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FOREWORD

This dissertation aims to explore various aspects of federated fog computing which gained

significant attention in the last several years. The research produced 4 journal articles. While

the first two chapters of this dissertation provide an extensive introduction and background of

federated fog architectures, the subsequent chapters are dedicated to the presentation of the

journal articles without any modifications. Although each article focuses on a different aspect of

federated fog computing, they collectively form a coherent whole and are closely interconnected,

contributing to a comprehensive understanding of the main topic.
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Avancées dans les architectures fédérées de brouillard pour une amélioration de la qualité
de service dans les applications IoT et IoV

Ahmad HAMMOUD

RÉSUMÉ
Le monde devient de plus en plus connecté avec la présence croissante d’objets intelligents et

les progrès des systèmes de transport intelligents (ITS). Cependant, les retards du réseau causent

des perturbations et une réduction de la qualité de service (QoS) pour les applications Internet

des objets (IoT) et Internet des véhicules (IoV) lorsque les utilisateurs exécutent des services en

temps réel critiques. Le fog computing, avec son placement stratégique de serveurs, émerge

comme une solution, mais il nécessite de résoudre le manque de puissance de traitement pour

les applications IoT et IoV critiques. Parallèlement, le federated fog computing peut offrir une

adaptation dynamique aux changements environnementaux et faciliter la communication.

Cette thèse vise à contribuer à une architecture de fédération de fog complète et sécurisée

pour améliorer la QoS des applications IoT en général et de l’architecture des applications de

conduite autonome en IoV en particulier. Elle se concentre sur plusieurs défis, notamment

l’absence d’enquête sur une architecture de fédération de fog complète, l’instabilité potentielle

des fédérations de fog, l’absence de prise en charge de la mobilité en IoV, les complications

liées à l’apprentissage fédéré pour IoV et l’impact des fournisseurs de fog peu fiables.

Les objectifs de recherche sont les suivants : développer une architecture de fédération de fog

complète et efficace avec un mécanisme de regroupement, créer un mécanisme de formation

robuste pour empêcher les fournisseurs de changer de fédération, étendre la formation de

fédération de fog pour prendre en charge la mobilité, soutenir l’apprentissage fédéré des

véhicules et introduire un mécanisme de confiance et de réputation dans la formation de

fédération de fog.

Nous complétons les progrès actuels de la recherche sur le federated fog computing dans la

littérature existante en ajoutant différents modules pour faciliter l’objectif d’amélioration de la

QoS des applications d’apprentissage fédéré en IoV. Tout d’abord, nous étudions une architecture

nouvelle et complète pour le concept de fédération de fog et proposons une approche adaptative,

intelligente et dynamique de formation de fédération en utilisant l’apprentissage automatique

et les algorithmes génétiques. De plus, nous abordons le problème de l’instabilité au sein des

fédérations de fog en proposant un algorithme décentralisé basé sur la théorie des jeux évolutifs.

En outre, nous élargissons notre domaine pour couvrir un environnement plus dynamique :

l’Internet des véhicules. Pour satisfaire les utilisateurs mobiles, la mobilité doit être prise en

compte, nous nous appuyons donc sur un mécanisme de formation de fédération de fog en

vol dans lequel nous prenons en compte la mobilité des appareils pour leur fournir une bonne

qualité de service en utilisant la théorie des jeux. De plus, nous présentons une architecture

d’apprentissage fédéré basée sur l’horizontale renforcée par les fédérations de fog pour prendre

en charge la formation sur l’appareil avec la QoS demandée. Enfin, nous étendons le mécanisme

de formation utilisé pour le federated fog computing en introduisant une infrastructure de
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chaîne de blocs pour gérer les tâches administratives des fédérations et sécuriser le processus de

formation.

Des ensembles de données réels sont utilisés pour évaluer l’architecture proposée et les

mécanismes de formation. Les résultats montrent une amélioration notable du débit et une

diminution du temps de réponse pour les services demandés, ainsi que la stabilisation des

fédérations de fog.

Mots-clés: Informatique décentralisée fédérée, Apprentissage fédéré, Internet des véhicules,

Regroupement, Stabilité, Qualité de service, Théorie des jeux
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IoV Applications

Ahmad HAMMOUD

ABSTRACT

Network delays cause disturbance and reduction in the Quality-of-Service (QoS) for Internet-of-

Things (IoT) and Internet-of-Vehicles (IoV) applications while end-users are running critical

real-time services. Federated fog computing emerged as a viable solution to overcome such

a problem. By merging resources from multiple fog providers and agreeing on a service

level agreement, the federated infrastructure can offer the opportunity to adapt to dynamic

environmental changes and facilitate vehicle-to-vehicle communication.

This thesis aims to contribute to the comprehensive and secure fog federation architecture to

enhance the QoS for IoT in general, and autonomous driving applications in IoV in specific. It

focuses on several challenges, including a lack of investigation into a comprehensive federated

fog architecture, potential instability in fog federations, lack of support for mobility in IoV,

complications in federated learning for IoV, and the impact of untrustworthy fog providers.

The main objectives of this thesis include developing a comprehensive and efficient federated

fog computing architecture, creating a robust formation mechanism to limit providers from

switching federations, extending fog federation formation to support mobility, supporting

vehicular federated learning applications, and ensuring that fog federation formation considers

trust and reputation during the formation of the architecture and its maintaining phases.

We complement the current research progress about federated fog in the literature by adding

various modules to facilitate the goal of enhancing the QoS of Federated Learning applications

in IoV. First, we investigate a novel architecture for the federated fog concept and propose an

adaptive, intelligent, and dynamic federation formation approach using Machine Learning and

Genetic Algorithms. Moreover, we address the problem of instability within fog federations by

proposing a decentralized algorithm based on evolutionary game theory. Furthermore, we expand

our area to cover a more dynamic environment; the Internet-of-Vehicles. To satisfy mobile

users, mobility should be considered, thus, we rely on a fog federation formation mechanism on

the fly where we consider the mobility of the devices to provide them a good service quality

using game theory. In addition, we present a horizontal-based federated learning architecture

empowered by fog federations to support on-device training with the requested QoS. Finally, we

extend the formation mechanism used for federated fog computing by introducing a Blockchain

infrastructure to handle the federations’ administrative tasks and secure the formation process.

Real datasets are used to evaluate the proposed architecture and formation mechanisms. The

results show a notable improvement in the throughput and a decrease in the response time for

the services requested, in addition to stabilizing the fog federations.
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INTRODUCTION

0.1 Motivation

It is undeniable how the world we are living in is becoming more connected. Smart objects

are everywhere now, and the underlying computing infrastructure has a lot of potentials to

enable seamless communication across devices. In this context, as the world is witnessing

advancements in the Intelligent Transportation System (ITS), we can ask ourselves: Are we

able to let autonomous cars learn by themselves to adapt to their environments and make use of

the driving habits of the drivers? Are we able to transfer knowledge from one car to another

while preserving the privacy of these cars? What are the enabling technologies to allow such a

seamless supportive learning system in IoV?

Intuitively, when these questions are asked, Artificial Intelligence (AI) comes into our mind.

AI has become a key component of the IoV paradigm that allows the development of complex

services such as Autonomous Driving systems for improving road safety. The safety of intelligent

vehicles’ trips strongly relies on how well-trained and prepared the integrated AI systems are.

Particularly, the vehicle scans its surroundings using various sets of sensors, including cameras,

beams of radar, lidar, ultrasound, GPS navigation, etc... Then, it passes the sensed data to the AI

system which, in turn, analyzes it and makes the best decision under given circumstances (e.g.,

speed up, stop, turn left, etc...). In order for such a complex model to be ready for deployment, a

huge data sets is required, and an analytical machine-learning procedure must be carried out

to discover statistically significant patterns in such data. Training such a huge stream of data

requires capable computing servers such as the ones deployed in Cloud Computing. By having

the cloud collecting the data from a significant number of vehicles, it is able to perform intensive

computations to extract useful patterns and combine these patterns into one single optimized

machine learning model that could be forwarded to the vehicles for deployment. As the number

of autonomous vehicles increases, the centralized cloud computing model is not designed to
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deliver the required real-time processing and analysis capabilities, and also it is not the best

candidate to support local vehicle communication (vehicle-to-everything). Fog computing can

support such an architecture due to its strategic server placements. However, the main critical

challenge is to compensate for the lack of processing power needed when deployed to serve

critical IoV applications. In response to this challenge, the concept of federated fog computing

emerged as a viable solution. By merging resources from multiple fog providers and agreeing

on a service level agreement, the federated infrastructure can offer the opportunity to adapt to

dynamic environmental changes and facilitate vehicle-to-vehicle communication.

The motivation behind this thesis stems from the recognition of the crucial role that federated

fog computing plays in enabling autonomous driving and improving its architecture for federated

learning applications. This thesis aims to contribute to the comprehensive and secure fog

federation architecture necessary for enhancing the QoS of autonomous driving applications

within an IoV framework while considering various strategies to compensate for the dynamicity

of the environment. Motivated by our previous work where we defined the building blocks for
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fog federations architecture and its formation mechanism (Shamseddine et al., 2020a), in this

thesis we address the identified challenges and limitations. This research seeks to unlock the full

potential of federated fog computing, enabling a future where autonomous vehicles navigate the

roads in a safe, efficient, and precise manner.

0.2 Problem Statement

In this thesis, we focus on several challenges related to the concept of federated fog computing

architecture within the context of IoT and IoV. We list below the main challenges related to the

implementation of this concept:

• The potential instability of fog federations, caused by providers not dedicating the agreed-

upon resources to their respective federation and deviating from it, can lead to a decrease in

shared resources and computational capabilities. Such unstable fog federations negatively

impact QoS and overall federation payoff.

• The existing fog federation-based formation mechanisms ignore the fast and large area

displacements of the end-users in IoV settings that can lead to a degraded service quality

due to the change of gateways, making these federations vulnerable to instabilities.

Federations’ stability is an important factor to maintain a stable performance. Otherwise,

federation members might break from their federation causing a further reduction of the

agreed-upon QoS.

• Federated learning is still suffering from many infrastructural complications in the IoV

context due to its special requirements that are different from most other IoT applications.

Thus, there is a need for studying the fog federation in terms of its architecture and

formation to ensure adequate service quality and a suitable environment for Autonomous

Driving applications.
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• Finally, encountering untrustworthy fog providers in the federations will negatively affect

the overall performance. An untrustworthy provider should be penalized by the federated

fog community. To this extent, the current formation mechanisms of the fog federations

ignore the trust and reputation metrics when initializing fog federations.

This thesis aims to address these challenges to overcome the limitations and improve the

effectiveness of the federated fog computing architecture.

0.3 Research Objectives

Our main objective is a comprehensive and secure fog federation architecture that can enhance

the QoS of the applications for IoT and IoV. To accomplish the aforementioned objective, we

focus on the following 4 sub-objectives:

1. Developing a robust formation mechanism for the fog federations and reducing the

chances of providers deviating from their federations. This involves designing incentives

and disincentives to discourage providers from switching federations and ensuring their

commitment to the chosen federation.

2. Extending the traditional fog federation formation process to support mobility in an IoV

environment while considering the unoptimized distribution of services to improve the

QoS.

3. Supporting learning applications within the context of IoV, namely vehicular feder-

ated learning, through studying their requirements and assigning roles for each entity

accordingly.

4. Securing the fog federation formation process and considering the trust and reputation of

each participant during the formation in order to secure the QoS.
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0.4 Contributions and Novelty

In this section, we enumerate the contributions of this thesis to the federated fog computing

concept while highlighting the novelty. It is worth noting that we previously addressed the

problem with a comprehensive architecture (Shamseddine et al., 2020a). We extend the previous

federated fog architecture by adding and modifying modules/components summarized by the

following list of contributions:

1. We propose a novel fog formation scheme embedding an evolutionary game theoretical

model. Our approach offers to form stable fog federations in which no member has

incentives to reallocate his resources elsewhere. We form the initial set of federations

using the k-means clustering technique. Afterward, we extend the formation with a

learning-based evolutionary game-theoretical model. Such a game studies the conflict and

cooperation among fog providers in the presence of dynamic strategies. It encompasses a

state (strategy) where no fog provider has incentives to change its current federation, i.e.

evolutionary stable strategy. We also propose a latency-aware greedy service placement

algorithm to cope with placing the services on the evolved generation in order to maintain

relatively short network delays. The evolution from one generation to another is presented

using a decentralized algorithm that can be executed by the providers separately for

reaching stability. We use EUA Datasets, containing data collected from real IoT devices,

to simulate and evaluate our approach while comparing it with a greedy algorithm.

Experimental results explore that our proposed approach increases the total payoff for

the federations and improves the QoS in terms of stability, response time, and resource

availability.

Novelty: We are the first to address the problem of stability in federated fog computing

and analyze it using an evolutionary game theoretical model while proposing a solution to

mitigate the federations’ instabilities.
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Figure 0.2 Thesis Novelty Graph

2. We devise a game-theoretic approach that relies on the Hedonic Coalition Formation

mechanism in order to form fog federations that adapt to the mobile nature of the IoV.

Our architecture is fully decentralized and thus does not rely on a central entity to operate.

The problem formulation in terms of forming the federations and offloading requests

among fog members is formulated as an integer program, then modeled as a Hedonic

game. We adopt the Merge & Split as a formation technique, where the federations that
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are not satisfied in terms of QoS merge with other federations that would enhance the

service performance. The dynamic nature of IoV can frequently trigger the execution of

the formation technique to adapt to the changes in this paradigm. In our approach, fog

providers have full autonomy to split from the federation and find another federation to join

in order to provide satisfactory QoS to its users. To evaluate our scheme, we use SUMO

(Simulation of Urban Mobility) simulator that generates realistic vehicular trajectory

data to serve in our experiments as moving users. Experimental analysis shows that our

approach results in a higher user satisfaction rate in terms of QoS, stability architecture,

and a lower execution time when compared to other approaches presented in the literature.

Novelty: We are the first effort to address the limitation of the literature where we consider

dynamic coalition formation to maximize QoS in the context of IoV while taking into

account the mobility of vehicles. Our fog federation maintenance characteristic grants a

recovery stage for the provided services whenever the QoS falls below the threshold.

3. We advance a horizontal federated learning architecture for IoV applications empowered

by fog federations. We rely on a Hedonic-game theoretical model for reinforcing the

fog federations, i.e. the IT infrastructure, to maintain adequate service quality through

migrating services among federation nodes according to the federated learning needs.

In our proposal, we consider metrics tailored to IoV settings which makes the previous

formations inapplicable, due to the dynamic behavior of the participants. Hence, we

demonstrate how to adapt the formation to dynamic federated learning settings. In contrast

to the resource-based solutions in the literature, we consider multiple learning applications

simultaneously to fully utilize the infrastructure. Our proposed architecture ensures the

engagement of more participants in the federated learning process than other approaches

proposed in the literature. We evaluate our approach by simulating a process for training a

level-1 federated autonomous driving application that can identify traffic signs on the road

and alert the driver accordingly. We also compare our approach with other approaches
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mentioned in the literature. Experimental evaluation reveals that our mechanism can

achieve better model accuracy, lower model loss and response time, and handle more

participants in the training process when compared with other approaches.

Novelty: We are the first to design a stable federated fog scheme to assist the federated

learning processes within IoV for enabling the training of intelligent vehicular applications.

4. We leverage Ethereum Blockchain technology as an enabler to form reputable fog federa-

tions. Unlike other approaches, our proposed approach utilizes the inherent properties of

Blockchain to enable decentralized decision-making and reputation management, while

making reputation information available across the entire network. We employ a Hedonic

game theoretical model to allow decentralized decision-making when establishing federa-

tions that are based on their preferences. In addition, we reinforce the formation with an

intelligent feedback-based trust establishment mechanism that allows providers to rate the

behavior of the other members in their federations through smart contracts to limit the

impact of biased feedback. Furthermore, we penalize misbehaving providers by excluding

them from the formation game when they fell below a certain reputation threshold. To

prepare for our testbed, we rely on the EUA dataset for fog location placement in a certain

area, along with vehicular traffic generated by SUMO (Simulation of Urban MObility) in

that area. In addition, we use Solidity and Python to program our on-chain and off-chain

operations, respectively. Results show that our approach is cost-effective and can yield

an increased QoS and profit while reducing the number of misbehaving nodes in the

environment when compared to other works in the literature.

Novelty: Our novelty stems from the combination of both the on-chain (smart reputation

contracts) and off-chain (hedonic game) processes, providing a holistic solution for secure

federated formation in fog computing environments.
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0.5 Author’s Publication

0.5.1 Journal Publications

In terms of journals, the contribution to the state-of-the-art was a total of 4 journal articles. We

list them below:

1. Hammoud, A., Otrok, H., Mourad, A., & Dziong, Z. (2021). Stable federated fog

formation: An evolutionary game theoretical approach. Future Generation Computer

Systems, 124, 21-32.

2. Hammoud, A., Kantardjian, M., Najjar, A., Mourad, A., Otrok, H., Dziong, Z., & Guizani,

N. (2022). Dynamic fog federation scheme for internet of vehicles. IEEE Transactions on

Network and Service Management.

3. Hammoud, A., Otrok, H., Mourad, A., & Dziong, Z. (2022). On demand fog federations

for horizontal federated learning in IoV. IEEE Transactions on Network and Service

Management, 19(3), 3062-3075.

4. Hammoud, A., Mizouni, R., Singh, S., Otrok, H., Mourad, A., & Dziong, Z. (2023).

A Blockchain-based Hedonic Game Scheme for Reputable Fog Federations. IEEE

Transactions on Network and Service Management, (Accepted).

0.5.2 Conference Publications

The thesis also resulted in 1 conference that falls under the same umbrella toward achieving an

enhanced QoS in IoT and IoV applications:

1. Hammoud, A., Mourad, A., Otrok, H., & Dziong, Z. (2022, August). Data-driven

federated autonomous driving. In Mobile Web and Intelligent Information Systems: 18th
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International Conference, MobiWIS 2022, Rome, Italy, August 22–24, 2022, Proceedings

(pp. 79-90). Cham: Springer International Publishing.

0.5.3 Collaborative Publications

We also contributed with other scholars to extend and ameliorate some modules that are

relevant to certain components of our architecture. My primary role was focused on writing,

supervising, and contributing to the conceptual aspects of these works. The result of these

efforts is summarized in these articles (1 journal and 2 conferences, respectively):

1. Shamseddine, H., Nizam, J., Hammoud, A., Mourad, A., Otrok, H., Harmanani, H., &

Dziong, Z. (2020). A novel federated fog architecture embedding intelligent formation.

IEEE Network, 35(3), 198-204.

2. Arafeh, M., Hammoud, A., Otrok, H., Mourad, A., Talhi, C., & Dziong, Z. (2022,

December). Independent and Identically Distributed (IID) Data Assessment in Federated

Learning. In GLOBECOM 2022-2022 IEEE Global Communications Conference (pp.

293-298). IEEE.

3. Yasser, Z., Hammoud, A., Mourad, A., Otrok, H., Dziong, Z., & Guizani, M. Towards

Stable Federated Fog Formation using Federated Learning and Evolutionary Game Theory.

IEEE GLOBECOM 2023, (Accepted).

0.6 Thesis Outline

• Chapter 1 focuses on introducing some concepts that are relevant to this thesis.

• Chapter 2 presents the work of Journal 1. It addresses the problem of instability within

fog federations when they are being formed by proposing a decentralized algorithm based

on evolutionary game theory, which stabilizes the federations and enhances QoS for users.
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• Chapter 3 presents the work of Journal 2. It introduces an adaptive fog federation

formation scheme using game theory for IoV applications, allowing federations to adapt

to environmental changes and improve QoS through merging and splitting mechanisms.

• Chapter 4 presents the work of Journal 3. It demonstrates a horizontal-based federated

learning architecture empowered by fog federations and a Hedonic game-theoretical model

to stabilize these federations.

• Chapter 5 presents the work of Journal 4. It extends the formation mechanism used

for federated fog computing by introducing a Blockchain infrastructure to handle the

federations’ administrative tasks.





CHAPTER 1

PRELIMINARIES

1.1 Background

We discuss, in this section, some of the concepts and paradigms used throughout this thesis.

1.1.1 Smart Cities

Figure 1.1 A smart city

Day by day, people are moving to live in the cities, due to the existence of all facilities within.

Such an increase might result in many problems, including traffic jams and resource drainage.

In parallel, a smart city is a municipality that makes use of the information analyzed to increase

the efficiency of the services provided. As shown in Fig 1.1, Smart cities depend on collecting

information from all sources available within the city, such as data generated through the Internet

of Things devices, communication networks, and software solutions. Mainly, the purpose of

this concept is to improve the quality of life for the citizens. Many cities started integrating this

concept, such as Amsterdam, Copenhagen, New York, etc...

Throughout the various networks, a smart city functions by:

1. Collecting the data from the sensors deployed within the city in real-time

2. Analyzing the data by turning them into useful information
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3. Forwarding this information to the concerned sectors/parties

4. Generating optimized decisions accordingly

1.1.2 Internet of Things

Internet of Things, or IoT, is the main source of data that a smart city needs. Initially, various

sensors are integrated within Things for generating frequent data that, once analyzed, can be used

as information to further serve in efficiently managing the city’s resources due to the merge of

the physical and digital worlds. From a smart light bulb to smart home and a driverless vehicle,

IoT devices are everywhere to help control the environment (Fig 3.4a). A statistical study that

was recently published by Statista 1 depicts that the number of IoT devices will increase from

15.41 billion in the year 2015 to 75.44 billion devices in 2025, what encourages the investments

in the computation resources to handle such received data.

Figure 1.2 IoT Adoption
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Figure 1.3 IoV Networks

1.1.3 Internet of Vehicles

Internet of Vehicles, or IoV, is an important part of IoT evolution. Mainly, it allows information

exchange among vehicles and infrastructures through using a heterogeneous network (as depicted

in Fig. 3.4b) such as:

• Vehicle to Vehicle (V2V)

• Vehicle to Infrastructure (V2I)

• Vehicle to Pedestrians (V2P)

• Vehicle to Clouds (V2C)

• Vehicle to Sensors (V2S)

These kinds of networks assist the drivers and the other engaged parties, enabling efficiency and

road safety, leading to what is called the Intelligent Transportation System (ITS). Thereupon, the

concept of Intelligent Vehicle can be enabled due to the incubating environment of nowadays.

1 https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/



16

Simply, Intelligent Vehicles manage to gather data (1) through the sensors embedded within and

(2) collected from their surroundings through the networks. Then, vehicles analyze these data to

output useful information that can be used to inform - and alert the driver in some cases - about

things to consider during the journey.

1.1.4 Service Provider

Service providers are responsible for providing computation, storage, and network resources

for the users, in exchange for getting paid for them. We distinguish among 2 different types of

service providers: Cloud service providers, and Fog Service Providers.

• Cloud service providers: As defined by the National Institute of Standards and Technology

(NIST), ‘cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction’ (Hogan, Liu, Sokol & Tong,

2011). In other words, it is the practice of delivering computation resources through

the internet. This paradigm provides many advantages to the clients. For instance, it

offers flexibility; the clients will not have to host their own Information Technology (IT)

infrastructure since it will be managed by experts. The demand for it increased in the past

few years for making IT easier for the users (Novet, 2018). Cloud Service Providers (CSP)

offer three types of cloud services, listed below:

– Infrastructure as a Service (IaaS) grants the clients with storage, network, and

computation resources to manage them however they need. Amazon Web Services2

is the leading IaaS provider.

2 https://aws.amazon.com/



17

– Platform as a Service (PaaS) offers a platform for the clients, on which they can

deploy the software as they wish. An example of a PaaS for hosting web applications

is Google App Engine3.

– Software as a Service (SaaS) offers software deployed on the cloud for the end-users.

The famous Dropbox4 is considered as a leading application of this type.

With the help of Virtualization, several virtual machines can be hosted on the same

physical machine, making it more efficient to manage the resources. Statistics have shown

that some of the cloud providers are in a continuous increase in profit like Amazon Web

Service, which is estimated to acquire 49% more profit than the last year (Networkers,

2018), (Evans, 2018).

• Fog service providers: Real-time IoT/IoV applications can be critical in a way they need

to make an instant decision and cannot wait for their tasks to be offloaded to the cloud in

order to get the response due to the high latency. Hence, the concept of Fog computing

that extends the Clouds to the edge of the network. It was proposed by Cisco5 to overcome

the limitations of integrating IoT with the clouds. Things can now offload their tasks and

data to the edge of the network, instead of forwarding them to the clouds. However, it

becomes costly to deploy powerful Fog servers everywhere, therefore, overwhelming tasks

are still being forwarded to the Clouds to be executed there. Table 1.1 summarizes the

main differences between Cloud Computing and Fog Computing.

1.1.5 Federated Learning

Transferring data from the users to the Clouds for machine learning training purposes has raised

many privacy concerns as it may result in the exposure of their private data either by a session

hĳacker or by the service provider itself. To address the aforementioned problem, Google devel-

oped Federated Learning, a highly privacy-preserving machine learning architecture serving in

3 https://cloud.google.com/appengine/

4 https://www.dropbox.com/

5 https://www.cisco.com/
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Table 1.1 Comparison between Cloud and Fog Computing

Parameter Cloud Computing Fog Computing

Latency High Low

Nodes Mobility Static Dynamic

Communication Mode IP Wireless communication

Bandwidth Cost High Low

Computation Capabilities Low High

protecting personal data from being exposed to other parties (Dhole, Thomas & Chandrasekaran,

2016). Such a mechanism consists of having the users train the model themselves independently,

and then, forwarding the trained models only to the cloud, without the data, in order to be

aggregated together to form one unified machine learning model.
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2.1 Abstract

Instability within fog federations is considered a serious problem that degrades the performance of

the provided services. The latter may affect service availability due to fog providers withdrawing

their resources. It may either lead to failures for some users’ invocations or to an increase in

the number of tasks inside the servers’ processing queue. Such a critical problem strips the fog

paradigm from its main characteristic, the low latency factor. To the best of our knowledge, no

work in the literature has addressed the problem of encountering unstable fog federations. Their

main concern were increasing the providers’ payoff regardless of their behavior. To address the

aforementioned limitation, this work studies the federations’ stability by modeling the problem

as an evolutionary game-theoretical model. Moreover, it devises a decentralized algorithm that

implants the Replicator Dynamics model within. We used EUA datasets to test our mechanism

in real settings. Experiments explore that the algorithm leads to an evolutionarily stable strategy

over time, which stabilizes the federations and improves the Quality-of-Service for the users.

2.2 Introduction

The current revolutionary period we are living in was science fiction a few decades ago.

Technology redefined the way people interact with their surroundings. In particular, Internet-of-

Things (IoT) applications have become a necessary part of our lifestyle. From a smart light bulb,
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to a smart home and a driverless vehicle, IoT devices are everywhere to improve our quality

of life. A statistical study that was recently published by Statista1 depicts that the number of

IoT devices will increase from 15.41 billion in the year 2015 to 75.44 billion devices in 2025.

Such an increase encourages investors and stakeholders for investing more in the computational

resources to satisfy the huge demand required by IoT devices.

In parallel, cloud providers cannot meet the Quality-of-Service (QoS) requested by the IoT

applications due to the high latency between the devices and the cloud servers. Such network

delays constitute a barrier for some applications such as health-care and autonomous driving

where even small delays are costly (Shih, Chung, Pang, Chiu & Wei, 2016). To address this issue,

Cisco2 proposed a new concept called fog computing, which extends clouds to the edge of the

network in order to massively reduce the network delays (Chiang & Zhang, 2016). IoT devices

can now request resources from available nearby fog nodes instead of communicating with the

relatively far-away cloud servers. Nevertheless, fog servers entail high deployment cost leading

to limitations in available resources compared to the clouds (Stantchev, Barnawi, Ghulam,

Schubert & Tamm, 2015; Li, Anh, Nooh, Ra & Jo, 2018). Hence, alternative solutions must be

explored to satisfy the huge demand for resources by the Application Service Providers (ASPs).

Many scholars recently addressed the resource limitation problem by trying to optimally schedule

the tasks invoked by the IoT devices (Oueis, Strinati & Barbarossa, 2015; Sun, Dang & Zhou,

2016), whereas others considered overcoming such an issue through placing on-demand fog

(Sami & Mourad, 2020). However, such alternatives are not feasible nor efficient when the fog

provider, i.e. the party providing fog nodes, runs out of available resources in the geographical

location having high demands for computing resources. Thus, federating fog providers would be

considered as a convenient solution to overcoming all the aforementioned limitations.

Simultaneously, the concept of fog federations refers to various participants making use of their

unallocated resources, instead of keeping them idle. By reaching an agreement, the collaborators

will be able to handle more tasks than anyone can handle on its own. The advantages of such

collaboration are twofold. On one hand, fog federations allow offloading tasks among servers

1 https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

2 https://www.cisco.com/
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(i.e., fog nodes) belonging to different fog providers for the sake of processing the user request

as quickly as possible, thus improving the QoS for the requests. On the other hand, it allows

the fog providers to rent out their unused resources and expand their geographical footprints

without the need of new points for presence. Hence, through fog federations, services can be

deployed on more geographically distributed servers whenever there are spikes in the demands

for serving such requests with acceptable QoS. In our experiments, we show that the federations

can boost the service quality by improving many factors, such as the response time. In order to

figuratively demonstrate the effectiveness of the fog federations, Fig. 2.1 illustrates how the

ASPs are renting resources from fog providers to deploy their services. From the other side,

users are trying to access these services by sending requests to the servers running the desired

applications. Internally, federation members may offload requests to other members within the

same federation in order to shorten the waiting delay for the requests. Thus, as illustrated, the

latencies for the users are reduced, leading to a faster way of processing the requests when the

providers are federating compared to the typical single fog providers.

Fog Federation

Single Fog Providers

Application
Service 

Providers

Fog Provider Y

Fog Provider Z

Rent
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Resources
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Figure 2.1 Fog Federations vs. Single For Providers
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Problem Statement. To motivate the concept of federating fog providers, we show in Fig. 2.2

the response time of serving the requests, with and without federations using models presented

in this paper. The X-axis represents the timeline (in terms of hours), whereas the Y-axis is

the response time (in milliseconds). The blue and the orange lines are the response time the

servers need to process the requests issued by the IoT device with and without federating. We

notice that at any specific time, the federation was able to guarantee a satisfactory response

time on average due to the cooperation among fog providers. The response time is reduced

by almost 26% on average when the services are being handled by fog federations. On the

other hand, if the providers show no cooperation, then in some situations the QoS requested

by the services could not be reached, leading to penalties. For instance, the fog providers, as

rational decision-makers, might feel urged to renege on their commitments and deviate from

their federations for seeking better ones that can satisfy them. Such an act reflects negatively

on the federations that are suffering from members loss, due to the decrease of the shared

resource pool in terms of computational capabilities and points-of-presence. Such federations

are referred to as unstable fog federations. Hence, how can such fog federations be efficiently

Figure 2.2 Response time of requests with vs. without federations
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formed? It is a dilemma that encounters every fog provider due to the fact that the members of

the federation directly affect the QoS (Rochwerger et al., 2009). It becomes challenging for fog

providers to remain stable, i.e. choose a federation and keep committed to it instead of changing

to another one. To the best of our knowledge, none of the proposed solutions have yet tackled

the aforementioned problem.

Contributions. In this paper, we address the raised problems by proposing a novel fog

formation scheme embedding evolutionary game theoretical model. Our approach offers forming

stable fog federations in which no member has incentives to reallocate his resources somewhere

else. We form the initial set of federations using the k-means clustering technique. It is

an unsupervised learning model that forms clusters based on the similarities among nodes.

Afterwards, we extend the formation with a learning-based evolutionary game-theoretical model.

Such a game studies the conflict and cooperation among fog providers in the presence of dynamic

strategies. It encompasses a state (strategy) where no fog provider has incentives to change its

current federation, i.e. evolutionary stable strategy. We also propose a greedy service placement

algorithm to cope with placing the services on the evolved generation in order to maintain

relatively short network delays. The evolvement from a generation to another is presented using

a decentralized algorithm that can be executed by the providers separately for reaching stability.

We use EUA Datasets (Lai et al., 2018), containing data collected from real IoT devices, to

simulate and evaluate our approach while comparing it with a greedy algorithm. Experimental

results explore that our proposed approach increases the total payoff for the federations and

improves the QoS in terms of stability, response time, and availability. The main contributions

of this work are summarized as follows:

• Adopting an evolutionary game mechanism that simulates the dynamicity of the fog

providers, in terms of rational and irrational decision making. To the best of our

knowledge, no previous work has ever addressed the dynamic strategies that encounter

such a paradigm.
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• Forming the initial set of fog federations using the k-means clustering technique. Such a

technique allow forming federations based on providers’ similarities. In our algorithm, we

use the location of the providers to join neighboring fog providers altogether.

• Advancing a latency-aware greedy approach for placing services on the available fog

nodes within the federation.

• Devising a decentralized algorithm for fog providers that leads to stabilizing the federations

through reaching the evolutionarily stable strategy.

Outline of the paper. The rest of the paper is organized as follows. In Section II, we overview

the literature and compare the solutions in the literature with respect to the proposed approach.

In Section III, we formulate the federation formation problem. In section IV, we propose our

algorithm for solving the problem by employing an initial k-means clustering to form the initial

set of federations, and then, studying the dynamicity of the fog providers through advancing an

evolutionary game theoretical approach. We provide a numerical example in Section V. After

that, we discuss the results of running our algorithm to form the stable fog federations in Section

VI. Finally, we give a conclusion in Section VII.

2.3 Related Work

In this section, we give an overview of the literature and highlight on what is needed for

advancing a quality fog federation formation mechanism.

2.3.1 Cloud Federation Formation Approaches

Due to the wide range of techniques used for forming cloud federations, we select and discuss

the most recent ones in this subsection. In (Hammoud, Mourad, Otrok, Wahab & Harmanani,

2020a), the authors advanced an approach based on genetic algorithms and evolutionary game

theory in order to study the problem of forming highly profitable federated clouds, while

maintaining stability among the members in the presence of dynamic strategies. In (Hammoud,
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Otrok, Mourad, Wahab & Bentahar, 2018), the authors addressed the problem of having passive

malicious cloud service providers allocating their resources in the cloud federations. They

proposed a Maximin game-theoretical model that assists the broker to maximize the detection

of the malicious providers. They were able to maximize the detection of malicious providers

and improve the profit and QoS of the federations. In (Goiri, Guitart & Torres, 2010), the

authors focused on enhancing the profit of cloud providers. They assisted the providers by

making optimal decisions on where and when to allocate their computing resources. A linear

optimization program was derived in (Rebai, Hadji & Zeghlache, 2015) for helping the providers

in a certain federation to regulate their hosting and cooperation decisions on the basis of the

encountered workload and the available pool of resources. In (Mashayekhy, Nejad & Grosu,

2015), a formation mechanism was proposed to build a near-optimal federation. Mainly, their

algorithm consists of merging and splitting clusters of providers together until reaching the best

solution possible. Authors in (Dhole et al., 2016) addressed the formation problem by using

trust as a measurement among providers. They claimed to reach stability, profit maximization,

and fairness through their formation mechanism. In (Anastasi, Carlini, Coppola & Dazzi,

2017), the authors proposed a genetic approach for cloud brokering. Their approach consists of

forming the federations according to the QoS requested by the applications. However, none of

the aforementioned works have considered the latency factor in its mechanism, where it is an

essential component in forming fog federations for real-time applications. Thus, they cannot be

applied on the fog level. Hence, a need for dedicated fog federation formation techniques rises

in order to maintain an adequate QoS.

2.3.2 Fog Service Deployment and Task-Scheduling Approaches

Initially, some works considered increasing the QoS by decreasing the latency between the

fog and IoT devices. In (Mahmud, Ramamohanarao & Buyya, 2018), the authors presented a

latency-aware application module management policy that increases the QoS and optimizes

resource usage. Their policy can identify which applications should be deployed on the lower

fog nodes (near the devices), and which shall be shifted to the upper fog nodes. In (Oueis et al.,



26

2015), the authors addressed the problem of forming fog clusters to locally process the set of

offloaded requests by multiple users. The proposed approach covers both the task scheduling

problem and cluster formation. The authors of (Sun et al., 2016) covered the same problem,

however, they modeled the formation process as a coalitional game, where each player (fog node)

joins its preferred cluster. In (Li et al., 2018), the authors highlighted the problem of deploying

fog servers, and how costly it can be. They proposed a dynamic mobile cloudlet cluster policy

for fog computing by using cloudlets as a supplement for the fog server for offloading. The

problem of allocating a set of docker containers to a set of volunteering devices to provide

services on the fly was studied in (Sami & Mourad, 2020). Their main aim was to provide

efficiently enough resources for real-time IoT applications requiring computation processing.

They used a Multi-Objective Memetic algorithm to solve that problem. However, all of these

efforts are not convenient in case of the absence of available resources for scheduling the tasks.

In addition, most of these works lack a business-driven model that motivates the participants to

show cooperation when deploying services.

2.3.3 Fog Federation-Based Solutions

The concept of federating fog providers is still in its early phases. To the best of our knowledge,

there are few published works tackling specifically federations in fog that can directly, or

indirectly, enhance the QoS. In (Anglano, Canonico, Castagno, Guazzone & Sereno, 2018b), the

authors tackled the concept of federating fog providers for the sake of improving the latter’s payoff.

They modeled the problem as a Hedonic game with transferable utility where players are the fog

providers seeking to maximize their own payoff. The authors in (Veillon, Denninnart & Salehi,

2019b) provided a solution to reduce the latency of streaming video through federations. In

particular, their approach was based on evaluating whether it was more convenient to fetch

cached video data from neighboring nodes or to process them independently. In (Sharmin, Malik,

Rahman & Noor, 2020a), authors proposed a micro-level resource management mechanism

for fog federations, where they implemented a price-based workload balancing technique to

limit offloading among units relative to other consortium members. However, to the best of
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our knowledge, the main limitation of the fog federated-based solutions in the literature is the

absence of a study conducting the dynamicity of the fog providers. The abandonment of a

critical provider on a particular federation may lead to reducing the offered QoS, resulting in a

state of dissatisfaction among the ASPs.

2.3.4 Analysis

Table 2.1 highlights the main features of the related work compared to our proposed mechanism.

Clearly, none of the aforementioned works in the literature has considered all of the latency

factor, dynamicity, independent decision making (or decentralized mechanism), and stability

when forming the federations. Such four factors altogether can enhance the quality of the formed

fog federation.

2.4 System Model and Problem Formulation

Let us consider a set of fog providers 𝑃 = 𝑝1, 𝑝2, ..., 𝑝𝑛, each of which has a number of servers

𝑆𝑝𝑖 = 𝑠1, 𝑠2, ..., 𝑠𝑚 located at a particular geographical locations. Such servers are characterized

by their processing power, measured in million instructions per second (MIPS). 𝐹 = 𝑓1, 𝑓2, ..., 𝑓ℎ

is the set of federations under which the fog providers unite to form coalitions. We refer to the

providers allocated in federation 𝑓𝑖 at time 𝑡 by 𝑃 𝑓𝑖 . At the same time, ASPs need to offer their

services to the users in such a way that the offered QoS should meet the required minimum,

otherwise the applications function poorly and ASPs lose some of their users. The federations

handle sets of services by deploying them on the providers’ servers (fog nodes). The set of

applications allocated to federation 𝑓𝑖 is represented by set 𝐴 𝑓𝑖 = 𝑎1, 𝑓𝑖 , 𝑎2, 𝑓𝑖 , ..., 𝑎𝑜, 𝑓𝑖 . Likewise,

each user is located at a specific location and is enrolled in a set of applications that sends out

requests to the servers hosting these applications in order to process at a certain rate. Let the set

𝑈𝑠𝑟𝑎 𝑗 = 𝑢1,𝑎 𝑗 , 𝑢2,𝑎 𝑗 , ..., 𝑢𝑞,𝑎 𝑗 represent the users requesting service 𝑎 𝑗 .

The accrued cost 𝐶𝑝𝑖 for a certain fog provider 𝑝𝑖 is represented by the sum of the operational

cost which includes CPU usage cost, memory and storage allocated, and energy usage of all of
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Table 2.1 Comparison among related work

Latency-

Aware

Dynamic

Providers

Behaviours

Decentralized

Mechanism

Stable

Solution

(Anglano et al.,
2018b)

� x � �

(Sun et al., 2016) � x � x

(Hammoud et al.,
2020a)

x � x �

(Goiri et al., 2010) x x � x

(Mashayekhy et al.,
2015; Dhole et al.,

2016)

x x x �

(Hammoud et al.,
2018; Anastasi

et al., 2017; Rebai

et al., 2015)

x x x x

(Mahmud et al.,
2018; Oueis et al.,

2015; Li et al., 2018;

Sami & Mourad,

2020; Veillon et al.,
2019b; Sharmin

et al., 2020a)

� x x x

Our Solution � � � �

its servers 𝑂𝐶 (𝑠 𝑗 ), in addition to their traffic cost in terms of allocated bandwidth 𝑇𝐶 (𝑠 𝑗 ) as in

the following equation:

𝐶𝑝𝑖 =
∑
𝑠 𝑗𝜖𝑆𝑝𝑖

(
𝑂𝐶 (𝑠 𝑗 ) + 𝑇𝐶 (𝑠 𝑗 )

)
(2.1)

For a fair monetary distribution to the federation members, every fog provider 𝑝𝑖 receives a

percentage of federation 𝑓𝑖’s total payoff. We consider the utility to be the cost of the servers

subtracted from the payoff, divided by the computation power of the servers (i.e. total MIPS
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Table 2.2 Definitions

Symbol Description

𝑃 set of all fog providers

𝑝𝑖 fog provider 𝑖
𝑆𝑝𝑖 set of all fog nodes (servers) belonging to 𝑝𝑖
𝑠𝑖 fog node 𝑖
𝐹 set of all fog federations

𝑓𝑖 fog federation 𝑖
𝑃 𝑓𝑖 set of all fog providers allocated within 𝑓𝑖
𝐴 set of all applications (services)

𝐴 𝑓𝑖 set of all applications (services) that belong to 𝑓𝑖
𝑎𝑖 application 𝑖
𝑈𝑠𝑟 set of all users

𝑈𝑠𝑟𝑎𝑖 set of all users of application 𝑖
𝜎𝑎𝑘, 𝑓𝑖

discount factor of application 𝑎𝑘 for federation 𝑓𝑖
𝛼𝑎𝑘 deduction rate for not meeting 𝑎𝑘 ’s requested QoS

𝑂𝐶 (𝑠𝑖) operational cost of 𝑠𝑖
𝑇𝐶 (𝑠𝑖) traffic cost of 𝑠𝑖
𝐶 (𝑝𝑖) total cost of 𝑝𝑖
𝑃𝑎𝑦𝑚𝑒𝑛𝑡 (𝑎𝑘, 𝑓𝑖 ) the payment from 𝑎𝑘 ’s ASP to 𝑓𝑖
𝑃𝑜𝑤(𝑠𝑖) 𝑠𝑖’s computation value in terms of MIPS

𝑈 ( 𝑓𝑖) utility of 𝑓𝑖
�̄� average utility of 𝐹
𝑅𝑝 𝑗 , 𝑓𝑖

payoff of provider 𝑝 𝑗 from federation 𝑓𝑖
𝜌 the number of fog federations

𝑥 the vector of distribution of available strategies

𝑥𝑖 the percentage of the population adopting strategy 𝑖
𝑓𝑖 (𝑥) fitness function for strategy 𝑖
𝜈(𝑥) the average fitness by the population

within the federation). Such utility can be expressed as follows:

𝑈 ( 𝑓𝑖) =

(∑
𝑎𝑘, 𝑓𝑖 𝜖 𝐴 𝑓𝑖

𝑃𝑎𝑦𝑚𝑒𝑛𝑡 (𝑎𝑘, 𝑓𝑖 ) × 𝜎𝑎𝑘, 𝑓𝑖
−
∑

𝑝𝑘𝜖 𝑓𝑖 𝐶𝑝𝑘

)
∑

𝑝𝑘𝜖𝑃 𝑓𝑖

∑
𝑠𝑙𝜖𝑆𝑝𝑘

𝑃𝑜𝑤(𝑠𝑙)
(2.2)

where 𝑃𝑜𝑤(𝑠𝑖) represents the value of server 𝑠𝑖 in terms of computing power (i.e. MIPS)

and 𝜎𝑎𝑘, 𝑓𝑖
is considered to be the discount factor that alters the regular payment issued by the

application 𝑎𝑘 content provider if the federation 𝑓𝑖 is not able to meet the minimum requirements
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and it can be expressed as:

𝜎𝑎𝑘, 𝑓𝑖
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if QoS is met,

𝛼𝑎𝑘 otherwise.

(2.3)

where 𝛼𝑎𝑘 is the deduction rate due to not meeting the QoS, e.g. the average response time is

above the agreed threshold.

Hence, the payoff of a provider 𝑝 𝑗, 𝑓𝑖 can be calculated as the following:

𝑅𝑝 𝑗 , 𝑓𝑖
= 𝑈 ( 𝑓𝑖) ×

��
∑

𝑠𝑘𝜖𝑆𝑝 𝑗, 𝑓𝑖

𝑃𝑜𝑤(𝑠𝑘 )
����

(2.4)

To stabilize the set of federations, we need to reduce the variability of the payments per shares.

The least the difference among the latter, the more satisfied the fog providers would be, leading to

fewer deviations from the federations. Such stability can be represented by the equation below:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑
𝑓𝑖𝜖𝐹

(�̄� −𝑈𝑓𝑖 )
2 (2.5)

where �̄� is the average utility which is calculated using the following:

�̄� =
∑
𝑓𝑖𝜖𝐹

𝑈 𝑓𝑖 ×
1

𝜌
(2.6)

where 𝜌 is the number of fog federations.

In the next section, we will discuss the formation and stability mechanism used to overcoming

the problem of unstable federations.

2.5 Evolutionary Federated Fog Formation

Our proposed scheme is based on defining the formation process as an evolutionary game where

each player has a preference function that leads the whole set of federations into its stable state.
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2.5.1 Background

Game theory is the science of the optimal decision-making of independent and competing players

in a strategic environment. Evolutionary game theory is used in settings where players are not

obliged to be reasonable in their decisions (Smith & Price, 1973). Such a game focuses on the

dynamics of strategy change and on which among these strategies can persist in these settings.

The success of a strategy is directly related to the other players’ selected strategies. Hence, a

strategy is evaluated by comparing it with the other strategies within the same population. A

strategy that shows success will be replicated by other players as well. Once the evolutionarily

stable strategy is adopted by a certain population, no player has intentions to deviate from

it. Such a strategy can survive invasions of relatively small invaders trying to sabotage it.

Hence, it leads to stabilizing the population. In other words, let 𝑃𝑜𝑝 denote the population

adopting an evolutionarily stable strategy 𝐴. 𝑃𝑜𝑝 will not deviate from 𝐴 if a small number of

invaders, adopting strategy 𝐵, joined the population. In contrast, the invaders will be forced to

switch to 𝐴. Suppose that 𝑂 (𝐴, 𝐵) represents the outcome of an individual choosing strategy

𝐴 facing another one with strategy 𝐵. 𝐴 is stable if it represents a strict Nash-Equilibrium

([𝑂 (𝐴, 𝐴)] > [𝑂 (𝐴, 𝐵)]), or if 𝑂 (𝐴, 𝐴) = 𝑂 (𝐵, 𝐴) and 𝑂 (𝐴, 𝐵) > 𝑂 (𝐵, 𝐵). If any of these

two applies, then no individual has the incentive to deviate from their current strategy, even if

the population gets invaded by a few mutants. Fig. 2.3 depicts the evolutionary mechanism. It

shows that the population will keep on changing until reaching the state where all players are

inheriting satisfactory strategy.

2.5.2 Game Characteristics

We present in this subsection the characteristics of the evolutionary game model to reach the

evolutionarily stable strategy. The objective is to proceed from the initialization step to reach the

‘End’ state. The main components of such a game are (1) the players, (2) strategy, and (3) utility.

Below, we break down each of these components and map them to our settings.

• Players: The players are the fog providers. Clearly, they are the decision-makers.
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Evaluate strategies

Initial Population

No

Yes
Satisfactory
Solution? EndPopulation n+1

Replicate Successful
Strategies

Figure 2.3 Evolutionary Game Theory Flowchart

• Strategy: A strategy is represented by a particular fog federation. In particular, a player

adopting strategy 𝑖 can be interpreted as the player allocating its resources in federation 𝑖.

• Utility: The utility is the player’s monetary payoff per 1 unit of allocated resources in a

certain federation.

Hence, the problem becomes finding the best formation of fog federation that keeps all the fog

providers satisfied with their coalition. To reach such a formation, the fog providers will deviate

from their federations if they find a better payoff by joining others. Successful federations are

most likely to be joined at time 𝑡 + 1 by unfortunate fog providers who are not satisfied with their

selected federation at time 𝑡. The term evolution refers to this specific stage, i.e. the change that

occurs from a state to another, making the population 𝑛 to evolve into 𝑛 + 1 where some of the

players change their strategy. To represent such an evolution, we employ the replicator dynamics

model that expresses the evolutionary dynamics (Schuster & Sigmund, 1983). In particular, we

assume that the set 𝑥 = 𝑥1, 𝑥2, ..., 𝑥𝑚 serves as the vector of distribution of available strategies

within the targeted population. Intuitively, since all strategies are included in the set 𝑥, we can
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conclude the equation below:
𝑚∑
𝑖=1

𝑥𝑖 = 1 (2.7)

The replicator dynamic’s general form is represented by �𝑥𝑖 and is calculated as:

�𝑥𝑖 = 𝑥𝑖 [ 𝑓𝑖 (𝑥) − 𝜈(𝑥)] (2.8)

where 𝑓𝑖 (𝑥) represents strategy 𝑖 fitness function and 𝜈(𝑥) is the average fitness by the population,

which can be calculated from:

𝜈(𝑥) =
𝑚∑
𝑗=1

𝑥 𝑗 𝑓 𝑗 (𝑥) (2.9)

Mapped to our problem, the fitness function is the payoff of the provider per unit of resources

obtained from Eq. 2.2. The replicator dynamics’ defined by Eq. 8 shows the percentage of

payoff increase for the individuals adopting a successful strategy. Once �𝑥𝑖 = 0 is obtained, the

evolutionarily stable strategy is reached.

2.5.3 Stable Fog Federation Formation

To demonstrate our approach, we divide the process into 3 different stages: Initialization, Player

Strategy, and Stability.

2.5.3.1 Initialization

To initialize the population, we employ the K-means clustering technique. Such a technique

follows the Expectation-Maximization approach. It consists of assigning data points to their

nearest cluster (i.e. Expectation). After that, the process of recomputing the centroid for each

cluster takes place (i.e. Maximization). Algorithm 1 shows how federations are initialized. The

algorithm takes the set of fog providers, represented by 𝑃, and desired number of federations

K, and outputs the federations with their members. In Lines 1-3, we define and initialize the

variables. In Lines 4-7, we set 𝐾 initial centroids with random values. Then, we iterate on

the fog providers and assign the providers according to their nearest centroid. Afterward, we
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recalculate the centroids. The recalculation function takes into consideration all of the clustered

providers to calculate the new midpoint. Such steps are repeated until no more providers change

centroids (Lines 8-17). Finally, we initialize a federation for each centroid and allocate the

providers inside of them with respect to their centroid (Lines 18-23).

Algorithm 2.1 Initial Clustering

Input: K, 𝑃𝑜𝑝
Output: F

22 F ← ∅;

44 Centroids ← ∅;

66 terminate ← 0;

88 while K > 0 do
1010 C ← RandomPoint;

1212 Centroids ← Centroids ∪ C;

1414 K ← K - 1;

15 end while
1717 while terminate ≠ 1 do
1919 terminate ← 1;

2121 forall p ∈ P do
2323 C ← nearest_Centroid(p);

2525 if p.centroid ≠ C then
2727 p.centroid ← C;

2929 terminate ← 0;

30 end if
31 end forall
3333 if 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ≠ 1 then
3535 forall 𝐶 ∈ 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 do
3737 𝐶 ← 𝑟𝑒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒(𝐶);

38 end forall
39 end if
40 end while
4242 forall C ∈ Centroids do
4444 𝑓 ← ∅;

4646 forall 𝑝 ∈ 𝑃 | 𝑝.𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝐶 do
4848 𝑓 ← 𝑓 ∪ 𝑝;

49 end forall
5151 𝐹 ← 𝐹 ∪ 𝑓 ;

52 end forall
5454 return F;
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Once clustering is done, each federation executes Algorithm 2 to assign services to the provider’s

servers, with respect to the profit obtained, using a greedy allocation approach. The algorithm

takes the set of services and the set of the providers allocated within federation 𝑓𝑖 (𝐴 𝑓 𝑖 and 𝑃 𝑓 𝑖

respectively) and outputs an allocation list M which has references to which services shall be

deployed on which servers. After initializing the variables (Lines 1 and 2), we evaluate the

performance of each server assigned to each service and store them inside the list (Lines 3-7).

We order the list by the profit of each assignment in descending order (Line 8). Then, using a

greedy technique, we pick the best available server for each service by keeping the best fit in

terms of value (Lines 9 and 10).

Algorithm 2.2 Services Deployment

Input: 𝐴 𝑓 𝑖, 𝑃 𝑓 𝑖

Output: M
22 M ← ∅;

44 𝑣𝑎𝑙𝑢𝑒 ← 0;

66 forall 𝑎𝑙 ∈ 𝐴 𝑓 𝑖 do
88 forall 𝑝 𝑗 ∈ 𝑃 𝑓 𝑖 do

1010 forall 𝑠𝑘 ∈ 𝑠𝑘,𝑝 𝑗 do
1212 𝑣𝑎𝑙𝑢𝑒 ← 𝑃(𝑎𝑙) × 𝜎𝑎𝑙 , 𝑓𝑖 − 𝐶𝑠𝑘 ;

1414 M ← M ∪ [𝑎 : 𝑎𝑙, 𝑠 : 𝑠𝑘 , 𝑣 : 𝑣𝑎𝑙𝑢𝑒];

15 end forall
16 end forall
1818 Order M by 𝑣 descending;

2020 forall 𝑚𝑘 ∈ M do
2222 removeAll 𝑚𝑙 from M|𝑚𝑙.𝑠 = 𝑚𝑘 .𝑠, 𝑚𝑙 .𝑎 ≠ 𝑚𝑘 .𝑎;

23 end forall
24 end forall
2626 return M;

2.5.3.2 Player Strategy

A player may reflect on its current strategy (i.e. federation) and decide that it might be better for

him to switch into another. To imitate such an act, we devise a decentralized algorithm, that

can be executed by the fog provider, to decide on which federation to join according to their

preferences. Algorithm 3 shows how a fog provider may interact according to the evaluation of
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the available federations. The algorithm takes as arguments the fog provider’s current federation

𝑓𝑖, the set of federations 𝐹, and the current vector of distribution of available strategies 𝑥. The

output of the algorithm is the provider’s preferred federation at the current time. Lines 1-6

consists of initializing the parameters. At Lines 7 and 8, the provider calculates the average

utility by summing up all federations utilities with regards to the percentage of the population

adopting them. At Line 9, if the player notices that they are not getting at least the average utility

in terms of value, compared to all other strategies being played, then they consider switching

into a more profitable federation. At Line 10, the player filters the federations, such that only

the more profitable are being kept. After that, these federations get stored inside 𝐹′ after being

sorted in descending order according to the player’s preferences. Lines 11-17 presents how the

player sets his next strategy. Finally, the player selects his preferred strategy, according to how

preferable a strategy with respect to the others is. It is worth mentioning that we imitate the

player’s behavior in terms of preferences and with the presence of a slight randomness.

2.5.3.3 Discussion

Evolutionary games are time-aware in the sense that the population is studied and evaluated over

time. After setting the initial formation at time 𝑡, providers will start acting as rational beings for

seeking better federations. To further imitate the dynamicity of such a non-cooperative game

and the irrationality of the providers, players are allowed to change strategies at any particular

time repetitively until they are satisfied, i.e. they do not have incentives anymore to break from

their current federation. Having all players executing the decentralized algorithm over time will

result in solving �𝑥𝑖 = 0 for all 𝑥𝑖 ∈ 𝑥. In other words, it will lead to a state where all the utilities

are equal or similar to the average. Thus, any deviation attempt from that state will lead back to

it again, as it represents the evolutionarily stable strategy.

2.6 Numerical Example

In this section, we evaluate the proposed scheme in terms of forming stable fog federations. We

consider a set of 10 fog providers with different locations and number of participating nodes as
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Algorithm 2.3 Player Preference

Input: 𝑓𝑖, 𝐹, 𝑥
Output: 𝑓

22 𝛼 ← 0;

44 𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1);
66 𝑓 ← 𝑓𝑖;
88 𝜈(𝑥) ← 0;

1010 𝐹′ ← ∅;

1212 𝑥′ ← ∅;

1414 forall 𝑓 𝑗 ∈ 𝐹 do
1616 𝜈(𝑥) ← 𝜈(𝑥) + 𝑥 𝑗 × 𝑢𝑡𝑖𝑙𝑖𝑡𝑦( 𝑓 𝑗 |𝐹);

17 end forall
1919 if 𝜈(𝑥) > 𝑢𝑡𝑖𝑙𝑖𝑡𝑦( 𝑓𝑖 |𝐹) then
2121 𝐹′ ← 𝑠𝑜𝑟𝑡 (𝐹 | 𝑓 𝑗 ∈ 𝐹, 𝑢𝑡𝑖𝑙𝑖𝑡𝑦( 𝑓 𝑗 |𝐹) > 𝜈(𝑥);
2323 forall 𝑓 𝑗 ∈ 𝐹′ do
2525 𝑥′ ← 𝑥′ ∪ 𝑥 𝑗 (𝜈 − 𝑢𝑡𝑖𝑙𝑖𝑡𝑦( 𝑓 𝑗 |𝐹));

26 end forall
2828 forall 𝑓 𝑗 ∈ 𝐹′ do
3030 𝛼 ←

𝑥 𝑗∑
𝑥𝑘∈𝑥′ (𝑥𝑘)

;

3232 if 𝑟 < 𝛼 then
3434 𝑓 ← 𝑓 𝑗 ;
3636 break;

37 end if
38 end forall
39 end if
4141 return 𝑓 ;

presented in Table 2.3. We assume that all fog nodes are equal in terms of computing power and

total cost (5000 MIPS and 0.5$/h respectively). By applying the initial clustering technique,

defined via Algorithm 2.1, we group up neighboring fog provider together. By setting K to 3,

we get the federations given in Table 2.4.

Our solution grouped up providers A, B, C, and D into the first federation, providers E, F, I,

and J into the second federation, and the remaining providers (G and H) are grouped into the

third federation. Table 2.5 represents the ASPs and the federations they have chosen to request

computing resources from.
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Table 2.3 Available Fog Provider

Fog Provider
Number of

Fog Nodes
Latitude Longitude

A 3 10 10

B 4 12 11

C 2 13 9

D 4 11 13

E 1 1 3

F 2 3 3

G 4 7 13

H 6 6 12

I 2 2 3

J 2 2 4

Table 2.4 Fog Federations Using K-means

Federation Fog Provider

𝑓1 A B C D

𝑓2 E F I J

𝑓3 G H

Table 2.5 Application Service Providers

ASP # Agreed Price
Chosen

Federation

1 15 $/h 𝑓1
1 5 $/h 𝑓1
2 20 $/h 𝑓2
3 30 $/h 𝑓2
4 10 $/h 𝑓3
5 20 $/h 𝑓3

Then the payoff is distributed based on to Equations 2.2 and 4.2. We set 𝜎 is equal to 1. Hence,

the utility of federation 𝑓1 is computed as follows:

𝑈 ( 𝑓1) =
1

13 × 5000
× ((15 + 5) × 1) − (3 × 0.5 + 4 × 0.5 + 2 × 0.5 + 4 × 0.5) = 0.0002
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whereas the payoff of the fog providers in exchange to their fog nodes allocated in federation 𝑓1

would be given as:

𝑅(𝐴) = 3 × 5000 ×𝑈 ( 𝑓1) = 3.12$

𝑅(𝐵) = 4 × 5000 ×𝑈 ( 𝑓1) = 4.155$

𝑅(𝐶) = 2 × 5000 ×𝑈 ( 𝑓1) = 2.07$

𝑅(𝐷) = 4 × 5000 ×𝑈 ( 𝑓1) = 4.155$

The utility of federation 𝑓2 is computed the same way:

𝑈 ( 𝑓2) =
1

7 × 5000
× ((20 + 30) × 1) − (1 × 0.5 + 2 × 0.5 + 2 × 0.5 + 2 × 0.5) = 0.0013

and the payoff of federation 𝑓2’s members are:

𝑅(𝐸) = 1 × 5000 ×𝑈 ( 𝑓2) = 6.642$

𝑅(𝐹) = 2 × 5000 ×𝑈 ( 𝑓2) = 13.286$

𝑅(𝐼) = 2 × 5000 ×𝑈 ( 𝑓2) = 13.286$

𝑅(𝐽) = 2 × 5000 ×𝑈 ( 𝑓2) = 13.286$

Likewise, federation 𝑓3’s utility and its members payoff are calculated as:

𝑈 ( 𝑓3) =
1

10 × 5000
× ((10 + 20) × 1) − (4 × 0.5 + 6 × 0.5) = 0.0005

𝑅(𝐺) = 4 × 5000 ×𝑈 ( 𝑓3) = 10$

𝑅(𝐻) = 6 × 5000 ×𝑈 ( 𝑓3) = 15$

Table 2.6 summarizes the aforementioned calculations. We notice that some of the providers

would not be satisfied, thus starting to deviate from their current federations. For instance,
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Table 2.6 Fog Providers’ Utility and Payoff

Fog Provider Federation Utility Payoff ($/h)

A 𝑓1 0.0002 8.5

B 𝑓1 0.0002 11.33

C 𝑓1 0.0002 5.67

D 𝑓1 0.0002 11.33

E 𝑓2 0.0013 2.83

F 𝑓2 0.0013 5.67

G 𝑓3 0.0005 11.33

H 𝑓3 0.0005 17

I 𝑓2 0.0013 5.67

J 𝑓2 0.0013 5.67

providers B and G are both having the same number of fog nodes and specs. However, due to

G’s allocation in 𝑓3, it is getting an hourly payoff more than 240% of what B is acquiring from

𝑓1. Hence, provider B might get tempted to break from 𝑓1 and join another federation for the

sake of improving its payoff. Algorithm 2.3 reflects such behaviour by solving the replicator

dynamic’s �𝑥𝑖 = 0 in order to obtain a satisfactory solution (i.e. fog federations formation) for

all fog providers. Since the algorithm is time aware and executed in a decentralized manner,

provider B may execute the algorithm to select the preferred federation at time 𝑡 by B calculating

first 𝜈(𝑥):

𝜈(𝑥) = 0.0002 ×
13

30
+ 0.0013 ×

7

30
+ 0.0005 ×

10

30
= 0.00055

Afterwards, it compares its utility with 𝜈(𝑥). If it does not meet the average utility, then it starts

seeking other federations having a utility higher than 𝜈(𝑥). In this example, the only available

federation that meets such a condition is 𝑓2. So provider B should consider 𝑓2 as the next strategy

to adapt at time 𝑡 + 1. After that, all the utilities for the federations affected by such a move (i.e.

having B switching from 𝑓1 to 𝑓2) are recalculated as the formation becomes different from what

it was at time 𝑡. The same process repeats until the algorithm returns the same federation which

is represented in Table 2.7. This distribution of resources among federations would remain

stable and cannot be sabotaged by invaders, since the algorithm will lead back to the same (or to

a similar) distribution. Thus, the QoS will remain stable for the clients.
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Table 2.7 Fog Providers’ Utility and Payoff After Convergence

Fog Provider Federation Utility Payoff ($/h)

A 𝑓2 0.00056 3.12

B 𝑓1 0.00056 4.155

C 𝑓1 0.00056 2.07

D 𝑓2 0.00056 4.155

E 𝑓3 0.00056 6.642

F 𝑓2 0.00056 13.286

G 𝑓3 0.00056 10

H 𝑓2 0.00056 15

I 𝑓3 0.00056 13.286

J 𝑓3 0.00056 13.286

2.7 Experimental Evaluation

2.7.1 Experimental Setup

The simulation has been conducted using Matlab 2016 on a Windows 10 equipped with Intel

Core i7-8750H and 16 GB of RAMs. We used EUA Datasets3, which have data collected from

IoT and Edge devices. We assigned random transmission delays on the links and generated

40 services. The minimum demanded response time by the services varies from 250 to 350

milliseconds. Each IoT device 𝑢𝑖 has a set of various services as mentioned in Section III, and a

request rate per second (0 ≤ 𝑟𝑟
𝑠 𝑗
𝑑𝑖

≤ 1) for them. Each request needs processing of [800-1200]

million instructions to acquire a result. We limit the number of fog provider to 100 and IoT

devices to 600. Each provider has [1-3] available servers, each with a processing power of

[4000-6000] MIPS. Finally, we consider K = 10 after applying the Elbow method on evaluating

the fittest number of federations, according to the provider’s distribution.

2.7.2 Results and Discussion

In this section, we evaluate our evolutionary approach and proposed Algorithms against a greedy

approach in terms of stability, response time, availability, player utility and federation payoff. Due

3 https://github.com/swinedge/eua-dataset
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Algorithm 2.4 Greedy Player Preference

Input: 𝑓𝑖, 𝐹
Output: 𝑓

22 𝛼 ← 0;

44 𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1);
66 𝑓 ← 𝑓𝑖;
88 𝑓 ′ ← 𝑓𝑖;

1010 𝜈 ← −∞;

1212 forall 𝑓 𝑗 ∈ 𝐹 do
1414 if 𝜈 < 𝑢𝑡𝑖𝑙𝑖𝑡𝑦( 𝑓 𝑗 |𝐹) then
1616 𝜈 ← 𝑢𝑡𝑖𝑙𝑖𝑡𝑦( 𝑓 𝑗 |𝐹);
1818 𝑓 ′ ← 𝑓 𝑗
19 end if
20 end forall
2222 if 𝑟 < 𝛼 then
2424 𝑓 ← 𝑓 ′;
2626 break;

27 end if
2929 return 𝑓 ;

to the absence of a time-aware approach in the literature, we compare our evolutionary game with

a greedy approach represented in Algorithm 2.4. Such an algorithm is similar to Algorithm 2.3 in

a way that it is also executed by each player separately. However, the fog providers are seeking to

reallocate their resources to the best available federation, i.e., the federation with the highest utility.

Fig. 2.4 depicts the utilities of federations. The X-axis represents the timeline and the Y-axis

represents the utility of the strategy. We notice that when 𝑥 < 14, the utilities of the federations

were not stable at all. However, the federations converge at 𝑥 = 14 on average. This is due to the

stability mechanism implanted in Algorithm 3 where the population realizes the evolutionarily

stable strategy. On the other hand, in the greedy reallocation approach case, the population

could not stabilize at all and the variance of the utilities remained high for the first 40 hours.

The total payoff of all the federations is presented in Fig 2.5 where the Y-axis represents the

payoff in terms of USD. According to the simulation, the evolutionary approach is able to always

outperform the greedy approach and maintain a higher payoff that stabilizes at 𝑥 = 14, whereas
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a) Evolutionary Game Approach

b) Greedy Approach

Figure 2.4 Stability

the greedy approach is suffering from a lack of resources in some federations, which leads to

having some unallocated services and the reduction in payoff.
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Finally, we compared the evolutionary and greedy approaches together in terms of services’

response time and availability in Fig. 2.6 and Fig. 5.5, respectively. As usual, the X-axis is

the time-line for both figures, whereas the Y-axis is the response time in milliseconds for Fig.

2.6, and the percentage of availability for Fig. 5.5. Both approaches were able to decrease the

response time and increase the availability from the initial formation. However, the evolutionary

game outperformed the greedy approach and stabilized the services at full availability and a

lower response time due to the stability mechanism reached at 𝑥 = 14, whereas the greedy

approach still suffered from a lack of a satisfactory strategy that pleases the participants and

reduces their obligations to deviate from their federations.

Figure 2.5 Total Federations’ Payoff

2.8 Conclusion

Fog federation is a concept worth exploring since it helps to increase the computational

capabilities of the fog providers and can provide improved QoS for real-time applications. On the

other hand, federations may suffer from instabilities due to the providers’ dynamicity that may

lead some providers to leave their coalitions and join others that are more profitable. In this paper,
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Figure 2.6 Response time of requests

Figure 2.7 Availability of requests
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we devised an evolutionary model to stabilize the federations. We modeled the non-cooperative

scheme as an evolutionary game and advanced a decentralized model that inherits the settings of

the replicator dynamics in order to reach an evolutionary stable strategy. The numerical results

show how the formation process converges to a stable state which improves the payoff and QoS

in terms of services’ availability and response-time.
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3.1 Abstract

Federated fog computing is an answer for horizontally upscaling fog resources to improve the

Quality of Service (QoS) of Internet of Things (IoT) applications. However, the dynamic nature

of some IoT’s crucial components, such as the ones of Internet of Vehicles (IoV), may hinder

the QoS improvement and result in its deterioration instead. Specifically, delays can occur due

to the unoptimized distribution of services and unbalanced network traffic loads on the fog

nodes. The current federated fog architectures ignore the mobility of users during the formation

of fog federations. In this work, we present an adaptive and efficient fog federation formation

scheme using game theory according to the service requirements. The problem formulation

in terms of forming the federations and offloading requests among fog members is formulated

as an integer program, then modeled as a Hedonic game. We adopt the Merge & Split as a

formation technique, where the federations that are not satisfied in terms of QoS merge with

other federations that would enhance the service performance. Our adaptive fog federation

formation mechanism is designed to cope with the environmental changes in the IoV paradigm.

Experimental evaluation shows that our framework can acquire better QoS and lower time to

form the federations compared to the literature.
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3.2 Introduction

The emerging Internet of Things (IoT) devices communicate and exchange data with each other

to provide better services and quality of life for the end users (Khabbaz, Assi & Sharafeddine,

2020; Chamra & Harmanani, 2020; Shurrab, Singh, Mizouni & Otrok, 2022). IoT provides

many services in various applications such as home automation, health, social life, agriculture,

etc (Rahman, Tout, Talhi & Mourad, 2020; Abououf, Singh, Otrok, Mizouni & Damiani,

2021). For instance, in Barcelona, IoT-enabled urban services have dramatically reduced

traffic jams and pollution, in addition to reducing the consumption of light, water, and energy

(Madakam & Ramachandran, 2015). The large number of data exchange in IoT and the

support of real-time IoT applications have motivated researchers to investigate latency-free

solutions (Islambouli & Sharafeddine, 2019; Xue et al., 2018). One of the recent efforts is

the emergence of fog computing (Shih, Chung, Pang, Chiu & Wei, 2017; Sorkhoh, Ebrahimi,

Assi, Sharafeddine & Khabbaz, 2020). Fog can be dispatched closer to the user, extending

the cloud computing paradigm to the edge of the network (Sami, Mourad, Otrok & Bentahar,

2020; Xue et al., 2019). This results in reducing the communication delays between the

users and the servers, leading to an enhanced Quality of Service (QoS) (Al-Fuqaha, Guizani,

Mohammadi, Aledhari & Ayyash, 2015; Yang et al., 2022). Internet of Vehicles (IoV) integrates

IoT devices into vehicles to support various services such as Intelligent Transportation and

Autonomous Driving through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)

communications(Fawaz, 2018; Feng et al., 2020). Nowadays, the concept of IoV is turning into

an important developing point of discussion in both research and industrial fields due to its wide

set of applications and its ability to provide many benefits such as road safety(Maheswaran,

Yang & Memon, 2019; Mourad, Tout, Wahab, Otrok & Dbouk, 2020).

Nevertheless, fog nodes (i.e. fog servers) are costly to deploy profusely(Hammoud, Otrok,

Mourad & Dziong, 2021). Additionally, fog providers might not be able to handle unexpected

network loads caused by congestion in some geographical areas. This can lead to degraded

quality of service. To avoid the cost of purchasing, operating, and managing a large number

of fog nodes, the concept of fog federations was founded. Fog federation consists of merging
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resources from several fog service providers in order to serve the huge stream of demand emitted

by the users. Rather than keeping their unallocated resources idle, fog providers in a single

federation share their available resources among themselves to increase the service reliability

and profit (Hammoud et al., 2020b), (Al-Hilo, Samir, Assi, Sharafeddine & Ebrahimi, 2020).

However, due to the mobile nature of the vehicular paradigms, vehicles may move beyond

the coverage area of the federation which can deteriorate the service quality of crucial IoV

applications. In addition, the stability of the formed federation is one important factor to maintain

a stable performance. Otherwise, federation members might break from their federation causing

a further reduction of the agreed-upon QoS. Furthermore, the formation of the grand federation,

i.e. a big coalition formed by all providers, has been addressed in the literature and proven that it

is not optimal in most cases (Guazzone, Anglano & Sereno, 2014; Mashayekhy, Nejad & Grosu,

2014; Hammoud, Otrok, Mourad & Dziong, 2022b).

Our main objective is to develop a comprehensive fog federation architecture, including related

models and algorithms, that can overcome the limitations of the existing solutions in terms of

adaptivity and stability, resulting in enhanced QoS of the applications and improved profitability

of the fog providers under various scenarios. Fig. 3.1 illustrates the need for fog providers

to form adaptive federations that prevent QoS from diminishing. In Fig. 3.1a, Fog Providers

𝐹𝑁𝐴 and 𝐹𝑁𝐵 cooperate as one federation AB in order to serve the incoming requests from the

vehicles, meanwhile fog provider 𝐹𝑁𝐶 is idle as the vehicles have a better connection to 𝐹𝑁𝐴

and 𝐹𝑁𝐵. We assume that the vehicular service requested is deployed by provider A, and can be

replicated/migrated to other providers within the same federation. The federation’s coverage is

represented by the dashed rectangle; the vehicles are served with deteriorated QoS once they

move out of the fog range. To show the dynamicity of this environment, we illustrate the yellow

vehicle to be moving away from the coverage area of the federation. The red line connecting

the vehicle and the fog provider represents the optimal connection for the former to access

the desired service. Fig. 3.1b showcases a possible outcome, whereby the QoS is diminished,

resulting in increased latency that could be harmful to real-time IoV applications and could lead

to accidents. Fig. 3.1c shows the effectiveness of an adaptive fog federation architecture. As the
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a) Yellow car in the range of serving federation (satisfactory QoS)

b) Yellow car out of range of serving federation (non-satisfactory QoS)

c) Federation expanded and services duplicated/migrated (satisfactory QoS)

Figure 3.1 Motivation for a Dynamic Fog Federation Formation

yellow vehicle approaches 𝐹𝑁𝐶 , the fog provider in federation AB handling its requests offloads

them to 𝐹𝑁𝐶 , to which the yellow vehicle has a better connection, thus forming a federation

ABC that cooperate by sharing resources, managing requests, and offloading tasks among each

other to avoid the deterioration of QoS.

To satisfy the requirements of IoV, this work proposes a game-theoretic approach that relies

on the Hedonic Coalition Formation mechanism in order to form fog federations that adapt to
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the mobile nature of the vehicles. It is worth mentioning that game theoretical frameworks

have become prevalent in many engineering fields, including communications (Saad, Han,

Debbah, Hjorungnes & Basar, 2009; Hammoud et al., 2018). Our devised architecture is fully

decentralized and thus does not rely on a central entity to operate. The problem formulation

in terms of forming the federations and offloading requests among fog members is formulated

as an integer program, then modeled as a Hedonic game. We adopt the Merge & Split as a

formation technique, where the federations that are not satisfied in terms of QoS merge with

other federations that would enhance the service performance. The dynamic nature of IoV

(e.g. QoS diminishing as a result of vehicles moving away from the federation’s coverage area)

can frequently trigger the execution of the formation technique to adapt to the changes in this

paradigm. In our approach, fog providers have full autonomy to split from the federation and

find another federation to join in order to provide satisfactory QoS to its users. To evaluate

our scheme, we use SUMO (Simulation of Urban Mobility) simulator that generates realistic

vehicular trajectory data to serve in our experiments as moving users. Experimental analysis

shows that our approach results in a higher user satisfaction rate in terms of QoS, stability

architecture, and a lower execution time when compared to other approaches presented in the

literature. The main contributions of this work are summarized as follows:

• Devising an adaptive federated fog architecture that considers environmental changes to

support IoV.

• Modeling the fog federations formation and offloading problems as a Hedonic game-

theoretic model.

• Proposing a decentralized Merge & Split algorithm that maximizes QoS when forming or

restructuring the set of fog federations.

• Analyzing the effectiveness of our proposed approach by comparing it with other benchmark

models.
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The rest of the paper is organized as the following. Section II discusses the related work existing

in the literature. In section III, we illustrate the proposed fog federation architecture. In section

IV, we formulate the problem as an integer program. Section V demonstrates our dynamic fog

federation formation technique. In section VI, we present and analyze the experiments carried

out to show the effectiveness of the proposed solution. Finally, we conclude the paper in section

VII.

3.3 Related Work

The idea of forming federations has already been investigated in literature in different scenarios.

Many researchers have tried to propose federation formation mechanisms in order to make

better use of the resources of the participating entities. We address below the recent efforts

of cloud-based and fog-based solutions. The cloud-based solutions are included due to their

similarities to the fog-based solutions in terms of resource management and task offloading

mechanisms.

3.3.1 Cloud-based Solutions

Some examples in the cloud computing paradigm (Guazzone et al., 2014) and cellular networks

(Anglano, Guazzone & Sereno, 2014) suggested forming federations using game theoretical

approaches for profit maximization. In (Guazzone et al., 2014), Guazzone et al. devised a

distributed algorithm that allows Cloud Providers to cooperate if it would result in an increase

in individual profit and a reduction in energy costs. While the proposed algorithm always

converges to a final partition (i.e., federation formation) in a static and predictable environment,

it is a non-preferred solution in a dynamic setting where adapting to environmental changes

strongly affects the performance of the partition. Additionally, the QoS was not addressed in

their approach. Cloud federations were formed in (Hammoud et al., 2020a) using an evolutionary

game theoretical model to reach stability within the formed federations based on the profitability

of the cloud providers. Nevertheless, the dynamicity that IoV imposes was not considered as

the formation was only tailored to cloud computing. In (Anglano et al., 2014), Anglano et al.
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proposed a distributed algorithm that allows Network Operators to cooperate if the resulting

federation would increase the individual profit of the entities and meet QoS requirements set by

the users. However, similar to (Guazzone et al., 2014), the proposed solution always converges

to a final partition, which is inconvenient in our settings. Furthermore, they do not take the QoS

into consideration.

3.3.2 Fog-based Solutions

The concept of forming fog federations to support IoT applications is very recent, and the

number of published works focusing on enhancing QoS by federating fog providers is limited.

In (Sharmin, Malik, Ur Rahman & MD Noor, 2020b), Sharmin et al. suggested a micro-level

fog unit deployment in applications that are sensitive to delays, such as in IoV. In the proposed

framework, fog federations act as a consortium whereby resources that are underutilized are

shared with other fog providers. Additionally, they implemented a price-based workload

balancing algorithm that would limit fog units from offloading to other consortium members.

In (Veillon, Denninnart & Salehi, 2019a), Veillon et al. proposed an approach that aims at

minimizing latency in video streaming applications, specifically for users who are in distant

geolocations through fog delivery networks federations (called F-FDN). F-FDN works by

pre-processing video streams that are popular in a certain region. Specifically, since FDNs are

limited in resources, they suggested pre-processing only the popular parts of the video and the

remaining parts to be processed on-demand. Furthermore, to reduce the on-demand processing,

FDNs reuse preprocessed video data on the neighboring provider, thus forming a federation. In

(Anglano, Canonico, Castagno, Guazzone & Sereno, 2018a), Anglano et Al. have proposed

a distributed game-theoretic approach to form coalitions as fog federations where FIPs (Fog

Infrastructure Providers) that share the same co-location facility may join/leave a coalition

autonomously according to their own preference, without any permission requirements, in order

to maximize their individual monetary profit resulting from the formed federations, whereby the

FIPs share resources and workloads. Their approach resulted in stable and profitable coalitions.

However, the main target was to maximize profitability rather than maximize QoS, which is a
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critical metric in IoV applications, especially for road safety applications. Additionally, similar

to (Guazzone et al., 2014) and (Anglano et al., 2014), the coalitions converge to final partitions,

which determine the resulting coalition structure. In (Ennya, Hadi & Abouaomar, 2018), Ennya

et al. investigated the distribution and offloading of tasks in fog computing. They modeled the

problem using coalition formation in game theory, whereby a user’s requests are handled based

on its proximity to an idle fog provider or federation. However, as in the other scenarios, the

coalitions converge to a final partition and the coalitional structure is determined. The authors

of (Hammoud et al., 2021) devised an architecture to reduce the dynamic behavior of the fog

providers when deciding on which federation they want to join. They proposed a decentralized

algorithm based on the replicator dynamics equation in order to reach a global consensus for

the formed federations. Nevertheless, their main concern was to analyze the behavior of the

fog providers when forming federations without taking the dynamic users’ requirements into

consideration. In (Sharaf & El-Ghazawi, 2019), Sharaf and El-Ghazawi suggested a Markov

Chain Monte Carlo (MCMC) algorithm for forming coalitions between fog providers. They

introduced some constraints on the coalitions, which is that the formed coalitions must be of

semi-equal computational powers. The coalitions are also based on the preferences of the fog

nodes. In (Shamseddine et al., 2020a) Shamseddine et al. proposed a fog federation formation

mechanism using a genetic algorithm approach to form the federations and learning to predict

perceived QoS by the users. The proposed approach is managed by a central entity called a

Broker who is responsible for forming and maintaining the federations.

Forming vehicular federations was also proposed. Manoochehri and Wenkstern proposed a

dynamic coalition formation, where autonomous vehicles form coalitions, and in each coalition,

a leader vehicle is elected which manages the coalition and decides whether other member

vehicles of the coalition may join/leave the coalition or form a new coalition. Their approach

does not have a central broker that has global information, but rather the leader and member

vehicles acquire information about the surrounding by V2V (Vehicle to Vehicle) communications

(Manoochehri & Wenkstern, 2017).
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To the best of our knowledge no research in literature considers dynamic coalition formation to

maximize QoS in the context of the Internet of Vehicles while taking into account the mobility

of vehicles which causes a change in the environment requiring the formation of different

coalitions over time. It is worth to mention that other efforts still exist in the literature to manage

resources and enhance communications for vehicular applications such as resource deployment

and allocation, code index solutions, etc... (Salahuddin, Al-Fuqaha, Guizani & Cherkaoui,

2014; Tran, Kaddoum & Truong, 2018; Kaddoum, Nĳsure & Tran, 2015; Balasubramanian,

Otoum, Aloqaily, Al Ridhawi & Jararweh, 2020). However, in this work, we focus on the

federation-based efforts.

3.4 Proposed Architecture

Figure 3.2 Dynamic Federation Formation Architecture
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Fig. 3.2 illustrates our proposed architecture. Initially, every fog provider is assigned as a

singleton fog federation and declares the services it offers. Afterward, the vehicles, i.e. users,

request services from the corresponding fog federation with the expectation to receive responses

to their requests with minimal delay to satisfy their needs and ensure road safety. A federation

keeps a log of the users’ requests, which is used to study the dynamic behavior of the users and

modify the fog federations according to the federation optimizer. Maintaining a satisfactory

QoS over time may require the optimizer to execute frequently in order to adapt to the changes

in IoV. We list below the main components of our proposed architecture

• Fog Providers: are the ones who supply the resources to the end-users. They are

distributed in certain geographical locations near the end-users. Each fog provider owns

at least one fog node and offers a set of services for the end users.

• Fog Federations: each federation is a set of fog providers that share resources with other

members in order to achieve higher QoS. A fog provider can offload one or more of its

services to other providers within its federation. We follow the general assumption in the

literature that a fog node can only be part of a single federation at a given time.

• Federation Leader: is a fog provider that gets elected to handle the managerial decisions

on behalf of the federations, such as whether or not to merge with another federation. The

decision is based on the logged requests from the logger component.

• Logger: every federation leader has access to a logger that belongs to the same federation.

This component collects the data from all of the fog providers of the belonging federation.

The data is the service quality of the served requests. The optimization of the logger is

out of this work’s scoop, and is left for future work (Tello, Gianini, Mizouni & Damiani,

2019).

• End Users: the users, i.e. vehicles, are assumed to be in a dynamic environment, whereby

they are mobile and their position changes over time. These vehicles request services that

are deployed to the fog nodes and expect to receive a response with low latency and high

throughput.
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• Optimizer: also referred to as Merge & Split-based Fog Federation Formation. The

optimizer allows the federations to adapt to the changes and prevent the QoS from

deteriorating. It helps to continuously reinforce the federation structure, according to the

needs of the vehicles as they change their parameters. The details of the optimizer are

provided in sections IV and V.

Our devised architecture makes use of all of its components by assigning them the designated

roles to serve in the optimization process of the computing infrastructure. By allowing the

federation leaders to have access to their loggers, significant decisions can be taken to adjust the

formation of the federations and the offloading of requests accordingly. If the members are not

satisfied with the changes in their current formation -established by the leaders- they are able to

split from their federation and/or join a different one. The next section provides technical details

on the dynamics of the addressed environment and mathematically formulates the fog federation

formation problem.

3.5 Problem Formulation

The research aims to study a dynamic environment that has users’ requirements changing over

time. The goal is to devise an infrastructure that maintains a satisfactory service for the end-users

at any given time. We detail below the modeling of our devised architecture. The system model

is comprised of 𝑛 vehicles and 𝑚 fog providers. Each fog provider 𝑖 has its fog nodes deployed

at a geographical location characterized by 𝑋𝑖 and 𝑌𝑖 coordinates. The set of vehicles and

fog providers are defined as 𝑁 = {𝑉1, 𝑉2, 𝑉3, . . . , 𝑉𝑛} and 𝑀 = {𝐹𝑁1, 𝐹𝑁2, 𝐹𝑁3, . . . , 𝐹𝑁𝑚},

respectively. The state of every component is associated with time 𝑡 ∈ 𝑇 .
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Table 3.1 Summary of Notations

Notation Description

𝑛 total number of vehicles

𝑚 total number of fog providers

𝑁 set of vehicles

𝑀 set of fog providers

𝑉𝑖 vehicle 𝑖
𝐹𝑁 𝑗 fog provider 𝑗
𝑞𝑘 QoS of request 𝑘
𝑥𝑙𝑡 x coordinate of vehicle 𝑙
𝑦𝑙𝑡 y coordinate of vehicle 𝑙
𝑓𝑖 fog federation 𝑖
𝐶 𝑓 𝑓 set of fog providers located in federation 𝑓
𝐹 the set of all fog federations

𝑎𝑖 𝑗,𝑡 connection between vehicle i and fog j at time t

𝑏𝑖 𝑗 𝑘,𝑡 offloading decision of connection of the vehicle i from fog j to fog k at time t

𝑐 𝑗 𝑓 ,𝑡 the membership of fog j within federation f at time t

𝑑𝑖 𝑗,𝑡 request vehicle i to fog j is satisfactory

3.5.1 Task Invocation

For every time 𝑡 ∈ 𝑇 , a vehicle may request one or more services from various fog providers.

The QoS values of these requests at time 𝑡 are represented by 𝑅𝑡 = {𝑞1, 𝑞2, 𝑞3, . . . , 𝑞𝑛} such that

∀𝑞𝑖 ∈ 𝑅𝑡, 0 ≤ 𝑞𝑖 ≤ 1 (3.1)

where 𝑞𝑖 = 1 means that the request was processed successfully by the server.
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3.5.2 Vehicle Trajectory

The physical location of the service requester (i.e. the vehicle) plays an important role due to the

limited wireless coverage of the fog nodes. We define two trajectory sets 𝑋 and 𝑌 as follows.

𝑈𝑋 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥11 𝑥12 𝑥13 . . . 𝑥1𝑡

𝑥21 𝑥22 𝑥23 . . . 𝑥2𝑡

𝑥31 𝑥32 𝑥33 . . . 𝑥3𝑡

. . . . . . . . . . . . . . .

𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 . . . 𝑥𝑛𝑡

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

𝑈𝑌 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦11 𝑦12 𝑦13 . . . 𝑦1𝑡

𝑦21 𝑦22 𝑦23 . . . 𝑦2𝑡

𝑦31 𝑦32 𝑦33 . . . 𝑦3𝑡

. . . . . . . . . . . . . . .

𝑦𝑛1 𝑦𝑛2 𝑦𝑛3 . . . 𝑦𝑛𝑡

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where 𝑥𝑖𝑡 and 𝑦𝑖𝑡 are the coordinates of vehicle 𝑖 at time 𝑡.

3.5.3 Fog Federations

Given the fog nodes provided by the different fog providers and the services each one deploys,

federations are formed based on the combination of providers that maximizes their own QoS. A

federation 𝑓𝑖 has a set of fog providers 𝐶𝑓 𝑓 ⊂ 𝑀. The set of all fog federations is defined as

𝐹 = { 𝑓1, 𝑓2, 𝑓3, . . . , 𝑓𝑛}. We introduce a variable 𝑎𝑖 𝑗,𝑡 to model the connections between the

vehicles and the fog provider at time 𝑡 as per the following:

𝑎𝑖 𝑗,𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if vehicle 𝑖 requesting from 𝐹𝑁𝑗

0, otherwise

(3.2)
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We also define another variable 𝑏𝑖 𝑗 𝑘,𝑡 to model the offloading patterns between the fog providers

at time 𝑡:

𝑏𝑖 𝑗 𝑘,𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if 𝑎𝑖 𝑗,𝑡 = 1 and

service 𝑖 runs on 𝐹𝑁𝑘

0, otherwise

(3.3)

meaning that if a vehicle 𝑖 is requesting a service from 𝐹𝑁𝑗 , then 𝑏𝑖 𝑗 𝑘,𝑡 = 1 when 𝐹𝑁𝑗 is

offloading this service to 𝐹𝑁𝑘 . If 𝐹𝑁𝑗 is not offloading its service and is running it locally, then

𝑏𝑖 𝑗 𝑗 ,𝑡 = 1. We model next the placement of the fog providers in the federations. We introduce

variable 𝑐𝑖 𝑗 ,𝑡 that specifies whether fog provider 𝑖 belongs to federation 𝑗 at time slice 𝑡:

𝑐𝑖 𝑗 ,𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 𝐹𝑁𝑖 belongs to 𝐹𝑗

0, otherwise

(3.4)

Finally, as each deployed service has different QoS requirements, we define the satisfaction

threshold for service 𝑐, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑐, to be a value between 0 and 1. If the QoS value of

a certain request is greater than or equal to 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑐, the request is considered to be

satisfactory. We introduce the variable 𝑑𝑖 𝑗,𝑡 :

𝑑𝑖 𝑗,𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if 𝑎𝑖 𝑗,𝑡 = 1 and

𝑄𝑜𝑆𝑖 𝑗,𝑡 ≤ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑐

0, otherwise

(3.5)

where 𝑥 is a service deployed on 𝐹𝑁𝑗 . Hence, we can formulate the problem as an integer

program, which is a mathematical optimization program in which the variables are restricted to

be integers, for every time 𝑡 as per the following:
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Maximize

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑑𝑖 𝑗,𝑡

Subject to∑
𝑗

𝑐𝑖 𝑗 ,𝑡 = 1 ∀𝑖 ∈ [1, 𝑚] (3.6)

𝑛∑
𝑘=1

𝑏𝑖 𝑗 𝑘,𝑡 ≤ 1 ∀𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑚] (3.7)

𝑏𝑖 𝑗 𝑘,𝑡 .
∑
𝑣

𝑐 𝑗𝑣,𝑡 .𝑐𝑘𝑣,𝑡 = 1 ∀𝑖 ∈ [1, 𝑛], 𝑗 , 𝑘 ∈ [1, 𝑚] (3.8)

At time slice 𝑡:

• Constraint (3.6) ensures that each fog provider belongs to only one federation.

• Constraint (3.7) ensures that a service invocation if it exists, is either run locally or

offloaded to only one fog provider.

• Constraint (3.8) ensures that an offloading, if it exists, happens between two fog providers

that belong to the same federation.

The problem at hand can be divided into two sub-problems. The first one is the assignment

of fog providers to the corresponding federation. The second sub-problem is the assignment

of service invocations to be run either locally, i.e. on the server that received the request, or

offloaded to a different server within the same federation. Both of these problems can be reduced

to the assignment problem which is known to be NP-hard (Krumke & Thielen, 2013). Therefore,

we model the formation as a Hedonic game and solve it using the Merge and Split method in

a reasonable amount of time, while preserving the preferences of the fog providers over their

desired federations. We detail this mechanism in the next section.
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3.6 Merge & Split-based Fog Federation Formation

In this section, we first define the preceding terminology related to the game. Then, we describe

the approach and algorithm in detail.

3.6.1 Preliminary Terminology

Definition 1 (Dynamic Coalition Formation): In static coalition formation games, the coalition

structure is imposed by an external factor and the aim is to study this structure. Whereas in

dynamic coalition formation games, the aim is to study how the players are interacting in order

to form the coalition, as well as how the coalitions are adapting to external and environmental

variations (Saad et al., 2009). In this application, one external factor that may affect the coalition

structure is the variation of the service quality from one request to another.

Definition 2 (Hedonic Game): A Hedonic game is a game applicable to both static and dynamic

coalition formation games. It allows the formation of coalitions based on the preferences

of the players. The players have full autonomy on whether to stay in a certain coalition or

leave. Thus, the coalitions are a result of the preferences of the fog providers over all the

possible coalitions (Anglano et al., 2018a). A coalition formation game is considered to be

Hedonic if it submits to the following conditions: 1) the utility of a player depends only on the

other players within the same coalition. 2) The players hold preferences to which coalitions

they would like to join, and the coalitions are formed based on these preferences(Hammoud

et al., 2022b). Hedonic games have shown to have great potential in wireless and communi-

cation networks (Saad et al., 2009). A player’s preferences in our problem are the coalitions

that allow it to maximize the satisfaction rate (i.e. utility) of its service requests. And the

modeled game submits to the aforementioned conditions, thus, it is considered as a Hedonic game.

Definition 3 (Satisfaction Rate): The satisfaction rate of a federation or a fog provider is

defined as the rate of service requests that meet their QoS threshold over the total number of
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service requests from the members of the federation or the fog providers respectively.

Definition 4 (Satisfaction Threshold): The satisfaction threshold 𝛼𝑝 of a fog provider 𝑝 is

the minimum satisfaction rate at which a fog provider 𝑝 can be considered satisfied and does

not have an incentive to leave its current federation. This threshold can be set according to the

nature of the environment.

Definition 5 (Stability): A coalition is stable when none of its members have an incentive to

leave the current coalition in order to achieve a better outcome. In our case, a fog federation is

stable when all of its members meet the satisfaction threshold 𝛼.

3.6.2 Formation Mechanism

The solution is modeled as a fog coalition formation game (M,v), whereby each fog provider in

the set M is referred to as a player in the game, and v is the characteristic function, which is

the satisfaction rate of the users obtained when a fog provider in a federation 𝐴 cooperate as a

coalition to maximize QoS.

We rely on the merge and split algorithm to form our federations (Apt & Radzik, 2006). It

provides a stable federation structure where none of the fog providers is tempted to change

the federation afterwards. Fig. 3.3 summarizes the adaptive coalition formation algorithm,

combining all properties mentioned as definitions in the previous subsection. We explain below

the two phases, i.e. Merge and Split.

Merge Phase: During the merge phase, each coalition selects a leader who is responsible

for taking the final decision to merge with another coalition. This allows the merge between

coalitions to be faster, as it is a coalition-to-coalition merge and not a provider-to-coalition
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merge. The leader can be selected according to its qualifications or through a voting mechanism.

In order to study the requirements of the environment, all the members participate in logging

the data on the federation logger component. Leaders have access to these logs and they base

their decision of merging federations according to what maximizes the QoS. After deciding on

merging with another federation, all the members of both federations join together into a single

federation, and a leader selection process should take place again.

Coalition 𝐴 ⊂ 𝐹 merges with coalitions 𝐵 ⊂ 𝐹 to form a new coalition 𝐶 ⊂ 𝐹 consisting of all

members of 𝐴 and 𝐵:

𝐶 = {𝑥 : 𝑥 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵}

Split Phase: Following the merge phase, all coalitions enter the split phase. Each coalition

undergoes a ’Fog Provider Scan’ stage, whereby all fog providers’ satisfaction threshold 𝛼 is

checked. If any of the fog providers’ satisfaction threshold in the resulting coalition is not

met, it leaves the coalition in order to potentially find a better coalition to join in future stages

throughout the game. This satisfies the Hedonic property. If all fog providers have a satisfaction

threshold above 𝛼, then the coalition structure is maintained and no fog provider leaves the

coalition. This satisfies the stability property of coalitions. However, before a fog provider

actually leaves the coalition, there are a few cases to handle.

1. If a fog provider wants to leave the coalition and it had offloaded tasks to another fog

provider, then it leaves the coalition and the offloaded tasks remain being serviced at the

other fog provider.

2. If a fog provider wants to leave the coalition and another fog provider had offloaded tasks

to it, then it services those requests and then leaves the coalition.
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3. If a fog provider wants to leave the coalition and it had neither offloaded tasks to another

fog provider nor was handling tasks from another fog provider, then it leaves the coalition.

A fog provider 𝑦 in coalition 𝐴 ⊂ 𝐹 splits from 𝐴. The result is new coalitions 𝐵,𝐶 ⊂ 𝐹 as

follows:

𝐵 = {𝑥 : 𝑥 ∈ 𝐴|𝑥 ≠ 𝑦}

𝐶 = {𝑦}

As illustrated in Fig. 3.3, the game begins with each fog provider initialized to be a federation of

its own. Thus, initially |𝐹 | = 𝑚. At time 𝑡, all federations in 𝐹 enter the merge phase, whereby

the leader of every coalition gathers information from the members in its coalition about their

preferences by relying on the logger component where the meta requests are logged. It then

chooses to merge resources with the federation that maximizes the satisfaction rate for the overall

coalition. The coalitions are modified according to the merges that occurred during the merge

phase and the new set of coalitions is referred to as F’. Once all coalitions finish the merge phase,

all coalitions in F’ enter the split phase. Since the game is Hedonic, in the split phase, any fog

provider that does not meet the satisfaction threshold leaves the current coalition and forms a

federation by itself in order to seek a different strategy that benefits it as a rational player. As

the current round ends and all the players have made a move, a new round 𝑡 = 𝑡 + 1 takes place

where the federations can once again make decisions about who to merge with and whether or

not a provider needs to break from its federation. It is worth mentioning that if a player 𝑝1 splits

from a coalition 𝑐1, it can still merge with a different coalition 𝑐2 in the next merging phase

after it establishes its own coalition 𝑐3 in the current phase.

The process repeats as dynamic changes in the environment occur, allowing the coalition

formation to adapt to the users’ requirements. One aspect to note is that merges happen at the
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Figure 3.3 Adaptive Coalition Formation Algorithm

coalition level since it is faster than each fog provider leaving its current coalition and joining the

new coalition, while splits happen at the provider level. Should any fog provider be unsatisfied
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with the resulting merged coalition due to the fact that its leader decided to merge with another

coalition, it can split in the subsequent split phase.

3.7 Experimental Evaluation

3.7.1 Experimental Setup

In order to evaluate the effectiveness of our adaptive fog federation architecture, we relied

on a vehicular trajectory dataset using SUMO (Simulation for Urban Mobility). The dataset

consists of 142 users (vehicles) and 500 fog providers each providing a unique service. The road

simulated on SUMO comprises a grid of 12 intersections connected through 17 streets of 500

meters length.We also assign a satisfaction threshold between 85% and 95% for a provider to

maintain its spot in the federation, or leave it. 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑐 is the rate of satisfaction that

a service requires in order to function normally. The parameters used are specified in Table

3.2. We compare our framework with the Genetic approach presented in (Shamseddine et al.,

2020a) and to the Static Coalition Formation in (Anglano et al., 2018a). The metrics we used to

compare these approaches are the satisfaction rates of the end-users (i.e vehicles), stability of

the formed coalitions, and execution time.

Parameter Value
𝑛 142 users

𝑚 500 fog providers

GA’s mutation rate 0.5

GA’s crossover one point crossover

GA’s population 16

𝛼𝑥 [85-95]%

𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑐 [60-100]%

Table 3.2 Parameters used in simulation
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3.7.2 Simulation Results

In this subsection, we discuss the experiments performed and the results obtained by implementing

the approach presented in this paper. We run the experiments for each algorithm 10 times and

average their results with various traffic conditions as a variable.

a) General IoT Services

b) Dedicated IoV Services

Figure 3.4 Satisfaction Rate of the end users

In Fig. 3.4, we study the satisfaction rate of the end-users resulting from the fog federation

formations. As previously mentioned, the satisfaction rate is the rate of users receiving a

response to their invocations in less time than the threshold with respect to the total number of
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invocations. This metric is representative of the QoS because users are only satisfied when they

receive adequate QoS for their requests for services. Thus, a higher satisfaction rate implies

a better QoS and vice versa. We evaluate the performance of the approaches in two different

scenarios. The first scenario consists of random IoT requests where the users can either be

moving or in a static location (Fig. 3.4a). The second one is where all the users are constantly

changing locations (Fig. 3.4b). The first aspect to notice in this experiment is that generally the

approach used in this paper resulted in a much better satisfaction rate as compared to the two

other approaches in both of the scenarios. Our approach was able to converge to a satisfaction

rate of 99%. Another aspect to notice is that in the former part of the curve, the satisfaction

rate of users is varying noticeably with time as compared to the other approaches. From t=0

we observe that the satisfaction rate was the lowest. This is mainly due to the fact that as our

game starts with each fog provider as its own federation, this causes an overload of incoming

requests and the fog provider has no other node to offload some tasks. This leads to high queuing

delays and as a result low user satisfaction rate. However, the fog providers then begin to look

for offloading opportunities and form federations that would maximize QoS in the coming

time slices. The algorithm quickly recovers after the first merge and split phase is finished and

better federations are formed in the subsequent time slices, as can be observed at t=1 and on.

Throughout the duration of the game, decreases in the satisfaction rate such as the decrease

between t=7 and t=9 can be observed. These are due to the fast-changing environment of the

vehicles; the federations may quickly become unsatisfactory, however, the algorithm takes this

feedback from the vehicles and quickly adjusts the federation and recovers from the sudden

drop in satisfaction rate. The satisfaction rate of end-users becomes more stable in the latter

part of the curve due to coalition structures becoming more stable and better federations are

formed with time. In parallel, the Genetic Algorithm slightly ameliorates the satisfaction rate

with time due to its fitness function. On the other hand, the Static Coalition Formation starts

with a good rate that is equal to 0.86 but decreases over time and converges to 0.81 because it is

unable to recover from the dynamicity of the users. Thus, our proposed mechanism outperforms

both approaches previously implemented in the literature in terms of the satisfaction rate of the

end-users.
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Figure 3.5 Stability of the formed federations

In Fig. 3.5, we study the stability of the formed federations by studying the average number

of federation changes for all fog providers, i.e. the average number of times fog providers in a

certain time slice change their current federation, either through a merge or a split. As defined

earlier, stability is the situation where fog providers who meet the satisfaction threshold do not

have the incentive to leave the federation they are in for the purpose of finding a better one, i.e. a

federation that would increase its satisfaction rate further. At the beginning of the game, since

each fog node is a federation of its own and the federations are constantly changing through

merge & split in order to find offloading opportunities that would increase the satisfaction rate

above the threshold, the average number of federation changes is very high. However, with time

the fog nodes generally have a satisfaction rate above the threshold for their invocations, hence

not leaving the coalition, resulting in the coalition structure being more stable. For instance,

at t=15, Fig. 3.4 shows that the satisfaction rate has dropped from the previous time slice. In

parallel, at t=15, Fig. 3.5 shows a spike in the average number of federation changes. This

observation implies that at t=15, when the satisfaction rate has started to drop, the fog federation
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structure has started to change through merge and split, in order to recover from the drop in

satisfaction rate. Another example is at t=60, where the satisfaction rate is very high and in turn,

the average number of federation changes has decreased. However, due to the rationality of the

players, one strategic change might not be convenient to compensate on the lack of resources

without a collaborative decision making mechanism among providers. We notice that at times

t=9, t=16, and t=31, the algorithm took a few rounds to increase the QoS after it had dropped.

We do not compare the average federation changes to the approach in (Shamseddine et al.,

2020a) using the Genetic Algorithm because the fog federation formation was carried out by a

central entity, called a Broker, and fog nodes do not have the autonomy to leave a federation. As

for the approach in (Anglano et al., 2018a) using Static Coalition Formation, federations do not

change over time, the formed federations are static.

Figure 3.6 Execution time of forming the federations

In Fig. 3.6, we study the execution time of our proposed mechanism. This metric is very crucial

in the setting of IoV and autonomous driving because they are delay-sensitive and a small fraction

of delay can cause casualties. As seen in the figure, our approach forms the fog federations in less

than half the time taken by the Genetic Algorithm in (Shamseddine et al., 2020a). It is worthy
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Figure 3.7 Average execution time of forming the federations versus the number of

providers

to note that this experiment was run on one device and not multiple devices as a decentralized

approach proposes. Thus, we expect the execution time of our approach to be even lower when

running in a decentralized manner. The algorithm has a low execution time because unlike the

Genetic Algorithm in (Shamseddine et al., 2020a), the system is not controlled by a central

entity or broker. Additionally, all members in a federation gather information about possible

offloading opportunities, leading to a decrease in the time needed to search for a federation

to merge with. In addition, to evaluate the scalability of our scheme, we measure the average

execution time when having a different number of fog providers in Fig. 3.7 and compare it with

the Genetic work. As observed in Fig. 3.7, we were able to achieve a relatively low execution

time especially when the number of providers is low. The Genetic approach on the other hand

suffers from having to explore a huge number of solutions in the search space in order to obtain
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the sub-optimal formation, thus taking a longer time than our approach to obtain a valid solution.

We do not compare the execution time to the approach in (Anglano et al., 2018a) using Static

Coalition Formation since the federations do not change over time, the formed federations are

static. We conclude from these figures that our scheme is scalable and it can achieve greater

results than other approaches in the literature.

3.8 Conclusion

Fog computing enhances the intensive computation needed by autonomous vehicles. However,

fog providers occasionally get overloaded with requests, resulting in queues and delayed responses.

As a solution, forming fog federations was suggested by researchers to enhance the service

quality and lower the costs. Nevertheless, this gives rise to another problem; fog federations

degrade in terms of QoS when they do not adapt to changes caused by the mobility of vehicles

in the IoV paradigm. This paper presents an adaptive fog federation formation mechanism that

enhances QoS by forming mobility-aware federations adapting to the environmental changes

of the vehicles and responding to location changes in real-time. Specifically, we rely on the

Merge & Split method in Dynamic Coalition Formation in Game Theory. On one hand, our

proposed scheme leads to intelligent usage of the available resources since idle fog providers

do not waste their resources but rather tasks are offloaded to them, and on the other hand it

ensures fog providers aren’t overloaded in congested areas. Through the presented results, we

showed the effectiveness of the proposed mechanism through having a higher user satisfaction

rate, obtaining stable coalitions, and low execution time. Future enhancements to this research

include integrating Machine Learning to predict changes in the environment in order to respond

to these changes ahead of time and introducing Blockchain for added security and preventing

malicious attacks.
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4.1 Abstract

Federated learning using fog computing can suffer from the dynamic behavior of some of the

participants in its training process, especially in Internet-of-Vehicles where vehicles are the

targeted participants. For instance, the fog might not be able to cope with the vehicles’ demands

in some areas due to resource shortages when the vehicles gather for events, or due to traffic

congestion. Moreover, the vehicles are exposed to unintentionally leaving the fog coverage

area which can result in the task being dropped as the communications between the server and

the vehicles weaken. The aforementioned limitations can affect the federated learning model

accuracy for critical applications, such as autonomous driving, where the model inference could

influence road safety. Recent works in the literature have addressed some of these problems

through active sampling techniques, however, they suffer from many complications in terms

of stability, scalability, and efficiency of managing the available resources. To address these

limitations, we propose a horizontal-based federated learning architecture, empowered by fog

federations, devised for the mobile environment. In our architecture, fog computing providers

form stable fog federations using a Hedonic game-theoretical model to expand their geographical

footprints. Hence, providers belonging to the same federations can migrate services upon

demand in order to cope with the federated learning requirements in an adaptive fashion. We

conduct the experiments using a road traffic signs dataset modeled with intermodal traffic
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systems. The simulation results show that the proposed model can achieve better accuracy and

quality of service than other models presented in the literature.

4.2 Introduction

Internet of Things (IoT) allows data collection from the sensors integrated within Things that,

once analyzed, can be used to efficiently manage the related resources. Correspondingly, the

Internet of Vehicles (IoV) is an important part of IoT evolution (Mourad et al., 2020). It

allows data exchange among vehicles and infrastructures by using heterogeneous networks that

are based on Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications.

Such networks assist the drivers and other engaged parties, enabling road safety and leading to

what is called the Intelligent Transportation System (ITS) that is based on intelligent vehicles.

The intelligent vehicles gather data (1) intercepted by the sensors embedded within and (2)

collected from their surroundings via the networks. Then, they analyze the data to generate

useful information that can be used to inform and alert the drivers about issues to be considered

during the journey.

4.2.1 Machine Learning in IoV

Artificial Intelligence (AI) has become a key component of the IoV paradigm that allows

to develop complex services (Hammoud et al., 2020c). For instance, Autonomous Driving

systems, such as Alphabet’s Waymo1 and Tesla’s FSD2, are examples of the widely studied IoV

applications that are critical for improving road safety in the future. The safety of intelligent

vehicles’ trips strongly relies on how well-trained the AI systems are. Particularly, the vehicle

scans its surroundings using various sets of sensors, including cameras, beams of radar, lidar,

ultrasound, GPS navigation, etc... Then, it passes the sensed data to the AI system which, in turn,

analyzes it and makes the best decision under given circumstances (e.g., speed up, stop, turn left,

etc...). In order for such a complex model to be ready for deployment, a huge data is required,

1 Alphabet, the parent company of Google. https://waymo.com/waymo-driver/

2 Tesla’s Full Self-Driving system. https://www.tesla.com/en_CA/support/full-self-driving-computer
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and a machine-learning procedure must be carried out to discover statistically significant patterns

in such data. The data may consist of an enormous number of vehicular trips, which are stored

and broken down into sets of intercepted sensors’ values and their corresponding interactions

made by the driver. Training such a huge stream of data requires capable computing servers

such as the ones deployed in Cloud Computing. By having the cloud collecting the data from a

significant number of vehicles, it is able to perform intensive computations to extract useful

patterns and combine these patterns into one single optimized machine learning model that

could be forwarded to the vehicles for deployment.

4.2.2 Federated Learning

Transferring data from the users to the cloud has raised many privacy concerns as it may result

in the exposure of their private data either by a session hĳacker or by the service provider itself.

To address this problem, Google developed federated learning, a privacy-preserving machine

learning architecture that protects personal data from being exposed to other parties (Dhole

et al., 2016). Such a mechanism consists of having the users train the model independently, and

then forwarding only the trained models to the cloud, without the data, to be aggregated together

to form one unified machine learning model. Federated learning has proved its efficiency in

various fields such as IoT (AbdulRahman, Tout, Mourad & Talhi, 2020), IoV (Pokhrel & Choi,

2020), Healthcare (Xu et al., 2021), keyboard word prediction (Konečnỳ et al., 2016), and many

others.

4.2.3 Fog Federations

The more complex the AI application gets, the more computing and storage resources it requires

from both parties, i.e. the trainers and IT infrastructure. The output model that needs to be

transferred to the cloud can have a size at hundreds of megabytes level (Xia, Ye, Tao, Wu & Li,

2021). Such a huge size would drain the cloud infrastructure and increase costs and delays

for the participants and the servers. Scholars tackled this particular limitation by proposing

the integration of fog computing in order to assist the process of federated learning within
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IoT environments (Stojmenovic & Wen, 2014). Notably, fog computing possesses one critical

advantage over cloud computing: the low latency factor. Fog servers are located near the

end-users making the communication delay negligible between both parties. Nonetheless,

covering a wide area or multiple areas with satisfactory service quality would require deploying

many fog servers to avoid QoS deterioration. Due to the fact that IoV is a very dynamic

environment, fog providers can not guarantee optimal performance because of their limited

coverage area. In contrast, utilizing the fog computing infrastructure to its full potential through

federating providers and enabling services migration between them on demand could lead to

an efficient and low-cost solution. Fog federations consist of multiple fog providers allocating

parts of their resources to be shared in order to handle tasks that cannot be executed otherwise

while maintaining an adequate quality of service. Therefore, fog federations could enable the

execution of the federated learning tasks even when unpredicted road conditions occur. We

illustrate a basic scenario for fog federation formation in Fig. 4.1 where provider A has a service

of type s1 (represented by the green circle) deployed on its fog node in area 1, and provider B

has the service s2 deployed in area 2. Users located in area 1 are requesting service s1 with

a good QoS. Nevertheless, users in area 2 that need to request the same service, i.e., s1, are

being served with a degraded QoS due to network limitations. For this reason, providers A and

B can federate according to a service level agreement, and then replicate service s1 in area 2 to

enhance the QoS of the users in that area.

4.2.4 Problem Statement and Objectives

The concept of federated fog computing and the federation formation came to light in the very

recent past (Shamseddine et al., 2020b). With the advent of IoT technology and the drastic

increase in the number of IoT devices, scholars sought the opportunity to enhance the computing

infrastructure and amplify the Quality-of-Service as a further step aiming toward smart cities.

Nevertheless, all of the fog federation-based efforts ignore the fast and large area displacements

of the end-users in IoV settings that can lead to a degraded service quality due to the change of

gateways, making these federations vulnerable to instabilities. For instance, in such a mobile
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Figure 4.1 Migrating services on-demand among federation members

environment, a fog service provider might decide to break from the federation once it may appear

more convenient to join another federation if it is more profitable, or to work independently.

This causes the rest of the providers within the abandoned federation to have more load of

tasks to process. Furthermore, federated learning is still suffering from many infrastructural

complications due to its special requirements that are different from the ones of other IoT
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applications. Thus, there is a need for studying the fog federation, in terms of its architecture

and formation to ensure adequate service quality and a suitable environment for Autonomous

Driving applications.

4.2.5 Contributions

This work aims to enable scalable federated learning in the highly dynamic IoV environment.

We propose a horizontal federated learning architecture for IoV applications empowered by fog

federations. We rely on a Hedonic-game theoretical model for reinforcing the fog federations, i.e.

the IT infrastructure, to maintain adequate service quality through migrating services among

federation nodes according to the federated learning needs. It is worth mentioning that Hedonic

games were used to form cloud and fog federations ((Ray, Saha & Roy, 2018; Anglano et al.,

2018b)) as these games perform well in a strategic environment where entities compete and

cooperate based on their preferences. Nevertheless, in our proposal, we consider metrics tailored

to IoV settings which makes the previous formations inapplicable, due to the dynamic behavior

of the participants. Hence, we demonstrate how to adapt the formation to the dynamic federated

learning settings. In contrast to the resource-based solutions in the literature, we consider

multiple learning applications simultaneously to fully utilize the infrastructure. Our proposed

architecture ensures the engagement of more participants in the federated learning process

than other approaches proposed in the literature. We evaluate our approach by simulating a

process for training a level-1 federated autonomous driving application3 that can identify traffic

signs on the road and alert the driver accordingly. It is worth mentioning that the levels of

driving automation are ranged from level 0, where there is no automation, to level 6, where

the steering wheel inside the vehicle is optional (Herrmann, Brenner & Stadler, 2018). The

dataset is publicly available on Kaggle4. We also compare our approach with other approaches

mentioned in the literature. Experimental evaluation reveals that our mechanism can achieve

better model accuracy, lower model loss and response time, and handle more participants in the

3 Level 1 autonomous driving indicates that the system and the driver have shared control of the vehicle.

4 https://www.kaggle.com/valentynsichkar/traffic-signs-preprocessed
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training process when compared with other approaches. Our contributions can be summarized

as follows:

• Devising a dynamic Horizontal Federated Learning architecture for IoV empowered by

fog federations that can cope well with the dynamic IoV environment. To the best of our

knowledge, we are the first to integrate the fog federation layer to assist in executing the

federated learning procedure.

• Adopting a Hedonic game-theoretical model for establishing stability within the federations

of fog providers.

• Distributing fairly the workload among the fog providers in the same federation to

reduce costs and execution time, and to allow for multiple learning applications to run

simultaneously.

• Evaluating the performance of the proposed approach by training driving assistant models

and comparing them with models trained by other architectures mentioned in the literature.

Outline of the paper The rest of the paper is organized as follows. In Section 4.3, we discuss

the literature and compare the existing solutions relevant to the proposed approach. In Section

4.4, we demonstrate our horizontal federated learning architecture. We formulate and solve the

Hedonic game-theoretical model in Section 4.5. Afterward, in Section 4.6, we discuss the results

obtained by utilizing our proposed architecture for training a traffic sign recognition model

against other approaches. Finally, a conclusion and a list of some aspects of our architecture that

can be further studied and enhanced in the future is given in Section 4.7.

4.3 Related Work

In this section, we overview and discuss the related literature efforts that apply to the federated

learning concept and the infrastructure reinforcement solutions for enhancing the service quality.
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4.3.1 Enabling Federated Learning

Traditional machine learning architectures rely on central entities to receive and process the

data collected from users. Such architectures have raised many privacy concerns in terms of

exposing private and sensitive data to the party collecting the data from one side, and to possibly

man-in-the-middle attacks from another side, where external parties may eavesdrop on the

communication between the user and the server. Federated learning has emerged to solve the

aforementioned problem as described in (Dhole et al., 2016). Their proposed architecture relies

on having a central server and several participants who want to engage in the training process.

In federated learning, a participant is an entity that has data but does not want to share it with an

external party, thus, it trains the data itself. Before the training begins, the server sends an initial

model to all participants to retrain the model according to their own data. After the participants

finish local training, they forward the models to the server where they are aggregated and unified

into one global model. A communication round comprises the aforementioned actions, i.e. initial

model, local training, and aggregation. Depending on the learning application, the federated

learning might require several communication rounds to converge, where the consecutive round

starts from the aggregated model obtained in the previous round.

There exist 3 categories of federated learning in the literature: (1) Horizontal Federated Learning,

(2) Vertical Federated Learning, and (3) Federated Transfer Learning. In a horizontal-based

federated learning scheme, the feature spaces are similar for all datasets whereas their samples

are different. An example of this category could be having 2 hospitals with a set of different

patients for each one, thus different records. But they share similar features for these records.

The second category, i.e. vertical federated learning, has the same set of users in all datasets,

but they differ in terms of features. The third category is when the majority of both the feature

spaces and the samples are different but they have minor subsets of features and samples that are

overlapping.

Most of the researchers were occupied with studying the effect of federated learning on other

applications, such as Healthcare and malware detection-based applications (Xu et al., 2021;

Poirot et al., 2019), ignoring the actual burden that federated learning may provoke in terms of
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required resources due to the large number of users integrating with the process. In parallel,

some have noticed the need for reinforcing the framework to further improve it and make it more

reliable. We group some of these recent efforts and categorize them below.

4.3.1.1 Preserving Privacy Approaches

The federated learning concept preserves the privacy of the participants in terms of not revealing

their private data to the central server as each participant trains its data locally. Some scholars

took further actions in securing the architecture to not disclose the exchanged parameters. For

example in (Truex et al., 2019), the authors devised a mechanism that relies on secure multiparty

computation (SMC) and differential privacy for reducing the growth of noise injection while

preserving privacy for the participants. Their approach was able to protect against inference

threats. The authors of (Hao et al., 2019) introduced an improved version of BGV homomorphic

encryption scheme to defend the architecture counter privacy leakage of the uploaded models

during aggregation and collusion attacks. In (Xu, Baracaldo, Zhou, Anwar & Ludwig, 2019), Xu

et al. devised an efficient approach, called HybridAlpha, based on SMC to secure the parameters

and prevent reverse-engineering them. Their model is resilient to participants dropping out and

can reduce the learning time against other SMC-based solutions. In (Qu et al., 2020), Qu et al.

devised a Blockchain-based approach integrated within the federated learning framework for

enabling decentralized privacy and preventing a single point of failure.

4.3.1.2 Active Sampling

In the typical federated learning settings, a subset of the users gets selected to participate in the

training process in a random manner. Some scholars were interested in optimizing the selection

process for such participants. For instance, the authors of (Nishio & Yonetani, 2019) proposed a

selection procedure according to certain conditions for the sake of aggregating as many updates

as possible within a predefined time window. In a similar fashion, the authors of (AbdulRahman

et al., 2020) proposed a multi-criteria-based approach for client selection, where they considered

their resources and availability. Their framework improves the accuracy in a shorter number
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of communication rounds compared to others due to benefiting the most from the available

participants. In (Huang et al., 2020), a fair historical-aware selection mechanism was proposed

that takes into consideration low-priority clients as well in order to guarantee data diversity.

Active sampling in IoV was also recently addressed in the literature. For instance, the authors

in (Liu, Yu, Deng & Wan, 2021) proposed a framework to reduce the costs and overheads of

communication between the vehicles and infrastructure by introducing a flexible aggregation

policy to constrain the upload time of the models and eliminate stragglers. In (Saputra et al.,

2021), the authors proposed a dynamic FL-based economic framework for the IoV network.

They devised a dynamic selection method for the vehicles that should integrate with the learning

process while taking both their location and quality-of-information into account. In (Lim et al.,

2020), the authors devised an incentive mechanism based on game theoretical models between

workers and model owners, as well as among model owners in order to form the federations of

trainers in IoV networks.

4.3.1.3 Resource-Aware Solutions

Aside from the works considering the resources of participants during the selection process, some

scholars sought to ameliorate the supporting infrastructure in terms of utilizing its resources in

an optimized manner by reducing costs, enhancing the communication, and introducing new

techniques to further support the federated learning architecture. For instance, the authors in

(Wainakh, Guinea, Grube & Mühlhäuser, 2020) explored the usage of a horizontal federated

learning approach to reduce the centralization of power and control of the central authority, in

addition to creating the possibility of employing a trust mechanism among users to reduce the

threats. Moreover, the authors of (Caldas, Konečny, McMahan & Talwalkar, 2018) introduced

the usage of lossy compression on the global model forwarded and a dropout algorithm to help

the participants train a sub-model instead of a whole. They were able to reduce the size of the

forwarded models and lower the local computations while maintaining a decent accuracy but at

the cost of an increased number of rounds.

The integration of a fog computing tier within the federated learning architecture was studied as
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well in the literature. For instance, the authors of (Yao & Ansari, 2020) proposed a balancing

technique for the trade-off between the wireless data transmission latency and Internet of Things

energy consumption in a fog-aided IoT network where the models will be aggregated locally on

the fog nodes. In (Zhao, Feng, Yang & Luo, 2020), the authors suggested adopting a hierarchical

federated learning approach where the fog nodes apply local aggregation to the collected models

and then forwarded to the cloud for global aggregation. The authors of (Saha, Misra & Deb,

2020) have also emphasized embedding fog servers within the hierarchy for local aggregation

purposes due to its benefits of reducing the latency and consumed energy. They further devised

a greedy algorithm to select the global aggregator fog node.

4.3.2 Quality-based Solutions

Cloud, Fog, and Edge computing were intensively used throughout the literature to support

the federated learning procedure (Section 4.3.1.3). In this part, we review some of the recent

literature efforts for enhancing the service quality through a variety of solutions such as service

deployment strategies and cloud and fog federations.

4.3.2.1 Service Deployment Strategies

In (Wu et al., 2019), Wu et al. proposed an optimal Cloud-Edge service deployment scheme

in IoV based on the users’ preferences. Their method consists of building preferences for the

users to choose the deployment strategy of their services. Then, they use Genetic Algorithms to

maximize their utility for satisfying the QoS requirements. The authors of (Li et al., 2018) have

addressed the problem of deploying fog servers into the fog computing infrastructure. Their

proposal consists of designing a clustering policy for dynamic mobile cloudlets by using the

latter as a supplement for the fog server for offloading purposes. Sami et al. studied the problem

of allocating a set of docker containers to a set of volunteering devices to provide services on

the fly. Their objective was to provide efficiently enough resources for real-time IoT applications

requiring computation processing (Sami & Mourad, 2020). They relied on a Multi-Objective

Memetic algorithm for solving their problem.
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4.3.2.2 Cloud and Fog Federations

Cloud and Fog federations can offer more reliability and availability for the federated learning

architecture in terms of resources. The authors of (Hammoud et al., 2020a) advanced an

approach based on genetic and evolutionary models to reach a cloud federations formation that is

stable and highly profitable. In (Goiri et al., 2010), the authors addressed the matter of increasing

the revenue of cloud providers through a mechanism that determines the optimal decision on

where and when to allocate their computing resources. In (Dhole et al., 2016), the authors

tackled the federation formation problem using trust as a measurement among providers. They

claimed to reach stability, profit maximization, and fairness through their formation mechanism.

In (Anglano et al., 2018b), the authors addressed federating fog providers through a Hedonic

game model in order to improve the payoff of the fog providers. The formation mechanism

took place according to the resources and the profit of the players for the sake of better serving

IoT devices. In (Sharmin et al., 2020a), a micro-level resource management mechanism was

proposed. Their framework establishes a federated fog acting as a consortium to share free

resources among the consortium members. In addition, they proposed a price-based model for

sharing the resources while limiting the offloading among units relative to other consortium

members. The authors in (Veillon et al., 2019b) devised a solution for improving the latency

metric of video services. Specifically, their solution consists of reducing the latency of streaming

video through federating fog parties based on caching and fetching video data from neighboring

fog nodes. In (Shamseddine et al., 2020b), the authors provided a novel federated fog architecture

for serving IoV and modeled the federated fog formation problem by combining both genetic

and machine learning models to optimize the overall service quality. In (Hammoud et al.,

2021), we proposed a stable federated fog formation mechanism using an Evolutionary Game

Theoretical model. The objective was to strengthen the relationship between the fog provider

and the federations by achieving an evolutionary stable strategy for the game.
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4.3.3 Discussion

The literature presents potentially fine approaches through enhancing the components and

processes within the federated learning architecture. Nevertheless, there are still some flaws

in terms of applicability within an IoV environment. For instance, no work in the literature

has considered the dynamic behavior of the participants and the changes that may occur to the

topology when facing dynamic circumstances. In addition, training effective IoV applications

may require a large amount of large-size models to be forwarded for aggregation which can cause

degradation to the service quality by taking extra time and energy for uploading them. It is worth

mentioning that the fog-based solutions have addressed a part of the aforementioned issues,

nonetheless, they all assumed full cooperation and collaboration among the fog nodes without

a business-driven solution for the stakeholders. Furthermore, the fog federation formation

mechanisms presented in the literature are not fully stable in this paradigm when the rewards for

the federation are based on the service quality. Besides, the majority of scholars were testing

their frameworks by relying on MNIST5 dataset from which it is relatively easy to discover

statistically significant patterns. Thus, a stable and detailed infrastructure tailored to IoV is

needed to enable the smooth execution of the federated learning applications. The infrastructure

should prove its efficiency by managing the training of realistic IoV applications.

4.4 Dynamic Horizontal Federated Learning Approach

Fog Federations enriches the IoT infrastructure with the benefits of sharing fog resources and

distributing the workload among the federation members. However, the federation concept was

not studied in the literature while considering the dynamic behavior of users under IoV settings,

which may cause a degradation in the services quality and deviations from the federations.

Therefore, a solution must be devised to maintain a satisfactory quality for the mobile end users

in such a dynamic environment. Moreover, federated learning requires a specific architecture by

design, as it involves components that differ from any other applications. Hence, we present in

5 http://yann.lecun.com/exdb/mnist/



88

this section an architecture tailored to supporting federated learning through the federated fog

concept.

Figure 4.2 Dynamic Horizontal Federated Learning Architecture

Fig. 4.2 summarizes the proposed architecture. It is a Horizontal-based architecture as the car

brands have different sets of drivers, nevertheless, they all want to train their intelligent road-

safety applications, which means having similar features to a certain extent. The fundamentals

of such an architecture can be split into two parts: architecture components and processes. The
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components are the actors in our architecture, and the processes represent their interaction for

executing the federated learning procedure in this dynamic environment. Below, we describe

their elements and their roles.

4.4.1 Architecture Components

• Clients: are the brands that want to train one or several IoV learning applications to

enable road safety and full vehicular autonomy. They assign providers to operate their

learning applications.

• Fog Providers: are the main source of resources in our architecture. They are independent

parties that provide computing and networking infrastructure to the clients that require

resources to operate their applications. A service agreement is made between the provider

and the client to agree on the resources needed, the duration of the contract, the price

which the client should pay, and other contract-based terms.

• Fog Nodes: are owned by the fog providers. They offer accessibility to the services which

are deployed on them for the users. The nodes are split into two types: master nodes and

slaves nodes. In general, a node is responsible for collecting the trained models from the

participants, applying an aggregation technique to unify these updates, and then, selecting

the participants for the next round and forwarding the latest model to them.

• Fog Federations: are coalitions of fog providers which are formed according to certain

criteria. They enable a horizontal learning topology throughout their internal cooperation

and aggregation techniques. Their main role is to enhance the QoS by offering an efficient

infrastructure for federated learning in IoV. In our architecture, we will refer to the shared

pool of nodes as Federations.

• Master Node: in a single federation, there exists one master node among the slaves, which

is elected to have additional functionalities. In addition to its general duties, it simply

collects and applies the second level of aggregation to the models aggregated by the fog

nodes, and redistributes the output to its slaves to unify the model for the whole federation.
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• Participants: are essentially the trainers of the basis of the architecture (i.e. vehicles),

they are subscribed to certain federated learning-based applications and they engage in

their learning process. In Fig. 4.2, the applications are illustrated by a colored circle that

is drawn on top of the vehicle.

4.4.2 Architecture workflow

In this section, we detail the processes of our proposed approach, illustrated in Fig 4.3, as

follows:

1. Inquiry: in the first step, multiple clients contact the providers to arrange a certain

agreement on managing their IoV federated learning applications training phase.

2. Initialization: the providers receive these requests, set up a price to charge these requesting

clients, and agree on the service quality provided. Each application is required to start

learning from a certain model that can either be generated randomly or based on training

initial data as a pre-processing phase.

3. Resources identification: each provider, owner of fog servers, identifies its available fog

nodes that shall participate in the learning phase for the current round of training, and sets

up the contemporary non-converged model of each training application it is responsible

for.

4. Offering training: each application relies on many participants for enhancing its decision-

making procedure. Thus, available participants for the ongoing round connect to the

servers and offer their resources to update the application models they signed up for.

5. Federations formation: at this stage, federations will be formed by the providers for

enriching the dynamic infrastructure. The federations are formed according to various

metrics that include costs, bandwidth, participants, and other metrics. We will discuss the

formation mechanism in-depth in the next section.
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Figure 4.3 Framework Processes Timeline

6. Master node selection: once the federations are formed and the fog nodes are determined,

the providers elect a fog server to become the master node for global aggregation.
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7. Model forwarding: afterward, the federations nodes forward the ongoing models to the

participants.

8. Training: the participants train the received models for a predetermined duration with the

use of an optimizer, such as the stochastic gradient descent (SGD).

9. Model uploading: Once the training is finished, the participants forward the trained

model to the federation.

10. Horizontal outsourcing: the members of a federation split the received tasks among

themselves by distributing their workload for enhancing the service quality, i.e., processing

the tasks faster and with lower cost.

11. Local aggregation: the nodes apply the local aggregation technique to the models to

obtain a locally aggregated model, and then, forward the latter to the federation master

node.

12. Global aggregation: the master node receives the aggregated models from its slaves

and applies a global aggregation to obtain a global and unified model for the learning

application

13. Round completion: after the completion of a round, each application is assessed through

a testing mechanism to check whether it reached its maturity and convergence or should

be trained further. We repeat the steps from 3 to 13 until the convergence of all models.

4.5 Hedonic Federations Formation

We focus in this section on the federations formation game and solution for stabilizing the

service quality of the set of fog federations within the dynamic environment. The main reason

to stabilize the QoS is to enable the smooth execution of the aforementioned processes in the

proposed federated learning architecture workflow.
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4.5.1 System Model

In the dynamic IoV environment, we follow the general assumption that the servers of the

fog providers are statically located in various zones (i.e. immobile resources). Whereas the

participants, i.e. vehicles, are mobile and can change zones during their journeys. We detail

below the system components.

Table 4.1 Summary of Notations

Notation Description

𝐹𝑃 set of all fog providers

𝑓 𝑝𝑖 fog provider 𝑖
𝑁 𝑓 𝑝𝑖 set of all fog nodes (servers) belonging to 𝑓 𝑝𝑖
𝑛𝑖 fog node 𝑖
𝑉𝑀 (𝑛𝑖) virtual machines running on fog node 𝑖
𝐹 set of all fog federations

𝑓𝑖 fog federation 𝑖
𝐹𝑃 𝑓𝑖 set of all fog providers allocated within 𝑓𝑖
𝐴 set of all IoV Learning applications

𝐴 𝑓𝑖 set of all applications (services) that belong to 𝑓𝑖
𝑉 set of all vehicles (users)

𝑣𝑖 vehicle 𝑖
𝐴(𝑣𝑖) set of all applications vehicle 𝑖 is subscribed to

𝑎𝑖 IoV Learning application 𝑖
𝑎𝑐𝑐𝑡𝑎𝑖 model accuracy of application 𝑖 at time 𝑡
𝑙𝑜𝑠𝑠𝑡𝑎𝑖 loss function of application 𝑖 at time 𝑡
𝐶𝑜𝑛𝑡 ( 𝑓 𝑝 𝑗 , 𝑓𝑖) 𝑓 𝑝 𝑗 ’s share of resources in 𝑓𝑖
𝑅𝑒𝑣( 𝑓𝑖) revenue 𝑓𝑖
𝑅 𝑓 𝑝 𝑗 , 𝑓𝑖

payoff of provider 𝑓 𝑝 𝑗 from federation 𝑓𝑖

4.5.1.1 IoV Learning Applications

Learning-based applications, such as Autonomous Driving, require intensive training before con-

verging and becoming ready for deployment. We assume the existence of A = 𝑎0, 𝑎1, 𝑎2, ..., 𝑎𝑚

IoV learning applications that need to go through a federated learning phase to become relatively

accurate in making decisions. 𝑎𝑖 is the 𝑖𝑡ℎ application and is supported by one or more car brands.

Each Learning application is characterized by its model accuracy 𝑎𝑐𝑐𝑡𝑎𝑖 and loss function 𝑙𝑜𝑠𝑠𝑡𝑎𝑖
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at time 𝑡. 𝑎𝑐𝑐𝑎𝑖 and 𝑙𝑜𝑠𝑠𝑎𝑖 represent the latest model accuracy and loss function for application

𝑎𝑖. Each application aims for the participation of 𝛽𝑎𝑖 vehicles at each training round where

𝛽𝑎𝑖 is a large number due to the fact that data is Non-Independent and Identically Distributed

(Non-IID) as each vehicle differs in terms of data rows and ratio per label distribution.

4.5.1.2 Application Users

As implied by the term Internet-of-Vehicles, the users of the IoV applications are mainly the

vehicles V = 𝑣0, 𝑣1, 𝑣2, ..., 𝑣𝑛 themselves. Vehicle 𝑣𝑖 embeds IoV applications in accordance

with (1) its brand and (2) the applications it is subscribed to, represented by the set 𝐴(𝑣𝑖). The

users are assumed to cooperate when requested to train and contribute to these applications.

The vehicles are equipped with limited computational resources that may prevent them from

engaging in the training process when these resources are occupied by other tasks.

4.5.1.3 Fog Providers

Due to the previously mentioned network limitations, brands assign the management of their

IoV learning applications to Fog Service Providers. A fog provider 𝑛, i.e. 𝑓 𝑝𝑛 ∈ FP, may own

multiple fog servers (nodes) 𝑁 ( 𝑓 𝑝𝑛) = 𝑛0, 𝑛1, 𝑛2, ..., 𝑛𝑜, located within specific geographical

areas, relatively close to the end-users by whom the services need to be accessed. With the

advent of virtualization, fog nodes now encompass multiple virtual machines running services

independently. 𝑉𝑀 (𝑛𝑖) is the set of virtual machines running on node 𝑛𝑖. Such machines possess

computational power, measured in terms of allocated cores, memory, and storage capacities.

4.5.1.4 Fog Federations

Fog Federations are formed and canceled with the consent of their members. Initially, two

or more providers, 𝐹𝑃𝑚 ⊂ 𝐹𝑃, form a federation 𝑓𝑖 intending to improve their computational

performance and offer a better service quality. 𝐹𝑃𝑛 ⊂ 𝐹𝑃 | 𝐹𝑃𝑚 ∪ 𝐹𝑃𝑛 = ∅ may join 𝑓𝑖 later

on, or form their own federation, 𝑓 𝑗 . Similar to (Hammoud et al., 2021), we assume a fair
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monetary distribution among the federation participants, such as:

𝑅 𝑓 𝑝 𝑗 , 𝑓𝑖
= 𝑅𝑒𝑣( 𝑓𝑖) × 𝐶𝑜𝑛𝑡 ( 𝑓 𝑝 𝑗, 𝑓𝑖 ) (4.1)

where 𝑈 ( 𝑓𝑖) is the revenue of 𝑓𝑖 and 𝐶𝑜𝑛𝑡 ( 𝑓 𝑝 𝑗, 𝑓𝑖 ) is the contribution of resources made by

provider 𝑗 in federation 𝑖, which can be obtained by:

𝐶𝑜𝑛𝑡 ( 𝑓 𝑝 𝑗, 𝑓𝑖 ) = 𝛼
𝑅𝑐 ( 𝑓 𝑝 𝑗, 𝑓𝑖 )

𝑅𝑐 ( 𝑓𝑖)
+ 𝛽

𝑅𝑚 ( 𝑓 𝑝 𝑗, 𝑓𝑖 )

𝑅𝑚 ( 𝑓𝑖)
+ 𝛾

𝑅𝑠 ( 𝑓 𝑝 𝑗, 𝑓𝑖 )

𝑅𝑠 ( 𝑓𝑖)
(4.2)

where 𝑅𝑐, 𝑅𝑚, 𝑅𝑠 represent the cores, memory, and storage resources. 𝑅𝑐 ( 𝑓𝑖) are the cores

allocated to federation 𝑖, and 𝑅𝑐 ( 𝑓 𝑝 𝑗, 𝑓𝑖 ) are the cores contributed by 𝑓 𝑝 𝑗 into 𝑓𝑖. To fairly

highlight the importance of each type of resource we assign the weights 𝛼, 𝛽, & 𝛾, such that:

𝛼 + 𝛽 + 𝛾 = 1 (4.3)

4.5.2 Hedonic Games

Game theory is a study of optimizing the outcome of the players, i.e. engaged parties, by

determining their optimal strategy. A coalitional game is a game-theoretical model that evaluates

the interaction of players when they split into groups. Such a game results in a set of coalitions

formed by the players. In other words, a coalition 𝑆𝑖 ⊂ N is the 𝑖𝑡ℎ coalition of players that

agreed to form a union for sharing their resources, where N is the set of all players. Π is the

set of all coalitions [𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑚] where ∪𝑚
𝑖=1

𝑆𝑖 = Π. A coalitional game is considered

Hedonic if (1) the utility of any player depends only on the players within the same coalition and

(2) the coalitions are established according to the preferences of the players.

Preference Function: a preference relation >𝑝𝑖 indicates the decision of player 𝑝𝑖 when facing

two choices. 𝑆 𝑗 >𝑝𝑖 𝑆𝑘 denotes that 𝑝𝑖 prefers joining coalition 𝑆 𝑗 over 𝑆𝑘 . A preference

function 𝜚𝑝𝑖 (𝑆 𝑗 ) denotes the preference of 𝑝𝑖 for joining coalition 𝑆 𝑗 .

𝑆 𝑗 >𝑝𝑖 𝑆𝑘 ⇐⇒ 𝜚𝑝𝑖 (𝑆 𝑗 ) > 𝜚𝑝𝑖 (𝑆𝑘 ) (4.4)



96

Stability: the objective of the game is to devise a set of coalitions that is stable and resistant to

deviations in the sense that no player is willing to leave its current federation and join a different

one, assuming that none of the other coalitions can provide it any better utility. That is to say,

∀𝑝𝑖 ∈ N, 𝑆 𝑗 ≥𝑝𝑖 𝑆𝑘 | 𝑝𝑖 ∈ 𝑆 𝑗 & 𝑘 ≠ 𝑗 & 1 ≤ 𝑘 ≤ 𝑚 (4.5)

The usage of ≥𝑝𝑖 instead of >𝑝𝑖 is to emphasize that the preference of player 𝑖 for joining 𝑆 𝑗 is at

least as good as joining 𝑆𝑘

4.5.3 Game Formulation

Our proposed game is a coalition formation game resulting from the competition among some

big brands looking for forming multiple independent federations rather than just forming a grand

federation where all competitors collaborate. For the sake of simplifying the parameters used

along the rest of the work, we replace the notation for the players set N by the set 𝐹𝑃 because

the players in our game are the fog providers. Likewise, the set of coalitions 𝑆 is replaced by the

set of the fog federations 𝐹 that we are forming.

Our game is a Hedonic game because it suffices both conditions mentioned in the previous part.

The first condition is valid because the utility of the player is solely related to his contribution

while considering the other players’ within the same coalition. The second condition holds as

well, as the preferences can be defined by the following equation:

𝜚 𝑓 𝑝𝑖 ( 𝑓 𝑗 ) =
𝑆𝑈 𝑓 𝑗 ( 𝑓 𝑝𝑖)

𝑈 ( 𝑓 𝑝𝑖)
× 𝑅 𝑓 𝑝 𝑗 , 𝑓𝑖

(4.6)

where 𝑆𝑈 𝑓 𝑗 ( 𝑓 𝑝𝑖) is the number of participants that need to connect to player 𝑖 but cannot

reach any of its virtual machines within the predefined acceptable QoS threshold (while it can

establish a good connection with one or more VMs allocated inside federation 𝑗) and 𝑈 ( 𝑓 𝑝𝑖)

is the total number of participants that should engage in any of 𝑓 𝑝𝑖’s learning processes. The

motivation behind such parameters is derived from the fact that our architecture is tailored to a
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dynamic environment with moving users, thus the heavy dependency of our preference function

on the connection status between the provider and the participant. The consolidation of both (1)

users and (2) payoff metrics within the preference function is to assure a sufficient number of

participants with a satisfactory link to engage in the learning process and an acceptable payoff to

the provider itself.

4.5.4 Federation Formation Algorithm

Following the structure of our architecture devised in Section 4.4, each round can be accompanied

by a formation mechanism for the set of federations if needed6. In each round, a provider

dedicates its available resources to only one federation. The formation of the federations is

executed in a decentralized manner by the providers themselves, as they decide to join a federation

by their own choice, according to their own preferences. The set of formed fog federations is

based on the fusion of all decisions of the same round until stability occurs where no additional

decision can benefit any of the federations’ members, i.e. no player has incentives to switch to a

different federation. The formation mechanism is presented in Algorithm 4.1. The input of this

algorithm consists of the last set of federations, i.e. at Round 𝑡, and the output is the updated

set for Round 𝑡 + 1. We introduce three new variables, 𝐹∗, 𝐹𝑡+1, and 𝐿. The first variable is a

temporary variable to hold the last formation. The second one is the final set of federations and

we initialize it as empty at the beginning of the algorithm. The last one is a list that denotes the

players who made a move in the current sub-round. The core of the algorithm starts with the

’while‘ statement at the fifth line. It indicates that the algorithm stops only when the new set

of federations is identical to the temporary set. In other words, the algorithm stops only when

there are no changes in the members of the federations as all of the players are satisfied with

their current federation. In each loop, i.e. sub-round, we update the result by setting 𝐹𝑡+1 to be

𝐹∗. Then, for each player in each federation, we calculate the preference value for joining other

federations and, accordingly, it selects the most suitable federation for the current round. Then,

the set of federations resulting from this algorithm engages in the remaining federated learning

6 Federations may maintain the same formation in the next round if all the members can still be satisfied

with their QoS
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processes presented in our architecture. It is worth mentioning that sometimes 𝐹𝑡 and 𝐹𝑡+1 can

be identical which means that the federations structure at time t is still suitable at time t+1.

Algorithm 4.1 Federation Formation Mechanism

Input: 𝐹𝑡

Output: 𝐹𝑡+1

22 𝐹∗ ← 𝐹𝑡 ;

44 𝐹𝑡+1 ← Ø;

66 𝐿 ← Ø;

88 while 𝐹∗ ≠ 𝐹𝑡+1 do
1010 𝐹𝑡+1 ← 𝐹∗;

1212 foreach 𝑓𝑖 ∈ 𝐹∗ do
1414 foreach 𝑓 𝑝 𝑗 ∈ 𝑓𝑖 do
1616 if 𝑓 𝑝 𝑗 ∉ 𝐿 then
1818 𝐶𝑢𝑟𝑟 ← 𝜚 𝑓 𝑝 𝑗 ( 𝑓𝑖) ;

2020 foreach 𝑓𝑘 ∈ 𝐹∗ do
2222 𝑁𝑒𝑤 ← 𝜚 𝑓 𝑝 𝑗 ( 𝑓𝑘 ) ;

2424 if 𝑁𝑒𝑤 > 𝐶𝑢𝑟𝑟 then
2626 𝑓𝑖 ← 𝑓𝑖 \ { 𝑓 𝑝 𝑗 } ;

2828 𝑓𝑘 ← 𝑓𝑘 ∪ { 𝑓 𝑝 𝑗 } ;

3030 𝐶𝑢𝑟𝑟 ← 𝑁𝑒𝑤 ;

31 end if
32 end foreach
3434 𝐿 ← { 𝑓 𝑝 𝑗 } ∪ 𝐿 ;

35 end if
36 end foreach
37 end foreach
3939 𝐿 ← Ø;

40 end while

4.6 Experimental Evaluation

4.6.1 Experimental Setup

Computer Characteristics: To evaluate the performance of our proposed approach, we run

extensive computational jobs on Graham and Cedar clusters offered through ComputeCanada7.

7 https://www.computecanada.ca/
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We equip each job with 32GB of RAMs, 1 CPU per task, and 1 GPU node for faster machine

learning processing.

4.6.1.1 Dataset

The main purpose of our proposal is to maintain an efficient execution of federated learning tasks

while maximizing the Quality of Service in IoV settings. Therefore, we rely on a combination

of two datasets to perform the experiments due to the lack of a unified dataset that contains

vehicular road paths with driving assistant data. The used datasets are the following:

Trajectories data: The first dataset consists of data extracted from SUMO8, short to Simulation

of Urban MObility, which is an open-source software that simulates realistic vehicular trajectories

according to the provided simulation settings. We generated 300 vehicles, each with a unique

trajectory starting at various times. We intended to rely on a moving set of cars to show the

performance of our proposed architecture in a dynamic environment. Nevertheless, when a

vehicle finishes its trajectory (at a random time), it reaches a parking place where it does not

change its location any further.

Machine learning data: For the purpose of simulating an actual development of a Driving

Assistant model, we relied on images of traffic signs imported from Kaggle9, which, when

processed, can equip the vehicles with a Traffic Sign Recognition (TSR) technology for enhancing

safety on the road. We show a sample of this dataset in Fig. 4.4. One of the characteristics of

this dataset is that most of the images are blurred and cannot be easily identified. We intended

to choose this dataset for the purpose of our IoV application due to the fact that the cameras of

the vehicles capture the traffic signs while driving when attempting to identify them. Therefore,

the image quality is not guaranteed in real-time.

8 https://www.eclipse.org/sumo/

9 https://www.kaggle.com/valentynsichkar/traffic-signs-preprocessed



100

Figure 4.4 Traffic Signs Samples

4.6.1.2 Benchmarking models

We compare our approach with three other approaches. The first one is a standard federated

learning approach supported by fog computing, such as the one presented in (Zhou et al.,

2020a), where no federations are formed to enhance the QoS. We refer to this approach as

Fog Computing Approach. The second one is a static Hedonic formation approach for IoT

paradigm presented in (Anglano et al., 2018b). It is worth mentioning that the second approach

is intended for supporting IoT applications in general - not federated learning. Therefore, we

replace our formation technique with theirs and maintain the rest of the processes mentioned in

our approach for enabling a quantitive comparison. We refer to the latter in the simulation as

Anglano Approach. We also compare our approach with the centralized training method in the

machine learning evaluation, referred to as Centralized Approach.

4.6.1.3 Parameters and Applied Methods

Each vehicle has a different velocity and random source and destination as simulated in SUMO.

We simulated 2 scenarios where the first one consists of equipping each vehicle with a random set

of collected data, between 1000 and 3000 traffic sign images (total number of images is 200,000)

distributed in an IID manner label-wise, i.e. 42 labels each which is the total number of labels.

The second scenario consists of randomly assigning the number labels to the vehicles. We

assume having 12 fog providers spread across the map and they are in the process of managing a
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similar TSR model requested by car brands.

Machine learning model: We set up a Residual Neural Network (ResNet) with 56 layers, and

we set the training epochs for each federated round to be 10. To make the comparison fair for the

Centralized method, we also present each 10 epochs from the Centralized results in the figures

as 1 round. The used optimizer is SGD. It is worth mentioning that we utilized a ResNet due to

its proven efficiency on the Signs dataset according to the implemented methods in the dataset’s

page on Kaggle10.

Aggregation technique: For the local and global aggregations, we adopted the Federated

Average (FedAvg) function for averaging the sequences according to the number of trained data

per each received model.

Initial training model For a fair comparison, we devise an initial model by training randomly

selected 1000 traffic signs. The acquired accuracy was 6%. The three analyzed approaches are

then boosted from the initial model at the beginning of their simulations.

4.6.2 Results and Discussion

We run our simulation 10 times for each experiment and present the averages of these 10 runs.

Then, we split the results into two categories. In the first set of results, we evaluate the service

quality provided to the vehicles. In the second set of results, we measure the performance of the

trained model under different data distributions. We compare our approach to the two benchmark

approaches defined in Section 4.6.1.2 (Anglano Approach, and Fog Computing Approach).

4.6.2.1 Resource Availability

The average latency of the invocations from the vehicles to the servers as a function of the

timeline is presented in Fig. 4.5. The x-axis denotes the timeline where each value is a snapshot

taken from the vehicles’ paths that also represents the beginning of a new communication round.

The y-axis is the average latency. We observe that our federation formation mechanism acquires

better latency when invoking tasks and requests. In particular, our approach achieved an average

10 https://www.kaggle.com/valentynsichkar/traffic-signs-preprocessed/code
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of 18ms compared to 20ms and 23ms obtained by Anglano and Fog Computing approaches,

respectively.

Figure 4.5 Invocation Delay

Furthermore, Fig. 4.6 shows the rate of satisfactory invocations as a function of the timeline.

The x-axis indicates the timeline as usual, whereas the y-axis is the rate of the vehicles with

satisfactory service quality. A satisfactory invocation implies that the vehicle can establish a

satisfactory connection with the fog server, which qualifies the former to integrate with the

current training round. It can be observed that the Fog Computing Approach, where federations

were not applied, has the lowest rate of around 0.2. Anglano Approach does better due to having

federations and it reaches 0.35 on average. Our approach outperforms both of the benchmark

models and reaches 0.39 on average. Nevertheless, it is noticeable that sometimes Anglano’s

approach can acquire similar Invocation Satisfaction Rate and average latency values, e.g. at

times 9 and 24. This is due to the fact that both approaches rely on federating resources, and

Anglano’s formation might reach relatively suitable states that intertwine with ours for certain

snapshots of the simulation. We conclude from Fig. 4.5 and 4.6 that our approach can better
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utilize the resources due to the dynamic formation mechanism, thus establishing satisfactory

connections with the vehicles due to its superior services migration among federations nodes.

Figure 4.6 Invocation Satisfaction Rate

4.6.2.2 Federated Learning

To test the performance of the federated learning models, we ran the four approaches (i.e., Our

Approach, the Centralized Approach, Anglano Approach, and Fog Computing Approach) for

300 rounds each, starting from the same initial model, and visualized the models’ accuracy and

loss as they progress. Fig. 4.7 and 4.8 show the results for the algorithms under IID and non-IID

data settings, respectively. In Fig. 4.7a, like any other model training, all of the approaches start

with low accuracy and tend to seek convergence with time except for the centralized approach

which achieved a 0.98 accuracy after the first round of training. The high accuracy perceived in

the first round is due to the fact that all the data are available for the server to train and a round
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is comprised of 10 epochs. The fog computing approach kept on improving its models until

reaching 0.68 accuracy by the end of the training period. Anglano Approach acquires better

results, due to the cooperation among the providers, as it reaches 0.74. Our approach was able to

outperform both of the non-centralized approaches by converging to 0.82 at Round 200, making

our approach the most efficient among the considered federated learning methods. The case of

IID distribution of data can be more suitable when the servers are in control of the data, such as

in distributed learning settings (Wang et al., 2021).

Fig. 4.7b presents the models’ losses calculated from

𝐷 (𝑆, 𝐿) = −
∑
𝑖

𝐿𝑖 × 𝑙𝑜𝑔(𝑆𝑖) (4.7)

where the set 𝑆 is the set of probabilities of the classes the prediction belongs to, and 𝐿 is the

one hot encoded labels set that indicates the correct prediction. We also note that the loss of the

centralized approach is stable at 0.04 as it can learn from all the data at once. Due to the wider

inclusion of participants, our approach is able to reduce the loss to almost 0.7 by the end of the

training rounds, whereas the other federated approaches are still suffering from high losses due

to the delay in receiving new models’ updates.

Fig. 4.8 shows that our model can also provide better results in terms of accuracy (Fig. 4.8a) and

loss (Fig. 4.8b) than the other federated approaches for the case of non-IID settings. Nevertheless,

the progress is slower due to the fact that the data is distributed in an uneven manner in terms

of labels. It can be noticeable that the convergence occurs at Round 245 in the non-IID rather

than Round 200 in the IID settings. We conclude from these figures that our approach can

enhance the learning mechanism of the architecture by including better service quality for larger

users participation, which leads to an earlier model maturity close to the optimal training in

a short number of rounds. Although our approach achieved lower accuracy and higher losses

than the Centralized Approach, we can still achieve near-optimal results in federated settings by

increasing the number of fog nodes, participants, and/or communication rounds. Nevertheless,

we limit ourselves to only selecting acceptable QoS participants as an active sampling method.
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a) Model Test Accuracy

b) Model Loss

Figure 4.7 Federated Learning Simulation Results: IID settings

In addition, the simulation requires more intensive computational power for a larger number of

communication rounds.
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a) Model Test Accuracy

b) Model Loss

Figure 4.8 Federated Learning Simulation Results: non-IID settings

4.7 Conclusion and Future Work

The advancement of technology, especially in the Internet of Things development, has shifted

the Vehicle Ad-hoc Networks into the Internet of Vehicles. IoV has attracted companies and car
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brands into investing in smart and autonomous vehicles which can make decisions on behalf of

the drivers towards optimal road safety. Federated learning is a promising technique to train

intelligent models from users’ data while preserving privacy at the same time. We proposed in

this research a federated learning architecture assisted by fog federations to enhance the accuracy

and service quality of the IoV intelligent applications. We relied on the Hedonic coalitional

game and maintained the stable set of federations by using the preferences of each fog provider

independently. For the sake of testing our approach, we simulated an environment for detecting

traffic signs on the road. The experimental evaluation revealed that our approach can achieve

superior accuracy and quality of service of the learning procedure when compared to other

approaches proposed in the literature. This is resulting from the fact that our approach relies on

state-of-the-art methods used to optimize the federated learning mechanism.

For future work, there are several issues worth considering to further improve our framework

in certain aspects. First, the federation formation process in our approach relies on a real-time

assessment of the environment. It could be of interest to investigate a federation formation

mechanism that can predict the optimal set of formed federations a priory with the help of Artificial

Intelligence to prepare for services migration. Second, we assume that the collaboration among

the fog providers in terms of model aggregation is given, especially when training homogeneous

applications. While collaboration seems efficient and leads to better results, it can be optional

for fog providers to rely on privacy-preserving techniques and strictly limit the visibility of

their collected models to their own servers without allowing other providers to benefit from

such knowledge. In addition, in the current architecture, the selection of the master fog node is

executed by an election procedure without specifying its details. In this context, it could be of

interest to rely on a trust-driven mechanism to decide which node gets to be the master in each

federation. Furthermore, our architecture relies on a QoS-based sampling mechanism, thus it

might be interesting to evaluate the architecture’s performance under a different active sampling

technique such as the ones presented in the literature. Finally, even though our approach is

tailored to federated learning, it can still be extended to cover distributed learning applications in

case the data is not critical and can be exposed to external parties. The realization of this feature
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can occur by having fog nodes engaging in the training procedure or by offloading training tasks

from the top of the topology towards the bottom.
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5.1 Abstract

Fog computing empowers the Internet of Vehicles (IoV) paradigm by offering computational

resources near the end users. In this dynamic paradigm, users tend to move in and out of the

range of fog nodes which has implications for the quality of service of the vehicular applications.

To cope with these limitations, scholars addressed forming federations of fog providers for

task offloading purposes. Nonetheless, a few challenges remain a burden for the formation

of the federations. The formation mechanisms used to structure the federations of providers

are still not fully stable. This causes a problem because a structureless federation can lead to

an underperforming infrastructure. Furthermore, most of the literature ignored the honesty

metrics of the providers and how trustworthy they are in allocating the agreed-upon resources

for processing the tasks. Moreover, adopting a central reputation mechanism is questionable

in terms of reliability due to many complications including the lack of consensus. In this

work, we develop a Blockchain-based reputation mechanism for assisting the formation of fog

federations for IoV applications. Our mechanism comprises on-chain smart contracts for storing

and manipulating the providers’ reputations and an off-chain Hedonic-based formation process

that considers the parameters extracted from the chain to build the federations. We develop smart

contracts using Solidity and deploy them on the Ethereum Blockchain. We test our mechanism

using the EUA dataset as a proof of concept and compare it to other works in the literature.
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The results obtained show that our approach is able to enhance the overall payoff and quality of

service in the IoV paradigm.

5.2 Introduction

Internet of Vehicles (IoV) emerged recently as part of the Internet of Things (IoT) to enhance the

driving experience of drivers (Yang, Wang, Li, Liu & Sun, 2014). It is a distributed network that

supports the use of data created by connected cars and vehicular ad-hoc networks (VANETs)

(Hammoud et al., 2020c). One of the features of IoV is to allow interaction with surroundings

in real-time by relying on Vehicle to Everything (V2X) communication to enable Intelligent

Transportation Systems (Zhou, Xu, Chen & Wang, 2020b). IoV applications, such as collision

avoidance and object detection, require instant processing that the vehicles themselves might

not be able to offer (Dai, Liu, Chen & Lai, 2020). Offloading tasks to the cloud comes at a

cost; the high latency for sending the data and receiving the response plays a major bottleneck

for these time-sensitive applications (Jebbaoui, Mourad, Otrok & Haraty, 2015). To overcome

this limitation, the fog computing concept was introduced (Yi, Li & Li, 2015). Fog servers are

similar to cloud servers in terms of functionality, except that they offer fewer resources. Fog

servers are physically placed near the end-users in a way that transferring data to the fog is

relatively less expensive than to the cloud. In addition, offloading tasks to the fog yields faster

results in terms of delays and latency.

Due to the dynamic nature of IoV and the resource shortage of the fog providers (Ghobaei-Arani,

Souri & Rahmanian, 2020), the latter may not be able to fulfill the quality of service (QoS)

requirements as vehicles move away from their fog server’s coverage (Zhang, Zhang & Chao,

2017). To cope with the environment dynamicity, scholars offered techniques to form collabora-

tive clusters of fog providers in order to support task offloading in larger zones and maintain

low service delays (Hammoud et al., 2022b). Collaborative fog computing can compensate

for the resource shortage, by allowing resource sharing among the providers, and connection

handovers when users are better to switch to a different server. The main idea behind clustering

is to enhance service availability and increase the profitability of the providers. Nevertheless,
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when the clusters are not well engineered, the servers may perform lower than what is expected

(Hammoud et al., 2020a).

Team and federation (coalition) formation has been studied in depth in the literature in many

fields, including Social Networks (Anagnostopoulos, Becchetti, Castillo, Gionis & Leonardi,

2012), Robotics (Smirnov, Sheremetov & Teslya, 2019), Project Management (Tseng, Huang,

Chu & Gung, 2004), Sports (Tavana, Azizi, Azizi & Behzadian, 2013), etc. Recent efforts

addressed formation techniques in cloud computing (Hammoud et al., 2020a), wireless networks

(Nolan & Doyle, 2007), and fog/edge computing (Hammoud et al., 2022a). Some of the techniques

used include game theoretical models and meta-heuristics, which provide a performance increase

when it comes to refining the IT infrastructure. In cloud resource management, a federation

formation was mainly highlighting the payoff maximization of the cloud providers without being

considerate of the service quality provided (Hammoud et al., 2020a). Whereas, a federation of

fog resources should consider the interaction between the end users with the fog servers and

their coverage area in order to provide a satisfying service (Shamseddine et al., 2020b). For

instance, as shown in Fig. 5.1, we can observe a scenario where two vehicles are connected

to specific fog servers, and these fog servers form a federation. Notably, when the serviced

vehicles exit the coverage zones of their respective fog servers, the communication is seamlessly

maintained by other fog servers within the federation. This ensures the preservation of quality

of service throughout the transition. Therefore, an efficient federation formation mechanism

should consider the location of the users jointly with the allocated servers.

In fog federations, all the nodes are expected to well-behave in the sense that fog providers are

willing to allocate the resources they agreed on. A passive malicious fog node is considered as

misbehaving when it reneges on its service level agreement (Hammoud et al., 2018). These

malicious fog nodes pose a significant threat to the IoV paradigm, and their presence can have

severe consequences. When fog providers fail to fulfill their service level agreements or engage

in malicious behavior, the QoS of the entire fog federation is compromised, leading to increased

processing delays and reduced user satisfaction. These negative outcomes directly impact the
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Figure 5.1 Fog federations interchanging services in IoV

driving experience, road safety, and overall efficiency of Intelligent Transportation Systems

(ITS) that rely on IoV applications such as collision avoidance and object detection.

Hence, it becomes an essential aspect to exclude malicious providers from the formed federations

as harm the network (Wahab, Bentahar, Otrok & Mourad, 2015; Moati, Otrok, Mourad & Robert,

2014). To resolve such a problem, an important factor must be considered when seeking a

formation; the reputation of the fog provider. As rational entities, fog providers are willing to

cooperate with others that are well-behaving in order to yield a higher payoff. The reputation

of a provider can be obtained through historical interactions. This way, a provider can build

a preference table to decide with whom to cooperate for doing a certain job. Nevertheless,

managing the reputation in a centralized or local manner is not the optimal way for organizing

federations (Yu, Zang & Reagor, 2007). A centralized solution would first entail points of failure,

lack of transparency, and inflexibility. In a local manner, each node would individually store the

reputation of all other members following interactions. This means that nodes are not aware
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of the reputations assigned by other nodes. In other words, in order to avoid interacting with

a particular malicious provider 𝑝𝑚 among all providers, the remaining providers would need

to engage with it at least once to classify it as untrustworthy. Consequently, the assessment of

provider 𝑝𝑛 towards 𝑝𝑚 is not taken into account when provider 𝑝𝑜 interacts with 𝑝𝑚.

Blockchain is an open and distributed ledger that records transactions between entities in a

verifiable and permanent way (Zheng, Xie, Dai, Chen & Wang, 2018). Instead of relying on a

centralized entity, Blockchain allows the storage of transactions to take place on multiple entities.

Tampering with records from the ledger is still considered impossible with today’s computers due

to the complexity of the process. In addition, the source of the transaction can be traced back to its

original owner. Furthermore, the Ethereum Blockchain allows the integration of smart contracts,

where programs can be executed in a fully trusted and automated manner without any human

interaction (Khan, Loukil, Ghedira-Guegan, Benkhelifa & Bani-Hani, 2021). In this work, we

leverage Ethereum Blockchain technology as an enabler to form reputable fog federations. Unlike

the local approach mentioned earlier, where reputation information is stored locally by each node,

our proposed approach utilizes the inherent properties of Blockchain to enable decentralized

decision-making and reputation management, while making reputation information available

across the entire network. We employ a Hedonic game theoretical model to allow decentralized

decision-making when establishing federations that are based on their preferences (Banerjee,

Konishi & Sönmez, 2001). Game Theory proved itself to be a useful technique when it comes

to forming stable clusters due to its way to model the strategic behavior of self-interested agents.

In addition, we reinforce the formation with an intelligent feedback-based trust establishment

mechanism that allows providers to rate the behavior of the other members in their federations

through smart contracts to limit the impact of biased feedback. Furthermore, we penalize

misbehaving providers by excluding them from the formation game when they fell below a

certain reputation threshold. To prepare for our testbed, we rely on EUA dataset1 for fog location

placement in a certain area, along with vehicular traffic generated by SUMO (Simulation of

Urban MObility) in that area. In addition, we use Solidity and Python to program our on-chain

1 https://github.com/swinedge/eua-dataset
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and off-chain operations, respectively. Results show that our approach is cost-effective and

can yield an increased QoS and profit while reducing the number of misbehaving nodes in the

environment when compared to other works in the literature. The summarized contributions are

as follows:

• Devising a Blockchain-tailored Hedonic game formation scheme for establishing stable

fog federations while considering user-fog interaction.

• Deploying smart contracts on the chain to enable fog providers’ reputation calculation

based on federation members’ feedback.

• Developing the formation scheme and extensively evaluating its effectiveness with

simulations and results in IoV environments.

The remainder of this paper is organized as follows. In Sec. II, we present the related work in the

context of fog federation formation. We propose our Blockchain-based framework in Sec. III.

The details of our solution implementation and the numerical results are discussed in Sec. IV.

Finally, we summarize the findings of this paper and highlight its possible extension in Sec. V.

5.3 Related Work

In this section, we explore recent efforts focused on optimizing fog federations and their formation

mechanisms. Additionally, we highlight the emerging trend of utilizing blockchain technology

for resource-based endeavors. As far as we know, there were limited efforts addressing the

providers’ reputation when forming federations, thus we do not limit our related work findings

strictly to fog federations.

5.3.1 Coalition-based Solutions

The authors of (Veillon et al., 2019a) devise a technique for reducing latency in video streaming

applications, especially for end-users who are far location-wise, through fog delivery network
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Table 5.1 Related Work Summary

Work Coalitions Utility Reputation Formation
Method

Secure For-
mation

(Niyato et al.,
2011)

Cloud Revenue False Stochastic

LP

False

(Wahab et al.,
2016b)

Services Trust True Hedonic False

(Wahab et al.,
2016a)

Services Revenue True Stackelberg False

(Anglano

et al., 2018a)

Fog QoS False Hedonic False

(Smirnov

et al., 2019)

Robots # of Tasks

Completed

False Fuzzy coop.

game

True

(Hammoud

et al., 2021)

Fog Revenue False Evolutionary False

This Work Fog QoS +

Reputation

True Hedonic True

federations. Their technique works by pre-processing video streams that are trending in a certain

region. Specifically, since fog is limited in resources, they suggested pre-processing only the

popular parts of the video and the remaining parts to be processed on-demand. Furthermore, to

limit the on-demand processing, they reuse preprocessed video data available at the neighboring

provider, thus establishing coalitions. In (Anglano et al., 2018a), the authors present a distributed

game model approach to form fog coalitions where the fog providers rely on their own preferences

to select which coalition to join, in order to maximize their individual monetary profit resulting

from the formed coalitions. They claim that their approach yields stable and profitable coalitions.

However, their main objective is to address the profit of the participants and ignore the user-fog

interactions (i.e. QoS). Additionally, they neglect the reputation of the fog providers and their

effects on the formed coalitions. The authors in (Shamseddine et al., 2020b) advance a novel

federated fog architecture with a formation based on merging both the genetic algorithm with

machine learning. They claim to obtain overall good results while increasing the percentage

of satisfied end users. Nonetheless, the reputation of the providers was not considered in their

approach. In (Khosrowshahi-Asl et al., 2020), the authors propose a strategic Distributed

Decision-making Mechanism for forming communities of cloud providers under incomplete
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information. In (Gu, Tang, Jiang & Jia, 2020), the authors propose a resource allocation scheme

for fog providers based on a reputation mechanism. Their approach consists of calculating the

reputation of the provider by taking into consideration its internal reputation, direct reputation,

and indirect reputation factors. In their work, the community’s reputation is stored locally

on the provider’s level and the information is forwarded upon request, which requires time

and resources to calculate the final reputation. The authors in (Niyato et al., 2011) develop a

stochastic linear programming game model to model the uncertainty of the fog providers while

forming coalitions. They claim to reach stable coalitions and increase the profit of the providers.

In (Wahab et al., 2016b), the authors propose a Hedonic game to orchestrate the formation of

cloud coalitions in a reputable manner. Nevertheless, like most of the cloud coalition formation

schemes, the authors neglect the user-server QoS metrics due to the fact that the formation is on

the cloud level. In addition, their trust mechanism, similar to (Gu et al., 2020), is calculated by

forwarding the feedback from one node to another, which may cause inaccuracies especially

when the middle node is malicious. In (Wahab et al., 2016a), the authors address the competition

among Web services in the cloud computing market and propose a cooperative model using a

distributed Stackelberg game where all services are totally autonomous in making their decisions.

The proposed model is able to increase the satisfaction of the Web service agents and the users.

Nevertheless, there exist several challenges in that work, especially when applied in the fog

context. For instance, in the fog computing paradigm, the providers are limited to relatively

small geographical areas, thus, forming leaders and followers based on reputation metrics would

be very challenging, whereas in cloud services there are preexisting giants as the authors stated

(e.g., Amazon, Google, eBay, etc.). Moreover, the calculation for the reputation metric lacks

consensus and its scalability remains questionable. The authors in (Smirnov et al., 2019) propose

a dynamic formation approach to form coalitions of autonomous robots based on the integration

of a game model with smart contracts. Their objective is to maximize the efficiency of the work.

Their work is based on a negotiation scheme but it neglects the reputation of the players. Some

works propose tackling each of the problems (i.e., network delays and reputation) individually

without a coalition-based framework. To resolve the delays, (Iqbal, Malik, Rahman & Noor,

2020) advance a reputation-based mechanism running on top of the Blockchain. In their work,
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roadside units are assumed to offload tasks to nearby fog vehicles. Nevertheless, nowadays

vehicles are still not capable of handling critical external tasks, which makes the applicability

of their method doubtful. Apart from the reputation of the providers, some works studied the

trustworthiness of the users. For instance, the authors of (Hussain et al., 2020) propose a trust

feedback system to evaluate the users’ trustworthiness in the fog-IoT paradigm. In our previous

work (Hammoud et al., 2021), we consider forming stable federated fog providers based on

evolutionary game theory. The main focus of the latter work is to resolve the instabilities of the

providers. The formation, however, neglects the reputation and the security of the environment.

The related work summary presented in Table 5.2 indicates that a secure and efficient architecture

for assisting fog federation formation has not been yet proposed and that the remainder of this

paper is addressing this issue.

5.3.2 Blockchain-based Solutions

Several works have explored the integration of Blockchain technology in the domains of cloud

computing to address various challenges related to security, resource management, and decen-

tralized decision-making. For instance, the authors in (Taghavi, Bentahar, Otrok & Bakhtiyari,

2018) introduce Cloudchain, a blockchain-based cloud federation for enabling resource trading

among cloud service providers. They utilize smart contracts on the Ethereum network to

create a fully distributed structure, allowing cloud providers to engage in coopetitions through a

differential game. While the paper emphasizes the coopetition aspect among cloud providers

within the Cloudchain, it does not elaborate on the specific mechanisms used to form fed-

erations initially or how cloud providers decide to join or leave a federation. In (Taghavi,

Bentahar, Otrok & Bakhtiyari, 2019), the authors propose a blockchain-based model with quality

verification. They introduce an oracle as a verifier agent to monitor the quality of service

provided by cloud providers and report to smart contracts on the blockchain. By employing a

Stackelberg differential game, their model achieves optimized cost for using the verifier agent

and maximized profit for the involved providers. In the domain of federated learning (FL),

(ur Rehman, Salah, Damiani & Svetinovic, 2020) presents the concept of fine-grained FL on
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edge servers. The authors emphasize the importance of personalization, decentralization, and

trust in FL systems and introduced a blockchain-based reputation-aware approach to ensure

trustworthy collaborative training in mobile edge computing. Nevertheless, none of these

aforementioned works specifically address the challenges of forming reputable fog federations

in the context of IoV. In contrast, our proposed approach leverages Blockchain and game theory

to establish decentralized fog federations while considering user-fog interactions and reputation

management.

5.4 Proposed Framework

In this section, we present our framework that addresses forming reputable coalitions in the

highly dynamic IoV environment. First of all, we demonstrate the architecture and list the

components and their roles. Afterward, we define the variables and the system model. Then,

we discuss the off-chain game formation technique used in our framework and the on-chain

reputation module.

5.4.1 Architecture and Components

As previously implied, the main components of our architecture, which are depicted in Fig. 1,

can be summarized in the following:

• IoV applications are the main applications for enabling smooth IoV integration in smart

cities. In general, any service that a vehicle can use is considered an IoV application, e.g.

object detection, collision alert, traffic sign recognition (TSR), etc...

• End-users are the parties that need to use external resources to process their tasks. Usually,

the tasks are related to the applications they are subscribed to. In our work, we are

addressing vehicular nodes as the end nodes. Thus, we are taking into consideration

their dynamicity in moving from one place to another at different timestamps. It is worth

mentioning that the architecture still holds even when the users are standing still, i.e.

velocity = 0, which makes it applicable to IoT environments as well.
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Figure 5.2 Reputation-Based Fog Coalitions Architecture for IoV

• Fog servers are the nodes situated near the end-users that await to receive a task and

process it. IoV applications are mainly deployed on fog servers as services to be offered

to the end users. Aside from its computational features, the main characteristic of this

component is its geographical location and its coverage in which it can interact with

certain end-users within a particular range.

• Fog providers are the owners of the fog servers deployed near the edge. Mainly, a fog

provider can own more than one fog server. They manage their resources and interact with

IoV application creators to deploy their services on their nodes in exchange for monetary

return. Aside from its resources, a fog provider is characterized by a reputation to define

how well-behaving they are when dealing with service-level agreements.
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• Fog federation is a coalition that can be defined as a set of fog providers seeking to share

their resources into one pool in order to increase the geographical footprints and enhance

the service quality when serving end-users.

• Formation mechanism: Fog coalitions can be formed in many ways. In our system, we

optimize the formation procedure by periodically reinforcing the stability of the coalitions

in a dynamic manner in order to fit the IoV environment.

• Smart contracts are small applications deployed on the Blockchain for automatic execution

once their conditions are met. We rely on smart contracts to enhance the formation

mechanism of the fog coalitions

5.4.2 System Model

To maintain a decent computing and networking infrastructure provided by fog providers in

IoV, we model the interactions among the entities of our system as follows. Initially, there are

𝑉 = 𝑣1, 𝑣2, ..., 𝑣𝑛 end-users, i.e. vehicles, each subscribed to a set of services (applications) 𝐴𝑣𝑖 .

We assume the existence of 𝑚 applications, 𝐴 = 𝑎1, 𝑎2, ..., 𝑎𝑚. At any given time, a user may

request to access any of its applications and also may request additional resources from the

supporting infrastructure to speed up the processing time. The fog provider 𝑝𝑖 ∈ 𝑃 is presumed

to own one or more fog nodes (servers) 𝑆𝑝𝑖 , each characterized by a certain range that it can

potentially serve the users within and its dedicated bandwidth. These servers are set to deploy

the applications so users can access them. The connection state 𝜖𝑣𝑘𝑎𝑖 ,𝑠 𝑗 models the interaction

between vehicle 𝑘 and service 𝑖 through fog node 𝑗 , as follows:

𝜖𝑣𝑘𝑎𝑖 ,𝑠 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if the fog node 𝑠 𝑗 can handle the connection

0, otherwise

(5.1)

The main factors defining the connection state are: (1) the user is within the coverage area of the

fog server, and (2) the server has the physical resources to serve the request. In a similar manner,
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handling the connection by a provider can be modeled by the variable 𝜁𝑣𝑘𝑎𝑖 ,𝑝 𝑗
defined as:

𝜁𝑣𝑘𝑎𝑖 ,𝑝 𝑗
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 𝜖𝑣𝑘𝑎𝑖 ,𝑠𝑙 = 1 and 𝑠𝑙 ∈S𝑝 𝑗

0, otherwise

(5.2)

Maximizing the success rate of the connections can be a challenge, especially with the dynamicity

of the end users. Therefore, we consider a coalitional-based solution for service deployment and

task offloading. The coalition Λ𝑖 between two or more fog providers means that these providers

agree to utilize each other’s resources to migrate/deploy services. To illustrate, the provider 𝑝 𝑗 ,

that offers service 𝑠𝑘 , can establish a cooperation agreement with another provider 𝑝𝑙 . Such

cooperation can be referred to as Λ𝑖 = 𝑝 𝑗 , 𝑝𝑙 , and 𝑠𝑘 in this case can be migrated/replicated

into any of the members’ servers upon demand if the available resources allow it. With the

cooperation in hand, we introduce variable 𝜅𝑣𝑘
𝑎𝑖 ,Λ 𝑗

such that:

𝜅𝑣𝑘
𝑎𝑖 ,Λ 𝑗

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 𝜁𝑣𝑘𝑎𝑖 ,𝑝𝑙 = 1 and 𝑝𝑙 ∈Λ 𝑗

0, otherwise

(5.3)

To fulfill the dynamicity requirements of IoV, a maximization of variable 𝜅𝑣𝑘
𝑎𝑖 ,Λ 𝑗

should be

investigated for 𝑣𝑘 ∈ 𝑉 and 𝑎𝑖 ∈ 𝐴𝑣𝑘 . It is worth mentioning that we are studying the IoV

environment in real-time, therefore, all decisions are being made for a time 𝑡.

One important factor also to consider is the behavior of the fog provider itself. A well-behaving

fog provider fulfills its tasks by faithfully allocating its available resources to serve the tasks.

Such a provider is considered trustworthy among the fog provider community and, therefore,

can be reliable when interacting within a coalition. In parallel, there can be an untruthful fog

provider who is not willing to dedicate the agreed-upon resources and decides to save a chunk of

the resources, or the whole, to serve another task simultaneously. To quantify this issue we can

define the honesty metric ℎ𝑝𝑖 that measures the cooperation of a provider 𝑖 within its allocated

coalition. ℎ𝑝𝑖 has a decimal value bounded by 0 and 1, where ℎ𝑝𝑖 = 1 implies that 𝑝𝑖 is fully

cooperative, whereas ℎ𝑝𝑖 = 0 implies the non abidance of provider 𝑖 within the coalition in terms
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of resource allocation. However, the honesty of the provider is not a metric that can be easily

measured by others. Therefore, we apply metric 𝑟𝑝𝑖 | 0 ≤ 𝑟𝑝𝑖 ≤ 1 that represents the reputation

of the provider within the fog community, which indicates the aggregation of others’ opinions

towards provider 𝑖’s honesty. Hence, the success rate of handling connection gets uncertain due

to the fact that a fog server may or may not be willing to cooperate, which is directly related to

its reputation.

The problem of optimally forming the coalitions is an NP-hard problem. Therefore, we model it

as a Hedonic game model and integrate the preferences of the players when deciding who to

interact with. The details of the game are given in the next section.

5.4.3 Reputable Hedonic Fog Federation Formation Scheme

A coalitional game model is a sequence of decisions made by the players in order to maximize

their utilities. A Hedonic game is a special type of coalitional game that abides by the following

rules: the player’s utility can be decided solely by the players within the considered coalition,

and the coalitions are formed according to the preference function of the players interacting

(Hammoud et al., 2022b). In this paper, the fog coalition (federation) formation game models the

interaction between the fog providers and the coalitions which they can join according to their

preferences. The utility of a provider to whether or not join a coalition reflects the preference

of the player to which coalition it is willing to join by assigning a bigger weight for it, and is

defined as follows:

𝑈
Λ 𝑗
𝑝𝑖 =

𝐴𝑝𝑖∑
𝑎𝑘

𝑉𝑎𝑘∑
𝑣𝑙

𝜅𝑣𝑙
𝑎𝑘 ,Λ 𝑗

× 𝑟Λ 𝑗 (5.4)

where 𝐴𝑝𝑖 is the set of services hosted by provider 𝑖, 𝑉𝑎𝑘 is the set of vehicles subscribed to

service 𝑎𝑘 , and 𝑟Λ 𝑗 is the average reputation of coalition 𝑗 . This utility function can determine

the rational decision of any player when choosing a coalition to join. The preferences can be

translated into the following equation:

Λ 𝑗 >𝑝𝑖 Λ𝑘 ⇐⇒ 𝜚𝑝𝑖 (Λ 𝑗 ) > 𝜚𝑝𝑖 (Λ𝑘 ) (5.5)
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where >𝑝𝑖 is the preference relation that reflects the decision of the service provider when facing

two distinct coalitions. To elaborate, we assume the existence of two coalitions, 𝑗 and 𝑘 , and fog

provider 𝑖 deciding which coalition to join due to its resource shortage to handle its requests.

Assuming that coalition 𝑗 might be richer in terms of resources, 𝑝𝑖 can still choose coalition 𝑘 if

it offers relatively better reliability (i.e., utility) when compared to coalition 𝑗 . According to the

game detailed above, we can conclude that this game is Hedonic since both of its conditions are

valid when it comes to constructing the coalitions. In coalitional game models, we are more

interested in studying the coherence of the players when interacting in communities. One of the

important properties is the stability of the community. A community is stable if every player

is satisfied with its current coalition. In other words, there is no player that can find a better

decision (utility) other than the one it is currently inheriting

∀𝑝𝑖 ∈ 𝑃,Λ 𝑗 ≥𝑝𝑖 Λ𝑘 | 𝑝𝑖 ∈ Λ 𝑗 & 𝑘 ≠ 𝑗 & 1 ≤ 𝑘 ≤ 𝑚 (5.6)

Providing this condition for all fog providers in the system yields a stable environment as long

as there are no significant changes in terms of users’ displacements, and in terms of providers’

reputations.

5.4.4 Off-Chain Hedonic Algorithm Execution

To resolve the above equations and stabilize the infrastructure, we devise a decentralized

algorithm that can be executed by the providers at each time 𝑡, or whenever the overall QoS

falls below a certain threshold. The main reasons behind shifting this process to be executed by

the providers rather than the Blockchain are due to it (1) being a provider-centered operation

and (2) being expensive in terms of computation and network as preferences games require

continuous input from the players to achieve a stable solution that satisfies all involved parties.

Algorithm 5.1 reflects solving Eq. 5.6 by executing it at each time 𝑡 for all the providers inside

the system. Before initiating the start of this algorithm at time 𝑡, it takes the status of the

infrastructure in terms of federation structure up until time 𝑡 as input, i.e. 𝐹𝑡 . The variable 𝐹𝑡

represents the current state of the federation formations at time 𝑡. It contains information about
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Figure 5.3 Reputable Fog Federation Formation Scheme: Process Timeline

the current coalitions and their members. The result of this algorithm is the most fitting set of

federations to be formed at time 𝑡 + 1. 𝐹∗ is the variable introduced here to store the previous

federation formation, 𝐹𝑡+1 is the result of this algorithm, and 𝐿 is the temporary variable that
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Algorithm 5.1 Federation Formation Mechanism

Input: 𝐹𝑡

Output: 𝐹𝑡+1

22 𝐹∗ ← 𝐹𝑡 ;

44 𝐹𝑡+1 ← Ø;

66 𝐿 ← Ø;

88 while 𝐹∗ ≠ 𝐹𝑡+1 do
1010 𝐹𝑡+1 ← 𝐹∗;

1212 foreach 𝑓𝑖 ∈ 𝐹∗ do
1414 foreach 𝑓 𝑝 𝑗 ∈ 𝑓𝑖 do
1616 if 𝑓 𝑝 𝑗 ∉ 𝐿 then
1818 𝐶𝑢𝑟𝑟 ← 𝑈

Λ 𝑗
𝑝𝑖 ;

2020 foreach 𝑓𝑘 ∈ 𝐹∗ do
2222 𝑁𝑒𝑤 ← 𝑈

Λ 𝑗
𝑝𝑖 ;

2424 if 𝑁𝑒𝑤 > 𝐶𝑢𝑟𝑟 then
2626 𝑓𝑖 ← 𝑓𝑖 \ { 𝑓 𝑝 𝑗 } ;

2828 𝑓𝑘 ← 𝑓𝑘 ∪ { 𝑓 𝑝 𝑗 } ;

3030 𝐶𝑢𝑟𝑟 ← 𝑁𝑒𝑤 ;

31 end if
32 end foreach
3434 𝐿 ← { 𝑓 𝑝 𝑗 } ∪ 𝐿 ;

35 end if
36 end foreach
37 end foreach
3939 𝐿 ← Ø;

40 end while
4242 return 𝐹𝑡+1

indicates the players who made at least one decision for the current round. The while statement

in Line 4 indicates that the algorithm only stops when no further changes in the structure take

place. The decision of whether or not a player joins a certain federation solely depends on the

preference function of all the available federations to join. Even though this process is being

executed off-chain, however, it does not affect the reliability of the proposed framework as each

player/provider is responsible for its own decision.
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5.4.5 Contract-Based Reputation Module

In order to assess the cooperation of a fog provider when he is integrated within a coalition, we

rely on their reputation to decide how convenient it is for others to cooperate with it. We rely on

a feedback-based trust establishment mechanism to estimate a proper reputation for the providers

within the community. In the beginning, each provider is expected to be fairly behaving with an

initial reputation value equal to a predefined default value, 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝐷𝐸𝐹𝐴𝑈𝐿𝑇 , once it

starts interacting in the system. When the formed coalitions are ready to be decomposed, each

provider is supposed to submit feedback about the other members within the same coalition that

is based on the cooperation of the latter. An aggregation technique takes place for a fair trust

assessment and, accordingly, a provider is tagged with a new reputation value. A provider with

a low reputation value may be penalized by a temporary ban from joining other coalitions.

To carry out the above in a non-tampered manner, we invest in a Blockchain-based solution

empowered by smart contracts built on top of the Ethereum network. Blockchain is a decentralized

ledger system that stores information in a way that cannot be tampered with. The ledger is

maintained by multiple entities and thus the availability of the records is considered reliable

when compared to other centralized systems. Ethereum2, the second biggest cryptocurrency

after Bitcoin3, is a platform empowered by Blockchain to create decentralized applications. It

features smart contracts which allow predefined programs to execute on the Blockchain peers in

a verifiable way. Therefore, executing certain algorithms on smart contracts can assure that the

results obtained are not tampered with by other parties. To leverage the power of Blockchain

2.0, we rely on implementing two smart contracts, Provider Contract and Reputation Contract.

Provider Contract is a smart contract that keeps track of the providers in the system and allows

them to retrieve information about other providers including their reputation. A reputation

Contract is a contract to manipulate the reputation of the providers after being assigned a task.

We detail both contracts below:

2 https://ethereum.org/

3 https://bitcoin.org/
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5.4.5.1 Provider Contract Functions

Table 5.2 Provider Contract Functions

function add_provider() public -

function update_reputation(uint provider_id, uint rep) external -

function ban_provider(uint provider_id, uint until) external -

function get_available_providers() public view returns(Provider[] memory providers)

First of all, we devise a contract to maintain the fog providers that register in the system. This

contract has multiple functionalities, as can be seen in Table 5.2. For instance, the function

add_provider() takes the necessary initiates for adding the caller provider, i.e. the one who

calls the function, into the system. It initializes the default variables to store the provider in

the system, in addition to its Blockchain address. get_available_providers() is a function that

returns the providers who are registered in the system that are (1) available in terms of resources

and (2) not banned due to malpractices. update_reputation() and ban_provider() are functions

that can be called by an external contract when necessary. The first one changes the provider’s

old reputation at time 𝑡 to a new reputation that fits at time 𝑡. The second one penalizes the

provider by banning them from participating in the coalition formation game for a predefined

period of time.

5.4.5.2 Coalition Contract Functions

Table 5.3 Coalition Contract Functions

function create_coalition(address[] memory providers)public -

function feedback(uint[] memory feedback) public -

function append_feedback() private -

As expected, this contract handles the federations’ registration on the chain and receives trust

values from the federations’ members. create_coalition() function receives the addresses of the

providers as input and it creates a coalition denoting the members after the off-chain game model

yields the result. Only one member needs to execute this function to establish the coalition.

When the tasks come to an end, the providers within a single coalition are expected to rate
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the other members by evaluating their cooperation as a trust value by relying on the function

feedback(). For the provider 𝑖 to evaluate the other members of coalition Λ 𝑗 , it provides an array

of size 𝑛 − 1, where 𝑛 = |Λ𝑖 |, that contains the reputation metrics of the other members and

how they were handling the offloaded tasks. The last member of the same coalition to send its

feedback, i.e. the 𝑛𝑡ℎ member, triggers an automatic call for calculating the aggregated trust value

by calling the function append_feedback(). append_feedback() embeds an aggregation technique

of an arithmetic mean mechanism. Each coalition holds a matrix of size 𝑛 × 𝑛 that stores the

evaluation metrics received from the members. Once the aggregated value is calculated, it

triggers the update_reputation() function inside the Provider contract in order to update the

reputation of the providers.

The historical reputations of the providers are taken into consideration when calculating the new

reputation by assigning weights to the old and new reputation, and adding them together, as

follows:

𝑟𝑡𝑝𝑖 = 𝛼 × 𝑟𝑡−1
𝑝𝑖 + (1 − 𝛼) × �𝑟𝑡𝑝𝑖 (5.7)

where �𝑟𝑡𝑝𝑖 is 𝑝𝑖’s aggregated reputation from the 𝑎𝑝𝑝𝑒𝑛𝑑_ 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 () function.

Fig. 5.3 summarizes the interactions among modules in our proposed system.

5.4.6 Security Analysis

In this section, we conduct a security analysis of our fog federation framework to evaluate

its resilience against misbehaving providers. We identify potential threats and present the

mechanisms put in place to mitigate these risks.

5.4.6.1 Misbehaving Providers

Misbehaving providers pose a significant challenge to the stability and efficiency of the fog

federation. We considered various forms of misbehavior, including SLA violations and non-

cooperation within coalitions. As providers may fail to meet their agreed-upon service-level

agreements with end-users, this can lead to a degraded user experience. We addressed this issue
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through the reputation module based on feedback from other federation members. The low

reputation of members can result in diminished opportunities to join federations or potential

temporary bans.

5.4.6.2 Detection and Mitigation

To detect and mitigate malicious behaviors, our framework employs several mechanisms:

Consensus Mechanisms: Our blockchain-based approach utilizes consensus mechanisms to

ensure agreement on the validity of transactions and coalition formations. Smart Contract

Enforcement: Smart contracts enforce the rules and penalties defined for providers’ behavior,

such as temporary bans or reputation adjustments. The feedback and banning actions are core

functions of the Blockchain contracts of our approach. Feedback Aggregation: The reputation

module aggregates feedback from coalition members to calculate a provider’s reputation. The

use of multiple data points ensures a fair assessment of a provider’s behavior and minimizes the

impact of individual biased opinions.

5.5 Experimental Evaluation

In this section, we explain our setup and analyze the results of our implemented framework

while comparing it to the benchmark.

5.5.1 Setup

To set up the environment, we rely on several applications, datasets, and other metrics combined,

as follows:

5.5.1.1 Tools

All simulations were conducted on a computer equipped with 12th Gen Intel(R) Core(TM)

i7-1260P, with memory up to 16384MB. The following software was used:
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• PyCharm: in order to execute the off-chain coalition formation, we modeled the Hedonic

game model using Python language.

• SUMO (Simulation of Urban MObility) : is an open-source microscopic traffic

simulation software. We use it here for simulating traffic in IoV.

• Ethereum Remix: remix IDE allows developing, deploying, and administering smart

contracts for Ethereum. It can be used directly through its online web interface. Remix

was used to program the smart contracts related to the providers and coalitions. We assign

an address to each provider in order to join coalitions.

5.5.1.2 Datasets

The following datasets were used to populate our environment.

• Fog Nodes: to conduct the experiments using realistic geographical areas due to the nature

of IoV, we use EUA that contains the coordinates of the fog devices based in Australia.

• Providers: due to the lack of fog providers datasets, we randomly assign providers to

own one or more nodes from the list of fog nodes in the EUA dataset. We set up 10 fog

providers in the system.

• Vehicles: we generate vehicular traffic using SUMO software. We set up the simulator to

export the traffic in Australian terrains. The number of vehicles in the system is set to 500.

5.5.1.3 Misc. Provider Mechanics

There are multiple methods and attributes that have been used throughout this simulation in

order to be conducted.

• Reputation: is the value that represents how cooperative and trustworthy a provider is.

This value is well-known to the community.



131

• Honesty: is the provider’s actual percentage of cooperation and trustworthiness. This

value is private.

• Credibility: is how credible a provider is when submitting feedback about another

provider. The higher the credibility, the better the feedback accuracy toward the other

provider. This parameter is private to each provider.

• Feedback: at the end of each interaction between providers, each provider estimates the

reputation of the other members in the federations.

5.5.1.4 Benchmark Model

• Trust-based Service Communities(Wahab et al., 2016b): this approach is based on

clustering and forwarding reputation information about others from a provider to its

neighbors. In other words, nodes transfer their knowledge to neighboring nodes without

relying on a central entity or Blockchain to manage the process.

• Anglano et al. (Anglano et al., 2018a): this is a game model approach to form fog

coalitions where the fog providers rely on their own preferences to select which coalition

to join, in order to maximize their individual monetary profit resulting from the formed

coalitions.

5.5.1.5 Comparison Metrics

The analyzed system is evaluated in terms of 4 metrics:

• Reputation prediction accuracy: it shows the average reputation accuracy predicted by

all providers towards each other. This metric is important because federations are formed

based on it, in addition to other metrics discussed in the methodology section. We exclude

the work of (Anglano et al., 2018a) from this metric due to its irrelevance in such a case.
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• Service availability: the availability percentage of the resources when requested by the

end users.

• Serviced user rate: the rate of the users who can be serviced with a decent QoS when

communicating with the fog servers.

• Average provider payoff: the reward of the provider after completing the requested tasks.

Similar to (Hammoud et al., 2021), we assume a fair monetary distribution among the

federation participants.

5.5.2 Results

Before detailing the performance of our proposed framework, it is worth mentioning that

deploying smart contracts on the Ethereum Blockchain costs "gas". Gas is paid in Ether (ETH),

the native cryptocurrency of Ethereum, and the amount is related to the complexity of the

contract. In our implementation, deploying the Provider Contract Function on the chain costs

0.000775827 ETH, which is equivalent to 1.47 USD. Similarly, deploying the Coalition Contract

Function costs 0.001067240 ETH, which is equivalent to 2.02 USD4.

We run the experiments 10 times, each time for different vehicular trajectories, and then we

averaged the results to display them in figures. The performance of our approach is evaluated

against the benchmark models using four metrics: reputation prediction accuracy (exclusively for

our approach and the Trust-based Service Communities approach), service availability, serviced

user rate, and average provider payoff. Fig. 5.4 shows the average reputation accuracy predicted

by the whole population towards other providers. The Blockchain-based approach starts at 93.3%

and increases to reach 95.5% at the end of the simulation. At the same time, the Trust-based

Service Communities benchmark model starts at 85% and maintains a slow average decrease

until 81.7% at the end of the 40𝑡ℎ round. The main reason behind such a gap between the two

curves is the fact that our mechanism relies on a Blockchain-based storage mechanism where

the reputations of the fog providers at time 𝑡 are all stored on-chain and accessible to the public

4 The value is based on the conversion rate of the following date: 17-08-2022, where 1 ETH was equal

to 1884.94 USD
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of providers which is essential when predicting the reputation for time 𝑡 + 1, while the other

approach relies on forwarding reputation which can be outdated, thus, inconvenient for basing

the prediction upon.

Figure 5.4 Reputation Prediction Accuracy

Furthermore, we assess the service availability of the fog providers when they are receiving

requests from the vehicles in Fig. 5.5. At the beginning of the simulation, both the Blockchain-

based and Trust-based models were able to achieve 84.4% of full-service availability. However,

our model increases the availability to reach 87.1% at the end of the simulation whereas the

other model fluctuates and decreases the availability to reach 80.4% instead. The Anglano et al.

model failed to cope with its peers due to its incapability of dealing with malicious providers.

The main reason behind the difference between the former two is the early detection of dishonest

providers and avoiding them according to the preference function in our model. On the other
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hand, the Trust-based model suffers from late detection of the misbehaving providers which

leads to immature decision-making for the other providers.

Figure 5.5 Service Availability

In Fig. 5.6, we display the serviced user rate. It can be seen that the Trust-based benchmark

approach starts at 0.15 and fluctuates slowly without any significant change until the end of

the simulation. The Anglano approach is almost stable with a low rate of 0.08. Whereas our

approach starts at 0.35 and rises to reach 0.48 at time 𝑡 = 40. We can conclude from such a plot

that our approach is capable of serving more vehicular users when compared to the other ones.

It is worth mentioning that the serviced user rate is not near its upper limit due to the simulation

settings where the system is overloaded with incoming requests, in addition to the hardware

limitation of the wireless connections between the servers and the vehicles. Last but not least,

Fig. 5.7 reflects the theoretical payoff of the average fog provider. Our method outperforms
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significantly both benchmark models that are consistent with the gain in the serviced user rate.

In summary, our framework outperforms existing benchmark models due to its innovative

combination of on-chain and off-chain mechanisms, as well as its consideration of provider

reputation. The use of Blockchain-based storage for reputations allows our approach to access

up-to-date and reliable reputation information, enabling more accurate predictions and decision-

making. Additionally, our mechanism employs an early detection system for dishonest providers,

allowing us to avoid them and maintain higher service availability. The other benchmark models

are not as effective as our proposed framework because 1) the Trust-based Service Communities

approach relies on forwarding reputation, which can be outdated and unreliable for predicting

future reputations accurately. This leads to suboptimal decision-making and lower reputation

prediction accuracy. 2) The Anglano et al. model lacks a comprehensive reputation management

system and early detection mechanism, making it less capable of coping with malicious providers

and ensuring stable service availability. As a result, our framework achieves a higher serviced

user rate, serving more vehicular users compared to the benchmark models.

5.6 Conclusion

In this work, we addressed the problem of having untrustworthy fog providers in fog federations.

In particular, we developed a Blockchain-based scheme that can significantly enhance the

performance of fog federations. We also developed an on-chain and off-chain mechanism for

handling fog federations formation in the presence of dishonest fog providers. The Hedonic game

theoretical approach was devised in this paper to form the federation by relying on Ethereum’s

smart contracts. the simulation results show a significant improvement in terms of several metrics

when compared to the benchmark model, and this is mainly due to the fact that Blockchain

asserts the propagation of global information to be within reach of all of the involved participants

in the system. For future work, we plan to work on enhancing the architecture by shifting

the whole formation process to on-chain at low costs. For future work, we will consider the

limitations imposed by the employment of blockchain infrastructure in the context of real-time

applications and the block-out speed entailed by such technology. We will investigate techniques
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Figure 5.6 Serviced User Rate

to predict demand ahead of time and prepare for the federation formation in advance to avoid

any imposed delays. By leveraging predictive analytics and machine learning algorithms, it

may be possible to anticipate the resource requirements and latency-sensitive needs of the IoV

applications.
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Figure 5.7 Average Payoff





CONCLUSION AND RECOMMENDATIONS

This thesis addresses the challenges and constraints in the realm of federated fog computing,

with a specific focus on its application within IoT and IoV contexts. Through a series of

comprehensive studies, innovative proposals, and rigorous evaluations, we have made significant

contributions to the field, advancing the understanding and practical implementation of federated

fog computing for intelligent IoT and IoV applications.

Our research objectives were aimed at addressing the key challenges that hinder the realization

of efficient and stable federated fog computing architectures for IoT and IoV applications in the

existing literature. We highlighted 4 main sub-objectives in order to realize our architecture: 1)

Stabilizing the fog federation architecture. 2) Supporting mobility for critical IoV applications.

3) Empowering federated learning applications through an extended federated fog architecture.

4) Securing the formation process and eliminating malicious nodes.

Our summarised list of contributions consists of the following:

• We proposed an evolutionary game-theoretical approach to create stable fog federations,

ensuring that member fog providers have no incentives to leave their respective federations.

• We introduced a dynamic fog federation scheme that accounts for the mobile nature of

IoV environments. We formed adaptive federations using a Hedonic Coalition Formation

mechanism to maximize QoS.

• We extended the concept of federated learning to the IoV domain by creating a horizontal

federated learning architecture. This architecture leveraged a Hedonic-game theoretical

model to adapt the formation of fog federations for training intelligent vehicular applications

while preserving the data privacy of the data providers.
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• We harnessed the power of Ethereum Blockchain technology to enhance the trust and

reputation aspects of fog federation formation. By integrating on-chain smart contracts

and off-chain Hedonic game theory, we introduced a secure and reputable fog federation

formation process.

By implementing our architecture, we demonstrated a series of advantages that could facilitate

the realization of the federated fog computing concept in a smooth and effective manner. First of

all, we showed that the problem of federation instability could be resolved with a game model

while showcasing its potential to improve the QoS and overall performance. Moreover, we

demonstrated how we can still maintain QoS despite the mobile environment through a dynamic

coalition approach. Furthermore, our extended federated fog architecture has the capability to

handle multiple learning applications simultaneously while achieving higher accuracy and lower

model loss in the context of IoV. Finally, we ensured fair and reliable federation establishment

while penalizing untrustworthy providers through blockchain integration. Collectively, our

research has provided a comprehensive and insightful understanding of the challenges and

opportunities in federated fog computing for IoT and IoV applications.

As we conclude this thesis, it is clear that the journey toward efficient and secure federated

fog computing for IoT and IoV is ongoing. We thoroughly investigate this paradigm and our

work has laid a solid foundation in its early stages of development. Nevertheless, there are

still avenues to explore and expand upon, including the integration of edge intelligence for

real-time decision-making for offloading tasks among federation members, the development of

fully autonomous management systems for this paradigm, and the imperative phase of real-world

deployments and testing. We hope that our contributions will inspire and guide future researchers

in their path to shape the paradigm of federated fog computing for years to come.
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