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Développement d’un outil pour estimer la fréquence équivalente de chargement de trafic à
insérer dans la méthode de conception des chaussées flexibles

Mohammadmehdi SARHADI

RÉSUMÉ

Dans la conception des chaussées flexibles soumises à une charge dynamique de véhicules,

il est essentiel de modéliser avec précision le comportement des couches d’asphalte. Pour y

parvenir, il est nécessaire de transférer la charge de trafic du domaine temporel, où la charge

s’applique sur la surface au fil du temps, au domaine fréquentiel, qui est utilisé pour simuler le

comportement du matériau bitumineux en laboratoire. Dans ce contexte, un outil itératif/de

conversion est développé pour estimer la fréquence angulaire équivalente de la charge de trafic.

Cet outil est construit en analysant la déformation instantanée enregistrée par des jauges de

contrainte installées au bas de la couche d’asphalte du système routier ULAVAL. L’analyse

commence par le calcul de la rigidité de la couche d’asphalte pour chaque température d’essai

en se basant sur le modèle 2S2P1D. Ensuite, les signaux de charge efficace sont extraits en

estimant le temps de chargement efficace à l’aide de la méthode d’Odemark. Les signaux isolés

sont ensuite transformés dans le domaine fréquentiel par une analyse de Fourier dans Microsoft

Excel afin d’obtenir la fréquence équivalente pour chaque température en tant que fréquence

maximale des signaux convertis.

Pour valider les résultats, les fréquences équivalentes calculées sont utilisées comme fréquence

de chargement initiale dans le calcul 2S2P1D, et le processus est répété jusqu’à ce qu’il n’y ait

aucune différence entre la fréquence de chargement initiale et la fréquence équivalente dans

le résultat. En obtenant la fréquence équivalente pour le paramètre de chargement de trafic, le

comportement des couches d’asphalte peut être modélisé avec plus de précision, ce qui conduit

à une conception plus précise des chaussées flexibles soumises à une charge dynamique de

véhicules. La méthodologie proposée dans cette étude permet d’estimer la fréquence équivalente

pour différentes conditions de chaussée et vitesses de chargement. Elle offre un outil fiable et

efficace aux ingénieurs pour estimer le temps de chargement efficace et la fréquence équivalente

de la charge de trafic, qui sont des paramètres cruciaux pour concevoir des chaussées flexibles

avec une précision améliorée.

Mots-clés: Comportement des chaussées souples, fréquence équivalente, méthode d’Odemarks,

analyse de Fourier, modèle 2DP1D.





Developing a Tool to Estimate The Traffic Loading Frequency Equivalent to be Inserted
into The Flexible Pavement Design Method

Mohammadmehdi SARHADI

ABSTRACT

In the design of flexible pavements subjected to dynamic vehicular loading, it is crucial to

accurately model the behaviour of asphalt layers. To achieve this, it is necessary to transfer the

traffic loading from the time domain, in which the loading applies on top of the surface through

time, to the frequency domain, which is used to simulate the bituminous material behaviour

in the laboratory. In this context, an iterative/conversion tool is developed to estimate the

equivalent angular frequency for traffic loading. The tool is built by analyzing the instantaneous

deformation recorded by strain gauges installed at the bottom of the asphalt layer of the ULAVAL

paved system. The analysis begins by calculating the stiffness of the asphalt layer in each testing

temperature based on the 2S2P1D model. Then, the effective loading signals are extracted

through the estimation of effective loading time using the Odemark method. The isolated signals

are then transformed into the frequency domain by Fourier analysis in Microsoft Excel to obtain

the equivalent frequency for each temperature as the peak frequency in the converted signals.

To validate the results, the calculated equivalent frequencies are inputted into the 2S2P1D

calculation as the initial loading frequency and the process is repeated until there are no

differences between the initial loading frequency and the equivalent frequency in the result.

By obtaining the equivalent frequency for the traffic loading parameter, the behaviour of the

asphalt layers can be modelled more accurately, leading to a more precise design of flexible

pavements under dynamic vehicular loading. The proposed methodology in this study allows

for the estimation of equivalent frequency for various pavement conditions and loading speeds.

It provides a reliable and efficient tool for engineers to estimate the effective loading time and

equivalent frequency of traffic loading, which are crucial parameters for designing flexible

pavements with improved accuracy.

Keywords: Flexible pavement behaviour, Equivalent frequency, Odemarks’ method, Fourier

analysis, FFT, 2S2P1D model.
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INTRODUCTION

The highway network in Canada spans over one million kilometers, of which approximately

40% are paved roads. In densely populated areas, such as Quebec and Prince Edward Island, the

percentage of paved roads in the overall road network is significantly higher, at approximately

57% and 70%, respectively. Over 95% of all paved roadways in Canada, or 380,000 kilometers,

are constructed with bituminous material, which underscores the importance of pavement

maintenance and design as an essential industry category (Badeli, 2018).

Historically, asphalt pavements were designed using an empirical approach prior to the early

1920s. However, this approach did not consider material mechanics. Later, the elastic

mechanistic-empirical pavement design was developed as the first widely accepted analysis

theory, based on the assumption that asphalt mixtures are homogeneous, isotropic linearly

elastic solids. However, this assumption does not hold true due to the viscoelastic behaviour

of bituminous materials. In the last phase of pavement design history to date, the viscoelastic

mechanistic-empirical pavement design was introduced. According to this theory, the behaviour

of bituminous material under dynamic traffic loads lies in the viscoelastic range. Therefore,

viscoelastic theory must be applied, utilizing viscoelastic mechanical models, such as the

generalized Maxwell model and the 2S2P1D model (Liao, 2007).

As flexible pavement design has progressed to the point where mechanical models can simulate

the stiffness of bituminous material as a norm of complex modulus, the time domain loading

parameter needs to be converted to the frequency domain. The equivalent frequency for the

vehicular loading parameter is dependent on the effective loading time in the effective depth

of pavement, estimated using the Odemarks’ method (Carter et al., 2018). For instance, a

vehicular speed of 10 km/h in a parking lot is considered as 0.01 Hz, while a speed of 100

km/h on a highway is considered as 10 Hz. Thus, the effective loading time obtained using the

Odemarks’ method must be converted to an equivalent frequency using a conversion tool, based
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on the Fourier analysis of the effective loading time, to be utilized in the mechanical models for

pavement design.

Main objective is to develop a conversion tool that utilizes the Fourier analysis and Odemarks’

method to determine the equivalent angular frequency of the vehicular loading parameter on

the surface layer. This tool is intended to compare the results with the frequency variables

assumed by simulation methods. To achieve this objective, the study analyzed the instantaneous

deformation data that was measured by strain gauges installed under the wheel path of the lab

pavement system with a total size of 6, 2, 2 𝑚3 (length, depth, and width) in three different areas

at four varied temperatures; -8, 6, 16, and 20 ◦𝐶.

This study aims to develop a reliable calculation tool based on Fourier analysis and Odemarks’

method for determining the equivalent angular frequency of vehicular loading parameters on the

surface layer. The study comprises four phases to achieve this objective. In the first phase, the

stiffness of the asphalt layer is calculated by the 2S2P1D mechanical model based on the test

parameters and the assumed initial loading frequency (ranging from 0.1 to 10 Hz). Subsequently,

the Odemarks’ method is applied to calculate the effective loading time for each test temperature

(-8, 6, 16, and 20°C) in the second phase. In the third step, the effective loading signals are

extracted from the strain gauge recordings and are adjusted to power of two time factors to

prepare them for conversion into the frequency domain using Fourier analysis. Finally, the

equivalent frequency for the recorded loading signals is determined by finding the frequency

factors of all curves’ peak amplitudes as the equivalent frequency, and the calculation method is

reevaluated by adjusting the input of the initial loading frequency.

An appendix is provided to explain the developed conversion tool in Microsoft Excel version

16.61.1, which is intended to be an accurate method for obtaining the equivalent frequency for

every loading signal depending on the pavement and the loading parameters, assuming that the

findings support the hypotheses. The hypotheses of this research are as follows.
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- The duration of effective loading estimated using the Odemarks’ method, considering the

loading parameters and the pavement characteristics described in the data collection section,

is nearly equivalent to the recorded loading duration captured by the strain gauges, which

includes both loading and unloading phases.

- The highest level of longitudinal tension in the asphalt layer, which is indicated by the peak

of the loading signals’ curve and denoted as "𝜀𝑡", is observed precisely when the wheel is

positioned directly on top of it. Furthermore, this peak occurs at the midpoint of the effective

loading period.

- The hypothesis in data collection analysis indicates that the deformation data collected by the

TML-REF is not affected by the idealized crack.

- The primary conjecture of this research is that the equivalent frequency for the effective

loading time obtained from the loading and pavement parameters can be represented by

the frequency component associated with the maximum strain amplitude in the frequency

domain for each loading signal.

- It is postulated that utilizing a polynomial regression to determine the estimated equivalent

frequencies for each effective loading time would serve as a precise calibration curve to

derive the equivalent frequency for every required effective loading time.

This master’s thesis is structured as follows. Following a brief introduction, Chapter 1 provides

a comprehensive review of the literature on flexible pavement and its design. Chapter 2 outlines

the research methodology, and Chapter 3 examines and discusses the results. Additionally,

details on the developed tool are presented in Appendix 1.





CHAPTER 1

BACKGROUND AND LITERATURE REVIEW

Since the 1920s, pavement engineers have been striving to improve design methods for flexible

pavements. The goal is to increase project durability, safety, and budget efficiency by simulating

and calculating structural behavior under unstable environmental conditions more accurately.

The dominant stress created by traffic loads on the surface of flexible pavements is carried and

dispersed to the subgrade layers by the asphalt layers, which consist of bituminous material. This

type of material exhibits fundamentally complex behavior under various types and intensities

of stresses, referred to as "viscoelastic behavior," which is now incorporated in simulation

methods using mechanical models for bituminous material. This chapter presents an overview

of the flexible pavement structure, bituminous material behavior under moving loads, and an

explanation of mechanical models. It is essential to determine the precise stress distribution

throughout the layers and prepare them for use in simulation methods as equivalent loading

frequency data inputs to predict how the asphalt layer under the wheel path will behave in

hypothetical conditions. This chapter reviews and explains the mathematical methods used for

loading distribution, along with the Fourier analysis used to convert time domain data to the

frequency domain (Huang, 2004).

1.1 Introduction to Flexible Pavements

In the realm of pavement engineering, bituminous materials have been acknowledged as

viscoelastic substances with intricate behavior since the commencement of the 1960s, presenting

both viscous and elastic regions across a range of loading frequency and temperature. The

main structural layers of flexible pavements are composed of asphalt mixes made of granular

aggregates and bitumen. In this section, a detailed examination of these layers is presented

(Badeli, 2018).



6

1.1.1 Structural Layered System

The primary objective of the pavement structure is to distribute the applied traffic loads by

transmitting the vertical and shear stresses from the surface to the underlying layers. As a result,

the individual pavement layers exhibit distinct structural behavior and response characteristics

to the traffic loads. Deformation and stress are induced in each layer due to the interfacial

bonding between the asphalt layers, which can vary based on the material and the design methods

employed (Carter et al., 2018). Flexible asphalt pavements are commonly constructed over

subgrade layers, which may be either natural soil or fill material, and require proper grading and

compaction (refer to Figure 1.1). The topmost layer, the surface or wearing layer, experiences the

greatest environmental stresses and deflections due to direct contact with traffic loads. A smooth

surface layer is crucial to minimize asphalt slippage and traffic noise, but it has a relatively

small influence on bearing capacity. The asphalt base layer, as the main structural asphalt

layer, transfers moving loads to the subgrade or granular foundation layer while also preventing

fatigue cracking. The material used in this layer has a higher modulus to manage stresses for

the subgrade or granular layer. If a thicker bituminous layer is needed, an alternative approach

involves incorporating a binder or intermediate asphalt layer between the surface and base layers,

rather than increasing the thickness of the asphalt base layer (Carter et al., 2018).

Figure 1.1 Typical flexible pavement

Taken from Alfaqawi et al.(2012)
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In addition, to ensure proper adhesion between pavement layers, interface layers, such as prime

coat, tack coat, and seal coat, must be applied. A prime coat is necessary to achieve the necessary

bonding between the asphalt base and granular layers below. This is accomplished through

a layer of asphalt emulsion, which serves to protect the underlying layers from moisture and

provide water resistance. The prime coat can be made from either a cutback asphalt texture or a

medium curing (MC) grade of liquid asphalt with low viscosity. Tack coats are also essential for

achieving good adhesion and preventing slippage between bituminous material layers. A strong

tack coat is required to dissipate shear stress within the pavement structure, and it is formed by

applying a thin layer of asphalt emulsion (Cross & Shrestha, 2005). Ultimately, a protective seal

coat should be added over the surface layer. This serves to shield the surface from oxidation and

stiffening while also improving traction. The material used for this layer is asphalt emulsion,

mainly composed of asphalt cement, water, and an emulsifying agent (David W. Janisch, 1998).

Aggregate granular layers are composed of granular material without bituminous, which must

be blended with appropriate sieves and compacted between the asphalt layers and subgrade base.

The design requirements determine whether aggregate layers are divided into granular layers.

The granular base layer’s primary purpose is to withstand higher stresses than the sub-base and

provide more bearing capacity and drainage capacity. The granular sub-base distributes loads

across the base layer and provides thermal isolation, and this layer should be thick enough to

prevent frost heave (Carter et al., 2018).

1.1.2 Behaviour of Bituminous Materials to Various Situations

Since the 1920s, it has been assumed that bituminous materials behave elastically, which

simplifies the design process. However, in reality, asphalt behaves viscoelastically above a

certain temperature known as the glass transition temperature (𝑇𝑔), as depicted in figure 1.2. In

the viscoelastic range, the stiffness of bituminous material is determined by its complex modulus,

which varies with different loading frequencies and temperature (Huang, 2004).
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Figure 1.2 Range of the behaviour of the bituminous material

Taken from Oral et al. (2003)

As depicted in figure 1.3, the response of bituminous materials to typical traffic loading and low

levels of strain amplitude falls within the Linear Viscoelastic (LVE) region, where the complex

modulus is utilized for stiffness analysis of asphalt mixtures. However, under low cycles of

vehicular loading and high strain levels, the behavior of bituminous materials falls within the

non-linear viscoelastic region, and when subjected to thousands of loading cycles under low

strain levels, it leads to fatigue failure, which represents the limits of bituminous material failure

(Badeli, 2018).
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Figure 1.3 Typical behaviour of bituminous

material

Taken from Ramirez et al. (2015)

1.1.2.1 Complex Modulus

As previously mentioned, bituminous material exhibits viscoelastic behavior when subjected

to moving loads, and its stiffness in this region is described by the complex modulus, which

represents the behavior of the asphalt material under various loading cycles and temperatures.

The complex modulus, denoted as 𝐸∗, is commonly determined using equation 1.3, as shown

in figure 1.4, which depicts the complex relationship between two stresses and deformation

curves. Here, 𝑖 is a complex number (𝑖2 = −1), 𝜎0 is peak stress and 𝜀0 is peak strain. Due to

the viscoelastic nature of the bituminous material, sinusoidal strain appears with a time lag of

𝜑/𝜔, which is referred to as the phase angle (𝜑) (Carter et al., 2018).

𝜎(𝑡) = 𝜎0 sin(𝜔𝑡) (1.1)

𝜀(𝑡) = 𝜀0 sin(𝜔𝑡 − 𝜑) (1.2)

𝐸∗ =
𝜎0.𝑒

𝑖𝜔𝑡

𝜀0𝑒𝜔𝑡−𝜑
(1.3)

According to Liao’s work (Liao, 2007), the dynamic modulus can be calculated as the magnitude

of the complex modulus, which is obtained by dividing the stress and strain peaks. Equation 1.4
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Figure 1.4 Sinusoidal stress and strain signals

Taken from Carter et al. (2018)

defines the dynamic modulus as the sum of the squares of the real part (𝐸1) and imaginary part

(𝐸2) of the complex modulus.

|𝐸∗| =
𝜎0

𝜀0
=
√
𝐸1

2 + 𝐸2
2 (1.4)
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Figure 1.5 The complex modulus vectorial representation

Taken from Carter et al. (2018)

1.2 Bituminous material mechanical models

The complex modulus definition reveals that the bituminous material behavior is comprised of

both viscous and elastic regions, which is influenced by a range of temperatures and loading

frequencies. Various mechanical models, depicted in Figure 1.6, combine springs and dashpots

to examine the asphalt material’s elasticity and viscosity. These models range from single to

generalized, providing a means for mathematical analysis (Huang, 2004).

1.2.1 Generalized Maxwell Model

Liao (2007) employed the Generalized Maxwell mechanical model in ABAQUS finite element

software to simulate the response of HMA materials under traffic loading. One spring and

𝑚 Maxwell elements’ pairs included in this model connected in parallel, where each element

consists of one spring and one dashpot connected in series, as illustrated in figure 1.7. The

model exhibits an additive stress behavior, whereby the relaxation modulus of the entire system
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Figure 1.6 Mechanical models for bituminous material behaviour

Taken from Arabani et al. (2014)

serves as the stiffness at equilibrium deformation, as time approaches infinity. When the model

experiences a steady strain, the tension on each spring-dashpot pair relaxes exponentially. The

relaxation modulus 𝐸𝑖 is assigned to the spring and the dashpot is assigned a frictional resistance,

𝜂𝑚, in each Maxwell element. The relaxation modulus for the Generalized Maxwell model can

be estimated using equation 1.5, also known as the PRONY series expansion (Liao, 2007).

𝐸 (𝑡) = 𝐸0 −

𝑚∑
𝑖=1

𝐸𝑖 (1 − 𝑒−𝑡/𝜏𝑚) (1.5)
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Figure 1.7 Generalized Maxwell Model

Taken from Liao et al. (2007)

In the simulation, the temperature dependency was described using the Williams-Landel-Ferry

(WLF) equation, and the time dependency was defined using five PRONY series represented in

the form of shear moduli in the ABAQUS software (Liao, 2007).

1.2.2 2S2P1D Model

The 2S2P1D mechanical model, illustrated in Figure 1.8, is a modified version of Huet and

Sayegh’s model, which was found unsuitable for binders at very low frequencies. This modified

model includes a physical spring in parallel with a series connection of one spring, two parabolic

elements, and one dashpot. Additionally, a linear dashpot was added to the parabolic elements

to improve the simulation of the linear viscoelastic behavior of both aged and unaged bitumen

penetration grades. This model was found to be the most effective in accurately simulating the

viscoelastic behavior of the bitumen (Tai, Duy-Liem, Vu-Tu & Mai-Lan, 2020).

The 2S2P1D mechanical model presents the stiffness of bituminous material at different

temperatures through the complex modulus, which is obtained by adjusting the reference

temperature and angular frequency to account for the varying vehicular loading speeds. This

process is described by equation 1.8 and is essential for understanding the behavior of the

material under different conditions (Carter et al., 2018).
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Figure 1.8 Schematic for the 2S2P1D mechanical model

Taken from Olard et al. (2003)

𝐸∗(𝜔) = 𝐸00 +
𝐸0 − 𝐸00

1 + 𝛿(𝑖𝜔𝜏(𝑇))−𝑘 + (𝑖𝜔𝜏(𝑇))−ℎ + (𝑖𝜔𝛽𝜏(𝑇))−1
(1.6)

The 2S2P1D model calculates the complex modulus of bituminous material based on the

temperature and loading cycles through the use of a shift factor applied to the reference

temperature and equivalent angular frequencies. The complex modulus equation for this model,

shown in equation 1.6, includes exponent parameters ℎ and 𝑘 with 0 < 𝑘 < ℎ < 1, as well

as constants 𝛿 and 𝛽. When the equivalent frequency for time domain vehicular loading and

temperature (𝜔𝜏(𝑇)) approaches zero, indicating a very hot surface or a very low level of loading

cycles, the asphalt material behaves as a non-linear material in the plastic range, with the stiffness

described by the static modulus (𝐸00). Conversely, when 𝜔𝜏(𝑇) approaches infinity, indicating

very high loading cycles or a very cold surface, the asphalt material behaves as a glassy linear

elastic material, with the stiffness described by the glassy modulus (𝐸0).

𝜔𝜏(𝑇) ≈ 0 →
𝐸0−𝐸00

1+𝛿(𝑖𝜔𝜏(𝑇))−𝑘+(𝑖𝜔𝜏(𝑇))−ℎ+(𝑖𝜔𝛽𝜏(𝑇))−1 ≈ 0 → 𝐸∗(𝜔) ≈ 𝐸00 (Non-linear Plastic

behaviour)
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𝜔𝜏(𝑇) ≈ +∞ →
𝐸0−𝐸00

1+𝛿(𝑖𝜔𝜏(𝑇))−𝑘+(𝑖𝜔𝜏(𝑇))−ℎ+(𝑖𝜔𝛽𝜏(𝑇))−1 ≈ 𝐸0 − 𝐸00 → 𝐸∗(𝜔) ≈ 𝐸0 (Glassy Elastic

Behaviour)

To accurately model the linear viscoelastic properties of asphalt material, it is necessary to

account for both temperature and frequency dependencies. The temperature dependence is

described by the temperature shift factor (𝑎𝑇 ), which is determined using equation 1.7, and

depends on the reference temperature (𝑇𝑟𝑒 𝑓 ) and the testing temperature (𝑇). The time constant

that varies with temperature (𝜏(𝑇)) used in the calculation of the complex modulus in the

2S2P1D model can be determined using equation 1.8, which is based on the WLF law ((Carter

et al., 2018))

log 𝑎𝜏 =
−𝐶1(𝑇 − 𝑇𝑟𝑒 𝑓 )

𝑇 − 𝑇𝑟𝑒 𝑓 + 𝐶2
(1.7)

𝜏(𝑇) = 𝑎𝜏.𝜏(𝑇𝑟𝑒 𝑓 ) (1.8)

The dynamic modulus (|𝐸∗|) of bituminous material, which characterizes its stiffness, is

represented by a master curve based on the equivalent frequency 𝜔𝜏(𝑇), which accounts for

both loading pulsation and testing temperature. Figure 1.9 illustrates a typical master curve at a

reference temperature of 15 ◦𝐶, whose shape is determined by the time shift factor corresponding

to different testing temperatures (Carter et al., 2018).

1.3 Application of vehicular loading

In flexible pavements, the wheel path of moving vehicles vehicles induces compression and

flexion, leading to small-scale deformations in each layer. The asphalt layers are assumed to

sag like a beam under the stress direction. Furthermore, the presence of a tack coat layer as an

interface between asphalt layers ensures that there is no slipping between layers, resulting in

homogeneous strain at the interlayers. Consequently, the maximum Deformation is happens

beneath the lowest bituminous layer (Carter et al., 2018).
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Figure 1.9 Master curve for the complex modulus at the reference temperature of 15 ◦𝐶
Taken from Carter et al. (2018)

The measurement of horizontal deformation at the effective depth is critical aspect of pavement

analysis, with longitudinal and transversal directions being commonly considered, as depicted in

figure 1.10. The load position, as referenced to the point, is shown on the horizontal axis. The

maximum horizontal strain in both directions occurs when the load is positioned directly over

the point, with equal magnitudes in both directions. However, in the longitudinal direction, the

pavement’s flexion under a specific load leads to a lift before and after the loaded point, causing

compression strain at the bottom of asphalt layers in that region, and compression at the top.

This phenomenon is not observed in the transversal direction.

As previously discussed, flexible asphalt pavements exhibit viscoelastic behavior, which deviates

from the isotropic elastic assumptions made in pavement design. Additionally, the response

of bituminous material varies with loading frequency. Specifically, higher vehicular speeds
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Figure 1.10 An example for the occurred immediate deformation at the

bottom of asphalt layers under moving loads

Taken from Carter et al. (2018)

correspond to higher moduli, indicating that asphalt layers behave as a rigid material on highways,

but as a compliant material in parking lots and similar settings.
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The stiffness of bituminous material is a crucial factor in determining its response to vehicular

loading, and its frequency dependence has been shown to vary with different loading speeds.

Figure 1.11 depicts the variation in material stiffness, represented by the norm of the complex

modulus, over a range of frequencies, from 0.01 Hz (typical of parking lots) to 10 Hz (100

km/h speed) (Carter et al., 2018). Since higher material stiffness leads to greater stresses at a

given point, the norm of complex modulus is a valuable tool in simulating and predicting strains

in flexible pavements under different speed loading conditions. To this end, the Odemarks’

method, described in the following section, is one of the most widely employed and accurate

techniques for calculating loading parameters and their distribution in the various layers of a

flexible pavement.

Figure 1.11 Dynamic modulus of GB20 mix under different loading frequencies at -15◦𝐶
Taken from Carter et al. (2018)
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1.3.1 Axle loads

Figure 1.12 depicts a semi-trailer wheel on top of a surface with three configurations: a single

axle with a single tyre, a single axle with dual tyres, and a tandem axle with dual tyres. Axle

spacing of 23 and 13 feet is not useful in pavement design since there are no load overlaps,

rendering them independent. According to the layered theory of flexible pavement design, only

the wheels on one side must be considered while applying traffic loads (Huang, 2004).

. The application of traffic loading in asphalt pavements is based on an empirical concept that is

time-consuming to calculate. To simplify the procedure of determining the load for each wheel

and axle, the AASHTO method converts each load group into an equivalent single axle load,

which is commonly accepted as 18 kips (80 KN).

Figure 1.12 Typical semi-trailer wheel spacing

Taken from Huang et al. (2004)

The determination of loading distribution through the various layers of pavement requires an

evaluation of the contact area dimensions of the tire, which are contingent upon the contact

pressure. In order to calculate the length of the square dimension of the contact area, Equation

1.9 is employed, as detailed by Huang (Huang, 2004). In this equation, 𝐴𝑐 is representing surface

size of contact area, 𝐿 represents the circular contact Diameter.
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𝐿 =

√
𝐴𝑐

0.5227
(1.9)

1.3.2 Odemark’s Method for Analyzing Traffic Load Distribution

The estimation of the effective loading time for vehicular loading is a critical parameter in

determining the equivalent frequency, and it can be calculated using Equation 1.10. This

parameter is dependent on the vehicle speed (𝑉𝑠) and the effective loading length (𝐿𝑒 𝑓 𝑓 ), and

it is fundamental in reaching the equivalent frequency. The Odemark’s method is utilized to

determine the effective depth of loading, which occurs at the imaginary effective depth based on

the trapezoidal model stress distribution. The estimation of the effective depth is accomplished

using trigonometric functions based on the Odemark’s method, as outlined in NCHRP 1-37A

and currently implemented in the MEPDG software version 1.0. The flexibility of asphalt layers

and their various characteristics necessitates the calculation of the effective loading length.

𝑡𝑒 𝑓 𝑓 =
𝐿𝑒 𝑓 𝑓

𝑉𝑠
(1.10)

𝐿𝑒 𝑓 𝑓 = 2(𝑎𝑐 + 𝑍𝑒 𝑓 𝑓 ) (1.11)

Due to the viscoelastic properties and adhesion characteristics of bituminous material, the loading

time under traffic loads at the bottom of asphalt layers varies from that on top of the surface.

Odemark’s method employs a 45◦𝐶 isosceles trapezoidal model to determine the effective

loading time (𝑡𝑒 𝑓 𝑓 ), which is directly related to the effective length determined using the radius

of tire contact area (𝑎𝑐) and the effective depth (𝑍𝑒 𝑓 𝑓 ). Figure 1.13 illustrates the trapezoidal

model and equation 1.10 and 1.11 specify the relationship between the effective loading time and

the effective length of loading. The effective depth, represented as the trapezoid’s altitude in this

model (equation 1.12), is converted from the depth of the layers under consideration (ℎ𝑖). The

short base of the trapezoid represents the contact area’s diameter, while the long base represents

the effective length of loading (Ghanizadeh & Fakhri, 2018). It is worth noting that the variation
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in the stiffness of the surface layer, resulting from different loading speeds and temperatures,

only has an impact on the calculation of the effective depth in the 45-degree trapezoidal model.

This model is used for determining the effective loading length by transferring the length of the

tire contact area based on the layers’ thickness and their stiffness (𝐸𝑖 - 𝐸𝑛) and the subgrade

layer’s stiffness (𝐸𝑆𝐺).

Figure 1.13 Effective length by equivalent thickness of layers

Taken from Ghanizadeh et al. (2018)

𝑍𝑒 𝑓 𝑓 =
𝑛∑

𝑖=1

(ℎ𝑖
3

√
𝐸𝑖

𝐸𝑆𝐺
) + ℎ𝑛

3

√
𝐸𝑛

𝐸𝑆𝐺
(1.12)

1.3.3 Immediate Deformation Data Collection

The strain gauge technique is a widely used method for measuring the dynamic deformation

of flexible pavement structures due to traffic loads. Linear displacement sensors (LDS) are

typically installed either horizontally or longitudinally within or beneath the asphalt layers

to detect the instantaneous tension and compression deformation. The placement of sensors

depends on the data analysis approaches utilized. Figure 1.14 provides an example of strain

gauges placed within an asphalt layer for measuring the deformation induced by traffic stress

applied on the surface. This method enables the collection of accurate and reliable data on
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the dynamic behaviour of flexible pavements under traffic loads, which is crucial for effective

pavement design and maintenance.

Figure 1.14 H-type asphalt strain gauges installed within the asphalt layers

Taken from Correia et al. (2018)

N.S. Correia and J.G. Zornberg conducted an experimental investigation to evaluate the immediate

and permanent deformation caused in geogrids inside asphalt structures exposed to repetitive

loading from moving loads. Mechanical extensometers linked to the geogrids were used to

measure both types of deformations. Their study revealed that the permanent geogrid strains

were gradually mobilized and eventually reached a final profile beyond which additional straining

was unlikely to occur. The installation plan for two horizontal and longitudinal strain gauges

is shown in Figure 1.15, while Figure 1.16 illustrates the permanent deformation beneath the

wheel path between two asphalt layers based on the distance from the loading wheel
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Figure 1.15 Installation plan of the strain gauges beneath the

wheel path

Taken from Correia et al. (2018)

In 2021, Youness Berrada and his team conducted an empirical study to investigate the influence

of low-temperature surface cracking on the performance of hot-mix asphalt layers subjected to

vehicular loads (Berraha et al., 2020). The study involved measuring the deformation data using

five TML strain gauges that were installed longitudinally beneath the wheel path before and

after inducing an idealized crack beneath the asphalt layer. The experimental setup plan view

is depicted in Figure 1.17. The objective of the study was to evaluate the impact of cracking

on the mechanical response of asphalt layers to vehicular loads, with the findings expected to

provide insight into the potential for premature cracking of asphalt pavement and inform efforts

to improve pavement performance.
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Figure 1.16 Longitudinal permanent deformation

Taken from Correia et al. (2018)

Strain gauges have been used to measure the immediate deformation at the bottom of the surface

at different temperatures. The investigation conducted by Youness Berrada and his team in 2021

aimed to study the impact of low-temperature surface cracking on the behaviour of hot-mix

asphalt layers under vehicular loads. Five TML strain gauges were implanted in a longitudinal

direction underneath the wheel path to collect deformation data before and after the idealized

crack at the bottom of the asphalt layer, as illustrated in the plan view shown in Figure 1.18.

The results obtained from the TML1, TML2, TML3, TML4 and TML-REF strain gauges at the

tested temperature of 16◦𝐶 have been presented in Figure 1.18 (Berraha et al., 2020).
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Figure 1.17 Positions of the strain gauges at the bottom of the surface

Taken from Berraha et al. (2020)

1.3.4 Conversion Techniques between Time-Domain and Frequency-Domain Data

Bituminous materials exhibit viscous behavior, which is related to the loss component of the

complex modulus in the frequency domain. However, all data measurements related to vehicular

loading are time-based. Therefore, to correlate laboratory tests based on mechanical models

with field measurements, it is necessary to convert the data between the time domain and
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Figure 1.18 TML strain gauges records at 16◦𝐶
Taken from Berraha et al. (2020)

frequency domain. One approach for this conversion is the Fourier transform, which transforms

time-domain data into frequency-domain data. Conversely, the inverse Fourier transform

converts frequency-domain data back into time-domain data. Other techniques used for the

conversion include the Laplace transform, Z-transform, and wavelet transform. The choice

of technique depends on the nature of the data and the desired accuracy of the conversion. It

is essential to have a clear understanding of the limitations of each method to ensure that the

conversion does not lead to significant errors in the analysis of bituminous material behavior

under traffic loading.
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The determination of stiffness in asphalt mixes relies on the dynamic modulus instead of the

complex modulus, as prescribed by the MEPDG method. Several methods based on rheology

have been developed to convert time-domain data to frequency-domain data, with Dongre and

colleagues proposing the concept of angular frequency "𝜔" as the most prevalent approach due

to its reduced error rates during the analysis of HMA responses. In accordance with Equation

1.13, the total recording time by the strain gauges (𝑇𝑡) established by Equation 1.10 as effective

loading time at the bottom of asphalt layer can be converted to frequency in (Hz), and frequency

can be further converted to angular frequency in (Hz or Radian per second) using Equation 1.14

(D”Angelo, Dongre & Myers, 2006).

𝑓 =
1

𝑇𝑡
(1.13)

𝜔 = 2𝜋 𝑓 (1.14)

Al-Qadi and his colleagues identified two primary sources of error in the MEPDG method for

approximating the frequency to determine the dynamic modulus in their research. The first

source of error is the Odemark’s method’s inability to accurately estimate the loading pulse time,

while the second is the inaccurate conversion method used to estimate the angular frequency

from the loading pulse time. To overcome these issues, the compressive stress pulse can be used

to obtain the equivalent frequency by applying Fast-Fourier Transform (FFT) (Al-Qadi et al.,

2008).

1.3.4.1 Fourier Analysis on the Time domain Loading Signals

Fourier analysis provides a pair of transforms between the time and frequency domains. A

function of data sets in the time domain, denoted by "𝑥(𝑡)" can be transformed to the frequency

domain using integral equation 1.15 as a function of frequency intervals (𝑋 ( 𝑓 )), and the

inverse of this operation is represented by equation 1.16. During the 1960s, Cooley and

Tukey introduced an algorithm named the Fast-Fourier transform (FFT), designed for efficiently
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computing complex Fourier series using machines (Cooley & Tukey, 1965). The FFT analysis is

applicable to finite sets of data sampled at discrete time points. Prior to the FFT algorithm, data

must be digitized.

𝑋 ( 𝑓 ) =
∫ +∞

−∞

𝑥(𝑡)𝑒− 𝑗2𝜋 𝑓 𝑡𝑑𝑡 (1.15)

𝑥(𝑡) =
∫ +∞

−∞

𝑋 ( 𝑓 )𝑒 𝑗2𝜋 𝑓 𝑡𝑑𝑓 (1.16)

The Fast-Fourier Transform (FFT) technique offers a streamlined approach for calculating the

Discrete Fourier Transform (DFT), which is a discrete form of the Continuous Fourier Transform.

Continuous Fourier Transform is a mathematical tool used to represent a continuous-time signal

as a superposition of complex exponential functions with varying magnitudes and phases. It

provides a representation of the signal in the frequency domain, showing how much of the signal

is made up of different frequencies. Unlike the Continuous Fourier Transform that requires

integrating from negative to positive infinity, the DFT is computed by summing a finite set of

data points indexed by "n" from "0" to "N-1", as presented in equation 1.17 (Ramirez, 1985).

The FFT is particularly useful for computing the DFT of a large number of data points, thereby

reducing the computational complexity of the Fourier analysis.

The discrete Fourier transform (DFT) is a computational method that is applied to a finite set of

sampled data points. In this context, the frequency domain is also a discrete set of frequencies,

with each frequency value being represented by a specific index. Specifically, the 𝑘𝑡ℎ frequency,

denoted as “𝑋𝑘”, corresponds to k/N, where k is the index of the frequency component and N

is the total number of samples. The time domain is represented by the sample index n, which

corresponds to time t. Therefore, the DFT algorithm enables the conversion of a time-domain

signal into a discrete set of frequency components (i.e., spectral analysis) by calculating the

summation of the product of each sampled point and a complex exponential function at each

frequency value, as shown in equation 1.17 (Ramirez, 1985).
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𝑋𝑘 =
𝑁−1∑
𝑛=0

𝑥𝑛.𝑒
− 𝑗2𝜋𝑘𝑛/𝑁 (1.17)

The Discrete Fourier Transform (DFT) representing in the equation 1.17 can be expressed in the

matrix 1.18, where matrix "𝑋" represents the frequency data points and matrix "𝑥" represents

the time-based data. The "𝜔𝑛" matrix includes the multiplier factors on the time-based data

matrix, which is valued as 𝜔𝑛 = 𝑒− 𝑗2𝜋𝑘/𝑁 . By applying the DFT matrix, the data vector "𝑥" with

"𝑛" pieces of information is multiplied in the NxN matrix “𝜔𝑛”. Thus, "𝑛2" multiplications are

required to conduct the DFT matrix multiplication. However, the Fast Fourier Transform (FFT)

technique is used to expedite and streamline the calculation process of the DFT by performing

the same analysis and producing identical results. The FFT algorithm requires only “𝑛. log 2(𝑛)”

operations to perform the necessary calculations, whereas the DFT requires "𝑛2" operations. It

is important to note that for optimal utilization of the FFT algorithm, the quantity of data points

utilized in the FFT analysis should be a power of two (2𝑛).
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(1.18)

In 2004, Al-Qadi and colleagues conducted a study to investigate the accuracy of the theory of

elasticity in determining the shape and timing of compressive stress pulses in a multi-layered

system. To achieve this, they utilized the NonPAS program to determine the compressive stress

pulse shapes at different depths and in various road sections. The compressive stresses were

calculated for different radial distances at intervals of 1 cm, such that the stress value equaled one

percent of the maximum amount. Next, by taking into account the assumed vehicle speed, the

compressive stress pulse in the distance domain was transformed into the time domain (Al-Qadi

et al., 2008).
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Figure 1.19 Normalized signals providing vertical stress cells

in the pavement cross-section of the Virginia roadway

Taken from Al-Qadi et al. (2008)

Based on the research conducted by Al-Qadi and colleagues, an amplitude-frequency chart

can be generated using the FFT algorithm and equations for each section at various depths

and vehicular speeds. The frequency of different speeds can be approximated by applying

equation (equation 1.19), which assumes a reference vehicle speed of 100 km/h. Ultimately, the

equivalent frequency for the loading pulse can be determined by evaluating the area underneath

the amplitude-frequency chart, as depicted in figure 1.20.

𝑓𝑉 = 0.01 𝑓100 (1.19)

The frequency for a vehicular speed of "V" is represented as 𝑓𝑣, while the estimated equivalent

frequency for the speed of 100 km/h is represented as 𝑓100. This estimation can be achieved

by using the equation (1.19), which provides an approximation for the frequency at any given

speed. The amplitude-frequency chart, drawn using the FFT algorithm and equations for each

section in different depths for all vehicular speeds, provides valuable insight into the frequency
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Figure 1.20 The amplitude-frequency chart

Taken from Al-Qadi et al. (2008)

distribution. By measuring the surface underneath this chart, the equivalent frequency for the

loading pulse can be accurately determined, as demonstrated in figure 1.20.

In 2019 a study on Frequency-Domain Analysis of Pavement Response was conducted by scholars

from Texas A&M University and published in the Journal of Transportation Engineering. The

researchers used a high-speed profilometer to collect deformation signals from the bottom of

the asphalt layer in time-domain under vehicular loading. Subsequently, the collected data was

processed and examined using Fourier analysis in Microsoft Excel to convert the discrete data to

their corresponding frequency domain. The researchers used a 2D FE model to replicate the

pavement behaviour and confirm their results. The findings indicated that the Fourier analysis

technique is an effective and dependable method for transforming pavement deformation signals

from the time to frequency domain. Additionally, the study recommended that frequency-domain

analysis of pavement response could provide valuable insights into pavement performance and

be beneficial in developing more precise pavement design and maintenance strategies (Wang,

Chen, Nie, Wang & Shu, 2019).
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The study conducted by Yang et al. (Yang, Zhang, Hu & Wei, 2020) aimed to investigate the

effects of temperature on asphalt pavement performance by analyzing the deformation signals

in different temperature conditions. The authors collected the deformation signals beneath

the asphalt layer using strain gauges and then used Fourier analysis to transform the data into

the frequency domain. The measured strain amplitudes showed that the pavement’s stiffness

increased with temperature, and the dominant frequencies of the deformation signals shifted to

higher frequencies as the temperature increased. The findings indicated that the Fourier analysis

technique is an effective and reliable method for analyzing the effects of temperature on asphalt

pavement performance. The study provides valuable insights into the pavement’s response to

temperature changes, which can be used for developing more accurate pavement design and

maintenance strategies.

Rizvi et al. (2019) conducted a study to evaluate the in-situ viscoelastic properties of asphalt

concrete using frequency domain analysis. The authors collected pavement deformation signals

under vehicular loading using a Falling Weight Deflectometer (FWD) and then transformed

the data into the frequency domain using Fourier analysis. The resulting complex modulus of

the asphalt concrete increased with frequency, indicating higher stiffness at higher frequencies.

In addition, the phase angle of the complex modulus decreased with frequency. The study

concluded that frequency domain analysis is a valuable tool for evaluating the in-situ viscoelastic

parameters of bituminous material, providing important insights for pavement design and

maintenance strategies.

1.4 Methods of Flexible Pavement Design

Professor E.J. initiated the construction of the first asphalt road, paving the way for the evolution

of asphalt pavement design through three distinct phases. The first phase, prior to the early

1920s, was characterized by empirical pavement design that lacked an understanding of material

mechanics. In the second phase, elastic mechanistic-empirical pavement design, which was

widely accepted until the early 1990s, assumed the homogeneity and isotropic linear elasticity

of asphalt mixes, despite the viscoelastic behavior of bituminous materials in reality. The third
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and current phase of pavement design methods is viscoelastic mechanistic-empirical pavement

design, which recognizes the viscoelastic behavior of bituminous materials under dynamic traffic

loads and applies viscoelastic theory to account for this behavior (Liao, 2007). The KENPAVE

software currently utilized to design flexible and rigid pavements is based on the viscoelastic

characteristics of bituminous materials. Furthermore, the OPECC web-based pavement design

platform developed by École de Technologie Superieure (ÉTS) is also described in the subsequent

sections.

1.4.1 KENPAVE software

Yang H. Huang, at the University of Kentucky, developed KENPAVE, a software with two

primary modules: KENLAYER for flexible pavement analysis and KENSLAB for rigid pavement

analysis. The software divides each year into a maximum of 12 damage analysis periods, with 12

load groups in each period. KENPAVE is capable of analyzing linear, nonlinear, and viscoelastic

material characteristics for each pavement layer. The design life for each load group is determined

by summing the damages produced by fatigue, rutting, and overall deformation. KENLAYER’s

key advantage over other programmes is its ability to solve for linear-elastic, nonlinear-elastic,

and viscoelastic material characteristics, as well as perform damage analysis, fatigue damage,

and rutting distresses to evaluate pavement design life. The efficacy of KENPAVE has been

demonstrated through the incorporation of the software in the pavement management system of

various state departments of transportation (Rind, Memon & Qureshi, 2017).

1.4.1.1 KENLAYER computer program

The primary goal of this software is to achieve pavement design life. To accomplish this,

KENPAVE calculates the damage caused by fatigue cracking and permanent deformation for

each of the 12 months of the year and then aggregates this damage over all 12 load groups. Figure

1.21 depicts an n-layer system in cylindrical coordinates, which is modelled in the KENLAYER

software, with the infinite 𝑛𝑡ℎ layer thickness. The elasticity and Poisson ratio of the 𝑖𝑡ℎ layer are

𝐸𝑖 and 𝜈𝑖, respectively.
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Figure 1.21 Schematic of a modelled n-layer flexible pavement system in KENPAVE

Taken from Huang et al. (2004)
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This software employs the Hankel transform method to solve the governing differential equation

for axisymmetric elasticity problems, which involves a constant load (𝑞) distributed across a

circular contact area of radius (𝑎𝑐). The stress function for each layer contains four integration

constants, except for the bottom layer, which has only two constants. The total number of

unknowns in an n-layer system is 4𝑛 − 2, which is determined by two boundary conditions and

4(𝑛 − 1) continuity requirements. These continuity requirements include vertical stress, vertical

displacement, shear stress, and radial displacement continuity at each of the 𝑛 − 1 interfaces,

with the continuity of shear stress and radial displacement being replaced by the loss of shear

stress both above and below the interface for a frictionless interface (Huang, 2004).

1.4.2 Impact of loading frequency

The calculation of loading frequency can vary depending on the methodology employed, and

this can have a substantial effect on the stiffness value used in pavement design. The stiffness of

pavement is a crucial input parameter in empirical and mechanical-empirical pavement design.

In the case of viscoelastic materials such as bituminous mixes, the frequency of loading is

significant, while in the case of granular materials, it does not have any impact. Figure 1.9

illustrates that the modulus values of pavement vary significantly with loading frequency. For

instance, the modulus values rise from approximately 3000 MPa at 1 Hz to around 6500 MPa at

10 Hz. Consequently, it is essential to utilize the right loading frequency for pavement design to

attain accurate results. These varying values of modulus can be utilized in KENPAVE software

to determine stress and strain. If a single layer of asphalt mix is positioned over the subgrade and

an Equivalent Single Axle Load (ESAL) is utilized as load, the vertical deformation under the

bituminous layer varies from 954 when 3000 MPa is utilized to 654 when 6500 MPa is employed.

The difference is nearly 50%, which significantly affects pavement design life. Therefore, it

is crucial to accurately estimate the loading frequency while calculating the stiffness value in

pavement design.
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1.5 Summary

Flexible pavement is the most commonly used road construction, which is designed to distribute

traffic loads uniformly throughout all layers from top to bottom. It is composed of asphalt and

granular material layers, each having specific characteristics that contribute to the pavement’s

overall performance. Asphalt layers are stiffer and have higher moduli than granular layers,

resulting in them absorbing a greater volume of stresses. As a result, the most significant

deformation for design purposes occurs under the lower asphalt layer. This is a crucial design

consideration since the ability to predict deformations in the lower asphalt layer accurately will

enable pavement designers to evaluate and improve pavement performance.

The complex modulus is a crucial parameter used in the laboratory testing and simulation of

bituminous materials to assess their stiffness. Due to its complex nature, the modulus exhibits

different behaviour under varying external conditions and does not have a constant value for

a given material. Furthermore, the complex modulus is time-dependent since loading speed

and weather conditions are time-based. Laboratory tests and mechanical models employed in

simulation software rely on evaluating the complex modulus and the behaviour of bituminous

materials in the frequency domain. However, converting from the time-domain to the frequency-

domain can significantly affect the accuracy and reliability of the results obtained. Therefore,

ensuring a proper conversion is imperative for the validity of the findings.



CHAPTER 2

RESEARCH METHODOLOGY

Since the decline of the empirical method before the early 1920s, the design of flexible pavements

has progressed to a stage where mechanical models define the viscoelastic behaviour of asphalt

in design and simulation techniques by employing mathematical transforms. To enhance the

precision of the design methods, researchers have focused on examining changes in the behaviour

of asphalt layers under traffic loads in field studies and simulating the behaviour of bituminous

materials. In this project, two mathematical approaches have been combined to transform

time-domain vehicular loading signals to the frequency-domain, resulting in the development of

a tool to estimate the equivalent frequency for traffic loading on the surface of flexible pavements

with a high degree of accuracy, using mechanical models and simulation methods.

2.1 Problem statement

In the design process, the material stiffness is a critical characteristic described by the complex

modulus in bituminous materials. This modulus is estimated using the 2S2P1D model in

laboratory tests, based on the equivalent loading frequency that represents traffic loading

parameters and surface temperatures. Vehicular loads distribute in the time domain on top of

the surface layer through the wheel path. However, there are few reliable conversion techniques

available to accurately measure the acceptable equivalent frequency for actual time-domain

loading parameters. In the absence of an alternative method to compute this parameter, the

equivalent frequency serves as a reference for the entire repeating loading duration and is

considered to be 0.01Hz for parking lots and 10Hz for highways. Inaccuracies in this parameter

can result in significant calculation errors in structural response simulations. Therefore, it is

essential to follow an initial structure that provides accurate frequency parameters in various

situations when designing pavement structures subjected to moving loads.
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Figure 2.1 Project method’s diagram
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2.2 Objective

The principal aim of this study is to formulate a conversion tool that enables the computation

of the equivalent traffic loading frequency across diverse scenarios. To this end, an additional

objective involves an in-depth inquiry into a mathematical procedure for the determination

of the equivalent frequency of loading signals. These signals are sourced from strain gauges

meticulously positioned at the substrate of an asphalt layer within a specially constructed

experimental track. The process is illustrated in Figure 2.1 diagram.

Figure 2.2 Schematic of signals’ transformation from the vehicular loading

in time domain to the equivalent frequency domain
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These gauges record the instantaneous deformation data under vehicle loading and collect them

as longitudinal loading signals. The effective loading signals are then extracted from the entire

signal range (three seconds) using the Odemark method. To convert the loading signals from

time-domain to frequency-domain, Microsoft Excel Fourier analysis is used, but all data points

need to be a power of two, which is not always the case. In this study, a modified time interval of

0.0005s is used to reach a proper power of two (2048) and applied to the mathematical function

of each signal retrieved through CurveExpert software. The Microsoft Excel Fourier Analysis is

then used to transfer the signals from the time domain to the frequency domain for four different

temperatures, and the equivalent loading frequency is determined for each temperature. The

asphalt layer’s stiffness is recalculated based on the equivalent loading frequency to validate the

method. The process is repeated to compare the equivalent frequency with the primary loading

frequency. A Microsoft Excel calculation tool is developed based on various temperature,

vehicular loading, and pavement structural parameters for method validation, which is detailed

in Appendix I.
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2.3 Data collection

In 2021, Youness Berraha conducted research on the effect of low-temperature surface cracking

on hot mixed asphalt layer behavior under vehicular loads. He gathered deformation data using

implanted strain gauges, which are also used as a database for this study. The loading system

involves equivalent load cycles of 2.43 ESAL and is applied in a one-way wheel path at a speed

of 2.0 m/s on the asphalt surface at an expected radius of the circular contact area of 120 𝑚𝑚.

The internal test track has a total dimension of 6 m length, 2 m depth, and 2 m breadth.

Table 2.1 2S2P1D parameters for the GB20 mix layer

produced in Quebec

Taken from Berraha et al. (2020)

𝐸∞(𝑀𝑝𝑎) 𝐸0(𝑀𝑝𝑎) 𝐾 𝐻 𝛿 𝜏𝐸 𝛽
25 41000 0.17 0.56 2.25 1.5 400

In the plan view depicted in Figure 2.3, the 6-meter-long track is divided into two main areas of

interest: the reference area, which represents the original pavement structure, and the cracked

area, which includes an idealized transverse crack. The GB20 asphalt mix, manufactured in

Québec, was the single asphalt layer utilized in the study, and the 2S2P1D parameters were

applied to simulate the complex modulus of a typical HMA GB20. These parameters are detailed

in Table 2.1 (Berraha et al., 2020).
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Figure 2.3 Plan and side view of the indoor test structure track

Taken from Berraha et al. (2020)

Figure 2.4 depicts the placement of five H-beam longitudinal strain gauges on the top of the

MG20 layer and beneath the GB20 asphalt layer at 100 mm depth, in different positions. Among

them, TML-1, 2, 3, and TML-REF are situated under the wheel path, while TML-MID is

positioned between the wheel tracks. The purpose of TML-MID is to measure the longitudinal

deformation under wheel path while ignoring the influence of the interface.

This study utilized deformation data collected by three H-beam longitudinal strain gauges:

TML-1, TML-2, and TML-REF, which were strategically installed to measure longitudinal

deformation at different positions along the asphalt layer. The TML-1 and TML-2 were placed

before and immediately after the idealized crack, respectively, while TML-REF was placed far

after the crack. The collected deformation data was then utilized for the computations in this
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Figure 2.4 Plan view of the position of the strain gauges on top of sub-grade

Taken from Berraha et al. (2020)

study. The data was gathered at four distinct internal asphalt layer temperatures, which were -8,

6, 16, and 20 ◦𝐶.

Figure 2.5 displays the longitudinal deformation data obtained by TML-REF at a temperature

of 6 ◦𝐶. The strain diagram, plotted using strain gauges, illustrates the maximum longitudinal

tension (𝜀𝑡) at the effective point, which is when the wheel is precisely positioned on top of

the effective point (𝑝𝑒 𝑓 𝑓 ), and the maximum longitudinal pressure before the effective point

occurs in the loading area (𝜀𝑐𝑑) and the unloading area (𝜀𝑐𝑎). The tension peak of the strain

diagram is located in the centre of the total loading period, which is divided into loading period

(𝑇𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝑡𝑒 𝑓 𝑓 /2) and unloading period (𝑇𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝑡𝑒 𝑓 𝑓 /2), when the delay response time of

the asphalt layer is disregarded. Consequently, only the time (not the deformation types) between

the beginning of the loading area (𝑡1) and the end of the unloading area (𝑡2) are considered

effective loading time (𝑡𝑒 𝑓 𝑓 = 𝑡1 − 𝑡2).
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Figure 2.5 Longitudinal deformation fluctuation at the bottom of the HMA layer under the

vehicle passage

2.4 Estimation of the effective loading time

In estimating the effective loading time, it is important to note that this period varies across

the depth of the asphalt layer due to its stiffness. Hence, the effective loading time beneath the

asphalt layer is not equivalent to the time taken for the vehicle tire to press any point on the

surface. To account for this, the Odemark technique is utilized to transform the thickness of

the asphalt layer (ℎ1) into the effective depth (𝑍𝑒 𝑓 𝑓 ) using equation 1.12. The effective loading

length (𝐿𝑒 𝑓 𝑓 (𝑚)) can be calculated using the 45◦𝐶 trapezoidal model (Figure 1.13), which

considers the effective depth and the length of the tire’s contact area. Subsequently, the effective

loading time (𝑡𝑒 𝑓 𝑓 ) is estimated using equation 1.10.

Based on the Odemark method, the analysis of the test track in this study requires consideration

of the stiffness and depth of the first two layers in order to calculate the effective depth (𝑍𝑒 𝑓 𝑓 )

accurately. As per (Diffiné, 2012) study, for the ALIZÉ simulation, the dynamic modulus of
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the GB20 mixture layer is evaluated at 22000 (Mpa) with a loading frequency of 30 (Hz) and a

temperature of 5◦𝐶. In this project, the loading frequency is assumed as an initial value of 1

Hz for the vehicular speed of 2 (m/s) at the bottom of the asphalt layer to start the conversion

process. This will estimate the GB20 layer’s stiffness based on 2S2P1D model, at the recording

temperatures of -8, 6, 16, and 20 ◦𝐶, as presented in Table 2.2. The stiffness for each temperature

is extracted from the 2S2P1D calculation as presented in figure 2.6 and 2.7 by the red circles.

.

Table 2.2 The Odemarks’ parameters of the first two layers.

GB20 (Asphalt layer) MG20 (Subgrade layer)

|𝐸∗|(𝑀𝑝𝑎),
−8◦𝐶

|𝐸∗|(𝑀𝑝𝑎),
6◦𝐶

|𝐸∗|(𝑀𝑝𝑎),
16◦𝐶

|𝐸∗|(𝑀𝑝𝑎),
20◦𝐶

ℎ1(𝑚𝑚) 𝐸 (𝑀𝑝𝑎) ℎ2(𝑚𝑚)

23578 13660 7055 4924 100 122 250

Figure 2.6 Dynamic modulus of GB20 layer for the loading frequency of 1 Hz at -8◦𝐶
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Figure 2.7 Dynamic modulus of GB20 layer for the loading frequency of 1 Hz at 6,16 and

20◦𝐶
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2.5 Analysis of Longitudinal Loading Signals Under the Wheel Path Using Recorded
Data

The longitudinal deformation of asphalt pavement under the wheel path is a crucial factor in

pavement performance assessment. In this study, digital discrete data points were recorded by

strain gauges every 0.0005 seconds to capture the immediate deformation response. A primary

database table was created to store the recorded data over the full wheel passage period of 3

seconds at four different temperatures (-8, 6, 16 and 20◦𝐶) corresponding to different weather

conditions. The deformation data points were represented by a set of numbers from 0 to 5999,

reflecting the time interval at which the data was recorded. The total loading signals were

obtained by plotting the deformation data for each strain gauge at each temperature, resulting in

a total of 12 signals. The recorded data and total loading signals were analyzed to gain insight

into the pavement’s response to vehicular loading. The figure 2.8 shows all 12 recorded strain

gauge signals under the whole vehicle passage.
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Figure 2.8 All 12 recorded strain gauges signals under the whole vehicle passage

2.5.1 Extracting Effective Loading Signals from Longitudinal Deformation Data Recorded
by Strain Gauges

To accurately determine the equivalent loading frequency for each collected data, it is essential

to extract the effective loading signals from the total signals, which refers to the maximum

deformation values recorded by the strain gauges from the beginning of loading to the end of

unloading point. This can be achieved by using the "ADDRESS(MATCH(MAX()))" function in

Microsoft Excel on each column in the primary database table, which technically isolates the

effective loading signals for each temperature. The effective loading time (𝑡𝑒 𝑓 𝑓 ) is determined

by the time factor representing the peak (𝑡𝑝) when the centre of the wheel contact area is located

precisely on top of the strain gauges, as shown in Figure 2.5. The number of effective loading

signals’ cells can be calculated using equation 2.1, and subsequently,
𝑁𝑒 𝑓 𝑓

2
cells before and after

the signals’ peak are chosen to be extracted. The extracted cells are arranged in the effective
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deformation table, where each signal represents the recorded deformation in a time range of 0 to

𝑡𝑒 𝑓 𝑓 for each temperature and TML strain gauge, by intervals of Δ𝑡 = 0.0005.

𝑁𝑒 𝑓 𝑓 =
𝑡𝑒 𝑓 𝑓

Δ𝑡
+ 1 (2.1)

2.5.2 Optimizing cell numbers of loading signals to powers of two

As highlighted in section 1.4.4, the Fourier transform is only applicable to signals’ data points

generated with a number of samples that are a power of two. However, the effective loading

signals obtained from the strain gauge readings in this study are generated at intervals of 0.0005s,

which results in different numbers of data points for the effective loading signals at different

temperatures, without necessarily being a power of two. To address this, the number of data

points of the effective loading signals is fixed to the nearest power of two. This is achieved by

finding the nearest power of two to the original cell numbers of the signals, and then adjusting

the time interval accordingly. The modified time interval (Δ𝑡′) for each signal is computed using

equation 2.2, which takes into account the effective loading time (𝑡𝑒 𝑓 𝑓 ) of each signal.

Δ𝑡′ =
𝑡𝑒 𝑓 𝑓

𝑁′ − 1
(2.2)

To apply the Fourier transform to the effective loading signals, it is necessary to find the

mathematical function that accurately represents each signal. This mathematical representation

is used to calculate the modified time factors (𝑡𝑛), which are determined based on the effective

loading time (𝑡𝑒 𝑓 𝑓 ) for each signal. This enables the modified time factors to be calculated as

𝑡𝑛 = 𝑛.Δ𝑡′, where 𝑛 ranges from 0 to 𝑁′ − 1, where N’ is the closest power of two to the number

of data points in each signal. By resetting the effective loading signals to a fixed power of two

number of time factors, it is possible to apply the Fourier transform to each signal with the

appropriate resolution and accuracy.



50

2.5.2.1 Mathematical Function Estimation of the Effective Loading Signals

For the purpose of this project, the software called CurveExpert Professional 2.7.3 has been

utilized to obtain the mathematical functions that accurately represent the effective loading signals

for each temperature. CurveExpert is a widely-used cross-platform software that specializes

in curve fitting and data analysis. It offers a range of powerful tools including smoothing

techniques, spline types, and both nonlinear and linear regression models to facilitate the process

of modeling data (Hyams, 2011). By utilizing this software, we can efficiently and effectively

find the most suitable mathematical functions that represent the effective loading signals for

each temperature.

Figure 2.9 demonstrates that there are various regression models that can be used to fit the curve

and generate different constant coefficients. In this research, the Rational Model is selected as

the most suitable curve function to approximate the effective loading signals accurately. The

mathematical functions of the selected Rational Model for each signal are employed on their

modified time factors (𝑥 parameters) to calculate the modified deformation values (𝑦 parameters).

Therefore, the four reference effective signals are adjusted and graphed in power of two points.

This approach allows for a more precise analysis of the signals, which is necessary for accurate

results. It should be noted that the Rational Model is one of the commonly used regression

models in curve fitting due to its simplicity and ability to capture both the linear and nonlinear

behavior of the data.

2.5.3 Converting the effective loading signals to the frequency domain by using Fourier
analysis

To analyze the effective loading signals in the frequency domain, a Fourier transform is used.

However, as mentioned in the previous section, the effective loading signals are modified to have

a fixed number of time factors that is a power of two. Therefore, in order to create the transformed

table to present the equivalent frequency signals, the angular frequency interval Δ𝜔 must first be

calculated for each signal. This is done by using equation 2.3, which determines the angular

frequency factors for each effective loading time. The resulting angular frequency factors (𝜔𝑘 )
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Figure 2.9 An example of curve fitting function of the CurveExpert tool

Taken from Hyams et al. (2011)

are calculated as (𝑘.Δ𝜔), where (𝜔𝑘) ranges from 0 to 𝜔𝑚𝑎𝑥 , which is the maximum angular

frequency that can be represented based on the Nyquist criterion. These angular frequency

factors are then set in the angular frequency columns for each signal in the transformed table,

which is used to analyze the signals in the frequency domain.

Δ𝜔 = 2𝜋Δ 𝑓 =
2𝜋

𝑁′Δ𝑡′
(2.3)

The sampling rate of a signal imposes a limit on the highest frequency that can be represented in

the signal, which is known as the Nyquist frequency. Robert W. Ramirez has stated that the

Nyquist frequency is equal to 1/2Δ𝑡 for a fixed signal’s time interval. Thus, equation 2.4 is used

to calculate the maximum allowable angular frequency for each signal, where the coefficient "𝑘"

ranges from 0 to (𝑁′/2) − 1. This equation ensures that the frequencies beyond the Nyquist

frequency are excluded to avoid aliasing in the frequency domain.
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𝜔𝑚𝑎𝑥 =
𝜋

Δ𝑡′
(2.4)

The deformation data obtained by applying the math functions of each signal are prepared to be

transformed to the frequency domain using Fourier analysis. The conversion involves selecting the

column of adjusted deformation cells, which are then transformed to the strain amplitude column

of the frequency domain table. This transformation is achieved by applying the Fourier analysis,

which is a Microsoft Excel add-in function. The process of the Fourier data analysis is illustrated

in Figure 2.10 (𝐷𝑎𝑡𝑎 > 𝐷𝑎𝑡𝑎𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 > 𝐹𝑜𝑢𝑟𝑖𝑒𝑟𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 > 𝑖𝑛𝑝𝑢𝑡𝑟𝑎𝑛𝑔𝑒 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑟𝑎𝑛𝑔𝑒).

The resulting output is a column of 𝑁′ sets of complex numbers, each comprising a real part and

an imaginary part. To refine the complex values of the strain amplitude columns to real numbers,

the "IMABS" function is applied. The "IMABS" function is a built-in function in Microsoft

Excel that returns the absolute value (modulus) of a complex number. The frequency loading

signals are then presented for the determined temperatures, based on the angular frequency

factors ranging from 0 to 𝜔𝑚𝑎𝑥 and their corresponding representing strain amplitude.

2.5.3.1 Determining the Equivalent frequency for the Loading Signals

In this project, the angular frequency factor of the strain curves’ peak is considered as the

equivalent loading frequency for each effective loading signal. The frequency domain signals are

obtained by using 1024 points with different angular frequency intervals due to the viscoelastic

behaviour of bituminous material at different temperatures. In order to improve the accuracy in

determining the X and Y factors for the signal peaks, a mathematical proportionality is applied

to adjust the two biggest amplitude values. This results in the provision of equivalent frequency

values in 𝑅𝑎𝑑/𝑠 and 𝐻𝑧 in the equivalent loading frequency table for each effective loading

signal. In order to determine the equivalent frequency of the loading signals at various effective

loading times, a mathematical function is derived by performing a three-degree polynomial

regression on the equivalent angular frequency values by using the CurveExpert software.
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Figure 2.10 Application of the Fourier Analysis in Microsoft Excel

2.6 The equivalent loading frequency validation

In order to validate the conversion tool developed in this study, the equivalent frequency values

obtained for each signal’s effective loading time need to be tested. To do this, the estimated

equivalent frequencies are used as initial loading frequencies in the 2S2P1D mechanical model

for each testing temperature, resulting in a new dynamic modulus. This new modulus is then used

to recalculate the effective loading time in the Odemark method, leading to rectified equivalent

loading frequencies. This process is repeated until an acceptable level of matching is achieved

between the equivalent loading frequencies and the initial loading frequencies. It should be

noted that the GB20 ULAVAL stiffness calculation method considers a reference temperature of
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15◦𝐶. Figure ?? illustrates the approximate stiffness provided in 𝑀𝑃𝑎 for each initial frequency

input in 𝐻𝑧 and surface temperature in ◦𝐶, based on the 2S2P1D mechanical model.

2.7 Development of a Conversion Method to transform Loading Signals to the Frequency
Domain

Validation tests are utilized to obtain accurate equivalent loading frequency by replacing the

initial loading frequency with the calculated equivalent loading frequencies. In this study, the

equivalent loading frequency values are computed and validated for moving loads with a speed

of 2 (m/s) on top of a single asphalt layer of GB20 mixture at -8, 6, 16 and 20 ◦𝐶. The resulted

equivalent loading frequencies are unique to different loading parameters, such as vehicular

loading speed, temperature and material stiffness, which consequently affect the effective loading

time (𝑡𝑒 𝑓 𝑓 ) at the bottom of the asphalt layer. It can be inferred that each equivalent loading

frequency is specific to each effective loading time calculated based on the loading and material

parameters. The CurveExpert software is used to apply a three-degree polynomial regression to

the resulted equivalent frequencies for each effective loading time to find the conversion curve

for extracting the equivalent frequency.

To calculate the equivalent loading frequency for every effective loading time, a three-phased

mathematical conversion tool is developed in Microsoft Excel. This conversion tool includes the

use of the 2S2P1D mechanical model to calculate the material stiffness, Odemarks’ calculation

to determine the effective loading time for loading and pavement parameters, and the conversion

curve function to find the equivalent loading frequency. The developed conversion tool is

explained in detail in the APPENDIX chapter.



CHAPTER 3

RESULTS AND DISCUSSION

This research aims to improve the accuracy of vehicular loading calculations on flexible

pavements by developing a method to convert loading signals from the time domain to the

equivalent angular frequency parameter in the frequency domain. The conversion of loading

signals is crucial in achieving accurate loading calculations with higher precision. In this

chapter, a detailed description of the methodology used in the research is presented, including an

illustration and explanation of the results for each phase. The final equivalent angular frequency

charts are created using data collected from strain gauges in the field study. The outcome of this

project is the development of a calculation tool that computes the equivalent loading frequency,

which is made available in the appendix.

3.1 Strain gauges records

The present study utilizes the immediate deformation data obtained from three strain gauges,

namely TML1, TML2, and TML-REF, which were placed at the bottom of the asphalt layer of

the ULAVAL test track at various locations, as the primary data source for calculations. These

records encompass the strain values for each time factor, every 0.0005 second of the entire wheel

path on the surface, from 0 to 3 seconds, which constitutes the complete duration of the vehicle’s

motion. Notably, the strain values differ for each time factor, depending on the location of the

strain gauges and the ambient temperature during testing. All data were compiled in a Microsoft

Excel sheet and organized into a primary database table in the time domain. Subsequently,

the data were plotted, yielding the 12 loading signals for each strain gauge under varying test

temperatures, as depicted in Figure 3.1.
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Figure 3.1 All 12 recorded strain gauges signals under the whole vehicle passage

The initiation of loading for each signal is contingent on their longitudinal distance from the

initial position of the vehicle, resulting in temporal variations among them. The maximum

deformation value of these signals is highly dependent on the temperature of the GB20 layer, with

the highest deformation recorded at 20◦𝐶, as evidenced by the grey-colored curves. Conversely,

the red curves indicate deformation signals at -8◦𝐶, with the lowest deformation amplitude peak

under the moving load. To determine the effective loading signals, it is necessary to calculate

the effective loading time for each test temperature and subsequently extract the deformation

variation range of each signal. At reduced temperatures, the asphalt layer demonstrates increased

stiffness when contrasted with elevated temperatures. Consequently, the visual assessment

indicates an extended period of effective loading experienced during the testing at -8 degrees

Celsius compared to the wavelength observed at 20 degrees Celsius. Furthermore, the strain

gauges register more substantial peak deformation values at higher temperature levels.



57

3.2 The results of Odemarks’ method

To initiate the conversion of loading signals to their corresponding frequency domain, it is

essential to determine the effective loading time from the complete loading signals that are

measured using the strain gauges. Although an estimate of the effective loading time can be

obtained visually from the overall signals, a more precise effective loading time is required

for each temperature condition. Therefore, the Odemark method is employed in conjunction

with the design specifications of the asphalt (GB20) and subgrade (MG20) layers of the test

track to obtain an accurate determination of the effective loading time. The Odemarks’ method

was employed to determine the effective loading depth (𝑍𝑒 𝑓 𝑓 ) for the effective loading signals

based on the the Tyre contact area radius (𝑎𝑐 = 120𝑚𝑚), vehicle speed (𝑉𝑐 = 2(𝑚/𝑠)) and the

structural parameters provided in table 3.1. Subsequently, the effective loading length (𝐿𝑒 𝑓 𝑓 )

was calculated based on the obtained depth, as illustrated in Figure 1.13 and presented in the

second and third rows of Table 3.2. Finally, dividing the effective length by the velocity of the

vehicle enabled the derivation of the effective loading times (𝑡𝑒 𝑓 𝑓 ) for each temperature, which

are provided in the last row of Table 3.2.

.

Table 3.1 The Odemarks’ parameters of the first two layers.

GB20 (Asphalt layer) MG20 (Subgrade layer)

|𝐸∗|(𝑀𝑝𝑎),
−8◦𝐶

|𝐸∗|(𝑀𝑝𝑎),
6◦𝐶

|𝐸∗|(𝑀𝑝𝑎),
16◦𝐶

|𝐸∗|(𝑀𝑝𝑎),
20◦𝐶

ℎ1(𝑚𝑚) 𝐸 (𝑀𝑝𝑎) ℎ2(𝑚𝑚)

23578 13660 7055 4924 100 122 250

Table 3.2 The Odemarks’ results of the effective loading time calculation.

Test Temperatures

𝑇𝑒 𝑓 𝑓

−8◦𝐶 6◦𝐶 16◦𝐶 20◦𝐶

Effective Depth

𝑍𝑒 𝑓 𝑓 (mm)

1078.16 981.98 886.70 843.1

Effective Length

𝐿𝑒 𝑓 𝑓 (mm)

2396.32 2203.96 2013.40 1926.03

Effective Time

𝑡𝑒 𝑓 𝑓 (s)

1.2 1.1 1 0.96
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3.3 Effective loading signals

The effective loading signals underneath the wheel path were extracted from the entirety of the

strain gauge data and are illustrated in four charts as presented in Figure 3.2 and 3.3. These

charts depict the effective loading signals throughout the effective loading time (𝑡𝑒 𝑓 𝑓 ), spanning

from the initiation of the loading period until the completion of the unloading time, as recorded

by the TML1, TML2, and TML-REF.

Figure 3.2 Extracted effective strain records at -8◦𝐶
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Figure 3.3 Extracted effective strain records at 6, 16, 20◦𝐶
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All the effective loading signals are generated based on a single loading pulse, without considering

the location of the strain gauges. These signals depict the immediate longitudinal deformation

from time zero to 𝑡𝑒 𝑓 𝑓 , distinct for each temperature tested as presented in Table 3.2. The idealized

crack within the cracked area between TML-1 and TML-2 does influence the deformation

signals recorded by these gauges at the bottom of the GB20 layer, as evidenced by a shift in

the signal flow before and after reaching its peak. Furthermore, due to TML-REF’s installation

location, which is sufficiently far from the idealized crack in the referenced area, the recorded

signal at this position is not impacted by the crack. Consequently, the TML-REF signals are

utilized as reference loading signals for extracting the mathematical function of the signals.

3.3.1 Extraction of Mathematical Functions from Signals

In the previous chapter, the methodology of extracting the mathematical functions from

deformation signals for specified time factors was presented out using CurveExpert Professional

2.7.3 software. The deformation data, recorded during effective loading time, was imported into

the input table of the CurveExpert software. Regressions were performed on the time factors and

deformation columns, and the most accurate regression function for each signal was selected.

To obtain the highest accuracy, the signals were divided into two halves, before and after the

peak point. Consequently, two functions were calculated for each signal; one for the first half of

the time factors’ column and the other for the second half. The results of all divided signals

are presented in figures 3.4 to 3.11. In the derived equations, the parameter "𝑥" represents the

time interval values, and the "𝑦" parameter represents the deformation outcome. The Rational

Model’s regression, based on the CurveExpert results, was found to be the most accurate match

to the real data signals. These regression functions were subsequently set in a Microsoft Excel

table and applied to the power of two number of modified time factors.
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Figure 3.4 Math function for the first half of TML-REF signal at −8◦𝐶

Figure 3.5 Math function for the second half TML-REF signal at −8◦𝐶

The strain gauges’ measurements along the under wheel path reveal that longitudinal strains remain

close to zero when unaffected by moving loads, across all testing temperatures. Consequently,
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Figure 3.6 Math function for the first half of TML-REF signal at 6◦𝐶

Figure 3.7 Math function for the second half TML-REF signal at 6◦𝐶
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Figure 3.8 Math function for the first half of TML-REF signal at 16◦𝐶

Figure 3.9 Math function for the second half TML-REF signal at 16◦𝐶
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Figure 3.10 Math function for the first half of TML-REF signal at 20◦𝐶

Figure 3.11 Math function for the second half TML-REF signal at 20◦𝐶
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the effective loading signals neither commence nor conclude at zero. Furthermore, during the

signal’s transition to the frequency domain, only the wavelength and the peak or form of the

time domain signals play a significant role in determining the equivalent loading frequency.

3.3.2 Signals modification to power of two number of time intervals

In accordance with the measurements of the effective loading time for each temperature tested

(1.2, 1.11, 1.02, and 0.96 seconds), the nearest power of two to the number of time factors is

determined to be N’=2048. As a result of this number of time factors the smallest difference

from the interval of 0.0005 seconds is obtained. The modification of the curves necessitates the

computation of modified time intervals (Δ𝑡′) for each curve based on its corresponding effective

loading time, utilizing Equation 2.2. The calculated modified time intervals, represented as "𝑥"

values, are then imported into the signals’ mathematical functions. The obtained values for

modified time intervals at temperatures of -8, 6, 16, and 20 ◦𝐶, are presented in Table 3.3 for the

recorded referenced loading signals.

Table 3.3 The modified time intervals calculated

for each reference signal (Sec).

Δ𝑡′(−8◦𝐶) Δ𝑡′(6◦𝐶) Δ𝑡′(16◦𝐶) Δ𝑡′(20◦𝐶)
0.000585 0.000538 0.000491 0.00047

The adjusted signals consist of 2048 cells in row for time intervals and for the strain amplitude

values obtained from the mathematical functions in time domain for all reference signals. This

way, they will be appropriate for Fourier transform from time domain to frequency domain. The

effective reference signals are plotted in Figure 3.12 and 3.13.
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Figure 3.12 Modified TML-REF graphs at -8, 6 and 16◦𝐶 in 2047 time intervals
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Figure 3.13 Modified TML-REF graphs at 20◦𝐶 in 2047 time intervals

3.4 Converting the loading signals to the frequency domain

During the transformation process from the time to frequency domain in the present study, it is

necessary to determine the angular frequency intervals (Δ𝜔) for each reference loading signal

to reach the angular frequency factors (𝜔𝑘). These values are computed in radians per second

(Rad/s), using the equation 2.3 (provided in table 3.4).

Table 3.4 The angular frequency intervals calculated

for each reference signal (Rad).

Δ𝜔(−8◦𝐶) Δ𝜔(6◦𝐶) Δ𝜔(16◦𝐶) Δ𝜔(20◦𝐶)
5.2415 5.699 6.2383 6.5213

In accordance with the definition of the Nyquist frequency (𝜔𝑚𝑎𝑥), the angular frequency

factors must be specified in the table from 0 to the 1024th factor (i.e., the first half of each

signal). Consequently, the corresponding strain amplitude values, derived via Fourier analysis

in Microsoft Excel, ranging from the first to the 1024th amplitude.
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3.4.1 Calculation of the Angular Frequency Equivalent to the Loading Signals

The present study involves the visualization of the transformed signals in the frequency domain,

which have been graphed in the range from zero to the Nyquist frequency (1024th angular

frequency factor), as depicted in figures 3.14 to 3.17. To generate the charts, the angular

frequency representative (𝜔) for each temperature was assigned to the "𝑋" axis, while the

transformed TML-REF strain amplitude (Δ𝜔) was designated to the "𝑌" axis.

Figure 3.14 Equivalent loading signal in the frequency domain at −8◦𝐶
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Figure 3.15 Equivalent loading signal in the frequency domain at 6◦𝐶

Figure 3.16 Equivalent loading signal in the frequency domain at 16◦𝐶

In order to determine the equivalent angular frequency for each loading signal, it is necessary

to identify the peak amplitude for each frequency domain signal. Accordingly, the equivalent

angular frequency was estimated for a vehicle speed of 2(m/s) traveling on a single asphalt layer

of the ULAVAL test track at four different test temperatures (-8, 6, 16, and 20 ◦𝐶), which are

labeled in the signal charts. However, the strain amplitude for the second and third frequency

factors exhibited a narrow difference with uneven gaps between the values for each signal. To
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Figure 3.17 Equivalent loading signal in the frequency domain at 20◦𝐶

obtain the most accurate angular frequency factor of the peak, mathematical interpolation was

applied, and the results are presented in Table 3.5 as the equivalent angular frequency for each

loading signal. In the last row of the table, the equivalent frequencies in Hz were calculated using

equation 1.14. It is worth noting that the equivalent angular frequencies were calculated based on

the four different effective loading times, which were determined using the fixed vehicular speed

for each temperature and the asphalt stiffness that varies with speed and temperature. Therefore,

it is more appropriate to state that the four equivalent angular frequencies were calculated for

four different effective loading times that can vary depending on the temperature and vehicle

speed.

Table 3.5 The equivalent frequency for each effective loading time calculated based on

different testing temperatures.

T (◦𝐶) -8 6 16 20

𝑡𝑒 𝑓 𝑓 (𝑠) 1.2 1.1 1 0.96

𝜔𝑒𝑞 (𝑅𝑎𝑑/𝑠) 7.826 8.79 9.48 9.91

𝐹𝑒𝑞 (𝐻𝑧) 1.244 1.399 1.508 1.577

The present study utilizes CurveExpert software to generate a mathematical function by depicting

a The three-degree Polynomial regression curve for the equivalent angular frequency values
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obtained from the loading signals. Figure 3.18 displays the obtained function, which is applied

to the effective loading time column ranging from 0 to the maximum value of effective loading

time. Parameter 𝑋 represents the effective loading time and the parameter 𝑌 represents the

equivalent loading frequency. The corresponding graphical representation is depicted in figure

3.19.

Figure 3.18 CurveExpert function result for the equivalent frequency

for the effective loading time

3.5 Validation Outcomes of the Methodology

As stated earlier, the initial loading frequency of 1 Hz was adopted in this investigation to achieve

an approximate asphalt material stiffness. However, the equivalent frequency values calculated

for each signal at temperatures of -8, 6, 16, and 20◦𝐶 are dissimilar and do not align with the

initial assumption. Therefore, The result values of the equivalent frequency for each temperature

are replaced to the initial loading frequency in the 2S2P1D mechanical model to calculate the

dynamic modulus again. As a result, the material stiffness for each temperature under the revised

loading frequencies changes, which in turn modifies the effective loading times (𝑡𝑒 𝑓 𝑓 ) calculated

by the Odemarks method, as shown in Table 3.5.
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Figure 3.19 The three-degree Polynomial regression curve for the equivalent

angular frequency based on the effective loading time.

Table 3.6 Modified pavement and loading parameters based on 2S2P1D model and

Odemark method

𝑇 (◦𝐶) -8 6 16 20

|𝐸 |𝐺𝐵20(𝑀𝑃𝑎) 23974 14382 7879 5754

𝑡𝑒 𝑓 𝑓 (𝑠) 1.201 1.11 1.021 0.981

The reprocessing method for calculating the effective loading times based on the new frequency

inputs resulted in a marginal increase in the recalculated effective loading times compared to

the first results. The effective loading times obtained through this method were imported into

the CurveExpert math function result to obtain the approximate equivalent angular frequency

curve, and the corresponding equivalent frequencies were tabulated in Table 3.7. Since the

normal equivalent frequencies remain largely unchanged, this table provides an acceptable

representation of the equivalent loading frequencies for a speed of 2 (m/s) on a single layer of

asphalt at temperatures of -8, 6, 16, and 20 ◦𝐶.
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Table 3.7 Reprocessed equivalent loading frequencies for each effective loading times

T (◦𝐶) -8 6 16 20

𝑡𝑒 𝑓 𝑓 (𝑠) 1.201 1.11 1.021 0.981

𝜔𝑒𝑞 (𝑅𝑎𝑑/𝑠) 7.786 8.72 9.36 9.71

𝐹𝑒𝑞 (𝐻𝑧) 1.240 1.390 1.49 1.55

3.6 Conclusion and Future Research Work

The primary objective of this study is to develop a calculation method that utilizes the Odemarks’

method and Fourier analysis to estimate the equivalent loading frequency for vehicular loading

conditions on a single asphalt layer pavement at different temperatures. The methodology

employed in this study involves obtaining the effective loading time at the bottom of the GB20

layer of the ULAVAL test track and extracting the structural parameters based on the 2S2P1D

mechanical model. Strain gauges installed at the bottom of the test track surface layer are

used to record the immediate deformation at -8, 6, 16 and 20 ◦𝐶, which serve as the loading

signals for this study. The effective loading signals are then transferred to the frequency domain

using Microsoft Excel Fourier analysis to obtain the equivalent frequencies for each recorded

loading signal. After validation of the results, the final equivalent frequency values for each

effective loading time are imported into CurveExpert software to generate a base chart that is

acceptable for obtaining the equivalent frequency for every effective loading time. Consequently,

a conversion tool is developed to calculate the equivalent frequency for loading signals using an

initial loading frequency input. If no gaps exist between the outcome equivalent frequency and

the initial input frequency, the initial frequency is renewed by the outcome and this process will

continue in a loop and explained more in the APPENDIX chapter. The limitations of this study

are listed in the following items.

- Given that the strain gauges were installed between the GB20 and MG20 layers without any

interlayers in place, the effective loading time results obtained using Odemarks’ method

in this study only account for the behavior of a single surface layer. To improve the

generalizability and accuracy of Odemarks’ results in all scenarios, it is necessary to perform

similar calculations using strain gauge recordings from different types of flexible pavements.
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- In this research, the CurveExpert software is utilized to extract the mathematical functions

of loading signals, which are subsequently modified in length to fit a power of two number

of data cells, a necessary step to transfer to the frequency domain through Fourier analysis.

While the accuracy of CurveExpert results for the entire signal length is insufficient, it

is acceptable for preserving the shape of the signals if they are divided into two halves.

Nevertheless, it is imperative to develop a more accurate method for adjusting the length

of signals while retaining their shape to achieve greater precision in the frequency domain

results.

- In this study, a mathematical interpolation method is employed to determine the maximum

strain amplitude value between the second and third intervals in the frequency domain.

Obtaining an accurate equivalent loading frequency is crucial, and to achieve this, it is more

imperative to use a larger power of two number as the number of frequency factors (N’). This

approach results in a higher accuracy in determining the equivalent frequency.



APPENDIX I

EQUIVALENT FREQUENCY CONVERSION TOOL

1. Introduction

The accurate transformation of loading signals from the time domain to the frequency domain is

essential for ascertaining the equivalent loading frequency, which, in turn, is a critical parameter

for bituminous material pavement design. To facilitate this, the present study proposes a

conversion tool built on the Microsoft Excel platform that employs the 2S2P1D mechanical

model, Odemark method, and Fourier analysis. This conversion tool adopts a loop calculation

method, which iteratively refines the initial loading frequency input until the final output (i.e.,

the equivalent frequency) equals the imported input value.

2. A Methodology for Estimating Stiffness using the 2S2P1D Model

The first step of this study involves calculating the stiffness of the asphalt layer (GB20) using the

2S2P1D mechanical model. This is achieved by inputting the assumed design temperature and

a loading frequency (typically 1 Hz) into the 2S2P1D Excel sheet to start the process, which

estimates the dynamic modulus (|𝐸 |) of the material. This modulus serves as a key input for the

subsequent Odemark method, which determines the effective loading time (𝑡𝑒 𝑓 𝑓 ).

3. Estimation of the effective loading time through the Odemarks Method

The Odemark method is employed to determine the effective loading time (𝑡𝑒 𝑓 𝑓 ) by first

calculating the effective loading depth (𝑍𝑒 𝑓 𝑓 ), which further defines the effective loading length

(𝐿𝑒 𝑓 𝑓 ) through the 45◦𝐶 trapezoidal Odemark model. The computation is carried out using

Microsoft Excel, requiring input of the pavement and loading parameters such as vehicle tire

contact area with the surface (𝑎𝑐 (𝑚𝑚2)), thickness of the asphalt layer (ℎ𝐺𝐵20(𝑚𝑚)), thickness

of the sub-grade layer (ℎ𝑆𝐺 (𝑚𝑚)), dynamic modulus of the asphalt material (|𝐸 |𝐺𝐵20(𝑀𝑃𝑎)),

and dynamic modulus of the sub-grade material (𝐸𝑆𝐺 (𝑀𝑃𝑎)). Addition of the vehicle speed
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(𝑉𝑐 (𝑚𝑚/𝑠)) as input parameter leads to estimation of the effective loading time using equation

1.10, whereby 𝐿𝑒 𝑓 𝑓 is divided by 𝑉𝑐.

4. Determination of Equivalent Frequency using Computed Effective Loading Time

In this stage, the methodology of this project involves utilizing a conversion calibration

chart to determine the equivalent frequency of the effective loading time. The conversion

calibration curve, which estimates the equivalent frequencies for each effective loading time (for

each temperature), was developed using CurveExpert software by employing a three-degree

polynomial regression. The resultant effective loading time is subsequently entered into the math

function of the conversion chart, illustrated in Figure I-1. The equivalent loading frequency can

be expressed in both Hz and Rad/s, however, calibration is required for it to be considered valid.

Figure-A I-1 Conversion curve and it’s math function for equivalent frequency

based on the effective loading time
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5. The equivalent frequency calibration

As previously mentioned, the 2S2P1D model relies on the initial loading frequency input to

determine the stiffness of the asphalt layer, which in turn allows for the calculation of the effective

loading time under a specific moving load. In this study, the initial loading frequency was

taken as 1 Hz to start the calculation. However, in order to refine the effective loading time, the

frequency must be calibrated by adjusting the designed equation with the calculated equivalent

loading frequency. This iterative process involves replacing the initial loading frequency with the

calculated equivalent frequency until the difference between the two values is insignificant. By

iteratively refining the estimated effective loading time and corresponding equivalent frequency,

a more accurate representation of the pavement response to vehicular loading can be obtained.

This approach accounts for the variability in pavement material properties and loading conditions,

which can affect the effective loading time and ultimately the equivalent frequency parameter.
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