Cloudsim toolkit (Beloglazov & 

Buyya, 2012). Specifically, we consider four consolidation strategies where overload detection 

depends on: Static Threshold (THR), InterQuartile Range (IQR), Median Absolute Deviation 

(MAD), and Local Regression (LR). These approaches have been adapted to be multi-resource 

and to consider all resources in their overload and underload decisions. Similar to our 

approach, they detect an overloading situation when a server is overloaded in at least one of its 

resources, including CPU, memory, and bandwidth. An underloading state is detected only if 

the server is underloaded in all of these resources. Two different versions of underload 

detection is considered for these benchmarks. In the first experiment, underloaded hosts are 

identified as those whose actual resource utilizations are lower than the underload thresholds 

for all resources. In the second experiment, our predictive underload detection algorithm, UD-

MSPR, discussed in section 4.5.2., is incorporated into these benchmarks. This integration 

allows a stronger comparison between different overload detection techniques and a clearer 

interpretation of the obtained results. To perform a formal comparison, all algorithms use a 

common VM selection strategy, Minimum migration time (MMT), and employ the same VM 
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placement method explained in sub-section 4.5.3. All evaluations are made based on the 

performance metrics described in section 4.5.6. 

 

In addition to the benchmark algorithms mentioned, we test our proposed consolidation 

approach against an Arima-based multi-resource consolidation technique. Instead of using the 

Kalman-SVR combination for resource utilization prediction, our consolidation technique is 

updated to employ Arima. The purpose of implementing this alternative technique is to 

evaluate our proposed approach against another predictive consolidation mechanism. Details 

of the experimental results are presented in the following sub-section. 

 

4.6.2 Results and discussion 

4.6.2.1 Experiment 1 

 

Figures 4.2-4.6 illustrate a comparison of our MSPR-based consolidation approach with an 

alternative Arima-based consolidation approach and optimized multi-resource versions of 

Cloudsim benchmarks discussed in subsection 4.6.1.3. In this experiment, Cloudsim 

benchmarks identify underloaded hosts as those whose actual resource usage are below the 

underload thresholds for all resources. 

 

From the results depicted in Figure 4.2, our MSPR-based consolidation approach outperforms 

all approaches in term of energy consumption reduction. It demonstrates a noteworthy 

reduction in total energy consumed in the datacenter, averaging 9.384%, 14.126%, 19.270%, 

and 23.223% lower compared to LR, MAD, IQR, and THR, respectively. Arima-based 

approach ranks second in minimizing energy consumption. Among the benchmark algorithms, 

LR performs optimally in terms of energy optimization. Notably, our UD-MSPR and OD-

MSPR algorithms effectively identify underloaded and overloaded hosts, enabling the 

migration of VMs from these hosts to alternate machines and transitioning idle hosts into sleep 

mode to conserve energy. 

 



140 

 

Moreover, by estimating the trend of future resource utilizations, our approach allows for 

proactive measures to prevent overloading situations and potential SLA violations. 

Consequently, our approach significantly reduces SLA violations resulting from host 

overloading ( ) compared to the other Cloudsim benchmarks, as shown in Figure 4.3. 

MSPR-based approach yields the best outcomes in reducing , with the Arima-based 

approach ranking second. LR is the worst among the benchmarks in reducing  in the first 

two workloads, but THR is the worst in the others. In terms of the average SLA violation per 

VM caused by resource under-provisioning ( ), Figure 4.4 demonstrates that both the 

MSPR and Arima-based approaches outperform the other methods across all tested datasets. 

The MSPR-based approach reduces the  by an average of 95.871%, 77.953%, 

81.075%, and 87.188% compared to LR, MAD, IQR, and THR, respectively. Moreover, it 

achieves a 15.278% average reduction in compared to the Arima-based approach.  

 

Once overloaded and underloaded hosts are identified, effective VM migration plans can be 

applied to readjust resource allocations and alleviate the issue. Figure 4.5 presents the 

comparison results in terms of the number of migrations. Remarkably, our MSPR-based 

approach dramatically minimizes the number of migrations across all datasets compared to the 

Cloudsim benchmarks. For example, for dataset W1, the MSPR-based technique initiates 6378 

migrations, while the other approaches perform 18695 (LR), 16940 (MAD), 18027 (IQR), 

17944 (THR), and 7273 (Arima) migrations. Minimizing the number of migrations is desirable 

as it reduces system overhead, extra expenses, and potential violations. Furthermore, avoiding 

unnecessary migrations contributes to a more efficient reallocation process, resulting in 

reduced runtime encompassing VM selection and destination host determination.  Figure 4.6 

provides insights into the runtime performance, indicating that MSPR-based technique 

achieves lower execution time compared to other approaches. Arima-based technique occupies 

the second-best runtime. Overall, MSPR-based approach strikes a favorable balance between 

energy consumption and SLA violation, outperforming the compared algorithms in almost all 

studied metrics. 

 



141 

 
Figure 4.2  Comparison of energy consumption for 5 workloads- experiment 1 

 

Figure 4.3  Comparison of SLOH metric for 5 workloads- experiment 1 

 

Figure 4.4  Comparison of the SLOVM metric for 5 workloads- experiment 1 
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Figure 4.5  Comparison of number of migrations for 5 workloads - experiment 1 

 

Figure 4.6  Comparison of execution time for 5 workloads - experiment 1 

4.6.2.2 Experiment 2 

Figures 4.7-4.11 provide a comparison of our consolidation approach with another modified 

versions of Cloudsim benchmark algorithms. In this experiment, these benchmark algorithms 

incorporate our proposed underload detection algorithm UD-MSPR explained in subsection 

4.5.2. As a result, the differentiation lies only in the overload detection part, allowing us to 

focus on comparing the performance in handling overloading and verifying if the benchmark 

algorithms combined with our predictive underload detection can outperform our approach. It 
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is important to note that the testing results for the MSPR and Arima-based approaches remain 

the same as in experiment 1. 

 

Figure 4.7 reveals that MSPR-based approach obtains the best results in terms of energy 

reduction. It also exhibits competitive performance, between Arima-based and LR-based 

techniques in the first two workloads (W1 and W2), and between Arima-based and MSPR-

based approaches in the last three workloads (W3, W4 and W5). Threshold techniques (THR, 

IQR, and MAD) consume the highest amount of energy, with THR having the worst results. 

 

Figure 4.8 highlights the superior performance of MSPR-based technique in minimizing  

across most datasets. Figure 4.9 also indicates that MSPR achieves the lowest  in all 

datasets. However, it is worth noting that the average difference in results between our 

approach and the other techniques is relatively smaller compared to experiment 1. This is 

primarily because the combination of our underload detection algorithm (UD-MSPR) with 

other approaches has reduced their  and  violation rates.  

 

In Figure 4.10, the number of VM migrations is compared among the different techniques. Our 

MSPR-based approach consistently performs the lowest number of migrations for resource 

reallocation. The difference in the average number of migrations is substantial between our 

approach and the other techniques: 76.486% compared to LR, 84.113% compared to MAD, 

89.664% compared to IQR, and 91.111% compared to THR. It is worth noting that the 

benchmark algorithms also exhibit a reduction in the number of migrations compared to the 

results of experiment 1. Arima-based approach also performs significantly fewer migrations 

than these benchmarks. 

 

Figure 4.11 reveals that LR and THR have competitive execution time and they outperform 

MSPR in terms of runtime. MSPR ranks the third. It is important to note that combining our 

UD-MSPR algorithm with the benchmark approaches results in reduced runtime compared to 

the results of experiment 1. This combination enables the benchmark algorithms to outperform 

also Arima-based approach in terms of execution time.  
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In summary, incorporating our underload detection algorithm into the benchmark approaches 

leads to improved performance results, significant reduction in SLA violation rates, the number 

of VM migrations, and runtime. However, our approach achieves the best overall results and 

outperforms these approaches, in terms of SLA violations, number of migrations, and power 

consumption. 

 

Figure 4.7  Comparison of energy consumption for 5 workloads- experiment 2 

 

Figure 4.8  Comparison of SLOH metric for 5 workloads- experiment 2 
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Figure 4.9  Comparison of SLOVM metric for 5 workloads- experiment 2 

 

Figure 4.10  Comparison of number of migrations for 5 workloads- experiment 2 

 

Figure 4.11  Comparison of execution time for 5 workloads- experiment 2 
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4.7 Conclusion 

In this paper, we propose a predictive workload consolidation mechanism that aims to reduce 

energy consumption, minimize SLA violations, and optimize the resource re-allocation 

process. Our approach consists of several components. Firstly, we introduce a multi-step-ahead 

and multi-resource prediction model, called MSPR that combines the Kalman Filter with 

Support Vector Regression (SVR). This model allows us to forecast the future resource 

utilization of hosts, including CPU, memory, and bandwidth. By leveraging historical data and 

utilizing the strengths of both Kalman Filter and SVR, we can accurately predict resource 

demands. Secondly, we present novel techniques based on MSPR model, for detecting 

underload and overload states of hosts. These techniques consider the current and predicted 

resource utilization trend across all resource types (CPU, memory and bandwidth) for each 

host to proactively estimate its state. To make informed decisions about host states, we 

calculate an adaptive upper-threshold for overload detection using Median Absolute Deviation 

(MAD) based on historical data for each resource type. Additionally, we provide the flexibility 

to specify different underload thresholds and prediction window sizes for each resource type. 

To pursue testing experiments, we combined our proposed techniques with existing VM 

selection and VM placement strategies. It is worth noting that our techniques are not limited 

to VMs and can be combined with other selection and placement methods, such as those 

designed for containers. Although VM placement is re-used from Cloudsim platform, we 

updated it to incorporate our overload detection technique for the identification of potential 

overloading issues on candidate destination hosts after migrating a VM.  

 

To evaluate our proposed techniques, we conducted simulations using real-world workload 

traces from Bitbrains and Materna. We compared our approach against modified and optimized 

versions of benchmark algorithms integrated into Cloudsim, including MAD-based, IQR-

based, THR-based, and LR-based approaches. These benchmarks are updated to consider 

multi-resource aspects in their host state estimation. In addition to these approaches, we 

implemented another predictive consolidation technique by combining our overload and 

underload techniques with a multi-resource Arima prediction model, as an alternative to the 
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Kalman-SVR model. This allowed us to compare the performance of our proposal against 

another predictive consolidation mechanism. Our experimental results demonstrated the 

effectiveness of the Kalman-SVR-based consolidation approach in minimizing defined cost 

metrics and outperforming the other algorithms. For future work, we aim to combine our 

proposed algorithms with more advanced selection and placement strategies for VMs or 

containers. These strategies play a crucial role in resource reallocation decisions and can affect 

the overall system performance. Future work can also involve testing our proposals on real 

Cloud environment using monitoring tools instead of relying on existing resource utilization 

datasets. 
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CONCLUSION 

 

In recent years, virtualization technologies and cloud solutions have revolutionized the way 

computing resources are managed and utilized. Virtualization technologies like virtual 

machines (VMs), containers, and serverless architectures have enabled cloud providers to offer 

scalable, flexible, and cost-effective services to their customers. However, with the increasing 

demand for cloud services, resource management has become a critical issue in the cloud. 

Workload consolidation approaches, resource utilization prediction, resource scaling and 

migration are some of the mechanisms that have been proposed to manage resources in 

virtualized environments like the cloud. Workload consolidation approaches aim to maximize 

the utilization of resources by consolidating multiple workloads on a smaller number of 

physical servers. Resource utilization prediction techniques anticipate the future resource 

usage based on historical data. Resource scaling techniques dynamically adjust the amount of 

resources allocated to an application based on its current usage. Resource migration techniques 

allow applications to be moved between physical servers to optimize resource utilization. To 

create an efficient resource management system, these techniques need to be employed 

together in a coherent and interrelated manner. 

 

The objective of this thesis is to propose generic resource management techniques that can be 

applied in virtualized environments, independent of the type of executed services or the 

virtualization technology used. These techniques aim to ensure efficient resource utilization, 

reduce energy consumption, and meet Service Level Agreement (SLA) requirements. To 

achieve this objective, the thesis presents several significant contributions. It proposes 

innovative techniques for dynamic resource adaptation in NFV-cloud environments, including 

resource scaling and migration. The research addresses the challenges of variability in 

workloads, diversity in applications, and conflicting optimization goals. It formulates the 

resource adaptation problem by integrating horizontal scaling, vertical scaling, and migration 

strategies, and develops an Integer Linear Programming (ILP) model to provide optimal 

solutions. Additionally, multi-objectives decision-making metaheuristic algorithms based on 

NSGAII, CRO, and PSO are proposed for real-time resource adaptation decisions. Moreover, 
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the thesis explores proactive resource reallocation by combining a multi-step-ahead workload 

prediction model. By integrating Kalman filter and support vector regression, host resource 

utilization including CPU, memory and bandwidth, are accurately anticipated. Building upon 

this work, an optimized predictive consolidation approach is introduced, considering proactive 

host state estimation strategies (overload and underload detection) and incorporating adaptive 

thresholds. It aims to overcome the limitations of existing approaches, ensures accurate 

assessment of the overall host state and reliable migration decisions, prevent energy waste, 

avoid performance degradation, and SLA violations. The effectiveness of the proposed 

techniques is validated through extensive experiments, using various datasets (Planetlab, 

Materna, and Bitbrains) and simulator (Cloudsim) demonstrating their potential to enhance 

resource management in virtualized environments. 

 

These contributions are presented as three distinct journal papers. It is important to 

acknowledge that building a complete resource management system may require additional 

techniques and further research. One potential area for future exploration is the development 

of advanced virtual machine or container selection strategy for migration and placement 

technique. These strategies can significantly impact the effectiveness and efficiency of the 

resource management system. Another possible enhancement is integrating the prediction 

model with the resource adaptation meta-heuristic algorithms. This integration would enable 

proactive decision-making by allowing the algorithms to utilize the predicted resource needs 

in their resource adaptation processes. In addition, a coordination entity can be added to filter 

the decisions made by both the consolidation framework and the resource adaptation 

algorithms. This coordination entity would generate the final decisions and apply them 

accordingly. Moreover, the framework can benefit from incorporating monitoring tools instead 

of using existing datasets or generating random workloads. By gradually adding these 

elements, the current resource management capabilities of the system can be further refined. 

Furthermore, future research can involve investigating how to efficiently manage resources in 

hybrid cloud-edge environments (Zhao, 2023) or serverless architectures (Hoseinyfarahabady 

et al., 2021)(Cordingly et al., 2020). These environments introduce new challenges and 

constraints for the resource reallocation problem in a virtualized environment(Gill et al., 2022).



 

LIST OF BIBLIOGRAPHICAL REFERENCES 

Abdelaal, M. A., Ebrahim, G. A., & Anis, W. R. (2021). Efficient placement of service function 
chains in cloud computing environments. Electronics (Switzerland), 10(3), 1‑22. 
https://doi.org/10.3390/electronics10030323 

Abdiansah, A., & Wardoyo, R. (2015). Time Complexity Analysis of Support Vector 
Machines (SVM) in LibSVM. International Journal of Computer Applications, 128(3), 
28‑34. https://doi.org/10.5120/ijca2015906480 

Abdullah, L., Li, H., Al-Jamali, S., Al-Badwi, A., & Ruan, C. (2020). Predicting Multi-
Attribute Host Resource Utilization Using Support Vector Regression Technique. IEEE 
Access, 8, 66048‑66067. https://doi.org/10.1109/ACCESS.2020.2984056 

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., & Merle, P. (2017). Autonomic Vertical Elasticity 
of Docker Containers with ELASTICDOCKER. IEEE International Conference on 
Cloud Computing, CLOUD, 2017-June, 472‑479. 
https://doi.org/10.1109/CLOUD.2017.67 

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., & Merle, P. (2018). Elasticity in Cloud Computing: 
State of the Art and Research Challenges IEEE TRANSACTIONS ON SERVICES 
COMPUTING, MANUSCRIPT ID 1 Elasticity in Cloud Computing: State of the Art and 
Research Challenges. IEEE Transactions on Services Computing (TSC), 11(2), 430‑447. 
https://doi.org/10.1109/TSC.2017.2711009 

Ali, A., Pinciroli, R., Yan, F., & Smirni, E. (2018). CEDULE: A scheduling framework for 
burstable performance in cloud computing. Proceedings - 15th IEEE International 
Conference on Autonomic Computing, ICAC 2018, 141‑150. 
https://doi.org/10.1109/ICAC.2018.00024 

Alzahrani, E. J., Tari, Z., Zeephongsekul, P., Lee, Y. C., Alsadie, D., & Zomaya, A. Y. (2016). 
SLA-Aware Resource Scaling for Energy Efficiency. Proceedings - 18th IEEE 
International Conference on High Performance Computing and Communications, 14th 
IEEE International Conference on Smart City and 2nd IEEE International Conference on 
Data Science and Systems, HPCC/SmartCity/DSS 2016, 852‑859. 
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0123 

Amiri, M., & Mohammad-Khanli, L. (2017). Survey on prediction models of applications for 
resources provisioning in cloud. Journal of Network and Computer Applications, 
82(December 2016), 93‑113. https://doi.org/10.1016/j.jnca.2017.01.016 

Apostolopoulos, P. A., Tsiropoulou, E. E., & Papavassiliou, S. (2019). Risk-aware social cloud 
computing based on serverless computing model. 2019 IEEE Global Communications 
Conference, GLOBECOM 2019 - Proceedings. 
https://doi.org/10.1109/GLOBECOM38437.2019.9013182 



152 

 

Arshad, U., Aleem, M., Srivastava, G., & Lin, J. C. W. (2022). Utilizing power consumption 
and SLA violations using dynamic VM consolidation in cloud data centers. Renewable 
and Sustainable Energy Reviews, 167(July), 112782. 
https://doi.org/10.1016/j.rser.2022.112782 

Aslanpour, M. S., & Branch, S. (2016). SLA-Aware Resource Allocation for Application 
Service Providers in the Cloud. Second International Conference on Web Research 
(ICWR) SLA-Aware, 31‑42. 

Astudillo, L., Melin, P., & Castillo, O. (2015). Introduction to an optimization algorithm based 
on the chemical reactions. Information Sciences, 291(C), 85‑95. 
https://doi.org/10.1016/j.ins.2014.08.043 

Awad, M., Kara, N., & Edstrom, C. (2022). SLO-aware dynamic self-adaptation of resources. 
Future Generation Computer Systems, 133, 266‑280. 
https://doi.org/10.1016/j.future.2022.03.018 

Awad, M., Kara, N., & Leivadeas, A. (2022). Utilization prediction-based VM consolidation 
approach. Journal of Parallel and Distributed Computing, 170, 24‑38. 
https://doi.org/10.1016/j.jpdc.2022.08.001 

B, A. N., Gounaris, A., & Sioutas, S. (2016). Cloud Elasticity: A Survey, 10230, 151‑167. 
https://doi.org/10.1007/978-3-319-57045-7 

Banerjee, S., Roy, S., & Khatua, S. (2021). Efficient resource utilization using multi-step-
ahead workload prediction technique in cloud. Journal of Supercomputing, 77(9), 
10636‑10663. https://doi.org/10.1007/s11227-021-03701-y 

Basmadjian, R., Niedermeier, F., & De Meer, H. (2012). Modelling and analysing the power 
consumption of idle servers. 2012 Sustainable Internet and ICT for Sustainability, 
SustainIT 2012. 

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics 
for efficient management of data centers for Cloud computing. Future Generation 
Computer Systems, 28(5), 755‑768. https://doi.org/10.1016/j.future.2011.04.017 

Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive 
heuristics for energy and performance efficient dynamic consolidation of virtual machines 
in Cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 
1397‑1420. https://doi.org/10.1002/cpe 

Benmakrelouf, S., Kara, N., Tout, H., Rabipour, R., & Edstrom, C. (2019). Resource needs 
prediction in virtualized systems: Generic proactive and self-adaptive solution. Journal 
of Network and Computer Applications, 148(102443). 
https://doi.org/10.1016/j.jnca.2019.102443 

 



153 

Benmakrelouf, S., St-Onge, C., Kara, N., Tout, H., Edstrom, C., & Lemieux, Y. (2020). 
Abnormal behavior detection using resource level to service level metrics mapping in 
virtualized systems. Future Generation Computer Systems, 102, 680‑700. 
https://doi.org/10.1016/j.future.2019.07.051 

Bharanidharan, G., & Jayalakshmi, S. (2021). Predictive virtual machine placement for energy 
efficient scalable resource provisioning in modern data centers. Proceedings of the 2021 
8th International Conference on Computing for Sustainable Global Development, 
INDIACom 2021, 299‑305. https://doi.org/10.1109/INDIACom51348.2021.00052 

Bharany, S., Sharma, S., Khalaf, O. I., Abdulsahib, G. M., Al Humaimeedy, A. S., Aldhyani, 
T. H. H., … Alkahtani, H. (2022). A Systematic Survey on Energy-Efficient Techniques 
in Sustainable Cloud Computing. Sustainability (Switzerland), 14(10), 1‑89. 
https://doi.org/10.3390/su14106256 

Bhattacharjee, A., Chhokra, A. D., Kang, Z., Sun, H., Gokhale, A., & Karsai, G. (2019). 
BARISTA: Efficient and scalable serverless serving system for deep learning prediction 
services. Proceedings - 2019 IEEE International Conference on Cloud Engineering, IC2E 
2019, 23‑33. https://doi.org/10.1109/IC2E.2019.00-10 

Bouabdallah, R., Lajmi, S., & Ghedira, K. (2016). Use of reactive and proactive elasticity to 
adjust resources provisioning in the cloud provider. Proceedings - 18th IEEE 
International Conference on High Performance Computing and Communications, 14th 
IEEE International Conference on Smart City and 2nd IEEE International Conference on 
Data Science and Systems, HPCC/SmartCity/DSS 2016, 1155‑1162. 
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0162 

Calheiros, R. N., Ranjan, R., Beloglazov, A., Buyya, R., & De Rose, C. A. F. (2011). 
CloudSim: a toolkit for modeling and simulation of cloud computing environments and 
evaluation of resource provisioning algorithms. Software - Practice and Experience, 
41(1), 23‑50. https://doi.org/10.1002/spe 

Chaloemwat, W., & Kitisin, S. (2016). Horizontal auto-scaling and process migration 
mechanism for cloud services with skewness algorithm. 2016 13th International Joint 
Conference on Computer Science and Software Engineering, JCSSE 2016, 0‑5. 
https://doi.org/10.1109/JCSSE.2016.7748936 

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM 
Transactions on Intelligent Systems and Technology, 2(3), 1‑39. 
https://doi.org/10.1145/1961189.1961199 

Chaurasia, N., Kumar, M., Chaudhry, R., & Verma, O. P. (2021). Comprehensive survey on 
energy-aware server consolidation techniques in cloud computing. Journal of 
Supercomputing, 77(10), 11682‑11737. https://doi.org/10.1007/s11227-021-03760-1 

 



154 

 

Chaurasia, N., Kumar, M., Vidyarthi, A., Pal, K., & Alkhayyat, A. (2023). An efficient and 
optimized Markov chain-based prediction for server consolidation in cloud environment. 
Computers and Electrical Engineering, 108. 
https://doi.org/10.1016/j.compeleceng.2023.108707 

Choudhary, A., Govil, M. C., Singh, G., Awasthi, L. K., Pilli, E. S., & Kapil, D. (2017). A 
critical survey of live virtual machine migration techniques. Journal of Cloud Computing, 
6(1), 1‑41. https://doi.org/10.1186/s13677-017-0092-1 

Chouliaras, S., & Sotiriadis, S. (2022). Auto-scaling containerized cloud applications: A 
workload-driven approach. Simulation Modelling Practice and Theory, 121. 
https://doi.org/10.1016/j.simpat.2022.102654 

Cordingly, R., Shu, W., & Lloyd, W. J. (2020). Predicting Performance and Cost of Serverless 
Computing Functions with SAAF. Proceedings - IEEE 18th International Conference on 
Dependable, Autonomic and Secure Computing, IEEE 18th International Conference on 
Pervasive Intelligence and Computing, IEEE 6th International Conference on Cloud and 
Big Data Computing and IEEE 5th Cybe, 640‑649. https://doi.org/10.1109/DASC-
PICom-CBDCom-CyberSciTech49142.2020.00111 

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective 
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 
182‑197. https://doi.org/10.1109/4235.996017 

Devi, K. L., & Valli, S. (2023). Time series-based workload prediction using the statistical 
hybrid model for the cloud environment. Computing, 105(2), 353‑374. 
https://doi.org/10.1007/s00607-022-01129-7 

Dias, A. H. T., Correia, L. H. A., & Malheiros, N. (2022). A Systematic Literature Review on 
Virtual Machine Consolidation. ACM Computing Surveys, 54(8). 
https://doi.org/10.1145/3470972 

Ding, W., Luo, F., Han, L., Gu, C., Lu, H., & Fuentes, J. (2020). Adaptive virtual machine 
consolidation framework based on performance-to-power ratio in cloud data centers. 
Future Generation Computer Systems, 111, 254‑270. 
https://doi.org/10.1016/j.future.2020.05.004 

Dogani, J., Khunjush, F., & Seydali, M. (2023). Host load prediction in cloud computing with 
Discrete Wavelet Transformation (DWT) and Bidirectional Gated Recurrent Unit 
(BiGRU) network. Computer Communications, 198, 157‑174. 
https://doi.org/10.1016/j.comcom.2022.11.018 

Duong-Ba, T. H., Nguyen, T., Bose, B., & Tran, T. T. (2018). A Dynamic Virtual Machine 
Placement and Migration Scheme For Data Centers. IEEE Transactions on Services 
Computing, 1374(c), 1‑14. https://doi.org/10.1109/TSC.2018.2817208 



155 

El Mensoum, I., Wahab, O. A., Kara, N., & Edstrom, C. (2020). MuSC: A multi-stage service 
chains embedding approach. Journal of Network and Computer Applications, 159(April 
2019), 102593. https://doi.org/10.1016/j.jnca.2020.102593 

Emmerich, M. T. M., & Deutz, A. H. (2018). A tutorial on multiobjective optimization: 
fundamentals and evolutionary methods. Natural Computing, 17(3), 585‑609. 
https://doi.org/10.1007/s11047-018-9685-y 

Eramo, V., Miucci, E., Ammar, M., & Lavacca, F. G. (2017). An approach for service function 
chain routing and virtual function network instance migration in network function 
virtualization architectures. IEEE/ACM Transactions on Networking, 25(4), 2008‑2025. 
https://doi.org/10.1109/TNET.2017.2668470 

Farahnakian, F., Pahikkala, T., Liljeberg, P., Plosila, J., Hieu, N. T., & Tenhunen, H. (2019). 
Energy-aware VM consolidation in cloud data centers using utilization prediction model. 
IEEE Transactions on Cloud Computing, 7(2), 524‑536. 
https://doi.org/10.1109/TCC.2016.2617374 

Gil Herrera, J., & Botero, J. F. (2016). Resource Allocation in NFV: A Comprehensive Survey. 
IEEE Transactions on Network and Service Management, 13(3), 518‑532. 
https://doi.org/10.1109/TNSM.2016.2598420 

Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., … Uhlig, S. (2022). 
AI for next generation computing: Emerging trends and future directions. Internet of 
Things (Netherlands), 19(March), 100514. https://doi.org/10.1016/j.iot.2022.100514 

H. Sayadnavard, M., Toroghi Haghighat, A., & Rahmani, A. M. (2022). A multi-objective 
approach for energy-efficient and reliable dynamic VM consolidation in cloud data 
centers. Engineering Science and Technology, an International Journal, 26, 100995. 
https://doi.org/10.1016/j.jestch.2021.04.014 

Hariharan, B., Siva, R., Kaliraj, S., & Prakash, P. N. S. (2023). ABSO: an energy-efficient 
multi-objective VM consolidation using adaptive beetle swarm optimization on cloud 
environment. Journal of Ambient Intelligence and Humanized Computing, 14(3), 
2185‑2197. https://doi.org/10.1007/s12652-021-03429-w 

He, S., Hu, C., Shi, B., Wo, T., & Li, B. (2016). Optimizing virtual machine live migration 
without shared storage in hybrid clouds. Proceedings - 18th IEEE International 
Conference on High Performance Computing and Communications, 14th IEEE 
International Conference on Smart City and 2nd IEEE International Conference on Data 
Science and Systems, HPCC/SmartCity/DSS 2016, 921‑928. 
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0132 

He, T. Z., Toosi, A. N., & Buyya, R. (2021). SLA-aware multiple migration planning and 
scheduling in SDN-NFV-enabled clouds. Journal of Systems and Software, 176, 110943. 
https://doi.org/10.1016/j.jss.2021.110943 



156 

 

Helali, L., & Omri, M. N. (2021a). A survey of data center consolidation in cloud computing 
systems. Computer Science Review, 39, 100366. 
https://doi.org/10.1016/j.cosrev.2021.100366 

Helali, L., & Omri, M. N. (2021b). A survey of data center consolidation in cloud computing 
systems. Computer Science Review, 39, 100366. 
https://doi.org/10.1016/j.cosrev.2021.100366 

Hieu, N. T., Francesco, M. Di, & Yla-Jaaski, A. (2020). Virtual Machine Consolidation with 
Multiple Usage Prediction for Energy-Efficient Cloud Data Centers. IEEE Transactions 
on Services Computing, 13(1), 186‑199. https://doi.org/10.1109/TSC.2017.2648791 

Hirashima, Y. (2016). Parameter Optimization for Hybrid Auto-scaling Mechanism, 111‑116. 

Hirashima, Y., Yamasaki, K., & Nagura, M. (2016). Proactive-reactive auto-scaling 
mechanism for unpredictable load change. Proceedings - 2016 5th IIAI International 
Congress on Advanced Applied Informatics, IIAI-AAI 2016, 861‑866. 
https://doi.org/10.1109/IIAI-AAI.2016.180 

Hoseinyfarahabady, M. R., Taheri, J., Zomaya, A. Y., & Tari, Z. (2021). Data-Intensive 
Workload Consolidation in Serverless (Lambda/FaaS) Platforms. 2021 IEEE 20th 
International Symposium on Network Computing and Applications, NCA 2021. 
https://doi.org/10.1109/NCA53618.2021.9685244 

Houidi, O., Soualah, O., Louati, W., Mechtri, M., Zeghlache, D., & Kamoun, F. (2017). An 
Efficient Algorithm for Virtual Network Function Scaling. 2017 IEEE Global 
Communications Conference, GLOBECOM 2017 - Proceedings, 2018-Janua, 1‑7. 
https://doi.org/10.1109/GLOCOM.2017.8254727 

Hsieh, S. Y., Liu, C. S., Buyya, R., & Zomaya, A. Y. (2020). Utilization-prediction-aware 
virtual machine consolidation approach for energy-efficient cloud data centers. Journal 
of Parallel and Distributed Computing, 139, 99‑109. 
https://doi.org/10.1016/j.jpdc.2019.12.014 

Hu, Y., Bo, D., & Fuyang, P. (2016). Autoscaling prediction models for cloud resource 
provisioning. 2016 2nd IEEE International Conference on Computer and 
Communications, ICCC 2016 - Proceedings, 1364‑1369. 
https://doi.org/10.1109/CompComm.2016.7924927 

Huang, F., Li, H., Yuan, Z., & Li, X. (2017). An Application Deployment Approach Based on 
Hybrid Cloud. Proceedings - 3rd IEEE International Conference on Big Data Security 
on Cloud, BigDataSecurity 2017, 3rd IEEE International Conference on High 
Performance and Smart Computing, HPSC 2017 and 2nd IEEE International Conference 
on Intelligent Data and Securit, 74‑79. https://doi.org/10.1109/BigDataSecurity.2017.54 

 



157 

Huang, G., Wang, S., Zhang, M., Li, Y., Qian, Z., Chen, Y., & Zhang, S. (2016). Auto scaling 
virtual machines for web applications with queueing theory. 2016 3rd International 
Conference on Systems and Informatics, ICSAI 2016, (Icsai), 433‑438. 
https://doi.org/10.1109/ICSAI.2016.7810994 

Islam, M. R., Saifullah, C. M. K., & Mahmud, M. R. (2019). Chemical reaction optimization: 
survey on variants. Evolutionary Intelligence, 12(3), 395‑420. 
https://doi.org/10.1007/s12065-019-00246-1 

Janjanam, T. S., Siram, K. S., & Kollu, P. K. (2023). Cloud Resources Forecasting based on 
Server Workload using ML Techniques. Dans IDCIoT 2023 - International Conference 
on Intelligent Data Communication Technologies and Internet of Things, Proceedings 
(pp. 427‑433). Institute of Electrical and Electronics Engineers Inc. 
https://doi.org/10.1109/IDCIoT56793.2023.10053532 

Jeong, B., Baek, S., Park, S., Jeon, J., & Jeong, Y. S. (2023). Stable and efficient resource 
management using deep neural network on cloud computing. Neurocomputing, 521, 
99‑112. https://doi.org/10.1016/j.neucom.2022.11.089 

Jia, Y., Wu, C., Li, Z., Le, F., & Liu, A. (2018). Online Scaling of NFV Service Chains Across 
Geo-Distributed Datacenters. IEEE/ACM Transactions on Networking, 26(2), 699‑710. 
https://doi.org/10.1109/TNET.2018.2800400 

Junjie Liu Fen Zhou, Ping Lu, Zuqing Zhu, W. L. (2017). On Dynamic Service Function Chain 
Deployment and Readjustment. Ieee Transactions on Network and Service Management, 
14(3), 543‑553. 

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of 
Fluids Engineering, Transactions of the ASME, 82(1), 35‑45. 
https://doi.org/10.1115/1.3662552 

Kalyvianaki, E., Charalambous, T., & Hand, S. (2014). Adaptive resource provisioning for 
virtualized servers using kalman filters. ACM Transactions on Autonomous and Adaptive 
Systems, 9(2). https://doi.org/10.1145/2626290 

Kan, C. (2016). Docloud: an elastic cloud platform for web applications based on Docker. 2016 
18th International Conference on Advanced Communication Technology (ICACT), 
478‑483. 

Khan, T., Tian, W., Ilager, S., & Buyya, R. (2022). Workload forecasting and energy state 
estimation in cloud data centres: ML-centric approach. Future Generation Computer 
Systems, 128, 320‑332. https://doi.org/10.1016/j.future.2021.10.019 

Khan, T., Tian, W., Zhou, G., Ilager, S., Gong, M., & Buyya, R. (2022). Machine learning 
(ML)-centric resource management in cloud computing: A review and future directions. 
Journal of Network and Computer Applications, 204(March), 103405. 



158 

 

Khebbache, S., Hadji, M., & Zeghlache, D. (2018). A multi-objective non-dominated sorting 
genetic algorithm for VNF chains placement. CCNC 2018 - 2018 15th IEEE Annual 
Consumer Communications and Networking Conference, 2018-Janua, 1‑4. 
https://doi.org/10.1109/CCNC.2018.8319250 

Khoshkholghi, M. A., Derahman, M. N., Abdullah, A., Subramaniam, S., & Othman, M. 
(2017). Energy-Efficient Algorithms for Dynamic Virtual Machine Consolidation in 
Cloud Data Centers. IEEE Access, 5, 10709‑10722. 
https://doi.org/10.1109/ACCESS.2017.2711043 

Kohne, A., Pasternak, D., Nagel, L., & Spinczyk, O. (2016). Evaluation of SLA-based decision 
strategies for VM scheduling in cloud data centers. 3rd Workshop on CrossCloud 
Infrastructures and Platforms, CrossCloud 2016 - Colocated with EuroSys 2016, 1(212). 
https://doi.org/10.1145/2904111.2904113 

Kohne, A., Spohr, M., Nagel, L., & Spinczyk, O. (2014). FederatedCloudSim: A SLA-aware 
federated cloud simulation framework. Proceedings of the 2nd International Workshop 
on Cross-Cloud Systems, CrossCloud Brokers 2014 - Held in conjunction with the 15th 
ACM/IFIP/USENIX International Middleware Conference, Middleware 2014. 
https://doi.org/10.1145/2676662.2676674 

Laaziz, L., Kara, N., Rabipour, R., Edstrom, C., & Lemieux, Y. (2019). FASTSCALE: A fast 
and scalable evolutionary algorithm for the joint placement and chaining of virtualized 
services. Journal of Network and Computer Applications, 148(July). 
https://doi.org/10.1016/j.jnca.2019.102429 

Lam, A. Y. S., & Li, V. O. K. (2012). Chemical Reaction Optimization: A tutorial. Memetic 
Computing, 4(1), 3‑17. https://doi.org/10.1007/s12293-012-0075-1 

Leivadeas, A., Papagianni, C., & Papavassiliou, S. (2015). Going Green with the Networked 
Cloud: Methodologies and Assessment. Dans Quantitative Assessments of Distributed 
Systems: Methodologies and Techniques (pp. 351‑374). (S.l.) : (s.n.). 

Level, S. (2016). An Efficient Resource Utilization Technique for Consolidation of Virtual 
Machines in Cloud Computing Environments. 33 rd NATIONAL RADIO SCIENCE 
CONFERENCE Nrsc, 316‑324. 

Li, L., Dong, J., Zuo, D., & Liu, J. (2018). SLA-aware and energy-efficient VM consolidation 
in cloud data centers using host states naive Bayesian prediction model. Dans 2018 IEEE 
Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing 
& Communications, Big Data & Cloud Computing, Social Computing & Networking, 
Sustainable Computing & Communications 
(ISPA/IUCC/BDCloud/SocialCom/SustainCom) (pp. 80‑87). IEEE. 
https://doi.org/10.1109/BDCloud.2018.00025 

 



159 

Li, L., Dong, J., Zuo, D., & Wu, J. (2019). SLA-Aware and Energy-Efficient VM 
Consolidation in Cloud Data Centers Using Robust Linear Regression Prediction Model. 
IEEE Access, 7, 9490‑9500. https://doi.org/10.1109/ACCESS.2019.2891567 

Li, Y., & Xia, Y. (2017). Auto-scaling web applications in hybrid cloud based on docker. 
Proceedings of 2016 5th International Conference on Computer Science and Network 
Technology, ICCSNT 2016, 75‑79. https://doi.org/10.1109/ICCSNT.2016.8070122 

Li, Zhihua, Yu, X., Yu, L., Guo, S., & Chang, V. (2020). Energy-efficient and quality-aware 
VM consolidation method. Future Generation Computer Systems, 102, 789‑809. 
https://doi.org/10.1016/j.future.2019.08.004 

Li, Zhiyong, Li, Y., Yuan, T., Chen, S., & Jiang, S. (2019). Chemical reaction optimization for 
virtual machine placement in cloud computing. Applied Intelligence, 49(1), 220‑232. 
https://doi.org/10.1007/s10489-018-1264-5 

Lin, W., Xu, S., He, L., & Li, J. (2017). Multi-resource scheduling and power simulation for 
cloud computing. Information Sciences, 397‑398, 168‑186. 
https://doi.org/10.1016/j.ins.2017.02.054 

Liu, J., Lu, W., Zhou, F., Lu, P., & Zhu, Z. (2017). On Dynamic service function chain 
deployment and readjustment. IEEE Transactions on Network and Service Management, 
14(3), 543‑553. https://doi.org/10.1109/TNSM.2017.2711610 

Luo, S., Xu, H., Ye, K., Xu, G., Zhang, L., Yang, G., & Xu, C. (2022). The Power of Prediction: 
Microservice Auto Scaling via Workload Learning. SoCC 2022 - Proceedings of the 13th 
Symposium on Cloud Computing, 355‑369. https://doi.org/10.1145/3542929.3563477 

Luo, Z., & Wu, C. (2020). An online algorithm for VNF service chain scaling in datacenters. 
IEEE/ACM Transactions on Networking, 28(3), 1061‑1073. 
https://doi.org/10.1109/TNET.2020.2979263 

Mahdhi, T., & Mezni, H. (2018). A prediction-Based VM consolidation approach in IaaS 
Cloud Data Centers. Journal of Systems and Software, 146, 263‑285. 
https://doi.org/10.1016/j.jss.2018.09.083 

Mai, L., Ding, Y., Zhang, X., Fan, L., Yu, S., & Xu, Z. (2021). Energy efficiency with service 
availability guarantee for Network Function Virtualization. Future Generation Computer 
Systems, 119, 140‑153. https://doi.org/10.1016/j.future.2021.02.002 

Malik, S., Tahir, M., Sardaraz, M., & Alourani, A. (2022). A Resource Utilization Prediction 
Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning 
Techniques. Applied Sciences, 12(4), 2160. https://doi.org/10.3390/app12042160 

Masdari, M., & Khoshnevis, A. (2020). A survey and classification of the workload forecasting 
methods in cloud computing. Cluster Computing, 23(4), 2399‑2424. 
https://doi.org/10.1007/s10586-019-03010-3 



160 

 

McGrath, G., & Brenner, P. R. (2017). Serverless Computing: Design, Implementation, and 
Performance. Proceedings - IEEE 37th International Conference on Distributed 
Computing Systems Workshops, ICDCSW 2017, 405‑410. 
https://doi.org/10.1109/ICDCSW.2017.36 

Medhat, A. M., Taleb, T., Elmangoush, A., Carella, G. A., Covaci, S., & Magedanz, T. (2016). 
Service Function Chaining in Next Generation Networks: State of the Art and Research 
Challenges, 2‑9. 

Melhem, S. B., Agarwal, A., Goel, N., & Zaman, M. (2017). Selection process approaches in 
live migration: A comparative study. 2017 8th International Conference on Information 
and Communication Systems, ICICS 2017, 23‑28. 
https://doi.org/10.1109/IACS.2017.7921940 

Melin, P., Astudillo, L., Castillo, O., Valdez, F., & Garcia, M. (2013). Optimal design of type-
2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed 
torques using a new chemical optimization paradigm. Expert Systems with Applications, 
40(8), 3185‑3195. https://doi.org/10.1016/j.eswa.2012.12.032 

Meng, Y., Rao, R., Zhang, X., & Hong, P. (2016). CRUPA: A container resource utilization 
prediction algorithm for auto-scaling based on time series analysis. PIC 2016 - 
Proceedings of the 2016 IEEE International Conference on Progress in Informatics and 
Computing, 468‑472. https://doi.org/10.1109/PIC.2016.7949546 

Minarolli, D., Mazrekaj, A., & Freisleben, B. (2017). Tackling uncertainty in long-term 
predictions for host overload and underload detection in cloud computing. Journal of 
Cloud Computing, 6(1). https://doi.org/10.1186/s13677-017-0074-3 

Moghaddam, S. M., Piraghaj, S. F., O’Sullivan, M., Walker, C., & Unsworth, C. P. (2018). 
Energy-efficient and SLA-aware virtual machine selection algorithm for dynamic 
resource allocation in cloud data centers. Proceedings - 11th IEEE/ACM International 
Conference on Utility and Cloud Computing, UCC 2018, 103‑113. 
https://doi.org/10.1109/UCC.2018.00019 

Moghaddassian, M., Bannazadeh, H., & Leon-Garcia, A. (2017). Adaptive auto-scaling for 
virtual resources in software-defined infrastructure. Proceedings of the IM 2017 - 2017 
IFIP/IEEE International Symposium on Integrated Network and Service Management, 
548‑551. https://doi.org/10.23919/INM.2017.7987326 

Mostafavi, S., Hakami, V., & Sanaei, M. (2021). Quality of service provisioning in network 
function virtualization: a survey. Computing (Vol. 103). (S.l.) : Springer Vienna. 
https://doi.org/10.1007/s00607-021-00925-x 

Nadgowda, S., Suneja, S., Bila, N., & Isci, C. (2017). Voyager: Complete Container State 
Migration. Proceedings - International Conference on Distributed Computing Systems, 
(Section III), 2137‑2142. https://doi.org/10.1109/ICDCS.2017.91 



161 

Nadgowda, S., Suneja, S., & Kanso, A. (2017). Comparing scaling methods for linux 
containers. Proceedings - 2017 IEEE International Conference on Cloud Engineering, 
IC2E 2017, 266‑272. https://doi.org/10.1109/IC2E.2017.42 

Nadjaran Toosi, A., Son, J., Chi, Q., & Buyya, R. (2019). ElasticSFC: Auto-scaling techniques 
for elastic service function chaining in network functions virtualization-based clouds. 
Journal of Systems and Software, 152, 108‑119. https://doi.org/10.1016/j.jss.2019.02.052 

Nath, S. B., Addya, S. K., Chakraborty, S., & Ghosh, S. K. (2020). Green Containerized 
Service Consolidation in Cloud. IEEE International Conference on Communications, 
2020-June. https://doi.org/10.1109/ICC40277.2020.9149173 

Nezamabadi-Pour, H., Rostami-Shahrbabaki, M., & Maghfoori-Farsangi, M. M. (2008). 
Binary Particle Swarm Optimization: challenges and New Solutions. The Journal of 
Computer Society of Iran (CSI) On Computer Science and Engineering (JCSE), 6(May 
2014), 21‑32. Repéré à https://www.researchgate.net/publication/258456389 

Nguyen, T. T., Li, Z., Zhang, S., & Truong, T. K. (2014). A hybrid algorithm based on particle 
swarm and chemical reaction optimization. Expert Systems with Applications, 41(5), 
2134‑2143. https://doi.org/10.1016/j.eswa.2013.09.012 

Noshy, M., Ibrahim, A., & Ali, H. A. (2018). Optimization of live virtual machine migration 
in cloud computing: A survey and future directions. Journal of Network and Computer 
Applications, 110(March), 1‑10. https://doi.org/10.1016/j.jnca.2018.03.002 

Noureddine, A. (2022). PowerJoular and JoularJX : Multi-Platform Software Power 
Monitoring Tools. Dans 18th International Conference on Intelligent Environments. 
Biarritz, France. 

Olivas, F., Valdez, F., Castillo, O., & Melin, P. (2016). Dynamic parameter adaptation in 
particle swarm optimization using interval type-2 fuzzy logic. Soft Computing, 20(3), 
1057‑1070. https://doi.org/10.1007/s00500-014-1567-3 

Olivas, F., Valdez, F., Melin, P., Sombra, A., & Castillo, O. (2019). Interval type-2 fuzzy logic 
for dynamic parameter adaptation in a modified gravitational search algorithm. 
Information Sciences, 476, 159‑175. https://doi.org/10.1016/j.ins.2018.10.025 

Panwar, S. S., Rauthan, M. M. S., & Barthwal, V. (2022). A systematic review on effective 
energy utilization management strategies in cloud data centers. Journal of Cloud 
Computing, 11(1). https://doi.org/10.1186/s13677-022-00368-5 

Park, K., & Pai, V. S. (2006). CoMon: A Mostly-Scalable Monitoring System for PlanetLab. 
ACM SIGOPS Operating Systems Review, 40(1), 65‑74. 
https://doi.org/10.1145/1113361.1113374 

 



162 

 

Qiu, F., Zhang, B., & Guo, J. (2016). A deep learning approach for VM workload prediction 
in the cloud. 2016 IEEE/ACIS 17th International Conference on Software Engineering, 
Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2016, 
319‑324. https://doi.org/10.1109/SNPD.2016.7515919 

Radhika, E. G., & Sadasivam, G. S. (2021). A review on prediction based autoscaling 
techniques for heterogeneous applications in cloud environment. Materials Today: 
Proceedings, 45, 2793‑2800. https://doi.org/10.1016/j.matpr.2020.11.789 

Rahman, S., Ahmed, T., Huynh, M., Tornatore, M., & Mukherjee, B. (2018). Auto-Scaling 
VNFs Using Machine Learning to Improve QoS and Reduce Cost. IEEE International 
Conference on Communications ICC, 2018-May, 1‑6. 
https://doi.org/10.1109/ICC.2018.8422788 

Rajan, R. A. P. (2018). Serverless Architecture - A Revolution in Cloud Computing. 2018 10th 
International Conference on Advanced Computing, ICoAC 2018, 88‑93. 
https://doi.org/10.1109/ICoAC44903.2018.8939081 

Rankothge, W., Le, F., Russo, A., & Lobo, J. (2017). Optimizing Resource Allocation for 
Virtualized Network Functions in a Cloud Center Using Genetic Algorithms. IEEE 
Transactions on Network and Service Management, 14(2), 343‑356. 
https://doi.org/10.1109/TNSM.2017.2686979 

Rankothge, W., Ramalhinho, H., & Lobo, J. (2019). On the scaling of virtualized network 
functions. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management, 
IM 2019, 125‑133. 

Rodriguez, E., Alkmim, G. P., Da Fonseca, N. L. S., & Batista, D. M. (2017). Energy-Aware 
Mapping and Live Migration of Virtual Networks. IEEE Systems Journal, 11(2), 637‑648. 
https://doi.org/10.1109/JSYST.2015.2467159 

Saha, A., & Jindal, S. (2018). EMARS: Efficient Management and Allocation of Resources in 
Serverless. IEEE International Conference on Cloud Computing, CLOUD, 2018-July, 
827‑830. https://doi.org/10.1109/CLOUD.2018.00113 

Santhosh, S., & Binu, A. (2016). Auto scaling for various patterns of workflow within deadline 
time and energy aware VM allocation in cloud environment. Proceedings of the 2016 
International Conference on Data Science and Engineering, ICDSE 2016, 0‑4. 
https://doi.org/10.1109/ICDSE.2016.7823941 

Schardong, F., Nunes, I., & Schaeffer-Filho, A. (2021). NFV Resource Allocation: a 
Systematic Review and Taxonomy of VNF Forwarding Graph Embedding. Computer 
Networks, 185(July 2020), 107726. https://doi.org/10.1016/j.comnet.2020.107726 

 

 



163 

Shao, Y., Yang, Q., Gu, Y., Pan, Y., Zhou, Y., & Zhou, Z. (2020). A Dynamic Virtual Machine 
Resource Consolidation Strategy Based on a Gray Model and Improved Discrete Particle 
Swarm Optimization. IEEE Access, 8, 228639‑228654. 
https://doi.org/10.1109/ACCESS.2020.3046318 

Shariffdeen, R. S., Munasinghe, D. T. S. P., Bhathiya, H. S., Bandara, U. K. J. U., & Dilum 
Bandara, H. M. N. (2016). Workload and resource aware proactive auto-scaler for PaaS 
cloud. IEEE International Conference on Cloud Computing, CLOUD, 11‑18. 
https://doi.org/10.1109/CLOUD.2016.10 

Shen, S., Van Beek, V., & Iosup, A. (2015). Statistical characterization of business-critical 
workloads hosted in cloud datacenters. Proceedings - 2015 IEEE/ACM 15th International 
Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, 465‑474. 
https://doi.org/10.1109/CCGrid.2015.60 

Siddique, N., & Adeli, H. (2017). Nature-Inspired Chemical Reaction Optimisation 
Algorithms. Cognitive Computation, 9(4), 411‑422. https://doi.org/10.1007/s12559-017-
9485-1 

Silva Filho, M. C., Monteiro, C. C., Inácio, P. R. M., & Freire, M. M. (2018). Approaches for 
optimizing virtual machine placement and migration in cloud environments: A survey. 
Journal of Parallel and Distributed Computing, 111, 222‑250. 
https://doi.org/10.1016/j.jpdc.2017.08.010 

Singh, P., Gupta, P., Jyoti, K., & Nayyar, A. (2019). Research on auto-scaling of web 
applications in cloud: Survey, trends and future directions. Scalable Computing, 20(2), 
399‑432. https://doi.org/10.12694/scpe.v20i2.1537 

Sohan, R., Rice, A., Moore, A. W., & Mansley, K. (2010). Characterizing 10 Gbps Network 
Interface Energy Consumption Abstract—This paper quantifies the energy consumption 
in six 10 Gbps and four 1 Gbps interconnects at a fine-grained level, introducing two 
metrics for calculating the energy efficiency of a netw. IEEE Local Computer Network 
Conference, 268‑271. Repéré à https://www.cl.cam.ac.uk/~acr31/pubs/sohan-
10gbpower.pdf 

Songara, N., & Jain, M. K. (2023). MRA-VC: multiple resources aware virtual machine 
consolidation using particle swarm optimization. International Journal of Information 
Technology (Singapore), 15(2), 697‑710. https://doi.org/10.1007/s41870-022-01102-9 

Sotiriadis, S., Bessis, N., Amza, C., & Buyya, R. (2016). Vertical and horizontal elasticity for 
dynamic virtual machine reconfiguration. IEEE Transactions on Services Computing, 
1374(c), 1‑1. https://doi.org/10.1109/TSC.2016.2634024 

St-Onge, C., Benmakrelouf, S., Kara, N., Tout, H., Edstrom, C., & Rabipour, R. (2021). 
Generic SDE and GA-based workload modeling for cloud systems. Journal of Cloud 
Computing, 10(1). https://doi.org/10.1186/s13677-020-00223-5 



164 

 

Taherizadeh, S., & Stankovski, V. (2018). Dynamic Multi-level Auto-scaling Rules for 
Containerized Applications. The Computer Journal, (June). 
https://doi.org/10.1093/comjnl/bxy043 

Tavakoli-Someh, S., & Rezvani, M. H. (2019). Multi-objective virtual network function 
placement using NSGA-II meta-heuristic approach. Journal of Supercomputing (Vol. 75). 
(S.l.) : Springer US. https://doi.org/10.1007/s11227-019-02849-y 

The SPECpower Benchmark. (s.d.). http://www.spec.org/power_ssj2008/. 

Valade, A., Acco, P., Grabolosa, P., & Fourniols, J. Y. (2017). A study about kalman filters 
applied to embedded sensors. Sensors (Switzerland), 17(12), 1‑18. 
https://doi.org/10.3390/s17122810 

Wahab, O. A., Kara, N., Edstrom, C., & Lemieux, Y. (2019). MAPLE: A Machine Learning 
Approach for Efficient Placement and Adjustment of Virtual Network Functions. Journal 
of Network and Computer Applications, 142(October 2018), 37‑50. 
https://doi.org/10.1016/j.jnca.2019.06.003 

Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft 
Computing, 22(2), 387‑408. https://doi.org/10.1007/s00500-016-2474-6 

Wang, X., Wu, C., Le, F., Liu, A., Li, Z., & Lau, F. (2016). Online VNF scaling in datacenters. 
IEEE International Conference on Cloud Computing, CLOUD, (1), 140‑147. 
https://doi.org/10.1109/CLOUD.2016.26 

Witanto, J. N., Lim, H., & Atiquzzaman, M. (2018). Adaptive selection of dynamic VM 
consolidation algorithm using neural network for cloud resource management. Future 
Generation Computer Systems, 87, 35‑42. https://doi.org/10.1016/j.future.2018.04.075 

Xiao, H., Hu, Z., & Li, K. (2019). Multi-objective vm consolidation based on thresholds and 
ant colony system in cloud computing. IEEE Access, 7, 53441‑53453. 
https://doi.org/10.1109/ACCESS.2019.2912722 

Xie, Y., Jin, M., Zou, Z., Xu, G., Feng, D., Liu, W., & Long, D. (2022). Real-Time Prediction 
of Docker Container Resource Load Based on a Hybrid Model of ARIMA and Triple 
Exponential Smoothing. IEEE Transactions on Cloud Computing, 10(2), 1386‑1401. 
https://doi.org/10.1109/TCC.2020.2989631 

Yadav, R., Zhang, W., Li, K., Liu, C., & Laghari, A. A. (2021). Managing overloaded hosts 
for energy-efficiency in cloud data centers. Cluster Computing, 24(3), 2001‑2015. 
https://doi.org/10.1007/s10586-020-03182-3 

Yang, S., Li, F., Trajanovski, S., Yahyapour, R., & Fu, X. (2021). Recent Advances of 
Resource Allocation in Network Function Virtualization. IEEE Transactions on Parallel 
and Distributed Systems, 32(2), 295‑314. https://doi.org/10.1109/TPDS.2020.3017001 



165 

Ye, T., Guangtao, X., Shiyou, Q., & Minglu, L. (2017). An Auto-Scaling Framework for 
Containerized Elastic Applications. Proceedings - 2017 3rd International Conference on 
Big Data Computing and Communications, BigCom 2017, 422‑430. 
https://doi.org/10.1109/BIGCOM.2017.40 

Yi, B., Wang, X., & Huang, M. (2017). Design and evaluation of schemes for provisioning 
service function chain with function scalability. Journal of Network and Computer 
Applications, 93(June), 197‑214. https://doi.org/10.1016/j.jnca.2017.05.013 

Yi, B., Wang, X., Li, K., Das, S. k., & Huang, M. (2018). A comprehensive survey of Network 
Function Virtualization. Computer Networks, 133, 212‑262. 
https://doi.org/10.1016/j.comnet.2018.01.021 

Zhang-Jian, D.-J., Lee, C.-N., & Hwang, R.-H. (2013). An energy-saving algorithm for cloud 
resource management using a Kalman filte. International Journal of Communication 
Systems, 27, 4078‑4091. https://doi.org/10.1002/dac 

Zhang, F., Fu, X., & Yahyapour, R. (2017). CBase: A new paradigm for fast virtual machine 
migration across data centers. Proceedings - 2017 17th IEEE/ACM International 
Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017, 284‑293. 
https://doi.org/10.1109/CCGRID.2017.26 

Zhang, F., Liu, G., Fu, X., & Yahyapour, R. (2018). A Survey on Virtual Machine Migration: 
Challenges, Techniques, and Open Issues, 20(2), 1206‑1243. 
https://doi.org/10.1109/COMST.2018.2794881 

Zhang, Q., Chen, H., & Yin, Z. (2017). PRMRAP: A Proactive Virtual Resource Management 
Framework in Cloud. Proceedings - 2017 IEEE 1st International Conference on Edge 
Computing, EDGE 2017, 120‑127. https://doi.org/10.1109/IEEE.EDGE.2017.24 

Zhao, S. (2023). Energy efficient resource allocation method for 5G access network based on 
reinforcement learning algorithm. Sustainable Energy Technologies and Assessments, 
56(April 2022), 103020. https://doi.org/10.1016/j.seta.2023.103020 

Zhou, Q., Xu, M., Singh Gill, S., Gao, C., Tian, W., Xu, C., & Buyya, R. (2020). Energy 
Efficient Algorithms based on VM Consolidation for Cloud Computing: Comparisons 
and Evaluations. Proceedings - 20th IEEE/ACM International Symposium on Cluster, 
Cloud and Internet Computing, CCGRID 2020, 489‑498. 
https://doi.org/10.1109/CCGrid49817.2020.00-44 

Zolfaghari, R., & Rahmani, A. M. (2020). Virtual Machine Consolidation in Cloud Computing 
Systems: Challenges and Future Trends. Wireless Personal Communications (Vol. 115). 
(S.l.) : Springer US. https://doi.org/10.1007/s11277-020-07682-8 

 


