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Apprentissage de modèles de reconnaissance visuelle dans un contexte de données et de
ressources de calcul limitées.

Saypraseuth MOUNSAVENG

RÉSUMÉ

L’apprentissage profond, en particulier à travers l’usage des réseaux neuronaux profonds, a

connu un franc succès dans le domaine de la vision par ordinateur. Les modèles à grande échelle,

constitués de millions de paramètres, ont révolutionné le domaine en capturant des schémas

complexes pour offrir des performances compétitives dans des tâches telles que la classification

d’images, la détection d’objets ou la segmentation sémantique. L’entraînement avec des bases

de données de grande taille est essentiel pour améliorer la généralisation des modèles, et permet

des prédictions précises sur de nouvelles données. Malgré les performances exceptionnelles de

ces modèles, des défis subsistent en raison des difficultés pouvant survenir lors de l’acquisition

des données et du potentiel décalage entre les distributions des données d’entraînement et de

test.Cette thèse vise à relever ces défis en explorant différentes façons d’optimiser l’apprentissage

et l’adaptation des réseaux neuronaux profonds.Dans un premier chapitre, nous explorons

l’utilisation de modèles génératifs pour créer de nouvelles images utiles pour une tâche sous-

jacente. Plus particulièrement, nous exploitons la capacité des réseaux antagonistes génératifs

(GAN) à générer de nouveaux échantillons augmentés permettant d’améliorer la robustesse et les

performances d’un classificateur d’images. Contrairement aux transformations traditionnelles

choisies de façon heuristique, l’approche présentée apprend l’augmentation de données optimale

directement à partir des données d’entraînement en utilisant une architecture encodeur-décodeur

et un réseau transformateur spatial, produisant des échantillons plus complexes au sein de la

même classe.Dans un second chapitre, nous proposons une approche visant à réduire les calculs

nécessaires pour déterminer la meilleure augmentation de données possible. Nous optimisons les

paramètres d’augmentation à l’aide d’un ensemble de validation par une optimisation bi-niveaux,

améliorant ainsi la généralisation du modèle sans avoir besoin d’une boucle de validation

externe coûteuse. La méthode a été validée aussi bien sur des images naturelles que sur des

images histologiques.Enfin, dans un troisième chapitre, nous explorons l’adaptation pendant

l’inférence (TTA) et présentons une sélection et catégorisation de techniques TTA intéressantes

pour adapter les modèles aux dérives de données. Ces techniques sont la normalisation par petits

lots, le rebalancement des classes du flux, la sélection d’échantillons fiables et l’étalonnage de la

confiance du réseau. Nous donnons un aperçu de leur impact dans différents scénarios et mettons

en évidence des compromis nécessaires entre précision, puissance de calcul et complexité

du modèle. Nous présentons également les synergies qui résultent de la combinaison de ces

techniques.Les travaux présentés ouvrent de nouvelles voies pour des recherches futures et

offrent des aperçus et des solutions pratiques pour l’entraînement et l’adaptation des réseaux

neuronaux profonds dans un contexte de données limitées.

Mots-clés: classification d’images, augmentation de données, réseaux antagonistes génératifs,

optimisation bi-niveaux, adaptation au moment du test





Learning Visual Recognition Models with Limited Data

Saypraseuth MOUNSAVENG

ABSTRACT

Deep learning, particularly through deep neural networks, has achieved remarkable success in

computer vision. Large-scale models with millions of parameters have revolutionized the field,

capturing complex patterns and improving performance across tasks like image classification,

object detection, or semantic segmentation. Training with extensive datasets is key to enhancing

model generalization, enabling accurate predictions on new data and adaptability to real-world

complexities. However, despite the exceptional benefits, challenges arise due to the cost

associated with data acquisition and the potential distribution shift between train and test data.

This thesis aims at tackling those challenges and explores different ways to optimize the learning

and adaptation of deep neural networks while maintaining or enhancing performance. In a first

work, we explore the usage of generative models to generate images useful for a downstream task.

More particularly, we leverage the power of generative adversarial networks (GAN) to generate

new augmented samples useful to improve the training of an image classifier and increase its

robustness and performance. Unlike traditional heuristic transformations, the approach presented

learns data augmentation directly from training data using an encoder-decoder architecture and

a spatial transformer network, producing more complex samples within the same class. In a

second work, we further explore data augmentation and propose an efficient approach to reduce

the computational power needed to define the best data augmentation parameters, improving

generalization without requiring domain knowledge or an exhaustive search. We optimize

augmentation parameters using a validation set through bi-level optimization, removing the

need for an expensive external validation loop. We validated the method on natural images but

also on histological images. Finally, in a third work, we explore test-time adaptation (TTA) and

present a categorization of selected orthogonal TTA techniques interesting for adapting models

to data drifts, such as small batch normalization, stream rebalancing, reliable sample selection,

and network confidence calibration. We give insights into their impact on different scenarios,

highlighting trade-offs in accuracy, computational power, and model complexity, while also

revealing the synergies that arise from combining techniques. The presented works open up new

avenues for further research, offering insights and practical solutions for training and adapting

deep neural networks under challenging conditions.

Keywords: image classification, data augmentation, generative adversarial networks, bi-level

optimization, test-time adaptation
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INTRODUCTION

Deep learning, has achieved remarkable success in visual recognition tasks, especially since the

introduction of deep convolutional neural networks (CNN) (Lecun, Bottou, Bengio & Haffner,

1998) and more recently vision transformers (ViT) (Dosovitskiy et al., 2021). Best performances

are obtained by large-scale models with billions of parameters (Dehghani et al., 2023), which

exhibit a remarkable ability to capture complex patterns and relationships within the data.

Training those models with extensive datasets (Russakovsky et al., 2015) plays a crucial role

in enhancing model generalization (Sun, Shrivastava, Singh & Gupta, 2017). By exposing a

model to a diverse and extensive set of examples, it learns to generalize better, making accurate

predictions on new, unseen data. The vast amount of data ensures that the model encounters a

wide variety of scenarios, making it robust and adaptable to real-world complexities.

0.1 Challenges

If combining large-scale models and training with extensive datasets has proven to be the key to

achieving exceptional performance (Sun et al., 2017), it is not without challenges.

0.1.1 Data Acquisition Difficulty

To understand the scale of such large datasets, following examples can serve as informative

points of reference. In August 2017, IBM set a new record in the Imagenet top-1 22K classes

image classification challenge (33.8% accuracy) with a model trained with 7.5M images (Cho

et al., 2017). Another dataset of interest, Tencent-ML (Wu et al.), is composed of 18M images.

In July 2017, Google created the JFT-300M dataset (Sun et al., 2017), which contains 300M

images. In May 2018, Facebook achieved a new record in the top-1 1k classes Imagenet image

classification challenge (85.4% accuracy) by training their model with 1B images (Mahajan

et al., 2018). In a subsequent work, Facebook introduced the IG-1B-Targeted dataset (Yalniz,
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Jégou, Chen, Paluri & Mahajan, 2019), which contains nearly 1B images. On a comparable

scale, Mahajan et al. (2018) trained their model using 3.5B Instagram images.

In most real-life scenarios, accessing a large amount of annotated data is a significant challenge.

First, gathering a large number of images can be challenging. For example, special equipment

with limited availability can be required for the image acquisition, like for satellite images.

Second, the nature of the problem itself can hinder data collection. For instance, in the medical

imaging field, obtaining images of a rare pathology can prove challenging. Third, annotating a

dataset, which is still often done manually by humans, can also require a significant effort: as

the data amount and complexity (for example due to the level of expertise needed) increases, it

becomes not only too expensive but also more prone to mistakes. Finally, cost constraints can

further complicate the acquisition of a large amount of annotated images.

Employing a limited training dataset can lead to a reduction of model performance for two

reasons. On the one hand, the information contained in the limited dataset might not be sufficient

to capture the full complexity of the real dataset, resulting in a model unable to learn enough

information to handle unseen data. On the other hand, the model may become too specific and

overfit the limited dataset, leading to generalization issues.

0.1.2 Distribution Shift

Deep learning models are usually trained with the assumption that training data and test data

seen at inference time come from the same distribution. However, when the training distribution

(source) and the test distribution (target) are different, the issue of distribution shift arises,

leading to a significant challenge in model generalization. As neural networks are trained on

a specific dataset, they learn to capture patterns and features characteristic of that dataset’s

distribution. However, when a model encounters new data from a different distribution during

inference, its performance tends to degrade due to the distributional mismatch. This shift in

data distribution poses a formidable obstacle in real-world applications where the availability of
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labeled data from the target domain is often limited. It also represents an interesting extension

of the data scarcity problem mentioned in the previous paragraph.

Domain adaptation techniques aim at bridging the gap between the source and target domains to

ensure robust and reliable neural network performance in varying and unforeseen environments.

The idea of domain adaptation is to enable models to leverage knowledge gained from pre-training

on a different yet related task or dataset. In this approach, a model is initially trained on a large,

well-labeled dataset, and then the knowledge acquired is transferred to a target task with limited

labeled data or only unlabeled data. The pre-trained model serves as feature extractor, allowing

for improved performance with minimal data.

0.2 Research objectives

The motivations and potential rewards for addressing the problems presented in the previous

paragraph are multiple. First, reducing the amount of labeled data required can yield time and

cost savings, including necessary equipment and expertise. Second, enhancing the model’s

efficiency can provide interesting benefits in terms of energy consumption.

The main research objective of this thesis is to develop and analyze methods and techniques

to make the best of a limited amount of data available to ensure a decent performance level

of a visual recognition model. We tackle this main objective by elaborating on two specific

objectives corresponding to two data scarcity scenarios. In the first one, what is available is a

limited amount of labeled data, that we can use to train a model from scratch, and the objective

is to develop efficient data augmentation techniques to improve the model performance. In the

second one, what we have at disposal is a model pretrained on a large scale dataset and unlabeled

data from a possibly shifted target domain and the objective is to assess empirically recently

proposed methods leveraging only the unlabeled data to adapt the pretrained model. We will

now give more details on each scenario.
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0.2.1 Training a model with limited labeled data

Obtaining a sufficient amount of annotated data to train a visual recognition model can be a

significant challenge in many real-world scenarios. This data scarcity problem poses a hurdle to

achieving optimal model performance. In response, researchers have explored various techniques

to address this issue and make the most of the available data. For example, in situations where

acquiring fully labeled datasets is difficult, using different level of supervision can relax the need

for fully annotated data, by leveraging unlabeled data or partial annotations. Another solution

is data augmentation, which is a widely used technique to increase the effective size of the

dataset. There exists two ways of doing data augmentation: first, by generating new samples

from a learned representation of the dataset, second, by applying various transformations to

existing samples. These transformations do not alter the class labels of the existing data points

but provide valuable diversity to the training process. Common augmentations include rotations,

flips, translations, and changes in lighting conditions. By expanding the dataset with augmented

samples, the model becomes more robust and better generalizes to unseen variations in the data.

More details are available in Section 1.3.1 of Chapter 1.

In a first contribution, we tried to leverage the power of generative adversarial networks to

create useful samples to improve the training of a classifier. Then, building on the limitations

of the approach we proposed, we chose in a second contribution to investigate a way to learn

automatically the best data augmentation transformations using a bilevel optimization framework.

0.2.2 Adapting a pretrained model using unlabeled data from target domain

The second scenario considered is a case of distribution shift. In such cases, domain adaptation

techniques are needed to ensure a reliable performance of the model on the target data. Domain

adaptation involves utilizing knowledge acquired from one task or domain to improve performance

on another related task. Pretrained model, especially recently emerging foundation models
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(Bommasani et al., 2021), are often built using large-scale datasets and extensive training and

capture intricate patterns and representations that are transferable across various domains. By

using these pretrained models as a starting point, good performances can be obtained by reducing

the amount of data and computational resources required for training on new tasks. More details

are available in Section 1.3.3 of Chapter 1.

In this thesis, we investigate Fully Test-Time Adaptation, which is a particular case of domain

adaptation focusing on leveraging pretrained models during inference to adapt to the specific

characteristics of the target domain. Rather than fine-tuning the entire model, test-time adaptation

involves fine-tuning only certain model components, enabling rapid adaptation to new domains

and reducing the computational overhead during the adaptation process. We analyze and

categorize different source free test-time adaptation techniques recently proposed, highlighting

weaknesses but also opportunities to improve performance, for example by using specific

combinations of techniques.

0.3 Contributions

The core contributions of this thesis are:

– In Chapter 2, we leverage the power of generative adversarial networks to generate new

samples augmented with general transformations, useful to make the trained model more

robust and increase its performance. Unlike traditional heuristic transformations, the

approach presented learns data augmentation directly from training data using an encoder-

decoder architecture and a spatial transformer network, producing more complex samples

within the same class.

Related publication:

- Adversarial Learning of General Transformations for Data Augmentation. Published at

Learning with Limited Data Workshop. International Conference on Learning Representa-
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tions (ICLR), 2019.

– In Chapter 3, we propose an efficient approach to reduce the computational power needed to

define the best data augmentation when training an image classifier, improving generalization

without requiring domain knowledge or an exhaustive search. We optimize augmentation

parameters using a validation set through bi-level optimization, removing the need for an

expensive external validation loop.

Related publications:

- Data Augmentation with Online Bilevel Optimization for Image Classification. Published

at IEEE Winter Conference on Applications of Computer Vision (WACV), 2021.

- Method of and system for joint data augmentation and classification learning. US Patent

App. 16/778,480, 2021.

- Automatic Data Augmentation Learning using Bilevel Optimization for Histopathological

Images. Submitted to the Journal of Machine Learning for Biomedical Imaging (MELBA),

2023.

– Finally, in Chapter 4, we explore test-time adaptation (TTA) and present a categorization

of selected orthogonal TTA techniques interesting for adapting models to data drifts, such

as small batch normalization, stream rebalancing, reliable sample selection, and network

confidence calibration. We give insights into their impact on different scenarios, highlighting

trade-offs in accuracy, computational power, and model complexity, while also revealing

the synergies that arise from combining techniques.

Related publication:

- Bag of Tricks for Fully Test-Time Adaptation. Submitted to IEEE Winter Conference on

Applications of Computer Vision (WACV), 2024.
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To facilitate further research and improve the reproducibility of results, the code of all the papers

is public and available online.





CHAPTER 1

LEARNING WITH LIMITED DATA: BACKGROUND

This chapter introduces the background of our research. We begin with a short presentation

of computer vision and deep learning, followed by the introduction of the essential technical

building blocks required to understand the presented work. Subsequently, we cover key concepts

like data augmentation, bi-level optimization and conclude with domain adaptation.

1.1 Introduction to Computer Vision and Deep Learning

In this section, we introduce briefly the different computer vision tasks and provide a short

history of Deep Learning for Computer Vision.

1.1.1 Computer Vision

Computer vision is a multidisciplinary field aimed at teaching computers a high-level under-

standing of digital images. It encompasses a wide range of tasks that mirror human visual

understanding and perception. For example, Pose Estimation determines the position and

orientation of specific objects, such as the human body, within an image. Optical Character

Recognition (OCR) focuses on translating visual text into machine-encoded text. In videos,

Action Recognition seeks to identify specific activities or behaviors. Depth Estimation and 3D

Reconstruction are geared toward understanding the three-dimensional structure of a scene.

Object Recognition is usually structured around four different tasks of increasing complexity.

Image Classification categorizes images into predefined classes by recognizing the single object

they contain. Object Localization goes a bit further by not only classifying an image according

to the object it contains, but also locating this object within the image. Object Detection extends

Object Localization to images containing several objects. Finally, Object Segmentation goes

one step further by classifying each individual pixel of an image. These tasks, collectively,

represent the broad spectrum of challenges in computer vision and aim to bridge the gap between

visual data and meaningful interpretation, with applications ranging from autonomous driving
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to medical imaging.

In this thesis, we focus our attention on Image Classification and, more particularly, the learning

methodologies, which could potentially be extended to other tasks.

1.1.2 A brief history of Deep Learning for Computer Vision

The foundation of deep learning lies in the McCulloch-Pitts neuron model (McCulloch & Pitts,

1943), which draws inspiration from the functioning of the biological neurons in the brain. The

first learning network, known as the perceptron (Rosenblatt, 1958), served as a basic binary

classifier before evolving into the multi-layer perceptron (MLP) with hidden layers (Rosenblatt,

1963). A significant breakthrough in deep learning occurred in 1986 with the application of

the backpropagation algorithm to artificial neural networks (Rumelhart, Hinton & Williams,

1986), enabling the training of MLPs and allowing the learning of non-linear representations.

Subsequently, Convolutional Neural Networks (CNNs) further revolutionized the field. CNNs,

like the LeNet-5 model (Lecun et al., 1998), harnessed local feature hierarchies through concepts

such as local receptive fields, shared weights, and spatial or temporal subsampling, leading to

remarkable performance improvements in computer vision tasks.

Later on, two major factors contributed to the success of deep learning. First, the development

of specialized hardware such as Graphical Processing Units (GPU) or more recently Tensor

Processing Units (TPU), allowed the design of significantly larger architectures. After LeNet-5,

the following significant architectures in deep learning for computer vision have centered around

CNNs, with architectures like AlexNet (Krizhevsky, Hinton et al., 2009), VGG (Simonyan & Zis-

serman, 2015), Inception (Szegedy, Vanhoucke, Ioffe, Shlens & Wojna, 2016), ResNet (He,

Zhang, Ren & Sun, 2015), DenseNet (Huang, Liu, van der Maaten & Weinberger, 2017) and

EfficientNet (Tan & Le, 2019), progressively advancing the state-of-the-art in vision tasks. How-

ever, more recently, attention-based models, inspired by the Transformer architecture (Vaswani

et al., 2017) initially designed in the Natural Language Processing domain, have displayed

promising results in computer vision tasks. Vision Transformers (ViT) (Dosovitskiy et al., 2021)

have emerged as powerful contenders, outperforming CNNs in image classification by treating
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the image as a sequence of patches and utilizing self-attention mechanisms to capture global

interactions. Vision transformers are an active area of research and many improvements of

the Vanilla ViT have already been proposed (Touvron et al., 2021; Wang et al., 2021b; Han

et al., 2021; Liu et al., 2021b; Dong et al., 2022). Second, the creation of large training datasets,

pioneered by ImageNet (Russakovsky et al., 2015), has largely contributed to facilitating the

training of deep neural networks.

Deep learning remains an active area of research. Indeed, despite its remarkable success in

various domains, it exhibits certain limitations that warrant further exploration and study. First,

deep learning models typically require substantial amounts of data for training, which may not be

available in all contexts. Second, the interpretability of these models remains a challenge, as they

often function as “black boxes”, making it difficult to understand the underlying mechanisms

driving their decisions. Additionally, deep learning is computationally intensive, requiring

significant hardware resources, and thus may not be accessible to all researchers or industries.

Lastly, issues related to model robustness and generalization need to be addressed, as small

changes in input data can lead to vastly different outputs, as illustrated by of adversarial samples.

The future of research in this area likely lies in developing methodologies that mitigate those

challenges.

1.2 Building blocks

In this section, we introduce the different components of neural networks and provide insights

on the architectural elements used in the different works presented in this thesis.

1.2.1 Neural Networks

Neural networks are computational models inspired by the human brain’s interconnected neurons,

designed to recognize patterns and make decisions by processing input data through layers of

artificial nodes called “neurons”. They began with the concept of perceptron, a simple binary

classification algorithm developed by Frank Rosenblatt in the late 1950s (Rosenblatt, 1958). The
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perceptron served as a foundational model with a single neuron, modeling a threshold function

with weighted input connections (weights are noted 𝑤), a bias 𝑏 and an activation function,

mapping its input 𝑥 (a real-valued vector) to an output value 𝑓 (𝑥) (a single binary value):

𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 𝑤.𝑥 + 𝑏 > 0

0 otherwise

In the context of neural networks, a perceptron is an artificial neuron using the Heaviside step

function as the activation function. Artificial neurons are simple linear transformers, multiplying

an input vector 𝑥 by a matrix of learnable weights W and adding a bias vector 𝑏, outputting a

transformed vector 𝑦 called logits:

𝑦 = 𝑊𝑥 + 𝑏

In following sections, we will see the role of activation functions and introduce some of them.

The limitation of the perceptron, which is the simplest feedforward neural network, was its

inability to solve problems that were not linearly separable. This led to the evolution of Multi-

Layer Perceptrons (MLP) Rosenblatt (1963), which consist of multiple layers of interconnected

neurons, thus enabling the modeling of more complex, non-linear relationships. MLPs marked

a significant advancement in neural network capabilities, but still had limitations in handling

spatial hierarchies in data, such as images. The transition to Convolutional Neural Networks

(CNNs) addressed this issue.

1.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) find their roots in the pioneering work of neurobiologists

Hubel&Wiesel in the early 1960s (Hubel & Wiesel, 1959, 1962), which focused on the visual

cortex of cats and monkeys. In their experiments, they recorded neuron activations in response

to a bright line presented to their test subjects and identified two distinct types of neurons

crucial to visual perception. The first type, simple cells (S-cells), responded to lines at specific

positions and orientations on the retina, having similar receptive fields that overlapped, while

the second type, complex cells (C-cells), exhibited larger receptive fields and were sensitive to
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Figure 1.1 Representation

of images as a pixel matrix

Taken from Li et al. (2023)

line orientation regardless of position. Inspired by this biological model, Fukushima (1980)

introduced the neocognitron, an artificial neural network mimicking the characteristics of S-cells

and C-cells and their hierarchical arrangement. CNNs emerged as a natural extension of the

neocognitron, offering enhanced capabilities in various tasks, including image recognition. One

notable milestone in the evolution of CNNs was the introduction of LeNet-5 in Lecun et al.

(1998). This model, designed for handwritten character recognition, laid the foundations for

successful object recognition and contributed significantly to advancing CNNs.

Convolutional neural networks are composed of different elements:

Input The input of a CNN, i.e. what the model sees, is digital images. Similarly to the light

exciting the retina cells, the pixels of an image or more precisely their value, as illustrated in

Fig.1.1, are stimulating the so-called filters (or kernels). In Hubert&Wiesel’s model, those filters

are equivalent to the receptive fields. The input layer is followed by a block or a series of block

composed of a combination of a convolutional layer, an activation layer and a pooling layer.

Convolution The stimulation of the network is achieved by applying an operation called

convolution to the image pixels and the filters, resulting in an output called a feature map.

Fig. 1.2 illustrates the application of the convolution operation between the input (the blue

square) and the filter (the green square). The sum of the convolution outputs the feature map
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a) Input and kernel b) Convolution operation

Figure 1.2 Illustration of a convolution operation

(a) In image processing, input and filter are represented as matrices (b) The

convolution operation is a dot product operation between the input and the filter

Adapted from Dertat (2017)

(the red square). In the case of a multi-layer model, the input of the first layer is the input

image, and the subsequent layers take as input the feature maps produced by the previous layer.

In mathematical terms, a convolution is the combination of two functions to produce a third

function. Intuitively, this third function represents a similarity measure between the two input

functions. In a discrete case, the convolution operation is expressed as:

𝑓 ◦ 𝑔(𝑥) =
𝑁−1∑
𝑛=0

𝑓 (𝑛)𝑔(𝑥 − 𝑛) (1.1)

or in the 2D case:

𝑓 ◦ 𝑔(𝑥, 𝑦) =
𝑁−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝑓 (𝑚, 𝑛)𝑔(𝑥 − 𝑚, 𝑦 − 𝑛) (1.2)

where 𝑓 and 𝑔 are the two input functions and 𝑁 the size of the convolution filter.

A convolution can be interpreted as a sliding dot product between the matrix containing the

image pixels and the filters of the first layer of the network, or between the output feature maps of

a layer and the filters of the next layer. Interesting to note is that strictly speaking, a convolution

in deep learning is actually a cross-correlation in signal/image processing.
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Figure 1.3 Illustration

of stride and padding

Adapted from Dertat (2017)

The distance the filter is slid horizontally or vertically on the input matrix during a convolution

operation is called stride. To control the size of the features maps, for example to avoid having

them too small, it is sometimes necessary to add elements at the border of the input matrix. The

number of rows or columns added on each side of the input matrix is called padding. Stride,

padding as well as the dimension of the filters are hyperparameters of CNNs defined in the

design phase of the model.

Pooling As illustrated in Fig. 1.4, the pooling layer downsamples the layer’s input by applying

a function to non-overlapping groups of pixels, typically using the max function to select the

highest pixel value, or other functions like average, ultimately reducing computational power

and memory required for model training by reducing parameters.

Activation In a neural network, the stimulation of the neurons are done with linear operations.

The raw values delivered by those layers are called logits. However, high-dimensionality data

usually exhibits a nonlinear relationship between the inputs and the outputs. To reflect that,

activation layers were introduced. Intuitively, the role of an activation layer is to decide, based

on the logits, if a neuron should fire or not and the intensity of the firing.

There exists several activation functions. Sigmoid (Fig. 1.5a) was initially proposed to simulate
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Figure 1.4 Illustration of Max pool-

ing with a 2×2 filter and stride=2

Taken from Wikipedia

contributors (2023)

a) Sigmoid b) Tanh c) Relu d) LeakyRelu

Figure 1.5 Overview of different activation functions

Adapted from Dertat (2017)

biological neurons. This function, bounded between 0 and 1, is defined as:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

1 + 𝑒−𝑥
(1.3)

It used to be one of the most used activation function but tends to be replaced as it can suffer

from vanishing gradients problems during the backpropagation phase.
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Figure 1.6 Overview of a Residual Block

Taken from He et al. (2015)

Figure 1.7 Two variants of the Residual Blocks

Left: a Basic Block with two 3x3 convolutional layers. Right:

a Bottleneck Block with a 1x1 convolutional layer for dimen-

sion reduction followed by a 3x3 convolutional layer, and

a final 1x1 convolutional layer for dimension restoration.

Taken from He et al. (2015)

Residual connections Residual networks (He et al., 2015), or ResNets, are a prominent

architecture in deep learning that addresses the vanishing gradient problem, particularly in very

deep networks. They incorporate residual connections, also known as skip connections, which

are shortcuts allowing the gradient to be directly back-propagated to earlier layers. As shown in

Fig. 1.6, these connections bypass one or more layers and add the output from an earlier layer

to a later layer. The inclusion of skip connections promotes the training of deep networks by

mitigating the loss of information through the network’s depth, thereby improving the ability to

capture complex patterns and relationships in data.
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Later on, different variants of the residual blocks were introduced, like the basic block or the

bottleneck block, as illustrated in Fig. 1.7. This architectural innovation has paved the way

for more efficient training and the design of deeper neural networks, as described in He et al.

(2015). For example, a ResNet50 model is composed of a stack of 50 residual layers, whereas a

ResNet152 has a total of 152 residual layers. Interesting to note is that residual connections are

not limited to CNNs, and are also used in more recent architecture like Transformers presented

in the following section.

1.2.3 Transformers

Transformers, originating from seminal work (Vaswani et al., 2017) in the Natural Language

Processing (NLP) field, have recently been adapted to the domain of computer vision. The

key idea behind transformer networks is to leverage the power of self-attention mechanisms to

connect all input elements directly to each other and establish long range relationships between

them.

The core components of transformer networks are multi-head self-attention layers and feed-

forward neural networks. The self-attention mechanism enables the model to assign different

weights to various elements in the input sequence, depending on their relevance to each other.

The multi-head attention employs multiple sets of attention weights to capture different types

of dependencies, allowing the model to attend to multiple aspects of the input. Additionally,

transformer networks use positional encoding to provide the model with information about the

order of the input elements, since the self-attention mechanism alone does not inherently capture

sequential information.

Vision Transformers (ViTs) were introduced in Dosovitskiy et al. (2021) and then improved

in Deit (Touvron et al., 2021), PVT (Wang et al., 2021b), TNT (Han et al., 2021), SWIN (Liu

et al., 2021b) or more recently CSWIN (Dong et al., 2022). These models aims at leveraging

the transformer’s capacity to model global dependencies within data, rather than relying on

the locality-focused, convolution-based strategies that have dominated the field of vision for
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Figure 1.8 Transformer model architecture

Taken from Vaswani et al. (2017)

years. Unlike traditional Convolutional Neural Networks (CNNs), ViTs partition an image into a

sequence of patches and process these as inputs in a manner similar to a sequence of words in a

sentence. This approach demonstrates the potential to better understand intricate and global

patterns in image data, marking a paradigm shift in visual data processing.

1.2.4 Spatial Transformer Networks

In previous paragraphs, we gained an insight into the CNNs and Transformers architecture.

One significant weakness of CNN layers is that they are equivariant under translation and not

invariant to any other transformations. Incorporating equivariance or invariance knowledge in

the representation learning in vision tasks is important to improve the performance of the trained

model. If this knowledge is available, data augmentation can be used by applying selected
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Figure 1.9 Spatial Transformer Networks architecture

Taken from Jaderberg et al. (2015)

transformations to the training dataset to learn a representation invariant to those transformations.

If this knowledge is not available, useful transformations can be learned directly from the data.

Several work have proposed extensions to the standard CNN architecture to make networks

invariant to certain types of spatial transformations, for example Group Equivariant CNNS (Co-

hen & Welling, 2016; Cohen, Weiler, Kicanaoglu & Welling, 2019). Spatial Transformer

Networks (STN) (Jaderberg, Simonyan, Zisserman et al., 2015) is a module that can be inserted

one or several times into a CNN architecture to make the model invariant to affine transformations

by learning an input dependent transformation. An input can be an image if the STN module is

added at the beginning of a CNN model or feature maps if the STN module is inserted after

an intermediate layer. Despite similar names, it is important to note that Spatial Transformer

Networks are not to be confused with Transformers presented in the previous section. It is

also essential to understand the difference between STNs and data augmentation. While data

augmentation contributes to a model’s invariance to certain transformations by introducing new

samples exhibiting those transformations during training, STNs aim to align data by eliminating

such variations.

Fig. 1.9 illustrates the three parts of the STN: i) The localization network takes an image or

feature map as input and outputs the transformation parameters 𝜃, representing the transformation

T𝜃 to be applied (for example a 2x3 matrix for affine transformations). ii) The grid generator

learns a mapping between input and output images or feature maps using the parameters 𝜃 from
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Figure 1.10 STN sampler

Taken from Jaderberg et al. (2015)

the localization network. For example, the pointwise transformation in an affine case can be

formulated as:

��	
𝑥𝑠𝑖

𝑦𝑠𝑖


�� = T𝜃 (𝐺𝑖) = 𝐴𝜃
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where (𝑥𝑡𝑖 , 𝑦

𝑡
𝑖) are the target coordinates of the grid in the output, 𝐺𝑖 the input grid, T𝜃 the

transformation learned by the localization net, (𝑥𝑠𝑖 , 𝑦
𝑠
𝑖 ) are the source coordinates in the input

image or feature map and 𝐴𝜃 is the affine transformation matrix. iii) The sampler uses the

mapping defined by the grid generator, taking input U (image or feature map) to generate the

output V (image or feature map), depending on the STN module’s position in the network.

On Fig. 1.10, we can see two examples of transformations applied to an input grid. T𝐼 is the

identity transformation and T𝜃 is an affine transformation (rotation in this case). As the module is

fully differentiable, it can be trained during the training of the whole model without any changes

in the optimization procedure.

Following seminal STN work (Jaderberg et al., 2015), improvements were proposed to extend

the space of transformations learned, for example Deep diffeomorphic transformer networks

(Skafte Detlefsen, Freifeld & Hauberg, 2018), Polar transformer networks (Esteves, Allen-

Blanchette, Zhou & Daniilidis, 2018) or Equivariant transformer networks (Tai, Bailis & Valiant,

2019).
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Figure 1.11 GAN framework

1.2.5 Generative Adversarial Networks

In the previous section, we introduced Spatial Transformer Networks, an architecture where two

networks collaborate. However, there also exist architectures, such as generative adversarial

networks, in which the networks function in an adversarial manner. Generative adversarial

networks (GANs) were introduced in seminal work by Goodfellow et al. (Goodfellow et al.,

2014). They are based on a minimax-type game were two networks with antagonist goals

learn simultaneously. The first player, known as the generator, tries to generate samples that

are as close as possible to a given training dataset and improves iteratively by incorporating

the feedback provided by the second player, the discriminator. The discriminator’s role is to

distinguish “genuine” samples coming from the original training dataset from “fake” samples

generated by the generator. Given an input sample, the discriminator yields a probability that

this sample belongs to the original dataset. An illustration of the GAN framework is given in

Fig.1.11.

In the GAN literature, the usual concept used to illustrate GANs is the one of a money

counterfeiter trying to fool the police. The GAN generator is the money counterfeiter and strives
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to produce banknotes that are as realistic as possible, whereas the GAN discriminator plays the

role of the police, trained to discern counterfeit from genuine notes. By getting feedback from

the discriminator on the quality of the generated samples, the generator improves continuously

to the point of successfully deceiving the discriminator. The discriminator is then not able to

differentiate the fake samples from the genuine ones anymore.

The first GAN architecture described in Goodfellow et al. (2014) is based on deep neural

networks. Both the generator and the discriminator are multi-layer perceptrons (MLP). They

are trained using gradient based optimization methods like stochastic gradient descent (SGD),

Adaptive Moment Estimation (Adam) or RMSProp. The cost functions are different for the

generator and the discriminator as they have different goals, but they are trained jointly in a

minimax game.

The global minimax objective function is defined as:

𝑚𝑖𝑛𝜃𝐺𝑚𝑎𝑥𝜃𝐷 E𝑥∼𝑝𝑑𝑎𝑡𝑎 log𝐷𝜃𝐷 (𝑥) + E𝑧∼𝑝𝑧 log (1 − 𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝑧))

where 𝐷 and 𝐺 represent the discriminator and generator networks, 𝜃𝐷 and 𝜃𝐺 their respective

parameters, 𝑥 a real example and 𝑧 a random noise vector. 𝐷𝜃𝐷 (𝑥) is the discriminator output

for a real example 𝑥. 𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝑧)) is the discriminator output for a fake example generated by

the generator.

The GAN learning process consists in training alternately the discriminator and the generator.

The discriminator 𝐷𝜃𝐷 tries to maximize the objective so that 𝐷𝜃𝐷 (𝑥) gets close to 1 (real) and

𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝑧)) gets close to 0 (fake). After that, the generator 𝐺𝜃𝐺 tries to minimize the objective

so that 𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝑧)) gets close to 1. In other words, it tries to fool the discriminator into

thinking the generated sample 𝐺𝜃𝐺 (𝑧) is real. Another way for 𝐺𝜃𝐺 to do that is to maximize

log𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝑧)), which yields better empirical results in terms of gradient conservation.

GANs have found extensive application in the imaging field, serving not only for image

generation but also in diverse areas such as image reconstruction, image coloring, and image
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super-resolution. Following seminal work Goodfellow et al. (2014), different variants and

improvements have been proposed to improve the image resolution or stabilize the training.

For example, DCGAN (Radford, Metz & Chintala, 2016) uses CNNs instead of simple MLPs,

Wasserstein GAN (WGAN) (Arjovsky, Chintala & Bottou, 2017) stabilizes the training by using

the earthmover algorithm to optimize the loss function, BigGAN (Brock, Donahue & Simonyan,

2019) compiles several architecture improvements to scale GAN architectures to generate high

resolution images.

However, due to the complexity of their training and the limitations in their scalability, preventing

the generation of high resolution images, GANs have been replaced recently by Diffusion models

Dhariwal & Nichol (2021) introduced in Song & Ermon (2019) and Ho, Jain & Abbeel (2020).

1.3 Useful concepts and methods

In the previous section, an overview of the essential technical components of this thesis was

introduced. In this section, we will cover key concepts and methods, starting with data

augmentation, which represents the main topic of this thesis. Then we will explore bilevel

optimization, an optimization technique we used to enhance model training efficiency. Finally,

we will focus on domain adaptation, an important topic in data scarcity scenarios.

1.3.1 Data Augmentation

Data augmentation is a form of regularization commonly used to train deep neural networks and

consists in creating new data points from an existing dataset to get a larger one. It was found

essential for achieving state-of-the-art image classification results (Hernández-García & König,

2018b).

We can first distinguish between online and offline data augmentation. Online Data Augmentation

involves dynamically generating augmented data during the training process, thereby introducing

randomness and potentially enhancing the model’s ability to generalize. This method allows for

endless variations in the data, but it can increase the computational cost, as the augmentations
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are applied on-the-fly. Conversely, Offline Data Augmentation involves creating and storing

a fixed set of augmented data prior to the initiation of training. This approach can make the

training process more computationally efficient, as the augmented data are readily available.

However, it may require significant storage space and lacks the dynamic variability provided by

online augmentation, limiting the model’s exposure to diverse transformations.

Data augmentation can usually take two forms. The first one, which is also the most common

one, is the creation of new samples by applying transformations to existing ones. Those

transformations can be geometric transformations, for instance affine transformations like

flipping, mirroring, croping, scaling, etc.. but also color transformations like contrast or

brightness alterations or style transfer. The second form of data augmentation is based on image

generation, for example with generative adversarial networks. GANs learn the data distribution

of the dataset and generate new samples by sampling from this learnt distribution. More recently,

Diffusion Models (Dhariwal & Nichol, 2021) have also been explored for data augmentation

(Hataya, Bao & Arai, 2023).

Transformation based data augmentation Transformation based data augmentation consists in

extending the dataset at disposal by applying transformations to the existing samples to create new

ones, without changing the class labels. The selection of the data augmentation transformations

is usually done using heuristics or expert domain knowledge. Usual transformations for

natural images are image flip, rotation and color changes as described in Perez & Wang

(2017); Ciresan, Meier, Gambardella & Schmidhuber (2012); Krizhevsky, Sutskever & Hinton

(2012). However, the usage of more complex transformations such as occluding parts of an

image (DeVries & Taylor, 2017b) or blending images (Zhang, Cisse, Dauphin & Lopez-Paz,

2018; Lemley, Bazrafkan & Corcoran, 2017) has also been proposed. Recently, some works have

investigated adversarial samples as a possibility of data augmentation (Gong, Ren, Ye & Liu,

2021; Suzuki, 2022). However, transformations in data augmentation are not limited to geometric

transformations. Some work have explored the impact of color transformation on the performance

of image classification models. Karargyris (2015) learns the transformation of the color space

that will improve the most the classification accuracy. Krizhevsky et al. (2012) proposes a
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decomposition of the color spectrum following the Principal Component Analysis method

in order to keep and boost the colors that contribute the most to the variance of the dataset.

Perez & Wang (2017) compares data augmentation based on style transfer to geometric and GAN

based approaches in the context of image classification. Besides geometric and color centric

transformations, Lemley et al. (2017); Zhang et al. (2018); Takahashi, Matsubara & Uehara

(2018) create new samples by merging or patching two or more samples drawn randomly from

the same class and DeVries & Taylor (2017b) by occluding part of an image.

Generated images based data augmentation Instead of transforming samples, another way

to do data augmentation is to create new samples by leveraging the image generation capacities

of generative models like generative adversarial networks or diffusion models. GANs learn

the data distribution of a particular dataset, and new samples are then created by sampling

from this learned distribution. There are several ways to use GANs in the context of data

augmentation for visual recognition tasks. The first one is to use GANs as simple image

generators. Odena, Olah & Shlens (2017) and Mirza & Osindero (2014) propose to generate

new samples conditioned on a class label. Instead of learning a mapping from random noise

to the image space, Antoniou, Storkey & Edwards (2018) learn an image-to-image mapping

and create new samples by transforming input images. One weakness of those approaches is

that a preprocessing step to learn data augmentation is needed additionally to the training of

the end task itself. In the context of image classification, some GAN models like Chongxuan,

Xu, Zhu & Zhang (2017); Tran, Pham, Carneiro, Palmer & Reid address this issue by training

the classifier jointly with the other elements of the GAN architecture in an end-to-end fashion.

Recently, Diffusion Models (Ho et al., 2020) have been proposed as alternative generative

models and are slowly replacing GANs (Dhariwal & Nichol, 2021). Some works have already

explored data augmentation using those model (Trabucco, Doherty, Gurinas & Salakhutdinov,

2023; Hataya et al., 2023).



27

1.3.2 Bilevel Optimization

Bilevel optimization (Colson, Marcotte & Savard, 2007) is an optimization framework involving

the resolution of two nested optimization problems. In this framework, one optimization problem

(the upper-level problem) includes another optimization problem (the lower-level problem) either

as a constraint or as part of its objective function. A general bilevel optimization problem can be

formulated as:

min
𝑥,𝑦

𝑓 (𝑥, 𝑦∗(𝑥))

𝑠.𝑡. 𝑦∗(𝑥) = arg min
𝑦

𝑔(𝑥, 𝑦)
(1.4)

where f is the upper-level and g the inner-level function. Solving this optimization problem means

minimizing 𝑓 with respect to 𝑥, where 𝑦∗ is obtained by solving the lower-level minimization

problem. The interplay between the upper and lower-level problems makes bilevel optimization

challenging. Typically, the solutions of the lower-level problem are not explicit functions of the

variables in the upper-level problem, making traditional optimization techniques not applicable.

As a result, specialized algorithms and techniques are often required to effectively solve bilevel

optimization problems.

Bilevel optimization in the context of deep learning is an active area of research (Chen, Chen,

Ma, Liu & Liu, 2022; Liu, Gao, Zhang, Meng & Lin, 2021a) and has many applications:

Hyperparameter Tuning In deep learning, the performance of models is heavily reliant on the

choice of hyperparameters. Bilevel optimization provides an effective framework for automating

this process. Here, the upper-level problem is the performance of the model on a validation

set, and the lower-level problem is the training of the model on a training set. A seminal work

is Bengio (2000), which uses the implicit function theorem to perform the bilevel optimization.

Subsequently, Domke (2012) is the first work to propose a gradient-based approach.

Meta-learning Bilevel optimization is a natural fit for meta-learning, or "learning to learn.",

which presents some similarities with hyperparameter optimization as shown in Franceschi,

Frasconi, Salzo, Grazzi & Pontil (2018). The outer level can be responsible for learning a
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learning strategy, while the inner level performs learning under the strategy defined by the outer

level. One seminal work in this category is MAML (Finn, Abbeel & Levine, 2017).

Model Selection Bilevel optimization can be used for model selection by framing the selection

of an architecture as an upper-level problem, with the lower-level problem being the training of

a model given a particular architecture. A seminal work is DARTS (Liu, Simonyan & Yang,

2019).

Adversarial Training Bilevel optimization can provide a theoretical underpinning for adver-

sarial training, where the inner problem involves minimizing the training loss, and the outer

problem involves maximizing the adversarial loss. This concept is well illustrated in GAN

architectures (Goodfellow et al., 2014).

One interesting thing to note is the difference between joint learning and bilevel optimization.

Joint learning refers to training multiple tasks simultaneously using a single model, where the

parameters are optimized to minimize a combined loss function that includes contributions from

all tasks. In contrast, bilevel optimization involves solving two nested optimization problems.

Bilevel optimization is typically used in scenarios where one optimization problem is embedded

within another, leading to a hierarchical structure. Joint learning, on the other hand, focuses on

optimizing multiple tasks concurrently, sharing information and parameters among them within

a single unified framework.

1.3.3 Domain adaptation

Despite their remarkable capabilities, Deep learning models often face the issue of domain shift

or distributional shift. Such models, trained on a specific domain (or source domain), often

lack generalization capacity when applied to a different but related domain (or target domain)

and tend to perform poorly. In this thesis, we consider domain adaptation as a way to cope

with this issue, which can be seen as a consequence of data scarcity. Indeed, gathering a large

amount of labeled data in every possible domain to train a model is resource-intensive and often

impracticable due to time, cost, and privacy concerns. Domain adaptation techniques provide a
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remedy by enabling the models to leverage the knowledge learned in one domain and apply it to

another. Domain adaptation is crucial in scenarios where it is not feasible or possible to capture

all potential variations during training, for example in biomedical imaging (Guan & Liu, 2021).

It allows models to handle such variations, enhancing their performance and versatility. Domain

adaptation also extends the lifespan and utility of models by allowing them to adapt to evolving

circumstances. For example, models can adapt to changes in data over time (Yao, Choi, Lee,

Koh & Finn, 2022).

Domain adaptation and associated concepts have been an active area of research and has

generated a large corpus of work (Csurka, 2017; Patel, Gopalan, Li & Chellappa, 2015; Wang,

Lan, Liu, Ouyang & Qin, 2023; Wilson & Cook, 2020).

Domain adaptation methods initially required access to the target domain during training (Csurka,

2017). Unsupervised domain adaptation (UDA) (Pan, Tsang, Kwok & Yang, 2011; Patel et al.,

2015) relaxed this by not needing target domain labels (Wilson & Cook, 2020). In UDA,

the model is trained on a labeled source domain and adapted to an unlabeled target domain,

aiming to minimize the distribution discrepancy between the two domains. Common strategies

include learning domain-invariant features (Kang, Jiang, Yang & Hauptmann, 2019; Long, Cao,

Wang & Jordan, 2015; Sun & Saenko, 2016), using a “domain discriminator” (Ganin & Lempitsky,

2015; Purushotham, Carvalho, Nilanon & Liu, 2017), adversarial training (Ganin & Lempitsky,

2015) or domain alignment directly in the input space (Hoffman et al., 2018). More recently,

contrastive learning has also been explored in the context of UDA in Shen et al. (2022). However,

Despite their interesting performance, these methods still require access to both source and

target domains during training.

Test Time Adaptation (TTA) (Liang, Hu & Feng, 2020; Iwasawa & Matsuo, 2021), which

is also referred to as Source-free domain adaptation (SFDA) in some works (Chidlovskii,

Clinchant & Csurka, 2016; Liang et al., 2020; Yang, Wang, van de Weĳer, Herranz & Jui, 2021a;

Kundu, Venkat, M V & Babu, 2020; Yang, Wang, van de Weĳer, Herranz & Jui, 2021b; Boudiaf,

Denton, van Merriënboer, Dumoulin & Triantafillou, 2023), allows adaptation without using
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training data during the process. TTA scenarios assume access to a pretrained model and aims at

leveraging unlabeled test instances from a (shifted) target distribution to make better predictions.

There are many possible taxonomies of TTA methods (Liang, He & Tan, 2023). In this thesis

chapter, we limit our scope to the distinction between Offline and Online TTA methods.

Offline TTA The particularity of Offline TTA methods is that the model adaptation is done

using test data already available, and the evaluation on a held-out subset of the test data. In this

category belong conventional UDA methods (Saito, Watanabe, Ushiku & Harada, 2018; Zhang,

Levine & Finn, 2022), UDA methods using generative modeling (Li, Jiao, Cao, Wong & Wu,

2020; Kundu et al., 2020; Yeh, Yang, Yuen & Harada, 2021; Kurmi, Subramanian & Namboodiri,

2021; Qiu et al., 2021) to align features without access to source data, or methods using

information maximisation (Liang et al., 2020). Niu et al. (2022) also consider conventional

Continual Learning methods, for example Kirkpatrick et al. (2016); Li & Hoiem (2016), as

Offline TTA methods.

Online TTA Online TTA is of particular interest for online applications, in which the model

receives samples as a stream, which can be seen as a special case of data scarcity. Online TTA

shares important motivations and similarities with concurrent settings mentioned earlier, like

SFDA. In SFDA, methods also leverage samples from the target distribution of interest and

have no access to source data, but the evaluation is still done on held-out test data. In other

words, Online TTA is the transductive counterpart of SFDA. Operational requirements for online

applications break crucial properties of the vanilla TTA setting, e.g. large batch size or class

balance. Under such operational requirements, standard TTA methods degrade, underperforming

the non-adapted baseline and even degenerating to random performance in some cases (Boudiaf,

Mueller, Ayed & Bertinetto, 2022; Niu et al., 2023). Proposed Online TTA methods usually

employ one or a combination of the following techniques: self-training to reinforce the model’s

own predictions through entropy minimization (Wang, Shelhamer, Liu, Olshausen & Darrell,

2021a) or Pseudo-Labelling schemes (Lee, 2013), manifold regularization to enforce smoother

decision boundaries through data augmentation (Zhang et al., 2022) or clustering (Boudiaf et al.,
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2022), feature alignment to mitigate covariate shift by batch norm statistic adaptation (Li, Wang,

Shi, Liu & Hou, 2017; Schneider et al., 2020; Nado et al., 2020; Lim, Kim, Choo & Choi,

2023; Zhao, Chen & Xia, 2023), sample re-weighting (Zhao et al., 2023; Niu et al., 2022) and

meta-learning methods (Goyal, Sun, Raghunathan & Kolter, 2022) that try to meta-learn the

best adaptation loss. Some methods also adopt continual learning constraints and consider the

accuracy on previously seen domain during the adaptation process (Niu et al., 2022; Wang, Fink,

Van Gool & Dai, 2022). Test-time Training(TTT) methods (Sun et al., 2020; Osowiechi et al.,

2022) are a particular case of Online TTA involving test-time adaptation via self-supervision.

TTT works by constructing an auxiliary task that can be solved both at training and adaptation

time and therefore, requires an adhoc training procedure.





CHAPTER 2

ADVERSARIAL LEARNING OF GENERAL TRANSFORMATIONS FOR DATA
AUGMENTATION

In this chapter, we begin our exploration of data augmentation as a strategy for improving the

performance of visual recognition models. The work presented leverages the capabilities of

generative models, specifically generative adversarial models (GANs), to produce new images

that improve the performance of an image classifier. The choice of this architecture type is

based on the intuitive understanding that generative models have the power to learn more

complex variations within an existing dataset, thus alleviating the limitations of traditional data

augmentation methods relying on simple transformations chosen heuristically.

2.1 Introduction

Convolutional neural networks have shown impressive results in visual recognition tasks (Hu,

Shen & Sun, 2018). However, for a proper training and good performance, they require large

labeled datasets (Mahajan et al., 2018; Sun et al., 2017). If the amount of training data is

small, regularization techniques (Srivastava, Hinton, Krizhevsky, Sutskever & Salakhutdinov,

2014; Krogh & Hertz, 1992) can help the model avoid overfitting. Among these techniques,

data augmentation is one of the most effective in improving the final performance of the

network (Hernández-García & König, 2018a; Perez & Wang, 2017).

In image processing, data augmentation consists in applying predefined transformations such

as geometric transformations like flip or rotations and color changes (Krizhevsky et al., 2012;

Ciresan et al., 2012) to samples at disposal. This approach works quite well and provides a

consistent improvement of the accuracy when training a classifier. However, selecting the right

transformations require prior knowledge and chosen transformations are dataset dependent. For

instance, while horizontal flipping is appropriate for natural images, it produces ambiguities

(e.g. 2 and 5) on number datasets.
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a) Predefined transformations b) GAN image generation

c) Our approach

Figure 2.1 Automatic data augmentation approaches

(a) Sequence of predefined transformations are automatically selected. (b) GAN model

generates new images from the same distribution. (c) Our approach combines the advantages

of the these two methods by combining affine transformations generated by a spatial trans-

former network and a transformation generated by a convolutional encoder decoder model.

Several studies have investigated automatic data augmentation learning, to avoid the manual

selection of transformations. Ratner, Ehrenberg, Hussain, Dunnmon & Ré (2017) define a

large set of transformations and learns how to combine them (Fig.2.1(a)). This approach yields

good results, but is based on predefined transformations, which prevents the learning of other

transformations that could be useful for the classifier. Alternatively , Chongxuan et al. (2017)

and Tran et al. generate new samples via a generative adversarial networks (GAN) based model

from the probability distribution of the data 𝑝(𝑋) (Fig.2.1(b)). Those methods show their

limit when the number of training samples is low, as training a good generative model with a

reduced training dataset is challenging. Hauberg, Freifeld, Larsen, Fisher & Hansen (2016)

learn the natural transformations existing in a dataset by aligning pairs of samples from the same
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class. This approach is efficient on easy datasets like MNIST but seems not applicable on more

complex datasets.

Our work combines the advantages of generative models and transformations learning approaches

in a single end-to-end network architecture. Firstly, instead of learning to generate samples,

our model learns to generate transformations of a given sample. In other words, instead of

generating samples from 𝑝(𝑋), we learn to generate samples from 𝑝( �̂� |𝑋), with 𝑋 a training

data point, which is easier, especially when the training data is reduced. As shown in Fig. 2.1(c),

we propose an approach that combines a first transformation defined by an affine matrix with a

transformation defined by a convolutional encoder-decoder architecture. In practice, we find

that the affine transformation learns global image transformations, while the encoder-decoder

architecture learns more localized transformations such as local image distortions and color

changes. Thus, the combination of the two leads to a general distribution of transformation

that can be applied to any image-based training data and is not specific to a given domain or

application.

Secondly, affine transformations are learned by an adaptation of spatial transformer networks

(STN) (Jaderberg et al., 2015), so that the entire architecture is differentiable and can be learned

with standard backpropagation. The original purpose of STN is to learn to transform the input

data so that it becomes invariant to certain transformations. In contrast, our approach uses STN

to generate a distribution of augmented samples in an adversarial way. We experimentally show

that our approach is more effective in improving the classifier accuracy. Finally, we show that

for optimal performance, it is important to jointly train the generator of the augmented samples

with the classifier in an end-to-end fashion. By doing that, we can also add an adversarial loss

between the generator and classifier such that the generated samples are difficult, or adversarial,

for the classifier. This further increases the final classifier accuracy.

We tested our approach on MNIST, fashion MNIST, SVHN and CIFAR-10 datasets, both in full

dataset and low-data regime. Our empirical results show that (i) each component of the network
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is important for optimal performance; and that (ii) for a given classifier architecture, our method

outperforms the hand-defined data augmentation and most of the previous methods.

2.1.1 Contributions

To summarize, the contributions of this work are:

• We propose a data augmentation network that is fully differentiable, trainable end-to-end,

and can significantly improve the performance of any image-based classifier;

• We devise STN in an adversarial way that together with an encoder-decoder architecture is

able to learn a distribution of general transformations for augmenting the training data;

• We experimentally show that, for data augmentation, learning image transformations is better

than generating images from scratch and that learning data augmentation and classification

jointly is more effective than in two separate tasks.

2.2 Related Work

2.2.1 Standard Data Augmentation

Data augmentation is an efficient regularizer for improving the performance of visual recognition

methods (Hernández-García & König, 2018b), especially when dealing with small training sets

prone to overfitting (Wagner, Thom, Schweiger, Palm & Rothermel, 2013). Data augmentation

is based on specific domain knowledge about data transformations useful for an end task, while

keeping the semantic meaning of the data. For natural image classification, the standard form of

data augmentation is affine transformations like flip, rotation or color changes (Perez & Wang,

2017). However, more complex transformations such as occluding parts of an image (De-

Vries & Taylor, 2017b) or blending two or more images (Zhang et al., 2018; Lemley et al., 2017)

were also proposed. Finally, DeVries & Taylor (2017a) uses a form of data augmentation by

adding noise, interpolating, or extrapolating between samples in the feature space, instead of

in the input space. Adding the transformed samples in the training data can highly improve
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the end task performance, but, especially with new tasks and datasets, it is not clear which

transformations are helpful or, on the opposite, harmful.

2.2.2 Model-based Transformations

Recently, some approaches tried to make the data augmentation automatic, to avoid the manual

selection of transformations. Ratner et al. (2017) propose to learn a sequence of predefined

transformations to generate new samples. By using a generative adversarial network (GAN), the

generated samples are enforced to be close to the training data distribution. This approach works

well, but is limited to a set of predefined transformations, which prevents other possibly helpful

transformations to be learned. Additionally, as transformations might not be differentiable,

optimization is performed with a reinforcement learning approach. This can make the training

more difficult and slow. Sixt, Wild & Landgraf (2018) and Shrivastava et al. (2017) generate

augmented samples from initial 3D models of the data and refine them with GANs. These

approaches work quite well, but need a strong prior knowledge of how to generate the initial 3D

view. We follow a similar approach of first generating a global transformation and then refining

it, but without using any domain specific 3D model. Instead, we learn a transformation from the

given samples with a spatial transformer network Jaderberg et al. (2015). This is more difficult

because the transformations are learned, but more generic and applicable to any dataset. Hauberg

et al. (2016) learn class specific transformations by considering pairs of samples within a class

and learning the distribution of the transformations, morphing one element of the pair to the

other. This approach seems applicable only to simple datasets like MNIST. In the context of

medical imaging, Zhao, Balakrishnan, Durand, Guttag & Dalca (2019) learn distributions of

spatial and appearance transformations by aligning labeled and unlabeled samples to create new

synthetized labeled samples. Those new labeled samples are used to improve the performance

of an image segmentation models for brain MRIs. Finally, Peng, Tang, Yang, Feris & Metaxas

(2018) propose to train jointly a data augmenter (again based on pre-defined transformations)

and an end-task network for human pose estimation.
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2.2.3 Adversarial Training

Goodfellow, Shlens & Szegedy (2015) showed how to induce a trained neural network to perform

a wrong classification by minimally changing the image. They compute the gradient of the loss

of the network with respect to the image pixels and use it to modify only the most influential

pixels. This results in new images (adversarial) that are almost indistinguishable for humans, but

wrongly classified by the net. Miyato, Maeda, Koyama & Ishii (2018) extended the approach to

unlabeled samples. The adversarial images can be added to the training data to improve the

robustness to adversarial examples. This also improves the classifier accuracy and can be seen as

a form of data augmentation. However, this method does not fully exploit the data augmentation

power as the learned transformations are constrained to small changes in order to maintain

unaltered the appearance of the image.

2.2.4 Generic Transformations with GANs

Multiple approaches use generative models to generate the augmented samples at pixel level with

a convolutional encoder-decoder architecture. In theory, this is more powerful and flexible than

defining a set of predefined transformations, provided that the dataset is large enough to learn

the generative model. For instance, Mirza & Osindero (2014) and Odena et al. (2017) proposed

to generate images conditioned on their class, which could be directly used to augment a dataset.

CatGAN (Springenberg, 2016) on the other hand, performs unsupervised and semi-supervised

learning as a regularized information maximization problem Krause, Perona & Gomes (2010)

with a regularization based on the generated samples. Also based on GAN, but directly used for

data augmentation, is the model proposed by Antoniou et al. (2018). In this case, the authors

condition directly on a given image. From our experiments, this method seems to produce

suboptimal results because the generation is performed independently of the classification.

Salimans et al. (2016) train a discriminator coupled to a classifier by adding an additional class

to the classifier for generated images. In this case, the unlabeled data generated by the generator

can be seen as a form of data augmentation. Zhang, Wang, Liu & Ling (2019) extend this idea

to low data regime by using a finer grain for the classifier. Instead of using K+1 classes as in
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Salimans et al. (2016), the classifier in this model uses in 2K classes, K classes for real data

and K classes for generated data. Triple GAN Chongxuan et al. (2017) and Bayesian Data

Augmentation Tran et al. train a classifier jointly with the generator. We follow the same strategy.

However, these models are based on the direct generation of samples from noise, and, as we

show in our experiments, this seems more difficult than transforming a given image (as we do),

especially when the training data is reduced. Notice that most of the presented GAN models

are designed for semi-supervised learning. Instead, our aim is to train with a reduced dataset,

without additional (non annotated) images. This is a more challenging task, and therefore a

direct comparison is difficult and out of the scope of this work.

2.3 Proposed Model

In this work, we aim to improve the performance of an image classifier by augmenting the training

dataset with samples synthetized by transforming the initial dataset with learned transformations.

Our goal is to learn a distribution of image transformations T , so that given an input image 𝑥𝑖,

T (𝑥𝑖) represents all image transformations such that the semantic meaning of the image, i.e. its

class 𝑦𝑖, is preserved. We expect this distribution to be the optimal set of transformations to

augment the training data of a given classifier 𝐶.

To learn this distribution, we propose the GAN based architecture shown in Fig. 2.2(a). This

architecture involves four modules. A generator 𝐺 transforms the input images and is supported

by two discriminators, imposing constraints on the generated samples. The first one, 𝐷𝐶 , is the

class discriminator and ensures that the generated sample stays in the same class as the input

sample. The second one, 𝐷𝐷 , is the dissimilarity discriminator, and ensures that the transformed

sample is different from the input sample. This is necessary to prevent the generator from

learning the identity transformation, which would not help the classifier. Finally, a classifier 𝐶

performs the final classification task. Training our model consists in finding the equilibrium

in a multiple two-player game. Indeed, we solve jointly the adversarial game between 𝐺 and

𝐷𝐶 , 𝐺 and 𝐷𝐷 and finally between 𝐺 and 𝐶. In contrast to previous GAN architectures also
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a) Model architecture. b) Architecture of G.

Figure 2.2 Proposed model

(a) A classifier 𝐶 receives augmented images from a generator 𝐺
challenged by two discriminators 𝐷𝐶 and 𝐷𝐷 . The class discriminator

𝐷𝐶 ensures that the generated image 𝐺 (𝑥𝑖, 𝑧) belongs to the

same class as the input image 𝑥𝑖 with label 𝑦𝑖. The dissimilarity

discriminator 𝐷𝐷 ensures that the transformed sample 𝐺 (𝑥𝑖, 𝑧)
is dissimilar from the input sample 𝑥𝑖 but similar to a sample

𝑥 𝑗 from the same class. (b) Given an input image 𝑥𝑖 and a noise

vector 𝑧, our generator first performs a global transformation

using a spatial transformer network, followed by more localized

transformations using a convolutional encoder-decoder network.

including a classifier (e.g. Triple GAN Chongxuan et al. (2017) and Bayesian DA Tran et al.),

we introduce an additional loss pushing the generator to produce images that are difficult to

classify, and this also helps to improve the classifier.

In the following paragraphs, we formally describe in detail each part of the model.

2.3.1 Generation of augmented samples

The role of the generator 𝐺, is to learn the distribution T of the transformations of input images

that are the most useful to train the classifier𝐶. In our intuition, learning an image transformation
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instead of learning a mapping from noise to image to generate new samples (as in previous

work), is an easier task in low data regime.

As shown in Fig. 2.2(b) the generator is composed of two elements: a Spatial Transformer Network

(STN) that learns global affine transformations and a U-Net (Ronneberger, Fischer & Brox

(2015)) variant that can learn, in principle, any other transformation. While in the original

paper the spatial transformer module was used for removing invariances from the input data, the

proposed model generates transformed samples (controlled by 𝑧) in an adversarial way.

The entire transformations of an input image 𝑥𝑖 and a random noise vector 𝑧 can be formulated

as:

𝐺 (𝑥𝑖, 𝑧) = 𝐷𝐸𝐶 (𝐸𝑁𝐶 (𝑇 (𝑥𝑖, 𝐸𝑁𝐶 (𝑥𝑖, 𝑧)), 𝑧)). (2.1)

The input image 𝑥𝑖 and noise 𝑧𝑖 are encoded into a vectorial representation through 𝐸𝑁𝐶 . This

representation is then passed to the spatial transformer network 𝑇 , which generates an affine

transformation and applies it to transform 𝑥𝑖. Finally, the transformed image is passed to a U-Net,

composed of a convolutional encoder 𝐸𝑁𝐶 and decoder 𝐷𝐸𝐶 .

The loss function of the generator can be formulated as the weighted sum of three terms:

L𝐺 = −𝛼E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎 ,𝑧∼𝑝𝑧
[
log (𝐷𝐶 (𝐺 (𝑥𝑖, 𝑧), 𝑦𝑖))

]
−𝛽E𝑥𝑖∼𝑝𝑑𝑎𝑡𝑎,𝑧∼𝑝𝑧

[
log (𝐷𝐷 (𝑥𝑖, 𝐺 (𝑥𝑖, 𝑧)))

]
−𝛾E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎

[
log (1 − 𝐶𝑦𝑖 (𝐺 (𝑥𝑖, 𝑧))

]
,

(2.2)

in which 𝐷𝐶 , 𝐷𝐷 are respectively the class and dissimilarity discriminator. Their role is to

enforce constraints on the transformed image. More details will be given in the following

paragraphs. 𝐶𝑦𝑖 is the softmax output of the classification network for the class 𝑦𝑖, i.e. the

probability that the given image belongs to the class 𝑦𝑖. Finally, 𝛼, 𝛽 and 𝛾 are hyperparameters

introduced to balance the three loss terms and stabilize the training of the model.

The first term of the loss function increases the probability 𝐷𝐶 (𝐺 (𝑥𝑖, 𝑧), 𝑦𝑖) that a transformed

sample 𝐺 (𝑥𝑖, 𝑧) belongs to the same class 𝑦𝑖 as the original sample. The second term increases
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the probability 𝐷𝐷 (𝑥𝑖, 𝐺 (𝑥𝑖, 𝑧)) that the original sample 𝑥𝑖 and the transformed sample 𝐺 (𝑥𝑖, 𝑧)

are different. Finally, the third term reduces the probability of a correct classification 𝐶𝑦𝑖 of the

transformed sample 𝐺 (𝑥𝑖, 𝑧). This loss pushes the generator to produce images that are difficult

to classify and, if properly balanced, helps to improve the classifier (see Sec. 2.5.4 Adversarial

loss).

2.3.2 Constraints on transformations

To enforce transformations that do not alter the class of an image, two discriminators support the

generator. The first one, the class discriminator 𝐷𝐶 , ensures that the generated image belongs

to the same class as the original image, whereas the second, the dissimilarity discriminator

𝐷𝐷 , ensures that the generated sample is different from the original sample. The motivation

behind this design is that we want to create new samples that are as different as possible from

the original samples but still in the same class distribution.

The first discriminator, 𝐷𝐶 , receives as input an image (either a real image 𝑥𝑖 or a transformed

image 𝐺 (𝑥𝑖, 𝑧)) and a class label 𝑦𝑖 and outputs the probability of the image to belong to that

class. Its loss function can be formulated as:

L𝐷𝐶 = −E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎
[
log (𝐷𝐶 (𝑥𝑖, 𝑦𝑖))

]
−E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎 ,𝑧∼𝑝𝑧

[
log (1 − 𝐷𝐶 (𝐺 (𝑥𝑖, 𝑧), 𝑦𝑖))

]
.

(2.3)

The first term increases the probability 𝐷𝐶 (𝑥𝑖, 𝑦𝑖) that a real sample 𝑥𝑖 belongs to class 𝑦𝑖,

whereas the second term reduces the probability 𝐷𝐶 (𝐺 (𝑥𝑖, 𝑧), 𝑦𝑖) that a generated sample

𝐺 (𝑥𝑖, 𝑧) belongs to the same class 𝑦𝑖. In this way, the discriminator learns to distinguish between

real and generated samples of a certain class.

The second discriminator, 𝐷𝐷 , takes a pair of samples as input (either two different samples of

the same class 𝑥𝑖, 𝑥 𝑗 or a sample 𝑥𝑖 and its transformation 𝐺 (𝑥𝑖, 𝑧)), and outputs a dissimilarity
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probability between the two samples. Its loss function can be formulated as:

L𝐷𝐷 = −E𝑥𝑖 ,𝑥 𝑗∼𝑝𝑑𝑎𝑡𝑎
[
log (𝐷𝐷 (𝑥𝑖, 𝑥 𝑗 ))

]
−E𝑥𝑖∼𝑝𝑑𝑎𝑡𝑎 ,𝑧∼𝑝𝑧

[
log (1 − 𝐷𝐷 (𝑥𝑖, 𝐺 (𝑥𝑖, 𝑧)))

] (2.4)

The first term of the loss function increases the probability 𝐷𝐷 (𝑥𝑖, 𝑥 𝑗 ) of a sample 𝑥𝑖 and another

sample from the same class 𝑥 𝑗 belonging to the same class, whereas the second term reduces the

probability 𝐷𝐷 (𝑥𝑖, 𝐺 (𝑥𝑖, 𝑧)) of the same sample 𝑥𝑖 and the corresponding transformed sample

𝐺 (𝑥𝑖, 𝑧) to be part of the same class. In this way this discriminator enforces that the transformed

sample 𝐺 (𝑥𝑖, 𝑧) belong to the same class as 𝑥𝑖 while being different (as we never use 𝑥 𝑗 = 𝑥𝑖).

Thus, it enforces dissimilarity between the transformed sample and the original one.

2.3.3 Classification.

The image classifier𝐶 is trained jointly with the generator and the two discriminators. 𝐶 receives

as input real samples 𝑥𝑖 as well as augmented samples, i.e. samples transformed by 𝐺. Its loss

function can be formulated as:

L𝐶 = −E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎
[
log (𝐶𝑦𝑖 (𝑥𝑖))

]
−E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎 ,𝑧∼𝑝𝑧

[
log (𝐶𝑦𝑖 (𝐺 (𝑥𝑖, 𝑧)))

] (2.5)

This loss is a classical cross-entropy loss that enforces the classifier to give higher probability to

the correct class in case of real 𝑥𝑖 or augmented samples 𝐺 (𝑥𝑖, 𝑧).

Global Loss. Training our model consists in finding the equilibrium in a multiple two-player

game. Indeed, we solve jointly the adversarial game between 𝐺 and 𝐷𝐶 , 𝐺 and 𝐷𝐷 and finally

between 𝐺 and 𝐶. The global loss can be formulated as:

L = L𝐺 + L𝐷𝐶 + L𝐷𝐷 + L𝐶 (2.6)

During optimization, we sequentially minimize a mini-batch of each loss. Notice that L𝐺 tries to

maximize 𝐷𝐶 of the transformed samples 𝐺 (𝑥𝑖, 𝑧), while L𝐷𝐶 tries to maximize 1 − 𝐷𝐶 , which
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corresponds to minimize 𝐷𝐶 . The same also for 𝐷𝐷 and 𝐶. This is not a problem, in fact it

shows that the defined loss is adversarial, in the sense that generator and discriminator/classifier

“fight” to push the losses in different directions. This mechanism generates augmented samples

that help the training of the classifier, i.e. samples that belongs to the right class but are close to

the decision boundaries.

2.4 Experimental setup

2.4.1 Datasets

In our experiments, we validated our model on the four following datasets:

MNIST (Lecun et al., 1998) is a dataset of handwritten grayscale digits. The full dataset contains

70,000 samples, 60,000 training samples and 10,000 test samples. In our experiments with

reduced dataset, we use a subset of 550 samples as in Ratner et al. (2017). Fashion-MNIST (Xiao,

Rasul & Vollgraf, 2017) is a dataset of grayscale fashion articles. The full dataset is composed

of 70,000 samples, 60,000 training samples and 10,000 test samples. Similarly to MNIST,

we use a subset of 550 samples in our experiments with reduced dataset. Street View House

Numbers (SVHN) (Netzer et al., 2011) is a dataset of 32×32 pixels images of real world

color photos of house numbers. It is composed of 73257 training samples and 26032 test

samples. In our experiments with reduced dataset, we use a subset of 1000 training samples.

CIFAR10 (Krizhevsky et al., 2009) is a dataset of 10 classes color natural images of size 32×32.

The full dataset is composed of 60,000 images, 50,000 training images and 10,000 training

images. In our experiments with reduced dataset, we use a subset of 4000 training samples as in

Ratner et al. (2017).

We did not experiment on datasets with higher resolution images due to the known difficulties of

standard GAN models to generate good quality high resolution images. We leave experiments

with more advanced GAN optimization and models to a future work.
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2.4.2 Implementation Details

In all our experiments, we standardize images as basic pre-processing, which consists in

subtracting the mean pixel value, and then dividing by the pixel standard deviation.

2.4.3 Model architecture

The generator network architecture is described in Appx. I-3. It takes as input an image and a

Gaussian noise vector (100 dimensions), which are concatenated in the first layer of the network.

The three parameters 𝛼, 𝛽 and 𝛾 of the generator loss are estimated on a validation set. For the

class discriminator 𝐷𝐶 , we use the same architecture as Dai, Yang, Yang, Cohen & Salakhutdinov

(2017) and described in Appx. I-1. The network is adapted to take as input an image and a

label (as a one hot vector). These are concatenated and given as input to the first layer of the

architecture. For the dissimilarity discriminator 𝐷𝐷 , we use a similar architecture described in

Appx. I-2. The network is adapted to take as input a pair of images, which are concatenated in

the first layer of the architecture. For the classifier, we use the architecture used in Dai et al.

(2017) and described in Appx. I-4. We use Adam as optimizer.

2.5 Results

We present several experiments to better understand our model and compare it with the State-of-

the-art in automatic data augmentation. In a first set of experiments, we compare the performance

of learning data transformations to standard data augmentation for different sizes of the training

datasets. In a second one, we compare the performance of our model to other State-of-the-art

models. In a third one, we show the importance of learning jointly the data augmentation and

the classifier, and finally, we analyze the contribution of each model component to the classifier

accuracy.
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2.5.1 Comparison with Standard Data Augmentation

In this series of experiments, we compare the data augmentation learned by our model to

standard pre-defined data augmentation. In order to do this, we define two different levels of data

augmentation. Light DA refers to random padding of 4 pixels on each side of the image, followed

by a crop back to the original image dimensions. Strong DA includes the same augmentation as

light DA but also rotation in range [-10, 10] degrees, scaling, with factor in range [0.5, 2]. For

CIFAR10, strong DA also includes a horizontal image flip.

In a first experiment, we compare the accuracy of the baseline classifier without any data

augmentation (Baseline), the baseline with two levels of pre-defined data augmentation (Baseline

+ light DA or Baseline + Strong DA), and our data augmentation model (Our Model) while

increasing the number of training samples. For very few samples (1000) the predefined data

augmentation is still better than our approach. When the generation of the samples is learned

with a dataset too small, the generator produces poor samples that are not helpful for the classifier.

When the number of samples increases, our approach obtains a much better accuracy than the

approach with standard data augmentation. For instance, at 4000 training samples, the baseline

obtains an accuracy of 66%, the predefined data augmentation obtains an accuracy of 76% and

our model reaches an accuracy of 80.5%, thus a net gain of 14 points compared with the baseline

and 4 points compared to the data augmented model. If we add more examples, the gap between

our learned data augmentation and the standard data augmentation tends to reduce. With the full

dataset we reach about a half a point more than the standard data augmentation.

In a second experiment, we compare different types of data augmentation on four datasets with

a reduced number of samples. As shown in Tab. 2.1, our best model is always performing

better than light DA and strong DA. This means that our data augmentation model learns

transformations that are more useful for the final classifier. Notice that on FMNIST, light DA

decreases performance of the final classifier. This suggests that data augmentation is dataset

dependent, and transformations producing useful new samples in some domains might not be

usable in others.
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Figure 2.3 Classification Accuracy (%) vs

number of training samples on CIFAR10

Our method is effective when the number of samples is reduced. However,

for too few samples, normal data augmentation it is still slightly better.

Table 2.1 Comparison of classification ac-

curacy (%) with DA on different datasets

In low data regime, our model performs better than

light DA and strong DA on the four considered

datasets. With training data, we expect a saturation

of the improvement similar to Fig. 2.3 for CIFAR10.

MNIST FMNIST SVHN CIFAR10

Method 550 550 1000 4000

Baseline 90.81 79.02 79.55 66.73

Baseline + light DA 97.55 78.96 84.48 74.76

Baseline + strong DA 98.50 80.37 84.33 77.74

Our model 98.61 82.43 86.07 80.5

2.5.2 Comparison with State of the Art

In Tab. 2.2 we compare our method with other approaches for automatic data augmentation.

Compared with TANDA (Ratner et al., 2017), our method yields slightly lower accuracies.

However, TANDA is based on the selection of predefined transformations. This means that its
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Table 2.2 Comparison of classification ac-

curacy (%) to other automatic DA Methods

We compare the accuracy of our model with other methods performing automatic

data augmentation on MNIST and CIFAR10. Notice that we use only labelled sam-

ples for the training, therefore the task is harder than in semi-supervised learning.

MNIST CIFAR10 CIFAR10

Method Model 550 4000 Full

Baseline ConvNet 90.81 66.23 89.88

Bayesian DA Tran et al. ResNet18 - - 91.0

DADA Zhang et al. (2019) ResNet56 - 79.3 -

TANDA Ratner et al. (2017)(MF) ResNet56 96.5 79.5 94.4

TANDA Ratner et al. (2017)(LSTM) ResNet56 96.7 81.5 94.0

Our model ConvNet 96.0 80.50 93.0

learning is reduced to a set of manually selected transformation, which facilitates the task. Also,

TANDA uses an additional standard data augmentation based on image crop, while our method

does not need any additional data augmentation. On the other hand, our method compares

favorably to Bayesian DA Tran et al. and DADA Zhang et al. (2019), both based on GAN models

with a larger neural network as classifier. This shows that our combination of global and local

transformations helps to improve the final performance of the model. Notice that our approach

considers only fully supervised data, thus a direct comparison with semi-supervised methods,

such as Chongxuan et al. (2017); Springenberg (2016); Miyato et al. (2018), that make use of

unlabeled data, would not be fair.

2.5.3 Joint Training

In this experiment, we compare the performance of our method, in case of joint and separate

training. In joint training, the augmented images generator and the classifier are trained

simultaneously end-to-end, as explained in our method. In separate training, the generator is

first trained to generate augmented images, and these images are then used as data augmentation

to improve the classifier. In case of separate training, we collect samples from different phases

of the training: at epochs 200, 500, 700, 1000.
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Figure 2.4 Classification Accuracy (%) over epochs on 4000 sam-

ples of CIFAR10 for a baseline classifier and our joint training.

We compare them with a separate data augmentation

training at 200, 500, 700 and 1000 training epochs.

On Fig. 2.4, it is interesting to notice the different behaviour of the two methods. In the early

phase of training, at epochs 200, both the Separate training (blue line) and the Joint training

(green line) perform above 70%, whereas the Baseline (red line) is much lower. However, with

additional training epochs, the performance of Separate training decreases, while baseline

and joint training accuracies increase. From this experiment, it seems clear that for sample

generation based on generic transformations (in contrast to predefined transformations as in

Ratner et al. (2017)), the joint training of the generator and the classifier is important for optimal

performance. This may be why Data Augmentation GAN (Antoniou et al., 2018) seems to work

only with a very reduced set of examples.

We believe that for good performance in data augmentation it is not just about generating

plausible augmented samples, but also about generating the right samples at the right moment,

as in curriculum learning Bengio, Louradour, Collobert & Weston (2009). Our understanding

is that in the beginning of training, even poor generated samples can help to improve the

optimization. However, towards the end of the training, only realistic samples are needed for
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improved accuracy. Notice also that if we use samples generated towards the end of training,

the performance of the classifier drops even below the baseline model. This is probably due

to the fact that the generated samples are too complex for the classifier, and it cannot learn

how to generalize on them. Also, consider that in case of separate training, it would not be

possible to use the adversarial loss on the classifier 𝐺𝐴𝐷𝑉 , which also helps to improve the final

performance.

2.5.4 Ablation Study

Table 2.3 Ablation Study on CIFAR-

10 with 4000 training samples.

𝐶 = CNN classifier; 𝑇 = standard spatial transformer

network applied to the image; 𝐷𝐸𝐶 = CNN decoder,

from noise or small code to image; 𝐸𝑁𝐶 + 𝐷𝐸𝐶 =

combination of CNN encoder and decoder to obtain a

new image; 𝑇 + 𝐸𝑁𝐶 + 𝐷𝐸𝐶 = adversarial use of the

STN; 𝐷𝐶 = Class Discriminator; 𝐷𝐷 = Dissimilarity

Discriminator; 𝐺𝐴𝐷𝑉 = adversarial loss on the classifier.

Conf. Components Acc. (%)

(a) 𝐶 66.73

(b) 𝐶 + 𝑇 64.75

(c) 𝐶 + 𝑇 + 𝐷𝐶 + 𝐷𝐷 70.62

(d) 𝐶 + 𝐷𝐸𝐶 + 𝐷𝐶 68.03

(e) 𝐶 + 𝐸𝑁𝐶 + 𝐷𝐸𝐶 + 𝐷𝐶 67.24

(f) 𝐶 + 𝐸𝑁𝐶 + 𝐷𝐸𝐶 + 𝐷𝐷 67.11

(g) 𝐶 + 𝐸𝑁𝐶 + 𝐷𝐸𝐶 + 𝐷𝐶 + 𝐷𝐷 73.82

(h) 𝐶 + 𝐸𝑁𝐶 + 𝐷𝐸𝐶 + 𝑇 + 𝐷𝐶 + 𝐷𝐷 80.14

(l) 𝐶 + 𝐸𝑁𝐶 + 𝐷𝐸𝐶 + 𝑇 + 𝐷𝐶 + 𝐷𝐷 + 𝐺𝐴𝐷𝑉 80.51

In Tab. 2.3 we evaluate the importance of the different components of our network on CIFAR10

with 4,000 training samples. First we evaluate the impact of each basic module used for data

augmentation and then consider their combination. Notice how the classification accuracy goes

from 66% accuracy of a normal classifier (a) to 80.5% accuracy for our best model (l), without

using any predefined data augmentation.
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STN and U-Net First, we compare the standard use of spatial transformer network 𝐶 + 𝑇 (b)

as a transformation invariant approach with our adversarial approach 𝐶 + 𝑇 + 𝐷𝐶 + 𝐷𝐷 (c) to

generate augmented samples. In our approach the input image, together with a noise vector, are

encoded into a small representation that is passed to the spatial transformer network 𝑇 , producing

an affine matrix. The input image transformed with this affine matrix is then used as data

augmentation for the classifier. While the standard spatial transformer network (STN) does not

really help to improve results, our adversarial STN already improves the baseline accuracy by 4%.

The transformations generated by our adversarial STN are simply affine transformations that can

help to improve the classifier. For more general transformations, able to independently change

every pixel of an image we use a convolutional encoder-decoder model 𝐸𝑁𝐶 + 𝐷𝐸𝐶 (g) based on

U-Net, thus improving model accuracy to 73.82%. Finally, combining both transformations (h)

further improves the classification accuracy to 80.14%.

Discriminators We assess the contribution of the two discriminators, 𝐷𝐶 and 𝐷𝐷 used in our

final model. As shown in Tab. 2.3, 𝐷𝐶 alone (e) slightly improves performance. This is probably

because using only a class discriminator does not prevent the generator to generate the identity

transformation, thus hindering the classifier. When using only the dissimilarity discriminator

𝐷𝐷 (f), the accuracy is also only slightly improved. The best performance is reached when the

two discriminators work together (g), boosting the accuracy to 73.82%.

Generation vs. Transformation We compare our approach based on transforming an image

with the direct generation of a new sample 𝐷𝐸𝐶+𝐷𝐶 (d) as in Bayesian Data Augmentation (Tran

et al.). We see that this model is better than the basic classifier (a) but still far from the

performance levels obtained by our approach (g). This result makes us believe that transforming

an image is simpler than generating an image from scratch.

Adversarial loss Finally, we evaluate the effect of adding a loss that enforces the generator

to be adversarial to the classifier, i.e. generate samples that are difficult for the classifier. This

corresponds to the last term of L𝐺 in equ. 2.2. As shown in Tab. 2.3 (l) the contribution of this

additional loss helps to further improve the final accuracy.
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2.5.5 Generated Transformations

In Fig. 2.5 we show some samples (left) with the associated learned transformations (right) for

the four datasets considered. On MNIST, notice how the transformed numbers sometimes seem

adversarial, in the sense that the applied transformation makes them look almost like another

number. Our intuition is that hard samples are close to the boundaries between two or more

classes, and they are the most informative for improving the classification performance. For

Fashion-MNIST it is interesting to notice that the transformation seems to reduce the variability

of the dataset, transforming the objects into a set of simpler templates. Nevertheless, these

transformations still help to improve the performance. On SVHN, only the digit in the center is

used for classification. Interestingly, our model seems to learn that the generated samples are all

zoomed to the central digit. Eventually, on CIFAR10, it is interesting to notice how the image

colors and contrast are changed in a meaningful way.

2.6 Conclusion and Discussion

In this work, we have presented a new approach for improving the learning of a classifier

through the automatic generation of augmented samples. The presented method learns general

transformations end-to-end and is fully differentiable. In our experiments, we have shown that

several elements are important to obtain the best performance. First, the generator and the

classifier should be trained jointly. Second, it is important to transform the given images instead

of generating samples from scratch. Finally, the combined use of global transformations with

STN and local transformation with U-Net is also essential to obtain the best data augmentation.

However, we have also seen that performing data augmentation using a generative adversarial

network is not without challenges. Intuitively, generating general transformation without

constraints might be too difficult. In practice, learning optimal transformations from a predefined

set seems to work better, as presented in the next chapter.
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a) Real samples b) Transformed samples

Figure 2.5 Real and transformed images from

MNIST, Fashion-MNIST, SVHN and CIFAR10.

Our approach learns to apply the right transformations for each dataset. For instance on

MNIST and Fashion-MNIST there is no flip, nor zoom, because not useful, while on

SVHN zoom is often used and on CIFAR10, both zoom, flip and color changes are applied.





CHAPTER 3

LEARNING DATA AUGMENTATION WITH ONLINE BILEVEL OPTIMIZATION
FOR IMAGE CLASSIFICATION

Having explored generative models as a way to do data augmentation for improving the

performance of visual recognition models, we now examine, in this chapter, the selection of

the data augmentation transformations and parameters and aim at improving this process. This

choice is motivated by the understanding that, although GANs have the ability to learn more

complex variations within an existing dataset, their training remains challenging, with issues

like mode collapse, non-convergence or vanishing gradients as potential obstacles. Furthermore,

as demonstrated in the previous chapter, learning general transformations is not a trivial task. In

response, we explore the possibility of constraining the space of possible transformations, which

might facilitate the learning of more useful transformations.

3.1 Introduction

Best results in deep learning methods are obtained by large models in which the number of

parameters is much higher than the dimensionality of the input data, as well as the number of

available samples (Simonyan & Zisserman, 2015; He et al., 2015). In this setting, overfitting is

a major problem (Srivastava et al., 2014). Standard regularization techniques applied directly

to the model parameters only add very general knowledge about the parameter values, which

leads to modest improvement in the final model accuracy (Nowlan & Hinton, 1992). Adding

training samples artificially generated by applying predefined transformations to the initial

samples, which is referred to as data augmentation, has shown to be a promising regularization

technique to increase a model performance (Hernández-García & König, 2018a). However, the

selection of the best data augmentation is challenging and requires specific domain knowledge.

Indeed, the applicability of data transformations is often domain-specific, and the heuristic

choice of such transformations can lead to counterproductive results, e.g. when misapplied

across different domains. For instance, a data augmentation transformation like a horizontal flip

is quite fitting for natural images, as the horizontal mirror image of an object in nature remains



56

Figure 3.1 Model training

In an epoch, the classifier parameters 𝜔 are trained in the standard supervised

way in the inner loop in the standard supervised way. Then, in the outer loop,

the parameters of the augmentation network generating the data augmentation

parameters are trained on the validation set using an online differentiable method.

visually plausible. However, when applied to a dataset comprising numbers or letters, this same

transformation can create non-existent symbols or even different symbols of the alphabet, which

would introduce confusion during the model training.

A simple way to define the best data augmentation is to use expert knowledge to define the

best transformations and their parameters for a given dataset. However, this approach is not

practical, as an expert should be consulted for each single dataset to obtain a possibly useful set

of transformations and their parameters, which is not always possible due to cost constraints or

limited expert knowledge availability.

To mitigate this challenge, an alternative approach is to select those transformations heuristically,

and subsequently find their optimal parameters using validation data. Conventionally, a

hyperparameter search is performed across different sets of transformations, with the set leading
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to the best validation accuracy being chosen as the optimal set of transformations. This approach

is appealing as it allows the model to learn the best transformations directly from the data, yet it

is not scalable. Given a large range of transformations to test, retraining the algorithm every

time with a different transformation set is computationally very demanding. Moreover, selecting

the right transformations is not trivial, and selecting the wrong transformations can lead to a

degradation of the model performance as shown in Chen, Dobriban & Lee (2020). To tackle this

problem, automatic data augmentation methods based on bilevel optimization like Cubuk, Zoph,

Mane, Vasudevan & Le (2019a) have been proposed for natural images. Those methods can be

computationally expensive as for each new set of parameters, the model in the inner loop needs

to be fully trained till convergence. Efforts to reduce the computational cost have led to methods

improved using a gradient-based approach like in Hataya, Zdenek, Yoshizoe & Nakayama

(2019); Lin et al. (2019), or more recently Hataya, Zdenek, Yoshizoe & Nakayama (2022).

In our work, as we can see in Fig.3.1, we do not need to train the classifier in the inner loop

until convergence for each different set of data augmentation parameters to test. We propose

a method consisting in training an image classifier while learning the best data augmentation

transformations in a bi-level optimization framework. The classifier is trained in the inner loop,

while the best data augmentation parameters are learned in the outer loop. To make the method

computationally efficient, the gradient of the validation loss used to update the data augmentation

parameters is estimated using truncated backpropagation and with only one iteration of the inner

loop.The augmenter network generating the right data augmentation is trained at the same time

as the classifier by alternating between the outer and the inner loop at each iteration.

In our experiments, we validate our method not only on natural images, but also on histological

images, for which data augmentation is particularly relevant. Indeed, in histological images, one

hurdle to a good model generalization is the color and shape variability of the cells and tissues in

the images. Those variations can be inherent to the image acquisition process. More precisely,

color variations originate from the cell staining, which is done to make the cells visible to the

human eyes, whereas shape variations are due to tissue deformation. Data augmentation is

particularly interesting in this case, as it can address the challenges of color and shape variations
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simultaneously. By generating images that cover those variations, and employing them during

training, the classification model can be taught to be invariant to such transformations.

3.1.1 Contributions

In this work, we tackle the problem of efficiently learning the data augmentation that maximizes

the validation accuracy by proposing a method based on bilevel optimization. With this

framework, we aim at identifying image transformations that minimize the validation loss while

training the end task model at the same time. However, as outlined in Sec. 3.3, instead of solving

the complete bilevel optimization problem, we approximate it with an online version where in

every iteration a new set of transformations is learned and adapted to the learning phase. This

adaption makes the framework computationally more efficient.

To summarize, the contributions of this work are:

• we propose an online, differentiable approach for learning the optimal data augmentation

regime using a validation set. As this method is differentiable, we can efficiently optimize

a large transformation network learning useful color and affine transformations to perform

data augmentation automatically using backpropagation.

• we show that our proposed model, using different sets of transformations, achieves comparable

or better results than conventional methods on five different natural images datasets. Further

improvements were observed in the medical imaging field, where effective transformations

are difficult to define. Our model achieved comparable or better results than hand-defined

transformations or RandAugment based methods on six different histological images datasets.

3.2 Related Work

Data augmentation consists in creating new data points from existing ones in order to get a

larger training set. It was found to be essential for achieving state-of-the-art image classification

results (Hernández-García & König, 2018b).
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The selection of the data augmentation transformations used to train a model is usually done

using heuristics or expert domain knowledge. Image transformations for natural images have

been extensively researched, and usual transformations are image flip, rotation and color changes

as described in Perez & Wang (2017). The usage of more complex transformations such as

occluding parts of an image (DeVries & Taylor, 2017b) or blending images (Zhang et al., 2018;

Lemley et al., 2017) has also been proposed. Recently, some works have investigated adversarial

samples as a possibility of data augmentation, as in Gong et al. (2021) or Suzuki (2022).

Although not as extensively as for natural images, data augmentation transformations based on

color alterations or affine transformations have been also researched in the context of histopatho-

logical images (Ciompi et al., 2017; Tellez et al., 2019; Ataky, De Matos, Britto, Oliveira & Ko-

erich, 2020; Faryna, van der Laak & Litjens, 2021; de Matos, Ataky, de Souza Britto, Soares de

Oliveira & Lameiras Koerich, 2021; Wagner et al., 2021; Garcea, Serra, Lamberti & Morra,

2022). Other data augmentation technics have also been explored, like mix-up (Chang et al.,

2021), pyramid blending (Ataky et al., 2020), or style transfer (Wagner et al., 2021). Specific

color data augmentation technics for histopathological images have been proposed in Tellez et al.

(2019), or Faryna et al. (2021).

Although the data augmentation transformations usually chosen can improve the task performance,

there is no guarantee that they are optimal nor that they are even useful at all. Badly chosen

transformations can lead to a degradation of the model performance, as shown in Chen et al.

(2020). To avoid the manual selection of transformations, automatic data augmentation learning

methods have been proposed for natural images.

We distinguish those methods in 3 categories: Generative images-based, AutoAugment-based

approaches and methods coming from the hyperparameter optimization field.

3.2.1 Generative images-based

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) can generate realistic

new samples of a certain dataset or class, thus they can be adapted for data augmentation.
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(Mirza & Osindero, 2014) and (Odena et al., 2017) proposed to generate images conditioned on

their class that could be directly used to augment a dataset. CatGAN (Springenberg, 2016) on the

other hand, performs unsupervised and semi-supervised learning as a regularized information

maximization problem (Krause et al., 2010) with a regularization based on the generated samples.

Also based on GAN, but directly used for data augmentation, DAGAN (Antoniou et al., 2018)

conditions the augmented image on the input image. TripleGAN (Chongxuan et al., 2017) and

Bayesian data augmentation (Tran et al.) train a classifier jointly with the generator. These

approaches generate general image transformations, but in practice, it is not as performant as

using predefined transformations. TANDA (Ratner et al., 2017) is the only GAN-based approach

that uses predefined transformations. It defines a large set of transformations and learns how to

combine them to generate new samples that follow the same distribution as the original data.

This approach is better, but it is still based on the assumption that the augmented data should

follow the same distribution as the original data. Instead, we argue that data augmentation should

improve the performance of the classifier, independently of the visual similarity of the generated

data. In medical images, Frid-Adar, Klang, Amitai, Goldberger & Greenspan (2018) use a GAN

to generate new CT-Scan images to improve the training of a liver lesion classifier. Our model is

more efficient than GAN based models, as it does not require learning a separate model before

training the classifier. It learns the best transformation parameters and classifier at the same

time. Note that, due to the complexity of their training and the limitations in their scalability,

preventing the generation of high resolution images, GANs tend to be replaced by Diffusion

models (Dhariwal & Nichol, 2021) introduced in Song & Ermon (2019) and Ho et al. (2020). In

the medical imaging field, the usage of Diffusion models has been studied in Kazerouni et al.

(2023).

3.2.2 AutoAugment

AutoAugment (Cubuk et al., 2019a) is a data augmentation method that learns sequences of

transformations that maximize the classifier accuracy on a validation set. This objective is

better than simply reproducing the same data distribution as in GAN-based models, as it favors
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transformations that generalize well on unseen data. However, it is computationally expensive,

as it performs the complete bilevel optimization by training the classifier in the inner loop

until convergence for each set of evaluated transformations. Some solutions to reduce the

computational cost are proposed in follow-up works. Fast AutoAugment (Lim, Kim, Kim,

Kim & Kim, 2019) optimizes the search space by matching the density between the training

set and the augmented data. Alternatively, Population Based Augmentation (PBA) (Ho, Liang,

Stoica, Abbeel & Chen, 2019) focuses on learning the optimal augmentation schedule rather

than only the transformations. However, even if these approaches reduce the computational

cost of AutoAugment, they do not leverage gradient information. Faster AutoAugment (Hataya

et al., 2019) does this by combining AutoAugment with a GAN discriminator and considering

transformations as differentiable functions. OHL-Auto-Aug (Lin et al., 2019) uses an online

bilevel optimization approach and the REINFORCE algorithm on an ensemble of classifiers to

estimate the gradient of the validation loss and learn an augmentation probability distribution.

RandAugment (Cubuk, Zoph, Shlens & Le, 2019b) goes further by showing that a same

performance level as AutoAugment can be obtained by randomly selecting transformations from

the predefined pool and just tune the number of transformations to use and a global (same for all

transformations) magnitude factor. However, this approach also requires prior knowledge of

useful transformations. In histopathological images, Faryna et al. (2021) use the RandAugment

method with a set of transformations extended with some specific color transformations. This

leads to an improved performance of the classifier.

Our model is more efficient than search-based methods, as the data augmentation parameters are

updated at each training iteration using the gradient of the validation loss obtained in the inner

loop. This gradient is estimated using truncated backpropagation, which removes the need to

train the model until convergence for each set of evaluated transformations.

3.2.3 Hyperarameter Learning

Our work has some roots in the hyperparameter optimization field, as data augmentation

parameters can be considered as hyperparameters to tune. Hyperparameters tuning is important
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to obtain the best performances when training neural networks on a given dataset. Classic

approaches assume that the learning model is a black-box and use methods like grid search,

random search (Bergstra, Bardenet, Bengio & Kégl, 2011; Bergstra, Yamins & Cox, 2013),

Bayesian optimisation (Snoek, Larochelle & Adams, 2012), or a tree-search approach (Hutter,

Hoos & Leyton-Brown, 2011). These approaches are simple but expensive because they

repeat the optimization from scratch for each sampled value of the hyperparameters and so are

only applicable to low dimensional hyperparameter spaces. A different line of research is to

leverage the gradient of these (continuous) hyperparameters (or hyper-gradients) to perform the

hyper-optimization. The first work proposing this idea (Bengio, 2000), shows that the implicit

function theorem can be used to this aim. This idea was developed more recently in Bertrand

et al. (2020). Domke (2012) was the first work to propose a gradient-based method using a

bilevel optimization approach (Colson et al., 2007) to learn hyperparameters. Using a bilevel

optimization approach to train a neural network is challenging, as usually there is no closed-form

expression of the function learned in the inner loop (Section 3.3). To address this, Maclaurin,

Duvenaud & Adams (2015) and later Franceschi, Donini, Frasconi & Pontil (2017) proposed

methods to reverse the forward pass to compute the gradient of the validation loss. However,

these methods are applicable only when the number of hyperparameters and the complexity

of the models are limited due to the memory needed to save the intermediate steps. Another

approach to address the computational hurdle in the inner loop is to calculate an approximation

of the gradient, like in Pedregosa (2016) Luketina, Berglund, Greff & Raiko (2016) or MacKay,

Vicol, Lorraine, Duvenaud & Grosse (2019). Our method differentiates from those by using

truncated back propagation to estimate the gradient of the validation loss. Finally, note that

hyperparameter optimization presents some similarities to meta learning, as shown in Franceschi

et al. (2018). For instance, in MAML (Finn et al., 2017), a shared model initialization is learned

to minimize the validation loss and therefore improve the generalization capabilities of the model.

More recently, Hataya et al. (2022) can be positioned at the intersection of AutoAugment and

meta-learning based approaches.
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a) Forward pass. b) Backward pass.

Figure 3.2 Computational graph of our model at iteration t=J

𝐾 is the number of gradient unfolding steps, and J is the number of inner loop iterations

after which 𝜃 gets updated. The case where K=J=T (T being the iteration of the classifier

convergence) is the complete bilevel optimization as in Eq.3.1 whereas K=J=1 corresponds

to updating 𝜃 at each mini-batch (𝐾 = 1), using only one step of gradient unfolding (𝐽 = 1).

3.3 Proposed Method

Consider a labeled set X := {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1
, where 𝑥𝑖 is an input image, 𝑦𝑖 the associated class label,

N the number of samples and X̂ the set of transformed images. We formulate the problem of

identifying effective data augmentation transformations as a bilevel optimization problem. In

this setup, the augmenter A𝜃 : X → X̂ is parametrized by 𝜃 and is used to minimize the loss

L on the validation data X𝑣𝑎𝑙 in the outer loop. In the inner loop, the classifier parameters 𝜔

are optimized on the training data X𝑡𝑟 in the standard supervised way. This formulation can be

written as:

𝜃∗ = arg min
𝜃

L(X𝑣𝑎𝑙 , 𝜔
∗) (3.1)

𝑠.𝑡. 𝜔∗ = arg min
𝜔

L(A𝜃 (X𝑡𝑟), 𝜔). (3.2)
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While optimizing a few hyperparameters on the validation data is feasible with black-box

approaches such as grid and random search (Bergstra & Bengio, 2012) or Bayesian opti-

mization (Snoek et al., 2012), it is not efficient. With bilevel optimization, our aim is to

efficiently learn an entire neural network A𝜃 (possibly with thousands of parameters 𝜃) which

defines a distribution of transformations that should be applied on the training data to improve

generalization.

Gradient descent was shown to be an efficient method for optimizing parameters of large

networks. In problems such as architecture search (Liu et al., 2019), the parameters can

be directly optimized with gradient descent (or second order methods) against the training

and validation data. However, this is not the case for data augmentation. The reason is that

the transformation network A𝜃 is optimized to maximize the validation score, but applies

transformations only on the training set. Therefore, first order methods would not work. The aim

of data augmentation is to introduce transformations during the training phase that can make the

model invariant or partially invariant to any transformations that can occur at test time. If we

optimize the transformation network directly on the validation data, the model will simply select

trivial solutions, such as the identity transformation. This approach has been used for object

localization (Jaderberg et al., 2015) and it did not improve the model generalization performance

as much as data augmentation. To solve this issue, new methods relied on reinforcement learning

instead of gradient descent to learn effective data augmentation (Cubuk et al., 2019a; Lim et al.,

2019; Ho et al., 2019).

In this work, we show that in the case of a differentiable augmenter A𝜃 , there is a simple,

efficient way to find optimal data transformations based on gradient descent that generalize well

to validation data. We formulate our problem as an approximation to bilevel optimization by

using truncated back-propagation as it allows our method to:

• efficiently estimate a large number of parameters to generate the optimal data augmentation

transformations by gradient descent;

• obtain an online estimation of the optimal data augmentation during the different phases of

the training, which can also be beneficial (Golatkar, Achille & Soatto, 2019);
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• change the training data to adapt to different validation conditions as in supervised domain

adaptation.

Although approximate bilevel optimization has already been proposed for hyperparameter

optimization (Shaban, Cheng, Hatch & Boots., 2019; Franceschi et al., 2018, 2017), in this paper

we show that it can be used for training a large, complex model (the augmenter A𝜃 network) in

order to learn an effective distribution of transformations.

3.3.1 Approximate Online Bilevel Optimization

As shown in Eq. 3.1 and 3.2, the problem of finding the optimal data augmentation transformations

A𝜃 can be cast as a bilevel optimization problem. This problem can be solved by iteratively

solving Eq. 3.2 to find the optimal network weight 𝜔∗, given the parameters of the transformation

𝜃 and then updating 𝜃:

𝜃 ← 𝜃 − 𝜂𝜃∇𝜃L(X𝑣𝑎𝑙 , 𝜔
∗) (3.3)

where 𝜂𝜃 is the learning rate used to train the augmenter network.

However, as the augmentations are to be applied only on the training dataset and not on the

validation set, calculating
𝜕L(X𝑣𝑎𝑙 ,𝜔

∗)
𝜕𝜃 is not trivial. To enable this calculation, we use the fact

that the weights 𝜔 of the network are shared between training and validation data and use the

chain rule to differentiate the validation loss L(X𝑣𝑎𝑙 , 𝜔
∗) with respect to the hyperparameters

𝜃. In other words, instead of using a very slow black-box optimization for 𝜃, we can exploit

gradient information because the model parameters 𝜔∗ are shared between the validation and

the training loss.

We define the gradient of the validation loss with respect to 𝜃 as follows:

∇𝜃L(X𝑣𝑎𝑙 , 𝜔
∗) =

𝜕L(X𝑣𝑎𝑙 , 𝜔
∗)

𝜕𝜃

=
𝜕L(X𝑣𝑎𝑙 , 𝜔

∗)

𝜕𝜔∗
𝜕𝜔∗

𝜕𝜃

(3.4)
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By defining G(𝑡) as the gradient of the training loss at iteration 𝑡:

G(𝑡) = ∇𝜔L(A𝜃 (X𝑡𝑟), 𝜔
𝑡) (3.5)

we can write 𝜕𝜔∗

𝜕𝜃 in Eq. 3.4 as:

𝜕𝜔∗

𝜕𝜃
=
𝑇−1∑
𝑖=1

𝜕𝜔(𝑇)

𝜕𝜔(𝑖)

𝜕𝜔(𝑖)

𝜕G(𝑖−1)

𝜕G(𝑖−1)

𝜕𝜃
(3.6)

where T is the iteration when the classifier converges.

As 𝜔∗ represents the model weights at training convergence, they depend on 𝜃 for each iteration

of gradient descent. Thus, to compute 𝜕𝜔∗

𝜕𝜃 , one has to back-propagate throughout the entire 𝑇

iterations of the training cycle. An example of this approach is Maclaurin et al. (2015). This

approach is feasible only for small problems due to the large requirements in terms of computation

and memory. However, as optimizing 𝜔∗ is an iterative process, instead of computing 𝜕𝜔
𝜕𝜃 only at

the end of the training loop, we can estimate it at every iteration 𝑡:

𝜕𝜔∗

𝜕𝜃
≈
𝜕𝜔(𝑡)

𝜕𝜃 (𝑡)
=

𝑡∑
𝑖=1

𝜕𝜔(𝑡)

𝜕𝜔(𝑖)

𝜕𝜔(𝑖)

𝜕G(𝑖−1)

𝜕G(𝑖−1)

𝜕𝜃 (𝑖)
, (3.7)

This procedure corresponds to dynamically changing 𝜃 during the training iterations (thus it

becomes 𝜃 (𝑡)) to minimize the current validation loss based on the training history. Although

this formulation is different from the original objective function, adapting the data augmentation

transformations dynamically with the evolution of the training process can improve generalization

performance (Golatkar et al., 2019). This relaxation is often used in constrained optimization for

deep models, in which constraints are reformulated as penalties and their gradients are updated

online, without waiting for convergence, to save computation (Pathak, Krähenbühl & Darrell,

2015). However, in our case, we cannot write the bilevel optimization as a single unconstrained

formulation in which the constraint in𝜔∗ is summed with a multiplicative factor that is maximized

(i.e., Lagrange multipliers), because the upper level optimization should be performed only on
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𝜃, while the lower level optimization should be performed only on 𝜔. Nonetheless, even with

this relaxation, estimating 𝜕𝜔∗

𝜕𝜃 still remains a challenge as it does not scale well. Indeed, the

computational cost of computing 𝜕𝜔 (𝑡 )

𝜕𝜃 (𝑡 )
grows with the number of iterations 𝑡 as shown in Eq. 3.7.

To make the gradient computation constant at each iteration we use truncated back-propagation

similarly to what is commonly used in recurrent neural networks (Williams & Peng, 1990):

𝜕𝜔(𝑡)

𝜕𝜃
≈

𝑡∑
𝑖=𝑡−𝐾

𝜕𝜔(𝑡)

𝜕𝜔(𝑖)

𝜕𝜔(𝑖)

𝜕G(𝑖−1)

𝜕G(𝑖−1)

𝜕𝜃 (𝑖)
, (3.8)

where 𝐾 represents the number of gradient unfolding that we use.

Fig. 3.2. shows the computational graph used for this computation.

Additionally, as in Williams & Peng (1990), we consider a second parameter 𝐽 which defines

the number of inner loop training iterations after which 𝜃 is updated, in other words how often

the computation of the gradients of 𝜃 is performed. The situation where 𝐾 = 𝐽 = 𝑇 is the exact

bilevel optimization as shown in Eq. 3.1 while 𝐾 = 𝐽 = 1 corresponds to updating 𝜃 at each

iteration, in our case mini-batch (𝐾 = 1), using only one step of gradient unfolding (𝐽 = 1). A

theoretical analysis of the convergence of this approach is presented in (Shaban et al., 2019).

3.3.2 Augmenter Networks

In this work, we use an augmenter network that can learn two types of transformations: geometric

and color. We use the transformation model of spatial transformer networks (Jaderberg et al.,

2015) presented in Chap. 1 Sec.1.2.4, but for data augmentation instead of data alignment.

Thus, as illustrated in Fig. 3.1, the augmenter is composed of a module that generates a set of

transformation parameters followed by a module that applies the generated transformations to

the original image. Note that the learned transformations are not conditioned on the input image

but defined only based on random noise.

Geometric transformation are particularly relevant for data augmentation. In natural images, they

simulate the fact that in the real world, the same object can be located at multiple positions and

seen from different viewpoints. For histological images, they are motivated by the fact that tissues
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are deformed during the image acquisition process. By considering affine transformations in our

learned data augmentation, we aim to train the model to become invariant to those geometric

deformations. For affine transformations, the augmenter network receives as input a random

noise vector and generates a 2×3 matrix of values representing a variation from the identity

transformation. In some experiments, the augmenter network learns affine transformations, but

in some particular scenarios, it learns only translation. In this case, only two values are learned

(translation values respectively on x and y-axis).

Color transformations are important as they can help the trained model to become invariant

to color perturbations, appearing for examples during the cell staining process for histological

images. Color transformations considered are: contrast, brightness, and in the HSV space,

hue and saturation. For each color transformations, the augmenter receives as input a random

noise vector and generates a single value representing a variation value. In our implementation,

we use the kornia library (Riba, Mishkin, Ponsa, Rublee & Bradski, 2019), which follows the

specifications of Szeliski (2010).

For contrast, the value learned is a non-negative factor applied to the actual color values. 1

represents the initial image, whereas values tending to 0 mean a black-and-white image. If we

consider the variables 𝑟, 𝑔, and 𝑏 representing the values of the red, green, and blue colors of

the images and 𝑐 𝑓 the contrast factor learned by our network, the new RGB values are obtained

using the update rule:

(𝑟, 𝑔, 𝑏) ← 𝑐𝑙𝑎𝑚𝑝((𝑟, 𝑔, 𝑏) · 𝑐 𝑓 , 0, 1) (3.9)

For brightness, the value learned represents a shift applied to the actual color values. 0 represents

the initial image. If we consider the variables 𝑟, 𝑔, and 𝑏 representing the values of the red,

green, and blue colors of the images and 𝑏𝑠 the brightness shift learned by our network, the new

RGB values are obtained using the update rule:

(𝑟, 𝑔, 𝑏) ← 𝑐𝑙𝑎𝑚𝑝((𝑟, 𝑔, 𝑏) + 𝑏𝑠, 0, 1) (3.10)

In the case of saturation, the value learned by the augmenter is a non-negative factor applied

to the actual saturation value. A value of 1 represents the original image, whereas 0 means a
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black-and-white image. If we consider the variables ℎ, 𝑠, and 𝑣 representing the values of the

hue, saturation, and value of the images and 𝑠 𝑓 the saturation factor learned by our network, the

new HSV values are obtained using the update rule:

(ℎ, 𝑠, 𝑣) ← 𝑐𝑙𝑎𝑚𝑝((ℎ, 𝑠 · 𝑠 𝑓 , 𝑣), 0, 1) (3.11)

Finally, the value learned by our augmenter for hue is a shift of the hue channel. 0 represents

no shift to the hue channel, and any other value negative or non-negative is added to the actual

value. If we consider the variables ℎ, 𝑠, and 𝑣 representing the values of the hue, saturation,

and value of the images and ℎ𝑠 the hue shift learned by our network, the new HSV values are

obtained using the update rule:

(ℎ, 𝑠, 𝑣) ← (𝑚𝑜𝑑 (ℎ + ℎ𝑠, 2𝜋), 𝑠, 𝑣) (3.12)

3.4 Experimental Setup

3.4.1 Datasets

In experiments with natural images, we consider the four following datasets:

CIFAR10 (Krizhevsky et al., 2009) is a dataset composed of 60,000 32×32 natural color images

distributed in 10 different classes (6,000 images per class). This dataset is split into a training

set of 50,000 images and a test set of 10,000 images. CIFAR100 (Krizhevsky et al., 2009) is an

extension of CIFAR10 dataset. It contains the same number of images at the same resolution,

but they are distributed in 100 classes instead of 10 ImageNet (Russakovsky et al., 2015) is a

dataset of 1.28 million natural color images in the training set and 50,000 images in the test set.

As the image size is variable, we resize them in our experiments to a resolution of 224×224.

Tiny ImageNet is a subset of ImageNet (Russakovsky et al., 2015) containing 200 classes and

images resized to 64×64. Each class has 500 training images, 50 validation images, and 50 test

images. Since the test labels are not available, the validation set is used as test set and 20% of
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the training set is used for validation.

In experiments with histological images, we consider the four following datasets:

BACH (Aresta et al., 2019) is a dataset of 400 H&E (hematoxylin and eosin) stained breast

cancer histology images of resolution 2048×1536, distributed in 4 balanced classes of 100

images. As there is no test set publicly available, we use in our experiments 40% of the dataset

for training, 10% for validation and 50% for testing as in Rony et al. (2023). The values used

for the predefined color transformations are brightness=0.5, contrast=0.5, saturation=0.5 and

hue=0.05. Glas (Sirinukunwattana et al., 2016) is a dataset of 165 H&E stained colon cancer

histology images of variable resolution (in our experiments, we use an image size of 430×430)

distributed in 2 classes (benign and malignant). The dataset is divided in a train set of 85 images

(37 benign and 48 malignant) and a test set of 80 images (37 benign and 43 malignant). In our

experiments, we use 80% of the training set for training and 20% for validation. The values used

for the predefined color transformations are brightness=0.25, contrast=0.25, saturation=0.25

and hue=0.4. HICL Larynx (Ninos et al., 2015) is a dataset of 450 H&E and P63 stained

larynx cancer histology images with 2 magnifying factors (20x and 40x). It has 3 classes

corresponding to cancer grades: Grade I, II and III. For the 20x magnification factor, the image

resolution is 1728×1296 and the number of images per class is I:87, II:73 and III:64. For the

40x magnification factor, the image resolution is 1300×1030 and the number of images per class

is I:88, II:74 and III:64. As there is no test set publicly available, we use in our experiments

70% of the dataset for training, 20% for validation set, and 10% for test. The values used for

the predefined color transformations are brightness=0.25, contrast=0.25, saturation=0.25 and

hue=0.4. HICL Brain (Glotsos et al., 2008) is a dataset of 2548 H&E and P63 stained brain

cancer histology images with 2 magnifying factors (20x and 40x). It has 7 classes corresponding

to cancer grades: Grade I, I-II, II, II-III, III, III-IV and IV. For the 20x magnification factor,

the image resolution is 1728×1296 and the number of images per class is I:123, I-II: 94, II:208,

II-III:47, III:367, III-IV:45 and IV:373. For the 40x magnification factor, the image resolution is

also 1728×1296 and the number of images per class is I:132, I-II: 73, II:210, II-III:53, III:434,

III-IV:32 and IV:357. As there is no test set publicly available, we use in our experiments

70% of the dataset for training, 20% for validation set, and 10% for test. The values used for
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the predefined color transformations are brightness=0.25, contrast=0.25, saturation=0.25 and

hue=0.4.

3.4.2 Evaluation

To evaluate the performance of our models, we use the classification accuracy metric, which is

defined as the number of samples correctly classified divided by the total number of samples. In

scenarios with medical images, we do a 5-fold cross-validation and the result reported is the

average of the results obtained by the 5 folds. The hyperparameters search is done separately

for each dataset. The hyperparameters selected are the ones yielding the best validation results

averaged over the 5 folds. We also follow this protocol for Randaugment hyperparameters in

experiments with histological images, where we compare our approach to this method.

3.4.3 Implementation Details

Model architecture Our model is composed of a classifier and an augmenter network. To

facilitate fair comparison of the results, we use in our experiments the same classifiers as in

previous works, for natural images BadGAN (Dai et al., 2017), ResNet18 (He et al., 2015),

ResNet50 (He et al., 2015) and Wide-ResNet-28-10 (Zagoruyko & Komodakis, 2016) and for

histological images a ResNet18 pretrained on ImageNet. BadGAN is a simple CNN based

architecture composed of 9 convolutional layers with Leaky ReLUs and a MLP classifier. Its

architecture is detailed in Appx. II-1. ResNet18 and ResNet50 are respectively 18 and 50 layers

deep neural networks with residual connections, and WideResNet 28-10 is a ResNet network

with 28 layers and a width factor of 10.

One particularity in our experiments with histological images, is that to align with the image

size used during pretraining, we use in our training phase patches of size 224×224 and evaluate

the model on whole images during the testing phase.
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The augmenter learning the geometric and color transformations is a MLP receiving a noise

vector as input and generating the transformation parameters. For affine transformations, the

augmenter network learns a 2×3 matrix containing the parameters of the affine transformations,

whereas for color transformations, it outputs 1 value per learned transformation i) Hue in range

[-0.5:0.5]; ii) Saturation in range [0:1]; iii) Contrast in range [-1:1] iv) Brightness in range [0:1].

For natural images, we experimented with three augmenter sizes. The small network has an

input and output size of 𝑛, 𝑛 being the number of hyperparameters to optimize (6 for affine

transformations, 2 for translation and 1 for each color transformations), and it has two layers with

respectively 𝑛 and 10𝑛 neurons. The medium one has an input size of 100 and two layers of 64

and 32 neurons. The large one has an input size of 100 and four layers of 512, 1024, 124 and 512

neurons. Details of the architecture can be found in Appx. II-2 For histological images, we used

only the medium-sized model. In order to have differentiable affine and color transformations,

we use the Kornia (Riba et al., 2019) library and the affine_grid and grid_samples functions of

the torchvision package of Pytorch framework Paszke et al. (2019).

In experiments with histological images where we compare to RandAugment, to be fair in the

comparison of the results, we limited the pool of transformations used by RandAugment to the

transformations learned by our proposed model. This pool of transformations is detailed in

Appx. II-3.

Training parameters In all experiments with natural imagse, we use 20% of the training

set to form the validation set. Although in principle we usually use a separate validation set

for training the augmenter, in practice, we noticed that reusing the training data in a variant

of this holdout approach (the training set is randomly split into train and validation at each

epoch) yields better results. However, it is important that the batch of samples used to learn the

augmenter is different from the one used to train the classifier to ensure that the model learns

data augmentation parameters that generalize well. The data splits used in experiments with

histological images are described in Sec. 3.4.1. In preliminary experiments, we tried different

values for the frequency of updating 𝜃 𝐽 and the number of steps of backpropagation 𝐾 , but they
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did not show relevant improvements. Therefore, for all our experiments, we use 𝐾 = 𝐽 = 1. In

practice, the classifier is updated after each training mini-batch and the augmenter after each

validation mini-batch.

3.5 Results

The goal of our method is to automatically learn data augmentation. Our experiments compare the

performance of different classifiers without data augmentation (baselines), the same classifiers

with the best-known hyperparameters for data augmentation (predefined), state-of-the-art

methods, and our method. We experiment with two groups of transformations: geometric and

color transformations.

In a first part, we run experiments on natural images, then in a second one we focus on histological

images.

3.5.1 Natural images

Geometric Transformations In this section, we evaluate our model by investigating learned

geometric transformations.

In a first experiment, we assess the computational efficiency of our method and the utility of

the learned geometric transformations for the classification task. In Tab. 3.1 we compare the

performance of our method on CIFAR10 (with ResNet18) against several methods in terms of

accuracy and training cost for translation and affine transformations. We define our baseline as a

training without any data augmentation, and we consider its training time cost as 1. Predefined

represents a classifier trained with the usual standard geometric data augmentation: horizontal

flip and random translation between -4 and 4 pixels along x and y-axis. To estimate the training

cost of this scenario, we consider the general case where the best data augmentation setting is not

known and many different values have to be tested using a grid or random search. For instance,

for the 6 parameters of an affine transformation, and 2 different values to try for each parameter,

the number of models to validate is 26 = 64. In the third case, the augmenter is trained to be
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Table 3.1 Impact and training cost of differ-

ent geometric data augmentation strategies

on classification accuracy (%) on CIFAR10

Considering only translation and affine transforma-

tions, our approach is faster than methods requiring

a validation loop and is more efficient than pre-

defined data augmentation, STN and validated

magnitude of predefined data augmentation.

ResNet18 / CIFAR10 Trans. Affine Cost

Baseline 88.55 88.55 1

Predefined 95.28 94.59 > 60

Transf. invariant (STN) 92.14 90.31 1.1

Validated magnitude 94.58 93.43 11.5

Our model 95.35 95.16 5.3

transformation invariant similarly to the spatial transformer networks (Jaderberg et al., 2015).

The transformations generated by the augmenter are applied on training as well as on test, and

the update of the augmenter parameters 𝜃 is done on the same data as the update of the classifier

parameters 𝜔. This approach has a very low computational cost (1.1, just the overhead of

applying the augmenter) and its accuracy is better than using no data augmentation, but far from

a model trained with a good data augmentation. Finally, we consider a validated magnitude

approach that selects only a single parameter defining the magnitude of the transformation

parameters from which an actual transformation is sampled from. This is similar to the strategy

used in RandAugment (Cubuk et al., 2019b). This performs surprisingly well, but is still inferior

to our model and with a higher cost for validating the magnitude of the transformations. The last

row presents the results of our approach. For both translation only and affine transformations, we

obtain better results than the other approaches. In terms of computational cost, our approach is

around 5 times slower than a basic training without data augmentation. However, as our approach

learns the data augmentation parameters directly and does not need to loop over possible values,

it is already 14x faster than the simple case of predefined data augmentation described above

where we consider only 2 possible values for each parameter.



75

Table 3.2 Impact of architecture

on Classification Accuracy (%)

Increasing the classifier size improves

the model performance. Increasing the

augmenter size has no significant im-

pact on the final classification accuracy.

CIFAR-10 BadGAN ResNet18

Aug.-Class. Tr. Aff. Tr. Aff.

Small 93.65 93.62 95.35 95.16
Medium 93.75 93.63 95.25 95.06

Large 93.65 93.39 95.00 94.83

In a second experiment, we investigate the influence of the augmenter network and the classifier

size on the performance of a model trained on CIFAR10. In Tab. 3.2, results show that a larger

classifier improves the performance. However, the size of the augmenter network does not have

a significant impact on the accuracy of the classifier. Thus, in the following experiments, we use

the small augmenter, which is faster to train.

Color Transformations In this section, we investigate the impact of color transformations

alone and in combination with affine transformations on different datasets.

In this experiment, we study color transformations alone and in combination with affine

transformations on CIFAR10. For the predefined color jitter, we use the same settings as

in Cubuk et al. (2019a). We consider 2 versions of our model, the first one learning only color

transformations and the second one learning color and affine transformations. In Tab. 3.3, we

can see that in both cases, the learned transformations are yielding better results than predefined

ones, which illustrates the efficiency of our approach for color transformations. The best results

are obtained when combining color and affine transformations.

Evaluation on Different Datasets We now evaluate our approach on different datasets. In

addition to the CIFAR10 results, we report in Tab. 3.4 additional results on CIFAR100, Tiny

ImageNet and ImageNet. Predefined transformations used for CIFAR100 and Tiny Imagenet

are the same as defined for CIFAR10 in Sec. 3.3.2. Predefined transformations for Imagenet
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Table 3.3 Impact of color and affine transforma-

tions on classification accuracy (%) on CIFAR10

Transformations in parentheses are learned, others are prede-

fined. For this dataset, both color and affine transformations

improve the classification accuracy. Best performances are

obtained with a combination of transformations of both types.

ResNet18 / CIFAR10 Acc. (%)

Baseline 88.55

Baseline + Color Jitter 88.63

Baseline + Affine + HFlip 94.59

Baseline + Affine + Color Jitter + HFlip 94.96

Our model (color) 94.18

Our model (color) + Color Jitter 94.63

Our model (affine + color) + HFlip 95.16

Our model (affine + color) + HFlip + Color Jitter 95.18

Table 3.4 Classification Accuracy (%) of our model on different datasets

ImageNet results reported are Top1. For all datasets,

our model performs better than a classifier trained

only with standard predefined data augmentation.

CIFAR10 CIFAR100 Tiny ImageNet ImageNet

ResNet18 ResNet18 ResNet18 ResNet50

Baseline 88.55 68.99 59.69 69.39

Predefined 94.69 73.61 61.10 76.02

Ours (affine) 95.16 74.31 62.92 76.10

Ours (full) 95.42 76.10 63.61 76.20

are a resize to 256×256 followed by a random crop of size 224×224, horizontal flip and

color transformations as in He et al. (2015) . Results show that our model performs better

than a classifier trained only with predefined transformations on the four datasets considered

already with learned Affine transformations, but performances are even better when adding color

transformations (Full). This shows that our approach can be applied to datasets with different

characteristics.
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Comparison with SotA Methods In Tab. 3.5, we compare our model to state-of-the-art

methods on CIFAR10, CIFAR100 and ImageNet. Predefined transformations are the same

as described in Sec. 3.5.1. Results show that on CIFAR10 and using ResNet18 as classifier,

our method obtains a better accuracy than GAN-based automatic data augmentation learning

methods. AutoAugment has a slightly better accuracy, but note that our model obtains very

close results with a smaller network. On bigger networks like Wide ResNet 28-10 and ResNet

50, our approach performs very close to search-based methods. The performance gap is

explained by the fact that the search-based methods are using more transformations, in particular

non-differentiable transformations, to train the end classifier. On the other end, our model

requires less prior knowledge as it does not require defining a list of possible transformation

and to perform an additional loop to learn the best augmentation policy from this predefined

list. Considering this, it represents an interesting trade-off between training speed and accuracy,

especially for datasets where potentially useful augmentations are not trivial to define.
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Table 3.5 Comparison of classification accuracy (%) with other models

ImageNet results reported are Top1/Top5. Our model based on affine and color

transformations outperforms previous GAN-based models and performs at a level

very close to search-based approaches. Those approaches perform better by con-

sidering also non-differentiable transformations, but our approach requires less

prior knowledge and no policy search loop, which makes it easier to train and

more suitable for datasets where predefining data augmentation is not trivial.

Classifier CIFAR10 CIFAR100 ImageNet

Baseline ResNet18 88.55 68.99 -

Predefined ResNet18 91.18 73.61 -

Bayesian DA (Tran et al.) ResNet18 91.00 72.10 -

DAN (Mounsaveng et al., 2019) BadGAN 93.00 - -

TANDA (Ratner et al., 2017) ResNet56 94.40 - -

AutoAugment (Cubuk et al., 2019a) ResNet32 95.50 - -

Ours ResNet18 95.42 74.31 -

Baseline WRN 28-10 94.83 69.90 -

Predefined WRN 28-10 95.76 81.10 -

AutoAugment WRN 28-10 97.40 82.90 -

Fast AA WRN 28-10 97.30 82.70 -

PBA WRN 28-10 97.40 83.30 -

RandAugment WRN 28-10 97.30 83.30 -

Our model WRN 28-10 96.44 81.90 -

Baseline ResNet50 - - 69.39/89.41

Predefined ResNet50 - - 76.02/92.84

Faster AA ResNet50 - - 76.50/93.20

AutoAugment ResNet50 - - 77.60/93.80
Fast AA ResNet50 - - 77.60/93.70

RandAugment ResNet50 - - 77.60/93.80
Our model ResNet50 - - 76.20/92.90
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Figure 3.3 Qualitative results

The images of the first column are original images, the following ones are

images transformed by our augmenter at different epochs. The first three rows

contain images from Tiny ImageNet, and the last two rows from ImageNet.

On Fig. 3.3, we show some examples of transformations learned during the training process.

The first 3 rows show examples on Tiny ImageNet. What is interesting to note is that at the

beginning of the training (left) transformations tend to be strong, while towards the end of the

training (right) they are smaller and tend to approach identity. This behavior can also be seen

during training on Imagenet (row 4 and 5).

3.5.2 Histological images

In this section, we validate our method on the four different datasets presented in Sec. 3.4.1:

BACH, Glas, Medisp HICL Larynx with magnification factor 20x and 40x, and Medisp HICL

Brain with magnification factor 20x and 40x.

In a first series of experiments, we follow the same experimental protocol as for natural images

and compare for each dataset the best performance of an image classifier trained with 3 different

kinds of transformations: affine transformations, color transformations, and finally a combination
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of both transformation types. For each type of transformation, we compare the classification

performance of 3 models: a classifier trained without data augmentation (baseline), a classifier

trained with hyperparameters for data augmentation found by grid search on a validation set

(predefined), and finally a classifier trained with the data augmentation learned by our method.

Then, in a second series of experiments, we investigate our model more in-depth, focusing on

the BACH dataset. We chose this dataset as it is the most challenging of the four considered in

terms of image size and difficulty to learn the classification task. More precisely, we investigate

two aspects of our model: i) the impact of the amount of training data available on the quality of

the learned augmentations ii) the impact of starting the training from a classifier pretrained on

Imagenet.

Finally, in a third series of experiments, we compare our approach to a model trained in a data

augmentation framework similar to RandAugment Cubuk et al. (2019b). Instead of searching

for the best sequence of transformations and the best magnitude for each transformation at the

same time as in other models of the AutoAugment family, RandAugment relaxes the search

problem to the tuning of 2 hyperparameters M and N, M being a global magnitude for all

considered transformations and N the number of transformations selected in each sequence of

transformations. In our experiments, we define M and N by doing a grid search with values

between 1 and 5 for both M and N. The obtained values are available in Appx II-4. This approach

is simple yet very efficient and has proven to be state of the art in Faryna et al. (2021) on Camelyon

17 dataset. However, we argue that even if RandAugment is very simple and efficient to use,

it still requires prior knowledge to define the initial pool of transformations. For our method,

we also need to fine-tune a limited number of hyperparameters (the hyperparameters of the

augmenter network), but we can also define a more generic set of differentiable transformations.

Moreover, learning the optimal data augmentation at each epoch can be beneficial for the model,

as the time when the transformations are presented to the model is important as reported in

Golatkar et al. (2019).
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Table 3.6 Impact of color and affine transformations on classification accuracy (%)

Transformations in parentheses are learned, others are predefined. Our model performs

better than hand-defined transformations on the six different datasets. Best perfor-

mances are obtained with a combination of learned color and affine transformations.

Scenario / Dataset BACH Glas
Larynx

20x

Larynx

40x

Brain

20x

Brain

40x

Baseline 83.30±1.18 89.50±1.22 87.51±1.27 86.67±1.16 99.53±0.43 96.97±1.13

Baseline + color DA 85.10±1.19 96.00±1.25 90.24±1.38 86.67±1.23 99.53±0.43 97.42±1.20

Baseline + affine DA 83.70±1.20 97.75±1.27 95.92±1.11 94.29±1.38 99.54±0.68 98.18±1.05

Baseline + color&affine DA 84.60±1.23 98.25±1.12 95.24±1.25 95.24±1.37 99.53±0.43 98.94±1.26

Our model (color DA) 85.60±1.18 97.25±1.23 91.11±1.28 86.67±1.22 99.53±0.43 97.57±1.24

Our model (affine DA) 85.40±1.25 98.25±1.20 96.19±1.22 95.24±1.26 99.69±0.43 98.63±1.36

Our model (color&affine DA) 88.90±1.25 99.25±0.56 96.61±1.23 97.14±1.26 99.84±0.35 99.24±0.54

Geometric Transformations In this paragraph, we evaluate our model by investigating the

impact of geometric transformations on the classification accuracy. Results are presented in

Tab.3.6. For BACH dataset, our model performs better than predefined affine transformations

(+2.1% accuracy over baseline and +1.7% over predefined transformations). However, it does

not perform as well as when learning only color transformations, which indicates that this kind

of transformation is less efficient for this dataset.For Glas dataset, our model performs also

better than predefined affine transformations (+8.75% accuracy over baseline and +0.5% over

predefined transformations). Interesting to note is also that for this dataset, affine transformations

are helping more to train the model than using only color transformations. For Larynx 20x

dataset, we can see that our model performs slightly better than predefined transformations

(+8.68% accuracy over baseline and +0.27% over predefined transformations). Also, for

this dataset, using geometric transformations seems to help train the model more than using

color transformations only. For Larynx 40x dataset, similarly to Larynx 20x dataset, our

model performs slightly better (+8.57% accuracy over baseline and +0.95% over predefined

augmentations) and affine transformations are more helpful than only color transformations. For

Brain 20x dataset, our model performs slightly better than predefined affine transformations

(+0.16% accuracy over baseline and +0.15% over predefined affine transformations. As opposed

to color transformations, affine transformations have a positive impact on the performance of
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the classification model. For Brain 40x dataset, our model performs also slightly better than

predefined affine transformations (+1.66% accuracy over baseline and +0.45% over predefined

augmentations). Also for this dataset, affine transformations have a bigger positive impact on

the model accuracy than color transformations.

Color Transformations In this paragraph, we investigate the impact of color transformations

alone on the training of an image classifier. Results are presented in Tab.3.6. For BACH dataset,

using predefined color augmentations to train the model yields an increased classification

performance compared to the baseline, but the model has the best performance when trained

with the augmentations learned by our augmenter (+2.3% accuracy VS baseline and +0.5%

accuracy VS predefined color augmentations). For Glas dataset, the classifier performs better

with learned transformations than with predefined ones (+7.75% over baseline and +1.25% over

baseline). For Larynx 20x dataset, our model also performs better than predefined augmentations

(+3.6% accuracy VS baseline and +0.87% accuracy VS predefined augmentations). For Larynx

40x dataset, our model performs similarly to predefined transformations. However, in both

cases, we do not see any improvement over the baseline, which indicates that either color

transformations might not be the best ones to use for this dataset or that the performance of

the classifier is already saturated to see the improvement brought by those transformations.

For Brain 20x dataset, similarly to the Larynx 20x dataset, our model performs on-par with

predefined transformations and brings no improvement over the baseline. Also in this case, it

seems that color augmentations used are not useful to train the classifier or that the performance

is too saturated to see the improvement. For Brain 40x dataset, our model performs slightly

better than predefined augmentations (+0.6% accuracy VS baseline and +0.13% accuracy over

predefined data augmentations.

Combination of color and affine transformations In this paragraph, we evaluate our model

by investigating the impact of geometric transformations on the classification accuracy. Results

are presented in Tab.3.6. For BACH dataset, the combination of both kind of transformations

is significantly improving the classification score (+5.6% accuracy over baseline and +4.3%

over predefined augmentations). For Glas dataset also, the combination of both color and
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geometric transformations is improving the model performance (+9.75% accuracy over baseline

and +1% over predefined augmentations). For Larynx 20x dataset, the combination of color

and affine transformations learned by our model has a bigger positive impact on the model final

accuracy (+9.1% over baseline and +1.37% over predefined transformations). For Larynx 40x

dataset, learning both color and affine transformations is also yielding the model with the best

classification accuracy (+10.47% over baseline and +1.9% over predefined transformations). For

Brain 20x dataset, our model learning color and affine transformations is performing slightly

better than predefined transformations (+0.31% over baseline and predefined transformations).

For Brain 40x dataset, when learning color and affine transformations at the same time, our

model is performing better than the predefined transformations (+2.27% over baseline and +0.3%

over predefined transformations). To summarize the results of this series of experiments, we can

see that the combination of both color and affine transformations yields the best results, which

shows that our model became more invariant to color and shape perturbations thanks to the data

augmentation transformation learned along the training.

Additional experiments on BACH dataset In this section, we run a series of experiments on

BACH dataset to have a better understanding of our model. BACH was chosen as it is the most

challenging dataset of the six considered in terms of image size and difficulty of the classification

task, as shown in Tab. 3.6.

In a first experiment, we investigate the evolution of the model accuracy with respect to the

amount of training data. In Fig.3.4, we can see that our model performs better than using

only predefined transformations when using the full training set. When we reduce the amount

of data gradually, we can see that the amplitude of the improvement decreases for color only

and geometric only transformations. Below a threshold of 50% of the training set, our model

performs on par with predefined augmentations when learning color or geometric transformations

only, but yields an inferior performance when learning both types of transformations at the same

time. In this case, our model does not have enough data to learn useful transformations. This

shows that having a minimum amount of training data is a limitation and a prerequisite of our

data-based learning method.
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Figure 3.4 Classification Accuracy (%) on BACH

dataset in fonction of the amount of training data

Our model performs better than using only predefined transformations when using the

full training set. When we reduce the amount of data gradually, we can see that the

amplitude of the improvement decreases for color and geometric only transformations.

Below a threshold of 50% of the training set, our model performs on par with prede-

fined augmentations when learning color or geometric transformations, but yields an

inferior performance when learning both types of transformations at the same time.

In this case, our model does not have enough data to learn useful transformations.
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Table 3.7 Impact of the pretraining on the

classification accuracy (%) on BACH dataset

Transformations in parentheses are learned, others are predefined.

The best classification accuracy is obtained when training

a model pretrained on ImageNet. However, we can see that

when training a model from scratch, the baseline accuracy

is lower and using data augmentation has a bigger impact.

(+14% when training from scratch for our learned augmen-

tations VS + 6.6% when starting from a pretrained model.)

BACH From Scratch Pretrained model

Baseline 71.60±1.29 83.30±1.18

Baseline + color 75.20±1.04 85.10±1.19

Baseline + affine 74.60±1.26 83.70±1.20

Baseline + color&affine 83.20±1.29 84.60±1.23

Our model (color DA) 83.90±1.21 85.60±1.18

Our model (affine DA) 82.70±1.99 85.40±1.25

Our model (color&affine DA) 85.60±1.29 88.90±1.25

In a second experiment, we investigate the impact of starting from a pretrained model when

training a classifier with our proposed method. In Tab. 3.7, we can see that the best classification

accuracy is obtained when starting from a model pretrained on ImageNet. However, we

can see that when training a model from scratch, the baseline accuracy is lower and using

data augmentation has a bigger impact. (+14% when training from scratch for our learned

augmentations VS + 6.6% when starting from a pretrained model). This experiment shows that

using a pretrained model to boost the performances as usually done in the literature is helping,

but using an appropriate data augmentation on top during training can further increase the final

model performance.

Comparison with random sequences of data augmentation transformations In Tab. 3.8,

we compare our model to a model trained with a RandAugment based framework on the six

same datasets. To be fair in the comparison of the results, we limited the transformations in the

RandAugment set of available transformations to the only ones that our model is learning, as

shown in Tab. II-3. On 5 datasets, our model yields a better classification accuracy than the

RandAugment based method. On Glas, both models yield similar results. Similarly to RandAug-
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Table 3.8 Comparison to a RandAugment based model

Our model yields better results than a model trained in a RandAug-

ment based framework on 5 datasets. On Glas it is performing on-

par. Our model represents a good solution to learn the optimal data

augmentation automatically for color and affine transformations.

BACH Glas
Larynx

20x

Larynx

40x

Brain

20x

Brain

40x

Baseline 83.30±1.18 89.50±1.22 87.51±1.27 86.67±1.16 99.53±0.43 96.97±1.13

Predefined color&affine DA 84.60±1.23 98.25±1.12 95.24±1.25 95.24±1.37 99.53±0.43 98.94±1.26

RandAugment based model 87.25±1.48 99.25±0.68 95.83±0.23 96.14±1.31 99.53±0.35 99.18±1.03

Our approach 88.90±1.25 99.25±0.56 96.61±1.23 97.14±1.26 99.84±0.35 99.24±0.54

ment, our model has only a few model-specific hyperparameters to tune (the augmenter network

parameters). However, our model requires less prior knowledge as it does not require defining

a precise list of possible transformations but works with a more generic set of differentiable

transformations. Our intuition to explain the improved classification performance is that learning

the optimal data augmentation for each epoch is beneficial for the model, as the time when the

transformations are presented to the model is important, as reported in Golatkar et al. (2019).

3.6 Conclusion and Discussion

We have presented a novel approach to automatically learn the transformations needed for

effective data augmentation. The method is based on an online approximation of the bilevel

optimization problem, defined by alternating between optimizing the model parameters and the

data augmentation hyperparameters. By doing so, we train an augmenter network to generate

the right transformations at the same time as we train the classifier network. We evaluated

the proposed approach with different models against a variety of datasets (4 in natural and 4

in histological images) and transformations (geometric and color). The obtained results were

comparable or better than the results obtained from defining hand-engineered transformations.

In experiments with histological images, it also yielded better results than a model trained with

a RandAugment based framework. This shows that our method is very suitable in the context of
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Table 3.9 Qualitative results

For each dataset and each scenario, we see the evolution of the learned transformations

along the training. Transformations at the beginning of the training are stronger and

tend later to finer transformations useful enough to improve the classification accu-

racy of the trained model. In each row, the first image is the original patch and the

last one is the same patch at the end of the training. The images in-between were ex-

tracted at respectively at 25%, 50% and 75% of the total number of training epochs.

Color Affine Color and Affine

BACH

Glas

Larynx20x

Larynx40x

Brain20x

Brain40x

histopathological images, where potentially useful transformations to train a classifier are not

trivial to define by hand. It also eliminates the risk to select transformations that would degrade

the model accuracy.

Overall, this approach brings us a step closer to having a fully automated learning system that

requires minimal human intervention.





CHAPTER 4

BAG OF TRICKS FOR FULL TEST-TIME ADAPTATION

After having explored data augmentation through the lens of generative models and the automatic

learning of transformations via bilevel optimization, we delve in this chapter into the world of

domain adaptation. Principally a response to the distributional shift issue between train and test

data, domain adaptation can also be seen as a possible solution to the challenge of data scarcity.

Indeed, given the impracticality of collecting data from every possible domain that might appear

at test time, techniques must be devised to adapt the trained model to data distributions unseen

during training. In this chapter, we focus more specifically on Fully Test-Time Adaptation (TTA),

classifying and benchmarking selected recently proposed State-of-the-Art techniques.

4.1 Introduction

Deep neural networks perform well at inference time when test data comes from the same

distribution as training data. However, they become inaccurate when there is a distribution

shift (Quionero-Candela, Sugiyama, Schwaighofer & Lawrence, 2009). This distribution shift

can be caused by natural variations (Koh et al., 2021) or corruptions (Hendrycks & Dietterich,

2019; Hendrycks et al., 2021). Test-Time adaptation (TTA) aims at addressing this problem by

adapting a model pre-trained on source data to make better predictions on shifted target data

(Sun et al., 2020; Iwasawa & Matsuo, 2021; Bartler, Bühler, Wiewel, Döbler & Yang, 2022). In

this work, we focus on the particular case of Fully Test-Time Adaptation (Fully TTA) (Wang

et al., 2021a; Niu et al., 2023; Zhao et al., 2023). In this setting, the adaptation is done source

free and relies only on: i) a model pre-trained on data from a source domain and ii) unlabeled

test data from a shifted target domain. Separating the training phase from the adaptation phase is

particularly relevant for privacy-oriented applications where the training data is not available or

can not be disclosed. Fully TTA is also online. Test data is received as a continuous stream, and

the model adaptation is done on-the-fly as data is received. This makes the setup more realistic

and closer to real-world “in-the-wild” scenarios, where information about potential distribution

shifts or about the quantity of data to be received is not necessarily available.
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Figure 4.1 Classification Accuracy (%) in function of Batch

Size for different methods and architectures on ImageNet-C

In this work, we choose to focus on small batches (16 and below, white zone). As the

batch size decreases, the model performances remain stable until a batch size of 32 and

then drops significantly for methods running on ResNet50-BN. Results reported are

averaged over 15 corruptions and 3 runs. Confidence intervals are too small to be displayed.

Most of the recent solutions proposed to address Fully TTA are follow-ups of seminal work Tent

(Wang et al., 2021a) and aim at solving problems inherent to the online and unsupervised aspect

of Fully TTA. For example, Zhao et al. (2023); Wang, Minku & Yao (2016) deal with the problem

of class imbalance in the data stream, Niu et al. (2023); Zhang et al. (2022) improve the quality

of the predictions used to adapt a model by selecting samples with a low entropy or leveraging

the predictions of augmented samples and Zhang et al. (2022); Zhao et al. (2023); Lim et al.

(2023); Zhang et al. (2022) investigate different normalization to stabilize the adaptation process.

However, most of the tricks and techniques are presented in combination with others, which

makes it difficult to identify their impact on the final model performance. Some techniques might

already help when applied alone, whereas others might only work or work better in combination

with other tricks.

As this area of research is very active and developing fast, we aim in this study at disentangling

the impact of some techniques recently proposed and evaluate objectively their contribution
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to the performance of Fully TTA models. We also propose possible improvements in specific

cases.

Most TTA papers report results using a batch size of 64. However, in this work, we choose to

give particular attention to the online aspect of fully TTA and focus on smaller batch sizes (16

and below), which are closer to the potentially uncontrollable batch sizes of real-world scenarios.

Moreover, as we can see in Fig. 4.1, most methods are stable with bigger batch sizes but start

showing lower performances when the batch size drops below 16.

4.1.1 Contributions

To address the Fully Test-Time Adaptation problem, we analyzed the following techniques:

i) Usage of batch renormalization or batch-agnostic normalization ii) Class re-balancing iii)

Entropy-based sample selection iv) Temperature scaling. These analyses were made considering

small batch sizes (16 and below), which are closer to the potentially uncontrollable batch sizes in

real-world scenarios. Our experimental results show that these techniques, when used alone, are

already boosting the performance at test time. However, combining all of them leads to the best

classification accuracy compared to a vanilla Tent method and 2 recent state-of-the-art methods

accross 4 different datasets. In addition to improving accuracy, the chosen techniques confer

additional interesting benefits, such as a greater stability of performance with small batch sizes

and a reduced computational burden through model adaptation with a reduced set of selected data.

4.2 Related Work

4.2.1 Test-time adaptation (TTA)

As illustrated in Tab. 4.1 proposed initially by Niu et al. (2022) and extended based on our

understanding of recent work in the field, Test-time adaptation, which is a particular case of
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Domain Adaptation, assumes access to a pre-trained model and aims at leveraging unlabeled

test instances from a (shifted) target distribution to make better predictions.

Table 4.1 Overview of TTA problem settings

In our work, we consider the Fully Test-Time Adapta-

tion (FTTA) scenario, which is source-free and online.

Setting
Source

Data

Target

Data
Training Loss

Testing

Loss
Online

Source Acc.

Maintained

Fine-tuning � 𝑥𝑡 , 𝑦𝑡 L(𝑥𝑡 , 𝑦𝑡 ) - � �

Continual learning � 𝑥𝑡 , 𝑦𝑡 L(𝑥𝑡 , 𝑦𝑡 ) - � �

Unsupervised domain adaptation 𝑥𝑠, 𝑦𝑠 𝑥𝑡 L(𝑥𝑠, 𝑦𝑠) + L(𝑥𝑠, 𝑥𝑡 ) - � �

Test-time training 𝑥𝑠, 𝑦𝑠 𝑥𝑡 L(𝑥𝑠, 𝑦𝑠) + L(𝑥𝑠) L(𝑥𝑡 ) � �

Continual test-time adaptation � 𝑥𝑡 � L(𝑥𝑡 ) � �

Fully test-time adaptation (FTTA) � 𝑥𝑡 � L(𝑥𝑡 ) � �

Proposed methods usually employ one or a combination of the following techniques: self-training

to reinforce the model’s own predictions through entropy minimization (Wang et al., 2021a) or

Pseudo-Labelling schemes (Lee, 2013), manifold regularization to enforce smoother decision

boundaries through data augmentation (Zhang et al., 2022) or clustering (Boudiaf et al., 2022),

feature alignment to mitigate covariate shift by batch norm statistic adaptation (Li et al., 2017;

Schneider et al., 2020), and meta-learning methods (Goyal et al., 2022) that try to meta-learn

the best adaptation loss.

4.2.2 TTA in the broader literature

Although recently introduced (Wang et al., 2021a), TTA shares important motivations and

similarities with earlier or concurrent settings that are source-free domain adaptation (SFDA)

(Liang et al., 2020; Yang et al., 2021a; Boudiaf et al., 2023) and test-time training (TTT) (Sun

et al., 2020; Osowiechi et al., 2022). In SFDA, methods also leverage samples from the target

distribution of interest but have no access to source data, and the evaluation is still done on

held-out test data. In other words, TTA is the transductive counterpart of SFDA. On the other

hand, TTT works by constructing an auxiliary task that can be solved both at training and
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adaptation time and therefore, unlike TTA, is not agnostic to the training procedure or to the

model architecture.

4.2.3 Fully TTA

TTA is of particular interest for online applications, in which the model receives samples

as a stream. Operational requirements for online applications break crucial properties of

the vanilla TTA setting, e.g. large batch size or class balance. Under such operational

requirements, standard TTA methods degrade, underperforming the non-adapted baseline and

even degenerating to random performance in some cases (Boudiaf et al., 2022; Niu et al., 2023).

Multiple regularization procedures have been proposed to address such shortcomings. Among

them, (i) Improved feature alignment procedures that interpolate, between source and target

statistics (Nado et al., 2020; Lim et al., 2023; Zhao et al., 2023), thereby improving overall

estimation and decreasing reliance upon specific test batches, (ii) Sample re-weighting (Zhao

et al., 2023; Niu et al., 2022) to alleviate the influence of class biases, and (iii) Improving loss’

intrinsic robustness to noisy samples, either encouraging convergence towards local minima

(Niu et al., 2023) or preventing large deviations from the base model’s predictions (Boudiaf

et al., 2022; Niu et al., 2022).

4.3 Selected Tricks and Techniques

In this section, we present a classified selection of recently proposed Fully TTA tricks and

techniques. As this line of work grows, our work aims at providing an objective evaluation of

how they translate into actual robustness for Fully TTA, quantifying the progress made so far,

as well as pinpointing possible areas of improvement. We focus our attention on the following

topics: architecture and normalization, class rebalancing, sample selection and calibration.
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4.3.1 Architecture and Normalization

We start our study by investigating the influence of different architectures and normalization

on model performance. Normalization, in particular, has been an active area of research in the

TTA literature. Zhao et al. (2023) show that in the case of a distribution shift, normalization

statistics are inaccurate within test mini-batches, and the gradient of the loss can exhibit strong

fluctuations potentially destructive for the model. To address this issue, Lim et al. (2023)

proposed combining linearly the statistics learned during training with those computed at test

time to reduce the gap between the source domain and the target domain. However, this method

is not applicable in Fully TTA, as it requires access to labeled source data to learn the linear

combination in a post-training phase before using it at test time. Zhang et al. (2022) also use

a linear combination of the train and test statistics to handle the distribution shift. Zhao et al.

(2023) adapt batch renormalization (Ioffe, 2017) to test-time adaptation. Batch normalization

parameters are updated using a combination of the mini-batch statistics and moving averages

of these statistics like in the original paper, but in the TTA context, statistics and moving

averages are computed using test batches. Another way to address the issues inherent to batch

normalization is to use group or layer normalization instead, as investigated in Niu et al. (2023).

As the normalization varies greatly between works, this study aims to disentangle its effect from

other techniques used.

4.3.2 Class Rebalancing

Subsequently, we explore the problem of online class imbalance in the context of Fully TTA.

This problem is strongly relevant in this setting, as data is received as a continuous stream. In

this case, there is no guarantee that classes will appear in a balanced way or that different classes

will appear in a given batch, especially when the batch size becomes much smaller than the

total number of classes in the dataset. Imbalanced data can be particularly detrimental to the

model performance as shown in Wang et al. (2016); Niu et al. (2023); Zhao et al. (2023) and

can lead in extreme cases to a model collapse to trivial solutions like assigning all samples to

the dominant class. To evaluate methods in regard to this problem, we consider two approaches.
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In the first one, we follow the setup proposed in Niu et al. (2023), where the online imbalanced

label distribution shift is simulated by controlling the order of the input samples using a dataset

generated with a controlled imbalance ratio. More details about the generation of this dataset are

available in 4.4.1. Then, in a second approach, we investigate the evolution of the classification

accuracy of different models simply in function of the batch size. We consider small batch sizes

already as a factor of online class imbalance, as not all classes can be present in the same batch.

In our experiments, we compare three methods: i) Tent without any class rebalancing method

is used as a baseline. ii) SAR (Niu et al., 2023) is not a class rebalancing method per se, but

the sample selection method introduced in this work is presented as a way to address the class

imbalance problem by the authors. iii) DOT is an adaptation of the class-wise reweighting

method proposed in Cui, Jia, Lin, Song & Belongie (2019) adapted to the context of test-time

adaptation in Zhao et al. (2023). The idea of DOT is to estimate the class frequencies in the

test set by maintaining a momentum-based class-frequency vector 𝑧 ∈ R𝐾 where 𝐾 is the total

number of classes, based on the prediction of the model of each sample seen previously. Then at

inference time, each new sample receives a weight in function of its pseudo label and the current

𝑧 vector. A sample belonging to a rare class will receive a higher weight than a sample from a

class seen more often. The DOT algorithm is detailed in Algo. 4.1.

4.3.3 Sample Selection

In the previous sections, we explored standard mechanisms to address covariate shift (through

normalization) and label shift (through class rebalancing). In this section, we go one step further

and explore mechanisms that cast TTA as a noisy learning problem. In particular, we explore

the sample selection method first proposed in Niu et al. (2022) and analyzed more thoroughly

after in Niu et al. (2023). The main idea of this method is to select only reliable samples for the

model adaptation. Indeed, in Niu et al. (2023), authors show that samples with high entropy are

more likely to have a strong and noisy gradient potentially harmful to the model performance.

Furthermore, low-entropy samples contribute more to the model adaptation than high-entropy

ones. However, there is no easy way to directly filter out samples with a strong gradient from
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Algorithm 4.1 Dynamic Online reweighTing (DOT)

Taken from Zhao et al. (2023)

Input: inference step 𝑡 := 0; test stream samples {𝑥 𝑗 }; pre-trained model 𝑓{𝜃0,𝑎0};

class-frequency vector 𝑧0; loss function L; smooth coefficient 𝜆.

1 while the test mini-batch {𝑥𝑚𝑡+𝑏}
𝐵
𝑏=1 arrives do

2 𝑡 = 𝑡 + 1

3 {𝑝𝑚𝑡+𝑏}
𝐵
𝑏=1, 𝑓{𝜃𝑡−1,𝑎𝑡 } ←Forward({𝑥𝑚𝑡+𝑏}

𝐵
𝑏=1, 𝑓{𝜃𝑡−1,𝑎𝑡−1}) // output predictions

4 for 𝑏 = 1 to 𝐵 do
5 𝑘∗𝑚𝑡+𝑏

= 𝑎𝑟𝑔 𝑚𝑎𝑥𝑘∈[1,𝐾] 𝑝𝑚𝑡+𝑏 [𝑘] // predicted label

6 𝑤𝑚𝑡+𝑏 = 1/(𝑧𝑡−1 [𝑘
∗
𝑚𝑡+𝑏

] + 𝜖) // assign sample weight

7 end for
8 �̄�𝑚𝑡+𝑏 = 𝐵.𝑤𝑚𝑡+𝑏/Σ

𝐵
𝑏′=1

𝑤𝑚𝑡+𝑏′ , 𝑏 = 1, 2, . . . , 𝐵 // normalize sample weight

9 𝑙 = 1
𝐵Σ

𝐵
𝑏=1

�̄�𝑚𝑡+𝑏.L(𝑝𝑚𝑡 + 𝑏) // combine sample weight with loss

10 𝑓{𝜃𝑡 ,𝑎𝑡 } ←Backward&Update(𝑙, 𝑓{𝜃𝑡−1,𝑎𝑡 }) // update 𝜃

11 𝑧𝑡 ← 𝜆𝑧𝑡−1 +
(1−𝜆)
𝐵 Σ𝐵

𝑏=1
𝑝𝑚𝑡+𝑏 // update z

12 end while

the optimization process. So, instead, an entropy-based filtering method was proposed. More

precisely, a threshold entropy 𝐸0 is defined as the maximum entropy log𝐾 multiplied by a factor

𝐹, which is a scalar with a value between 0 and 1, 1 meaning no selection at all. All samples

with an entropy below this threshold 𝐹 log𝐾 are kept, whereas the others are discarded when

computing the loss value to update the model. Formally, this filtering method can be expressed

as a sample selection function 𝑆:

𝑆(𝑥) = II{𝐸 (𝑥;Θ)<𝐸0} (𝑥) (4.1)

where II{.} (.) is an indicator function, 𝐸 (𝑥;Θ) is the entropy of sample 𝑥, and 𝐸0 is a threshold

predefined as:

𝐸0 = 𝐹 log𝐾 (4.2)

where 𝐾 is the total number of classes in the dataset and 𝐹 is a real number in [0; 1].
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4.3.4 Calibration

Our last topic of interest is the problem of network calibration in the context of Fully TTA. The

calibration of classification networks is a measure of the confidence of the predictions. It is of

utmost importance in the context of Fully TTA as it impacts directly the predictions’ entropy.

Temperature scaling is one technique introduced in Guo, Pleiss, Sun & Weinberger (2017) to

improve the calibration of under- or overconfident neural networks by correcting the logits in the

softmax function. Formally, it is expressed as:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝜏 (𝑧)𝑖 =
𝑒𝑧𝑖/𝜏∑𝐾
𝑗=1 𝑒

𝑧 𝑗/𝜏
(4.3)

where 𝜏 is the temperature scaling factor, 𝑧 is the logits vector of an input sample, 𝑖 is a class

index and 𝐾 is the total number of classes. A 𝜏 value above 1 will lead to a higher entropy with

a flattened distribution of the model predictions, whereas a 𝜏 value smaller than 1 will lead to a

low entropy with a more peaky predictions’ distribution. In the context of test-time adaptation,

Goyal et al. (2022) show that using temperature scaling improves the model accuracy after

adaptation when using an entropy minimization-based method. Lee (2013) also shows that when

meta-learning the optimal loss for test-time adaptation, the result is an entropy minimization

loss with a temperature scaling factor.

4.4 Experimental Setup

In this section, we present the details of our experimental setup. Firstly, we introduce the datasets

used, then the different methods we want to compare and the different models, and finally, we

explain the evaluation metric and protocol.

4.4.1 Datasets

We evaluate the different methods on several datasets used by prior SFDA or TTA studies:

ImageNet-C (Hendrycks & Dietterich, 2019) is a variant of ImageNet (Russakovsky et al., 2015)
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where 19 corruption types and 5 levels of severity were applied. For our experiments, we report

results using 15 corruption types at the most severe level of corruption (level 5) and keep the 4

remaining extra (speckle noise, gaussian blur, spatter, and saturate) as “validation” corruptions to

select hyperparameters, following Zhao et al. (2023) and Niu et al. (2023). ImageNet-Rendition

(Hendrycks et al., 2021) consists of 30,000 images distributed in 200 Imagenet classes obtained

by the rendition of ImageNet images like art, cartoons, tattoos, or video games. ImageNet-Sketch

(Wang, Ge, Lipton & Xing, 2019) is a dataset of 50,000 images distributed in all ImageNet

classes and obtained by querying Google Images with "sketch of __" where __ is the name of

original ImageNet classes. Images are black and white. Finally, VisDA2017 (Peng et al., 2017)

is a dataset of over 72K images distributed in 12 ImageNet classes and containing a mix of

synthetic and real domain images.

In the sections where we analyze tricks (Class rebalancing Sec. 4.3.2, Sample Selection Sec. 4.3.3,

Calibration Sec. 4.3.4, and Tricks combination Sec. 4.5.5), experiments are done using ImageNet-

C. In experiments investigating Class Rebalancing (Sec. 4.5.2 and more particularly Fig.4.3), the

ImageNet-C variant used to simulate the online imbalanced label distribution shift is generated

using the following sampling strategy: a probability vector 𝑄𝑡 (𝑦) = [𝑞1, 𝑞2, ..., 𝑞𝐾] is defined,

where 𝑡 is a time step and 𝑇 is the total number of steps and is equal to 𝐾 the total number

of classes, and 𝑞𝑘 = 𝑞𝑚𝑎𝑥 if 𝑘 = 𝑡 and 𝑞𝑘 = 𝑞𝑚𝑖𝑛 � (1 − 𝑞𝑚𝑎𝑥)/(𝐾 − 1) if 𝑘 ≠ 𝑡. The ratio

𝑞𝑚𝑎𝑥/𝑞𝑚𝑖𝑛 represents the imbalance ratio. At each time step 𝑡 ∈ 1, 2, ..., 𝑇 = 𝐾 , 100 images are

sampled using 𝑄𝑡 (𝑦). So, in total, the newly created dataset is composed of 100×1000 images.

An imbalance factor of 500,000 is represented in Fig. 4.3 as ∞ and represents a setup very close

to the adaptation of the model one class after the other.

4.4.2 Implementation Details

Methods In this work, we chose to analyze the following tricks and methods: (i) Tent (Wang

et al., 2021a) is a seminal work in Fully Test-Time Adaptation and is the first work to use an

entropy-based loss in the adaptation process. (ii) SAR (Niu et al., 2023) is a state-of-the-art

method in Fully TTA and proposes a method to select the most useful samples based on their
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entropy. (iii) Delta (Zhao et al., 2023) is also a state-of-the-art method in Fully TTA and focuses

on addressing the problem of online class rebalancing. (iv) in our experimental setup, we call

BoT the model combining the best tricks selected in the different experiments. For reproducibility

purposes, the links to the code of the methods mentioned are provided in Appx. III-2.

Model architectures In our experiments, we use different architectures depending on the

datasets tested. In experiments with ImageNet-C, we follow Niu et al. (2023) and use two

variants of the ResNet50 architecture and a ViT-Base/16 transformer architecture. ResNet50 is a

ResNet model (He et al., 2015) with 50 layers, as explained in the background chapter. The

first ResNet50 variant (ResNet50-BN) uses batch normalization layers (Ioffe & Szegedy, 2015)

whereas the second one (ResNet50-GN) uses group normalization layers (Wu & He, 2018). In

experiments investigating the impact of normalization on model performance, we also include

a variant of ResNet50-BN where batch normalization is replaced by batch renormalization

(ResNet50-BReN). The ViTBase/16 transformer uses layer normalization (Ba, Kiros & Hinton,

2016) and will be referred to as VitBase-LN. For experiments with VisDA2017, we follow Yang

et al. (2021a) and Boudiaf et al. (2023) and use a ResNet101 architecture. The number of

parameters of each architecture is available in Appx. III-1. For reproducibility purposes, we also

provide the links to the weights used in our experiments in Appx. III-3.

Evaluation metrics To evaluate the different approaches, we use the classification accuracy

metric. To compute this metric, we follow Niu et al. (2023) and Zhao et al. (2023) and consider

the accumulated predictions of the test samples after each model update. In other words, we do

not compute the classification accuracy on the whole test set after the model has seen all test

samples but online after each batch. Results reported are averaged over 3 runs.

4.5 Results

In this section, we present the results of the experiments investigating the topics presented in

Sec.4.3.
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Figure 4.2 Impact of Normalization, Architecture, and Batch

Size on classification accuracy of Tent method on ImageNet-C

Using a batch renormalization layer leads to better performance than using

a vanilla batch normalization. Tent performance is more stable on architec-

tures with batch-agnostic normalization like group or layer normalization.

4.5.1 Architecture and Normalization

We start by reporting results about the impact of architecture and normalization.

In Fig. 4.2, we observe that the performance of Tent method on a ResNet50-BN architecture

is dropping when the batch size is becoming small, with a particularly low performance when

the batch size is 2 (5.53% accuracy) or 1 (0.14% accuracy). Intuitively, those results can be

explained by the fact that batch normalization layers are normalizing the weights based on the

statistics of the current batch. When the batch is becoming too small, the statistics computed have

a high variance and are not representative anymore of the test distribution and are not informative

enough about the domain shift. However, we can see that using batch renormalization instead

of standard batch normalization improves the performance of a ResNet50 model and avoids a

complete collapse of the model when the batch size is 1. Also in Fig. 4.2, we observe that Tent

performance on architectures with batch-agnostic normalization layers such as GroupNorm or

LayerNorm is more stable and less impacted by a reduction of the batch size.
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4.5.2 Class Rebalancing

We now continue this section by presenting results related to the class rebalancing problem.

In Fig. 4.3, we can observe the following: i) On ResNet50-BN, the performance of all methods

and for all batch sizes is dropping when the imbalance factor is increasing. Batch normalization

does not seem to be a suitable normalization method when the test set is unbalanced ii) The

performances of Tent and SAR are more stable when the imbalance factor varies on ResNet50-GN.

On this architecture, DOT is the most performing method when the batch size is still high and

the imbalance factor is still low. However, DOT performance is dropping drastically when the

batch size becomes very small or the imbalance factor is very high. iii) Best performances are

obtained by the VitBase-LN architecture. Performances are stable for all methods when the

imbalance factor increases for a batch size of 16 or 8 but decrease when the imbalance factor

increases for lower batch sizes. Our main takeaways from Fig. 4.3 are that group normalization

and layer normalization are less sensitive than batch normalization to imbalance classes and that

even if DOT and SAR are both performing better than Tent, the sample selection of SAR yields

more stable performance in the case of small batch sizes and stronger class imbalance factor.

In Fig. 4.4, we observe that the performance of all methods on ResNet50-BN is dropping when

the batch size decreases. On ResNet50-GN and VitBase-LN, the classification accuracy remains

stable when the batch size decreases for all models, DOT yielding the best results except when

the batch size is equal to 1. This particular case is explained in the next paragraph. Our main

takeaways from Fig. 4.4 are that architectures with group or layer normalization are more suitable

to handle small batch sizes, and that the class rebalancing method DOT is performing better

than the sample selection method SAR for small batch sizes greater than 1.

Single point learning for DOT method In Fig. 4.4, we observe that in the specific case of

batch size 1, the performance of DOT drops to the level of Tent. This is because in DOT, the

weight of each sample in a batch is normalized by the sum of all weights of this batch. So,

when the batch size is 1, the sum of the weights of the batch is equal to the weight of the single

sample of the batch. Thus, the normalization of the weight of this single sample by the sum
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Table 4.2 Impact of Additional Buffer on Tent accuracy (%) on dif-

ferent architecture on ImageNet-C in the single point learning scenario

An additional buffer of size 2 yields a significant performance improvement. Higher

buffer sizes can lead to noisy sample weights and yield no additional improvement

on ResNet50-BN or a performance decrease on ResNet50-GN and VitBase-LN.

BatchSize=1 DOT DOT+buff=2 DOT+buff=4 DOT+buff=8 DOT+buff=16

ResNet50-BN 0.14±0.00 20.31±0.02 20.31±0.02 20.31±0.02 20.31±0.02

ResNet50-GN 23.91±0.60 38.94±0.03 38.32±0.06 36.23±0.03 34.13±0.02

VitBase-LN 50.89±0.00 54.15±0.03 50.56±0.04 46.39±0.01 42.13±0.06

of all weights of the batch gives a weight of 1 and brings back to the same loss formulation as

Tent. To address this issue, we propose to approximate the weight of a single sample in this

particular case as if it was part of a bigger batch of size N. This approach does not require any

additional processing time as we can still infer the class of an input test sample immediately, and

it is very cheap in terms of memory as we do not need to save any sample in a queue but just the

weights of the N previous samples, which are only scalars. In Tab. 4.2, we analyze the impact of

a buffer of different sizes on Tent performance on different architecture when the batch size is 1.

We can see that an additional buffer of size 2 yields a significant performance improvement.

Higher buffers yield no additional improvement on ResNet50-BN and a performance decrease

on ResNet50-Gn and VitBase-LN. We assume that they lead to sample weights that are too

noisy.

4.5.3 Sample Selection

In this section, we take a look at results obtained in experiments investigation the sample

selection topic.

In Fig. 4.5, we can see that fine-tuning the selection threshold via factor 𝐹 can lead to a significant

increase in the performances in all cases. We also observe that in the case of smaller batch sizes,

the optimal value for 𝐹 is smaller than the value of 0.5 recommended in Niu et al. (2023) for a

batch size of 64. Moreover, as mentioned in Niu et al. (2023), another advantage of this method
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is that it requires less computational power to perform the adaptation as fewer samples are used

in the optimization. e.g. for the Gaussian noise corruption, severity level 5, on ResNet50-GN

and an entropy factor 𝐹 of 0.4, the model forward passes 50K samples but keep less than 13K

after selection for the backward pass, which is only 26% of the whole dataset for this corruption.

4.5.4 Calibration

We now focus our attention on experiments exploring the topic of network calibration in the

context of Fully TTA.

To determine the temperature scaling factor in our experiments, we follow Zhao et al. (2023)

in the way to select hyperparameters using the 4 Imagenet-C validation corruptions. For each

network architecture, we select the temperature scaling factor 𝜏 for each validation corruption

using a grid search on values between 0.5 and 1.5 with a step of 0.1 and keep the average of the

4 values. For the 3 network architectures considered, we obtain a temperature scaling factor of

1.2, which means that without correction, the models are too confident in their predictions.

In Tab. 4.3, we observe that applying temperature scaling during adaptation leads to an

increase in Tent performance on ResNet50-BN and VitBase-LN. On ResNet50-GN, the mean is

slightly lower, but the standard deviation is significantly reduced, which means overall a better

performance in terms of statistical significance. The performance increase is not very high when

using temperature alone. However, we will see in Sec. 4.5.5 that it leads to higher performance

when combined with other tricks.

4.5.5 Tricks Combination

We investigate now the performance of Tent when using different combinations of the tricks

presented in the previous sections.

For ResNet50-BN, we consider the usage of batch renormalization as an essential trick when

dealing with very small batch sizes as presented in Sec.4.3.1 and always integrate it in the
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Table 4.3 Impact of Temperature on classification accuracy (%) of

Tent method performance on different architecture on ImageNet-C

Using a temperature scaling factor increases the mean accuracy on ResNet50-

BN and VitBase-LN. On ResNet50-GN, using temperature decreases slightly

the mean classification accuracy but decreases also the standard deviation,

which means that the model is better with respect to statistical significance.

16 8 4 2 1

ResNet50-BN 39.43±0.13 33.30±0.04 20.81±0.08 5.53±0.01 0.14±0.00

ResNet50-BN+ temp 39.45±0.06 33.86±0.04 20.84±0.07 6.11±0.01 0.15±0.00

ResNet50-GN 24,15±0,55 24,00±0,54 23,99±0,56 23,92±0,57 23,90±0,58

ResNet50-GN+ temp 24.01±0.17 23.87±0.17 23.82±0.15 23.76±0.19 23.74±0.19

VitBase-LN 50.97±0.07 50.90±0.04 50.91±0.07 50.89±0.06 50.89±0.04

VitBase-LN + temp 52.84±0.27 52.81±0.26 52.76±0.26 52.76±0.20 52.77±0.22

different tricks combinations tested. In the ResNet50-BN section of Tab. 4.4, we report first

the results already presented in Fig.4.2 to see the performance improvement when using batch

renormalization. Then we consider all the possible combinations of 2 of the tricks and finally, we

consider the combination of all the tricks. For ResNet50-GN and VitBase-LN, we also present

results considering all the possible combinations of 2 of the tricks presented previously and then

combining all the tricks.

In Tab. 4.4, we observe that when using a ResNet50-BN network, the best pair of tricks is the

class rebalancing method DOT combined with the entropy-based sample selection. The best

results overall are obtained when using this pair with a temperature scaling factor, in other words

when using all tricks together. In this case, compared to Tent, we obtain an average improvement

of +17.08% accuracy over all batch sizes. In the case of a ResNet50-GN architecture, the best

pair of tricks is class rebalancing combined with the temperature scaling factor. Surprisingly,

combining temperature scaling with sample selection is performing better than vanilla Tent but

much lower than other pairs of tricks. We assume that as the temperature scaling is changing

the entropy of the test samples, a finer tuning of the sample selection margin should be done to

ensure that samples useful for the model adaptation are not discarded. The best performances are

obtained using all tricks. In this case, we obtain an average improvement of +19.92% accuracy
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Table 4.4 Effect of Tricks Combination on model accuracy (%)

Best results are obtained when combining all tricks and this

for the 3 architectures and the different batch sizes consid-

ered. Among the different architectures, VitBase-LN has

the best classification accuracy in all the different setups.

Tent + Batch Size

BR CR SS T 16 8 4 2 1

R
es

N
et

5
0
-B

N

39.40±0.13 33.30±0.04 20.81±0.08 5.53±0.01 0.14±0.00

� 43.26±0.01 41.39±0.06 37.72±0.05 30.84±0.04 20.25±0.01

� � � 45.89±0.06 43.70±0.05 39.17±0.05 31.44±0.04 20.31±0.02

� � � 45.17±0.26 43.03±0.11 39.02±0.07 31.60±0.05 20.26±0.01

� � � 46.57±0.07 44.46±0.01 39.95±0.01 31.65±0.01 20.30±0.02

� � � � 46.90±0.12 44.90±0.09 40.42±0.14 32.03±0.05 20.31±0.02

R
es

N
et

5
0
-G

N 24.15±0.55 24.06±0.54 23.99±0.57 23.92±0.57 23.90±0.58

� � 46.35±0.07 45.89±0.09 44.77±0.01 42.07±0.03 39.31±0.64

� � 26.85±0.17 27.34±0.55 29.03±0.59 30.19±0.20 27.20±0.48

� � 45.78±0.09 45.31±0.11 44.21±0.01 41.33±0.01 38.94±0.03

� � � 46.50±0.05 46.07±0.08 45.02±0.01 42.32±0.01 39.70±0.04

V
it
B

as
e-

L
N 50.97±0.07 50.90±0.04 50.91±0.07 50.89±0.06 50.89±0.04

� � 59.26±0.03 59.20±0.02 58.97±0.04 58.52±0.05 54.68±0.03

� � 57.59±0.44 58.11±0.14 57.88±0.09 57.02±0.10 55.10±0.07

� � 59.31±0.06 59.22±0.04 58.96±0.00 57.51±0.78 54.15±0.03

� � � 59.80±0.07 59.77±0.04 59.59±0.03 59.04±0.06 55.15±0.03

BR=BatchRenorm, T=Temperature, CR=Class Rebalancing, SS=Sample Selection

over all batch sizes compared to Tent. When considering the VitBase-LN architecture, we can

see that the two pairs of tricks class rebalancing and temperature and class rebalancing and

sample selection are close over all the batch sizes and yield the best results of the pairs of

tricks. The overall best results are obtained when combining all tricks. Doing this leads to an

average improvement compared to Tent of +7.66% over all batch sizes. Our main takeaway for

this series of experiments is that the best results are obtained when combining all tricks (class

rebalancing, sample selection, and temperature scaling), and this for the 3 architectures and the

different batch sizes considered. Among the different architectures, VitBase-LN has the best

classification accuracy when combining all the tricks and on all the batch sizes tested.
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Table 4.5 Accuracy (%) on ImageNet-C

BoT obtains better results than Tent and the 2 state-of-the-art methods

in all cases. If the performance increase of BoT is not significant on

ResNet50-BN (+0.78% accuracy in average versus Delta), it is much

more noticeable on ResNet50-GN (+4.31% accuracy in average versus

Delta) and VitBase-LN (+1.53% accuracy in average versus Delta).

Method
Batch Size

16 8 4 2 1

R
es

N
et

5
0
-B

N Tent 39.43±0.13 33.30±0.04 20.81±0.08 5.53±0.01 0.14±0.00

SAR 41.02±0.29 31.10±0.08 18.90±0.04 6.78±0.00 0.14±0.00

Delta 46.33±0.78 43.67±0.05 39.16±0.04 31.26±0.05 20.25±0.01

BoT 46.90±0.1 44.90±0.09 40.42±0.14 32.03±0.05 20.31±0.02

R
es

N
et

5
0
-G

N Tent 24.15±0.55 24.05±0.54 23.99±0.57 23.92±0.57 23.90±0.58

SAR 39.32±0.17 38.80±0.14 37.61±0.39 35.66±0.28 33.86±0.06

Delta 45.22±0.06 44.70±0.09 43.47±0.02 40.77±0.01 23.91±0.60

BoT 46.50±0.05 46.07±0.08 45.02±0.01 42.32±0.01 39.70±0.04

V
it
B

as
e-

L
N Tent 50.97±0.07 50.90±0.04 50.91±0.07 50.90±0.06 50.89±0.04

SAR 56.87±0.15 56.92±0.10 56.69±0.13 55.71±0.16 53.16±0.16

Delta 58.95±0.05 58.86±0.04 58.57±0.03 57.98±0.04 50.89±0.04

BoT 59.80±0.07 59.77±0.04 59.59±0.03 59.04±0.06 54.68±0.03

4.5.6 Comparison to other methods and on other datasets

In this final experimental section, we compare the performance of BoT (i.e. Tent with all the

tricks presented in this article) to a vanilla Tent and 2 state-of-the-art methods, SAR (Niu

et al., 2023) and Delta (Zhao et al., 2023). This comparison is performed on different network

architectures and different datasets: ResNet50-BN, ResNet50-GN, VitBase-LN for ImageNet-C,

ImageNet-Rendition and ImageNet-Sketch, and ResNet101 for VisDA2017.

Experimental results In Tab. 4.5, we can see that on the ImageNet-C dataset, BoT obtains better

results than a vanilla Tent, and the two state-of-the-art methods for all the batch sizes considered.

Interesting to see is the collapse of SAR performance for very small batch sizes (2 and 1) on

ResNet50-BN that we do not observe with Delta due to the usage of batch renormalization. If the
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performance increase by using all the tricks is not significant on ResNet50-BN (+0.78% accuracy

on average versus Delta), it is much more noticeable on ResNet50-GN (+4.31% accuracy on

average versus Delta) and VitBase-LN (+1.53% accuracy in average versus Delta). In Tab. 4.6,

we also observe that BoT performs the best in all cases. Interesting to note is that results are

more stable over the different batch sizes with ResNet50-GN compared to ResNet50-BN, which

is in line with observations from previous experiments. Delta performs better than SAR, but

worse than BoT. The performance increase of BoT compared to Delta is similar on ResNet50-BN

and ResNet50-GN (respectively +0.85% and +0.87% accuracy) but reaches +1.23% accuracy

on VitBase-LN. In Tab. 4.7, we make the same observations on ImageNet-Sketch as on the other

ImageNet variants. ResNet50-BN performance drops when the batch size becomes small. In all

cases, Delta performs better than SAR, but not as good as BoT. BoT performs best in all cases.

The performance increase of BoT versus Delta is +0.72% accuracy on ResNet50-BN, +1.32%

accuracy on ResNet50-GN, and +1.03% accuracy on VitBase-LN. In Tab. 4.8, we observe that

also for the VisDA2017 dataset, results are in line with previous experiments. Delta performs

better than Tent and SAR, but not as well as BoT. The performance improvement of BoT versus

Delta is +0.36% accuracy on ResNet101.

4.6 Conclusion and Discussion

In this work, we addressed the Fully Test-Time Adaptation problem when dealing with small

batch sizes by analyzing the following tricks and methods: i) Usage of Batch renormalization

or batch-agnostic normalization ii) Class re-balancing iii) Entropy-based sample selection iv)

Temperature scaling. Our experimental results show that if those tricks used alone already

bring an improvement in the classification accuracy compared to a vanilla Tent, using them

in pairs is even better, and the best results are obtained by combining them all. By doing

that, we significantly improve the current state-of-the-art across 4 different image datasets in

terms of prediction performances. Furthermore, the selected tricks bring additional benefits

concerning the computational load: i) Using group normalization instead of batch normalization

in ResNet50 yields more stable results for the same number of total parameters ii) using the
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Table 4.6 Accuracy (%) on ImageNet-Rendition

The performance increase of BoT compared to Delta is similar

on ResNet50-BN and ResNet50-GN (respectively +0.85% and

+0.87% accuracy) but reaches +1.23% accuracy on VitBase-LN.

Method
Batch Size

16 8 4 2 1

R
es

N
et

5
0
-B

N Tent 40.80±0.11 37.75±0.12 29.70±0.21 14.24±0.05 0.56±0.00

SAR 42.11±0.10 38.95±0.21 30.07±0.05 16.13±0.12 0.57±0.00

Delta 43.11±0.15 41.80±0.23 39.64±0.16 35.17±0.06 26.75±0.01

BoT 44.68±0.24 43.12±0.11 40.61±0.22 35.55±0.04 26.75±0.00

R
es

N
et

5
0
-G

N Tent 39.35±0.16 39.29±0.18 39.28±0.19 39.27±0.18 39.26±0.18

SAR 42.94±0.108 42.75±0.05 42.28±0.09 41.75±0.06 41.84±0.05

Delta 43.10±0.05 43.11±0.05 42.74±0.12 41.89±0.10 42.18±0.03

BoT 44.21±0.06 44.18±0.10 43.84±0.20 42.96±0.16 42.49±0.08

V
it
B

as
e-

L
N Tent 43.28±1.04 42.81±1.04 42.48±0.87 42.28±1.05 42.49±1.32

SAR 52.72±0.19 52.59±0.25 52.20±0.16 50.92±0.11 49.95±0.18

Delta 53.32±0.23 53.31±0.28 53.03±0.24 52.25±0.34 49.76±0.20

BoT 54.63±0.18 57.74±0.19 54.62±0.25 53.86±0.28 51.91±0.15

entropy-based sample selection reduces the computational burden by using fewer samples to

adapt the model.

We hope that this study will be useful for the community and that the presented tricks and

techniques will be integrated into future baselines and benchmarks.
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Table 4.7 Accuracy (%) on ImageNet-Sketch

BoT performs best in all case. The performance increase of BoT

versus Delta is +0.72% accuracy on ResNet50-BN, +1.32% ac-

curacy on ResNet50-GN and +1.03% accuracy on VitBase-LN.

Method
Batch Size

16 8 4 2 1

R
es

N
et

5
0
-B

N Tent 27.82±0.30 22.47±0.40 10.71±0.42 2.94±0.08 0.13±0.00

SAR 31.05±0.29 26.73±0.20 16.80±0.07 6.72±0.05 0.13±0.00

Delta 31.92±0.11 30.36±0.16 27,32±0.16 22.56±0.16 15.58±0.04

BoT 33.24±0.13 31.50±0.21 28.16±0.12 22.86±0.16 15.58±0.04

R
es

N
et

5
0
-G

N Tent 23.04±0.40 22.95±0.38 22.93±0.38 22.92±0.38 22.92±0.35

SAR 32.11±0.50 32.26±0.07 31.89±0.16 31.16±0.20 31.64±0.25

Delta 34.50±0.20 34.26±0.09 33.57±0.18 31.56±0.08 30.93±0.07

BoT 35.77±0.03 35.49±0.19 34.91±0.15 33.19±0.10 32.07±0.09

V
it
B

as
e-

L
N Tent 5.83±0.32 5.69±0.43 5.59±0.44 5.38±0.28 5.51±0.49

SAR 25.40±0.65 25.88±0.64 27.87±0.08 32.89±0.57 30.68±0.99

Delta 38.67±0.08 38.50±0.08 38.18±0.11 37.18±0.14 33.90±0.08

BoT 39.69±0.06 39.68±0.06 39.50±0.09 38.64±0.03 34.09±0.10

Table 4.8 Accuracy (%) on VisDA2017

Delta performs better than Tent and SAR but not as good

as BoT. The performance improvement of BoT versus Delta

is +0.36% accuracy and +4.75% versus Tent on ResNet101.

Method
Batch Size

16 8 4 2 1

R
es

N
et

1
0
1 Tent 65.30±0.08 64.65±0.18 63.47±0.12 58.89±0.33 49.10±0.04

SAR 63.08±0.03 57.47±0.05 46.20±0.09 24.81±0.16 18.63±0.01

Delta 73.20±0.08 71.52±0.12 68.16±0.11 61.41±0.20 49.08±0.03

BoT 73.54±0.09 71.70±0.07 68.17±0.19 61.49±0.10 50.28±0.09
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Figure 4.3 Impact of Imbalance Factor, Architecture, and Batch Size

on classification accuracy (%) of different methods on ImageNet-C

On ResNet50-BN, the performance of all models decreases when the imbalance factor

increases. On ResNet50-GN, DOT, and SAR are more efficient than Tent, but SAR is more

stable with very small batch sizes and stronger imbalance factors. On VitBase-LN, Tent

performs lower than DOT and SAR with a batch size 4 and a moderate imbalance factor.

However, DOT and SAR performance is dropping significantly for small batch sizes and

strong imbalance factors. The number after the architecture in the legend is the batch size.
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Figure 4.4 Impact of Architecture and Batch Size on the clas-

sification accuracy (%) of different methods on ImageNet-C

Batch-agnostic normalizations like group or layer normalization are more suit-

able to handle small batch sizes. Moreover, in this scenario, the class rebalanc-

ing method DOT is performing better than the sample selection method of SAR.
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Figure 4.5 Impact of Sample Selection and Architecture on

classification accuracy of different methods on ImageNet-C

The best results are circled in red. The optimal threshold varies in function of

the architecture and the batch size and is lower for the smaller batch sizes than

the values 0.5 or 0.4 for a batch size of 64 recommended in (Niu et al., 2022).





CONCLUSION AND RECOMMENDATIONS

This thesis explored important challenges occurring when learning deep learning-based visual

recognition models with limited data. In the previous sections, we started by introducing the

research problem and the research directions, then presented the solutions we proposed to

tackle the research challenges. In this section, we summarize the research contributions and the

limitations of our work, and finally, we propose two possible directions for future work.

5.1 Summary of contributions

In Chapter 1, we presented the research problem, first by giving an overview of the technical

blocks necessary to understand the following chapters, and then by introducing the challenges

induced by data scarcity and distribution shift when training a visual recognition model. In the

following chapters, we presented three works addressing those challenges.

In Chapter 2, we explored first the usage of generative models as a mean to extend a dataset

by generating additional images useful to train an image classifier and increase its robustness

and performance. More particularly, we leveraged the power of generative adversarial networks

(GAN) to generate new augmented samples. Unlike traditional heuristic transformations, the

approach presented learns data augmentation directly from training data using an encoder-

decoder architecture and a spatial transformer network, producing more complex samples within

the same class.

Taking a step back and looking at the broader picture, GANs were a promising direction in the

generative models field, but they were recently replaced by diffusion models, mainly due to the

difficulty of their training and their inability to scale to high-resolution images. Moreover, recent

studies tend to indicate that including generated images in large-scale datasets to train image

classifiers might not be the way to go, as it can lead to a decrease in the model performance.
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In Chapter 3, we proposed an efficient approach to reduce the computational resources needed

to determine the best data augmentation when training an image classifier. We optimized

augmentation parameters using a validation set through bi-level optimization in a model trained

end-to-end. Our method improved generalization while removing the need for domain knowledge

or an expensive external validation loop. Our method is particularly relevant in cases where

defining a set of possible transformations is not trivial. Indeed, we validated our model on

natural images, but also obtained good performances on histological images, where defining a

set of potentially useful transformations requires expert knowledge in the medical field.

Finally, in Chapter 4, we explored Fully test-time adaptation (TTA) and presented a categorization

of selected orthogonal TTA techniques interesting for adapting models to data drifts, such as

small batch normalization, stream rebalancing, reliable sample selection, and network confidence

calibration. We gave insights into their impact on different scenarios, highlighting trade-offs in

accuracy, computational power, and model complexity, while also revealing the synergies that

arise from combining techniques. The outcome of this study and the related work associated are

very interesting as it shows that even if test-time adaptation methods are progressing rapidly, they

still rely on strong experimental assumptions that can not be guaranteed in real-life scenarios,

like a minimum batch size or a balanced input data stream, thus proving the necessity for further

research to close the gap between research and real-life applications.

5.2 Limitations of our work

In the previous section, we summarized the contributions of this thesis. In this section, we

discuss the limitations of the proposed methods.
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5.2.1 Automatic Data Augmentation Learning

In Chapters 2 and 3, we proposed methods to learn automatically the best data augmentation

transformations to train an image classifier. Our experiments showed that those approaches led

to an improved classification accuracy for natural images and for histological images. However,

they are not free from weaknesses.

In Chapter 2, our proposed method optimizes the data augmentation parameters on the training

set, which can be suboptimal, as we want to learn the data augmentation parameters that will

yield the best performance on a validation set. This problem was addressed in Chapter 3,

where we proposed a method based on a bilevel optimization framework, optimizing the data

augmentation parameters using the validation loss.

Moreover, the learned transformations are only differentiable transformations. This limits the

range of transformations applied to the dataset available. Further research should be done to

integrate non-differentiable transformations by using for example gradient estimators.

5.2.2 Test-Time Adaptation

In Chapter 4, we ran an empirical evaluation of recently proposed Fully Test-Time Adaptation

techniques. Our experiments showed that fine-tuning them correctly and using them in

combination led to an interesting increase of the classification accuracy after adaptation.

However, we identified two main limitations.

First, the techniques investigated are applied to handle a distribution shift. Yet, mechanisms to

detect the distribution shift must be first put in place, to know when to start and when to stop

using those methods, which might not be trivial.

Moreover, some techniques yield good results but require a few labels to fine-tune their

hyperparameters. This can be problematic in a fully online mode, where collecting labels might
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not be possible or where a model in production mode might not be put offline to update the

adaptation hyperparameters.

5.3 Future work

In this section, we propose two possible directions for future work.

5.3.1 Data Augmentation Transformations Sampling

By taking a broader look at the recent data augmentation literature, we can see that if automatic

data augmentation learning has been an active area of research, different stochastic augmentation

methods have recently emerged. Those methods aim at defining data augmentation parameters

more efficiently by simply sampling some transformations and their magnitude from a big pool of

predefined transformations. Seminal work RandAugment (Cubuk et al., 2019b) reached state-of-

the-art results without any expensive sequence search like in AutoAugment (Cubuk et al., 2019a)

or data augmentation hyperparameter tuning. Follow-up works of RandAugment like Triv-

ialAugment (Müller & Hutter, 2021) went even further by showing that simple strategies like

sampling only one transformation from a pool instead of a sequence and sampling its magnitude

are enough to obtain good results. Sampling data augmentation transformations instead of

learning them seems more efficient. However, the reasons behind this improvement are not

clear. Further research is needed to understand the impact of the sampled transformations on the

trained model and to check if sampling-based approaches would still perform well in the case of

a very limited amount of training data.

5.3.2 Further exploration of Foundation Models

In Chapter 3, we saw that adapting a pretrained model at test time can help to perform a

task on a shifted data distribution. Recent trends have shown the emergence of Foundations
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models (Bommasani et al., 2021), which are models pre-trained on vast, heterogeneous datasets

and acting as a general-purpose starting point for a wide array of downstream tasks. They

provide strong discriminative features that allow them to be adapted ad-hoc from a very limited

amount of supervision, thus reducing the need to collect a large amount of annotated data.

If using those models is appealing, what they already learned is not clear. Further research

is needed to open the Foundation models "black boxes" to collect insights on the knowledge

already acquired, and determine what could still be needed to perform a task more efficiently.

In the context of data augmentation, some recent work (Basu et al., 2022) tried for instance to

analyze to which transformations Foundation models were already invariant or equivariant to

and proposed methods to extend this to a broader range of transformations.

In summary, this thesis provides a substantive contribution to the domain of deep learning by

addressing some of its key data-related challenges. By proposing solutions for efficient data

augmentation, and leveraging test-time adaptation, we aimed to offer interesting and useful

starting points for the research community for further exploration. Indeed, further research is

encouraged to improve the robustness and applicability of deep learning models in real-world

scenarios.





APPENDIX I

SUPPLEMENTARY MATERIAL FOR CHAPTER 2
ADVERSARIAL LEARNING OF GENERAL TRANSFORMATIONS FOR DATA

AUGMENTATION

1. Implementation details

Model architecture

Table-A I-1 Details of 𝐷𝐶 network

Discriminator 𝐷𝐶

Input 32x32 Image Input One-hot class representation

3x3 conv. 48 LReLU(0.2) 32x32 deconv. 48 LReLU(0.2)

3x3 conv. 96 LReLU(0.2)

3x3 conv. 96 LReLU(0.2), 0.5 dropout

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2), 0.5 dropout

3x3 conv. 192 LReLU(0.2)

1x1 conv. 192 LReLU(0.2)

1x1 conv. 192 LReLU(0.2), 0.5 dropout

MLP 1 unit, sigmoid

Table-A I-2 Details of 𝐷𝐷 network

Discriminator 𝐷𝐷

Input 32x32 Image Input 32x32 Image

3x3 conv. 48 LReLU(0.2) 3x3 conv. 48 LReLU(0.2)

3x3 conv. 96 LReLU(0.2)

3x3 conv. 96 LReLU(0.2), 0.5 dropout

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2), 0.5 dropout

3x3 conv. 192 LReLU(0.2)

1x1 conv. 192 LReLU(0.2)

1x1 conv. 192 LReLU(0.2), 0.5 dropout

MLP 1 unit, sigmoid
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Table-A I-3 Details of G network

Generator G
Input 32x32 Image 100-dim noise vector

3x3 conv. 32,batchNorm,LReLU(0.2) -

3x3 conv. 32,batchNorm,LReLU(0.2) 32x32 deconv. 32, LReLU(0.2)

Down STN

2x2 max-pooling

3x3 conv. 64,batchNorm,LReLU(0.2)

3x3 conv. 128,batchNorm,LReLU(0.2)

2x2 max-pooling

3x3 conv. 256,batchNorm,LReLU(0.2)

3x3 conv. 256,batchNorm,LReLU(0.2)

2x2 max-pooling

3x3 conv. 512,batchNorm,LReLU(0.2)

3x3 conv. 512,batchNorm,LReLU(0.2)

2x2 max-pooling

3x3 conv. 1024,batchNorm,LReLU(0.2)

3x3 conv. 1024,batchNorm,LReLU(0.2)

MLP 32 unit, ReLU

MLP 6 unit

Down U-Net

2x2 max-pooling

3x3 conv. 64,batchNorm,LReLU(0.2)

3x3 conv. 128,batchNorm,LReLU(0.2)

2x2 max-pooling

3x3 conv. 256,batchNorm,LReLU(0.2)

3x3 conv. 256,batchNorm,LReLU(0.2)

2x2 max-pooling

3x3 conv. 512,batchNorm,LReLU(0.2)

3x3 conv. 512,batchNorm,LReLU(0.2)

2x2 max-pooling

3x3 conv. 1024,batchNorm,LReLU(0.2)

3x3 conv. 1024,batchNorm,LReLU(0.2)

Up U-Net

3x3 conv. 512,batchNorm,LReLU(0.2)

3x3 conv. 512,batchNorm,LReLU(0.2)

3x3 conv. 256,batchNorm,LReLU(0.2)

3x3 conv. 256,batchNorm,LReLU(0.2)

3x3 conv. 128,batchNorm,LReLU(0.2)

3x3 conv. 128,batchNorm,LReLU(0.2)

3x3 conv. 64,batchNorm,LReLU(0.2)

3x3 conv. 64,batchNorm,LReLU(0.2)

1x1 conv. (3 for color, 1 for grayscale),batchNorm,LReLU(0.2)
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Table-A I-4 Details of C network

Classifier C
Input 32x32 Image

3x3 conv. 96 LReLU(0.2)

3x3 conv. 96 LReLU(0.2)

3x3 conv. 96 LReLU(0.2), 0.5 dropout

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2), 0.5 dropout

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2)

MLP 10 unit, sigmoid

10-class Softmax

Training parameters

To train our model, we use following values for the optimization parameters.

Generator: We use Adam as optimizer with a initial learning rate of 0.0005, a 𝛽1 value of 0.5

and a 𝛽2 value of 0.999.

Class Discriminator: We use Adam as optimizer with a initial learning rate of 0.0005, a 𝛽1 value

of 0.5 and a 𝛽2 value of 0.999. As balance factor (see Sec. 2.3), we use as value for 𝛼 0.1 for

MNIST, 1 for SVHN and 0.1 for CIFAR10.

Similarity Discriminator: We use Adam as optimizer with a initial learning rate of 0.0005, a 𝛽1

value of 0.5 and a 𝛽2 value of 0.999. As balance factor (see Sec. 2.3), we use as value for 𝛽 0.05

for MNIST, 1 for SVHN and 0.05 for CIFAR10.

Classifier: We use Adam as optimizer with a initial learning rate of 0.006, a 𝛽1 value of 0.5 and

a 𝛽2 value of 0.999. As balance factor (see Sec. 2.3), we use as value for 𝛾 0.005 for MNIST,

0.0005 for SVHN and 0.001 for CIFAR10.

Training algorithm

We train our model according to algorithm I-1.
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Algorithm-A I-1 Minibatch stochastic gradient de-

scent training of our model - Fully supervised

1 for number of training iterations do

2 Sample a first minibatch 𝑏𝑎𝑡𝑐ℎ𝑖 of size 𝑚 of labeled data (𝑥𝑖, 𝑦𝑖) ∼ 𝑝𝑑𝑎𝑡𝑎

3 Sample a minibatch 𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑖𝑠𝑒 of size 𝑚 of noise 𝑧 ∼ 𝑝𝑔 (𝑧)

4 Compute L𝐷𝐶 and update 𝐷𝐶 by descending along its stochastic gradient:

L𝐷𝐶 = −E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎
[
log (𝐷𝐶 (𝑥𝑖, 𝑦𝑖))

]
−E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎 ,𝑧∼𝑝𝑧

[
log (1 − 𝐷𝐶 (𝐺 (𝑥𝑖, 𝑧), 𝑦𝑖))

]

5 Sample a second minibatch 𝑏𝑎𝑡𝑐ℎ𝑘 of size 𝑚 of labeled data (𝑥𝑘 , 𝑦𝑘 ) ∼ 𝑝𝑑𝑎𝑡𝑎 with

the same labels as 𝑏𝑎𝑡𝑐ℎ𝑖

6 Compute L𝐷𝐷 and update 𝐷𝐷 by descending along its stochastic gradient:

L𝐷𝐷 = −E𝑥𝑖 ,𝑥 𝑗∼𝑝𝑑𝑎𝑡𝑎
[
log (𝐷𝐷 (𝑥𝑖, 𝑥 𝑗 ))

]
−E𝑥𝑖∼𝑝𝑑𝑎𝑡𝑎 ,𝑧∼𝑝𝑧

[
log (1 − 𝐷𝐷 (𝑥𝑖, 𝐺 (𝑥𝑖, 𝑧)))

]

7 Compute L𝐺 and update 𝐺 by descending along its stochastic gradient:

L𝐺 = −𝛼E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎 ,𝑧∼𝑝𝑧
[
log (𝐷𝐶 (𝐺 (𝑥𝑖, 𝑧), 𝑦𝑖))

]
−𝛽E𝑥𝑖∼𝑝𝑑𝑎𝑡𝑎,𝑧∼𝑝𝑧

[
log (𝐷𝐷 (𝑥𝑖, 𝐺 (𝑥𝑖, 𝑧)))

]
−𝛾E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎

[
log (1 − 𝐶𝑦𝑖 (𝐺 (𝑥𝑖, 𝑧))

]
,

8 Compute L𝐶 and update 𝐶 by descending along its stochastic gradient:

L𝐶 = −E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎
[
log (𝐶𝑦𝑖 (𝑥𝑖))

]
−E𝑥𝑖 ,𝑦𝑖∼𝑝𝑑𝑎𝑡𝑎 ,𝑧∼𝑝𝑧

[
log (𝐶𝑦𝑖 (𝐺 (𝑥𝑖, 𝑧)))

]

9 end for
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2. Reproducibility

Table-A I-5 Links to the source code

Method Code Link

Mounsaveng et al. (2019) https://github.com/smounsav/DATGAN



APPENDIX II

SUPPLEMENTARY MATERIAL FOR CHAPTER 3
LEARNING DATA AUGMENTATION WITH ONLINE BILEVEL OPTIMIZATION

FOR IMAGE CLASSIFICATION

1. Implementation details

Model architecture

Table-A II-1 BadGAN classifier network

Classifier C
Input 32x32 Image

3x3 conv. 96 LReLU(0.2)

3x3 conv. 96 LReLU(0.2)

3x3 conv. 96 LReLU(0.2), 0.5 dropout

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2), 0.5 dropout

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2)

3x3 conv. 192 LReLU(0.2)

MLP 10 unit, sigmoid

10-class Softmax

Table-A II-2 Augmenter network for affine and color transformations For Small, 𝑛 is

the number of parameters to learn (6 for affine, 4 for color and 10 when combining both).

Augmenter A
Small Medium Large

Input 𝑛∗ dim. Input 100 dim. Input 100 dim.

MLP 𝑛 units MLP 64 unit MLP 512 unit

relu, 0.2 dropout relu, 0.2 dropout relu, 0.2 dropout

MLP 10 x 𝑛 units MLP 32 unit MLP 1024 unit

relu, 0.2 dropout relu, 0.2 dropout relu, 0.2 dropout

- - MLP 1024 unit

- - relu, 0.2 dropout

- - MLP 512 unit

- - relu, 0.2 dropout

MLP 𝑛 units, tanh



124

Table-A II-3 Transformations

considered by our adapted Ran-

dAugment framework To be fair

in the comparison with our pro-

posed model, we limited the set

of transformations to the trans-

formations learned by our model.

Transformation type Magnitude Range

identity -

rotation [-30.0, 30.0]

translation x [-0.45, 0.45]

translation y [-0.45, 0.45]

shear x [-0.3, 0.3]

shear y [-0.3, 0.3]

contrast [0, 2]

brightness [-1, 1]

hue [-0.5, 0.5]

Saturation [0, 1]

Table-A II-4 M and N hyperparameters used

for the RandAugment based model in Tab. 3.8.

BACH Glas
Larynx

20x

Larynx

40x

Brain

20x

Brain

40x

(M,N) hyperparameters 3,2 3,2 4,2 4,2 3,3 3,3

2. Reproducibility

Table-A II-5 Links to the source code

Method Code Link

Mounsaveng et al. (2021) https://github.com/ElementAI/bilevel_augment

MELBA Submission https://github.com/smounsav/bilevel_augment_histo



APPENDIX III

SUPPLEMENTARY MATERIAL FOR CHAPTER 4
BAG OF TRICKS FOR FULL TEST-TIME ADAPTATION

1. Implementation details

Table-A III-1 Number of parameters of each architecture used in our experimental setup

Architecture Number of parameter

ResNet50-BN 25M

ResNet50-GN 25M

ResNet-101 43M

VitBase-LN 86M

2. Reproducibility

Table-A III-2 Links to the source code

of the methods mentioned in our work

Method Code Link

Tent (Wang et al., 2021a) https://github.com/DequanWang/tent

SAR (Niu et al., 2023) https://github.com/mr-eggplant/SAR

Delta (Zhao et al., 2023) https://github.com/bwbwzhao/DELTA

Table-A III-3 Links to the weights of the pretrained models mentioned in the paper

Architecture Code Link

ResNet50-BN https://download.pytorch.org/models/resnet50–9c8e357.pth (Paszke et al., 2019)

ResNet50-GN timm (Wightman, 2019)

ResNet-101 https://github.com/Albert0147/NRC_SFDA (Yang et al., 2021a)

VitBase-LN timm (Wightman, 2019)
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