

Rules to Migrate a Relational Database to a Column-Oriented
NoSQL Database

by

Abraham GOMEZ

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, SEPTEMBER 21, 2023

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Abraham Gomez, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work may not be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alain April, Thesis Supervisor
Department of Software Engineering and Information Technology at École de technologie
supérieure

Mr. Amin Chaabane, President of the Board of Examiners
Department of System Engineering at École de technologie supérieure

Mr. Alain Abran, Member of the jury
Department of Software Engineering and Information Technology at École de technologie
supérieure

Mr. Robert Dupuis, External Evaluator
Département d’informatique, Université du Québec à Montréal

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND PUBLIC

ON JULY 27, 2023

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

Règles à suivre pour migrer une base de données relationnelle vers une base de données
NoSQL

Abraham GOMEZ

RÉSUMÉ

La croissance importante des données liées aux applications Web a exposé les limitations des
technologies de bases de données relationnelles. En effet, ces technologies rencontrent
actuellement plusieurs défis, par exemple, les limites liées à l’augmentation de leur la taille et
comment gérer les problèmes liés à un accès rapide dans ce contexte.

Ces problèmes peuvent être résolus soit à l’aide de solution matérielles ou logicielles. Des
technologies logicielles de bases de données émergentes liées à l’infonuagique, plus
précisément, les bases de données NoSQL promettent d’apporter des solutions à ces défis. Ce
type de technologie de bases de données émergente est récemment apparu comme une solution
aux limites des technologies de bases de données relationnelles qui font face à la gestion de
très grandes quantités de données sur le Web. Plusieurs publications récentes décrivent ces
problématiques, entre autres, dans le domaine des réseaux sociaux et de la génomique.

Mais, chaque nouvelle technologie comporte des défis d’utilisation et les ingénieurs logiciel,
qui sont plutôt familiers avec les technologies de bases de données relationnelles, hésitent
souvent, initialement, à utiliser ces nouvelles technologies par manque de connaissances. Cette
recherche a pour objet d’expérimenter et de découvrir un ensemble de règles qui visent à aider
à la migration des bases de données relationnelles vers des bases de données NoSQL orientées
colonnes pour les ingénieurs logiciels qui font cette migration pour l première fois.

À la suite d’une expérimentation de migration d’une base de données relationnelle existante
vers une base de données NoSQL orientée colonne, dans notre cas la technologie HBASE, des
ingénieurs logiciels tentent d’effectuer cette migration à l’aide seulement de leur expérience.
Cette expérimentation permet d’étudier les défis rencontrés et étapes effectuées par chaque
participant et de découvrir sept (7) règles de migration qui ont le potentiel de mieux guider les
migrations futures et qui ajoutent à la connaissance des publications récentes en découvrant
trois (3) étapes additionnelles qui permettent une meilleure couverture des aspects relationnels
lors de la migration.

Cette thèse propose donc ensemble de sept (7) règles de migration qui ont le potentiel d’aider
les ingénieurs logiciels qui effectuent cette migration de base de données pour la première fois.
La validation de l’utilité de ces règles seront validées dans une autre recherche pourraient les
guider pour effectuer les activités de migration des parties problématiques.

vi

Mots-clés : migration de base de données, migration de base de données relationelles (RDB)
vers NoSQL, règles de migration de base de données, HBASE.

Rules to Migrate a Relational Database to a Column-Oriented NoSQL Database

Abraham GOMEZ

ABSTRACT

The significant growth of data related to web applications has exposed the limitations of
relational database technologies. Indeed, these technologies currently face several challenges,
for example, the limits related to the increase in their size and how to manage the problems
related to fast access in this context.

These problems can be solved either with the help of hardware or software solutions. The
database software technologies related to cloud computing, specifically, No-SQL databases
promise to provide solutions to these challenges. This type of database technology was
developed as a solution to the limitations of relational database technologies that face the
management of very large amounts of data on the web. Several recent publications describe
these issues, among others, in the field of social networks and genomics.

But each new technology brings challenges of use and software engineers, who are familiar
with relational database technologies, are often initially hesitant to use these new technologies
for lack of knowledge. This research aims to experiment and discover a set of rules that aim to
help in the migration of relational databases to column-oriented No-SQL databases.

Following an experiment in migrating an existing relational database to a column-oriented No-
SQL database, in our case HBASE technology, software engineers attempt to perform this
migration using only their experience. This experiment allows to study the steps carried out by
each participant and to discover seven (7) migration rules which have the potential to better
guide future migrations, and which add to the knowledge of recent publications by discovering
three (3) additional steps which allow better coverage of relational aspects during migration.

This thesis therefore proposes a set of seven (7) migration rules that have the potential to help
software engineers who are performing this database migration for the first time. The validation
of the usefulness of these rules will be validated in another research could guide them to carry
out the migration activities of the problematic parts.

Keywords: database migration, RDBMS to No-SQL database migration, database migration
rules, HBASE.

TABLE OF CONTENTS

Page

INTRODUCTION ...1

RESEARCH OVERVIEW ..5
1.1 Motivation ..5
1.2 Problem definition ...8
1.3 Research questions ...8
1.4 Methodology ..9

1.4.1 Research Definition .. 10
1.4.2 Research Planning .. 10
1.4.3 Research Operation... 11
1.4.4 Interpretation .. 11
1.4.5 Conclusion .. 13

 LITERATURE REVIEW ..15
2.1 Concepts and RDBMS Technology ...15

2.1.1 RDBMS Definition ... 15
2.1.2 RDBMS concepts ... 17
2.1.3 ACID Properties ... 20
2.1.4 CAP Theorem ... 21
2.1.5 Database Scalability ... 23
2.1.6 Distributed Computing and Shared Nothing Approach 24
2.1.7 Current RDBMS Limitations ... 26

2.2 Overview of No-SQL Database Technology ...28
2.2.1 No-SQL History and State of the Art ... 29
2.2.2 Advantages of No-SQL .. 30
2.2.3 Challenges of No-SQL ... 31
2.2.4 The Hadoop Project .. 32
2.2.5 Definition .. 33
2.2.6 History Overview of the Hadoop Project ... 34
2.2.7 Hadoop subprojects .. 36
2.2.8 HBase as a No-SQL databases ... 38

2.3 Database Migration Theory ...44
2.3.1 Definition .. 44
2.3.2 Database Migration Approaches .. 46
2.3.3 Migration Translation Techniques.. 47
2.3.4 Overview of Database Migration State of the Art 48
2.3.5 Examples of No-SQL Migration Attempts from Relational DB 49

x

2.4 Conclusion .. 53

 EXPERIMENT – MIGRATION BASED ON HEURISTICS 55
3.1 Experimental Design ... 56

3.1.1 Experiment Participants and Data Collection Procedure 56
3.2 Experiment Results ... 59
3.3 Conclusion .. 64

 PROPOSED GUIDELINES FOR MIGRATION 67
4.1 What exactly do “guidelines to migrate” mean .. 67
4.2 Guidelines to migrate by relational aspect .. 68
4.3 The guidelines extraction process explained .. 84
4.4 How the 7 proposed migration steps compare to the current state of the art of RDBMS

to No-SQL migration .. 85
4.5 Future research .. 87

4.5.1 Validation of the proposed guidelines .. 88
4.6 Why this research is still relevant today? ... 90
4.7 Conclusion .. 91

CONCLUSION .. 93

APPENDIX I EXPERIMENT 1 – CALL FOR PARTICIPATION 97

APPENDIX II EXPERIMENT 1 –GENERAL INSTRUCTIONS 99

APPENDIX III EXPERIMENT 1 – RDB TO NO-SQL SURVEY 101

APPENDIX IV EXPERIMENT 1 –TRAINING DOCUMENT .. 105

APPENDIX V EXPERIMENT 1 –BLUE DOCUMENT ... 113

APPENDIX VI EXPERIMENT 1 –GREEN DOCUMENT TEMPLATE 115

xi

APPENDIX VII EXPERIMENT 1 –GREEN DOCUMENT SAMPLES117

APPENDIX VIII EXPERIMENT 1 –YELLOW DOCUMENT TEMPLATE143

APPENDIX IX EXPERIMENT 1 –YELLOW DOCUMENT SAMPLES145

LIST OF REFERENCES ...155

LIST OF TABLES

Page

Table 1.1 Basili’s framework – Research Definition .. 10

Table 1.2 Basili’s framework – Research Planning .. 11

Table 1.3 Basili’s framework – Research Operation .. 12

Table 1.4 Basili’s framework – Interpretation Phase .. 12

Table 3.1 Educational Level of the Participants ... 60

Table 3.2 Work Area of the Participants... 60

Table 3.3 Level of Experience in DB Domain.. 61

Table 3.4 Level of Coverage in Different DB Aspects ... 64

Table 4.1 Level of Coverage of HBase in RDB Aspects .. 87

LIST OF FIGURES

Page

Figure 1.1 The Digital Universe Growth.. 5

Figure 1.2 When a Database Technology Migration is Needed 7

Figure 1.3 The scope of the research migration from RDBMS to No-SQL 9

Figure 2.1 The attributes, tuples and fields of a relation Hospital 18

Figure 2.2 The field is represented by the intersection of row and column 19

Figure 2.3 CAP Theorem ... 22

Figure 2.4 No-SQL database milestones .. 30

Figure 2.5 Hadoop project milestones .. 35

Figure 2.6 Hadoop subprojects ... 36

Figure 2.7 HBase cluster members... 41

Figure 2.8 HBase infrastructure: master and region servers .. 42

Figure 2.9 Data migration steps ... 45

Figure 2.10 Migration database milestones .. 50

xvi

Figure 3.1 Chapter 3 Objective .. 55

Figure 3.2 Participant’s classification .. 57

Figure 3.3 Relational schema given to the participants .. 58

Figure 3.4 First step in the migration process .. 62

Figure 3.5 Level of difficulty in the migration process .. 62

Figure 3.6 How to begin the process? .. 63

Figure 4.1 RDB Schema from Chapter 3 experiment .. 70

Figure 4.2 Relational aspect “tables” for the given schema ... 71

Figure 4.3 In RDB Schema intersection row-column .. 71

Figure 4.4 Column’s list from the Figure 4.1 ... 71

Figure 4.5 Relationships and Columns from Figure 4.1 .. 72

Figure 4.6 Table schema after guideline No. 2 .. 72

Figure 4.7 Tables with columns families based on similar information 73

Figure 4.8 Table Doctors with example of information ... 74

Figure 4.9 Table Doctors created with “Flat-Wide” approach 75

xvii

Figure 4.10 Table Doctors created with “Tall-Narrow” approach 76

Figure 4.11 Tables after applying guideslines No.2 and No.3 ... 78

Figure 4.12 Example of information in tables Doctors and Hospitals 78

Figure 4.13 Table Departments .. 79

Figure 4.14 One-to-One Relationships on RDB schema to HBase 80

Figure 4.15 Migrated tables.. 80

Figure 4.16 One-to-Many Relationships on RDB schema ... 80

Figure 4.17 Example of information in the migrated table .. 81

Figure 4.18 Many-to-Many Relationships on RDB schema .. 81

Figure 4.19 Example of information in the migrated table using DDI 81

Figure 4.20 Main and attached tables on RDB schema ... 82

Figure 4.21 Example of information in the merged tables ... 82

Figure 4.22 Main table (Doctors) in HBase schema .. 83

Figure 4.23 Second table (index table) in HBase schema .. 84

Figure 4.24 Migration guidelines in the 2014-2022 litterature .. 86

xviii

Figure 4.25 The two TRACKs of the research migration from RDBMS to No-SQL 88

LIST OF ABBREVIATIONS AND ACRONYMS

ACID Atomicity, Consistency, Isolation, and Durability

API Application Programming Interface

BASE Basically Available, Soft-state and Eventual consistency

Bigtable Gooogle sparsely populated table that can scale to billions of rows and

thousands of columns

CAP Consistency, Availability, and Partition tolerance

Cassandra A free and open-source, distributed, wide-column store, NoSQL database

CC Cloud Computing

CCA Cloud Computing Applications

Cygwin A POSIX-compatible programming and runtime environment that runs natively

on Microsoft Windows

DBA Database Administrator

DBMS Database Management System

DDI Design, Detail for Industrial machinery

DFS Distributed File System

EB Exabyte

xx

EC2 AMAZON Elastic Compute Cloud

Freebase A scalable, graph-shaped database (a No-SQL database)

GB Gigabyte

GFS Google File System

Hadoop An open source framework from Apache that is used to store and process large

datasets distributed across a cluster of servers

HBASE A scalable, distributed column-oriented database that supports structured data

storage for large tables (a No-SQL database)

HDFS Hadoop Distributed File System

HIVEQL Hive is a SQL-like query engine that runs MapReduce jobs on Hadoop

HPC High-Performance Computing

IP Infrastructure Provider

IT Information Technology

ITE Information Technology Enterprise

JADE A single development environment where you define the code and the database

JIRB Extensible jruby-based shell

xxi

NDFS Nutch Distributed File System

No-SQL A Database not based on the RDB

OpenQM MultiValue database (a No-SQL database) developed by Ladybridge Systems

PB Petabyte

PK Primary Key

Protobuf a free and open-source cross-platform data format used to serialize structured

data

RAM Random Access Memory

RDB Relational Database

RDBMS Relational Database Management System

RESTful An architectural style for an application program interface (API)

ROOT The top-level directory of a file system

SLA Service Level Agreement

SP Service Provider

SQL Structured Quary Language

SU Service User

xxii

TB Terabyte

XML Extensible Markup Language

ZB Zetabyte

Zookeeper Software that coordinates, communicates, and shares state between the Masters

and RegionServers in HBASE

INTRODUCTION

Since the early 2000s, a lot of research has been released concerning cloud computing (CC), a

highly publicized technology in information technology and one that is attracting attention

from both academia and industry. This is partly because cloud computing promises economies

of scale in computing power, energy consumption, cooling, and administration (Erdogmus,

2009). These reasons, and other benefits, suggest that the use of CC will become an integral

part of our daily life soon. However, these technologies bring new challenges for software

engineers, such as, using existing technologies to manage the growing amount of data that is

now collected by CC applications, addressing the rapid growth of data as well as maintaining

a good response time. Situations where very large amounts of data (i.e., petabytes or even

zettabytes) are processed have been coined as Big Data applications. These recent Big Data

applications collect, enrich, store, and analyze very large quantities of data, daily, which has

led to the creation of a new research area.

Currently, companies extensively use relational database management system (RDBMS)

technology to store and exploit their data. However, (Abadi, 2009) and (Al Mahruqi, 2020)

states that accessing petabytes of data efficiently using RDBMS technologies, in the cloud, is

becoming more and more challenging. Similarly, Lars reports that once an RDBMS starts to

grow, the more complex SQL queries (e.g., the ones that access a very large amount of data

and use more than one table) start to show performance degradation. Current solutions to this

problem (e.g. sharding, horizontal growth and vertical growth), tend to generate many other

problems and side effects (Lars, 2011). Big Data applications have recently popularized the

use of No-SQL databases technologies as a solution to these challenges.

Several publications are available to help in understanding the migration from RDBMS to No-

SQL technologies (Abdel-Fattah, Mohamed, & Abdelgaber, 2022; Alotaibi & Pardede, 2019;

Chongxin, 2010; Kuszera, Peres, & Fabro, 2019; Serrano, Han, & Stroulia, 2015; Singh, 2010)

and the approach of providing guidelines for this complex migration process has been

2

addressed by different researchers (Koto, Kono, & Yamada, 2014; Shuchih Ernest, Kuo-Ming,

& Yu-Ching, 2015; Wagner, Hudic, Maksuti, Tauber, & Pallas, 2015). The objective of

publishing tested migration step (also called rules or guidelines in this thesis) for software

engineers could help to accelerate the acceptance of this new technology. At the time of writing

this thesis, there have only been a few research publications addressing specific RDBMS

migration aspects such as tables and relationship migration strategies. One such proposal, by

(Chongxin, 2010), introduces migration guidelines for the HBase No-SQL technology.

Chongxin presents three database migration steps to help software engineers. These rules fall

short of covering all the RDB aspects that need to be addressed for a migration since they only

focus on a few aspects like the table’s “relationships”, and ignore other relational aspects like

the tables themselves, the table fields, the stored procedures as well as the triggers. One

contribution of this research is to clarify all the aspects of an RDB that should be addressed in

such a database migration.

Given this observation, Stonebraker states that more experimentation is needed, as a

one-size-fits-all migration approach to this problem might not be possible (Stonebraker, 2008).

More importantly, not all existing RDB may be good candidates for this type of migration

(Stonebraker et al., 2007).

Due to the current lack of migration guidelines and the acknowledged difficulty to carry out

this type of database migration (Abdel-Fattah et al., 2022; Aiyer et al., 2012; Chen & Lee,

2017; Chongxin, 2010; Kuszera et al., 2019; Serrano et al., 2015; Singh, 2010), there are a

growing number of database migration services appearing on the market (Ippoliti, 2015; Pearl,

1984). These companies offer their services to conduct the migration using a heuristic

approach, meaning that they use a method based only on their previous experience. This

approach is not guaranteed to be optimal but is often sufficient for the immediate goal of

solving a pressing issue. Using a heuristic approach to solve this problem will typically require

a considerable investment in time as well as an in-depth knowledge of the targeted No-SQL

technology. These specialized services do not reveal their approach so there is still an

opportunity to offer migration guidelines to software engineers that are currently No-SQL

3

neophytes but have experience and good knowledge of RDBMS technologies.

To achieve this objective, this research has chosen to study and experiment RDB to No-SQL

migration rules focussing on a specific and popular CC technology, Apache Hadoop, which is

a “distributed processing of large data sets across clusters of computers using simple

programming models. Hadoop uses HBase, which is one of the most popular Big Data No-

SQL technology and is designed to scale up from single servers to thousands of machines, each

offering local computation and storage. Rather than rely on hardware to deliver high-

availability, the library itself is designed to detect and handle failures at the application layer,

delivering a highly-available service on top of a cluster of computers, each of which may be

prone to failures.”(Lam, 2011; Lars, 2011; White, 2009).

This thesis is organized as follows. The first chapter presents the research scope including its

motivation, the problem definition, the research questions to be addressed and the overall

research methodology that was used. The second chapter presents a literature review, focusing

on RDBMS and No-SQL technologies, and especially the current state of the art concerning

the migration of RDBMS to No-SQL technologies. Also, this chapter presents an overview of

the Big Data Apache Hadoop framework, focussing on the HBase No-SQL database used in

our experimentation. The goal of the third chapter is to describe the experiment designed to

understand how developers currently attempt to do this migration (e.g., based on heuristics)

and study how they generally approach the migration steps. Using this knowledge, chapter four

identifies, explores, uncovers, and describes a proposed set of seven (7) migration guidelines

and conducts a validation of relational aspects coverage and compares the seven guidelines

with the 2014-2022 literature on the topic. Finally, the fifth and final chapter presents the

conclusion, research contribution and future work.

RESEARCH OVERVIEW

1.1 Motivation

Nowadays, our “all-connected-everywhere” society is based on companies that are extensively

using data in order to improve their results in several areas such as customer experiences or

marketing, or even create new processes with the aim to be more productive, and generate

competitive advantage. Figure 1.1 describes the expected Information Increase by 2025 only

for the USA.

Figure 1.1 The Digital Universe Growth

In the figure the “y-axis” is measured in Zetabytes where 1 Zetabyte (ZB) is equivalent to 1021

bytes. The “x-axis” represent the years. Organizations are also making more and more

applications available that use large amounts of data. The figure was taken from (Gantz,

Reinsel, & Rydning, 2018) but similar forecasts were found in (Amanor-Boadu, 2022; Sandhu,

2022; Tawfik, Al-Zidi, Alsellami, Al-Hejri, & Nimbhore, 2021).

6

These applications typically use RDB technology to store and access their data. Applications

are progressively migrating to the cloud and are now coined as Cloud Computing Applications

(CCA).

The most important observation in Figure 1.1 is that this study predicts that data growth will

reach 175 zetabytes of data by 2025. However, the reality is that sizes in the zetabytes have

been occuring since 2010 (i.e. as a measure of the digital universe available on the internet).

Figure 1.1. shows the information size available today, only for the USA. This study does not

take into account the digital information from Europe, China, or Japan. Data available have

become so big that a new research field was created and named as “Big Data”. Future software

applications, as well as legacy applications, will need to be adapted to allow the efficient

transfer, processing and storage of data on such a large scale.

One immediate consequence of this trend is that legacy applications that currently use RDBMS

technologies are gradually migrating to applications in the cloud (as shown by Figure 1.2).

According to (Stonebraker, 2008; Stonebraker & Kepner, 2012; Stonebraker et al., 2007),

although it is still very common to use the RDBMS technology for CCA, when the data is

deployed in database servers, in the cloud, and the information grows beyond terabytes (TB),

the RDBMS technology starts to struggle and show its limits. Reseachers are starting to report

issues with the growing volume of data and especially problems associated with response time

related to “Big Data” applications. These authors have established that a real-time centralized

cloud database architecture, based on RDB technologies, can currently manage terabytes of

data. At some point it becomes hard to keep a good level of service. Also, the large increase in

the number of concurrent connected users on CCA applications can cause other problems, for

example, transactional difficulties to execute thousands of “commits” that need millions of

transactional logs, each one in complete coordination with the others. It is also reported that

CCA applications are typically deployed using a shared-nothing architecture, that until now is

not fully supported by RDBMS vendors (Abadi, 2009). This raises the issue that there are

growing risks in storing transactional data on an untrusted host, as is implied by CC

applications. For example, the database could contain data which is considered critical to the

core processes. These data could include sensitive information such as private patient

information (health domain), customer data (business domain) or credit card numbers (finance

7

domain). Any increase in potential security breaches or privacy violations would be considered

unacceptable. Finally, the administration of these CC applications is more and more complex,

as reported by Abadi (Abadi, 2009).

All these issues, as well as the RDBMS limitations, have slowed down the adoption of new

technologies and have created resistance in the use of No-SQL technologies on a large scale,

as reported by (Abadi, 2009; Cryans, April, & Abran, 2008; Kossmann, Kraska, & Loesing,

2010). Figure 1.2 graphically represents a migration of RDBMS to the cloud (No-SQL).

Figure 1.2 When a Database Technology Migration is Needed

If a No-SQL technology seems to be a potential solution to the growing RDBMS issues, how

can a software engineer conduct the migration of an existing RDB application to a chosen No-

SQL database technology as characterized by Figure 1.2? One of the many roadblocks to a

quick acceptance of No-SQL database technologies is the ability to easily migrate and convert

existing software systems to this new paradigm. One solution, when software engineers are

unfamiliar with this new technology, is access to migration guidelines.

The motivation of this research is to investigate this migration activity so that knowledge that

can be observed, validated and generalized to support software engineers who will have to

execute this migration process for the first time can be provided.

We know that RDBMS have been around for more than 40 years now. During this time, several

contending technologies, such as object databases, have tried to replace them. These predicted

the end of the RDBMS era. In fact, no other technology has challenged this dominance;

8

RDBMS are still the main database paradigm at present and are still taught in all software

engineering curriculums today. But this is now changing. Recent database technologies like in-

memory databases, Hadoop/No-SQL, columnar databases and streaming databases do not

intend to replace RDBMS technologies but they have been chosen in many situations where

RDBMS could not meet the challenge. These new technologies can complement RDBMS,

where needed, in overcoming specific challenges inherent to large scale CCA in a Big Data

context.

1.2 Problem definition

Given that the industry uses mainly relational database management systems (RDBMS) and

they are likely to migrate some of their existing large scale CCA from RDBMS to a No-SQL

technology in the near future, this creates an opportunity to research the specific problem of

how to help software engineers with this first migration tentative. Software engineers are

currently RDBMS experts and No-SQL neophytes at this time. Consequently, there is an

opportunity to identify migration guidelines that have the potential to help them in their first

migration effort from RDBMS to a chosen No-SQL database technology. For this research

project, we have chosen the HBase No-SQL technology as the target technology for a migration

as it is currently a very popular Big Data columnar No-SQL database and freely available as

part of the Apache Hadoop project.

1.3 Research questions

Once the research motivation and problem is clearly identified, it is helpful to further specify

what exact research questions/hypothesis this thesis addresses. We have already discussed that

in order to help software engineers with a first migration effort they could benefit from using

database migration guidelines. Therefore our research aims at uncovering these database

migration guidelines. Figure 1.3 shows, graphically, the track that will be covered in this

research work. However, to uncover whether the proposed guidelines can be useful, it is

recommended to use the same RDBMS application and study two different migration

approaches as two separate experimental tracks: the first database migration (TRACK 1), will

9

be done without the use of guidelines, and the second database migration (TRACK 2) will be

done with the use of the guidelines.

This PhD thesis is concerned only with TRACK 1. Another PhD research will undertake

TRACK 2 experiment and look at the results to see if a noticeable benefit can be obtained by

using the proposed guidelines uncovered in this thesis. Figure 1.3 provides an overview of the

scope of this thesis (TRACK 1). TRACK 2 will be discussed on section “Future Research” of

chapter four.

Figure 1.3 The scope of the research migration from RDBMS to No-SQL

In order to conduct a comparison between the two RDBMS application migration approaches

and resulting databases HBase and HBase’, some preliminary experiments need to take place

in order to establish a valid baseline for comparison. The goal of this baseline is to allow a

valid comparison between the migration process of an RDBMS database to a No-SQL database

(HBase) without the use of guidelines (e.g. the heuristic approach) and with the use of

guidelines (i.e. the proposed guidelines usefulness). This topic will be covered in detail in

chapter 3.

1.4 Methodology

Victor Basili presented a software engineering research framework with the goal of providing

a structured way to conduct experimental studies and the evaluation process for software

engineering research (Basili, Selby, & Hutchens, 1986). It has subsequently been successfully

used in several software engineering research projects, for example (Bourque & Cote, 1991;

Desharnais, Pare, Maya, & St-Pierre, 1997). This research uses the modified and improved

version of Basili’s framework as proposed by (Abran, Laframboise, & Pierre, 2003). It consists

10

of a research definition phase, a research planning phase, a research operation phase and

finally, a results interpretation phase.

1.4.1 Research Definition

The software engineering research definition phase consists of identifying the research

problem, and possible solutions that will be explored. The research methodology will be

presented along with the activities to develop it (see Table 1.1).

Table 1.1 Basili’s framework – Research Definition

1.4.2 Research Planning

This phase identifies the research activities as well as the deliverables for the planning phase

of this research (see Table 1.2).

11

Table 1.2 Basili’s framework – Research Planning

1.4.3 Research Operation

The operation phase prepares the components that design a solution to answer the research

question (see Table 1.3).

1.4.4 Interpretation

The interpretation phase consists of the interpretation of the experiment results to obtain

conclusions, assess the potential of the proposed solution for the industry, and finally identify

future research work. Table 1.4 presents the interpretation phase of this research.

12

Table 1.3 Basili’s framework – Research Operation

Table 1.4 Basili’s framework – Interpretation Phase

13

1.4.5 Conclusion

This chapter has presented an introduction of the research topic, starting with its motivation as

well as the problem it intends to solve. The research methodology was then presented which

includes the goal of the research. The next chapter presents the literature review.

LITERATURE REVIEW

This chapter presents the theoretical concepts concerning the technologies used in this

research. Sources for this review include: books, journal papers, conference publications and

articles. This chapter is divided into five sections. The first section introduces the concepts and

technology of relational database management systems (RDBMS) including their current

limitations. In the second section, an overview of the No-SQL database technology is presented

along with its advantages and limitations, focusing on the HBase technology used in the

experiment for this research. The third section presents the state of the art in database migration

theory followed by section four, which highlights different No-SQL migration approaches and

the issues faced with this type of migration. Finally, section five presents a conclusion

summarizing the concepts that are at the basis of this research.

2.1 Concepts and RDBMS Technology

In this section, the definiton, characteristics, main aspects, advantages and limitations of

current RDBMS are presented.

2.1.1 RDBMS Definition

A relational dabatase management system (RDBMS) is one of many types of database

management systems (DBMS) and, by far, the most widely used in the industry today. It is

based on the “relational model” theory developed by E. F. Codd (Codd, 1970). The acceptance

of RDBMS technology can be attributed to several key factors such as: the maturity of the

commercial products available, the simplicity of using the relational model, and the flexibility

of its query language named the structured query language (SQL). E.F. Codd invented the

concept that “relational” really means conformity with twelve rules, designed to define what

is required from such a database management system (Codd, 1971a, 1971b). Below is a quick

overview of Codd’s rules:

16

0. The RDBMS should use its relational facilities exclusively to manage the database;

1. The information rule. All information in the database is represented in one way: values in

tables with rows and columns;

2. The guaranteed access rule. The RDBMS preserves the information as a combination of

three key aspects: tables, primary keys and column names. All data must be accessible using

the primary key aspect;

3. The RDBMS should support null value, which is a representation of missing information

or inapplicable information and is totally different from all regular values, or numbers,

including zero values;

4. The structure description of the RDBMS should be stored in a catalog: the data dictionary.

The information on this catalog should be accessed only by authorized users using the

appropriate relational query language;

5. The only way to access an RDBMS should be using a relational query language that allows

data definition, data manipulation, and transaction management operations. The direct access

to the RDBMS, without this language, is considered a transgression;

6. The RDBMS should allow the update of any view from scratch;

7. The following high-level operations should be allowed by the RDBMS: insert, update and

delete;

8. One of the main properties of the relational system is the physical data independence,

which means that how the data is stored in an RDBMS, e.g. arrays or linked lists, must be

independent of the applications that access this data;

9. Similarly, there is logical data independence, which means that changes at the logical level,

e.g. merge two tables or split one table into two different tables, should have no impact or

change the user application. Logical data independence is more difficult to achieve than

physical data independence, indeed, logical data independence is one of the most difficult rules

to apply;

10. The integrity constraints should be specified separately from application programs and it

17

should be stored in the catalog. The user can change constraints independently without the

need of any change in the application;

11. The distribution independence rule. The end-user should not be able to see that the data is

distributed over various locations. This rule is strongly related to rule eight;

12. If the system provides a low-level interface, this interface should not be used to modify the

data system bypassing security and integrity constraints.

In the early days of RDBMS, most of the implementations did not conform with all of Codd’s

recommended rules. In fact, most RDBMS commercial offerings offered a database model that

satisfied, at a minimum, the following concepts:

 Present the information to the user in a tabular form, which means, a set of rows and

columns;

 Provide relational operators to manipulate the data in tabular form.

These two concepts, among others, will be presented in next subsection.

2.1.2 RDBMS concepts

In this section, key fundamental concepts of RDBMS are explained using the approach taken

by (Elmasri & Navathe, 2016). Elmasri uses a conceptual approach, which means that he

teaches relational concepts using a top-down approach and presents RDBMS concepts in

simple terms, facilitating their understanding (Giddens, 2017; Pierce, 2012). To help the reader

follow these explanations, we use a simple example of a Hospital-Doctor database presented

in Singh (Singh, 2010). The data used and displayed here are used purely for understaning the

concepts; they contain information about hospitals, doctors, departments and cities:

 Table (Relation): According to Elmasri, a table is a physical way to organize

information (an RDBMS concept) and a relation is a logical way to organize information (a

relational database theory concept). However, in this subsection both concepts will be treated

as synonyms. A table consists of rows (also known as tuples or records) and columns

(attributes). Tables are used to store all the information about the objects. A specific table

18

should contain data of only one kind of objects (Elmasri & Navathe, 2016). In Figure 2.1, the

Hospital-Doctor database shows two tables: 1) Hospital and 2) Departments. Each table

contains information related to either hospital or department accordingly.

Figure 2.1 The attributes, tuples and fields of a relation Hospital

 Row (Tuple, Record): The rows are a component of the tables and represent a

collection of related values. Rows contain all the information about this object. In Figure 2.1,

the second row, “02 St. Mary’s Hospital”, shows all the information about the above-mentioned

hospital. So, there is only information of one hospital in one row in the Hospital table. The

different synonyms for rows depend on the model used; whereas row is an RDBMS concept,

the tuple is a relational model concept. The term “record” is an outdated concept from the early

days of the relational theory (see Figure 2.2);

 Column (Attribute): Another component of the tables are the columns. They contain a

particular type of information, one for each row of the table. A column has a name that

describes the data of the column. In the Hospital table there are columns, e.g. id and name. A

column is an RDBMS concept and an attribute is a relational model concept (see Figure 2.2);

 Field: According to Elmasri, a field is part of a row and it stores a single piece of

information for the given row. From a graphical perspective, a field is the actual value that can

be found at the intersection of the row (tuple, record) and the column (attribute). In Figure 2.2,

the Hospital table database shows the field “St. Mary’s Hospital” in the intersection of row “02

St. Mary’s Hospital” and column (attribute) “Name” (Elmasri & Navathe, 2016).

19

Figure 2.2 The field is represented by the intersection of row and column

 Constraints: According to Elmasri and Tow, there are specific rules used to force or

restrain the type of information that will be saved in a table. This ensures the accuracy and

reliability of the data in the RDBMS. The moment the constraints are applied there are two

parts: the data involved and the constraint itself. If there is any violation between the data

involved and the rule specified by constraint, the whole process is aborted by the constraint.

The constraints could be applied at two levels: tables and columns. Table level constraints

affect the data that could be saved in the whole table and column level constraints affect the

data that could be saved in one specific column. The constraints are created, no matter the type,

either when the table is created or after the table is created (Elmasri & Navathe, 2016; Tow,

2003). The common kinds of constraints are:

o Not Null Constraint: Ensures that a column cannot have null values;

o Default Constraint: Specifies a default value for a column when none is provided;

o Unique Constraint: Ensures that all values in a column are different;

o Primary Key Constraint: Is a combination of not null and unique constraints. The

primary key is the column (or set of columns) whose values uniquely identify the row. All

primary key fields have a different value in a specific table. A table should have at least one

primary key. The primary key of the table Hospital is the Id. Two Hospitals cannot have the

same Id (see Figure 2.2);

20

o Foreign Key Constraint: Uniquely identifies a row in any other table. The value(s) in

specified column(s) must reference an existing row in another table (using either it's primary

key in the reference table or some other unique constraint);

o Check Constraint: This constraint ensures that all values in a column satisfy certain

conditions;

o Index Constraint: Used to create and retrieve data from the database very quickly.

2.1.3 ACID Properties

When a transaction processing system creates a transaction, that transaction should ensure

certain characteristics. These characteristics are listed as ACID properties. The acronym stands

for Atomicity, Consistency, Isolation and Durability. The software engineers that create a

transaction must be assured that these properties are in place and provided for automatically

by the RDBMS. If it is not the case, they will need to manage each property themselves in their

source code. According to Elmasri, the ACID properties constitute an important concept for

modern databases and, for RDBMS technologies, they allow for the safe sharing of data.

Without them, everyday activities, such as using computer systems to buy products, would be

difficult and the potential for data inaccuracy would be constant (Elmasri & Navathe, 2016):

 Atomicity: The atomicity property indicates an all-or-nothing unit of work, succeeding if

and only if all contained operations succeed. The whole operation is either fully completed,

or has not begun at all. Any updates that a transaction might effect on a system are completed

in their entirety. If for any reason an error occurs and the transaction is unable to complete

all its steps, the system is returned to the state it was in before the transaction was begun.

This operation is called a rollback;

 Consistency: A transaction enforces consistency in the state of the system by ensuring at

both the begining and at the end of the transaction that the state is valid, which means that

all changes to the system have been properly made and the transaction has been successfully

completed. If an error occurs in the transaction, then any changes already made will be

automatically rolled back. This will return the system to its state before the transaction was

21

begun. Since the system was in a consistent state at that time, it will once again be in a

consistent state;

 Isolation: When a transaction runs in isolation, it appears to be the only action that the

system is carrying out at the time. If there are two transactions performing the same function

and they are running at the same time, transaction isolation will ensure that each transaction

“thinks” it has exclusive use of the system;

 Durability: A transaction is durable if, once it has been successfully completed, all the

changes it made to the system are permanent. There are safeguards that will prevent the loss

of information, even in the case of system failure.

2.1.4 CAP Theorem

Sometimes the RDBMS is requested to successfully complete its read and write processing in

a specific time frame. When this becomes difficult to achieve because of lack of resources, e.g.

computing power, storage, memory, etc, then, it requires an adjustment. A distributed RDBMS

system, which is a collection of interconnected nodes that share data, is a potential solution to

this problem. Ideally, a distributed system should achieve three desirable characteristics:

 Consistency: It means, a read in the system should return the most recent write for a given

client;

 Availability: In the system, if there is neither error nor timeout, a non-failing node should

return a response within a reasonable amount of time;

 Partition Tolerance: The system will continue to work even if there is a no communication

between two nodes.

The CAP theorem states that no distributed system can achieve all three characteristics listed

above at the same time. Indeed, one of them should be sacrificed and requires a tradeoff

(Brewer, 2000b; Gilbert & Lynch, 2002).

22

Figure 2.3 CAP Theorem

Taken from (Brewer, 2000a)

As a consequence of the CAP theorem, a distributed system can only achieve at most two of

these properties, requiring a design trade-off, e.g., it is impossible to guarantee both availability

and consistency in a system that was designed to use partitions. Another example is a

distributed database with ACID properties (presented earlier in section 2.1.3) which provides

a stronger consistency service, and cannot always provide availability when the workload of

the system is high. According to Kong, each property pair refers to three subcategory levels

(Kong et al., 2015), (see Figure 2.3):

 AC (Availability – Consistency): This is the subcategory level used for the regular RDBMS;

it implements ACID properties and availability without a problem;

 CP (Consistency – Partition Tolerance): According to the CAP theorem, this is the

subcategory level where the distributed database favors implementing the ACID properties

rather than availability;

 AP (Availability – Partition Tolerance): The last subcategory level, which cannot implement

the ACID properties, provides the BASE properties, and a weaker degree of reliability for

transactions;

The consistency model known as BASE (Basically Available, Soft-state and Eventual

consistency), is a model that does not provide strong consistency. Instead, for this model, it is

enough to offer to be eventually in a consistent state. Systems with a BASE model may not be

23

suitable for all domains and applications, but are a flexible alternative to the traditional

RDBMS (Kong et al., 2015). For example, in order to achieve higher performance and

availability, many No-SQL DMS have adopted the BASE consistency model approach such as

Bigtable (Chang et al., 2008), PNUTS (Cooper et al., 2008) and Cassandra (Lakshman &

Malik, 2010).

In a distributed system, which uses the partition tolerance property, the decision between

consistency and availability is a design trade-off and the software engineer could choose what

to do in case a network partition fails (for example, a network outage). Designing a distributed

system can become a complex task when determining which type of different trade-off is best.

This requires a good comprehension of the goal of the software application and its domain

constraints. Failing to decide the right property to privilege could affect the performance and

success of the software development project.

2.1.5 Database Scalability

Before continuing with the current RDBMS limitations and the No-SQL database theory, it

would be appropriate to address some essential concepts, thus enabling us to better comprehend

the subjects covered in the following sections.

When it is said that a database has the characteristic of scalability, the given database has the

ability to provide a reasonable performance as a response to growing technical demands, also

known as “increased loads”. Examples of such increased loads are: rising traffic, increased

data volume, or increased need for power computing to process their data. Also, a scalable

database system reduces the need of having to redesign the database schema under such

situations. Quite simply, adding more resources is the only way to handle the increased load

on an application, but the big question is how to scale. What is the best way to achieve it?

There are two methods of adding more resources for a particular application: vertical scaling

and horizontal scaling (Kleppmann, 2017; Özsu & Valduriez, 2011).

 Vertical Scaling: Also known as “scaling up”, vertical scaling refers to adding more

resources to a single unit and in that way expand its ability to handle increasing load. There

are two approaches to achieve vertical scaling: at hardware level or at software level. The

24

hardware option includes adding processing power and memory to the physical machine

running the server, or adding parallelizing hardware or optimizing a certain number of

running processes. The software option includes optimizing algorithms and application

code.

 Horizontal Scaling: Also known as “scaling out”, horizontal scaling refers to resource

increment by the addition of units with the same performance of the current server, or even

lower performance. Having multiple servers allows for the possibility of ensuring the

response even if some servers go down, thus avoiding the “single point of failure” problem

and increasing the availability of the RDBMS.

o Load Balancing: The main issue with horizontal scaling is related to the multiple requests

that arrive and the best way to decide which application/server or processing unit would

respond to which request. The solution can come from a number of methods, which could

be grouped under the technique of load balancing. A load balancer accepts requests from

several users and then directs them to the right server. Here, the “right” server is decided

by certain criteria/algorithms that depends on the load balancing strategy.

2.1.6 Distributed Computing and Shared Nothing Approach

Another important concept that needs to be discussed is distributed computing, which will be

explained since the No-SQL databases are based on a specific architecture of distributed

computing called shared nothing. According to Stonebraker, the distributed architecture is a

model in which processes are divided on several networked computers, and they communicate

and coordinate their actions using messages. All the processes interact with each other in order

to achieve a common goal (Stonebraker, 1986). Currently, virtually all large computer-based

systems are now distributed systems where the information is spread and processed over

several computers rather than by using a single point of processing. This approach presents

several advantages listed below (Kleppmann, 2017):

 The resources (hardware and software) are shared;

 The openness, since it is possible to use hardware and software from different vendors;

25

 The possibility of concurrent processing, since there are “n” processors available over the

network;

 Scalability, considering the computing power could be increased by adding new resources;

 The fault tolerance, seeing that there is no single point of processing.

Despite these positive advantages, it is noted that some challenges exist, such as:

 The complexity, considering the distributed systems are more complex to handle than

centralised systems;

 The security, all the information is spread to more than one place, so it is more susceptible

to external attack;

 The manageability, considering more effort is required for system management.

In relation to what has been mentioned above, Stonebraker says that a distributed computing

system could be organized with different kinds of architectures, e.g., shared memory, shared

storage and shared nothing (Stonebraker, 1986).

In the shared nothing architecture, there is no central processor that controls the entire network.

Indeed, each node is independent and self-sufficient, and they do not share memory (as may

be possible in a shared memory architecture) or disk storage (possible in shared storage

architecture). Distributed computing was designed for taking the information and spreading it

into several computing units, i.e., machines or nodes. Normally, the real problems fall into two

groups (Stonebraker, 2008):

I. Those where each node can work on its piece of the problem without having to exchange

data with other nodes, except for some process of aggregation/combination at the end;

II. Those where each node finds that it must talk to others during the information processing.

The selection of the appropriate architecture for the distributed computing system is a tough

issue. In any case, it depends on the “trade-offs” between processing cost and communication

costs (e.g., bandwidth). If the cost of communication between each node is high, maybe

minimizing any such communication could be a good idea; this is the approach behind the

shared nothing architecture. The problems of type I can be easily solved with shared nothing

26

architecture, considering no communication between nodes is needed during the information

processing.

On the other hand, if the node communication is cheap, e.g., the nodes are located in the same

physical machine, and the main memory is equally cheaply accessible, then another

architecture, different than share nothing, could be selected. In this scenario the problems of

type II are easily solved.

2.1.7 Current RDBMS Limitations

According to White, for a majority of typical small to medium applications, there is no

substitute, in terms of ease of use, flexibility, maturity and richness of features, than an

RDBMS such as Oracle, MySQL or PostgreSQL to name just a few popular technologies.

However, if an RDBMS needs to be scaled up in terms of dataset size, read or write

concurrency, or both, RDBMS technologies have their limits. The scaling of an RDBMS

usually involves breaking Codd’s rules, meaning a loosening of the ACID properties, moving

away from conventional database administration (DBA) wisdom and, along the way, bypassing

some automated and desirable properties that make relational databases so convenient in the

first place (White, 2009).

There are a number of challenges that an RDBMS will face in its attempt to scale:

 Migration from a local workstation to a shared, remotely hosted RDBMS with a well-

defined schema;

 If the service grows in popularity, too many reads will hit the database and cached memory

will have to be added to the common queries. Reads will no longer have the ACID

proprieties;

 If the service continues to gain in popularity, and too many writes are hitting the database,

a vertical scale will be required, which means that the cost will rise because new hardware

will have to be purchased;

 New features mean higher query complexity, which leads to too many joins, and data

denormalization has to be performed to reduce them;

27

 Increasing popularity can swamp the server, which will begin to operate too slowly. A

solution might be to stop performing any server-side computations;

 If some queries are still being processed too slowly, one solution would be to determine the

most complex ones and try to stop joining in these cases;

 If writes become slower, one solution might be to drop secondary indices and triggers. But

the next step could be to remove indices altogether.

Scaling horizontally is an option. It typically involves an attempt to create some type of

partitioning for the largest tables, or to look at some of the commercial solutions that provide

multiple master capabilities. One example of this option is presented by YouTube. YouTube

first used a MySQL master-slave replication approach to try to solve this issue, but eventually

arrived at a point where the writes were using all the capacity of the slaves. Like many other

organizations facing this growth problem, they tried partitioning their tables into shards, so that

the sets of machines hosting the various databases were optimized for their tasks (Cryans et

al., 2008).

According to White, the reality is that countless applications, businesses and websites have

successfully achieved scalable, fault-tolerant and distributed data systems built on top of

RDBMS, and have implemented many of the suggestions mentioned above. However, making

such changes could result in a system that is no longer a true RDBMS, as compromises will

have been made and complexities added at the expense of features, maintainability and

convenience. Any form of slave replication or external caching reduces consistency in what

are now denormalized data. The inefficiency of joins and secondary indices means that almost

all queries become primary lookup keys. A multi-writer setup likely means no real joins at all,

and distributed transactions are a nightmare. The result, in the near future, would be an

incredibly complex network topology to manage, with an entirely separate cluster for caching.

Moreover, in a short time, there would be 10 times the data and 10 times the load (White,

2009).

28

2.2 Overview of No-SQL Database Technology

No-SQL is the term applied to database management systems that do not use the relational

concepts found in RDBMS. These databases may not require fixed table schemas, they usually

avoid join operations and typically scale horizontally. Lam and Venner refer to these databases

as structured storage, a term that would include classic relational databases as a subset (Lam,

2011; Venner, 2009). The term No-SQL is the name for these new database management

systems that have the following characteristics:

 Open source licensing model;

 Initially did not have an SQL interface;

 Most importantly, distanced itself from the relational model altogether.

Also, this term is used to refer to a growing number of non-relational, distributed databases

where often no attempt is made to provide the ACID properties. Today, the most common

interpretation of No-SQL is that it is non-relational, although No-SQL should not be taken to

mean anti-RDBMS. Rather, it is considered to complement the RDBMS. No-SQL

implementations can be categorized by their manner of implementation:

 A consistent key-value store, such as Cassandra (a Hadoop project) or Dynamo;

 A hierarchical key-value store, like GT.M or GlobalsDB;

 Hosted services, like Freebase;

 A key-value cache using RAM, such as Oracle Coherence or Tuple space;

 A key-value store on disk, like BigTable;

 Multi-value databases, such as OpenQM;

 An object database, like JADE;

 An ordered key-value store, such as IBM Informix C-ISAM;

 A table-based store, like BigTable or HBase.

29

As we will see in this research, a good example of a No-SQL model is the Apache Hadoop

HBase technology.

2.2.1 No-SQL History and State of the Art

Carlo Strozzi was the first to coin the term No-SQL, when, in 1998, he used it to name a

relational database that did not have an SQL interface. He stresses that the No-SQL model is a

complete departure from the relational model, and therefore thinks that a more appropriate

name would have been “Non-relational SQL”, as the database content is not represented by

mathematical relations. The next major milestone for the No-SQL database technology was

reached in 2004, when Google published their MapReduce algorithm (Chang et al., 2008;

Ghemawat, Gobioff, & Leung, 2003) for using massive numbers of low-cost CPUs.

Another milestone in the evolution of No-SQL was achieved in 2006, when Google published

the BigTable paper (Chang et al., 2008), which is its No-SQL implementation for Google’s

large data management system. Eric Evans, a Rackspace employee, reintroduced the term and

popularized “No-SQL” in early 2009, when Johan Oskarsson of Last.fm wanted to organize

an event to discuss open source distributed databases. The choice of name was an attempt to

label the growing number of non-relational distributed data storage systems that were often not

designed to provide the ACID properties (atomicity, consistency, isolation and durability),

which are the key attributes of classic relational database systems. Also in 2009, the first No-

SQL conference was held in Atlanta (Georgia-Tech-Research-Institute, 2009). At this

conference, the most common interpretation of No-SQL was that this model is non-relational,

and it was established that No-SQL is not meant to imply an anti-RDBMS. Rather it was

intended to emphasize the advantages of Key-Value Stores, Document Databases and Graph

Databases. Figure 2.4 shows the main milestones in the history of No-SQL databases.

30

Figure 2.4 No-SQL database milestones

2.2.2 Advantages of No-SQL

Summarizing the various viewpoints using Cryans et al., Microsoft documentation, and

White’s publication, the new No-SQL model offers the following advantages (Cryans et al.,

2008; Microsoft, 2011; White, 2009):

 Elastic scaling: For years, database administrators have relied on scale-up, buying bigger

servers as the database load increases for instance, rather than scale-out through a

distributed database across multiple hosts. However, as transaction rates and availability

requirements increase, and as databases move into clouds or virtualized environments, the

economic advantages of scaling out on commodity hardware will become irresistible.

Unfortunately, the RDBMS might not scale out easily on commodity clusters, but the new

breed of No-SQL databases is designed to expand transparently to take advantage of the

new scheme;

 Big data: Just as transaction rates have grown, the volumes of data that are being stored

have also increased massively. The RDBMS capacity has been growing to match these

increases, but, as with transaction rates, the constraints of data volumes that can, for

practical purposes, be managed by a single RDBMS are becoming intolerable for some

IBM develop IMS
Database

Ken Thompson creates
DBM Databases Lotus Domino

Carlo Strozzi use no-SQL
by first time

Google creates Map-
Reduce algorithm

XQuery standardization

Google creates BigTable

the term no-SQL was
reintroduced

Atlanta conference

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

No-SQL databases milestones

31

enterprises. Today, the huge volumes of data that can be handled by No-SQL systems like

Hadoop outstrip what can be handled by the largest RDBMS;

 Decrease management: Compared with RDBMS, No-SQL databases are generally designed

to require less management from the ground up: automatic repair, data distribution and

simpler data models lead to lower administration and tuning requirements, in theory. In

practice, someone will always be accountable for the performance and availability of any

mission-critical data store;

 Economics: No-SQL databases typically use clusters of cheap commodity servers to

manage the exploding data and transaction volumes, while RDBMS tend to rely on

expensive proprietary servers and storage systems. The result is that the cost per gigabyte

or transaction per second for No-SQL models can be many times less than the cost when

using an RDBMS, making it possible to store and process more data at a much lower price

point;

 Flexible data models: Change management is a big headache for a large production

RDBMS. Even minor changes to the data model of an RDBMS have to be carefully

managed and may necessitate downtime or reduced service levels. No-SQL databases have

far more relaxed data model restrictions. No-SQL key-value stores and document databases

allow the application to store virtually any structure in a data element. Even the more rigidly

defined BigTable-based No-SQL databases, such as HBase and Cassandra, typically allow

new columns to be created without too much effort.

2.2.3 Challenges of No-SQL

The promise of No-SQL databases has generated a great deal of enthusiasm, but there are many

obstacles to overcome before they will appeal to mainstream enterprises. Some of the major

challenges are:

 Maturity: For most companies, the very long period of time RDBMS have been operating

for them means they have achieved a state of maturity, and that is reassuring for these

companies. These systems are stable and highly functional. In comparison, most No-SQL

32

alternatives are currently offered in pre-production versions, with many key features yet to

be implemented. Living on the technological leading edge is an exciting prospect for many

developers, but enterprises should approach this state with extreme caution;

 Support: Enterprises want the reassurance that if a critical system fails they will be able to

obtain timely and competent support. All RDBMS vendors go to great lengths to provide a

high level of enterprise support. In contrast, most No-SQL systems are open source projects,

and although there are usually one or more firms offering support for every No-SQL

database, these companies often are small start-ups without global reach;

 Data analysis: No-SQL databases offer few facilities for ad hoc query and analysis. Even a

simple query requires significant programming expertise, and commonly used business

intelligence tools do not provide No-SQL connectivity. Some relief is provided by solutions

like Hive or Pig, which can provide easier access to data held in Hadoop clusters, and

perhaps eventually in other No-SQL databases;

 Management: The design goal for No-SQL may be to provide a zero administration solution,

but the current reality falls well short of that goal. No-SQL today requires a great deal of

skill to install and significant effort to maintain;

 Expertise: Almost every No-SQL developer is in learning mode. This situation will be

addressed naturally over time, but for now, it is far easier to find experienced RDBMS

programmers and administrators than a No-SQL expert.

2.2.4 The Hadoop Project

In the previous section, the cloud computing paradigm and its components were presented.

Cloud computing uses its various service models to offer applications, application development

and/or storage through its multiple technology approach. The Hadoop project is one of these

cloud computing technologies. It offers a set of open source tools and libraries for

implementing different kinds of services in each cloud computing service model. Ghemawat

maintains that the Hadoop project has been widely adopted because it is an open source version

of Google’s technology (Ghemawat et al., 2003). Hadoop uses its various libraries to permit

33

the storage of vast amounts of information, and in fact it enables large data tables to be

managed, as well as having its own data warehouse system. In the next sections, we analyze

the nature of the Hadoop project, its origins, components and subprojects. In addition, we

present some successful case studies and current research directions.

2.2.5 Definition

Hadoop is an open source, Java-based programming framework that supports the processing

of large data sets in a distributed computing environment. It is sponsoring by the Apache

Software Foundation. According Dean and Ghemawat, Hadoop was inspired by Google's

MapReduce programming model as well as the Google File system, in which an application is

broken down into numerous small parts. Any of these parts, also called fragments or blocks,

can be run on any node in the cluster. Hadoop makes it possible to run applications on systems

with thousands of nodes involving thousands of terabytes (Dean & Ghemawat, 2008;

Ghemawat et al., 2003).

Lam lists the following as the key characteristics of the Hadoop project (Lam, 2011):

 Accessible: Hadoop runs on large utility computing clusters, or as PaaS or IaaS offered by

providers like Amazon with their Elastic Compute Cloud (EC2).

 Robust: Because Hadoop is intended to run on utility computing systems, its architecture

was built on the assumption that frequent hardware malfunctions would occur, and that it

could handle most of these failures gracefully. According to Attebury, the Hadoop

Distributed File System (HDFS) facilitates rapid data transfer rates among nodes and allows

the system to continue operating uninterrupted in case of a node failure. The risk of

catastrophic system failure is low, even if a significant number of nodes become inoperative

(Attebury et al., 2009).

 Scalable: Hadoop scales linearly to handle larger amounts of data by adding more nodes to

the cluster.

 Simple: Hadoop allows users to quickly write efficient parallel code.

In summary, according to Lam, Hadoop is an open source framework for writing and running

34

distributed applications that process large amounts of data (Lam, 2011). By using distributed

storage and transferring code instead of data, Hadoop avoids the costly transmission step when

working with large datasets.

2.2.6 History Overview of the Hadoop Project

According to White, the first version of the Hadoop framework was released by Doug Cutting,

the creator of Apache Lucene, in collaboration with Mike Cafarella in 2002. Hadoop originated

in the Apache project Nutch, which is an open source Web search engine, and was designed as

part of the Lucene project (White, 2009).

This kind of search engine requires a complex system to enable crawling and indexing of

websites, which means that the system would need to support an index of nearly a billion pages.

The Hadoop project budget was estimated at around $500,000 in hardware, with a monthly

running cost of $30,000. The creators of Hadoop realized that their architecture at the time

would not scale to the billions of pages on the Web.

In 2003, Google Inc. presented its distributed file system (DFS), called the Google File System

(GFS) (Ghemawat et al., 2003). Based on that system, Cutting and Cafarella wrote an open

source implementation, the Nutch Distributed File System (NDFS), which was launched in

2004.

In 2004 as well, Google published a paper introducing the MapReduce programming model.

Early in 2005, the Nutch developers worked on a MapReduce implementation for Nutch. White

explains that the NDFS and the MapReduce implementation in Nutch were applied beyond the

search domain, and, in February 2006, they converted the Nutch project into an independent

subproject of Lucene, called Hadoop. In January 2008, Hadoop was made a top-level project

at Apache, called the Apache Hadoop project, confirming its success. At the same time, the

NDFS was relabelled the HDFS, to incorporate the Hadoop name (White, 2009).

There have been many milestones in the race to develop MapReduce implementations. For

instance, in April 2008, it was announced that Apache Hadoop had the fastest implementations,

because they could sort a terabyte (TB) of data in 209 seconds (3.8 minutes) on a 910-node

35

cluster. In November 2008, Google reported that its MapReduce implementation sorted 1 TB

in 68 seconds. In May 2009, the Yahoo! team used Hadoop to sort 1 TB in 62 seconds.

Figure 2.5 shows the milestones achieved in the chronology of the Hadoop project based on

(White, 2009). In late 2005, Hadoop ran reliably on 20 nodes. Early in 2006, Doug Cutting

joined Yahoo! and the Apache Hadoop project officially began to support the stand-alone

development of MapReduce and the HDFS. Similarly, the Yahoo! Grid Team adopted Hadoop.

In mid-2006, Yahoo! set up a Hadoop research cluster with 300 nodes.

By early 2007, the research cluster had grown to 900 nodes, and by mid-2007, there were two

research clusters of 1000 nodes each. By late 2008, the Hadoop project could load 10 TB of

data per day onto research clusters. In mid-2009, Hadoop reached 17 clusters, with a total of

24000 nodes, and broke the ‘1 minute sort’ barrier by sorting 500 GB in 59 seconds (on 1400

nodes) and a 100 TB sort in 173 minutes (on 3400 nodes).

Figure 2.5 Hadoop project milestones

In this section, a historical overview of Hadoop was presented. The various Hadoop

subprojects are described in the next section.

Initial version by Doug
Cutting & Mike Cafarella

Hadoop runs reliably on
20 nodes

Doug Cutting joins Yahoo!

Apache Hadoop project
started

Yahoo! set up a Hadoop
300 nodes

Research cluster reaches
900 nodes

Research 2 clusters of
1000 nodes

Loading 10 terabytes of
data per a day on to

research clusters

17 clusters with a total of
24,000 nodes

2004 2005 2006 2007 2008 2009 2010

Hadoop project milestones

36

2.2.7 Hadoop subprojects

Currently, the Hadoop project is a collection of related subprojects hosted by the Apache

Software Foundation, in an open source licensing environment, with the aim of supporting the

distributed computing infrastructure. Figure 2.6 illustrates all the Hadoop subprojects, based

on (Hadoop-webpage, 2011; White, 2009).

Figure 2.6 Hadoop subprojects

According to Figure 2.6, the subprojects are the following:

 Common: A set of familiar utilities that support the other Hadoop subprojects. It includes

interfaces for distributed file systems, general input/output mechanisms, serialization

libraries and persistent data structures.

 HDFS: A DFS that runs on large clusters of commodity machines (utility computing). The

HDFS is the primary storage file system used by Hadoop applications. It creates multiple

replicas of data blocks and distributes them on compute nodes throughout a cluster to enable

reliable and extremely rapid computation.

 MapReduce: A software framework for the distributed processing of large datasets on

compute clusters. Hadoop MapReduce is a programming model and a software framework

for writing applications that rapidly process vast amounts of data in parallel on large clusters

of compute nodes.

 HBase: A scalable, distributed column-oriented database that supports structured data

Zo
oK

ee
pe

r

Avro

Common HDFS

MapReduce

HBase Hive

Cassandra Chukwa Mahout Pig

37

storage for large tables. HBase is the Hadoop database. It is used when random, real-time

read/write access to large amounts of data is needed. The goal of this project is to host very

large tables; for example, billions of rows by millions of columns, on top of clusters of

commodity hardware (utility computing). According to Chang, HBase uses the HDFS for

its underlying storage, and supports both batch-style computations using MapReduce and

point queries (random reads). Just as BigTable leverages the distributed data storage

provided by the GFS, HBase provides BigTable-like capabilities on top of Hadoop,

including (Chang et al., 2008):

o Convenient base classes for backing Hadoop MapReduce jobs with HBase tables,

including Cascading, Hive and Pig source/sink modules;

o Query predicate push down via server side Scan and Get filters;

o Optimizations for real-time queries;

o A Thrift gateway and a RESTful Web service that supports XML, Protobuf and binary

data encoding options;

o Extensible jruby-based (JIRB) shell;

o Support for exporting metrics via the Hadoop metrics subsystem to files or Ganglia, or

via JMX.

 Hive: A data warehouse system for Hadoop that facilitates easy data summarization, ad hoc

queries and the analysis of large datasets stored in Hadoop-compatible file systems, like the

HDFS. It provides a mechanism for projecting the structure onto these data and querying

them using an SQL-like language called HiveQL. At the same time, this language allows

traditional MapReduce programmers to plug in their custom mappers and reducers when it

is inconvenient or inefficient to express this logic in HiveQL, based on (Hive-webpage,

2011).

 Avro: A data serialization system for efficient, cross-language RPC and persistent data

storage.

 Cassandra: A scalable multi-master database with no single points of failure.

38

 Chukwa: A distributed data collection and analysis system. It runs collectors that store data

in the HDFS, and uses MapReduce to produce reports.

 Mahout: A scalable machine learning and data mining library.

 Pig: A data flow language and execution environment for exploring very large datasets. Pig

runs on the HDFS and MapReduce clusters.

 ZooKeeper: A distributed, highly available coordination service. It provides primitives, such

as distributed locks, that can be used for building distributed applications.

This section provided an overview of Hadoop subprojects. In the next section, a more detailed

description of HBase is presented.

2.2.8 HBase as a No-SQL databases

The goal of this section is to lay the theoretical foundations for the subsequent sections. We

explore the HBase structure in detail, explaining what HBase is, how it originated and how it

functions.

Definition of HBase

On the HBase website, we learn that HBase is a non-relational, distributed and column-oriented

database based on Google’s BigTable. It is written in Java in an open-source model, and is an

Apache Software Foundation project. HBase is built on top of Hadoop for its MapReduce and

distributed file system implementations. The goal of HBase is to provide a fault-tolerant way

of storing large quantities of sparse data (HBase-webpage, 2011). It features compression, in-

memory operation and Bloom filters on a per-column basis, as outlined in the original BigTable

paper in (Chang et al., 2008).

According to White, HBase tables can serve as the input and output subsystem for MapReduce

jobs run in Hadoop, and may be accessed through the Java API, but also through the REST,

Avro or Thrift gateway APIs (White, 2009).

39

In Venner’s opinion, HBase is not a direct replacement for a classic SQL database, although its

performance has improved recently, and it is now serving several data-driven websites,

including the Facebook Messaging Platform (Venner, 2009).

HBase is one of the most popular No-SQL database technologies, it works in very close

cooperation with Hadoop and, like others distributed large-scale platforms, they mainly focus

on X-nix environments for production installations (Al Mahruqi, 2020). However, being

developed in Java, both projects are fully portable across platforms, and so to the Windows

operating system as well. For ease of development, these projects rely on Cygwin to secure an

X-nix-like environment on Windows for running the shell scripts.

HBase Historical Overview

The history of HBase is too recent to be long. In White’s opinion, the most important

milestones in this short story were reached as early as the end of 2006, by Chad Walters and

Jim Kellerman of Powerset, who coded the first version. It was based on Google's BigTable

(Chang et al., 2008). In February 2007, Mike Cafarella performed a code drop, consisting

mostly of a working system that Jim Kellerman then carried forward. The first HBase release

was bundled with Hadoop 0.15.0. At the start of 2008, HBase became a Hadoop subproject

(HBase-webpage, 2011). It has been in production use at Powerset since late 2007. Other

production users of HBase include WorldLingo, Streamy.com and OpenPlaces, as well as

groups at Yahoo! and Adobe (White, 2009).

HBase Concepts

In this section, we provide a quick overview of the core HBase concepts, based totally on

(White, 2009):

 The HBase data model: The applications store data into labelled tables made up of rows and

columns. The table cells, which are formed by the intersection of row and column

coordinates, are versioned. By default, their version is a timestamp automatically assigned

by HBase at the time of cell insertion. A cell’s content is an uninterpreted array of bytes.

40

Table row keys are also byte arrays, so theoretically anything can serve as a row key, from

strings to binary representations of long, or even serialized data structures. Table rows are

sorted by row key, the table’s primary key. By default, the sort is byte-ordered. Table access

is via the table’s primary key. Row columns are grouped into column families. All column

family members have a common prefix, so, for example, the columns ‘temperature: air’ and

‘temperature:dew_point’ are both members of the temperature column family, whereas

‘station: identifier’ belongs to the station column family. The column family prefix must be

composed of printable characters. The qualifying tail can be made up of any arbitrary

number of bytes (White, 2009).

A table’s column families must be specified up front, as part of the table schema definition,

but new column family members can be added on demand. For example, a new column

‘station: address’ can be suggested by a client as part of an update, and its value persists as

long as the station column family is already in existence on the targetted table. Physically,

all column family members are stored together on the file system. So, although earlier we

described HBase as a column-oriented store, it would be more accurate to describe it as a

column-family-oriented store. Because tunings are applied at the column-family level, and

storage specifications are measured there, it is advisable that all column family members

have the same general access pattern and size characteristics. To summarize, White sees

HBase tables as RDBMS, except that the cells are versioned, the rows are sorted and

columns can be added on the fly by the client, as long as the column family already exists

(White, 2009).

 HBase regions: Tables are automatically partitioned horizontally by HBase into regions.

Each region comprises a subset of a table’s rows. A region is defined by its first row,

inclusively, and last row, exclusively, plus a randomly generated region identifier. Initially,

a table comprises a single region, but, as the size of the region grows and after it crosses a

configurable size threshold, it splits at a row boundary into two new regions of

approximately equal size. Prior to this first split, all the loading will be borne by the single

server hosting the original region. As the table grows, its number of regions grows. Regions

are the units that are distributed over an HBase cluster. In this way, a table that is too big for

any one server can be carried by a cluster of servers, with each node hosting a subset of all

41

the table’s regions. This is also the means by which the loading on a table becomes

distributed. At any one time, the online set of sorted regions represents the table's total

content (White, 2009).

HBase Implementations

In all distributed programming, there are clients, slaves and a coordinating master. In HDFS,

for example, there are namenodes and datanodes; and in MapReduce, there are jobtrackers and

tasktrackers. Likewise, HBase is characterized by an HBase master node handling a cluster of

one or more ‘regionserver’ slaves, see Figure 2.7, taken from (White, 2009).

Figure 2.7 HBase cluster members

Based on (White, 2009), we can say that the HBase master is responsible for bootstrapping a

virgin install, for assigning regions to registered regionservers and for handling regionserver

failure recovery. The master node is lightly loaded. The regionservers carry zero or more

regions and field client read/write requests. They also manage region splits, informing the

HBase master about the new daughter regions, so that it will manage offlining the parent region

and the assignment of the replacement daughters. HBase depends on ZooKeeper, and, by

42

default, it manages a ZooKeeper instance as the authority on the cluster state. Figure 2.8 offers

another view of this scheme. It was taken from (Cryans et al., 2008).

Figure 2.8 HBase infrastructure: master and region servers

The regionserver slave nodes are listed in the HBase conf/regionservers file, in the same way

that datanodes and tasktrackers are listed in the Hadoop conf/slaves file. HBase stores the

persistent data via the Hadoop file system API. Since there are multiple implementations of the

file system interface, such as Amazon’s S3 or the HDFS, HBase can persist data to any of these

implementations (White, 2009).

How Does HBase Work

HBase keeps two special catalog tables internally, called ROOT and META. Within these it

maintains the current list, state, recent history and location of all regions of the cluster. The

ROOT table holds the list of META table regions. The META table holds the list of all

user-space regions. Entries in these tables are keyed using the region's start row. Row keys are

sorted, so finding the region that is hosting a particular row is a matter of performing a look-

up to find the first entry key that is greater than or equal to the requested row key. As regions

transition (are split, disabled or enabled, deleted, redeployed by the region load balancer or

redeployed due to a regionserver crash), the catalog tables are updated, so that the state of all

regions on the cluster is kept current (White, 2009).

43

The client connecting to the ZooKeeper cluster is the first to learn the location of the ROOT

location, and reads the ROOT table to learn the location of the META region, the scope of

which covers that of the requested row. The client then performs another look-up of META to

determine the hosting user-space region and its location. From then on, the client can interact

directly with the hosting regionserver (White, 2009).

In White’s opinion, to save having to make three round trip operations per row, the client should

cache the information read from ROOT and META. With both the caching locations and the

user-space region begin and end rows, the client can identify the hosting regions without having

to go back to reading the .META. table. The client continues to use the cached entry while

working, until there is a fault. When this happens (i.e. meaning that the region has moved), the

client consults META again to learn its location. If the META region has moved, then the

ROOT catalog must be consulted again (HBase-webpage, 2011; White, 2009).

At the regionserver level, the writing process is first appended to a commit log and is then

added to an in-memory cache. Once this cache is filled, its content is flushed to the file system.

When the master notices that a regionserver is no longer reachable, it splits the dead

regionserver’s commit log by region. On reassignment and before its open for transactions,

regions that were on the dead regionserver pick up their file of unpersisted edits that was split

and replay them to update their state to just before the failure (White, 2009).

For reading, the region’s memory cache is consulted first. If sufficient versions are found to

satisfy the query, a result is returned. Otherwise, flush files are consulted in order, from newest

to oldest, until sufficient versions are found or until there are no more flush files to consult. A

background process compacts the flush files once their number has crossed a threshold,

rewriting many files as one, because the fewer files a read consults, the better it will perform.

On compaction, versions beyond the configured maximum are deleted and expired cells are

cleaned out. A separate process running on the regionserver monitors the sizes of the flushed

files that split the region when they exceed the configured maximum (White, 2009).

44

HBase as a No-SQL Model

HBase uses a No-SQL model with the following characteristics (White, 2009):

 No real indexes: Because the rows are stored sequentially, as are the columns within

each row, there is no index bloating and the insert performance is independent of table

size;

 Automatic partitioning: As the tables grow, they are automatically split into regions and

distributed across all the available nodes;

 Linear and automatic scaling with new nodes: Add a node, point it towards the existing

cluster and run the regionserver. The regions automatically rebalance and the load is

spread evenly;

 Commodity hardware: Clusters are built at a cost of $1,000 to $5,000 per node.

RDBMS have a voracious appetite for input/output hardware, which is the most costly

type of hardware;

 Fault tolerance: A large number of nodes means that each is relatively insignificant, and

there is no need to worry about individual node downtime;

 Batch processing: MapReduce integration allows fully parallel, distributed jobs against

the data, with locality awareness.

2.3 Database Migration Theory

This section aims to synthesize the state of the art in database migration activities, presenting

various proposals published to identify the fundamental concepts, approaches and techniques

available.

2.3.1 Definition

As we have seen in the RDBMS concept section, a database has different components such as:

schema, data, queries and application programs like stored procedures. Authors have been

45

faced with migrating from one database technology to another for some time. According to

Maatuk, database migration is a process in which all the database components of the source

database are converted to their equivalent in a target database environment/technology.

Typically, the migration process focuses first on the database schema translation and then on

the data migration itself (Google Cloud Architecture Center (1), 2020; Google Cloud

Architecture Center (2), 2020; A. Maatuk, Ali, & Rossiter, 2008). After the database has been

converted, the queries and application programs that acess it need to be adjusted to use the

target database technology (as demonstrated in Figure 2.9).

Figure 2.9 Data migration steps

The first component addressed by a migration is the schema translation (step 1 of Figure 2.9),

whose goal is the set of mapping rules that needs to be applied. This task consists of two steps:

In the first step, the goal is to recover the conceptual schema, for example, work on the entity

relationship model. This step also is called the database reverse engineering step (step 1.a of

Figure 2.9). The resulting model obtained is important because it expresses explicit and

implicit data semantics of the DB source schema. The explicit semantics involve relation,

attributes, keys and data dependencies. The implicit data semantics are necessary to extract

extra semantics that are not expressed explicitly, such as relationships. The second step is called

database forward engineering step (step 1.b of Figure 2.9) where it takes the results of step

one to generate the target physical schema.

The second component addressed by a migration is the data migration itself (step 2 of Figure

2.9) which is a process of converting data from the source database into the target database.

46

Since the source data of an RDBMS is stored as tuples, they need to be converted into other

objects, depending on the technology used by the target database.

Migration activities are always a concern because there are many applications created in older

paradigms/technologies that need to be converted to newer technologies. This is globally

called, in the literature, the migration database problem.

2.3.2 Database Migration Approaches

According to Maatuk and Fong, database migration can be done using one of three approaches

(Fong & Wong, 2004; A. Maatuk et al., 2008; A. Maatuk, Ali, & Rossiter, 2011; Rocha, Vale,

Cirilo, Barbosa, & Mourão, 2015):

 Objects like database front-end or mapping tools approach: This approach request deals

with schema translation, because data are stored in a relational model but are handled

through some object interfaces, such as an object oriented interface or XML interface.

Data may be required to be processed in some particular way, according to the object

that would be used. Normally, the persistence is handled by the relational part and the

object can represent several tuples in several tables, same as the joins required for

queries. This can cause a semantic gap problem called OR impedance mismatch. There

are two solutions to avoid this problem. First, developers can write huge amounts of

code to map objects in programs into tuples in a relational model, which might be time-

consuming to write and execute. The second solution is by using OR mapping

middleware, which is a software layer that links programming language concepts to

data stored in relational databases through ODBC or JDBC drivers;

 Database integration or gateways tools approach: This approach request deals with

schema translation too. In this approach there are two databases, the source database

(relational) and the target conceptual database system (objects set that simulates the

target). A connection between the relational database and this target is created. The

applications built on top of the new database access both relational and objects giving

an impression that all the data are stored in one database. This approach uses a special

type of software called gateways, which support connectivity between databases and

47

do not involve the user in SQL and relational schema. Hence, queries and operations

are converted into SQL and the results are translated into target objects. Most

commercial databases provide flexibility on gateways construction among

heterogeneous databases.

As reported by (A. Maatuk et al., 2008), the difference between gateways and mapping

tools is that with gateways, objects are persistently stored in the new target database

system, whereas in the mapping, objects are created and handled in the normal way but

are stored in a relational database. However, in both approaches old data, stored in a

relational database, is retained.

 Database Migration: The third approach is migrating a relational database into a target

database, this means both schema and data are completely migrated into a target

database. The first database, the source, is a relational database, and the second one,

the target, represents the result of the database migration process. Sometimes, this

process needs the help of an intermediate conceptual representation, although it is

possible to accomplish this task without the intermediate. Usually, the input source

schema is enriched semantically and translated into a target schema. Also, relations and

attributes are translated into equivalent targets and some elements, such as relationships

or foreign keys or data dependencies, may be replaced by another equivalent domain

in the target. Data stored in the source database is converted to the target database. Due

to heterogeneity between the concepts and structures of source and target data models,

the migration process faces several challenges, for instance, data of one relation may

be converted into a structure or references set rather than into one corresponding type.

2.3.3 Migration Translation Techniques

Once a migration approach has been chosen, techniques must be clarified. According to

Maatuk and Fuxman, the database migration techniques are (Fuxman et al., 2006; Ha &

Shichkina, 2022; A. Maatuk et al., 2008; A. Maatuk et al., 2011):

 Source-to-Target technique: This technique translates a physical source code into an

equivalent target. However, all the operations are done without a semantic enrichment

48

process. This results in an incomplete design, which means some data semantics are

ignored.

 Source-to-Conceptual-to-Target technique: Given that the above technique has

problems with semantics, because they are not clearly expressed (including

relationships), in this technique the schema is translated from logical into conceptual,

then the conceptual schema is translated into the target. The source schema is enriched

by recovering the domain semantics and making them explicit. This technique results

in a well-designed target database. Achieving a conceptual schema from a logical one

(relational database schema) requires a thorough analysis of the schema, data and

queries.

2.3.4 Overview of Database Migration State of the Art

Database migration publications follow the database evolution itself. Publications about this

topic start in the late 60's with the use of two popular database management systems at the

time: 1) the hierarchical database; and 2) the network database. IBM designed the IMS

database with Rockwell and Caterpillar starting in 1966 for the Apollo program. This database

used a hierarchical model and required the schema to be compiled. In a network database

model, the data schema is viewed as a graph composed of object types, such as nodes and

relationships like arcs. The network database model's original inventor was Charles Bachman.

It was so popular that it was developed into a standard specification published in 1968 by the

CODASYL Consortium. This database model was conceived as a flexible way of representing

objects and their relationships. In 1969, IBM developed their own commercial network

database called IDMS. Around the same time, the relational database model was invented and

proposed to the market in 1970 by Edgar F. Codd. This database model did not require

compiling its schema and was based on first-order predicate logic. The purpose of the relational

database model is to provide a declarative method for specifying data and queries. The

resulting data access model describes data structures for storing the data and ensuring that the

access procedures to retrieve data from queries are satisfied.

49

In 1985, the object-oriented database management system (OO-DBMS) was invented with the

goal to combine the relational database capabilities with the object-oriented programming

language capabilities. This proposed database technology allowed for object-oriented

programmers to store objects, replicate and modify them within an object-oriented database.

Since this database integrates the object-oriented programming language concepts, the

programmer can easily access objects from the database to the computer memory without any

migration treatments. In contrast, using the relational model with an object-oriented language

always requires that a migration of the data formats be done between the database formats and

the objects in memory. This technology is still not very popular today.

Database migration publications start to appear in 1989, when database performance issues

and migration used between different database technologies were debated. The first paper

addressing the migration issues from a network database model to a relational database model

(Fong & Chris, 1994) was published this same year. In 1997, a paper discussing a database

migration that converted a relational database model to an object-oriented database model was

also published (Fong, 1997).

Despite that XML database management systems were initially proposed and used since 1994,

it was not until 2001 when the first of two publications that discussed migration to this type of

model appears, the other was in 2004. Both discuss issues of migration from a relational model

to an XML database model and also address the migration from a relational model to an XML

for Internet computing. (Fong, Pang, & Bloor, 2001), (Fong & Wong, 2004). Figure 2.10 shows

the main milestones in the history of migration topics over the years.

2.3.5 Examples of No-SQL Migration Attempts from Relational DB

In this section, an example of how a company has converted to No-SQL technology as part of

the solution to their current SGBD processing problems (Lam, 2011) is presented. This

example applies to the social networking, media and entertainment domain but could also touch

many other business domains.

50

Figure 2.10 Migration database milestones

The Facebook case study

The information that Facebook handles every day is huge and it needs to scale constantly. Since

hardware and software are resources that are key to their operations, the company started to

analyse the reliablility, ease of use, scalability and maintainability of its many RDBMS

databases. Initially, data processing at Facebook was performed entirely on Oracle RDBMS

technology, a popular RDBMS. As the data and the site’s use began to grow, Facebook

investigated whether or not there was an open-source technology that they could use to

eliminate their growing licensing costs. As part of this investigation, it deployed a relatively

small Hadoop proof of concept and began testing some of their core datasets with it. In White’s

opinion, Hadoop was attractive to Facebook because Yahoo! was using it successfully for its

batch processing needs and also because they were hearing about the scalability of the

MapReduce programming model, used by Hadoop, for distributed No-SQL DB as popularized

by Google’s BigTable technology (White, 2009).

According to (Hadoop-webpage, 2011; HBase-webpage, 2011), Facebook is running the third

largest Hadoop cluster in the world currently. This cluster has 12 PB of storage, and more than

10 TB of data loaded into it daily. It operates on 8800 cores and about 9 TB of memory, and

reaches its capacity many times during the day. The ability of the cluster to scale out rapidly in

Navigational DBMS
(network model)

IBM DBMS

Codd & IBM RDBMS

OO-DBMS
Database performance

problems

XML based databases

Conversion/Migration
from Network to

Relational

Conversion/Migration
from Relational to OO

Conversion/Migration
from Relational to XML

Conversion/Migration
from Relational to XML
for Internet computing

1960 1970 1980 1990 2000 2010

Database conversion/migration milestones

51

response to Facebook’s growth is an important and strategic advantage. Facebook also has

modified Hadoop to suit its changing needs since it is an open-source software. Consequently,

Facebook has contributed often to the open source community, both in the form of

contributions to some core components of Hadoop, such as HBase and Hive. According to

White, Facebook uses No-SQL technology in at least four different but interrelated ways

(White, 2009):

 Use Facebook data to produce daily and hourly summaries, which can be classified into 3

groups:

o Summaries that help engineering and non-engineering functional teams take product

decisions;

o Summaries that produce metrics about the advertising campaigns conducted by

Facebook;

o and summaries that obtain information about consumer preferences, such as people or

applications the user may like.

 Extract information from historical data that could assist in the decision-making process of

different product groups and executive teams;

 As the default information container for the log files;

 To look up the log information, filtering by pre-defined attributes, in order to do very

specific tasks, such as help users against spam bots.

The New Facebook Messages

As presented by Aiyer, between 2008 and 2009, Facebook faced a lot of issues with a new

project called “The New Facebook Messages” that was designed to host Messages, Chats,

Emails and SMS in a single application. Before this project, each Facebook application had

their own dedicated hardware/software infrastructure which included mostly the MySQL

RDBMS technology as well as a No-SQL DB called Cassandra which was developped

52

internally by Facebook (Aiyer et al., 2012). For the New Facebook Messages service, a number

of target objectives were set:

 An excelent read and write performance;

 The possibility to scale out at the horizontal level easily;

 An automated fault recovery service;

 A strong data consistency data model and service;

 The use of HDFS and MapReduce.

These requirements lead the Facebook team towards choosing the HBase No-SQL database

technology, which completely fulfilled all these requirements. By the time the project was

started in 2009, Facebook estimated the new application would need, at the time of release, the

capacity to store over 6 billion messages/day (both person-to-person message and chat

messages) which represents nearly 75 billion read/write operations per day, with estimated

peaks around 1.5 million operations per second. In addition, Facebook expected percentages

of read/write operations at a rate of 55% read and 45% write. These estimates resulted in a total

size between 2 PB to 6 PB when considering the data replication, and an expected growth size

estimated at a rate of 250 TB per month.

The problem was not that MySQL could not scale. It is totally possible for MySQL to scale but

the problem begins when you are scaling an RDBMS to this massive size. Updating an index

would take a long time, some Facebook statistics could not be properly updated and queries

for users would perform in a poor way. With the Facebook Messaging project, it is normal that

the data sharding option becomes a difficult problem to solve using an RDBMS. As an

example, just finding the right sharding approach would be a real challenge since the data

needed to be replicated across all of the database servers in production. Also, the sharding

algorithm should allow for the easy addition of new servers without any lengthy set up as

Facebook needed growth on demand in this project.

The project started in December 2009 and the first version was ready for testing in November

2010. The entire application was finished by July 2011. The migration project from RDBMS

to HBase had to migrate more than 1 billion accounts from the legacy messages. By the time

53

the project was finished, Facebook reported two key issues with the migration process: 1) they

had a hard time identifying the target schema in HBase and changed the schema twice; and 2)

they failed to identify how to migrate certains aspect of the RDBMS, such as metadata, and

how to benefit from the notion of column families in HBase (Al Mahruqi, 2020).

2.4 Conclusion

This chapter presented three different literature reviews: 1) the RDBMS technology; 2) the No-

SQL database technology; and 3) the different approaches for database migration.

In the first review, an introduction to RDBMS technology was presented, followed by the

introduction of different database concepts, such as ACID properties, the CAP theorem and the

current limitations facing this technology.

This initial review was followed by an overview of the No-SQL database technology which

provided an overview of the advantages and challenges this new technology offers. Pertinent

to the research, a section was dedicated to the introduction of the Hadoop project and its No-

SQL database technology.

The third and final section of the literature review included a discussion of the different

techniques used for database migration as well as the Facebook case study and the database

migration challenges they encountered while using only their experience to conduct this

complex migration process.

The discussion so far highlights the lack of formal guidance in this specific area. This creates

an opportunity to research how to facilitate these types of migrations that are sure to become

more popular as companies start using No-SQL database technologies. In other words,

migrations from RDBMS to No-SQL are conducted using only the experience of the software

engineers. Can migration rules be uncovered and be made available to help? This topic is

addressed in the next chapter with the presentation of an experimental approach to developing

these migration rules.

EXPERIMENT – MIGRATION BASED ON HEURISTICS

We have already presented that the main goal of this research project (TRACK 1) is to uncover

guidelines to potentially help to improve the migration process from RDBMS to No-SQL

databases for software engineers that conduct this migration for the first time. The intended

result of this research is to offer software engineers, which may have expertise in RDBMS but

not in No-SQL migration, a more formal migration step by step process to guide them. To

achieve this goal, it is important to establish a baseline to allow a comparison between the

results of migrating with and without help.

This chapter presents the design of an experiment that will establish a baseline to provide a

valid comparison between the results of a migration processes, based only on experience (this

thesis – TRACK 1), and future research (TRACK 2) that would use these guidelines. This

chapter content publishes as a first research paper (Gomez, Ouanouki, Ravanello, April, &

Abran, 2015) which was awarded best paper of the conference “Cloud Computing 2015: The

Sixth International Conference on Cloud Computing, GRIDs, and Virtualization”.

When new technologies and paradigm appear, such as the No-SQL databases, most

organizations look for help in the literature or use only their experience to attempt this type of

database migration process. At the beginning of this research (in 2014) and conducting this

experiment, little to no previous work/research had been published in this specific area. Indeed,

at the time of conducting the experiments, there has only been preliminary research published

focusing on the migration of certain elements such as database tables limited to a few types of

database relationships.

Figure 3.1 Chapter 3 Objective

56

3.1 Experimental Design

The experimental design of Track 1 of this research is based on an experiment where

participants will conduct a database migration using only heuristics. The next section describes

the experiment participants as well as the data collection procedure.

3.1.1 Experiment Participants and Data Collection Procedure

This subsection follows the experimental recommendations and structure of (Easterbrook,

Singer, Storey, & Damian, 2008), (Marcos, 2005), and (Zelkowitz, Wallace, & Binkley, 2003);

moreover, the experiment was designed using the point of view of a typical developer. Using

this point of view, the participants were asked to state their experience level and they were

classified according to: 1) their academic background; 2) working field; 3) number of years of

work experience with relational databases; and 4) the number of years of work experience with

any No-SQL database.

The word “experience” was related to the following IT domains: programming, relational

database use as a programmer or relational database use as a database administrator.

Additionally, the classification was summarized according to different choices. The academic

background choices are: Graduate with PhD, Graduate with Master, Graduate, and

Undergraduate Student. The working field options are: Industry, Academic, and Research

Center.

The number of years of work experience with a relational database environment have the

following options: No Experience, Low Experience (less than a year), Average Experience (2

to 5 years), and Advanced Experience (more than 5 years). The number of years of work

experience related to any No-SQL database had the same options as above.

The goal of these questions was to obtain a fine grain classification for the participants

according to their experience. This would allow us to know the combinations (pair) “relational-

No-SQL” of experience where the migration guidelines could be most useful. Figure 3.2, for

instance, highlights the pair (Relational Database Low- No-SQL Database Medium), meaning

that a participant had “low” experience with a relational database environment and “medium”

57

experience with No-SQL databases.

Figure 3.2 Participant’s classification

Twenty individuals participated in the experiment: fourteen participants worked in the industry

and three participants worked in the academic sector, one participant came from both sectors

(industry and academic) and the last two participants decided do not submit any

documentation. All participants were provided with a clear and well established understanding

of the purpose of the experimental workshop. The material used in the execution of the

experiment was (refer to the annexes of this thesis for example of the database migration

results):

1. A document including the call for participants (date, time, place and activities

that took place in the workshop), which was an invitation sent by email,

followed-up with phone call reminders two weeks before the workshop;

2. The participant’s instructions guide;

3. A relational database schema (Blue document). A graphical representation of

the database schema that they must migrate to the No-SQL database. This

schema is reused from the research of (Singh, 2010) and contains seven data

tables: four large tables (City, Department, Doctor and Hospital) and three

junction tables (DoctorDeparment, HospitalCity and HospitalDepartment,).

The data tables City, Department, Doctor and Hospital have “Id, Name”

structure, with “Id” as primary keys. Table “Doctor” contains “Id, Name, Age,

Sex and BorIn”. The latter field is the Id of the city where the doctor was born.

The junction tables allow for expressing the “many-to-many” relationship

indicated by each junction table’s title (as depicted in Figure. 3.3). It is

58

important to note that the participants were offered the opportunity to choose

between several sub-schemas from the main schema. For instance, one

participant could choose only to migrate the sub-schema composed by the

entities Hospital – HospitalDepartment – Deparment or the sub-schema Doctor

– DoctorDepartment – Deparment. Alternatively, the participant could select

the entire schema for his migration attempt (see Figure. 3.3).

Figure 3.3 Relational schema given to the participants

4. The No-SQL solution (Green document). This document is a blank sheet of

paper where the participant will draw the target schema proposed for their

migration. To do this they only use their previous knowledge about RDBMS

and No-SQL database technologies;

5. The participants training document (White document). It is a document that

summarizes some key knowledge presented in the training session provided to

each participant, including relational database and No-SQL explanations;

6. The drafts documents (Yellow documents). Blank paper that can be used to

draw anything the participant needs to draw.

7. The experiment final survey form. This survey was designed following the

59

research work devised by (Kasunic, 2005) and (Lethbridge, 1998). It is

composed of nine questions, where the first four were oriented to “experience

classification”, as explained earlier. The fifth question was related to the

migration process aimed at understanding how the participant started his

migration effort (e.g. what was the first step of his process). The sixth question

is aimed at understanding the effort needed to achieve this process (i.e. without

any guidelines). This question was rated from 1 to 5, where 1 indicates that the

process was easy to achieve without too much effort, a value of 3 indicates that

it required a large amount of effort to achieve it and a value of 5 means that no

matter how much effort was put in, it was not possible to do the migration

during the experiment. The seventh question is designed to assess the level of

confusion experienced during the migration process, e.g., no idea where to start

or what the next step was. The question was rated from 1 to 5: always confused,

very often confused, sometimes confused, rarely confused, and never confused.

The eighth question is a matrix for evaluating the percentage that covers the

designed solution with regards to the relational aspects mentioned earlier

(Table, Constraint, PK, and FK). Finally, the ninth question asked for the

participant’s opinion with respect to whether he/she thinks that receiving some

guidelines could improve the process. This question was rated 1 to 5 with the

levels: strongly agree, agree, undecided, disagree, and strongly disagree. It is

one of the two measurement instruments used in the experiment. The second

one was the schema designed on the green document.

3.2 Experiment Results

As previously mentioned, there are no previously published experiments or available data that

support the process or decisions made when migrating an existing database from RDBMS to

No-SQL databases at the time of conducting this experiment. Generally speaking, these

migrations have been conducted using a heuristic approach, i.e., with the developers

experience or the developer’s educated guesses and their common sense.

60

The experiment was conducted on july 24 and 31, 2013 and it consisted of two parts. First, a

30 minute training session provided an explanation of the technological context, including a

short tutorial about RDBMS and the No-SQL technology. All the participants received this

training as well as the Track 1 experiment documentation listed in the previous section.

Subsequently, the participants conducted the experiment, eventually completing the green

sheet (i.e. the No-SQL schema resulting from the migration). Finally they expressed their

opinions by filling out the survey.

Table 3.1 reports on the different educational levels of the participants. It reports a few

undergraduate students (6%) and 94% (5% with PhD, 50% with masters plus 39% of

graduates) of graduate students that showed an interest in participating in the experiment.

Table 3.1 Educational Level of the Participants

Educational Level

Classification Response in
percentage

Graduate with Phd 5%

Graduate with Master 50%

Graduate 39%

Undergraduate 6%

Table 3.2 Work Area of the Participants

Area of work

Classification Response in
percentage

Industry 83%

Academic 17%
Research Center 0%

Table 3.2 shows a large participation from the industry sector (83%). Also, it can be observed,

in Table 3.3 that a large number of participants have experience in RDBMS technology with

45% that have more than 5 years of experience. These results, together with those of Table 3.2

61

(83% of participants in industry sector) support the importance of improving the migration

process.

Table 3.3 Level of Experience in DB Domain

Type of DB
Experience in years

No Exp Low Exp
(< 1 Year)

Middle Exp
(2-5 Years)

Advanced Exp
(>5 Years)

RDBMS 22% 11% 22% 45%

No-SQL 94% 0% 6% 0%

In contrast, Table 3.3 also shows that 94% of the participants have no knowledge of No-SQL

database technology. This is aligns with the fact that these technologies are not well understood

in general. This finding is also aligned with the objectives of this research. The results shown

in Table 3.3 indicate that a set of guidelines could be an interesting tool for this audience.

With regards to the first action to do at the beginning of the migration process, Figure 3.4

provides the different paths chosen by the participants. Considering 83% of participants are in

the industry sector (Table 3.2) and 45% with have more than 5 years of experience (Table 3.3),

there was a large proportion of 61% (resulting from 33% plus 28%) of the participants that

chose to start this migration process using the data “tables” element (see Figure 3.4). Starting

with tables is totally preferred in comparison with relationships. However, it is important to

point out that 61% understood the importance of its composition. The 33% represents the

option related to the goal of obtaining a one-to-one correspondence between the original

database and the target database. This will be helpful in case the result will be evaluated at the

“Coverage Evaluation” level. It means, at the process end this decision will result in 100%

cover in the relational aspect “tables”.

On the other hand, 28% of participants chose to mix some tables to obtain one; they were not

interested in obtaining a 100% “Coverage Evaluation” for the “tables”. Their primary objective

was the information itself and not how this information could be represented.

The difficulty of completing the migration process is reported by Figure 3.5. As can be seen,

62

the initial perception is that this database migration process is difficult (nearly 78% resulting

from 39% plus 39%). This result is reinforced considering that Table 3.3 also shows the low

level of experience in No-SQL databases technologies. The participants reported that this

process demands a considerable amount of effort, likely because No-SQL databases are new

to them.

Figure 3.4 First step in the migration process

Figure 3.5 Level of difficulty in the migration process

The above argument is further reinforced by Figure 3.6, which demonstrates that the majority

63

of the participants (44%) felt sometimes confused, i.e., not knowing how to go about it.

Figure 3.6 provides the results of the opinion of the participants with respect to the question

about being provided a set of guidelines: 28% strongly agreed with their usefulness and 44%

agreed with the relevance of this kind of tool in the migration process. That reinforces and

demonstrates the importance of the present research, as the majority of the participants (44%)

had felt sometimes confused.

With respect to different database aspects, only five were studied in the experiment: tables,

constraints, Primary Keys (PK), Foreign Keys (FK) and others (including all the aspects not

specified in a clear way such as fields, types of relationships, views, indexes, procedures and

triggers).

Figure 3.6 How to begin the process?

Table 3.4 provides the information discussed above regarding the relational aspect covered

against the percentage of coverage in terms of 0%, 25%, 50%, 75% and 100%. For instance,

50% of the participants think that their solution covers 100% of the relational aspect “tables” .

In contrast, 22% think that their solution did not cover this aspect at all (0%).

Moreover, Table 3.4 shows that 28% of the participants think that their solution covers 100%

of the relational aspect “constraints”. On the other hand, 39% of the participants think that their

solution did not cover this aspect at all (0%).

64

Furthermore, Table 3.4 reports that 41% of the participants think that their solution covers

100% of the relational aspect “primary keys”. However, 29% think that their solution did not

cover this aspect (0%).

Table 3.4 Level of Coverage in Different DB Aspects

Relational aspect covered Percentage of coverage
0% 25% 50% 75% 100%

Table 22% 0% 6% 22% 50%
Constraint 39% 11% 17% 5% 28%
PK 29% 0% 18% 12% 41%
FK 28% 0% 11% 22% 39%
Others 94% 0% 0% 0% 6%

Table 3.4 shows that 39% of the participants think their solution covers 100% of the relational

aspect “foreign keys”. Conversely, 28% think that their solution did not cover this aspect (0%).

Other relational database improvement aspects like fields, store procedures or triggers were

combined in the relational aspect “others” and the results reveals that 94% of the participants

showed no interest in these aspects (see Table 3.4, last row).

3.3 Conclusion

This chapter presented the experiment artefacts and participants profile as well as the results

of their database migration activity. The data obtained in the experiment (see annexes) show

the many personal approaches that were taken to try to do the database migration. Despite the

fact that this database migration is possible using an heuristic approach based only on a

software engineer’s experience, it was demonstrated that not all of them with their current

expertise in RDBMS had enough expertise in the No-SQL domain to carry out the migration

fully.

A surprising outcome of the experiment was that nearly all participants tried to migrate the

relational aspect “table” first, but they did not pay attention to other relational aspects like

65

“relationships” or “fields”. To explain this empirical finding, the background of the participants

was considered and the results support that their decisions were driven by their large RDBMS

experience.

The results of this experiment suggest that each individual migration approach is to be studied

in detail to extract migration rules that could be helpful if they were explicitely presented to

the participants of TRACK 2 experiment to be conducted in the future. Another conclusion of

this experiment is that it is reasonable to conclude that those without familiarity of the RDB

domain experienced even more difficulties than those with some RDB experience.

It was also observed that the participants spent a considerable amount of time consulting the

reference documentation, and they also reported that the first obstacle was to figure out how

to start the migration process (e.g. what is the first step).

The next chapter explores the detailed results of this database migration experiment to try to

uncover migration rules.

PROPOSED GUIDELINES FOR MIGRATION

This chapter identifies, explores, uncovers, and describes the proposed guidelines as a potential

solution to improve the migration process from RDB to No-SQL databases. Section 4.1

establishes a vocabulary about what exactly should be understood by guidelines, how

important this should be for the migration and why it is important in terms of the

standardization of the migration processes. Section 4.2 presents the guidelines themselves and

describes the procedure to carry out the migration, and finally, Section 4.3 presents a summary

of the chapter focusing on the results and the way these findings could be used to improve the

migration process.

4.1 What exactly do “guidelines to migrate” mean

In this chapter, the phrase “guidelines to migrate” is a way to describe an appropriate,

repeatable, standardized, and documented way to conduct a migration process from RDB to

No-SQL DBs. It includes but is not limited to a set of processes, tools, and techniques. It could

be thought of as an adaptable template to conduct the above-mentioned migration, a way to

classify the current RDB, selecting all its relational aspects (see section 2.1) and analyze the

way the No-SQL DB (in this case HBase) could handle each of these relational aspects,

wherever possible. This will speed up the database migration process, even for development

teams that are first-timers on migration projects. The final objective will always be to deliver

the target No-SQL DB more quickly.

Among the desired qualities of the proposed solution, the guidelines to migrate should have

the following characteristics:

 Adjustable to the size and complexity of the project, in other words, they should be

flexible and scalable enough to be able to be used in very specific migration cases;

68

 Easy to understand and to be applied by a software engineer that is attempting to

conduct this migration for the first time;

 Subject to the process of repeated refining, always providing an updated solution.

4.2 Guidelines to migrate by relational aspect

The migration attempt of RDB to No-SQL database, specifically the column oriented one as in

HBase had different design properties that should have been taken into account in the target

HBase had different design properties that should have been taken into account in the target

database schema by the participants. A roughly quick migration without regard to the

specificities of HBase has resulted in a poor design and, as a consequence, in a solution that

does not align well with the properties of a well migrated target database schema.

To study each of the participants proposed solution (see annexes), we will use the same simple

example that was shown in chapter 3, i.e. the Hospital-Doctor RDB schema that was given to

the participants in the experiment, with information about hospitals, doctors, departments and

cities. Also, the outcomes of the experiment explained in chapter 3, in which nearly all

participants, based on their large RDB experience, started with the assumption that they should

migrate “table” by “table” from RDB to HBase, but did not pay attention to other relational

aspects like “relationships” or “fields” will be taken into account.

The strategy used by some of the participants in the experiment was not completely wrong.

Indeed, this section will use that outcome as an input but in addition will put into practice a

methodology called DDI, which is an acronym for “De-normalization, Duplication, and

Intelligent Keys”. This methodology was created by (Salmen, Malyuta, Fetters, & Norbert,

2009) and has also been widely used by (Lars, 2011). DDI is recommended since the source

database schema and the target database schema are so different that a migration process should

consider first the appropriate way to design the target database schema and, at the same time,

profit from all the advantages that HBase could offer as a No-SQL database.

Given that HBase does not provide the sophisticated query processing and optimization

capabilities of RDB schema, DDI recommends setting as much data as possibly available in a

69

single row of the target schema. In order to accomplish this goal DDI provides:

De-normalization (D): With the goal of retrieving data via fewer searches from the schema.

The “de-normalization” concept comes from the RDB world and the idea behind it is to have

all the information about an entity and the entities related to it in the same table.

Duplication (D): The duplication task is related to de-normalization and both have the same

purpose, which is optimizing the solution for fast reads without any further processing. The

intention is to duplicate the information in more than one table with the consequence that, at

read time, no further aggregation is required.

Intelligent Keys: HBase physically orders the rows using the row keys. A row can be easily

accessed using the row key value. One way to take advantage of this kind of storage is to

analyze whether the key should be designed as a composition of the attributes that are most

often used as search criteria. This was brought from the RDB world where an index could be

designed as a combination of multiple columns.

Combining the DDI principles with the experimental results described in chapter 3 and the

literature review done for this research, a series of guidelines were designed and it is strongly

recommended to take them into account during the process of migrating an existing RDB

schema to a No-SQL database schema, specifically HBase.

The developed guidelines will be applied to all the relational aspects contained on the

“Hospital-Doctor” RDB schema. In other words, all the aspects will be listed focusing on the

guidelines that create that list. Please note that some HBase concepts are not present in the

RDB world and it could be hard to explain them using such a simple RDB example. If this is

the case, another appropriate example will be used.

Guideline No. 1: Identify each relational aspect in the source RDB schema and analyze if it

can be implemented in HBase and how it could be implemented.

The idea of this guideline is to make a list of all the aspects that should be migrated, considering

there is a possibility that not all aspects on the list will be migrated either because that aspect

is no longer needed in HBase or that HBase does not support it.

70

Figure 4.1 shows the simple RDB schema used for the experimentation. Most of the relational

aspects will be covered but, as stated earlier, the chosen example does not cover all of them.

(Please see section 2.1 for a detailed list and theory about it).

Figure 4.1 RDB Schema from Chapter 3 experiment

Relational Aspect “Tables”: In Figure 4.2, the Hospital-Doctor database shows four tables:

Hospital, Deparments, Cities and Doctors. Each table contains information related to hospitals,

departments, cities and doctors accordingly. This relational aspect will be covered if we have

at least one HBase table. In HBase, a table is a collections of rows. Please note that no matter

how many tables the RDB schema has, it does not mean we will necessarily have the same

number of tables in HBase.

Relational Aspect “Columns/Attributes”: In HBase, a “column” is a collection of key value

pairs and a “column family” is a collection of columns. In an RDB schema the columns are

designed as shown in Figure 4.3. The column family concept is not present on an RDB schema.

Therefore the following is the columns list from the example in Figure 4.1. It lists 21 columns

(see Figures 4.4 and 4.5). The migrated solution in HBase could have more or less tables, but

in any case, it will implement the columns concept and also the column family concept.

71

Figure 4.2 Relational aspect “tables” for the given schema

Figure 4.3 In RDB Schema intersection row-column

Figure 4.4 Column’s list from the Figure 4.1

72

Figure 4.5 Relationships and Columns from Figure 4.1

Guideline No. 2: Create tables with columns families based on similar information.

Before applying this guideline, it is important to know how HBase works. All data for a given

column family goes into a single store on HDFS (Hadoop Distributed File System, see details

in section 2.2.5). In that store, it might have one or multiple HFiles. Columns in a column

family are all stored together on disk (inside the HFile), and this way of storage has significant

implications for table/columns design. For instance, as suggested by (Dimiduk & Khurana,

2013; Ouanouki, April, Abran, Gomez, & Desharnais, 2017), the columns in one family are

stored separately from the columns in another family and it should be a good idea that

information with similar access patterns be designed to stay within the same column family.

Figure 4.6 Table schema after guideline No. 2

73

That will save time at read operations. Similarly, information with different access patterns

must be stored in different column families and if there is information that is not often queried,

it must be assigned to a separate column family.

After guideline No. 2 is applied, the access pattern analyzed for this example suggests one of

the best ways could be to have only 3 tables, doctor, hospital, and department. The other tables

will be removed (see Figures 4.6 and 4.7).

Figure 4.7 Tables with columns families based on similar information

Relational Aspect “Rows”: As shown in Figure 4.3, the second row, “02 St. Mary’s Hospital”,

is a way to organize the information inside the table “Hospital”. Similarly, HBase rows consist

of a row key and one or more column qualifiers and values which are further grouped into sets

called columns families. A row key is a unique identifier for the table row. Consequently, here

the concept of “row” is different in RDB and in HBase and this difference must be understood.

Figure 4.8 shows a possible example of the table “Doctors” after guideline No. 2 was applied.

74

Figure 4.8 Table Doctors with example of information

Guideline No. 3: Decide if table row design will apply “Tall-Narrow” or “Flat-Wide”

approach.

At this point in the migration process (Dimiduk & Khurana, 2013; Lars, 2011) recommend

evaluating the tables obtained in order to consider if those tables should be re-designed based

on “Tall-Narrow” or “Flat-Wide” approaches.

HBase’s performance is directly linked to the row key design and how that row key accesses

the information. From guideline No. 2 it was learned that HBase will split up data by column

family. A “Tall-Narrow” approach is a design with more rows and less family

columns/columns, whereas the “Flat-Wide” approach will create tables with less rows and

more family columns/columns. Therefore, with less attributes per unique row, a “Tall-

Narrow” approach would need to have a more complex row key (it can be referred as a

composite key) giving adjacency of similar elements and allowing for “scans” by logical

group of entries.

On the other hand, a “Flat-Wide” approach would have much more information in the entry

itself, since only it will have a logical unique attribute as a row key, and it will “get” the entry

through the row key, and the entry would have sufficient information to process the user

request.

Unfortunately, the Hospital-Doctor RDB schema is too small to be affected by the advantages

or disadvantages between these design approaches. However, and only for the purposes of

75

better understanding, we will consider Figure 4.8 more closely. First of all, creating a table

following a “Flat-Wide” approach is possible thanks to the HBase ability to easily add

columns, to the scale of millions, at run time (see section 2.2.8). If the design intention is to

remove the Hospital table, and for the sake of keeping the data, the information in Hospital

must be added to the Doctors table as one family column: Hospital, where each added column

will represent a specific hospital where the doctor works (meaning work-1, work-2, etc., see

Figure 4.9). Adding more hospitals for a specific doctor will not increase the number of rows,

it will increase the number of columns, so this table will become a wide table. This approach

is recommended if the schema will not store a huge amount of information per row (millions

of columns). The advantage is to have all entity information in one row. Figure 4.10 shows the

results of solving the same problem using the “Tall-Narrow” approach.

As stated earlier, the “Tall-Narrow” approach would need to have a more complex row key.

For this specific case the row key will be composed of the id itself and the hospital name, in a

lexicographic order. Adding more hospitals for a specific doctor will not increase the columns,

it will increase the rows, so this table will become a tall table. All the information gathered up

to now suggests that, given the row key has the highest cardinality, it would be advisable that

the most needed parts of the user query go to the row key.

Figure 4.9 Table Doctors created with “Flat-Wide” approach

76

Despite the fact that the table in Figure 4.8 has a simple row key, the “Tall-Narrow” approach

will be used in later sections for the Hospital-Doctor RDB schema.

Figure 4.10 Table Doctors created with “Tall-Narrow” approach

Relational Aspect “Fields”: As you can see in Figure 4.3, a field in a RDB schema is the

smallest unit of a RDB table which holds the value of a specific attribute in the form of a tuple

(row, column), while a cell in HBase is the smallest unit of a HBase table which holds a piece

of data in the form of a tuple (row, column, version). The difference between the two is the

former has a unique and specific value while the latter, from the same tuple (row, column),

could have several versions of the value differentiated by timestamp. This relational aspect will

be covered, in an easy way, in the HBase target from the Hospital-Doctor RDB schema.

Relational Aspect “Constraints”: The following list will show how the HBase solution will

generally handle the different constraints types:

Not Null Constraint: HBase does not have to worry about this constraint since it cannot be

implemented, the null value does not take up any space in storage in HBase. Moreover, the

Hospital-Doctor RDB schema has no Not-Null constraint.

Default and Check Constraints: This features specifies either default value for a column

when none is provided or ensures that all values in a column satisfy certain conditions. In

any case, HBase uses the java package “org.apache.hadoop.hbase.constraint” in order to

77

accomplish this task. This means they must be coded specifically from the HBase shell

interface. The Hospital-Doctor RDB schema has neither default nor check constraints.

Primary Key Constraint: While in RDB the primary key is the column (or set of columns)

whose values uniquely identify the row, in HBase that function is accomplished by the row

key. For instance, the primary key (PK) of the table Hospital is the Id, which means two

Hospitals cannot have the same Id (see Figure 4.1).

Guideline No. 4: Design the row key according the business rules and/or access patterns.

In HBase tables, the row key design is a critical step in order to access the information in an

efficient way. Unfortunately the “multiple indexes” feature from a RDB schema does not exist

in HBase, which only has the ability to provide a single index, the row key, which is closely

linked to the performance of read operations. There are two different ways to design a row key:

o Using a unique value as a differentiator, which is used with the “Flat-Wide” approach.

o Using a composite value as a differentiator, which is used with the “Tall-Narrow”

approach.

In turn, the composite value for the row key could be a combination of categorical data, which

means a concatenation of several attributes already presented in the RDB schema.

Also, it could be a combination of categorical data and time-series data, where the timestamp

is rounded down to the nearest scale and could be a day or an hour or another point depending

on the application business rules, and finally concatenated from the rounding process to the

row key as a prefix/suffix. Some key points should be taken into account using this kind of

composite row key. Firstly, do not forget that the “timestamp is rounded”, so the remainder of

the information must be stored as a column in the table to avoid losing data. Secondly, it is

important to be sure to store data items together whose timestamps (rounded) belong to a given

period of time. In that way, the query response time will be increased.

The composite value for the row key could also contain spatial data, e.g. latitude and longitude

coordinates. This kind of composite row key will need the help of an external algorithm that

provides the right translation from the given pair, latitude and longitude.

78

The results of using this concept to migrate the Hospital-Doctor RDB schema are shown in

Figure 4.11. The highlighted areas were updated.

Figure 4.11 Tables after applying guideslines No.2 and No.3

An example of the information that could be stored in the tables is shown in Figure 4.12.

Figure 4.12 Example of information in tables Doctors and Hospitals

79

Figure 4.13 Table Departments

Finally, concerning Relationships and Referential Integrity Constraint (Foreign Keys): In an

RDB, the relationships uniquely identifies a row in any other table. A specific column value

must be a reference to existing rows in another table. This relationship could be specified using

either the primary key in the reference table or some other unique constraint.

Guideline No. 5: De-normalize the relationships.

Normalization is a principle on RDB schemas that involves dividing a large amount of tables

into smaller and less redundant tables, and defining relationships between them that can be

accessed by invoking join queries. Unfortunately, HBase does not support joins, instead it uses

the DDI approach in order to handle the lack of relationship capabilities.

One-to-One Relationships: As suggested by (Chongxin, 2010), there is no intensive work for

the migration of a one-to-one relationship because this has already been done in RDB schema

using the foreign key information inside a column in HBase. The reason is the one-to-one

relationships are the least frequent relationship type in RDB world.

One-to-many Relationships: There are several possible ways to migrate an RDB one-to-many

relationship to a HBase schema. The most widely used strategy to migrate to HBase is to create

one HTable, with two column families: one column family to store the first RDB table columns

and a second column family to store the second RDB table columns. Again, this is just one

among several different ways to migrate this kind of relationship to HBase.

80

Figure 4.14 One-to-One Relationships on RDB schema to HBase

Figure 4.15 Migrated tables

Figure 4.16 One-to-Many Relationships on RDB schema

Many-to-many Relationships: In a many-to-many relationship there is a third table maintains

the relationship and keeps the foreign keys for both tables, which means both sides of the

relationship are the “many” side. For that reason, migration could be implemented with the

same approach as for the “many” side of one-to-many relationship. In other words, new column

families should be created in both tables to capture row keys. The third table which is used to

81

maintain the relationship will be removed, because its information has been expressed on both

sides of the relationship.

Figure 4.17 Example of information in the migrated table

Figure 4.18 Many-to-Many Relationships on RDB schema

Figure 4.19 Example of information in the migrated table using DDI

82

Guideline No. 6:Merge tables as a way to reduce foreign keys.

In the RDB world a main table could be used independently in the schema, whereas an attached

table is used depending on the referenced object. This guideline states that information on

attached tables can be merged into a single row of the main table based on the foreign key and

business rules.

Secondary Index Constraint: This constraint cannot be implemented in HBase since it has no

native support for secondary indexes. However, there are some specific market solutions that

address this problem.

Unique Constraint: In RDB, the unique constraint ensures that all values in a specific column

are different. In HBase there are no indexes. The row key, the column families, and the column

qualifiers are all stored in sort order (the java comparable method for byte arrays).

Figure 4.20 Main and attached tables on RDB schema

Figure 4.21 Example of information in the merged tables

83

Guideline No. 7: Identify if secondary or unique indexes are needed. If they are, apply the

“inverted table”approach.

An “inverted table” approach is to create a second table where the row key follows the pattern

(value, row key) in contrast with the main table where the row key is (row key, value). In others

words, the main table will have a row key (could be designed, or not, as DDI) and the second

table will “invert” the attribute as the row key and then create a column entry for each row key

of the main table. As an example, to include the concept of “managers” where some doctors

report to another doctor (main table), we would create a second table (emulating the secondary

index) where the row key will be the doctor’s name. So for each record in the main table, there

would be a corresponding entry in the second table (index table).

If Dr. Tremblay reported to Dr. Smith, and Dr. Brown reported to Dr. Smith, there would be a

single row in the Doctor’s table, with a row key for Dr. Tremblay and then two column entries

containing the row key for Dr. Tremblay’s record, and a row key for Dr. Brown's record (see

Figures 4.22). Now, to see all of the doctors managed by Dr. Smith, it will be as simple as

going to the secondary index table and finding Dr. Smith’s row and it will contain the row key

for all doctors that report to him. This approach will work only for simple tasks. If you want to

try something more complicated there are libraries dedicated to this kind of work (Culvert).

Figure 4.22 Main table (Doctors) in HBase schema

84

Figure 4.23 Second table (index table) in HBase schema

4.3 The guidelines extraction process explained

This section provides an explanation about all the steps conducted with the aim to extract the

guidelines from different possible sources, such as, the experiment results analysis presented

in chapter three and the literature review explored in chapter two. All those combined,

produced a collective knowledge which allowed this research to identify several guidelines

that will be explained in detail in the next subsection. To better understand the extraction of

these guidelines, it is important to describe the steps performed in the process:

 The first step was to prepare the experiment. As explained in subsection 3.1.1, item 3,

the idea was to give the participants, due to time constraints, the possibility to choose

a subset of the schema shown in figure 3.3, in order to finalize the experiment as soon

as possible. This “divide and conquer approach” was expressed in the blue form

(synthetic RDB schema) as an information table with the title working group. Also, this

same approach was used in the survey design, specifically, in question number eight,

which took all the concepts of RDB and, for the purposes of this research, they were

renamed as relational aspects. At the end, this reasoning led to the development of

guideline one “Identify each relational aspects in the source RDB schema and analyze

if they can be implemented on HBase and how it could be implemented”.

 The second step was to apply the experiment in the date and time agreed (see appendix

I).

85

 The third step was the verification and validation of the data provided by the

participants in the experiment presented in chapter three. The goal was to ensure all

participants filled out and submit all the given forms in a proper way. In case someone

took the decision to not submit any documentation, this step also made sure the process

was done in the intended formal manner and the documents were also labeled as not

submitted.

 The fourth step was to collect all the heuristic behind the knowledge process used to

achieve the given task in the experiment. Each experiment result sheet was analyzed, it

means, the blue (synthetic RDB schema), the green (No-SQL solution) and the yellow

one (draft sheets). The analysis started by an organisation by colors, hence, all the

participants blue sheet was brought together. Accordingly, the same was done with the

green and the yellow. The objective was highlighted common steps conducted during

the experiment by the participants, and this step was the base for guidelines number

two “create tables with columns families based on correlated information” , guideline

number four “design the row key according the business rules and/or access patterns”

and guideline number five “de-normalize the relationships”.

 The fifth step was to take a second look and analyze again the proposed solutions on

the green sheet (No-SQL solution) and the process expressed on the yellow one (draft

sheets) and find any link between the solution shown in the results and the literature

review explored in chapter two. As expected, this step was the base, by far, of more

technical guidelines, such as guideline number three “decide if table’s row design will

apply « tall-narrow » or « flat-wide » approach”, the guideline six “merge tables to

reduce foreign keys” and finally the guideline number seven “Identify if secondary or

unique indexes are needed. If so, apply “inverted table" approach”.

4.4 How the 7 proposed migration steps compare to the current state of the art of

RDBMS to No-SQL migration

To further validate our findings, another literature review was conducted on the topic of

RDBMS to No-SQL to see if any other publication was made from 2014 to 2022 which had

86

discovered or improved on these proposed 7 steps. Figure 4.24 confirms that this research work

still proposes a more complete set of migration steps than other publications. The only other

research from Serrano et al., with 4 of the 7 steps, comes close to our findings of 2014. This is

encouraging as our research results are still to be challenged by other researchers.

Figure 4.24 Migration guidelines in the 2014-2022 litterature

A final validation of the resulting guidelines was conducted to understand the “Level of

Coverage of HBase in RDB Aspects”. Table 4.1 shows that this was greatly improved through

the use of the seven steps as compared with the results obtained with the experimentation

described earlier (see Table 3.4). In Table 4.1, the “comments” explain why the percentage was

assigned.

We think that the seven steps will offer a much better coverage of the RDB aspects when they

will be used in the future.

87

Table 4.1 Level of Coverage of HBase in RDB Aspects

Relational aspect covered Percentage of coverage
% Comments

Table 100%
Columns/Attributes 100%
Rows 100%
Fields 100%
Constraints: Not Null 0% Not supported

Constraints: Default Value 100%
Using java package
“org.apache.hadoop.hbase.cons
traint”

Constraints: Check Constraints 100%
Using java package
“org.apache.hadoop.hbase.cons
traint”

Constraints: Primary Key 100% Using DDI and access pattern
analisys.

Constraints: Referential Integrity It must create the code to
support referential integrity.

Relationships
--One-to-One Relationships 100%
--One-to-many Relationships 100%
--Many-to-many Relationships 100%

Constraints: Secondary Index 50%

The 50% represents that is
possible to emulate them using
the “inverted table” approach,
but there is still a lot of extra
work.

Constraints: Unique Constraint 75%
Only the Row Key offers a
unique constraint. Is not
possible to have another one.

4.5 Future research

Concerning future research, Figure 4.25 shows the distinction between the overall research

objectives and the scope of this research, it means, the TRACK 1 represented by the red border

in the figure. The TRACK 2 research will take place in a forthcoming research, conducting

another experiment to evaluate how the use of these guidelines would help in migration tasks.

88

The proposed experimental approach to the overall research is to use the same RDB as the

origin and follow the two different experimental tracks to arrive at a target database (a migrated

database), and thus, allow a valid comparison between the two resulting databases. The present

research addressed only the TRACK 1, which was conducted without the use of migration

guidelines, it means, based only on experience (heuristics), and the TRACK 2 will be

conducted with the use of the migration guidelines presented in chapter 4. At the end of the

overall research, will be possible to compare the two HBase databases obtained.

Figure 4.25 The two TRACKs of the research migration from RDBMS to No-SQL

4.5.1 Validation of the proposed guidelines

In this sub-section, it will be explored a way to validate the guidelines proposed in the previous

section. The general idea is to check if the use of the guidelines improves the migration process

from RDB to No-SQL databases (specifically HBase). Here, the concept “improve” will be

used in the sense to bring into a more desirable or excellent condition the current migration

process from RDB applications to No-SQL database applications.

Figure 4.25 shows, graphically, the whole experimental research objective, please take into

account the present research scope only cover the TRACK 1 highlighted by the red dots mark.

In order to conduct such validation, it would be necessary, design the validation plan that will

outline the objective and the strategy that will be used to endorse the given guidelines. The

first step of the validation plan will include an analysis and selection of a suitable RDB

89

candidate to be migrated. This RDB should be sufficiently complex in terms of relational

aspects and data quantity and it will be used the same RDB application to follow the two

experimental tracks showed in the figure 4.25: the first, without the use of the guidelines, and

the other one with the use of the guidelines.

The second step of the validation plan will be the creation of a relational aspects list containing

all the desired relational aspect that would be migrated. Examples of such relational aspects

would be, among others:

 Tables

 Columns

 Rows

 Fields

 Constraints:

Not Null

Default Value

Check Constraints

Primary Key

 Relationships:

One-to-One Relationships

One-to-many Relationships

Many-to-many Relationships

The third step of the validation plan will include a recommendation about how to compare the

two resulting DBs showed in figure 4.25: HBase (without guidelines) and HBase’ (with

guidelines). Many authors have studied different ways to compare database application

(Gomez et al., 2015; Goyal, Swaminathan, Pande, & Attar, 2016; Serrano et al., 2015) but the

recommended evaluation way in this sub-section implies the coverage evaluation of the two

resulting database applications. It means, compare HBase (without guidelines) with RDB

source and, also, compare HBase’ (with guidelines) with RDB source. As a result, each DB

target: HBase (without guidelines) and HBase’ (with guidelines) will have a list of the level of

coverage of each relational database aspect. Table 4.1 shows a similar list.

90

The fourth step of the validation plan will be the analysis of each result: HBase (without

guidelines) with RDB source and, also, compare HBase’ (with guidelines). Here, the

evaluation criteria could be the average of percentage of coverage.

Despite the proposed validation plan is based on the comparison of different coverage

evaluation, also it could be recommended different parameters, specifications, and acceptance

criteria could be recommended, such as content evaluation, data coverage, structure coverage

or content verification.

4.6 Why this research is still relevant today?

Nowadays, the present research is still relevant, mostly due the RDB is the database dominant

model in the market. Indeed, migration of large RDB to cloud computing databases,

specifically No-SQL DB, still poses several significant problems, e.g., the RDB model

constraints, the lack of migration experience, the fact that No-SQL DB implies new ways of

solutions, the possibility that not all data can be migrated and the shortage of proper teaching

about No-SQL DB in academia, among others. (Kumar, Kumar, & Namdeo, 2021; A. M.

Maatuk, Abdelaziz, & Ali, 2020; Raouf, Abo-Alian, & Badr, 2021).

Present-day migrations are mostly based on heuristic approach, it means, the entire process

depends on whereby experiences from some migration team members. The applications based

on RDB should be migrated in a way that could maintain a modern and reliable migration

process, it means one that not depends only on experienced team members to know which step

should be the next in the process.

The importance of this research lies in the need to provide a first attempt to transform part of

the used heuristics into standards, starting with the given guidelines from previous sections.

They were extracted based on a combination of heuristics and deep review of preceding

attempts to face similar migrations.

The given guidelines are open to interpretation, it means, they are not intended to be applied

in a specific order, however, they depict a path to conduct the migration and their application

could have an impact in terms of reduce the migration times, for instance, if it takes a lot of

91

time to decide how to address the multiple relationship issues in RDB, it would takes longer

for the RDB to be migrated.

In the chapter two, a deep literature review was conducted to show how different researchers

addressed similar problems. The key point found in these researches was that all of them treated

each issue in an isolated way. The present research treats each issue as part of the whole rather

than a separate entity, it means, each issue found should be a different aspect of the same

migration process, and treat all the whole as the beginning of a possible standardization

process.

Apply a clear and transparent migration process, will help the software engineers, with no

experience in No-SQL technology, in each step and will provide results in a way that could be

easily replicated by others. Additionally, it will provide the right solution strategy to face each

particular issue during the migration and it that way the migration time could be reduced.

4.7 Conclusion

This chapter has identified, explored, uncovered, and described a series of seven (7) steps that

could be used as guidelines for the migration process from RDB to a column-store No-SQL

database, specifically the HBase DB. Starting from the demographic experiment results, it was

shown that most software engineers, with no experience in No-SQL technology, need a

guidance about what steps to conduct during the migration process from RDB to No-SQL DB.

Taking the experiment's results as a base, and using the literature review analyzed in chapter

two, it was possible to uncover and extract seven guidelines. Also, to help in the understanding

of each guideline, a simple RDB example was used to explain how each of these relational

aspects should be migrated, and, how the concept of relational aspects was covered by each

guideline.

Another point addressed in this chapter was the relation between the literature review in chapter

two, the experiment shown in chapter three and the guidelines proposed in this chapter. Finally,

the future of this research was examined, in conjunction with a way to validate the proposed

guidelines.

CONCLUSION

The problem of migrating an existing RDB towards a column-store No-SQL database,

specifically HBase, was studied. As presented in chapter 3, a heuristic approach is used for

conducting an RDB to No-SQL migration based on the experience of the participants. This

2013 case-study has helped in identifying, exploring, uncovering, and describing seven (7)

migration steps that could act as a set of guidelines to help future software engineers in their

first attempt at conducting the migration from RDB to column-store No-SQL database.

These guidelines were identified after analyzing the detailed responses of the participants as

well as the database migration literature. The participants had industrial and academic

backgrounds, some were undergraduates, others graduates with a Master or PhD degree, but

most had strong relational database experience and almost no experience with No-SQL

databases (which reflects the current state of affairs in the industry). The experiment aimed at

asking the participants to migrate a simple database schema from RDB to a column-store No-

SQL database (HBase) without the use of any guidelines.

The participants filled out a questionnaire after the experiment which was used to better

understand their migration approach and the difficulties encountered. This information was

used to ensure that specific RDB aspects be well covered during a migration. Finally the seven

(7) steps published have shown that they offer a better coverage of the RDB aspects and are

still current in 2022.

Main contribution and outcomes

A list of seven (7) migration steps were identified, explored, uncovered, and described.

The assistance provided by these guidelines is still to be tested but, in our opinion, offer much

better coverage of RDB aspects than any other proposed approach, even in 2022. The research

results related to the guideline formulation and the experimentation were published in:

 Toward building RDB to HBase conversion rules

R. Ouanouki, Abraham Gomez A. April, A. Abran & J. M. Desharnais

94

Journal of Big Data volume 4, Article number: 10 (2017)

doi:10.1186/s40537-017-0071-x

 Building an Experiment Baseline in Migration Process from SQL Databases to

Column Oriented No-SQL Databases

Abraham Gomez, R Ouanouki, A. April, A. Abran

Journal of Information Technology & Software Engineering (2014)

doi: 10.4172/2165-7866.1000137

 Gomez, Abraham, Ouanouki, R., Ravanello, A., April, A. and Abran, A.

Experimental Validation as Support in the Migration from SQL Databases to NoSQL

Databases

Conference on Cloud Computing, GRIDs, and Virtualization. (2015).

doi: 978-1-61208-388-9

Limitations

The findings of this study have some limitations:

 The experiment sample size (twenty participants) may make it difficult to determine

if a particular outcome of the experiment can be extrapolated in a valid way for all

populations of developers and whether the result can be generalized.

 The lack of prior contributions about specific guidelines make it difficult to compare

the guidelines provided with any prior study;

 As a consequence of the preceding limitation, more experimentation is required (in

TRACK 2) in order to validate and potentielly improve the proposed guidelines, evaluate

the performance of the guidelines, add new ones or analyze if they are still valid for complex

relational database schemas;

 The limitation regarding the domain. In other words, the guidelines were designed to

cover a particular kind of No-SQL databases, the column-oriented database, and a particular

example of these databases, HBase. So, if the HBase technology evolves, and this evolution

95

affects some of the guidelines, these should be updated. Likewise, more research would be

needed to evaluate if the guidelines can be generalized for other kinds of No-SQL databases.

APPENDIX I

EXPERIMENT 1 – CALL FOR PARTICIPATION

Call for Participation
The École de Technologie Supérieure (ÉTS) invites you to participate in the project "Rules

for Converting a Relational Database to a No-SQL Database for Cloud Computing". The

objective is to verify the guidelines developed by researchers to improve the migration

process from relational applications to No-SQL applications.

The session will be held at ÉTS, Montreal, on July 24th and 31st, 2013 and it will be 90

minutes in length.

The session will comprise three defined parts:

 Training in relational and No-SQL database
aspects.

 The experiment itself with the support of the
appropriate material.

 Finally, it will have a survey, in order to
evaluate the experience.

98

We especially encourage those participants with experience in programming and databases

design and administration; their participation will contribute to enhance the migration

process to applications in this new complex environment.

Participants with previous experience will collaborate with the formalization of the

migration process contributing to the final solution.

Participants without previous experience will obtain valuable information about how to

conduct a SQL to No-SQL migrations process.

APPENDIX II

EXPERIMENT 1 –GENERAL INSTRUCTIONS

Instructions to follow during the session:

The participation in the experimentation is voluntary. If you decide, for any reason, to leave

the session, please inform to the organizer to return all documents related with the experiment

and destroy them.

Please do not communicate with other participants during the session.

The experiment will have four parts: Introduction, training session, experiment, and survey.

1. Introduction: The goal of the initial introduction is to provide the context.

2. The training session: Listen carefully to all the instructions provided by the session

organizer. If you have any questions, do not hesitate to ask. In the training session you

will receive an overview about relational DB, No-SQL database and an example of the

migration process (at schema’s level).

3. The experiment: At the beginning of the experiment each participant will receive:

A “participant code”, please write this code in all your documents that you are going to

receive.

A yellow envelope with four types of documents:

The document with the training example (white sheets).

One blue sheet with the synthetic relational schema that will be migrated to No-SQL.

This database schema is totally different to the other database schema, presented in the

previous training document.

100

One green sheet where the participant will write the No-SQL schema

resulting from the conversion/migration process.

Several yellow sheets that can be used as drafts.

The first recommended step is to read the document “training document:

migration from relational databases to No-SQL databases”.

Analyze how the example in the document was used to make the migration

from the relational database to No-SQL environment.

After finishing the migration process and designing your response schema

on the green sheet, please make sure that your “participant code” is written

on all the documents used in the experiment.

Also, return all the documents used and not used in the experimentation to

the organizer in the yellow envelope.

4. Survey: After finishing the experiment part, please fill the “participant

experience survey” form.

If you have questions about this experiment, please contact:

Abraham Gomez: abraham-segundo.gomez.1@ens.etsmtl.ca

This experiment has been designed in accordance with the policies of the ETS

Ethics committee.

APPENDIX III

EXPERIMENT 1 – RDB TO NO-SQL SURVEY

Participant Code: ___________________________

Experience Classification: Please fill with an “X” in the answer column.

1. You are: 2. You work in:

Question Answer
Graduate with PhD

Graduate with Master

Graduate

Undergraduate Student

Question Answer

Industry

Academic

Research Center

3. How many experience years do you

have working in a relational database

environment or programming?

4. How many experience years do you

have working in or related to any No-SQL

database?

Question Answer
No Experience

Low Experience (< 1 Year)

Middle Experience (2-5

Years)

Advanced Experience

(>5 Years)

Question Answer
No Experience

Low Experience (< 1 Year)

Middle Experience (2-5

Years)

Advanced Experience

(>5 Years)

Migration process: Please fill with an “X” in the answer column.

5. Before starting the migration process, what was your first step?

102

Question Answer
Did you try migrating each table in the source and obtaining one

corresponding table in the target?

Did you try to mix some tables of the source and obtain one corresponding

table in the target?

Did you try to migrate in some way the relationships from the source to

target?

Another option? Which one? (Please fill out in print, rather than handwritten)

6. Please rate how easy it is to carry out the entire migration process, without a well-

established method. A value of 1 indicates that the process was easy to achieve without

effort, a value of 3 indicates that it was required a maximum effort to achieve it and a value

of 5 means that no matter how comprehensive the effort, it was not possible to achieve it.

1 2 3 4 5

7. Did you feel confused (e.g., no idea where to start or what the next step was) on

how to carry out the entire migration process?

1 2 3 4 5

Always

confused

Very often

confused

Sometimes

confused

Rarely

confused

Never confused

8. In your opinion, your solution (No-SQL Schema in the green sheet) is covering all

aspects developed by the relational schema? Please fill with an “X” the percentage that you

think was covered for your solution schema.

103

Percentage of

coverage

0% 25% 50% 75% 100%

Relational aspect

covered

Table

Constraint

PK

FK

Other:

Other:

9. In your opinion, if you had received guidelines about how to make the

conversion/migration process, would this have improved your task?

1 2 3 4 5

Strongly agree Agree Undecided Disagree Strongly

disagree

APPENDIX IV

EXPERIMENT 1 –TRAINING DOCUMENT

Relational Databases

Overview

A relational database is a database that has a collection of tables of data items, all of which is

formally described and organized according to the relational model.

In the relational model, each table schema must identify a primary column used for identifying

a row called the primary key. Tables can relate by using a foreign key that points to the primary

key of another table. The relational model offers various levels of refinement of the table

relations called database normalization. The database management system (DBMS) of a

relational database is called an RDBMS, and is the software of a relational database. Here is a

figure of this model:

Relational Aspects

Tables

A table is defined as a set of tuples that have the same attributes. A tuple usually represents an

object and information about that object. Objects are typically physical objects or concepts.

The tables are organized into rows and columns. All the data referenced by an attribute are in

the same domain and conform to the same constraints. The relational model specifies that the

tuples of a table have no specific order and that the tuples, in turn, impose no order on the

attributes. Applications access data by specifying queries, which use operations such as select

106

to identify tuples, project to identify attributes, and join to combine tables. Tables can be

modified using the insert, delete, and update operators.

Constraints

Constraints make it possible to further restrict the domain of an attribute. For instance, a

constraint can restrict a given integer attribute to values between 1 and 10. Constraints provide

one method of implementing business rules in the database. SQL implements constraint

functionality in the form of check constraints.

Primary keys

A primary key uniquely specifies a tuple within a table. In order for an attribute to be a good

primary key it must not repeat. While natural attributes (attributes used to describe the data

being entered) are sometimes good primary keys, surrogate keys are often used instead. A

surrogate key is an artificial attribute assigned to an object which uniquely identifies it (for

instance, in a table of information about students, the student ID). Another common

occurrence, especially in regards to N:M cardinality is the composite key. A composite key is

a key made up of two or more attributes within a table that (together) uniquely identify a record.

Foreign key

A foreign key is a field in a relational table that matches the primary key column of another

table. The foreign key can be used to cross-reference tables. Foreign keys need not have unique

values in the referencing relation.

Stored procedures

A stored procedure is executable code that is associated with, and generally stored in, the

database. Stored procedures usually collect and customize common operations, like inserting

a tuple into a relation, gathering statistical information about usage patterns, or encapsulating

complex business logic and calculations.

Index

An index is one way of providing quicker access to data. Indices can be created on any

combination of attributes on a relation. Queries that filter using those attributes can find

matching tuples randomly using the index, without having to check each tuple in turn. This is

analogous to using the index of a book to go directly to the page on which the information you

107

are looking for is found, so that you do not have to read the entire book to find what you are

looking for.

Cardinality

The cardinality of one data table with respect to another data table is a critical aspect of

database design. Relationships between data tables define cardinality when explaining how

each table links to another.

In the relational model, tables can be related as any of: one-to-one, many-to-one (or one-to-

many), and many-to-many.

For example, consider a database designed to keep track of hospital records. Such a database

could have many tables like:

 A Doctor table full of doctor information

 A Patient table with patient information

 And a Department table with an entry for each department of the hospital.

In that model:

There is a many-to-many relationship between the records in the Doctor table and records in

the patient table (Doctors have many patients, and a patient could have several doctors);

A one-to-many relation between the Department table and the Doctor table (each doctor works

for one department, but one department could have many doctors).

The one-to-one relationship is mostly used to split a table in two in order to optimize access or

limit the visibility of some information. In the hospital example, such a relationship could be

used to keep apart doctors' personal or administrative information.

No-SQL Databases: HBase

Overview

HBase is an open-source, non-relational, distributed database modeled after Google's BigTable

and is written in Java. It is developed as part of Apache Software Foundation's Apache Hadoop

project and runs on top of HDFS (Hadoop Distributed Filesystem), providing BigTable-like

capabilities for Hadoop. That is, it provides a fault-tolerant way of storing large quantities of

108

sparse data. Since HBase is a distributed database, the main database will be in the master

server and the others server will be called region servers.

HBase is column oriented

A regular SQL schema can be designed as follows:

Student Table

student_ID

varchar(2) PK

name

varchar(30)

age

integer

Sex

char(1)

1 John 25 M

2 Mike 32 M

3 Anna 19 F

4 Steve 28 M

The relational databases have row-oriented storage (they are organized by rows):

Row 1 1 John 25 M

Row 2 2 Mike 32 M

Row 3 3 Anna 19 F

HBase has column-oriented storage, it means, it is organized by columns:

Col 1: name John Mike Anna

Col 2: age 25 32 19

Col 3: sex M M F

Columns in HBase are grouped into column families. All column members of a column family

have the same prefix. For example, the columns info:name and info:age are both members of

the info column family. The colon character (:) delimits the column family. All the columns of

the same family are recorded in the same region server.

109

How does HBase work?

HBase has two types of nodes: the master and the region server. HBase only can have one

master at a time. The master manages the cluster operations, the assignment, the load balancing

and the splitting. It does not part of the read/write operation.

HBase can have one or more region servers. They hosts the tables; performs the reads, manage

the buffers writes. Also the clients can talk directly to them for reads/writes.

HBase schema design

HBase is a big sorted map and to obtain a cell value, you have to enter the Row Key+ Column

Key + timestamp.

110

Migration Use Cases

Relational and No-SQL are two different worlds, to obtain a good enough migration you must

implement at least the idea of denormalize and duplicate data and build a good row key.

Example of a Student and Subject

Data Examples

111

HBase Schema

Data Examples

APPENDIX V

EXPERIMENT 1 –BLUE DOCUMENT

Participants Code : _____________________ Synthetic relational schema

Working groups

Id Tables

A Hospital – HospitalDepartment – Deparment

B Doctor – DoctorDepartment – Deparment

C Hospital – HospitalCity – City

D Doctor – City

E All Tables

APPENDIX VI

EXPERIMENT 1 –GREEN DOCUMENT TEMPLATE

Participants Code : _____________________ No-SQL solution

Please apply the document “White Training Document” and for each working group that

you will consider in the “blue synthetic relational schema” write:

Relational Schema that you will migrate

Working Group:

HBase Schema

Data Examples for the HBase Schema

116

Please repeat this model for any working group that you will consider

APPENDIX VII

EXPERIMENT 1 –GREEN DOCUMENT SAMPLES

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

APPENDIX VIII

EXPERIMENT 1 –YELLOW DOCUMENT TEMPLATE

Participants Code : _____________________ Drafts sheets

APPENDIX IX

EXPERIMENT 1 –YELLOW DOCUMENT SAMPLES

146

147

148

149

150

151

152

153

154

LIST OF REFERENCES

Abadi, D. (2009). Data Management in the Cloud: Limitations and Opportunities. IEEE Data
Engineering Bulletin, 32(1).

Abdel-Fattah, M., Mohamed, W., & Abdelgaber, S. (2022). A Comprehensive Spark-Based

Layer for Converting Relational Databases to NoSQL. Big Data and Cognitive
Computing, 6, 71. doi: 10.3390/bdcc6030071

Abran, A., Laframboise, L., & Pierre, B. (2003). A Risk Assessment Method and Grid for

Software Measurement Programs. Journal of Systems Management - Institute of
Chartered Financial Analysts of India (ICFAI), 3, 34.

Aiyer, A., Bautin, M., Chen, J., Damania, P., Khemani, P., Muthukkaruppan, K., . . . Vaidya,

M. (2012). Storage Infrastructure Behind Facebook Messages Using HBase at Scale.
Dans Data Engineering Bulletin (Vol. 35, pp. 10). Repéré à
http://sites.computer.org/debull/A12june/A12JUN-CD.pdf

Al Mahruqi, R. S. (2020). Migrating web Applications from SQL to NoSQL Databases

(Queen’s University). Repéré à
https://qspace.library.queensu.ca/bitstream/handle/1974/27587/Al_Mahruqi_Rahma_
Said_202001_Phd.pdf?sequence=3&isAllowed=y

Alotaibi, O., & Pardede, E. (2019). Transformation of Schema from Relational Database

(RDB) to NoSQL Databases. Data, 4(4), 148. Repéré à https://www.mdpi.com/2306-
5729/4/4/148

Amanor-Boadu, J. (2022). Predicting Server Platform Power Delivery Performance through

Simulation, Measurement, and Correlation. IEEE Instrumentation & Measurement
Magazine, 25(5), 53-60. doi: 10.1109/MIM.2022.9832824

Attebury, G., Baranovski, A., Bloom, K., Bockelman, B., Kcira, D., Letts, J., . . . Wuerthwein,

F. (2009). Hadoop distributed file system for the Grid. Dans Nuclear Science
Symposium Conference Record (NSS/MIC), 2009 IEEE (pp. 1056-1061).

Basili, V. R., Selby, R. W., & Hutchens, D. H. (1986). Experimentation In Software

Engineering. IEEE Transactions on Software Engineering, SE-12(Compendex), 733-
743.

Bourque, P., & Cote, V. (1991). An experiment in software sizing with structured analysis

metrics. Journal of Systems and Software, 15(Copyright 1991, IEE), 159-172. Repéré
à http://dx.doi.org/10.1016/0164-1212(91)90053-9

156

Brewer, E. A. (2000a). Towards robust distributed systems présentée à Proceedings of the
nineteenth annual ACM symposium on Principles of distributed computing, Portland,
Oregon, United States. doi: 10.1145/343477.343502. Repéré à
http://delivery.acm.org/10.1145/350000/343502/p7-
brewer.pdf?ip=142.137.251.19&CFID=33765333&CFTOKEN=44726574&__acm__
=1311346453_b3ab11dc5f5d1fefde9a5d3428c9cb15

Brewer, E. A. (2000b). Towards robust distributed systems (abstract) présentée à Proceedings

of the nineteenth annual ACM symposium on Principles of distributed computing,
Portland, Oregon, USA. doi: 10.1145/343477.343502

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., . . . Gruber, R.

E. (2008). Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems, 26(Compendex). Repéré à
http://dx.doi.org/10.1145/1365815.1365816

Chen, J., & Lee, W. (2017). Data conversion from RDB to HBase. Dans 2017 IEEE 8th

International Conference on Awareness Science and Technology (iCAST) (pp. 170-
175). doi: 10.1109/ICAwST.2017.8256439

Chongxin, L. (2010). Transforming relational database into HBase: A case study. Dans

Software Engineering and Service Sciences (ICSESS), 2010 IEEE International
Conference on (pp. 683-687).

Codd, E. F. (1970). A relational model of data for large shared data banks. Commun. ACM,

13(6), 377-387. doi: 10.1145/362384.362685

Codd, E. F. (1971a). A data base sublanguage founded on the relational calculus présentée à

Proceedings of the 1971 ACM SIGFIDET (now SIGMOD) Workshop on Data
Description, Access and Control, San Diego, California. doi:
10.1145/1734714.1734718

Codd, E. F. (1971b). Normalized data base structure: a brief tutorial présentée à Proceedings

of the 1971 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access
and Control, San Diego, California. doi: 10.1145/1734714.1734716

Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.-

A., . . . Yerneni, R. (2008). PNUTS: Yahoo!'s hosted data serving platform. Proc.
VLDB Endow., 1(2), 1277-1288. doi: 10.1145/1454159.1454167

Cryans, J.-D., April, A., & Abran, A. (2008). Criteria to compare cloud computing with current

database technology. Dans International Workshop on Software Measurement, IWSM
2008, DASMA Software Metrics Congress, MetriKon 2008, and International
Conference on Software Process and Product Measurement, Mensura 2008, November

157

18, 2008 - November 19, 2008 (Vol. 5338 LNCS, pp. 114-126). Springer Verlag.
Repéré à http://dx.doi.org/10.1007/978-3-540-89403-2-11

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters.

Communications of the ACM, 51(Compendex), 107-113. Repéré à
http://dx.doi.org/10.1145/1327452.1327492

Desharnais, J. M., Pare, F., Maya, M., & St-Pierre, D. (1997). Implementing a Measurement

Program in Software Maintenance - An Experience Report Based on Basili's Approach.
Dans. International Function Point Users Group.

Dimiduk, N., & Khurana, A. (2013). HBase in Action.

Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting Empirical Methods

for Software Engineering Research Guide to Advanced Empirical Software
Engineering. Dans F. Shull, J. Singer & D. Sjøberg (Éds.), Guide to Advanced
Empirical Software Engineering (pp. 285-311). Springer London. doi: citeulike-article-
id:2229410

doi: 10.1007/978-1-84800-044-5_11. Repéré à http://dx.doi.org/10.1007/978-1-84800-044-
5_11

Elmasri, R., & Navathe, S. (2016). Fundamentals of database systems (7 éd.). Pearson/Addison

Wesley.

Erdogmus, H. (2009). Cloud Computing: Does Nirvana Hide behind the Nebula? Software,

IEEE, 26(2), 4-6.

Fong, J. (1997). Converting relational to object-oriented databases. SIGMOD Rec., 26(1), 53-

58. doi: 10.1145/248603.248614

Fong, J., & Chris, B. (1994). Data Conversion Rules from Network to Relational Databases.

Information Software Technology, 36(3), 13.

Fong, J., Pang, F., & Bloor, C. (2001). Converting relational database into XML document.

Dans Database and Expert Systems Applications, 2001. Proceedings. 12th
International Workshop on (pp. 61-65).

Fong, J., & Wong, H. K. (2004). Replicate relational and XML databases for Internet

computing. Dans Information Technology: Coding and Computing, 2004. Proceedings.
ITCC 2004. International Conference on (Vol. 1, pp. 492-496 Vol.491).

Fuxman, A., Hernandez, M. A., Ho, H., Miller, R. J., Papotti, P., & Popa, L. (2006). Nested

mappings: schema mapping reloaded présentée à Proceedings of the 32nd international
conference on Very large data bases, Seoul, Korea.

158

Gantz, J., Reinsel, D., & Rydning, J. (2018). The Digitization of the World - From Edge to
Core.

Georgia-Tech-Research-Institute. (2009). no:sql east 2009. Atlanta, Georgia: Conference

Center -- Georgia-Tech-Research-Institute. Repéré à
https://speakerrate.com/events/230-no-sql-east-2009

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. SIGOPS Oper.

Syst. Rev., 37(5), 29-43. doi: 10.1145/1165389.945450

Giddens, J. (2017). Concepts for nursing practice. St. Louis, Missouri : Elsevier, [2017].

Repéré à https://books.google.ca/books?id=lB-
KCwAAQBAJ&lpg=PA430&ots=NRuXNCYpvJ&dq=concepts%20for%20nursing
%20practice%20giddens%20pdf&pg=PP1#v=onepage&q&f=false

Gilbert, S., & Lynch, N. (2002). Brewer's conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News, 33(2), 51-59. doi:
10.1145/564585.564601

Gomez, A., Ouanouki, R., Ravanello, A., April, A., & Abran, A. (2015). Experimental

Validation as Support in the Migration from SQL Databases to NoSQL Databases.
Dans CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud
Computing, GRIDs, and Virtualization (pp. 147 to 153). Repéré à
http://www.thinkmind.org/index.php?view=article&articleid=cloud_computing_2015
_6_40_20057

Google Cloud Architecture Center (1). (2020). Database migration: Concepts and principles

(Part 1). Repéré à https://cloud.google.com/architecture/database-migration-concepts-
principles-part-1

Google Cloud Architecture Center (2). (2020). Database migration: Concepts and principles

(Part 2). Repéré à https://cloud.google.com/architecture/database-migration-concepts-
principles-part-2

Goyal, A., Swaminathan, A., Pande, R., & Attar, V. (2016). Cross platform (RDBMS to

NoSQL) database validation tool using bloom filter. Dans 2016 International
Conference on Recent Trends in Information Technology (ICRTIT) (pp. 1-5). doi:
10.1109/ICRTIT.2016.7569537

Ha, M., & Shichkina, Y. (2022). Translating a Distributed Relational Database to a Document

Database. Data Science and Engineering, 7(2), 136-155. doi: 10.1007/s41019-022-
00181-9. Repéré à https://doi.org/10.1007/s41019-022-00181-9

Hadoop-webpage. (2011). The Apache Hadoop project. Repéré à http://hadoop.apache.org/

159

HBase-webpage. (2011). The Apache HBase. Repéré à http://hbase.apache.org/

Hive-webpage. (2011). The Apache Hive. Repéré à http://hive.apache.org/

Ippoliti, E. (2015). Heuristic Reasoning (Vol. 16). Springer. doi: 10.1007/978-3-319-09159-4

Kasunic, M. (2005). Designing an Effective Survey. doi: citeulike-article-id:3936216. Repéré

à #

Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas Behind

Reliable, Scalable, and Maintainable Systems. O'Reilly Media. Repéré à
https://books.google.ca/books?id=BM7woQEACAAJ

Kong, C., Gao, M., Qian, W., Zhou, M., Gong, X., Zhang, R., & Zhou, A. (2015). ACID

Encountering the CAP Theorem: Two Bank Case Studies. Dans 2015 12th Web
Information System and Application Conference (WISA) (pp. 235-240). doi:
10.1109/wisa.2015.63

Kossmann, D., Kraska, T., & Loesing, S. (2010). An evaluation of alternative architectures for

transaction processing in the cloud présentée à Proceedings of the 2010 international
conference on Management of data, Indianapolis, Indiana, USA. doi:
10.1145/1807167.1807231

Koto, A., Kono, K., & Yamada, H. (2014). A Guideline for Selecting Live Migration Policies

and Implementations in Clouds. Dans 2014 IEEE 6th International Conference on
Cloud Computing Technology and Science (pp. 226-233). doi:
10.1109/CloudCom.2014.36

Kumar, A., Kumar, M. S., & Namdeo, V. (2021). A Regression-based Hybrid Machine

Learning Technique to Enhance the Database Migration in Cloud Environment. Dans
2021 International Conference on Computing, Communication, and Intelligent Systems
(ICCCIS) (pp. 149-155). doi: 10.1109/ICCCIS51004.2021.9397123

Kuszera, E. M., Peres, L. M., & Fabro, M. D. D. (2019). Toward RDB to NoSQL: transforming

data with metamorfose framework présentée à Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, Limassol, Cyprus. doi:
10.1145/3297280.3299734. Repéré à https://doi.org/10.1145/3297280.3299734

Lakshman, A., & Malik, P. (2010). Cassandra: a decentralized structured storage system.

SIGOPS Oper. Syst. Rev., 44(2), 35-40. doi: 10.1145/1773912.1773922

Lam, C. (2011). Hadoop in Action. Stamford, CT: Manning Publications Co.

Lars, G. (2011). HBase: The Definitive Guide (1 éd.). O'Reilly Media.

160

Lethbridge, T. C. (1998). A Survey of the Relevance of Computer Science and Software
Engineering Education présentée à Proceedings of the 11th Conference on Software
Engineering Education and Training.

Maatuk, A., Ali, A., & Rossiter, N. (2008). Relational Database Migration: A Perspective

présentée à Proceedings of the 19th international conference on Database and Expert
Systems Applications, Turin, Italy. doi: 10.1007/978-3-540-85654-2_58

Maatuk, A., Ali, M. A., & Rossiter, N. (2011). Re-engineering relational databases: the way

forward présentée à Proceedings of the 2011 International Conference on Intelligent
Semantic Web-Services and Applications, Amman, Jordan. doi:
10.1145/1980822.1980839

Maatuk, A. M., Abdelaziz, T., & Ali, M. A. (2020). Migrating Relational Databases into XML

Documents. Dans 2020 21st International Arab Conference on Information
Technology (ACIT) (pp. 1-11). doi: 10.1109/ACIT50332.2020.9299967

Marcos, E. (2005). Software engineering research versus software development. SIGSOFT

Softw. Eng. Notes, 30(4), 1-7. doi: 10.1145/1082983.1083005

Microsoft. (2011). MSDN Microsoft. Repéré

Ouanouki, R., April, A., Abran, A., Gomez, A., & Desharnais, J.-M. (2017). Toward building

RDB to HBase conversion rules (Vol. 4). doi: 10.1186/s40537-017-0071-x

Özsu, M. T., & Valduriez, P. (2011). Principles of Distributed Database Systems. Springer

New York. Repéré à https://books.google.ca/books?id=TOBaLQMuNV4C

Pearl, J. (1984). Heuristics: Intelligent search strategies for computer problem solving.

Addison-Wesley Pub. Co., Inc.,Reading, MA.

Pierce, B. A. (2012). Genetics: A Conceptual Approach. W. H. Freeman.

Raouf, A. E. A., Abo-Alian, A., & Badr, N. L. (2021). A Predictive Multi-Tenant Database

Migration and Replication in the Cloud Environment. IEEE Access, 9, 152015-152031.
doi: 10.1109/ACCESS.2021.3126582

Rocha, L., Vale, F., Cirilo, E., Barbosa, D., & Mourão, F. (2015). A Framework for Migrating

Relational Datasets to NoSQL. Procedia Computer Science, 51, 2593-2602. doi:
https://doi.org/10.1016/j.procs.2015.05.367. Repéré à
https://www.sciencedirect.com/science/article/pii/S1877050915011758

Salmen, D., Malyuta, T., Fetters, R., & Norbert, A. (2009). Cloud Data Structure Diagramming

Techniques and Design Patterns.

161

Sandhu, A. K. (2022). Big data with cloud computing: Discussions and challenges. Big Data
Mining and Analytics, 5(1), 32-40. doi: 10.26599/BDMA.2021.9020016

Serrano, D., Han, D., & Stroulia, E. (2015). From Relations to Multi-dimensional Maps:

Towards an SQL-to-HBase Transformation Methodology. Dans 2015 IEEE 8th
International Conference on Cloud Computing (pp. 81-89). doi:
10.1109/cloud.2015.21

Shuchih Ernest, C., Kuo-Ming, C., & Yu-Ching, C. (2015). Cloud migration: Planning

guidelines and execution framework. Dans 2015 Seventh International Conference on
Ubiquitous and Future Networks (pp. 814-819). doi: 10.1109/icufn.2015.7182656

Singh, P. (2010). Schema Guidelines & Case Studies. Repéré à http://www.paxcel.net/site Web

|URL| doi:DOI

Stonebraker, M. (1986). The Case for Shared Nothing. A quarterly bulletin of the IEEE

computer society technical committee on Database Engineering, 9(1), 6.

Stonebraker, M. (2008). Technical perspective: One size fits all: an idea whose time has come

and gone. Commun. ACM, 51(12), 76-76. doi: 10.1145/1409360.1409379

Stonebraker, M., & Kepner, J. (2012). Possible Hadoop Trajectories. Repéré le May 2, 2012 à

http://cacm.acm.org/blogs/blog-cacm/149074-possible-hadoop-trajectories/fulltext

Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S., Hachem, N., & Helland, P.

(2007). The end of an architectural era: (it's time for a complete rewrite) présentée à
Proceedings of the 33rd international conference on Very large data bases, Vienna,
Austria.

Tawfik, M., Al-Zidi, N. M., Alsellami, B., Al-Hejri, A. M., & Nimbhore, S. (2021). Internet

of Things-Based Middleware Against Cyber-Attacks on Smart Homes using Software-
Defined Networking and Deep Learning. Dans 2021 2nd International Conference on
Computational Methods in Science & Technology (ICCMST) (pp. 7-13). doi:
10.1109/ICCMST54943.2021.00014

Tow, D. (2003). SQL Tuning. O'Reilly & Associates, Inc.

Venner, J. (2009). Pro Hadoop. Apress. doi: citeulike-article-id:5014567. Repéré à

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-
20&path=ASIN/1430219424

Wagner, C., Hudic, A., Maksuti, S., Tauber, M., & Pallas, F. (2015). Impact of Critical

Infrastructure Requirements on Service Migration Guidelines to the Cloud. Dans 2015
3rd International Conference on Future Internet of Things and Cloud (pp. 1-8). doi:
10.1109/FiCloud.2015.79

162

White, T. (2009). Hadoop: The Definitive Guide. O'Reilly.

Zelkowitz, M. V., Wallace, D. R., & Binkley, D. W. (2003). Experimental validation of new

software technology. Dans Lecture notes on empirical software engineering (pp. 229-
263). World Scientific Publishing Co., Inc.

