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Interprétation algorithmique des polymorphismes spectraux UV floraux

Megan HEATH

RÉSUMÉ

La réflectance UV florale a longtemps été considérée comme un facteur essentiel dans les inter-

actions plantes-pollinisateurs. Les pigments réfléchissant les UV sur les structures reproductives

permettent aux pollinisateurs de localiser les fleurs depuis les airs et de différencier les espèces.

Cette relation est possible grâce à la capacité des pollinisateurs, tels que les abeilles, à voir dans

le spectre UV (300-400 nm). Malgré cette stratégie de signalisation visuelle bien documentée

des plantes à fleurs, notre revue littéraire a indiqué que la réflectance spectrale UV est peu

documentée pour plusieurs espèces cultivées. Sans tenir compte de cette particularité de la

réflectance UV, les efforts de sélection pourraient rendre les fleurs difficiles à détecter pour les

pollinisateurs artificiels, diminuant le rendement et la qualité de la récolte. Nous avons fait

l’analyse spectrale des cultivars de fraisiers et comparés ces derniers à leur homologue sauvage.

Les cultivars à fleurs blanches ont montré une plus grande visibilité des pollinisateurs, tandis

que le cultivar à fleurs rouges était cryptique. La vision des abeilles (300-650nm) est adaptée

pour détecter les fleurs. Ce projet s’inspire du spectre de vision des abeilles pour concevoir

un détecteur inspiré de la nature (DIN) pour détecter à distance les fleurs de fraise. Deux

algorithmes d’intelligence artificielle de pointe ont été entrainés sur un ensemble d’images de

fleurs de fraises résultant en des performances supérieures de YOLOv5 par rapport à Faster

R-CNN (mAP 0,978 contre 0,912, respectivement). Le DIN a ensuite été déployé sur un aéronef

au-dessus d’un champ de fraises. Les résultats étaient comparables à l’état de l’art, mais notre

DIN obtient un temps d’entraînement plus rapide (0,3 contre 5,5 heures) et une mAP plus élevée

(0,951 contre 0,772). Mots-clés: detection remote, fleurs, fraises
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ABSTRACT

Floral UV-reflectance is considered an essential factor in plant-pollinator interactions. UV-

reflective pigments on reproductive structures allow pollinators to locate flowers from the air and

differentiate conspecifics. This relationship is possible due to the ability of pollinators, such as

bees, to see in the UV spectrum (300-400nm). Despite this well-documented visual signalling

strategy of flowering plants, our literary review indicated that few crop species have had their

UV spectral reflectance documented. Without considering UV reflectance, breeding efforts

could render flowers cryptic to pollinators, decreasing yield and harvest quality. Strawberry

cultivars were spectrally analyzed and compared to their wild counterpart. White-flowering

cultivars showed higher pollinator visibility, whereas the red-flowering cultivar was cryptic.

Bee vision (300-650nm) is adapted to detect flowers. This project mimicked the bee vision

range in designing and creating the Nature Inspired Detector (NID) to detect strawberry flowers

remotely. Two state-of-the-art AI algorithms were trained on a custom strawberry flower image

dataset where YOLOv5 outperformed Faster R-CNN( mAP 0.978 vs. 0.912, respectfully). The

NID was then field deployed on a UAV over a strawberry field. Results were comparable to a

contemporary study, but the NID had a faster training time (0.3 vs. 5.5 hrs) and higher mAP

(0.951 vs. 0.772). Keywords: Remote detection, Flowers, Strawberry
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INTRODUCTION

In recent decades, the rural exodus has drastically depleted the agricultural labour force and

threatened the future of global food production. Traditionally, farmers rely on visual recognition

of crop health, plant species, and soil needs. These are skills that are passed down generationally.

The field of precision agriculture (PA) incorporates modern technology and cultivated knowledge

to manage areas with minimal inputs, personal expertise and workforce.

In traditional agriculture, fields are treated uniformly, leading to the overuse of water and

agrochemicals. The development and open access of ground positioning systems (GPS) and

geographic information systems (GIS) led to booming advancement in zone-specific field

management. Zhang et al. (2002) found in a worldwide review that PA reduced groundwater

contamination from fertilizers and reduced topsoil erosion by reducing the frequency and need

for tillage. Furthermore, PA reduced water use for crop production by only supplementing water

for water-stressed plants detected through remote sensors (Zhang et al., 2002).

Initially, satellites and planes were the critical tools for PA to profile fields and make crop

management decisions. These systems are costly, prohibitive to many farmers, and cannot

provide timely information. The domain of PA moved to use Uncrewed aerial vehicles (UAV)

or uncrewed aerial systems (UAS) coupled with remote sensors and image processing as a

cost-effective alternative(Tsouros, D. C. et al. 2019). These were used to capture aerial

images, which are processed, and analyzed to produce a user-friendly map. The map directs

the need-based application of water, nutrients, and chemicals. UAVs are quick and easy to

deploy for routine crop surveillance. As many models are battery-powered, running costs are

significantly less than for a plane, which reduces the barrier to precision agriculture adoption by

many farmers.

Complementary to UAV and UAS, uncrewed ground vehicles (UGV) are locally deployed

for specific tasks such as weed detection and removal (Cheein, F. & Carelli, 2013; Maes &
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Steppe2019), chemical application (Botta et al., 2022), and harvesting (e.g. Ceres et al. 1998;

Nguyen et al., 2013). Gonzalez-de-Soto et al. (2015, 2016) reported that using such ground

robots reduces farming annual fuel consumption compared to traditional farm equipment such

as tractors, especially since farming robots are often hybrid or battery-powered.

One of the newest applications of robotics in PA is pollination. Demonstrations of aerial

pollination systems utilizing UAVs have shown promise but are still in the early stages (e.g.

Amador & Hu, 2017; Ma et al., 2013). UGV pollination systems have been successfully

demonstrated in fields for crops such as Vanilla (Shaneyfelt et al., 2013) and kiwi vines (Williams

et al., 2020) and in greenhouses for crops such as tomatoes (Yuan et al., 2016) and bramble

crops (Ohi et al., 2018). Natural pollinators have traditionally provided enough pollination

to produce a decent crop yield. However, with natural bee populations in decline(Kevan &

Viana, 2003), the pressure for greater yields from the same arable land and farming increasingly

occurring in high-tech, controlled environments, a demand for alternative pollination methods

has arisen (Nimmo, R. 2022). Bees are reported to perform poorly as pollinators in greenhouse

environments. Low UV transmission plastic covers reduce or eliminate the ability of bees to

locate flowers. The high temperature and humidity also limit bee activity since they can only

fly in a narrow range (10-30 degrees Celsius)(Guerra-Sanz, J. M. 2008). Artificial pollination

can replace bees in unsuitable environments while maintaining needed pollination rates using

minimal labour.

The first step in developing robotic pollinators is flower detection and location, achieved through

remote sensing. The development of digital cameras, using CCD and CMOS sensors, and

more powerful computers have greatly expanded the use cases of image-based analysis. Neural

network algorithms combined with RGB or hyperspectral camera data have given rise to

vegetation indices that can measure soil and plant health, crop growth, and nutrient requirements

(Kattenborn et al., 2021). The availability of the algorithms through open–sourced coding
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platforms has also contributed to creating image libraries to test new detection and analysis

algorithms against their predecessor on equal footing (e.g., Lee C. et al. 2016)

Existing remote sensing systems are based on human vision (RGB), mimicking farmers visually

observing their fields. However, flowering plants have co-evolved for millennia to interact with

insects whose vision spans the UV-G-B range (Briscoe A.D. & Chittka L., 2001). Pollinating

insects such as honey bee (Apis sp.) can distinguish crop species and cultivars based on floral

patterning indetectable to human vision (Briscoe, A. D., & Chittka, L.,2001), against a complex

background, and while airborne. Briscoe and Chittka (2001) hypothesize that this is due to

the greater contrast in the UV-G-B spectrum than in the RGB. The UV-G-B spectrum could

be better suited to UAV platforms for flower detection as it would mimic pollinator vision and

detect intended plant cues for aerial pollinators. Furthermore, if UV-G-B configured cameras

provide images that are easier to process than RGB, this would inform engineers and agriculture

service providers of possible directions of the industry.

With this background, this thesis focused on designing, developing, and field testing a Nature

Inspired Detector (NID), which takes inspiration from bee vision.

0.1 Statement of objectives

The primary objectives of this research work are:

1. To review the current state of floral spectral reflectance in the UV-G-B range for crop

species.

2. To develop and test a compact, lightweight, cost-effective detector inspired by bee vision

(NID).

3. To develop a digital image processing program for the NID images that detects flowers of

different strawberry cultivars.
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4. To test the NID and image processing program on an aerial platform over an outdoor

strawberry field.

0.2 Thesis Organisation

The thesis is divided into sections such as Introduction; (CH: 1) Methods; two submitted journal

articles :(CH: 2) UV floral reflectance of Agricultural species: A Review and (CH : 3) See as a

Bee: UV Sensor for Aerial Strawberry Crop Monitoring; and (CH: 4) General conclusion, which

summarizes the conclusions derived from papers (2&3) and suggests further avenues to explore.



CHAPTER 1

OVERALL METHODOLOGY

The following chapter describes the systematic study design and steps to complete this work.

Methodologies covered in the article Chapters 3 and 4 are only briefly mentioned with referral

to the appropriate section for further detail. Fig. 1.1 depicts the main steps for the completion of

this thesis.

Figure 1.1 Organization of overall methods chapter

1.1 Literature review

A literature review of the UV spectral reflectance of crops was performed using the Scopus

scientific database following the eight-step guide for meta-analysis by Hansen C. et al. (2021).

The scientific methodology and search criteria are presented in section 2.2. Each article was

manually reviewed, which required expertise and knowledge in botany, chemical lab equipment,

and camera engineering. In total, 149 papers were used to conduct the meta- analysis for the

literature review.

1.2 Strawberry UV reflectance

Rosacea is one of the major families of crops grown in Canada and abroad (Government of

Canada, 2021). Despite its great economic importance, little is known about this family’s

spectral signalling to pollinators. According to anecdotal evidence published by UV photography

enthusiasts, Fragaria Vesca, Fragaria vesca L. x viridis, and Fragaria viridis show a UV-reflective

bull’s eye pattern, more prominently seen on emphFragaria viridis (Rørslett, B.,2006). Almond

cultivars, Prunus dulcis, have also shown a consistent, distinct peak at 350nm (Chen, B., Jin, Y.,
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& Brown, P.,2019). Unlike Rosacea orchard species (e.g., apple) some commercial strawberry

cultivars are everbearing, flowering throughout the growing season. This, along with its compact

habit and flowers held on stocks above the foliage, made it an ideal genus for aerial imagery

in this study. F. x ananassa ‘Seascape’ (Fig. 1.1, b.) and ‘Fort Laramie’ (Fig. 1.1, d.) are

commonly recommended commercial everbearing cultivars for central and east coast Canadian

provinces (Eric, 2022). Therefore, they were included in this study. F. x ananassa ‘Hecker’ (Fig.

1.1, e.) is an older everbearing cultivar popular with commercial growers for decades before

‘Seascape’ (Erik, 2022). F. Vesca is a woodland strawberry initially kept in French gardens in

the 1300s (Hummer, K. E. et al.,2011; Fig 1.1, a.). Today, it is commonly used in genetic studies

of Fragaria sp. to determine the relatedness of cultivars (Bors, R. H., & Sullivan, J. A.,2005;

Marta, A. E. et al.,2004). F. vesca was chosen as the comparison specimen to existing spectral

data on the floral reflectance database (FReD) to validate lab methodology. Lastly, growers have

recently been experimenting with Fragaria x Comarum palustre (Marsh Cinquefoil) hybrids

resulting in pink or red flowing plants (Mabberley, D. J.,2002). Little is known about how this

will affect the visibility of strawberry flowers to insect pollinators. The cultivar F. ananassa x

comarum ‘Berried treasure Red’ (Fig. 1.2, c.) was therefore included in this study to explore the

spectral properties of such a cross. Specific growing and care methods are presented in section

2.5. I created a spectrogram to assess the ground truth of the cultivar’s floral reflectance. I

travelled to Laval University with my flowering strawberry plants and collected data over a week.

The strawberry cultivars presented in Fig 1.2 were spectrally analyzed using a spectrophotometer

at Laval University’s biology department. The methodology for the spectral analysis is further

described in section 2.5.

1.3 Sensor design

In researching for this thesis proposal, there were no accounts of flower detection using the near

UV range (300-400nm) for precision agriculture purposes. Most studies document floral spectral

UV reflectance for behavioural interaction studies with pollinators (e.g., Dyer A.G. & Chittka L.

2004; Koski, M. H., & Ashman, T. L.,2015) or species differentiation (e.g., Rieseberg, L. H., &
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Figure 1.2 RGB images of strawberry cultivars.a) Fragaria

vesca b) Fragaria x ananassa "Seascape" c) Fragaria x ananassa

(X comarum) "Berried treasure red" d) Fragaria x ananassa

"Fort Laramie" e) Fragaia x ananassa "Hecker" f) Fragaria sp.

leaf

Schilling, E. E.,1985; Yoshioka, Y. et al. 2005). In agriculture, most remote sensing of crops is

in the human vision range, 400-700 nm, and near IR, 700-900nm (Sishodia, R. P., et al. 2020;

Wójtowicz, M. et al. 2016). Barriers to exploring UV in remote sensing are likely due to digital

UV cameras’ size, weight, and price. Therefore, I identified a need for a small, lightweight,

cost-effective UV-sensitive camera. The goal was to have a portable and mountable tool for

aerial remote sensing. The device in this study needed to be commercially producible, consistent,

and sensitive down to 300nm. To mimic the vision range of a bee, a filter, or filter combination,

should be used to allow only 300-650nm to reach the sensor. The sensor will henceforth be

referred to as the Nature-inspired detector (NID). I determined a CMOS-type sensor would be

appropriate to use in the NID as it is sensitive to UV wavelengths, and below 400nm, the sensor

is 20% more sensitive than CCD sensors (Bandara, A. M. R. R.,2011, Fig 1.3.). The NID would

also need the Bayer filter (Fig 1.4) on the sensor removed, allowing light below 400nm to reach

the sensor photodiodes. By removing the Bayer filter, the camera becomes monochrome and

will capture images in greyscale. Monochrome images deal with varying lighting conditions
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Figure 1.3 Comparison of standard digital sensor’s spectral

sensitivity (Bandara, et al., 2011).

better than colour images for segmentation (Sridevi, M., & Mala, C.,2012). They also require a

third of the memory for storage as compared to RGB. These all work well for outdoor images

and on-board image storage and processing. Camera optical windows (or ICF) are generally

made from glass, preventing light from passing below 400 nm (MaxMax, 2019), the glass would

have to be replaced. I chose Schott WG280 glass which transmits light to 280nm (Fig. 3.3.

Optics P.G.,2023). While designing the NID, multiple filter combinations were assessed. The

filter combination of BP1 + 330c (Maxmax, 2019) allowed a spectral range of 300-400nm to

reach the sensor. However, not enough light reached the sensor in this setup, and images were

blurred (e.g. Fig. 1.5). Strawberry flower petals exhibited UV absorbance across cultivars. The

remote sensor was changed to a Nature Inspired detector (NID) which shared the same spectral

range as a bee pollinator (300-650nm) by using the BP1 filter only. The final model choice and

design are presented in section 3.5.1.
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Figure 1.4 Anatomy of a red pixel on the photodiode

(MaxMax, 2019).

1.4 Sensor Characterization

In order to establish the NID sensor’s response to incoming wavelength, the NID was characterized

as described in Garcia et al. (2014; equation 1).

𝜌 = 𝐺 (𝑛) (1.1)

where, 𝜌 is the pixel intensity, G is that sensor’s constant, unique to each sensor type, and n is

the % reflectance by an object and received on a photoreceptor to produce a signal response.

To measure 𝜌 and % reflectance, I created UV reflectance standards following the indications

first described by Dyer A.G. et al. (2004). Unlike commercial photography standards, these

standards create a more consistent linear response below 400nm. Each reflectance standard was

measured with a Perkin Elmer’s Lambda 850 UV-VIS spectrophotometer at the University of

Laval in Quebec City, Canada. The intercept of the line of best fit produced our % reflectance
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Figure 1.5 UV image of Strawberry cultivar using the NID

with xNite BP1 and 330c external filters.

values (Fig. 1.6). The UV reflectance standards were photographed with the NID under various

solar intensities (8 different days, 55569- 114008 LUX) to measure the rho values captured by

the NID sensor. The average of 10 pixels for each standard over the eight days established the

rho values. The sensor response curve is presented in section 3.5.2 with further detail pertaining

to the methodology.

1.5 Image dataset

Machine learning algorithms require an Image Dataset to train for object detection. The NID

system is comprised of the remote sensor and detection algorithm. As most image libraries

(containing image datasets of various objects) are comprised of RGB images, I created a new

image dataset using the NID camera. Setup parameters are presented in section 3.6 and are

depicted below in Fig. 1.7 Images were then augmented to increase the robustness of the dataset

( presented in section 3.6), which resulted in 284 NID images.
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Figure 1.6 UV Reflectance standards measured by

spectrophotometer for characterization of NID sensor

Figure 1.7 NID setup for image dataset generation to train

detection algorithm
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1.6 Algorithm Training

Simple morphometric algorithms to detect flowers were initially explored, such as Threshold

segmentation (Zhou, C. et al. 2020), Canny edge detection (e.g., Jianlun, W. et al. 2016), and

Random Forest classification (Zan, X et al. 2020); results were underwhelming. Therefore,

more advanced AI algorithms were used to achieve the final detection results. State-of-the-art

object detection algorithms, YOLOv5 (Qu, Z. et al. 2022) and Faster R-CNN (Lin, P., & Chen,

Y. 2018), were chosen based on their overall performance on MSCOCO2017 and IMAGEnet

datasets (Sanchez, S. A., et al. 2020). Their ability to extract complex visual features through

hierarchical structures led to better experimental results. Methods for training these two detection

algorithms are presented in section 3.6.

1.7 Field Validation

This thesis project required piloting two drone models, DJI M300 and Spiri Mu, for field

testing the NID system. The pilot requires a Canadian advanced Drone Pilot license to fly the

M300 and Mu. Throughout this degree, I passed the Basic and advanced online Drone pilot

certification exams and the in-person flight review for Advanced operations. I also completed

the NSERC-funded CREATE Uninhabited aircraft systems Training, Innovation and Leadership

Initiative (UTILI) led by Carleton University, the University of Ottawa, Queen’s University,

L’École de technologie supérieure (ÉTS), Université de Sherbrooke, and Université du Québec

en Outaouais (UQO). This program consisted of a semester-long course and a three-month

internship with a drone development company, Spiri Robotics. The initial scope of this thesis

was to field test the NID system in greenhouse conditions and outdoors. However, the COVID-19

pandemic prevented visitation to farms for field testing. It was necessary to re-create outdoor

strawberry field conditions in a fallow field in Ile Perrot, Qc (2021; Fig 1.8).

Row spacing followed the Ontario Ministry of Agriculture guidelines for strawberry cultivation;

0.2m between plants, 1.2m between rows (The Ontario Ministry of Agriculture, Food and Rural

Affairs, OMAFRA, 2016). Bare root plants were potted with a 2:2:1 ratio of acidic potting soil,
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Figure 1.8 Custom field setup In Ile Perrot, Qc. during

lockdown.

shrimp compost and sand in 7.5L containers. Plants were fertilized bi-monthly with 15-30-15

liquid feed to promote flowering. Flights were conducted with the Spiri Mu (Fig 1.9) and DJI

M300 (Fig 1.10) drones at 3 and 5 m. Images were captured at 1080p. In post-processing, the

flower resolution was too low for accurate results; therefore, a second field test was performed

post-pandemic over a commercial strawberry field near Princeville, Qc. These results were used

and presented in section 3.9.
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Figure 1.9 Spiri Mu Quadcopter UAV used in initial and final

field validation trials. A) NID sensor mounted with custom 3D

printed parts. B) Extended legs to account for NID sensor.

Figure 1.10 DJI M300 quadcopter UAV using in initial field

trials during lockdown



CHAPTER 2

UV REFLECTANCE IN CROP REMOTE SENSING: ASSESSING THE CURRENT
STATE OF KNOWLEDGE AND EXTENDING RESEARCH WITH STRAWBERRY

CULTIVARS

2.1 Contribution from other Authors

David St-Onge and Robert Hausler provided editorial notes for final journal submission.
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2.2 Abstract

Spectral reflectance is a standard parameter used in precision agriculture through remote sensing.

The colour produced when light is reflected from a plant’s surface can be used to indicate

health (VIS-IR)or to direct visiting pollinators( Near-UV). However, crop species are a minority

of plants presented in UV spectral reflectance studies, which contain vital information for

plant-pollinator interaction. This literature review discusses crop UV-reflectance, identifies gaps

in the literature and contributes new data using strawberry cultivars. Results showed that most

crop spectral reflectance studies used lab-based methodologies, presented wide spectral ranges

(Near UV to IR), and the plant family distribution mirrored global food market trends. The

spectral comparison of human white flowering strawberry cultivars indicated visual differences

for pollinators in the Near UV and Blue ranges. Variation in pollinator visibility among

strawberry cultivars indicates a need to consider UV spectral reflectance when creating new

breeding lines and managing pollinator preferences in agricultural fields.

Introduction

Precision agriculture (PA) incorporates modern technology with traditional farming principles

to manage fields with minimal inputs and human resources. Remote sensing, based on

electromagnetic radiation, is an integral tool for modern PA (Wójtowicz M. et al.,2016; Xue, J.,

& Su, B., 2017). The data from passive remote sensors, capturing electromagnetic reflectance

from vegetal surfaces, is routinely used to generate field maps. Vegetation indices (VI) are

then applied to characterize biophysical features such as water and nutrient stress, presence of
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infection/disease, or overall growth of crops(Zhang & Kovacs, 2012; Liu C. et al., 2016 ). The

principal spectral regions for agricultural remote sensing are (i) ultraviolet (UV), (ii) visible,

and (iii) near-infrared (IR) (Xue, J., & Su, B. 2017).

2.2.1 Flower Patterns in UV

The colours and patterns of flowers are diverse and have been the focus of pollinator interaction

studies since Darwin (1876). Unlike many foraging predators, pollinating species have receptors

for UV (Briscoe, A. D., & Chittka, L.,2001). Plants have developed UV floral patterns to

attract beneficial insects visually but remain cryptic to foraging species. Compounds that

absorb or reflect radiation are arranged in patterns on reproductive structures, such as anthers

and petals, to signal landing and feeding locations and differentiate plants from con-specifics,

even to the cultivar level (Yoshioka, Y. et al., 2005). The size, shape, and contrast of this

patterning can affect how visible one plant is from its con-specifics, especially from the air.

Spaethe J. et al. (2001) found that floral signalling strategies may respond to the perceptual

constraints of their pollinators. Bumblebees favoured high colour contrast on the floral surface

for large flowers (e.g., UV pattern) but only favoured high contrast with green foliage for small

flowers. Optimal foraging strategies resulted due to more accurate floral recognition while in

flight. A typical signalling pattern of large flowers is the "bullseye" pattern, where flowers

consist of UV-absorbing centers and UV-reflecting peripheries. Previous studies have shown

that bees make their first antennae contact with the UV-absorbing part and that untrained bees

preferentially visit bullseye-patterned flowers (e.g., Koski Ashman, 2014; Papiorek et al., 2016).

2.2.2 Factors affecting crop visibility to pollinators

However, this pattern becomes less visible under the physical conditions of greenhouses that

commonly employ UV-blocking coverings (Morandin, L. A. et al. 2002). In a study by

Morandin et al. (2001), four types of polyethylene greenhouse coverings, varying in their UV

transmittance, found that bees made twice as many foraging trips under low UV transmittance

plastics. Furthermore, 136 percent more bees remained within the greenhouse after ten days,
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drastically affecting operation costs and crop production. Bee pollination of crops results in

heavier, more uniform crops, which fetch a higher market value. Therefore, hives are often

supplemented in agricultural settings (e.g. Klatt, B. K. et al. 2014). Another factor for

commercial growers to consider is the genetic component of UV patterns when breeding new

cultivars. Brock M. T. et al. (2016) showed that UV patterning varied greatly among Brassica

rapa genotypes and that insects preferred flowers with UV patterns over those without patterns,

such as their wild relatives. Moyers et al. (2017) found that the UV pattern of sunflowers

could be modified without affecting flower head size based on the mapped genetic architecture.

Flower head size is a critical trait for breeding this crop and could have unintended effects on

pollinator–flower interactions. Breeders need to consider the genetic architecture of a crop when

creating new cultivars. Research supports that colour patterning in various crop families varies

significantly with heredity (e.g., Mangelsdorf, A. J., & East, E. M.,1927; Henz, A. et al., 2015;

Muchhala, N. et al., 2014). However, few studies have explored the use of UV floral reflectance

of plants, even fewer for crops specifically. Spectral reflectance studies have reported down

to 300 nm, but most species in reflectance databases (e.g., FReD) are native species, not crop

species (Arnold S. et al. 2008).

2.2.3 UV floral reflectance of Rosacea crops

The Rosacea family includes orchard and berry crops such as apples, cherries, raspberries,

and strawberries. It is one of the four main crop families grown commercially in greenhouses

worldwide (Guerra-Sanz, J. M. 2008). Members of the Rosacea plant family, including blackberry

and almond cultivars, have shown consistent and distinct peaks in the near UV range (Gyan,

K.Y.& Woodell, S.R.J., 1987; Chen, B. et al. 2019). These peaks suggest that UV patterning

may play a role in pollinator signalling within the family. Strawberries are a highly selectively

bred crop and are prominently grown worldwide; under greenhouse and field conditions. In

2021 global greenhouse production was a 34.8 billion dollar industry, with North America

holding the largest market share, 32.8 percent (Precedence Research, 2022). Total production

was 41 percent vegetable and 25.4 percent fruit (Forbes, 2022), with tomatoes and strawberries
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as the leading crops in each category. When considering field production, Rosacea crops

represented the majority of global fruit production in 2021 (strawberries representing 75.4

percent of berry crops), competing with the Musaceae (bananas and plantains), Rutaceae (citrus),

and Cucurbitacea (melon) families, as depicted in Fig 1. (Statista, 2023). However, research

has yet to explore the UV floral reflectance of strawberry cultivars. Although most strawberry

flowers appear white to human eyes, Ceuppens et al. (2015) observed dissimilar pollination of

two related strawberry varieties when cultivated together. The role of volatile floral substances

was explored to account for this phenomenon but yielded inconclusive results. Therefore, floral

patterning differences are potentially a factor here. There have yet to be any literary reviews of

UV floral reflection of crop species. This study documents the state of Floral UV-reflectance of

crops in scientific literature and expands upon it with strawberry cultivars.

2.3 UV crop reflectance: what we know and what we need

Methodology

In this literature review, we analyzed scientific articles studying the UV-reflectance of crops.

We searched the electronic database Scopus (1969-2020) for the following search strings: UV*

OR ultraviolet AND camera AND/OR "Spectral reflectance" AND "flo*" AND/OR "crop*"

AND/OR "plant*". In addition, searches were limited to the English language, publication

in a journal or conference proceeding, and fell within the categories <agriculture>, <botany>,

AND/OR <environmental sciences>. A total of 1013 articles met the search criteria and were

screened for crop species and spectral reflectance under 400 nm using a single reviewer. We

excluded 1593 papers that dealt with the spectral reflectance of compounds derived from plants

in chemical isolation or studied UV spectral fluorescence rather than reflectance from this review.

UV Reflectance measures a reflected wavelength in the near UV range (300-400 nm), often

used by flowering plants for pollinator signalling. In contrast, UV fluorescence is a visible

emission of wavelengths due to a substance or pigment’s absorbance of UV radiation. Until

recently, the terms were used interchangeably in literature; therefore, we carefully examined the
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methodologies employed. In total, 170 papers related to botanical plants, of which 149 covered

spectral reflectances below 400 nm in some capacity. When filtered for agriculturally relevant

species, 52 records remained from 29 families and 73 crop species, as listed in Table 1.



21

T
ab

le
2
.1

M
aj

o
r

ch
ar

ac
te

ri
st

ic
s

o
f

st
u
d
ie

s
in

cl
u
d
ed

in
th

e
m

et
a-

an
al

y
si

s
fr

o
m

1
9
6
9
-2

0
2
0

F
am

il
y

S
p
ec

ie
s

C
o
m

m
o
n

n
am

e
P
la

n
t
p
ar

t
R

an
g
e

In
st

ru
m

en
t
ty

p
e

R
ef

er
en

ce

F
am

il
y
:

A
lt
in

g
ia

ce
ae

L
iq

u
id

am
b
ar

st
y
ra

ci
fl
u
a

A
m

er
ic

an
S
w

ee
t-

g
u
m

tr
ee

le
af

2
8
0

-
4
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
Y

an
g

X
.,

et
al

.

1
9
9
5

F
am

il
y
:

A
m

ar
an

th
ac

ea
e

B
et

a
v
u
lg

ar
is

B
ee

t
st

o
ck

3
0
0
-8

0
0

n
m

S
p
ec

tr
o
m

et
er

P
et

er
s

R
.D

.
&

N
o
b
le

S
.D

.,

2
0
1
4

S
p
in

ac
ia

o
le

r-

ac
ea

S
p
in

ac
h

le
af

3
0
0
-8

0
0

n
m

S
p
ec

tr
o
m

et
er

P
et

er
s

R
.D

.
&

N
o
b
le

S
.D

.,

2
0
1
4

F
am

il
y
:

A
m

ar
y
ll
id

ac
ea

e

A
ll
iu

m
sc

h
o
en

o
-

p
ra

su
m

C
h
iv

e
fl
ow

er
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

h
it
tk

a
L

.,
et

al
.

1
9
9
4

3
5
0
-4

0
0

n
m

F
il
m

ca
m

er
a

U
te

ch
F
.H

.

&
K

aw
an

o
S
.,

1
9
7
5

F
am

il
y
:

A
n
ac

ar
d
ia

ce
ae



22

M
an

g
if

er
a

in
d
ic

a
M

an
g
o

fr
u
it

3
6
0

n
m

D
ig

it
al

ca
m

er
a

P
at

el
K

.K
.,

et

al
.

2
0
1
9

F
am

il
y
:A

p
ia

ce
ae

D
au

cu
s

ca
ro

ta
C

ar
ro

t
ro

o
t

3
0
0
-8

0
0

n
m

S
p
ec

tr
o
m

et
er

P
et

er
s

R
.D

.
&

N
o
b
le

S
.D

.,

2
0
1
4

F
am

il
y
:A

st
er

ac
ea

e

C
ar

th
am

u
s

ti
n
c-

to
ri

u
s

S
affl

ow
er

st
am

en
2
0
0
–

7
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
V

ar
li
k
li
o
z

E
r

S
.,

et
al

.
2
0
1
7

C
ic

h
o
ri

u
m

in
ty

-

b
u
s

C
h
ic

oy
fl
ow

er
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

h
it
tk

a
L

.,
et

al
.

1
9
9
4

3
5
0
-4

0
0

n
m

F
il
m

ca
m

er
a

U
te

ch
F
.H

.

&
K

aw
an

o
S
.,

1
9
7
5

H
el

ia
n
th

u
s

an
n
u
s

S
u
n
fl
ow

er
fl
ow

er
3
2
0

an
d

3
8
0

n
m

D
ig

it
al

ca
m

er
a

M
o
y
er

s
B

.T
.,

et
al

.
2
0
1
7

2
0
0
-4

0
0

n
m

T
V

ca
m

er
a

T
ak

ig
u
ch

i
Y

.,

et
al

.
1
9
9
8

F
am

il
y
:B

et
u
la

ce
ae



23

B
et

u
la

sp
.

A
ld

er
tr

ee
w

o
o
d

2
0
0
-4

0
0

n
m

D
ig

it
al

ca
m

er
a

H
ir

v
o
n
en

T
.,

et
al

.
2
0
1
4

F
am

il
y
:

B
ra

si
ca

ce
ae

B
ra

ss
ic

a
n
ap

u
s

R
ap

es
ee

d
le

af
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

en
Y

.-
P.

&

B
o
rn

m
an

J.
F
.,

1
9
9
3

B
ra

ss
ic

a
n
ig

ra
M

u
st

ar
d

le
af

1
9
0
-8

9
0

n
m

S
p
ec

tr
o
m

et
er

N
g
o

V
.-

D
.,

et

al
.

2
0
1
3

B
ra

ss
ic

a
o
le

ra
ce

a
B

ro
cc

o
li

fl
ow

er
3
5
0
-4

0
0

n
m

F
il
m

ca
m

er
a

U
te

ch
F
.H

.

&
K

aw
an

o
S
.,

1
9
7
5

B
ra

ss
ic

a
o
le

ra
ce

a
R

ed
ca

b
b
ag

e
le

af
3
0
0
-8

0
0

n
m

S
p
ec

tr
o
m

et
er

P
et

er
s

R
.D

.
&

N
o
b
le

S
.D

.,

2
0
1
4

B
ra

ss
ic

a
ra

p
a

B
ro

cc
o
li

ra
b
e

le
af

1
9
0
-8

9
0

n
m

S
p
ec

tr
o
m

et
er

N
g
o

V
.-

D
.,

et

al
.

2
0
1
3

F
am

il
y
:C

u
cu

rb
it
ac

ea
e

C
u
cu

rb
it
a

p
ep

o
P
u
m

p
k
in

le
af

2
0
0
-7

8
0

n
m

D
ig

it
al

m
o
n
o
ch

ro
m

e

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
8



24

2
0
0
-5

0
0

n
m

D
ig

it
al

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
7

C
u
cu

rb
it
a

p
ep

o
Z

u
cc

h
in

i
le

af
1
9
5

to
1
1
2
2

n
m

S
p
ec

tr
o
m

et
er

R
iv

er
a-

R
o
m

er
o

C
.A

.,

et
al

.2
0
2
0

L
ag

en
ar

ia
si

ce
r-

ar
ia

C
h
in

es
e

b
o
tt
le

g
o
u
rd

le
af

2
0
0
-7

8
0

n
m

D
ig

it
al

m
o
n
o
ch

ro
m

e

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
8

2
0
0
-5

0
0

n
m

D
ig

it
al

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
7

F
am

il
y
:E

ri
ca

ce
ae

V
ac

ci
n
iu

m

cy
an

o
co

cc
u
s

B
lu

eb
er

ry
le

af
/f

ru
it

2
0
0
-2

5
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
Y

an
g

C
.&

L
ee

W
.S

.,
2
0
1
1

V
ac

ci
n
iu

m
v
it
is

-

id
ae

a

L
in

g
o
n
b
er

ry
fl
ow

er
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

h
it
tk

a
L

.,
et

al
.

1
9
9
4

V
ac

ci
n
iu

m
m

y
r-

ti
ll
u
s

B
il
b
er

ry
fl
ow

er
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

h
it
tk

a
L

.,
et

al
.

1
9
9
4

F
am

il
y
:E

u
co

m
m

ia
ce

ae

E
u
co

m
m

ia
u
l-

m
o
id

es

C
h
in

es
e

m
ed

ic
i-

n
al

h
er

b
/t
re

e

b
ar

k
/l
ea

f
1
9
0
-7

5
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
W

an
g

C
.-Y

.,
et

al
.

2
0
2
1

F
am

il
y
:F

ab
ac

ea
e



25

G
ly

ci
n
e

m
ax

S
oy

b
ea

n
se

ed
3
0
0
–
2
5
0
0

n
m

S
p
ec

tr
o
sc

o
p
y

O
g
ru

c
Il

d
iz

G
.,

et
al

.
2
0
2
0

G
ly

ci
n
e

m
ax

S
oy

b
ea

n
le

af
3
2
5
–
1
0
7
5

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
K

o
v
ar

M
.,

et

al
.

2
0
1
9

3
5
0
-2

5
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
K

o
ge

r
C

.H
.,

et

al
.

2
0
0
4

3
5
0
-2

5
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
K

o
ge

r
C

.H
.,

et

al
.

2
0
0
4

L
u
p
in

u
s

p
o
ly

-

p
h
y
ll
u
s

L
u
p
in

(f
o
d
d
er

cr
o
p
)

le
af

2
0
7
-4

0
7

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
Ja

n
S
.,

et
al

.

2
0
1
6

M
ed

ic
ag

o
sa

ti
v
a

A
lf

al
fa

fl
ow

er
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

h
it
tk

a
L

.,
et

al
.

1
9
9
4

F
am

il
y
:F

ag
ac

ea
e

Q
u
er

cu
s

ru
b
ra

R
ed

o
ak

tr
ee

le
af

2
8
0

to
4
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
Y

an
g

X
.,

et
al

.

1
9
9
5

Q
u
er

cu
s

ve
lu

ti
n
a

B
la

ck
o
ak

tr
ee

le
af

2
8
0

to
4
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
Y

an
g

X
.,

et
al

.

1
9
9
5

Q
u
er

cu
s

al
b
a

W
h
it
e

o
ak

tr
ee

le
af

2
8
0

to
4
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
Y

an
g

X
.,

et
al

.

1
9
9
5



26

Q
u
er

eu
s

m
ac

ro
-

ca
rp

a

B
u
rr

o
ak

tr
ee

fl
ow

er
3
5
0
-4

0
0

n
m

F
il
m

ca
m

er
a

U
te

ch
F
.H

.

&
K

aw
an

o
S
.,

1
9
7
5

F
am

il
y
:I

ri
d
ac

ea
e

C
ro

cu
s

sa
ti
v
u
s

S
aff

ro
n

st
am

en
2
0
0
–

7
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
V

ar
li
k
li
o
z

E
r

S
.,

et
al

.
2
0
1
7

F
am

il
y
:J

u
g
la

n
d
ac

ea
e

Ju
g
la

n
s

re
g
ia

W
al

n
u
t
tr

ee
le

af
2
0
0

to
8
0
0

n
m

sp
ec

tr
o
m

et
er

M
ir

za
A

.U
.,

et

al
.

2
0
1
9

C
ar

y
a

il
li
n
o
in

en
-

si
s

P
ec

an
le

af
2
8
0

to
7
6
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
Q

i
Y

.,
et

al
.

2
0
0
3

C
ar

y
a

to
m

en
to

sa
M

o
ck

er
n
u
t

h
ic

k-

o
ry

le
af

2
8
0

to
4
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
Y

an
g

X
.,

et
al

.

1
9
9
5

F
am

il
y
:L

am
in

ac
ea

e

O
ri

g
an

u
m

v
u
l-

g
ar

e

O
re

g
an

o
fl
ow

er
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

h
it
tk

a
L

.,
et

al
.

1
9
9
4

F
am

il
y
:M

al
v
ac

ea
e

A
b
el

m
o
sc

h
u
s

es
-

cu
le

n
tu

s

O
k
ra

ro
o
t

1
9
0
–
1
4
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
S
h
ar

m
a

N
.,

et

al
.

2
0
1
8



27

G
o
ss

y
p
iu

m

ar
b
o
re

u
m

C
o
tt
o
n

le
af

2
5
0
-2

0
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
T

h
o
m

as
so

n

J.
A

.
&

S
u
i
R

.,

2
0
0
9

F
am

il
y
:M

u
sa

ce
ae

M
u
sa

(A
A

B
)
si

m
-

m
o
n
d
s

B
an

an
a

fr
u
it

2
7
0
-1

0
0
0

n
m

D
ig

it
al

ca
m

er
a

S
an

to
y
o
-

M
o
ra

M
.,

et

al
.

2
0
1
9

F
am

il
y
:O

n
ag

ra
ce

ae

F
u
ch

si
a

ex
co

rt
i-

ca
ta

F
u
ch

si
a

b
er

ry
fr

u
it

3
0
0
-4

0
0

n
m

D
ig

it
al

ca
m

er
a

L
ee

W
.G

.,
et

al
.

1
9
9
0

F
am

il
y
:P

as
si

fl
o
ra

ce
ae

P
as

si
fl
o
ra

ed
u
li
s

P
as

si
o
n
fr

u
it

le
af

2
0
0
-7

8
0
n
m

D
ig

it
al

m
o
n
o
ch

ro
m

e

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
8

2
0
0
-5

0
0
n
m

D
ig

it
al

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
7

F
am

il
y
:P

in
ac

ea
e

P
ic

ea
ab

ie
s

S
p
ru

ce
tr

ee
w

o
o
d

2
0
0
-4

0
0
n
m

D
ig

it
al

ca
m

er
a

H
ir

v
o
n
en

T
.,

et
al

.
2
0
1
4

P
in

u
s

sy
lv

es
tr

is
P
in

e
tr

ee
w

o
o
d

2
0
0
-4

0
0
n
m

D
ig

it
al

ca
m

er
a

H
ir

v
o
n
en

T
.,

et
al

.
2
0
1
4



28

F
am

il
y
:P

o
ac

ea
e

A
ve

n
a

st
ri

g
o
sa

O
at

se
ed

3
6
5
-9

7
0
n
m

V
id

eo
m

et
er

L
ab

4
®

in
-

st
ru

m
en

t

F
ra

n
ça

-S
il
v
a

F
.,

et
al

.
2
0
2
0

H
o
rd

eu
m

v
u
lg

ar
e

B
ar

le
y

g
ra

in
2
5
0
–
4
3
0

n
m

hy
p
er

sp
ec

tr
al

im
ag

in
g

li
n
e

sc
an

n
er

B
ru

g
g
er

A
.
et

al
,
2
0
2
1

H
o
rd

eu
m

v
u
lg

ar
e

B
ar

le
y

le
af

2
4
0
–
5
0
0

n
m

U
V

li
n
e

sc
an

n
er

B
ru

g
g
er

A
.,

et

al
.

2
0
1
9

3
0
0
-8

0
0
n
m

S
p
ec

tr
o
ra

d
io

m
et

er
K

le
m

K
.,

et
al

.

2
0
1
2

O
ry

za
sa

ti
v
a

R
ic

e
le

af
3
5
0
-1

0
5
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
W

an
g

X
.,

et
al

.

2
0
0
3

T
ri

ti
cu

m
ae

s-

ti
v
u
m

W
h
ea

t
g
ra

in
2
0
0
-2

5
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
B

al
ce

ro
w

sk
a

G
.,

et
al

.
2
0
0
9

2
0
0
-2

5
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
S
iu

d
a

R
.,

et
al

.

2
0
0
6

T
ri

ti
cu

m
ae

s-

ti
v
u
m

W
h
ea

t
le

af
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
S
ch

rö
d
er

M
.L

.,
et

al
.

2
0
1
4

3
2
5
–

1
0
7
5

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
R

ay
S
.S

.,
et

al
.

2
0
0
7



29

3
5
0
-1

0
5
0
n
m

S
p
ec

tr
o
ra

d
io

m
et

er
P
ra

sa
d

B
.,

et

al
.

2
0
0
7

Z
ea

m
ay

s
C

o
rn

se
ed

2
0
0
-1

1
0
0
n
m

S
p
ec

tr
o
m

et
er

S
m

ee
st

er
s

L
.,

et
al

.
2
0
1
6

Z
ea

m
ay

s
C

o
rn

st
o
ck

2
5
0
-7

5
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
L

i
X

.,
et

al
.

2
0
1
6

Z
ea

m
ay

s
C

o
rn

le
af

3
0
0
-7

0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
S
ch

rö
d
er

M
.L

.,
et

al
.

2
0
1
4

F
am

il
y
:R

h
am

n
ac

ea
e

Z
iz

ip
h
u
s

ju
ju

b
a

Ju
ju

b
e

le
af

3
0
0
-9

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
Y

an
g

W
.,

et
al

.

2
0
1
4

F
am

il
y
:R

o
sa

ce
ae

F
ra

g
ar

ia
x

an
an

as
sa

S
tr

aw
b
er

ry
fl
ow

er
3
5
0
-4

0
0

n
m

F
il
m

ca
m

er
a

U
te

ch
F
.H

.

&
K

aw
an

o
S
.,

1
9
7
5

F
ra

g
ar

ia
x

an
an

as
a

S
tr

aw
b
er

ry
fr

u
it

3
7
4
–
1
0
2
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
W

en
g

S
.,

et
al

.

2
0
2
0

F
ra

g
ar

ia
ve

sc
a

W
il
d

S
tr

aw
b
er

ry
fl
ow

er
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

h
it
tk

a
L

.,
et

al
.

1
9
9
4



30

M
al

u
s

p
u
m

il
a

A
p
p
le

le
af

2
0
0

to
8
0
0

n
m

sp
ec

tr
o
m

et
er

M
ir

za
A

.U
.,

et

al
.

2
0
1
9

3
0
0
–
9
0
0

n
m

S
p
ec

tr
o
m

et
er

Z
h
an

g
Y

.,
et

al
.

2
0
1
5

M
al

u
s

p
u
m

il
a

A
p
p
le

fr
u
it

3
5
0
-8

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
V

en
tu

re
ll
o

A
.,

et
al

.
2
0
1
2

3
0
0
–
8
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
M

er
zl

y
ak

M
.N

.,
et

al
.

2
0
0
5

P
ru

n
u
s

av
iu

m
S
w

ee
t
ch

er
ry

fl
ow

er
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

h
it
tk

a
L

.,
et

al
.

1
9
9
4

P
ru

n
u
s

ce
ra

su
s

S
o
u
r

ch
er

ry
fr

u
it

3
5
0
-1

0
5
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
S
h
re

st
h
a

B
.P

.,

et
al

.
2
0
0
4

P
ru

n
u
s

p
er

si
ca

P
ea

ch
le

af
2
0
0
-7

8
0

n
m

D
ig

it
al

m
o
n
o
ch

ro
m

e

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
8

2
0
0
-5

0
0

n
m

D
ig

it
al

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
7

3
5
0
-2

5
0
0

n
m

S
p
ec

tr
o
m

et
er

M
in

g
h
u
a

Z
.,

et
al

.
2
0
0
8



31

P
ru

n
u
s

sp
in

o
sa

B
la

ck
th

o
rn

fl
ow

er
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
C

h
it
tk

a
L

.,
et

al
.

1
9
9
4

R
u
b
u
s

id
ae

u
s

R
ed

ra
sp

b
er

ry
le

af
3
3
0
-1

1
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
F
el

d
h
ak

e

C
.M

.,
2
0
0
2

R
u
b
u
s

il
le

ce
b
ro

-

su
s

B
al

lo
o
n

b
er

ry
fl
ow

er
3
5
0
-4

0
0

n
m

F
il
m

ca
m

er
a

U
te

ch
F
.H

.

&
K

aw
an

o
S
.,

1
9
7
5

R
u
b
u
s

o
cc

id
en

-

ta
li
s

B
la

ck
ra

sp
b
er

ry
le

af
3
3
0
-1

1
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
F
el

d
h
ak

e

C
.M

.,
2
0
0
2

F
am

il
y
:S

ap
in

d
ac

ea
e

A
ce

r
sa

cc
h
ar

u
m

S
u
g
ar

m
ap

le
le

af
2
8
0

to
4
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
Y

an
g

X
.,

et
al

.

1
9
9
5

A
ce

r
p
la

ta
n
o
id

es
N

o
rw

ay
m

ap
le

tr
ee

le
af

2
8
0

to
4
0
0

n
m

S
p
ec

tr
o
ra

d
io

m
et

er
Y

an
g

X
.,

et
al

.

1
9
9
5

F
am

il
y
:S

o
la

n
ac

ea
e

C
ap

si
cu

m
an

-

n
u
u
m

B
el

l
p
ep

p
er

le
af

2
0
0
-7

8
0

n
m

D
ig

it
al

m
o
n
o
ch

ro
m

e

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
8

2
0
0
-5

0
0

n
m

D
ig

it
al

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
7



32

S
o
la

n
u
m

ly
co

p
er

-

si
co

n

T
o
m

at
o

le
af

2
0
0
-2

5
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
Jo

n
es

C
.D

.,
et

al
.

2
0
1
0

2
0
0
-7

8
0

n
m

D
ig

it
al

m
o
n
o
ch

ro
m

e

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
8

2
0
0
-5

0
0

n
m

D
ig

it
al

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
7

3
2
5
-1

0
7
5
n
m

S
p
ec

tr
o
ra

d
io

m
et

er
C

u
i

D
.,

et
al

.

2
0
0
9

S
o
la

n
u
m

tu
b
er

o
-

su
m

P
o
ta

to
le

af
3
0
0
-7

0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
S
ch

rö
d
er

M
.L

.,
et

al
.

2
0
1
4

S
o
la

n
u
m

tu
b
er

o
-

su
m

P
o
ta

to
tu

b
er

/r
o
o
t

3
0
0
-4

2
0

n
m

D
ig

it
al

ca
m

er
a

A
l-

M
al

la
h
i
A

.,

et
al

.
2
0
1
0

F
am

il
y
:T

h
ea

ce
ae

C
am

el
li
a

si
n
en

-

si
s

T
ea

tr
ee

le
af

3
0
0

to
7
0
0

n
m

S
p
ec

tr
o
m

et
er

B
ia

n
L

.,
et

al
.

2
0
2
0

F
am

il
y
:V

it
ac

ea
e

V
it
is

v
in

if
er

a
G

ra
p
e

le
af

3
8
0
–
1
0
0
0

n
m

D
ig

it
al

H
y
p
er

sp
ec

tr
al

ca
m

er
a

D
eb

n
at

h
S
.,

et

al
.

2
0
2
1



33

2
0
0
-7

8
0

n
m

D
ig

it
al

m
o
n
o
ch

ro
m

e

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
8

2
0
0
-5

0
0

n
m

D
ig

it
al

ca
m

er
a

L
iu

H
.,

et
al

.

2
0
1
7

F
am

il
y
:Z

in
g
ib

er
ac

ea
e

C
u
rc

u
m

a
lo

n
g
a

T
u
rm

er
ic

ro
o
t

2
0
0
–

7
0
0

n
m

S
p
ec

tr
o
p
h
o
to

m
et

er
V

ar
li
k
li
o
z

E
r

S
.,

et
al

.
2
0
1
7



34

2.3.1 Metrics

Articles meeting the above criteria had the following parameters noted: instrument model used,

the spectral range for measurements, floral part and species analyzed, and year of publication.

Instrument models were grouped into 4 categories: Camera, Videometer, spectrometer/spectro-

radiometer, and spectrophotometer. Cameras were defined as self-contained, image-recording

devices which relied on an external light source. This included video, monochrome, multi-

spectral, and hyper-spectral cameras which employed CMOS or CCD sensors, as well as UV

film cameras. Spectrometer and spectroradiometer were grouped together as the terms are

often used interchangeably. A spectrometer measures the reflectance spectrum of an object or

substance. Its sensor array can separate out the light received at each wavelength and generate an

amplitude graph of the incoming signal. A spectroradiometer can also take calibrated readings

of power, intensity, and radiance of the incoming signal at each wavelength (International Light

Technologies Inc.,2019). On the other hand, Spectrophotometers measure the light absorption

or transmission of a sample. A reflectance curve can then be generated from the absorption and

transmission measurements using Kirchoff’s law (Spectrecology,2021). Videometer was its own

category as it utilizes an integrating sphere with a light-emitting diode, similar to a spectrometer;

however, the sensor captures a pixelated image of an object at each wavelength (Carstensen, J.

M.,2022).

For all instruments, spectral ranges were binned according to the following nanometer (nm)

ranges: near UV (<300-380nm), Blue (381-520nm), Green (521-625nm), red/ IR (>625nm) in

accordance with the international society for optics and photonics (Malacara, D., 2011).

Floral parts analyzed were grouped into 5 categories: flower, stem, leaf, fruit, and root. Flower

included the anther, stamen, petal, and sepal elements of a plant’s reproductive structure. The

stem encompassed dermal (cork & bark) , vascular (xylem & phloem), and ground tissues

(parenchyma, collenchyma,& sclerenchyma). Fruit encompassed seed and/or ripened ovary of

a flowering plant. Root included tubers as well as roots themselves. Leaf category contained
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upper and lower sides of leaves. The species studied were divided by plant family to assess

trends in the literature.

Trends in research over time were assessed by cross-referencing the above parameters with the

publication year.

2.4 Results

2.4.1 Instrumentation

Most methodologies consisted of lab bench setups due to the size, weight, and equipment cost

(e.g., Spectrophotometer). Of the data collection methods in Table 1, less than a third (31.7%)

used cameras. UV Film represented 20% of data collected and occurred before 1980. After

1980 digital data collection using cameras became standard. The average cost of the cameras

was $772.50 CAN and varied in weight from 50g to 2.75 kg, averaging 302g across all species

recorded. Of note: no studies performed aerial remote sensing of UV reflectance. Fig. 2.1

depicts the trends in instrumentation. Spectrometers/Spectroradiometers and Spectrophotometers

comprise the bulk of collection methods ( 36.8% and 27.4%, respectively) and have occurred

consistently since the early 1990s. These are lab-based, costly devices, often shared with other

departments, such as chemistry. They allowed for quantitative analysis using spectrograms

compared to qualitative analysis with film cameras, as seen in Utech F.H. & Kawano S. (1975).

2.4.2 Spectral range

Though all publications in this study had to include the near UV range (<300-380nm), many also

presented visible and near IR spectrums. Cameras presented narrower ranges (Near Uv to blue)

more often than any other instrument category, followed by Spectrometer /Spectrophotometers

(Fig 2.1). We attribute this disparity to the nature of the instrumentation chosen for the study.

Digital cameras have a sensor that is more sensitive to Red and Near IR wavelengths. Therefore,

a narrow range ( usually Near UV to blue) must be captured using specialized lenses and filters to
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Figure 2.1 Trends in UV reflectance. Publications from

meta-analysis ranging from 1960 to 2021 for crop UV spectral

reflectance

capture UV imagery. Comparatively, Spectrophotometers, Spectrometers, Spectroradiometers,

and Videometers can capture data to the nm level without such interference. Authors usually

capture complete spectral ranges with these devices, even if the publication only interests a

particular region.

Figure 2.2 Spectral ranges presented in Crop UV reflectance

literature
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2.4.3 Species and floral parts

As previously stated, 73 crop species from 29 families were included in this meta-analysis, as

listed in Table 1. Compared to the global production of fruits and vegetables in Fig. 2.3, we see

an overlap in crop family representation from our metanalysis in Fig. 2.4. Four of the top five

families in our literature review (Rosacea, Solanaceae, Fabaceae, and Brassicaceae) overlapped

with global production’s largest fruit and vegetable families in 2021. The Rosaecea family was the

largest in global fruit production, whereas Solanaceae, Fabaceae/ Leguminaceae and Brassicaceae

were the top three vegetable-producing families globally in 2021, respectively. The above

four families comprised 36.8% of the publications in our meta-analysis. The disproportional

representation of the above families in our review supports that research decisions for crop

species follow market trends.

Figure 2.3 Global Fruit and Vegetable Production 2021

When considering crops, choosing which floral part to research indicates the research focus. Fig.

2.5 illustrates the distribution of research across floral parts for our meta-analysis.

Publications focused on stems and roots (6.4 and 4.3%, respectively) assessed the quality of a

given crop, e.g., lumber or tubers. Papers containing leaf reflectance represented most of our

study’s published research (55.7%). These papers assessed growth rate, plant stress or nutritional

deficiencies. Papers presenting the spectral reflectance of fruits (14.9%) had contents that varied
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Figure 2.4 Crop family representation in UV reflectance

literature from 1969 to 2021

the most. Spectral reflectance was used to assess fruit ripeness and flavour quality, detect disease,

and train detection algorithms for remote sensors. Papers analyzing flowers (20%) comprised

two categories: pollinator-plant interaction and remote flower detection. However, over a third of

all the flowers documented (31.57%, Table 1) were captured on UV film (Utech F.H. & Kawano

S., 1975). UV film, just like any camera film, is prone to human error during development,

which can make the reported reflectance pattern or intensity questionable. Utech, F. H., &

Kawano, S. (1975) reported a pattern of central petal absorption and UV reflecting anthers for

two Rosaceae species Fragaria x ananassa ’Duchesne’ and Rubus illecebrosus’ Focke.’ However,

spectrophotometric readings of wild Fragria did not indicate this reflectance. As there is a lack

of data on strawberry (Fragaia) flower reflectance, one of the most significant contributors to the

Rosaceae family’s global dominance in the fruit industry, we assessed the spectral reflectance of

a variety of strawberry cultivars both quantitatively using a spectrophotometer and qualitatively

using a UV sensitive camera.
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Figure 2.5 Floral parts spectrally analyzed in our literature

meta-analysis

2.5 Spectral analysis of Strawberry cultivars

The Rosacea family contains many orchard species, such as apples and cherries, and berry

species, such as strawberries and raspberries. Crops in the Rosacea family share similar floral

phenotypic traits, such as five radially symmetrical sepals and petals, spirally arranged stamens,

and a cup-like structure at the flower base known as a hypanthium (Heywood, V.H. et al., 2007).

Due to their visual floral similarity, remote sensing and pollinator vision studies involving these
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crops tend to extend findings to the whole family (e.g., Dias P.A. et al., 2018; Eeraerts, M. et al.,

2020). However, only some studies have investigated the actual spectral reflectance of Rosacea

flowers.

2.5.1 Methodology

As our literature review revealed a need for floral UV spectral reflectance measures for widely

cultivated species, such as strawberries, we performed measurements to add them to the global

floral reflectance database. We present spectral differences between strawberry cultivars resultant

from our measures below.

2.5.1.1 Plants

Bare root plants of day-neutral Fragaria ananassa sp. cultivars ("Fort Laramie", "Hecker",

"Seascape"), wild ancestor Fragaria vesca, and Asian Fragaria ananassa x F. comarium hybrid

("Berried Treasure Red") were purchased from ©2020 Vesey Seeds. Plants were potted with a

2:2:1 ratio of acidic potting soil, shrimp compost, and sand in 7.5L containers and fertilized

bi-monthly with 15-30-15 liquid feed. We removed flowers for imaging within 12 hours of

opening and imaged the petal(P), anther(A), sepal(S) and upper leaf (L) from each flower. All

plants used in this study were in good health and grown outdoors under natural light.

2.5.1.2 Reflectance spectra of Fragaria sp. flowers

We collected spectral reflectance measurements with a Perkin Elmer’s Lambda 850 UV-VIS

spectrometer at the University of Laval in Quebec City, Canada. All flowers imaged were

within 12 hours of first flowering and were intact. Each flower comprised three ’samples’: full

flower upper side, petal only, and central anther and stamen disk only. We imaged the leaves

of each cultivar on the upper and lower surfaces. At least two flowers or leaves per cultivar

plant were measured. The Spectrophotometer was calibrated using Spectralon as suggested

by the manufacturer. The measurement interval was set to 1nm with scans conducted over the
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200-700nm range and repeated thrice per sample. Results were exported as an Excel spreadsheet

of % reflectance values.

2.5.1.3 Quantifying contrast of floral parts

We quantified the visibility (�S )of strawberry flowers to pollinators using the Normalized

Segment Classification (NSC) vision model (Rodríguez-Gironés, M. A., & Telles, F. J., 2020).

Unlike previous segment classification models, the NSC model is 1) species independent and 2)

considers brightness in its calculation. The model calculates a value (�S) based on the Euclidean

distance between two spectrogram curves, indicating their contrast. The larger the number, the

greater the contrast.

2.5.2 Results and Discussion

We present the spectrograms for Fragaria vesca (Fig 2.6a), the four Fragaria x ananassa cultivars

(Fig 2.6b to d) and their respective leaves ( Fig. 2.6f) in Fig. 2.6 Table 2 presents the NSC

vision model contrast values (�S) we obtained for each cultivar. We calculated �S values with

leaves (L) and petals (P) to test floral contrast with leaf background. A floral pattern (e.g. bull’s

eye pattern) was tested by comparing the outer floral part (petal, P) with the central floral part

(anthers, s). We also tested sepals as they are visible when petals are damaged or a cultivar has

sparse inflorescence.

2.5.3 Leaves

Fig 2.6f demonstrates the minor variation in upper leaf reflectance across Fragaria sp. and

cultivars indicating that the main factor in differing floral contrast and visibility to pollinators is

solely the factor of floral pigments.
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Figure 2.6 Reflectance spectrograms of Strawberry cultivars

2.5.4 Fragaria vesca

Fragaria vesca is a wild native strawberry species that has well-documented pollinator-flower

interaction (Blažytė-Čereškienė, L. et al. 2012). Its spectrogram is published on the Floral

Reflectance Database (FReD) and was used as a control for variation between studies. Our

spectral reflectance curve showed the same pattern as previous reports (ref). The flower shows a

distinct flower petal peak in the Bee blue range ( spectral peak 424nm, Skorupski, P., & Chittka,

L. 2010) and a sepal/anther peak in the Bee green range (spectral peak 539nm, Skorupski, P., &

Chittka, L. 2010). A study by Martinez-Harms, J. et al. (2010) found that bees could detect

flowers 75% of the time with a contrast value (�S) as low as 2.3. The contrast value for petal

(�S=8.861) and sepal/anther (�S= 5.261) support the observations made in previous behavioural

studies that this flower is visible to pollinators.
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2.5.5 Fragaria x ananassa (x comarium) ’Berried treasure Red’

The red flowering cultivar, Fragaria x ananassa (x comarium) ’Berried treasure Red’ (Fig.2.6 d),

had floral peaks beyond 600nm and showed no contrast values between floral parts �S>1.34,

indicating that bee pollinators would be blind to this cultivar. This cultivar, in particular, was

bred purely for aesthetic appeal, with little regard for yield potential. It is not cultivated in fields

and is a newer release to the consumer market.

2.5.6 White-flowering cultivars

When compared to their wild counterpart (Fig 2.6a), the white flowering cultivars "Seascape,"

"Fort Laramie," and "Hecker" (Fig 7, b, c, and e, respectively) exhibit higher petal reflectance,

creating higher contrast and visibility for pollinators. These cultivars demonstrate petal peaks in

the bee blue and anther peaks in bee Green (Spectral peak 539 nm, Skorupski, P., & Chittka,

L. 2010). Anther/ petal contrast values indicate a discernable Bull’s eye pattern for all three

cultivars in the bee blue/ bee green range (�S= 24.638, 24.651, and 28.027, respectively). The

highest contrast value for all three cultivars was between petals and background leaves (�S=

27.463, 27.127, and 33.086, respectively). "Hecker" had the highest contrast value with an L/P

∼S = 33.086; 26.8% higher than its wild counterpart. "Hecker" is noted for producing large

berries with good flavour (Bringhurst, R., & Voth, V., 1980). We know that insect pollination has

a direct, positive effect on fruit quality (e.g., Nye, W. P., & Anderson, J. L.,1974; Wietzke, A., et

al. 2018; Abrol, D. P., et al. 2019). In selectively breeding for higher yield and better-quality

fruit, breeders could have inadvertently selected more visible flowers. As such, "Hecker"

flowers would be more visible from the air to nearby pollinators than their conspecifics. Bees

preferentially visit more visible targets when nectar rewards are equal (Spaethe, J. et al. 2001).

The higher visitation rate by natural pollinators would positively affect the outcome of yield

assessments.
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2.5.7 Strawberry flowers in the UV

Gyan, K. Y. & Woodell, S. R. J. (1987) documented the spectrogram of the blackberry, Rubus

fructicosus, which indicated a ∼ 35% reflectance around 360nm. Almond cultivars, Prunus

dulcis, have also shown a consistent, distinct peak at 350nm (Chen, B., Jin, Y., & Brown,

P.,2019). Although the Fragaria genus shares the same family as Rubus, Fig. 7 does not indicate

any reflectance peaks around 350-360 nm (or Bee UV, spectral peak 347nm, Skorupski, P., &

Chittka, L. 2010) across all study species. Incidentally, there is minimal spectral reflectance

in the near UV range (300-400nm). However, all the above samples exhibit an increase in

reflection below 250nm. In this way, the Rosacea family shows reflection diversity in the near

UV spectrum, indicating that findings from remote sensing or pollinator vision studies should

not extend beyond the species or cultivar at hand.
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Table 2.2 Visibility of Fragaria sp. floral parts to trichromatic insect pollinators.

*Indicates above bee contrast detection threshold.

Cultivar Floral parts contrasted General trichromatic pollinator _S

Fragaria x ananassa (x comarium) ’Berried treasure Red’

A/S 1.165

A/P 0.255

S/P 1.309

L/P 1.335

Fragaria vesca

A+S/P *5.261

L/P *8.861

Fragaria x ananassa ’Hecker’

A/S 0.616

A/P *28.027

S/P *28.53

L/P *33.086

Fragaria x ananassa ’Fort Laramie’

A/S *3.663

A/P *21.001

S/P *24.651

L/P *27.127

Fragaria x ananassa ’Seascape’

A/S 2.204

A/P *24.638

S/P *22.441

L/P *27.463

2.6 Conclusion

At this time, future floral reflectance studies should put more emphasis on crop species than native

species. Our results showed a need for lightweight camera models for in-situ UV remote sensing.

Current models are costly and cumbersome for automated deployment. The representation of

crop families in the literature reflects their economic value in the global market. That being said,
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UV reflectance is still a tiny proportion of all crop spectral reflectance studies. In analyzing

the data we collected from Strawberry cultivars, we noted that commercial white-flowering

strawberries produced a bull’s eye contrast pattern in the bee-blue/ bee-green, producing the

highest contrast with background leaves. The most notable, "Hecker," is prized for its production

volume and high fruit quality. This may be due to its greater visibility to pollinators, i.e. bees,

leading to higher pollination rates. Further studies presenting the spectral reflectance of crops

across pollinator vision range (near UV to blue) would benefit pollinator interaction research

and the agricultural industry and be an excellent resource for crop breeders.
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CHAPTER 3

SEE AS A BEE: UV SENSOR FOR AERIAL STRAWBERRY CROP MONITORING

3.1 Contribution from other Authors

Corentin Boucher and Ryan Brown contributed to the 3D-printed attachment prototype and

initial field deployment. Ali Imran produced the orthomosaic from the field validation footage

for the final analysis and acted as a visual observer during field validation. David St-onge

provided editorial notes and proofreading for the final journal submission.
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3.2 Abstract

Ultraviolet (UV)-reflectance is an essential signal of many plant species which use wavelength-

selective pigments in floral reproductive structures to determine the colour of flowers and how

they appear to their aerial pollinators, primarily bees. This paper presents a pollinator-inspired

remote sensing system incorporating UV-reflectance into a flower detector for strawberry

crops. We designed a compact, cost-effective UV-sensitive camera for aerial remote sensing

over crop rows. Our camera and a deep-learning algorithm comprised our Nature Inspired

Detector (NID)system. We trained YOLO V5 and Faster R-CNN on our dataset of strawberry

images incorporating the UV spectrum (300-400nm). Our results showed that NID YOLO V5

outperformed NID Faster R-CNN in training time (0.3 vs. 4.5-5.5 hours) and mAP (0.951 vs.

0.934). We also present the field test of our NID YOLOv5 system on a drone platform to validate

its ability to detect strawberry flowers.

3.3 RÉSUMÉ

La réflectance ultraviolette (UV) est un signal essentiel de nombreuses espèces végétales qui

utilisent des pigments sélectifs en longueur d’onde dans les structures reproductives florales pour

déterminer la couleur des fleurs et leur apparence pour leurs pollinisateurs aériens, principalement

les abeilles. Cet article présente un système de télédétection inspiré des pollinisateurs incorporant

la réflectance UV dans un détecteur de fleurs pour les cultures de fraises. Nous avons conçu une

caméra sensible aux UV compacte et économique pour la télédétection aérienne sur les rangées

de cultures. Notre caméra et un algorithme d’apprentissage en profondeur comprenaient notre
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système de détecteur inspiré de la nature (NID). Nous avons formé YOLO V5 et Faster R-CNN

sur notre ensemble de données d’images de fraises incorporant le spectre UV (300-400nm). Nos

résultats ont montré que NID YOLO V5 surpassait NID Faster R-CNN en temps d’entraînement

(0,3 contre 4,5-5,5 heures) et mAP (0,951 contre 0,934). Nous présentons également le test

terrain de notre système NID YOLOv5 sur une plateforme drone pour valider sa capacité à

détecter les fleurs de fraisier.

3.4 Introduction

Agriculture is known to be one of the most active sectors of innovation (Davis, J. et al.,

2018). Now more than ever, with the changing dynamics of the world due to climate change,

urbanization, and the increased human population, the agriculture sector needs to adapt and

expand its adoption of automated systems for crop management. Several technologies can

support the required innovations, namely compact digital cameras, supervised machine learning

algorithms, and mobile robotic systems such as uncrewed aerial vehicles (UAVs). As the

accessibility to these technologies increases, UAV remote sensing is quickly becoming the tool

of choice across agricultural (Tsouros et al., 2019) and non-agricultural (Shakhatreh et al., 2019)

sectors for data gathering. Various remote sensors enable the capture, processing, and analysis

of airborne data to provide farmers with accurate information about their crops and help them

make informed decisions (e.g., needs-based water application, nutrients, and chemicals). Such

is the basis of precision agriculture. In parallel, the industry underwent significant development

in robotized crop manipulation, such as harvesters and pollinators. The latter is motivated by the

near-extinction of several species of bees in some parts of the world (e.g., Goulson, D. 2012).

Indeed, according to Aurell et al. (2022), the honey bee population decreased by 23.8% in

2021-2022. Moreover, some modern agricultural practices, often beneficial to industry and

society, provide an unsuitable environment for natural pollinators (bees), such as greenhouses

and poly-tunnels (Kopongo, J.P. et al., 2008). Similarly, the growing popularity of urban

agriculture and vertical farms calls for creative innovation for the sustainable pollination of crops

(Goldstein, 2018). The development of digital cameras, using (charge-coupled device) CCD and
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(complementary metal oxide semiconductor) CMOS sensors, more powerful computers, and

object detection algorithms have been crucial to precision agriculture. Today, neural network

algorithms combined with (Red, green, blue) RGB or hyperspectral camera data have given

rise to vegetation indices that can measure soil and plant health, crop growth, and nutrient

requirements (Kattenborn et al., 2021). It also shows excellent potential for weed and disease

detection, input requirements, and crop yield estimation (Tsouros et al., 2019). Yield can be

estimated based on flower count or stand count. Manual flower counts are labour-intensive and

prone to human error (Chen Y. et al., 2019). A robotic system must first detect and localize

the target flowers to automate counting. Unlike the detection and localization of ripe fruits

(Chen Y. et al., 2019), flower detection can direct robotic pollination efforts rather than robotic

picking. Knowing flower time and location also helps farmers predict harvest time and inform

fertilization and watering schedules. UAV-mounted cameras and artificial intelligence (AI)

software allow automated, non-subjective yield estimation at a fraction of the cost and effort.

Most existing remote sensing systems are modelled on human vision (RGB), mimicking farmers

observing their fields. However, flowering plants have co-evolved for millennia to interact with

insects whose vision spans the UV-G-B range (Briscoe & Chittka, 2001). Pollinating insects

such as honey bees (Apis sp.) can distinguish crop species and cultivars from one another based

on floral patterning undetectable to human vision (Briscoe & Chittka, 2001) against a complex

background and while airborne. These pollinators’ increased contrast in the UV-G-B spectrum

contributes significantly to their target detection time. We hypothesize that the UV-G-B range

would be better suited to UAV platforms for flower detection as it would mimic pollinator vision

and detect intended plant cues for aerial pollinators. This paper presents a biologically inspired

UV-G-B camera, Nature Inspired Detector (NID), which mimics a natural pollinator’s vision for

detecting crop flowers using state-of-the-art object detection algorithms tuned to the task. We

will start by introducing the most relevant works regarding agricultural remote sensing platforms

and sensors. A related works subsection discussing detection algorithms will appear later in the

learning to see flowers section. We then present our study species, sensor design, and detection

algorithm. We conclude with our field deployment of the NID system.
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3.4.1 Related work

3.4.1.1 Aerial remote sensing platforms

Several options for ground vehicles are already available as remote sensing and phenotyping

platforms (Deery et al., 2014; Williams et al., 2020). As for artificial pollinators, uncrewed ground

vehicle (UGV)-based robotic systems have already been proposed for Kiwi fruit pollination (Li

et al., 2022; Williams et al., 2020) and used in poly-tunnels (Ko et al., 2014; Le et al., 2020).

Nevertheless, recent years have seen a tendency toward using UAVs for precision agriculture

(Kim et al., 2019; Mulla, 2013). Various aerial platforms are available: their selection depends

on the application requirements. Fixed-wing platforms have increased flight time and payload

capacity; however, their inability to hover makes it challenging to get higher-quality data. Blimps

can obtain clear images due to their hovering ability but are slow and challenging to maneuver

outdoors. Rotor copters also have hovering capabilities, thus providing a better chance to

capture higher-quality imagery. However, these platforms have limited flight times (Sankaran

et al., 2015). Sankaran et al. (2015) present a comprehensive review of the advantages and

disadvantages of different types of platforms for applications in agriculture. In this project,

we selected a quadcopter as our platform because of the ability to control the flight speed and

altitude to collect high-quality images embedded with GPS location data for map creation.

Although the speed and fight time is less than that of a fixed-wing, this project is testing the NID

sensor. Therefore, we chose the platform which would collect the highest quality data.

3.4.1.2 Visual remote sensing and detection

The most frequently used optoelectronic sensors for precision agriculture applications use

the visible light range (>400nm; Pallottino F. et al., 2019). When capturing images, these

lightweight, inexpensive sensors replicate roughly the human vision range (400-700nm). They

benefit from the most extensive literature on object detection algorithms due to the many RGB

image datasets available for classification (Deng J. et al., 2009). Detecting flowers and fruits

using these sensors has led to different algorithms, such as flower contour detection through



60

colour and edge detection (Hong & Choi, 2001) and spectral and spatial methods, e.g., for

detecting tomatoes (Senthilnath et al., 2016). However, their main disadvantage is the inability

to analyze any parameter outside the visual spectrum (Tsouros et al., 2019). Other spectral

bands offer valuable data about the crops, such as the state of chlorophyll. Naturally, when a

plant becomes diseased or stressed, the amount of chlorophyll reduces - resulting in an overall

change in spectral reflectance. Studies have also shown that UAV-based NIR imagery can

accurately detect water stress (Antolinez et al., 2022; Z. Zhou et al., 2021). As such, multispectral

cameras, visual sensors that detect in more than one spectral range, are growing in popularity

in agriculture. For example, Abdulridha et al. (2020) showed that a robotic system including

a Vis-NIR multispectral camera (400-950nm) could detect powdery mildew in asymptomatic

squash plants with 89% accuracy under field conditions. Gomez-Candon et al. (2016) used a

similar sensor to study water stress in apple orchards. They showed a strong correlation (𝑅2 =

0,9975) between temperature measured on ground targets and estimates made from aerial images.

Alternatively, Stumph et al. (2019) used a UV-VIS multispectral camera to detect tree-dwelling

insects using induced fluorescence and achieved detection precision as high as 80%. Thus, there

is much potential for remote detection beyond the visual range (400-700nm) of RGB cameras.

The Near UV (300-400nm) is one underexplored range in multispectral cameras. Although we

present the example of Stumph et al. (2019) above, their study measured UV fluorescence rather

than UV reflectance. As previously discussed, flowering plants have co-evolved interactions

with insects using UV reflectance in the Near UV range (Briscoe & Chittka, 2001). Remote

sensing data of this type would capture ecological signalling and further the understating of

pollinator landscapes.

3.4.1.3 UV Cameras

UV cameras are expensive and cumbersome (Stuart et al., 2019). The lack of development of

such sensors may come from the need for studies exploring the use of UV floral reflectance of

plants. Spectral reflectance studies have reported down to 300nm, but most species in reflectance

databases are native species, not crops (Arnold et al., 2008). The lack of data on the floral
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reflectance of crops leaves a knowledge gap for estimating the visibility of crop cultivars to

pollinators. Furthermore, UV cameras and lenses in plant UV spectral reflectance studies were

bulky and expensive, leading to even fewer field studies (Stuart et al., 2019). This project aims

to develop an efficient, biologically inspired flower detection system that leverages the UV-G-B

spectrum using a powerful yet cost-effective drone setup.

3.4.1.4 Strawberry as the target species

Rosacea is one of the major flowering crops families cultivated globally. It contains orchard

species (e.g., apple, pear) as well as bramble (e.g., Raspberries, Blackberries) and alpine

berry species (e.g., strawberry, cloudberry). Unlike Rosacea orchard and bramble crops, some

commercial strawberry cultivars are everbearing, flowering throughout the growing season. Their

prolific flowering, compact habit, and flowers held on stocks above the foliage make it an ideal

crop for aerial imagery studies. Strawberry fruit is Canada’s fifth most valuable fruiting crop

and is an ever-growing market, increasing consistently since 2015, peaking in 2021 and earning

a farm gate value of $129 million. With the post-pandemic consumer market prioritizing local

and domestic food production (Beingessner, N. et al. 2020), provinces are incorporating more

greenhouse production to make local produce available year-round, leading sales of greenhouse

strawberries to increase by 19.1% in 2021 (Statistics Canada, 2022; Government of Canada,

2022; Government of Saskatchewan, 2023). Quebec is the country’s leading producer and has

more fields devoted to strawberry production than any other province (Statistical Overview

of the Canadian Fruit Industry 2021, 2022; Fig. 1). However, with a recent commitment to

reducing the use of pesticides and unpredictable weather, overall production per hectare has

declined, leading Quebec also to consider greenhouse and polytunnel strawberry production.

As previously mentioned, greenhouse environments can be challenging to natural pollinators.

With greenhouse production and domestic fruit consumption only predicted to increase, robotic

pollinators are a technology on the horizon for Canadian fruit farmers.
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Figure 3.1 2021 Canadian farm distribution map for

strawberry fruit production (Statistics Canada, 2022;

Government of Canada, 2022; Government of Saskatchewan,

2023).

3.5 Sensor Design

We postulated that UV-based detection would enhance airborne flower count, but adapted remote

sensors were missing. So, we designed a custom sensor inspired by bees. In agricultural settings,

various bee species are the primary pollinators of strawberry flowers, primarily Apis mellifera,

or western honey bees (James & Pitts-Singer, 2008). Like humans, bees have three peaks in

their vision spectrum. While humans see from 400-700nm, from blue to red (RGB), honey bees

see from 300-650nm, from near-UV to green (Briscoe & Chittka, 2001). Fig. 2 presents the

respective sensitivity curves. The design of most digital cameras captures images in the human

visual spectrum using a Bayer filter, a pattern of red, green, and blue filters (RGB) across the

photodiode matrix (Palum, 2001). The internal body of most cameras also has an Anti-Aliasing

(AA) (blur)/ IR cut filter (ICF) made of various glass, which prevents UV light from reaching the

sensor due to the absorption of photon energy (Ulizio, 2015). Internal microlens and external

glass lenses also affect UV light transmission similarly. Figure 4(a) shows the internal spectral
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transmission of an industry-standard GoPro camera. For our Nature inspired detector (NID)to

capture images in the near UV-B-G range we first removed the Bayer filter from a CMOS

sensor to facilitate this. Lopez-Ruiz et al. (2017) accomplished this with their UV sensor for a

Raspberry Pi camera; however, the process needed to be more robust and replicable. Therefore,

we partnered with a commercial company to remove the filter for us using their proprietary

methodology (MaxMax, 2022). We replaced the AA/ICF with Schott WG280 glass which

transmits light to 280nm (Schott AG, 2023). We removed the micro lens, and added an external

lens to restrict the transmission above 650 nm, which allowed 80-100This design results in

a monochrome sensor that mimics the vision spectrum of a western honey bee. Inherently,

monochrome sensors can achieve higher resolution, faster processing times or frame rates, and

store smaller files than their RGB counterparts, as coloured images are processed over three

dimensions. The Bayer filter can also reduce the optical resolution of the system (Burlayenko, O.

V., & Lukianchuk, O. V., 2017). In this context, monochrome images present several advantages

for machine vision processing. Figure 4 contrasts a standard GoPro’s internal light transmission

design to our NID camera.

Figure 3.2 Visual spectral Sensitivity of Western Honey Bee

v.s. Human. Dotted black, blue, and green lines represent bee

UV, B, G. Solid red, green and blue lines represent human R,

G, and B (Coliban et al., 2020; Dyer et al., 2015).
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Figure 3.3 Transmission spectrograph for materials of NID

camera. The blue line represents WG280 Schott glass, and the

pink line represents the XNite BP1 filter. >80 % transmission

in the 300-650nm range (LDP LLC - MAXMAX, 2022; Schott

AG., 2023).

Figure 3.4 Internal visual remote sensor design. (a) GoPro

Hero 9 RGB action camera (b) NID monochrome camera. *

80% transmission, ** >91.5% transmission, ***>10%

transmission. (Bandara A.M.R.R, 2011; Taguchi, H., &

Enokido, M., 2017; Nieto, D., et al. 2012; Präzisions Glas &

Optik., 2023; Dyer et al., 2015; Corning Inc., 2022)
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3.5.1 Camera Design

We designed the body of our NID to be lightweight, affordable, and drone-mountable. Given

the shipping conditions for the 2019 pandemic, Table 1 compares two camera body models

we considered. Both are lightweight and can mount onto a drone. When considering camera

resolution requirements, we considered that the downdraft from rotors could move target flowers

and introduce excess blur to images, decreasing data quality. To keep downdraft effects to a

minimum, we designed the system to fly at 3m. When determining the appropriate sensor

resolution, we sampled comparable flower detection studies which used ground sampling distance

(GSD) as a standard metric across various camera remote sensors, which ranged from 0.7 to 3

cm/pixel (Chen et al., 2019; Hunt Jr & Daughtry, 2018; Vanbrabant et al., 2020). For digital

photos in remote sensing, GSD is a geometric relationship, described in equation 1, between a

camera’s physical attributes and distance from a target to determine ground measurements from

pixel distances in an image (Purcell, C. R. 2000). Considering our pre-determined flight altitude

of 3m, we determined that a resolution of 3264x2448 would result in a GSD= 1.16cm/pixel.

Both models considered had sensors that could provide an adequate resolution. However, unlike

the GoPro, the X-Nite has a USB cable connecting the camera directly to a computer for image

capture and continuous power drawing. This camera is lighter weight and retails for 500 USD.

These attributes made it more robust and cost-effective than the GoPro model.

Table 3.1 Test of a long table caption, with Our camera

model contrasted with a comparable camera on the market

Camera

Body

Weight

(g)

Lens

Weight

(g)

Body Dim.

(LxWxH)

cm

Cable

(15cm)

Weight (g)

Total

X-Nite 83 4 4x 2.2 x 4 7
87-

91g

GoPro

HERO

9

158 na
5.5 x 7.1 x

3.3
na 158g

We calculated GSD with the following:



66

𝐺𝑆𝐷 = 𝜆 ∗ 𝐻/𝑐 (3.1)

where H is the flight altitude (m), c, the Focal length (mm), and 𝜆, the camera sensor pixel size.

3.5.2 Camera Characterization

Characterization of a camera model has applications in developing and using colour-related

image-processing algorithms (Barnard, K., & Funt, B. 2002). It ensures a predictive relationship

between the camera sensor’s response as a function of wavelength. Previous studies have

quantitatively analyzed the colour patterns of animals in the UV spectrum using linear camera

responses (Garcia JE et al., 2013). As the NID is a novel design, we characterized the camera to

ensure a linear response for analyzing strawberry flowers similarly. A reflectance standard is

a reference sample of a known reflectance ratio (amount of light reflected by a surface given

a determined amount of incident radiation) within a given spectral range (Wen, BJ. 2016).

As commercially available reflectance standards poorly reflect UV (320-400 nm), we created

appropriate reflectance standards. Following the work of Dyer et al. (2004), we created five

standards from varying proportions of medical-grade magnesium oxide (MgO), Plaster of Paris,

and activated carbon and a sixth standard of black UV-absorbing plastic. We measured each

standard’s (1-6) spectral reflectance (% R) in the 200 - 700 nm range with a Perkin Elmer’s

Lambda 850 UV-VIS spectrophotometer. Figure 6 shows the resulting spectrogram. The

intercept for each curve denotes the consistent % R each standard will emit across varying

lighting conditions. Images of the standards were recorded with our NID camera in raw

monochrome format and encoded into an 8-bit scale using ImageJ (1.53t). The camera response

consisted of mean pixel values obtained from point sampling ten pixels at the center region of

each standard. Calculations involved in characterization were performed in Microsoft® Excel®

2016. The Opto-electronic conversion function curve for the NID was constructed by plotting

the camera’s response for each spectral reflectance reading (%R) of the reflectance standards

(Garcia JE et al., 2014). A simple linear model was fitted to the curve, providing strong evidence
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for a linear relationship between the camera response, pixel value, and spectral reflectance (Fig

5. R2 = 0.9821).

Figure 3.5 Correlation curve for UV-reflectance standards

and image pixel values. % Reflectance measured with Perkin

Elmer’s Lambda 850 UV-VIS spectrophotometer. Pixel value

from images produced with the NID camera.

Figure 3.6 UV reflectance standards spectrogram measured

with Perkin Elmer’s Lambda 850 UV-VIS spectrophotometer.
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3.6 Learning to see flowers

Whereas detection algorithms on RGB images have gone a long way, multispectral images

are only recently being used (e.g., Zeng Z et al., 2021). Using our NID camera design, we

developed a detection algorithm adapted and trained on its specific type of images. Pre-trained

algorithms, such as MSCOCO, only use RGB image datasets. It was, therefore, necessary to

create a training dataset of unique images for our target species and sensor. Validation determines

which algorithm is best for flower detection in this context. In competition, Convolutional

Neural Networks (CNN) have proven themselves to be the best approach for target identification

and classification due to their ability to extract increasingly complex visual features through

their hierarchical structure (Zheng et al., 2021). Regarding strawberry flower counting, Faster

Region-based Convolutional Neural Networks (RCNN) have shown the best results (86.1%,

86.4%, and 86% accuracy, respectively (Chen et al., 2019; Lin & Chen, 2018 and Zhou et

al., 2020). In an aerial application, Chen et al. (2019) recently employed Faster R-CNN for

strawberry flower detection with a DJI Phantom 4 pro and attained mAP= 0.772. Given their

flight altitude of 3m and a mixed training data set of strawberry cultivars, this is the most recent

comparable work to our current study. However, Faster RCNN often has a longer processing time

than You Only Look Once (YOLO) object detection (Mahendrakar et al., 2022). Furthermore,

Immaneni et al. tested YOLOV4 drone images from a strawberry field and achieved a better

accuracy; of 91.95% at 14.6 FPS (Immaneni et al., 2022; Bochkovskiy et al., 2020). Related

species, such as Pear flowers, have also shown promising results with YOLO, with an mAP of

94% (Wang et al., 2022).

3.6.1 Captured Strawberry flower dataset

Since no image datasets of UV-B-G images were available, we created an original dataset using

various strawberry cultivars and made it publicly available in PytorchYoloV5 and TF record

formats (DOI: 10.5281/zenodo.7863719). F. x ananassa ‘Seascape’ and ‘Fort Laramie’ are

commonly recommended commercial everbearing cultivars for central and east coast Canadian

provinces. Therefore, we included them along with F. x ananassa ‘Hecker,’ an older everbearing
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cultivar popular with commercial growers for decades before ‘Seascape’(Strawberry Plants

LLC, 2022). F. Vesca is a North American woodland native grown by breeders for its genetic

attributes and by specialty fruit growers for wine production. We procured and potted all

bare-root plants from a local Quebec nursery. We captured images under sunny conditions

between 11 am and 1 pm within the 320-600nm. We placed the camera 6cm from an open

flower at a 90-degree overhead angle. Images had 640x480 resolution (focal length= 3.6mm,

GSD=0.023 cm/pixel). We used Roboflow Inc. (2022) for data management and bounding box

image labelling. Images were pre-processed for auto-orientation and resized into a square shape

of 416x416 for detection algorithm compatibility. We then applied the following augmentations

of the dataset: horizontal and vertical flip, rotate ±90-degrees, rotate ±15-degrees, sheer

±15-degrees vertical and horizontal, noise 5%, and blur 5px. The resulting dataset consisted of

284 NID images (Table 3.2).

3.7 Algorithm comparison

We tested two CNN architectures on our dataset for flower detection: Faster R-CNN and YOLO

V5. We chose Faster R-CNN to compare our results to the work of Chen et al. (2019), who

detected strawberry flowers from RGB UAV images, currently the closest related work to our

study. Where they used Resnet 50 as their convolutional layer architecture, we chose Incecption

V2, which produces a higher detection accuracy (Bianco S. et al., 2018; Sukegawa S. et al., 2022).

We included YOLO architecture, a classic one-stage object detection algorithm for real-time

detection. The fifth generation, YOLO V5, was employed following a recent review by Tian,

M., & Liao, Z. (2021) analysing the algorithm’s performance for flower detection. We based

our code implementation on the publicly available script for both YoloV5 (Jocher et al., 2020)

and Faster R-CNN (Ren et al., 2015). Initially, we used pre-trained weights for both algorithms

from MS COCO2017 (Lin et al., 2014). Training, validation, and test split was 40%/40%/20%.

We compared the algorithms using the following metrics: mAP@0.5, True positive (TP), False

positive (FP), and False negative (FN). mAP value allows for algorithm comparison in the

machine learning discipline, whereas TP is most relevant in practical agriculture. We trained
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YOLO and Faster R-CNN on our data set to compare results. YOLOV5s was chosen due to its

better performance on the small custom training datasets (e.g. Ouf, N. S., 2023) and ran for

1000 epochs with 16 batches. We ran Faster R-CNN with inception V2 for 20000 steps with

12 batches. Both algorithms used early stopping during training to prevent overfitting. Table 3

shows the results for the trained algorithms. YOLOV5s showed overall higher performance than

Faster R-CNN. Therefore, we used YOLOv5s for field testing of the system.

Table 3.2 Hyperparameters of detection algorithms

HYPERPARAMETER Yolo V5 Faster R-CNN

Momentum 0.937 0.9

Intersection over threshold 0.2 0.934

Epochs 1000 20000

Image size 640x480 640x480

Data Augmentation

horizontal and ver-

tical flip, rotate

±90-degrees, ro-

tate ±15-degrees,

sheer ±15-degrees

vertical and hori-

zontal, noise 5%,

and blur 5px

horizontal and ver-

tical flip, rotate

±90-degrees, ro-

tate ±15-degrees,

sheer ±15-degrees

vertical and hori-

zontal, noise 5%,

and blur 5px

Batch size 16 12

Table 3.3 Resulting detection from UVGB trained

YOLOV5 and Faster R-CNN on training dataset at

416x416 resolution, and, on aerial images at 96x96

resolution

Training

Dataset

Detection

Method

mAP

@0.5

Detection

count
FP(Rate) TP(Rate) FN(Rate)

96x96 YOLOv5 0.951 3260
2042

(62.2%)

1218

(37.1%)
25 (0.76%)

96x96
FR-CNN

V2
0.934 166 108(8.0%) 58(4.3%)

1185

(87.7%)

416x416 YOLOv5 0.978 77 0 (0%) 77 (97.4%) 2 (2.53%)

416x416
FR-CNN

V2
0.912 144

69

(46.31%)

75

(50.34%)
5 (3.36%)
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3.8 Field deployment

To validate the usefulness of our solution as a precision agriculture tool, we deployed our sensor

on a commercial UAV and flew over a local strawberry field.

3.8.1 Aerial System implementation

We selected the UAV platform to maximize the payload capacity while minimizing cost and size.

Table 4 details the comparison of the potential options we considered. Spiri Mu (2023) stood

out as the best option compared to other commercially available devices. The Mu is powered by

Nvidia’s TX2, powerful enough for heavy onboard image processing. To mount our camera

and interface it to the onboard computer, we replaced the original underbelly of the Mu with

an in-lab 3D printed attachment which could house the mounting for the camera. Moreover,

we replaced the original landing gear of the drone with wooden dowels to make it taller to

accommodate the additional sensor. Figure 8 shows the modified drone in the field, ready for

take-off. Qground Control (QGC) calibrates onboard sensors and monitors mission parameters

during flight. The onboard system runs on Linux with ROS preinstalled, simplifying our sensors’

software integration and providing us with tools to record and transmit data efficiently. Our ROS

camera driver is based on standard ROS packages to fetch and convert the USB camera feed to a

ROS image topic. Figure 7 shows an excerpt of the training data set.

3.8.2 Field deployment setup

We conducted field flights at Pépinère F. Fortier near Princeville, Qc. -planted with a mix of

white-flowering ’Seascape’ and ’Albion’ cultivars. An altitude of 3m reduced the effects of rotor

downdraft on plants and produced a GSD=1.16cm/ pixel. The Mu captured video under sunny

conditions from 11 am-1 pm to keep consistent with the training dataset. We used 88 frames,

which were tiled and re-sized to 768x768 pixels to reduce processing time, to test our trained

algorithm. A single reviewer counted 2295 flowers as the ground truth.
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Figure 3.7 Strawberry cultivars. * RGB images from Vesey,

2022, ** monochrome images captured with NID camera. The

far-right image shows Yolo’s detection of a strawberry flower

on the training dataset.

3.8.3 Flower detection on UAV images

The flower resolution from aerial images was much lower than the training dataset. We, therefore,

trained YoloV5 and Faster R-CNN on the same image dataset as before but at a lower resolution,

96x96 pixels, to increase TP detection (Table 3). We ran inferences with a 0.51 confidence

threshold on a Tesla P100-PCIE - 16 GB in Google Colab (Bisong, 2019). Tables 5 shows the

results of our trained YOLOV5 on the aerial images.

Table 3.4 Cost and size comparison of similar UAV

models on the market with the Spiri Mu

Drone
Dimensions LxWxH

(mm)

Payload Ca-

pacity (g)

Base

Cost

(CAD)

Spiri Mu 170x170x51 1000 2000

DJI M300 810×670×430 2700 12,722

DJI

Mavic 3
347.5×283×107.7 727.4 2544

DJI Phan-

tom 4
289.5x289.5x196 800 2383
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3.9 Results

3.9.1 Flower detection from aerial images

Although the TP detection proportion was low (37.1 percent) for YoloV5, overall, 97 percent of

flowers were accurately detected (n=1218 of 1243 in the dataset). However, the FP detections

(n=2042,62.2 percent) far outnumbered the TP leading to a lower proportion. Ripening or

developing fruits accounted for 33.3% (n=680) of FP detections 8b.

Figure 3.8 Modified Spiri Mu quadcopter. (A) NID camera

held on the underside of UAV facing the ground at 90 degrees.

(B) Extended legs to accommodate NID camera mounting.

A similar result was attained with Faster R-CNN (17.6 %). YOLO V5 showed the overall best

performance for our system. As we did not train our algorithm with strawberry fruits, and they

exhibited similar spectral properties as the flowers, this led to increased FP detections (see, for

instance, Fig. 9).
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Figure 3.9 Detection examples from aerial images of (a) TP

detections of open flowers and (b) FP from ripening fruits.

Chen et al. (2019) conducted a similar flower detection study on strawberries using a Phantom 4

Pro to capture aerial images in RGB. Table 5 compares their results with ours. Chen et al. (2019)

used Faster R-CNN with Resnet50 trained on Imagenet at a flight altitude of 3m. Our system

used Inception V2, resulting in higher mAP with Faster R-CNN than their study; however, overall

detection was low. When comparing the results from the NID to the findings from Chen et al.

(2019), the NID showed a higher detection accuracy (mAP) with a higher image processing time

(FPS). This result can be attributed to the difference in CNN architecture as Inception V2 does

produce higher accuracy but is much slower than Resnet50 (Bianco S. et al., 2018; Sukegawa S.

et al., 2021). Our YoloV5 algorithm vastly outperformed Faster R-CNN algorithms in training

time (0.3 vs. 4.5-5.5 hours), mAP (mAp=0.951 vs mAP= 0.934-0.772) and image processing

(14.5 vs. 0.54 or 8.872 FPS) and was therefore used in our field validation.

3.9.2 Orthomosaic of field

We Orthomosaiced 742 video frames using Pix4D software (Pix4D SD, 2023) with 80% overlap,

synchronized with GPS coordinates (Fig. 10a).

We isolated one row comprising 57 frames (Fig. 10 b & c) and manually counted 33 flowers

for ground truth—Table 6 and Figure 10 d & e present the results of the NID system on the
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Table 3.5 Comparison of sensors in similar

experimental conditions. NID detection results on aerial

images using YoloV5 and Faster R-CNN compared with

Faster R-CNN from Chen et al. (2019).

UAV

Model

Detection

Method

Training

Time

(Hrs)

mAP@0.5 FPS

Spiri Mu YOLOv5 0.3 0.951 0.0083

Spiri Mu
FR-CNN

Inc.V2
4.5 0.934 1.86

Phantom

4 Pro

FR-CNN

with

Resnet50

5.5 0.772 8.872

orthomosaic. Overall, 90.9% of flowers were accurately detected (n=30 of 33 in the row).

Patterns of FP, TP and FN rates are consistent with NID detection on individual video frames.

However, the higher FP rate could be attributed to stitching effects from the orthomosaic.

Ripening or developing fruits accounted for 28.6% (n=45) of FP detections which is also

consistent with results from individual aerial frames.

Table 3.6 Orthomosaic. Algorithm detection vs. ground

truth.

Training

dataset

resolution

Detection

Method
mAP@0.5

Detection

count
FP rate TP rate FN rate

94*94 YOLOv5 0.951 190 157(81.3%) 30(15.5%) 3(1.55%)

3.10 Discussion

Farmers, like the ones from our test field, re-plant yearly for the best harvest results. A tool

for flower detection would need to be robust to changing varieties and cultivars and provide

consistent results. Farmers had randomly planted the test field with ’Seascape’ and ’Albion’

cultivars. Although we included ’Seascape’ in our initial training dataset, ’Albion’ was not.

Our algorithm detected novel cultivar flowers, indicating that a limited database of strawberry
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Figure 3.10 Orthomosaic image analysis. (a) orthomosaic

image of Quebec strawberry farm from NID field deployment.

(b) isolated crop row in the field. (c) isolated crop row (d)

Detected flowers with YOLOv5 NID (e) Labelled detections

from YOLOv5 NID system; Yellow for flowers, pink for False

positives.

cultivar flowers could be sufficient for developing remote sensing tools and would only require

finite updating to accommodate new varieties to the market. Schaefer, et al. (2008) explored

the effects of fruit colour variation as signals of dietary reward. They found that fruits rich in

anthocyanins, a plant antioxidant, are black or UV- reflecting and are in higher concentrations

in ripe fruits. In strawberry fruits, anthocyanin concentration increases with fruit maturity (da

Silva, et al.,2007; Song et al. 2015). As our camera perceives the UV but not Red spectral range,

ripening strawberries appear bright white in our frames. When at similar size and circularity,

these fruits are mislabelled as flowers by our algorithm (Fig 9). The remaining FP detections

can be attributed to solar reflection on leaves, runners, and flower stocks. These are examples

of the complexity of our field setting. Including null images of background foliage in initial

training would also increase overall algorithm robustness. However, no FP was attributed to
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weed species visible within and between crop rows. These included: Fleabane, lambs’ quarter,

crabgrass, purslane, and cow vetch. Some of these plants were in flower; however, the algorithm

could distinguish between these and strawberry blossoms. We consider this worthy of future

exploration. A significant limitation of this research was the aerial resolution of the flowers.

Due to the downdraft effects from the rotors, we could not reduce flight altitude beyond 3m.

This leads us to reduce the initial training image resolution significantly to match the drone

images. A higher resolution sensor would help detection while maintaining flight altitude and

avoiding downdraft effects.

3.11 Conclusion

In this paper, we have described and discussed the development of a cost-effective, lightweight,

airborne UV-sensitive camera. We performed extensive field experimentation to gather high-

quality imagery data and demonstrated its usability by feeding it to two state-of-the-art object

detection algorithms. The improved results over previous similar experiments show that our

system is highly scalable, as the cost of the system is low, and that the UV spectrum can provide

valuable information about the crops’ flowers. The development of this sensor and the choice

of the aerial platform opens up opportunities for future work. Developing a flower detector is

the first step towards the bigger goals, such as estimating crop yields and creating a functional,

biologically inspired robotic pollinator. Currently, using ROS onboard of Spiri Mu drone,

GPS coordinates and ROS topics are recorded. In the future, these GPS coordinates can be

used in conjunction with the images to create a global field map and direct harvest efforts.

Additionally, developing automatic row cropping methodologies would help get better results

with the object detection algorithms. Future iterations of this study will also include strawberry

fruits at various developmental stages in the initial training process. Our sensor design shows

a linear relationship between percent reflectance and pixel value between 300 and 650 nm

opening up many possibilities for its use even beyond agriculture. Our design can be ordered

to specification, and the sensor transmission spectra are provided upon request. Lastly, our

monochrome sensor design does not allow for the contrast between chroma channels as RGB
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sensors or animal eyes do. Future sensor iterations should explore removing only the red colour

of the Bayer filter. Using our existing camera body design, this would retain the green and

blue channels and replace the red with UV. We could perform computer analysis for 3-channel

images routinely, as the proportion and placement of the three channels on the sensor diode are

unchanged. Thus, several enhancements to this platform can improve the overall performance of

the system and can help us make significant contributions to accelerate the research in this area.

We openly make our datasets and trained algorithms available in hopes of furthering scientific

pursuits.
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CONCLUSION AND RECOMMENDATIONS

This project challenged conventional ideas about remote sensing in agriculture by employing

the visual range of insect pollinators in remote sensing of strawberry flowers. The objectives

of this project were presented in two submitted publications. The article in Chapter 3 presents

a meta-analysis of UV reflectance in remote sensing from 1969 to 2021. It revealed that

UV reflectance is underutilized in crop studies as a remote sensing parameter. Most studies

were lab-based and used spectrophotometers or spectrometers/spectroradiometers, which are

impractical for precision agriculture. The studies with a "field" component used various camera

models and setups. Although the cameras presented were costly and bulky, I identified a need

for a lightweight, cost-effective camera which could capture near UV data. Furthermore, one

of the highest global-producing crops, Strawberry, had yet to be spectrally analyzed. Using a

spectrophotometer, I analyzed two species of Strawberry ( Fragaria vesca and four Fragaria

x ananassa cultivars). I made all spectrographs available in the Floral Reflectance Database

(FReD). By calculating the contrast between floral parts and background leaves, I identified that

the cultivar most noted for its high yield and fruit quality demonstrates the highest visibility to

pollinators (bees). Higher pollination rates are known to affect strawberry fruit quality and size

positively. Breeders of strawberry cultivars could have been selected for this parameter without

knowing, as it is inconspicuous in the human visual spectrum. The second submitted publication

in Chapter 4 presented the Nature-inspired detector (NID). The NID is a lightweight, inexpensive

system which captures monochrome images in the visual spectrum of a bee (300-650nm) and

detects strawberry flowers. Unlike visible spectrum RGB cameras, I designed the NID camera

to allow wavelengths down to 300nm ( near- UV) to reach the sensor. UV cameras are usually

expensive and heavy. However, the NID was light enough to field test on a UAV over a strawberry

field. The NID remote sensor (camera) shows a linear response for the near-UV to the visible

spectrum, which was determined through characterization with custom UV standards and a

spectrophotometer. The linear response denotes a direct relationship between a pixel value
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captured by the NID and the imaged objects’ percent reflectance. The second part of the NID is

the algorithm which detects strawberry flowers. YoloV5 and Faster R-CNN are industry-standard

detection algorithms for flower detection. To train these algorithms, I created an image dataset

with the NID camera of white-flowering strawberry cultivars, which is publically available for

future work (DOI:10.5281/zenodo.7863719). Once trained, the NID system was mounted on a

UAV and deployed over a strawberry field in Quebec, Canada. YoloV5 outperformed Faster

R-CNN in field trials in mean average precision (mAP) and image processing speed (FPS). When

results from a similar publication (methodology and target species) using an RGB camera were

compared to those from this study, the NID outperformed in training time, mAP and processing

time (FPS). In conclusion, our NID system should be deployed in other agricultural settings,

including greenhouses and polytunnels. It has potential use in crop breeding and pollinator

interaction studies also. The NID flower image dataset and flower detection trained algorithms

have room for improvement in future work. Adding more flower images and unripe fruit would

increase the system’s robustness and reduce false positive detections. Contributions to the Floral

Reflectance Database (FReD) should be consulted for future works designing a remote sensor

for strawberry flowers as it can inform the choice of spectral range needed. Overall, crop species

should be included in spectral studies, especially in the near UV range. The effects of crop

breeding should be assessed regarding visibility to natural pollinators, as agricultural fields

comprise a large part of pollinator landscapes globally.
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