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Protéger les réseaux tactiques sans fil contre la double Interception

Van Hau LE

RÉSUMÉ

Aujourd’hui, les réseaux tactiques sans fil sont constamment améliorés pour devenir plus

autonomes. La croissance sans précédent de l’intelligence artificielle (IA) ouvre la voie pour

des applications militaires sans intervention humaine, où les soldats seraient remplacés par

des véhicules de combat autonomes entièrement équipés d’armes de combat ainsi que d’une

capacité de communication élevée qui permet des coopérations tactiques sur le champ de bataille.

Cependant, une connectivité croissante combinée avec une intervention humaine réduite rend le

système plus vulnérable en termes de sécurité et de fiabilité. Un nombre croissant de connexions

nécessite une gestion des ressources très évolutive, et le système est plus exposé aux interceptions

électroniques de l’ennemi. Ainsi, l’amélioration de la capacité d’autodéfense de ces tactiques

est nécessaire pour les protéger contre des interceptions de l’ennemi.

Cette thèse étudie le problème de protection des réseaux tactiques à haute mobilité contre

les interceptions simultanées de l’ennemi. Nous concevons une stratégie d’optimisation des

ressources pour l’anti interception dans laquelle plusieurs variables de contrôle du système

sont optimisées conjointement pour non seulement protéger le système contre les interceptions

ennemies, mais également maintenir une qualité de service (QoS) satisfaisante. Nous appliquons

cette stratégie proposée dans deux scénarios tactiques différents : i) un réseau d’information

de combattant-tactique (WIN-T) avec une mobilité élevée des véhicules de combat terrestres

(GCVs), et ii) un réseau de relais mixte radiofréquence/optique en espace libre (RF/FSO) où le

nœud de relais et les intercepteurs ennemis sont tous des objets hautement mobiles.

Dans ces deux scénarios, nous formulons mathématiquement le problème d’allocation des

ressources pour l’anti interception sous la forme d’un modèle d’optimisation non-convexe. Nous

décomposons ce problème d’optimisation complexe en deux sous-problèmes, puis résolvons le

premier sous-problème à l’aide d’une méthode itérative. Pour traiter la forme non convexe du

deuxième sous-problème, nous combinons l’approximation de Taylor du premier ordre avec la

méthode des fonctions convexes différences (D.C). Pour obtenir la solution optimisée en temps

quasi-réel, nous proposons des approches d’apprentissage par renforcement profond (DRL), en

utilisant à la fois des modèles d’agent unique et d’agents multiples. Les résultats expérimentaux

montrent que la méthode DRL a le potentiel d’être applicable dans des scénarios militaires de

haute complexité.

Pour prendre la décision de sélectionner une solution DRL pour un scénario d’anti-interception

double donné, nous comparons la capacité défensive de deux cadres : Apprentissage par

renforcement profond à agent unique (SADRL) et apprentissage par renforcement profond

multi-agent (MADRL) en différents niveaux de mobilité et de scalabilité des utilisateurs. Les

résultats expérimentaux montrent que les deux cadres peuvent approcher la solution optimale.
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Cependant, dans les scénarios hautement mobiles et de déploiement massif, la performance

défensive de MADRL est meilleure que celle de SADRL, mais la première demande un coût

plus élevé en termes de ressources.

Mots-clés: Faible probabilité d’interception, Optimisation, Apprentissage par renforcement

profond multi-agent, Réseau de relais mixte RF/FSO, Double interception.
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ABSTRACT

Today, wireless tactical networks are constantly being upgraded to become more network-

centric and autonomous. The unprecedented development of artificial intelligence (AI) paves

the way for the non-human involved military applications in which soldiers can be replaced

by autonomous combat vehicles that are fully equipped with combat weapons as well as a

powerful communication ability for tactical cooperation on the battlefield. However, increasing

communication connectivity combined with decreasing human intervention makes the security

and reliability of the system become riskier. A larger number of connections requires very

scalable resource management, and the system is more vulnerable to electronic interception by

the enemy. Thus, a self-defensive capability is required in these tactical systems to protect them

against the enemy’s interception.

This thesis investigates the problem of protecting high-mobility tactical networks against dual

enemy interceptions. We design an anti-interception resource optimization strategy in which

multiple system control variables are jointly optimized to not only protect the system from enemy

interception but also maintain the quality of service (QoS). We apply the proposed strategy in

two different tactical scenarios: i) a Warfighter Information Network-Tactical (WIN-T) system

with the high mobility of ground combat vehicles (GCVs), and ii) a mixed radio frequency/free-

space optical (RF/FSO) relay network where both the relay node and enemy interceptors are

high-mobility objects.

In both scenarios, we mathematically formulate the anti-interception resource allocation problem

as a non-convex optimization model. We decompose this intractable optimization problem

into two sub-problems, then solve the first sub-problem using an iterative method. To handle

the non-convex form of the second sub-problem, we combine first-order Taylor approximation

with the difference of convex functions (D.C) method. To obtain the optimized solution in

near real-time, we propose Deep Reinforcement Learning (DRL) approaches, using both single

agent and multi-agent model. Numerical results show the DRL method has the potential to be

applicable in high-complexity military scenarios.

To make a decision of selecting a DRL solution for a given dual anti-interception scenario, we

compare the defensive capacity of two frameworks SADRL (Single-Agent Deep Reinforcement

Learning) and MADRL (Multi-Agent Deep Reinforcement Learning) in different levels of

mobility and user scalability. Numerical results show that both frameworks can approximate the

optimal solution. However, in highly mobile and massive deployment scenarios, the defensive

performance of MADRL performs better than that of SADRL but has a higher overhead cost.
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INTRODUCTION

Context and motivations

Evolution of the wireless communication technology has greatly contributed to the innovation

of military applications. Military equipment and systems are increasingly characterized by

enhanced connectivity, mobility, and autonomy. A telling example is that in the Russia-Ukraine

war [Palavenis (2022)], the way of conducting the war has been changed significantly when a

large number of soldiers have been replaced by unmanned aerial vehicles (UAVs) which are

deployed on the battlefield to collaboratively carry out a variety of missions including combat,

surveillance, and reconnaissance. Or the appearance of unmanned ground vehicles (UGVs)

on the battlefield which is in contact with the ground human operator and without an onboard

human driver presence [Xin & Bin (2013)]. This military trend is expected to further evolve in

the coming years, driven by advancements in Artificial Intelligence (AI) technology.

The field of electronic warfare also obtains many significant improvements for both attack and

defense sides. From enemy perspectives, wireless attacks have widely been deployed in different

combat scenarios including air-to-ground [Jiang et al. (2021)], air-to-air [Li, Liang & Xia

(2022)], underwater tactical communication [Diamant & Lampe (2018)], etc. The interception

techniques have also been enhanced in a variate manner by exploiting many approaches such as

waveform, modulation, energy, and so on. Especially, the integration of multiple interception

techniques into a single interceptor makes the attack methods of the enemy more powerful. In

turn, defensive strategies have also seen renovations by applying new techniques to protect tactical

systems against interception attacks. For instance, in [Kaidenko & Kravchuk (2021)], a new

architecture based on software-defined radio (SDR) and System-on-Chip Field-Programmable

Gate Array (SoC FPGA) is proposed to enhance anti-jamming capability for small-size UAV

systems. The use of intelligent reflecting surface (IRS) combine with learning methods to

counter smart jammers is introduced in [Yang et al. (2021a)]. Along with these innovations,
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many new challenges are faced by defensive systems. These challenges not only come from new

enemy interception techniques but also raise from within the tactical system itself , such as the

increasing mobility and scalability of military users in modern tactical systems.

Therefore, to protect the system in modern tactical scenarios, defense strategies need to be

upgraded to keep pace with new requirements. In previous anti-interception strategies, the

traditional optimization method has been the dominant approach in design. It has consistently

demonstrated its ability to work stably and efficiently, providing the highest level of accuracy in

calculating resource solution variables. Unfortunately, this method works well only for relatively

small-size tactical networks where the number of control variables is still manageable. When

the number of military users is extended, multiple interceptions are deployed by the enemy, the

traditional optimization method becomes intractable due to its high computational complexity.

Therefore, it is needed to replace the traditional optimization by another approach. This is

particularly necessary in case of rapid decision-making scenarios which are beyond the ability of

the optimization method. Such scenarios typically include massive deployments and user-high

mobility.

Recently, Deep Reinforcement Learning (DRL) has emerged as an efficient solution for dealing

with anti-jamming resource allocation problems in many modern tactical wireless networks.

Thanks to Deep Neural Networks (DNNs) model architecture, making decisions based on

this method is closely immediate, and therefore; DRL is popularly used in many applications

which request near real-time features. Several applications of DRL in anti-interception include

tackling the problem of power control in protecting the system from energy interceptions

[Ak & Brüggenwirth (2020)], anti-jamming with channel selection [Huang et al. (2021)], and

jamming avoidance frequency hopping [Kang, Bo, Hongwei & Siyuan (2018)]. With its ability

to make decisions without relying on complicated calculation processes, DRL can serve as a

viable alternative to traditional optimization methods in military applications that require prompt
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resource allocation decision-making. The process of migrating an existing optimization strategy

to a DRL strategy requires minimal effort, as several components of the optimization method can

be directly incorporated into the design of the DRL strategy. This also allows the DRL strategy

to achieve a solution with quality that closely resembles that of the optimization approach.

Even so, how to efficiently apply DRL to achieve the maximum defense capacity remains an

open question. The success of DRL not only depends on the DRL algorithms but also relies

heavily on the way we design and implement them in particular anti-interception scenarios.

If military terminals have low computing power and security capacity, DRL can be designed

centrally at a single controller, which controls and allocates resources for the entire network to

avoid interceptions. On the other hand, in a large-scale tactical network or within a high-mobility

tactical environment, the size and complexity of the DRL problem can be beyond the capacity of

a single machine. In this case, each network device has to make its own decision on resource

allocation that refers to a DRL solution with multiple agents setting. Therefore, it is necessary to

analyze, evaluate, and then properly select a DRL solution design for a given tactical situation.

Single-agent DRL (SADRL) and Multi-agent DRL (MADRL) are two frameworks for designing

a DRL solution. In SADRL, the agent element could be a collection of base stations, UAVs,

or military mobile devices, and the agent is located at a central control unit. Unlike SADRL,

in MADRL, each network element is treated as an agent, and each agent is associated with

an individual DRL model. Both SADRL and MADRL approaches have been used to design

anti-interception strategies. [Yang et al. (2020b)] proposes a SADRL model to avoid the

interception of multiple eavesdroppers in which the central controller at the base station is

regarded as a learning agent. [Zhang et al. (2020c)] presents a MADRL algorithm to protect

aerial-to-ground (A2G) links from ground eavesdroppers in which UAVs are treated as distributed

learning agents. [Ju et al. (2023)] introduces a MADRL approach to improve the security and

resource efficiency of a network that is under attack from multiple mobile eavesdroppers.



4

Summarily, the goal innovating defensive strategies in order to meet the new requirements of

modern tactical wireless networks is the driving force for this research.

Challenges

The Low Probability of Intercept (LPI) capability is as a critical defensive performance metric in

modern wireless tactical networks which could decide the success or failure of a battle. There is

a wide range of strategies for maintaining the LPI capability that utilize a variety of techniques.

For example, in [Hwang et al. (2017)] and [Shi, Wang, Sellathurai, Zhou & Salous (2019)],

the transmitted energy of military users is properly controlled to avoid energy interception

from enemy. In terms of waveform design, [Yu & Yao (2005)] presents chaotic spreading LPI

waveforms, which can avoid correlation interception in direct-sequence spread spectrum (DSSS)

systems. For signal modulation, [Jung & Lim (2011)] propose a chaotic standard map-based

frequency hopping pattern for a low probability of intercept in frequency hopping orthogonal

frequency division multiple access (FH-OFDMA). While the existing strategies are applied with

considerable effectiveness in military systems, they are limited to counter single interception

from the enemy. If the enemy develops interception equipment capable of deploying multiple

interception techniques in the same time, the tactical system could become vulnerable.

Besides, high mobility is a decisive requirement in modern tactical networks [Suri et al. (2018)],

[Aggarwal & Kumar (2020)]. It is necessary to consider high-mobility tactical scenarios in LPI

preserving strategies. The increasing mobility could pose potential challenges across aspects,

including:

• Reliability: The existing LPI preserving strategies in legacy tactical systems have primarily

been designed for scenarios with lower mobility. They face challenges in adapting to

the rapid fluctuations of highly dynamic environments. Consequently, the allocation of
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controlled resources experiences delays or inaccuracies, leading to a degradation in defensive

performance.

• Scalability: In each LPI preservation strategy, resources are computed for a specific number

of military users or control variables which are within a constrained time interval. In

scenarios with higher mobility, the time interval becomes shorter; therefore, the number of

military users that the system can handle will be smaller.

The aforementioned challenges motivated us to propose a novel LPI preserving strategy that aims

to achieve two primary objectives: i) to safeguard the tactical system against dual interceptions,

and ii) to effectively address high-mobility scenarios.

Reseach questions

A key challenge in designing an efficient LPI strategy is not only maintaining the defense

capability against enemy interceptions but also satisfying the Quality of Service (QoS) of the

system. Since LPI and QoS objectives are interdependent through common control variables,

when these variables are optimized for the LPI objective, they also directly impacts QoS objective

and vice versa. In some cases, an objective can reinforce the other, such as in systems where

both energy-saving and avoiding energy detection are targeted in the same time [Shi, Wang,

Wang, Salous & Zhou (2020)]. Such systems need to maintain the transmit power of military

terminals at a low level that satisfies both targets simultaneously. However, in some other

cases, LPI capability and QoS performance could be contradictory, for example between LPI

performance and the target tracking accuracy in radar systems[Shi, Zhou & Wang (2018)].

Generally, the requirement of compliance with relevant QoS system metrics in the design of

LPI strategy has been taken seriously in previous studies. To be specific, in terms of QoS

assurance, [Gouissem, Abualsaud, Yaacoub, Khattab & Guizani (2021)] manage the Signal to

Interference plus Noise Ratio (SINR) to avoid energy interception but the minimum value of
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SINR must also be considered to ensure decoding capability at desired receivers; [Gao, Wu, Cui,

Yang & Li (2021)] prioritize maximizing the system throughput in the context of anti-jamming

by trajectory and power design for cognitive unmanned aerial vehicles (UAVs); the power budget

constraints of mobile devices, UAVs, and satellites are taken into account in the anti-intercept

strategies of [D’Oro, Ekici & Palazzo (2017)] and [Yu, Gong, Fang, Zhang & An (2022)]. The

QoS performance metrics are relatively diversified and depending on different wireless tactical

scenarios, the QoS metric will be prioritized to be chosen in order to jointly optimize with the

LPI target. Thus, before designing an LPI preservation strategy for a specific tactical scenario,

we need to address the following research question:

• RQ 1. Which QoS performance metric must be considered in the design?

Most of existing LPI preserving strategies rely on traditional optimization approaches. This

is because the optimization methods have the ability to provide the most accurate solutions.

In addition, the optimization solution can easily be implemented in most tactical scenarios

thanks to the supports of plenty of optimization frameworks such as CVX Solver [Grant & Boyd

(2014)], CVXPY [Agrawal, Verschueren, Diamond & Boyd (2018)], Optimization Toolbox

Solver [MathWorks (2023)], etc. However, the optimization methods showed limitations in

high-mobility tactical scenarios which require rapid decision-making [Yin et al. (2022)]. The

traditional optimization algorithms often have a very high computational complexity if they are

required to be re-executed many times in a very tight time frame. This issue is very critical

in dual interception situations where the number of environmental control variables increases

significantly.

Recently, DRL has gained extensive usage in various military applications due to its exceptional

capabilities in solving decision-making problems. DRL models have shown their ability to

quickly offer resource solutions without any complicated computations. Several previous studies

have leveraged DRL to address the challenge of anti-interception in military networks including
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applications in radar systems [Ailiya, Yi & Yuan (2020)], and maritime communications

[Liu et al. (2022)]. While the advantages of DRL are evident, the transition from traditional

optimization methods to the application of DRL in designing LPI strategies raises the following

research question that needs to be addressed.

• RQ 2. Can DRL address the computational complexity issues and approximate the optimal

solutions in scenarios of dual interception considering high mobility?

To design an LPI strategy based on the DRL approach, we have to choose between two

frameworks, SADRL or MADRL. The SADRL design offers a centralized solution, wherein a

single DNN model manages the resource control variables of the entire system. This DNN model

is located within a centralized controller, executing information-gathering and decision-making

processes in a centralized manner. Some examples of designs based on SADRL for tactical

systems can be seen in [Ailiya, Yi & Varshney (2022)], [Yang et al. (2020b)]. On the other hand,

MADRL’s design makes decision in a distributed manner. Each military terminal is treated as

an agent with its own DNN model. The agents either supports each other to achieve the global

objective in a cooperative game[Yao & Jia (2019)] or competes with each other to obtain the

local goal in a competitive game [Jiang, Ren & Wang (2023)]. Examples of MADRL framework

designs used in anti-interception applications have been presented in [Zhou, Li & Niu (2021)],

[Lv et al. (2023)], and [Xiao et al. (2021)]. Therefore, if we decide to apply the DRL method in

designing the LPI preserving strategy, we should answer the following research question:

• RQ 3. Between SADRL and MADRL, which framework is better for our LPI preservation

strategy?

Objectives of the thesis

The main goal of this thesis is to propose an LPI preserving strategy to adapt to modern wireless

tactical scenarios. Such strategy must not only protect the defensive capability of the system
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in simultaneous interception scenarios but also address the computational complexity issue of

the traditional optimization approaches. To meet the requirements of modern tactical wireless

networks, the design of the strategy must address the aforementioned research questions. Thus,

we divide the main goal into sub-objectives (SOs) to answer each research questions as follows

• SO1. Building an optimization model to maximize a QoS metric which is the most critical

for tactical wireless networks, subject to LPI preservation constraints. Such QoS metric

should be affected by the interception and has the highest priority in the system assurance list.

The model should also consider the dual interception techniques and high mobility conditions

as constraints. In each attack scenario, the two most used interception techniques should be

taken into consideration. The optimizing process should be done for each small-scale unit of

time to meet the high-mobility requirement.

• SO2. Designing a DRL algorithm with a focus on the high computational complexity

component of the problem in SO1. By utilizing trained DNN models, decision-making can

be improved without requiring complex and time-consuming calculations. Moreover, all

constraints should be integrated into the DRL reward design to ensure that the DRL solution

remains in close proximity to the optimization solution.

• SO3. Implementing both SADRL and MADRL algorithms, and compare them in different

tactical scenarios. Both algorithms should be developed to address the same problem of dual

anti-interception. The mobility and scalability of military terminals should be considered

as environmental metrics to assess the defensive performance of both solutions. Simulated

scenarios should be created to represent various levels of these environmental metrics,

enabling a comparative analysis. Our ultimate target is to define a selection framework for

SADRL and MADRL designs with respect to a given dual anti-interception tactical scenario

to achieve highest system performance.

The mapping of research challenges, research questions, and thesis objectives is summarized in

Figure 0.1.
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OBJECTIVES

RESEARCH
QUESTION

The enemy has recently 
employed multiple interception 

techniques in the same time.

Higher user mobility 
and increasing 

number of terminals.

Which QoS 
performance metric 
must be considered 

in the design?

Can DRL address the computational 
complexity issues and approximate the 
optimal solutions in scenarios of dual 

interception considering high mobility?

Build a QoS model 
considering high mobility 

and subject to LPI 
preserving constraints.

Between SADRL and 
MADRL, which 

framework is better 
for our LPI strategy?

Proposing an LPI preserving 
strategy for dual interception 

scenarios considering high 
mobility and QoS requirements .

Implementing both SADRL 
and MADRL algorithms, and 

compare them in different
tactical scenarios.

CHALLENGES

Protecting the system 
against interception 

while always meeting 
QoS requirements.

Designing a DRL algorithm 
to deal with high 

computational complexity
components of the strategy.

Figure 0.1 Challenges, Research Question, and Objectives





CHAPTER 1

LITERATURE REVIEW

In this chapter, we first review the interception types as well as corresponding anti-interception

strategies against them in tactical wireless networks. Then, the high mobility problem in the

military network is discussed. Next, we review applying the traditional optimization and DRL

methods in the design of anti-interception strategies. The limitation of optimization is discussed

and two frameworks for designing a DRL solution are introduced. Finally, in order to highlight

the differences between our proposed anti-interception strategy with prior literature, we conduct

a comparison which is summarized in Table 1.1.

1.1 Interception types and countering strategies

Based on the functionality of the enemy interceptor, we can classify enemy interception into

two types: passive interception and active interception. The passive intercept is deployed by

the enemy to allocate eavesdroppers which passively listen to signals radiated from legitimate

transmitters for the purpose of stealing information. The transmitters can be UAVs, base stations,

or mobile devices which are carried by soldiers. To prevent eavesdroppers, there are various

techniques has studied. In terms of waveform modulation, [Wu et al. (2019)] proposes a

signal modulation technique with artificial pilot noise to prevent passive eavesdroppers from

decoding the information radiated from legitimate transmitters. In terms of energy control,

[Abd El-Malek, Salhab, Zummo & Alouini (2017)] introduces a power allocation scheme

to optimize the user transmit powers to achieve the target outage probability as well as the

expected secrecy performance in the presence of the passive eavesdropper and co-channel

interference (CCI) consideration. [Hwang et al. (2017)] proposes an energy-efficient resource

allocation strategy in which the SINR of the expected channel is controlled to an optimal

level to ensure QoS; meanwhile, the radiated signal amplitude is kept at a target threshold that

the eavesdropper cannot detect. In case optimizing legitimate signal power is infeasible, the

system is equipped with a jamming transmitter where the jamming signal is transmitted to

interfere with the eavesdroppers [Abd El-Malek, Salhab, Zummo & Alouini (2016)]. Besides, in
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Frequency-hopping spread spectrum (FHSS) systems, the anti-jamming techniques based on the

frequency hopping mechanism are investigated to avoid eavesdropping [Shi, An & Li (2021)].

The active interception corresponds to the deployment of jammers, which actively attack the

legitimate receivers by generating jamming signals to either destroy the decoding ability of the

receivers by introducing interference signals or prevent users from accessing their channel by

taking over the channel. To mitigate this kind of attack, most defence systems can control the

transmit power to reduce the impact of jamming. Since power control is also closely related

to the system’s performance metrics, different systems will use different solution approaches.

For example, [El-Bardan, Brahma & Varshney (2016)] and [Xiao, Chen, Liu & Dai (2015)]

propose a power control strategy based on a game-theory to protect a signal-to-interference

plus noise ratio (SINR) target in which the legitimate transmitters and jammers are treated as

the opposing players of the game. [Shi, Wang, Sellathurai & Zhou (2017b)] proposes a low

probability of intercept-based optimal power allocation (LPI-OPA) scheme to maintain the target

LPI performance for a radar system under the attack of the jammer.

Besides, the dual interception approach has recently been developed helping eavesdroppers can

try to detect the communication information transmitted from the source to the destination [Xia

et al. (2019)]. Even, a single interceptor can simultaneously listen to friendly channels and

execute jamming activities at the same time [Riihonen et al. (2018)].

1.2 High mobility consideration in military applications

Previously, the high mobility properties are mainly taken into account in the tactical scenarios

related to mobile ad-hoc networks (MANET) because system performance is very sensitive to the

movement of military nodes and mobility management is very difficult due to the independence

of the infrastructure. Authors in [Chen, Dou, Li & Wei (2010)] investigate about Ellipse

Group Mobility (EGM) model of a group of ad-hoc nodes in the military battlefield. [Kumar,

Sharma & Suman (2010)] classify metrics of mobility models for MANET networks. Nowadays,

with the emergence of many types of high mobility equipment such as UAVs, UGVs, etc, and

the increase of the interconnectivity trend, the high mobility problem is spread to many different
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tactical topologies, and its impact can reach any network segments which are connected to

the entire networks. Therefore, recently, the high mobility problem is seriously considered

in military application designs. For instance, new mobility models are designed for tactical

scenarios related to using multiple UAVs [Agrawal, Kapoor & Tomar (2022)]. The relationship

between weight-impacted mobility and combat effectiveness is studied in [Hart & Gerth (2018)].

Even, user mobility support is promoted as a required service for modern military tactical

systems [Malowidzki, Sliwka, Dalecki, Sobonski & Urban (2006)]. However, most of the

previous studies focus on dealing with the direct impacts of high mobility on QoS performance.

Such as, [Zeng, Zhang & Lim (2016)] investigate the throughput maximization problem in the

case of a network with high mobility relay nodes. The optimization of resource allocation in

high mobility conditions is considered in [Guo, Zheng, Luo & Wang (2021)]. It is very limited

studies investigate the degree of influence of high mobility on the electronic defensive capability

of the system in the context of countering enemy interceptors. Therefore, this is an important

factor that prompted us to consider the high mobility in this anti-interception research.

1.3 Optimization and DRL methods in anti-interception designs

The traditional optimization method accounts for a large proportion of the design of anti-jamming

strategies of tactical systems including radar systems [Zhao, Yuan & Li (2020)], reconnaissance

systems [Wei, Zhang & Liu (2022)], UAV systems [Wu, Zhang, Guo, Wang & Jiang (2022)].

The outstanding advantages of the traditional optimization methods can be mentioned as the

quality of the returned solutions. Since the calculation of resources allocated for anti-interception

strategies is merely based on mathematics with the aid of a great number of classical algorithms,

the outcome solution of the optimization method is with a very high degree of accuracy. Even,

many studies also choose the results of this method to be a baseline for comparing and evaluating

other approaches [Yang et al. (2021b)]. Furthermore, the community using this optimization

method is very large when there are many powerful optimization solvers such as CVX solver

[Grant & Boyd (2014)], MOSEK optimization software[ ApS (2019)], etc, developed for the

convenience of computational research as well as practical implementation. However, when
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considered in the context of modern tactical scenarios, the optimization method begins to

show many limitations. The communication overhead is very high and the requirements for

computing resources are quite extensive [Yin et al. (2022)]. The involvement of multiple control

variables of the objective function in joint optimization problems makes it difficult to be solved

optimally [Yang et al. (2020a)]. The limitations pave the way for the development of learning

methods in modern tactical scenarios. Besides, since the QoS performance metrics are closely

related to system defensive capability through mutual resource control variables, the design of

anti-interception strategies based on optimization methods mainly takes QoS objectives into

consideration. For example, the objective of the anti-jamming problem is to minimize the total

transmit power while the outage probability of each user is kept below the threshold which

serves as the constraint for avoiding jamming attacks [Sun et al. (2022)]. In [Shi, Zhou & Wang

(2016)], the intercept probability goal is minimized, subject to transmit power capacity and

SNR threshold. In general, guaranteeing QoS objectives is considered in almost the design of

defensive strategies. Depending on each specific tactical scenario, the relevant QoS objects will

be chosen appropriately.

In order to overcome the limitations of the traditional optimization method in modern tactical

scenarios, a preferable approach, which has been utilized in LPI strategy designs is the

DRL method. Unlike the traditional optimization methods which allocate resources based

on complicated computation processes, DRL methods make resource decisions by looking

up the available trained statistics models that can handle a great amount number of control

variables with less time-consuming. In Multiple-Input Multiple-Output (MIMO) system, DRL

models are used in deciding power levels allocating for base stations to disable smart jammers

[Xiao, Gao, Liu & Xiao (2018b)]. In [Xiao et al. (2018a)], the decision of UAV relay in

whether a signal message is sent or not to avoid jamming is based on DRL models. DRL

methods have also shown growth in anti-interception strategies through the different DRL

algorithms is developed to compatible with different tactical scenarios. Transfer learning and

Q-learning algorithms are used in multi-regional anti-jamming communication[Han & Niu

(2019)]. A distributed anti-jamming scheme based on the Actor-Critic algorithm is introduced
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in [Chen, Niu, Chen, Zhou & Xiang (2022)]. The PPO algorithm is proposed to simulate

the anti-jamming communication network [Zhang et al. (2022)]. In addition, two frameworks

that are considered in mostly anti-interception strategies are SADRL and MADRL. SADRL

prefers to solve anti-interception resource allocation problems in a centralized manner [Xu, Lou,

Zhang & Sang (2020)] while MADRL is designed for distributed decision-making process [Aref,

Jayaweera & Machuzak (2017)]. Generally, the choice of framework for the design is arbitrary

as long as the strategy achieves the best performance. In the scope of this thesis, we discuss the

performance of those two frameworks in simultaneous interception scenarios with high mobility

and network scalability conditions.

1.4 Proposed strategy versus prior works

We compare our proposed anti-interception strategy which is presented in Chapter 3 with

prior works in Table 1.1. The basic difference is that our proposal has to consider jointly

decision-making on two different kinds of control variables for countering a dual wireless

interception. And both optimization and DRL methods are involved to ensure that the advantages

of both are used effectively.
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Table 1.1 Literature review on anti-interception strategies

Literature Technique Approach Military Scenario

Wu et al. (2019)
Waveform

modulation
Optimization

Less-variant

environment

Hwang et al. (2017) Abd

El-Malek et al. (2017)
Energy control Optimization

Less-variant

environment

Shi et al. (2021)
Frequency

hopping
Optimization

Less-variant

environment

Abd El-Malek et al.
(2016)

Interfering

jamming
Optimization

Less-variant

environment

El-Bardan et al. (2016)

Xiao et al. (2015) Shi

et al. (2017b)

Power jamming Optimization
Less-variant

environment

Xiao et al. (2018b)

Ak & Brüggenwirth

(2020)

Power decision DRL
Time-sensitive

decision-making

Xiao et al. (2018a) Message decision DRL
Time-sensitive

decision-making

Huang et al. (2021)

Han & Niu (2019)
Channel decision DRL

Time-sensitive

decision-making

Kang et al. (2018) Hopping decision DRL
Time-sensitive

decision-making

Our proposed strategy
Joint power and

spreading factor

decision

Joint Optimization

and DRL

Time-sensitive

decision-making



CHAPTER 2

THESIS ORGANIZATION

This thesis is written based on our publications. The general structure of this thesis includes an

Introduction, six Chapters, and a Conclusion & Recommendation.

The Introduction generally presents context and motivation for developing a novel LPI preserving

strategy adapting to new tactical scenarios requirements. The challenges, research questions, as

well as research objectives are also discussed in the Introduction.

In Chapter 1, we review the literature. Interception types and avoidance strategies will be

reviewed. The high mobility problem will be discussed as a key challenge in modern tactical

systems. The optimization and DRL methods in designs of anti-interception strategies will also

be reviewed in this chapter. Specifically, the limitation of the optimization method and the two

design frameworks of the DRL solution will be discussed in Chapter 1.

In Chapter 2, the general structure of the thesis is presented.

In Chapter 3 (Research Methodology), we present the proposed LPI preserving strategy for

ground combat vehicles. The content of this chapter has been presented in a journal article

published in the IEEE Transactions on Vehicular Technology, 2023, and a conference paper

published in the IEEE International Conference on Communications, 2023.

In Chapter 4 (Research Methodology), we present a strategy designed for protecting the

communications of flying UAVs in the mixed RF/FSO relay system (the article published in

Proceeding of IEEE Global Communications Conference (GLOBECOM), 2023).

In Chapter 5 (Research Methodology), we compare and evaluate the performance of SADRL

and MADRL in high mobility and scalability condition. The content of this chapter has been

presented in an article submitted to IEEE International Conference on Communications (ICC),

2023.
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In Chapter 6, all numerical results and analyses for the scenarios applying the proposed strategies

in chapters 3, 4, and 5 will be presented.

In Conclusion and Recommendation, the contributions of the thesis are summarized, then

improvements and new research directions will be discussed.

The general structure of this thesis is illustrated as followings.

Thesis

Introduction Chapters Conclusion and 
Recommendation

Chapter 1
Literature 

Review

Chapter 2
Thesis 

Organization

Chapter 3
Proposed

Strategy for 
GCVs

Chapter 6
Results 

& Analysis

Chapter 4
Proposed

Strategy for 
Flying UAVs

Chapter 5
SADRL 

vs MADRL

Figure 2.1 Thesis organization illustration



CHAPTER 3

DUAL WIRELESS ANTI-INTERCEPTION FOR GROUND COMBAT VEHICLES

Van Hau Le , Ti Ti Nguyen and Kim Khoa Nguyen ,

Department of Electrical Engineering, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Paper submitted for publication, July 2023

3.1 Problem Statement

In Warfighter Information Network-Tactical (WIN-T), maintaining Low Probability of Intercept

(LPI) capacity is an important issue [Koumpouzi, Spasojevic & Dagefu (2019)]. A commonly

deployed technique to achieve LPI is the spread spectrum [Fadul, Reising, Arasu & Clark (2021)].

By spreading signals over a wide bandwidth, signals become noise-like, thus avoid to be detected

by the interceptors. However, LPI can still be violated by jamming techniques such as low

energy detection and correlation analysis. An energy-based interceptor can detect a noise-like

signal if the amplitude of the Signal to Interference and Noise Ratio (SINR) is greater than a

detection threshold [Mobasseri & Pham (2018a)]. As well, a correlation-based interceptor can

estimate the periodic pseudorandom noise (PN) sequence if the magnitude of correlation peaks

exceed an acceptable level [Gu, Zhao & Shen (2016)].

Many anti-interception techniques that have been studied to preserve the LPI of the spread

spectrum tactical systems [Pirayesh & Zeng (2022)]. In general, prior work focuses on preserving

LPI without considering the mobility of users. Therefore, they are not efficient in a spread

spectrum-based WIN-T network. Due to the high mobility of ground combat vehicles (GCVs),

network control algorithms need to be executed quickly and continuously over time to adapt

to the fast-changing of the wireless tactical environment. This can hardly be achieved by

traditional optimization methods which have a highly computational complexity. Moreover,

previous anti-interception techniques are only considered and evaluated separately for a single
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type of interception. When an interceptor implements simultaneously both energy-based and

correlation-based interception techniques, the system would easily be intercepted.

We study the problem of LPI capability preserving in a scenario of Direct-Sequence Code

Division Multiple Access (DS-CDMA) based WIN-T network where the spectrum spread

technique is deployed. Our goal is to secure LPI capability at an acceptable level while

maximizing the transmission rate to provide service reliability for tactical communications.

Unlike prior work, which focuses mainly on a single jamming attack, our proposed control

strategy aims to protect the tactical system against both dominant types of interception techniques

simultaneously: energy-based and correlation-based. Due to the LPI conservation, the system

must be faced the issue of throughput degradation. To solve it, we propose a communication

mode selection strategy in which the system throughput can be improved without affecting LPI

performance.

Recently, deep reinforcement learning (DRL) has been emerging as an outstanding solution

for resource optimization problems in wireless tactical networks [Zhang, Yang, Huangfu,

Long & Leung (2020a)]. Although DRL training phase can be time-consuming at centralized

controllers, distributed implementation procedures are effortless for agents. This property

enables solving optimization problems in near real-time. It is noted that the quality of solutions

when solving the optimization problem by DRL algorithm heavily depends on reward function

design. The reward function is required not only to facilitate achieving the resource objective but

also to satisfy other constraints of the system. We design a DRL approach to solve the problem

of interception avoidance in which the objective function and constraints take parts of the reward

function. This approach ensures that constraints are respected.

3.2 Related Work

LPI is a critical capability in wireless tactical systems [Elmasry & Corwin (2021)]. Maintaining

LPI is not a trivial task because LPI capability is often associated with other system performance

metrics. For example, LPI optimization may have the same goal as energy-saving strategies in



21

the context of achieving military device energy efficiency [Jiang, Xu & Lv (2016)]. However,

there is a trade-off between LPI performance and the target tracking accuracy of radar systems

[Shi et al. (2018)]. Furthermore, when an interceptor uses multiple jamming techniques

simultaneously, maintaining LPI becomes much more challenging. This section reviews current

LPI preserving strategies in spread spectrum systems with respect to two popular jamming

techniques: energy-based interception [Mobasseri & Pham (2018b)] and correlation-based

interception [Gu et al. (2016)]. We also discuss learning approaches for anti-interception

problems.

To protect the LPI capability against an energy-based interceptor in a spread spectrum system,

the main principle is maintaining the energy of the signal below an expected threshold

[Mobasseri & Pham (2018b)]. This ensures that the interceptor only achieves a target probability

of detection 𝑃d and probability of false alarm 𝑃f. Tactical systems usually use SINR or transmit

power as a controllable metric to control energy. To be specific, in [Hwang et al. (2017)], the

LPI and anti-jamming (AJ) property of a frequency hopping spread spectrum (FHSS) tactical

network are guaranteed via an energy-efficient resource allocation strategy in which the SINR of

each sub-channel is kept below a maximum limit. Yan Li et al. [Li, Xiao, Liu & Tang (2014)]

propose an anti-interception method based on the Stackelberg game approach in which SINR

and the utility function of the transmitter are controlled according to the jammer behaviour. C.

Shi et al. [Hwang et al. (2017)] present an LPI-based optimal power allocation scheme for an

integrated multistatic radar and communication system, meeting target detection requirements

and maintaining LPI with a minimum total radiated power. An LPI optimization for joint

bistatic radar and communication system through minimizing the sum transmitted power is

presented in [Shi, Wang, Salous & Zhou (2017a)]. Besides terrestrial communication systems,

the calculation of a minimum SINR to remain undetected by adversary’s energy detectors for

underwater acoustic communication (UWAC) systems has also been introduced in [Diamant,

Lampe & Gamroth (2016)]. It is noted that an excessive enhancement of LPI performance can

cause the system communication performance (ex., throughput or delay) degradation due to low
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energy transmission. Thus, the tactical network administrator should set the energy threshold

properly to strike a balance between the target LPI and system performance.

To counter correlation-based interception, the modern spread-spectrum tactical systems mainly

focus on waveform design techniques that can reduce the signal’s correlation property [Chilukuri,

Kakarla & Subbarao (2020)]. Several algorithms have been developed to prevent correlation

interception. In [Sharma, Melvasalo & Koivunen (2020)], S. Sharma et al. design a joint

radar-communication waveform based on Orthogonal Variable Spreading Factor (OVSF) and

long scrambling codes that can improve the LPI capability of Multicarrier Direct Sequence-Code

Division Multiple Access (MC-DS-CDMA) networks. In [Yu & Yao (2005)], J. Yu et al. present

chaotic spreading LPI waveforms for direct-sequence spread spectrum (DSSS) systems which

can avoid correlation interception by supporting multilevel spreading sequences. In [Galati,

Pavan, Savci & Wasserzier (2021)], G. Galati et al. presents a pseudo-random radar waveform

design that helps operators control the peak-to-average power ratio (PAPR) of the radiated

waveform to optionally decide the trade-off level between LPI properties and detection ranges.

Their main contribution is a dynamic waveform which makes periodic signal components

become intermittently visible to the enemy’s interceptor. As a result, interceptors fail to catch

periodic signal peaks of the correlation signal. Similarly to their approaches, in our study, we

also design a dynamic waveform which adaptively varies transmit power and spreading factors.

However, since we also consider the energy-based anti-interception technique at the same time,

allocating transmit power is more complicated to satisfy both anti-interception techniques.

Although existing anti-interception approaches in tactical systems have been proven efficient,

they mainly focus on a single attack. Recently, it appears that tactical systems can be exposed

to risks when multiple jamming techniques are deployed simultaneously. The authors in [Cui,

Zhang, Wu & Ng (2018)] describe a tactical scenario in which multiple eavesdroppers with

various interception techniques try to intercept communication links at different locations on

the battlefield. Furthermore, a single smart jammer with multiple separate multi-antenna array

support can operate a multi-function interception [Nguyen, Ngo, Duong, Tuan & da Costa

(2017)]. Recently, full-duplex simultaneous jamming techniques have significantly been
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developed [Abughalwa, Samara, Hasna & Hamila (2020)], allowing eavesdroppers to intercept

and listen in communication links efficiently. Unfortunately, very few researchers have focused

on dealing with multiple interception technique problems. In [Shen, Xu, Xia, Xie & Zhang

(2020)], Zhexian Shen et al. propose a spatial sparsity-based secure transmission strategy for

massive Multiple-Input Multiple-Output (MIMO) systems that can avoid eavesdropping and

eliminate jamming signals simultaneously. In [Fang, Xu, Zou, Wang & Choo (2018)], H. Fan

et al. introduce a defending solution against full-duplex active eavesdropping attacks using a

three-stage Stackelberg game approach. In general, these studies focus on traditional optimization

approaches to obtain an optimal solution for multiple anti-interception objectives. However, their

traditional optimization algorithms might face the challenge of high computational complexity;

therefore, they would not be applicable in practical scenarios. Due to the dynamic characteristics

of tactical environments, system resources are required to be allocated in near real-time. Solving

high-dimensional problems with real-time requirements is intractable for traditional methods.

To overcome this limitation, in our study, we propose a learning approach instead of traditional

optimization methods.

Recently, learning methods based on artificial neural network (ANN) architecture have been

substantially applied to electronic warfare (EW) systems [Ma et al. (2022)], [Ghadimi, Norouzi,

Bayderkhani, Nayebi & Karbasi (2020)], [Wan, Jiang, Ji & Tang (2021)]. In scenarios of

dynamic deployment and high dimensional computation of tactical systems, a learning approach

is preferable to a traditional optimization approach. Neural network models can handle a large

number of environmental variables in real-time feasible, while this is a computational burden

for traditional optimization methods. From the anti-interception tactical perspective, applying

the learning method is not straightforward, because it is highly dependable on enemies’ methods

to intercept the system. If eavesdroppers only listen to detect the intercepted signal, a DRL

model can be used to adaptively optimize signal waveforms to keep the sensing probability of

eavesdroppers under an acceptable level [Wang, Liu, Wang & Yu (2020b)]. However, in a radar

combat situation, a reinforcement learning-based method can perform a frequency hopping and

pulse width allocation to counter the electronic countermeasures when the jammer is attempting
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to capture and suppress the radar echoes [Yi, Yuan et al. (2020)]. In our study, we consider a

defensive scenario in which DRL is used to quickly adjust the signal’s energy and correlation

peak amplitude at an acceptable threshold, aiming to maintain a desired LPI performance.

MADRL has recently been used in anti-interception scenarios where anti-interception problems

need to be solved by the collaboration of agents [Yao & Jia (2019)]. Agents in tactical systems

must jointly take actions to maximize the global anti-interception objective instead of local

goals. Depending on the design of the anti-interception strategy, agents and associated actions

are mapped to the elements of the system. For instance, in [Zhang, Jia, Qi, Xu & Chen (2021)]

Yunpeng Zhang et al. propose a multi-user collaborative anti-interception channel selection

algorithm in which agents are mobile tactical devices and actions are optimal available channels.

In [Zhang et al. (2020c)], Yu Zhang et al. propose a UAV-enabled secure communication

strategy to protect Unmanned Aerial Vehicle (UAV) transmitters from ground eavesdroppers

based on a multi-agent deep deterministic policy gradient (MADDPG) approach, in which UAVs

are treated as agents and actions are corresponding to optimal UAV trajectory and transmit

power. Unlike previous studies, which usually map an agent to a single system element such

as a mobile user or a UAV, our study considers more than one system element (GCV and base

station) to represent an agent. Although this design may require a denser collaboration between

agents, it can help actions taken by agents get closer to the optimal.

3.3 System Model and Problem Formulation

3.3.1 System model

Figure 3.1 illustrates a WIN-T system operating in a DS-CDMA technology platform. Denote

S = {1, 2, ..., 𝑆} and D = {1, 2, ..., 𝐷} as a set of source users (SUs) and set of destination users

(DUs), respectively. Users are mobility GCVs which can be tanks, missile trucks, etc. Each GCV

is equipped with a communication module that has a maximum transmit power level 𝑝s_max.

Since each SU is associated with a corresponding DU, it forms a set C = {1, 2, ..., 𝐶} of E2E

connections. Users can communicate via two modes: relay mode and Device-to-Device (D2D)
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: Desired channel

: Energy intercept channel

: Correlation intercept channel

rBS

INTERCEPTOR

SU 1

SU 2

DU 3

SU N

DU 1

DU 2

SU 3

DU N

Figure 3.1 System model

mode. The relay mode establishes E2E communications at long distances via a relay base station

(rBS). We assume that rBS can support 𝐵 interfaces (𝐵 ≥ 𝑆) such as B = {1, 2, ..., 𝐵} is the set

of rBS interfaces and let 𝑏 ∈ B be the interface of rBS receiving data from SU 𝑠 and transmitting

data to DU 𝑗 . Basically, the base station rBS plays the role of an amplify-and-forward (AF) relay.

The transmission process of each E2E connection can be described in two phases. In the first

phase, SU s transmits its signal to the receiver of rBS. In the second phase, rBS amplifies and

forwards the received signal to a corresponding DU j. On the other hand, the D2D mode is used

for short-range communication when the communication link is shorter than a distance threshold

l. Let binary parameter 𝛿(𝑡)𝑐 be a switching mode of E2E connection c at time slot t. If 𝛿(𝑡)𝑐 = 1,

the connection is in relay mode. Otherwise, D2D mode is used, corresponding to 𝛿(𝑡)𝑐 = 0.

In this paper, we assume a tactical scenario on flat terrain with no major obstacles and line of

sight (LoS) communication prevails so that the multi-path effect can be neglected. The channel

model undergoes an Additive White Gaussian Noise (AWGN) distribution with distance loss

component of free space 𝛼 = 2. Generally, the channel gain and the receiving SINR of the

standard CDMA system [Suard, Naguib, Xu & Paulraj (1993)] at time slot t of a channel between
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rBS b and SU s belonging to E2E connection c can be archived by:

𝐺 (𝑡)
𝑐,𝑠,𝑏 = (𝑑

(𝑡)
𝑐,𝑠,𝑏)

−𝛼, (3.1)

𝛾 (𝑡)𝑐,𝑠,𝑏 =
𝑚 (𝑡)
𝑐,𝑠.𝐺

(𝑡)
𝑐,𝑠,𝑏 .𝑝

(𝑡)
𝑐,𝑠

𝜎2 +
∑
𝑘≠𝑠 𝐺

(𝑡)
𝑐,𝑘,𝑏 .𝑝

(𝑡)
𝑐,𝑘

, (3.2)

where 𝑑 (𝑡)𝑐,𝑠,𝑏 is the distance between rBS and SU s belonging to E2E connection c at time slot

t, 𝑚 (𝑡)
𝑐,𝑠 is the spreading factor of the SU s belonging to E2E connection c at time slot t, 𝑝 (𝑡)𝑐,𝑠

is the transmit power of the SU s belonging to E2E connection c at time slot t, 𝑝 (𝑡)𝑐,𝑘 is the

transmit power of interfering transmitter k belonging to E2E connection c at time slot t, and 𝜎2

is the noise power. Note that, channel gain and SINR of other channel segments are similarly

calculated from equations 3.1 and 3.2.

The network must bear the scanning of an enemy’s interceptor, which passively listens to detect

radiated signals from SUs and rBS. Let U = {1, 2, ...,𝑈} denote the set of interfaces at the

interceptor, and 𝑢 ∈ U is the interface at the interceptor receiving the signal from SU 𝑠 and rBS

interface 𝑏. The location of the interceptor is supposed to be known to the users through the

radar system so that the users can estimate the signal strength received by the interceptor. In our

scenario, the interceptor is able to perform two types of detection techniques simultaneously.

The energy-based detection technique permits the interceptor to detect intercepted signals based

on the amplitude of the SINR value. The correlation-based detection technique allows the

interceptor to estimate PN code length when the existence of common peaks is detected.

3.3.2 Interception techniques and avoidances

Enegy-based interception: The most popular interception technique in military applications

is energy detection, called radiometer [Mobasseri & Pham (2018a)]. The received signal v(t)

at the energy interceptor is firstly handled by a whitening filter to keep only the signal with a

white noise component. Then, the measured energy of the signal is compared with a detection

threshold 𝜑 to declare whether a signal is present (hypothesis Z0) or absent (hypothesis Z1).
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The threshold 𝜑 is determined according to an expected missed-detection, and false alarm rates

(MDFARs) [Atapattu, Tellambura, Jiang & Rajatheva (2015)], which represents the detection

capability of an energy detector. The energy-based interception process is illustrated in Figure

3.2.

Whitening
filter

Decision
Making

v(t)

threshold (φ)

Z0 
 or 
Z1

Figure 3.2 Energy-based interceptor illustration

Energy interceptors commonly use the SINR metric to inspect intercept signals. Meanwhile,

anti-interception systems also control this metric for guaranteeing LPI capability [Shi et al.

(2018)]. Note that desired receivers in the spreading spectrum network also utilize the SINR

value to decide if the signal is successfully decoded by the receiver. Usually, the decoding

decision is made based on an outage probability, Pr(𝛾 (𝑡)𝑐,𝑥,𝑦 ≥ 𝛾min). Here, 𝛾min is the decoding

threshold of the receivers. Therefore, in our WIN-T system, to avoid being detected by the

energy-based interceptor, the SUs and rBS must transmit signals which have an SINR value

smaller than the expected detection threshold of the interceptor. Additionally, we must control

the transmit power to ensure that SINR strength measured by the desired receivers satisfies an

expected outage probability. The constraints for our system can be formulated as

𝛾min ≤ 𝛾
(𝑡)
𝑐,𝑠,𝑢 ≤ 𝜇, (3.3)

𝛾min ≤ 𝛾
(𝑡)
𝑐,𝑏,𝑢 ≤ 𝜇. (3.4)

Where 𝜇 is an SINR detection threshold of the interceptor. For example, the LPI capacity of

many state-of-the-art systems is preserved when the intercept SINR value maintains below -8dB

[Diamant et al. (2016)].
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Correlation-based interception: Regardless of the low energy signal transmission of the spread

spectrum system, the interceptor can still intercept the system when the correlation detection

technique is activated [Kumar & Zhu (2021)]. In this technique, the enemy interceptor uses the

triple correlation function (TCF) as a tool to determine the common peak of the intercepted

signal; then, based on the common peak, the periodic properties of the signal are known by the

interceptor. The TCF of an m-sequence spreading signal F(t) is the integral of the product of

this signal with two independent shifted copies of itself, which is expressed as

𝐹3(𝑡1, 𝑡2) =
∫ +∞

−∞

𝐹 (𝑡)𝐹 (𝑡 + 𝑡1)𝐹 (𝑡 + 𝑡2)𝑑𝑡, (3.5)

where 𝑡1 and 𝑡2 are the time shifts of the m-sequence. The TCF value depends on the presence of

peaks at unique locations such that TCF can bring values of a common peak, a first shifted copy

peak, a second shifted copy peak or even a non-associated peak. Common peaks are the target

that a correlation interceptor is seeking. Since the greatest common divisor (GCD) calculation

of any two common peak reveals the periodic length of the PN code, the interceptor can intercept

exactly only one part of the period of m-sequence instead of the whole period. According to [Gu

et al. (2016)], when the interceptor receipts signal peaks, they can be categorized by expressing

a multiple hypotheses testing model as below

𝑉 (𝑡)
𝐻0,𝐻1,𝐻2

<
>
𝐻3

𝜁, (3.6)

where V(t) is TCF value referred to as the amplitude of the intercept signal peak at time slot

t, 𝜁 is a categorization threshold of peaks. The hypothesis 𝐻3 implies that a common peak is

detected when the amplitude of this peak is higher than the threshold. Otherwise, other kinds of

peaks can be found by the hypotheses 𝐻0, 𝐻1, 𝐻2. 𝐻0 shows that no peak is available. 𝐻1 and

𝐻2 indicate that the peak of the first shifted-copied signal and the second shifted-copied signal

are present, respectively. The correlation interception process is illustrated in Figure 3.3.
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Figure 3.3 Correlation-based detector illustration

In the context of our WIN-T network, considering transmitted signals from SUs, based on [Gu

et al. (2016)], the amplitude of the correlation signal peaks can be approximately calculated by

the interceptor as the following formula

𝑉 (𝑡)𝑐,𝑠,𝑢 = (𝐺
(𝑡)
𝑐,𝑠,𝑢 𝑝

(𝑡)
𝑐,𝑠)

6(𝑚 (𝑡)
𝑐,𝑠 − 3)/𝑚 (𝑡)

𝑐,𝑠. (3.7)

The interceptor also uses the same approach to analyze signals radiated from rBS. Thus, to

protect our system against this type of intercept technique, the spreading factor and transmit

power need to be adjusted to make sure that the hypothesis 𝐻3 is always false.

3.3.3 Problem formulation

Due to the mobility of GCV users, both power allocation (PA) and spreading factor assignment

(SA) schemes are required to execute continuously to adapt to the fast-changing communication

environment. At each time slot t, these schemes must be executed quickly and cooperatively to

make sure that the transmit power level and spreading factor value must be exactly updated in a

timely manner. In addition, the QoS reliability of E2E services must also be guaranteed in parallel

with LPI maintenance. To this end, we solve an optimization problem of LPI conservation and

transmission rate maximization for the system, which is mathematically formulated as problem
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(P1).

(P1) max
𝑚𝑠 ,𝑚𝑏 ,𝑝𝑠 ,𝑝𝑏

∑
𝑐∈C

𝛿(𝑡)𝑐 min(𝜏(𝑡)𝑐,𝑠,𝑏, 𝜏
(𝑡)
𝑐,𝑏, 𝑗 ) + (1 − 𝛿

(𝑡)
𝑐 )𝜏

(𝑡)
𝑐,𝑠, 𝑗

s.t. (C1) : 𝛾 (𝑡)𝑐,𝑠,𝑢 ≤ 𝜇,∀𝑐 ∈ C,

(C2) : 𝛿(𝑡)𝑐 𝛾
(𝑡)
𝑐,𝑏,𝑢 ≤ 𝜇,∀𝑐 ∈ C,

(C3) : (𝐺 (𝑡)
𝑐,𝑠,𝑢 𝑝

(𝑡)
𝑐,𝑠)

6(𝑚 (𝑡)
𝑐,𝑠 − 3)/𝑚 (𝑡)

𝑐,𝑠 ≤ 𝜁,∀𝑐 ∈ C,

(C4) : 𝛿(𝑡)𝑐 (𝐺
(𝑡)
𝑐,𝑏,𝑢 𝑝

(𝑡)
𝑐,𝑏)

6(𝑚 (𝑡)
𝑐,𝑏 − 3)/𝑚 (𝑡)

𝑐,𝑏 ≤ 𝜁,∀𝑐 ∈ C,

(C5) : 𝑝 (𝑡)𝑐,𝑠 ≤ 𝑝𝑠,max,∀𝑐 ∈ C,

(C6) :
∑

𝑐∈C
𝑝 (𝑡)𝑐,𝑏 ≤ 𝑝BS,max,∀𝑐 ∈ C,

(C7) : 𝑚 (𝑡)
𝑐,𝑠 ≤ 𝑚𝑠,max,∀𝑐 ∈ C,

(C8) : 𝑚 (𝑡)
𝑐,𝑏 ≤ 𝑚BS,max,∀𝑐 ∈ C,

(C9) : 𝛾 (𝑡)𝑐,𝑠,𝑏 ≥ 𝛿
(𝑡)
𝑐 𝛾min,∀𝑐 ∈ C,

(C10) : 𝛾 (𝑡)𝑐,𝑏, 𝑗 ≥ 𝛿
(𝑡)
𝑐 𝛾min,∀𝑐 ∈ C,

(C11) : 𝛾 (𝑡)𝑐,𝑠, 𝑗≥(1−𝛿
(𝑡)
𝑐 )𝛾min,∀𝑐 ∈ C,

where 𝑚𝑠 = {𝑚𝑐,𝑠}, 𝑚𝑏 = {𝑚𝑐,𝑏}, 𝑝𝑠 = {𝑝𝑐,𝑠}, 𝑝𝑏 = {𝑝𝑐,𝑏}, ∀𝑐 ∈ C.

The objective function is to maximize the total transmission rate of all E2E connections at each

time slot t, in which transmission rate of each link from transmitter x and receiver y belonging to

E2E connection c at time slot t is defined as 𝜏(𝑡)𝑐,𝑥,𝑦 = 𝑊0 log2(1 + 𝛾
(𝑡)
𝑐,𝑥,𝑦). 𝑊0 is original signal

bandwidth. Constraints (C1) and (C2) limit the intercept SINR of SU and rBS under an energy

detection threshold. Constraints (C3) and (C4) ensure that common peaks are not visible at the

correction-based interceptor. Constraints (C5) and (C6) indicate that each SU and the rBS have

a maximum transmit power level. Constraints (C7) and (C8) limit the maximum values of the

spreading factors. To enable desired signals be successfully detected by rBS and DU, constraints

(C9), (C10), and (C11) ensure that the measured SINR values at those receivers must be higher

than an acceptable threshold.
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Proof of non-convexity of problem P1 is straightforward. To solve P1, we design an iterative

approach as presented in Algorithm 3.1. The problem P1 is decomposed into two sub-problems,

PA and SA, and then these sub-problems are solved sequentially. The sub-problem PA is

solved in the context of the fixed spreading factor. After that, the transmit power solutions 𝑝∗𝑐,𝑠

and 𝑝∗𝑐,𝑏 obtained from solving PA are used to solve the sub-problem SA in which the transmit

power of SU and rBS are parameterized. This iterative process is run along with the increase of

the interactive count parameter 𝜂. This algorithm stops when the difference of two consecutive

solutions of PA does not exceed a coverage tolerance 𝜔, or the maximum number of iterations

𝜂𝑚𝑎𝑥 is reached. The output of the algorithm is optimal transmit power level and spreading

factor values which are allocated to the system at each time slot t.

Algorithm 3.1 The iterative algorithm for problem P1

1: initialize: Parameterize variables 𝑚𝑐,𝑠 and 𝑚𝑐,𝑏
Set iter_count 𝜂 = 0, iter_max 𝜂max = 1e5, coverage tolerance 𝜔 = 5e-6

2: repeat
3: Solve (PA) with fixed 𝑚

(𝜂)
𝑐,𝑠 and 𝑚

(𝜂)
𝑐,𝑏 , to obtain 𝑝∗𝑐,𝑠 and 𝑝∗𝑐,𝑏

4: Update 𝑝
(𝜂)
𝑐,𝑠 = 𝑝∗𝑐,𝑠 and 𝑝

(𝜂)
𝑐,𝑏 = 𝑝∗𝑐,𝑏

5: Solve (SA) with fixed 𝑝
(𝜂)
𝑐,𝑠 and 𝑝

(𝜂)
𝑐,𝑏 , obtain 𝑚∗𝑐,𝑠 and 𝑚∗𝑐,𝑏

6: Update 𝑚
(𝜂)
𝑐,𝑠 = 𝑚∗𝑐,𝑠 and 𝑚

(𝜂)
𝑐,𝑏 = 𝑚∗𝑐,𝑏

7: 𝜂 = 𝜂 + 1

8: until ∑𝑐 ( |𝑝𝜂𝑐,𝑠 − 𝑝𝜂+1
𝑐,𝑠 | + (1 − 𝛿𝑐) |𝑝

𝜂
𝑐,𝑏 − 𝑝

𝜂+1

𝑐,𝑏 |) <= 𝜔 or 𝜂 ≥ 𝜂max

9: return 𝑝∗𝑐,𝑠, 𝑝
∗
𝑐,𝑏, 𝑚

∗
𝑐,𝑠, 𝑚

∗
𝑐,𝑏.

Power allocation with fixed spreading assignment: By treating spreading factors 𝑚𝑐,𝑠 and

𝑚𝑐,𝑏 as parameters and ignoring non-power constraints from problem P1, we can define the

power allocation sub-problem PA as follows

(PA) max
𝑝𝑠 ,𝑝𝑏

∑
𝑐∈C
𝛿(𝑡)𝑐 min(𝜏(𝑡)𝑐,𝑠,𝑏, 𝜏

(𝑡)
𝑐,𝑏, 𝑗 ) + (1 − 𝛿

(𝑡)
𝑐 )𝜏

(𝑡)
𝑐,𝑖, 𝑗

s.t. (𝐶1)–(𝐶6), (𝐶9)–(𝐶11).
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The sub-problem PA is non-convex because of transmission rate terms 𝜏(𝑡)𝑐,𝑥,𝑦 (𝑝) in the objective

function. An approach to solve such kinds of problems is using first-order Taylor approximation

(i.e., in the Difference of Convex method [Carrizosa, Guerrero & Romero Morales (2018)]) to

transform non-convex parts of the objective function to be convex. To this end, we firstly rewrite

the term 𝜏(𝑡)𝑐,𝑠,𝑏 (𝑝) in the objective function using D.C functions as follows

𝜏(𝑡)𝑠,𝑏 (𝑝)
Δ
= 𝑉1(𝑝) −𝑉2(𝑝), (3.10)

where

𝑉1(𝑝) = −𝑊0 log2(𝜎
2 +

∑
𝑘≠𝑠

𝐺 (𝑡)
𝑘,𝑏 .𝑝

(𝑡)
𝑘 + 𝑚 (𝑡)

𝑠 .𝐺
(𝑡)
𝑠,𝑏 .𝑝

(𝑡)
𝑠 )

𝑉2(𝑝) = −𝑊0 log2(𝜎
2 +

∑
𝑘≠𝑠

𝐺 (𝑡)
𝑘,𝑏 .𝑝

(𝑡)
𝑘 ).

Although both functions 𝑉1(𝑝) and 𝑉2(𝑝) are convex, (3.10) is still a non-convex term. To

convexify (3.10), we use the first-order Taylor approximation to linearize 𝑉2(𝑝). As a result,

(3.10) is approximated as

𝜏(𝑡)𝑠,𝑏 (𝑝)
Δ
= 𝑉1(𝑝) −𝑉2(𝑝) − �𝑉2(𝑝)

𝑇 (𝑝 − 𝑝), (3.11)

where �𝑉2(𝑝)
𝑇 is the gradient of function 𝑉2(𝑝) at 𝑝. The same transformations in (3.10) and

(3.11) are then applied similarly for all 𝜏(𝑡)𝑥,𝑦 (𝑝) terms in the objective function of PA. As a

result, the original problem is approximated by a convex problem. Finally, the optimal solution

can be found by an iterative algorithm as described in [Kuang, Speidel & Droste (2012)].

Spreading assignment with fixed power allocation: Given 𝑝𝑐,𝑠 and 𝑝𝑐,𝑏, we obtain the

spreading factor assignment problem SA by removing constraints (C5) and (C6) from problem
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P1 as below

(SA) max
𝑚𝑠 ,𝑚𝑏

∑
𝑐∈C
𝛿(𝑡)𝑐 min(𝜏(𝑡)𝑐,𝑠,𝑏, 𝜏

(𝑡)
𝑐,𝑏, 𝑗 ) + (1 − 𝛿

(𝑡)
𝑐 )𝜏

(𝑡)
𝑐,𝑠, 𝑗

s.t. (𝐶1)–(𝐶4), (𝐶7)–(𝐶11).

In problem (SA), constraints (C1), (C3), (C7), (C9), and (C11) are equivalently rewritten as

follows

max
{
𝜅min
𝑐,𝑠,1, 𝜅

min
𝑐,𝑠,2

}
≤ 𝑚𝑐,𝑠 ≤ min

{
𝜅max
𝑐,𝑠,1, 𝜅

max
𝑐,𝑠,2

}
, (3.13)

where

𝜅max
𝑐,𝑠,1 = min

⎧⎪⎪⎨⎪⎪⎩𝑚𝑠,max,
𝜇

(
𝜎2 +

∑
𝑘≠𝑠 𝐺

(𝑡)
𝑐,𝑘,𝑢 𝑝

(𝑡)
𝑐,𝑘

)
𝐺 (𝑡)
𝑐,𝑠,𝑢 𝑝

(𝑡)
𝑐,𝑠

⎫⎪⎪⎬⎪⎪⎭ ,
𝜅max
𝑐,𝑠,2 = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩0,
3
(
𝐺 (𝑡)
𝑐,𝑠,𝑢 𝑝

(𝑡)
𝑐,𝑠

)6

(
𝐺 (𝑡)
𝑐,𝑠,𝑢 𝑝

(𝑡)
𝑐,𝑠

)6

− 𝜁

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
𝜅min
𝑐,𝑠,1 =

𝛿(𝑡)𝑐 𝛾min

(
𝜎2 +

∑
𝑘≠𝑠 𝐺

(𝑡)
𝑐,𝑘,𝑏 𝑝

(𝑡)
𝑐,𝑘

)
𝐺 (𝑡)
𝑐,𝑠,𝑏 𝑝

(𝑡)
𝑐,𝑠

,

𝜅min
𝑐,𝑠,2 =

(
1 − 𝛿(𝑡)𝑐

)
𝛾min

(
𝜎2 +

∑
𝑘≠𝑠 𝐺

(𝑡)
𝑐,𝑘, 𝑗 𝑝

(𝑡)
𝑐,𝑘

)
𝐺 (𝑡)
𝑐,𝑠, 𝑗 𝑝

(𝑡)
𝑐,𝑠

.

(3.14)

Similarly, constraints (C2), (C4), (C8), and (C10) are equivalent rewritten as follows

𝜅min
𝑐,𝑏,1 ≤ 𝑚𝑐,𝑏 ≤ min

{
𝜅max
𝑐,𝑏,1, 𝜅

max
𝑐,𝑏,2

}
, (3.15)
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where

𝜅max
𝑐,𝑏,1 = min

⎧⎪⎪⎨⎪⎪⎩𝑚𝑏,𝑠,max,
𝜇

(
𝜎2 +

∑
𝑘≠𝑏 𝐺

(𝑡)
𝑐,𝑘,𝑢 𝑝

(𝑡)
𝑐,𝑘

)
𝛿(𝑡)𝑐 𝐺

(𝑡)
𝑐,𝑏,𝑢 𝑝

(𝑡)
𝑐,𝑏

⎫⎪⎪⎬⎪⎪⎭ ,
𝜅max
𝑐,𝑏,2 = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩0,
3
(
𝐺 (𝑡)
𝑐,𝑏,𝑢 𝑝

(𝑡)
𝑐,𝑏

)6

𝛿(𝑡)𝑐

((
𝐺 (𝑡)
𝑐,𝑏,𝑢 𝑝

(𝑡)
𝑐,𝑏

)6

− 𝜁

) ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,
𝜅min
𝑐,𝑏,1 =

𝛿(𝑡)𝑐 𝛾min

(
𝜎2 +

∑
𝑘≠𝑏 𝐺

(𝑡)
𝑐,𝑘,𝑏 𝑝

(𝑡)
𝑐,𝑘

)
𝐺 (𝑡)
𝑐,𝑏,𝑏 𝑝

(𝑡)
𝑐,𝑏

.

(3.16)

The variable 𝑚𝑐,𝑏 is included in term 𝜏(𝑡)𝑐,𝑏, 𝑗 in the objective. Therefore, to maximize the objective

subject to box constraint (3.15), the optimal 𝑚∗𝑐,𝑏 is given by min
{
𝜅max
𝑐,𝑏,1, 𝜅

max
𝑐,𝑏,2

}
. To determine

𝑚𝑐,𝑠, the objective has a form of max𝑚𝑐,𝑠 𝛿
(𝑡)
𝑐 log(1 + 𝐴𝑐,𝑠𝑚𝑐,𝑠) + (1 − 𝛿

(𝑡)
𝑐 ) log(1 + 𝐵𝑐,𝑠𝑚𝑐,𝑠),

where 𝐴𝑐,𝑠 =
𝐺
(𝑡 )
𝑐,𝑠,𝑢𝑝

(𝑡 )
𝑐,𝑠

𝜎2+
∑

𝑘≠𝑠 𝐺
(𝑡 )
𝑐,𝑘,𝑢

𝑝
(𝑡 )
𝑐,𝑘

and 𝐵𝑐,𝑠 =
𝐺
(𝑡 )
𝑐,𝑠, 𝑗 𝑝

(𝑡 )
𝑐,𝑠

𝜎2+
∑

𝑘≠𝑠 𝐺
(𝑡 )
𝑐,𝑘, 𝑗

𝑝
(𝑡 )
𝑐,𝑘

. By taking the first derivative, the

root is 𝑚root
𝑐,𝑠 = 𝐴𝑐,𝑠𝛿

(𝑡 )
𝑐 +𝐵𝑐,𝑠𝛿

(𝑡 )
𝑐 −𝐵𝑐,𝑠

𝐴𝑐,𝑠𝐵𝑐,𝑠−2𝐴𝑐,𝑠𝐵𝑐,𝑠𝛿
(𝑡 )
𝑐

.

Then, the optimal 𝑚∗𝑐,𝑠 = argmax{
𝑚root

𝑐,𝑠 ,max
{
𝜅min
𝑐,𝑠,1

,𝜅min
𝑐,𝑠,2

}
,min

{
𝜅max
𝑐,𝑠,1

,𝜅max
𝑐,𝑠,2

}}F (
𝑚𝑐,𝑠

)
,

where F
(
𝑚𝑐,𝑠

)
= (1 − 𝛿(𝑡)𝑐 )𝜏

(𝑡)
𝑐,𝑠, 𝑗 + 𝛿

(𝑡)
𝑐 min(𝜏(𝑡)𝑐,𝑠,𝑏, 𝜏

(𝑡)
𝑐,𝑏, 𝑗 )

���
𝑚𝑐,𝑏=𝑚∗𝑐,𝑏

.

3.3.4 Complexity analysis

Let 𝑁 iter
0

and 𝑁 iter
1

be the number of iterations of the outer loop of Algorithm 3.1 and the inner

loop of solving PA sub-problem, respectively. According to [Hoang, Le & Le-Ngoc (2015)],

the complexity to solve the convex problem with 𝑚1 inequality constraints and 𝑚2 variables

by the interior-point method is O
(
𝑚1/2

1
(𝑚1 + 𝑚2)𝑚

2
2

)
. Then, the complexity to solve PA

sub-problem with 9𝑆 constraints and 2𝑆 variables is O(𝑁 iter
1
𝑆3.5). The complexity of solving

SA sub-problem by the closed-form expression is very insignificant. Finally, the complexity of

Algorithm 3.1 is O(𝑁 iter
0
𝑁 iter

1
𝑆3.5).
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3.4 Proposed Communication Mode Selection Strategy

To guarantee LPI capability, the network has to sacrifice the throughput performance because

of low power transmission. Even, in the case of edge users, the solution of the problem P1

can be infeasible because satisfying both LPI and QoS performance is impossible. Aiming

to improve the system’s throughput performance while the LPI capability is not violated, we

propose to consider a tactical communication system including multiple relay nodes, which can

be a GCV or rBS. Then we investigate a communication mode selection strategy in which each

E2E connection can properly select its communication mode to enhance the transmission rate

without using high transmit power.

We reformulate the problem P1 to consider the optimization of the communication mode

selection mechanism. Two new binary variables of the mode selection are introduced to the

original problem. We treat 𝛿(𝑡)𝑐 as the first binary variable indicating that E2E connection c will

select the D2D mode or relay mode at the time slot t. If the relay mode is chosen, the second

binary variable 𝜑(𝑡)𝑐,𝑧 will decide a node z in the set of potential relay nodes Z = {1, 2, ..., 𝑍}

to be relay node. Because a relay node can be a GCV or rBS, we replace the index 𝑏 of the

problem P1 by 𝑧 ∈ Z. The re-formulated problem is presented as P2.

(P2) max
𝑚𝑠 ,𝑚𝑧 ,
𝑝𝑠 ,𝑝𝑧 ,
𝛿𝑐 ,𝜑𝑧

∑
𝑐∈C

(1 − 𝛿(𝑡)𝑐 )𝜏
(𝑡)
𝑐,𝑠, 𝑗 +

𝑍∑
𝑧=1

𝜑(𝑡)𝑐,𝑧 min(𝜏(𝑡)𝑐,𝑠,𝑧, 𝜏
(𝑡)
𝑐,𝑧, 𝑗 )

s.t. (C1), (C3), (C5), (C6), (C7), (C8), (C11) :

(C2) :
∑𝑍

𝑧=1
𝜑(𝑡)𝑐,𝑧𝛾

(𝑡)
𝑐,𝑧,𝑢 ≤ 𝜇

(C4) :
∑𝑍

𝑧=1
𝜑(𝑡)𝑐,𝑧 (𝐺

(𝑡)
𝑐,𝑧,𝑢 𝑝

(𝑡)
𝑐,𝑧)

6(𝑚 (𝑡)
𝑐,𝑧 − 3)/𝑚 (𝑡)

𝑐,𝑧 ≤ 𝜁

(C9) : 𝛾 (𝑡)𝑐,𝑠,𝑧 ≥
∑𝑍

𝑧=1
𝜑(𝑡)𝑐,𝑧𝛾min

(C10) : 𝛾 (𝑡)𝑐,𝑧, 𝑗 ≥
∑𝑍

𝑧=1
𝜑(𝑡)𝑐,𝑧𝛾min

(C12) : 𝛿(𝑡)𝑐 , 𝜑
(𝑡)
𝑐,𝑧 ∈ {0, 1}

(C13) :
∑𝑍

𝑧=1
𝜑(𝑡)𝑐,𝑧≤𝛿

(𝑡)
𝑐 ,
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where 𝑚𝑧 = {𝑚𝑐,𝑧}, 𝑝𝑧 = {𝑝𝑐,𝑧}, 𝜑𝑧 = {𝜑𝑐,𝑧} ∀𝑐 ∈ C.

Here, constraints (C1), (C3), (C5), (C6), (C7), (C8), and (C11) remain unchanged because they

do not involve the new binary variables. Constraint (C12) and (C13) introduces binary variables

and their relationship. Constraint (C13) means only one node in the set of potential relay nodes

is selected when the relay mode is chosen. Constraints (C2), (C4), (C9), (C10) and objective

function are updated by the replacement of the term
∑𝑍
𝑧=1 𝜑

(𝑡)
𝑐,𝑧 for the term 𝛿(𝑡)𝑐 . We also use the

decomposition method to solve the problem P2. The problem is split into three sub-problems of

PA, SA, and mode selection (MS)

(MS)max
𝛿𝑐 ,𝜑𝑧

∑
𝑐∈C

(1 − 𝛿(𝑡)𝑐 )𝜏
(𝑡)
𝑐,𝑠, 𝑗 +

𝑍∑
𝑧=1

𝜑(𝑡)𝑐,𝑧 min(𝜏(𝑡)𝑐,𝑠,𝑧, 𝜏
(𝑡)
𝑐,𝑧, 𝑗 )

s.t. (C2), (C4), (C9), (C10), (C12), (C13),

and then they are solved using the iterative method. Note that, for given 𝛿(𝑡)𝑐 and 𝜑(𝑡)𝑐,𝑧, the

technique to solve sub-problems PA and SA is similar to Algorithm 3.1. To handle the binary

variables 𝛿(𝑡)𝑐 and 𝜑(𝑡)𝑧 in the sub-problem (MS), we use a binary relaxation method to convert

those variables to be continuous. After solutions are found, they are converted back to the binary

value by the rounding calculation. The detailed procedure to solve the problem P2 is presented

in Algorithm 3.2

3.5 Multi-Agent Deep Reinforcement Learning Approach

3.5.1 Deep reinforcement learning overview

In single-agent reinforcement learning, an agent sequentially interacts with its environment

over time through a trial-and-error procedure to learn its policy by maximizing the expected

value of the cumulative reward. The interaction between the agent and the environment can

be modelled as a Markov decision process (MDP), represented by the tuple (X̄, Ā, 𝑅, 𝜋). X̄

as a set of possible states, and Ā is a set of discrete actions, 𝑅 is the cumulative reward, and
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Algorithm 3.2 The iterative algorithm for problem P2

1: initialize: Relax binary variable 𝛿𝑐, 𝜑𝑐,𝑧 to be continuous

Set max_iteration(𝜂=1e5)

2: repeat
3: Solve PA with parameterized variables (𝛿𝑐, 𝜑𝑐,𝑧, 𝑚𝑐,𝑠, 𝑚𝑐,𝑧), obtain 𝑝∗𝑐,𝑠, 𝑝

∗
𝑐,𝑧

4: Solve SA with 𝑝∗𝑐,𝑠, 𝑝
∗
𝑐,𝑧, obtain 𝑚∗𝑐,𝑠, 𝑚

∗
𝑐,𝑧

5: Solve MS with 𝑝∗𝑐,𝑠, 𝑝
∗
𝑐,𝑧, 𝑚

∗
𝑐,𝑠, 𝑚

∗
𝑐,𝑧 obtain 𝛿∗𝑐, 𝜑

∗
𝑐,𝑧

6: Update 𝑚𝑐,𝑠 = 𝑚∗𝑐,𝑠 ; 𝑚𝑐,𝑧 = 𝑚∗𝑐,𝑧; 𝛿𝑐=𝛿
∗
𝑐, 𝜑𝑐,𝑧=𝜑

∗
𝑐,𝑧

7: until P2.Objective converges or 𝜂 is reached.

8: # Rounding for variable 𝛿𝑐 and 𝜑𝑐,𝑧
9: for c = 1 : C do

10: 𝛿𝑐 = 1 if 𝛿𝑐 ≥ 0.5 else 𝛿𝑐 = 0

11: if 𝛿𝑐 == 1 then
12: Find 𝑧∗ = argmax

𝑧∈Z
{𝜑𝑐,𝑧}

13: Assign 𝜑𝑐,𝑧∗ = 1 and 𝜑𝑐,𝑖 = 0, ∀𝑖 ≠ 𝑧∗

14: end if
15: end for
16: Execute Algorithm 3.1 with rounded variables (𝛿𝑐 and 𝜑𝑐,𝑧) to find final optimal

solutions: 𝑝∗𝑐,𝑠, 𝑝
∗
𝑐,𝑧, 𝑚

∗
𝑐,𝑠, 𝑚

∗
𝑐,𝑧.

𝜋 is the state transition probability. At each time slot 𝑡, the agent observes the state from the

environment, 𝑥 (𝑡) ∈ X̄, then take action 𝑎 (𝑡) ∈ Ā based on a policy 𝜋(𝑥 (𝑡) |𝑎 (𝑡)). The policy

𝜋(𝑥 (𝑡) |𝑎 (𝑡)) is the probability of taking action 𝑎 (𝑡) conditioned on the current state 𝑥 (𝑡) and

satisfies
∑
𝑎 (𝑡 ) ∈Ā 𝜋(𝑥

(𝑡) , 𝑎 (𝑡)) = 1. Next, the environment moves to the next state 𝑥 (𝑡+1) and the

agent receives a reward 𝑟 (𝑡+1) . Generally, the above process can be wrapped into an experience

at time slot 𝑡 + 1 denoted as 𝑒(𝑡+1) = (𝑥 (𝑡) , 𝑎 (𝑡) , 𝑟 (𝑡+1) , 𝑠(𝑡+1)). The goal of this process is to

maximize the cumulative reward at time slot 𝑡, defined as

𝑅(𝑡) =
∞∑
𝜗=0

𝜄𝜗𝑟𝑡+𝜗+1, (3.19)

where 𝜄 ∈ (0, 1] is the discount factor for future rewards.
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Deep Q-learning is a reinforcement learning algorithm based on the architecture of deep neural

networks (DNNs) used to maximize the cumulative reward. In this algorithm, a deep Q-network

presents the relationship between the input state 𝑥 (𝑡) and the output action 𝑎 (𝑡) associated with a

function 𝑄(𝑥 (𝑡); 𝑎 (𝑡); 𝜃 (𝑡)) via a DNN. Optimizing the policy 𝜋(𝑥 (𝑡) |𝑎 (𝑡)) for maximum reward is

equivalent to adjusting the weights of the DNN so that the action is performed optimally. Since

Deep Q-learning is an off-policy algorithm, it can store all experiences 𝑒(.) into a memory D.

Overall, to optimize the policy 𝜋(𝑥 (𝑡) |𝑎 (𝑡)), deep Q-learning algorithm conduct optimizing DNN

weights 𝜃 (𝑡) by minimizing the loss function

𝐿 (𝜃 (𝑡) ,D) = [𝑦(𝑟 (𝑡+1) , 𝑥 (𝑡+1)) −𝑄(𝑥 (𝑡); 𝑎 (𝑡); 𝜃 (𝑡))]2, (3.20)

where 𝑦 = 𝑟 (𝑡+1) + 𝜄max𝑄(𝑥 (𝑡+1); 𝑎 (𝑡+1); 𝜃 (𝑡)
′
) with 𝜃 (𝑡)

′
is the weight of the target network

cloned from the delayed version of the agent’s main DNN to stabilize the learning process.

In a multi-agent setting, the MDP is extended to Markov Games (MG), where the interaction

of agents with the environment is described as a tuple (X̄, 𝐴1...𝐴𝑛, 𝑅1...𝑅𝑛, 𝜋), where 𝑛 is the

number of agents. 𝐴 = 𝐴1 × ... × 𝐴𝑛 is the joint action of agents. 𝑅𝑛 : X̄ × 𝐴 × X̄ → 𝑅 is the

cumulative reward of each agent. 𝜋 : X̄ × 𝐴 × X̄ → [0, 1] is the state transition function. In a

fully cooperative game, the reward is the same for all agents, 𝑅 = 𝑅1 = 𝑅2 = 𝑅𝑛 and the goal is

that agents observe the same state space X̄ and take separate action 𝐴𝑖 to maximize the common

reward. After that, each agent receives the same reward value to update their policy by using

equation 3.20.

3.5.2 From optimization to MADRL

To deal with the highly computational complexity issue of Algorithm 3.2, we propose a solution

based on a DRL approach. The idea is to transform the problem PA and MS into a DRL

problem to reduce its execution time while the simple problem SA remains unchanged.
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In addition, in our system, multiple E2E connections must collaborate and jointly optimize

system resources. This suggests that our system can work as a multi-agent system. Each E2E

connection can be treated as an agent operating with an individual deep Q-network. At each

time slot t, each agent i receives a state input 𝑥 (𝑡)𝑖 , then the agent takes the best action 𝑎 (𝑡)𝑖 . The

criteria to select the best action is based on the largest Q-value among output values of the

deep Q-network. Note that we expect agents acting in a cooperative manner such that the total

transmission rate of all E2E connections is maximal. The operation of the MADRL is illustrated

in Figure 3.4.
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Figure 3.4 Multi-Agent Deep Reinforcement Learning

system

State Space: A combination of channel gains and interference form a state space of the MADRL

problem. The state space is a continuous domain. The upper and lower bounds of the channel

gain corresponding to the value at the closest and farthest distances that a user can move around

the base station. While the interference level depends on the transmit power of neighbour

transmitters. The state space is

X̄ =
[
𝐼 (𝑡)𝑧 , 𝐼

(𝑡)
𝑗 , 𝐼

(𝑡)
𝑢 , 𝐺

(𝑡)
𝑠,𝑧, 𝐺

(𝑡)
𝑠,𝑢, 𝐺

(𝑡)
𝑧, 𝑗 , 𝐺

(𝑡)
𝑧,𝑢, 𝐺

(𝑡)
𝑠, 𝑗

]
. (3.21)
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Where 𝐼 (𝑡)𝑧 , 𝐼 (𝑡)𝑗 , 𝐼 (𝑡)𝑢 are interference measured at relay node z, DU j, and interceptor interface 𝑢.

At each time slot t, given the whole network state 𝑥 (𝑡) ∈ X̄, each agent i observes its own state

𝑥 (𝑡)𝑖 . After actions already taken by agents, a new network state 𝑥 (𝑡+1) is released. Note that, to

reduce erroneous predictions of the DRL model, each state input is normalized before feeding to

the neural network.

Action Space: The action taken by each agent corresponds to a selected communication mode

and a power level allocating to SU s and relay node z for each E2E connection c at time slot t. A

discrete action space Ā 1 can be defined based on the range of the minimum and maximum

transmit power levels of the network nodes as well as possible selections of the communication

modes. For example, given a selected communication mode o, an action space including n

selected power actions (𝑋1,𝑋2,...,𝑋𝑛) of SU s and m selected power actions of relay node z

(𝑌1,𝑌2,...,𝑌𝑚) can be presented as

Ā𝑜 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋1𝑌1 𝑋1𝑌2 𝑋1𝑌3 . . . 𝑋1𝑌𝑚

𝑋2𝑌1 𝑋2𝑌2 𝑋2𝑌3 . . . 𝑋2𝑌𝑚

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑋𝑛𝑌1 𝑋𝑛𝑌2 𝑋𝑛𝑌3 . . . 𝑋𝑛𝑌𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.22)

Reward Design: The reward function plays an important role in transforming an optimization

problem into a MADRL problem. In theory, designing a reward function should include terms

which correspond to the objective function and constraints of the optimization problem to ensure

that the actions taken do not violate the optimization problem. However, we can ignore some

constraints if they are always satisfied because of state and action space design. Our reward

function is designed to return a mutual reward value to agents at every time slot t as follows.

𝑟 (𝑡+1) = 𝜆1𝐾
(𝑡)
1
− 𝜆2𝐾

(𝑡)
2
− 𝜆3𝐾

(𝑡)
3
− 𝜆4𝐾

(𝑡)
4
− 𝜆5𝐾

(𝑡)
5
+ 𝜆6𝐾

(𝑡)
6
+ 𝜆7𝐾

(𝑡)
7
+ 𝜆8𝐾

(𝑡)
8
, (3.23)

1 In this article, we design a discrete action space for our proposed MADRL algorithm to adapt to real

implementations such as defined in 3GPP standard [3GPP (2023)]. On the other hand, continuous

variables are used in the optimization algorithm to determine the best-performing baseline for transmit

power, which is required to evaluate our proposed MADRL algorithm.
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where 𝜆𝑖, 𝑖 = 1, ..., 8 are coefficients that are tuned to obtain optimal solutions when the

objective function and the constraints (C1)-(C4), (C9)-(C11) of the problem P2 are satisfied,

and 𝐾𝑖, 𝑖 = 1, ..., 8 are functions that are defined as

𝐾 (𝑡)
1

=(P2).𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒, (3.24)

𝐾 (𝑡)
2

=
∑

𝑐∈C
𝛾 (𝑡)𝑐,𝑠,𝑢 − 𝜇, (3.25)

𝐾 (𝑡)
3

=
∑

𝑐∈C
(
∑𝑍

𝑧=1
𝜑(𝑡)𝑐,𝑧𝛾

(𝑡)
𝑐,𝑧,𝑢 − 𝜇), (3.26)

𝐾 (𝑡)
4

=
∑

𝑐∈C
(𝐺 (𝑡)
𝑐,𝑠,𝑢 𝑝

(𝑡)
𝑐,𝑠)

6(
𝑚 (𝑡)
𝑐,𝑠 − 3

𝑚 (𝑡)
𝑐,𝑠

) − 𝜁, (3.27)

𝐾 (𝑡)
5

=
∑

𝑐∈C
(

𝑍∑
𝑧=1

𝜑(𝑡)𝑐,𝑧 (𝐺
(𝑡)
𝑐,𝑧,𝑢 𝑝

(𝑡)
𝑐,𝑧)

6(
𝑚 (𝑡)
𝑐,𝑧 − 3

𝑚 (𝑡)
𝑐,𝑧

) − 𝜁), (3.28)

𝐾 (𝑡)
6

=
∑

𝑐∈C
𝛾 (𝑡)𝑐,𝑠,𝑏 − 𝛿

(𝑡)
𝑐 𝛾min, (3.29)

𝐾 (𝑡)
7

=
∑

𝑐∈C
𝛾 (𝑡)𝑐,𝑏, 𝑗 − 𝛿

(𝑡)
𝑐 𝛾min, (3.30)

𝐾 (𝑡)
8

=
∑

𝑐∈C
𝛾 (𝑡)𝑐,𝑠, 𝑗 − (1−𝛿

(𝑡)
𝑐 )𝛾min. (3.31)

Specifically, 𝐾 (𝑡)
1

is the total transmission rate of all E2E connections at time slot t. 𝜆1𝐾
(𝑡)
1

is a term with respect to the objective function of P2. Terms 𝜆2𝐾
(𝑡)
2

and 𝜆3𝐾
(𝑡)
3

are designed

to protect the system from the energy-based detector, derived from constraints (C1) and (C2).

Terms 𝜆4𝐾
(𝑡)
4

and 𝜆5𝐾
(𝑡)
5

is based on constraints (C3) and (C4) to protect the system from

correlation-based detectors. Note that, the negative sign (−) is left in front of terms 𝜆2𝐾
(𝑡)
2

,

𝜆3𝐾
(𝑡)
3

, 𝜆4𝐾
(𝑡)
4

, 𝜆5𝐾
(𝑡)
5

to imply the penalty terms, and reducing SINR and spreading factor is

encouraged to achieve higher LPI performance. Terms 𝜆6𝐾
(𝑡)
6

, 𝜆7𝐾
(𝑡)
7

, and 𝜆8𝐾
(𝑡)
8

aim to satisfy

constraints (C9), (C10), and (C11), respectively.



42

3.5.3 Proposed MADRL algorithm

We use a centralized training 2 and distributed implementation approach to deploying our

proposed MADRL algorithm. This approach ensures that the global data of the system is

gathered at a central place and network overhead is reduced because there is no information

exchange among agents. Moreover, a dedicated host machine used for training offline DRL

models is always more powerful than the distributed agent users.

Training phase: At the beginning of each time slot t, the central host collects the global

information of the system environment. This global information is referred to as system state

𝑥 (𝑡) . Training DRL model agents then take their action according to 𝜖-greedy algorithm such

that either the action is randomly taken from the action space or the action is selected from the

output of the DRL model. The criterion to select the output is the largest Q-value which returns

the best system mutual reward. The taken actions result in a system state 𝑥 (𝑡+1) which is used to

solve problem SA. Next, a mutual reward is delivered to each individual agent. This reward

is the result of the cooperation among the DRL agents in which each agent tends to maximize

the global system objective (mutual reward) instead of the local agent target (individual agent

reward). Finally, the weight sets of the DRL model are updated accordingly. Detailed training

procedures are presented in Algorithm 3.3.

Implementation phase: In this phase, the central host sends the learning model of each agent

to the corresponding user. In particular, learning parameter 𝜃𝑖 is sent to source user (SU) 𝑖

when the learning parameters are re-learned at the centralized server with updated data. In

time-slot 𝑡, SU 𝑖 collects and measures its data to get state 𝑥 (𝑡)𝑖 as defined in (3.21). Based on the

learning parameter 𝜃𝑖 recorded at the user 𝑖, and state 𝑥 (𝑡)𝑖 , the actions of transmit power and

communication mode are determined. Then, the achieved action values are used as input to

solve the problem SA to obtain spreading factor values. Note that the trained DRL model of

2 In the case of distributed training (e.g., where training agents are located on mobile devices), we

still need a centralized host to collect the information of all agents. Then, the host will deliver shared

information (i.e., transmit power of other agents, 𝑝 (𝑡 )𝑘 , 𝑘 ≠ 𝑖) to all agents to train a DNN model on

each mobile device. In this case, the user 𝑖 needs to send its action to the centralized host where the

rewards will be computed and sent back to all agents.
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Algorithm 3.3 MADRL algorithm for resource allocation and communication mode selection

initialize: two weight sets 𝜃 (𝑡) and 𝜃′(𝑡) of predict DQN and target DQN

2: repeat
Observe the whole network state 𝑥 (𝑡)

4: for each agent i do
𝜀 = random.randrange(0, 1)

6: if (𝜀 < 𝜖𝑔𝑟𝑒𝑒𝑑𝑦) then
Solve PA and MS by selecting randomly action 𝑎 (𝑡)𝑖 ∈ Ā

8: else
Solve PA and MS by using DRL model:

10: 𝑎 (𝑡)𝑖 = argmax
𝑎∈Ā

𝑄(𝑥 (𝑡+1)
𝑖 , 𝑎; 𝜃 (𝑡)𝑖 )

end if
12: end for

Solve problem (SA) with 𝑎 (𝑡)𝑖 , obtain 𝑚 (𝑡)∗
𝑠 and 𝑚 (𝑡)∗

𝑧

14: Observe next state 𝑥 (𝑡+1) and calculate mutual reward

Update 𝜃 (𝑡+1) using Adam optimizer

16: Update 𝜃′(𝑡+1) = 𝜃 (𝑡)

t ← t + 1

18: until Done all tasks or maximum time slots is reached.

the agents only needs to be updated when the environment undergoes significant changes, which

could be once a week or even a month, depending on environmental characteristics and system

performance requirements.

MADRL computational complexity: For each agent, the feed-forward pass algorithm to get

the Q-value with 𝐿 hidden layers includes
∑𝐿
𝑖=0 𝑁𝑖𝑁𝑖+1 multiplications,

∑𝐿+1
𝑖=1 𝑁𝑖 activations, and∑𝐿+1

𝑖=1 𝑁𝑖 additions, where 𝑁0 is the input size, 𝑁𝑖, 𝑖 = 1, 2..., 𝐿 are the size of hidden layers

1,2,..,L, respectively, and 𝑁𝐿+1 is the output size. The execution time depends on the time to

execute these operations, and on the ability of parallel processing. Since the multiplication has a

much higher complexity than the addition and activation, the operations to run the feed-forward

pass algorithm are estimated as 𝑆𝑁m ∑𝐿
𝑖=0 𝑁𝑖𝑁𝑖+1, where 𝑁m is the number of operations to

realize a 1-digit multiplication. Generally, multiplying two numbers having 𝑛 digits needs about

𝑛2 1-digit multiplications. In this paper, each network includes 3 hidden layers with size as

in Table 6.2, 𝑆 = 10, 𝑁m = 642. Therefore, the feed-forward pass algorithm requires 10.93
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billion operations. Then, for a CPU chipset with a processing capacity of 26 TOPS, the time to

calculate the output of the learner is 0.4 milliseconds.3

To estimate the time for obtaining the transmit power, communication mode, and spreading

factor solutions presented in Algorithm 3.3, we need to run the feed-forward pass algorithm 4.

Therefore, this time can be estimated as 𝑆𝑁m ∑𝐿
𝑖=0 𝑁𝑖𝑁𝑖+1.

3 The number of operations involved in the back-propagation algorithm is not included in the complexity

analysis when determining the transmit power and spreading factor solutions after the network

converged. In the training phase, the back-propagation algorithm has 3𝑁𝐿+1𝑁𝐿+
∑𝐿

𝑖=1 (𝑁𝑖+1+3)𝑁𝑖𝑁𝑖−1+∑𝐿
𝑖=0 𝑁𝑖𝑁𝑖+1 multiplications, where the first and second term are the numbers of multiplications to

calculate the gradient in the output layer and hidden layers, respectively. The third term is to update

the weights. In this paper, the total number of multiplications in the back-propagation algorithm with

batch-size 𝑁b = 2000 in one episode is 33.956 billion. For this setting, the time to update the gradient

is 5.349 seconds.

4 The time to run other operations such as max-search and greedy-policy can be neglected because it is

significantly smaller than the time to run the feed-forward pass algorithm.
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4.1 Problem Statement

The mixed radio frequency/free-space optical (RF/FSO) relay network is a critical topology

in military tactical deployment. Thanks to its high capacity, FSO is widely deployed in the

last mile access link in tactical cellular networks, which can convey the huge amount of user

traffic from RF networks. Furthermore, laser technology-based FSO links with line of sight

(LoS) communication facilitates interference isolation between RF and FSO systems. These

properties make FSO advantageous over copper, fibre and RF in back-hauling applications.

However, similarly to other military systems, the mixed RF/FSO relay network is also sensitive

to electronic interceptions of the enemy. The interception can occur for both the RF and FSO

systems, and protecting the system from interceptions is more challenging when the relay node

and enemy interceptor are UAVs that create a highly dynamic environment. This imposes a

serious threat to the capability and reliability of the network, especially when the demand for

military communication increases significantly.

Various anti-jamming strategies have been investigated for the mixed RF/FSO relay networks

to enhance the Low Probability of Intercept (LPI) capability. In [Paul, Bhatnagar & Jaiswal

(2019)], a multiple-input single-output (MISO) FSO model is presented to mitigate the jamming

impact. The authors in [Abd El-Malek et al. (2016)] propose a cooperative jamming model

and an RF power allocation strategy to combat against multiple eavesdroppers as well as to

improve the secrecy performance of a multi-user mixed RF/FSO relay network. In [Paul,

Ghosh & Bhatnagar (2021)], an abating jamming solution based on game theory is proposed for
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FSO systems. However, the strategies in [Paul et al. (2019)], [Abd El-Malek et al. (2016)], and

[Paul et al. (2021)] mainly focus on the anti-jamming problem for either RF systems or FSO

systems. So far, no strategy has considered simultaneously jamming attacks against both RF and

FSO systems, such anti-jamming attack scenario. Unlike prior studies, we consider a scenario in

which both FSO and RF are simultaneously attacked by an active jammer. It is worth noting

that this scenario requires synchronous cooperation between these two systems. The RF system

has to control the user power to mitigate the jamming impact on the link quality, and at the

same time, the FSO system adjusts the Field-of-View (FoV) angle at the FSO receiver to avoid

jamming signals.

Deep reinforcement learning (DRL) has emerged as an efficient solution for wireless applications

besides optimization methods [Wang et al. (2020b)]. The DRL can handle optimization problems

with high dimensional variables and near real-time requests that traditional optimization methods

might struggle with. Our target is to design a solution that mitigates jamming in mixed RF/FSO

relay networks by determining the optimal FoV angle and then employing DRL to tackle the

high complexity of the power allocation (PA) problem for RF system.

4.2 System Model

Ground base

Relaying UAV

 Enemy jammer

 FSO desired link: 

 FSO jamming link:  

 RF desired link: 

 RF jamming link: SU1 SU2

SU3

Surveillance UAV NSurveillance UAV 1

Figure 4.1 System topology
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Fig. 4.1 depicts a tactical scenario where a relaying UAV (rUAV) is sent to the combat area

to relay wireless signals transferred from a set S = {1, 2, ..., 𝑆} of mobile users (UEs) to a

ground base station (GB). The communication between rUAV and GB is an FSO link which

has a high capacity required for back-haul connectivity. Meanwhile, UEs communicate with

rUAV via the MIMO technology. Let 𝑀 be the number of antennas at rUAV. Each connection

between a UE and rUAV requests a minimum signal-to-interference-plus-noise ratio (SINR)

level 𝛾th to maintain the received QoS requirement. Besides rUAV, we also consider a set of 𝑁

surveillance UAV (sUAV) which monitor the battlefield and then transfer data to the GB. Denote

N = {0, 1, 2, ..., 𝑁} as the set of all sUAVs and the rUAV in the system.

This tactical system is attacked by an enemy jammer which flies around the combat zone and

simultaneously intercepts both FSO and RF systems with the support of an advanced dual

interception technique. The jammer generates random jamming signals to violate the FSO

back-haul link and tries to interrupt military services by causing interference to the channels

between UEs and rUAV.

4.2.1 FSO link model

According to [Wang et al. (2021)], the instantaneous channel gain ℎ(𝑡)
(.)

of any link in the FSO

system with neglecting pointing errors effect can be calculated by the product of attenuation

factors as follows

ℎ(𝑡)
(.)

= ℎ(𝑡)al ℎ
(𝑡)
at ℎ

(𝑡)
a . (4.1)

Where ℎ(𝑡)al and ℎ(𝑡)at refer to the atmospheric loss and atmospheric turbulence. Since those

attenuation factors are not affected by the jamming, we do not analyze them in detail in this

paper. Term ℎ(𝑡)a is a loss according to the fluctuation of an angle-of-arrival (AoA), which is

caused by orientation deviations between a pair of transmitter/receiver of an FSO link. For

example, denote 𝜃 (𝑡)a,r is the angle of arrival (AoA) of the FSO link from rUAV transmitter to the
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GB receiver, the probability density function (PDF) of 𝜃 (𝑡)a,r is a Rayleigh distribution as follows

𝑓
𝜃
(𝑡 )
a,r
(𝜃 (𝑡)a,r) =

𝜃 (𝑡)a,r

𝜚(𝑡),2
𝑒
−

𝜃
(𝑡 ) ,2
a,r

2𝜚 (𝑡 ) ,2 , (4.2)

and then the loss ℎ(𝑡)a,r can be determined by

ℎ(𝑡)a,r = Π

(
𝜃 (𝑡)a,r

𝜙(𝑡)FoV

)
, (4.3)

where Π

(
𝜃
(𝑡 )
a,r

𝜙
(𝑡 )
FoV

)
= 1 if 𝜃 (𝑡)a,r ≤ 𝜙

(𝑡)
FoV and equal to 0 otherwise; 𝜙(𝑡)FoV is the FoV angle which is

depicted as an angle at which a detector is exposed to the incoming optical signal as illustrated

in Fig. 4.2. Equation (4.3) implies that the link interruption can be happened if 𝜃 (𝑡)a,r ≥ 𝜃
(𝑡)
FoV.

At the GB receiver, the background noise is an additive white Gaussian noise (AWGN) which has

zero mean and variance 𝜚(𝑡),2, i.e., 𝑛(𝑡) ∼ N (0, 𝜚(𝑡),2). The relationship between the background

noise power and the FoV angle 𝜙(𝑡)FoV is presented via a quadratic function as

𝜚(𝑡),2 = Ω.
(
𝜙(𝑡)FoV

)2

, (4.4)

where the coefficient Ω is relevant to parameters such as optical filter bandwidth, wavelength,

spectral radiance, and lens area. We assume Ω is a fixed coefficient.

Finally, we can calculate the transmission rate of the FSO link as follows

𝜏(𝑡)𝑓 𝑠𝑜 = 𝐵fso.𝑙𝑜𝑔2

!""#1 +
𝑅𝑝 (𝑡)𝑟 ℎ

(𝑡)
𝑟

Ω.
(
𝜙(𝑡)𝐹𝑜𝑉

)2

+ 𝑅𝑝 (𝑡)𝑗 ℎ
(𝑡)
𝑗 Ψ(𝑡)

𝑗

$%%& . (4.5)

Where 𝐵fso is the FSO bandwidth, 𝑅 is an optical-to-electrical conversion factor setting to ‘1’ for

all calculations in this paper, 𝑝 (𝑡)r and 𝑝 (𝑡)j correspond to instantly transmit powers of rUAV and

jammer, Ψ(𝑡)
j is a random variable denoting the status of jamming. Ψ(𝑡)

j follows the Bernoulli
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distribution in which the status of the jamming is active with probability 𝜏, (𝜏 ∈ (0, 1]), and

inactive with probability (1-𝜏).

4.2.2 RF link model

The channel of the link between a UE 𝑠th and rUAV is defined as

𝑔(𝑡)𝑠 = 𝑑 (𝑡)𝑠 𝑓
(𝑡)
𝑠 , (4.6)

where 𝑑 (𝑡)𝑠 is the attenuation caused by path loss and shadowing, 𝑓 (𝑡)𝑠 is the multi-path effect

modelled as a Rayleigh model. Under interception of the RF-UAV jammer, the received

signal-to-interference-plus-noise ratio (SINR) of UE 𝑠 is calculated as

𝛾 (𝑡)𝑠 =
𝑝 (𝑡)𝑠 | | (𝑤

(𝑡)
𝑠 )

𝐻𝑔(𝑡)𝑠 | |
2

𝜎2 +
∑
𝑘≠𝑠 𝑝

(𝑡)
𝑘 | | (𝑤

(𝑡)
𝑘 )

𝐻𝑔(𝑡)𝑘 | |
2 + 𝑝 (𝑡)j

, (4.7)

where 𝜎2 is the noise power at rUAV receiver, 𝑝 (𝑡)𝑠 and 𝑝 (𝑡)𝑘 is the transmit power of UE 𝑠 and

the interfering UE 𝑘 , 𝑔(𝑡)𝑘 is channel gain between rUAV and the interfering UE 𝑘 , 𝑤 (𝑡)𝑠 and 𝑤 (𝑡)𝑘

are the detector vectors of UE 𝑘 and UE 𝑠, and 𝑝 (𝑡)j is the jamming power arriving to channel 𝑠

at time slot 𝑡.

In this paper, well-known beamforming techniques such as maximum ratio combining (MRC)

and zero-forcing (ZF) are adapted to support the communications between the rUAV and UEs,

which are given as follows:

𝑊 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐺 (𝑡) if MRC is applied,(
𝐺 (𝑡)

(
𝐺 (𝑡)

)𝐻)−1

𝐺 (𝑡) if ZF is applied,

(4.8)

where 𝐺 = [𝑔(𝑡)
1
, ..., 𝑔(𝑡)𝑆 ] ∈ C

𝑀×𝑆. The transmission rate of UE 𝑠 at time slot 𝑡 is given as

follows

𝜏(𝑡)𝑠 = 𝐵RFlog2(1 + 𝛾
(t)
s ), (4.9)
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where 𝐵RF is the RF bandwidth.

4.2.3 Jamming avoidance analysis

φFoV

θa,r

θa,j

rUAV

FSO-UAV jammer
Detector

Receiving lens

Figure 4.2 The FSO receiver illustration with FoV angle and

AoA angles

Expressed in 𝜃 (𝑡)a,j the AoA of the channel between the jammer and the GB receiver. To avoid

FSO jamming signal, we must adjust 𝜙(𝑡)FoV of the GB receiver such that 𝜙(𝑡)FoV ≤ 𝜃
(𝑡)
a,j in order to

interrupt the jamming channel (Π(
𝜃
(𝑡 )
a,j

𝜃
(𝑡 )
FoV
) = 1). This principle of the FSO jamming avoidance is

depicted in Fig. 4.2.

Unlike the FSO system, which can completely eliminate jamming signals to the link, RF channels

are protected in such a way that the received jamming power is controlled at an acceptable level

as long as the link quality meets QoS requirements. Denote by 𝛾th the minimum acceptable

SINR value that each channel 𝑠 needs to guarantee the channel throughput, then the system is

protected if min(𝛾 (𝑡)𝑠 ) ≥ 𝛾th.
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4.3 Dual Anti-Jamming Problem Formulation

We address the problem of dual anti-jamming in the mixed RF/FSO relay system with respect to

throughput improvement. Specifically, in an up-link scenario, our objective is to maximize the

total transmission rate of the RF system subject to constraints on the minimum acceptable SINR,

optical jamming avoidance, backhaul capacity, and maximum transmit power.

The dual anti-jamming problem is formulated as follows.

(P) max
𝑝𝑠 ,𝜙FoV

∑
𝑠

𝜏(𝑡)𝑠 (4.10a)

s.t. min(𝛾 (𝑡)𝑠 )≥ 𝛾th, ∀𝑠 ∈ 𝑆, (4.10b)

𝜏(𝑡)fso≥
∑
𝑠

𝜏(𝑡)𝑠 , ∀𝑠 ∈ 𝑆, (4.10c)

𝑝 (𝑡)𝑠 ≤ 𝑝max, ∀𝑠 ∈ 𝑆, (4.10d)

𝜃 (𝑡)a,n ≤ 𝜙
(𝑡)
FoV ≤ 𝜃

(𝑡)
a,j . (4.10e)

To protect the RF system, constraint (4.10b) limits QoS requirement for each channel from

UE 𝑠 to rUAV. Constraint (4.10c) ensures that the FSO backhaul capacity can serve all traffic

flows from UEs to the GB without congestion. Each UE has a maximum transmit power shown

in constraint (4.10d). The right inequality of constraint (4.10e) implies the optical jamming

avoidance condition, while the left inequality of constraint (4.10e) makes sure that adjusting

𝜙(𝑡)FoV does not cause the interruption for any FSO link 𝑛 (𝑛 ∈ N ) between the GB and UAVs.

Proposition 1: The optimal FoV angle tuning is given as follows

𝜙(𝑡),★FoV = max
𝑛∈N

𝜃 (𝑡)a,n (4.11)

Proof : It can be verified that 𝜙(𝑡),★FoV satisfies constraint (4.10e). Let 𝑝★ be the optimal solution

of problem (P) and 𝜙(𝑡)FoV be a point of 𝜙(𝑡)FoV and satisfying constraint (4.10e). Then, we have
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𝜏(𝑡)fso |𝜙 (𝑡 )FoV=𝜙
(𝑡 ) ,★
FoV

≥ 𝜏(𝑡)fso |𝜙 (𝑡 )FoV=𝜙
(𝑡 )
FoV

. On the other hand, from (4.10c), the objective is maximized

when 𝜏(𝑡)fso is maximized. This concludes the proof.

When 𝜙(𝑡)FoV = 𝜙(𝑡),★FoV , problem (4.10) is rewritten as follows

(P)eq : max
𝑝𝑠

∑
𝑠

𝜏(𝑡)𝑠 s.t. (4.10b), (4.10c), (4.10d).

Then, the problem (4.10) are solved by an iterative algorithm as Algorithm 4.1.

Algorithm 4.1 General optimization algorithm for solving problem (4.10)

1 Initialize 𝜙FoV = 0.008rad, 𝜂 = 1e5, 𝜔 = 1e-4;

2 Determine optimal FoV angle by (4.11)

3 repeat
4 Using (4.14) and (4.15) to approximate the objective and constraint (4.10c),

respectively;

5 Solve the convex problem subjected to approximated constraints;

6 𝜂 = 𝜂 - 1;

7 until | |𝑝 (𝜂)𝑠 − 𝑝
(𝜂−1)
𝑠 | | ≤ 𝜔 𝑜𝑟 𝜂 = 0;

8 Return optimal solutions 𝑝∗𝑠 and 𝜙∗FoV;

The transformed problem (P)eq is a non-convex optimization problem because it includes the

logarithm of a fractional function in the objective function and constraint (4.10c). To solve it,

firstly, the function 𝜏(𝑡)𝑠 is rewritten under a D.C form as follows

𝜏(𝑡)𝑠 = 𝐵RF log2(1 + 𝛾
(𝑡)
𝑠 ) = 𝐵RF [𝑈 (𝑝

(𝑡)
𝑠 ) −𝑉 (𝑝

(𝑡)
𝑠 )], (4.13)

where

𝑈 (𝑝 (𝑡)𝑠 ) = log2

(
𝜎2 + 𝑝 (𝑡)j +

∑
𝑘

𝑝 (𝑡)𝑘 | | (𝑤
(𝑡)
𝑘 )

𝐻𝑔(𝑡)𝑘 | |
2

)
,

𝑉 (𝑝 (𝑡)𝑠 ) = log2

(
𝜎2 + 𝑝 (𝑡)j +

∑
𝑘≠𝑠

𝑝 (𝑡)𝑘 | | (𝑤
(𝑡)
𝑘 )

𝐻𝑔(𝑡)𝑘 | |
2

)
.

Next, we use the first-order Taylor expansion to linearize the terms 𝑈 (𝑝 (𝑡)𝑠 ) and 𝑉 (𝑝 (𝑡)𝑠 ).

Linearizing 𝑉 (𝑝 (𝑡)𝑠 ) will convexify the objective function, and linearizing𝑈 (𝑝 (𝑡)𝑠 ) will convexify
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constraint (4.10c). These linearizations result in two approximated functions of 𝜏(𝑡)𝑠 for the

objective function and (4.10c) as follows

𝜏(𝑡)
(obj),s

Δ
= 𝐵RF [𝑈 (𝑝

′(𝑡)
𝑠 ) − �𝑈 (𝑝

′(𝑡)
𝑠 )

T(𝑝 (𝑡)𝑠 − 𝑝′(𝑡)𝑠 ) −𝑉 (𝑝
(𝑡)
𝑠 )], (4.14)

𝜏(𝑡)
(16),s

Δ
= 𝐵RF [𝑈 (𝑝

(𝑡)
𝑠 ) −𝑉 (𝑝

′(𝑡)
𝑠 ) + �𝑉 (𝑝

′(𝑡)
𝑠 )

T(𝑝 (𝑡)𝑠 − 𝑝′(𝑡)𝑠 )], (4.15)

where �𝑈 (𝑝′(𝑡)𝑠 )
T and �𝑉 (𝑝′(𝑡)𝑠 )

T are the gradients of𝑈 (.) and𝑉 (.) at 𝑝′(𝑡)𝑠 . Finally, the problem

(P)eq is solved by an iterative method as described in [Kuang et al. (2012)].

Complexity analysis: Let 𝑁 iter
0

and 𝑁 iter
1

be the number of iterations of the outer loop of

Algorithm 4.1 and the inner loop of solving the problem (P)eq, respectively. The complexity to

solve the convex problem with 𝑜1 inequality constraints and 𝑜2 variables by the interior-point

method is O
(
𝑜1/2

1
(𝑜1 + 𝑜2)𝑜

2
2

)
. Then, the complexity to solve the problem (P)eq with 3𝑆

constraints and 𝑆 variables is O(𝑁 iter
1
𝑆3.5). The complexity of determining the optimal 𝜙(𝑡),★FoV

is O(𝑁 + 1), where 𝑁 is the number of sUAVs. Finally, the complexity of Algorithm 1 is

O(𝑁 iter
0
𝑁 iter

1
𝑆3.5).

4.4 Multi-Agent Deep Reinforcement Learning Approach

Although Algorithm 4.1 can solve the problem (4.10) and obtains optimal solutions, it faces

the issue of high computational complexity. The issue is caused by the iterative process and

the growing number of variables (i.e., when the number of UEs increases). To deal with

this computational complexity issue, we propose a reinforcement learning (RL) approach to

determine the transmit power of UEs.

In this approach, multiple RF links have to collaborate and jointly optimize the sum transmission

rate. This suggests that the RF system can work as a multi-agent system. In the RF system, each

link from a UE to rUAV can be treated as an agent operating with an individual deep Q-network.

At each timeslot t, each agent s receives a state input 𝑒(𝑡)𝑠 , then the agent takes the best action 𝑎 (𝑡)𝑠

∈ 𝐴𝑠. The criteria to select the best action is based on the largest Q-value among output values
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of the deep Q-network. Note that we expect agents to act in a cooperative manner such that the

sum transmission rate of all RF links is maximal. The operation of the MADRL approach is

illustrated in Fig. 4.3.

 

Mutual Reward

Link Agent 2

Link Agent S

Link Agent 1

Wireless
Environment

States 

. 

. 

.

Joint power action

Figure 4.3 Proposed MADRL System

4.4.1 Agent state

We rely on three features to design a state space. The first one is the agent’s local information which

is observed only by the agent itself. The second information refers to the neneighbornformation

that an agent receive-from or send-to its neighbors. The last one is the external information that

an agent may receive from an external source.

Local information: In our system, this information consists of the transmit power level taken

at the previous time step, 𝑝 (𝑡−1)
𝑠 , the large-scale fading level of channel agent 𝑠 at timeslot 𝑡,

𝑑 (𝑡)𝑠 , and the small-scale fading level, 𝑓 (𝑡)𝑠 . Knowing about this local informatio contributes to

optimizing the reward, which will be discussed in Section 4.4.3.

Neighbor information: To control the complexity of the state vector feeding into the agent of

the MADRL model, we define 𝑍 as the number of neighboring agents that an agent interacts
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with at timeslot 𝑡. The criteria to choose 𝑍 is according to [Xie, Xu, Li, Hu & Wang (2023)].

The element of this information is the amount of interference level that an agent 𝑠 receives from

its neighboring agents,
∑
𝑧∈𝑍 𝑝

(𝑡)
𝑧 | | (𝑤

(𝑡)
𝑧 )

𝐻𝑔(𝑡)𝑧 | |
2.

External information: The jamming power 𝑝 (𝑡)j received by agent 𝑠 and the value 𝜙(𝑡)FoV are

considered as elements for this information. The information elements are decisive for the

anti-jamming performance of the system. To control these elements, we can indirectly allocate

𝑝 (𝑡)𝑠 to reduce its impacts on our system.

For the summary, a state vector that each agent 𝑠 feeding to its DQN is described as follows

𝑒(𝑡)𝑠 = {𝑝 (𝑡−1)
𝑠 , 𝑓 (𝑡)𝑠 , 𝑑

(𝑡)
𝑠 ,

∑
𝑧∈𝑍

𝑝 (𝑡)𝑧 | | (𝑤
(𝑡)
𝑧 )

𝐻𝑔(𝑡)𝑧 | |
2, 𝑝 (𝑡)𝑗 , 𝜙

(𝑡)
FoV}. (4.16)

4.4.2 Agent action

We use 𝑁 discrete power levels from 0 to 𝑝𝑚𝑎𝑥 to define the set of possible agent actions, denoted

as A. All agents have the same action set, i.e., A𝑠 = A, ∀𝑠 ∈ 𝑆. Given 𝑁 > 1, the action set is

defined as

A =
{
𝑝𝑚𝑎𝑥,

(𝑁−2)𝑝𝑚𝑎𝑥

𝑁−1
, (𝑁−3)𝑝𝑚𝑎𝑥

𝑁−1
, ..., 0

}
. (4.17)

Choosing the value of 𝑁 depends on the target performance of the system operator. A large

value of 𝑁 can return a high-quality solution in the power control strategy, but it could increase

the learning time.

4.4.3 Reward function

To transform the optimization problem (P)eq into a MADRL problem, the reward function

is designed to maximize the objective function (4.10) and satisfy the constraints (4.10b) and

(4.10c). The constraint (4.10d) is not added to the reward function because it is already satisfied
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by the action space design in Section 4.4.2. To this end, we design a reward function as follows

R = 𝜆1 min(𝛾 (𝑡)𝑠 ) + 𝜆2(𝜏
(𝑡)
fso −

∑
𝑠

𝜏(𝑡)𝑠 ), (4.18)

where 𝜆1 and 𝜆2 are positive coefficients and they can be tuned to balance the system targets.

The term 𝜆1 min(𝛾 (𝑡)𝑠 ) encourages increasing minimal SINR value among UEs to avoid jamming

effects impacting the system performance. The term 𝜆2(𝜏
(𝑡)
fso −

∑
𝑠 𝜏

(𝑡)
𝑠 ) with the negative sign (-)

prevents the total throughput of the RF system from growing excessively that congestion could

happen, i.e.,
∑
𝑠 𝜏

(𝑡)
𝑠 > 𝜏(𝑡)fso.

4.4.4 Proposed MADRL strategy

We use a Centralized Training and Decentralized Execution (CTDE) approach to deploy our

proposed MADRL strategy. In the training phase, the whole network environment states 𝑒(𝑡)𝑠 of

all agents are collected at a centralized host to train DRL models. The information is exchanged

between agents without complicated processes. The cooperation among the DRL agents results

in the mutual reward being maximized and finally, the weight sets of the DRL models are

updated accordingly. Detailed training procedures are presented in Algorithm 4.2.

In the execution phase, real agents corresponding to UEs and rUAV transmitters will download

trained DRL models from the central host to the local site. Each real agent can decide its power

transmission at each timeslot t by looking up the trained DRL models.
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Algorithm 4.2 MADRL algorithm for solving problem (4.10)

initialize: two weight sets 𝜃 (𝑡) and 𝜃′(𝑡) of predict DQN and target DQN;

update step = 𝑐;
2: repeat

The GB obtains optimal FoV angle 𝜙(𝑡)FoV by (4.11);

4: Central host collects the whole network state 𝑒(𝑡);
for each agent 𝑠 do

6: 𝜀 = random.randrange(0, 1);
if (𝜀 < 𝜖greedy) then

8: Randomly select power 𝑎 (𝑡)𝑠 ∈ 𝐴𝑠;
else

10: 𝑎 (𝑡)𝑠 = argmax𝑄(𝑒(𝑡+1)
𝑠 , 𝐴𝑠; 𝜃

′
𝑠
(𝑡));

end if
12: end for

Observe next state 𝑒(𝑡+1) and calculate mutual reward;

14: Calculate mean squared error (MSE) loss;

Update 𝜃 (𝑡+1) using Adam algorithm;

16: After 𝐶 timesteps, update 𝜃′(𝑡+1) = 𝜃 (𝑡);
t ← t + 1;

18: until Done all tasks or maximum timeslot is reached.
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5.1 Problem Statement

Deep Reinforcement Learning (DRL) has emerged as an outstanding solution for anti-interception

strategies. For example, in [Mamaghani & Hong (2020)], an intelligent trajectory design based

on the model-free reinforcement learning algorithm has been proposed to help the relay UAV

securely communicate with ground users under the simultaneous interception of a group of

active eavesdroppers. [Yao, Zhao, Li, Cheng & Wu (2023)] proposed a DRL-based defense

scheme to protect autonomous vehicle networks from both jamming and eavesdropping attacks.

Nevertheless, how to efficiently apply DRL to achieve the maximum defence capacity remains

an open question. The success of DRL not only depends on the DRL algorithms such as

Actor-Critic, Proximal Policy Optimization (PPO), etc. but also on the way we design and

implement them in simultaneous anti-interception scenarios. If military terminals have low

computing power and security capacity, DRL should be designed centrally at a single controller,

which can control and allocate resources for the entire network to avoid interceptions. On the

other hand, in a large-scale tactical network or within a high-mobility tactical environment, the

size and complexity of the DRL problem can be beyond the capabilities of a single machine. In

this case, each network device has to make its own decision on resource allocation that refers to

a DRL solution with multiple agents setting. Therefore, it is necessary to analyze, evaluate, and

then properly select a DRL solution design for a given tactical situation.

Single-agent DRL (SADRL) and Multi-agent DRL (MADRL) are two methods for designing a

DRL solution. In SADRL, the agent element is a collection of base stations, unmanned aerial
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vehicles (UAVs) or military mobile devices and the agent is located at a central control unit.

Unlike SADRL, in MADRL, each network element is treated as an agent, and each agent is

associated with an individual DRL model. Many SADRL and MADRL approaches have been

used to design anti-interception strategies. [Yang et al. (2020b)] proposes a SADRL model

to avoid the interception of multiple eavesdroppers in which the central controller at the base

station is regarded as a learning agent. [Zhang et al. (2020c)] presents a MADRL algorithm

to protect aerial-to-ground (A2G) links from ground eavesdroppers in which UAVs are treated

as distributed learning agents. [Ju et al. (2023)] introduces a MADRL approach to improve

the security and resource efficiency of a network that is under attack from multiple mobile

eavesdroppers.

Thus, our goal is to compare and evaluate the performance of SADRL and MADRL in protecting

the system from dual-interception scenarios. From that, selecting the framework for design

becomes easier and brings the highest system performance. Especially, user mobility and

scalability are taken into consideration.

5.2 System Model and Problem Formulation

5.2.1 System Model

S1
S2

S3

Sn

BS

E

Desired link
Energy interception link
Correlation interception link

Figure 5.1 System model
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As illustrated in Fig. 5.1, we consider a dual interception tactical scenario where an enemy

eavesdropper 𝐸 is trying to intercept a DS-CDMA-based network by using both energy detection

and correlation analysis techniques at the same time. The intercepted network includes a set

S = {1, 2, ..., 𝑆} of military source users (SUs) who are communicating with a central base

station (BS) via up-link channels. We assume that BS can support 𝑆 interfaces so that at each

time slot 𝑡, there are 𝑆 channels between SUs and BS established. The model of channel 𝑠th

consists of two parts: small-scale and large-scale fading. The small-scale fading is a Rayleigh

model, while the large-scale fading involves path loss and log-normal shadowing. Let 𝑔𝑠 (𝑡)

denote the gain of channel 𝑠th at time slot 𝑡

𝑔𝑠 (𝑡) = 𝛼𝑠 (𝑡) |ℎ𝑠 (𝑡) |
2, (5.1)

where 𝛼𝑠 and |ℎ𝑠 (𝑡) |
2 correspond to large-scale and small-scale fading effects, respectively.

Let 𝑝𝑠 (𝑡) denote the transmit power of SU 𝑠th at time slot 𝑡. The signal-to-interference-plus-noise

(SINR) at BS’s interface 𝑠 corresponding to uplink channel 𝑠 at time slot 𝑡 is given by

𝛾 (𝑡)𝑠 =
𝑚 (𝑡)
𝑠 𝑔

(𝑡)
𝑠 𝑝

(𝑡)
𝑠

𝜎2 +
∑
𝑘≠𝑠 𝑔

(𝑡)
𝑘 𝑝

(𝑡)
𝑘

, (5.2)

where 𝑚 (𝑡)
𝑠 is the spreading factor of SU 𝑠 at time slot 𝑡, 𝜎2 is the power of background noise,

and 𝑔(𝑡)𝑘 and 𝑝 (𝑡)𝑘 are channel gain interfering channels and transmit power of interfering users,

respectively. The achievable transmission rate of each channel 𝑠 at time slot 𝑡 is then obtained as

𝐶 (𝑡)𝑠 = 𝑊𝑙𝑜𝑔2(1 + 𝛾
(𝑡)
𝑠 ), (5.3)

where𝑊 is the original signal bandwidth.
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5.2.2 Problem Formulation

We formulate the anti-interception resource allocation optimization problem in which system

throughput is maximized. This problem can be solved approximately by an optimization method

similar to our prior work [Nguyen, Nguyen, Singh et al. (2022)]. However, such a method comes

with very high complexity, and thus cannot meet the requirements of realistic scenarios. In

this paper, we design DRL solutions based on both single-agent and multi-agent (SADRL and

MADRL) approaches to obtain the solution, then compare their defensive performance.

According to [Judell (2020)], to avoid energy detection in CDMA systems, the signal energy must

be maintained below a target decodable threshold of eavesdroppers. Thus, in our system, the

signal energy radiated from SU 𝑠 to eavesdropper 𝐸 must be controlled to satisfy the following

expression.

𝛾 (𝑡)
𝑠,E ≤ 𝜇, (5.4)

here, 𝛾 (𝑡)𝑠,𝐸 is the SINR value in the channel between SU 𝑠 and eavesdropper 𝐸 . 𝜇 is the target

detection threshold.

To prevent the correlation analysis, which tries to determine the periodic components of the

intercepted signal, following [Gu et al. (2016)], the amplitude of the correlation peak must be

kept below a categorized threshold. Applying this result to our system, the express to avoid the

correlation analysis from eavesdropper 𝐸 is achieved as

(𝐺 (𝑡)
𝑠,E𝑝

(𝑡)
𝑠 )

6(𝑚 (𝑡)
𝑠 − 3)

𝑚 (𝑡)
𝑠

≤ 𝜙, (5.5)

𝐺 (𝑡)
𝑠,E is channel gain of the channel between SU 𝑠 and eavesdropper 𝐸 at time slot 𝑡, 𝜙 is the

target categorized threshold.

Consider 5.4, and 5.5 as constraints, the optimization problem is formulated as
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max
𝑝𝑠, 𝑚𝑠

𝑆∑
𝑠=1

𝐶 (𝑡)𝑠 (5.6a)

s.t. 𝛾 (𝑡)
𝑠,E ≤ 𝜇, (5.6b)

(𝐺 (𝑡)
𝑠,E𝑝

(𝑡)
𝑠 )

6(𝑚 (𝑡)
𝑠 − 3)/𝑚 (𝑡)

𝑠 ≤ 𝜙, (5.6c)

0 ≤ 𝑝 (𝑡)𝑠 ≤ 𝑝max, (5.6d)

0 ≤ 𝑚 (𝑡)
𝑠 ≤ 𝑚max (5.6e)

Here, the objective function is to maximize the system throughput. Constraints (5.6b) and (5.6c)

correspond to conditions to avoid energy and correlation interception, respectively. Constraints

(5.6d) and (5.6e) limit transmit power and spreading factor values of each SU.

5.3 Single-Agent vs. Multi-Agent DRL Simultaneous Interception Avoidance

5.3.1 Background

For SADRL setting, a learning agent sequentially interacts with its environment over time

through a trial-and-error process to solve a decision-making problem. The interaction between

the agent and the environment can be modelled as a Markov decision process (MDP), represented

by the tuple (X, A, P, R, 𝜆 ). X and A denote the state and action spaces, respectively.

P := X×A ↦→ [0, 1] is the state transition probability which defines the probability of transiting

from a state 𝑥 to a state 𝑥′ after taking action 𝑎. R : X ×A ×X ↦→ R is the reward function that

returns the immediate reward 𝑟 to the agent for taking action 𝑎 by receiving state 𝑥 and transiting

to next state 𝑥′. 𝜆 ∈ [0, 1] is a discount factor which trades off the current and upcoming

rewards. At a given time slot 𝑡, the agent will decide to take action 𝑎 conditionally to the current

state 𝑥 transiting the environment to the next state 𝑥′ sampled from the probability distribution

P(.|𝑥, 𝑎). Then, the agent obtains an immediate reward compensation R(𝑥, 𝑎, 𝑥′). Finally, the



64

agent’s expected return can be expressed as E
[∑∞
𝑡=0 𝜆

𝑡R(𝑥, 𝑎, 𝑥′) |𝑎 ∼ 𝜋(.|𝑥), 𝑥0

]
, in which 𝜋(.)

is agent’s policy.

The ultimate goal of the agent is to find an optimal policy 𝜋∗ which properly selects a pair of

state-action (𝑥,𝑎) to maximize the expected return. To qualify state-action (𝑥,𝑎) pairs for the

expected return, a Q-function is defined to measure the expected return when giving any pair

(𝑥,𝑎) and following the policy 𝜋, as shown below.

𝑄𝜋 (𝑥, 𝑎) = E[
∞∑
𝑡=0

𝜆𝑡R(𝑥𝑡, 𝑎𝑡 , 𝑥𝑡+1) |𝑎𝑡 ∼ 𝜋(.|𝑥𝑡), 𝑥0 = 𝑥, 𝑎0 = 𝑎] . (5.7)

When deploying SADRL in a wireless system, the agent is a representative of a group of system

components. For example, the agent can work as a controller to manage and make resource

allocation decisions for a group of base stations [Ahmed & Hossain (2019)].

In the multi-agent setting, MADRL solves sequential decision-making problems by a set of

participating agents. The MDP is extended to Markov Games (MG), and the interaction of

agents with the environment is described as a tuple (X, Ā, P, R̄, 𝜆). Let 𝑁 > 1 be the number

of agents; the joint action space of all agents is Ā := A1 × ... ×A𝑁 . The set of agent rewards is

R̄ := R1 × ... × R𝑁 and each agent 𝑖 will receive an immediate reward 𝑟𝑖 by the reward function

R𝑖 : X×Ā ×X ↦→ R. The transition probability function is defined as P : X×Ā ×X ↦→ [0, 1].

Since the received reward of each agent depends on the joint actions of all agents, maximizing

the long-term reward requires all policies of all agents to be taken into consideration. Each agent

𝑖 tries to find the optimal policy 𝜋∗ : X ↦→ 𝐴𝑖 such that the long-term return is maximized. The

joint policy of agents is defined as �̄�(�̄� |𝑥) =
∐
𝑖∈𝑁 𝜋𝑖 (𝑎

𝑖 |𝑠). Similarly to the single-agent setting,

the Q-function of each agent 𝑖 is obtained as

𝑄�̄�𝑖 (𝑥, 𝑎) = E�̄� [
∞∑
𝑡=0

𝜆𝑡R𝑖 (𝑥𝑡, �̄�𝑡 , 𝑥𝑡+1) |�̄�𝑡 ∼ �̄�(.|𝑥𝑡), 𝑥0 = 𝑥, 𝑎0 = 𝑎] . (5.8)
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MADRL is deployed in a distributed manner in wireless systems. Normally, each system

element, such as a mobile device, a communication link, etc., is treated as an agent which takes

the resource action by itself. In cooperative game problems, the reward of all agents is set

the same to make sure that the overall system performance is optimized instead of the local

utility. It is noted that the DRL models can be trained centrally at a centralized host but in the

implementation phase, the models will be delivered to actual system elements in order to make

decisions on resource allocation.

5.3.2 SADRL and MADRL solution design

As depicted in Fig. 5.2 and Fig. 5.3, we propose schemes based on SADRL and MADRL

solutions to solve the problem 5.6.

For the SADRL scheme, we design the learning agent in a completely centralized way, where

the DRL model will be located at a centralized controller and allocating transmission power 𝑝 (𝑡)𝑠

and the spreading factor 𝑚 (𝑡)
𝑠 of any SU 𝑠 at time slot 𝑡 will be determined by the deep neural

networks (DNN) model.

State   

Observed state

Agent

Action

Reward r

DNN

System
environment

Figure 5.2 SADRL scheme design

For the MADRL scheme, since multiple SUs cooperatively maximize the system throughput

and protect defense capacity, we treat each SU as an agent which has its own DNN model. The
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scheme is designed according to the Centralized Training Decentralized Execution (CTDE)

approach, where the training phase is also performed by a centralized controller; however, in

the execution phase, the SUs (real agents) must load the corresponding trained DRL models

from the controller, and then each individual real agent observes the local state and takes its own

actions.

D
N

N
 1

Action

D
N

N
 2

Action
D

N
N

 S
Action

Mutual reward r

Joint action

Environment

Figure 5.3 MADRL scheme design

The key components of designing the schemes consist of the following:

1. State space design: For SADRL, since the information of the wireless environment impacts

the system throughput, and the interception ability of enemy eavesdropper 𝐸 is channel

gain and interference, the observed state of the agent includes the following elements: the

channel gain list of all links from SUs to the base station, 𝐺 (𝑡) = [𝑔(𝑡)
1
, 𝑔(𝑡)

2
, ..., 𝑔(𝑡)𝑆 ], the

interference list of all channel from SUs to the base station, 𝐼 (𝑡) = [𝐼 (𝑡)
1
, 𝐼 (𝑡)

2
, ..., 𝐼 (𝑡)𝑆 ], the

channel gain list of the channel from SUs to eavesdropper 𝐸 ,𝐺 (𝑡)
E = [𝑔(𝑡)

1,E, 𝑔
(𝑡)
2,E, ..., 𝑔

(𝑡)
𝑆,E], and

the interference list of all channel from SUs to eavesdropper 𝐸 , 𝐼 (𝑡)E = [𝐼 (𝑡)
1,E, 𝐼

(𝑡)
2,E, ..., 𝐼

(𝑡)
𝑆,E].

Hence, at each time slot 𝑡, the state collected by the agent from system environment is

𝑥 (𝑡) = [𝐺 (𝑡) , 𝐼 (𝑡) , 𝐺 (𝑡)
E , 𝐼

(𝑡)
E ].

Similarly to the single-agent setting, the state space in MADRL also includes information

on channel gains and interference. However, many agents observe different states, and
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those states are imported into separate DNN models. At time slot 𝑡, the state of agent 𝑠 is

determined as 𝑥 (𝑡)𝑠 = [𝐺 (𝑡)
𝑠 , 𝐼

(𝑡)
𝑠 , 𝐺

(𝑡)
s,E, 𝐼

(𝑡)
s,E].

2. Action space design: Generally, designing an action space is totally based on control

variables 𝑝 (𝑡)𝑠 and 𝑚 (𝑡)
𝑠 of the original problem (6) which will be determined as the agent

model, then its value will be executed at SUs. In DRL design, the action space is a set

of discrete values because they are easier to manage and more applicable in real systems

than continuous values. Let 𝑃 and 𝑄 denote the numbers of discrete levels of 𝑝 (𝑡)𝑠 and

𝑚 (𝑡)
𝑠 , respectively. The action space A is the set of all elements of the matrix [𝑃 ×𝑄]. For

SADRL, at each time slot 𝑡, the action taken by the agent is a list of SU’s resource values

and has the form 𝑎 (𝑡) = [𝑝 (𝑡)
1
𝑚 (𝑡)

1
, 𝑝 (𝑡)

2
𝑚 (𝑡)

2
, ..., 𝑝 (𝑡)𝑆 𝑚

(𝑡)
𝑆 ]. However, in MADRL, the agents

perform actions separately. Hence, the action of agent 𝑠 at time slot 𝑡 is 𝑎 (𝑡)𝑠 = [𝑝 (𝑡)𝑠 𝑚
(𝑡)
𝑠 ].

3. Reward design: Our goal is to avoid interception techniques while maximizing system

throughput. Therefore, the objective function and constraints of the original problem (6)

will be involved in the reward design. A reward function which returns the value to the agent

at each time slot 𝑡 is designed as 𝑟 (𝑡) = 𝛿1𝑇1 − 𝛿2𝑇2 − 𝛿3𝑇3, where 𝛿𝑖, 𝛿2, 𝛿3 are coefficients

to balance the system targets. 𝑇1 = 𝐶 (𝑡)𝑡𝑜𝑡𝑎𝑙 , 𝑇2 = 𝛾 (𝑡)
𝑠,E, and 𝑇3 = (𝐺 (𝑡)

𝑠,E𝑝
(𝑡)
𝑠 )

6(𝑚 (𝑡)
𝑠 − 3)/𝑚 (𝑡)

𝑠 .

The term 𝛿1𝑇1 is to encourage improving system throughput, while terms 𝛿2𝑇2 and 𝛿2𝑇2

with sign (-) penalize exceedingly increasing of energy and correlation peak amplitude

which cause being intercepted. The reward function 𝑟 (𝑡) is applied for both SADRL and

MADRL. It is noted that all agents of MADRL will receive the same mutual reward value

𝑟 (𝑡) at each time slot 𝑡 because the system is viewed as a cooperative game where the agents

(SUs) cooperatively optimize whole system throughput.

4. Proposed algorithms: In this section, we propose algorithms to train DRL models. For the

SADRL approach, we propose Algorithm 5.1 for training the agent model centrally at a

controller. Firstly, the memory D and default two DNNs are created. The main network

with weight set 𝜃 (𝑡) for decision making and the target network for stabilizing the main

network with weight set 𝜃′(𝑡) . The training process will be done in 𝐸𝑀 episode and each

episode, including 𝑇 time slots. In each time slot 𝑡, after action 𝑎 (𝑡) is selected according to

the 𝜖−greedy algorithm, the controller will transfer the action to every SU, and then SUs
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will allocate transmit power and spreading factor correspondingly. After that, a new state

𝑥′(𝑡) is observed and collected by the controller for calculating reward and training at the

next time slot. Meanwhile, a tuple of (𝑥 (𝑡) ,𝑎 (𝑡) ,𝑥′(𝑡) ,𝑟 (𝑡)) is stored at the memory D to a

mini-batch of the tuples will be used for updating the weight sets 𝜃 (𝑡) and 𝜃′(𝑡) of the models.

For the MADRL approach, we propose Algorithm 5.2 to train agents. Each agent 𝑠 is

initialized its own reply memory D𝑠 and DNN models weight set 𝜃 (𝑡)𝑠 and 𝜃′(𝑡)𝑠 . We also train

agents over episodes, and each episode consists of 𝑇 time slots similar to the single-agent

setting. However, at every time slot 𝑡, each agent 𝑠 has to receive its own state 𝑥 (𝑡)𝑠 and take

its 𝑎 (𝑡)𝑠 action correspondingly. After actions having been sent to and set up at the real agents

(SUs), each agent 𝑠 will store the transition tuple (𝑥 (𝑡)𝑠 ,𝑎 (𝑡)𝑠 ,𝑥′(𝑡)𝑠 ,𝑟 (𝑡)) to D𝑠. All agents will

update their DNN models after each episode by sampling mini-batches from memory 𝐷𝑠.

Algorithm 5.1 Proposed SADRL Algorithm

initialize: the replay memory D, DNN weight sets 𝜃 (𝑡) and 𝜃′(𝑡) .
2: for 𝑒𝑝𝑖 = 1,...,𝐸𝑀 do

Initialize the state 𝑥 (𝑡) (𝑡 = 1)

4: for 𝑡 = 1,...,𝑇 do
𝜀 = random.randrange(0, 1)

6: if (𝜀 < 𝜖𝑔𝑟𝑒𝑒𝑑𝑦) then
Select randomly action 𝑎 (𝑡) , (𝑎 (𝑡) ∈ A)

8: else
Select 𝑎 (𝑡) based on DRL model:

𝑎 (𝑡) = argmax
𝑎 (𝑡 ) ∈A

𝑄𝜋 (𝑥 (𝑡) ,A, 𝜃 (𝑡))

10: end if
* The controller sends selected actions to all SUs.

* SUs set their own transmit power and spreading factor correspondingly.

* The controller observe the next state 𝑥′(𝑡) and obtain immediate reward 𝑟 (𝑡) .
* Save the transition (𝑥 (𝑡) ,𝑎 (𝑡) ,𝑥′(𝑡) ,𝑟 (𝑡)) to D.

* Set 𝑥 (𝑡) ← 𝑥′(𝑡) .

* Mini-batch of transition (𝑥 (𝑡) ,𝑎 (𝑡) ,𝑥′(𝑡) ,𝑟 (𝑡)) is sampled from D.

* Update 𝜃 (𝑡) and 𝜃′(𝑡) using Adam optimizer.

12: end for
end for
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Algorithm 5.2 Proposed MADRL Algorithm

initialize: agent memory D𝑠, weight sets 𝜃 (𝑡)𝑠 and 𝜃′(𝑡)𝑠 .

2: for 𝑒𝑝𝑖 = 1,...,𝐸𝑀 do
Initialize the state of each agent 𝑥 (𝑡)𝑠 (𝑡 = 1)

4: for 𝑡 = 1,...,𝑇 do
for agent 𝑠 in [1, ..., 𝑆] do

6: Select 𝑎 (𝑡)𝑠 from 𝑥 (𝑡)𝑠 , according to 𝜖−greedy algorithm.

end for
8: * Send actions, and then set resource values at all agents.

* Observe next state 𝑥′(𝑡𝑠 and obtain mutual reward 𝑟 (𝑡) .
for agent 𝑠 in [1, ..., 𝑆] do

10: Save the transition (𝑥 (𝑡)𝑠 ,𝑎 (𝑡)𝑠 ,𝑥′(𝑡)𝑠 ,𝑟 (𝑡)) to D𝑠.

end for
12: end for

for agent 𝑠 in [1, ..., 𝑆] do
14: * Sample mini-batches from D𝑠.

* Update 𝜃 (𝑡)𝑠 and 𝜃′(𝑡)𝑠 using Adam optimizer.

end for
16: end for

5.3.3 Communication overhead discussion

The information exchange process in the implementation phase is different between the two

approaches. For MADRL, at the beginning of each time slot 𝑡, each SU agent broadcasts its

information messages to other agents, while for SADRL, action messages are sent unidirectionally

from the centralized controller to SUs. Let 𝜏 (millisecond) denote the timeslot duration. With 𝑆

number of SUs, (𝑆 ≥ 2), the number of messages exchanged per second (message/s) of MADRL

and SADRL is calculated as follows

𝑅𝑀𝐴 = (1000/𝜏) (𝑆(𝑆 − 1)/2). (5.9)

𝑅𝑆𝐴 = (1000/𝜏)𝑆. (5.10)
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Since tactical wireless networks have limited bandwidth, information exchange overhead can

have a negative impact on communication channels. To avoid the overhead, some methods are

discussed in TABLE 6.5.

Table 5.1 Communication Overhead Avoidance Methods

Methods Description References

RIAL/DIAL
Sending succinct message to

avoid communication

overhead

[Foerster, Assael,

De Freitas & Whiteson

(2016)]

SchedNet
Jointly consider a shared

channel and limited

bandwidth

[Kim et al. (2019)]

TMC Filter unnecessary message to

reduce overhead cost

[Zhang, Zhang & Lin

(2020b)]

Gated-ACML Block message with

probabilistic gate unit

[Mao, Zhang, Xiao,

Gong & Ni (2020)]

IMAC Requesting sending

low-entropy messages
[Wang et al. (2020a)]



CHAPTER 6

RESULTS AND ANALYSIS

In this chapter, numerical results and analyses of our proposed strategies for the use cases

corresponding to sections 3, 4, and 5 are presented. Each scenario will have a specific setup

with different parameters.

6.1 Numerical Results for Use Case of Ground Combat Vehicle

6.1.1 Simulation Setup

We simulate a DS-CDMA-based WIN-T network with 20 GCV users located at an area of

240x240m coverage of the base station. The users are communicating via voice service. The

interceptor is located at a distance of 1,000m from the base station. The detailed parameters

setup for the system is listed in Table 6.4. The hyperparameters defined for deep reinforcement

Table 6.1 Parameters For Network Simulation

Parameter Value
Number of users 20

SU and rBS maximum transmit power 0.25 W, 19.95 W

Maximum spreading factor (𝑚𝑠,max, 𝑚𝐵𝑆,max) 255

Original bandwidth (𝑊𝑜) 38.4 kHz

Distance loss exponent (𝛼) 2

Noise power 𝜎2 0.01 W

Decodable threshold of desired receivers (𝛾min) -18 dB

Energy intercept threshold 𝜇 -8 dB

Correlation intercept threshold 𝜁 0.6

User velocity range [20, 70] km/h

learning are summarized in Table 6.2. To compute actions in a timely manner, and avoid

over-parameterizing, we design a relatively small size neural network consisting of one input

layer, three hidden layers, and one output layer. The hidden layers are with N1 = 500, N2 =

250, and N3 = 120 neurons, correspondingly. The input dimension is 8, corresponding to the

number of state dimensions. The out dimension is 900, covering both SU and rBS transmit
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power actions. We keep this parameter slightly large to ensure that the actions taken by the

DRL model are close to the optimization solutions. Furthermore, we tune reward coefficients to

proper values to make sure that reward terms are calculated on the same scale.

For comparison, we implement the optimization method without mode selection (without MS)

presented in Algorithm 3.1, the optimization method with mode selection (with MS) presented

in Algorithm 3.2, and a random method (see Figure 6.4) as baselines to evaluate the performance

of the MADRL method. We use time series analysis to analyze the performance of methods in

which each time slot is the interval between two consecutive times that the methods have to be

re-executed to provide the next transmit power levels, spreading factors, and modes allocated

to the system. It is noted that the MADRL method used in this analysis corresponds to the

implementation phase, where agents have already been trained and just used to make decisions.

Due to the figure scale and resolution, we plot only time-series results after the 25th time

slot when the algorithms are not significantly impacted by initial parameters. The simulation

parameters are the same for all methods.

Table 6.2 DRL Hyperparameters Summary

Hypeparameter Value
Neural network input dimension 8

Neural network hidden layer 1,2,3 500, 250, 120

Neural network output dimension 900

Learning rate 0.001

Discount factor 0.95

𝜖 decay stop threshold 0.02

Replay memory batch size 2000

time slot duration 100ms

Reward coefficient 𝜆𝑖, 𝑖 = 1, ..., 9 0.0000005, 0.001, 0.1, 0.1, 0.001,

0.05, 0.05, 0.001, 0.01

6.1.2 Execution Time

The key motivation for using the DRL approach instead of traditional optimization methods

when solving complex problems is execution time which is the time required to obtain the
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Figure 6.1 Time execution comparison between optimization

algorithm and MADRL algorithm

solutions (𝑚𝑐,𝑠, 𝑚𝑐,𝑧, 𝑝𝑐,𝑠, 𝑝𝑐,𝑧, 𝛿𝑐, 𝜑𝑐,𝑧). Figure 6.1 compares the execution time between the

optimization and MADRL methods. The simulation is carried out using the same machine

configuration of Python 3.9 with Intel(R) Core(TM) i5-10400 CPU@2.90GHz. In general, the

execution time of the MADRL method is significantly shorter than that of the optimization

method. The MADRL always takes less than 20ms to find a solution in a time slot, while the

optimization method spends more than 50ms when the coverage tolerance 𝜔 is set at 1e-3. It is

worth noting that the higher accuracy of the optimization solution requires a higher value of the

coverage tolerance 𝜔, which results in a longer execution time. This comparison suggests that

the MADRL method can be applied to systems with high mobility-induced channel variation

(time execution < 20ms). While the optimization method can only be used in low-mobility

wireless systems with relatively low accuracy requirements.
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6.1.3 Interception Avoidances

6.1.3.1 Energy detection avoidance

25 50 75 100 125 150 175 200 225

Time slot

−9.2

−9.0

−8.8

−8.6

−8.4

−8.2

M
a
x
 S

IN
R

 S
U

-I
n
 (

d
B

)

Optimization (with MS)

MADRL

Figure 6.2 Max measured SINR in channel SU-Interceptor

We use SINR as a performance metric to assess the system’s defence against energy-based

interception. Figure 6.2 compares the maximal SINR values measured in the SU-Interceptor

channel of the optimization method and MADRL method, respectively. In general, both methods

maintain the LPI capability of the network by keeping the SINR value below an acceptable

threshold, -8dB. The LPI performance of the optimization method is slightly better than that of

the MADRL method. The SINR value of the optimization method can reach -9.32dB, while the

SINR value of the MADRL method fluctuates around -8.3dB. The range of SINR magnitude

fluctuation of the MADRL method is smaller than that of the optimization method. This can

be explained by the action space design, which limits the number of discrete power actions to

reduce the computational complexity of the DRL model.
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In Figure 6.3, we investigate the LPI performance in case our system expects lower target energy

intercept thresholds 𝜇. We can see that both the MADRL and optimization method always retain

the SINR value smaller than the threshold level to guarantee the LPI capability of the system.

The LPI performance of the MADRL method is close to that of the optimization method at

every threshold 𝜇. For instance, at 𝜇 = -9dB, the performance of the MADRL is lowest, equal

to 91.56% of the optimization method. The highest performance of the MADRL method is

achieved at 𝜇 = -12dB, which is approximatively 95.28% that of the optimization method.
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Figure 6.3 The max measured SINR of different energy

interception thresholds (𝜇)

6.1.3.2 Correlation detection avoidance

We base the measured correlation peaks on the correlation-based intercept to evaluate the

system’s LPI performance. In Figure 6.4, we analyze the amplitude of signal peaks at the

interceptor when the categorization threshold 𝜁 = 0.6. The random method corresponds to the

case in which no optimization strategy is applied in the system. In this case, intercept peaks are

not managed. They randomly come to the interceptor, and the common peak becomes visible to
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Figure 6.4 Peak amplitude variation over time slots

the interceptor because the peak amplitude exceeds the threshold 𝜁 . On the other hand, both the

optimization and MADRL method achieve equivalent performance in protecting our system

against correlation detectors. Both optimization and MADRL always control the peak amplitude

below the threshold 𝜁 = 0.6; therefore, no common peak is detected.

6.1.4 Transmission Rate Maximization

With 𝜇 = -8dB and 𝜁 = 0.6, we obtain the total rate of 10 E2E connections as shown in Figure 6.5.

We can see that the total rate provided by the optimization method without applying the mode

selection strategy is no more than 80Kbps, while the method that applies the communication

mode selection strategy, improves the throughput performance significantly, over 140Kbps.

Besides, the achieved rate of the MADRL method is relatively close to that of the optimization

method. In practice, the achieved transmission rate of the MADRL method can be flexibly

improved by tuning coefficients 𝜆𝑖 as long as we can balance between the LPI performance and

the QoS objective.
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time

In summary, the proposed MADRL can approximate the optimization method in terms of

performance with much lower computational complexity. Therefore, it would be practically

applicable in real tactical systems. It is worth noting that the optimization solution is still

necessary to generate labeled data for training the DRL model.

6.2 Numerical Results for Use Case of mixed RF/FSO Flying UAV

6.2.1 Simulation Setup

In this section, we carry out a simulation to evaluate the jamming mitigation capability and

performance of our proposed MADRL strategy. The baselines used for our comparison include:

i) our proposed optimization strategy (Proposed OPT), ii) a fully random method where both

UE transmit power and angle FoV angle are allocated randomly, and iii) a semi-random strategy

in which UE transmit power is optimized while FoV angle is adjusted arbitrarily. The chosen
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baselines serve 2 goals. The former is for observing the performance efficiency of jointly RF

and FSO optimization, compared to a half-optimization or without optimization. The latter is

to evaluate the solution quality of our proposed MADRL method to that of the optimization

method. We simulate a mixed RF/FSO relay network in which the RF system includes 4 UEs

located around an rUAV with a coverage radius of 100m. The enemy jammer is located at a

distance of 1,250m from rUAV. For FSO system, the link distance between rUAV and GB is

3,000m. The number of sUAV is 2. The detailed parameters setup for the system is listed in

Table 6.4.

Table 6.3 Parameters For RF/FSO system Simulation

Parameter Value
Number of UEs and sUAVs 4, 2

Beamforming technique MRC

UE maximum transmit power 0.25 W

RF and FSO channel bandwidths (𝑊𝑠) 6 MHz and 100MHz

RF distance loss model 128.1 + 37.6logd, d in km

RF shadowing distribution Log-normal

RF fast fading Rayleigh fading

RF noise power 𝜎2 -114 dBm

Maximum FoV angle 50 mrad

FSO wavelength 1550 nm

FSO lens radius 5 cm

FSO spectral radian 10−3 W/cm2-m-srad

FSO atmospheric loss coefficient 0.06 dB/km

FSO atmospheric turbulence model Gamma-Gamma

FSO AoA model Rayleigh

To compute actions promptly and avoid over-parameterizing, we design a relatively small size

neural network consisting of one input layer, three hidden layers, and one output layer. The

hidden layers contain N1 = 500, N2 = 250, and N3 = 120 neurons, respectively. The input

dimension is 6, corresponding to the number of state dimensions. The output dimension is 250,

corresponding to 250 discrete power levels. We keep this parameter slightly large to ensure that

the actions taken by the MADRL model are close to the optimization solutions.

To evaluate the performance of the jamming mitigation strategies, we define an outage probability

metric as the probability of not finding power levels 𝑝 (𝑡) or FoV angle 𝜙(𝑡)FoV satisfying constraints
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(4.10b) and (4.10e), respectively. The metric is defined as

𝑂 = Pr[(min(𝛾 (𝑡)𝑠 ) ≤ 𝛾th) or (max
𝑛∈N

𝜃 (𝑡)a,n ≥ 𝜃
(𝑡)
a,j )] (6.1)

6.2.2 Numerical Results

6.2.2.1 RF system defensive performance

Figure 6.6 Outage probability according to RF SINR target

𝛾th

Fig. 6.6 shows the impact of the target QoS protection threshold 𝛾th on the performance of the

jamming mitigation strategies. In general, when 𝛾th increases, the outage probability of all

methods witnesses an upward trend as the feasible set of 𝑝 (𝑡) and 𝜙(𝑡)FoV becomes smaller. The

fully-random method gets the highest outage probability because the resources are not optimized.

When the power allocation is optimized and the FoV angle is randomly adjusted as done by



80

the semi-random method, the outage probability is lower than that of the fully-random method.

However, the performance of the semi-random method is still far from our proposed methods.

The performance of our MADRL method is close to that of our optimization method. Both

methods can still maintain the outage probability below 0.5 when 𝛾th ≤ 20.

6.2.2.2 FSO system defensive performance

Figure 6.7 Outage probability according

to FSO jamming AoA 𝜃 (𝑡)a,j

In Fig. 6.7, we measure the outage probability with various jamming AoA angles 𝜃 (𝑡)a,j . The

outage probability decreases when the FSO jammer transmits jamming signals with a large AoA.

This is because it has a higher chance to tune 𝜙(𝑡)FoV satisfying constraint (4.10e) when 𝜃 (𝑡)a,j is

large. Both random methods get the lowest mitigation jamming performance as their outage

probability remains high. Our proposed MADRL-based jamming mitigation algorithm achieves

high performance and is close to the optimal solution. The intercepted probability obtained in

our proposed MADRL algorithm is less than 2.6 when 𝜃 (𝑡)a,j ≥ 5 mrad.
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6.2.2.3 Throughput performance

Figure 6.8 Average throughput vs number of UEs

In Fig. 6.8, we compare the average achievement throughput of RF system among strategies.

The average throughput of all methods decreases following the increasing number of UEs.

Our proposed MADRL-based jamming mitigation algorithm significantly outperforms the

fully-random and semi-random methods. The performance gap between the optimization method

and our proposed MADRL method is less than 8% in all simulation scenarios. This result

shows that our proposed method not only delivers an equivalent anti-jamming capability but

also obtains a comparable throughput performance compared to the optimization method.

6.3 Numerical Results for SADRL and MADRL Comparisons

6.3.1 Simulation Setup

To compare SADRL and MADRL in terms of defense performance. We define an intercepted

probability as a metric that implies the probability that the anti-interception scheme fails to find
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optimal values of SU transmit power 𝑝 (𝑡)𝑠 and spreading factor 𝑚 (𝑡)
𝑠 to satisfy either constraint

(6b) or (6c). The intercepted probability is as

𝑂 = Pr[(𝛾 (𝑡)
𝑠,E ≥ 𝜇) or ((𝐺 (𝑡)

𝑠,E𝑝
(𝑡)
𝑠 )

6(𝑚 (𝑡)
𝑠 − 3)/𝑚 (𝑡)

𝑠 ≥ 𝜙)] (6.2)

We simulate a DS-CDMA network with 500𝑚 × 500𝑚 area. The distance between the base

station and the enemy eavesdropper is 2000𝑚. The detailed simulation network parameters are

presented in Table 6.4. We design a relatively small-sized neural network consisting of: i) an

input layer of size 4 which corresponds to the length of the state vector provided for each DNN,

ii) three hidden layers having N1 = 500, N2 = 250, and N3 = 120 neurons, respectively, and

iii) one output layer with the output dimension of 100, corresponding to 10 discrete levels of

power 𝑝 (𝑡)𝑠 and 10 discrete levels of spreading factor 𝑚 (𝑡)
𝑠 . We also compare SARL and MADRL

solutions with the optimization (OPT) baseline for evaluation. Such baseline is implemented

using CVX solver.

Table 6.4 Parameters For System Simulation

Parameter Value
SU maximum transmit power 0.25 W

Original bandwidth (𝑊) 6 MHz

Distance loss model 128.1 + 37.6logd, d in km

Shadowing distribution Log-normal

Fast fading Rayleigh fading

Background noise power 𝜎2 -114 dBm

Energy interception threshold 𝜇 -8 dB

Correlation interception threshold 𝜙 0.6

Mobility model Random Waypoint
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Figure 6.9 Mutual reward returning per each episode.

6.3.2 Results

6.3.2.1 Mutual reward return

Fig. 6.9 shows the reward convergence of the learning methods and the reward of the OPT

baseline. The reward 𝑟 (𝑡) of the OPT baseline is always highest because the solution obtained by

this method is optimal, which makes the system achieve the best performance in maximizing

system throughput and anti-interception. The convergence rate of the MADRL solution is

slightly faster than that of the SADRL solution; however, the rewards of both solutions converge

afterward. The rewards increase significantly during exploration, about the first 2500 episodes.

After that, the rewards tend to stabilize as their value fluctuates close to the OPT reward value.
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Figure 6.10 Intercepted probability with the increasing SU

mobility.

6.3.2.2 Intercepted probability vs mobility

Fig. 6.10 compares the defence performance of SADRL, MADRL, and optimization (OPT)

solutions in terms of the mobility of military terminals. At the relatively low mobility of SUs

(less than 35km/h), the intercepted probability of OPT method is lower than learning methods.

The intercepted probability of SADRL is slightly smaller than that of MADRL. However, in the

condition of medium and high mobility (35km/h and upward), the intercepted probability of

SADRL and OPT increases significantly compared to MADRL (i.e, SADRL can be twice higher

than MADRL at 120Km/h). This is because both state acquisition and decision-making are done

at a single centralized controller in SADRL, which is time-consuming, and the OPT algorithm

has highly computational complexity with mobility-induced shorter timeslot interval. Therefore,

SADRL and OPT cannot easily keep up with the rapidly changing tactical environments. On the

other hand, MADRL agents are located in a distributed manner at SUs. Therefore, decisions can

be made more rapidly, hence the intercepted probability increases more slowly.
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6.3.2.3 Intercepted probability vs scalability

Figure 6.11 Intercepted probability with the increasing

number of SUs.

In Fig. 6.11, we evaluate the defensive performance of the methods according to the increasing

number of SUs. Note that this comparison is made by assuming the mobility of SU is low.

In general, the intercepted probability increases when more SUs are deployed in the network.

When the number of SU is small (less than 4 SUs), the intercepted probability of SADRL and

MADRL methods is approximate, while OPT method achieves the lowest intercepted probability.

However, from 5 SUs and upward, SADRL and OPT tend to be intercepted easier than MADRL

because higher of intercepted probability. This is attributed to the large number of control

variables, which causes delayed resource allocation and calculation.

6.3.2.4 Communication overhead comparison

Finally, we assess SADRL and MADRL in terms of communication overhead. Table ?? shows

the number of messages exchanged over various timeslot durations with different numbers
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of agents. Basically, a shorter timeslot period (mobility-induced) or a larger number of SUs

requires more message exchange. Regarding MADRL and SADRL, the communication overhead

of MADRL is significantly greater than that of SADRL. The smallest number of messages

exchanged is at 50𝑚𝑠 with two agents, while it could be up to 5600 messages per second at

10𝑚𝑠 with eight MADRL agents.

Table 6.5 Overhead cost between SADRL

and MADRL

Timeslot
duration

Number
agents

𝑅𝑀𝐴
(message/s)

𝑅𝑆𝐴
(message/s)

50 ms

2 40 40

4 240 80

6 600 120

8 1120 160

30 ms

2 68 68

4 408 136

6 1020 204

8 1904 272

10 ms

2 200 200

4 1200 400

6 3000 600

8 5600 800



CONCLUSION AND RECOMMENDATIONS

We can conclude this thesis through the following contributions perspectives:

First, a new LPI preservation strategy is proposed to protect the system from enemy interceptions

in modern tactical scenarios. Specifically, the novel tactical scenarios of simultaneous interception

with high mobility of military users are considered. The problem of guaranteeing QoS

performance while optimizing defensive capability is seriously taken into account. The problem

of anti-interception resource allocation problem is solved by a series of advantageous methods

such as Taylor approximation, D.C, decomposition, etc. Then the high computational complexity

issue of the optimization method has been pointed out.

Second, an algorithm based on DRL has been proposed to solve anti-interception resource

allocation problems in near real-time feasible. To provide a high degree of quality resource

solutions, a hybrid approach is used, in which only the high computational part of the original

problem is transformed into a DRL problem while the simple part is still handled by the

optimization method. And, all constraints of the optimization problem are getting involved in

the DRL reward function design.

Third, aiming to enhance the performance of DRL solutions when applied in anti-interception

resource allocation problems, the investigation, comparison, and evaluation are done for SADRL

and MADRL frameworks in tactical conditions of high mobility and user scalability. This

facilitates the rational selection of frameworks in the design that contributes to increased

performance of the DRL solution.

Recommendations and future work

• Tactical environment and scenarios: As presented in section 3, the proposed strategy

is deployed in a wireless channel that considers only large-scale fading. This will limit

the ability of the proposed strategy in more complex tactical environments. Therefore, we
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recommend deploying the strategy in harsh environments to evaluate its robustness. We just

evaluate the performance of the proposed strategy in the ground-air environment. However,

in practical situations, there are various types of battlefields such as underwater, marine,

forest, etc. The strategy should be tested on different battlefields. If necessary, the strategy is

also be modified to adapt to the new tactical situations. In terms of extending the proposed

strategy, in the future, we will integrate our proposed strategy into other types of tactical

systems such as UAV ad-hoc networks, satellite systems, etc. to validate its compatibility.

• Enemy interceptor upgrading: In this thesis, we consider the scenario with a single enemy

interceptor that deploys a dual interception technique. However, in real cases, there could be

a large number of interceptors deployed to intercept the system from many directions. In

addition, more than two interception techniques can be implemented. Thus, the defensive

scenarios counter against multiple interceptors with multiple interception techniques will be

considered in our future study.

• Cooperative with other modules: The resource allocation task is relatively heavy when

the strategy takes care of the whole defensive capability of the systems. Therefore, to

reduce the burden of the proposed strategy, we equip the system with assistance modules

and work cooperatively with our proposed strategy in anti-interception. The first one is

an active jamming component. In case the calculation of our proposed algorithm fails to

find the optimal resource solutions for the system, the system can orientationally transmit

interfering signals in the direction of enemy interceptors. This makes the interception

become challenging resulting in the resource calculation with feasible solutions. The second

component is IRS which can adjust coefficients to mitigate the amplitude of the leaked signal

at the enemy interceptor while maximizing the signal strength at desired destination user.

Those ideas motivate us to conduct new research in the future.



APPENDIX I

ARTICLES PUBLISHED IN JOURNAL AND CONFERENCE

The main content of this thesis is referred to our submitted papers which consist of one journal

and two conferences.

• "Dual Wireless Anti-Interception for Ground Combat Vehicles" which has been submitted

for publication in IEEE Transactions on Vehicular Technology (TVT), July 2023.

• "Protecting Tactical Ground Combat Vehicle Networks Against Dual Wireless Intercep-

tions" which has been submitted for publication in IEEE International Conference on

Communications (ICC), January 2023.

• "Jamming Mitigation for Mixed RF/FSO Relay Networks Under Simultaneous Intercep-

tions" has been submitted for publication in IEEE Global Communications Conference

(GLOBECOM), August 2023.

• "Single-Agent Versus Multi-Agent Deep Reinforcement Learning Approach for Anti Dual-

Wireless Interception" has been submitted in IEEE International Conference on Communica-

tions (ICC), August 2023.
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