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Fusion profonde visible-infrarouge pour la ré-identification multimodale de personnes
dans des conditions réelles

Arthur JOSI

RÉSUMÉ
La ré-identification (ReID) de personnes est une tâche cruciale de vidéo-surveillance permettant

de faire correspondre des images d’individus entre elles, ces images provenant de caméras

observant des scènes distinctes. Cette tâche pose d’importants défis en raison de facteurs tels

que les différentes positions des caméras, les conditions de capture (l’éclairage, les conditions

météorologiques, l’arrière plan), les formes corporelles complexes et les différents styles

vestimentaires. Ces facteurs entraînent un large éventail de conditions de capture potentielles,

conduisant à des bases de données ne couvrant qu’une fraction des scénarios éventuels. Par

extension, cela conduit à des données d’apprentissage et d’évaluation de modèles ne convenant

pas à la conception d’un système robuste. Sous ces contraintes, un modèle doit être construit

pour capturer les caractéristiques personnelles complexes et discriminantes tout en permettant

d’effectuer un traitement des données en temps réel.

Parmi les aspects précédents, la modalité visible, couramment utilisée dans les approches

traditionnelles, dépend fortement de la luminosité ambiante. Les conditions de faibles luminosités

peuvent avoir un impact important sur la qualité des scènes capturées, ce qui se traduit par une

ReID imprécise. Cet aspect s’ajoute à la présence potentielle de captures bruitées ou floues,

introduisant un obstacle supplémentaire dans la tâche de ré-identification de personnes. Les

caméras infrarouges règlent les problèmes liés aux conditions d’éclairage en ne dépendant pas

de celles-ci pour encoder la scène, mais ne capturent pas l’information de couleurs et sont

affectées de la même manière par différentes corruptions lors de l’encodage. Par conséquent, les

capteurs visibles et infrarouges apparaissent comme polyvalents et pertinents dans le contexte de

la ReID, mais le fait de s’appuyer uniquement sur l’une de ces modalités compromet l’efficacité

de l’approche en extérieur ou sous des conditions de capture complexes.

Dans ce mémoire, la fusion des modalités visible et infrarouge (V-I) est proposée pour relever

ces défis. En encodant la scène de manière indépendante et en capturant des vidéos des mêmes

individus, les caméras V-I permettent des captures corrélées tout en limitant l’effet des eventuels

problèmes d’encodage.

Le chapitre 1 fournit des informations générales sur les modèles d’apprentissage profonds et les

techniques pour l’identification des personnes. Ensuite, une étude des techniques de fusion et des

techniques relatives à l’évaluation de modèles sous des conditions réalistes est proposée chapitre

2, permettant de soulever les challenges clés du domaine. À ce titre, multiples aspects doivent

être pris en compte. Tout d’abord, les modèles de fusion multimodale sont présentés comme

négligeant les caractéristiques propre à chaque modalité, se concentrant principalement sur celles

partagées entre elles et manquant alors une partie importante de l’information discriminante. De

plus, de récentes approchent soulignent la nécessité d’approfondir les protocoles d’évaluation en

corrompant artificiellement les ensembles de données tout en mettant en œuvre des stratégies



VIII

d’apprentissage spécifiques à cet égard. Toutefois, bien que ces approches aient été explorées et

se soient révélées efficaces dans le cadre unimodal, cela reste à explorer pour les algorithmes de

fusion, également affectés par l’imprévisibilité du monde réel.

Ce travail présente une nouvelle architecture de modèle multimodal dans le Chapitre 3 afin

d’exploiter pleinement les modalités quelles que soient les conditions de captures. Le modèle

est composé de trois réseaux de neurones convolutifs, deux se concentrant sur l’extraction de

caractéristiques spécifiques à chaque modalité, tandis que le troisième exploite les caractéristiques

partagées via une représentation fusionnée. De plus, des approches basées sur le principe

d’attention sont étudiées pour permettre une sélection dynamique des caractéristiques, prometteur

dans la fusion de données multimodales sous des conditions opérationnelles difficiles. Ces

conditions difficiles sont par ailleurs reproduites grâce aux ensembles de données corrompues V-I

proposés, reproduisant des conditions réalistes adaptées aux scénarios de caméras co-localisées

ou non, et permettant une évaluation approfondie des modèles. Pour les caméras co-localisées,

d’éventuelles corrélations de corruptions sont prises en compte, ce qui n’est pas attendu et

n’est donc pas appliqué pour les caméras non co-localisées, chaque caméra V et I se trouvant

à des positions distinctes. Enfin, nous proposons une approche d’augmentation de données

multimodales qui renforce la capacité de généralisation du modèle multimodal en favorisant la

collaboration entre les modalités et en préparant le modèle à faire face à des corruptions locales

ou globales spécifiques à chaque modalité.

L’utilisation de trois bases de données et de deux scénarios d’évaluations avec des données

corrompues comptabilisant vingt différentes corruptions visibles et infrarouges nous permettent

de montrer que la configuration multimodale V-I de ReID est une excellente stratégie pour

améliorer la précision de la ReID tout en conservant une complexité compétitive. En particulier,

avec un apprentissage approprié, le modèle multimodal proposé peut surpasser les systèmes à

l’état de l’art sous des conditions idéales tout comme bruitées et difficiles.

Mots-clés: Réseaux neuronaux profonds, Fusion multimodale, Images corrompues, Augmenta-

tion de données, Ré-identification visible-infrarouge de personnes
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ABSTRACT
Person re-identification (ReID) is a crucial video surveillance task, allowing one to match images

of individuals captured by non-overlapping cameras. This task poses significant challenges

due to factors such as varying camera positions, capture conditions (e.g., illumination, weather,

background), complex body shapes, and diverse clothing styles. These factors result in a wide

range of potential capture conditions leading to datasets that only cover a small fraction of the

potential scenarios, and consequently to models’ learning and evaluation data unsuited to the

design of a robust framework. Under these constraints, a cost-effective model must be built to

capture the complex and discriminative personal features while allowing to perform real-time

data processing.

Among the previous aspects, the visible modality commonly used in traditional ReID frameworks

is highly dependent on the prevailing luminosity. Low-light conditions can severely affect the

quality of captured scenes, resulting in inaccurate ReID. This introduces an additional obstacle

in the person ReID task, compounded by the potential presence of noisy or blurry captures.

Infrared cameras can mitigate the issues caused by lighting conditions because they do not rely

on light information for scene encoding, but do not capture color information and are similarly

affected by sensor encoding issues. Therefore, visible and infrared sensors are versatile and

relevant sensors in the context of person ReID, but relying solely on one of these modalities

compromises the effectiveness of the framework in outdoor conditions or under complex capture

conditions.

In this thesis, the multimodal setting and especially the fusion of visible and infrared (V-I)

modalities are considered to address these challenges. By having a distinct encoding process

while capturing videos from the same individuals, V-I cameras allow for correlated captures

while limiting the effect of eventual encoding issues.

Chapter 1 provides some background on deep learning models and techniques for person ReID.

Then, a review of multimodal fusion techniques and real-world data for person ReID is provided

in Chapter 2, allowing us to assess the key challenges in the area. As such, multiple aspects

must be considered. First, multimodal fusion models are seen to neglect modality-specific

features, mostly focusing on shared knowledge instead, and consequently missing an important

part of discriminant information. In addition, recent approaches emphasize the need to deepen

evaluation protocols by artificially corrupting datasets but also to implement specific learning

strategies in this regard. However, while such approaches have been explored and shown to be

effective in the unimodal setting, this has yet to be done for fusion algorithms, similarly affected

by real-world unpredictability.

This work presents a novel multimodal model architecture Chapter 3 to fully exploit modality

knowledge and handle real-world data. The model is composed of three backbones, two



X

concentrate on extracting modality-specific features, while the third leverage shared knowledge

from a fused modality representation. Furthermore, attention-based approaches are investigated

to enable dynamic feature selection, which is likely suitable for multimodal feature fusion under

challenging operational conditions. These conditions are reproduced through the proposed V-I

corrupted datasets that replicate realistic and highly challenging conditions for both co-located

and not co-located camera scenarios, allowing an in-depth model evaluation. For co-located

cameras, eventual corruptions correlations are considered, not expected, and consequently not

applied for not co-located cameras since each V and I cameras are at distinct locations. Finally, a

multimodal data augmentation that enhances the multimodal model’s capacity for generalization

is proposed and works at promoting collaboration among modalities and priming the model to

face modality-specific local or global corruptions.

The use of three datasets and two corrupted evaluation scenarios through twenty V and I

corruptions allowed us to show that the multimodal ReID strategy can improve ReID accuracy

while conserving moderate system complexity. Specifically, with the appropriate learning

approach, the proposed multimodal model can outperform related state-of-the-art systems under

ideal and challenging noisy real-world conditions.

Keywords: Deep Neural Networks, Multimodal Fusion, Corrupted Images, Data Augmentation,

Visible-Infrared Person Re-identification
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INTRODUCTION

0.1 Multimodal Person Re-Identification

Person re-identification (ReID) refers to the task of matching images of individuals captured

through a non-overlapping set of cameras. This image retrieval task is essential for many

fields, such as sports analytics (Penate-Sanchez et al., 2020; Giancola et al., 2022) and video

surveillance (Ye et al., 2021) in sensitive locations like airports and train stations. To build a

person ReID system (Fig. 0.1), the scene is initially captured by a set of distributed cameras

that encode the scene through different clips that are short segments of a full video. These

clips are then analyzed using an object detection and multi-object tracking algorithm, enabling

the extraction of a set of consecutive bounding boxes (or Regions Of Interest (ROIs)) for each

individual present in the clip, the sets being referred as a tracklets. Utilizing ROIs allows the

system to focus on one individual at a time and avoids incorporating additional noise from

surrounding and unrelated elements.

Gallery
of references

 .

Detection /
Tracking model 
(ROI extraction)

Input video
frames

Matching

Prediction

Model
backbone

Matching
scores

.

Feature
representation

Query ROIQuery visible image

Feature
representation

Camera sensors

Figure 0.1 Block diagram of image-based person ReID system. The gallery contains

feature representation of ROIs from distinct users, each appearing one or more times. Given

a query individual capture, its ROI is first extracted and then processed to extract a feature

embedding or representation fq, matched with the reference embedding fr to produce a

ranking list, that is used for final prediction.
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The typical video-based system directly focuses on matching the tracklets from distinct cameras

or scenes, aiming to identify similarities and determine if an individual appearing in the tracklets

of different cameras is the same. In the case of image-based systems, on which we focus in

our approach, a single individual’s ROI is used for matching. In practice, the ROIs are usually

assumed to be already extracted, and the emphasis is on analyzing and matching them. To match

individuals, reference shots (queries) are compared to all other shots in the gallery, the gallery

shots being pre-processed and stored in the system from previous records. This comparison

process generates a ranking list for each query, with the top-ranked matches likely representing

the same individuals.

Over the last decade, Deep Learning (DL) and especially Convolutional Neural Networks (CNNs)

(LeCun et al., 1998) and Vision Transformers (ViTs) (Dosovitskiy et al., 2020) have allowed

for remarkable advancements in Computer Vision (CV) tasks, such as classification (Sen et al.,

2020), object detection (Zou et al., 2023), and segmentation (Minaee et al., 2021). Indeed,

DL models have achieved impressive accuracy through various improvements of their layers

structure and through end-to-end learning. However, even though person ReID benefits from

these model refinements (Ming et al., 2022), the task remains highly challenging in real-world

applications. In particular, the human body shape varies much from one individual to another

and especially from one angle to another. Moreover, the capture conditions and the eventual

variations in image data are numerous. To cite just a few of those challenges, one can think of

the varying pose, scale, resolution, weather, luminosity, and of the eventual blur or occlusions

that may occur.

The declining cost of cameras over time and the advancement in sensor technologies has

contributed to the growing interest and rapid progress in the fusion of discriminant, diverse, and

complementary modalities. Multimodal fusion, which involves combining knowledge captured

from different sensors, is a well-established approach for enhancing the accuracy and robustness
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of pattern recognition (PR) systems for various tasks (Atrey et al., 2010; Baltrušaitis et al.,

2018; Ma et al., 2019; Wang, 2021). While the fusion of multiple modalities allows leveraging

the complementarity of diverse sensor data, often leading to improved accuracy, it increases

the system’s complexity. In this case, systems design is more challenging for real-time with

resource-limited systems. However, most of the time, each modality data can be processed in

parallel through modality-specific systems, ensuring comparable encoding effectiveness despite

the higher computational needs.

Multimodal systems are also relevant in the context of person ReID and have been explored

through the fusion of different modalities. Although limited, some literature focuses on the

fusion of the 1RGB and Depth (D) modalities (Uddin et al., 2023). The D modality allows

encoding the scene even under low-light or dark conditions, which is not feasible for the RGB

modality. However, the D sensors only allow for short-distance captures and are consequently

less valuable in outdoor environments. In contrast, the 2IR modality allows for night-time

encoding and for long-distance captures. For this reason, the infrared modality has been widely

used to perform Visible-Infrared (V-I) cross-modal person ReID (Ye et al., 2021), for which the

idea is to match individuals from one modality to another. Still, the RGB-IR setting remains

even less explored than the RGB-D setting in the context of a multimodal person ReID (Uddin

et al., 2023), despite its potential. Indeed, beyond the potential for using IR for long-distance

and night capture, the numerous studies on V-I cross-modal person ReID confirm the capacity to

discriminate using IR. The complementary information shared among modalities can reinforce

our confidence in multimodal systems using V-I features. Moreover, the distinct modality

encoding should allow for complementary knowledge and lead to improved accuracy.

1 The RGB and V acronyms are used interchangeably in this thesis for the visible modality.

2 The IR and I acronyms are used interchangeably in this thesis for the infrared modality.
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0.2 Problem Statement

In conventional video surveillance systems, the ability to provide accurate person ReID solely

relies on the RGB modality. RGB sensors capture discriminant person visualizations from

a given scene under good lighting and visibility, but can easily lack precision in low light

conditions (e.g., weather change and night-time), or when the sensors are subject to encoding

data corruption such as blur and noise. While these events are expected to occur in real-world

environments, their intensity is somewhat unpredictable, as is the case with weather or encoding

issues. In any case, such events can strongly affect the ReID accuracy (Chen et al., 2021) since

the models only rely on the corrupted RGB images. In this thesis, the challenges of person

ReID are addressed by combining the V and I modalities. Although several methods have been

proposed in the literature for the fusion of I and V modalities, it is unclear how to develop a

cost-effective fusion for V-I Re-ID in real-world conditions.

Deterministic fusion refers to methods in which predefined rules determine the fusion out-

come, and do not involve learning parameters for the fusion model. These approaches are

usually easy to develop, either by directly combining signal sources at a sensor level (Lo-

hweg & Mönks, 2010), or through feature-level or scores-level fusion, using for example feature

concatenation or majority voting decision rules (Snoek et al., 2005; Nojavanasghari et al., 2016;

Wörtwein & Scherer, 2017), respectively. Unlike deterministic fusion, learning-based fusion

involves models that automatically learn the fusion rules from the data. Such fusion allows for

the models’ consideration of subtle and implicit modality correlations and can be performed at

different stages of the feature extraction process (named intermediate or model-level fusion)

(Ramachandram & Taylor, 2017; Gandhi et al., 2022), often enhancing the fusion capacity.

The state-of-art multimodal models mainly focus on attention-based fusion (Joze et al., 2020;

Su et al., 2020; Mocanu & Tapu, 2022), where attention mechanisms allow for a dynamic

feature selection between modalities (Guo et al., 2022). In this case, the fusion often follows
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a model-level fusion. Recently, Baltrušaitis et al. (2018) observed how model-level fusion

models were mainly focusing on modality-shared information, losing partial knowledge through

modality-specific information. While using attention comes up as an intuitive strategy when

dealing with real-world data as it supposedly selects the relevant information dynamically, the

models may over-focus on the modality-shared information, biased by its recurrence among

modalities. Several transformer-based models avoid such issues and ensure the exploitation of

the modality-specific knowledge by using distinct streams for the specific and shared knowledge

(Wei et al., 2020b; Sun et al., 2021; Lian et al., 2021), but require large models trained with

large-scale data that are too complex for most real-world applications.

Despite the recent advancements regarding multimodal fusion and the potential of the V-I setting

for person ReID, multimodal approaches using solely the RGB and IR modalities are limited to

the deterministic model proposed by Nguyen et al. (2017). Therefore, it is essential to develop

V-I person ReID methods that consider the recent state-of-art multimodal fusion techniques and

real-world requirements, while being assured of their ability to leverage the shared and specific

modality information and address.

The learning and evaluation data often fail to capture the complexity and variability of the real

world, resulting in models that do not generalize well. This lack of data realism comes from

controlled data collection environments but also from the simple fact that the range of real-world

events is too wide to get fully captured. Recent works have introduced corrupted evaluation

protocols to address this issue, emphasizing the importance of considering such data during

model evaluation (Hendrycks & Dietterich, 2019; Michaelis et al., 2019). While models may

perform well on the originally collected data, their robustness and adaptation may be lacking

when faced with corrupted datasets. This issue has also been highlighted in the context of a

person ReID, where Chen et al. (2021) provided corrupted datasets and conducted an extensive

evaluation of state-of-the-art models. However, these evaluation sets are limited to the visible
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modality, making challenging the design of a robust multimodal framework with the current

literature.

To handle real-world condition data, data augmentation (Ciregan et al., 2012) is a powerful

approach that does not bring supplementary complexity to the pipeline. Data augmentation

up-samples the learning data quantity through various data transformations. This way, a

framework encounters a wider variety of cases and usually benefits from a higher generalization

power. Various ways to augment data were proposed for unimodal approaches, including

image distortions (Hendrycks et al., 2019), noise augmentation (Rusak et al., 2020), and local

occlusions (Zhong et al., 2020; Chen et al., 2021). When two or more modalities are considered,

the data augmentation can likely be tailored to make the model learn intra-modality recurrent

and reliable features, but also learn how to well select the multimodal knowledge when the

modalities discriminant power is punctually imbalanced. This aspect has yet to be explored

since state-of-art multimodal data augmentation (MDA) techniques have been proposed to either

increase the multimodal learning data quantity (Xu et al., 2020) or to reduce the modality domain

gap for cross-modal approaches (Nakamura et al., 2022). Nevertheless, considering the value

of these approaches in the unimodal setting, there is significant potential to make a substantial

difference in how multimodal models handle data.

0.3 Proposed Approach

This research introduces a novel V-I multimodal person ReID model, derived from existing

transformer architectures (Wei et al., 2020a; Sun et al., 2021; Lian et al., 2021), that utilizes

three CNN backbones for feature extraction. The objective of this model is to leverage

both the V and I modality-specific knowledge, using backbones dedicated to each individual

modality, and the modality-shared knowledge obtained from a middle backbone that exploits

the correlations between modalities. By employing a modality-specific backbone, the model

ensures that a corrupted modality does not affect the entire feature representation. The benefits
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of such architecture are explored while being compared to state-of-art attention-based CNN and

transformer models from the literature that we adapted for V-I person ReID. These alternative

models are promising because they provide distinct ways of utilizing knowledge by involving

dynamic feature extraction mechanisms.

To evaluate the performance of the V-I ReID model effectively, corrupted multimodal datasets

are designed in this thesis. These datasets are carefully constructed to respect the definition

of each modality in real-world scenarios, which may involve co-located or non-co-located

cameras. Co-located cameras imply that corruptions may be correlated across modalities, such

as occlusion corruption appearing on both V and I cameras since cameras are in the same

location. On the other hand, non-co-located cameras capture different scenes from the V to the I

camera. Consequently, each modality is independently corrupted in the related dataset. The

designed datasets prove to be highly relevant in the analysis of multimodal models in real-world

V-I person ReID applications.

Addressing real-world data uncertainties and enhancing the generalization capability of models

are crucial tasks. To accomplish this, one powerful approach is by using data augmentation,

which offers an effective approach that does not increase the complexity of the inference model.

In this thesis, we propose a specific augmentation strategy called Masking and Local Multimodal

Data Augmentation (ML-MDA), which is tailored to learning multimodal data with real-world

corruptions. The impact of ML-MDA on the accuracy of multimodal person ReID using both

clean and corrupted data is evaluated. Furthermore, this approach is compared to state-of-art

models trained with unimodal data augmentation strategies. The results show that our ML-MDA

is more advantageous due to its multimodal nature and the exploration opportunities it enables.

0.4 Organization and Contributions

This thesis is manuscript based and is structured into three chapters and three appendices.
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Chapter 1 provides the background knowledge needed to understand the research work. As the

thesis focuses on multimodal fusion, specifically in the context of V-I person ReID, it defines

CV and Machine Learning (ML) algorithms along with the related concepts.

Chapter 2 presents a comprehensive analysis of the state-of-the-art literature on multimodal

fusion, multimodal person ReID, and techniques for evaluating and dealing with real-world data.

Research gaps are identified through a critical analysis of the state-of-art literature.

Chapter 3 introduces a new multimodal model called Multimodal Middle Stream Fusion

(MMSF) based on insights from the existing literature and with the aim of building a robust

multimodal model. Attention-based models from other tasks are also adapted to person ReID,

as attention mechanisms have great potential for handling corrupted data. To conduct a realistic

analysis of the models’ performance and account for Not Co-Located (NCL) and Co-Located

(CL) cameras, two corrupted datasets are created for V-I ReID. The Uncorrelated Corrupted

Dataset (UCD) applies corruption independently on each camera pair, suited for the NCL

scenario as each V and I camera is differently located. The Correlated Corrupted Dataset

(CCD) considers eventual corruption correlations that may exist between the V and I cameras of

a camera pair, especially under the CL camera scenario. To address the challenges posed by the

dataset and real-world conditions, a MDA strategy is proposed, which involves local occlusions

and modality masking. Through our fusion models, particularly the MMSF architecture, and

with the proposed MDA, the relevance of the multimodal setting is shown under normal and

highly challenging conditions with corrupted V-I data. The content of this chapter has been

submitted to the International Journal of Computer Vision (ĲCV) special issue on multimodal

learning in April 2023.

Appendix I is preliminary work related to Chapter 3. It compares the performance of a basic

fusion model against state-of-art person ReID models on the CCD dataset (referred to as "-C*"

in this preliminary work). The appendix delves into the experiments which led to the proposed
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MDA, namely the Masking and Local Multimodal Data Augmentation (ML-MDA). Results show

that the multimodal approach outperforms the unimodal state-of-art models in various settings,

except for the most challenging scenario involving the corruption of the V and I modalities

together and at all times. Still, the performance achieved by the simple fusion model was shown

to be promising for future and more developed multimodal strategies. The contents of this

appendix have been published in the Winter Conference on Applications of Computer Vision

(WACV) "Real-World Surveillance: Applications and Challenges" workshop in January 2023

(Josi et al.).

Appendix II presents three multimodal hybrid architectures (combining CNN and transformer-

based models), and compares them to the best CNN-based models so far in terms of accuracy

and complexity. This appendix supports the focus on CNN-based models.

Appendix III serves as supplementary material for Chapter 3, providing additional details and

experiments to support the main manuscript. The importance of the MMSF fusion position

regarding the CL and NCL camera scenarios is assessed. Unlike Chapter 3, which summarizes

the experimental results graphically, this appendix presents a detailed numerical analysis of the

model’s performance and complexity. Details on the infrared corruptions are also provided,

along with a qualitative analysis based on CAMs produced from clean and corrupted V-I pairs.





CHAPTER 1

BACKGROUND

1.1 Visible and Infrared Spectrum

The electromagnetic spectrum encompasses a wide range of wavelengths (Elert, 1998) that have

been separated into different regions (Fig. 1.1), two significant regions being the visible and the

infrared spectrum. The visible spectrum corresponds to the wavelengths the human eyes are

capable of perceiving, being approximately between 400 and 700 nanometers. Traditional RGB

cameras capture images within this spectrum by relying on sensors that are sensitive to these

electromagnetic wavelengths.

VisibleX-rays InfraredGamma rays Microwaves Radio wavesUltraviolet

Mid infraredNear infrared Far infrared

Figure 1.1 Electromagnetic spectrum regions

In contrast, the infrared spectrum extends beyond the range of human vision, typically starting

around 700 nanometers and continuing up to 1-millimeter wavelength. This portion of the

spectrum is usually subdivided into three regions, the near-infrared, mid-wavelength infrared,

and far-infrared. One must notice that the division of these regions may vary depending on the

literature and applications.

Infrared cameras are specialized devices designed to capture infrared radiation in the near-

infrared or other portions of the infrared spectrum. Thermal cameras are a specific type of

infrared camera that is designed to detect and display thermal energy or heat emitted by objects.

Thermal cameras operate in the long-wave infrared and, consequently, in the infrared spectrum’s
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mid and far infrared regions. In practice, for infrared cameras, the collected data is processed,

and the infrared electromagnetic wave gradient is displayed using a color gradient or grayscale.

Since infrared cameras do not rely on visible electromagnetic waves, a representation can be

produced even in dark environments. This aspect, combined with the ability to rely on heat

emitted by objects, make them useful in various applications such as night-vision surveillance

(Zhang et al., 2018; Krišto et al., 2020) and heat analysis for facility inspection (Wang et al.,

2010) or environmental monitoring (Coppola et al., 2016; Valade et al., 2019). The obtained

representation enables the identification of patterns that are not naturally visible through the

human eyes and classic visible cameras.

1.2 Deep Learning Models

1.2.1 Machine Learning

Machine learning (ML) lies in the field of artificial intelligence (AI) and focuses on developing

algorithms and models that learn mappings from data to provide decisions without being

explicitly programmed. In Pattern Recognition (PR) applications, ML models have been mostly

developed for classification, regression, and clustering tasks. For instance, popular ML models

for pattern classification include k-nearest neighbor (KNN), artificial NNs, decision trees, linear

regression, or support vector machines (SVM) (Cortes & Vapnik, 1995). These models are

able to learn complex mappings from real data, allowing them to generalize and make accurate

predictions on unseen examples.

Inspired by the structure of the human brain, artificial NNs models are built from multiple

layers of interconnected neurons. An artificial neuron is being assigned a set of weights

w = (𝑤1, 𝑤2, ..., 𝑤𝑛) and a bias term 𝑏. The weights and bias are learnable parameters applied

to the input data to transform it and exploit it to perform the objective task. For a given input

vector x = (𝑥1, 𝑥2, ..., 𝑥𝑛), those parameters are applied as follows:

𝑦 = 𝜎(
𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏) (1.1)
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where 𝜎 is an activation function, allowing to introduce non-linear relationships.

One common type of NNs for classification and regression is the multi-layer perceptron (MLP),

which consists of an input layer, one or more hidden layers, and an output layer. MLPs are

considered shallow NNs, as they typically contain only a few hidden layers, but are already

considered universal approximators of highly non-linear functions (Gardner & Dorling, 1998).

Later, given the increasing availability of computational power, deep NNs (DNNs) with more

hidden layers were developed. While other architectures usually need prior feature extraction

using distinct and eventually handcrafted approaches, DNNs differ by being eventually trained

end-to-end. While traditional ML models typically rely on handcrafted features or learned

subspace projections for feature extraction, DNNs introduce end-to-end training to learn feature

embeddings along with task-specific mappings.

In recent years, DL which encompasses a wide range of ML models, has provided state-of-

art models for many tasks and applications. One of the key advantages of DL models is

their scalability to a wide range of tasks and domains through the extraction of rich feature

representations from the data. Human experts cannot easily craft such discriminant and abstract

features through engineering. Hence, the development of DL has revolutionized many fields,

being highly successful in various applications and achieving state-of-art results in benchmark

tasks such as image classification (Sen et al., 2020), object detection (Zou et al., 2023), and

sentiment analysis (Birjali et al., 2021).

1.2.2 Supervised learning

This thesis focuses on DL models that perform supervised learning using labeled image

datasets. Supervised learning involved labeled datasets that can be defined as D𝑠 = {(𝑥𝑖, 𝑦𝑖) |𝑖 ∈
{1, 2, ..., 𝑁𝑠}}, where 𝑥𝑖 represents an input data, 𝑦𝑖 its corresponding target, and 𝑁𝑠 the number

of dataset pair samples. This labeled information is utilized to evaluate and improve the model’s

prediction capacity through cost functions, also called loss functions. Indeed, once computed,
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the cost function values can be used by the model to optimize itself, updating the weights and

biases of its neuron layers with back-propagation (Rumelhart et al., 1986).

Classification is one of the main tasks in supervised learning (Sen et al., 2020; Xie et al., 2020),

for which the models are expected to predict the targets or labels for unseen input data points

once optimized. The optimization of models for classification often relies on the cross-entropy

loss, noted LCE and defined as follows for a given sample:

LCE = −
𝑁𝑐∑
𝑖=1

𝑞𝑖 · 𝑙𝑜𝑔(𝑝𝑖) (1.2)

where 𝑖 is the index for each class, p = (𝑝1, ..., 𝑝𝑁𝑐) the output vector of a classifier containing

per-class probability values, 𝑁𝑐 ∈ N the number of classes, and q = (𝑞1, ..., 𝑞𝑁𝑐) ground truth

label vector, containing values equal to 1 if it is the true class and 0 otherwise. Using the

cross-entropy with regularization via Label smoothing loss (Szegedy et al., 2016), a cross-entropy

loss variation, can eventually allow for better model generalization (Müller et al., 2019). In this

case, the true label vector q is replaced by a smoothed label vector q′ = (𝑞′
1
, ..., 𝑞′𝑁𝑐) to encourage

the model to be less confident in its prediction, resulting in a better model generalization. The

smoothed label vector q′ can be defined as follows:

𝑞′𝑖 = (1 − 𝜖)𝑞𝑖 + 𝜖

𝑁𝑐
(1.3)

where 𝜖 is the label smoothing parameter.

Regression is another well-known task (Mendes-Moreira et al., 2012; Čížek & Sadıkoğlu, 2020)

for which the objective is to optimize a function that maps input data to continuous outputs. For

regression, the used loss function is usually different, the mean squared error (MSE) loss being

a classic cost function in this context, defined as follows:

LMSE =
1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (1.4)
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with 𝑁 being the number of samples, {𝑦𝑖}𝑁𝑖=1
the target values for each sample, and {�̂�𝑖}𝑁𝑖=1

the

predicted target values each sample.

Well-known ML and DL models that perform supervised learning for classification and regression

include CNNs for image processing, recurrent NNs (RNNs) for sequential or time series data

such as natural language, and transformer networks for these two applications. Since person

ReID is part of the image processing tasks, CNNs and Transformers models will be detailed in

the following sections. Before presenting those models, the concept of attention is detailed since

the attention principle is a key concept for transformer models and recent CNN models.

1.2.3 Attention mechanisms

Observing a specific part of an environment or giving more attention to one or another cue

of any object we seek to identify is a natural process (Rensink, 2000). So it is for language

processing, for which more or less importance is instinctively given to some words in a sentence

to quickly understand it (Dabre et al., 2020). Similarly, while translating from one language

to another, some words require specific attention. For example, French language nouns are

assigned a gender (masculine or feminine) indicated by the use of specific indefinite articles

such as "un" (masculine) and "une" (feminine). Therefore, giving special attention to nouns

and their gender when translating from English to French is essential. These are well-oiled

mechanics, instinctively developed while learning and growing. Unsurprisingly, multiple

researchers working on DL models took inspiration from those natural behaviors, mimicking

human attention mechanisms through the design of distinct modules allowing the models to

dynamically select the meaningful knowledge within each input (Guo et al., 2022).

In the latest DL models, attention mechanisms become omnipresent, as it is the case in CNN

models’ architectures (Jaderberg et al., 2015; Hu et al., 2018; Li et al., 2019; Zhang et al., 2020;

Niu et al., 2021). This also allowed for the design of transformer models, mainly relying on this

concept through their self-attention modules (Vaswani et al., 2017; Dosovitskiy et al., 2020; Han

et al., 2020). While attention allows for better selecting the knowledge within a single modality,
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one can notice how the dynamic knowledge selection transfers really well to the multimodal

setting and its challenges (Gu et al., 2018; Joze et al., 2020; Su et al., 2020). For any multimodal

framework, each modality may be differently informative from one input to another, making the

dynamic selection of the relevant knowledge across modalities highly suitable.

The rest of this section provides a summary of the CNN and transformer models.

1.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (LeCun et al., 1998) are a powerful class of neural

networks that have revolutionized the field of Computer Vision (CV). In fact, this architecture

is specifically designed to process data with a spatial or temporal structure, including images,

but also some types of audio and video data, as it allows for 2D or 3D data structure (Tran

et al., 2015). This model specificity has enabled significant progress in solving challenging

tasks previously hardly or only partially tackled, like for classification with AlexNet (Krizhevsky

et al., 2017), or for image segmentation with the fully convolutional network model proposed by

Long et al. (2015). The central idea behind CNNs is to learn local and translation-invariant

features from raw data automatically. Their architecture consists of multiple layers, typically

including convolutional, activation, pooling, and fully connected layers. each of these layers is

detailed in the following part.

2 0 1 1 2

5 0 2 3 1

1 4 0 5 0

1 2 0 6 4

3 6 9 6 0
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10 29 25

41 36 40
*

Input Kernel Activation
map

2x0 + 0x1 + 1x0 + 5x0 + 0x2 + 2x1 + 1x2 + 4x0 + 0x3 =   4

Figure 1.2 Convolution operation representation with a filter size of 3,

a stride of (1, 1), and a padding of 0.
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In the convolutional layers, filters (also referred to as kernels) are applied to the input. Each

filter is learned and updated during the training phase (using back-propagation (Rumelhart et al.,

1986)) to recognize specific and discriminant data patterns. The filters allow the extraction of

local features by sliding over the input and performing the convolution operation, as represented

in Fig. 1.2 and defined Eq. 1.5. In practice, three distinct parameters must be selected: the size,

the stride, and the padding. The size fixes the size of the filters. The stride influences how the

filter slide over the input by fixing the pixel number by which the filter shifts from one operation

to another. The padding controls the spatial dimension of the output by adding borders to the

initial input with zero pixel values.

𝑦 = 𝜎(W ∗ X + 𝑏) (1.5)

With 𝜎 being a non-linear activation function, X an input matrix, W a weight matrix, ∗ the

convolution operation, and 𝑏 a bias term.

Activation
map

2 -4 2 0

9 8 3 -1

1 -3 -6 1

7 7 0 0

Input

2 0 2 0

9 8 3 0

1 0 0 1

7 7 0 0

Input ReLU

Figure 1.3 Application of the ReLU activation

function.

Activation functions introduce non-linearities into the CNN, allowing it to model complex

relationships and capture non-linear features in the data. While many activation functions exist,

the ReLU activation function (Nair & Hinton, 2010) is the most used in literature as it allows

for efficiency through a simple computation and since it allows for conserving a good range
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Figure 1.4 Max pooling operation with a stride of 2.

of values for the output. Indeed, this function replaces negative activation values by 0 while it

conserves the others (Fig. 1.3).

The pooling layers (Fig. 1.4) downsample the feature maps obtained from the convolutional

layers, reducing the spatial dimensionality of the data and making the network more robust to

variations in the input. Pooling is typically performed by taking either the maximum value (max

pooling) or the average value (average pooling) within a small neighborhood (filter size). The

stride is a parameter to set as well for the pooling layers.

Finally, the fully connected layers use the high-level features extracted by the previously presented

layers to make a prediction about the initial input. These layers learn a set of weights, which is

applied to the input by matrix multiplication.

In summary, the architecture of a typical CNN involves applying convolutional and pooling

layers to extract and down-sample features, activation functions to introduce non-linearity, and

fully connected layers to make predictions. These operations and their effect on the input image

are provided in Fig. 1.5. One can observe the evolution of feature map dimensions through

convolution and pooling operations along with the feature vector creation using a flattening

operation and its final processing using a MLP.
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Input

Convolution Pooling Convolution Pooling Flatten

Output

MLP

channels channels channels channels units

Figure 1.5 Block diagram of a CNN for image classification, and its main operations

to predict a class label given an input image. CNNs are generally composed of several

convolution, pooling, and ReLU layers, followed by fully connected layers (like an

MLP). The channel size of activation maps increases after convolutions and their

spatial dimension reduces after pooling operations. The activation maps are finally

flattened and passed through a MLP for classification.

Even if the CNN’s basic operations and layers are well known, the design of a CNN model

remains delicate. Among CNNs, various models architectures have been provided by researchers

over the years, such as VGG (Simonyan & Zisserman, 2014), ResNet (He et al., 2016), and

AlexNet (Krizhevsky et al., 2017). In practice, each architecture may have its own advantages

depending on the task considered and the available data. Consequently, the models must be

chosen wisely based on datasets and empirical studies.

1.2.5 Vision Transformers (ViTs)

Transformers are specific DL model architectures originally proposed for natural language

processing tasks by Vaswani et al. (2017). These models gained popularity for their strong ability

to handle sequenced data. From this success, ViT (Fig. 1.6) was developed by Dosovitskiy et al.

(2020), adapting the original transformer architecture to the CV field.

The key component of transformer models is self-attention and lies in a block of layers called

Multi-headed Self-Attention (MSA) (Vaswani et al., 2017). Thanks to the self-attention

mechanisms, the model can selectively attend to and weigh different parts of the input data. To

do so, the input must be first subdivided into patches. Since visual data is not sequenced by
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Figure 1.6 Block diagram of a ViT. The input image is first split into patches and

pre-processed to form Z0. This input goes through the transformer encoder formed by

𝐿𝑠 blocks, leading to the output ZLs . The refactored classification token pr
cls contained

in ZLs is finally processed by the MLP head.

nature as text would be, Dosovitskiy et al. (2020) proposed to divide the input image or feature

maps into a grid of fixed-size patches. Let F ∈ R𝐻×𝑊×𝐶 be the input, with H ∈ N, W ∈ N
and C ∈ N being respectively the input height, width, and channel size. Let us consider the

input subdivision into 𝑁 = 𝐻
𝑆 × 𝑊

𝑆 patches, noted p𝑖, with 𝑖 ∈ {1, ..., 𝑁}. The patches are then

flattened regarding the spatial dimension and passed through a linear embedding layer 𝐸 with an

output dimension 𝐷. A classification token pcls ∈ R𝐷 of the same dimension is added and used

later as the global feature representation for the classification. To the representation is summed

a learnable positional embedding P ∈ R(𝑁+1)×𝐷 . Hence, the transformer input sequence Z0 is

defined as follows:

Z0 = [pcls, 𝐸 (p1), 𝐸 (p2), . . . , 𝐸 (pN)] + P (1.6)

After having pre-processed the data and obtained the Z0 representation, this representation is

passed through a sequence of 𝐿𝑠 ∈ N alternating MSA and MLP blocks (Dosovitskiy et al., 2020).
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For each block, the input passes through a LayerNorm right before, and a residual connection is

applied right after. After the 𝐿𝑠 blocks, the output matrix ZLs contains the refactored tokens (or

patches) as ZLs = (pr
cls, pr

1, ..., p
r
N), the refactored tokens being noted pr

i ∈ R𝐷 with 𝑖 ∈ {1, ..., 𝑛}
and the refactored classification token noted pr

cls ∈ R𝐷 . This process allows for exploiting

the relationships within and among the tokens and, consequently, for extracting rich feature

representations. The refactored classification token is finally used as input to an MLP for class

prediction.

Let us formally define the MSA layers. Self-attention allows selectively attending and refactoring

the tokens from a given input sequence Z ∈ R𝑁×𝐷 , by first defining a set of queries Q, keys K,

and values V:

Q = ZWq,K = ZWk,V = ZWv (1.7)

where W𝑞 ∈ R𝐷×𝐷𝑞 , W𝑘 ∈ R𝐷×𝐷𝑘 , and W𝑣 ∈ R𝐷×𝐷𝑣 being weight matrices. Then, each set of

queries keys and values is given as input to the MSA layer, which generates attention weights

through the softmax 𝜎 function, and applies those weights to the set of values, refactoring the

tokens:

MSA(Q,K,V) = 𝜎( QK√
𝐷𝑘

)V (1.8)

In comparison, the CNN architecture, and especially the convolution operations, only operate on

a local neighborhood of an image, which may lead to weaker feature representations. ViTs can

also handle variable-sized inputs, avoiding cropping or resizing the data as needed for the CNNs.

However, transformer architectures have a high computation cost and require large datasets to get

optimized (Han et al., 2020). For example, the base ViT model requires 18G FLOPs to process

an image and gather a total of 86M parameters against 4.1G FLOPs and 25M parameters for a

ResNet-50 model (He et al., 2016). Hence, ViT models may not be suited to some fields or tasks.

Many application areas, like medical imaging, are often limited in terms of data availability

(Greenspan et al., 2016) due to privacy concerns and complex data annotation requiring medical

experts. Also, various tasks like person ReID require close to real-time applications, which
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high computation requirements might compromise (Remigereau et al., 2022). This aspect may

be tackled using hybrid architectures (Dosovitskiy et al., 2020; Prakash et al., 2021), using

first a CNN to encode and reduce the input dimension, followed by self-attention transformer

mechanisms to enrich the feature representation. Plus, hybrid models are especially more

beneficial than transformer-only models on smaller architectures (Dosovitskiy et al., 2020), the

hybrid models being consequently more adapted to tasks with light model requirements. For

example, the ResNet-50 + ViT-B/16 model (hybrid) performs similarly as the larger model

ViT-L/16 (transformer only), with pre-training computation FLOPs respectively of 274 and 783

exaFLOPs according to Dosovitskiy et al..

1.3 Embedding Networks

1.3.1 Metric learning

Metric learning is a subfield of ML that focuses on mapping input data points into a space where

distances between these points correspond to their similarity or dissimilarity (Fig. 1.7). In other

words, it seeks to learn a function to measure how similar or different two data points are. In

practice, this is a very useful and powerful concept that allows answering tasks such as signature

verification (Viana et al., 2022), face or speaker identification (Sun et al., 2014; Chen & Salman,

2011), or person ReID (Yi et al., 2014; Chen et al., 2018b; Yang et al., 2018). Indeed, taking

person ReID as an example, the idea is not to assert the identity of a given individual but to

assert that two different images contain the same individual or not, rendered possible through

metric learning approaches.

Let us define two data points or feature vectors f1 = ( 𝑓11, 𝑓12, ..., 𝑓1𝑑) and f2 = ( 𝑓21, 𝑓22, ..., 𝑓2𝑑),
𝑑 ∈ N being the vectors dimension. To measure the distance between f1 and f2, and evaluate

their similarity, the Euclidean distance (Eq. 1.9) or the cosine distance (Eq. 1.10) are commonly

used distance measures that can easily be computed. However, as highlighted by Lu et al. (2017),

the similarity measure selection must generally be task specific as each task and dataset has a

specific data distribution, differently affecting the distance measures.
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Initial feature space Optimized feature space

Metric learning

Figure 1.7 Illustration of a 2D feature space with three distinct identities (classes)

before and after optimization through the usage of metric learning.

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 (f1, f2) = ‖f1 − f2‖ =
√√√ 𝑑∑

𝑖=1

( 𝑓1𝑖 − 𝑓2𝑖)2 (1.9)

𝑑𝑐𝑜𝑠𝑖𝑛𝑒 (f1, f2) = f1 · f2
‖f1‖‖f2‖

=

∑𝑑
𝑖=1 𝑓1𝑖 𝑓2𝑖√∑𝑑

𝑖=1 𝑓1𝑖
2
√∑𝑑

𝑖=1 𝑓
2
2𝑖

(1.10)

1.3.2 Deep Siamese networks

Siamese Neural Networks (SNN) (Bromley et al., 1993) is a classic ML model (Chicco, 2021)

for similarity matching. An SNN automatically learns a function that maps data samples, like

images or texts, into a common feature space, where their similarity or distance can be computed

(Fig. 1.8.a). To build this feature space, a single backbone is replicated into two identical

backbones, sharing the exact same weights, and is trained simultaneously on pairs of inputs.

Data triplets can also be used with the same principle and three backbones replications (triplet
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Figure 1.8 Training model using (a) pair or (b) triplet of individuals as input to a (a)

Siamese or (b) Triplet network. For the Siamese network, each backbone is the same in

practice, the weights being consequently the same (W1 = W2). This is also true for the

Triplet network with Wa = Wp = Wn. While learning, the weights are updated using a

similarity-based loss function.

network Fig. 1.8.b), this aspect being, in practice, a consequence of the loss selection. For this

reason, let us detail existing metric learning losses.

Efficient and tailored for embedding networks, multiple losses have been designed and used for

the person ReID task. The contrastive loss (Hadsell et al., 2006) is a well-known cost function

that works from pair of data and works at making similar pair closer and dissimilar pair further

apart, by at least a fixed margin, in the embedding space. The triplet loss (Ding et al., 2015)

requires triplets instead of data pairs, using embeddings from an anchor, a positive and a negative

inputs. The positive belongs to the same class as the anchor, whereas the negative belongs to

another class, and the triplet loss learns the model to reduce the distance between the anchor and

the positive sample while increasing the one between the anchor and the negative sample. Later,

different versions were proposed to improve the original triplet loss. For example, Cheng et al.

(2016) adds a constraint on the positive pair, or (Hermans et al., 2017) proposes a semi-hard

sample mining by selecting the hardest negative and the hardest positive pairs in a mini-batch.
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Other approaches, such as those proposed by Yu et al. (2018) or Wojke & Bewley (2018), also

present different versions of the triplet loss. However, in practice, one can observe that the

semi-hard mining approach proposed by Hermans et al. (2017), usually referred to as batch-hard

triplet loss, is widely used in the state-of-the-art person ReID literature (Ye et al., 2021) for its

efficiency and simplicity.

Because of their wide usage in literature, let us formally define the contrastive and batch-hard

triplet loss. Let us consider two feature vectors f1 ∈ R𝑑 and f2 ∈ R𝑑 , 𝑑 being the features

dimension. Let 𝑦 be a binary label associated to f1 and f2. If the two vectors belong to the same

class, then 𝑦 = 0. Otherwise, 𝑦 = 1. On the basis of this, the contrastive loss Lc is computed as

follows:

Lc(f1, f2) = (1 − 𝑦) · max(0, 𝑀1 + ||f1 − f2 | |2) + 𝑦 · | |f1 − f2 | |2. (1.11)

where 𝑀1 is a margin hyperparameter that controls the minimum distance between samples

from different classes.

For the batch-hard triplet loss, let f𝑎, f𝑝, and f𝑛 be, respectively, the feature vectors for the anchor,

the positive, and the negative samples. For a training mini-batch with 𝑁 ∈ N samples and their

associated labels {𝑦𝑖}𝑁𝑖=1
, the batch-hard triplet loss LBH_tri is defined as follows:

LBH_tri =
1

𝑁

∑
𝑦𝑎=𝑦𝑝≠𝑦𝑛

max(0, 𝑚 + max
𝑦𝑎=𝑦𝑝

𝑑 (f𝑎, f𝑝) − min
𝑦𝑎≠𝑦𝑛

𝑑 (f𝑎, f𝑛)). (1.12)

where 𝑑 represents the Euclidean distance (Eq. 1.9) and 𝑀2 is a margin hyperparameter that

controls the minimum difference between the distances.

Comparing those two losses, one can notice that the contrastive loss can be less computationally

expensive than the triplet loss since it considers pairs instead of triplets. However, the triplet

loss explicitly considers relative relationships between samples, which makes it particularly

useful when dealing with complex data distributions, where pairwise relationships may not be

sufficient to capture the underlying structure effectively.
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1.4 Person Re-Identification

1.4.1 Problem definition

A person ReID system aims to identify the same person across different camera views (Zheng

et al., 2016; Ye et al., 2021). This task is helpful in various situations, primarily video

surveillance, since it automatically and efficiently processes a large quantity of video data. In

fact, the input to such a system can either be images of individuals (image-based ReID (Zhu

et al., 2020; Li et al., 2021; He et al., 2021)) or tracklets (video-based ReID (Yan et al., 2020;

Eom et al., 2021)), depending on the objective and the used framework. Let us define the set

of images or tracklets X = {𝑥𝑖 |𝑖 ∈ {1, 2, ..., 𝑁𝑠}}, 𝑥𝑖 being a data sample and 𝑁𝑠 the number of

data samples. The corresponding identities are stored in Y = {𝑦𝑖 |𝑖 ∈ {1, 2, ..., 𝑁𝑠}}, forming

the dataset D = {X,Y}. Let 𝜑𝜃 : RS → R𝐸 be a function mapping from the data space R𝑆 to

the embedding space R𝐸 , parameterized by 𝜃. In practice, for a given query individual 𝑥𝑞 ∈ X,

its embedding fq = 𝜑Θ(𝑥𝑞) is produced and matched with the embeddings from the gallery

of references. The matching is done by comparing the query and gallery samples through a

similarity (or distance) measure 𝑆 : R𝐸 × R𝐸 → R, the similarity values bringing insights on

the similarity of the actual samples.

1.4.2 Performance measures

For evaluation, open-set and closed-set are two scenarios in which the person ReID task can be

applied. For the closed-set scenario, which is more common, the considered queries always

have one or more corresponding matches in the gallery. In this situation, as a match always

exists, a ranking list is usually built, with the first ranks being more likely to be the same and the

last different individuals. From this list, classic performance measures like the mean Average

Precision (mAP) or the Cumulative Matching Characteristic (CMC) curve can be computed.

In the case of the open-set scenario, there is no insurance that the query person also appears in

the gallery. Hence, the approach is different. A threshold is usually set on the similarity measure
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to identify whether the individual exists in the gallery. Consequently, classification-related

performance measures like the Receiver Operating Characteristic (ROC) or Precision-Recall

(P-R) curves can be computed (Fawcett, 2006; Davis & Goadrich, 2006). This thesis focuses

on the closed-set scenario since this approach is followed by most papers in this domain, as

highlighted in the survey on person ReID provided by Ye et al. (2021). Still, the open-set setting

could be considered for future experiments as it offers better suitability for deployment purposes

by not requiring matches in the reference set.

As mentioned, the closed-set scenario is considered in this thesis to align with the current

literature. Hence, a ranking list is first built for a given query thanks to a similarity measure

between itself and the gallery of references. The query should be retrieved as accurately as

possible, i.e., all the correct matches should have low-rank values in the list. Based on this

ranking list, the performance measures can be computed. The mAP and the mean Inverse

Negative Penalty (mINP) are two widely used performance measures in person ReID (Ye et al.,

2021), defined as follows :

• Mean Average Precision: To compute the mAP, the Average Precision (AP) must be defined

first. For a query image 𝑞, the number of persons to retrieve in the gallery is noted 𝑅𝑞. Let

𝑚 be a function equal to 1 if the image is a match and equal to 0 otherwise. Let 𝑃 be the

precision function, 𝑃 being equal to the number of retrieved persons up to rank 𝑘 over the

rank 𝑘 value. AP is computed as follows for a given query 𝑞:

𝐴𝑃𝑞 =
1

𝑅𝑞

𝑅𝑞∑
𝑘=1

𝑚(𝑘).𝑃(𝑘) (1.13)

Then, the mAP can be computed through a mean over the number of query image 𝑄 ∈ N:

mAP =
1

𝑄

𝑄∑
𝑞=1

𝐴𝑃𝑞 (1.14)

• Mean Inverse Negative Penalty: The mINP measure requires the Negative Penalty (NP) to

be defined first. Again, for 𝑞 a given query image, 𝑄 is the number of query images, and 𝑅𝑞
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is the number of matches in the gallery. Also, let 𝑅𝐻𝑞 be the position of the hardest match in

the ranking list. Then, the NP measure is as follows:

𝑁𝑃𝑞 =
𝑅𝐻𝑞 − 𝑅𝑞
𝑅𝐻𝑞

(1.15)

Then, the mINP is a mean over the inverse of the negative penalty (𝐼𝑁𝑃 = 1 − 𝑁𝑃), being

computed as follows:

mINP =
1

𝑄

𝑄∑
𝑞=1

(1 − 𝑁𝑃𝑞) (1.16)

In practice, one can see the complementarity of the mAP and mINP performance measures.

Indeed, the mAP gets computed based on all match positions in the ranking list. Hence, it

reflects well an overall idea of the model precision. However, with varying positions in the

ranking list, the 𝐴𝑃 measure can sometimes produce similar performance evaluations even if

one of two ranking lists may have way more difficulty dealing with few samples (Fig. 1.9).

Usually, a model with a similar mAP but dealing better with hard cases would likely be favored

because it rubs off on a better generalization capacity. In fact, the 𝐼𝑁𝑃 measure hints at this

aspect by focusing only on the latest match position in the list. Indeed, one can observe in Fig.

1.9 that the 𝐼𝑁𝑃 measure is higher for rank list 1, which deals better with hard cases.

1 2 3 4 5 6 10987

1 32 105 64 187 9

6 74Rank list 1

Rank list 2

Figure 1.9 Example of the 𝐴𝑃 and 𝐼𝑁𝑃 measures for two ranking lists of ten samples.

Green and red cubes represent matches and false matches, respectively.
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1.4.3 Overview of the state-of-art

Over the last decade, significant progress has been made in the field of person ReID (Ye et al.,

2021; Ming et al., 2022). According to the taxonomy proposed by Chen et al. (2021), the

state-of-the-art approaches for person ReID can be categorized into part-based, augmentation,

multi-scale, and attention methods. This section defines these categories and provides an

overview of the related approaches.

Part-based approaches start from the observation that different body parts, such as the head, torso,

or legs, can all contain discriminant knowledge. However, models often focus on global features

and recurrent information, leading them to miss knowledge from small informative regions

(Chen et al., 2020b). Consequently, the objective is usually to extract features directly from

these body parts or regions of interest and finally combine them to obtain a richer representation

of an individual. The Clue Alignment and Conditional Embedding (CACE-Net) model (Yu

et al., 2020) is an example of a part-based approach, which uses a correspondence attention

model to find and rely on key points between pair of images for discrimination. The Adaptive

Part Division (APD) model (Lai et al., 2021) is another part-based example that relies on

self-attention to generate masks for part division and extract robust local features.

Augmentation techniques involve applying transformations (i.e., changes in scale, rotation,

translation, or noise) on the learning data to make the models more robust to scene variations.

These transformations can be more specific, as for the two DA proposed by Chen et al. (2021).

One of the DAs applies a patch of random pixel values on the image, while the other superposes

a randomly selected patch from the image on this same image. This way, the model benefits from

improved robustness to local and global corruptions and a better generalization capacity. In the

context of cloth-changing person ReID, Jia et al. (2022) proposed a positive DA augmentation

that exchanges patches between positive pairs and a negative DA which translates the appearance

and pose information from negative to negative samples in order to create more diversity within

the negative images.
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Multi-scale approaches process the input images at multiple scales or resolutions to capture

both global and local information. For instance, Omni-Scale Network (OSNet) (Zhou et al.,

2021) is a lightweight, multiscale model architecture with different streams focusing on specific

feature scales, designed for person ReID. Using the OSNet model as a basis, the Lightweight

Multi-Branch Network (LightMBN) (Herzog et al., 2021) uses the three first blocks of an OSNet

model followed by three branches to extract global, partial, and channel-wise representations.

(Huang et al., 2021) presents a Multi-Scale Focusing Attention (MSFA) block, using focusing

attention blocks within it with different receptive fields to capture discriminative features at

different scales. For the combination of the features from the different branches, the aggregation

gate from OSNet is used.

Attention approaches focus on using attention mechanisms to assign weights and selectively

attend to specific features and informative regions. For example, Chen et al. (2019b) proposed

two attention modules that are used on the last feature map obtained from a ResNet-50, one

focusing and channel attention and the other on pose attention. Relying instead on self-attention

mechanisms through a ViT architecture, the TransReID (He et al., 2021) model is the first

transformer-based approach attaining state-of-art results for person ReID.

Despite the design of strong models and strategies to improve efficiency or ReID accuracy,

models must be carefully designed to meet real-time requirements, handle real-world conditions,

and work with limited resources. Chen et al. (2021) compare 21 state-of-art person ReID models

and lead us to various observations by evaluating them using challenging and realistic corrupted

evaluation datasets. First, the best-performing models are inconsistent from the evaluation

using normal and corrupted data, which is not handy for a model selection. For example, the

LightMBN approach (Herzog et al., 2021) comes first when evaluated on clean data, and the

TransReID model (He et al., 2021) when evaluated on corrupted data. One can also observe

that the TransReID model is complex due to its transformer-based architecture. This aspect is

regretful for real-world applications since such a model is unrealistic for real-time surveillance.

Instead, LightMBN is lightweight but significantly under-perform on the corrupted datasets

compared to TransReID. Hence, one may wonder whether there is a way to design a model that
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would be consistent from clean to corrupted scenarios while being adapted to the ReID and its

efficiency requirements.

1.5 Visual Interpretation

1.5.1 Methods for image classification

For years, NNs and especially CNNs were criticized for their lack of interpretability (Lipton,

2018), often characterized as "black boxes". In fact, the inability to see the cues on which a

model relies to provide its prediction was seen as a major bottleneck, making their optimization

more complex. Several attempts to produce CNN visualizations were first designed (Simonyan

et al., 2013; Zeiler & Fergus, 2014; Gan et al., 2015), but did not allow for class-discriminative

and input-specific visualizations, regrettable for a deep model understanding.

This has been leveraged in 2017 when Selvaraju et al. developed the CNN visualization approach

named GradCAM, allowing for building heatmaps (Fig. 1.10) on which one can visually observe

the input-wise features on which the model relies to produce each individual predictions.

Figure 1.10 GradCAM visualizations obtained from a learned backbone on the

SYSU-MM01 dataset (Wu et al., 2017) and 4 images of individuals.

Let Fk be the 𝑘-th channel of the last feature maps, where the last feature maps have 𝐶 channels,

a width𝑊 , and a height 𝐻. To build a heatmap highlighting the essential regions of a given

input image, GradCAM computes the importance weights of each channel 𝑤𝑘 by performing the

average pooling operation over the back-propagated gradients of the output class score noted 𝑦𝑐

(for class c) with respect to the feature map Fk:
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𝑤𝑐 =
1

𝑍

∑
𝑥,𝑦

𝜕𝑦𝑐

𝜕Fk
(x,y)

(1.17)

where F𝑘(𝑥,𝑦) is the feature map Fk at spacial location (𝑥, 𝑦).

Then, the feature maps are weighted and passed through a ReLU activation function to produce

the low-resolution heatmap L𝑐
GradCAM

:

L𝑐
GradCAM =

𝐶∑
𝑘=1

𝑤𝑐 · Fk (1.18)

Finally, L𝑐
GradCAM

is up-sampled to match the size of the input image using bilinear interpolation

and then overlaid on the input image to create a Class Activation Map (CAM).

From GradCAM, other visualization strategies were designed, like GradCAM++ (Chattopadhay

et al., 2018), XGradCAM (Fu et al., 2020), or LayerCAM (Jiang et al., 2021). However,

the previously mentioned algorithms rely on class-related gradients and consequently require

class-specific activation scores, which are unavailable with embedding models.

1.5.2 Methods for similarity matching

Metric learning tasks, like person ReID, seek to match embeddings and do not rely on class

predictions during inference. As a consequence, the model does not produce and use class logit

values but relies on embedding similarities for predictions. As mentioned previously, this aspect

discards CAM approaches like GradCAM to visualize deep metric learning models and ask for

similarity-matching tailored visualization strategies.

Tackling this challenge, Stylianou et al. (2019) proposed a simple but effective solution based on

the pooling operation and the similarity measure decomposition applied to a pair of images. For
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a network using average pooling as a flattening operation, the output vector f is:

f = 1

𝐾2

∑
𝑥,𝑦

F(𝑥,𝑦) (1.19)

Where F(𝑥,𝑦) is the 𝐶-dimensional slice of the feature maps F at spacial location (𝑥, 𝑦), for F

being the last feature map, 𝐶 its number of channels, and 𝐾 its width and height (considered here

of same dimension). Hence, for two output vectors f1 ∈ R and f2 ∈ R, the similarity between the

two inputs can be decomposed spatially by using Eq. 1.19 and the similarity distance measure

Eq. 1.10:

𝑑𝑐𝑜𝑠𝑖𝑛𝑒 (f1, f2) = f1 · f2
‖f1‖‖f2‖

=
F(1,1) · f2 + ... + F(𝐾,𝐾) · f2

𝑍
(1.20)

with 𝑍 = 𝐾2‖f1‖‖f2‖ being a normalizing factor.

Through this decomposition and the relative contribution of each part of the activation maps,

the pixels impacting the similarity measure can get highlighted on the initial input image.

Working from this same decomposition, Black et al. (2022) extended the approach to embedded

transformer networks, applying a rollout operation to approximate each image patch contribution

to the similarity measure, despite the patch mixing operation applied at each transformer layer.

For CNNs, Chen et al. (2020a) proposed a strategy based on the gradient of the triplet loss

instead of the gradient of the classification scores for GradCAM. For each testing image, the

closest training image is first chosen using the KNN algorithm. Then, the triplet loss values

(from a certain quantity of triplets) are averaged and used as a gradient to produce CAMs for

the test image. This approach has the advantage of requiring a single evaluation image instead

of two in order to produce the CAMs. However, it requires storing the gradient values of the

learning triplets and applying a KNN, which is not needed in the approach of Stylianou et al.

(2019). Overall, the similarity-based CAM proposed by Stylianou et al. appears more handily

while being hardly differentiable in terms of quality and is consequently used in this thesis.





CHAPTER 2

LITERATURE REVIEW

2.1 Survey of Multimodal Fusion

The principle of data fusion is ubiquitous, both around and within us. Our various senses

work in harmony most of the time to provide a better understanding and description of our

surroundings. For instance, we rely on sight and touch to apprehend an object, while both hearing

and vision help us navigate when crossing a street. Also, we use all of these senses together when

engaging in activities such as running and talking and effortlessly process numerous information

combinations in our daily lives. From this observation, combining information from multiple

sources appeared as an intuitive way to solve various problems. In PR applications, leveraging

complementary information is one of the main motives for using multimodal approaches, this

information is expected to make recognition accurate and robust.

Data fusion can be performed through various global strategies, well delimited and defined

by Jain et al. (2004). For example, using multiple sensors is probably the most intuitive, by

analogy with the use of our senses. Indeed, a scene can, for example, be encoded from distinct

camera sensors (modalities), allowing for an independent but complementary encoding of the

information. Instead, using plural snapshots of the same concept and from the same sensor

may as well improve the system, allowing access to supplementary cues with a scene that has

evolved. Similarly, multiple consecutive frames can be fused, allowing exploiting the temporal

information. Finally, instead of using different input data, different algorithms can also focus

on the same sample but encode it in different ways to complement the final representation and

improve the accuracy. In a nutshell, it is essential to have diverse and informative sources of

knowledge to benefit from fusion.

This thesis focus on the fusion of information from images captured using RGB and IR cameras

for person ReID. These sensors encode the scene differently, leveraging separate segments

of the electromagnetic spectrum (Sec. 1.1). To illustrate, the RGB modality encodes color



36

information and is ineffective for capturing nighttime scenes, whereas the infrared modality

does not encode the color information while not being affected by luminosity. Additionally,

as aforementioned, the cameras from the RGB to the IR modality may be co-located (CL) or

not co-located (NCL). Indeed, a real-world application could use V-I cameras side-by-side (CL

cameras), easily constructing V-I data pairs and benefiting from the two cameras encoding

most of the time. However, visible and infrared cameras could be paired while pointing to

distinct scenes (NCL cameras). In this case, a realistic setting would likely consider a short

distance from the visible to the infrared cameras while pairing those but also using infrared

cameras for darker scenes. Under the NCL setting, a large domain gap may be observed in the

representations, as it breaks the spatial alignment existing under a CL cameras setting. This

aspect is expected to make the fusion more beneficial for NCL cameras since weakly dependent

or independent information usually results in a more significant fusion improvement (Jain et al.,

2004). However, the previous expectation might not be verified in the context of model-level

fusion, as such fusion approach sometimes benefits more from spatial alignment (Wang et al.,

2021b; Xuan et al., 2022).

2.1.1 Conventional fusion methods

When considering multimodal data fusion, common techniques usually rely on information at

the sensor (Lohweg & Mönks, 2010), feature (Zhu et al., 2015; Shahroudy et al., 2014), or score

levels (Snoek et al., 2005). For sensor-level fusion (Fig. 2.1.a), the multiple modalities are

usually stacked together prior to feature extraction. This can result in dense and complex inputs,

but the model should encode the inter-modality correlations from the start, thanks to the shared

sensor representation. However, this can also result in a loss of modality-specific knowledge as

the two modalities are processed as a single representation. Feature fusion (Fig. 2.1.b) considers

modality-specific backbones to extract feature representations and combines them through, e.g.,

aggregation or concatenation before answering the objective task. Fusion at this level allows

individual modality encoding prior to the fusion, which may be a good strategy to allow for

modality-specific knowledge mining. Feature fusion provides more flexibility by allowing for
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Figure 2.1 Block diagram of similarity matching systems that perform (a) early, (b)

feature, and (c) score-level fusion of V and I modalities.

modality-specific encoding strategies. However, the fusion strategy must be wisely chosen not to

lose information. Often, for practical reasons, people proceed with late fusion, using, for instance,

weighted averaging (Nojavanasghari et al., 2016) or majority voting (Wörtwein & Scherer,

2017) strategies. This level of fusion has the advantage of being easy to implement because
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trained unimodal models can be integrated with other models. However, score values must be

normalized or calibrated across modalities, and, assuming the score-level fusion is commonly

deterministic (Zhang et al., 2017) there is no learning of the eventual modality correlations.

In fact, the absence of modality collaboration is one of the major limitations of this approach

(Wang, 2021), modality collaboration likely being of true importance while facing real-world

data.

Model backboneFusion

Fusion

Gallery

Visible input Infrared input

Output score

Feature
vector

Feature
vector

Matching

Model backbone

Shared backbone

Figure 2.2 Model-level fusion representation. The fusion can be done

with the feature vector produced from independent backbones (learned

feature fusion). It can also be progressively done through a fusion between

the backbones. In this case, the fused representation can be re-introduced

into modality-specific backbones (orange arrows), into a shared backbone

before matching (blue arrows), or directly matched (green arrow).

Distinct from the previous approaches, intermediate (or model-level) fusion considers combining

the knowledge during feature extraction through multimodal learning (Ramachandram & Taylor,

2017; Gaw et al., 2022). This fusion allows for a more progressive fusion process in the sense
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that knowledge can be gradually exchanged among modality backbones at multiple stages of

the data processing (Fig. 2.2). This is the case of the approach proposed by Joze et al. (2020),

for example, with attention-based fusion modules used in between convolution blocks of two

distinct modality backbones several times in the model. Unlike sensor fusion, model-level fusion

usually starts by down-sampling the data through modality-specific layers before the fusion.

This allows the model to intelligently encode the modality, preparing the modality collaboration

for the upcoming fusion, which seems of great importance in the case of data corruption. Also,

since feature fusion comes earlier in the process compared to score fusion, more knowledge is

available, which should allow for more correlation findings.

The model-level fusion naturally stands out from the different approaches in the previous

discussions. Indeed, model-level fusion should allow for a good balance in exploiting modality-

specific and modality-shared knowledge while allowing for flexibility in the fusion design and

leveraging modality collaboration. Within those models, attention-based approaches (Niu et al.,

2021; Guo et al., 2022) could be a great strategy for making models robust to corruption. Indeed,

its dynamic mechanisms may allow for better feature selection, motivating a survey of these

approaches in the next section.

2.1.2 Attention-based fusion methods

This section presents multimodal attention-based methods, starting with CNN-based models,

then transformer-based models, and finally hybrid models.

2.1.2.1 Attention-based CNN models.

In 2020, Ismail et al. proposed modality attention, producing attention weights to balance

modality feature vectors’ importance in the upcoming fusion. Instead of applying single soft

weights to each modality, Arevalo et al. (2020) presented the gated multimodal unit, generating

and applying attention weights for every feature in the concatenated feature vectors, discarding

the less relevant information while setting an emphasis on discriminant features. Working from
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richer representations by focusing on feature maps instead of feature vectors, the Multimodal

Transfer Module (MMTM) (Joze et al., 2020) and Multimodal Split Attention Fusion (MSAF)

(Su et al., 2020) approaches update the feature maps through channel-wise attention weights

produced and applied at different positions of the encoding process. The weights are obtained

from a modality-shared representation built using each modality feature map. Fu et al. (2021b)

introduced a cross-modal attention block that refactors the feature maps of one modality based

on the other. However, one modality representation only is refined through this attention process,

whereas a bilateral refactoring would probably be a better strategy when facing corruption.

Recently, multiple approaches outperformed the MMTM and MSAF strategies performance-wise.

However, the strategies are different by not solely focusing on the fusion function. For example,

Luna-Jiménez et al. (2021) focused mainly on the modality-specific backbones to use and proceed

with late fusion to avoid temporal alignment issues, which is not a concern in image-based

person ReID. Middya et al. (2022) also improves the emotion recognition accuracy thanks to a

careful selection of modality-specific backbones but trains them together with a final feature

vector concatenation instead. Again, the approach is task-specific and is not directly relevant for

image-based person ReID using the RGB and IR modalities. Finally, Mocanu & Tapu (2022)

introduced a cross-modal attention block, which relies on cross-modal correlation exploitation.

This attention block is interesting, but the model also exploits unimodal spatial and temporal

attention at first, making unclear the real benefits of the fusion block.

2.1.2.2 Attention-based transformer models

Alongside improvements in CNN architectures, various multimodal transformer models emerged.

Some of the considered approaches are not vision-based transformers but are easily transferable

to ViT thanks to the work of Dosovitskiy et al. (2020).

To reinforce a target modality representation from a source modality, Tsai et al. (2019) proposed

using a cross-modal transformer module. However, a module is used per modality combination

to reinforce each modality representation. To reduce the computational cost, Sahay et al. (2020)
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relied on a fused modality representation as the source modality to reinforce each modality

(target), allowing for a linear quantity of cross-transformer modules. However, a corrupted

modality would probably degrade the ReID system by corrupting the fused representation.

When a modality or a representation is weaker on average, its representation can be used only as

a source and not as a target in the cross-modal transformer encoders (Yu et al., 2019; Huang

et al., 2020; Khare et al., 2021). This way, the modality supposedly positively impacts the final

embedding despite its lower informative representation. In practice, if the most informative

modality varies from one input to another, due to the capture conditions, for example, such a

system seems not adapted. Instead, encoding both the modality-specific knowledge by the use of

self-attention transformers and the modality-shared information through cross-modal transformer

seems to be an interesting approach (Wei et al., 2020b; Sun et al., 2021; Lian et al., 2021),

conserving and exploiting the available knowledge as much as possible. Still, such architecture

may be complex as it requires a transformer module for each modality (self-attention) and for

each modality combination (cross-attention).

2.1.2.3 Hybrid CNNs and transformers architectures

Hybrid models use a combination of CNN and transformer architectures. Such models have

been explored in different fields as it allows for lighter models and better performances when

the data quantity is limited (Dosovitskiy et al., 2020). For example, for expression recognition,

Ma et al. (2021) first extract the features from each modality through modality-specific CNNs,

fuse them, and finally feed them to a single ViT. In the medical field, the TransMed model (Dai

et al., 2021) feeds the multimodal data in a single stream CNN model followed by a transformer

architecture instead of using one CNN stream per modality. Unlike the previous approaches, the

Transfuser model (Prakash et al., 2021), proposed for autonomous driving, uses self-attention

transformer blocks between two CNN streams to refactor the representations during the feature

extraction and finally fuses the two CNN outputs by concatenation. This approach offers new

perspectives on how transformer self-attention benefits may be exploited in a hybrid architecture,

limiting as well the model complexity.
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2.2 Multimodal Fusion for Person ReID

2.2.1 RGB only

Various strategies were developed to improve the person ReID, using supplementary knowledge

from an additional modality (Uddin et al., 2023). When there is no will to bring additional

sensors to the system, a supplementary modality can be directly extracted from the main modality.

For example, Chen et al. (2019a) first extracts the contour from a given individual visible

input and then encode the modalities with two backbones. With a similar approach, Bhuiyan

et al. (2020) extract the pose information, and use this knowledge to guide a CNN backbone

at different layers for the extraction of relevant discriminative appearance information. In fact,

extracting contours or skeletons for multimodal guidance allows for information that is invariant

to lighting and invariant to clothing changes concerning the skeletons. However, one can infer

that a corrupted visible modality would affect the contour or pose extraction most of the time

since those are extracted from this modality. For example, water splashes would likely corrupt

the contour information or the pose extraction on the same parts of a given visible input. Hence,

using one or plural supplementary sensors might be a more adapted strategy, as different sensors

are independent per definition and encode the knowledge differently, consequently avoiding

similar behaviors even under the same capture conditions. Using the same example, water

spatter would not appear similarly on each sensor, so a model can compensate for the missing

knowledge from one modality by the available knowledge from the other.

2.2.2 RGB-D

According to the survey proposed by Uddin et al. (2023) on multimodal person ReID, one can

observe that most multimodal approaches focus on using either the skeleton or depth information.

Exploiting the depth information requires another sensor, which seems to be a better strategy

regarding real-world conditions. Recent RGB-D approaches consider, for example, attention

mechanisms to extract the RGB foreground person thanks to a depth-based segmentation mask

(Uddin et al., 2020). Performing better, Uddin et al. (2021) proposed later to fuse the dissimilarity
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representation from a trained model on the RGB modality only and a multimodal model trained

on the concatenation of the visible and depth modalities. However, this approach requires both a

unimodal and multimodal backbone, making it unsuitable for real-world scenarios. Also, even if

the ReID accuracy is much improved through multimodal RGB-D sensors, the depth sensors

cannot be used outdoors and have short-distance capture requirements. Infrared cameras are not

affected by these strong limitations of the depth modality while allowing for dark environment

capture as well. Still, the infrared does not allow foreground segmentation, making each sensor

interesting depending on the setting and actual objective.

2.2.3 RGB-IR

With a focus on the use of the visible and the infrared modalities, a few approaches exist for

person ReID. In fact, as a hint on the current research in this field, one can notice that the

survey provided by Uddin et al. (2023) does only mention the V-I setting through the ancient

approach proposed by Mogelmose et al. (2013), exploiting visible, depth, and infrared sensors.

Nevertheless, fusion techniques have evolved much from 2013 and a person ReID literature is

emerging on the V and I sensor exploitation.

First, using the V and I modalities in a multimodal way, Nguyen et al. (2017) is, to our best

knowledge and apart from our work, the only existing approach focusing solely on fusing these two

modalities. A backbone for each modality is trained independently and later used for inference

by fusing the modality representations through a feature concatenation. In practice, the model

is only evaluated on their proposed RegDB dataset and has no direct concurrence apart from

their own model fusion experimental study. Recently, Zheng et al. (2021) introduced a dataset

including the visible, near-infrared, and thermal-infrared (mid to far infrared) modalities and

developed a new multimodal architecture based on three CNN branches, fusing the multimodal

knowledge with a part-based strategy. Later, Wang et al. (2022) proposed a model architecture

relying as well on a three-branch network but introduced a Cross-modal Interacting Module

(CIM) instead. The CIM mainly relies on channel attention computed among the three modalities,

allowing for refactoring each modality feature map based on how they correlate. However,
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despite the interesting mechanisms engaged, using three modalities comes at the cost of larger

models and increases the system’s complexity.

Finally, one can say the I modality has excellent potential for a multimodal fusion with the V data,

allowing for outdoor and nigh-time ReID while being promising in tacking corruptions through

the added sensor representation. However, despite a vast literature for multimodal fusion, V and

I fusion for person ReID remains weakly explored and must be further investigated.

2.3 Real-World Data

2.3.1 Constructing realistic evaluation datasets

Most datasets are captured in a controlled environment or over a short time period. These

aspects make the collected data unrealistic in the way that a major part of the eventual capture

conditions is not considered. For example, outdoor recognition is required to perform on sunny

days but also under low light conditions and foggy or snowy days. Since every specific case

scenario will not appear in the learning and testing data, the models likely do not handle them,

leading to a substantial decrease in performance from the laboratories to the final application.

For realistic evaluation of models, recent approaches focused on building challenging evaluation

datasets that cover a wider range of scenarios thanks to generated corruptions. As an example,

Hendrycks & Dietterich (2019) proposed an artificially corrupted dataset, applying 15 types

of common corruptions to the well-known object recognition dataset ImageNet (Deng et al.,

2009). The corruptions belong to different types of noise, weather, blur, and digital alterations,

each corruption having 5 levels of severity. Soon after, those same corruptions were re-used

to provide corrupted object detection datasets (Michaelis et al., 2019), semantic segmentation

datasets (Kamann & Rother, 2020), and pose estimation datasets (Wang et al., 2021a). Recently,

Chen et al. (2021) added 5 corruptions on top of the 15 provided by Hendrycks & Dietterich

and especially evaluated the impact of the 20 corruptions on 21 person ReID models.



45

Despite the strong focus on providing corrupted datasets over the last few years, a lack of

multimodal real-world datasets remains (Rahate et al., 2022). In fact, to our best knowledge,

with the exception of the recent work of Hong et al. (2023) on audiovisual data in emotion

recognition, there are no existing corrupted multimodal datasets in computer vision. Plus, this

work is actually focused on the speech recognition task, and consequently mainly focuses on

corruptions that are not directly meaningful to other vision tasks like person ReID. For example,

audio corruption has no place in a vision approach, and adding food-related occlusion patches

specifically on the individual’s mouth for person ReID is probably not the most accurate way to

evaluate corruption robustness. Still, this work presents interesting conclusions, showing how a

well-designed multimodal model can handle corruption that other models not designed for it

cannot.

As the wide variety of eventual corruption "in the wild" cannot be covered, the objective is to

evaluate models’ generalization capacity better through these datasets and to find ways to train

models that can improve it. Hence, the aforementioned datasets are only used for evaluation.

As a common observation from their usage, one can say that models not trained with specific

strategies to handle such data are usually poorly performing.

2.3.2 Processing real-world data

To handle real-world data and its unpredictability, models must have a great generalization

capacity. Indeed, this allows for models to handle new situations better, leading to higher overall

accuracy. For example, a foggy day may not appear in the learning data or may not sufficiently

appear for a model to learn to handle it. However, a model must be operational under such

weather conditions. Making a model better deal with unknown and new scenarios may appear

complex since, by definition, no clues are available about these specific scenarios. However, in

practice, solutions are numerous and must be analyzed to delimit the ones fitting the best with

person ReID and its real-time requirements.
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As an intuitive strategy, one can collect more data (Xie et al., 2020) and cover more specific cases

while learning a model. However, this comes at the cost of extra data collection and labeling work

and does not ensure to improve the model’s generalization power meaningfully. Working on the

model’s architecture can also be helpful in this manner. For example, the transformer architecture

and its self-attention have been highlighted as a good answer to corruptions (Hendrycks et al.,

2020; Chen et al., 2021). Also, a multimodal architecture can be an interesting solution as well

(Hong et al., 2023). Using a multimodal or transformer architecture is an interesting strategy

and can be used as a basis, but improving a model architecture might be tedious.

Allowing for improved robustness to data corruption on any architecture without requiring

more data collection and labeling, DA works at increasing the learning data and its distribution

through data generation. For example, the Augmix strategy (Hendrycks et al., 2019) mixes plural

variations of the same image together, the variations being obtained through a random selection

of image transformations. For person ReID, Chen et al. (2021) provided a data augmentation,

adding random noise in a patch of the input or randomly extracting and adding a patch of the

input on this same input. Plural concepts are covered through these data augmentations. For

example, adding a patch on the image artificially forces the model to deal with occlusions. Also,

adding noise to a patch on the image teaches the model to "read between the lines," seeking

discriminant features partially appearing under a corrupted zone of the input image.

Focusing on multimodal fusion, one may wonder if multimodal data augmentation can be

designed. In fact, there are only a few examples of such an approach. For image-text emotion

recognition, Xu et al. (2020) proposed to learn a model which wisely generates image-text

pairs based on unimodal image and text datasets. This process allows for building multimodal

image-text pairs to be used as a pre-training dataset. Instead of using data augmentation to build

pre-training data from different unimodal datasets, Hao et al. (2023) directly combines two

image-text pairs by interpolating the same modality together. This way, a third image-text pair

can be built to reinforce the model’s robustness for every two image-text pairs. As an MDA

closer to our task since the focus is here on V and I images for object detection, Nakamura et al.

(2022) proposed the CutMix algorithm. CutMix generates cross-domain data for cross-domain
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object detection. In practice, patches from the source domain are extracted and pasted on the

target domain, forcing the model to project the same objects from each domain closer in the

embedding space.

According to the previous analysis, the potential of DA for increasing corruption robustness is

well-known and explored (Hendrycks et al., 2019; Rusak et al., 2020; Zhong et al., 2020; Chen

et al., 2021). However, the multimodal setting is less investigated, despite its potential to allow

for multiplying the DA options. Indeed, instead of learning ways to better select the knowledge

intra-modality only as for unimodal DA, MDA should allow for strategies that work at improving

both the intra and inter-modality knowledge selection. Consequently, MDA strategies must be

further explored, especially their impact on the robustness of the multimodal models.

2.4 A Critical Analysis

To summarise the previous sections through a critical analysis of the covered approaches, Tab.

2.1 compares the different approaches. Several points are highlighted in this table and are

interpreted as follows:

• The multimodal V and I setting has a strong potential for improving the person’s ReID

capacity, especially under real-world conditions. However, existing approaches are limited

to four approaches, which use the V and the I modalities together for person ReID. Among

them, only the work provided by Nguyen et al. (2017) is actually focused on using the V and

I modalities exclusively.

• A multimodal corrupted dataset would allow for drawing a complete vision of the multimodal

models’ ability to adapt and ReID. However, a Corruption Robustness Analysis (CRA)

through the design of a specific corruption evaluation dataset has only been proposed on

unimodal data. Also, apart from Chen et al. (2021) work on person ReID, the others

(Michaelis et al., 2019; Hendrycks & Dietterich, 2019) are focused on different tasks.

• Number of existing MDA strategies is limited and MDA was never explored for person

ReID, despite their strong potential in making models better adaptive and robust. Indeed,

the work provided by Nakamura et al. (2022) on object detection shows the MDA potential
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while working with the V and I modalities. However, existing techniques cannot be directly

transferred to the person ReID task, which must be designed and explored.

In this thesis, the previous issues will be addressed through the design of innovative DL models

specialized for V-I person ReID models, the creation of new corrupted datasets for multimodal

models’ CRA on this task, and the design of a MDA tailored to person ReID and its related

challenges.

Table 2.1 Comparison of approaches related to this thesis. CRA stands for corruption

robustness analysis. U, M, and C stands for unimodal, multimodal, and cross-modal,

respectively. Aspects directly related to this thesis approach are highlighted in blue.

Approach Task Configuration CRA DA
Hendrycks et al. (2019) Classification U (RGB) U No

Michaelis et al. (2019) Object Detection U (RGB) U U DA

Xu et al. (2020) Classification M (RGB-language) No MDA

Nakamura et al. (2022) Object Detection C (RGB-IR) No MDA

Hao et al. (2023) Representation learning M (RGB-language) No MDA

Nguyen et al. (2017) Person ReID M (RGB-IR) No No

Chen et al. (2021) Person ReID U and C (RGB-IR) U U DA

Zheng et al. (2021) Person ReID M (RGB-IR-NIR) No No

Wang et al. (2022) Person ReID M (RGB-IR-NIR) No No

Focus of this Thesis Person ReID M (RGB-IR) M MDA
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Abstract

Visible-infrared person re-identification (V-I ReID) seeks to match images of individuals

captured over a distributed network of RGB and IR cameras. The task is challenging due to the

significant differences between V and I modalities, especially under real-world conditions, where

images are corrupted by, e.g., blur, noise, and weather. Despite their practical relevance, Deep

Learning (DL) models for multimodal V-I ReID remain far less investigated than for single and

cross-modal V to I settings. Moreover, state-of-art V-I ReID models cannot leverage corrupted

modality information to sustain a high level of accuracy. In this paper, we propose an efficient

model for multimodal V-I ReID – named Multimodal Middle Stream Fusion (MMSF) – that

preserves modality-specific knowledge for improved robustness to corrupted multimodal images.

In addition, three state-of-art attention-based multimodal fusion models are adapted to address

corrupted multimodal data in V-I ReID, allowing for dynamic balancing of the importance of

each modality. The literature typically reports ReID performance using clean datasets, but more

recently, evaluation protocols have been proposed to assess the robustness of ReID models under

challenging real-world scenarios, using data with realistic corruptions. However, these protocols

are limited to unimodal V settings. For realistic evaluation of multimodal (and cross-modal) V-I

person ReID models, we propose new challenging corrupted datasets for scenarios where V and

I cameras are Co-Located (CL) and Not Co-Located (NCL). Finally, the benefits of our Masking

and Local Multimodal Data Augmentation (ML-MDA) strategy are explored to improve the
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robustness of ReID models to multimodal corruption. Our experiments on clean and corrupted

versions of the SYSU-MM01, RegDB, and ThermalWORLD datasets indicate the multimodal

V-I ReID models that are more likely to perform well in real-world operational conditions. In

particular, our ML-MDA is an important strategy for a V-I person ReID system to sustain high

accuracy and robustness when processing corrupted multimodal images. The multimodal ReID

models provide the best accuracy and complexity trade-off under both CL and NCL settings and

compared to state-of-art unimodal ReID systems, except for the ThermalWORLD dataset due

to its low-quality I. Our MMSF model outperforms every method under CL and NCL camera

scenarios. GitHub code: https://github.com/art2611/MREiD-UCD-CCD.git.

3.1 Introduction

Real-world video monitoring and surveillance applications (e.g., recognizing individuals in

airports and vehicles in traffic) are challenging problems that rely on object detection (Zou

et al., 2019; Zaidi et al., 2022), tracking (Luo et al., 2021), classification (Sen et al., 2020), and

re-identification (ReID) (Khan & Ullah, 2019; Ye et al., 2021). Person ReID aims to recognize

individuals over a set of distributed non-overlapping cameras. State-of-art ReID systems based

on, e.g., deep Siamese networks (Fu et al., 2021a; Sharma et al., 2021; Somers et al., 2023),

typically learn an embedding through various metric learning losses, which seeks to make image

pairs with the same identity closer, and image pairs with different identities more distant in

the embedding space. Despite the recent advances with DL models, person ReID remains a

challenging task due to the non-rigid structure of the human body, the different viewpoints/poses

with which a person can be observed, image corruption, and the variability of capture conditions

(e.g., illumination, scale, contrast) (Bhuiyan et al., 2020; Mekhazni et al., 2020).

Visible-infrared (V-I) person ReID aims to recognize individuals of interest across a network of

V and I cameras. Unlike visible cameras, infrared ones allow night-time recognition. This has

motivated research on cross-modal recognition to provide methods for V-I person ReID from

night-time to day-time, or vice-versa (Ye et al., 2021). In addition, a V-I person ReID approach

has been proposed for a multimodal recognition (Nguyen et al., 2017), where the I modality
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is used in conjunction with the V, improving accuracy due to its different data encoding and

perception under low light conditions. In fact, a V-I ReID can allow training a single model

remains accurate over diverse capture conditions. A V-I ReID model should, however, conserve

modality specific-features instead of focusing mostly on modality-shared ones (Baltrušaitis et al.,

2018), which is often absent, or not explicitly addressed by state-of-art approaches. Furthermore,

V and I cameras may be co-located (CL) or not co-located (NCL), and variation in camera

configuration affects the spacial alignment of V-I images, which is likely influencing ReID (as it

is known to impact other tasks) (Wang et al., 2021b; Xuan et al., 2022).

Artificially corrupted datasets (Hendrycks & Dietterich, 2019; Chen et al., 2021; Michaelis

et al., 2019) are important for evaluating V-I person ReID models, yet public datasets are often

collected in controlled environments that cannot cover the range of real-world scenarios (Poria

et al., 2017). As highlighted by Rahate et al. (2022), there is a need to create multimodal

real-world datasets that contain corrupted modalities. Apart from the recent approach using

corrupted audio-visual data in emotion recognition Hong et al. (2023), the V-I ReID evaluation

set proposed in our preliminary work (Josi et al., 2023) is, to our best knowledge, the only

existing dataset for corrupted evaluation for visual multimodal learning. However, the dataset in

(Josi et al., 2023) is only evaluated for a simple architecture and does not consider the correlation

in the corruption from one camera to another. For example, corruption due to weather conditions

should similarly occur on a V-I pair from co-located V-I cameras.

Neglecting to evaluate ReID models on corrupted data can result in large and unexpected

performance gaps at deployment. To reduce this gap, one can attempt to restore corrupted

input images during test time (Chang et al., 2020), at the expense of pipeline complexity, by

restoring the data before proceeding to the main ReID task. Using more complex DL models

has been shown to improve performance on corrupted image data in object detection (Michaelis

et al., 2019) and image classification (Xie et al., 2020). For instance, vision transformer models

(Han et al., 2020) have been shown some robustness to image corruption (Hendrycks et al.,

2020). In particular, the TransReID model He et al. (2021) provides state-of-art person ReID

performance when facing corrupted data (Chen et al., 2021). However, such complex models
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limit the potential for real-time ReID applications. Using more diverse training data can improve

the robustness of deep ReID models to corrupted data (Xie et al., 2020), and does not increase

the model’s complexity at test time. Data augmentation (Shorten & Khoshgoftaar, 2019) also

avoids the costs of data collection and annotation.

This paper focuses on the following research questions. How can efficient V-I ReID models be

developed considering CL or NCL scenarios? How can these V-I models be trained, thanks to

augmented multimodal data, to provide better robustness to real-world image corruptions than

state-of-art models like TransReID?

In this paper, a cost-effective V-I ReID model named Multimodal Middle Stream Fusion (MMSF)

is proposed to explicitly preserve and exploit both modality-specific and modality-shared

knowledge, thereby improving robustness to corrupted images. In addition, three state-of-art

attention-based models are adapted from the areas of sentiment analysis, emotion recognition,

and action recognition for similarity matching, as needed for person ReID. Attention approaches

are expected to address image corruptions through a dynamic feature selection, dealing with

the varying availability of modality information. However, these models mainly focus on

modality-shared features, eventually losing some capacity to discriminate.

Essential for the evaluation of both multimodal and cross-modal V-I person ReID models,

corrupted V-I datasets are proposed for uncorrelated and correlated cases, named respectively

Uncorrelated Corrupted Dataset (UCD) and Correlated Corrupted Dataset (CCD). These two

sets allow for a robust evaluation of models based on 20 V and 19 I different corrupted conditions.

Improving from our preliminary work, corruptions are correlated or not to suit NCL and CL

camera configurations. In our experiments, we validate ReID models using clean and corrupted

versions of the SYSU-MM01 (Wu et al., 2017) (NCL), RegDB (Nguyen et al., 2017) (CL),

and ThermalWORLD (Kniaz et al., 2018) (CL) datasets. Our preliminary work in (Josi et al.,

2023) introduced the Masking and Local Multimodal Data Augmentation (ML-MDA) strategy

that improves the accuracy and robustness to strong image corruptions using simple fusion

architecture. The strategy is further assessed in this paper and expected to train models leveraging
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the complementary knowledge among modalities while dynamically balancing the importance

of individual modalities in final predictions.

Main contributions:

(1) A novel MMSF architecture is proposed for V-I ReID that allows preserving both modality-

specific and -shared features. This aspect is shown to be essential for both CL and NCL settings

but is not addressed most of the time. Additionally, three state-of-art attention-based models are

adapted to similarity matching, and evaluated for V-I person ReID. These models are detailed in

Section 3.3.

(2) For realistic evaluation of V-I person ReID models, challenging UCD and CCD datasets are

designed (see Section 3.4).

(3) The ML-MDA strategy presented Section 3.5 is introduced for training DL models for V-I

ReID multimodal that are robust to corruption.

(4) Our empirical results (see Section 3.6) on clean and corrupted versions of the challenging

SYSU-MM01, RegDB, and ThermalWORLD datasets provides insight about cost-effective

DL models to adopt for V-I ReID, and their dependency on dataset properties and CL/NCL

scenarios. Results also indicate that our V-I ReID models can outperform TransReID and related

state-of-art models on clean and corrupted data in terms of accuracy and complexity.

3.2 Related Work

3.2.1 Multimodal fusion

3.2.1.1 Fusion approach and spatial alignment

To better handle or analyze a given problem, not being restricted to a single source of information

is usually a powerful strategy (Baltrušaitis et al., 2018; Wang, 2021). As well-known approaches,

one can think of late (Snoek et al., 2005) or sensor (Lohweg & Mönks, 2010) fusions. The
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former considers independent learning and feature extraction for each modality before making

a decision. Such fusions are easy to implement, as models can be trained independently and

added to a system through minor adjustments. However, a model cannot learn the correlation

between the modalities (Zhang et al., 2017), like spatially related information. The latter (i.e.,

sensor fusion) stacks modalities together before any feature extraction, allowing inter-modality

correlations to be mined and used by the model but considerably increasing the input dimension.

Also, no spatial alignment may make modality correlations harder to find by the model (Wang

et al., 2021b).

Intermediate or model-level fusion techniques consider fusing modalities during the feature

extraction and before the decision layer (Baltrušaitis et al., 2018), increasing the semantic

information contained in features before fusion and eventually making correlations easier to

find. However, where spatial information continuously disappears through the network (Chen

et al., 2018a), it is unclear how much remains at each step and how it may impact a model.

From experiments provided by Wang et al. (2021b) on fusion location and data alignment, it is

important to differentiate spatially aligned and unaligned data as models may have really distinct

behaviors.

3.2.1.2 Model level fusion

Model-level fusion considers fusing modality representations of a deep learning model some-

where in between the sensor representations and the feature vectors. Coordinated modality

representation is seen by Baltrušaitis et al. (2018) as a challenging but promising fusion direction

for model-level fusion approaches. Exchanging modality knowledge allows it and seems very

practical as correlations may be mined by a model and as one modality may be more or

less informative. However, they raise the models’ lack of ability to conserve supplementary

information and not only exploit complementary information.

In practice, attention-based multimodal approaches allow modality knowledge exchange, as it

is the case for the MMTM proposed by Joze et al. (2020). The module refactors the channels
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of each modality regarding how the intra- and inter-modality channels correlate. Based on the

MMTM concept and inspired by Zhang et al. (2020) that used the split operation to improve

the dynamic channel selection, Su et al. (2020) presented the MSAF approach. The dynamic

channel refactoring in such multimodal models may allow for fine-grained feature selection and

limit corruption impact. Unlike previous approaches, modality attention (Gu et al., 2018), later

updated by Ismail et al. (2020), provides soft attention weights for each modality to balance

modality importance in the final embedding based on their discriminating capabilities. Again,

such attention sounds to be a great approach to tackling punctually corrupted data. However,

those attention models do not explicitly work at conserving the modality-specific knowledge,

missing the point raised by Baltrušaitis et al. (2018).

Some transformers architectures tackle this aspect, conserving modality-specific knowledge

through modality-specific streams and self-attention, and modality-shared knowledge thanks

to modality-shared streams and cross-attention (Sun et al., 2021; Lian et al., 2021; Wei et al.,

2020a). However, transformer architectures are known to be complex and heavy Han et al.

(2020), which do not align with video-surveillance challenges, requiring close to real-time

algorithms.

3.2.1.3 Multimodal person ReID

Most approaches for person ReID (Ye et al., 2021) focus on the unimodal (RGB) (Ristani & Tomasi,

2018; Luo et al., 2019a) and cross-modal (Ye et al., 2021; Alehdaghi et al., 2023; Zhang et al.,

2022) settings. Few only focused on combining multimodal information. For example, Chen

et al. (2019a) used the contour information. Bhuiyan et al. (2020) used pose information.

However, for those approaches, the additional modality is built from the exploitation of the

main modality, which would be similarly affected by image corruption and consequently not so

helpful in this regard.

Using another sensor to extract a supplementary modality allows to have a distinct encoding,

likely differently affected by corruptions. For example, the infrared and near-infrared are shown
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to be beneficial for person ReID (Zheng et al., 2021; Wang et al., 2022), but leveraging the

knowledge from three modalities might not be realistic for a real-world surveillance setting,

asking for large models architectures.

Nguyen et al. (2017) represents the only approach where visible and infrared modalities only

are integrated into a joint representation space. Infrared and visual features are concatenated,

produced from independently trained CNNs, and used for pairwise matching at test time. This

simple model attained an impressive performance on the RegDB dataset. However, RegDB data

is captured with only one camera per modality, V-I cameras are co-located with only a single

tracklet of ten images per modality and individual, and except for their low resolutions, captured

images present no specific corruptions. For these reasons, the RegDB dataset is less consistent

with a real-world scenario. In fact, the development of person ReID models that are effective in

uncontrolled real-world scenarios remains an open problem (Hendrycks et al., 2021).

3.2.2 Image corruption and augmentation strategies

Data augmentation (DA) consists in multiplying the available training dataset by punctually

applying transformations on training images, like flips, rotations, and scaling (Ciregan et al.,

2012). This way, a model usually benefits from increased robustness to image variations and

improved generalization performance. According to Geirhos et al. (2018), training a model

on a given corruption is only sometimes helpful over other types of degradation. Yet, Rusak

et al. (2020) showed that a well-tuned DA can help the model to perform well over multiple

types of image corruption through Gaussian and Speckle noise augmentation. Hendrycks et al.

(2019) proposed the Augmix strategy, for which multiple variations of an image are obtained

through randomly applied transformations, variations that get mixed together. Random Erasing

occludes parts of the images punctually by replacing pixels with random values (Zhong et al.,

2020). Previous strategies allow a large variety of augmented images, simulating eventually

real-world data and hence inducing higher generalization performance.
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Focusing on person ReID, Chen et al. (2021) proposed the CIL learning strategy to improve

systems performance under corrupted data. Their strategy is partly based on two local DA

methods – self-patch mixing and soft random erasing. The former replaces some of the pixels in

a patch with random values, while the latter superposes a randomly selected patch from an image

at a random position on this same image. Gong et al. (2021) show interesting improvements

through local and global grayscale patch DA on RGB images. However, the previous strategies

are limited to single modality stream models, even though the latter shows how grayscale data

may reinforce the visible modality features using DA.

Multimodal data augmentation strategies have presented encouraging results for image-text

emotion recognition (Xu et al., 2020) or vision-language representation learning (Hao et al.,

2023). Also, Nakamura et al. (2022) proposed a visible-thermal cross-domain DA for few

shots object thermal detection, working at closing the domain gap by augmenting data through

hetero modality objects added on the main modality images. However, to our best knowledge,

our preliminary work (Josi et al., 2023) is the first to propose MDA with V-I person ReID

applications through ML-MDA. Still, this MDA has only been investigated on a simple fusion

model, which does not assure its generalization to more developed fusion architectures. Also,

the evaluation is limited to corruptions set that do not consider eventual correlations between

corruptions for NCL or CL cameras, which is tackled in this work.

3.3 Multimodal Fusion for V-I ReID

The main objective of our study is to find how modalities should be fused to be robust to data

corruption while conserving great performances on clean data. Hence, plural multimodal models

are studied, all trained and evaluated following a pairwise matching scheme (Fig. 3.1).

From our preliminary work (Josi et al., 2023), the learned concatenation model is now used as

a baseline, referred to as Baseline C. Baseline S stands as our second baseline with the same

architecture but an element-wise sum fusion of the feature vectors instead of a concatenation.
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Figure 3.1 Representation of the multimodal person ReID (a) learning while using the

triplet loss and (b) inference.

The selection of modality-shared and modality-specific features remains unclear in most models,

whereas the importance of the conservation of both feature types has been highlighted by

Baltrušaitis et al. (2018). Hence, the MMSF is proposed and first presented. Three attention-

based models follow as attention should handle corruption well through a dynamic feature

selection regarding each input. Still, the attention could also allow a modality corruption to

degrade the hetero modality and require investigation. The three models are extracted from the

literature and specially adapted to pairwise matching and, more precisely, to the person ReID

task.

Fusion approaches are not restricted to a specific backbone, but ResNet-18 (He et al., 2016)

backbones are used for illustration purposes. Each model is optimized using the batch hard triplet

loss (Hermans et al., 2017) LBH_tri, and cross-entropy with regularization via label smoothing

(Szegedy et al., 2016) LCE_ls. We follow the usual optimization process (Ye et al., 2021), except

for the cross-entropy. Indeed, regularization via label smoothing is used by Chen et al. (2021) is

is better at addressing corruption.
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Figure 3.2 Training architecture of the MMSF model while fusing the features in the

middle stream for ℓ = 3.

3.3.1 Multimodal middle stream fusion

Assuring the conservation of the modality supplementary information, while taking advantage

of the modality-shared information, we propose the MMSF model.

The model comprises two independent modality-specific CNN streams focused on the modality-

specific information and a middle CNN stream that exploits the modality-shared information (Fig.

3.2). Each stream is independent and optimized through its specific loss functions, allowing

it not to influence a stream representation from direct knowledge exchanges among streams.

FℓV ∈ R𝐻×𝑊×𝐶 and FℓI ∈ R𝐻×𝑊×𝐶 are the visible and infrared feature maps before convolution

blocks ℓ ∈ N. For a fusion before layer ℓ, the middle stream takes Fm = FℓV + FℓI as input and

pursues the feature extraction from this fused representation. Its middle stream size varies

regarding ℓ value, being a partial backbone starting at layer block ℓ.
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Figure 3.3 Training architecture of the MAN model.

3.3.2 Attention-based models

3.3.2.1 Modality attention network

Modality Attention Network (MAN) (Gu et al., 2018) is an attention-based multimodal approach

that dynamically weights feature vectors from each modality before fusing them. This model

seems meaningful to explore as the dynamic weighting of each modality feature vector should

help handle corrupted data. Since the model architecture has been adapted for our person ReID

study, its architecture is presented in Fig. 3.3.

Two backbones first extract each visible fV ∈ R𝑑 and infrared fI ∈ R𝑑 modality features, with

d ∈ N. The obtained vectors are concatenated and passed through a modality attention module,

which learns to generate soft attention weights. The soft weights allow the model to give

more importance to the discriminant modality features in the final embedding. To do so, the

concatenation of the two embeddings goes through two dense layers and a final softmax 𝜎

regression, which produces the soft weights SV ∈ R for the visible and SI ∈ R for the infrared

modalities. Soft weights are produced as follows:

[SV, SI] = 𝜎(W2tanh(W1 [fV, fI]𝑇 + b1) + b2) (3.1)
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where W1 ∈ R𝑘×𝑑 and W2 ∈ R1×𝑘 are weight matrix, 𝑘 ∈ N being an hyper-parameter,

b1 ∈ R𝑘×2, and b2 ∈ R1×2 are biases.

Thanks to soft attention weights, visible and infrared original features are then weighted,

respectively noted 𝑤fV and 𝑤fI. For the visible modality, 𝑤fV = SV × fV, and for the infrared

modality, 𝑤fI = SI × fI. Then, the predicted output vector ŷ is computed by passing the

concatenation or the element-wise sum of the 𝑤fV and 𝑤fI vectors through a final softmax layer

for classification.

As a consequence of the CL and NCL camera scenarios and the induced spatial alignment,

which might influence the feature vector’s composition, we also consider the element-wise sum

fusion of the feature vectors in this work. Concatenation conserves each feature definition while

fusing, but doubles the feature vector dimension. Summation makes the fused vector of the

original feature vector size but may erase knowledge if the embedded concepts are not aligned.

3.3.2.2 Multimodal transfer module

The MMTM (Joze et al., 2020) is an approach that focuses on channel attention to refactor the

feature maps from two or more modality CNN streams regarding the spatial statistics of each. As

the refactoring is done dynamically and based on the statistics of each given input, such attention

should also be helpful while facing corrupted data. Two similar backbones are used to extract

the features from each V and I representation. Two modules are used for our architecture (Fig.

3.4), after the third and the fourth convolution blocks, allowing for intermediate and high-level

feature refactoring. For a given layer 𝑙 ∈ N, the visible and the infrared modality feature maps

are respectively noted FℓV ∈ R𝐻×𝑊×𝐶 and FℓI ∈ R𝐻×𝑊×𝐶 , with H ∈ N, W ∈ N and C ∈ N being

respectively the feature maps height, width and channel size. The feature map from each stream

is first squeezed with a global average pooling layer over the spatial dimension, leading to two

linear vectors of channel descriptors. Those vectors are concatenated and passed through a

dense layer, following equation (3.2), to obtain the joint representation Jℓ ∈ R𝐶𝐽 .

Jℓ = W( [AvgPool(FℓV); AvgPool(FℓI)]) + b (3.2)
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Figure 3.4 Learning model architecture for the MMTM and the MSAF approaches while

concatenating the feature vectors for fusion. The attention module may be either the

MMTM or the MSAF modules.

where W ∈ R𝐶𝐽×𝐶2
is a weight matrix, b ∈ R𝐶𝐽 the bias of the dense layer, and 𝐶𝐽 = 𝐶2/4 to

limit the model capacity and increase the generalization power (Joze et al., 2020). Then, an

excitation signal is produced with a distinct dense and softmax activation layer applied for each

modality to the shared channel descriptor Jℓ. Finally, this excitation signal is broadcasted through

the spatial dimension for each modality with an element-wise product, following equations (3.3),

forming the final weighted feature maps 𝑤FℓV ∈ R𝐻×𝑊×𝐶 and 𝑤FℓI ∈ R𝐻×𝑊×𝐶 .

𝑤FℓV = 2 × 𝜎(WVJℓ + bV) � FℓV
𝑤FℓI = 2 × 𝜎(WIJℓ + bI) � FℓI

(3.3)

where WV ∈ R𝐶×𝐶𝐽 and WI ∈ R𝐶′×𝐶𝐽 are weight matrix and bV ∈ R𝐶 , bI ∈ R𝐶 the bias of the

dense layers. 𝜎 stands for the sigmoid function. The element-wise product is represented by �.

3.3.2.3 Multimodal split attention fusion

The Multimodal Split Attention Fusion module (MSAF) proposed by Su et al. (2020) also

works from the channel attention principle. Modules are applied at the same locations for this

model (Fig. 3.4). Let us describe the MSAF module. First, the visible and infrared feature

maps FℓV ∈ R𝐻×𝑊×𝐶 and FℓI ∈ R𝐻×𝑊×𝐶 are split into 𝑛 ∈ N visible and infrared sub feature
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maps, respectively noted SℓV ∈ R𝐻×𝑊×𝐶
𝑛 and SℓI ∈ R𝐻×𝑊×𝐶

𝑛 . The 𝑛 splits from each modality

are element-wise summed and fed to a global average pooling layer to get a global channel

descriptor per modality noted JℓV ∈ R𝐶
𝑛 and JℓI ∈ R𝐶

𝑛 . Then, the global channel descriptor

from each modality is element-wise summed and passed through a dense layer, followed by a

batch normalization and a ReLU activation to catch the inter-channel correlations, forming the

common channel descriptor Jℓ ∈ R𝐶
𝑛 . From Jℓ, 𝑛 excitation signals are produced per modality,

using a dense layer and a softmax activation on Jℓ for each original feature map split. These

excitation signals are then broadcasted through the spatial dimension for each split with an

element-wise product, following equations 3.4, forming the final weighted splits 𝑤SℓV ∈ R𝐻×𝑊×𝐶
𝑛

and 𝑤SℓI ∈ R𝐻×𝑊×𝐶
𝑛 .

𝑤SℓV = 𝜎(WVJℓV + bV) � SℓV
𝑤SℓI = 𝜎(WTJℓI + bT) � SℓT

(3.4)

The 𝑛 excited splits are concatenated together for each modality to get the final weighted

feature maps 𝑤FℓV ∈ R𝐻×𝑊×𝐶 and 𝑤FℓI ∈ R𝐻×𝑊×𝐶 . One can notice that the model needs fewer

parameters than the MMTM approach, thanks to the feature map splits.

3.4 Corrupted Datasets

Cam 2Cam1 Cam3Cam4 Cam5 Cam6Cam2

Indoor OutdoorIndoor Outdoor Indoor Outdoor

SYSU-MM01

Cam 2Cam 1 Cam 1

RegDB

Outdoor Outdoor Outdoor Indoor

ThermalWORLD

Cam ?

Figure 3.5 Examples from SYSU-MM01, RegDB and ThermalWORLD. ThermalWorld

does not provide camera information.

To better simulate real-world conditions while evaluating a model, the focus has been on

corrupted test sets over the last few years (Hendrycks & Dietterich, 2019; Chen et al., 2021;

Michaelis et al., 2019). However, those benchmark test sets were proposed for single modality

settings, whereas our objective is to evaluate the value of V-I multimodal models. As both the V
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and the I modalities encode from visual cues, corruptions that affect the visual modality may

also affect the infrared modality, such as occlusions or weather-related corruptions. From this

observation, the 20 visible corruptions from Chen et al. (2021) are extended to the infrared

domain in this work, allowing us to provide two corrupted datasets. Those two datasets are

suited to the CL and the NCL settings.

In the following sections, the three clean datasets are first detailed. A presentation of the used

modality corruptions follows. Finally, our two corrupted datasets are detailed.

Table 3.1 Datasets statistics. V = Visible and I = Infrared.

Image size and number of samples per identity are presented

as: Min;Max;Avg. BRISQUE (Mittal et al., 2011) measure

is shown as: avg±std.

Statistic SYSU RegDB TWORLD
V-images 29 033 4120 8125

I-images 15 712 4120 8125

V-Camera 4 1 16

I-Camera 2 1 16

Cameras setting NCL CL CL

Identities 491 412 409

V-images/id 10;144;59.1 10;10;10 1;155;19.9

I-images/id 10;144;32.0 10;10;10 1;155;19.9

Image width 26;1198;111 64;64;64 10;810;141

Image height 65;879;291 128;128;128 25;897;353

V-BRISQUE 30.50±12.26 38.84±9.86 27.79±13.28

I-BRISQUE 40.52±8.42 38.81±9.56 60.25±8.67

3.4.1 Clean datasets

The three used datasets present distinct statistics (Tab. 3.1) suited to build and draw a strong

study.

SYSU-MM01 (Wu et al., 2017) gather 4 visible and 2 infrared cameras, with 491 distinct

individuals, 29033 RGB, and 15712 I images. The V and I cameras are not co-located, so the

scene’s spatial description varies from one modality to another for a given V-I image pair.
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RegDB (Nguyen et al., 2017) is a much smaller dataset, with one camera only per modality,

the V and I cameras being co-located. A single 10 images tracklet is available per identity and

camera. Hence, RegDB 412 identities lead to 4120 images per modality.

3ThermalWorld (Kniaz et al., 2018) has only its training part available, leading us to 409

distinct identities. 16 co-located cameras per modality captured each 8125 image. However, the

infrared images are of terrible quality, with a BRISQUE (Mittal et al., 2011) value of 60.25,

much higher than RegDB and SYSU-MM01 ones, being at 38.81 and 40.52 respectively.

3.4.2 Modality corruptions

Hendrycks & Dietterich (2019); Chen et al. (2021) used 20 corruptions of the visual modality,

which were regrouped into four distinct types - noise, weather, blur, and digital. In this work,

the used corruptions are the same for the visual modality. However, the I modality can also be

affected by multiple corruptions, which is considered. In fact, 19 of the corruptions affecting

the visual modality can also apply to the infrared with a few slight adjustments (Corruptions

taxonomy figure and corruptions adjustments table in the Appendix II.1).

First, the current luminosity does not impact the I modality, so brightness corruption is not used

for this modality. Then, different noises, like Gaussian, Shot, Impulse, and Speckle, are applied

similarly, except each noise is turned into grayscale values to respect the infrared modality single

color channel encoding. Spatter and frost are two other corruptions that needed to be grayscaled

before being applied to the infrared images. Indeed, blue-colored water or brown-colored dirt

was applied for spatter, and frozen blue masks for frost. As a last adjustment, the saturation is

expressed differently for the I modality, visually brightening the object of interest eventually if

this one is too close to the camera, instead of modeling color intensity for the visual modality.

Finally, all other corruptions were applied similarly for the V and I modalities.

3 Download link (https://drive.google.com/file/d/1XIc_i3mp4xFlDJ_S5WJYMJAHq107irPI/view)

obtained from github ThermalGAN issues (https://github.com/vlkniaz/ThermalGAN/issues/12).
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3.4.3 Uncorrelated corruption dataset

The Uncorrelated Corruption Dataset (UCD) is proposed as a first way to evaluate the models’

corruption robustness. To build UCD, the corruptions are randomly and independently selected

and applied on each modality for a given V-I test pair, making it highly challenging. The camera

corruption independence from V to I modality is suited for a NCL camera setting, as it is the

case for SYSU-MM01. Indeed, for example, a visible indoor and an outdoor infrared camera

would lead to weather appearing only on the infrared camera or to blur, impacting one camera

only while the other is impacted independently. As applied corruptions are most of the time

distinct from one modality to another under UCD, it should allow each modality to compensate

for the corrupted features from the other. Hence, this setting should be a great way to evaluate

the models’ ability to select the information of interest from one or another modality.

3.4.4 Correlated corruption dataset

One can expect some corruption to be correlated from one camera to another, corruption

type-wise as intensity-wise. As a brief example, the rain is expected to appear on both visible and

infrared cameras simultaneously, especially if those are co-located. However, some other types

of corruption, such as image saturation, are camera dependent and would happen punctually

on one camera with no correlation with the other. The CCD dataset is proposed from these

observations, suited for CL cameras and gathering the following characteristics (Tab. 3.2).

At first, weather-related corruptions such as fog, rain, frost, and snow appear much correlated,

so the weather from one camera is assumed to appear with the same level of corruption on the

other. Spatter expresses the water or dirt splashes on the cameras, which has a great chance to

happen on both cameras considering co-located cameras, but with a level that might differ; the

level is selected randomly and independently. Similar behaviors for blur-related corruptions

would also make sense in real-world conditions if cameras are co-located since those corruptions

are a consequence of camera settings, like exposure time or focus, for example, but which also

mostly depends on the current scene. Because each modality camera might be more or less
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Figure 3.6 Samples from our three corrupted datasets. Visuals do not represent all

available dataset versions, as each dataset has its own UCD, CCD, and CCD-50 version.

reactive regarding the situation, we consider that blur-related corruptions (i.e., defocus, gaussian,

glass, zoom, motion blurs) affect the two modalities simultaneously with an intensity level that

can differ. The intensity level is randomly and independently selected except for motion blur

corruption. Indeed, infrared cameras usually have a higher exposure time than visible cameras,

making those more affected by motion blur. Consequently, the level is always selected as equal

or superior for the infrared modality compared to the visible one.

Concerning the ten remaining corruptions, those are much related to data encoding and can

affect visible or infrared cameras independently. The hetero-modality is consequently corrupted

if the selected corruption lies in the correlated corruptions. Otherwise, we randomly apply

another corruption among the uncorrelated ones to the hetero-modality. Considering modalities

as always corrupted is an extreme scenario, which is attractive to frame models’ behaviors but

not entirely realistic. Hence, the UCD-X dataset is proposed. In this configuration, 𝑋% of the
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Table 3.2 Correlated (center) and

uncorrelated (right) corruptions are presented,

along with the relation between levels of

corruption (left) from the V to the I modality

for correlated corruptions.

Level Correlated Uncorrelated
V = I Fog Gaussian noise

V = I Frost Shot noise

V = I Snow Impulse noise

V = I Rain Speckle noise

V ≠ I Spatter Elastic transform

V ≠ I Defocus blur Saturation

V ≠ I Gaussian Blur JPEG compression

V ≠ I Glass Blur Pixelate

V ≠ I Zoom Blur Contrast

V ≤ I Motion Blur Brightness

(a) S-REA (b) MS-REA (c) Masking

Figure 3.7 Soft random erasing (S-REA) (Chen et al., 2021) and our MDA based on

multimodal soft random erasing (MS-REA) and modality masking.

corrupted pairs affected by uncorrelated corruptions are formed with one of the two modalities

remaining clean. In practice, we fixed it at 50%, but this value can be tweaked to make the

datasets more or less challenging for further experiments.

3.5 Multimodal Data Augmentation

The explored models are based on co-learning, allowing each modality stream to adapt to the

other one (Baltrušaitis et al., 2018; Rahate et al., 2022). We propose a new MDA approach,
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the Masking and Local Multimodal Data Augmentation (ML-MDA), for better learning of the

models. In practice, ML-MDA is based on two components: Multimodal Soft Random Erasing

(MS-REA) and modality masking (Fig. 3.7). Those two data augmentations are used together

during the learning process to make the learned co-learning model robust and accurate in a

challenging inference environment.

3.5.1 Multimodal soft random erasing

Making a multimodal model focus on modality-specific features is challenging, as the model

usually mainly focuses on shared features (Baltrušaitis et al., 2018). Augmenting the multimodal

data with local occlusions may help the model to emphasize modality-specific feature importance,

as some features will be available only from one or another modality. The soft random erasing

(Chen et al., 2021) (S-REA) (Fig. 3.7.a.) uses local occlusions to learn the model not to rely only

on the most important features, but consider unimodal learning and consequently not exploit

this aspect.

The MS-REA data augmentation is proposed to close this gap. Instead of replacing a proportion

of the pixels in a given image patch with random pixel values for the visible modality only as

S-REA, MS-REA applies a patch on both the visible and infrared modalities. Grayscaled random

pixel values are used for patches on the thermal modality to respect the infrared thermal image

definition, encoded on one channel, and potentially aligning better with real-world corruptions.

The spatial patch location is randomly and independently selected from the visible and infrared

images for a given V-I pair. To close the occlusion gap brought by the applied patches through

MS-REA, the model must learn how to select each modality feature when partial information is

available from each modality. Such behavior is expected to extend well to real-world corruption.
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3.5.2 Modality masking

A modality might be punctually unavailable or primarily uninformative. Thus, the model shall

learn how to cancel a modality to reduce its impact on the final prediction. The modality

masking approach is expected to allow it by punctually replacing one or another modality with

an entirely blank image. Instead of masking the multimodal representation as it has been done

by Gabeur et al. (2022), a representation is extracted from the masked input, so the model has to

learn how to cancel its influence on the final results. This also forces the model to focus more on

modality-specific features since one modality only contains all the meaningful knowledge for

ReID. This DA should supposedly complement the previously presented MS-REA approach by

balancing each modality’s importance in the final embedding regarding each modality level of

corruption, whereas MS-REA should learn the model to select the features within each modality

better. MS-REA should also make models’ put more emphasis on the modality-specific features,

this time thanks to the independent occlusions locations on each image.

3.6 Results and Discussion

3.6.1 Experimental methodology

Data division. SYSU-MM01 and RegDB datasets have well-established V-I cross-modal

protocols (Wang et al., 2019a,b; Ye et al., 2019), but multimodal protocols were not existing

prior to our preliminary work (Josi et al., 2023). Following them again, 395 and 96 identities

from SYSU-MM01 are respectively used for the training and the testing set. For RegDB, 412

identities are divided into two identical sets of 206 individuals for learning and testing. The

SYSU-MM01 train/test ratio is kept for ThermalWORLD, leading to 325 training identities

and 84 for testing. A 5-fold validation (Raschka, 2018) is performed over the data used for

training, using folds of respectively 79, 41, and 65 distinct identities for SYSU-MM01, RegDB,

and ThermalWORLD.
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Data augmentation. Our proposed multimodal extensions MS-REA is used with the same

appearance augmentation probability as S-REA (Chen et al., 2021). Modality Masking is

applied randomly on one or another modality, with equiprobability, and occurs with a default

probability of 1/8. When used on unimodal models, the CIL (Chen et al., 2021) DA is used the

same way as the original authors. For the RegDB dataset only, the validation set is given the

same DA as the training set as the maximum performances were reached in the early epochs

otherwise. This way, better convergence was observed, allowing learning complex cues by the

model.

Pre-processing. A data normalization is done at first by re-scaling V and I images to 144 × 288.

Random cropping with zero padding and horizontal flips are adopted for base DA. Those

parameters were proposed by Ye et al. (2021) on RegDB and SYSU-MM01 datasets. The same

normalization is kept under ThermalWORLD for consistency among protocols.

Performance measures. The mean Average Precision (mAP), and the mean Inverse Penalty

(mINP) are used as performance measures, commonly used for person ReID (Ye et al., 2021).

The mAP is the mean computed over all query image ratio of retrieved matches over total

matches. However, mAP does not reflect the worst-case scenario, unlike the mINP measure,

which applies a penalty on the hardest matches, making it a great complementary measure.

Hyperparameters. The hyperparameters values in our models were set based on the default

AGW (Ye et al., 2021) baseline. The SGD is used for training optimization, combined with a

Nesterov momentum of 0.9 and a weight decay of 5𝑒 − 4. Our models are trained through 100

epochs. Early stopping is applied based on validation mAP performances. The learning rate is

initialized at 0.1 and follows a warming-up strategy (Luo et al., 2019b). The batch size is 32,

with 8 distinct individuals and 4 images per individual. The paired image is selected by default

for RegDB and ThermalWORLD. For the SYSU-MM01 dataset, the images from the hetero

modality are randomly selected through the available ones to form a pair for a given identity.

Losses. The Batch Hard triplet loss (Hermans et al., 2017) LBH_tri and the cross-entropy with

regularization via Label smoothing (Szegedy et al., 2016) LCE_ls are used as loss functions for
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our models. Indeed, the former is widely used in person ReID approaches (Wang et al., 2019a;

Choi et al., 2020; Ye et al., 2021), so the same margin value is fixed at 0.3, and the latter is part

of the CIL implementation (Chen et al., 2021). The total loss corresponds to the sum of both

losses. The batch hard triplet loss aims at reducing the distance in the embedding space for the

hardest positives while increasing the distance for the hardest negatives. The regularization with

label smoothing reduces the gap between logits, making the model less confident in predictions

and hence improving generalization (Müller et al., 2019).

Models details. MMSF is used with ℓ = 4 for NCL and ℓ = 0 for CL cameras (Appendix II.2).

The influence of concatenation or sum of the feature vectors is explored in the Appendix II.3

and allowed to converge to use MMTM S (Sum) and MSAF C (Concatenation) for RegDB, and

MMTM C and MSAF S for ThermalWORLD and SYSU-MM01.

Leave-one-out query strategy. The Leave-One-Out Query (LOOQ) strategy, proposed in our

preliminary work (Josi et al., 2023), is used the same way in this study. The LOOQ treats the

extreme but meaningful case in which one would have only a unique image of the person to

ReID and multiple footages containing images of this same person in the gallery. Every pair of

images is alternatively used as a probe set while all the other pairs join the gallery. While an

interesting evaluation strategy, this also allows us to respect the original dataset statistics (Tab.

3.1) by authorizing the number of used gallery images per individual to vary.

3.6.2 Scenario with not co-located cameras

NCL V-I cameras imply that a pair of images for a given individual is built from two distinct

viewpoints. Consequently, images in a given V-I pair will not be spatially aligned from one

modality to another. Having two viewpoints for a given V-I pair should allow more cues and

be more discriminant to ReID than a CL setting. Indeed, if the person is occluded or partially

visible from one camera modality, for example, the hetero-modality camera might have a better

view and compensate for the missing features. However, correlations from one modality to

another may be harder to find for NCL cameras as the scene appears much different between
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modalities (Wang et al., 2021b). For example, the spatial information remaining in the features

when the fusion is done may act as noise for the model due to the absence of alignment.

Since various corruptions can impact either modality, a multimodal model might be disturbed

by the supplementary modality and could consequently be less able to ReID than a well-trained

single-modal model. The upcoming study is proposed to determine whether or not the multimodal

framework is worthwhile given the above statements and to seek the best approach to follow.

3.6.2.1 Robustness to corruption

Table 3.3 Unimodal and multimodal models performances while evaluated on clean and

corrupted SYSU-MM01 datasets. Unimodal V and I stands respectively for unimodal

visible and thermal models. In bold and blue are the first and second best approaches

respectively.

Model Clean UCD CCD CCD-50
mAP mINP mAP mINP mAP mINP mAP mINP

N
o

D
A

Unimodal V 86.72 41.16 32.16 1.86 32.11 1.89 37.70 2.15

Unimodal I 77.06 30.44 13.97 1.25 13.51 1.25 18.26 1.31

Baseline S 95.96 71.14 22.55 1.82 19.26 1.71 31.90 2.37

Baseline C 96,47 73,69 25.01 1.90 24.35 1.86 31.24 2.26

MAN 91.05 55.00 27.76 1.84 27.72 1.84 33.99 2.17

MMTM 95.71 71.35 20.00 1.59 18.31 1.70 30.59 2.25

MSAF 96.77 77.27 25.64 2.03 21.77 1.93 34.58 2.54
MMSF 97.80 80.93 22.23 1.65 17.70 1.60 31.15 2.12

M
L

-M
D

A
/
C

IL

Unimodal V 86.72 42.70 52.37 3.89 52.58 3.93 55.48 4.67

Unimodal I 78.33 35.41 33.38 2.32 32.78 2.32 36.26 2.39

Baseline S 96.54 74.49 64.00 9.72 61.81 7.53 64.69 8.26

Baseline C 96.77 76.01 63.40 9.51 61.94 7.72 65.79 8.71

MAN 97.13 77.91 63.50 8.24 61.87 6.39 64.75 7.10

MMTM 95.81 74.23 64.41 11.49 62.30 8.55 64.91 9.22
MSAF 96.36 73.70 67.78 10.09 65.49 8.00 68.91 9.14

MMSF 97.66 79.52 65.24 10.41 63.16 7.44 65.58 8.36

Multimodal models are compared while evaluated on each clean, UCD, CCD, and CCD-50

version of the SYSU-MM01 evaluation data. Clean data is important as a reference, observing

performances under the best-case scenario. UCD and CCD should complete each other. The
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former will allow observing how the models can adapt and select information from differently

corrupted V-I inputs. The latter will present how the models can deal with similarly corrupted

inputs, which should make the task harder as it should happen more often that the same features

for a given pair get corrupted from V to I. Finally, the CCD-50 should be the easiest evaluation

set, with 50% of the pairs having one over two modalities remaining clean. This last set should

allow observing if some models better deal with punctual unilateral corruption.

3.6.2.1.1 Natural models corruption robustness

To begin with, the models are trained without any data augmentation technique and evaluated

on the original and corrupted versions of SYSU-MM01 (Upper half Tab. 3.3). The considered

unimodal models are fine-tuned ResNet-18 models, trained from visible (unimodal V) or infrared

(unimodal I) modality only.

Before seeking the models’ robustness to corruption, observing good performance on clean

evaluation data is essential. In practice, each multimodal approach improves over the unimodal

models. From the unimodal to the multimodal setting, the greatest improvement comes between

the unimodal visible and the proposed MMSF approach, improving the mAP and mINP percentile

point (PP) by 11, 08 and 39, 77, respectively. The impressive performance improvement shows

how the infrared modality and the NCL cameras through clean SYSU-MM01 strongly benefit

the multimodal ReID.

For each corrupted test set (i.e., UCD, CCD, and CCD-50), as both modalities can impact the

ReID either way, one can observe here that each multimodal model (learned without a specific

strategy) is less efficient than the unimodal V specialist. Indeed, the unimodal V model reaches

32.16% mAP, followed by MAN at 27.76% mAP for SYSU-MM01-UCD, for example.

Focusing on the corrupted datasets, the multimodal models globally reach lower performances

from UCD to CCD as expected, with, for example, the MMSF model being respectively at

22.23% or 17.70% mAP. From CCD to CCD-50, one can see that some models seem to react
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better to unilateral corruptions, as the mAP improvement in PP for the proposed MMSF is about

13.45, for MSAF about 12.81, and for Baseline C about 6.89.

Among multimodal models, the ranking is inconsistent, from the clean to the corrupted setting.

On clean data, the proposed MMSF model presents the highest performances, with mAP about

97.80% and mINP about 80.93%, closely followed by the attention-based MSAF approach,

reaching 96.77% mAP and 77.27% mINP. On corrupted data, MAN and MSAF appear as better

at handling corruption than MMSF.

From there, it would be hard to advise one or another model with the aim of ReID under real-world

conditions. Indeed, the evaluated multimodal models are shown not to learn how to select

the right modality information in the face of corruption without using a corruption-dedicated

learning strategy.

3.6.2.1.2 DA impact on models robustness

Performances for the unimodal specialists learned using CIL and the multimodal models learned

using ML-MDA are presented in the bottom half of Tab. 3.3.

The CIL use for unimodal models increases the models’ performances on clean data. Indeed,

especially for the unimodal infrared model, mAP and mINP are respectively improved by 1.27

PP and 4.97 PP for example. ML-MDA has an impact that is model dependant. Still, most

models conserve similar mAPs, except for the baseline sum and MAN that see it considerably

improve.

Considering corrupted evaluation sets, using DA brings an impressive corruption robustness

improvement to every model. The unimodal V model under UCD improves, for example, from

32.16% to 52.37% mAP, or the baseline C model from 24.35% to 61.94% mAP under the CCD

set. Similar improvements are happening under each corrupted setting.
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Using ML-MDA, the multimodal models’ performances are now ahead of the unimodal ones

by a strong margin on corrupted datasets. Indeed, the models learn to select information from

each corrupted modality way better. Also, its usage brings more consistency from the clean

to the corrupted setting, making it essential to handle real-world conditions. For example, the

proposed MMSF model was, and remains, the most discriminant approach under clean data but

is now the second-best approach on corrupted datasets. In contrast, this one came in the fifth

position at best without DA.

One may wonder if the multimodal models benefit more from clean data pairs than the unimodal

specialists. Results from CCD to CCD-50 (that has 50% of its pairs containing one clean

modality) should help for this analysis. In fact, the mAP gap from unimodal V to MSAF

increases by 0.62 percentage points from CCD to CCD-50, and decreases from unimodal V to

MMSF by 0.48 points. Hence, the multimodal setting seems to benefit globally as much from

the clean data pairs as the unimodal V model. However, as 50% of V-I pair have a clean image,

it means 25% of the data is clean for the unimodal V, which shows, in a way, that the multimodal

models are benefiting less from a clean modality but keep up with the unimodal V model thanks

to the doubled amount of clean pairs. For deeper analysis, each corruption impact and unilateral

corruption are further explored in the next section, so as a qualitative analysis through class

activation maps (CAMs) generation (Appendix II.5).

3.6.2.2 Specific corruption impact

Corruption can sometimes be one-sided, as with NCL cameras or digital corruption. Hence, we

may wonder whether some corruptions of the infrared modality will make the unimodal V model

advantageous against multimodal models. This question is also raised for visible corruptions

and the unimodal I specialist against multimodal models. To answer those, performances of the

unimodal visible and thermal models and those of MSAF and MMSF are observed regarding

each corruption (Tab. 3.4) while corrupting only either modality. The MSAF and the proposed

MMSF models are selected as those that performed the best over the evaluated multimodal

models.
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Weather-related corruptions are the most challenging over the infrared modality, reflected in

the lower MSAF and MMSF performances under those data alterations. Compared to the

unimodal V model, MSAF is under for 4 corruptions and MMSF for 5 (in red), and both are,

on average, much higher for the other. When the RGB modality only is corrupted, MMTM

and MSAF models globally conserve a great performance margin over the unimodal I model

without corruption. Indeed, it only happens twice among the 20 V corruptions, with contrast

and saturation, that those two multimodal models get under unimodal I (in blue). This leads us

to affirm that unimodal corruptions are globally very well handled by the multimodal models

that can extract some interesting cues from the corrupted modality while not getting regrettably

impacted on the clean modality input most of the time.

Comparing the proposed MMSF to the proposed MSAF model, we may observe that MMSF

deals better with most corruptions, except for the very challenging ones. Indeed, the I weather

alterations are very challenging, and one can see the snow corruption leading, for example, the

MSAF model to 81.77% mAP, against 46.99% mAP for MMSF. In fact, strong corruptions may

completely alter 2/3 of the MMSF fused embedding (Corrupted modality stream feature and the

modality shared one), whereas the MSAF attention may simply refactor features in the corrupted

modality so that they do not influence too much the final embedding. For weaker corruptions,

having a specific stream to mine the right cues while having a specific stream that exploits the

correlations among modalities is better.
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3.6.2.3 Comparison with state-of-art

The multimodal baseline, MSAF, and the proposed MMSF models get compared in terms of

complexity and accuracy against the unimodal V and the state-of-art unimodal models LightMBN

and TransREID (Fig. 3.8). The Appendix II.4 provides detailed performance and additional

comparison. Unimodal models are learned using CIL DA, and the multimodal models using our

ML-MDA. The accuracy is obtained over both SYSU-MM01 clean and CCD evaluation sets

and gathered Fig. 3.8 along with the models’ number of parameters (params) and FLOPs.

Performance-wise, each multimodal model is more interesting on clean data than the best

unimodal approach, LightMBN. For the best ReID overall, MMSF is the best model, although

it performs slightly under MSAF regarding mAP on corrupted data. In fact, MSAF would be

favored for a highly challenging environment, especially when facing strong unilateral corruption.

Complexity-wise, LightMBN is the best model to adopt but comes with a considerable

performance decrease from our MMSF, the gap being about 3.32 mAP PP and 15.59 mINP PP

on clean data.

3.6.2.4 Discussion

Experiments over the SYSU-MM01 dataset give us an excellent overview of the multimodal

power under the NCL configuration. The main conclusions are as follows:

• The proposed ML-MDA is essential for the multimodal models to handle corruption. This

way, models learn how to select the right information from each modality and not get

disturbed by noisy features.

• For the best ReID, the proposed MMSF should be used in priority, followed by MSAF, and

finally by the unimodal LightMBN models if the memory resources do not allow it.
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Figure 3.8 Complexity and accuracy trade-off on the

SYSU-MM01 clean and CCD sets. Dashed lines and

plain lines are, respectively, unimodal and multimodal

approaches. Measures marked with ’↓’ should be

minimized for an optimized model.

• The high multimodal accuracy on corrupted data is to highlight as both modalities always

get corrupted through the UCD evaluation set, making the task highly challenging.

• The multimodal setting appears as a much better answer to data corruption than the

transformer-based approach TransReID, both regarding complexity and accuracy. In fact,

TransReID performs less than expected from its performances without DA (Chen et al.,

2021), the CIL strategy making, for example, the LightMBN more interesting.
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3.6.3 Scenario with co-located cameras

The spatial alignment brought by co-located V-I cameras should make the correlations from one

modality to another easier to find for a model.However, this might not make much difference

for fusions that come late in the model, as the spatial information will be much diminished

and supposedly replaced by semantic information. Also, a corrupted V-I input brings some

disequilibrium in how each modality contains relevant information, which should perturb the

multimodal models and eventually influence the correlation benefits of spatial alignments.

Previous assumptions are explored in the next sections.

3.6.3.1 Robustness to corruption

Table 3.5 Unimodal and multimodal models performances while evaluated on clean and

corrupted RegDB datasets.

Model Clean UCD CCD CCD-50
mAP mINP mAP mINP mAP mINP mAP mINP

N
o

D
A

Unimodal V 99.19 96.71 40.54 5.13 40.70 5.01 45.43 6.19
Unimodal I 98.92 96.03 21.94 1.33 21.71 1.31 27.89 1.72

Baseline S 99.39 97.60 18.66 1.75 20.73 1.57 26.86 2.17

Baseline C 99.64 98.46 21.73 2.39 23.45 2.10 29.64 2.83

MAN 99.36 97.51 29.02 3.47 29.07 3.15 35.33 4.06

MMTM 99.53 98.01 18.78 2.06 19.67 1.76 26.15 2.48

MSAF 99.86 99.26 23.42 2.82 24.23 2.37 31.05 3.32

MMSF 99.88 99.36 32.63 5.07 31.54 3.79 38.99 5.41

M
L

-M
D

A
/
C

IL

Unimodal V 99.51 98.21 54.61 12.58 54.61 12.51 58.43 14.56

Unimodal T 98.92 96.12 44.62 6.46 44.27 6.41 50.13 8.49

Baseline S 99.87 99.37 62.48 20.34 59.33 14.60 63.89 17.34

Baseline C 99.90 99.45 61.92 20.14 59.06 14.64 64.15 18.08

MAN 99.90 99.43 62.24 23.38 60.64 18.49 65.15 21.62

MMTM 99.84 99.24 69.06 25.32 63.34 17.81 67.27 20.17

MSAF 99.88 99.33 61.70 19.99 58.82 15.12 63.87 18.28

MMSF 99.95 99.69 76.47 39.51 71.52 30.43 74.25 33.24
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Table 3.6 Unimodal and multimodal models performances while evaluated on clean and

corrupted ThermalWORLD datasets.

Model Clean UCD CCD CCD-50
mAP mINP mAP mINP mAP mINP mAP mINP

N
o

D
A

Unimodal V 87.38 51.71 28.74 4.50 28.97 4.47 35.28 5.18

Unimodal I 56.17 10.65 24.45 3.78 24.33 3.78 27.65 3.99

Baseline S 86.44 46.55 30.34 4.84 29.99 4.76 36.32 5.55

Baseline C 87.92 50.41 30.43 4.77 30.51 4.80 36.96 5.65

MAN 87.50 51.98 29.10 4.56 29.15 4.54 35.62 5.26

MMTM 88.01 49.97 30.15 4.73 29.95 4.71 36.58 5.52

MSAF 88.13 51.28 29.68 4.64 29.36 4.63 35.94 5.40

MMSF 89.43 52.83 30.91 5.20 30.86 5.07 37.44 6.23

M
L

-M
D

A
/
C

IL

Unimodal V 86.37 47.42 52.77 9.51 52.83 9.43 56.28 10.79

Unimodal I 55.29 9.81 32.21 4.61 32.26 4.60 34.01 4.68

Baseline S 82.18 36.89 54.49 10.59 52.97 9.72 55.68 10.55

Baseline C 86.34 43.24 56.10 11.04 55.20 9.93 58.01 11.02

MAN 87.11 45.47 59.22 11.19 57.54 10.56 60.23 11.64

MMTM 87.82 47.95 59.98 12.55 58.12 11.53 60.51 12.36

MSAF 87.62 50.02 60.38 11.30 58.10 10.03 60.78 10.93

MMSF 86.10 44.50 62.58 14.45 60.75 13.33 62.77 14.24

3.6.3.1.1 Natural models corruption robustness

To begin with, the RegDB and ThermalWORLD models are learned without the use of data

augmentation, and their performances are respectively gathered in the upper half Tab. 3.5 and

3.6.

The models must be robust to corrupted data but must also be accurate on clean data at first.

Indeed, an optimal model would perform well under the two scenarios. On clean data, the

multimodal models are improving over the unimodal visible and Thermal specialists, except for

the ThermalWORLD sum model. Precisely, our MMSF model comes first for the two datasets,

both regarding mAP and mINP.

On corrupted evaluation sets, RegDB presents a unimodal visible accuracy considerably ahead

of every multimodal model, showing the multimodal model’s lack of adaptation while facing
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corrupted data. Indeed, the unimodal V model is, for example, at 45.43% mAP, when the

following approach is our MMSF model reaching only 38.99% mAP under the CCD-50 set. In

reverse, ThermalWORLD observes a considerable improvement with the multimodal setting.

Indeed, the unimodal model is behind every multimodal approach for each corrupted dataset

version. The most significant improvement comes from the proposed MMSF model again,

reaching 40.01% mAP, whereas the unimodal V reaches 35.28% mAP.

The lousy thermal modality quality makes the ThermalWORLD dataset distinct from RegDB,

which can explain why the multimodal models naturally better handle corruptions. Indeed, this

might seem counter-intuitive as a lower quality modality should help less for the ReID, but

this more likely indicates that the challenging ThermalWORLD learning environment helps

the multimodal models to handle corruption better. This learning configuration forces the

models to learn how to adapt regarding each input quality. Under this assumption, higher

corruption robustness can be expected from MDA strategies since it works on related concepts

by synthetically bringing noisy samples into the learning process.

As a supplementary observation, the gap from unimodal to multimodal models performance

is much lower under the CL datasets than under SYSU-MM01 and its NCL cameras. Here,

the highest performance improvement in PP from the visible to the best multimodal model

is about 0, 69 mAP and 2, 65 mINP for RegDB, and about 2, 1 mAP and 1, 77 mINP for

ThermalWORLD. In comparison, the gap in PP was about 11.8 mAP and 39.77 mINP for

SYSU-MM01. This performance gap change might result from the CL cameras concerning

RegDB and ThermalWORLD, the additional modality bringing fewer supplementary cues than

the NCL setting, as an expected consequence of the spatial alignment. For ThermalWORLD,

the gap change is likely also due to the terrible thermal modality quality (BRISQUE value

Tab. 3.1), reflected in the mAP gap from the unimodal V to the unimodal T model, being of

31.21 PP. For RegDB, the unique camera per modality probably influence this aspect as well,

making the problem easier, leading to almost maxed-out performances that do not allow similar

improvement through the multimodal setting.
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3.6.3.1.2 DA impact on models robustness

Models performances while considering data augmentation strategies are presented lower half

Tab. 3.5 and 3.6 respectively for RegDB and ThermalWORLD.

Moving from no use of DA to its usage leads to impressive performance improvements on

corrupted data. Where the RegDB multimodal models performed lower than the unimodal

visible model using no DA, all multimodal models learned with our ML-MDA become way

ahead of the visible model. The greatest improvement comes from unimodal V to our proposed

MMSF model, which increases the mAP by 16.91 PP for CCD and 15.82 PP for CCD-50.

For corrupted versions of ThermalWORLD, for which multimodal models already had better

performances than unimodal specialists before DA, the performance gap significantly increases

with ML-MDA usage. Considering CCD evaluation, for example, the gap from unimodal V to

the best approach being MMSF is about 7.92 mAP, where it was about 1.89 mAP percentage

points without DA.

The massive multimodal corruption robustness improvement from the proposed multimodal

data augmentation on the two datasets makes it a crucial approach. With it, the MMSF model

becomes the best working approach for RegDB, followed by MMTM. In fact, modalities are

both corrupted most of the time, so the attention through MMTM and MSAF probably becomes

tough to adjust for the models. MMSF does not allow another modality to bring additional

noise in its modality-specific streams and consequently better benefits from each input. Also,

its central stream can focus only on the encoding of the modality correlations and eventually

improve the ReID even more.

3.6.3.2 Comparison with state-of-the-art

For CL cameras, multimodal MMSF and MMTM models get compared to the state-of-art

unimodal models under both RegDB and ThermalWORLD Clean and CCD evaluation sets. The

accuracy is put in perspective of the models’ complexity through their number of parameters
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a) RegDB b) ThermalWORLD

Figure 3.9 Complexity and accuracy trade-off using clean and CCD evaluation sets.

Dashed lines and plain lines are, respectively, unimodal and multimodal approaches.

Measures marked with ’↓’ should be minimized for an optimized model.

(params) and FLOPs (Fig. 3.9). Only the CCD evaluation set is considered as this configuration

is the most adapted to CL cameras (Section 3.4) and should allow drawing the main conclusions.

For RegDB (Fig. 3.9a), the best-performing model is our proposed MMSF model in terms of

accuracy, both on clean and corrupted data. The model is followed by LightMBN and then

by MMTM. Hence, the complexity and accuracy trade-off comes between LightMBN and the

MMSF model, MMSF being the best way for a strong ReID, and LightMBN for a lighter but

lesser efficient approach.

Focusing on ThermalWORLD (Fig. 3.9b), the story is different. Despite the same CL camera

configuration as RegDB, the two compared multimodal models are much less accurate than

the unimodal LightMBN and TransReID models while having more parameters and needing

more FLOPs than LightMBN. This large gap in behavior from RegDB to ThermalWORLD

comes from the latter dataset’s infrared quality again. Still, for a similar ResNet-18 backbone
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architecture through Unimodal V, we observe that the multimodal models are more accurate.

This shows how the multimodal models can benefit from the additional modality even if this

one is of low quality, but that it is not enough to compare with LightMBN and TransReID

discriminant power. Finally, among TransReID and LightMBN models, it is again an accuracy

and complexity trade-off. Heavier but more discriminant is TransReID for ThermalWORLD,

and much lighter but also less discriminant is LightMBN.

3.6.3.3 Discussion

The previous analysis under the CL setting from RegDB and ThermalWORLD datasets allowed

us to reinforce some observations from the NCL setting and draw additional conclusions that are

as follows:

• The proposed ML-MDA data augmentation is crucial for a multimodal model to handle

challenging data in NCL and CL settings well. Also, models still benefit much from the

MDA when the original dataset is challenging, as observed through ThermalWORLD.

• Our MMSF model deals substantially better with clean and corrupted data than every other

approach, including TransReID, despite its highlighted corruption dealing (Chen et al., 2021).

The early fusion likely allows the model to better apprehend and disentangle the corrupted

features from the clean ones between modalities. Considered attention approaches exchange

stream information later in the process and consequently have already lost an essential part

of the modality correlations. Plus, they do not have modality-specific streams as MMSF,

whereas it assures that the final embedding conserves features from a good modality definition

and also ensure the model does not only focus on modality-shared features.

• The deficient infrared data quality of the ThermalWORLD dataset does not allow the

multimodal setting to compare with unimodal state-of-art.

3.7 Conclusion

Real-world surveillance and especially person ReID is a complex task that requires models

to handle complex and abstract concepts, handle data corruption and remain lightweight. To
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address these challenges, the multimodal setting can be a powerful tool, as an additional modality

brings supplementary information that can help to reach higher accuracy while it allows reaching

competitive complexity thanks to lightened backbones. However, real-world conditions and

the subsequent data corruptions (e.g., weather, blur, illumination) have to be considered. To

this aim, our study proposes a strong V-I multimodal evaluation through the first V-I corrupted

evaluation sets (UCD and CCD) for multimodal (and cross-modal) V-I person ReID, tackling

the lack of multimodal real-world datasets (Rahate et al., 2022). Precisely, 20 visible and 19

infrared corruptions are considered, 3 datasets, 2 camera settings (NCL and CL), 2 state-of-art

person ReID models, a MDA, 6 multimodal models, comprising 3 attention-based, 2 baselines,

and our proposed MMSF architecture.

Experiments on the clean and proposed corrupted datasets converge to present the proposed

ML-MDA as a must-use to make any multimodal model way more robust to real-world events.

The multimodal models observe a larger margin of improvement from the NCL rather than the

CL scenario as a consequence of the additional information provided by the NCL complementary

view. Still, the benefits of plural modalities are unequivocal for both scenarios, the TransReID

model being way more complex and less accurate than plural multimodal approaches (except

under really low-quality infrared through the ThermalWORLD dataset). Especially, among

multimodal approaches, our MMSF model comes ahead of every considered model for the two

scenarios, highlighting the importance of considering modality-specific features not tackled in

attention state-of-art models.

To extend this work, vision-based MDA could be further explored as it showed great benefits but

remains not much investigated in the literature. Also, the proposed MMSF has shown weakness

while facing strongly and unilaterally corrupted data, which has less impact on attention-based

models. Hence, adding the right attention modules may allow getting the best of both worlds.

Finally, different backbones could be explored for a better accuracy/complexity ratio.





CONCLUSION AND RECOMMENDATIONS

This research presents a solution for addressing the fundamental challenges in ReID, including

the diverse range of individual representations, real-world conditions, and near real-time

requirements. A three-component framework is proposed to tackle these challenges. The

first component focuses on multimodal fusion, specifically exploring the fusion of visible and

infrared modalities to enhance the performance of person ReID. The second component involves

building evaluation data that reflects real-world uncertainties by designing V-I corrupted datasets.

The proposed datasets unlock the V-I multimodal person ReID evaluation under realistic and

challenging conditions for the community, making a huge difference in the current multimodal

computer vision literature. The last component revolves around finding effective learning

strategies to handle different modalities and challenging data, with a particular emphasis on

multimodal data augmentation. The main findings for each component are summarised in the

following paragraphs.

This thesis explores distinct fusion processes through CNN and transformer architectures,

allowing or not knowledge exchanges during the feature extraction and using attention or not to

select features better. Attention mechanisms have been shown to be interesting and especially

valuable under strong unilateral corruption with channel attention and the MMTM model. In

this case, the attention allows for a strong modality refactoring, resulting in a less corrupted final

representation. Transformer-based approaches with hybrid architectures have been shown as

considerably heavy but especially not so beneficial (Appendix II). Indeed, transformers bring

complexity through a large number of parameters while having a disputable potential, eventually

bringing a better ReID on the hardest corrupted samples but globally lowering performances

compared to the proposed MMSF or the attention-based CNN models. However, valuable in a

broader spectrum of cases, the proposed MMSF model has been able to overpass every other

approach under most scenarios, relying on a stable encoding process through its three branches

architecture. This allows us to explicitly highlight the necessity to conserve modality-specific

knowledge and show that attention is not the only solution to real-world conditions, despite its

highlighted potential.
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The proposed V-I corrupted datasets are the first multimodal computer vision datasets that

involve corruptions. Their design enables the evaluation of models under broader and more

realistic conditions and is shown as essential for a multimodal model evaluation. To do so, this

required the construction of infrared corruptions, inspired in practice by existing corruptions

of the visible modality. A first V-I corrupted dataset named "-C*" is proposed in Appendix

I and then renamed UCD in Chapter 3. The UCD dataset does not consider the correlation

of corruption between cameras, which is meaningful for the NCL setting but not tailored for

CL cameras, which would likely be similarly corrupted depending on the data modification

considered. The subsequent version of UCD, named CCD, is introduced in Chapter 3, tackling

this aspect by considering the corruption correlation between cameras.

Developing multi-modal models robust to corrupted data through the adapted learning strategy

is shown as a necessity. Precisely, the ML-MDA multimodal data augmentation is proposed in

this regard and demonstrated to be highly effective in each multimodal model studied, without

bringing complexity to the final pipeline. Based on two distinct approaches, the masking and the

multimodal soft random erasing, ML-MDA learns the models to discard a modality influence in

the final fused embedding when this one is highly corrupted and poorly informative compared to

the other. Plus, the models learn to rely on a wider scale of features within a modality through

local occlusions, but also on the hetero-modality features as the occlusions are independently

positioned on a pair of images.

In conclusion, this thesis offers new perspectives in the field of person ReID and multimodal

fusion. It explores distinct yet interconnected aspects, including models, learning data, and

learning strategies, to develop a comprehensive framework that addresses multimodal fusion tasks

and that is suited to real-world ReID. Furthermore, despite the challenges posed by multimodal

corrupted data, multimodal fusion demonstrates its benefits over unimodal state-of-the-art person

ReID algorithms with moderate complexity increase. Looking ahead, it is crucial to deepen

research on multimodal fusion due to its high potential in addressing current tasks and challenges

and regarding the advent of accurate and accessible sensors.
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Limitations.

Despite valuable contributions to the research community, a few limitations can be identified for

this work.

• Implementing a multimodal approach involving two distinct modalities comes with sup-

plementary challenges from the perspective of practical deployment. First, more channels

(camera streams) must be processed, requiring more computational resources but also likely

impacting the system’s processing efficiency. Second, using the V and I modality in our case

typically results in an embedding size twice that of a unimodal approach. In the context

of a practical person ReID application, reference images must be processed as they come,

and their embedding stored in a database, allowing for faster later matching. It is important

to note that the adoption of a multimodal framework would consequently require doubling

the storage capacity due to the larger embedding size, which might compromise this choice.

However, one must notice that the multimodal setting can eventually allow for using lower

complexity backbones while achieving equivalent or better performances than the unimodal

approaches. As a consequence, doubling the embedding size may be avoidable, tackling this

limitation.

• The proposed corrupted datasets allow for evaluating the models under highly challenging

conditions, but the frequency of the used corruption does not accurately mirror real-world

conditions. Indeed, the UCD and CCD datasets corrupt each and every visible-infrared data

pair. Hence, while these datasets allow for a highly challenging evaluation and must be used

for better model comprehension, real-world performance cannot be determined through them

and would likely fall somewhere in between the evaluation of those models when using clean

and corrupted data.

Future work.

This work and its conclusions suggest the following future work:

• As highlighted, attention mechanisms could be included in the framework, and especially

model-level feature map refactoring. Indeed, this could allow for better handling of hard
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image corruption. However, this must be done carefully to avoid losing the modality-specific

streams’ benefits.

• The proposed multimodal V-I corrupted datasets could be reused to evaluate state-of-art

cross-modal person ReID models. Indeed, V and I modalities are likely similarly impacted

by corruption under the multimodal and cross-modal settings. Such an approach would

allow for reevaluating cross-modal models under more realistic scenarios, assessing their

generalization power, and eventually uncovering robustness weaknesses.

• Considering each modality under the Learning Using Privileged Information (LUPI) paradigm

might improve the overall process without additional complexity. LUPI approaches take

advantage of privileged information (which can be a modality) available at training only to

reinforce the main modality representation. Although the multimodal setting conserves each

modality during inference, we believe that each modality stream could be reinforced due to

the knowledge of the other modality during training following LUPI approaches. Then, even

if the two modalities are, in our case, available at inference, we believe that such an approach

can help the whole framework. For example, it can allow for more corruption robustness

as each modality stream should be reinforced and able to mine the hetero-modality-related

features from the main modality.

• Adapting the proposed model for a real-world deployment could require supplementary steps.

First, the open-set scenario (Ye et al., 2021) could be explored. Indeed, a practical scenario

could not ensure that the query appears in the gallery, which is expected for the considered

closed-set scenario. Also, lower complexity backbones could be investigated, like OsNet

(Zhou et al., 2021), for a more efficient approach. Furthermore, this could allow for adding

new modalities to the approach and, consequently, more knowledge diversity, more model

flexibility, and better ReID.
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Abstract

The re-identification (ReID) of individuals over a complex network of cameras is a challenging

task, especially under real-world surveillance conditions. Several deep learning models have been

proposed for visible-infrared (V-I) person ReID to recognize individuals from images captured

using V and I cameras. However, performance may decline considerably if V and I images

captured at test time are corrupted (e.g., noise, blur, and weather conditions). Although various

data augmentation (DA) methods have been explored to improve the generalization capacity,

these are not adapted for V-I person ReID. In this paper, a specialized DA strategy is proposed

to address this multimodal setting. Given both the V and I modalities, this strategy allows to

diminish the impact of corruption on the accuracy of deep person ReID models. Corruption may

be modality-specific, and an additional modality often provides complementary information.

Our multimodal DA strategy is designed specifically to encourage modality collaboration and

reinforce generalization capability. For instance, punctual masking of modalities forces the

model to select the informative modality. Local DA is also explored for advanced selection of

features within and among modalities. The impact of training baseline fusion models for V-I

person ReID using the proposed multimodal DA strategy is assessed on corrupted versions of

the SYSU-MM01, RegDB, and ThermalWORLD datasets in terms of complexity and efficiency.

Results indicate that using our strategy provides V-I ReID models the ability to exploit both



94

shared and individual modality knowledge so they can outperform models trained with no or

unimodal DA. GitHub code: https://github.com/art2611/ML-MDA.

1. Introduction

Real-world monitoring and surveillance application (e.g., individuals in airport, and vehicles

in traffic) rely on challenging tasks, like object detection (Zou et al., 2019; Zaidi et al., 2022),

tracking (Luo et al., 2021), and re-identification (ReID) (Khan & Ullah, 2019; Ye et al., 2021).

The aim of person ReID is to recognize individuals over a set of distributed non-overlapping

cameras. State-Of-Art (SOA) systems for person re-identification (e.g., deep Siamese networks)

typically learn an embedding through various metric learning losses, which aim at making

similar image pairs (with the same identity) closer to each other and dissimilar image pairs

(with different identities) more distant from each other. Despite the recent advances with DL

models, person ReID remains a challenging task due to the non-rigid structure of the human

body, the different viewpoints/poses with which a person can be observed, image corruption, and

the variability of capture conditions (e.g., illumination, scale, contrast) (Bhuiyan et al., 2020;

Mekhazni et al., 2020).

Visible-infrared (V-I) person ReID aims to recognize individuals of interest across a network

of V and I cameras. I cameras are often employed in conjunction with V cameras for, e.g.,

night time recognition in outdoor environments. Most approaches for V-I person ReID focus on

the cross-modal matching problem. This paper focuses on person ReID systems that allow for

fusion of visible and infrared modalities based on a joint representation space. Although several

techniques have been proposed for dynamic and attention-based fusion (Ismail et al., 2020; Su

et al., 2020), few V-I person ReID methods have been proposed for V-I fusion (Nguyen et al.,

2017). In this setting, it is difficult to extract discriminant modality-specific features when one

modality becomes corrupted, while conserving the shared modality features (Baltrušaitis et al.,

2018).
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In real-world surveillance applications, the accuracy of person ReID models often declines

when image data is corrupted by noise, occlusions, saturation, blur, weather conditions, etc.

(Chen et al., 2021). Several strategies have been developed to improve the generalization

performance of person ReID models in response to corrupted image data. Using more complex

DL models, trained with more data have been shown to improve the performances in object

detection (Michaelis et al., 2019), and image classification (Xie et al., 2020) tasks. For instance,

using transformer-based models may be more suitable to tackle corruption (Hendrycks et al.,

2020; Chen et al., 2021). However, using more complex models, like vision-transformers (Han

et al., 2020) limits real-time ReID applications. In addition, using more diverse training data

can help (Xie et al., 2020), and therefore data augmentation (DA) (Chen et al., 2021) methods

may improve performance, without increasing the models complexity, and while avoiding the

costs of data collection and annotation (Shorten & Khoshgoftaar, 2019).

In this paper, we propose a MDA strategy to improve the accuracy of V-I person ReID systems.

Chen et al. (2021) recently proposed a DA learning strategy, called the Consistent ID Loss,

with Inference before BNNeck, and Local-based Augmentation (CIL). It is mainly based on

local DA, and provides improvements in accuracy for unimodal (RGB) person ReID. However,

the multimodal aspect has not been explored in the literature to tackle corruptions. Yet, such

approach might be helpful to tackle corruption as modalities are not similarly affected by

corruptions and can still benefit by DA strategies (Hao et al., 2023).

To manage corrupted image data in multimodal settings, a multimodal DA (MDA) strategy

is introduced, allowing to leverage the complementary knowledge among modalities, while

dynamically balancing the importance of individual modality in the final predictions. Con-

sequently, the strategy should reduce the corruption impact. Having in mind the multimodal

person ReID aspect, and regarding that person ReID datasets were only used for cross-modal

ReID, protocols are provided along with a comprehensive study over three V-I person ReID

datasets, SYSU-MM01 (Wu et al., 2017), RegDB (Nguyen et al., 2017) and (less explored)

ThermalWORLD (Kniaz et al., 2018). Finally, as the focus is made on corruption robustness for
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the multimodal setting, the corruption benchmark proposed by Chen et al. (2021) is extended to

the infrared thermal modality.

Our main contributions are summarized as follows. (1) A MDA strategy is proposed to

improve the accuracy of DL models for V-I person ReID. To optimize the collaboration among

modalities, discriminant joint feature representations in the DL model, our MDA strategy relies

on local occlusions and global modality masking data augmentation. (2) A comprehensive V-I

multimodal experimental protocol is proposed to evaluate the impact on performance of clean

and corrupted image data using the well-known SYSU-MM01, RegDB, and ThermalWORLD

datasets. Corruptions from Chen et al. (2021) are extended to the infrared domain to analyse

multimodal data corruption impact. (3) An extensive set of experiments is conducted, showing

that the used V-I fusion model outperforms the related SOA models. The limitations of unimodal

models are shown by comparing a basic fusion model learned with the adapted DA to the

unimodal SOA person ReID models.

2. Related Work

2.1 Multimodal person ReID

Most approaches for person ReID in the last decade (Ye et al., 2021) focus on the unimodal

(RGB) (Ristani & Tomasi, 2018; Luo et al., 2019a) and cross-modal (Hao et al., 2021; Alehdaghi

et al., 2023; Zhang et al., 2022) settings. Few focused on combining multimodal information,

despite the potential to improve performance in the joint representation setting (Baltrušaitis

et al., 2018). For example, Chen et al. (2019a) extracted contours from the V modality and

used a two-stream CNN architecture to combine information. Bhuiyan et al. (2020) proposed to

use pose information to gate the flow of visual information through a CNN backbone. These

approaches used the knowledge extracted from the main modality, which would be similarly

affected by image corruption.

Some approaches sought to leverage the complementarity of V and depth modalities for an

accurate person ReID (Paolanti et al., 2018; Lejbolle et al., 2018; Martini et al., 2020). However,
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Nguyen et al. (2017) represents the only approach where visible and infrared modalities are

integrated into a joint representation space. Infrared and visual features are concatenated from

embeddings extracted independently trained CNNs, and used for pairwise matching at test time.

This simple model attained an impressive performances on the RegDB dataset. However, RegDB

data is captured with only one camera per modality, and V-I cameras are co-located, with only a

single tracklet of ten images per modality and individual. For these reasons, the RegDB dataset

is less consistent with a real-world scenario. In fact, the development of person ReID models

that are effective in uncontrolled real-world scenario remains an open problem (Hendrycks et al.,

2021).

2.2 Corruption and data augmentation strategies

Data augmentation (DA) consists in multiplying the available training dataset by punctually

applying transformations on training images, like flips, rotations, and scaling (Ciregan et al.,

2012). This way, a model usually benefits from increased robustness to image variations, and

improved generalization performance. According to Geirhos et al. (2018), training a model

on a given corruption is not often helpful over other types of degradation. Yet, Rusak et al.

(2020) showed that a well-tuned DA can help the model to perform well over multiple types of

image corruption, through Gaussian and Speckle noise augmentation. Hendrycks et al. (2019)

proposed the Augmix strategy , where various transformations are randomly applied to an image,

and then mix multiple of those augmented images. Random Erasing punctually occludes parts

of the images by replacing pixels with random values (Zhong et al., 2020). Those strategies

allow a large variety of augmented image, simulating eventually real-world data, and hence

inducing higher generalization performance.

Focusing on person ReID, Chen et al. (2021) proposed both a corrupted V dataset (adapted from

Hendrycks & Dietterich (2019)) and the CIL learning strategy to improve systems performance

under corrupted data. Their strategy is partly based on two local DA methods – self-patch

mixing and soft random erasing. The former replaces some of the pixels in a patch with random

values, while the latter superposes a randomly selected patch from an image at a random position
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Figure-A I-1 Training architecture considered for V-I person ReID. It

learns a joint multimodal representation by concatenating features

produced by independent I and V ResNet-18 CNN backbones.

on this same image. Gong et al. (2021) show interesting improvements through local and global

grayscale patch DA on V images. The previous strategies are limited to single modality stream

models, even though the latter shows how greyscale data may reinforce the visible modality

features using DA. MDA strategies have presented encouraging results for image-text emotion

recognition (Xu et al., 2020) or vision-language representation learning (Hao et al., 2023).

However, to our best knowledge, our work is first to propose MDA with V-I person ReID

applications.

3. Proposed Strategies

Our strategy is based on co-learning, allowing each modality stream to adapt to the other

(Baltrušaitis et al., 2018). Using our MDA strategy, we expect to adapt DL models from one

modality stream to another, and consequently provide better robustness to corrupted multimodal

data. The low-cost multimodal architecture that we considered for V-I person ReID is based

on two parallel ResNet-18 (He et al., 2016) backbones pre-trained on ImageNet (Deng et al.,

2009). Rather than having a large single stream model, such architecture might allow us to
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present a competitive model both in size and efficiency. After the two backbones, each stream

has an average pooling and a batch normalization layer. The final prediction is obtained by

concatenating features from each embedding, right before presenting it to a fully connected layer

(Fig. I-1). Embeddings are concatenated during the test phase for pairwise similarity matching,

from which the final ranking is obtained.

3.1 Multimodal patch mixing and soft random-erasing

Making a multimodal model focus on modality-specific features is challenging, as the model

usually mainly focuses on shared features (Baltrušaitis et al., 2018). Augmenting data with local

occlusions may help the model to emphasize modality-specific feature importance, as some

features will be available only from one or the other modality.

Multimodal soft Random Erasing (MS-REA): The soft random erasing (S-REA) (Chen et al.,

2021) might play this role, as it occludes parts of the V image punctually, potentially letting the

opportunity for the hetero modality to close this occlusion gap. For S-REA, a proportion of the

pixels in a given patch are given random values. To make the model close the occlusion gap in a

bi-directional manner, the MS-REA is proposed (Fig. I-2), applying grayscaled random pixel

values on a given path of the thermal modality, as well as the random values pixel values on

the V modality. Grayscale values respect the infrared thermal image definition as I thermal is

encoded on one channel, potentially aligning better with real-world corruptions.

Multimodal Patch Mixing (M-PATCH): Our M-PATCH DA inspired by the Self Patch (S-PATCH)

DA (Chen et al., 2021). Through M-PATCH, the idea is to extract a patch from each modality

and superimpose it on the hetero-modality. The I modality receives the V patch from the same

individual and vice versa. As the patches come from the same individual, the model has the

option to rely on the patch features to discriminate. Three variants are explored which have

different disturbance levels. From the less disturbing to the most disturbing, the first variation is

extracting the patch from the Same part of the image, and applying it at the Same location on both

modalities (-SS). The second extracts from the Same location but apply at Different locations
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Multimodal soft random erasing

Multimodal Patch Mixing

Soft random erasing

Self-Patch Mixing

Modality Masking

(1) (4)(2) (3) (5)

Figure-A I-2 Left present data augmentation methods from Chen et al. (2021). Center
are our augmentation methods extensions from those, along with the proposed Modality

Masking approach. Right shows visualizations of activation maps from corrupted a sample

and from differently trained models. (1) Pair input data, V corrupted through Gaussian noise

and I through saturation. (2) Augmix. (3) Multimodal Patch Mixing. (4) Modality Masking.

(5) Multimodal soft random erasing. The discriminability increases from left to right.

(-SD), and the third extracts from Different locations and also apply at Different locations (-DD)

(Fig. I-2). The M-PATCH approach might gather the best of both RandomPatch (Zhou et al.,

2019) and S-PATCH (Chen et al., 2021) strategies. RandomPatch is strongly disturbing, and the

model is forced to focus on out-of-patch features as the patch gathers information related to a

different individual. S-PATCH less disturbing – it allows the model to focus on in-patch features

as it contains features related to the same individual. Ours also allows in-patch feature selection

by using the same individual, but provides more disturbance since the patch comes from the

hetero modality. This approach may reinforce the model’s shared features finding, while also

pushing the model to exchange information across modalities.

3.2 Modality masking

A modality might be punctually unavailable or primarily uninformative. Though, the model has

to know how to cancel a modality so that this one should not have a high impact on the final

prediction. The modality masking approach is expected to make the model learns such behavior

by punctually replacing one or another modality with an entirely blank image. Instead of masking

the multimodal representation as it has been done by Gabeur et al. (2022), a representation is
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extracted from the masked input, so the model has to learn how to cancel its influence on the

final results. This masking DA is expected to complement the previously presented DA. The

M-PATCH and MS-REA approaches supposedly focus on making the model better at selecting

the right features within a modality. The idea is here to balance the importance of each modality

in the final embedding regarding the level of corruption of each.

4. Results and Discussion

4.1 Datasets and performance measures

Since our study is focused on V-I multimodal person ReID, we employ the widely known

SYSU-MM01 (SYSU) (Wu et al., 2017) and RegDB (Nguyen et al., 2017) datasets, along with

the lesser-known ThermalWORLD (TWORLD) (Kniaz et al., 2018) dataset. Details on these

datasets are shown in Table I-1), allowing us to evaluate under diverse conditions.

Table-A I-1 Statistics of SYSU, RegDB, and TWORLD

datasets. V: Visible and I: Infrared. Image size and number

per identity is presented as: Min;Max;Avg. BRISQUE

(Mittal et al., 2011) metric as: avg±std.

Statistic SYSU RegDB TWORLD

V-images 29,033 4,120 8,125

I-images 15,712 4,120 8,125

V-Camera 4 1 16

I-Camera 2 1 Generated

Identities 491 412 409

Paired cameras No Yes Yes

V-images/id 10;144;59.1 10;10;10 1;155;19.9

I-images/id 10;144;32.0 10;10;10 1;155;19.9

Image width 26;1198;111 64;64;64 10;810;141

Image height 65;879;291 128;128;128 25;897;353

V-BRISQUE 30.50±12.26 38.84±9.86 27.79±13.28

I-BRISQUE 40.52±8.42 38.81±9.56 60.25±8.67
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SYSU-MM01. (Wu et al., 2017) gather 4 V and 2 I cameras, with 491 distinct individuals,

29033 V, and 15712 I thermal images. The specificity of this dataset is that its V and I cameras

are not co-located.

RegDB. (Nguyen et al., 2017) is a much smaller dataset, with one camera only per modality,

co-located cameras, and a single 10 images tracklet per identity and camera. RegDB 410

identities lead to 4120 images per modality.

ThermalWORLD. (Kniaz et al., 2018) is only partially available, leading us to 409 distinct

identities and 8125 V images from 16 cameras. I images were generated synthetically. Hence,

cameras can be considered as co-located. However, the thermal images are of poor quality (see

BRISQUE (Mittal et al., 2011) value of 60.25 in Table I-1).

Corruptions. For comparison reasons, the corruptions used by Chen et al. (2021) are the

same in this study. However, the V corruptions were adapted to the thermal modality (detailed

in supplementary material) as the thermal modality would more likely get impacted in a real

scenario. The V data corruptions proposed by Chen et al. (2021) are mentioned through

the notation -C, and its extension with both modalities corrupted through the notation -C*.

Corruptions are applied independently and randomly for the V and the I modalities and on both

the query and the gallery images to match real-world conditions.

Performance Measures. The mean Average Precision (mAP), and the mean Inverse Penalty

(mINP) are used as performance metrics, commonly used for person ReID (Ye et al., 2021).

4.2 Implementation details

Data division. SYSU-MM01 and RegDB datasets have well-established V-I cross-modal

protocols (Wang et al., 2019a,a,b; Ye et al., 2019), but multimodal protocols remain to be built.

Following the SYSU-MM01 authors’ cross-modal protocol, 395 identities were used for the

training set, and 96 identities were used for the testing set. For RegDB, the 412 identities are kept

as well into the two identical sets of 206 individuals. The SYSU-MM01 train/test ratio is kept
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for ThermalWORLD, leading to 325 training identities and 84 for testing. A 5-fold validation

(Raschka, 2018) is performed over the data used for training, using folds of respectively 79, 41,

and 65 distinct identities for SYSU-MM01, RegDB, and ThermalWORLD.

Data augmentation (DA). The Augmix, S-PATCH, or S-REA were evaluated following the

original papers settings. Our proposed multimodal extensions M-PATCH and MS-REA were

used with the same appearance augmentation probability as S-PATCH and S-REA. Modality

Masking is applied randomly on one or another modality, with equiprobability, and occurs with

a default probability of 1/8. For RegDB, the validation set uses the same DA as the training

set. This way, better performances were observed, since they maxed out in the early epochs, or

otherwise do not learn complex cues for the model.

Pre-processing. A data normalization is done at first by re-scaling RBG and I images to

144 × 288. Random cropping with zero padding and horizontal flips are adopted for base DA.

Those parameters were proposed by Ye et al. (2021) on RegDB and SYSU-MM01 datasets. The

same normalization is kept under ThermalWORLD for consistency among protocols.

Table-A I-2 The performance of various multimodal DA strategies using a standard model

(V-I ReID model trained without DA) as the baseline. Augmix DA is applied with and

without other proposed DA approaches.

SYSU SYSU-C* RegDB RegDB-C* TWORLD TWORLD-C*
DA Strategy mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP

Standard 96.47 73.69 25.01 1.90 99.64 98.46 21.80 2.40 87.90 49.05 29.30 3.93

Augmix 95.37 68.60 35.23 2.56 99.88 99.40 40.75 9.10 87.12 46.33 42.26 5.69

+ S-REA 96.21 74.36 43.24 4.06 99.90 99.51 43.84 10.25 89.24 50.10 54.14 8.92

+ MS-REA 96.81 77.02 61.44 8.34 99.86 99.35 57.84 19.38 88.95 49.92 58.10 9.89

+ S-PATCH 96.40 74.89 31.39 2.14 99.90 99.53 41.83 9.39 89.12 50.53 40.73 5.63

+ MS-PATCH 94.70 69.10 33.69 2.17 99.89 99.41 40.97 9.34 89.26 51.26 41.75 5.57

+ M-PATCH-SS 96.10 73.40 35.49 2.44 99.86 99.34 43.28 10.68 88.35 50.16 44.41 5.61

+ M-PATCH-SD 95.94 72.93 35.10 2.40 99.87 99.35 42.95 10.31 88.58 51.59 43.49 5.53

+ M-PATCH-DD 94.98 68.95 33.90 2.42 99.89 99.48 41.98 9.71 88.49 51.35 43.90 5.51

+ Masking 95.61 73.49 40.92 2.90 99.90 99.52 49.27 12.10 86.01 42.76 39.91 6.16
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Hyperparameters. The hyperparameters values in our models were set based on the default

AGW (Ye et al., 2021) baseline. The SGD is used for training optimization, combined with a

Nesterov momentum of 0.9 and a weight decay of 5𝑒 − 4. Our models are trained through 100

epochs. Early stopping is applied based on validation mAP performances. The learning rate is

initialized at 0.1 and follows a warming-up strategy (Luo et al., 2019b). The batch size is set

to 32, with 8 distinct individuals and 4 images per individual. The paired image is selected by

default for RegDB and ThermalWORLD. For the SYSU-MM01 dataset, the images from the

hetero modality are randomly selected through the available ones for a given identity.

Losses. The Batch Hard triplet loss (Hermans et al., 2017) LBH_tri and the cross-entropy with

regularization via Label smoothing (Szegedy et al., 2016) LCE_ls are used as loss functions for

our models. Indeed, the former is widely used in person ReID approaches (Wang et al., 2019a;

Choi et al., 2020; Ye et al., 2021), so the same margin value is fixed at 0.3, and the latter is part

of the CIL implementation (Chen et al., 2021). The total loss corresponds to the sum of both

losses. The batch hard triplet loss aims at reducing the distance in the embedding space for the

hardest positives while increasing the distance for the hardest negatives. The regularization with

label smoothing works at reducing the gap between logits, which makes the model less confident

in predictions and hence improves generalization (Müller et al., 2019).

Leave-one-out query strategy. The single-shot and the multi-shot settings (Wang et al., 2019a)

are widely used in cross-modal papers to form the query and gallery sets. For these settings, one

or ten images from the hetero modality are selected per identity and camera to join the gallery,

while the other modality forms the probe set. However, such an approach is not so realistic in a

surveillance context, as the video makes the gallery number of frames per person vary much.

These variations cannot be controlled as individuals are unknown in the final environment.

Hence, a new strategy is developed, inspired by the leave-one-out cross-validation strategy

(Raschka, 2018), named Leave-One-Out Query (LOOQ). The LOOQ strategy treats the extreme

but meaningful case in which one would have only a unique image of the person to ReID and

multiple footages containing images of this same person in the gallery. Every pair of images

is alternatively used as a probe set while all the other pairs join the gallery. This allows us
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to respect the original dataset statistics (see Table I-1) by authorising the gallery images per

individual to vary. Also, the mINP metric relates to the hardest test sample from the same

individual. Hence, computing this metric over multiple gallery images makes it more consistent,

appearing even more important in a corrupted context.

Concerning the implementation, the images are paired for both RegDB and ThermalWORLD

datasets, so the paired image from the hetero modality joins the query and gallery set directly

during the formation of those sets. However, SYSU-MM01 needs personal treatment since its

images are not paired. Plus, the image number per modality for a given individual varies (Table

I-1). To solve this issue, as many pairs of images as possible are randomly selected with the

constraint that one image from one modality or another must not appear in two distinct pairs.

Because random image pairs are formed for SYSU-MM01, a mean of 30 trials is performed to

present robust and reliable results according to the Central Limit Theorem.

4.3 Benchmarking data augmentation strategies

Table I-2 shows the impact on person ReID performance of each DA strategy is investigated

over the three datasets under clean and corrupted (-C*) settings. First, we compare the model

learned without DA (Standard) with the model learned with Augmix, and the models learned

with Augmix plus other augmentation. The other DA strategies can be S-REA, S-PATCH, or

one of our proposed augmentation.

4.3.1 Multimodal soft random erasing

The S-REA strategy applies random values to a certain proportion of the pixels in a given patch of

the V image. A good improvement can be seen from the Augmix to the S-REA strategy for each

dataset and the clean and corrupted settings. Still, a more significant improvement happened

for ThermalWORLD-C* compared to SYSU-MM01-C* and RegDB-C*, respectively, with a

11.88% improvement against 8.01% and 3.09%. While extending the DA to the multimodal

setting through MS-REA, we observe a remarkable improvement for each corrupted setting, and

especially that the improvement is much higher on both SYSU-MM01 and RegDB compared to
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ThermalWORLD. Indeed, mAP increases by 18.20% and 14.00% for SYSU-MM01-C* and

RegDB-C* respectively against 3.96% for ThermalWORLD-C*. ThermalWORLD has a much

weaker I modality, so the model probably focuses much on the visible modality. Consequently,

the model probably almost fully benefits from S-REA as if it were a unimodal architecture.

The other datasets do not allow to benefit as much from this DA, as the model has presumably

learned to focus more on I due to the unbalanced augmentation (applied only on V). In contrast,

the equilibrium brought by MS-REA probably allows the full exploitation of the approach and

explains the impressive improvement from S-REA to MS-REA. Also, MS-REA comes first

among approaches under the clean setting for SYSU-MM01 and RegDB datasets, except for

ThermalWORLD. With a 95% confidence, results using MS-REA compared to the best approach

are not statistically significant for RegDB, whereas it is for ThermalWORLD according to the

Cochran p-values (Raschka, 2018) of respectively 0.29 and 4.89𝑒 − 5. Thanks to MS-REA and

partial occlusions, the model might have learned not to only focus on the most discriminant

cues, as confirmed by the I activation map comparison from Augmix to MS-REA (see Fig. I-2).

Also, this approach presents important improvement over biased data augmentation, denoting a

great generalization power (detailed in supplementary material).

Table-A I-3 Data augmentation combination. Each is used along with Augmix and

MS-REA. C1 stands for Masking, C2 for M-PATCH-SS and C3 for Masking and

M-PATCH-SS.

Strategy SYSU SYSU-C* RegDB RegDB-C* TWORLD TWORLD-C*
mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP

MS-REA 96,81 77,02 61,44 8,34 99.86 99.35 57.84 19.3 88,95 49,92 58,10 9,89

MS-REA + C1 96.77 76.01 63.01 9.59 99.90 99.45 61.92 20.14 86.34 43.24 56.10 11.04

MS-REA + C2 96.85 75.87 61.19 9.13 99.85 99.26 56.23 17.98 89.16 50.68 57.45 9.64

MS-REA + C3 96.78 75.87 63.83 9.77 99.89 99.48 61.53 20.17 86.65 43.75 57.95 11.53

4.3.2 Multimodal patch mixing

Observing the results obtained for SYSU-MM01 and ThermalWORLD, the performances

globally improved from the Augmix strategy to the S-PATCH approach for the clean datasets,
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while those are reduced under the corrupted setting. While applying the self patch mixing on

both modalities through MS-PATCH, performances are questionable, as performances remains

lower or equivalent to Augmix on corrupted data, while conserving or decreasing from clean

S-PATCH results. In practice, it is only while considering the modality patch exchange in

our M-PATCH strategy, especially the less disturbing version M-PATCH-SS, that the best

improvement is obtained on the corrupted setting, while conserving great performances on

the clean one. Indeed, mAP is respectively improved by 2.15% and 2.53% over the Augmix

strategy for ThermalWORLD-C* and RegDB-C*. The cameras might need to be co-located

for the approach to perform, as SYSU-MM01-C* pretty much conserve similar performances

as Augmix on corrupted data, and as the standard model on clean data. Spatial alignment is

probably helping much the model to find correlations between the hetero modality patch and the

current modality image. Still, there is a performance improvement on two datasets even if this

one remains much lower than the previous MS-REA approach.

4.3.3 Masking

The modality masking approach presents interesting improvements under the SYSU-MM01 and

RegDB datasets. Indeed, performances on corrupted datasets are increased by 5.69% mAP

and 8.52% mAP over the Augmix approach, while those are pretty much matching Augmix

performances on the clean datasets. The modality masking DA consists of punctually feeding a

modality stream with a fully uninformative modality. Hence, those results show that the approach

can make the model better able to give more importance to the discriminant modality for a given

pair of images. The ability to balance modality influence on not co-located cameras through

SYSU-MM01 dataset is important to highlight. Concerning the ThermalWORLD dataset, the

Masking model’s performances decrease for the clean and the corrupted setting compared to

Augmix. Indeed, the mAP is respectively lower by 1.11% and 2.35%. Such a decrease is not

surprising, as this dataset’s thermal modality is very uninformative. Hence, while learning, a

masked visible modality probably acts as noise by creating not discriminant V-I pairs.
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4.3.4 Combination

As the DA approaches have distinct expected roles in the way they help the model to get more

robust against corruption, combining them might allow to benefit from each of their specificities

(Table I-3). It is interesting to see that the real combining improvement comes from the Masking

approach used with MS-REA (C1) on both SYSU-MM01-C* and RegDB-C*, with respectively

1.57% and 4.08% improvement over MS-REA used by itself. ThermalWORLD did not benefit

from the masking DA, which could be expected as the Masking was already decreasing its

performance when used alone. Adding M-PATCH to MS-REA (C2) or to MS-REA and Masking

(C3) seems not to bring meaningful additional improvements. Indeed, MS-REA + (C3) matches

the performances of MS-REA + (C1) under the clean and corrupted settings on both RegDB

and SYSU-MM01. Similar observations can be done from MS-REA alone and MS-REA +

M-PATCH. Hence, even if M-PATCH has shown improvements on RegDB and ThermalWORLD

when used alone, those improvements are probably mainly due to the benefits of occlusions,

which are already part of the MS-REA approach. Visual results observing especially I activation

maps seem to confirm this aspect (Fig. I-2). Though, using MS-REA with M-PATCH appear

as not being meaningful. From the previous conclusions, we propose the Masking and Local

Multimodal Data Augmentation (ML-MDA) strategy, which combines both the local approach

MS-REA with the modality masking DA.

4.4 Comparison with the state-of-art

4.4.1 Performance

As there is no true competitor in the area of V-I multimodal person ReID, the ML-MDA strategy

is compared with SOTA unimodal person ReID models, with or without the CIL strategy used.

According to results obtained in Chen et al. (2021), the LightMBN (Herzog et al., 2021) and

TransReID (He et al., 2021) models are respectively the most performing unimodal models

under the clean and corrupted scenarios. For fair comparison, Table I-4 shows two scenarios for

the multimodal test data. First, both V and I are corrupted (-C*), and second, to observe how
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Table-A I-4 Performance of our multimodal model using ML-MDA compared against

SOTA unimodal person ReID models, and a ResNet-18 unimodal model while using CIL or

not. The two last rows show the performance of the same model when V is corrupted (-C),

and when V and I are corrupted (-C*). Note that performance on clean datasets are the

same and presented in fused cells.

Model SYSU SYSU-C RegDB RegDB-C TWORLD TWORLD-C
mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP

ResNet-18 86,25 39,97 32,36 1,91 99,26 96,64 45,15 5,68 86.44 49.44 28.06 3.86

TransReID 94,33 64,79 52,03 3,60 99,34 97,35 45,64 5,69 95.86 77.98 65.47 17.20

LightMBN 94,45 64,06 40,90 2,13 99,90 99,41 32,40 3,25 93.02 65.94 37.34 5.60

ResNet-18 + CIL 86,64 42,78 51,64 3,83 99,65 98,41 55,76 10,98 86.95 48.07 52.85 7.97

TransReID + CIL 93,20 62,02 61,38 7,20 99,69 98,57 58,74 12,89 94.79 73.82 73.61 23.16
LightMBN+CIL 94,07 61,95 67,80 8,23 99,89 99,41 66,55 21,53 93.20 66.14 71.30 19.73

Ours+ML-MDA (-C)
96.77 76.01

87.89 42.5
99.90 99.45

92.37 75.71
86.34 43.24

69.20 18.47

Ours+ML-MDA (-C*) 63.01 9.59 61.92 20.14 56.10 11.04

a clean I modality can help when the V modality is corrupted, performance is also compared

when only V is corrupted (-C).

Considering a clean data setting, the ML-MDA model outperforms the second-best approach

by 2.32% mAP and especially by 11.22% mINP on SYSU-MM01. This significant mINP

improvement shows that the multimodal setting helps considerably on the more challenging

images. Indeed, the multimodal model can compensate for challenging V samples with the

I modality. On the RegDB dataset, our approach outperforms the others, with a statistically

significant improvement. Indeed, with a 95% confidence interval, the Cochran (Raschka, 2018)

p-value between LightMBN, LightMBN + CIL and our approach is of 0.02. On ThermalWORLD,

the performance of the multimodal model cannot compare with TransReID and LightMBN

models, not even improving over the ResNet-18 model. Again, the poor quality I mostly acts as

a source of perturbation for the model.

When the V modality only is corrupted (-C) on both SYSU-MM01 and RegDB datasets,

the ML-MDA model provides a considerable performance improvement over TransReID and
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LightMBN models. Indeed, our model reaches 87.98% mAP and 92.37% mAP for SYSU-MM01

and RegDB, respectively improving by 20.09% and 25.82% over the second-best approach.

These improvements highlight the benefits of a well-trained multimodal model, relying mainly

on the clean modality (I) when the other is corrupted (V). A performance gap between -C to

-C* settings can be observed, as -C* is much more challenging with two corrupted modalities.

The multimodal model appears as the second-best approach for both SYSU-MM01-C* and

RegDB-C* datasets. Indeed, LightMBN reaches respectively 67.80% and 66.55% mAP against

63.01% and 61.92% mAP for our multimodal model. Still, the multimodal setting improves

the mINP for SYSU-MM01, from 8.23% to 9.59%, and is only below RegDB by 1.39% mINP,

showing that the multimodal setting can help on the hardest cases. For the -C* setting, our

approach outperforms other models except for LightMBN + CIL, or on ThermalWORLD data,

apparently unable to encode discriminant cues from the corrupted I to counterbalance the well

designed unimodal models. However, our architecture remains very simple, and obtaining

such performance improvement on our light architecture is already promising. More complex

fusion strategies, with more knowledge exchange between modality streams, and a more robust

backbones like ResNet-50, may allow exceeding the performance of LightMBN.

Note that both the -C and the -C* settings might not be the most accurate for a great multimodal

evaluation. Indeed, considering the I always clean (-C) is not so accurate as weather would, for

example, probably happen on both modalities for a given co-located pair. On the other hand,

considering both modalities always corrupted (-C*) hardly allows the hetero modality to help

the primary modality, but is not so realistic either. Indeed, digital corruption or noise would

probably not affect V-I modalities simultaneously. In fact, the real-world setting would allow

[Clean V, Corrupted I] pairs, and would especially be a mixture of -C and -C* settings. In

practice, there should be more pairs in which one of the two modalities remains clean, so the

true potential of the multimodal setting probably lies somewhere in between the -C and the -C*

settings.
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Table-A I-5 Memory (number of parameters)

and time (FLOPs) complexity of proposed and

baseline ReID models, FLOPs computed from a

single or multi-modal input.

Model No. Params (M) FLOPs (G)
ResNet-18 11.3 0.51

TransReID 102.0 19.55

LightMBN 7.6 2.09

Ours 22.5 1.54

4.4.2 Complexity

Multimodal person ReID with I and V is more complex than regular ReID with V, so models are

compared in terms of number of parameters and FLOPs (Table I-5). The TransReID (He et al.,

2021) model is known for being computationally expensive as its architecture is transformer

based, with a total of 102M parameters and 19.55 G-FLOPs. In contrast, LightMBN (Herzog

et al., 2021) is based on the Os-Net architecture, which makes it very light, requires 7.6𝑀

parameters and 2.09𝐺 FLOPs. Even if our multimodal model has more parameters (22.5𝑀) to

adjust than LightMBN, it requires less memory compared to the SOTA unimodal person ReID

models, with its 1.54𝐺 FLOPs. Although our model seems equivalent to LightMBN in terms of

complexity, it provides a significant performance improvement. Its robustness to corrupted data

makes it an excellent trade-off in the face of uncontrollable scenarios.

5. Conclusion

Real-world surveillance often requires light models that perform well on corrupted data. In

this paper, image corruptions were extended to the infrared modality, and MDA strategy was

proposed to improve the performance of the V-I person ReID. Experiments on the SYSU-MM01,

RegDB and ThermalWORLD datasets showed the benefits of the multimodal setting over SOTA

unimodal ReID models, especially when combined with the specialized MDA strategy. Indeed,

our ML-MDA strategy has allowed for significant improvements in terms of robustness to
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corruption using the proposed modality masking and MS-REA MDA. The former learns the

model to dynamically balance the importance of each modality in the final embedding. The latter

works on the occlusion concept and teaches the model to better select features among modalities

and not to focus only on the most discriminant features. ML-MDA improves performances, yet

does not incur additional model complexity, and allows for a light ReID architecture.

Given multiple modalities, MDA allows addressing image data corruption, as these corruptions

impact V and I modalities in a different ways, allowing the hetero-modality to compensate.

MDA could be studied more independently from person ReID, and our methods can be applied

to more general datasets (e.g., RGB-D data). Moreover, increasing the number modalities could

further reduce the impact of corruption.

Note that potential improvements are possible using more advanced fusion methods (Su et al.,

2020; Ismail et al., 2020). Finally, we believe that our multimodal corrupted test set might not

entirely reflect the true potential of the multimodal setting, as discussed section 4.4. To better fit

real-world conditions, corruption correlations among modalities should be considered in the test

set design. This would probably allow the multimodal setting to perform even better.



APPENDIX II

HYBRID MODELS

1. Introduction

Computer vision approaches, when targeting tasks like classification or person ReID under the

supervised setting, are mainly governed by two model types of architectures, the transformers

(Dosovitskiy et al., 2020) and the CNNs (LeCun et al., 1998). Facing real-world data, transformer

architectures have been highlighted as being more robust than CNN state-of-art models on

several occasions (Hendrycks et al., 2020; Chen et al., 2021). However, to build a strong

multimodal framework that remains lightweight for a person ReID approach, transformers’

backbones may first be seen as too complex (Han et al., 2020). Allowing benefiting from

each model architecture while being less complex than transformers only model, the use of

hybrid architecture (Dosovitskiy et al., 2020) is an interesting exploration path that has to be

investigated.

As mentioned in the literature review Section 2.1, different multimodal hybrid approaches

were designed through models like the transfuser (Prakash et al., 2021) or approaches like the

one proposed by Dai et al. (2021). The transfuser model is promising and will be explored

in our task, as its architecture has been proposed for autonomous vehicle driving, requiring

efficient data processing. In this model, two specific CNN streams encode the knowledge

along with in-between streams transformer self-attention modules. The transformer modules

allow for selecting and refactoring the relevant features with the knowledge of the two modality

representations and without the local limitations of the convolution operations. Unlike the

transfuser model, the model from Dai et al. (2021) first processes the data through a CNN

architecture, extracting low-level features passed through a transformer self-attention module

to exploit long-range spatial dependencies among features. However, the different modalities

are processed through the same layers in the whole model, which might lead to a lack of

modality-specific feature exploitation, shown as essential through our MMSF model. Still, using
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a CNN followed by transformer self-attention modules might be an interesting way to process

data.

Based on previous observations, one can follow a similar strategy while adapting it to our task. In

practice, we have seen the importance of considering modality-specific backbones, allowing for

encoding the modality-specific features. Hence, instead of having a single backbone like Dai et al.

(2021), modality-specific backbones can be used and followed by modality-specific transformer

self-attention layers and a fusion of the final scores. Plus, CNN models such as MMTM or

MSAF can be used as well as backbones before using the transformer self-attention layers,

which would likely make the self-attention more beneficial as they could allow a better feature

selection among the refactored features. Selecting the relevant features with the knowledge of

the hetero-modality, the cross-attention transformer (Tsai et al., 2019; Wei et al., 2020b; Sun

et al., 2021) could be used instead of the MSA operations in those same architectures, the cross

attention simply replacing queries from the main modality by queries from the hetero modality

in the MSA equation (Eq. 1.7). This aspect leads us to three distinct models to explore on our

task: The transfuser model, and models with distinct modality backbones followed by self or

cross attention transformer layers. These models will be detailed and experimentally explored in

the next sections.

2. Models

2.1 Transfuser

The transfuser model has been developed for autonomous driving tasks by Prakash et al. (2021).

In the original paper, the model extracts the features from two modalities using a ResNet-34

for the visible data and a ResNet-18 for the lidar data. In between the two backbones and right

after each convolutional block, a transformer self-attention module is used to refine each feature

representation based on their global shared representation. The model architecture is slightly

adapted in our work, by using two ResNet-18 backbones and adapting the model to the specific
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Figure-A II-1 Block diagram for the Transfuser model adapted to the person ReID task.

person ReID task (Fig. II-1). Indeed, the model requires class scores for learning and feature

embeddings for evaluation instead of vehicle waypoints.

Before feeding the feature maps FℓV and FℓI to a transformer block, their size is down-sampled

through global average pooling at a fixed resolution 𝐻 = 𝑊 = 8. The original paper proposes

this resolution to reduce the model’s complexity. Then, the downsampled features from each

modality are stacked together, leading to a sequence of dimension (2 × 𝐻 ×𝑊) × 𝐶, 𝐶 ∈ N
being the original feature maps channel size. To this sequence is added a positional embedding,

therefore given to the transformer. One can notice that there is no need for a classification

token since the transformer module is used to refactor the feature maps and not to provide

a discriminant feature vector for later classification (Dosovitskiy et al., 2020). The output

sequence is reshaped into 2 feature maps of dimension 𝐻 ×𝑊 × 𝐶, which get upsampled to the

original feature resolution. Finally, each refactored feature map gets summed to the original

feature map before being fed to the subsequent CNN layers.

2.2 Multimodal self-attention and cross-attention transformers

The model architectures proposed in this section are based on modality-specific ResNet-18,

later followed by 𝐿𝑠 ∈ N transformer self-attention or 𝐿𝑐 ∈ N cross-attention modules, this

value being referred as the depth of the model. In practice, the used CNN backbones can

eventually consider interactions between each modality stream, through the use of architectures
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Figure-A II-2 Multimodal Self Attention Transformer

like MMTM or MSAF. Based on the self-attention transformer, the multimodal self-attention

transformer (MSAT) model is represented Fig. II-2. Using cross-attention transformer instead,

the multimodal cross-attention transformer (MCAT) is presented Fig. II-3.

Before getting through the transformer modules, the last feature map representations get split

into tokens, to which a position embedding is added and a classification token is concatenated.

Then, the two transformers’ output representations (classification tokens) are individually passed

through modality-specific MLPs for final classification, from which the scores get averaged

while learning. For inference matching, the classification tokens are concatenated.
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Figure-A II-3 Multimodal Self Attention Transformer

3. Results

The experimental methodology followed in this section is the same as the one followed in

Chapter 3. First, except for the transfuser model, which already has a fixed architecture from the

version proposed by Prakash et al. (2021), the two other hybrid models get optimized through

distinct parameters. The best versions of these two models get compared to the transfuser and to

our best multimodal models from Chapter 3.
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3.1 Model selection

Table-A II-1 Hybrid models accuracy on the RegDB clean and CCD dataset regarding the

used CNN backbone, pretraining (P), freezing (F), and the transformer’s depth 𝐿. Separated

CNN stands for modality-specific ResNet-18 backbones with no interactions between the

two streams.

Model CNN P F 𝐿
RegDB RegDB-CCD

mAP mINP mAP mINP

M
S
A

T

Separated Yes No 1 99.77±0.04 99.00±0.25 59.83±1.19 17.43±1.11

Separated Yes No 2 99.75±0.06 99.02±0.22 59.90±1.12 17.41±0.93

Separated Yes No 3 99.71±0.06 98.82±0.21 59.33±0.80 17.09±1.03

MMTM Yes No 1 99.58±0.15 98.38±0.33 63.10±1.85 24.59±2.40

MMTM Yes No 2 99.48±0.21 98.19±0.37 62.16±1.00 23.40±1.21

MMTM Yes No 3 99.66±0.11 98.56±0.37 63.41±1.08 25.22±1.27
MMTM Yes Yes 1 99.59±0.06 98.33±0.21 62.68±2.67 24.66±2.76

MMTM Yes Yes 2 99.58±0.17 98.33±0.49 62.90±1.06 24.40±1.41

MMTM Yes Yes 3 99.65±0.10 98.48±0.38 62.38±1.24 23.87±1.46

MMTM No No 1 99.59±0.08 98.26±0.38 57.01±1.63 18.04±1.40

MMTM No No 2 99.49±0.09 98.07±0.25 56.61±1.01 17.54±1.00

MMTM No No 3 99.61±0.13 98.37±0.44 56.15±0.33 17.10±0.99

M
C

A
T

Separated Yes No 1 99.74±0.05 98.96±0.19 60.68±1.02 17.56±0.71

Separated Yes No 2 99.64±0.08 98.49±0.26 59.80±1.70 19.40±1.70

Separated Yes No 3 99.68±0.07 98.57±0.15 58.72±2.42 18.83±1.70

MMTM Yes No 1 99.56±0.07 98.26±0.38 64.04±1.46 25.61±1.60
MMTM Yes No 2 99.58±0.14 98.21±0.55 63.03±0.74 25.21±0.36

MMTM Yes No 3 99.60±0.11 98.22±0.38 62.87±0.75 25.06±0.75

MMTM Yes Yes 1 99.54±0.14 98.22±0.35 63.63±1.99 25.49±2.54

MMTM Yes Yes 2 99.60±0.11 98.33±0.31 62.71±1.81 24.18±0.90

MMTM Yes Yes 3 99.50±0.09 98.02±0.36 62.69±1.09 23.96±1.51

MMTM No No 1 99.69±0.05 98.57±0.17 57.42±2.69 18.28±2.57

MMTM No No 2 99.42±0.16 97.89±0.44 57.61±1.29 18.11±1.31

MMTM No No 3 99.43±0.13 97.95±0.36 57.67±1.28 19.03±1.17

This section investigates the parameters to set for the optimization of the two proposed hybrid

models. Let us present those parameters. First, the backbones used for low-level feature map

representation before the transformer architecture must be selected. In practice, modality-specific
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ResNet-18 backbones are explored, along with backbone including modality collaborations like

MMTM for RegDB or MSAF for SYSU-MM01 since those two were performing very well on

those respective datasets. Then, the used backbones are eventually pre-trained (P) and frozen (F)

if pre-trained. Finally, the depth of the transformer architecture is explored from 𝐿 = 1 to 𝐿 = 3.

These parameters are selected for each MSAT and MCAT model and for RegDB Tab. II-1 or

SYSU-MM01 Tab. II-2.

For the RegDB dataset, results on the clean data are much closer from one configuration to

another than the CCD version results. For this reason, and for selecting a model robust to

corruption, the performances are mainly observed from the CCD data. First, one can observe that

the best performances come with a pre-trained MMTM backbone for the two MSAT and MCAT

models, with no freeze of the CNN while learning the transformer. Pretraining is necessary,

probably making learning the added transformer easier. Freezing, on the other hand, leads to

lower performances, probably restricting too much the model weights. Then, the model’s depth

to choose depends on the model and its parameters. Indeed, for MSAT and a pre-trained MMTM

backbone, three layers lead to the highest results, while those are reached with 𝐿 = 1 for MCAT

with the same backbone.

On the SYSU-MM01 dataset, the best model configuration for both MSAT and MCAT comes

with no pretraining or freezing of the CNN backbone while using MSAF as CNN backbone.

The difference in pretraining needs from RegDB to SYSU-MM01 dataset might result from the

data quantity, which is much lower for RegDB. Then, under this configuration, a depth of 2

for the MSAT model and 3 for the MCAT optimize their performances. For the SYSU-MM01

dataset, one can see more consistency from the clean to the UCD performances than for the

RegDB dataset, the clean data being more challenging for the SYSU dataset, probably allowing

for a better model evaluation.
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Table-A II-2 Hybrid models accuracy on the RegDB the SYSU-MM01 clean and UCD

dataset regarding the used CNN backbone, pretraining (P), freezing (F), and the

transformer’s depth 𝐿. Separated CNN stands for modality-specific ResNet-18 backbones

with no interactions between the two streams.

Model CNN P F 𝐿
SYSU-MM01 SYSU-MM01-UCD

mAP mINP mAP mINP

M
S
A

T

Separated Yes No 1 94.12±0.08 66.80±0.57 60.33±0.73 8.02±0.30

Separated Yes No 2 94.22±0.36 67.02±1.10 60.62±1.57 8.06±0.74

Separated Yes No 3 94.16±0.30 67.19±0.86 60.35±1.02 8.06±0.38

MSAF Yes No 1 93.41±0.27 64.16±1.13 62.11±0.67 9.62±0.28

MSAF Yes No 2 93.34±0.34 64.79±0.27 62.30±0.77 9.66±0.25

MSAF Yes No 3 93.07±0.41 63.86±1.14 61.68±0.99 9.60±0.59

MSAF Yes Yes 1 93.20±0.56 63.53±1.54 62.32±1.52 9.82±0.74

MSAF Yes Yes 2 93.19±0.64 64.09±1.16 61.49±0.82 9.47±0.33

MSAF Yes Yes 3 93.49±0.24 64.85±0.43 61.69±1.95 9.55±0.82

MSAF No No 1 94.90±0.17 69.64±0.89 62.33±0.81 9.95±0.47

MSAF No No 2 95.19±0.45 70.84±1.46 63.21±0.86 10.15±0.72
MSAF No No 3 95.17±0.13 70.83±0.50 61.77±0.88 9.45±0.73

M
S
A

T

Separated Yes No 1 94.27±0.32 67.28±0.74 60.24±1.12 7.89±0.48

Separated Yes No 2 94.01±0.80 66.78±3.07 61.58±2.94 9.81±1.93

Separated Yes No 3 94.41±0.20 68.56±0.52 63.60±1.10 11.04±0.44

MSAF Yes No 1 93.10±0.89 63.31±2.24 61.06±2.08 8.78±0.94

MSAF Yes No 2 94.11±0.14 66.64±0.93 64.87±0.54 11.20±0.37

MSAF Yes No 3 93.85±0.46 65.80±0.84 64.25±0.84 11.26±0.56

MSAF Yes Yes 1 93.14±0.61 64.19±1.17 62.35±0.70 10.00±0.22

MSAF Yes Yes 2 93.75±0.17 65.27±1.00 64.77±0.99 10.94±0.60

MSAF Yes Yes 3 93.78±0.27 65.72±1.08 64.72±0.97 11.60±0.67

MSAF No No 1 95.29±0.38 71.04±1.14 62.57±1.27 10.05±0.63

MSAF No No 2 95.64±0.18 72.87±0.65 65.10±2.14 11.68±1.13

MSAF No No 3 95.60±0.21 72.63±1.05 65.85±0.83 11.84±0.50

3.2 Hybrid and CNN-based comparison

On the best hybrid model configurations, the performance on the RegDB (Tab. II-3) and

SYSU-MM01 (Tab. II-4) datasets are compared to the best multimodal approaches, both in

terms of accuracy and complexity.
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Table-A II-3 Performance comparison of the three hybrid models with

our best approaches on the clean and CCD RegDB datasets.

Model
No params FLOPs Clean CCD

(M) (G) mAP mINP mAP mINP
MMTM 23.8 1.54 99.84 99.24 63.34 17.81

MMSF 34.6 3.09 99.95 99.69 71.52 30.43
Transfuser 57.1 3.35 99.89 99.51 57.71 15.24

MSAT 40.75 1.71 99.66 98.56 63.41 25.22

MCAT 30.24 1.60 99.56 98.26 64.04 25.61

Table-A II-4 Performance comparison of the three hybrid models with

our best approaches on the clean and UCD SYSU-MM01 datasets.

Model
No params FLOPs Clean UCD

(M) (G) mAP mINP mAP mINP
MSAF 22.5 1.54 96.36 73.70 67.78 10.09

MMSF 31.9 2.31 97.77 80.38 65.82 10.51

Transfuser 57.1 3.35 95.58 69.24 65.88 9.43

MSAT 34.44 1.66 95.19 70.84 63.21 10.15

MCAT 39.69 1.71 95.60 72.63 65.85 11.84

On both RegDB and SYSU-MM01 datasets, the transfuser model performs considerably under

the other approaches while being the most complex. For example, despite similar performances

with our MMSF model under SYSU-MM01 and its UCD version, its mAP and mINP are lower

by 2.19 and 11.14 percentile points, respectively. This might be a consequence of the data

amount, as transformers used in the transfuser model bring much parameters and as transformers

are known to require much data for optimization. Instead, MSAF and MSAT uses transformer

later in the process, making it lighter and consequently easier to learn.

Comparing MSAT and MCAT together, the MCAT better deals with corrupted data, whereas

the performances are pretty close under the clean setting on both datasets. This aspect probably

comes from the knowledge exchange the cross-attention allows, adapting better each modality

representation thanks to the knowledge of how each correlate. In terms of complexity, the number
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of parameters the FLOPs depend on the dataset as the depth varies from one model to another,

but where the parameters globally increases much, the required FLOPs is almost equivalent,

varying from 1.60G to 1.71G FLOPs. In fact, the transformer does not increase FLOPs so much

when used as late in the process, despite bringing many parameters. Indeed, MSAT and MCAT

use the MMTM model as backbone for RegDB, and their FLOPs requirements increase only by

0.17G and 0.06G, respectively, from MMTM. Also, knowing the MMTM backbone is used, we

can see how the transformer helps improve the model robustness, increasing its mINP by 7.80

percentile points through MCAT. On the SYSU-MM01 dataset, the mINP is also improved, but

this comes at the cost of a lower mAP.

Despite some robustness improvements from the used CNN backbone on the RegDB dataset,

and especially mINP increase on each dataset for the MCAT model, the hybrid models remain

all under the proposed MMSF architecture in terms of performance. Indeed, for RegDB, the

MMSF is strongly ahead of other models on clean and corrupted data. For SYSU-MM01, the

MMSF performances on the clean version of the dataset with more than 2 mAP and 7 mINP

percentile points higher than the best hybrid model, for example. This improvement makes the

loss of 0.03 mAP and 1.33 mINP percentile points from MMSF to MCAT less relevant, and

allows to present MMSF as the most effective approach.

4. Conclusion

This appendix explores hybrid models based on CNN and transformers architectures through

three distinct models: the transfuser, the MSAT, and the MCAT. These three models have distinct

functioning, transfuser including self-attention transformers between the modality-specific

backbones, and MSAT and MCAT including self-attention and cross-attention transformers,

respectively, after the CNN backbones.

Among the hybrid architectures, the proposed models, especially the MCAT model, outperform

the transfuser in terms of complexity and performance. The cross-attention transformer is

shown as more beneficial than the self-attention transformer, thanks to the knowledge exchange
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it permits. More knowledge exchanges are also favored; those models benefit more from using a

CNN backbone that allows for modality knowledge exchanges.

Comparing the performances between a given CNN backbone and this same model while adding

a transformer to build the feature vectors from the feature map representation, we observed

better handling of the hardest scenarios through the mINP under the corrupted datasets. Hence,

even if such a strategy might be interesting in specific cases, it also weighs up the model with no

performance benefits in most cases, which makes it not worth it. Instead, our MMSF model

remains the best strategy, with a competitive complexity but especially great performances

overall.





APPENDIX III

SUPPLEMENTARY MATERIAL FOR THE ĲCV SUBMISSION

1. Details regarding infrared corruptions

Further details are provided Tab. III-1 concerning the way infrared corruptions were obtained

from the existing visible ones. Also, a figure gathering an example of each 19 infrared corruptions

is presented Fig. III-1.

Table-A III-1 Applied corruption adjustments to extend Visible (V)

corruptions to the Infrared (I) modality. V corruptions that get grayscaled

to perform I corruptions appear in red.

Type V corruption I corruption

N
o
is

e

Gaussian noise

Each noise is used similarly but is first

grayscaled.

Shot noise

Impulse noise

Speckle noise

B
lu

r

Defocus blur

No change in the way blurs are extended to

infrared.

Glass blur

Motion blur

Zoom blur

Gaussian blur

W
ea

th
er

Snow

Brightness is not used for Infrared. Spatter

(water or dirt splash) and frost get grayscaled.

Others are similarly applied.

Frost

Fog

Rain

Brightness

Spatter

D
ig

it
al

Contrast

Digital corruptions are the same except for

saturation. Saturation for infrared make close

objects brighter.

Elastic trsf

Pixelate

JPEG compr

Saturation
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Figure-A III-1 Taxonomy of the 19 thermal corruptions, all applied with an intensity level

3.

2. MMSF optimization

2.1 MMSF and not co-located cameras

The MMSF model fuses the features from each visible and infrared backbone in its middle

stream (Sec. 3.2 in main document). The proper fusion location has to be determined. The

fusion can either be early in the process, fusing directly original images by element-wise sum,

or later by fusing feature maps from each modality stream the same way for a given layer.

Intuitively, as the cameras are not co-located and, as a consequence, the images not spatially

aligned for the SYSU dataset, an early fusion in the middle stream might result in a noised

fused representation. Indeed, the model in early stages might not be able to extract meaningful

representation and adapt them according to the used fusion. In reverse, later-stage feature maps

have a superior degree of abstraction and should suit better such fusion. Also, considering a

corrupted evaluation setting, corruptions may increase the representation gap from one modality

to another and thus eventually make the model further benefit from a later fusion. Still, as earlier
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representation gather more information and hence more potential correlations from one modality

to another, one can only be assured of where to fuse data in the middle stream with an empirical

study.

Obtained results are gathered in Tab. III-2. As expected, fusing at later stages for the middle

stream leads to a more discriminant final representation. Indeed, performances in both mAP and

mINP gradually improve from fusing at ℓ = 0 to fusing at ℓ = 4 for clean data. For example, the

mAP improves by 1, 18% and the mINP by 7, 27% from ℓ = 0 to ℓ = 4 respectively. Also, for

the UCD corrupted setting, mAP improves by 2, 09% and 0, 24% mINP for the same ℓ values.

Later fusion is more beneficial to the model, confirming the drawn hypothesis on NCL data.

Most complex cases are similarly handled by all configurations on corrupted data according to

the mINP witch evolves from 10.27% to 10.51% mINP for ℓ = 0 to ℓ = 4 respectively. .

Table-A III-2 MMSF performances regarding

the fusion location in the middle stream, and

for the clean and UCD SYSU datasets.

Model SYSU SYSU-UCD
mAP mINP mAP mINP

MMSF 0 96.59 73.11 63.73 10.27

MMSF 1 97.27 77.01 64.28 9.57

MMSF 2 97.28 77.37 63.43 9.60

MMSF 3 97.76 79.91 64.81 10.38

MMSF 4 97.77 80.38 65.82 10.51

2.2 MMSF and co-located cameras

The MMSF model under CL cameras may behave differently than under NCL cameras due to

the alignment of the visible and thermal images in a given pair. In fact, earlier fusion should

allow more correlation findings as the feature representation is less compressed than later in the

process. Plus, the spatial alignment should make the sum of the feature maps relevant even in

the early process. Still, an earlier MMSF fusion comes with a more complex architecture since

it requires more layers in the central stream, which needs to be kept in mind.
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Performances regarding the fusion location l for RegDB and ThermalWORLD datasets are

presented Tab. III-3. As expected, it is interesting to observe the performance decrease from

l = 0 to l = 4 on RegDB for clean and CCD-50 data. In practice, the mAP decreases by 2.46%,

and the mINP by 3.74% on CCD-50 dataset. ThermalWORLD results are not following this

same scheme, as the results on clean data are the highest for l = 1, followed by l = 2, l = 4,

and l = 0. The model act as an in-between the NCL and CL settings, which probably comes

from the thermal modality being of terrible quality, messing with the expected impact of spatial

alignment. Still, the RegBD model acts similarly as the ThermalWORLD one on corrupted

data, performing the best through earlier fusions. In fact, earlier fusion may allow the model to

get less impacted by corrupted features as the model can directly find and discard them while

benefiting from the most correlations.

Table-A III-3 MMSF performances regarding the

fusion location in the middle stream, and for the

clean and CCD-50 versions of RegDB and

ThermalWORLD datasets.

Model Clean CCD-50
mAP mINP mAP mINP

R
eg

D
B

MMSF 0 99.95 99.69 74.25 33.24
MMSF 1 99.93 99.60 73.16 30.36

MMSF 2 99.93 99.66 73.17 30.68

MMSF 3 99.93 99.64 72.55 29.74

MMSF 4 99.94 99.64 71.79 29.50

T
W

o
rl

d

MMSF 0 86.10 44.50 62.77 14.24
MMSF 1 86.27 45.96 62.27 13.59

MMSF 2 86.28 45.26 62.06 13.44

MMSF 3 86.14 44.24 61.21 12.98

MMSF 4 86.58 44.89 61.30 12.95
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3. Element-wise sum or concatenation

3.1 Fusion with co-located cameras

The absence of spatial alignment may favor the concatenation over the element-wise sum of the

feature vectors or vice-versa. Indeed, a summation might require the vector information to be

aligned from one modality to another, not to erase it. Unlike element-wise sum, concatenation

conserves features from each modality the same way and could consequently better fit with

NCL configuration. Also, in the case of corrupted data, corruption should also tend to

make the produced modality-specific feature vector representation different and hence favored

concatenation as well. Still, this is only hypothetical as the information may be only semantic

and aligned at this point of the data encoding.

Table-A III-4 Baseline, MMTM, and MSAF

performances on SYSU-MM01 dataset while

summing (S) or concatenating (C) their feature

vectors. Clean and UCD evaluation only are

considered since UCD respects the most NCL

corruptions (Section 4.3 main document).

Model Clean UCD
mAP mINP mAP mINP

Baseline S 96.54 74.49 64.00 9.72
Baseline C 96.77 76.01 63.40 9.51

MMTM S 94.97 68.33 63.29 9.45

MMTM C 95.81 74.23 64.41 11.49
MSAF S 96.36 73.70 67.78 10.09
MSAF C 96.04 71.13 66.20 9.68

To confirm or invalidate the previous assumptions, the baseline, MMTM, and MSAF models are

compared in terms of mAP and mINP regarding a sum or a concatenation of the feature vectors,

and on clean and UCD SYSU-MM01 datasets (Table III-4). The corrupted UCD set is only

considered here as uncorrelated corruptions are the most suited for the NCL configuration and

as it should allow answering the previous hypothesis. Models were trained using ML-MDA, but
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the ML-MDA is beyond this section’s scope, only used as a tool (for now) to bring consistency

from clean to corrupted evaluation. Observing the baseline results, it seems beneficial to

concatenate the features as expected while looking at clean data results. Indeed, concatenation

improves mINP by 1.52% while conserving similar mAPs. However, performances under

the UCD dataset show that summing is more beneficial, slightly improving the mAP and

mINP respectively by 0.60 and 0, 21%. These results on corrupted data are going against

our hypothesis, as concatenation was expected to overpass summation under UCD. Observing

attention MMTM and MSAF models results on clean and UCD data; the former considerably

improves from summation to concatenation, whereas the second considerably decreases. Hence,

the concatenation or summation of the features at such a level of abstraction probably allows the

model to deal with the absence of spacial alignment and to align features according to the fusion

used. Consequently, the best feature vector fusion strategy is model dependent and needs to be

assessed experimentally. For MMTM and MSAF, the upcoming NCL analysis will consider

only their best fusion version MMTM C and MSAF S.

3.2 Fusion with co-located cameras

The best strategy between element-wise sum and concatenation of the feature maps was shown

to be model-dependent for NCL cameras (Section 3.1). Unlike NCL cameras, CL ones bring

spacial alignment that might impact the preferred fusion differently. An empirical analysis is

provided Tab. III-5 to determine which fusion to follow and if it remains model dependent

by applying it on the baseline, MMTM and MSAF models. In practice, where it behaves

similarly for each dataset by favoring the fusion by concatenation for the baseline models, it

becomes more complex for MMTM and MSAF models. Indeed, the MMTM and the MSAF

models, which exchange information between the visible and thermal CNN streams, seem not

to follow a specific rule again. More than being model-dependent, performances appear as

being data-dependent. For example, MMTM S performs better under both clean and corrupted

RegDB settings, whereas it is MMTM C for ThermalWORLD. It is important to notice that the

performance gap can be important from sum to concatenation, making such analysis important

while seeking the right way to fuse feature vectors in a model. Models performing best for
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Table-A III-5 Baseline, MMTM and MSAF

performances on RegDB and ThermalWORLD

datasets while summing (S) or concatenating (C) the

feature vectors as fusion.

Model Clean CCD-50
mAP mINP mAP mINP

R
eg

D
B

Baseline S 99.87 99.37 63.89 17.34

Baseline C 99.90 99.45 64.15 18.08
MMTM S 99.84 99.24 67.27 20.17
MMTM C 99.80 99.12 63.92 17.97

MSAF S 99.84 99.19 59.22 13.26

MSAF C 99.88 99.33 63.87 18.28

T
W

o
rl

d

Baseline S 82.18 36.89 55.68 10.55

Baseline C 86.34 43.24 58.01 11.02
MMTM S 86.17 45.50 59.60 10.91

MMTM C 87.82 47.95 60.51 12.36
MSAF S 87.62 50.02 60.78 10.93

MSAF C 87.73 48.00 60.57 12.01

MMTM and MSAF are kept for the rest of CL cameras study.

4. Detailed complexity and accuracy trade-off

The accuracy and complexity analysis is provided in the main document Section 6.2.3 for NCL

and 6.3.2 for CL cameras. However, detailed performances and complexity was not provided.

Hence, this section focus on the detailed models performances for NCL and CL cameras at

first and finally present the complexity in terms of parameters and FLOPs for each and every

considered model.
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4.1 Accuracy with not co-located cameras

Table-A III-6 Multimodal comparison with the

state-of-art unimodal models. MDA refer to our

ML-MDA approach.

SYSU
Model Clean UCD

mAP mINP mAP mINP

N
o

D
A Unimodal V 86.25 39.97 32.36 1.91

TransReID 94.33 64.79 52.03 3.60

LightMBN 94.45 64.06 40.90 2.13

C
IL

Unimodal V 86.64 42.78 51.64 3.83

TransReID 93.20 62.02 61.38 7.20

LightMBN 94.07 61.95 67.80 8.23

M
D

A

Baseline C 96.77 76.01 63.01 9.59

MSAF 96.36 73.70 67.78 10.09

MMSF 97.77 80.38 65.82 10.51

State-of-art unimodal models, along with the unimodal V model, are compared to the baseline

C, MMSF, and MSAF multimodal approaches learned using our ML-MDA (Table III-6).

Unimodal models are evaluated while being learned with and without the CIL strategy. As a

first observation, multimodal models are all considerably over the unimodal models in terms of

both mAP and mINP on clean data. Indeed, the highest improvement in mAP and mINP from

the best unimodal model performances is respectively about 3.32% and 15.59%. Then, if we

compare the multimodal models among themselves, MMSF comes first by improving mAP of

the baseline by 1.00% while it improves its mINP by 4.37%. Surprisingly, MSAF is below the

baseline’s mINP by 2.31% while conserving its mAP.

Looking now at the UCD performances, the best working model is MSAF with 67.78% mAP and

10.09% mINP. Then, LightMBN and MMSF are pretty equivalent, with respectively mAPs about

67.80% and 65.82% but mINPs about 8.23% and 10.51%. From the previous observations, both

the MSAF and MMSF models can be used to improve over the state-of-art unimodal models,

considering both clean and corrupted data. However, the benefits from the proposed MMSF are
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higher than the ones from the MSAF approach. Still, if the real-world conditions were expected

as tough, MSAF would eventually be favored. However, if conditions were varying or tending to

be clean, MMSF should be used.

4.2 Accuracy with co-located cameras

Table-A III-7 RegDB and ThermalWORLD - Comparison with SOTA

Model Clean CCD CCD-50
mAP mINP mAP mINP mAP mINP

R
eg

D
B

Unimodal V 99.26 96.64 45.15 7.01 45.42 6.20

TransReID 99.34 97.35 45.64 5.69 48.60 7.01

LightMBN 99.90 99.41 32.40 7.01 33.63 3.85

Unimodal V + CIL 99.65 98.41 55.76 10.9 58.53 14.8

TransReID + CIL 99.69 98.57 58.74 12.8 60.48 16.2

LightMBN + CIL 99.89 99.41 66.55 21.5 69.40 26.2

Baseline C + ML-MDA 99.90 99.45 59.06 14.6 64.15 18.0

MMTM + ML-MDA 99.84 99.2!4 63.34 17.8 67.27 20.1

MMSF + ML-MDA 99.95 99.69 71.52 30.4 74.25 33.2

T
h
er

m
al

W
O

R
L

D

Unimodal V 86.44 49.44 28.06 3.86 35.27 5.18

TransReID 95.86 77.98 65.47 17.2 68.66 20.0

LightMBN 93.02 65.94 37.34 5.60 44.01 6.70

Unimodal V + CIL 86.95 48.07 52.85 7.97 56.33 10.6

TransReID + CIL 94.79 73.82 73.61 23.1 76.21 25.8
LightMBN + CIL 93.20 66.14 71.30 19.7 73.62 21.4

Baseline C + ML-MDA 86.34 43.24 56.10 9.93 58.01 11.02

MMTM + ML-MDA 87.82 47.95 58.12 11.53 60.51 12.36

MMSF + ML-MDA 86.10 44.50 60.75 13.33 62.77 14.24

The multimodal models trained using our ML-MDA are compared with state-of-art unimodal

frameworks learned using CIL DA under the CL setting Table III-7. First, observing performances

on RegDB clean data, the multimodal baseline C and the proposed MMSF are ahead of the

unimodal models. MMSF improving LightMBN mAP and mINP respectively from 99.89 to

99.92 and 99.45 to 99.57. If we observe corrupted performances, only the proposed MMSF

can improve over the best unimodal model LightMBN + CIL, increasing the mAP by 4.97% on



134

CCD and by 4.85 on CCD-50. Hence, our MMSF model is the way to go for both clean and

corrupted data under the CL configuration performance-wise.

About ThermalWORLD, models behave really differently. The TransReID and LightMBN

models perform much better than the best multimodal approach MSAF on clean data. Indeed,

for example, TransReID reaches 95.86% mAP when MSAF reaches 87.82% mAP. In fact, the

slight 0.87% mAP improvement from the Unimodal V to the MSAF model shows how hard the

multimodal setting benefits from the bad thermal modality. This is confirmed by the results

under corrupted settings, as the best multimodal approach MMSF is 12.86% and 13.44% mAP

below the TransReID approach for CCD and CCD-50 respectively. Consequently, favoring

stronger unimodal models is a better strategy when the supplementary modality is far behind in

terms of quality.

4.3 Models complexity

Table-A III-8 Size (Number of parameters) and

computation complexity regarding FLOPs.

Model No params (M) FLOPs (G)
Unimodal V or I 11.3 0.51

TransReID 102.0 19.55

LightMBN 7.6 2.09

Baseline 22.5 1.54

MAN 22.5 1.54

MMTM 23.8 1.54

MSAF 22.5 1.54

MMSF l=0 34.6 3.09

MMSF l=4 31.9 2.31

Thanks to the additional modality and knowledge, a multimodal setting might allow the use of

lighter backbones than a given unimodal pipeline while matching or even improving accuracy.

From the previous experiments, the multimodal accuracy comes ahead unimodal approaches,

but a complexity analysis remains needed, and is provided Tab. III-8. The analysis is presented

regarding the models’ number of parameters and the FLOPs needed to compute a single input.
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First, one can observe that the TransReID complexity appeals at first sight, much heavier through

102.0M parameters than any other models, followed by MMSF with ℓ = 0 and its 34.6M

parameters. The lighter model is LightMBN, being more than ten times lighter than TransReID

with 7.6M parameters. Based on the obtained results for NCL, the multimodal setting improves

much the ReID accuracy. Especially, LightMBN comes first among unimodal approaches but is

way less performing than MSAF and MMSF. In practice, the proposed MMSF works the best

(ℓ = 4 for NCL) under NCL cameras and should be used if resources allow it, requiring 2.31

GFLOPs and 31.9M parameters. Otherwise, MSAF would be the next model to go with 1.54

GFLOPs and 22.5M parameters, finally followed by the unimodal LightMBN approach with

2.09GFLOPs and 7.6M parameters.

Considering the CL setting, the proposed MMSF (ℓ = 0) model is ahead, followed directly by

the LightMBN model performance-wise. Similarly LightMBN comes with less complexity than

MMSF, thus making a compromise between precision and complexity.

5. Qualitative analysis

Models learned through ML-MDA were compared over clean and corrupted data in terms of

performances Section 6.2.1 in the main document. However, observing what the models are

focusing on to discriminate and ReID would be a great way to draw additional conclusions, or at

least to better understand why a model is better than another. To this end, adapted for pairwise

matching algorithms, similarity based Class Activation Maps (CAMs) from Stylianou et al.

(2019) is used. It is important to notice that MMSF CAMs are produced from its two modality

specific streams only, and that the shared modality stream cannot be analysed from this CAM

technique for the NCL cameras. Indeed, CAMs could be determined for the middle stream but

there would be no way to dissociate from which spatial part of the V or I modality comes the

shared activation.

To put visualizations in perspective, models ranking performance-wise on clean data start from

MMSF, followed by MAN, Baseline C, MSAF, and MMTM. Observing Fig. III-2a., one can
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see that activation on the V modality is more or less similar from one model to another, focusing

mainly on the torso. Actually, MMSF might appear a bit less accurate but tend to focus on the

same region. However, it seems that the most discriminant models consider both the torso and

the legs of the person concerning the I modality. Indeed, from MMSF (6) to MAN (3), Baseline

C (2), MSAF (5) and finally to MMTM (4), legs activation just decreases.

Switching to corrupted data, models ranking was the following under CCD: MSAF, MMSF,

MMTM, Baseline C, MAN. Looking at Fig. III-2b. one may observe that the best working

models focus both on the short and on the t-shirt of the individual concerning the V modality.

About the I modality, it is harder to interpret, as the added snow made the focus of the models

much less accurate, which in fact correlate well with the snow corruption impact on the thermal

modality (Tab. 3.4). In fact, for I, both MMSF and MSAF focus on waist, but MMSF adding

feet where MSAF adds shoulders to it. Also, MMTM seems much perturbed, as its attention is

not so much on the person, and baseline C with MAN are both looking pretty fuzzy, mainly

looking at the whole back of the individual.

If we look at corruptions that seem to less affect each modalities, with Fig. III-2c., one can see

that the thermal modality (gaussian noise) is much better apprehended by each model. For the

most discriminant ones, MMSF (6), MSAF (5) and MMTM (4), it is interesting to again observe

the importance of feet in the ReID process.
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(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4) (5) (6)

(a)

(b)

(c)

Figure-A III-2 Three examples of similarity-based CAMs using

SYSU-MM01 (a) clean V-I pairs, (b) snow corrupted V-I pairs, (c)

differently corrupted V (spatter) and I (gaussian noise) pairs.

CAMs are computed from (2) baseline C, (3) MAN, (4) MMTM,

(5) MSAF, and (6) MMSF. (1) is the reference V-I pair.





BIBLIOGRAPHY

Alehdaghi, M., Josi, A., Cruz, R. M. & Granger, E. (2023). Visible-infrared person re-

identification using privileged intermediate information. Computer Vision–ECCV 2022
Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part V, pp. 720–737.

Arevalo, J., Solorio, T., Montes-y Gomez, M. & González, F. A. (2020). Gated multimodal

networks. Neural Computing and Applications, 32, 10209–10228.

Atrey, P. K., Hossain, M. A., El Saddik, A. & Kankanhalli, M. S. (2010). Multimodal fusion for

multimedia analysis: a survey. Multimedia systems, 16(6), 345–379.

Baltrušaitis, T., Ahuja, C. & Morency, L.-P. (2018). Multimodal machine learning: A survey

and taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2),

423–443.

Bhuiyan, A., Liu, Y., Siva, P., Javan, M., Ayed, I. B. & Granger, E. (2020). Pose guided gated

fusion for person re-identification. WACV.

Birjali, M., Kasri, M. & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis:

Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134.

Black, S., Stylianou, A., Pless, R. & Souvenir, R. (2022). Visualizing Paired Image Similarity in

Transformer Networks. Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 3164–3173.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E. & Shah, R. (1993). Signature verification

using a" siamese" time delay neural network. Advances in neural information processing
systems, 6.

Chang, Y., Jung, C., Sun, J. & Wang, F. (2020). Siamese dense network for reflection removal

with flash and no-flash image pairs. International Journal of Computer Vision, 128,

1673–1698.

Chattopadhay, A., Sarkar, A., Howlader, P. & Balasubramanian, V. N. (2018). Grad-cam++:

Generalized gradient-based visual explanations for deep convolutional networks. 2018
IEEE winter conference on applications of computer vision (WACV), pp. 839–847.

Chen, J., Yang, Q., Meng, J., Zheng, W.-S. & Lai, J.-H. (2019a). Contour-Guided Person

Re-identification. PRCV.

Chen, K. & Salman, A. (2011). Extracting speaker-specific information with a regularized

siamese deep network. Advances in Neural Information Processing Systems, 24.



140

Chen, L., Chen, J., Hajimirsadeghi, H. & Mori, G. (2020a). Adapting Grad-CAM for embedding

networks. WACV.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. (2018a). Encoder-decoder with

atrous separable convolution for semantic image segmentation. ECCV.

Chen, M., Ge, Y., Feng, X., Xu, C. & Yang, D. (2018b). Person re-identification by pose

invariant deep metric learning with improved triplet loss. IEEE Access, 6, 68089–68095.

Chen, M., Wang, Z. & Zheng, F. (2021). Benchmarks for corruption invariant person

re-identification. arXiv preprint arXiv:2111.00880.

Chen, T., Ding, S., Xie, J., Yuan, Y., Chen, W., Yang, Y., Ren, Z. & Wang, Z. (2019b).

Abd-net: Attentive but diverse person re-identification. Proceedings of the IEEE/CVF
international conference on computer vision, pp. 8351–8361.

Chen, X., Fu, C., Zhao, Y., Zheng, F., Song, J., Ji, R. & Yang, Y. (2020b). Salience-guided

cascaded suppression network for person re-identification. Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 3300–3310.

Cheng, D., Gong, Y., Zhou, S., Wang, J. & Zheng, N. (2016). Person re-identification by

multi-channel parts-based cnn with improved triplet loss function. Proceedings of the
iEEE conference on computer vision and pattern recognition, pp. 1335–1344.

Chicco, D. (2021). Siamese neural networks: An overview. Artificial neural networks, 73–94.

Choi, S., Lee, S., Kim, Y., Kim, T. & Kim, C. (2020). HI-CMD: hierarchical cross-modality

disentanglement for visible-infrared person re-identification. CVPR.

Ciregan, D., Meier, U. & Schmidhuber, J. (2012). Multi-column deep neural networks for image

classification. CVPR.

Čížek, P. & Sadıkoğlu, S. (2020). Robust nonparametric regression: A review. Wiley
Interdisciplinary Reviews: Computational Statistics, 12(3), e1492.

Coppola, D., Laiolo, M., Cigolini, C., Donne, D. D. & Ripepe, M. (2016). Enhanced volcanic

hot-spot detection using MODIS IR data: results from the MIROVA system. Geological
Society, London, Special Publications, 426(1), 181–205.

Cortes, C. & Vapnik, V. (1995). Support vector machine. Machine learning, 20(3), 273–297.

Dabre, R., Chu, C. & Kunchukuttan, A. (2020). A survey of multilingual neural machine

translation. ACM Computing Surveys (CSUR), 53(5), 1–38.



141

Dai, Y., Gao, Y. & Liu, F. (2021). Transmed: Transformers advance multi-modal medical image

classification. Diagnostics, 11(8), 1384.

Davis, J. & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves.

Proceedings of the 23rd international conference on Machine learning, pp. 233–240.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. (2009). ImageNet: A large-scale

hierarchical image database. CVPR.

Ding, S., Lin, L., Wang, G. & Chao, H. (2015). Deep feature learning with relative distance

comparison for person re-identification. Pattern Recognition, 48(10), 2993–3003.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,

M., Minderer, M., Heigold, G., Gelly, S. et al. (2020). An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv:2010.11929.

Elert, G. (1998). The electromagnetic spectrum, the physics hypertextbook. Hypertextbook.
com.

Eom, C., Lee, G., Lee, J. & Ham, B. (2021). Video-based person re-identification with spatial

and temporal memory networks. Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 12036–12045.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861–874.

Fu, D., Chen, D., Bao, J., Yang, H., Yuan, L., Zhang, L., Li, H. & Chen, D. (2021a). Unsupervised

pre-training for person re-identification. CVPR.

Fu, R., Hu, Q., Dong, X., Guo, Y., Gao, Y. & Li, B. (2020). Axiom-based grad-cam: Towards

accurate visualization and explanation of cnns. BMVC.

Fu, Z., Liu, F., Wang, H., Qi, J., Fu, X., Zhou, A. & Li, Z. (2021b). A cross-modal fusion network

based on self-attention and residual structure for multimodal emotion recognition. arXiv
preprint arXiv:2111.02172.

Gabeur, V., Nagrani, A., Sun, C., Alahari, K. & Schmid, C. (2022). Masking modalities for

cross-modal video retrieval. WACV.

Gan, C., Wang, N., Yang, Y., Yeung, D.-Y. & Hauptmann, A. G. (2015). Devnet: A deep event

network for multimedia event detection and evidence recounting. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2568–2577.



142

Gandhi, A., Adhvaryu, K., Poria, S., Cambria, E. & Hussain, A. (2022). Multimodal

sentiment analysis: A systematic review of history, datasets, multimodal fusion methods,

applications, challenges and future directions. Information Fusion.

Gardner, M. W. & Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)—a

review of applications in the atmospheric sciences. Atmospheric environment, 32(14-15),

2627–2636.

Gaw, N., Yousefi, S. & Gahrooei, M. R. (2022). Multimodal data fusion for systems improvement:

A review. IISE Transactions, 54(11), 1098–1116.

Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M. & Wichmann, F. A. (2018).

Generalisation in humans and deep neural networks. NIPS.

Giancola, S., Cioppa, A., Deliège, A., Magera, F., Somers, V., Kang, L., Zhou, X., Barnich,

O., De Vleeschouwer, C., Alahi, A. et al. (2022). SoccerNet 2022 Challenges Results.

Proceedings of the 5th International ACM Workshop on Multimedia Content Analysis in
Sports, pp. 75–86.

Gong, Y., Zeng, Z., Chen, L., Luo, Y., Weng, B. & Ye, F. (2021). A Person Re-identification

Data Augmentation Method with Adversarial Defense Effect. arXiv:2101.08783.

Greenspan, H., Van Ginneken, B. & Summers, R. M. (2016). Guest editorial deep learning

in medical imaging: Overview and future promise of an exciting new technique. IEEE
transactions on medical imaging, 35(5), 1153–1159.

Gu, Y., Yang, K., Fu, S., Chen, S., Li, X. & Marsic, I. (2018). Hybrid attention based multimodal

network for spoken language classification. Proceedings of the conference. Association
for Computational Linguistics. Meeting.

Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R. R.,

Cheng, M.-M. & Hu, S.-M. (2022). Attention mechanisms in computer vision: A survey.

Computational visual media, 8(3), 331–368.

Hadsell, R., Chopra, S. & LeCun, Y. (2006). Dimensionality reduction by learning an invariant

mapping. 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), 2, 1735–1742.

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y. et al.

(2020). A survey on visual transformer. arXiv:2012.12556.



143

Hao, X., Zhu, Y., Appalaraju, S., Zhang, A., Zhang, W., Li, B. & Li, M. (2023). Mixgen: A new

multi-modal data augmentation. Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 379–389.

Hao, X., Zhao, S., Ye, M. & Shen, J. (2021). Cross-modality person re-identification via

modality confusion and center aggregation. ICCV.

He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep residual learning for image recognition.

CVPR.

He, S., Luo, H., Wang, P., Wang, F., Li, H. & Jiang, W. (2021). Transreid: Transformer-based

object re-identification. arXiv:2102.04378.

Hendrycks, D. & Dietterich, T. (2019). Benchmarking neural network robustness to common

corruptions and perturbations. arXiv:1903.12261.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J. & Lakshminarayanan, B. (2019).

Augmix: A simple data processing method to improve robustness and uncertainty.

arXiv:1912.02781.

Hendrycks, D., Liu, X., Wallace, E., Dziedzic, A., Krishnan, R. & Song, D. (2020). Pretrained

transformers improve out-of-distribution robustness. arXiv:2004.06100.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T.,

Parajuli, S., Guo, M. et al. (2021). The many faces of robustness: A critical analysis of

out-of-distribution generalization. ICCV.

Hermans, A., Beyer, L. & Leibe, B. (2017). In defense of the triplet loss for person re-

identification. arXiv:1703.07737.

Herzog, F., Ji, X., Teepe, T., Hörmann, S., Gilg, J. & Rigoll, G. (2021). Lightweight multi-branch

network for person re-identification. ICIP.

Hong, J., Kim, M., Choi, J. & Ro, Y. M. (2023). Watch or Listen: Robust Audio-Visual Speech

Recognition with Visual Corruption Modeling and Reliability Scoring.

Hu, J., Shen, L. & Sun, G. (2018). Squeeze-and-excitation networks. CVPR.

Huang, J., Tao, J., Liu, B., Lian, Z. & Niu, M. (2020). Multimodal transformer fusion for

continuous emotion recognition. ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3507–3511.



144

Huang, W., Li, Y., Zhang, K., Hou, X., Xu, J., Su, R. & Xu, H. (2021). An Efficient Multi-Scale

Focusing Attention Network for Person Re-Identification. Applied Sciences, 11(5), 2010.

Ismail, A. A., Hasan, M. & Ishtiaq, F. (2020). Improving Multimodal Accuracy Through

Modality Pre-training and Attention. arXiv:2011.06102.

Jaderberg, M., Simonyan, K., Zisserman, A. & Kavukcuoglu, K. (2015). Spatial transformer

networks. arXiv:1506.02025.

Jain, A. K., Ross, A. & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE
Transactions on circuits and systems for video technology, 14(1), 4–20.

Jia, X., Zhong, X., Ye, M., Liu, W. & Huang, W. (2022). Complementary data augmentation for

cloth-changing person re-identification. IEEE Transactions on Image Processing, 31,

4227–4239.

Jiang, P.-T., Zhang, C.-B., Hou, Q., Cheng, M.-M. & Wei, Y. (2021). Layercam: Exploring hier-

archical class activation maps for localization. IEEE Transactions on Image Processing,

30, 5875–5888.

Josi, A., Alehdaghi, M., Cruz, R. M. & Granger, E. (2023). Multimodal Data Augmentation

for Visual-Infrared Person ReID with Corrupted Data. Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 32–41.

Joze, H. R. V., Shaban, A., Iuzzolino, M. L. & Koishida, K. (2020). MMTM: Multimodal

transfer module for CNN fusion. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13289–13299.

Kamann, C. & Rother, C. (2020). Benchmarking the robustness of semantic segmentation

models. Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8828–8838.

Khan, S. D. & Ullah, H. (2019). A survey of advances in vision-based vehicle re-identification.

CVIU.

Khare, A., Parthasarathy, S. & Sundaram, S. (2021). Self-Supervised learning with cross-

modal transformers for emotion recognition. 2021 IEEE Spoken Language Technology
Workshop (SLT), pp. 381–388.

Kniaz, V. V., Knyaz, V. A., Hladuvka, J., Kropatsch, W. G. & Mizginov, V. (2018). Thermalgan:

Multimodal color-to-thermal image translation for person re-identification in multispectral

dataset. ECCV Workshops.



145

Krišto, M., Ivasic-Kos, M. & Pobar, M. (2020). Thermal object detection in difficult weather

conditions using YOLO. IEEE access, 8, 125459–125476.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2017). Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84–90.

Lai, S., Chai, Z. & Wei, X. (2021). Transformer meets part model: Adaptive part division for

person re-identification. Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 4150–4157.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lejbolle, A. R., Krogh, B., Nasrollahi, K. & Moeslund, T. B. (2018). Attention in multimodal

neural networks for person re-identification. CVPR Workshops.

Li, X., Wang, W., Hu, X. & Yang, J. (2019). Selective kernel networks. CVPR.

Li, Y., He, J., Zhang, T., Liu, X., Zhang, Y. & Wu, F. (2021). Diverse part discovery: Occluded

person re-identification with part-aware transformer. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2898–2907.

Lian, Z., Liu, B. & Tao, J. (2021). CTNet: Conversational transformer network for emotion

recognition. TASLP.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of

interpretability is both important and slippery. Queue, 16(3), 31–57.

Lohweg, V. & Mönks, U. (2010). Fuzzy-pattern-classifier based sensor fusion for machine

conditioning. Sensor Fusion and its Applications.

Long, J., Shelhamer, E. & Darrell, T. (2015). Fully convolutional networks for semantic

segmentation. Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3431–3440.

Lu, J., Hu, J. & Zhou, J. (2017). Deep metric learning for visual understanding: An overview of

recent advances. IEEE Signal Processing Magazine, 34(6), 76–84.

Luna-Jiménez, C., Griol, D., Callejas, Z., Kleinlein, R., Montero, J. M. & Fernández-Martínez,

F. (2021). Multimodal emotion recognition on ravdess dataset using transfer learning.

Sensors, 21(22), 7665.



146

Luo, H., Gu, Y., Liao, X., Lai, S. & Jiang, W. (2019a). Bag of tricks and a strong baseline for

deep person re-identification. CVPR workshops.

Luo, H., Jiang, W., Gu, Y., Liu, F., Liao, X., Lai, S. & Gu, J. (2019b). A strong baseline

and batch normalization neck for deep person re-identification. IEEE Transactions on
Multimedia.

Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W. & Kim, T.-K. (2021). Multiple object tracking:

A literature review. Artificial Intelligence.

Ma, F., Sun, B. & Li, S. (2021). Robust facial expression recognition with convolutional visual

transformers. arXiv:2103.16854.

Ma, J., Ma, Y. & Li, C. (2019). Infrared and visible image fusion methods and applications: A

survey. Information Fusion, 45, 153–178.

Martini, M., Paolanti, M. & Frontoni, E. (2020). Open-world person re-identification with rgbd

camera in top-view configuration for retail applications. IEEE Access.

Mekhazni, D., Bhuiyan, A., Ekladious, G. & Granger, E. (2020). Unsupervised Domain

Adaptation in the Dissimilarity Space for Person ReID. ECCV.

Mendes-Moreira, J., Soares, C., Jorge, A. M. & Sousa, J. F. D. (2012). Ensemble approaches

for regression: A survey. Acm computing surveys (csur), 45(1), 1–40.

Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A. S., Bethge,

M. & Brendel, W. (2019). Benchmarking robustness in object detection: Autonomous

driving when winter is coming. arXiv:1907.07484.

Middya, A. I., Nag, B. & Roy, S. (2022). Deep learning based multimodal emotion recognition

using model-level fusion of audio–visual modalities. Knowledge-Based Systems, 244,

108580.

Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N. & Terzopoulos, D. (2021).

Image segmentation using deep learning: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Ming, Z., Zhu, M., Wang, X., Zhu, J., Cheng, J., Gao, C., Yang, Y. & Wei, X. (2022). Deep

learning-based person re-identification methods: A survey and outlook of recent works.

Image and Vision Computing, 119, 104394.

Mittal, A., Moorthy, A. K. & Bovik, A. C. (2011). Blind/referenceless image spatial quality

evaluator. ASILOMAR.



147

Mocanu, B. & Tapu, R. (2022). Audio-Video Fusion with Double Attention for Multimodal

Emotion Recognition. 2022 IEEE 14th Image, Video, and Multidimensional Signal
Processing Workshop (IVMSP), pp. 1–5.

Mogelmose, A., Bahnsen, C., Moeslund, T., Clapés, A. & Escalera, S. (2013). Tri-modal

person re-identification with rgb, depth and thermal features. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 301–307.

Müller, R., Kornblith, S. & Hinton, G. E. (2019). When does label smoothing help? NeurIPS.

Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines.

Proceedings of the 27th international conference on machine learning (ICML-10),
pp. 807–814.

Nakamura, Y., Ishii, Y., Maruyama, Y. & Yamashita, T. (2022). Few-shot Adaptive Object

Detection with Cross-Domain CutMix. ACCV.

Nguyen, D. T., Hong, H. G., Kim, K. W. & Park, K. R. (2017). Person recognition system based

on a combination of body images from visible light and thermal cameras. Sensors.

Niu, Z., Zhong, G. & Yu, H. (2021). A review on the attention mechanism of deep learning.

Neurocomputing.

Nojavanasghari, B., Gopinath, D., Koushik, J., Baltrušaitis, T. & Morency, L.-P. (2016). Deep

multimodal fusion for persuasiveness prediction. ICMI.

Paolanti, M., Romeo, L., Liciotti, D., Pietrini, R., Cenci, A., Frontoni, E. & Zingaretti, P. (2018).

Person re-identification with RGB-D camera in top-view configuration through multiple

nearest neighbor classifiers and neighborhood component features selection. Sensors.

Penate-Sanchez, A., Freire-Obregon, D., Lorenzo-Melian, A., Lorenzo-Navarro, J. & Castrillon-

Santana, M. (2020). TGC20ReId: A dataset for sport event re-identification in the wild.

Pattern Recognition Letters, 138, 355–361.

Poria, S., Cambria, E., Bajpai, R. & Hussain, A. (2017). A review of affective computing: From

unimodal analysis to multimodal fusion. 37, 98–125.

Prakash, A., Chitta, K. & Geiger, A. (2021). Multi-Modal Fusion Transformer for End-to-End

Autonomous Driving. CVPR.

Rahate, A., Walambe, R., Ramanna, S. & Kotecha, K. (2022). Multimodal co-learning:

challenges, applications with datasets, recent advances and future directions.



148

Ramachandram, D. & Taylor, G. W. (2017). Deep multimodal learning: A survey on recent

advances and trends. IEEE signal processing magazine, 34(6), 96–108.

Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine

learning. arXiv:1811.12808.

Remigereau, F., Mekhazni, D., Abdoli, S., Cruz, R. M., Granger, E. et al. (2022). Knowledge

distillation for multi-target domain adaptation in real-time person re-identification. 2022
IEEE International Conference on Image Processing (ICIP), pp. 3853–3557.

Rensink, R. A. (2000). The dynamic representation of scenes. Visual cognition, 7(1-3), 17–42.

Ristani, E. & Tomasi, C. (2018). Features for multi-target multi-camera tracking and re-

identification. CVPR.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning representations by

back-propagating errors. nature, 323(6088), 533–536.

Rusak, E., Schott, L., Zimmermann, R. S., Bitterwolf, J., Bringmann, O., Bethge, M. & Brendel,

W. (2020). A simple way to make neural networks robust against diverse image

corruptions. ECCV.

Sahay, S., Okur, E., Kumar, S. H. & Nachman, L. (2020). Low Rank Fusion based Transformers

for Multimodal Sequences. arXiv:2007.02038.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. & Batra, D. (2017). Grad-cam:

Visual explanations from deep networks via gradient-based localization. Proceedings of
the IEEE international conference on computer vision, pp. 618–626.

Sen, P. C., Hajra, M. & Ghosh, M. (2020). Supervised classification algorithms in machine

learning: A survey and review. Emerging Technology in Modelling and Graphics:
Proceedings of IEM Graph 2018.

Shahroudy, A., Wang, G. & Ng, T.-T. (2014). Multi-modal feature fusion for action recognition

in rgb-d sequences. 2014 6th International Symposium on Communications, Control
and Signal Processing (ISCCSP), pp. 1–4.

Sharma, C., Kapil, S. R. & Chapman, D. (2021). Person re-identification with a locally aware

transformer. arXiv:2106.03720.

Shorten, C. & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep

learning. Journal of big data.



149

Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Simonyan, K., Vedaldi, A. & Zisserman, A. (2013). Deep inside convolutional networks: Visu-

alising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.

Snoek, C. G., Worring, M. & Smeulders, A. W. (2005). Early versus late fusion in semantic

video analysis. ICMI.

Somers, V., De Vleeschouwer, C. & Alahi, A. (2023). Body Part-Based Representation Learning

for Occluded Person Re-Identification. WACV.

Stylianou, A., Souvenir, R. & Pless, R. (2019). Visualizing deep similarity networks. WACV.

Su, L., Hu, C., Li, G. & Cao, D. (2020). MSAF: Multimodal Split Attention Fusion.

arXiv:2012.07175.

Sun, L., Liu, B., Tao, J. & Lian, Z. (2021). Multimodal cross-and self-attention network for

speech emotion recognition. ICASSP.

Sun, Y., Chen, Y., Wang, X. & Tang, X. (2014). Deep learning face representation by joint

identification-verification. Advances in neural information processing systems, 27.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. (2016). Rethinking the inception

architecture for computer vision. CVPR.

Tran, D., Bourdev, L., Fergus, R., Torresani, L. & Paluri, M. (2015). Learning spatiotemporal

features with 3d convolutional networks. Proceedings of the IEEE international
conference on computer vision, pp. 4489–4497.

Tsai, Y.-H. H., Bai, S., Liang, P. P., Kolter, J. Z., Morency, L.-P. & Salakhutdinov, R. (2019).

Multimodal transformer for unaligned multimodal language sequences. Proceedings of
the conference. Association for Computational Linguistics. Meeting, 2019, 6558.

Uddin, M. K., Lam, A., Fukuda, H., Kobayashi, Y. & Kuno, Y. (2020). Depth guided attention

for person re-identification. Intelligent Computing Methodologies: 16th International
Conference, ICIC 2020, Bari, Italy, October 2–5, 2020, Proceedings, Part III 16,

pp. 110–120.

Uddin, M. K., Lam, A., Fukuda, H., Kobayashi, Y. & Kuno, Y. (2021). Fusion in dissimilarity

space for RGB-D person re-identification. Array, 12, 100089.



150

Uddin, M. K., Bhuiyan, A., Bappee, F. K., Islam, M. M. & Hasan, M. (2023). Person

Re-Identification with RGB–D and RGB–IR Sensors: A Comprehensive Survey. Sensors,
23(3), 1504.

Valade, S., Ley, A., Massimetti, F., D’Hondt, O., Laiolo, M., Coppola, D., Loibl, D., Hellwich,

O. & Walter, T. R. (2019). Towards global volcano monitoring using multisensor sentinel

missions and artificial intelligence: The MOUNTS monitoring system. Remote Sensing,

11(13), 1528.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. & Polo-

sukhin, I. (2017). Attention is all you need. arXiv:1706.03762.

Viana, T. B., Souza, V. L., Oliveira, A. L., Cruz, R. M. & Sabourin, R. (2022). Contrastive

learning of handwritten signature representations for writer-independent verification.

2022 International Joint Conference on Neural Networks (ĲCNN), pp. 01–09.

Wang, B., Chen, X., Wang, Q., Liu, L., Zhang, H. & Li, B. (2010). Power line inspection with

a flying robot. 2010 1st International Conference on Applied Robotics for the Power
Industry, pp. 1–6.

Wang, G., Zhang, T., Cheng, J., Liu, S., Yang, Y. & Hou, Z. (2019a). RGB-infrared cross-modality

person re-identification via joint pixel and feature alignment. ICCV.

Wang, J., Jin, S., Liu, W., Liu, W., Qian, C. & Luo, P. (2021a). When human pose estimation

meets robustness: Adversarial algorithms and benchmarks. Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 11855–11864.

Wang, X., Shu, K., Kuang, H., Luo, S., Jin, R. & Liu, J. (2021b). The role of spatial alignment in

multimodal medical image fusion using deep learning for diagnostic problems. ICIMH.

Wang, Y. (2021). Survey on deep multi-modal data analytics: Collaboration, rivalry, and fusion.

TOMM.

Wang, Z., Wang, Z., Zheng, Y., Chuang, Y.-Y. & Satoh, S. (2019b). Learning to reduce dual-level

discrepancy for infrared-visible person re-identification. CVPR.

Wang, Z., Li, C., Zheng, A., He, R. & Tang, J. (2022). Interact, Embed, and EnlargE:

Boosting Modality-Specific Representations for Multi-Modal Person Re-identification.

Proceedings of the AAAI Conference on Artificial Intelligence.

Wei, X., Zhang, T., Li, Y., Zhang, Y. & Wu, F. (2020a). Multi-modality cross attention network

for image and sentence matching. CVPR.



151

Wei, X., Zhang, T., Li, Y., Zhang, Y. & Wu, F. (2020b). Multi-modality cross attention network

for image and sentence matching. Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10941–10950.

Wojke, N. & Bewley, A. (2018). Deep cosine metric learning for person re-identification. 2018
IEEE winter conference on applications of computer vision (WACV), pp. 748–756.

Wörtwein, T. & Scherer, S. (2017). What really matters—an information gain analysis of

questions and reactions in automated PTSD screenings. ACII.

Wu, A., Zheng, W.-S., Yu, H.-X., Gong, S. & Lai, J. (2017). RGB-infrared cross-modality

person re-identification. ICCV.

Xie, Q., Luong, M.-T., Hovy, E. & Le, Q. V. (2020). Self-training with noisy student improves

imagenet classification. CVPR.

Xu, N., Mao, W., Wei, P. & Zeng, D. (2020). MDA: Multimodal Data Augmentation Framework

for Boosting Performance on Sentiment/Emotion Classification Tasks. IEEE Intelligent
Systems.

Xuan, K., Xiang, L., Huang, X., Zhang, L., Liao, S., Shen, D. & Wang, Q. (2022).

Multimodal MRI Reconstruction Assisted With Spatial Alignment Network. TMI.
doi: 10.1109/TMI.2022.3164050.

Yan, Y., Qin, J., Chen, J., Liu, L., Zhu, F., Tai, Y. & Shao, L. (2020). Learning multi-granular

hypergraphs for video-based person re-identification. Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 2899–2908.

Yang, X., Zhou, P. & Wang, M. (2018). Person reidentification via structural deep metric learning.

IEEE transactions on neural networks and learning systems, 30(10), 2987–2998.

Ye, M., Lan, X., Wang, Z. & Yuen, P. C. (2019). Bi-directional center-constrained top-ranking

for visible thermal person re-identification. TIFS.

Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L. & Hoi, S. C. (2021). Deep learning for person

re-identification: A survey and outlook. TPAMI.

Yi, D., Lei, Z., Liao, S. & Li, S. Z. (2014). Deep metric learning for person re-identification.

2014 22nd international conference on pattern recognition, pp. 34–39.

Yu, F., Jiang, X., Gong, Y., Zhao, S., Guo, X., Zheng, W.-S., Zheng, F. & Sun, X. (2020). Devil’s

in the details: Aligning visual clues for conditional embedding in person re-identification.

arXiv preprint arXiv:2009.05250.



152

Yu, J., Li, J., Yu, Z. & Huang, Q. (2019). Multimodal transformer with multi-view visual

representation for image captioning. IEEE transactions on circuits and systems for video
technology, 30(12), 4467–4480.

Yu, R., Dou, Z., Bai, S., Zhang, Z., Xu, Y. & Bai, X. (2018). Hard-aware point-to-set deep

metric for person re-identification. Proceedings of the European conference on computer
vision (ECCV), pp. 188–204.

Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., Asghar, M. & Lee, B. (2022). A survey

of modern deep learning based object detection models. DSP.

Zeiler, M. D. & Fergus, R. (2014). Visualizing and understanding convolutional networks. Com-
puter Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part I 13, pp. 818–833.

Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha,

R. et al. (2020). Resnest: Split-attention networks. arXiv:2004.08955.

Zhang, H., Luo, C., Wang, Q., Kitchin, M., Parmley, A., Monge-Alvarez, J. & Casaseca-De-

La-Higuera, P. (2018). A novel infrared video surveillance system using deep learning

based techniques. Multimedia tools and applications, 77, 26657–26676.

Zhang, Q., Lai, C., Liu, J., Huang, N. & Han, J. (2022). FMCNet: Feature-Level Modality

Compensation for Visible-Infrared Person Re-Identification. CVPR.

Zhang, S., Zhang, S., Huang, T., Gao, W. & Tian, Q. (2017). Learning affective features with a

hybrid deep model for audio–visual emotion recognition. TCSVT.

Zheng, A., Wang, Z., Chen, Z., Li, C. & Tang, J. (2021). Robust Multi-Modality Person

Re-identification. Proceedings of the AAAI Conference on Artificial Intelligence.

Zheng, L., Yang, Y. & Hauptmann, A. G. (2016). Person re-identification: Past, present and

future. arXiv preprint arXiv:1610.02984.

Zhong, Z., Zheng, L., Kang, G., Li, S. & Yang, Y. (2020). Random erasing data augmentation.

Proceedings of the AAAI conference on artificial intelligence.

Zhou, K., Yang, Y., Cavallaro, A. & Xiang, T. (2019). Omni-scale feature learning for person

re-identification. ICCV.

Zhou, K., Yang, Y., Cavallaro, A. & Xiang, T. (2021). Learning generalisable omni-scale

representations for person re-identification. IEEE Transactions on Pattern Analysis and
Machine Intelligence.



153

Zhu, Y., Chen, W. & Guo, G. (2015). Fusing multiple features for depth-based action recognition.

ACM Transactions on Intelligent Systems and Technology (TIST), 6(2), 1–20.

Zhu, Z., Jiang, X., Zheng, F., Guo, X., Huang, F., Sun, X. & Zheng, W. (2020). Aware loss with

angular regularization for person re-identification. Proceedings of the AAAI conference
on artificial intelligence, 34(07), 13114–13121.

Zou, Z., Shi, Z., Guo, Y. & Ye, J. (2019). Object detection in 20 years: A survey.

arXiv:1905.05055.

Zou, Z., Chen, K., Shi, Z., Guo, Y. & Ye, J. (2023). Object detection in 20 years: A survey.

Proceedings of the IEEE.


