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Modélisation et édition de visages avec réseaux de neurones profonds

Mohammad Amin ALIARI

RÉSUMÉ

Nous proposons une approche basée sur les réseaux génératifs profonds pour l’édition interactive

de visages 3D. La plupart des méthodes actuelles pour l’édition de visages se basent sur des

méthodes linéaires et ne peuvent pas exprimer de déformations complexes et non linéaires.

Par opposition aux modèles 3D déformables basés sur l’analyse en composantes principales

(ACP), nous proposons une nouvelle architecture basée sur les autoencodeurs variationnels.

Notre architecture a plusieurs encodeurs (un par partie du visage, comme le nez et la bouche)

qui sont reliés à un seul décodeur. En conséquence, chaque sous-vecteur du vecteur latent

représente une partie du visage. Nous entraînons notre modèle avec une nouvelle fonction

de coût, qui désintrique l’espace latent selon les différentes parties du visage. La sortie du

réseau est un nouveau visage. Ainsi, contrairement aux méthodes par partie basées sur l’ACP,

notre modèle apprend intrinsèquement à regrouper les parties et ne requiert pas de processus

additionnel pour joindre les parties du visage. Pour permettre l’édition interactive du visage,

nous optimisons les variables latentes selon des contraintes positionnelles sur des sommets,

qui sont fournies par l’utilisateur. Pour éviter les changements globaux ailleurs sur le visage,

nous optimisons seulement le sous-ensemble du vecteur latent qui correspond à la partie du

visage qui est modifiée. Notre optimisation d’édition converge en moins d’une seconde. Nos

résultats montrent que l’approche proposée supporte un large éventail de contraintes d’édition et

génère des visages 3D plus réalistes. Finalement, nous explorons l’idée d’ajouter des textures

aux visages générés puisque ceci complémente notre modèle génératif et le rend plus versatile.

Mots-clés: infographie, modélisation de surface, maillages de polygones, réseaux de neurones

profonds, synthèse de texture





Face Modeling and Editing with Deep Neural Networks

Mohammad Amin ALIARI

ABSTRACT

We propose an approach for interactive 3D face editing based on deep generative models. Most

of the current face modeling methods rely on linear methods and cannot express complex

and non-linear deformations. In contrast to 3D morphable face models based on Principal

Component Analysis (PCA), we introduce a novel architecture based on variational autoencoders.

Our architecture has multiple encoders (one for each part of the face, such as the nose and

mouth) which feed a single decoder. As a result, each sub-vector of the latent vector represents

one part. We train our model with a novel loss function that further disentangles the space

based on different parts of the face. The output of the network is a whole 3D face. Hence,

unlike part-based PCA methods, our model learns to merge the parts intrinsically and does not

require an additional merging process. To achieve interactive face modeling, we optimize for the

latent variables given vertex positional constraints provided by a user. To avoid unwanted global

changes elsewhere on the face, we only optimize the subset of the latent vector that corresponds

to the part of the face being modified. Our editing optimization converges in less than a second.

Our results show that the proposed approach supports a broader range of editing constraints

and generates more realistic 3D faces. Finally, we explore the idea of adding textures to the

generated faces as it can complement our generative model and make it more useful.

Keywords: computer graphics, shape modeling, mesh geometry models, deep neural networks,

texture synthesis





TABLE OF CONTENTS

Page

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

CHAPTER 1 LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Image Synthesis with Generative Artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 3D Shape Modeling and Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2 METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 3D Face Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Input and Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Random Face Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Neural Face Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Texture Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8.3 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 3 RESULTS AND EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Cumulative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 One by One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Comparison with CoMA (Ranjan, Bolkart, Sanyal & Black, 2018) . . . . . . . . 33

3.4.2 Comparison with Jung et al. (2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3 Comparison with Ghafourzadeh et al. (2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.4 Comparison with direct deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Texturing the Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CHAPTER 4 LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

CONCLUSION AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49





LIST OF FIGURES

Page

Figure 1.1 Summary of image synthesis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.2 Face segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.3 Blending local parts artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.4 CoMA Mesh sampling operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 1.5 Summary of 3D shape modeling and editing methods . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.1 Our method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.2 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.3 Neural face editing workflow example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.4 Comparison of different learning rates for vertex-based editing . . . . . . . . . . . . . 20

Figure 2.5 Texture generation workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.1 Vertex editing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.2 Examples of using our method to generate faces randomly . . . . . . . . . . . . . . . . . . 28

Figure 3.3 Cumulative ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.4 Cumulative ablation study summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.5 One by one ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.6 One by one ablation study summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.7 Comparison with CoMA (Ranjan et al., 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.8 Comparison with Jung et al. (2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.9 Comparison with Ghafourzadeh et al. (2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.10 Comparison with Sorkine et al. (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.11 Faces with textures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.1 Reconstruction error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46





LIST OF ABBREVIATIONS

3DMM 3D Morphable Face Model

AE Autoencoder

AI Artificial Intelligence

DNN Deep Neural Network

GAN Generative Adversarial Network

LLM Large Language Model

PCA Principal Component Analysis

VAE Variational Autoencoder

VRAM Video Random Access Memory





INTRODUCTION

Face modeling and editing have been very active topics in computer vision and graphics. It

has a wide range of applications in multiple contexts, such as video games, film, visual effects,

and the metaverse. In the context of the metaverse and video game production, especially in

open-world games, artists need to generate and edit new 3D meshed faces and textures at a large

scale, and this with a simple and intuitive interface. Current commercial tools (e.g., ZBrush®)

for manual 3D face modeling and editing require a lot of expertise to achieve the desired output.

Our work focuses on developing an approach for generating new faces at a large scale while

providing an intuitive editing capacity for the artists. This will have a considerable impact on

the time spent by artists on the task.

Over the past 20 years, linear generative models (Blanz & Vetter, 1999) have been the dominant

technology for face generation because of their simplicity and efficiency. With such generative

models, a new face is generated by a linear combination of an orthogonal basis. This basis is

obtained by applying a statistical analysis (Principal Component Analysis – PCA) on a set of

face scans. PCA-based linear models suffer from multiple drawbacks. Their control mechanism

is not intuitive. Also, the generated faces are generally bound by the statistical prior space; If the

parameters are varied a little, the generated faces are believable but rather similar to the ones in

the dataset, and if the parameters are varied a lot, we get novel faces, but they are not necessarily

realistic. In other words, these methods tend not to generalize very well. Furthermore, local

face editing is not possible with most PCA-based methods because the orthogonal basis does

not provide a semantically meaningful separation of different parts of the face. More recently,

non-linear generative models (Ranjan et al., 2018) based on Deep Neural Networks (DNN) have

emerged and achieved a better generalization capacity than PCA-based methods. However, it is

challenging to balance the realism of the face with the requirement of allowing the generation of
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a large variety of faces. Moreover, providing an intuitive user interface for local face editing

remains a big challenge.

In this work, we propose a novel approach for face modeling that enables users to generate a

wide variety of realistic faces using a simple and intuitive user interface. We frame the problem

as an optimization problem over the latent space of a graph-based variational autoencoder

(VAE) (Kingma & Welling, 2014) that incorporates both a set of part-based encoders as well

as a global face decoder. This combination is key to allowing a large variety of faces as well

as maintaining local user control. The part-based encoders allow for more flexibility in the

generated result as well as local user control, while the global decoder ensures the realism of

the result. This formulation also allows the user to perform direct vertex manipulation as an

editing paradigm. Furthermore, our method runs at interactive rates, taking under one second to

generate a new face after user interaction. Our novel contributions are summarized as:

• A graph convolutional VAE architecture with a contrastive loss function designed to

disentangle the latent space into local parts;

• An approach to editing the face through an optimization of the latent variables enforcing the

locality of the edit.

Compared to state-of-the-art methods, our approach has an improved generalization in contrast

to PCA-based methods and a better locality of the editing compared to DNN methods.

As an additional step, we explore the idea of adding textures to the generated faces as it can

complement our generative model and make it more useful for content creators. More specifically,

we use a Style-GAN network (Karras, Laine & Aila, 2018) to generate albedo maps.

In Chapter 1, we review the current 3D Face modeling methods literature. Chapter 2 describes

our novel deep generative model and then explains our method for face modeling. It also contains

the details of our texture generation workflow. Chapter 3 presents our datasets’ details, followed
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by results, ablation studies, and comparisons to a number of new and classic methods. In the

final section of this chapter (Sec. 3.5), we run an experiment to see how our randomly generated

faces would look when textured with albedo maps. Chapter 4 discusses our method’s limitations

and the areas where it needs improvements. Finally, we summarize the content presented in this

thesis and make several suggestions for possible future work.

I would like to express my sincere appreciation and gratitude to our industry partners: Ubisoft

and Mitacs, who kindly supported and enabled this work. I am also thankful to the research team

members at Ubisoft, namely Olivier Pomarez, Andre Beauchamp, Abdallah Dib, and others.

Their expertise and assistance were essential for the success of this work.

A version of this thesis, excluding Sec. 2.8 and Sec. 3.5, was published in Computer Graphics

Forum (Aliari, Beauchamp, Popa & Paquette, 2023). It was also presented at the Eurographics

2023 conference. I was the first author of that paper. My key contributions were writing the

manuscript, designing the neural network, preprocessing the datasets, training the models, and

developing a method for neural face editing. I also carried out the ablation studies, comparisons,

and evaluations. While working on the method, I discussed my ideas with Prof. Eric Paquette,

Prof. Tiberiu Popa, and Andre Beauchamp from Ubisoft. I used their supervision and technical

knowledge to explore new research topics and methods to improve my model. After I wrote the

initial version of the paper, I further improved the manuscript by following Prof. Eric Paquette

and Prof. Tiberiu Popa’s comments and feedback.





CHAPTER 1

LITERATURE REVIEW

This chapter provides an overview of various methods and techniques used for 3D shape

representation, 3D face modeling, and editing. In addition, we introduce some of the neural

network-based approaches that are commonly used for texture generation. This field is also

related to our work since we use texture generation in Sec. 2.8 and Sec. 3.5 to color 3D faces

generated by our model.

1.1 Image Synthesis with Generative Artificial intelligence

Image synthesis is a widely explored topic in the field of generative AI. Surveys such as the work

of Zhan, Yu, Wu, Zhang & Lu (2021) explain most of the commonly used methods in detail. In

short, many of the models rely on 2D convolution; the kernel weights are the training parameters,

and the local features of the image are learned by applying several cascading 2D convolutions.

For example, autoencoders (Rumelhart, Hinton & Williams, 1986) use this method to compress

the input image to a lower-level representation called the latent vector. Then they decompress it

to reconstruct the initial image. However, since the loss function is focused on reconstruction, the

model is less capable of generative tasks. Variational autoencoders (VAEs) (Kingma & Welling,

2014) address this issue by adding a prior to the training loss. The prior forces the latent

space distribution to be closer to the normal distribution. Thus, it makes the latent space more

meaningful and makes it easier to generate new images. Despite this, VAEs tend to produce

blurry images and do not work well on higher-resolution images. Solutions based on generative

adversarial networks (GANs) (Goodfellow et al., 2014), such as StyleGAN (Karras et al., 2020),

are a newer take on this problem. They use a generator-discriminator setup where the generator

tries to make plausible images that would convince the discriminator that they come from the

original dataset. This architecture has proven to be a robust solution for image synthesis. It has

been widely used on many categories of images to produce high-quality and high-resolution

results. Diffusion model (Ho, Jain & Abbeel, 2020) is another recent advancement in the field

of generative AI. It is a probabilistic model for high-quality image synthesis with performance
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comparable to GAN-based models. The model is trained by adding noise to the input image

and learning how to recover the initial input from noise. Stable diffusion (Rombach, Blattmann,

Lorenz, Esser & Ommer, 2021) is a famous open-source model based on diffusion models. It is

a text-to-image generative model, so its key feature is that it takes text prompts as the context for

image generation. At inference, the input text prompt is encoded by a language model and is

mixed with a noise patch. Then, this encoded mix is given to the model decoder to create the

final image. Nevertheless, the model is primarily designed to be used with text descriptions and

becomes less suitable for unconditional image generation. On top of that, the training process

requires a large dataset and can become resource-demanding, and the inference is also slow.

Therefore, while diffusion models are becoming more powerful and are starting to suppress

state-of-art GAN-based models (Dhariwal & Nichol, 2021), they still have the mentioned issues.

Figure 1.1 shows a summary about the discussed methods.

Model Input 
Reconstruc on

Genera ve 
Capabili es

High-resolu on 
Output

Hardware 
Requirements

Autoencoder Medium

Varia onal 
Autoencoder Medium

GAN High

Di usion
Model Very High

+/-

+/-

Figure 1.1 Summary of image synthesis methods



7

1.2 3D Shape Modeling and Editing

Classical 3D morphable face model (3DMM) methods as well as many recent ones (Cao, Weng,

Zhou, Tong & Zhou, 2014; Booth, Roussos, Zafeiriou, Ponniah & Dunaway, 2016; Li, Bolkart,

Black, Li & Romero, 2017; Booth, Roussos, Ponniah, Dunaway & Zafeiriou, 2018; Ploumpis,

Wang, Pears, Smith & Zafeiriou, 2019; Ploumpis et al., 2021; Ghafourzadeh et al., 2020; Egger

et al., 2020) use PCA to sample the distribution of the face models. The popularity of PCA-based

methods is due to their simplicity and efficiency. User control is achieved by optimizing for

the eigenvector weights given vertex-based constraints, typically resulting in a linear system of

equations. In many cases this is done globally on the entire face (Cao et al., 2014; Booth et al.,

2016; Li et al., 2017; Booth et al., 2018) resulting in a lack of local control. Local control is less

important when the application is global face reconstruction, but it is a critical limitation when

the application is face editing. To address this limitation, Ghafourzadeh et al. (2020) propose

a method that further decomposes the face into semantic parts (like in Figure 1.2) allowing

independent generation for each part followed by an ARAP-inspired reassembling of the parts

into one coherent face mesh.

(a) (b) (c)

Figure 1.2 (a), (b): Face segmentation. (c): Blending the segments.

Taken from Ghafourzadeh et al. (2021)
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Vertex-based editing was added to this part-based method (Ghafourzadeh et al., 2021). Similarly

to our approach, the user edits the face by moving mesh vertices. Alas, linear models such as

PCA tend to perform poorly in the presence of large complex changes, and blending together

local parts may result in uncanny effects, as shown in Figure 1.3.

(a) (b)

Figure 1.3 Examples of faces becoming odd-looking after editing their parts in isolation

and blending them back together. Taken from Ghafourzadeh et al. (2021)

More recent neural methods leverage the generative power of deep learning by replacing the PCA

with either autoencoders (Tan, Gao, Lai & Xia, 2018; Bagautdinov, Wu, Saragih, Fua & Sheikh,

2018; Bouritsas, Bokhnyak, Ploumpis, Bronstein & Zafeiriou, 2019) or Generative Adversarial
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Networks (GAN) (Bouritsas et al., 2019; Cheng et al., 2019). Fernandez-Abrevaya (2020)

uses a fully connected network along with UV representation of the vertex positions. Image

representation of the geometry is particularly useful as many state-of-the-art convolutional

neural network (CNN) models can be used with this type of data. However, reconstructing

the final mesh from a UV mesh has its own problems. There are areas around the lips or the

eyes where there is no data. As a result, those vertices would collapse to (0, 0, 0) coordinates.

That is why Fernandez-Abrevaya (2020) uses the flattened representation as input of the GAN

model while training the discriminator with the geometry map. Li et al. (2020) also use a UV

representation and a hybrid method to address reconstruction issues. They use a combined linear

and non-linear method. The face area, where there are reliable pixel values, is sampled directly,

while the rest of the geometry is morphed using linear 3DMM deformation modes.

Vesdapunt, Rundle, Wu & Wang (2020) use modeling bones to represent the face. This

representation benefits from the lower count of parameters due to the compactness of bone data.

Their model learns the skinning weights to reconstruct the 3D faces. The predicted modeling

bones can be used for face modeling. However, this approach needs a base model with modeling

bones and initial hand-painted skinning. Also, the bones are directly transformed to deform the

face, and neither higher-level control nor non-linear transformations exist.

Ranjan et al. (2018) use graph convolution to build their CoMA model. A novel mesh sampling

operation is also used to capture details of the face at different levels. It also helps reduce the

convolution input dimension so the model can converge more easily. Figure 1.4 shows how this

is done in CoMA. As a result, CoMA and other works inspired by CoMA (Tan et al., 2018; Li,

Liu, Lai & Yang, 2019; Yuan, Li, Lai, Liu & Yang, 2019) can outperform linear models in face

reconstruction tasks. Bagautdinov et al. (2018) use a variational autoencoder (VAE) architecture

to model faces, but there are several fundamental differences, both conceptual and technical,

between their work and ours. Their goal is high-fidelity 3D face reconstruction from images and

video. As such, their VAE design matches this goal by globally reconstructing the faces using

several latent spaces corresponding to a range from coarse to dense levels of detail. In contrast,
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Figure 1.4 CoMA mesh sampling operation: Red vertices are removed from the mesh (a)

to down-sample it. The vertices are selected in way that quadric error is minimized. The

result is mesh (b) that is transformed by convolution to mesh (c). At (d), the removed

vertices are added back and the mesh is up-sampled. Taken from Ranjan et al. (2018)

our goal is novel face synthesis through local editing, and, as such, we employ an architecture

where we segment the face and use part-based encoders and a global decoder.

While the methods presented so far use triangular meshes as a surface representation, alternative

representations like voxel based exist but are primarily suitable for lower-level detail or a specific

category of 3D meshes. For instance, Guan, Jahan & van Kaick (2020) use voxelization to

reconstruct and generate 3D desk and chair shapes.

Most of the work in DNN for faces has been about encoding the identity and expression of the

face rather than enabling editing operators. Tan et al. (2018) use a set of expression labels with

a conditional-VAE to achieve control. However, describing face modeling with labels is not

feasible as we would need a much lower level of control over the face. Yang et al. (2020) propose

a method that can reconstruct a rigged model from a single photograph, while Wang et al. (2022)

and Bao et al. (2021) propose methods that can reconstruct a face model from RGB-D data.

Very recently, Jung et al. (2022) proposed a DNN model to generate 3D caricatures. While this

model works remarkably well for caricatures, it exhibits a global deformation behavior during

editing that makes it difficult to control.

Another network architecture that has been very successful and widely used in the field of large

language models (LLMs) is Transformers (Vaswani et al., 2017). Due to the success of this
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network architecture, its usage has been expanded to other fields as well. Namingly, Chandran,

Zoss, Gross, Gotardo & Bradley (2022) have used it in the realm of 3D shape models. The authors

present a non-linear parametric 3D shape model called Shape Transformer. Its most important

features are not relying on a fixed mesh topology, supporting different mesh representations

such as triangular and point clouds, and being capable of outputting high-resolution meshes.

However, this model does not offer a way to edit the 3D shapes, let alone edit them locally. It

is also very memory-consuming and slow to be used in an interactive application. Therefore,

while the model suggests several new and interesting solutions in the field of mesh completion

(filling the missing parts of the mesh) and marker-based facial performance capture, it has not

been designed for applications where precise control over the generation process is important.

We propose an approach that outperforms PCA-based 3DMM methods in terms of generalization

from the faces in the dataset. Furthermore, our approach outperforms current DNN methods in

terms of application to face editing, in particular providing a local editing paradigm. Figure 1.5

shows a summary of the discussed methods with respect to the important criteria for our work.
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Method Local Control Generate New Faces Non-Linear 
Deforma ons

Ghafourzadeh et al.
(2021)

Ranjan et al. (2018)

Jung et al. (2022)

Ours

+/-

Figure 1.5 Summary of 3D shape modeling and editing methods



CHAPTER 2

METHOD

In this chapter, we present a DNN architecture to learn a compact latent space representation

for 3D meshes of faces. The two main design objectives of our new architecture are to be able

to disentangle different parts of the face and to allow local editing of the face mesh. For this,

our key idea is to decompose the faces into different semantic parts and employ an autoencoder

architecture where we feed each part to a separate encoder that produces a semantic latent vector

for that part of the face. A single decoder is then used to aggregate all the latent vectors and

produce the final mesh. The main intuition of having a separate embedding for each part of the

face is to enforce local face editing by design. The use of a single decoder, that has access to

all the embedding vectors, produces a realistic and consistent mesh. Our novel loss function

enforces the disentanglement of the latent variables so that each has an influence on a localized

region of the face. After training on a dataset of faces, we get a tailored latent space that enables

multiple applications. It can be used to easily generate random faces with meaningful variations

of facial characteristics, enabling character designers to generate a large set of facial assets. We

also demonstrate that the latent space is very powerful in enabling the editing of the face through

an optimization of the latent variables from user constraints in terms of dragging and dropping

vertices. This provides a very intuitive interaction paradigm, and our latent space optimization

outputs meaningful deformations of the face. This chapter introduces the face generator network,

its training procedure, and our neural face editing approach (Figure 2.1).
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Figure 2.1 Our 3D face model. Training: We feed each segment of the face to its part

encoder. Then, we merge and pass the encoded representation to a decoder that reconstructs

the face. Editing: Our approach modifies the latent vector of the face based on user

constraints

2.1 3D Face Generator

The first role of the generator is to learn a latent representation of the face that leverages the

generalization capacity of the generative model to create new faces. For this goal, we introduce

a network that encodes the face into a low-dimensional data representation. The second role

of the generator is to learn a disentangled latent space where each group of latent variables is

related to one specific part of the face. This encourages local and independent changes when the

latent vector is modified.

2.2 Input and Output Data

The input of our network is a 3D face model represented as a 3D mesh. As we primarily

use graph convolution operators, we represent the input as the canonical graph induced by

the 3D mesh. For this reason, all of the faces in the dataset follow graph representation:

F = (V,A) with matrix V ∈ R𝑛×3, 𝑛 vertices, and an adjacency matrix A ∈ R𝑛×𝑛 showing the

edge connections. Similarly to other methods (Blanz & Vetter, 1999; Ranjan et al., 2018; Li

et al., 2019; Fernandez-Abrevaya, 2020; Ghafourzadeh et al., 2020), we require that all faces be

wrapped with one base head; they share an identical mesh topology (same triangles and vertex
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connectivity). In addition, each face is segmented into seven different parts: forehead, eyes,

ears, nose, cheeks, mouth, and chin. Each part P𝑖 has 𝑛𝑖 vertices V𝑖 ∈ R
𝑛𝑖×3. The segmentation

is user-provided and shared by all faces. The output is the generated face with the same mesh

topology and dimensions as the input face.

2.3 Network Architecture

We choose variational autoencoders (Kingma & Welling, 2014) as our generative model. As in

the work of Ranjan et al. (2018), we use fast spectral convolutions (Defferrard, Bresson & Van-

dergheynst, 2016) along with their mesh sampling operation. The mentioned graph convolution

uses kernel 𝑔𝜃 , which is parameterized with Chebyshev polynomials

𝑔𝜃 (𝐿) =
𝐾−1∑

𝑘=0

𝜃𝑘𝑇𝑘 ( �̃�), (2.1)

where 𝐾 is the order of the polynomial, �̃� is the scaled Laplacian, 𝜃 ∈ R𝐾 is Chebyshev

coefficients, and 𝑇𝑘 ∈ R
𝑛×𝑛 is the Chebyshev polynomial order 𝑘 that can be obtained recursively.

The definition of spectral convolution then becomes:

𝑦 𝑗 =
𝐹𝑖𝑛∑

𝑖=0

𝑔𝜃𝑖, 𝑗 (𝐿)𝑥𝑖 ∈ R
𝑛, (2.2)

where 𝑥𝑖 ∈ R
𝑛×𝐹𝑖𝑛 is the input feature map, 𝐹𝑖𝑛 = 3 is the number of input feature assuming it

represents 3D vertex positions, and 𝑦 𝑗 is each of 𝑦 ∈ R𝑛×𝐹𝑜𝑢𝑡 features. For more detail, we can

refer to the spectral convolution papers (Defferrard et al., 2016; Ranjan et al., 2018).

To achieve latent space disentanglement, we design an asymmetric model where each face part

is fed to a separate encoder called part encoder. Specifically, each encoder uses two Chebyshev

convolutional filters with 𝐾 = 6 polynomials and dimensions of 16 and 32, respectively. 𝐾 is the

Chebyshev filter size, determining the number of hops from the central vertex. It can be seen as

similar to the filter size in 2D image convolutions. Therefore, as we increase this radius, we add

neighboring vertices from further distances to be covered by the kernel. In practice, a large value
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of 𝐾 can overly smooth the final output and produce a low-detail mesh. Then, we apply the ELU

activation function (Clevert, Unterthiner & Hochreiter, 2016) to each filter output. Furthermore,

we place a down-sampling layer of factor two between each filter. Next, similar to traditional

VAEs, we flatten the output and use two fully connected layers with 8 neurons to transform the

output to two 8-dimensional vectors 𝝁𝑖, and 𝝈𝑖, which are the mean and standard deviation of

the part P𝑖. The details of each part encoder are shown in Figure 2.2. The initial vertex count of

each part affects the dimensions of the following layers, and this is the difference between each

part encoder. Finally, we sample the latent vector z𝑖 ∈ R8 from N(𝝁𝑖 ,𝝈
2
𝑖 ). As for the last step

to encode the face, we concatenate all the latent vectors into the final latent vector z 𝑓 ∈ R56. We

feed z 𝑓 to our decoder block to reconstruct the face. This block is built with a similar set of

components. It starts with a fully connected layer that maps z 𝑓 to the appropriate dimension for

the convolutional filters. We use three filters of dimensions 32, 16, and 3. Also, we use ELU and

up-sampling layers of factor two between the filters. The decoder output 𝐷 (z 𝑓 ) ∈ R𝑛×3 is the

final face with the same dimension as the number of vertices in the initial face. Consequently,

it will learn to merge the parts into a whole face. The decoder architecture is also shown in

Figure 2.2.
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Figure 2.2 3D Face Generator: Network architecture
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2.4 Loss Function

Our loss function is composed of three terms: a reconstruction loss, a KullbackLeibler (KL)

divergence loss (Kingma & Welling, 2014), and a contrastive loss:

𝑙 = 𝑙𝑅𝑒𝑐 + 𝑤𝑘𝑙𝑑𝑙𝐾𝐿 + 𝑤𝑐𝑜𝑛𝑙𝐶 . (2.3)

We use an L1 distance between the vertex positions of the ground-truth and decoded meshes.

𝑙𝑅𝑒𝑐 =
��F − 𝐷 (z 𝑓 )

��
1

(2.4)

The KL loss enforces a normal-like distribution for the latent vector 𝑄(𝑧𝑖 |F ). The KL loss

weight 𝑤𝑘𝑙𝑑 is 1e-3, and the number of face parts is 𝑁𝑝 = 7.

𝑙𝐾𝐿 =
𝑁𝑝∑

𝑖=0

𝐾𝐿 (N (0, 1)‖𝑄(𝑧𝑖 |F )) (2.5)

Inspired by the work of Deng, Yang, Chen, Wen & Tong (2020) in disentangling the latent space

for human-face image generation, our third term reinforces latent space disentanglement and

ensures that each part of the latent vector only affects the assigned part of the face:

𝑙𝐶 =
𝑁𝑝∑

𝑖=0

��(F ′
𝑖 − F

)
� 𝛿∉P𝑖

��
1
. (2.6)

For one part P𝑖, we start with latent vector z 𝑓 and replace the part z𝑖 with a randomly sampled

z′𝑖, while leaving the rest of z 𝑓 as before. We randomly sample with a uniform distribution

U(−10, 10) to ensure we “push and pull” z 𝑓 far enough so that even large deformations of the

face remain local. The result is a new final latent vector z 𝑓 ′ that only differs in z𝑖. We calculate

the L1 distance between the vertex positions of the new face F ′
𝑖 generated by decoding z 𝑓 ′ and

the vertex positions of the face F decoded from the original z 𝑓 . However, we ignore the current

part vertices V𝑖 to only penalize changes outside of part P𝑖 by multiplying (Hadamard product)

with 𝛿∉P𝑖 defined that entries matching the part are zero and others are one. We sum up this
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𝐿1 distance for each of the 𝑁𝑝 parts. In addition, we set the 𝑤𝑐𝑜𝑛 to 1e-4 at the beginning and

gradually increase it by 10% (𝑤𝑐𝑜𝑛 = 1.1𝑤𝑐𝑜𝑛) at the end of every epoch.

2.5 Training Procedure

We train the model for 70 epochs using the Adam optimizer (Kingma & Ba, 2015) and a batch

size of 16. We tested with other numbers of epochs (up to 100), and 70 provided a good

compromise between generalization and overfitting. Like CoMA (Ranjan et al., 2018), we set

the learning rate to 8e-4 and decay that rate by 0.99 every epoch. We set 𝑤𝑘𝑙𝑑 to 1e-3 to have

a normal-like distribution (Equation 2.5), as mentioned before. Also, we gradually increase

𝑤𝑐𝑜𝑛 to fortify the latent space disentanglement (Equation 2.6). Not starting with large 𝑤𝑐𝑜𝑛

values helps the training process in the early stages since it enables the optimizer to converge to

a good point in terms of reconstruction quality (Equation 2.4) first. We describe the details of

our datasets in Sec. 3.1.

2.6 Random Face Generation

The trained network can be used as a 3D face generator by sampling from the learned latent space

of the VAE. Our model consistently outputs plausible faces where the latent space is sampled

from a normal distribution N(0, 1). This is in contrast to methods like the one of Ghafourzadeh

et al. (2021) that might generate unacceptable faces and need an additional verification step to

decline them.

2.7 Neural Face Editing

We can now use the trained face generator to create new faces. The user may directly manipulate

each latent variable and observe the changes in the output of the network. However, operating

directly on the latent space is often unintuitive as there is no clear semantic meaning behind

each latent variable. For a more intuitive editing, we propose a flexible workflow where the
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user controls vertex positions, and latent variables are automatically adjusted by our approach to

reach the desired vertex movement (Figure 2.3).
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Figure 2.3 Neural face editing workflow example. The user input can be the movement of

the selected vertices. For example, moving the green spheres in the direction of green

arrows. Then to apply the change, we start from the initial face representation z 𝑓 , and

optimize for 𝑙𝐸 . The updated latent vector z 𝑓 ′ is only different in the part latent sub-vector

z2. As shown above, the edited face is the decoded result of the optimizer after a number of

iterations. It has a wider nose since the user has moved the desired nose vertices apart

Our main goal is to ensure the locality of the edits. As such, at any given time, the user either

manipulates one vertex (e.g., the tip of the nose) or a pair of symmetric vertices (e.g., corners of

the mouth). At every stage, we aim to fulfill the 3D deformation prescribed by the user, maintain

the locality of the edit, and preserve past edits. We formalize this as an optimization problem

and use the Adam optimizer (Kingma & Ba, 2015) to find the best latent values. Given our

editing workflow, the user controls one part at a time, which keeps the deformations local and

helps the optimizer work on a smaller subspace and converge in a limited number of runs. After

each modification, we start from the current face latent representation and gradually optimize

that latent vector to achieve the next edit. To do this, we define the editing loss:

𝑙𝐸 =
𝑁𝑣∑

𝑖=0

��𝑣′𝑖 − 𝑐𝑖
��

2
+ 𝑤𝑟𝑒𝑔

��(F − 𝐷 (z 𝑓 ′)
)
� 𝛿∉𝑉𝑠

��
1
. (2.7)
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The first term is the average Euclidean distance between the edited vertices 𝑣′𝑖 and the constraints

𝑐𝑖 set by the user. 𝑁𝑣 corresponds to the number of vertices 𝑉𝑠 selected for editing (either 1 or 2

in our workflow). The second term is regularization. We use this term to avoid deviating too

much from the current face. We measure the average per-vertex L1 distance between the two

faces, excluding the selected vertices by defining 𝛿∉𝑉𝑠 such that entries corresponding 𝑉𝑠 are

zero and others are one. In addition, 𝑤𝑟𝑒𝑔 is used to adjust the regularization term effect (we use

𝑤𝑟𝑒𝑔 = 3). To further fulfill local face editing, we only update the required part of the latent

vector by identifying which segment of the face is being modified and will not include the rest

of the vector as parameters of the optimizer. For example, if the selected vertices belong to part

P𝑖, only the related part of the latent z𝑖 is modified. Therefore, the rest of the latent vector would

remain the same.

Considering that we aim to integrate our solution into an interactive application, we want to run

the optimizer only for a limited number of iterations. We use the Adam optimizer (Kingma & Ba,

2015) to find a solution quickly. Figure 2.4 shows the decrease of the loss through 500 iterations.

Figure 2.4 Graph of the 𝑙𝐸 loss history (Equation 2.7), with different learning rates of the

optimizer for vertex-based editing
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In this test, we run the optimizer long enough to study its behavior. However, running the model

for this many iterations is not suitable for interactive applications, and as we explain in the

following, we use a significantly lower number of iterations. We see that with learning rates of

1e-2 and 1e-3 (taking small steps), the learning is predictable yet very slow. The learning rate of

1e-1 (taking larger steps) still makes reasonably stable progression and has the advantage of

converging much faster, which is important in our interactive editing context. We can see that

the optimizer makes significant progress toward the solution in the first tens of iterations and

reaches a plateau around the 100th step, where the per iteration progress becomes negligible.

Given our current target hardware (RTX3070), we choose to run the optimizer for 50 iterations

with a learning rate of 1e-1. As a result, the process takes about 500 ms and is within the

interactive range.
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2.8 Texture Generator

In this section, we introduce our texture generator and discuss its properties, the training dataset,

and the rationale behind our choice of architecture. Our image generator is specifically designed

to generate albedo maps using our current dataset. This generator serves to enhance our 3D

face generator (Sec. 2.1) by providing realistic textures. Additionally, it is intended to facilitate

the work of content creators by enabling them to produce a large number of diverse faces with

textures in a matter of seconds.

2.8.1 Dataset

The dataset utilized in this section contains the albedo maps for each of the 892 3D faces included

in our face dataset. Each image has a resolution of 4𝐾 and is represented in the UV space. Given

that all faces share the same mesh topology, they also share the same UV layout. As a result,

any new albedo map synthesized by our texture generator can be applied to any face within the

dataset or to any other face generated by our 3D face generator.

2.8.2 Network Architecture

We select StyleGAN2-ADA (Karras et al., 2020) as our texture model for several reasons.

Firstly, this model is capable of being trained on limited data, making it well-suited for our

dataset, which is comparatively small in size. Secondly, StyleGAN2-ADA requires less powerful

hardware and VRAM to train, allowing it to be used with commercially available GPUs such as

the RTX3070. We follow the network parameters and details outlined in the paper (Karras et al.,

2020), including the latent sizes. Despite the fact that StyleGAN2-ADA is more memory-efficient

than the original work (Karras et al., 2018), training at high resolutions would still require a

significant amount of memory. Furthermore, it would take over 40 days to train the network

with 1𝐾 resolution images on an NVIDIA Tesla V100 GPU. As a result, we opted to train

our model on images with a resolution of 256 × 256 pixels. Therefore, we downscale our 4𝐾

images before feeding them into the network. However, using a low-resolution albedo map
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would compromise the overall quality of our generated faces. To address this issue, we trained a

super-resolution network (Wang, Xie, Dong & Shan, 2021) to upscale our images from 256×256

to 1𝐾 resolution, thereby preserving the quality of our albedo maps. Figure 2.5 illustrates the

workflow of our texture generator module.

StyleGAN2

Random 
Noise

Z

Synthetic Albedo Map

Super-Res

Upscaled Albedo Map

Figure 2.5 Texture generation workflow

2.8.3 Training Details

In the training of the texture generator network, again, we follow the exact steps described in the

original work (Karras et al., 2020). Specifically, we employ the Adam optimizer (Kingma & Ba,

2015) with a learning rate of 25e-4 for both the discriminator and generator. Additionally, we

use a batch size of 16.





CHAPTER 3

RESULTS AND EXPERIMENTS

In this chapter, we first cover the details of our datasets. Then, we present our editing and random

face generation results. Afterward, we compare our approach with three state-of-the-art methods

showcasing how our approach is better suited for local face modeling. Finally, we experiment

with our face and texture generator to see how the faces would look when texture mapped.

3.1 Datasets

We evaluate our approach on two different datasets. The first dataset is composed of 892 scanned

faces that share the same mesh topology. This is our primary dataset used to show the results in

this thesis. We segment all the faces into the parts shown in Figure 2.1. Similar to the work of

Ghafourzadeh et al. (2020), the segmentation is an offline process done manually and based

on artists’ feedback. More specfically, first, we use the help of artists to define the segments

based on how they want to edit the face, then we build a list of triangles representing each part

of the face. We use FaceWarehouse (Cao et al., 2014) as our second dataset composed of 150

heads that also have the same mesh topology. The purpose of using this dataset is to evaluate the

generalization capacity of our approach when trained on a relatively small dataset. Moreover,

training independently on each of these two datasets demonstrated that our approach is not

dependent on a specific one. In addition, we train the CoMA (Ranjan et al., 2018) model with

the FaceWarehouse dataset to compare it with ours. We use 80% of a dataset for the training set

and the rest for validation.

3.2 Results

In Figure 3.1, we show some examples of vertex editing (Sec. 2.7). We use the version of our

model that was trained with our primary dataset. We modify two different initial faces (initial 1

and 2) with different operations. It can be the movement of one vertex or two vertices. In the

case of two control vertices, the user selects one vertex, and our system automatically selects the
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symmetric one. Similarly, the user moves one vertex, and our system moves the second one in a

symmetric manner. In each example, we modify one part of the face and, thus, one part of the

latent vector. We see that the resulting deformations on the face are local. Moreover, we observe

that even when moving only one or two vertices, we can effectively edit the face and benefit from

our editing-friendly latent space and workflow. In addition, in Figure 3.2, we demonstrate some

of faces that are the randomly generated from normal distribution N(0, 1) using our 3D face

generator (Sec. 2.1). We do not apply any clamping to the scalars of the randomly generated

latent vectors. As is typical from such normal distributions, most scalars are within the [−1, +1]

range, but others could be further away from the average. We can observe the broad range of

facial characteristics that our generator can achieve and mix together. We use the model trained

with our primary dataset for this case as well.
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Figure 3.1 Vertex editing: Results of various face operations
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Figure 3.2 Examples of using our method to generate faces randomly by sampling from

N(0, 1) in our latent space.
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3.3 Ablation Studies

We perform two ablation studies. First, we cumulatively remove key parts one after the other,

and second, we remove them one by one. These are two complementary analysis, and each

helps us gain better insight into different elements of our approach. We evaluate the locality

of the edits in each step with the following two quantitative measures: (i) The average vertex

displacement inside the edited part 𝛿𝑖𝑛. (ii) The average vertex displacement outside of the

mentioned part 𝛿𝑜𝑢𝑡 (vertices located in other parts of the face), 𝛿𝑖𝑛 shows how much the part

has changed locally, and 𝛿𝑜𝑢𝑡 is essential for determining if the changes did not cause unwanted

changes in other areas.

3.3.1 Cumulative

Figure 3.3 shows the effect of different elements of our approach: the regularization term

(Equation 2.7), the local latent optimization, and the contrastive loss (Equation 2.6). In (a),

we see our current approach, where all of the elements are present. In (b), we remove the

regularization term from the optimizer. This change increases the unwanted global deformations

(see the mouth and 𝛿𝑜𝑢𝑡 in Table 3.1 which increases from 0.18 mm to 0.34 mm). In (c),

on top of removing the regularization term, we also update the whole latent vector (global

latent optimization) instead of only updating the part’s sub-vector (local latent optimization).

By comparing (b) and (c), we see how effectively our local latent optimization works. It

performs much better than the global latent optimization because it mitigates most of the global

deformations visible in (c). Finally, it is shown in (d) that when we exclude all the previous

factors and also train our model without the contrastive loss, the deformations become even

less local. For both (c) and (d), we see in Table 3.1 that the global deformation 𝛿𝑜𝑢𝑡 drastically

increases (0.18 mm to 4.61 mm and 6.92 mm).
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Figure 3.3 Ablation study: showing the effect of each element of our approach.

(a) Our current approach. (b) No regularization term (Equation 2.7). (c) Like (b) but global

latent optimization instead of local. (d) Like (c) but the model is trained without the

contrastive loss (Equation 2.6). 𝛿 is the vertex displacement
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Figure 3.4 Cumulative ablation study summary
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3.3.2 One by One

Figure 3.5 reflects the individual absence of each pivotal part of the method when editing the ears

of the subject. In (a), we see our current approach. In (b), we again remove the regularization

term. Depending on the edit, the regularization term sometimes makes a big difference (as we

saw in Figure 3.3 (b)), while here we see that our model is already benefiting from a local latent

space, and removing the regularizer makes little difference (only a slight increase of global

deformation 𝛿𝑜𝑢𝑡 from 0.19 mm to 0.22 mm, see Table 3.1). In (c), we only replace the local

optimization with a global optimization (optimizing the whole latent vector instead of the part

sub-vector). Other elements remain the same as in (a). We observe that there are more unwanted

global deformations. Furthermore, in terms of speed, the same optimization task takes 37%

more time to compute. This is because we are optimizing the whole latent vector. Hence we

have more variables to tune. Finally, in (d), we replace the model in (a) with a model that was

trained without the contrastive loss. The unwanted deformations become even more problematic.

Similarly to what we observed for the cumulative ablation study, for both (c) and (d), the global

deformation increases further more, even if in this case we make the changes one by one (𝛿𝑜𝑢𝑡

increases from 0.19 mm to 0.26 mm and 0.48 mm).
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Figure 3.5 Ablation study: showing the effect of each element of our approach.

(a) Our current approach. (b) No regularization term (Equation 2.7). (c) Global

optimization instead of local. (d) As (a) but the model is trained without the contrastive loss

(Equation 2.6). 𝛿 is vertex displacement
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Figure 3.6 One by one ablation study summary
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In Table 3.1, we measure the average local vertex displacement (inside the part, 𝛿𝑖𝑛) compared to

the average global vertex displacement (outside the edited part, 𝛿𝑜𝑢𝑡) which we want to minimize

to maintain the locality of the edit.

Table 3.1 Quantitative results of ablation studies. Average vertex displacement inside (𝛿𝑖𝑛)
and outside (𝛿𝑜𝑢𝑡) the edited part.

Figure, Part 𝛿𝑖𝑛 𝛿𝑜𝑢𝑡

Fig. 3.3, Mouth

(a) 4.31 mm 0.18 mm

(b) 5.00 mm 0.34 mm

(c) 3.54 mm 4.61 mm

(d) 7.60 mm 6.92 mm

Fig. 3.5, Ears

(a) 6.41 mm 0.19 mm

(b) 6.75 mm 0.22 mm

(c) 6.56 mm 0.26 mm

(d) 7.17 mm 0.48 mm

3.4 Comparisons

In this section, we present a number of comparisons with various models ranging from very

recent ones (Sec. 3.4.2) to more classical methods (Sec. 3.4.4). We compare all the models

qualitatively. We also introduce a measure to compare some of the models quantitatively. More

specifically, we use this measure to compare our model with the DNN models (Ranjan et al.,

2018; Jung et al., 2022) since we can ensure that we can make the experiment environment as

similar as possible.

3.4.1 Comparison with CoMA (Ranjan et al., 2018)

We compare our method with CoMA (Ranjan et al., 2018) as it also uses graph convolution and

mesh sampling. We compare it to the VAE version of CoMA since, as our approach, it has a

better interpolation space. This is because the VAE version is not only focused on reconstruction
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tasks in contrast to the plain autoencoder version. In order to conduct different comparisons,

we first need to train both models with the same dataset. We selected the FaceWarehouse

dataset (Cao et al., 2014) because the CoMA dataset (Ranjan et al., 2018) has an insufficient

number of subjects in the neutral pose, and a reasonable number of neutral poses is necessary to

train a neural network for editing. We think this is a fair comparison since neither model has

been designed around the FaceWarehouse dataset.

We first compare the reconstruction capabilities of the models. Our model has an average error

of 1.40 mm on the training dataset (80% of the dataset) and 1.77 mm on the unseen samples

(20% of the dataset). In the case of CoMA, it is 2.10 mm and 2.28 mm respectively. We can

observe that even though our model’s main task is not reconstruction, it has a better performance

than CoMA.

Next, we want to check each model’s output in various face editing scenarios. We use our

vertex editing approach (Sec. 2.7) with both our model and CoMA. As shown in Figure 3.7,

we edited different areas of the face with both models. Our model has a much more editing-

friendly latent space and results in localized changes on the face. For example, we can see that

CoMA (Ranjan et al., 2018) introduces a lot of non-local movement: on the forehead when

editing the mouth, toward the chin/jaw when editing the nose, and on the ears when editing

the forehead. Furthermore, this test shows that using a regularization term with vertex-editing

(Sec. 2.7) is not enough to prevent global changes, as apparent in the results of CoMA (Ranjan

et al., 2018). Table 3.2 verifies this with quantitative measures: the vertex displacement outside

of the edited part (𝛿𝑜𝑢𝑡) is roughly an order of magnitude larger for CoMA (Ranjan et al., 2018).

Therefore, the complexity introduced in our model is justified. Finally, we can conclude that

newer extensions of CoMA (Li et al., 2019; Tan et al., 2018; Yuan et al., 2019) that only focus

on the face and expression reconstruction also suffer from a non-editing-friendly latent space.
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Figure 3.7 Comparison with Ranjan et al. (2018). 𝛿 is vertex displacement
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Table 3.2 Comparing the locality of the editing for our approach against CoMA (Ranjan

et al., 2018) quantitatively (average vertex displacement inside, 𝛿𝑖𝑛, and outside, 𝛿𝑜𝑢𝑡 , the

edited part).

Model
Mouth Nose Forehead

𝛿𝑖𝑛, 𝛿𝑜𝑢𝑡 𝛿𝑖𝑛, 𝛿𝑜𝑢𝑡 𝛿𝑖𝑛, 𝛿𝑜𝑢𝑡
Fig. 3.7, Ours 4.71, 0.39 mm 3.44, 0.28 mm 3.73, 0.36 mm

Fig. 3.7, CoMA 2.47, 3.14 mm 1.96, 3.12 mm 7.54, 2.54 mm

3.4.2 Comparison with Jung et al. (2022)

In order to compare our method with that of Jung et al. (2022), we train the model with our

primary dataset but keep the hyperparameters the same as the original work.

The original dataset of Jung et al. (2022) contains 1268 meshes for the training set compared to

ours with 713 faces (80% of the dataset). In addition, our faces have 64% fewer vertices, but the

model converges to a similar loss. Consequently, even when we train the model of Jung et al.

(2022) on the whole dataset of 892 faces (and not only on a training set), the reconstruction

error is 5.56 mm, which is very high compared to our model, where the reconstruction error is

1.22 mm on the training set and 1.51 mm on the validation set. We also should mention that

their method has a latent dimension of 128, which is about double larger than ours.

To compare the face editing capabilities of the models, we use both the “point-handle-based

editing” of their work and our method (Sec. 2.7) to make similar modifications to an initial face.

The initial face is not identical since the reconstruction power of the models differs. We run

each method for 50 iterations. Both take 500 ms to converge on average on an RTX3070. The

results are shown in Figure 3.8.

We observe that while the method of Jung et al. (2022) can converge to a solution, it cannot

prevent the unwanted changes that appear globally on the face. In Table 3.3, we observe that this

method has a noticeably higher vertex displacement outside of the edited part (𝛿𝑜𝑢𝑡 is roughly a

order of magnitude larger) in all scenarios.
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Table 3.3 Comparing the locality of the editing for our approach against Jung et al. (2022)

quantitatively (average vertex displacement inside, 𝛿𝑖𝑛, and outside, 𝛿𝑜𝑢𝑡 , the edited part).

Model
Mouth Nose Forehead

𝛿𝑖𝑛, 𝛿𝑜𝑢𝑡 𝛿𝑖𝑛, 𝛿𝑜𝑢𝑡 𝛿𝑖𝑛, 𝛿𝑜𝑢𝑡
Fig. 3.8, Ours 3.40, 0.92 mm 2.55, 0.18 mm 4.75, 0.23 mm

Fig. 3.8, Jung et al. (2022) 6.90, 3.04 mm 4.32, 3.55 mm 7.29, 2.68 mm

3.4.3 Comparison with Ghafourzadeh et al. (2021)

We compare our approach with the localized 3DMM editing method of Ghafourzadeh et al.

(2021) since both offer localized vertex-based editing. We fit that 3DMM model with our

primary dataset to evaluate its face modeling application directly. The Ghafourzadeh et al.

(2021) method is a clustered PCA-based approach that aims to pick the best eigenvectors that

bring the reconstruction loss to under 1 mm. The budget is 50 eigenvectors on average as it

differs for female and male heads. Also, it segments the face, similar to our method. The

method of Ghafourzadeh et al. (2021) deforms each part in isolation and uses an additional

smooth blending step to merge the generated part into the face. As a result, it ensures that the

deformation only appears locally. Therefore, the method of Ghafourzadeh et al. (2021) performs

better regarding reconstruction quality and keeping the changes local. Nonetheless, in Figure 3.9,

we observe that our model deforms the face more naturally and meaningfully while keeping the

changes comparably local.

For this comparison, we selected an initial face that is edited by both models. The face has an

African ethnicity because we wanted to examine how well each model generalizes and works

with an underrepresented face in a dataset (our dataset only contains 19 faces of this ethnicity

out of 892 total). For the nose editing, we observe that while both models can decrease the width

of the nose, our model preserves the shape of the nose, but theirs (Ghafourzadeh et al., 2021)

cannot achieve the same. For mouth editing, we try to close the gap between the lips of the

subject. We can see that the PCA model does not generalize well and fails to close the gap. On

the other hand, our model manages to achieve its goal naturally while not getting too far from
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the original shape of the mouth. When editing the cheeks, we move one vertex on each cheek to

create a chubbier or skinnier face. Our model achieves noticeably more plausible outputs. In

contrast, the PCA model fails to output any visible changes on the face when it tries to make it

skinnier. We find similar results when changing other features of the face. In conclusion, the

method of Ghafourzadeh et al. (2021) either cannot make visible changes or, when pushed too

far, results in uncanny and linear deformations.
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face. The green arrows indicate the edited vertices and direction of editing
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3.4.4 Comparison with direct deformation

Commercial software allow to deform surfaces using various techniques. Such techniques

typically do not rely on prior knowledge of the deformed object, as opposed to our approach

which uses a dataset of faces.

We selected the well-known Laplacian surface editing (LSE) technique (Sorkine et al., 2004) to

evaluate how our results can compare to such non-data-driven deformation techniques. We pick

the same face that was used in the previous comparison. Editing with LSE required more manual

work in defining a proper “deformable” region (the vertices which are solved) and a “fixed”

region (boundary conditions) for each edit to restrict the deformation to where we expect it. We

pulled on the same vertices as in our approach and moved them trying to achieve a deformation

similar to the one from our results (see Figure 3.10). The method works well in terms of keeping

the deformations local, but this is at the expense of requiring a manual design of the fixed region

for each individual edit. Furthermore, the changes may look overly linear and unrealistic. The

mouth, chin, and cheeks are such examples. Another reason the results look unnatural is that the

method is general and does not take into account that we want to remain within the manifold

of realistic faces defined by a dataset. To a certain extent, one can circumvent these issues by

carefully moving the handles and defining the fixed regions iteratively and by trial and error.

Nonetheless, this process can become time-consuming and more similar to manual 3D face

modeling applications.



42

Initial SCOL 04 Ours

C
he
ek
s

N
os
e

E
ye
s

C
hi
n

M
ou
th

Figure 3.10 Comparison with Sorkine et al. (2004): Editing different features of the face.

The green arrows indicate the edited vertices and direction of editing
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3.5 Texturing the Faces

In this section, an experiment was conducted to evaluate the results of combining the face and

texture generator. Initially, a set of 3D faces was generated randomly, as described in Sec. 2.6.

Similarly, a set of 2D albedo maps was generated using the texture generator. As explained in

Sec. 2.8, the images were upscaled to 1𝐾 for improved visual fidelity. Figure 3.11 demonstrates

the outcome of this experiment. The results of this study demonstrate a high level of diversity

among the generated faces. The faces exhibit a wide range of ages, skin tones, ethnicities, and

genders. Despite the fact that the training of the texture and face generator, was not directly

linked, meaning that sets of faces and textures were generated separately and randomly, the

results appear realistic and plausible. These promising findings suggest that future work could

explicitly relate geometry and textures to create a more robust 3D face generator.
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Figure 3.11 Examples of our texture generator (Sec. 2.8) coloring the faces that were

randomly generated by our face generator (Sec. 2.1)



CHAPTER 4

LIMITATIONS

Even if our approach compares favorably against other methods in terms of the locality of the

edits, some minor deformation (maximum of < 1 mm on average) of other parts of the face can

still be observed. We observe this in Figure 3.7 and Figure 3.8, where we show deformation

heat maps in our model’s outputs. When the mouth area is changed, we can see about 1 mm of

unwanted changes in the forehead and eye areas.

Regarding reconstruction accuracy, DNN models such as ours need more data to improve the

model accuracy. This can be seen in our tests where the average reconstruction error for the

dataset of 150 faces (1.44 mm training dataset and 1.77 mm validation dataset) is larger than

the average error from the dataset containing 892 faces (1.22 mm training dataset and 1.51 mm

validation dataset). Figure 4.1 also depicts the reconstruction error of a number of subjects in

our dataset.

Still, along the lines of the reconstruction error, should a user want to edit a face that was

manually modified in a modeling application, we will need to first encode that face to latent

space, and thus inducing a reconstruction error. As such, for faces created outside of our system,

the benefit of the advanced editing power comes at the expense of a slight global deformation of

the face (the reconstruction error for the validation set of our primary dataset is 1.51 mm).

Finally, our optimization based methods will inherently be slower compared to direct inference

methods. Nevertheless, optimization based methods provide more control to the user and a

performance of 0.5 seconds for meshes of around 8, 000 vertices is still very practical and even

for meshes with 3× higher vertex count, our method scales linearly achieving 1.5 seconds to

compute the target face.
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CONCLUSION AND RECOMMENDATIONS

We presented a novel variational autoencoder architecture to disentangle facial features in the

latent space. We feed the separate parts of the face mesh to individual encoders while we use a

single decoder to reconstruct the facial mesh. We take advantage of the graph neural networks

to improve the learning from meshes. As such, we can successfully train even with datasets

containing only 150 meshes.

Our architecture leverages the disentanglement properties of VAEs. Furthermore, given our new

loss function, the network learns a latent space where each variable of the latent space influences

a local region of the face mesh. Given our disentangled latent variables, our decoder is effective

in sampling random faces as well as conducting face editing. For the face editing application,

we developed a new loss function and a process that ensure that the face editing will remain

local. The user can thus push and pull on a vertex and see the deformed face in interactive

time. Thanks to our tailored latent space, the random face sampling and the facial editing both

reconstruct faces that are realistic variations of the faces from the training dataset. We validated

that our whole DNN architecture and learning strategy are not dependent on a specific dataset by

successfully training it independently on our dataset as well as the FaceWarehouse dataset (Cao

et al., 2014).

Finally, we compared our approach with state-of-the-art methods in the application of facial

editing. These comparisons demonstrated that our network has a better generalization property

compared to 3DMM methods. Furthermore, our approach provides local editing while other

DNN methods deform the face globally, for example, deforming the ears when editing the nose

or mouth.

For now, we allocate the same number of variables for each face part in the latent vector. For

future work, we would want to derive a strategy to automatically decide how many latent

variables are necessary for each part. Ghafourzadeh et al. (2020) derived such a technique, but in
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the context of 3DMM made out of PCA eigenvectors. Deriving such a strategy is quite different

for DNNs.

Similarly, we give equal weight to each part of the face in the contrastive loss (Equation 2.6). Our

model produces reasonable results with this approach. However, we can devise better methods

to give a different weight to each part to make sure they have the right amount of locality in

editing. We can achieve this through different methods, such as analytical ones (based on each

part’s vertex count) or even by including the weight of each part in the training loss so that the

model can balance them automatically.

Another avenue for future work lies in the automatic adjustment of the graph convolution aspects

of the learning, similar to the work of Li et al. (2019). We feel that adjusting the K factor

(Equation 2.1) adaptively based on the mesh density of each part would improve the learning,

locality, and generalization aspects of our approach.

Finally, we should mention a problem we encountered when working with higher-resolution

meshes ( 50k vertices). We noticed some patterns and jagged edges that were appearing around

the mouth and ears. We think the down-sampling was the culprit. Since the down-sampling

operation of CoMA (Ranjan et al., 2018) aims to be differentiable, it picks an aggressive strategy

that changes the mesh topology drastically. We noticed that the edges are apparent in the

down-sampled version of the heads as well. Therefore, we think it would be fruitful to invest in

designing a new down-sampling operation that resolves this issue. Also, we can consider using

other graph convolution operators and mesh strategies.
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