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Détection de groupe optimale pour les systèmes de multiplexage spatial

Byron Paul MAZA CHALAN

RÉSUMÉ
Les grands systèmes MU-MIMO (Multi-User Multiple-Input Multiple-Output) sont des tech-

nologies de communication sans fil avancées qui prennent en charge un grand nombre d’antennes

aux extrémités de l’émetteur et du récepteur. Ces systèmes assurent le multiplexage spatial, la

diversité et la formation de faisceaux, améliorant considérablement la capacité et la fiabilité

des communications sans fil. En conséquence, les grands systèmes MU-MIMO sont devenus

un composant essentiel des réseaux sans fil 5G et au-delà de la 5G, répondant à la demande

croissante de débits de données plus élevés.

Le facteur de charge fait référence au rapport entre le nombre d’équipements utilisateur (UE) et

le nombre d’antennes de la station de base (BS). Lorsque le facteur de charge s’approche de zéro,

le système atteint des conditions de propagation favorables qui offrent un gain de diversité et une

fiabilité significatifs. Dans ce scénario, les récepteurs linéaires tels que le forçage zéro (ZF) et

l’erreur quadratique moyenne minimale (MMSE) fonctionnent de manière quasi optimale. En

revanche, le système maximise le gain de multiplexage et la capacité lorsque le facteur de charge

est égal à un, appelé facteur de pleine charge. Cependant, ce scénario entraîne des conditions de

propagation non favorables, dégradant gravement les performances des récepteurs linéaires et en

faisant des algorithmes sous-optimaux.

Le récepteur de détection de groupe à vraisemblance maximale (GD-ML) est un algorithme

qui améliore les performances des récepteurs linéaires sans augmenter significativement leur

complexité. La technique GD-ML consiste à diviser le vecteur de symboles reçus en groupes

après application d’une projection linéaire. La détection optimale de vraisemblance maximale

(ML) est appliquée à chaque groupe. Bien que cette technique ait été étudiée pour les systèmes

conventionnels à entrées multiples et sorties multiples (MIMO) avec canaux Rayleigh non

corrélés, son potentiel pour les grands systèmes MU-MIMO reste largement inexploré.

Dans cette thèse, nous visions à atteindre deux objectifs principaux liés à l’efficacité du récepteur

GD-ML dans les grands systèmes MU-MIMO avec facteur de pleine charge et canal Rayleigh

corrélé. Le premier objectif consiste à obtenir l’équation de la complexité du récepteur et à

évaluer le compromis entre performance et complexité. Le deuxième objectif est de dériver une

expression analytique des performances du récepteur GD-ML. Les objectifs susmentionnés ont

été atteints en utilisant la méthodologie suivante: une revue de la littérature, qui comprenait des

travaux pertinents et des informations de base ; création d’un modèle de système qui suppose une

infrastructure cellulaire sans fil avec des antennes distribuées et non corrélées de M au niveau

de la BS, des UE à antenne unique et corrélés N étroitement situés, et un récepteur GD-ML avec

une taille de groupe Nu, ( N � Nu); des métriques d’évaluation qui incluaient le taux d’erreur

sur les bits (BER) et le taux d’erreur vectorielle (VER) comme métriques de performances,

ainsi que la métrique des opérations à virgule flottante (FLOP) pour la complexité de calcul;

analyse mathématique qui impliquait la formulation d’équations analytiques pour évaluer les
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performances et la complexité du récepteur à l’aide de la théorie aléatoire multivariée, de l’ordre

stochastique et des opérations matricielles.

Nous avons fourni l’équation FLOP pour évaluer la complexité du récepteur GD-ML. Nous

avons observé que l’algorithme GD-ML a presque la même complexité que ZF et MMSE, où les

étapes de détection ML et de regroupement ajoutent une complexité négligeable à l’opération

de projection linéaire. Nous avons dérivé une expression sous forme fermée pour le groupe

moyen VER afin d’évaluer les performances du récepteur GD-ML. Nos résultats analytiques ont

indiqué que le récepteur GD-ML fournit un gain de diversité proportionnel à M − N + Nu. Nous

avons également constaté que les performances du récepteur GD-ML diminuent à mesure que

les coefficients de corrélation des UE augmentent. Les résultats numériques ont révélé que le

récepteur GD-ML surpasse à la fois les récepteurs ZF et MMSE et ont validé l’expression de

performance dérivée. Nous avons observé que l’expression analytique et les résultats numériques

restent proches pour les petits Nu. À un rapport signal/bruit (SNR) modéré, nous avons observé

que les résultats de l’expression analytique et de la simulation correspondent étroitement et

deviennent parfaits à mesure que la corrélation des UE augmente.

Mots-clés: détection de groupe, grand MU-MIMO, détection ML, performances VER, canaux

corrélés
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Byron Paul MAZA CHALAN

ABSTRACT

Large MU-MIMO (Multi-User Multiple-Input Multiple-Output) systems are advanced wireless

communication technologies that support a large number of antennas at both the transmitter

and receiver ends. These systems provide spatial multiplexing, diversity, and beamforming,

significantly enhancing wireless communication’s capacity and reliability. As a result, large

MU-MIMO systems have become an essential component of 5G and beyond-5G wireless

networks, meeting the increasing demands for higher data rates.

The load factor refers to the ratio of the number of user equipment (UEs) to the number of

antennas at the base station (BS). When the load factor approaches zero, the system achieves

a favorable propagation condition that offers significant diversity gain and reliability. In this

scenario, linear receivers such as zero-forcing (ZF) and minimum mean square error (MMSE)

perform near-optimal. In contrast, the system maximizes the multiplexing gain and capacity

when the load factor equals one, called the full-load factor. However, this scenario results in a

non-favorable propagation condition, severely degrading the linear receivers’ performance and

making them sub-optimal algorithms.

Maximum-likelihood group detection (GD-ML) receiver is an algorithm that improves the

performance of linear receivers without significantly increasing their complexity. The GD-ML

technique involves dividing the received symbols vector into groups after applying a linear

projection. The optimal Maximum-likelihood (ML) detection is applied to each group. While

this technique has been researched for conventional multiple-input multiple-output (MIMO)

systems with uncorrelated Rayleigh channels, its potential for large MU-MIMO systems remains

largely unexplored.

In this thesis, we aimed to achieve two primary objectives related to the effectiveness of the

GD-ML receiver in large MU-MIMO systems with full-load factor and correlated Rayleigh

channel. The first objective involves obtaining the equation for the receiver’s complexity and

assessing the compromise between performance and complexity. The second objective is to

derive an analytical expression for GD-ML receiver performance. The aforementioned objectives

were accomplished using the following methodology: a literature review, which encompassed

relevant works and background information; creation of a system model that assumes a wireless

cellular infrastructure with M distributed and uncorrelated antennas at the BS, N closely-located

single-antenna and correlated UEs, and a GD-ML receiver with group size Nu, (N � Nu);

evaluation metrics that included bit error rate (BER) and vector error rate (VER) as performance

metrics, along with the floating-point operations (FLOPs) metric for computational complexity;

mathematical analysis which involved the formulation of analytical equations to assess the

receiver’s performance and complexity using multivariate random theory, stochastic ordering,

and matrix operations.
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We provided the FLOPs equation to evaluate the GD-ML receiver’s complexity. We observed

that the GD-ML algorithm has almost the same complexity as ZF and MMSE, where the

ML detection and grouping stages add a negligible complexity compared to linear projection

operation. We derived a closed-form expression for the average group VER to assess the

GD-ML receiver’s performance. Our analytical results indicated that the GD-ML receiver

provides a diversity gain proportional to M − N + Nu. We also found that the GD-ML receiver’s

performance decreases as the UEs’ correlation coefficients increase. Numerical results revealed

that the GD-ML receiver outperforms both ZF and MMSE receivers, and validated the derived

performance expression. We observed that the analytical expression and numerical outcomes

remain close for small Nu. At a moderate signal-to-noise ratio (SNR), we observed that the

analytical expression and simulation results closely match and become perfect as the UEs’

correlation increases.

Keywords: group detection, large MU-MIMO, ML detection, VER performance, correlated

channels
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INTRODUCTION

Overview

In recent decades, wireless communication systems have undergone significant development,

resulting in positive contributions to modern society’s economy. The advancements have led to

improved throughput, increased connectivity, and enhanced energy efficiency, creating favorable

scenarios for developing new applications and connecting more devices.

The fifth generation (5G) wireless communication standard has rapidly deployed worldwide,

offering high-speed communication networks with low-latency and massive access (Pavan,

Reddy, Prasad, Chintala & Sai, 2023; Yeo, 2023). Meanwhile, current research topics beyond 5G

(B5G) networks, known as sixth-generation (6G) networks, aim to offer enhanced connectivity

and support more applications than 5G. The research includes network capabilities for various

sectors such as industry, autonomous applications, media and entertainment, healthcare systems,

virtual and augmented realities, and education (Elijah et al., 2022). B5G is expected to introduce

three new scenarios that complement the existing 5G scenarios. These scenarios are ultra-mobile

broadband (uMBB), ultra-reliable low-latency broadband communications (ULBC), and massive

ultra-reliable low-latency communication (mULC). While the 5G scenarios are massive machine-

type communications (mMTC), ultra-reliable and low-latency communications (URLLC), and

enhanced mobile broadband (eMBB) communications, the three novel scenarios overlap with

them to form an integral set (Pavan et al., 2023; Banafaa et al., 2023; Naeem, Ali, Kaddoum,

Huang & Yuen, 2023). Additionally, the technological requirements for B5G implementation

will require improvements to existing technologies as well as the incorporation of new ones not

considered in 5G. These technologies comprise artificial intelligence (AI) based communication,

software centric networks, terahertz communication, ultra-massive antenna arrays, new network

topology, and intelligent reflecting surface (IRS) (Kumar, 2022; Naeem et al., 2023).
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Multiple-input multiple-output (MIMO) is a technology that deploys multiple antennas at both

the transmitter and receiver sides. MIMO can be implemented using either co-located or

distributed antennas. Co-located MIMO systems entail antennas placed close to each other,

while distributed MIMO systems involve physically separated antennas that may be spread out

over a larger area. MIMO systems have many benefits, including improved wireless links in

terms of spectral efficiency and reliability. This is due to the multiplexing or diversity gains

(Tse & Viswanath, 2006; Björnson, Hoydis & Sanguinetti, 2017). The MIMO channel can be

modeled using uncorrelated or correlated Rayleigh fading models. The uncorrelated model

assumes an independent fading process between antennas at both ends of the communication

link, commonly used in scenarios where antennas are widely separated. In contrast, the

correlated Rayleigh fading model considers the correlation between the fading processes of

different antennas and is more suitable for scenarios where the antennas are closely located

(Tse & Viswanath, 2006).

Multi-user MIMO (MU-MIMO) refers to a system with multiple transmitters or receivers

equipped with multiple antennas (Goldsmith, 2005). MU-MIMO is mostly deployed in wireless

cellular infrastructures, which include a base station (BS) providing service to multiple user

equipments (UE) using the same frequency-time resources (Zhao, Zhao, Zheng & Xiang, 2018).

Massive MIMO, also known as large-scale antenna system, large MIMO, full-dimensional

MIMO, large MU-MIMO, or hyper MIMO, is a technology that aims to enhance the benefits

provided by conventional MIMO (Marzetta, 2010). In this system, the load factor refers to the

ratio between the total number of UEs and the number of receiver antennas at the BS. As the

load factor approaches zero, which means that the number of antennas at the BS increases to

infinity, the system achieves maximum diversity gain and operates under favorable propagation

conditions (Ngo, Larsson & Marzetta, 2014). In contrast, when the load factor is one, also

known as the full-load factor, large MU-MIMO enhances the spectral efficiency and achieves a
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maximum multiplexing gain. This outcome is particularly desirable in scenarios where a large

number of UEs are gathered together close to each other, whether it be in outdoor events, such

as "open exhibitions", or in indoor activities where the UEs need to connect to the network, such

as a crowded auditorium (Osseiran et al., 2014; Karipidis, 2015).

The detection of large MU-MIMO signals from each UE at the BS is a critical challenge,

due to various factors such as channel impairments, interference, and noise. Consequently,

researchers and system developers are continuously looking for efficient detection algorithms

that strike a good balance between performance and hardware complexity. Linear detectors

are low-complexity options that achieve near-optimum performance for large MU-MIMO with

low-load factors (Flordelis et al., 2018). However, their performance significantly degrades for

moderate and full-load factors due to the assumption of uncorrelated users’ channels (Zhang,

Wang, Long, Vasilakos & Hanzo, 2015).

On the other hand, non-linear receivers achieve better performance than their linear counterparts

at the expense of high hardware complexity, making them impractical solutions. Various detection

algorithms based on heuristics, optimization, machine learning, and artificial intelligence have

been proposed (Chockalingam & Rajan, 2013). However, their performances are not competitive

for a large number of antennas and a high modulation order due to their hardware complexities,

which are over an order of magnitude higher than their linear counterparts.

Problem statement

Maximum-likelihood group detection (GD-ML) receivers take a divide-and-conquer approach

that achieves a favourable balance between performance and complexity in MIMO systems with

a full-load factor. The GD-ML algorithm divides the received symbols into groups and performs

the optimum maximum-likelihood (ML) detection on each individual group. GD-ML improves

the linear receiver’s performance by exploiting the correlation among the channel estimates,
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thereby mitigating their interference (Choi, Lee, Shim & Kang, 2013). As a result, it is regarded

as an ideal solution for correlated MIMO channels.

In the past decades, there has been extensive research on GD-ML for conventional MIMO

systems, focusing on enhancing the structure and grouping strategies. More recently, the GD-ML

receiver has emerged as a practical solution for large MU-MIMO systems, as evidenced in

(Zhang et al., 2015) and (Nguyen, Le, Ngo, Nguyen & Han, 2018a).

Studies on conventional MIMO and large MU-MIMO systems using the GD-ML technique

in the current literature mainly rely on simulation results, where the performance analyses

available are limited to idealized channels. These channel models assume a rich scattering

Rayleigh fading environment, where the channel matrix entries are independent and identically

distributed (i.i.d.). This assumption simplifies the derivation of performance metrics; however,

more realistic channel models considering correlated entries, which yield more accurate results

and reflect real-world systems, are needed. On the other hand, while the hardware complexity of

conventional MIMO is well studied, for large MU-MIMO systems, it still remains unexplored.

The absence of the aforementioned studies has compelled us to establish the research objectives

outlined in the following section.

Objectives and Methodology

This thesis aims to assess the efficiency of GD-ML receivers in large MU-MIMO systems. To

achieve this goal, two objectives are pursued. The first objective is to develop a computational

complexity equation and analyze its efficiency in full-load factor systems by weighing the

trade-off between performance and complexity. The second objective is to derive an analytical

expression of GD-ML performance for a large MU-MIMO system with a distributed antenna

scenario and a correlated channel at the transmitter side.
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To achieve these objectives, the following research methodology was adopted:

• Literature Review: Extensive research was conducted on large MU-MIMO receivers, focusing

on studying the GD-ML architecture to identify current challenges. The literature review

covered the theoretical background of MIMO systems, as well as previous and related works

on the structure, complexity, and performance of GD-ML receivers. Multiple research papers,

conference proceedings, and relevant textbooks on wireless communication systems were

examined to conduct this review.

• System Model: We determined the parameters for a large MU-MIMO system model to

establish the target scenario. These parameters include the number of antennas and UEs,

antenna distribution, channel model, and modulation scheme.

• Evaluation metrics: We established performance and complexity metrics to evaluate the

studied receivers. The performance assessment comprises the bit error rate (BER) and

vector-symbol error rate (VER), while the complexity is measured through floating-point

operations (FLOPs), considering the number of UEs and antennas at the BS.

• Mathematical Analysis: We formulated analytical equations to evaluate the performance and

complexity of GD-ML receivers based on the defined metrics. Our methodology involves

utilizing multivariate random theory and stochastic ordering to derive the performance

expressions. We analyzed the matrix operations involved in each stage of the GD-ML

receiver structure to determine its complexity in FLOPs. The resulting derivations were then

compared with simulations in Matlab.

Contributions

Based on the proposed objectives and methodology, this thesis makes new contributions to

the GD-ML performance and complexity analysis by taking into account correlated MU-

MIMO channels and a large number of distributed antennas at the BS. These contributions are

summarized as follows:
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• We derive a closed-form expression of the average group VER for large MU-MIMO systems

with correlated channels at the transmitter-side and negligible correlation at the receiver-side,

suitable for scenarios with a large number of closely-located UEs and a massive number of

distributed BS antennas. The derived analytical expression is based on multivariate complex

random variables and stochastic order theory.

• We derive a formula for the hardware complexity of GD-ML receiver for full-load large

MU-MIMO systems and provide a comparison analysis with the linear receivers counterparts

in terms of complexity-performance compromise. The complexity expression is stated in

terms of FLOPs in relation to the number of UEs and the group size.
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Thesis organization

The remainder of this thesis is organized as follows:

• Chapter 1 presents an overview of wireless communication systems, which includes the

fading phenomena and its mitigation. Moreover, we provide a review of MIMO systems,

which includes the diversity and spatial multiplexing techniques, the MU-MIMO, and large

MIMO systems. Then, a review of MU-MIMO detection is boarded, where the performance

and complexity of linear and non-linear algorithms are compared. We finish this chapter by

presenting the structure, complexity analysis, and numerical results of the GD-ML receiver.

• Chapter 2 provides the literature review of GD-ML techniques for MIMO systems. The

review works on the receiver structure, grouping strategies, and performance analysis.

• Chapter 3 describes the mathematical procedure for deriving the analytical expression of

the average VER of the GD-ML receiver, as well as the validation of this expression using

simulation results. This is one of the main contribution of this research work.

• Finally, we provide the conclusions based on the obtained results and summarizes the benefits

of GD-ML. We also propose future works to extend the current research.





CHAPTER 1

BACKGROUND OF SPATIAL MULTIPLEXING SYSTEMS

1.1 Overview

In this chapter, we provide the essential concepts of MIMO systems, their variants, and their

benefits, with an emphasis on the description of classic detection techniques and the alternative

group detection algorithm. To this end, this chapter is divided into six sections. In Section 1.2,

we provide an overview of wireless communication systems, with a focus on wireless networks,

fading, and diversity. MIMO systems are introduced in Section 1.3, which describes spatial

multiplexing and diversity techniques as well as their array, diversity, and multiplexing gains. In

addition, the section includes the study of MU-MIMO and large MU-MIMO systems. Section 1.4

presents an overview of MIMO channel models and correlated MU-MIMO mathematical model.

Classical MU-MIMO detection is provided in Section 1.5, where linear and non-linear receivers

are discussed in terms of performance and complexity. Finally, the structure, complexity analysis,

and numerical results of the GD-MLtechnique are presented in Section 1.6.

1.2 Wireless communications systems

A communication system deals with the information interchange from one point to another.

The essential elements of this system are the message, transmitter, receiver, and channel. The

message is the information or data to be sent; the transmitter and receiver are the electronic

devices that transmit and receive the information, respectively; the channel is the medium of

transmission, which can be wired or wireless (Dalal, 2021).

A wireless communication system is a system in which the information is modulated and

transmitted over radio waves through a wireless channel by either line-of-sight (LOS) or non-

line-of-sight (NLOS) links. There are three types of wireless communication systems: wireless

networks, which are communications systems that allow the endpoints to exchange information

independently, being a transmitter or receiver; the wireless broadcast systems, which provide
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the simultaneous communication between a single transmitter and multiple receivers; wireless

navigation systems, which provide a location-based service supported by the global positioning

system and the Internet (Dalal, 2021). In this thesis, we only consider wireless network systems.

1.2.1 Wireless Networks

Wireless networks are based on ad hoc connections or cellular infrastructure (Dalal, 2021). Ad hoc

networks allow all users to be transmitters, receivers, or relays for other users’ communications.

On the other hand, cellular infrastructure is characterized by a centralized communication system

with a BS providing service to multiple UEs, sharing frequency-time resources, where the BS

controls the data transmission and reception procedures.

Wireless networks operate over a multi-user channel, which refers to a channel shared by

multiple users. This channel is divided into the uplink and downlink channels, described below

(Goldsmith, 2005).

a. The downlink channel, known as broadcast channel (BC) or forward channel, involves one

transmitter sending information to many receivers, which corresponds to the communications

between the BS to UEs in a cellular structure.

b. The uplink channel, called multiple access channel (MAC) or reverse channel, involves

multiple transmitters sending signals to one receiver, where each signal shares the total
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system bandwidth, e.g., the transmissions from UEs to a BS, wireless LAN access point

receiving information from all connected users.

Figure 1.1 shows a cellular wireless network, illustrating some concepts presented above.

1.2.2 Fading

Due to the physical nature of wireless channels, which can be the atmosphere or free space

between the transmitter and receiver, the transmitted signal can be affected by three phenomena:

reflection, diffraction, and scattering (Cho, Kim, Yang & Kang, 2010). These events create a

multipath propagation environment, with the reception of multiple copies of the transmitted

signal.

Fading is a wireless channel perturbation that causes severe degradation in the performance and

reliability of wireless communication systems. Fading can be defined as a non-additive random

fluctuation of the transmitted signal in amplitude and phase. This random phenomenon is

commonly characterized by the Rician and Rayleigh distributions for LOS and NLOS channels,

respectively.

Fading can be classified into large-scale fading and small-scale fading, which are illustrated in

Figure 1.2 and described below (Cho et al., 2010):

a. Large-scale fading is a signal degradation due to a path loss as a function of distance and

shadowing caused by large objects between the transmitter and receiver.

b. Small-scale fading is defined as fast signal variations due to interference caused by multipath

propagation when the user moves short distances, which can be characterized as frequency-

selective or frequency-flat channels (Cho et al., 2010). Small-scale fading can also be

generated by the time variation in a channel due to the user’s speed, also called Doppler

spread, resulting in fast fading or slow fading (Rappaport, 2002).
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1.2.3 Diversity: fading mitigation technique

Diversity is a technique for mitigating fading, which implies using many statistically independent

copies of the information signal over different times, frequencies, or spaces to enhance the

reliability of the wireless communication system. There are many ways of achieving diversity

gains, including the following configurations (Tse & Viswanath, 2006; Cho et al., 2010):

a. Time diversity: many copies of the same information signals are transmitted over multiple

time slots.

b. Frequency diversity: the same information is repeatedly transmitted in multiple spectral

bands.

c. Space diversity: implies the use of multiple antennas sufficiently separated to generate

independent wireless channels through which multiple information signal replicas are either

transmitted or received, also called antenna diversity. Various antenna configurations such

as MIMO, multiple-input single-output (MISO), and single-input multiple-output (SIMO)

are space diversity techniques.

Time and frequency diversities require additional time and spectrum resources compared to

space diversity (Cho et al., 2010). Besides improving wireless system reliability, MIMO systems
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also enhance the communication system’s capacity without increasing the power and bandwidth

resources.

1.2.4 System performance and hardware complexity measures

In this section, we address the description of the main system’s performance evaluation methods

as well as the description of the used computational complexity metric.

1.2.4.1 Probability of error

The probability of error (PE) can be defined as a disagreement between the transmitted and

detected message (Proakis & Salehi, 2008). The PE includes three types: bit error probability

(BEP), which measures errors in transmitting a single bit; symbol error probability (SEP),

which refers to errors in transmitting a symbol or a message (Proakis & Salehi, 2008); and

vector-symbol error probability (VEP) assesses the PE in comparing the transmitted and received

user’s symbol vectors.(Talwar & Paulraj, 1997; Jiang & Liu, 2021).

The PE as a function of the signal-to-noise ratio (SNR), denoted as PE(SNR), is the natural

benchmark for evaluating communication systems’ performance. The PE is usually a curve that

shows how the system’s performance changes with varying the SNR. As the SNR increases, the

PE decreases since the received signal is stronger and less susceptible to noise-induced errors.

In digital wireless communication systems, the receivers’ performance is often measured by the

average PE as a function of the ratio of bit energy to noise power spectral density Eb/N0, denoted

as PE(Eb/N0). The term average refers to statistical averaging over the probability distribution

channel effects (Sklar & Kumar, 2017), and the Eb/N0 is a normalized version of SNR.

Deriving a closed-form expression of the average PE becomes difficult because it is a non-linear

function of the instantaneous SNR and the modulation-detection mechanism utilized by the

system (Simon & Alouini, 2000). Thus, various upper and lower bounds on the PE are useful

approaches. The upper bound describes the worst-case scenario of the receiver’s performance

scenario, while the lower bound analyzes the best-case scenario (Stüber, 2011). Finally, the
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pairwise error probability (PEP) is a useful method to determine the upper or lower bounds,

which refers to the probability that a specific pair of transmitted messages will be incorrectly

detected at the receiver (Stüber, 2011; Simon & Alouini, 2000).

The bit error rate (BER), symbol error rate (SER), and vector-symbol error rate (VER) are

performance metrics used in the literature as alternatives to the PE (Simon & Alouini, 2000;

Talwar & Paulraj, 1997). Instead of choosing a preference, we use these terms interchangeably in

this thesis. The BER, SER, and VER are the ratios of incorrectly transmitted bits, symbols, and

vector-symbol to all transmitted bits, symbols, and vector symbols, respectively, over a given

time period. They are commonly used in the performance simulation of digital communications

systems.

1.2.4.2 System capacity

The system capacity refers to the maximum amount of messages that can be transmitted through

the system (Tse & Viswanath, 2006). The capacity is a common metric to evaluate the system’s

rate, typically a function of SNR, denoted as C(SNR), measured in bits per second (bps) used to

measure the system’s data transmission rate.

1.2.4.3 Hardware complexity metric

Computational complexity in digital receivers refers to the amount of computational resources,

such as CPU and RAM, required to perform the signal processing tasks involved in detecting the

transmitted messages. These tasks include matrix products and inverses of matrices performed by

digital computers. A FLOP is a mathematical operation performed on floating-point numbers in

computer programming that represents the number of multiplications and summations required

to solve matrix-vector operations (Hunger, 2007). In this thesis, we use the number of FLOPs to

measure the hardware complexity required to perform the detection algorithms, in addition to the

use of the big O notation O[·]. Table 1.1 displays the FLOPs needed for the matrix operations

that are commonly used in signal detection.
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Table 1.1 FLOPs required for mathematical operations

for α ∈ C, A ∈ CM×N , B ∈ CN×N , a,b ∈ CN , and

R ∈ CN×N > 0

Adapted from Hanger (2007, p. 14)

Expression Description FlOPs
αa Vector scaling N

αA Matrix scaling NN

aHb Inner product 2N − 1

AB Matrix vector product 2MN − M

AHA Gram MN2 + N
(
M − N

2

)
− N

2

‖ A ‖2
F Frobenius norm 2MN − 1

aHRa Hermitian form 3
2

N2 + 3
2

N − 1

R−1 Inverse 2N − 1

- Sequential access N

1.3 MIMO systems

MIMO, or single-user MIMO (SU-MIMO), is a communication technology that employs NT

and M antennas at the transmitter and receiver sides, respectively. The information symbols are

processed to enhance either the reliability or throughput of the wireless communication system

by exploiting the multipath propagation of the MIMO channel.

The distribution of the BS antennas significantly impacts the system’s performance. Thus, there

are two BS antennas distribution layouts: co-located antenna and distributed antenna systems,

as shown in Figure 1.3.

a. Co-located antennas: In co-located antenna systems, the antennas are positioned at the BS

with a typical half-wavelength spacing to mitigate the spatial correlation. Conventionally,

the BS is placed in the centre of the cell, and the antenna array is at the tower’s top. However,

this configuration adds some challenges to the detection design due to the correlated channels

at the BS, even when the antennas are well separated (Zhao et al., 2018; Kamga, Xia & Aïssa,

2016).
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b. Distributed antennas: In contrast to co-located antenna systems, here the BS antennas are

placed in different geographical locations and connected to a central processing unit. The

main advantage of distributed systems is that they perform better than their co-located antenna

counterparts because the signals arriving from UEs to the BS are subject to independent

fading (Zhao et al., 2018). Since the antennas at the BS are well separated, the correlation

between them is negligible (Kamga et al., 2016).

In real communication systems, distributed and co-located antennas may be considered comple-

mentary rather than competitive technologies (Kamga et al., 2016).

1.3.1 MIMO techniques

MIMO techniques can be classified in diversity and spatial multiplexing. The diversity scheme

increases the system’s performance, and spatial multiplexing enhances the system’s rate.

1.3.1.1 Diversity technique

Diversity implies the transmission or reception of multiple replicas of the information symbols,

increasing the number of independent channel paths to mitigate the fading effects, thereby
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enhancing the system’s performance (Cho et al., 2010). This feature is equivalent to converting

the fluctuating wireless fading channel into a more stable channel. Diversity provides array and

diversity gains, which are described in the following:

a. Array gain, denoted as Ag, is defined as the increase of the SNR at the receiver side, thereby

improving the range and coverage of the wireless cellular network. It is expressed as

Ag =
SNR

SNRb
, (1.1)

where SNR is the average combined SNR and SNRb is the average branch SNR (Goldsmith,

2005).

b. Diversity gain, also called diversity order, denoted as d, is the number of independent

channel realizations over which the information is transmitted. The maximum diversity order

that can be achieved is MNT , where the system is said to achieve full diversity order.

The diversity order determines how the slope of PE(SNR) changes with diversity in a log-log

scale at high SNR, expressed as (Goldsmith, 2005)

d = − lim
SNR→∞

log PE(SNR)
log(SNR)

. (1.2)

Furthermore, the PE over Rayleigh fading channels can be expressed as

PE(SNR) ∝
1

SNRd , (1.3)

which means that increasing the diversity order enhances the system’s performance causing

an exponential fall in the PE (Chockalingam & Rajan, 2013).

There are two technologies associated for achieving diversity: beamforming and space-time

coding.

a. Beamforming

Beamforming requires knowledge of the channel state information (CSI) and implies

precoding and combining operations involving the use of weight factors at the transmitter
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and receiver sides, respectively. Precoding implies the same information signal is scaled by

the weight factor and transmitted by each antenna, e.g., maximum ratio transmission (MRT).

In contrast, the combining operation applies the weight factor to the signals received at each

antenna on the receiver side (Goldsmith, 2005). Combining algorithms include selection

combining (SC), maximum ratio combining (MRC), and equal gain combining (EGC). SC

selects the received signal with the highest SNR value. In contrast, MRC combines all

received signals with the appropriate weight factors to maximize the post-combining SNR.

Finally, EGC can be considered as a special case of MRC, which uses the same weight factors

for all received signals (Chaudhari, 2021; Goldsmith, 2005; Cho et al., 2010).

b. Space-Time Coding

Space-time coding (STC) is a diversity technique based on constructing a code from

information symbols and its transmission at different time intervals across multiple antennas.

STC requires multiple transmit antennas, while only a single antenna is needed for the receiver.

However, multiple receive antennas improve the diversity gain. STC can be classified into

space-time block codes (STBC) and space-time trellis codes (STTC).

STBC encode the information symbols with orthogonal blocks usually represented by a

matrix in which the rows represent time slots and the columns the antenna transmissions,

thereby providing diversity gain. The blocks are orthogonal if any pair-wise columns are

orthogonal. The attractive feature of orthogonal STBC is that linear processing decoding

can achieve the optimal performance. The Alamouti scheme is the most popular orthogonal

STBC algorithm. On the other hand, the STTC scheme transmits multiple redundant copies of

generalized trellis-coded modulation (TCM) symbols distributed across all transmit antennas

and time. Besides the diversity gain, STTC provide coding gain and better performance

compared to STBC, at a hither complexity cost due to the Viterbi decoder (Goldsmith, 2005;

Cho et al., 2010).
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1.3.1.2 Spatial Multiplexing

Spatial multiplexing technique simultaneously transmit independent information symbols from

each transmit antenna, providing a linear increase in the available data rate. Thus, for a

well-conditioned MIMO system, i.e., M ≥ NT , the multiplexing gain, also known as degrees of

freedom, is given by (Tse & Viswanath, 2006)

rSU = min{M,NT }. (1.4)

The multiplexing gain can also be interpreted as the slope of the system capacity as a function of

SNR at high SNR in log scale, and is expressed as Goldsmith (2005)

r = lim
SNR→∞

log C(SNR)
log(SNR)

. (1.5)

At the receiver side, the spatial demultiplexing process or signal detection is challenging due to

inter-streams interference. Thus, for reliable detection of the received data streams, the basic

requirement is that the number of receive antennas must be greater than or equal to the number

of transmit antennas; then, both linear and non-linear detectors are able to demultiplex the

transmitted symbols and eliminate the multi-streams interference subject to trade-off between

the performance and complexity cost.

1.3.2 Multi-user MIMO systems

A multi-user MIMO (MU-MIMO) system is a wireless communication network with multiple

transmitters or receivers equipped with multiple antennas (Goldsmith, 2005), which is an

improvement over SU-MIMO technology. We consider a typical cellular wireless network with

N UEs with NT antennas, resulting in a virtual N · NT antenna array, served by a single BS

equipped with M antennas (Cho et al., 2010).
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1.3.2.1 Uplink and downlink MU-MIMO systems

As mentioned earlier, multi-user communications are performed over uplink and downlink

channels. Thus, there are two environments associated with MU-MIMO.

a. Uplink MU-MIMO: The M × (N · NT ) uplink MU-MIMO system, also known as multiple

access MIMO (MIMO-MAC), enables the UEs to transmit their signals at the same frequency-

time resources without multi-user signal processing. The BS decodes the cumulative signal

using multi-user detection algorithms with knowledge of the CSI. Let’s note that if all N

UEs are equipped with a single antenna, the resulting MU-MIMO system is equivalent to an

SU-MIMO system (Cho et al., 2010).

b. Downlink MU-MIMO: The (N · NT ) × M downlink MU-MIMO system, also called broadcast

MIMO (MIMO-BC), allows the BS to transmit signals to each UE using the beamforming

technique, which sums the weighted signals of the N users before transmitting the output

signal from the M BS antennas. This procedure requires full CSI knowledge at the BS

(Chaudhari, 2021).

1.3.2.2 Diversity and multiplexing gains of MU-MIMO

The diversity and spatial multiplexing techniques, presented for SU-MIMO apply to MU-MIMO

systems as well, offering diversity and multiplexing gains that improve the communication

system’s performance and capacity. These benefits are described below:

a. Spatial multiplexing allows multiple UEs to be simultaneously served by the BS, enhancing the

uplink and downlink capacity proportional to the multiplexing gain, as given by (Goldsmith,

2005; Cho et al., 2010)

rMU = min(N · NT,M). (1.6)

We can observe that the multiplexing gain of SU-MIMO given in (1.5) is limited by

the minimum number of transmit and receive antennas. This affirmation shows that the

multiplexing gain of MU-MIMO can be achieved even with single antenna UEs, as shown in

1.6.
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b. The diversity gain in MU-MIMO systems can be achieved based on the schedule or allocation

process. These processes consider the CSI to select the appropriate UEs to access the

system resources and transmit the data on specific spatial streams or transmit antennas. The

main advantage of this strategy is that the linear transmitters and receivers can achieve

near-optimal performance as the number of UEs increases (Goldsmith, 2005). In SU-MIMO,

the beamforming technique provides diversity gain at the cost of of reduced overall system

capacity since it cannot fully exploit the available antennas for parallel data transmission.

However, beamforming for downlink MU-MIMO achieves diversity gain proportional to NT ,

and also achieves the sum capacity rate (Goldsmith, 2005; Tse & Viswanath, 2006).

1.3.3 Large MU-MIMO systems

Large MU-MIMO is an extension of MU-MIMO systems with hundreds of antennas at the end

points, thereby increasing the multiplexing and diversity gains. In this scenario, the greater

the number of antennas, the greater the degrees of freedom of the system (Marzetta, 2010;

Chockalingam & Rajan, 2013).

In a typical wireless network with a MU-MIMO system, UEs are usually small devices with

a limited the number of antennas, while the BS is a robust physical infrastructure. Hence,

the signal processing and hardware cost are assigned to the BS, while UEs are kept as simple

as possible. For these reasons, in this thesis, we consider a large MU-MIMO system with

single-antenna UEs and a BS with a large number of antennas.

Let’s define the load factor as the ratio of the total number of UEs to the number of receive

antennas at the BS as

λ =
N
M
, (1.7)

where λ ∈ (0,1], resulting in two main scenarios: canonical massive MIMO and full-load large

MU-MIMO.

a. Canonical massive MIMO is considered when the load factor approaches zero, i.e., the

number of antennas at the BS increases to infinity. Thus, the system operates in a favourable
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propagation condition and channel hardening (Björnson, Hoydis, Kountouris & Debbah,

2014). These conditions theoretically allow low-complexity linear detectors to achieve

near-optimum performance in the uplink and use simple precoding algorithms and flexible

user selection and scheduling for downlink connections (Chockalingam & Rajan, 2013).

b. Full-load large MU-MIMO is a system with equal numbers of UEs and antennas at the BS;

thus, λ = 1. This scenario provides a maximum multiplexing gain allowing a large number

of UEs to access the system. In this scenario, linear detectors no longer offer near-optimum

performance due to the unitary diversity gain (Mandloi, Gurjar, Pattanayak & Nguyen, 2021).

1.4 MU-MIMO channel

Let h(t, τ) denote as the time-variant impulse response of the channel between the transmitter

and receiver for a single antenna system, where t and τ stand for time and delay, respectively. For

a time-invariant channel, the impulse response can be written as h(τ), in which the dependence

on time vanishes. Furthermore, the impulse response of the time-invariant and frequency-flat

channel does not depend on time, and only one single tap is required; thus, it can be denoted by

h (Darbari, Stewart & Glover, 2010).

In this thesis, we consider time-invariant and frequency-flat uplink MU-MIMO channel with

a BS equipped with M antennas serving N UEs with a single antenna. In this scenario, the

channel is composed of all pairs of transmit and receive antennas forming an M × N channel

matrix expressed as

H =

���������

h11 h12 · · · h1N

h21 h22 · · · h2N
...

...
. . .

...

hM1 hM2 · · · hMN

��������	
, (1.8)

where hi j is a complex coefficient impulse response between the jth transmit antenna and the

ith receive antenna. Many channel models have been proposed to determine these coefficients,

which can be widely classified into physical and analytical models (Almers et al., 2007):
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a. The physical models characterize the channel coefficients based on electromagnetic wave

propagation, which describes the double-directional multipath between the transmitter and

the receiver. These models consider channel parameters, such as complex amplitude, the

direction of departure (DoD), the direction of arrival (DoA), and the delay of the multipath

components. Physical models are able to provide an accurate representation of radio

propagation at the cost of a high computational complexity. However, these models do

not consider the antenna configuration, such as the number of antennas, array geometry,

antenna pattern, polarization, and system bandwidth. Examples of physical models include

ray tracing, stored measurement data, and the Saleh-Valenzuela model (Almers et al., 2007).

b. Analytical models characterize the channel impulse response coefficients between the

individual transmit and receive antennas with a mathematical model without explicitly

considering wave propagation. The resulting channel matrix is widely used for communication

system evaluation. Analytical models can be divided into propagation-motivated models

and correlation-based models. The propagation-motivated models generate the channel

matrix based on propagation parameters, such as DoA, delay, etc. Examples of analytical

models include virtual channel representations, maximum entropy, and finite scatterer.

Correlation-based models consider the correlation between the entries of the channel matrix,

which are statistically generated (Chockalingam & Rajan, 2013). Popular models include the

Kronecker model and the Weichselberger model.

1.4.1 Correlation-based model

In this model, the correlation between the entries of the channel matrix can be divided into

two types: transmit correlation, which represents the correlation between UEs’ channels, and

receive correlation representing the correlation between antennas at the BS. We consider the

Kronecker model, where the transmit and receive correlation can be represented by separable

matrices. Thus, the channel matrix, given in (1.8), can be represented by

H = Ψ1/2HWΣ
1/2, (1.9)
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where Ψ ∈ CM×M > 0 and Σ ∈ CN×N > 0 are the receive and transmit correlation matrices,

respectively. HW ∈ CM×N is an (M × N)-complex random matrix-variate Gaussian distribution

with zero-mean matrix 0 ∈ CM×N and covariance matrix IM⊗IN denoted as HW ∼ CNM,N (0, IM⊗

IN ) (for further details, refer to Annex I), which represents the i.i.d. (independent and

identically distributed) Rayleigh-fading channel (Cho et al., 2010; Shin & Lee, 2003). Moreover,

(HW)i j ∼ CN1(0,1) is a zero-mean complex univariate Gaussian random variable with unit

covariance, and (·)i j denotes the (i j)-th entry of matrix HW.

The channel matrix in (1.9) is also defined as an (M × N)-complex random matrix-variate

Gaussian distribution with zero-mean matrix 0 ∈ CM×N , and covariance matrixΨ⊗Σ, expressed

as (Shin & Lee, 2003)

H ∼ CNM,N (0,Ψ ⊗ Σ). (1.10)

Let’s remark that if Ψ = IM and Σ = IN , the channel matrix H = HW, which implies that the

channel is uncorrelated.

1.4.1.1 Receive correlation matrix

The exponential correlation model is considered a reasonable approximation for antennas at

the BS with a uniform linear array (ULA). In this model, the correlation between two antenna

elements exponentially decreases by increasing the distance between them (Loyka, 2001; Razi,

Ryan, Yuan & Collings, 2010). The entries of the M × M receive correlation matrix Ψ(ρr),

which is a Hermitian Toeplitz matrix, are given by

(Ψ(ρr)) j k = ρ
|k− j |
r , (1.11)

where ρr ∈ [0,1] is the receive correlation coefficient and j, k = 1, · · · ,M .
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1.4.1.2 Transmit correlation matrix

We now consider a constant correlation matrix for closely-located and correlated UEs in

dense networks (Shin & Lee, 2003). An N × N correlation matrix, also called Nth-order

positive-definite, can be expressed as (Gao, Jiang, Li, Gershman & McKay, 2009)

Σ(ρt) = ρt1N + (1 − ρt)IN, (1.12)

where 1N is an (N × N) matrix with all entries equal to one. Also, in (1.12), ρt ∈ [0,1] is the

transmit correlation coefficient, given by

ρt(i1i2)
= 〈|hji1 |

2, |hji2 |
2〉, (1.13)

where hjik = (H) jik , k = 1,2 denotes entries of the channel H given in (1.9), and

〈x, y〉 =
E{xy} − E{x}E{y}√

(E{x2} − E{x}2)(E{y2} − E{y}2)
, (1.14)

which is a model that can be used for worst-case analysis.

1.5 MU-MIMO detection

Signal detection at the BS receiver is the most challenging task of the spatial multiplexing

technique in the uplink MU-MIMO system. The main goal of the detection is to estimate the

transmitted information from all UEs transmitting at the same frequency-time resources. In the

literature, linear and nonlinear detectors are the main detection algorithms whose performances

are subject to computational complexity. Hence, the detection algorithms’ main challenge is to

achieve a good trade-off between performance and complexity, which is an area of continuous

research.

This section presents the system model and the optimum MU-MIMO receiver is considered as a

reference when evaluating the remaining detection algorithms. Then, we discuss classic linear



26

Signal
detector

 

UE 1

UE 2

UE N

Figure 1.4 Uplink spatial multiplexing system

receiver algorithms and briefly describe non-linear receivers. Finally, we present numerical

results of linear receivers’ performance a comparison of the complexity of the described detection

algorithms.

1.5.1 System model

We consider an uplink large MU-MIMO system with M receive antennas at the BS and N single

antenna UEs, as shown in Figure 1.4. The transmitted symbols vector from all UEs is denoted

by s ∈ CN , which has a zero-mean and matrix covariance E[ssH] = IN . The entry si ∈ s, for

i = 1, · · · ,N is the transmitted symbol from the ith user, which is a complex modulated signal

of modulation order A. The equivalent received complex signal vector is denoted as r ∈ CM ,

where the entry rj ∈ r, j = 1, · · · ,M, represents the received signal at the jth antenna. The

vector r can be expressed as (Maza, Dahman, Kaddoum & Gagnon, 2020)

r =
N∑

i=1

hi si + n

= Hs + n,

(1.15)

where n ∈ CM ∼ CNM(0, σ2
n IM) is defined as the zero-mean complex M-variate Gaussian vector

with covariance matrix σ2
n IM , and σ2

n is the complex noise variance. Moreover, hi ∈ C
M is the

ith user’s channel vector, and H ∈ CM×N is the multiple-access channel matrix given in (1.9),
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which is assumed to be known at the receiver side. Then, the complex channel coefficients are

given by

(H) ji = hji, (1.16)

where, hji, j = 1, · · · ,M and i = 1, · · · ,N denotes the complex channel coefficient between the

ith UE and the jth receiver antenna at the BS.

1.5.2 Optimum receiver

The detection procedure estimates the transmitted vector, s, from the received vector r given in

(1.15). The optimum receiver chooses the candidate ŝ from the constellation AN that minimizes

the PE, denoted as

PE � Pr{ŝ � s}, (1.17)

which is equivalent to maximizing the probability of correct decision given r, expressed as

(Proakis & Salehi, 2008)

Pr{ŝ = s|r} = f (r|s = ŝ)Pr{ŝ = s}
f (r) , (1.18)

where f (r) is the probability density function (PDF) of the received vector r and f (r|s = ŝ) is

the PDF of r when the transmitted vector is ŝ. Since f (r) does not depend on ŝ, the optimum

receiver obtains ŝ maximizing the a posteriory probability

ŝ = arg max
s∈AN

f (r|s = ŝ)Pr{ŝ = s}. (1.19)

Then, if the transmitted symbols are equiprobable, (1.19) is equivalent to the estimated symbols

vector given by the ML detector algorithm, expressed as

ŝML = arg max
s∈AN

f (r|s = ŝ). (1.20)
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From (1.15), we get (Barry, Lee & Messerschmitt, 2004)

f (r|s = ŝ) = f (n). (1.21)

Substituting n = r − Hs, the PDF of the white Gaussian noise n is given by

f (n) = 1

(πσ2)N e−
1

σ2 ‖r−Hs‖2

. (1.22)

From (1.21) and (1.22), we can conclude that maximizing f (r|s = ŝ) is equivalent to minimizing

‖ r − Hs ‖2. Thus, (1.20) can be rewritten as

ŝML = arg min
s∈S

‖ r − Hs ‖2, (1.23)

where S is the set of symbols constellation points with M = AN elements. Hence, the ML

detector achieves the optimum detection by choosing the vector ŝ that produces the smallest

Euclidean distance between r and Hs at the complexity cost of O[M].

1.5.3 Linear detection

Linear detection is a low-complexity algorithm that theoretically achieves near-optimum

performance for large MU-MIMO systems with λ 
 1 due to the favourable propagation,

which makes the direction any users’ channels asymptotically orthogonal, i.e., (HHH/M) → IN ,

when M → ∞, where (·)H denotes the Hermitian transpose operator. This property makes

linear receivers sufficient for mitigating interference between users (Björnson et al., 2017).

Nevertheless, numerical results will show that the performance of these receivers is far from

that of the optimum detector, even for moderate load factors. In fact, for λ = 1, linear detection

algorithms exhibit the lowest system performance.

Figure 1.5 shows the linear detection procedure, where the receiver first nullifies interference by

multiplying the received symbols vector r by a weight matrix W ∈ CN×M . Then, the entries

of the resultant vector, z, are detected individually to obtain the estimated transmitted symbols
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Figure 1.5 Linear detection procedure

vector, given by

ŝ = arg min
s

‖ z − s ‖2 . (1.24)

Linear receivers include maximum ratio combining (MRC), zero-forcing (ZF), and minimum

mean square error (MMSE), which are detailed below.

1.5.3.1 Maximum ratio combining

The MRC receiver, also known as matched filter (Chockalingam & Rajan, 2013), is a simple

detector that treats the users’ interference as noise. MRC mitigates the channel effects by the

weighting matrix given by

WMRC = HH, (1.25)

which is the Hermitian transpose of the channel matrix. Then, applying (1.25) to the received

vector r , we obtain

zMRC =WMRCr

=WMRC(Hs + n)

= s̃ + nMRC,

(1.26)

where nMRC =WMRCn is a zero-mean colored Gaussian noise and s̃ =WMRCHs. Replacing z by

zMRC in (1.24), the estimated vector ŝ is obtained by the hard decision procedure. This operation
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is expressed as

ŝ = Q(zMRC), (1.27)

where Q(·) denotes the element-wise quantization operation appropriate to the constellation in

use. Finally, the complexity cost of the MRC detection is O[MN].

1.5.3.2 Zero-Forcing

The ZF technique is a linear detector that mitigates the multi-user interference by the weight

matrix given by

WZF = (HHH)−1HH, (1.28)

which is the pseudo-inverse of the channel matrix H. The nulling interference process is obtained

by solving the following minimization problem (Chockalingam & Rajan, 2013):

zZF = arg min
s∈CN

‖ r − Hs ‖2

=WZFr

=WZF(Hs + n)

= s + nZF.

(1.29)

where nZF =WZFn is a zero-mean colored Gaussian noise with a non-diagonal covariance matrix

KZF. Then the estimated symbols vector, ŝ, is obtained as

ŝ = Q(zZF). (1.30)

The diversity gain achieved by the ZF detection is M − N + 1, and the complexity of the

ZF detector is proportional to the pseudo-inverse of the M × N channel matrix H, which is

O[N3 + (3M + 1
2
)N2 + (M + 1

2
)N]. However, the ZF operation, in addition to nulling the

interference, enhances the noise power E{‖ nZF ‖
2}, directly affecting the system’s performance

(Cho et al., 2010).
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1.5.3.3 Minimum Mean Square Error

The MMSE detector is a linear detection algorithm whose weight matrix is the matrix that

minimizes the mean square error between the transmit vector and the estimated vector. Hence,

the MMSE weigh matrix is obtained as (Chockalingam & Rajan, 2013)

WMMSE = arg min
W
E
{
‖ s − Wr ‖2

}
= (HHH + σ2

nI)−1HH .

(1.31)

This expression maximizes the post-detection signal-to-interference plus noise ratio. The MMSE

receiver requires knowledge of the noise variance of the received signal. Then, the resulting

vector, after nulling the interference, is given by (Cho et al., 2010)

zMMSE = arg min
s∈CN

‖ r − Hs ‖2 +κ ‖ s ‖2

=WMMSEr

=WMMSE(Hs + n)

= s̃ + nMMSE,

(1.32)

where κ > 0. Applying hard decision to (1.32), the estimated signal vector is given by

ŝ = Q(zMMSE). (1.33)

The diversity gain of the MMSE receiver is M − N + 1 for high rates (Mehana & Nosratinia,

2010). The complexity of this technique is O[N3 + (6M + 3
2
)N2 + (M + 1

2
)N], which is quite

similar to the ZF complexity.

1.5.4 Non-linear detection

In contrast to linear detection, non-linear detection algorithms exhibit better performance at

the expense of high complexity. Classical non-linear MU-MIMO receivers are the ML, sphere

decoding (SD), and ordered successive interference cancellation (OSIC).
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ML is the optimal vector-symbol detector that achieves the optimum performance at maximum

a posteriori (MAP) detection. However, its complexity increases exponentially with the number

of UEs O[M], as described earlier. This condition makes its implementation unfeasible for

large MU-MIMO systems. However, the ML algorithm is feasible for a small number of UEs

(Chockalingam & Rajan, 2013).

The SD algorithm estimates the transmitted symbols vector by searching inside a sphere radius

parameter rather than all possible transmitted vectors. The SD method adjusts the radius until

obtaining the vector-symbol solution within the sphere. Thus, by choosing a large enough

radius, the SD performance approaches that of the ML detector (Cho et al., 2010). However,

the size of the radius parameter is inversely proportional to the noise variance. Thus, for low

SNRs, the radius search becomes high, and it exhibits exponential complexity proportional

to the total number of UEs, which makes the SD unfeasible for large MU-MIMO systems

(Chockalingam & Rajan, 2013).

The OSIC detector was proposed to improve the linear detection without significaltly increasing

the complexity (Foschini, 1996). The OSIC is a multistage receiver composed of a bank of ZF

or MMSE receivers. The main steps of the OSIC detection are as follows: 1) the interference

cancellation step, which is the interference subtraction from the already detected symbols; 2)

the interference nulling step, where the interference from the yet-to-be-detected symbols can

be nulled out by the Gram–Schmidt orthogonalization process applied to the column vectors

of the channel matrix; 3) the optimal ordering step, which orders the symbols to be detected

according to their SNRs (Loyka & Gagnon, 2004). The diversity gain for the ith UE can reach

a diversity gain of M − N + i if the previously-detected UEs’ symbols are detected correctly

(Cho et al., 2010). The complexity of OSIC is given by O
[

N4

4
+ MN3 +

(
5M
2
+ 1

2
log2 N!

)
N2+(

9M
2
+ 1

2
log2 N!

)
N
]
. Finally, it is well known that OSIC outperforms linear receivers. However,

its performance is far from optimum, and its complexity does not scale well for large MU-MIMO

systems (Chockalingam & Rajan, 2013).
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1.5.5 Complexity comparison

We compare the complexity of linear and non-linear receivers in terms of FLOPs versus the

number of UEs in Figure 1.6. As expected, MRC exhibits the lowest complexity, while the

complexity of ZF and MMSE are quite similar. The complexity of OSIC is one order of

magnitude greater than that of the ZF and MMSE receivers. On the other hand, we do not plot

the complexity of ML and SD algorithms because of their exponential complexity; e.g., for

N = 128, the complexity of ML is 7.5 × 1081 FLOPs.
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Figure 1.6 Complexity of OSIC, MMSE,

ZF, and MRC receivers for large

MU-MIMO systems with M = 128

Since non-linear receivers’ complexity is extremely high, especially for large MU-MIMO

systems, we only evaluate the performance of MRC, ZF, and MMSE receivers.
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1.5.6 Numerical results of linear receivers’ performance

In this chapter, we will use the BER to evaluate the receivers’ performance. We consider a

large MU-MIMO system with M = 128 antennas at the BS and N = {32,120,128} UEs that

achieve λ = {0.25,0.9,1} load factors, respectively. We assume that each user transmits 4-QAM

symbols sequence over the channel described in (1.10) for the distributed antenna layout. Thus,

the transmit and receive correlation matrices are Σ(ρt = 0.5) and Ψ = I, respectively. Then, the

performance results are expressed in terms of BER versus Eb/N0.
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Figure 1.7 BER vs Eb/N0 performance of

MMSE, ZF, and MRC receivers for large

MU-MIMO with Σ(ρt = 0.5), Ψ = I,
M = 128, N = {32,120,128}, and 4-QAM

modulation

Figure 1.7 shows the BER performance of the MRC, ZF, and MMSE receivers. We observe

that the MRC receiver’s performance is severely degraded, even for λ = 0.25, where favourable

propagation conditions are expected. Moreover, the performance of the ZF receiver is attractive

for low and medium load factors, while it experiences severe degradation for full load factors.
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Figure 1.8 GD-ML receiver scheme

Adapted from Maza et al. (2020, p. 45655)

Furthermore, the MMSE detector achieves better performance than the MRC and ZF receivers for

all considered scenarios. Nonetheless, like the ZF receiver, the MMSE performance experiences

a severely degradation for λ = 1.

1.6 GD-ML technique

In the previous section, we showed that linear receivers exhibit poor performances for moderate

and full-load factors in large MU-MIMO systems; however, their complexity is quite attractive.

For that reason, we focus our interest on studying the GD-ML receiver to enhance the performance

of low-complexity linear receivers. This receiver improves the ZF receiver’s performance by

adding a negligible extra complexity. Thus, this section presents key concepts of the group

detection technique: the general structure, complexity analysis, and numerical results.

1.6.1 Receiver structure

In general, the group detection receiver consists of three steps (Cal-Braz & Sampaio-Neto, 2014;

Maza et al., 2020): 1) linear transformation of the received vector, 2) division of the result into

groups, and 3) detection within each group, as shown in Figure 1.8.
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1.6.1.1 Linear transformation

At the receiver, the transmitted symbols vector is multiplied by the channel matrix, which makes

the vector division difficult. Thus, a linear transformation is performed to isolate the transmitted

symbols alone by removing the channel matrix, thus facilitating group formation. The linear

transformation process is applied by the pseudo-inverse of the channel matrix, expressed as

H† = (HHH)−1HH, (1.34)

where H†H = I. It is noted that the linear transformation matrix is equivalent to the weighting

matrix of the ZF detection given in (1.28). Finally, the application of the linear transformation

matrix to (1.15) yields the following resultant vector (Maza et al., 2020)

y = H†r

= H†[Hs + n]

= s + v,

(1.35)

where v = H†n is a zero-mean colored Gaussian noise with the following covariance matrix

(Maza et al., 2020)

K = H†(H†)H

= (HHH)−1.
(1.36)

We emphasize that the covariance matrix is non-diagonal due to the correlated channel model

given in (1.9).

1.6.1.2 Grouping

In this subsection, we present the group formation process, in which the entire set of N UEs is

separated into U groups, after the linear transformation. Each group contains Nu UEs, according
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to the following grouping configuration

G(U,N1, · · · ,NU) = {G1, · · · ,GU}, (1.37)

where

Gu = {k1,u, · · · , kNu,u}, (1.38)

represents a set of position indexes of the UEs that belongs the uth group, ki,u ∈ {1, · · · ,N},

i = 1, · · · ,Nu, and u = 1, · · · ,U. Let yu denote as the uth group vector given by (Maza et al.,

2020)

yu = [y]Gu

= su + vu; u = 1,2, . . . ,U,
(1.39)

where [·]Gu returns a sub-vector with Nu elements of y in (1.35), such that yu = [yk1,u, · · · , ykNu ,u
]T ,

where yki,u is the ith entry of the uth group vector. Moreover, su = [sk1,u, · · · , skNu ,u
]T is the

transmitted signals vector and vu = [vk1,u, · · · , vkNu ,u
]T is the zero-mean uth group’s colored

noise vector with Nu × Nu covariance matrix expressed as (Maza et al., 2020)

Ku = (HH
u Hu)

−1, (1.40)

where Hu is the uth group channel matrix of size M × Nu given by (Maza et al., 2020)

Hu = Ψ
1
2 AuΣ

1
2
u

= [hk1,u, · · · ,hkNu ,u
],

(1.41)

where Ψ is the M × M receive correlation matrix, Au is the M × Nu i.i.d. Rayleigh-fading, and

Σu is the Nu × Nu correlation matrix of the users pertaining to the uth group. Finally, hki,u is the

channel vector of the ith user in the uth group. In (1.41), we observe that Ψ is constant for all

groups; hence, Ψ does not influence the group formation and the BER performance (Maza et al.,

2020).
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1.6.1.3 Detection at each group

The estimation of the transmitted group symbols vector su through ML detection is considered

since Nu is significantly lower than N , which greatly lowers the complexity cost. The ML

algorithm is optimum for white noise whereas the noise in (1.39) is colored. Thus, we first

whiten the noise and then proceed with the ML process. Let us define Bu as the whitening

matrix given by

Bu = K− 1
2

u

= (HH
u Hu)

1
2 ,

(1.42)

where K− 1
2

u K− 1
2

u = K−1
u and BH

u = Bu. Moreover, let B2 define as the squared whitening matrix

expressed as

B2
u = BH

u Bu

= HH
u Hu,

(1.43)

which will be useful for further analysis in Chapter 3. Then, Bu is applied to (1.39) to whiten

the colored noise vu. Finally, the resulting vector zu = [zu,1, · · · , zuNu
] is expressed as (Maza

et al., 2020)

zu = Buyu

= Bu(su + vu)

= Busu + ñu,

(1.44)

where ñu = Buvu is a zero-mean white Gaussian noise vector with covariance matrix

Kũu = BuKuBH
u

= K− 1
2

u K
1
2
u K

1
2
u K− 1

2
u

= INu .

(1.45)
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Then, the estimation of the transmitted group symbols vector can be expressed as (Maza et al.,

2020)

ŝu = arg min
su∈Su

[
‖ Busu − zu ‖2

]
, (1.46)

where Su is the set of signal constellation points with Mu = ANu elements. Note that Mu is

much smaller than the size of the global optimum receiver symbols constellation set (Maza et al.,

2020), i.e., Mu 
 M.

1.6.2 GD-ML complexity efficiency analysis

Let CGD denote the complexity of the GD-ML receiver, which refers to the FLOPs required to

estimate the transmitted group symbols vector, given as

CGD =CLT + CGR + CML

=O

[
N3 +

(
3M +

1

2

)
N2 +

(
M +

3

2

)
N

+Mu

(
2N2

u + 2Nu − 1
)]
,

(1.47)

where CLT , CGR, and CML are the complexities of linear projection, grouping, and ML stages,

respectively.

First, we present the complexity results of the ZF, MMSE, and GD-ML receivers with group

size Nu = {2,3,4,5,6,7,8}, which are exhibited in Figure 1.9. We notice that the complexity

of the GD-ML is dominated by the linear transformation complexity CLT , which involves the

channel matrix inversion. Furthermore, a negligible complexity proportional to the group size is

added by the ML detection and grouping stages, which we denote as CE X = CGR + CML; hence,

CGD � CE X . We also observe that the gap between the complexity of the GD-ML and the linear

receivers is inversely proportional to the number of UEs (Maza et al., 2020). We highlight that

CLT equals the ZF receiver’s complexity and we also consider CLT similar to the complexity of

the MMSE receiver.
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Figure 1.9 Complexity comparison of ZF,

MMSE, and GD-ML receiver with

Nu = {2,3,4,5,6,7,8} for large MU-MIMO

with M = N . 4-QAM modulation

Second, we evaluate the complexity efficiency of GD-ML for full-load large MU-MIMO systems

by determining the percentage of extra complexity that GD-ML exceeds the ZF and MMSE

receivers’ complexity, which we denote as.

CE X% = (CGR + CML) × 100%. (1.48)

Then, we define a threshold, T h = 1%, which is a percentage of additional complexity over

linear receivers’ complexity. We consider this parameter a complexity criterion for choosing the

appropriate group size for a given N . Figure 1.10 shows the CE X% versus Nu that the GD-ML

with Nu = {2,3,4,5,6,7,8} requires for different N = {8,16,32,64,128} and M = N . We

observe that CE X% decreases as the number of UEs increases, allowing an increment in group

size without exceeding the given threshold; e.g., a GD-ML with group size Nu = 5 requires an

extra complexity percentage of 0.7% for N = 128 which does not exceed the threshold criterion,

while for N = 32 it requires 45.5%. Based on these results, we conclude that the GD-ML

receiver is more suitable for large MU-MIMO systems.
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Figure 1.10 CE X% vs. Nu of GD-ML

receiver with Nu = {2,3,4,5,6,7,8} for

N = {8,16,32,64,128} and M = N

1.6.3 GD-ML numerical results performance

The GD-ML receiver’s performance was simulated in Matlab as described in Algorithm 1.1. We

also assume that the UEs transmit 4-QAM symbols over the correlated channel with a distributed

antenna configuration, with Ψ = IM and Σ(ρt = 0.5). The performance is evaluated in terms of

BER versus Eb/N0, which are presented as follows:

• Group size performance evaluation: Without loss of generality, we consider N = 5 UEs

and M = 5 antennas at the BS instead of large MU-MIMO systems. Figure 1.11 shows the

BER performance for Nu = {1,2,3,4,5}. The results of the GD-ML receiver are compared

to that of the ZF and ML receivers. It is shown that the GD-ML receiver with group size

Nu = 1 yields the same performance as the ZF receiver. In contrast, when the group size is

Nu = 5, the GD-ML receiver achieves the ML receiver’s performance, which implies that the

GD-ML’s performance is proportional to the group size Nu.

• Performance for group size with threshold complexity: Figure 1.12 shows the BER perfor-

mance of the GD-ML receivers with group sizes that meet the 1% extra complexity criteria

for N = 128 and M = 128, i.e., Nu ≤ 5. These results are compared with the ZF and MMSE
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Algorithm 1.1 Algorithm of GD-ML Receiver

Input: r, H, U, Nu, {G1, · · · ,GU}, Gu = {k1,u, · · · , kNu,u}

Output: ŝ1, ŝ2, · · · , ŝU

1 H† ← (HHH)−1HH ;

2 y ← H†r;

3 for all references Gu = {k1,u, · · · , kNu,u} do
4 yu ← [y]Gu ;

5 Ku ← (HH
u Hu)

−1;

6 Bu ← K− 1
2

u ;

7 zu ← Buyu;

8 ŝu ← arg min
su∈Su

[
‖ Busu − zu ‖2

]
;

9 end for

-6 0 6 12 18 24 30 36 42
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100

Figure 1.11 Group size performance

evaluation for GD-ML receiver and N = 5

and M = 5, and ρt = 0.5

receivers’ performance. We observe that the GD-ML receiver with Nu ≥ 2 and Nu ≥ 3

outperforms the ZF and MMSE receivers, respectively. Hence, for BER = 10−4, the GD-ML

with group size Nu = 5 yields an Eb/No gap of 28dB compered to the ZF and a gap of 8dB

compered to the MMSE receiver.
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Figure 1.12 BER performance versus

Eb/No of ZF, MMSE, and GD-ML with

Nu = {2,3,4,5}. N = 128, M = 128, and

ρt = 0.5





CHAPTER 2

LITERATURE REVIEW AND RELATED WORKS

2.1 Overview

The GD-ML technique was introduced by Varanasi (1995) for multi-user detection in code-

division multiple-access (CDMA) channels. Since then, GD-ML has been studied extensively for

orthogonal frequency-division multiplexing (OFDM) and single-carrier systems (Bayramoglu,

Karjalainen & Juntti, 2013; Maza, Sampaio-Neto & Medina, 2012), as well as for MIMO

technologies.

In the preceding chapter, we introduced the GD-ML receiver, which comprises the ZF linear

projection, fixed grouping strategy, and ML detection stages. This chapter shows the related

research on the GD-ML receiver divided into two sections. The first section summarizes the

proposed receiver structures, focusing on the benefits of the structure adopted in this thesis.

The second section covers the relevant works related to the GD-ML performance analysis,

highlighting their limitations and potential opportunities for further research.

2.2 GD-ML structure

The study of GD-ML structure comprises four main stages, illustrated in Figure 2.1. These

stages include linear projection methods, grouping strategies, detection methods into each group,

and post-detection.

-MRC
-ZF
-MMSE
-QR  &  GS

 

Linear 
projection 
methods

-Correlation-based
-Ordering method
-Exhaustive search
-Fixed

 -ML
-LLR
-ML+ZF
-ML+MMSE

 

Grouping 
strategist

Detection 
methods Post-detection

-SIC 

Figure 2.1 Scheme of GD-ML structure study



46

2.2.1 Linear projection methods

The linear projection is a matrix operation process that is applied to cancel the channel effects

from the UE and prepare the received symbols vector for group formation. The common linear

projection algorithms are MRC, ZF, MMSE, and the QR decomposition combined with the

Grand-Smith (GS) orthogonalization that we describe as follows:

• MRC: the authors in (Krause, Taylor & Martin, 2011) suggested using MRC as a linear

projector for overloaded MIMO systems. This involves using the Hermitian transpose of

the channel matrix on the received symbols vector, which is ideal for low load factor large

MIMO systems with favorable propagation conditions. Despite its low complexity advantage,

we showed that MRC exhibit poor performance even for medium and low load factors, which

means that it does not mitigate the channel effects efficiently.

• ZF: numerous studies have proposed the use of ZF linear projection, which involves applying

the pseudo-inverse channel matrix operation to the received symbols vector (Li, Huang,

Lozano & Foschini, 2000; Sfar & Letaief, 2003; Cal-Braz & Sampaio-Neto, 2014). This

procedure effectively eliminates channel effects, making the symbol vector ready to be

divided into groups. However, a major drawback is the amplification of the noise power,

leading to poor performance in low SNR situations. The complexity of the matrix inversion,

and consequently this method increases with the increase in the number of UEs, which could

create a disadvantageous breakpoint. However, several efficient matrix inversion algorithms

have been introduced, making this linear projection method an attractive option for large

MU-MIMO.

• MMSE: research on MMSE as a linear projection method for conventional MIMO was

presented in (Elkhazin, Plataniotis & Pasupathy, 2006; Choi, Shim, Singer & Cho, 2010;

Yang, Hu & Zhang, 2007; Moon, Jeong, Lee & Lee, 2010). The authors in (Choi et al., 2013;

Nguyen et al., 2018a; Nguyen, Le, Ngo & Nguyen, 2018b) studied its use in uplink massive

MIMO, while Liu, Yang, Sun, Zhang & Qian (2022) explored its application for downlink

massive MIMO. In contrast to ZF, the MMSE linear projector takes into account the noise

effects, thus achieving better performance at low SNRs while its complexity is slightly higher.
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However, this linear projector can not convert the channel matrix into an identity matrix,

thus challenging the grouping process and performance analysis.

• QR & GS: the authors in (Choi, Negi & Cioffi, 2000) have implemented a linear projection

to separate the received symbols vector into two groups using the QR decomposition and

Gram–Schmidt (GS) orthogonalization procedures. This method’s main advantage lies in its

ability to form independent groups, which theoretically mitigates inter-group interference.

However, this method is unsuitable for multiple groups due to the complexity introduced by

the orthogonalization process.

In this thesis, we opted for the ZF linear projection method because it effectively mitigated the

channel effects. This facilitates the groups’ formation since the symbols vector stays intact due

to the channel matrix’s identity conversion. Additionally, it simplifies the performance analysis,

which is the main contribution of this thesis.

2.2.2 Grouping strategies

Grouping strategies have been developed to maximize the group or system performance while

minimizing the computational cost. The two most notable methods found in the literature are

correlation-based and ordering-based strategies, which we discuss in detail below.

• Correlation-based: this grouping method was proposed in (Li et al., 2000; Elkhazin et al.,

2006). This method involves analyzing the correlation between the UEs using the correlation

channel matrix to group the least correlated UEs together.

• Ordering-based: according to (Choi et al., 2000; Sfar & Letaief, 2003; Sfar, Dai & Letaief,

2005; Cal-Braz & Sampaio-Neto, 2014; Krause et al., 2011; Moon et al., 2010; Choi et al.,

2013), the ordering-based method involves arranging the UEs based on their channel power,

SNR, and SINR. This approach is particularly useful for GD-ML receivers using SIC.

• Several alternative grouping methods, such as exhaustive search and fixing strategies, have

been explored for performance and complexity comparisons (Bayramoglu et al., 2013).

Exhaustive search algorithms consider all possible combinations, which is also known as

brute force. However, this approach is not the most efficient due to its high computational
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cost. On the other hand, the fixing grouping method permanently assigns members to each

group, which offers the advantage of low computational cost.

In this research work, we chose the fixing grouping method because it does not directly influence

the performance analysis result.

2.2.3 Detection methods for each group

The GD-ML technique offers the significant benefit of enabling optimal detection within each

group, thanks to the small number of UE symbols that need to be estimated. Thus, the ML

detector usage in each group for conventional MIMO has been studied in (Li et al., 2000;

Sfar & Letaief, 2003; Choi et al., 2000, 2010; Bottomley & Wang, 2010; Moon et al., 2010;

Krause et al., 2011) and for massive MIMO systems was proposed by (Nguyen et al., 2018a,b).

Additionally, the log-likelihood-ratio algorithm, which maximizes the posterior probability for

coded conventional MIMO systems, was proposed by (Elkhazin et al., 2006; Yang et al., 2007),

while (Choi et al., 2013) explored this technique for massive MIMO.

Furthermore, the use of a combination of ML and ZF detectors was introduced by (Choi et al.,

2000), while (Choi et al., 2010) presented the alternative of combining ML with MMSE. These

approaches were proposed to reduce the complexity of the ML algorithm.

Since the main objective of this thesis is the derivation of the performance analysis, we considered

using only an ML detection for each group and discarding the combination with other receivers

to simplify the performance analysis.

2.2.4 Post-detection

Many studies on GD-ML receivers have incorporated a post-detection process to improve their

performance. Many approaches (Li et al., 2000; Sfar & Letaief, 2003; Krause et al., 2011) involve

employing the successive interference cancellation (SIC) for conventional MIMO systems, while
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for massive MIMO ware studied by (Nguyen et al., 2018b,a). SIC mitigates the interference

caused by previously detected symbol groups.

This technique yields a high complexity cost for a large number of groups, which makes it

unsuitable for large MIMO environments; thereby, we did not consider its usage in this thesis.

2.3 GD-ML performance analysis for MIMO systems

The group detection technique has been extensively researched for MIMO systems, exploring

various receiver structures and grouping strategies. However, most of the available works are

simulations (Li et al., 2000; Bottomley & Wang, 2010; Choi et al., 2010; Moon et al., 2010;

Cal-Braz & Sampaio-Neto, 2014). To the best of the authors’ knowledge, only two studies have

considered the performance analysis of GD-ML receivers.

The first study proposed by (Choi et al., 2000) investigated the upper bound performance for all

symbols pertaining to the same group, named block error probability, which is equivalent to the

VEP (Vector-symbol error probability) defined in the previous chapter. The results have shown

that the GD-ML achieves a diversity order proportional to the group size. However, this work is

limited to conventional MIMO systems with co-located antennas at the BS. It also assumes an

i.i.d. Rayleigh channel, simplifying the distribution of the random variables used to derive the

receiver’s performance.

The second research made by (Elkhazin et al., 2006) provided the union bound of VEP for

uncoded MIMO systems based on the maximum a-posterior probability (MAP) process and

soft-input soft-output (SISO). However, in addition to the limitations of the first research paper,

this article presents the receiver’s performance as a non-closed mathematical expression that

contains summations and functions to be solved.

The aforementioned limitations present research opportunities for deriving a closed-form

expression for the GD-ML receiver performance in large MU-MIMO systems with correlated

channels and distributed antennas, which is one of the main contributions of this thesis.





CHAPTER 3

GD-ML PERFORMANCE ANALYSIS

3.1 Overview

In this chapter, we derive a closed-form expression for the average PE (probability of error) for the

uth group, considered the GD-ML receiver’s structure, which includes linear projection, grouping,

and ML detection into each group. Considering that the linear projection has the same influence

on all groups and assuming an ideal grouping strategy, the group performance is subject to the

ML detection stage. The ML detection technique detects all symbols jointly; as a consequence,

it is natural to consider the group VER to evaluate its performance (Talwar & Paulraj, 1997).

The rest of this chapter is organized as follows: In Section 3.2, we define the group VER of

the GD-ML receiver, while in Section 3.3, we derive its upper bound. Section 3.4 presents the

distribution of minimum Euclidean distance, which is a key factor in deriving the average group

VER. The closed-from expression of the average group VER is derived in Section 3.5. Finally,

in Section 3.6, numerical results are presented to verify the derived analytical expression.

3.2 Group VER

Let PEu denote the VER of the uth group, which is defined as the probability that, after the

whitening process, at least one symbol of the estimated vector is not equal to the corresponding

symbol in the transmitted vector, expressed as (Maza et al., 2020)

PEu � Pr{ŝu � su |Bu}. (3.1)
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Let us define the pair-wise error probability as the probability of detecting su,j when su = su,i is

the transmitted symbols vector, given as (Maza et al., 2020)

Pr{su,i −→ su,j |Bu} = Q
����
√

d2
u,i j

2
γ
���	 ; i, j = 1, · · · ,Mu,

∀i � j,

(3.2)

where γ = 1/No is the SNR, and d2
u,i j is the squared Euclidean distance between su,i and su,j

expressed as (Maza et al., 2020)

d2
u,i j =‖ Bu(su,i − su,j) ‖

2

= eH
u,i jBH

u Bueu,i j

= eH
u,i jB2

ueu,i j,

(3.3)

where eu,i j = su,i − su,j , and B2
u is the squared group whitening matrix defined in (1.43).

The event PEu given in (3.1) can be derived by the law of total probability. For a set of all Mu

possible equiprobable symbol vectors, su,i, PEu is given by (Maza et al., 2020; Talwar & Paulraj,

1997)

PEu =

Mu∑
i=1

[
PEu |su = su,i,Bu

]
Pr(su = su,i)

=
1

Mu

Mu∑
i=1

[
PEu |su = su,i,Bu

]
,

(3.4)

where the conditional PE,
[
PEu |su = su,i,Bu

]
, can be bounded by the sum of the pair-wise error

probabilities, given in (3.2), as (Maza et al., 2020)

[
PEu |su = su,i,Bu

]
≤

Mu∑
j=1,
j�i

Q
����
√

d2
u,i j

2
γ
���	 . (3.5)
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Substituting (3.5) in (3.4), we obtain

PEu ≤
1

Mu

Mu∑
i=1

Mu∑
j=1,
j�i

Q
����
√

d2
u,i j

2
γ
���	 . (3.6)

3.3 Upper Bound Group VER

The expression in (3.6) involves two summations to obtain the group VER. To deal with these

summations, let d2
u,min denoted as the minimum squared Euclidean distance of the uth group,

expressed as (Maza et al., 2020)

d2
u,min = min

i,j; i� j
d2

u,i j

= min
i,j; i� j

eH
u,i jB2

ueu,i j .
(3.7)

Therefore, Q(d2
u,i j) can be bounded by Q(d2

u,min), and as a result, we can obtain a closed form for

the expression of the group VER in (3.6) as (Maza et al., 2020)

PEu ≤ (Mu − 1)Q
����
√

d2
u,min

2
γ
���	 , (3.8)

which is the well-known union-bound performance.

The average PE can be obtained by applying the expected value operation to PEu, which is a

function of a random variable d2
u,min. Hence, the distribution of the minimum squared Euclidean

distance, d2
u,min, is derived in the following section (Maza et al., 2020).

3.4 Distribution of the minimum squared Euclidean distance

We derive the distribution of d2
u,min based on the multivariate random variable (refer to Annex I

for further details) and stochastic order theories. We define the partition and distribution of the
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channel and autocorrelation channel matrix. Then, we deduce the distribution of the equivalent

squared group whitening matrix and the probability density function of the equivalent minimum

squared Euclidean distance.

3.4.1 Channel matrix partition

Let the channel, H ∈ CM×N , and correlation Σ ∈ CN×N matrices, given in (1.9), be partitioned

as

H =
(

Hu Hū

)
and Σ =

���
Σu Σuū

Σūu Σū

��	 , (3.9)

where Hu ∈ CM×Nu and Σu ∈ CNu×Nu are the channel and correlation matrices of the uth group,

while Hū ∈ CM×Nū and Σū ∈ CNū×Nū are the channel and correlation matrices for the remaining

users; Nū = N − Nu. Moreover, Σuū ∈ CNu×Nū is the correlation matrix for the UE pertaining to

the uth group and the remaining users, and Σūu = Σ
H
uū. Furthermore, when Σuū = 0, then Hu is

statistically independent of Hū, denoted as Hu ⊥⊥ Hū (Maza et al., 2020).

3.4.2 Autocorrelation channel matrix

Let us consider a channel matrix H ∈ CM×N , with matrix-variate Gaussian distribution denoted

as H ∼ CNN,M(0, IM ⊗ Σ), i.e., for distributed antenna layout configuration, with Σ > 0 ∈ CN×N .

Then, the autocorrelation channel matrix, denoted as R = HHH ∈ CN×N , is a Hermitian positive-

definite random matrix, which has a complex central N-dimensional Wishart distribution with

M degrees of freedom, and Σ matrix parameters denoted as (Shin & Lee, 2003; Andersen, 2000)

R ∼ CWN (M,Σ). (3.10)

Then, let R be partitioned as

R = ���
Ru Ruū

Rūu Rū

��	 , (3.11)



55

where Ru = HH
u Hu ∈ CNu×Nu , Rū = HH

ū Hū ∈ CNū×Nū and Ruū = HH
u Hū ∈ CNu×Nū ; Rūu = RH

uū.

Finally, we notice that Ru is the squared whitening matrix given in (1.43).

3.4.3 Equivalent squared group whitening matrix

The GD-ML receiver exploits the correlation between UEs in the same group while they are

jointly detected. However, it does not consider the correlation between UEs from different groups.

Therefore, to obtain a realistic distribution of the minimum squared Euclidean distance, we also

need to consider the effect of the correlation among the different groups on the construction on

the squared whitening matrix. For this purpose, we should differentiate between the following

two cases (Maza et al., 2020):

• Case 1: The matrix Ru is statistically independent of Rū, denoted as Ru ⊥⊥ Rū if Σuū =

0, which implies Hu ⊥⊥ Hū, as mentioned in subsection 3.4.1 (Andersen, Hojbjerre,

Sorensen & Eriksen, 1995; Bilodeau, Brenner & Bilodeau, 1999; Rao, 1965). This implies

that the UEs that belong to the uth group are statistically independent of the rest of other UE.

In this analysis, we consider a communication system with closely-located and correlated

UEs, where the transmit correlation matrix Σ � IN . Then, given the uth group, Σuū � 0, as a

consequence, Ru �⊥⊥ Rū. Thus, Ru does not represent a realistic squared whitening matrix for

the proposed system (Maza et al., 2020).

• Case 2: To derive a realistic squared whitening matrix, we define the equivalent whitening

matrix in the following proposition (Maza et al., 2020):

Proposition 1. Considering the partition of the matrices defined in (3.9) and (3.11), let Ru⊥

and Σu⊥ be the equivalent squared whitening and covariance matrices of the uth group

respectively, expressed as (Maza et al., 2020)

Ru⊥ = Ru − RuūR†
ūRūu, (3.12a)

Σu⊥ = Σu − ΣuūΣ
†
ūΣūu. (3.12b)
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Then, Ru⊥ has a Wishart distribution denoted by (Maza et al., 2020)

Ru⊥ ∼ CWNu (Lu,Σu⊥), (3.13)

where Lu = M − N + Nu. Moreover (Maza et al., 2020),

Ru⊥ ⊥⊥ (Rū,Ruū), (3.14a)

Σu⊥ ⊥⊥ (Σū,Σuū). (3.14b)

Proof. Let P = Hū(HH
ū Hū)

†HH
ū and Q = IM − P be the projection matrices. PQ = 0,

PHū = Hū, and QHū = 0. Then, the orthogonal complement to the subspace spanned by the

columns of matrix Hū (Rao, 1965; Bilodeau et al., 1999; Eaton, 2007; Maza et al., 2020) is

expressed as

HH
u QHu = HH

u (IM − P)Hu

= HH
u Hu − HH

u Hū(HH
ū Hū)

†HH
ū Hu

= Ru − RuūR†
ūRūu,

(3.15)

which is the expression given in (3.12a). Ru⊥ is also known as the generalized Schur

complement of Rū in R. The same criterion is applied to Σ to obtain Σu⊥ in (3.12b). For

R ∼ CWN (M,Σ) with Σ > 0 ∈ CN×N and their partitions, given in (3.9) and (3.11), the

authors in (Rao, 1965; Bilodeau et al., 1999; Andersen et al., 1995) demonstrated that the

Schur complement of Rū in R, has a Wishart distribution size Nu, with Lu degrees of freedom

and Σu⊥ matrix parameter denoted as Ru⊥ ∼ CWNu (M − Nū,Σu⊥). Substituting M − Nū by

Lu = M −N +Nu, we obtain (3.13). Besides, Ru⊥ and (Rū,Ruū) are independently distributed

(Maza et al., 2020).
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3.4.4 Distribution of the equivalent minimum squared Euclidean distance

Definition 3.1. Given the equivalent squared whitening matrix Ru⊥ in (3.12a), the equivalent

squared Euclidean distance can be written as (Maza et al., 2020)

d2
u⊥,i j = eH

u,i jRu⊥eu,i j, (3.16)

Proposition 2. The distribution of d2
u⊥,i j defined in (3.16), is said to have a Gamma distribution

with α = Lu and β = 1

2σ2
u,i j

shape and rate parameters, respectively, given as (Maza et al., 2020)

d2
u⊥,i j ∼ Gamma

(
Lu,

1

2σ2
u,i j

)
, (3.17)

where

σ2
u,i j = eH

u,i jΣu⊥eu,i j . (3.18)

Proof. Given Ru⊥ ∼ CWNu (Lu,Σu⊥), and let eu,i j ∈ C
Nu be any fixed vector. Then, due to the

Wishart distribution properties given in Rao (1965) and Izenman (2013), the distribution of

(3.16) can be expressed as (Maza et al., 2020)

eH
u,i jRu⊥eu,i j ∼ σ

2
u,i j χ

2(2Lu) (3.19)

for eu,i j � 0 and Σu⊥ > 0. Note that the chi-squared is a special case of the Gamma distribution

denoted as χ2(2Lu) ∼ Gamma(Lu,
1
2
), with α = Lu and β = 1

2
parameters. Then (Maza et al.,

2020),

σ2
u,i j χ

2(2Lu) ∼ Gamma(Lu,
1

2σ2
u,i j

) (3.20)

Definition 3.2 (Integral Stochastic order). (Tepedelenlioglu, Rajan & Zhang, 2011, Equation

(1))
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Let x and y denote random variables with cumulative distribution functions Fx(·) and Fy(·),

respectively, and G denote a class of real functions g : R+ → R. Let us define the integral

stochastic order with respect toG as

x ≤G y ⇔ E[g(x)] ≤ E[g(y)],∀g ∈ G, (3.21)

whereG is a generator of the order ≤G (Tepedelenlioglu et al., 2011; Maza et al., 2020).

Proposition 3. Let X = {xk}, k = 1, · · · ,E be a set of RVs, where xk ∼ Gamma(L, 1

2σ2
k

) has the

same distribution as the equivalent Euclidean distance given in (3.17). Let us select g(xk) = xk

in (3.21), with E[g(xk)] = 2Lσ2
k . Then, we say for a pair-wise of RVs xi, xj ∈ X for i � j, the

relation holds

xi ≤G xj ⇔ σ
2
i ≤ σ2

j , (3.22)

which implies that the smaller RV is the one that has the smaller σ2
k parameter (Maza et al.,

2020).

Proof. Let xi ∼ Gamma(L, 1

2σ2
i

) and xj ∼ Gamma(L, 1

2σ2
j

). If σ2
i ≤ σ2

j , then

E[g(xi)] ≤ E[g(xj)]

2Lσ2
i ≤ 2Lσ2

j

σ2
i ≤ σ2

j ,

(3.23)

which entails that the function with the smaller RV must have a smaller mean. Substituting

(3.23) in (3.21), we can deduce (3.22) (Maza et al., 2020).

Proposition 4. The PDF of the minimum squared Euclidean distance with Gamma distribution,

denoted as d2
u,min ∼ Gamma

(
Lu,

1

2σ2
u,min

)
, is given by (Maza et al., 2020)

fx(X) =
1

Γ(Lu)(2σ
2
u,min)

Lu
X Lu−1e

− 1

2σ2
u,min

X
, (3.24)
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where Γ(·) is the Gamma function, x = d2
u,min, and

σ2
u,min = min

i,j; i� j
eH

u,i jΣu⊥eu,i j . (3.25)

Proof. Let xu,ki ∼ Gamma
(
Lu,

1

σ2
u,ki

)
, ki ∈ {1,2, · · · ,E} be a set of RVs. From the results

obtained in (3.22), we can sort the set of elements as (Maza et al., 2020)

xu,k1
≤ · · · ≤ xu,kE ⇔ σ2

u,k1
≤ · · · ≤ σ2

u,kE . (3.26)

Then, the smallest RV xu,k1
is given by the maximum rate parameter 1

2σ2
u,k1

, and applying

the min(·) function to (3.18), we obtain (3.25). Finally, the PDF of the Gamma distribution

parameterized by the shape and rate parameters, α and β respectively, is given by (Maza et al.,

2020)

fx(X) =
βα

Γ(α)
Xα−1e−βX (3.27)

substituting α = Lu and β = 1

2σ2
u,min

yields (3.24).

3.5 Average Group VER

We derive a closed-form expression for the average PE defined in (3.8). Since the PEu is a

function of an RV d2
u,min, the average PE of the uth group is obtained as (Maza et al., 2020)

PEu = E[g(x)]

=

∫ ∞

0

g(X) fx(X)dX,
(3.28)

where g(X) = (Mu − 1)Q
(√

X
2
γ

)
and fx(X) is the PDF of x, given in (3.24), with shape and

rate parameters, Lu and βu =
1

2σ2
u,min

, respectively. Substituting g(X) and fx(X) in (3.28), we
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obtain (Maza et al., 2020)

PEu ≤ (Mu − 1)

∫ ∞

0

Q

(√
X
2
γ

)
βLu

u

Γ(Lu)
X Lu−1e−βuX dX . (3.29)

Using the approximation Q(w) ≈ a1e−b1w
2

+ a2e−b2w
2

for w > 0, where a1 = 1/12, a2 = 1/4,

b1 = 1/2, and b2 = 2/3 (Chiani, Dardari & Simon, 2003), we get

Q

(√
X
2
γ

)
≈ a1e−

b1γ

2
X + a2e−

b2γ

2
X . (3.30)

Consequently, (3.29) can be written as (Maza et al., 2020)

PEu �(Mu − 1)

∫ ∞

0

(
a1e−

b1γ

2
X + a2e−

b2γ

2
X
) βLu

u

Γ(Lu)
X Lu−1e−βuX dX

=(Mu − 1)

[∫ ∞

0

a1β
Lu
u

Γ(Lu)
X Lu−1e−

(
b1γ

2
+βu

)
X dX +

∫ ∞

0

a2β
Lu
u

Γ(Lu)
X Lu−1e−

(
b2γ

2
+βu

)
X dX

]
.

(3.31)

Let β1 =
(

b1γ
2
+ βu

)
and β2 =

(
b2γ
2
+ βu

)
be the rate parameters of the PDF of the Gamma

distribution of two random variables with common shape parameter Lu (Maza et al., 2020). The

first and second integrals in (3.31) can be decomposed as

a1β
Lu
u

βLu

1

∫ ∞

0

βLu

1

Γ(Lu)
X Lu−1e−β1X dX︸����������������������������︷︷����������������������������︸
=1

(3.32a)

and

a2β
Lu
u

βLu

2

∫ ∞

0

βLu

2

Γ(Lu)
X Lu−1e−β2X dX,︸����������������������������︷︷����������������������������︸
=1

(3.32b)
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respectively. Substituting (3.32a) and (3.32b) into (3.31), we get (Maza et al., 2020)

PEu � (Mu − 1)

��������
a1β

Lu
u

βLu

1

+
a2β

Lu
u

βLu

2︸�������������︷︷�������������︸
η

�������	
. (3.33)

Replacing βu, β1, β2, γ, and the Q-function approximation coefficients in (3.33), η can be

decomposed as (Maza et al., 2020)

η =
1

12
(
2σ2

u,min

)Lu
(

1
2

SNR
2
+ 1

2σ2
u,min

)Lu
+

1

4
(
2σ2

u,min

)Lu
(

2
3

SNR
2
+ 1

2σ2
u,min

)Lu

=
1

12
(
2σ2

u,min

)Lu
(

1
2
σ2
u,minSRN+1

2σ2
u,min

)Lu
+

1

4
(
2σ2

u,min

)Lu
(

2
3
σ2
u,minSRN+1

2σ2
u,min

)Lu

=
1

12

(
σ2
u,min

2
SNR + 1

)Lu
+

1

4

(
2σ2

u,min

3
SNR + 1

)Lu
.

(3.34)

Finally, replacing (3.34) in (3.33), the average VER of the uth group can be formulated as (3.35)

(Maza et al., 2020).

PEu � (Mu − 1)

������
1

12

(
σ2
u,min

2
SNR + 1

)Lu
+

1

4

(
2σ2

u,min

3
SNR + 1

)Lu

�����	
. (3.35)

From (3.35), it can be deduced that the SNR is scaled by σ2
u,min, which demonstrates the influence

of the correlation of the UE and the independence between the target and remainder groups

since σ2
u,min depends on Σu⊥ ⊥⊥ (Σū,Σu,ū), which is given in (3.14b). We can also deduce that

the average PE exhibits an inverse proportionality with respect to the SNR raised to the power of

Lu (Zhu & Murch, 2002), similar to equation (1.3). This result implies that the GD-ML receiver
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provides a diversity gain of M − N + Nu. Moreover, for λ = 1, the diversity gain is proportional

to the group size, Nu. Furthermore, for Nu = 1, the diversity gain of the GD-ML is similar to

that of the ZF receiver, namely M − N + 1 (Maza et al., 2020).

3.6 Validation of analytical results

We present the simulation results performed in Matlab to validate the derived analytical

expression. We assume each UE transmits 4-QAM symbols sequence over the correlated

Rayleigh channel with a distributed antenna layout (Maza et al., 2020).

3.6.1 Average Group VER Performance

We consider a massive MU-MIMO system with λ = 1 to exploit the multiplexing gain given by a

large number of antennas, which maximizes the amount of UEs served by the BS using the same

frequency-time resources. Figure 3.1 shows the numerical and analytical average group VER

performance for an MU-MIMO system with M = 128, N = 128, Σ(ρt = 0.5), and Ψ = I. We

validate the analytical results with the corresponding simulation results for different Nu group

sizes. The GD-ML performance is improved when Nu increases. This is because the GD-ML

receiver provides a diversity gain of M − N + Nu. It is also shown that for small group sizes, the

analytical and numerical results remain close (i.e., for Nu = 1, the analytical and simulation

curves match perfectly, which is equivalent to the ZF receiver). They grow apart as the group

size increases, which is a consequence of the upper-bound accuracy limitations. However, the

derived average VER expression is useful to evaluate the performance and diversity gain of the

GD-ML receivers, which is lacking in the literature (Maza et al., 2020).

3.6.2 Correlation coefficient analysis

In this subsection, we analyze the effect of the correlation between the UEs on the system

performance. Figure 3.2 exhibits the performance comparison of the GD-ML receiver for

different values of correlation coefficients, with Nu = 2, M = 128, and N = 128. It is observed
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Figure 3.1 Analytical average group VER

and simulation results of the GD-ML

receivers with group sizes

Nu = {1,2,3,4,5,6}, for full load massive

MIMO with M = 128 and N = 128, and

Σ(ρt = 0.5)

Taken from Maza et al. (2020, p.45660)

that the average VER given in (3.35) is degraded when ρt increases. We can also observe that

for a moderate SNR, the derived expression closely matches the numerical results, especially for

high values of ρt . To analyze these results, we start from the transmit covariance matrix given in

(1.12), which depends on ρt , then (3.12b) is also a function of ρt . As a result, (3.25) can be

written as (Maza et al., 2020)

σ2
u,min(ρt) = min

i,j; i� j
eH

u,i jΣu⊥(ρt)eu,i j . (3.36)

Figure 3.3 shows the result of (3.36), where we observe that σ2
u,min(ρt) is inversely proportional

to ρt . Thus, in (3.35), σ2
u,min(ρt) scales the SNR, which implies that the performance is improved
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Figure 3.2 Performance comparison for

different correlation coefficients ρt , for

M = 128, N = 128, and GD-ML with

group size Nu = 2

Taken from Maza et al. (2020, p.45661)

when ρt is decreased. Additionally, if ρt → 0, then Σuū(ρt) = Σūu(ρt) ≈ 0 in (3.12b), which

corresponds to a negligible inter-group interference (Maza et al., 2020).

3.6.3 Diversity gain and complexity analysis

We consider an M = 128 and N = 128 MU-MIMO system with distributed antenna layout

configuration. Then, the ZF and MMSE receivers provide a unitary diversity gain with a

complexity of 8.41 × 106 and 8.42 × 106 FLOPs, respectively. In contrast, the GD-ML receiver

with Nu = 5 provides a diversity gain of 5 at the cost of 8.47 × 106 FLOPs (meeting the

complexity criterion given in Chapter 1).

If we want the ZF and MMSE receivers to archive a diversity order of 5, it is necessary to add 4

additional antennas, i.e., M = 132 antennas at the BS. This addition involves an extra hardware
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implementation and a complexity of 8.61 × 106 and 8.62 × 106 FLOPs for ZF and MMSE,

respectively, which result in a higher complexity compered to the GD-ML.





CONCLUSION AND RECOMMENDATIONS

Large MU-MIMO systems provide enormous multiplexing gains with a full load factor, making

them a desirable solution to meet the high connection needs of the 5G and B5G networks.

However, under the full-load factor, the performance of linear receivers is severely degraded

due to unfavorable propagation conditions, highlighting the need for exploring more efficient

solutions.

The GD-ML technique enhances the performance of linear receivers without adding excessive

complexity. The literature review revealed that this technique has been widely studied for

conventional MIMO systems with ideal channels; however, its potential for large MU-MIMO

systems with realistic channels remains unexplored. With this motivation, in this thesis, we

explored the efficiency of the GD-ML receiver in large MU-MIMO systems. We derived the

performance and complexity analysis assuming full-load factors and correlated channels. In the

following, we summarize the main contribution of this thesis.

We first discussed the background of wireless communication systems, emphasizing on fading

and diversity. We studied MIMO techniques, focusing on diversity and spatial multiplexing

and their benefits in terms of array, diversity, and multiplexing gains. We also discussed uplink

and downlink MU-MIMO systems and their advantages over conventional MIMO systems.

We provided an overview of correlated MU-MIMO channel models. We also presented and

compared linear and non-linear MU-MIMO receivers in complexity and performance. Finally,

we examined the main concepts and challenges behind large MU-MIMO systems.

We examined the GD-ML receiver’s structure, which includes linear projection, grouping,

and ML detection for each group. We also provided numerical results for the GD-ML BER

performance with various group sizes. The results demonstrated that GD-ML outperforms ZF

and MMSE receivers, even with small group sizes.
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We formulated an equation for the hardware complexity of the GD-ML receiver in terms of

FLOPs. We presented a complexity criterion for assessing the balance between complexity and

performance. Our findings indicate that the grouping and ML detection stages’ complexity is

negligible compared to the linear transformation stage, which involves channel matrix inversion.

We show that for large MU-MIMO systems, the complexity of the GD-ML receivers with

small groups size is almost the same as that of the ZF and MMSE. Furthermore, our research

demonstrates that for large MU-MIMO systems, the complexity of GD-ML receivers with small

group sizes is comparable to that of ZF and MMSE.

We derived a closed-form expression for the average group VER of the GD-ML receiver, with

group sizeNu, for a scenario with N closely-located and correlated UEs at the transmitter side

and M uncorrelated distributed antennas at the BS. Our research showed that the GD-ML

receiver provides greater diversity gains than linear receivers, where the gain is proportional to

M−N+Nu. We also found that the GD-ML’s performance deteriorates when correlation between

the UEs’ channels increases. The simulation results validated the derived analytical expression

and exhibited that, for small group sizes, the closed-from expression and the numerical outcomes

are quite close. Furthermore, we observed that the analytical expression closely matches the

numerical results for moderate SNRs values and becomes perfect as the UEs’ channel correlation

increases.

Future work

In this research, we considered the group VER performance metric for uncoded, distributed

large MU-MIMO systems with correlation only at the transmitter side and a fixed grouping

strategy. However, the performance expression presented can be further explored to create a

more generalized metric that includes a fully correlated channel and different grouping methods.

The GD-ML performance metric considered in this research work is the group VER for uncoded,

distributed large MU-MIMO systems with correlation only at the transmitter side and fixed
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groping strategy. However, the presented performance expression may be extended to a more

generalized metric with fully correlated channels and considering different the grouping methods.

Nonetheless, we have identified several potential areas for future research based on this thesis,

including:

• Exploring the correlation on both transmitter and receiver sides.

• Developing an analytical expression for the BER or SER performance metrics.

• Examining scenarios involving coding systems.

• Developing a novel grouping strategy utilizing artificial intelligence.

• Exploring hardware implementation of the GD-ML receiver.





ANNEX I

MULTIVARIATE DISTRIBUTION

We provide a detailed review of multivariate complex random variables, including the distribution

of complex random vectors and matrices and essential properties needed to develop the MIMO

systems model and derive receiver performance. This annex presents notation used, the complex

multivariate Gaussian distribution, and the Wishart distribution.

1. Notation and operations

Let X ∈ CM×N be a complex random matrix denoted by

x1 · · · xN

X =
������

X11 · · · X1N
... · · ·

...

XM1 · · · XMN

�����	
yT

1
...

yT
M,

(A I-1)

where xi = [X1i, · · · ,XMi]
T and y =

[
Xj1, · · · ,XjN

]T
are the ith column and jth row vectors of

X matrix, respectively.

Let E[·] and V[·] denote as expectation and variance operators, respectively. Thus, the mean and

covariance matrices of x, y, and X are given by

m = E[x], Σ = V[x] (A I-2)

p = E[y], Ψ = V[y] (A I-3)

M = E[X], Ψ ⊗ Σ = V[X], (A I-4)

where Σ ∈ CN×N > 0, Ψ ∈ CM×M > 0, and Ψ ⊗ Σ ∈ CN M×N M > 0 are Hermitian matrices.

m ∈ CN , p ∈ CM , and M ∈ CM×N .
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2. Complex multivariate Gaussian distribution

A random vector x ∈ CN is defined as the complex N-variate Gaussian distribution with mean

vector m ∈ CN and covariance matrix Σ ∈ CN×N > 0, denoted by

x ∼ CNN (m,Σ), (A I-5)

A random matrix X ∈ CM×N is said to have a matrix-variate Gaussian distribution with mean

M ∈ CM×N and covariance Ψ ⊗ Σ ∈ CN M×N M > 0 denoted by

X ∼ CNN,M(M,Ψ ⊗ Σ), (A I-6)

Let X ∈ CM×N ∼ CNN,M(0, IM ⊗ Σ), where IM is the identity matrix. Then, X and Σ can be

partitioned as

X =
(

X1 X2

)
, Σ =

���
Σ11 Σ12

Σ21 Σ22

��	 , (A I-7)

where X j is (M × rj), and Σ j k , size (rj × rk), for j, k = 1,2 and r = r1 + r2; ΣH
12
= Σ21. It holds

that:

i. X j ∼ CNM×rj (0 j, IM ⊗ Σ j j),

ii. X1 and X2 are independent if Σ12 = 0,

iii. X1 − X2Σ
†
22
Σ21 ∼ CNM×r1

(01, I ⊗ (Σ11 − Σ12Σ
†
22
Σ21)) , and (X1 − X2Σ

†
22
Σ21) ⊥⊥ X2.
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3. Complex Wishart distribution

Let us consider a random matrix X ∈ CM×N , with matrix-variate Gaussian distribution

X ∼ CNN,M(0, IM ⊗ Σ). Then, Z = XHX ∈ CN×N is a Hermitian positive-definite random

matrix which have a complex central Wishart distribution with M degrees of freedom, and Σ

matrix parameters denoted as (Shin & Lee, 2003; Andersen, 2000)

Z ∼ CWN (M,Σ) (A I-8)

We present some useful results about Wishart matrices:

i. For N = 1 and Σ = σ2, the distribution of a complex Wishart matrix yields to

Z ∼ CW1(M, σ2), which is also a chi-square distribution with 2M degrees of freedom

given as

Y ∼
σ2

2
χ2(2M). (A I-9)

ii. Let Z ∼ CWN (M,Σ) with Σ > 0 and b � 0 ∈ CN be a deterministic vector. Then, bHZb is

a chi-square distribution expressed as bHZb ∼ σ2
b χ

2(2M) (Pavur, 1980), whereσ2
b = bHΣb.

Applying the scaling property of gamma and chi-square distributions, bHYb is said to have

a gamma distribution with α = M shape and β = 1

2σ2
b

rate parameters denoted as

bHYb ∼ Gamma (α, β) (A I-10)

iii. Let consider the partition of X, Y and Σ, then

X =
(

X1 X2

)
, Y = ���

Y11 Y12

Y21 Y22

��	 and Σ =
���
Σ11 Σ12

Σ21 Σ22

��	 , (A I-11)

where X j and Xk are the (M × Nj) and (M × Nk) matrices respectively, Y j k and Σ j k , size

(Nj × Nk) for j, k = 1,2; N = Nj + Nk,. Then, Y j k = YH
k j and Σ j k = Σ

H
k j . Moreover,

Y j j = X jXH
j , and Ykk = XkXH

k (Bilodeau et al., 1999). Then, the distribution of
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Y11.2 = Y11 −Y12Y†
22

Y21 called the generalized Schuar complement of Y22 in Y is given by

Y11.2 ∼ CWN1
(M − N2,Σ11.2) (A I-12)

where Σ11.2 = Σ11 − Σ12Σ
†
22
Σ21, and

Y22 ∼ CWN1
(M,Σ22) (A I-13)

Y11.2 ⊥⊥ (Y21,Y22) (A I-14)

where a ⊥⊥ b denotes the statistical independence between a and b.
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