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FOREWORD

This dissertation is submitted for the degree of Doctor of Philosophy at the École de Technolo-

gie Supérieure (ÉTS), University of Quebec. The research described herein was conducted un-

der the supervision of Professor Mohamed Cheriet in the Department of Systems Engineering

and Professor Kim Khoa Nguyen in the Department of Electrical Engineering, between Fall

2018 and Summer 2023.

The present dissertation is structured as a compilation of papers published at or submitted to

prestigious top-rank journals in the field of wireless communications and artificial intelligence.

The papers included in this dissertation are integrated with high fidelity to ensure compliance

with the proposed and published articles’ structure and shape. Still, only peripheral modifica-

tions (e.g., figures framing, repositioning, and rescaling) were made under École de technologie

supérieure’s thesis guidelines.
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Un cadre d’apprentissage pour un contrôle optimisé des liaisons sans fil

Mostafa HUSSIEN

RÉSUMÉ

La prolifération des systèmes de communication sans fil a suscité une attention considérable, en

raison de la croissance exponentielle des nœuds interconnectés et de l’émergence d’applications

ayant des exigences diverses en matière de qualité de service (QoS). Ces cas d’utilisation pris

en charge présentent un large éventail d’exigences exigeantes en matière de qualité de ser-

vice. En particulier, les systèmes de communication de cinquième génération (5G) ont été

conçus pour prendre en charge simultanément trois cas d’utilisation différents: les communi-

cations ultra-fiables à faible latence (URLLC), les communications massives de type machine

(mMTC) et le haut débit mobile amélioré (eMBB). chacun avec ses exigences spécifiques

à l’application, tous fonctionnant au sein de ressources réseau partagées. Satisfaire ces exi-

gences nécessite d’exploiter le réseau de manière optimisée, un formidable défi compte tenu

du dynamisme inhérent aux conditions des canaux.

L’optimisation des paramètres de transmission (par exemple, schémas de modulation et de

codage, intervalles de garde, etc.) est au cœur de l’amélioration de l’efficacité opérationnelle

des systèmes de communication modernes. Cependant, l’adaptation dynamique des paramètres

de transmission dépend de la connaissance du canal, acquise via un processus de rétroaction.

Ce mécanisme de rétroaction est sensible à l’estimation et à la compensation des décalages de

fréquence porteuse. Par conséquent, cette thèse se concentre sur trois composants essentiels au

sein du pipeline de communication : l’estimation du décalage de fréquence porteuse (CFO), la

compression du retour d’information sur l’état du canal (CSI) et l’adaptation de la liaison.

Les complexités intrinsèques associées à la modélisation analytique de ces défis, associées

à l’accessibilité d’ensembles de données abondants et à l’extraordinaire efficacité démontrée

par les algorithmes d’intelligence artificielle (IA) et d’apprentissage automatique (ML), ont

catalysé l’intégration des méthodologies d’IA et de ML pour résoudre ces problèmes. De

plus, l’intégration des techniques d’IA et de ML promet de réduire considérablement les temps

d’exécution en contournant les algorithmes itératifs conventionnels traditionnellement utilisés

dans de tels projets.

Cette thèse propose plusieurs nouvelles solutions basées sur le ML pour les trois problèmes dif-

ficiles susmentionnés dans un cadre complet. Les solutions proposées améliorent la précision,

la fiabilité et l’efficacité des systèmes de communication. Cette thèse est structurée en trois

parties, chacune dédiée à l’examen de l’un des trois problèmes fondamentaux étudiés. Plus

précisément, la PARTIE 1 se concentre sur la résolution du problème de l’estimation CFO, la

PARTIE 2 se penche sur le problème de la compression de rétroaction CSI et la PARTIE 3 est

consacrée au problème de l’Adaptation des liens.

Nos contributions à la PARTIE 1 (l’estimation du CFO) peuvent être résumées comme suit :



X

- Présentation de l’apprentissage d’ensemble, en particulier de l’algorithme Gradient Boost-

ing Machine (GBM), dans le problème d’estimation CFO. L’adoption du GBM améliore les

capacités de généralisation de notre solution proposée tout en l’alignant sur les contraintes

de ressources inhérentes rencontrées au niveau de l’équipement utilisateur (UE).

- Présentation de la technique BiModule CFO Estimation (BMCE), qui représente une ap-

proche innovante pour combiner les prédictions générées par le module d’estimation avec

les résultats dérivés d’un module auxiliaire conçu pour modéliser la corrélation temporelle

entre les valeurs CFO. La combinaison de l’estimation directe du CFO dérivée des préam-

bules de synchronisation avec les prévisions du CFO entraîne une amélioration notable de

la précision des prévisions, produisant une amélioration de 16% par rapport au seul recours

aux méthodes d’estimation directe.

Nos contributions à la PARTIE 2 (la compression de rétroaction CSI) peuvent être résumées

comme suit:

- Présentation des auto-encodeurs variationnels (VAE) pour résoudre le problème des canaux

de rétroaction bruyants. Il a été démontré empiriquement que les VAE surpassent les auto-

encodeurs classiques à estimation ponctuelle en termes de précision de reconstruction, of-

frant ainsi un moyen plus efficace de gérer l’impact des canaux bruyants.

- Proposer une version personnalisée de la perte de VAE afin d’optimiser davantage les per-

formances de la VAE dans le cadre de problèmes de feedback. Cette fonction de perte

personnalisée est précisément conçue pour s’aligner sur les exigences et caractéristiques

spécifiques des défis liés au feedback (canaux de feedback bruyants), contribuant ainsi à

des reconstructions plus précises et plus significatives.

- Proposer une solution alternative ancrée dans la théorie de l’apprentissage pour répondre

aux limites reconnues des approches basées sur l’auto-encodeur. Cette nouvelle approche

répond non seulement aux limites des auto-encodeurs conventionnels, mais surpasse égale-

ment les solutions traditionnelles et basées sur l’apprentissage par une marge substantielle

en termes de précision de reconstruction.

Enfin, dans la PARTIE 3 (lien adaptation), nos contributions peuvent être résumées comme suit

:

- Proposer une nouvelle modélisation du problème d’adaptation de lien sous la forme d’une

classification multiclasse multiétiquette qui fournit un nouveau cadre pour aborder ce prob-

lème complexe.

- Proposer une fonction de perte personnalisée pour entraîner les modèles de classification

tout en augmentant la fiabilité du système (en minimisant les erreurs faussement positives).

- Proposer un critère de sous-échantillonnage complet pour la formation des modèles d’adaptation

de lien au lieu de l’échantillonnage aléatoire adopté dans la littérature. L’utilisation de ce

nouveau critère de sous-échantillonnage pour former des modèles sur des ensembles de

données limités entraîne des améliorations significatives, avec des améliorations de perfor-

mances allant jusqu’à 50% observées dans des scénarios spécifiques.



XI

- Développer une architecture neuronale sophistiquée pour résoudre le problème d’adaptation-

compression articulaire. Cette architecture est accompagnée d’une fonction de perte et

d’une procédure de formation personnalisées, représentant collectivement un cadre de solu-

tion complet pour gérer efficacement les complexités des tâches de compression et d’adaptation

des articulations.

Mots-clés: Optimisation des canaux, intelligence artificielle, apprentissage automatique, auto-

encodeurs variationnels, systèmes de communication de nouvelle génération, 5G, informations

sur l’état des canaux, modulation et codage adaptatifs, compression CSI, estimation du dé-

calage de fréquence porteuse, systèmes MIMO-FDD





A Learning Framework for Optimized Control of Wireless Links

Mostafa HUSSIEN

ABSTRACT

The proliferation of wireless communication systems has garnered significant attention, driven

by the exponential growth of interconnected nodes and the emergence of applications with di-

verse Quality-of-Service (QoS) requirements. These supported use cases exhibit a wide spec-

trum of demanding QoS requirements. In particular, fifth-generation (5G) communication sys-

tems have been architected to concurrently support three different use cases: Ultra-Reliable

Low-Latency Communications (URLLC), massive Machine-Type Communications (mMTC),

and enhanced Mobile BroadBand (eMBB), each with its unique application-specific require-

ments, all operating within shared network resources. Satisfying these requirements mandates

operating the network in an optimized fashion, a formidable challenge given the inherent dy-

namism of channel conditions.

At the heart of enhancing the operational efficiency of modern communication systems lies the

optimization of transmission parameters (e.g., modulation and coding schemes, guard intervals,

and more). However, the dynamic adaptation of transmission parameters is contingent upon

channel knowledge, which is acquired through a feedback process. This feedback mechanism

is sensitive to the estimation and compensation of carrier frequency offsets. Hence, this thesis

focuses on three pivotal components within the communication pipeline: Carrier Frequency

Offset (CFO) estimation, Channel State Information (CSI) feedback compression, and link

adaptation.

The intrinsic complexities associated with analytically modeling these challenges, coupled

with the accessibility of abundant datasets and the extraordinary efficacy demonstrated by ar-

tificial intelligence (AI) and machine learning (ML) algorithms, have catalyzed the integration

of AI and ML methodologies in addressing these issues. Moreover, the incorporation of AI and

ML techniques holds the promise of significantly reducing execution times by circumventing

the conventional iterative algorithms traditionally employed in such endeavors.

This dissertation proposes several novel ML-based solutions for the aforementioned three chal-

lenging problems within a comprehensive framework. The proposed solutions improve the

accuracy, reliability, and efficiency of communication systems. This dissertation is structured

into three parts, each dedicated to addressing one of the three core problems investigated. Pre-

cisely, PART 1 is focused on tackling the CFO estimation problem, PART 2 delves into the CSI
feedback compression problem, and PART 3 is devoted to the Link Adaptation problem.

Our contributions to PART 1 (the CFO estimation) can be summarized as follows:

- Introducing ensemble learning, specifically the Gradient Boosting Machine (GBM) algo-

rithm, within the CFO estimation problem. Adopting the GBM enhances the generalization

capabilities of our proposed solution while aligning it with the inherent resource constraints

encountered at the User Equipment (UE).



XIV

- Presenting the BiModule CFO Estimation (BMCE) technique, which represents an inno-

vative approach to combining the predictions generated by the estimation module with the

outcomes derived from an auxiliary module designed to model the temporal correlation

among CFO values. Combining the direct CFO estimation derived from synchronization

preambles with CFO forecasting results in a notable enhancement of prediction accuracy,

yielding a 16% improvement over sole reliance on direct estimation methods.

Our contributions to PART 2 (the CSI feedback compression) can be summarized as follows:

- Introducing the Variational Autoencoders (VAE) to tackle the problem of noisy feedback

channels. It has been empirically demonstrated that VAEs outperform conventional point

estimation autoencoders in terms of reconstruction accuracy, providing a more effective

means of managing the impact of noisy channels.

- Proposing a customized version of the VAE loss in order to further optimize the perfor-

mance of VAE in the context of feedback problems. This customized loss function is

precisely designed to align with the specific requirements and characteristics of feedback-

related challenges (noisy feedback channels), thereby contributing to more accurate and

meaningful reconstructions.

- Proposing an alternative solution rooted in learning theory to address the recognized limita-

tions of autoencoder-based approaches. This novel approach not only addresses the limita-

tions of conventional autoencoders but also outperforms both traditional and learning-based

solutions by a substantial margin in terms of reconstruction accuracy.

Finally, in PART 3 (link adaptation), our contributions can be summarized as follows:

- Proposing a novel modeling for the link adaptation problem as a multilabel multiclass clas-

sification that provides a new framework for tackling this intricate issue.

- Proposing a customized loss function to train the classification models while increasing the

system reliability (by minimizing the false positive errors).

- Proposing a comprehensive subsampling criterion for training link adaptation models in-

stead of the random sampling adopted in the literature. The utilization of this novel sub-

sampling criterion for training models on limited datasets yields significant improvements,

with performance enhancements of up to 50% observed in specific scenarios.

- Developing a sophisticated neural architecture for solving the joint compression-adaptation

problem. This architecture is accompanied by a customized loss function and training pro-

cedure, collectively representing a comprehensive solution framework for efficiently man-

aging the complexities of joint compression and adaptation tasks.

Keywords: Wireless link optimization, artificial intelligence, machine learning, variational

autoencoders, next-generation communication systems, 5G, channel state information, adap-

tive modulation and coding, CSI compression, carrier frequency offset estimation, MIMO-

FDD systems
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INTRODUCTION

0.1 Context, Background, and Motivations

Wireless communication has revolutionized the way we live and work, providing us with a fast,

convenient, and cost-effective way to connect and communicate. In particular, the advent of

5G technology has opened up a whole new world of possibilities, offering faster speeds, lower

latency, and more reliable connections than ever before. 5G defines three different classes

of applications, namely, Ultra-Reliable Low-Latency Communications (URLLC), enhanced

Mobile Broadband (eMBB), and massive Machine-Type Communications (mMTC), Fig. 0.1.

This has enabled the development of new and innovative applications and services that are

changing the way we interact with the world around us. 5G has the potential to transform a wide

range of industries, from healthcare to education, by enabling real-time communication and

data transfer on a massive scale. For example, in healthcare, 5G can support telemedicine and

remote surgery, allowing medical professionals to diagnose and treat patients from anywhere

in the world. In addition, 5G is also set to drive economic growth and job creation by enabling

new and innovative business models and services Lin (2022).

According to a report by Ericsson Cerwall & et al. (2020), there will be 1.9 billion 5G connec-

tions worldwide by the end of 2023, and this number is expected to grow to over 4 billion by

the end of 2025. The global 5G market is expected to grow at a compound annual growth rate

(CAGR) of over 60% between 2020 and 2025, according to a report by MarketsandMarkets

Mar (2023). This is expected to result in a market size of over $500 billion by the end of 2025.

The race to adopt, advance, and exploit the powers of 5G networks relies mainly on a limited

budget of radio resources. In order to make the most of scarce radio resources, it is imperative

to develop intelligent technologies and solutions for utilizing them efficiently. These solutions

should take into account various factors from the high number of users, harsh quality of service

(QoS) requirements, a vast array of services and applications, different propagation environ-
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Figure 0.1 The application scenarios of 5G

ments, diverging user behaviors, etc. Moreover, some of these factors are stochastic and can

not be precisely specified in advance. Accordingly optimizing the radio resource usage under

all of the aforementioned factors and constraints becomes a very challenging task Chen et al.

(2022).

In recent years, the field of artificial intelligence (AI) and machine learning (ML) has seen

tremendous advances, leading to breakthroughs in various applications across different do-

mains. With the increasing availability of large amounts of data and computing power, deep

learning models have emerged as powerful tools for solving complex problems. In computer

vision, deep learning algorithms have surpassed human performance on various benchmark

datasets and are being used in a wide range of applications such as object recognition, image

classification, and semantic segmentation LeCun et al. (2015). Similarly, in natural language
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processing (NLP), transformers, a type of deep learning model, have revolutionized the field

by achieving state-of-the-art performance on various NLP tasks such as machine translation,

sentiment analysis, and question-answering Lauriola et al. (2022).

Figure 0.2 A non-exhaustive list of communication functions

that can be optimized using AI and ML approaches

In wireless communications, AI and ML have the potential to play a significant role in advanc-

ing the physical layer Wang & et al. (2017). One area where AI and ML can have a big impact

is in the optimization of wireless networks. With the increasing demand for high data rates

and low latency communication, traditional approaches to network optimization are becoming

insufficient. AI and ML, on the other hand, can be used to model and analyze the behav-

ior of wireless networks, allowing for real-time optimization and increased network efficiency
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Nassef & et al. (2022). Another application of AI and ML in wireless communications is in the

design of radio frequency (RF) front-ends, which are critical components of wireless devices

such as smartphones and laptops. By using AI and ML techniques, the design of RF front-

ends can be automated, reducing the time and cost of development while also improving their

performance. In addition, AI and ML can also be used to develop new modulation and coding

schemes that can significantly improve the spectral efficiency of wireless networks, enabling

the transmission of more data within the same bandwidth, Fig. 0.2 shows a non-exhaustive list

of the functions that can benefit from AI and ML models.

In a typical wireless communication system, especially at the physical layer, a sequence of

operations takes place between the transmitter and the receiver. These functions are distributed

across the various layers of the user and control planes in the 5G protocol stack, see Fig.

0.3. Most of these operations can leverage the power of AI/ML algorithms to optimize their

performance. For example, the following operations and processes occur upon the reception of

an incoming transmission at the user equipment (UE) side:

- Signal detection: The UE detects the presence of the incoming signal using its receiver.

- Signal synchronization: The UE synchronizes with the incoming signal to determine its

timing and frequency parameters.

- Demodulation: The UE demodulates the received signal to extract the data bits from the

modulation scheme used for the transmission.

- Channel decoding: The UE decodes the channel coding applied to the incoming signal to

recover the original data.

- Error correction: The UE applies error correction algorithms to correct any errors in the

received data.



5

- Channel estimation: The UE estimates the channel parameters, such as the fading, delay

spread, and multipath, to improve the performance of the receiver.

- Carrier recovery: The UE recovers the carrier signal from the received signal to obtain a

stable reference for demodulation.

- Timing recovery: The UE recovers the timing information from the received signal to align

its receiver with the incoming signal.

- Data decoding: The UE decodes the data bits from the received signal to obtain the original

information.

- Signal quality measurement: The UE measures the quality of the received signal, such as

its signal-to-noise ratio (SNR), to determine the reliability of the received data.

Figure 0.3 The protocol stack of the user plane (left) and control plane (right)

In this thesis, we consider three tasks in the signal pipeline between a UE and BS, see Fig.

0.4. Specifically, we adopt and extend various ML algorithms to optimize the carrier frequency

offset (CFO) estimation, channel state information (CSI) feedback compression, and link adap-

tation. In the next paragraphs, we briefly describe each of these problems.
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Figure 0.4 A Pipeline for the signal between the BS and the UE

CFO Estimation: CFO refers to the deviation of the carrier frequency of a transmitted signal

from its intended frequency. This deviation can occur due to various factors such as errors

in the local oscillator or non-idealities in the modulator. The existence of a CFO in a com-

munication system yields a significant degradation in performance, especially in systems that

rely on coherent demodulation. For example, in Orthogonal Frequency Division Multiplexing

(OFDM) systems, CFO causes inter-carrier interference, reducing the system’s overall bit er-

ror rate and reducing the signal-to-noise ratio. Additionally, CFO can also lead to incorrect

timing and phase recovery, making it difficult to decode the transmitted data. Therefore, it is

important to correct or compensate for CFO in order to maintain the desired performance of a

communication system. This can be achieved through various methods, including frequency

synchronization, which adjusts the carrier frequency to match the intended frequency, or CFO
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compensation algorithms that estimate and remove the effect of CFO during the demodulation

process. We investigate the potential of estimating the CFO from the received primary signal

synchronization (PSS) and secondary signal synchronization (SSS) blocks. We leverage the

powers of gradient boosting machines (GBM) to regress the value of CFO, which can be used

later for signal synchronization.

CSI feedback Compression: In Multiple Input Multiple Output-Frequency Division Du-

plexing (MIMO-FDD) systems, the uplink and downlink channels are frequency separated,

meaning that the CSI at the receiver cannot be directly used to transmit data in the downlink.

Therefore, the receiver must estimate the CSI and send it back to the transmitter in a feedback

mechanism. This feedback process can cause several issues, including limited feedback band-

width, quantization errors, and feedback delays, all of which can greatly affect the system’s

performance. Limited feedback bandwidth is a critical issue as the amount of CSI feedback is

limited by the channel bandwidth, and more feedback is required as the number of antennas

increases. This can cause a bottleneck in the feedback mechanism, and the lack of information

can limit the system’s ability to adapt to channel conditions, leading to suboptimal perfor-

mance. Accordingly, compressing the CSI feedback before fusing it to the BS is essential to

enable efficient and timely feedback. Neural compression has played a major role in this prob-

lem and achieved an outstanding performance compared with conventional methods such as

vector quantization (VQ) and compressive sensing (CS). We propose various ML-based CSI

compression and feedback algorithms which boost the accuracy and robustness of the feedback

mechanism.

Link Adaptation: Wireless link adaptation is a technique for dynamically adjusting the trans-

mission parameters of a wireless link to match the changing conditions of the wireless channel.

The goal of link adaptation is to achieve the best possible performance by adjusting the trans-

mission parameters, such as the modulation and coding scheme (MCS), the transmit power,
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guard interval, or the antenna configuration, based on the channel conditions. The dynamic

nature of wireless channels can cause significant fluctuations in the channel conditions, which

can result in varying levels of interference and fading. Link adaptation allows the system to

dynamically adjust the transmission parameters to mitigate these effects and maintain a high

level of performance. Link adaptation is achieved through the use of channel feedback, where

the UE provides information about the channel conditions back to the BS through the CSI

feedback mechanism discussed in the previous paragraph. Based on this information, the BS

can adjust the transmission parameters to ensure that the data is transmitted with the highest

possible quality. One of the main benefits of link adaptation is improved energy efficiency,

as the transmitter can adjust its power levels to match the channel conditions, reducing power

consumption and extending the battery life of wireless devices. Link adaptation also improves

the robustness of the wireless link, as it allows the system to adapt to changes in channel condi-

tions and maintain a high level of performance in challenging environments. The conventional

methods are limited in dealing with the fast-growing application requirements and propaga-

tion scenarios. Moreover, with the increased number of antennas at the UE and BS sides, the

dimensionality of the received CSI increases, and the adaptation mechanism based on the re-

ceived information becomes more challenging. However, deep learning models are capable of

efficiently processing high-dimensional data and extracting useful information about the cur-

rent state of the channel in a fixed time. In this thesis, we investigate and validate the deep

learning approach for link adaptation.

Next, we delve into the motivations behind optimized control, particularly concerning emerg-

ing communication systems, especially for 5G.

Motivations

Optimized control of wireless channels is crucial in both modern and legacy communication
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systems, but it becomes even more critical in modern systems (i.e.,5G) due to the following

reasons:

- Higher Frequency Bands: 5G networks, for example, operate in higher frequency bands

compared to LTE, such as millimeter waves (mmWave). These high-frequency bands offer

wider bandwidths and higher data rates, but they are more susceptible to signal attenuation

and obstacles. Optimized control is needed to mitigate these challenges, ensuring better

signal quality and coverage.

- Massive MIMO Technology: 5G utilizes advanced antenna technologies like Massive Multiple-

Input Multiple-Output (MIMO), which involves using a large number of antennas at both

the base station and user devices. Properly managing these multiple antennas for beamform-

ing and spatial multiplexing requires sophisticated channel control algorithms to maximize

performance.

- Dynamic Spectrum Sharing: 5G introduces dynamic spectrum sharing capabilities, allow-

ing multiple services to coexist in the same frequency band. This dynamic allocation re-

quires efficient channel control to avoid interference and allocate resources optimally, con-

sidering the diverse types of services that 5G supports, including enhanced mobile broad-

band (eMBB), ultra-reliable low-latency communication (URLLC), and massive machine-

type communication (mMTC).

- Higher Data Rates and Throughput: 5G aims to provide significantly higher data rates

and throughput compared to LTE. Achieving these ambitious goals necessitates precise

control of the wireless channel to minimize signal degradation and maintain high-quality

connections.

- Lower Latency: 5G targets ultra-low latency, which is critical for applications like vir-

tual reality, augmented reality, autonomous vehicles, and industrial automation. Optimized
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channel control helps reduce transmission delays and ensures that latency requirements are

met.

- Diverse Use Cases: 5G is designed to support a wide range of use cases beyond traditional

mobile communications, including IoT applications, industrial automation, smart cities,

and healthcare. Each use case has unique requirements, and optimized channel control is

essential to deliver the desired performance for different services.

- Energy Efficiency: With the increasing focus on sustainability, next-generation commu-

nication systems aim to be more energy-efficient. By optimizing the wireless channels,

these systems can reduce unnecessary signaling and transmission power, leading to energy

savings.

In summary, while optimized channel control is essential for both 5G and legacy networks, the

higher frequency bands, advanced technologies, dynamic spectrum sharing, and diverse use

cases in 5G make it even more critical to ensure optimal performance and meet the demanding

requirements of next-generation wireless communications.

0.2 Problem Statement and Challenges

Wireless communication systems are subject to several factors of dynamism, including wire-

less channels, user traffic, and user mobility, among others. Consequently, optimizing wireless

networks has become an active area of research aimed at providing each communication sce-

nario with the required quality of service (QoS) and quality of experience (QoE). Fixing certain

configuration parameters through the operation time of a network will not be suitable for the

changing conditions. This option sacrifices the system’s performance in favor of simplicity.

On the other hand, responding to continuous changes requires:
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- An efficient mechanism to capture the continuous changes in the operation conditions and

accurately define the current conditions.

- A mechanism to share this information among the different communicating entities (e.g.,

users, base stations, cloud centers, etc.).

- A reliable, efficient, and intelligent algorithm to adapt the different configurations to fit the

current conditions.

Although this overhead significantly improves the system performance, it adds challenges and

complexity to the operation algorithms and protocols. The main problem being addressed in

this work is:

"How the various channel parameters be configured under dynamic wireless environments?"

In other words, solving this problem means we optimize the wireless network performance by

adapting configurable parameters based on the current system conditions. However, due to the

complexity of wireless communication systems, there is a huge number of such parameters and

each of them is affected by different factors. Therefore, it is advisable to divide this problem

into subproblems that can be solved more efficiently. Consequently, the main problem has been

divided into the following subproblems:

0.2.1 SP 1: Subproblem 1

The first subproblem addresses the first processing block for the received signal, i.e., the carrier

frequency offset (CFO) estimation, see Fig. 0.4. We can articulate the first subproblem as:

"How can we accurately estimate CFO in NR systems to improve the decoding and channel

estimation tasks?"
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Accurate CFO estimation is crucial for NR systems, as it directly impacts the system’s per-

formance, such as intersymbol interference, throughput, or error rate. The proposed research

aims to investigate and compare different CFO estimation techniques, including conventional

and AI/ML-based methods, to figure out the most accurate and efficient method. The work

also considers various factors affecting CFO estimation, such as signal-to-noise ratio (SNR) to

ensure the proposed technique is robust and adaptable to different propagation environments.

By solving this subproblem, we aim to enhance the system throughout, leading to improved

user experience and network efficiency.

C1: The main challenges related to SP1 are:

- Nonlinear Distortion: Nonlinearities in the transceiver components can introduce distor-

tions in the received signal, making accurate carrier frequency offset estimation difficult.

These nonlinearities are hard to model and predict because it changes with manufacturer

and working environments. Moreover, it changes with time for the same transceiver.

- Doppler Shift: The movement of the transmitter or receiver can cause a Doppler shift in the

received signal, resulting in a frequency offset. Accurately estimating and compensating

for this offset is crucial for maintaining reliable communication in mobile scenarios. The

Doppler shift changes with the mobility pattern of the UE. For example, a pedestrian UE

will suffer a Doppler shift different than a UE in a vehicle moving at 120 Km/h.

- Noise and Interference: The presence of noise and interference in the received signal can af-

fect the accuracy of carrier frequency offset estimation. The challenge lies in distinguishing

between the desired signal and unwanted disturbances.

- Channel Estimation Errors: Imperfect estimation of the wireless channel can introduce

errors in carrier frequency offset estimation. Estimating and compensating for the channel

impairments accurately is crucial for achieving reliable frequency offset estimation.
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- Time-Varying Environments: The characteristics of the wireless channel can change over

time, leading to variations in the carrier frequency offset. Adapting to these dynamic envi-

ronments and accurately tracking the offset pose significant challenges.

- Synchronization Overhead: Estimating the carrier frequency offset requires additional over-

head in terms of signaling and computational resources. Balancing the accuracy of the es-

timation with the associated overhead is a challenge for an efficient system design. The

overhead in URLLC applications will be different than in eMBB or mMTC.

0.2.2 SP 2: Subproblem 2

After the CFO estimation, the estimated CFO is used to correct the received signal, and the

corrected signal is then used to estimate the CSI. MIMO-FDD systems require accurate CSI

to achieve the full benefits of spatial multiplexing and beamforming. However, CSI feedback

from multiple antennas in MIMO systems can be a significant overhead that affects the system’s

performance and requires large amounts of data to transmit. Therefore, CSI compression is an

essential technique to reduce the overhead of CSI feedback while maintaining the required

accuracy for efficient operation. The second subproblem can be articulated as:

"How can we optimize the overhead of CSI feedback in MIMO-FDD systems while

minimizing the impact of reconstruction loss on system performance?"

The proposed research aims to investigate and compare different CSI compression techniques

to determine the most efficient and effective approach. The research considers various factors

affecting CSI compressions, such as the compression ratio, quantization error, feedback noise,

and feedback delay, to ensure the proposed technique is robust and adaptable to different sce-

narios. Furthermore, the research will evaluate the impact of different compression techniques
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on the system’s performance, such as throughput, error rate, and energy efficiency. By address-

ing this research question, we aim to enhance the performance of MIMO-FDD systems while

reducing the overhead of CSI feedback, leading to improved system efficiency and reduced

resource consumption.

C2: The main challenges related to SP2 are:

- Channel Estimation Accuracy: Accurately estimating the wireless channel is essential for

reliable CSI feedback. However, various factors such as noise, interference, and multi-

path propagation can introduce errors in the estimation process, affecting the quality of CSI

feedback.

- Feedback Delay: The time required to estimate the channel, process the CSI, and transmit

the feedback introduces a delay. This delay can impact the effectiveness of CSI feedback,

especially in systems with rapidly changing channels or fast communication protocols. This

factor eliminates some estimation/compression techniques that may reach good accuracy

only because they are time-consuming.

- Feedback Overhead: Transmitting CSI information from the receiver to the transmitter re-

quires dedicated radio resources and introduces additional overhead in terms of bandwidth

and signaling. Optimizing the feedback overhead while ensuring sufficient CSI accuracy is

a challenge.

- Channel Correlation: In some scenarios, multiple antennas at the receiver may exhibit cor-

related channels, meaning the CSI of one antenna can be highly correlated with the CSI

of other antennas. Efficiently exploiting such correlations without sacrificing accuracy is a

challenge in CSI feedback design.

- Time-Varying Channels: Wireless channels often experience time-varying characteristics

due to mobility, environmental changes, and fading. Tracking these variations and provid-
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ing timely and accurate CSI feedback poses a challenge, particularly in fast-fading or highly

dynamic environments. Developing a global technique that works with the same efficiency

in various conditions is a challenging task.

- Algorithm Complexity: The complexity and computational requirements for CSI estimation

and feedback can be significant, especially in advanced wireless systems with multiple

antennas. In light of the available computing resources, managing this complexity while

maintaining real-time operations is a challenge.

0.2.3 SP 3: Subproblem 3

Given that now the BS has access to the current channel conditions, then it needs to select the

best configuration that suits the current conditions, this process is known as link adaptation.

Link adaptation is a critical process in wireless communications that adapts the transmission

parameters, such as modulation and coding scheme (MCS), to ensure the best possible per-

formance in the current conditions. However, traditional link adaptation techniques rely on

accurate channel state information (CSI) feedback, which is challenging to obtain in practice

due to channel estimation errors, feedback delays, and other factors. To address these chal-

lenges, we articulate the third subproblem as:

"Given the imperfect feedback, how do we select the configuration that best suits the current

channel conditions?"

Recently, several research works proposed leveraging ML and AI techniques to enhance the

performance of link adaptation algorithms while using imperfect CSI. In this dissertation, we

aim to investigate and compare different ML and AI-based approaches for link adaptation in

wireless communication systems. Moreover, we consider different factors affecting link adap-

tation, such as MCS, channel estimation errors, and feedback delay. We look at several pos-
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sible modelings of the link adaptation problem such as reinforcement learning, classification,

etc. The impact of the dataset set selection on the performance of the link adaptation algorithm

is also examined to conclude insightful conclusions about the most efficient way of training a

link adaptation agent.

C3: The main challenges related to SP3 are:

- Channel Dynamicity: Wireless channels exhibit time-varying characteristics due to factors

such as multi-path fading, interference, and environmental conditions. Adapting the link

parameters, such as modulation and coding scheme (MCS), to the varying channel condi-

tions in real-time poses a challenge.

- Channel Estimation: Accurate channel state estimation is essential for effective link adapta-

tion. However, channel estimation errors, noise, and interference can impact the reliability

of the estimated channel information, making it challenging to select appropriate link pa-

rameters.

- Trade-off Between Data Rate and Reliability: Link adaptation involves finding the right

balance between achieving higher data rates and maintaining sufficient reliability. Increas-

ing the data rate by employing higher-order modulation schemes may lead to increased

vulnerability to channel impairments, affecting the overall reliability of the link.

- Cross-Layer Optimization: Link adaptation is inherently a cross-layer problem, as it in-

volves coordination and optimization across multiple layers of the communication protocol

stack. Balancing the trade-offs and interactions between physical layer parameters, medium

access control (MAC) protocols, and higher-layer algorithms is a complex challenge.

- Dynamic User Mobility: Link adaptation becomes particularly challenging in scenarios

with fast-moving users or varying distances between the transmitter and receiver. Adapt-
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ing the link parameters to the changing channel conditions due to user mobility requires

efficient algorithms and mechanisms.

0.3 Objectives

The main objectives of this dissertation are:

- To develop a learning framework that maximizes the overall system throughput and relia-

bility of wireless communication systems under dynamic propagation environments. This

objective can be divided into the following sub-objectives:

1. SO1: To analyze and design an efficient solution for the problem of CFO estimation

in NR with high accuracy and generalization characteristics (i.e., it should work with

different signal-to-noise ratios).

2. SO2: To minimize the bandwidth overhead for wireless channel feedback in multiple-

input multiple-output (MIMO) frequency division duplexing (FDD) systems. We eval-

uate the different techniques for minimizing the bandwidth overhead in the channel

feedback process in MIMO-OFDM FDD systems. Moreover, we consider more chal-

lenging scenarios in which the feedback channel is not assumed to be noise-free.

3. SO3: To efficiently adapt the transmission parameters, based on the algorithms devel-

oped in SO1 and SO2, in a way that maximizes the throughput and, at the same time,

respects the reliability of the communication systems. After obtaining accurate chan-

nel state information (CSI), the transmitter adapts the transmission parameters (e.g.,

modulation and coding scheme (MCS), guard interval, bandwidth, etc.) accordingly to

increase the achievable throughput and channel reliability.
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0.5 Dissertation Outline

This dissertation is composed of several research papers that have been published in or submit-

ted to highly-ranked peer-reviewed journals and flagship conferences in the fields of wireless

communications and AI. The focus of these papers is to improve various components and func-

tions in the wireless communication systems pipeline. To facilitate the navigation of readers

through this dissertation, Fig. 0.5 shows a roadmap for the dissertation chapters. Following is a

detailed description of each part of this dissertation. The chapters are distributed and organized

as follows:

PART 0: Background
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PART 0: 
Introduction

Chapter 0
• Background
• Problem Statement
• Challenges
• Contribution

Chapter 1
• Literature Review
• GAP Analysis

Chapter 2
• Methodology

PART 1: 
CFO Estimation

Chapter 3

PART 2: 
CSI Feedback

Chapter 4

Chapter 5

PART 3: 
Link Adaptation

Chapter 6

Chapter 7

Chapter 8

Figure 0.5 A roadmap for the dissertation chapters

- Chapter 0: Introduction: starts with a general background on next-generation commu-

nications and highlights their main features and characteristics. The problem statement is

presented and divided into subproblems each of which addresses one issue. The challenges

associated with these subproblems are then discussed. The contribution of the dissertation

is then introduced and finally, we illustrate the dissertation outline.

- Chapter 1: Literature Review: presents an overview of prior studies on the identified

subproblems. In addition, each chapter also provides a detailed description of the related

work, emphasizing the challenges associated with the subproblem being addressed.

- Chapter 2: Methodology: presents the general methodology highlighting a detailed ac-

count of the research design, data collection methods, and data analysis techniques em-

ployed to address each subproblem, ensuring the study’s validity and reliability.

PART 1: Carrier Frequency Offset Estimation
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- Chapter 3 presents our published work on CFO estimation using ensemble learning (i.e.,

gradient boosting machines, GBM). As one of the early steps in the pipeline of signal pro-

cessing, CFO estimation plays a critical role in the subsequent processing blocks such as

CSI estimation and feedback.

PART 2: CSI Feedback

- Chapter 4 presents a step beyond the CFO estimation. Specifically, this chapter presents

our published work on the problem of CIS compression leveraging variational autoencoder

(VAE) architectures. This work focused on developing a feedback mechanism that is robust

against noise in the feedback channel. We customized the VAE loss function and training

algorithm to fit the specifications of the CSI compression problem.

- Chapter 5 presents our work on CSI compression in which we address some of the lim-

itations inherited in autoencoder-based solutions. In this chapter, we proposed a novel

technique for CSI compression based on bias/variance tradeoff utilization.

PART 3: Link Adaptation

- Chapter 6 presents our work on the link adaptation problem. After optimizing the CSI

feedback in the work presented in previous chapters, it is time to use this feedback for

optimizing the transmission parameters. This work tries to fill the gap between the CSI

feedback and the link adaptation processes and adopt the optimized feedback to obtain a

better link adaptation performance.

- Chapter 7 presents our work that explores the potential of adopting a data-centric approach

for the link adaptation problem. It proposes a novel approach for data-centric AI for link

adaptation and presents the potential gain from optimizing the dataset selection only while

keeping the model fixed.
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- Chapter 8 presents our work to combine the work of CSI compression and link adaptation

in one step. Therefore, we jointly learn the CSI compression and the adaptation function

in one model under the framework of distributed inference. This work encourages the

compress-and-adapt behavior that compresses the CSI and adapts the transmission param-

eters based on the compressed representation without the need to reconstruct the original

data.





CHAPTER 1

LITERATURE REVIEW

In the previous chapter, we introduced the problem of wireless network control at large. Then,

we narrowed down our study to include carrier frequency offset (CFO) estimation, channel

state information feedback, link adaptation, and communication-efficient distributed inference.

In this chapter, we cover the recent research work toward optimal wireless network control,

especially in the aforementioned problems. To this end, we divide this chapter into four main

subsections and dedicate a section for each of these problems.

1.1 Carrier Frequency Offset Estimation

The problem of CFO synchronization has garnered interest from many researchers. Some

have explored the Primary Synchronization Signal (PSS) in the time domain, as reported in

Nassralla & et al. (2015), while others have focused on the frequency domain. The authors

in Nassralla & et al. (2015) suggested a method for detecting PSS by identifying the high-

est cross-correlation, but the Integer Carrier Frequency Offset (ICFO) affects the precision of

PSS detection. To address this issue, differential correlation-based PSS detection approaches

utilizing Discrete Fourier Transform (DFT) or Fast Fourier transform (FFT) have been pro-

posed Morelli & Moretti (2015); Lin et al. (2015). Several works have aimed at improving

the performance of OFDM systems through the joint optimization of CFO and other param-

eters. Shaked et al. (2017) explored a framework for joint estimation of CFO and the Chan-

nel Impulse Response (CIR) in linear periodic channels, utilizing a pilot-aided approach. A

Joint Maximum Likelihood Estimator (JMLE) was proposed, offering improved spectral effi-

ciency and reduced computational complexity, as it leverages the periodicity and sparsity of

the channel. Abdzadeh-Ziabari et al. (2017) tackled the challenge of high mobility systems by

performing joint timing, channel, and CFO estimation. To address the high complexity of joint

estimation, a computationally efficient algorithm based on Basis Expansion Modeling (BEM)
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Zhang & Wang (2022)

Ota & et al. (2019)

Li & et al. (2018)

Shaked et al. (2017)

Lin et al. (2015)

Chougrani et al. (2020)

Cheng et al. (2016)

Huang et al. (2017)

Rajaram et al. (2018)

Morelli & Moretti (2015)

Zhang et al. (2014)

Nassralla & et al. (2015)

Salim et al. (2014)

Morelli & Moretti (2012)

Tsai et al. (2013)

Figure 1.1 A timeline for the literature work in CFO estimation

was introduced. The algorithm tracks channel variations to minimize the number of unknown

channel parameters and has been shown to outperform other benchmark algorithms.

In the last few years, the limitations of traditional methods triggered researchers to deploy

state-of-the-art data-driven ML techniques for CFO estimation Chougrani et al. (2020); Ra-

jaram et al. (2018); Ota & et al. (2019); Chougrani et al. (2020); Ninkovic & et al. (2021);
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Zhang & Wang (2022); Li & et al. (2018). For example, the authors of Rajaram et al. (2018)

have created a new receiver for a single-carrier modulation that performs joint carrier frequency

offset and channel estimation. The receiver uses a frequency-domain equalization technique

along with simultaneous wireless information and power transfer (SWIPT) by employing a

highly energetic pilot signal. The pilot signal serves two purposes: it transmits power for en-

ergy harvesting and also helps estimate the CFO and channel conditions. The receiver has

been designed to handle strong interference levels during channel estimation and data detec-

tion, offering a flexible and resource-efficient design approach. While the work in Ota & et al.

(2019) explores the detection probability of physical-layer cell identity (PCID) in 5G new ra-

dio (NR), taking into account frequency offset. It compares three primary synchronization

signal (PSS) detection techniques: cross-correlation before frequency offset (FO) estimation

and compensation, cross-correlation after FO estimation and compensation, and autocorrela-

tion at a set of user equipment. Simulation results show that cross-correlation PSS detection

before FO estimation and compensation performs best in the carrier frequency region below

about 14 GHz, with an average received signal-to-noise power ratio of 0 dB and a standard

oscillator frequency error of 1 ppm. However, for the frequency region above approximately

14 GHz, cross-correlation PSS detection after FO estimation and compensation demonstrates

higher detection probabilities than its counterpart. The PCID detection probability of this lat-

ter method is nearly equal to that of the autocorrelation-based PSS detection as the frequency

value increases.

The 3rd Generation Partnership Project (3GPP) introduced the narrowband Internet-of-Things

(NB-IoT) standard to connect numerous low-cost, low-complexity, and long-life IoT devices

with extended coverage. To enhance power efficiency, 3GPP proposed a single-tone frequency-

hopping scheme for the random access (RA) waveform in NB-IoT. RA manages the initial

connection between user equipment (UE) and the base station (BS), enabling identification

and synchronization. However, detecting the new waveform and achieving accurate timing

synchronization is challenging due to radio impairments like carrier frequency offset (CFO).

To address this issue, the authors in Chougrani et al. (2020) proposed a new receiver method
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for the NB-IoT physical RA channel (NPRACH). The proposed method effectively eliminates

CFO without extra computational complexity and supports all NPRACH preamble formats.

Performance evaluations under 3GPP conditions show significantly improved detection accu-

racy and complexity compared to 3GPP requirements and existing state-of-the-art methods.

The authors in Aoudia & et al. (2022) present a neural network (NN)-based algorithm for

device detection and time of arrival (ToA) and carrier frequency offset (CFO) estimation in

the narrowband physical random-access channel (NPRACH) of narrowband internet of things

(NB-IoT). The proposed NN architecture uses residual convolutional networks and knowledge

of the 5G New Radio (5G NR) preamble structure. When tested against a state-of-the-art

baseline on a 3GPP urban microcell (UMi) channel model, the method achieves up to 8 dB

gains in false negative rate (FNR) and significant improvements in false positive rate (FPR)

and ToA and CFO estimation accuracy across various channel conditions, CFOs, and transmis-

sion probabilities. This base station (BS) synchronization method adds no extra complexity to

user devices and could potentially extend battery life by reducing preamble length or transmit

power.

The work in Li & et al. (2018) addresses the multi-frequency synchronization issue in orthog-

onal frequency-division multiple access (OFDMA) uplink communications, where each user

may have a different carrier frequency offset (CFO) that is difficult to compensate at the re-

ceiver side. The main contribution is the development of a novel OFDM receiver that can

handle unknown random CFOs using a CFO-compensator bank. The CFO range is divided

into sub-ranges, with each supported by a dedicated CFO compensator. Since optimizing the

CFO compensator is an NP-hard problem, a machine deep-learning approach is proposed to

find a sub-optimal solution. The proposed receiver provides inter-carrier interference-free per-

formance for OFDMA systems across a wide range of SNRs. The work in Dreifuerst & et al.

(2020) focuses on developing and analyzing deep learning architectures for estimating the car-

rier frequency of a complex sinusoid in noise using 1-bit samples of in-phase and quadrature

components. This estimation is used in GSM and serves as a starting point for more com-

prehensive solutions with other signal types. Four different deep learning architectures are
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trained on eight datasets, considering the impact of signal-to-noise ratios (SNR), quantization,

and sequence lengths on estimation error. The architectures are also analyzed for scalability

in MIMO receivers. Simulation results show that training with quantized data from signals

with SNRs between [0−10] dB improves deep learning estimator performance across the en-

tire SNR range. Convolutional models demonstrate the best performance and faster execution

times compared to FFT methods. The approach can accurately estimate carrier frequencies

from 1-bit quantized data with fewer pilots and lower SNRs than traditional signal processing

methods.

1.2 Channel Feedback in Wireless Networks
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Figure 1.2 A general flow of a typical CSI feedback in MIMO Systems

As discussed in previous chapters, channel reciprocity is achieved in TDD systems. How-

ever, in FDD systems, this channel reciprocity is not achieved, and in this case, a feedback

mechanism is required to keep the BS updated about the downlink channel, see Fig. 1.2.

Unfortunately, in MIMO systems, this information is huge enough to consume considerable

bandwidth. To optimize the performance of the wireless system, a compression technique is

required to compress the channel before sending it back to the BS. Two major approaches are
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used to reach this goal: 1) traditional techniques which include compressive sensing, PCA,

and vector quantization; 2) encoder-based neural network techniques. In the following two

subsections, we are going to present the main work of each technique.

Tang et al. (2022)

Guo & et al. (2020)

Lu & et al. (2019)

Chen et al. (2017)

Zhang & et al. (2016)

Cao et al. (2021)

Xie et al. (2016)

Wen & et al. (2018)

Jang & et al. (2019)

Ge & et al. (2015a)

Ying & et al. (2014)

Ge & et al. (2015b)

Xie et al. (2013)

Choi et al. (2011)

Li & Song (2012)

Figure 1.3 A timeline for the literature work in CSI feedback
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Figure 1.4 The use of vector quantization in CSI compression

1.2.1 Traditional Feedback Techniques

PCA is one of the dimensionality reduction techniques used in machine learning literature

Martın-Clemente & Zarzoso (2016). PCA has been used as a tool for compressing CSI before

transmission to the BS. The authors in Ge & et al. (2015a,b); Zhang & et al. (2016) employed

PCA to reduce the dimension of the feedback in a multi-user scenario. Although the authors

achieved a good compromise between the compression rate and reconstruction error, the BS is

not able to obtain an accurate CSI reconstruction. This can be explained by the well-known

limitations of PCA like the linear assumption between dataset features.

The concept of vector quantization (VQ) is a traditional technique used for data compression,

especially, images and videos Si et al. (2017). Instead of quantizing scalar values, VQ con-

siders quantizing a complete list of scalars (vector) to its nearest vector from a set of carefully

selected vectors, called codebook. The index of the nearest vector is then transmitted to the

receiver. The receiver uses the received index to find a vector in the codebook that is the closest

approximation to the original vector, see Fig. 1.4. A distance function is required to measure
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how a certain vector is close to another vector. A variety of distance measures can be applied

in this context, Euclidean distance 1.1 is one of the widely used distance functions.

d(x,y) =

√
N

∑
i=0

(xi − yi) (1.1)

Vector quantization has been widely used for compressing the CSI channel before feeding it

back to the BS. The authors in Love & Heath (2006); Raghavan et al. (2007); Mielczarek & Krzymien

(2008); Choi et al. (2011); Ying & et al. (2014) have investigated the feasibility of VQ tech-

nique in CSI compression and feedback. Although the obtained results were promising, VQ

suffers from scalability issues. This limitation comes from the fact that the codebook size

grows exponentially with the number of feedback bits Chen et al. (2017).

Compressive sensing (CS) is another technique widely employed in the compression of channel

feedback. Compressive sensing is a sampling technique that exploits signal sparsity to recon-

struct a signal from fewer samples. For compressive sensing to work, two conditions should be

achieved. First, the signal sparsity, which requires the signals to be sparse in a certain domain.

Second, the incoherent nature of observations in the acquisition domain. CS works by solving

an undetermined system of linear equations under sparsity constraint. The performance of the

CS technique outperforms traditional Nequest sampling theorem Zhang et al. (2018).

In Song et al. (2009) and Li & Song (2012), the authors applied compressive reconstruction

to reconstruct the CSI from a few samples sent by the UE to the BS in a zero-force MIMO

network. The feedback channel (uplink) is assumed to be perfectly known at the BS, which

means the feedback is assumed to be sent over an error-free channel. This assumption may

not be practical in real scenarios, and the amount of time and feedback used to train uplink

channels can burden the performance of such techniques.

The CS-based techniques have three main limitations: 1) since the signal reconstruction algo-

rithms for CS-based techniques are iterative algorithms, they suffer from slow reconstruction

performance. 2) the performance of CS techniques heavily depends on the sparsity assumption,



33

which may not strictly hold in some MIMO wireless cases. 3) CS-based techniques employ

random projection which does not fully exploit channel structures.

1.2.2 Deep Learning-Based Feedback

For one decade and deep learning is consistently achieving incomparable performance in many

fields, e.g., computer vision, natural language processing. Due to the inherent problems of

compressive sensing techniques, investigating deep learning for CSI feedback problems has

gained great attention. Most of the work in this direction employs encoder/decoder architec-

tures, especially autoencoders, to lossy compress/decompress CSI matrices.

The work in Wen & et al. (2018) opened the door for employing deep learning techniques in

CSI feedback problems. The authors in Wen & et al. (2018) presented a deep learning architec-

ture called CsiNet. CsiNet, a convolutional neural network architecture with skip connections

in the decoder part. The superiority of CsiNet performance has been proven against traditional

CS-based techniques. However, CsiNet is a point estimation model which means that for each

dimension in the codeword, the model learns one value. This implies that any noise in this

value can largely hurt the reconstruction quality at the BS.

The authors in Lu & et al. (2019) exploited the temporal and frequency correlations of wire-

less channels. They presented a model called CSINet-LSTM, which extends CsiNet with long

short-term memory (LSTM) network. LSTM is a classic type of recurrent neural network that

is capable of learning long-time dependencies, and temporal correlation, between the input

samples.

In Lu et al. (2020), the authors proposed a neural network architecture, called CRNet, for

multi-resolution CSI feedback in massive MIMO. The model is shown to have an improved

performance against classic CS-based techniques as well as CsiNet. Another extension to the

CsiNet model called CsiNet+ is introduced in Guo & et al. (2020). However, the number of

floating-point operations (flops) in CSINet+ is much larger than the CSINet, which can argue

that the improvements come at the cost of complexity.
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The authors in Liu et al. (2020) went further and integrated a neural quantizer with the stan-

dards encoder architecture to quantize the generated codewords. The authors in Lu et al. (2019)

considered a deep residual convolutional network to compensate for the effect of quantization

error after CSI compression. The proposed architecture, JC-ResNet), jointly optimizes the

quantization error along with the feature dimensionality reduction. While most of the work in

the literature assumes ideal feedback channels, the authors in Jang & et al. (2019) attempted

to construct reliable codewords for the CSI feedback problem. The codewords in Jang & et al.

(2019) are designed to be robust against the noise introduced in the uplink channel. The authors

also applied a uniform quantization for the generated codeword, and the decoder is trained to

compensate for the error introduced by the quantization process. Uniform quantization is a sim-

ple well-known analog-to-digital conversion technique in which each sample value is rounded

to one level in a set of, L, predetermined levels. If each sample will be coded using n bits, then

L = 2n. Assume the minimum and maximum levels are denoted by Lmin and Lmax respectively.

Each sample value, s, is mapped to one of the L levels based on the equation in 1.2.

s̄ = δ
⌊ s

δ

⌉
where δ =

Lmax −Lmin

2n −1
(1.2)

The authors in Qing et al. (2019) combined the superimposed coding and deep learning for

CSI feedback. The downlink CSI matrix is spread and superimposed on the uplink user data

sequence toward the base station. The base station then uses a neural network to recover the

downlink CSI.

1.3 Wireless Link Adaptation

Wireless channels exhibit rich dynamics. These dynamics are inherent from many sources,

such as channel variation due to node mobility, interference from hidden stations, or random

channel errors. These dynamics drive the efforts toward the design of robust link adaptation

algorithms to accommodate the effect of channel dynamics.
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Mitev et al. (2022)

Saxena & Jaldén (2020)

Elwekeil & et al. (2018)

Karmakar et al. (2016)

Tran & Eltawil (2014)

Saxena et al. (2021)

Park et al. (2015)

Karmakar et al. (2017)

Saxena & et al. (2019)

YİĞİT & Kavak (2013)

Yang et al. (2012)

Wahls & Poor (2013)

Martorell et al. (2011)

Jensen et al. (2010)

Daniels & Heath (2010)

Figure 1.5 A timeline for the literature work in link adaptation

The authors in Judd et al. (2008) developed a channel-aware rate adaptation algorithm, CHARM,

which uses the history of signal strength measurements captured by the wireless card to adapt

the transmission rate. The reported results show that CHARM obtained a superior performance

over traditional probe-based algorithms in dynamic channels.
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In Wong et al. (2006), the authors proposed a robust rate adaptation algorithm (RRAA) algo-

rithm that depends on the short-term loss ratio to decide the appropriate rate. They employed

an RTS filter to avoid collision losses from rate decrease triggering. The experiments showed

the robustness of RRAA compared to other adaptation algorithms.

In Jensen et al. (2010) the authors proposed a fast link adaptation algorithm for IEEE 802.11n

standards. The algorithm is based on Mutual Information (MI) and the authors conduct a

comprehensive evaluation of its PER-estimation accuracy. Through Monte Carlo simulations,

a comparative analysis is performed by evaluating the performance of the proposed MI-based

against other approaches.

1.3.1 Machine Learning-Based Link Adaptation

A line of work has been performed in the field of AMC. In this section, we will highlight some

of the work that has been carried out in recent years. We also present some rational work,

before the breakthrough of machine learning, for the sake of completeness. The limitations of

each work are highlighted and discussed.

In Daniels & Heath (2010), the authors proposed using support vector machines (SVM) to

perform online learning AMC. The authors used an SVM-based algorithm to develop an on-

line learning platform for AMC. This platform can optimize AMC to the unique (potentially

dynamic) hardware characteristics of each wireless device in selective channels. Simulation

results on IEEE 802.11n protocol show that the proposed algorithm achieves a good rate/relia-

bility tradeoff in each operating device using the error information of each frame. However, the

system may waste a portion of bandwidth communicating the frame error information from the

transmitter and receiver. Also, SVM is very sensible to the feature vector used in classification.

Most of the work in AMC treats the problem as a classification problem. Supervised learning

techniques were used to carry out the AMC task. However, supervised techniques require an of-

fline training phase that may harden the application of such systems in real-life systems. Some

work has been proposed to solve the AMC task using reinforcement learning. In Yun & Cara-
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manis (2010) for example, the authors built a reinforcement learning model and introduced a

new learning approach based on online kernelized support vector regression (SVR) for link

adaptation in MIMO-OFDM wireless systems. The proposed online kernelized SVR-based

algorithm requires less memory and executes in order of magnitude to other supervised al-

gorithms. The simulation results show that the proposed system performs as accurately as

traditional supervised techniques but with fewer memory requirements. However, the authors

assumed perfect channel knowledge at the receiver, which means they did not include the ef-

fect of channel estimation error. They also ignored the feedback delay, therefore, the obtained

results do not reflect real situations. However, it can give an intuition on the algorithm’s per-

formance.

In YİĞİT & Kavak (2013), the authors proposed a neural network-based AMC for optimizing

the best modulation and coding scheme (MCS) under a packet error rate (PER) constraint in

MIMO-OFDM systems. The authors used a multilayer perceptron (MLP) architecture for the

optimization task and compared their results with KNN algorithm in the cases of frequency-

at (1-tap) and frequency-selective (4-tap) wireless channel conditions. The simulation results

show that the best performance is obtained with a CNN consisting of two hidden layers with

five perceptrons in each layer.

In Dong & et al. (2018), the authors proposed an ML-based method for link adaptation in

MIMO-OFDM systems. The method tries to maximize the system throughput and meets cer-

tain codeword error ratio (CWER) constraints. The authors proposed the use of an autoencoder

for feature extraction and multi-class SVM for classifying the best MCS given the SINRs. The

authors proposed another method for adapting MCS and spatial mode jointly through a channel

matrix using autoencoder-softmax architecture.

In Elwekeil & et al. (2018), the authors proposed a deep learning approach for AMC in MIMO-

OFDM systems. The authors used the estimated channel coefficients and the noise standard

deviation to train convolutional neural networks to predict the appropriate modulation and cod-

ing scheme. The system obtained good performance even with impairments, such as imperfect
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timing synchronization, carrier frequency offset, and channel estimation errors at the MIMO-

OFDM receivers. The obtained results are better than the KNN, SVM, and DNN approaches

in terms of the packet error rate (PER) and the system throughput.

1.4 Distributed Inference

Yik et al. (2022)

Wu et al. (2021)

Li & Tong (2020)

Zhao et al. (2018)

Sreekumar et al. (2018)

Yik et al. (2022)

Escamilla et al. (2018)

Fazai et al. (2019)

Sreekumar et al. (2020)

Liao et al. (2017)

Li et al. (2014)

Liao et al. (2016)

Xiang & Kim (2013)

Rhim et al. (2011)

Rahman & Wagner (2012)

Figure 1.6 A timeline for the literature work in distributed inference
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As we discussed earlier, link adaptation can be seen as the choice of a configuration profile

that best suits the current channel conditions. Therefore, it is merely a choice. Among the

several possible techniques for making such decisions, distributed inference (a.k.a., distributed

detection, distributed hypothesis testing, etc.) is a powerful and widely adopted technique. It

has been extensively studied in the context of Statistical Decision Theory Pratt et al. (1995).

Because of the rich work in this area as well as distributed inference was one of the techniques

we adopted for link adaptation, we dedicate a section to the literature work in this area.

The authors in Escamilla et al. (2018) considered a detection system consisting of a single

sensor and K detectors. Each terminal is assumed to observe a memoryless source sequence,

and the sensor transmits a common message to all the detectors. The communication channel

is assumed to be error-free, but the rate is limited. The joint probability mass function of

the source sequences observed at the terminals depends on an M-ary hypothesis, where M is

greater than or equal to K. The primary objective of their communication system is to enable

each detector to determine the underlying hypothesis. Specifically, each detector k strives to

maximize the error exponent under hypothesis k while ensuring a low probability of error under

all other hypotheses. The authors of Escamilla et al. (2018) present an achievable exponents

region for the case of a positive communication rate and characterize the optimal exponent’s

region for the case of a zero communication rate.

The authors in Wu et al. (2021) investigated the issue of distributed hypothesis testing in a net-

work of mobile agents with limited communication and sensing capabilities to collaboratively

infer the true hypothesis. Specifically, the authors considered a scenario where an unknown

subset of agents is compromised and may deliberately disseminate altered information to un-

dermine the team objective. To address this challenge, two distributed algorithms are proposed,

wherein each agent maintains and updates two sets of beliefs, namely local beliefs (LB) and

actual beliefs (AB), which represent probability distributions over the hypotheses. At each

time step, every agent shares its AB with other agents within its communication range, while

updating its LB based on local observations. The shared information is then used to update

ABs, subject to specific conditions. One algorithm requires a certain number of shared ABs at
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each time instant, while the other accumulates shared ABs over time and updates them when

the number of shared ABs exceeds a prescribed threshold. If the conditions are not met, both

algorithms rely on the agent’s current LB and AB to update the new AB. The authors prove, un-

der mild assumptions, that the AB for every non-compromised agent converges almost surely

to the true hypothesis, without requiring connectivity in the underlying time-varying network

topology. The proposed algorithms are demonstrated through a simulation of a team of un-

manned aerial vehicles aimed at classifying adversarial agents. The authors compare the two

algorithms and show experimentally that the second algorithm outperforms the first algorithm

in terms of the speed of convergence.

Privacy-preserving in distributed hypothesis testing has been considered in various works such

as Liao et al. (2017, 2016); Sreekumar et al. (2020, 2018); Abbasalipour & Mirmohseni (2022).

In the following paragraphs, we elaborate in more detail on some work that considered the

privacy of distributed hypothesis testing.

The work in Sreekumar et al. (2018) examined a distributed binary hypothesis testing problem

between two entities: a remote observer and a detector. The remote observer is equipped with

a discrete memoryless source and transmits its observations to the detector through a noiseless

rate-limited communication channel. The detector’s objective is to test the independence be-

tween its own observations and those of the observer, given some additional side information.

The primary goal of the detector is to maximize the type 2 error exponent of the test while

adhering to a specified type 1 error probability constraint. Additionally, the detector seeks to

preserve the privacy of a private portion, which is correlated with the observer’s observations,

from the detector. The authors presented a comprehensive single-letter characterization of the

rate-error exponent-equivocation and rate-error exponent-distortion tradeoffs while achieving

a tight bound.

The work in Abbasalipour & Mirmohseni (2022) examines the issue of distributed binary hy-

pothesis testing in the Gray-Wyner network with side information. An observer has access

to a discrete memoryless and stationary source and transmits its observation to two detectors
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via one common and two private channels, all of which are assumed to be error-free but rate-

limited. Additionally, each detector has access to its own discrete memoryless and stationary

source, i.e., the side information. The primary objective is to perform two separate binary

hypothesis tests on the joint distribution of observations at the detectors. Furthermore, the

observer aims to maintain the privacy of a correlated latent source from the detectors. The

degree of privacy preserved for the latent source is assessed using equivocation. To address

this problem, an achievable inner bound is derived for the general case by incorporating a

non-asymptotic analysis of the output statistics of the random binning.

The overlapping between machine learning and statistical hypothesis testing has been explored

in a large line of work Li & Tong (2020); Fazai et al. (2019); Messner (2023); Mitra et al.

(2020); Chen et al. (2021); Yik et al. (2022); Sheffet (2018); Rodriguez-Conde et al. (2023);

Zhao et al. (2018). The following paragraphs explore various works in the overlap area of

distributed hypothesis testing and machine learning.

The field of data science commonly employs two related but distinct strategies: hypothesis

testing and binary classification. However, selecting the most suitable strategy for a particular

analysis can be complex and difficult. The work in Li & Tong (2020) aims to clarify the

differences between these two strategies in three areas and offer five practical guidelines to aid

data analysts in choosing the most appropriate approach based on specific analytical needs.

To demonstrate the practical application of these guidelines, the study presents a cancer driver

gene prediction example.

The work in Fazai et al. (2019) presents the development of a machine learning approach in-

tegrated with statistical hypothesis testing to create an intelligent framework for photovoltaic

(PV) fault detection, aiming to improve the efficiency and reliability of PV systems. Fault

detection in PV systems is essential to ensure optimal energy harvesting and reliable power

production since these systems frequently encounter various faults in harsh outdoor environ-

ments. Therefore, this paper focuses on detecting various faults during different modes of

operation. The proposed approach combines the advantages of machine learning techniques
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with statistical hypothesis testing to enhance the fault detection and monitoring of PV systems,

including both normal and abnormal conditions. The modeling phase of the framework em-

ploys ML techniques, while the generalized likelihood ratio test (GLRT) chart is used for fault

detection. Specifically, an ML technique calculates the monitored residuals and GLRT chart

analyzes the residuals for fault detection. The proposed ML-based GLRT algorithm is tested

using both simulated and real PV data, and the results are evaluated in terms of false alarm

rates (FAR), missed detection rates (MDR), and computation time.

The authors in Messner (2023) enhance the existing explainable artificial intelligence (XAI)

methods by introducing a model-agnostic hypothesis testing framework for machine learning.

To achieve this, the Fisher’s variable permutation algorithm is modified to calculate an effect

size measure, equivalent to Cohen’s f 2 for OLS regression models. Additionally, the Mann-

Kendall test of monotonicity and Theil-Sen estimator are utilized to determine the direction of

influence and statistical significance of a variable using Apley’s accumulated local effect plots.

The effectiveness of this approach is demonstrated on an artificial dataset and a social survey

through Python sandbox implementation.

The work in Mitra et al. (2020) focuses on a scenario where a group of agents receive partially

informative private signals and aim to learn the true underlying state of the world generat-

ing their joint observation profiles from a finite set of hypotheses. To solve this problem, a

distributed learning rule is proposed, which differs from existing methods as it does not em-

ploy any form of "belief-averaging." Instead, agents update their beliefs based on a min-rule.

Under standard assumptions on the observation model and network structure, it is established

that each agent learns the truth asymptotically almost surely. The main contribution of this

study is to prove that each false hypothesis is eliminated by every agent exponentially fast,

at a network-independent rate that is higher than the existing rates. The study further intro-

duces a computationally efficient variant of the learning rule that is resistant to agents who do

not behave as expected and deliberately spread misinformation, as represented by a Byzantine

adversary model.



43

The authors in Chen et al. (2021) introduce a statistical hypothesis test for the deep neural

network to learn the implicit representation of CT slices, specifically for COVID-19 CT scan

classification. Their proposed approach is called Adaptive Distribution Learning with Statisti-

cal Hypothesis Testing (ADLeaST), which can evaluate the significance of each slice in the CT

scan. The nonparametric statistics method, the Wilcoxon signed-rank test, is adopted to make

the predicted result both explainable and stable, reducing the impact of out-of-distribution

(OOD) samples. Additionally, a self-attention mechanism is introduced into the backbone net-

work to explicitly learn the importance of the slices. The experimental results indicate that both

proposed methods are stable and effective. Furthermore, the ADLeaST approach significantly

outperforms existing state-of-the-art methods.

1.5 Summary and Gap Analysis

In this section, a comprehensive review of the existing literature on the addressed problems is

presented. An overall analysis is conducted, examining the merits and shortcomings of each

work. As discussed in the previous chapters, the body of research concerning each subproblem

can be divided into two primary classes: conventional techniques and AI-based techniques.

Table 1.1 provides a succinct overview of the studies encompassed within each category, along

with their common benefits and constraints.
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1.6 Conclusion

This chapter provides an overview of the state-of-the-art work on the functions addressed by

this research, specifically CFO, CSI feedback, and link adaptation within modern wireless

communication systems. In addition, the evolution of the work from conventional to learning-

based techniques has been smoothly introduced. Through our discussion in this chapter, we

have identified the limitations associated with conventional approaches employed in tackling

these challenges and functions. Furthermore, we have emphasized the potential impact that

learning techniques can have on enhancing the performance of these functions and, conse-

quently, on improving overall communication systems. Subsequent chapters will delve into

each of these issues individually, outlining our contributions and findings in each respective

area. Each chapter will present one of our works.





CHAPTER 2

METHODOLOGIES

In this chapter, we explain the adopted methodologies in detail. Then, we iterate over the

adopted ML tools. Finally, we present and explain a roadmap that connects each chapter in the

thesis with the related gap, subproblem, challenges, objectives, and methodologies.

2.1 Methodologies

In this dissertation, we propose a novel learning framework for optimized wireless links for

5GB communications systems. To tackle the research questions and sub-objectives defined

earlier, we followed a comparable methodology across every contribution made in this study.

Consequently, this methodology applies to each research question.

1. We carried out a thorough analysis of the existing literature work and methodologies re-

lated to the research question. Through this process, we identify the advantages and lim-

itations of each work with a special intention paid for the possible contributions and im-

provements.

2. Based on the findings in the first step, (especially the identified limitations, and possi-

ble improvements), we formulated the problem mathematically and defined the proposed

model. Problem formulation is crucial in this work since the same problems can be for-

mulated and solved using different learning models. For example, a given problem can

be formulated as a supervised problem (e.g., classification) or a reinforcement learning

problem (e.g., multiarmed bandit). This formulation has significant consequences for the

performance of the proposed solution. In this step, we deeply analyze all possible formu-

lations and define how much they fit our research question.

3. Based on the formulation defined in the previous phase, we research the possible improve-

ments in each model. For example, we evaluate if using conventional loss functions is

enough or if defining a custom loss function with problem-specific terms would be better.
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4. Given the proposed improvements we defined in the previous phase, we implement our

proposals. Using extensive experiments, we evaluate the performance of our proposed

solutions. To get an intuition on our contribution, we compare the obtained performance

with state-of-the-art methods and highlight the limitations and strengths of each one. For

some research questions, custom evaluation metrics are defined to reflect the performance

of our solution in the overall link/network performance. For example, in RQ3, we defined

custom evaluation metrics to evaluate the performance of the proposed link adaptation

algorithm in terms of packet retransmissions. Such custom-defined metrics take the evalu-

ation beyond just AI model evaluation to a system evaluation that takes into consideration

the holistic view of the overall communication system.

5. The final stage involved sharing our findings with the scholarly community. The invaluable

insights garnered from the peer-review process significantly aided in refining our reports

and enhancing the overall quality of our research. This stage also provided a platform to

justify our decisions and engage in reflective contemplation about our solutions, helping

us to discern potential limitations and avenues for further improvement.

The previous points summarize the general methodology adopted throughout the whole work

in the dissertation. However, a different approach has been adopted for each research question.

The following subsections elaborate on each of them in more detail.

2.1.1 M1: Accurate CFO Estimation

CFO refers to the deviation or difference between the actual transmitted carrier frequency and

the expected or nominal carrier frequency in a wireless communication system. This offset

can occur due to various factors, including oscillator imperfections, Doppler shift, and other

environmental conditions. To address RQ1, we developed a learning framework for CFO esti-

mation. Given the known received values of PSS and SSS, this problem can be modeled as a

regression problem where a model is trained to predict the target CFO value directly from the

PSS and SSS. In addition, it can be modeled as a classification problem where all possible CFO



49

(i.e., the CFO range) values are quantized into a number of classes. A classification model is

trained to predict the CFO class from the PSS and SSS values. The problem can be formulated

as a reinforcement learning problem where an agent interacts with the propagation environ-

ment and it is rewarded on how much accurate is the frequency correction. Furthermore, the

training approach for each of these scenarios should be analyzed to obtain outstanding results

compared with conventional techniques.

For the CFO problem in NR, we adopted supervised learning modeling. We also consider the

problem as a regression problem. Due to the high complexity of the relation between the CFO

values and the PSS/SSS, we trained an ensemble model (i.e. gradient boosting machines GBM)

for the regression task. In addition, we generated a huge dataset to span several levels of SNRs.

Due to the high dimensionality of the PSS/SSS input, we proposed a dimensionality reduction

technique to increase the prediction accuracy and avoid the curse-of-dimensionality problem.

In chapter two, we explain the proposed solution in more detail.

2.1.2 M2: Robust Communication-Efficient CSI Feedback

The process of transmitting the CSI from the receiver back to the transmitter plays a cru-

cial role in optimizing the performance of MIMO systems by enabling adaptive beamforming,

precoding, and other advanced transmission techniques. However, with a large channel ma-

trix, this feedback consumes huge bandwidth and time and a compression technique should be

adopted to reduce the bandwidth consumption. Along with the conventional techniques (i.e.,

compressive sensing, vector quantization, and PCA), several works in the literature adopted

autoencoder-based architectures for CSI compression. In addition, they assume noise-free

feedback channels. We went beyond the assumption of noise-free feedback channels. To

address the more realistic assumption of additive white-Gaussian noise (AWGN) feedback

channels, we exploited the power of generative models (i.e., variational autoencoders, VAE)

to generate noise-robust codewords. It is worth noting that we not only used VAE for the CSI

feedback problem, but also we adapted to the VAE loss function (i.e. ELBO) to fit the problem

under consideration. To avoid the limitations of autoencoder-based solutions, we exploited
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the bias/variance tradeoff for high accuracy and scalable CSI compression technique. In addi-

tion, instead of sticking only to the CSI compression, we developed an end-to-end framework

for joint CSI compression and link adaptation. Chapters three and four present our proposed

solutions in more detail.

2.1.3 M3: Reliable Link Adaptation

Link adaptation refers to the process of dynamically adjusting the transmission parameters

in a communication system to optimize the quality and reliability of the wireless link. It in-

volves adapting various parameters, such as modulation scheme, coding rate, transmit power,

and channel bandwidth, based on the prevailing channel conditions and system requirements.

Unlike other works in the literature that formulated the problem as a reinforcement learning

problem, we proposed a novel formulation as a multi-label multi-class classification. The pro-

posed modeling enables the models to predict all the transmission modes that maximize the

throughput and minimize the bit error rate (BER). Furthermore, we proposed the first data-

centric approach applied to the link adaptation problem. Instead of fine-tuning model hyperpa-

rameters (i.e., number of layers, activation, learning rate, etc.), data-centric approaches change

the dataset (sampling, size, preprocessing, etc.) to increase the model accuracy. Chapters five

and six present the proposed work in more detail.

2.2 AI and ML Tools

Throughout this work, we adopted and customized several ML models and concepts. The

following list summarizes these models while Table. 2.1 relates them to the context in which

they were adopted.

- Gradient Boosting Machines (GBM): is a powerful machine learning technique used for

both regression and classification tasks. It builds an ensemble of decision trees sequentially,

where each tree corrects the errors of the previous ones. It works by fitting each tree to the

residuals (the differences between predicted and actual values) of the previous trees. GBM
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combines the predictions of multiple weak learners (usually shallow trees) to create a strong

predictive model. It’s known for its high predictive accuracy and is widely used in various

applications and real-world problems.

- Long Short-Term Memory (LSTM): is a type of recurrent neural network (RNN) archi-

tecture designed to address the vanishing gradient problem in traditional RNNs. It’s par-

ticularly well-suited for sequential data, such as time series or natural language processing

tasks. LSTM units have memory cells and gating mechanisms that allow them to capture

long-range dependencies and prevent the vanishing gradient issue. This makes them effec-

tive in modeling and predicting sequences by selectively retaining and updating information

over time. LSTMs are widely used in various applications, including speech recognition,

machine translation, and sentiment analysis.

- Support Vector Regressors (SVR): is an ML learning algorithm used for regression tasks.

It aims to find a hyperplane that best fits the data points while minimizing the error or devi-

ation from the true target values. SVR uses support vectors, which are data points closest to

the hyperplane, to define the regression model. It seeks to maximize the margin around the

hyperplane, and a regularization parameter is used to control the trade-off between model

complexity and accuracy. SVR is effective for handling non-linear relationships in data by

using kernel functions. It’s widely used in applications like stock price prediction and time

series forecasting.

- Multi-Layer Perceptron (MLP): is a type of artificial neural network composed of mul-

tiple layers of interconnected nodes (neurons). It consists of an input layer, one or more

hidden layers, and an output layer. Each neuron in a layer is connected to every neuron in

the subsequent layer, and each connection has a weight. MLPs are known for their ability to

model complex non-linear relationships in data. They are used for various machine learning

tasks, including classification and regression, and can learn complex patterns by adjusting

the weights through training algorithms like backpropagation.

- Deep Neural Network (DNN): is a type of artificial neural network with multiple hidden

layers between the input and output layers. These hidden layers enable a DNN to learn
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increasingly complex and hierarchical representations of data, making it suitable for tasks

involving intricate patterns, such as image and speech recognition. Deep learning tech-

niques involve automatic feature extraction and transformation, making them powerful for

tasks like deep learning in computer vision, natural language processing, and reinforcement

learning. Training deep networks typically requires substantial computational resources but

can yield state-of-the-art results in various domains.

- Variational Autoencoder (VAE): is a type of generative model used in unsupervised learn-

ing and dimensionality reduction. It combines elements of autoencoders and probabilistic

modeling. VAEs encode input data into a lower-dimensional latent space while simulta-

neously learning the distribution of this latent space. This allows for generating new data

points that resemble the original data distribution. VAEs are known for their ability to

generate diverse and high-quality samples from complex data distributions.

- Bayesian Optimization (BO): is a sequential model-based optimization technique used

for optimizing complex, expensive-to-evaluate functions. It combines a probabilistic model

(typically a Gaussian Process) to model the function and an acquisition function (such as

Expected Improvement) to guide the search for the optimal input. BO is useful in scenarios

like hyperparameter tuning, where it efficiently explores the parameter space, adapts to

the function’s behavior, and finds the optimal solution with a relatively small number of

function evaluations, reducing the computational cost of optimization tasks.

- Convolutional Neural Network (CNN): is a class of deep learning models primarily used

for tasks involving grid-like data. CNNs are designed to automatically learn hierarchical

representations from input data through a series of layers, including convolutional layers,

pooling layers, and fully connected layers. Convolutional layers apply learnable filters to

capture local patterns while pooling layers downsample the data. CNNs are known for their

ability to capture spatial hierarchies and translation-invariant features. They have revolu-

tionized computer vision and are used in various applications across domains.
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Table 2.1 The different AI models used in this thesis and the subproblems (SP)

in which they have been adopted

Model Problems Role

Gradient Boosting Machines

(GBM)

SP1: CFO estimation Proposed solution

Long Short-Term Memory

(LSTM)

SP1: CFO estimation Proposed solution

Support Vector Regressors

(SVR)

SP1: CFO estimation Baseline comprisons

Multilayer Perceptron (MLP)
SP1: CFO estimation Baseline comparison

SP2: CSI feedback compres-

sion

Proposed solution

Deep Neural Networks SP2: CSI feedback compres-

sion

Proposed solutoin

Variational Autoencoders SP2: CSI feedback Com-

pression

Proposed solution

Bayesian Optimization
SP2: CSI feedback compres-

sion Optimizing our solutions

SP3: Link adaptation

Convolutional Neural Net-

works

SP3: Link adaptation Proposed solution

2.3 Thesis Roadmap and Connections

In this section, we illustrate how each chapter in the thesis relates to the research questions,

objectives, methodologies employed, and the specific gap within the literature work that is

addressed therein. Table. 2.2 maps each chapter to the related GAP, subproblem, challenges,

objectives, and methodologies.



54

Table 2.2 A roadmap that connects each chapter with the related GAP, subproblem,

challenges, objectives, and methodologies.

GAPS

CFO GAPS
G 1.1 Relatively low accuracy of conventional techniques

G 1.2 Low generalization capabilities for different SNR values

CSI Compression GAPS
G 2.1 Ignoring the noise in the feedback channels

G 2.2 Limited scalability characteristics for new antenna settings

Link Adaptation GAPS
G 3.1 Dependability on a limited amount of information (i.e., CQI) and limited throughput could be achieved with high reliability

G 3.2 Limited performance due to the decoupling between the link adaptation and the CSI compression problems

Subproblems (SP)

SP 1 How to build a low approximation-error CFO-estimator for NR in heterogenous SNR levels?

SP 2 How to build an efficient scalable CSI feedback mechanism for noisy feedback channels?

SP 3 Given the CSI feedback, how to adapt the transmission parameters to achieve a high reliability and throughput?

Challenges

C 1 Comprehensively explained within the confines of section 0.2.1

C 2 Comprehensively explained within the confines of section 0.2.2

C 3 Comprehensively explained within the confines of section 0.2.3

Objectives

To develop a learning framework that maximizes the throughput and reliability of wireless systems under dynamic propagation environments.

This objective is further divided into subobjectives (SOs)

SO 1 To develop an accurate CFO-estimator for NR which is robust for different SNR levels

SO 2 To minimize overhead (bandwidth & time) of the feedback process while maintaining a high feedback accuracy

SO 3 To develop a reliable adaptation module to maximize the throughput

Methodologies

M1 Comprehensively explained within the confines of subsection 2.1.1.

M2 Comprehensively explained within the confines of subsection 2.1.2

M3 Comprehensively explained within the confines of subsection 2.1.3

Roadmap and Interconnections

GAP SP C SO M

Chapter 3 G 1.2 SP 1 C 1 SO 1 M 1

Chapter 4 G 2.1 SP 2 C 2 SO 2 M 2

Chapter 5 G 2.2 SP 2 C 2 SO 2 M 2

Chapter 6 G 3.1 SP 3 C 3 SO 3 M 3

Chapter 7 G 3.1 SP 3 C 3 SO 3 M 3

Chapter 8 G 3.2 SP 3 C 3 SO 3 M 3
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2.4 Conclusion

Based on the limitations identified in the literature work given in the previous chapter, this

chapter introduced our adopted methodology to achieve the intended objectives by address-

ing the identified challenges of each subproblem. In the following chapters, we present our

published/submitted research papers, one in each chapter. To facilitate the navigation through

each of our work, we cluster them into parts (PART 1, PART 2, and PART 3) where each part

presents the papers tackling the same subproblem.
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PART 1: CFO Estimation



CHAPTER 3

CARRIER FREQUENCY OFFSET ESTIMATION IN 5G NR: INTRODUCING
GRADIENT BOOSTING MACHINES

Mostafa Hussien, Ahmed Abdelmoaty, Mahmoud Elsaadany, Mohammed F. A. Ahmed,

Ghyslain Gagnon, Kim Khoa Nguyen and Mohamed Cheriet

École de technologie supérieure (ÉTS), Univeristy of Québec, Canada, H3C 1K3

Paper published in IEEE Access, March 2023

Abstract : The beyond fifth generation (B5G) communication systems imposed several chal-

lenges on radio designers. For example, a machine is required to set up a call at a low signal-

to-noise ratio (SNR), as low as -10 dB, in the extended coverage mode. Moreover, only one

receive antenna will be available, and virtually no frequency diversity. Such requirements

present major challenges to maintaining timing and frequency synchronization. Carrier fre-

quency offset (CFO) estimation is at the heart of these challenges. Different ways have been

proposed for CFO estimation such as maximum likelihood based on a cyclic prefix. Neverthe-

less, these methods remain limited in various ways. At the same time, machine learning (ML)

techniques showed outstanding performance in several wireless communication problems. In

this work, we propose an ML-based approach for CFO estimation in OFDM systems. Specifi-

cally, we propose a gradient-boosting machine (GBM)-based solution to predict the CFO given

the received primary synchronization signal (PSS) and secondary synchronization signal (SSS).

Furthermore, we make our dataset available for public access to encourage other researchers to

pursue this promising direction. We compare our results with different baseline models (i.e.,

artificial neural networks and support vector machines). The experimental results show that our

model outperforms other baseline models due to its ensemble nature which enables ensemble

models to obtain a better generalization behavior.
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New radio (NR), Signal synchronization, carrier frequency offset estimation, gradient boosting

machines, ensemble learning

3.1 Introduction

Massive integration of connected devices with emerging services provisions a successive in-

crease in traffic demand and higher data rates. It is expected that data rates to be exploded

by deploying 5G new radio (NR). Globally, mobile data traffic is projected to margin 226 Ex-

abytes (EB) per month in 2026. To cope with these requirements and to provide better user

experience and services, it is anticipated for future communication networks (e.g., 6G) to in-

tegrate multiple advanced technologies, such as edge computing and machine learning (ML).

This integration is stimulated by the increase in traffic and data requirements. Indeed, it is

anticipated that the connected devices will margin 80 million by 2025 Abdelmoaty & et al.

(2022).

Orthogonal frequency division multiplexing (OFDM) is one of the adopted technologies in 4G

long-term evolution (LTE), and it is expected to continue supporting the 5G NR. OFDM is

proven to have the ability to work in harsh fading environments due to multipath. Furthermore,

relying on 5G NR and IEEE 802.11ax is provisioned to exploit quadrature-amplitude modula-

tion (QAM) with higher orders of up to 1024. Additionally, different modulation schemes with

higher orders (e.g., 64-QAM and 256-APSK) are expected to be supported by millimeter-wave

(mm-Wave) technologies and satellite TV standards, respectively.

Higher-order modulation schemes are susceptible to phase errors due to their highly dense con-

stellation mapping. These errors arise from residual carrier frequency offset (CFO) that results

from an intrinsic mismatch between the transmitter and the receiver oscillators. Interestingly,

it is linearly increasing during frame reception and eventually translated to a large phase off-

set that causes a considerable declination in spectral efficiency and increases the bit-error-rate
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(BER). CFO resulting from Doppler shift may reach up to 2 KHz at 4.2 GHz band, this is

equivalent to 13% of the sub-carrier spacing Siyari et al. (2019).

The CFO destroys the orthogonality between subcarriers and induces inter-carrier interference

(ICI). Consequently, there are degradations in the OFDM system performance. Therefore,

estimating the CFO is very critical for future communication networks. In general, estimating

the CFO can be classified into two categories: data-driven estimation and blind estimation.

The blind estimation of the CFO can be performed with algorithms such as the cyclic prefix

(CP)-based maximum likelihood. Zadoff-Chu (ZC)-based cross-correlation or auto-correlation

algorithm is an example of the data-driven CFO estimation Ramadan & et al. (2020).

Recently, state-of-the-art machine learning (ML) algorithms go all the way from data mining

techniques, and resource allocation problems to tackle most of the issues in cellular networks.

Interestingly, there is a significant trend for implementing powerful ML-based solutions for

many complex problems in wireless communications such as link adaptation Hussien & et al.

(2021), resource allocation Lee et al. (2019), CSI compression Hussien et al. (2022), beam-

formingChen & et al. (2020), among others. ML algorithms can be categorized into three main

categories namely supervised, unsupervised, and reinforcement learning (RL). Basically, su-

pervised learning requires labeled data in order to train the system. Hence, the system learns

from these labels to predict the target output. Conversely, unsupervised learning does not have

the luxury of accessing labeled data. The expected output is not known priorly and the system

needs to learn in a blind fashion. Finally, in the RL regime, an agent learns the best actions by

itself, but with enforced guidance by a reward mechanism. The actions in RL are made by the

agent toward the environment, which in turn replies by changing its state and sending back a

reward value depending on how good is the agent’s actions.
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3.2 System Model and NR Signal Synchronization

3.2.1 System Model

For a typical NR OFDM system, the received signal r(n) can be represented by:

r(n) = y(n)+w(n) =
[
x(n)∗h(n)

]
e− j2πεn +w(n) (3.1)

where:

x(n) is the transmitted signal.

h(n) is the impulse response of the channel.

w(n) is the additive white Gaussian noise (AWGN).

ε is the normalized CFO.

∗ represents the convolution operator.

�

Figure 3.1 CFO tracking in NR UE receiver

Fig. 3.1 illustrates the block diagram of the processing chain of the NR user equipment (UE)

receiver. We are assuming an OFDM system where a unified crystal is exploited to lock the

carrier frequency to the sampling clock through the RF processing. Then, the initial acquisition

phase starts by estimating the frequency/timing offsets experienced by both the RF crystal and

the channel. However, a residual CFO caused by temperature changes and Doppler effects



61

always exists and needs to be estimated. Hence, it is normal to consider the tracked CFO a

fractional part of the subcarrier spacing (SCS). Lastly, the received symbols are transferred to

the frequency domain (FD) using FFT as given by:

R(δ )
l (k) =

1√
N

N−1

∑
n=0

r(δ )l (n)e− j2πkn/N , 0 ≤ k < N (3.2)

where:

r(δ )l (n) is the lth OFDM symbol after removing the cyclic prefix (CP). The length of the OFDM

symbol is denoted by N, and δ represents the drift samples.

3.2.2 NR Signal Synchronization

Based on the 3GPP specifications release 15 3rd Generation Partnership Project (3GPP) (2020),

the NR system is defined by multiple SCS and a CP overhead. CP can be either normal or ex-

tended. The basic SCS 15 KHz is used as a base for obtaining any other SCS by the scale of

2μ , where μ ∈ {0,1,2,3,4}. The frame structure in the time domain consists of 10 subframes

with a fixed duration of 1 ms. Regardless of the CP overhead, each SCS is aligning on sym-

bol boundaries in every subframe. The period of each time slot is equal to 1/2μ . For each

slot, there are 14 and 12 OFDM symbols for normal and extended CP, respectively. While in

the frequency domain, similarly to LTE; a resource block (RB) is defined by 12 consecutive

subcarriers. An RB grid in the NR system is shown in Fig. 3.2.

The procedure of signal synchronization includes cell search, frame boundaries detection, and

signal quality measurements. In NR, downlink synchronization signals are classified into two

types:

a) Primary Synchronization Signal (PSS):

PSS sequences can be denoted by Pμ [m] and composed of 127 samples of n-sequences that

given by:

Pμ [m] = 1−2n[(m+43μ) mod 127] for 0 ≤ m ≤ 126 (3.3)
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Figure 3.2 Frame structure of SS block

where μ ∈ {0,1,2,3,4} stands for cell sector ID and

n[m+7] = (n[m+4]+n[m]) mod 2 (3.4)

where the first 7 samples of n[m] can be given by {0,1,1,0,1,1,1}. In the frequency

domain, PSS channel consists of 240 subcarriers, and using Eq. 3.3 it can be given as:

Dμ [ f ] =

⎧⎪⎨
⎪⎩

Pμ [ f −56], 56 ≤ f ≤ 126

0, otherwise

(3.5)

PSS is located in the first OFDM symbol of the synchronization block and occupies subcar-

riers with indexes from 57 to 183.
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b) Secondary Synchronization Signal (SSS):

SSS is a result of the combination of two n-sequences with a duration of 127 samples. SSS

is generated depending on group ID ∈ [0,355]. SSS occupies subcarriers with the same

indices as PSS but it is located in the third OFDM symbol of the signal synchronization

block (SSB).

Additionally, another type of signal is mapped to the SSB, namely the physical broadcast chan-

nel (PBCH). 56 information bits representing four information fields are transmitted by the

PBCH in each SSB. The first 24 bits are used for cell configuration, while the last 24 bits are

reserved for cyclic redundancy check (CRC). The remaining bits are used by the UE to detect

the radio frame’s beginning; accordingly, it starts the procedure of synchronization.

3.3 Proposed Model

In this section, we introduce the GBM-based framework in subsection 3.3.1. The description

of the dataset is presented in subsection 3.3.2.

3.3.1 Gradient Boosting Machines (GBM)

Gradient boosting machine (GBM) is a widely-adopted efficient classification and regression

model. Given a dataset D = {xi,yi}N
i=1 that consists of N observation-label pairs (xi, yi). GBM

iteratively constructs M weak learners (usually decision trees), h(x,a1),h(x,a2), . . . ,h(x,aM).

Assume the labels are generated from an underlying function such that yi = f (xi) is the true

function to be approximated. A GBM model approximates f (x) by a prediction function,

ŷ = g(x). The prediction function could be expressed as an additive expansion of a basis

function h(x,am) such that:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŷ = ∑M
m=1 βmh(x;am)

h(x;am) = ∑J
j=1 γ jmI(x ∈ R jm),

(3.6)
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where I = 1 if x ∈ R jm and zero otherwise. The input space is divided into J different non-

overlapping regions R1m,R2m, . . . ,RJm. Each decision tree predicts a constant-value γ jm for a

region R jm. In a certain decision tree, the mean values of each splitting variable are given

by the parameter am. The hyperparameter βm controls the contribution of each node to the

final prediction Babajide Mustapha & Saeed (2016). The values of these hyperparameters are

selected to minimize a specified loss function. Specifically, the mean square error function is

a typical choice for regression problems. For a better approximation with small chances of

overfitting, a regularization parameter is added to the loss function.

L =
N

∑
i=1

l(yi, ŷi)+
M

∑
m

Ω(hm) (3.7)

The second term is a regularization term that counts for the complexity of the model to prevent

overfitting. The regularization term, Ω, can be given by:

Ω(hm) = γT +
1

2
λ ||w||2, (3.8)

where T is the number of leaves and w is the vector of leaf weights. The hyperparameters γ and

λ control the hardness of the regularization, and accordingly, the complexity of the model. It is

worth noting that there are different techniques that can be adopted to prevent overfitting during

the training phase. Column subsampling and shrinkage are two examples of such techniques

Chen & Guestrin (2016).

Following the principle of empirical risk minimization, we train a GBM model, hM, to mini-

mize the empirical risk given by:

R(hM) = E[L (y,hM(x))], (3.9)

where R(·) is the empirical risk of the input model and L (·) is the adopted loss function.

Given an N-points dataset, we can compute the empirical risk given in (3.9) by:
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R(hM) =
1

N

N

∑
i=1

L (yi,hM(xi)) (3.10)

Since we adopt the additive training approach to train the GBM model, the prediction of the ith

data point at a time step, t, is given by:

ŷ(t)i =
M

∑
i=1

h(xi;am) = ŷ(t−1)
i +ht(xi), (3.11)

which means that we add the tth learner to minimize the objective in (3.7) in a greedily fashion.

Therefore, the objective in (3.7) at the tth time step can be expressed as:

L t =
N

∑
i=1

l(yi, ŷ
(t−1)
i +ht(xi))+Ω(ht). (3.12)

The second-order Taylor expansion can be used to get a fast optimization for the objective

function.

L t =
N

∑
i=1

[l(yi, ŷ
(t−1)
i )+giht(xi)+

1

2
qiht2

(xi)]+Ω(ht), (3.13)

where gi = δ
ŷ(t−1)

i
l(yi, ŷ

(t−1)
i ) and qi = δ 2

ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) represent the first and second order

gradient statistics on the objective function. To further simplify the objective in (3.13), we can

remove the constants to reduce the objective to the following form:

L t =
N

∑
i=1

[giht(xi)+
1

2
qiht2

(xi)]+Ω(ht). (3.14)
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Algorithm 3.1 : GMB Training Procedure

1 Input: A training dataset, D = {(xi,yi)}N
i=1;

2 Initialize a model with a constant value, h0(x) = argmin
γ

∑N
i=1 L (yi,γ);

3 for m=1 to M do
4 Compute residuals, rm,i such that for i = 1, . . . ,N, compute:

rm,i =−[
δL (yi,h(xi))

δh(xi)
]h(xi)=hm−1(xi) ;

5 Train a regression tree with features x and labels r and create terminal regions R jm
for j = 1, . . . ,Jm;

6 Compute γ jm = argmin
γ

∑xi∈R jm L (yi,hm−1(xi)+ γ), for j = 1, . . . ,Jm;

7 Update the model: hm(x) = hm−1(x)+ v∑Jm
j=1 γ jm1(x ∈ R jm)

8 end
9 Return the trained ensemble model, hM;

The regularization term can be further expanded as follows:

L t =
N

∑
i=1

[giht(xi)+
1

2
qiht2

(xi)]+ γT +
1

2
λ

T

∑
j=1

w2
j , (3.15)

=
T

∑
j=1

[(∑
i∈I j

gi)w j +
1

2
(∑

i∈I j

qi +λ )w2
j ]+ γT,

where I j = {i|z(xi) = j} is the instance set of all leaf nodes. For a certain structure z(x), the

optimal value for a leaf j is denoted by w∗
j and given by:

w∗
j =− G j

Q j +λ
, (3.16)

where G j = ∑i∈I j gi and Q j = ∑i∈I j qi. We can calculate the corresponding optimal objective

by:

L̃ t(z) =−1

2

T

∑
j=1

G2
j

Q j +λ
+ γT, (3.17)

where the equation in (3.17) can be used to measure the quality of a tree structure z. Algorithm

3.1 describes the training process of a GBM model.
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3.3.2 Dataset Description

Figure 3.3 The target distribution for SNR=4 and SNR=-8. We can see that the target

follows a uniform distribution

It is of crucial importance to have a large and well-annotated dataset to build any predictive

model. Although it is at the heart of any communication system, this standardized publicly

available dataset is not available for the problem of CFO estimation. This dataset is presented

here in order to stimulate further studies in this area. We built a dataset to cover a wide range
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of SNRs, namely, from SNR = −10 db to SNR = 10 db with a step of 2 db. For each SNR∈
{−10,−8, . . . ,10}, we generated uniformly distributed CFO. We generated a file for each SNR

separately. This facilitates designing a model for each SNR value. A larger collection of

randomly generated CFO with different SNR values has been also generated that could be

used for training a global model that predicts the CFO for any SNR value. The data has been

formatted as comma-separated values (CSV) files. Each row in any file consists of 509 columns

representing the real and imaginary parts of the PSS (127×2), the real and imaginary parts of

the SSS (127×2), and the final column represents the target CFO value to be predicted.

Table 3.1 The description of dataset files

File Name File Size (MByte) SNR Value (db)

(1)_SNR=-10 90.4 -10

(2)_SNR=-8 90.8 -8

(3)_SNR=-6 91.2 -6

(4)_SNR=-4 91.6 -4

(5)_SNR=-2 92 -2

(6)_SNR=0 92.3 0

(7)_SNR=2 92.6 2

(8)_SNR=4 90.2 4

(9)_SNR=6 92.9 6

(10)_SNR=8 93 8

(11)_SNR=10 11.5 10

To motivate the community to further explore this interesting research direction, we released

the dataset as an open-source at the GitHub repository of this work1. The dataset consists of

12 CSV files. Each SNR value has one file as well as one file for the aggregated data from

different SNR. Providing the data of each SNR separately helps in building ensemble models

1 https://github.com/Mostafa-Korashy/ML-based-Frequency-Offset-Estimation-in-NR
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with the help of a multiplexer to select the model corresponding to the estimated SNR. Table

3.1 shows the details of each file.

3.4 Results and Discussion

3.4.1 Dimensionality Reduction

The curse of dimensionality is one of the most common problems that raise from dealing with

high-dimensional data. Sampling from a high-dimensional space makes the data sparse. Con-

sequently, deriving important conclusions from such a sparse sample becomes more challeng-

ing. Unsurprisingly, the curse of dimensionality is presented in the problem under investigation

de Bodt & et al. (2018). Different dimensionality reduction techniques can be adopted in this

problem such as principal component analysis (PCA), singular value decomposition (SVD),

autoencoders, etc. Among those techniques, autoencoder is a nonlinear neural network-based

technique that achieved outstanding performance in the prior art. However, we employed a

PCA-based dimensionality reduction technique in our study for the sake of simplicity and ex-

plainability.

PCA is a statistical procedure introduced by Karl Pearson in his pioneering paper Pearson

(1901), that uses an orthogonal transformation to convert a group of correlated variables into a

group of uncorrelated variables Reddy & et al. (2020). It has been widely used for many ap-

plications such as visualizing high-dimensional data, and dimensionality reduction for down-

stream tasks (e.g. regression or classification). Algorithm 3.2 summarizes the steps of PCA.

A typical way of adopting PCA for dimensionality reduction is to use the first k components

for the downstream tasks. When we analyzed the correlation of the first k components and the

target value, we figured out that some later components maintain higher Pearson factors than

the early components. This implies that these later components could be more relevant for the

downstream task than the early ones. Therefore, we perform the PCA analysis using the highest

possible dimension (i.e., the same dimension as the input). Then, we analyze the correlation
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Figure 3.4 The correlation matrix of the first ten PCA components

between the target and all PCA components using the Pearson matrix. Finally, we consider the

PCA components that show the highest correlation with the target label. Fig. 3.4 shows the

correlation matrix for both the first ten PCA components and the ten PCA components with



71

Algorithm 3.2 : Dimensionality Reduction using PCA for Carrier Frequency Estimation

1 Input: A training dataset, D = {(xi,yi)}N
i=1. Each point, Xi is an n-dimensional vector

such that xi = [x(1)i ,xi = [x(2)i , . . . ,xi = [x(n)i ];

2 Standardize the raw data: x( j)
i =

x( j)
i −x̄( j)

σ j ∀ j;
3 Calculate the covariance matrix for the standardized data: ∑ = 1

N ∑N
1 (xi)(xi)

T , where

∑ ∈ R
n×n;

4 Compute the eigenvectors and eigenvalues of the covariance matrix, ∑;

the highest correlation factors. The top figure shows the correlation matrix of the first ten PCA

components where we can see the 8th component has a much higher correlation factor than

the 2nd component. This motivated us to consider the 15 PCA components with the highest

Pearson factors among the 508 components resulting from the PCA analysis.

3.4.2 Prediction Accuracy

We trained a GBM to predict the CFO. For each SNR value, we trained a GBM model using

80% of the data. The remaining 20% has been used for testing. The training set is further

divided into train and validation sets. Fig. 3.5 shows the prediction accuracy for a 100-point

sample from the test set. We can see that the GBM model is capable of predicting the target

CFO with a considerable level of accuracy. Again, this can be attributed to the power of the

ensemble model and the benefit of the adopted boosting technique.

To illustrate the distribution of prediction errors, we plot the histogram of the error bins for

different SNR values. For example, we plot the histogram of the prediction error as shown in

Fig. 3.6. We can see that most of the prediction errors lie in the early bins that correspond

to the smaller error bins. Note that we normalize our target to be in the range of [2,3] which

means the early error bins have a small percentage compared with the target values.
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Figure 3.5 The prediction of the CFO using GBM

3.4.3 Baseline Comparisons

In this section, we compare our proposed GBM model with two widely adopted models for

regression, namely artificial neural networks (ANN) and support vector machines (SVM).

Artificial neural network (ANN): ANN models have shown outstanding performance in many

fields and problems such as computer vision, link adaptation, CSI compression, etc Schmid-
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Figure 3.6 The histogram of the prediction error for SNR=8 and SNR=6

huber (2015). Multilayer perceptron (MLP) is one of the widely adopted models, especially

for processing tabular data such as the problem under consideration. In this work, we used an

architecture that consists of one input layer, one hidden layer with ReLU activation, and one

output layer with linear activation. The model is trained to minimize the mean square error

(8.6) using the Adam optimizer Kingma & Ba (2014) with a learning rate, lr = 0.1. We set the
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batch size to 128. An l2 regularization has been adopted to prevent the high-bias/low-variance

behavior (overfitting). The model has been trained for 500 epochs.

L =
1

N
‖y− ŷ‖2 (3.18)

Support Vector Machines (SVM): For several decades, SVMs dominated most predictive

tasks due to their powerful modeling capabilities and inherited simplicity and explainability.

In the literature, the term SVM has been used to refer to a classification model, while support

vector regressor (SVR) referred to regression models. In this work, we use the term SVM to de-

note the adopted regression model. SVM is a margin maximization technique that assumes the

data is linearly separable. We adopt a kernelized version of SVM since the linear separability

assumption is not guaranteed in practice, especially in our dataset that exhibits a high degree

of nonlinearity. Several kernels can be adopted such as Polynomial Kernel, Gaussian Kernel,

Radial Basis Function (RBF), Laplace RBF Kernel, Sigmoid Kernel, and Anove RBF Kernel

Nguyen (2017). In this work, we adopted an RBF kernel (3.19).

K (x,y) = exp

ñ
‖x− y‖2

2σ2

ô
(3.19)

The prediction results of the GBM and the two baselines (i.e., ANN, SVM) are shown in Fig.

3.7. We can see that the prediction accuracy of our proposed GBM outperforms the predictions

of the other two models. We can see the predictions of the ANN model are closer to the

target compared with the predictions of the SVM model. However, the predictions of the GBM

are the closest to the target values. This can be attributed to the ensemble nature of the GBM

model. Many weak learners can perform better than a single stronger learner. Ensemble models

exploit multiple weak learners to produce weak predictions based on features extracted through

various data projections. The produced results are then fused with any voting mechanisms to

achieve better performances than that obtained by any standalone learner. This gives the GBM

an extra advantage over the other two models Dong & et al. (2020).
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Figure 3.7 The prediction accuracy of our proposed GBM with two baseline models

(i.e., ANN and SVR)

3.5 Future Work

As shown previously, the adoption of ML techniques for learning the CFO is a promising di-

rection that can bring plenty of advantages, especially for B5G communication systems. How-

ever, challenges such as dimensionality reduction, hyperparameter optimization, and building

universal predictive models require further investigation. In this section, we propose various

research directions for future exploration such as:

- In this work, we proposed and validated the use of PCA as a dimensionality reduction tech-

nique. Other dimensionality reduction techniques are worth exploring. Specifically, neural

network architectures such as autoencoders have been widely used for dimensionality re-

duction and they showed an outstanding performance in this regard. Additionally, they are

capable of capturing the nonlinearities inherent in communication systems through nonlin-

ear dimensionality reduction.

- Towards the goal of zero-touch network management, Fine-tuning the different hyper-

parameter values to obtain the best model becomes a challenging task, especially when

we need to retrain the model (e.g., after data drift). We proposed Bayesian optimization
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as a solution for our work. The authors believe that more contributions in this area will be

appreciated.

- A dedicated model for each SNR value has been proposed in this work. Another direction

that looks more appealing is the use of a universal predictive model that can be applied to

all SNR values. This solution is of more interest, and more challenging as well.

- In order to avoid wasting resources training models from scratch for each new device being

installed in a new environment, transfer learning techniques can be utilized and optimized

to reduce the required resources for training CFO predictive models. The impact of such

techniques on the performance of the CFO predictive models should be evaluated.

- The problem can be extended to span different channel models (slow versus fast-fading,

etc.) and different numerology settings.

We believe that releasing our dataset for public access can encourage other researchers to in-

vestigate more in these directions, among others.

3.6 Conclusion

In this work, we proposed a machine-learning approach for carrier frequency offset (CFO)

estimation using gradient-boosting machines (GBM). Compared with various baseline mod-

els, our proposed model achieved a competitive performance in terms of prediction accuracy.

Moreover, we released our dataset as open source to motivate other researchers to continue

investigating data-driven solutions for CFO. We also proposed several promising research di-

rections for further investigating the feasibility of data-driven CFO for new radio.
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PART 2: CSI Feedback Compression



CHAPTER 4

PRVNET: A NOVEL PARTIALLY-REGULARIZED VARIATIONAL
AUTOENCODERS FOR MASSIVE MIMO CSI FEEDBACK

Mostafa Hussien, Kim Khoa Nguyen, and Mohamed Cheriet
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Paper published in IEEE Wireless Communications and Networking Conference (WCNC),
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Abstract: In a multiple-input multiple-output frequency-division duplexing (MIMO-FDD)

system, the user equipment (UE) sends the downlink channel state information (CSI) to the

base station to report the link status. Due to the complexity of MIMO systems, the overhead

incurred in sending this information negatively affects the system bandwidth. Although this

problem has been widely considered in the literature, prior work generally assumes an ideal

feedback channel. In this paper, we introduce PRVNet, a neural network architecture inspired

by variational autoencoders (VAE) to compress the CSI matrix before sending it back to the

base station under noisy channel conditions. Moreover, we propose a customized loss function

that best suits the special characteristics of the problem being addressed. We also introduce an

additional regularization hyperparameter for the learning objective, which is crucial for achiev-

ing competitive performance. In addition, we provide an efficient way to tune this hyperpa-

rameter using KL-annealing. Experimental results show the proposed model outperforms the

benchmark models including two deep learning-based models in a noise-free feedback chan-

nel assumption. In addition, the proposed model achieves an outstanding performance under

different noise levels for additive white Gaussian noise feedback channels.

keywords :

Generative models, variational autoencoders, CSI compression, MIMO-FDD
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4.1 Introduction

Multiple-input multiple-output (MIMO) system is considered a key enabling technology for

fifth-generation, 5G, wireless systems. One of the active research areas in MIMO systems is

channel state information (CSI) compression for feedback. In modern MIMO systems, a base

station (BS) can be equipped with several antennas to reduce the multiuser interference and

increase the cell throughput. In this setting, the BS is required to perform the precoding at

its side. Therefore, the BS should have access to the current CSI. In time division duplexing

(TDD) systems, the downlink CSI can be estimated using any channel estimation technique at

the BS side. This is achievable because channel reciprocity holds for TDD systems, (Fig. 4.1).

However, in frequency division duplexing (FDD) systems, the uplink and downlink channels

use different frequency bands, so channel reciprocity no longer holds. In this case, the down-

link CSI should be sent to the BS by the user equipment (UE). In modern MIMO systems,

this channel matrix is huge, and the bandwidth overhead incurred for sending this matrix can

heavily degrade the system’s performance.

Figure 4.1 Channel reciprocity in TDD and FDD systems

To alleviate this problem, the UE can compress the CSI matrix before sending it back to the BS.

The compressed CSI matrix, however, should maintain enough information about the original

CSI matrix in order for the BS to accurately reconstruct the original CSI matrix. Obtaining a

low-fidelity reconstruction for the original CSI matrix results in poor system performance. The

problem then is how to optimally compress the CSI matrix while preserving its salient features
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and information. At the same time, the compression/decompression processes should be com-

pleted in real-time. Moreover, the encoder part should not consume much space or power since

it resides at the UE which might have limited space and power resources. Lastly, and more im-

portantly, this compressed data will be sent to the BS over a wireless channel (uplink channel)

which suffers from traditional wireless transmission impairments such as noise, fading, or path

loss. How the compression technique is resilient against the varying noise conditions of the

uplink channel adds one more challenge to the CSI feedback problem.

The problem of compressing CSI feedback has been considered in the literature. Traditional

methods Kuo & et al. (2012); Lu & et al. (2015) considered compressive sensing (CS) tech-

nique to compress the CSI matrix before feeding it back to the BS. However, the CSI matrix

should maintain a high degree of sparsity for these methods to work. This condition is not

always guaranteed in complex communication systems. In addition, many of these techniques

depend on iterative approaches for solving a system of equations which makes them suffer a

relatively slow performance.

On the other hand, artificial intelligence (AI) and deep learning (DL) have shown outstanding

performance in solving different complex problems in wireless communications Wang & et al.

(2017); Hussien & et al. (2021). A line of work has utilized AI and DL techniques to solve

the CSI feedback problem. The authors in Wen & et al. (2018) opened the door for applying

DL techniques in the CSI feedback problem. They presented CsiNet, a convolutional neural

network architecture with skip connections in the decoder part. The advantage of CsiNet per-

formance has been proven against traditional CS-based techniques. However, CsiNet employs

a point estimation architecture in which the model learns one scalar value for each dimension

in the codeword. This results in noise-sensitive codewords, and any noise level can largely

hurt the reconstruction fidelity at the BS. Unlike CsiNet, our proposed model in this paper ap-

proximates distribution parameters for each dimension. In particular, mean and variance for a

Gaussian latent space. This makes our codewords more robust against noises, and the decoder

has the capacity to reconstruct the received codewords even in the presence of relatively large

noise levels.
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The authors in Lu & et al. (2019) exploited the temporal and frequency correlations of wireless

channels. They presented CSINet-LSTM, which extends CsiNet with long short-term memory

(LSTM) network. LSTM is a classic type of recurrent neural network capable of capturing

long-term dependencies (temporal correlation) between input sequences. In Lu et al. (2020),

the authors proposed a neural network architecture, called CRNet, for multi-resolution CSI

feedback in massive MIMO. Their model achieves better performance than classical CS-based

techniques as well as CsiNet. Another extension to CsiNet called CsiNet+ has been introduced

in Guo & et al. (2020). However, the floating point operations (flops) in CSINet+ is much

larger than CsiNet, therefore the improvements come at the cost of complexity.

In general, the limitations of prior work consist of a) most prior work assumes an ideal control

channel and pays less attention to the more practical assumption of noisy feedback channels,

and b) no prior work has deeply investigated the power of generative models, especially vari-

ational autoencoders (VAE) Kingma & Welling (2013), in the context of CSI compression

despite their proven performance in many applications.

In this work, we propose a VAE-based framework for CSI feedback compression in MIMO-

OFDM systems. The proposed framework customizes the VAE loss function to suit the special

characteristics of the CSI feedback problem while, at the same time, benefiting from the ro-

bustness of the VAE-generated codewords against noise. The main contributions of this work

can be summarized as follows:

- A novel partially-regularized VAE model, named PRVNet, for CSI feedback problem with

a new objective function that reflects the specific characteristics of CSI compression.

- A seminal algorithm inspired by Kullback-Leibler (KL)-annealing to fine-tune the addi-

tional hyperparameter introduced in the objective function.

- We consider the CSI feedback in an additive white Gaussian noise (AWGN) channel. Since

we employ a distribution-estimation model, our proposed model is shown to be capable of

reconstructing the CSI matrices with high accuracy even under high noise levels.
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The rest of this paper is organized as follows: in section 4.2, we present the system model.

Section 4.3 presents a detailed description of the proposed PRVNet model, its architecture,

and the training algorithm. The results of the proposed model along with comparisons against

state-of-the-art works are presented in Section 4.4, followed by a conclusion.

4.2 System Model
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Figure 4.2 An overview of the PRVNet for CSI feedback compression through an

AWGN channel

We consider a simple single-cell downlink massive MIMO system with Nt � 1 transmit an-

tennas at the BS and a single receive antenna at the UE. The system employs OFDM with Ñc

subcarriers. The received signal at the nth subcarrier, yn, is given by:

yn = h̃H
n vnxn + zn, (4.1)

where h̃n ∈C
Nt×1, vn ∈C

Nt×1, xn ∈C, and zn ∈C denote the channel vector, precoding vector,

data-bearing symbol, and additive noise of the nth subcarrier, respectively. Also, assume H̃ =[
h̃1 . . . h̃Ñc

] ∈ C
Ñc×Nt be the CSI stacked in the spatial frequency domain. The BS can design

the precoding vectors {vn, n = 1, . . . Ñc} once it receives H̃ feedback.
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In FDD systems, the BS continually receives the channel matrix, H̃, through feedback links.

This feedback has an Nt × Ñc dimension. Estimating this channel at the UE side is out of

the scope of this work. We assume that a perfect CSI has been acquired through pilot-based

training Choi et al. (2014) and this work focuses on the feedback scheme.

To reduce the feedback overhead, we propose that H̃ can be sparsified in the angular-delay

domain using a 2D discrete Fourier transform (DFT) as follows:

H = FdH̃FH
a , (4.2)

where Fd and FH
a are Ñc × Ñc and Nt ×Nt DFT matrices, respectively. Only a small fraction

of the elements of H are large components, and the remainders are close to zero. In the delay

domain, only the first Na rows of H contain values because the time delay between multipath

arrivals lies within a limited period. Therefore, we can retain the first Na rows of H and ignore

the remaining. We will use Ha to denote the Na ×Nt truncated matrix. The dimension of the

channel matrix then reduces to 2NaNt , which remains a large number in the massive MIMO

regime. For classical CS-based methods, Ha is sparse enough when Nt → ∞, in other words,

Ha does not meet the sparsity requirement with the limited Nt .

We are interested in designing an encoder:

s = Fenc(Ha), (4.3)

which can transform the channel matrix into an M-dimensional vector (codeword), where M <

N and N = 2NaNt . In this case, we can define the data compression ratio, γ = M/N. In

addition, we have to design the inverse transformation (decoder) from the codeword to the

original channel matrix such that:

Ĥa = Fdec(s). (4.4)

The CSI feedback approach works as follows. Once the channel matrix H̃ is acquired at the UE

side, we perform 2D DFT in (4.2) to obtain the truncated matrix Ha and then use the encoder
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(4.3) to generate a codeword s. The generated code word, s, is sent to the BS over an AWGN

control channel. The BS receives a noisy version of the codeword denoted by ŝ such that:

ŝ = s+ z, (4.5)

where z is a noise vector sampled from a standard Gaussian. Then the BS uses the decoder

(4.4) to obtain an approximation for the truncated channel matrix Ĥa. The final channel matrix

in the spatial-frequency domain can be obtained by performing an inverse DFT as depicted in

Fig. 4.2.

4.3 Proposed PRVNet for CSI Feedback

In the following sections, we refer to a set of CSI channel matrices as a dataset X consisting of

C different CSI matrices indexed by c ∈ {1,2, . . .C}.

4.3.1 Variational Autoencoders (VAE)

The VAE consists of two models, namely encoder and decoder models. These models are

trained jointly to maximize the standard VAE objective in (4.6).

L (x,φ ,θ) = Ez∼q(z|x) [log pθ (x|z)]−KL(qφ (z|x)||p(z)), (4.6)

where x is the input, z is the latent code, φ and θ are the encoder and decoder parameters,

respectively. The output of the encoder model, also known as the inference model, is given by:

fφ (xc)≡ [μφ (xc),σφ (xc)] ∈ R
2K (4.7)

where the non-linear function fφ (·) is a neural network with parameters φ . Both μφ (xc) and

σφ (xc) are K-dimensional vectors representing the mean and variance of a Gaussian distribu-

tion. The latent representation, code word, zc is a K-dimensional vector sampled from this
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distribution such that:

qφ (zc|xc) = N (μφ (xc),diag{σ2
φ (xc)}). (4.8)

That is, for each data point, xc, in the dataset, the inference model outputs the corresponding

variational parameters of a variational distribution, qφ (zc|xc). When optimized, this distribution

approximates the intractable posterior p(zc|xc).

The decoder model, also known as the generative model, takes the sampled codeword as in-

put. It uses this codeword, zc, to reconstruct the original input, xc using a nonlinear function

pθ (xc|zc). The model is then trained to maximize the function given by (4.6) in an end-to-end

fashion.

The first term in (4.6) represents the reconstruction loss between the original input and its re-

constructed image. While the second term represents the KL divergence between the encoder’s

distribution, qφ (z|x), and the true distribution, p(z). This divergence measures how much in-

formation is lost when using q to represent a prior over z and encourages its values to follow a

Gaussian distribution. Since the function in (4.6) is a lower bound for the log marginal likeli-

hood, it is referred to as the evidence lower bound (ELBO) function. We can note that ELBO

is a function in both φ and θ .

Taxonomy of Autoencoders

Variational autoencoders are generative models that learn a latent representation for the input

data. Unlike classic autoencoders which employ a deterministic latent space (i.e., estimating

a point for each dimension in the latent space), VAE employs a stochastic latent space (i.e.,

samples form a tractable distribution usually assumed to be a Gaussian distribution) Hussien

(2021).

Maximum-likelihood estimation in a regular autoencoder takes the following form:
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θ AE ,φ AE = argmaxθ ,φ ∑cEδ (zc −gφ (xc)) [log(pθ )(xc|zc)]

= argmaxθ ,φ ∑c log(pθ )(xc|gφ (xc))

(4.9)

We can note from (4.9) that the classical autoencoder effectively optimizes the first term in

the VAE objective using a delta variational distribution. This means that qφ (zc|xc) = δ (zc −
gφ (xc)), and hence it does not regularize qφ (zc|xc) toward any distribution like VAE. We can

also note that δ (zc−gφ (xc)) is a delta distribution with mass only at the output gφ (xc). Contrast

this to what happens in VAE, where the learning is done using a variational distribution (i.e.,

gφ (xc) generates the parameters of a certain tractable distribution, the mean and variance in the

case of Gaussian distribution). This implies that VAE has the ability to capture per-data-point

variances in the latent space, zc. One of the main issues of autoencoders is the high possibility

of overfitting which is due to the fact that the network learns to put all the probability mass

to the non-zero entries in xc. By introducing dropout Srivastava & et al. (2014) at the input

layer, the classical autoencoder is less prone to overfitting. Fig. 4.3 shows the main difference

between point estimate autoencoders and VAE.

Algorithm 4.1 PRVNet training for CSI feedback with stochastic gradient descent

1 Randomly initialize θ and φ ;

2 while not convergeed do
3 Sample a batch of CSI channels B;

4 forall c ∈ B do
5 Sample ε ∈ N (0, I);
6 Compute zc using the reparameterization trick;

7 Compute noisy gradient �θL and �φL using the sampled zc;

8 end
9 Average noisy gradient for a batch;

10 Update θ and φ using stochastic gradient descent;

11 end
12 Return θ and φ
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4.3.2 The proposed model (PRVNet)

As discussed in subsection 4.3.1, the second term in the loss function (4.6) introduces a com-

promise between how close the approximate posterior stays to the prior during learning and

our ability to reconstruct the original data from the codeword. Therefore, we introduce a new

hyperparameter β , where β �= 1. Note that by using this hyperparameter, we are no longer

optimizing a lower bound on the log marginal likelihood.

Setting β < 1 means that we force the model to learn better data reconstruction and to pay less

attention to the prior constraint 1
C ∑C

c=0 q(z|xc) ≈ p(z) ≈ N (z;0, IK). In other words, a model

trained with β < 1 will be less able to generate novel CSI matrices by ancestral sampling. On

the other hand, setting β > 1 emphasizes the importance of the prior distribution constraint over

the ability to reconstruct the input from the codeword. Note that setting β to zero eliminates the

prior distribution constraint and reduces the loss function to that of the classical point estimate

autoencoders.

Recall that our goal is to make a good reconstruction at the BS side without generating novel

imagined CSI matrices. Treating β as a free hyperparameter, with β < 1, therefore can signif-

icantly improve the reconstruction results without any additional cost in terms of time or the

number of model parameters. Therefore, we propose an objective function in (4.10). Since we

can interpret the second term as a regularization term, we coin a model trained with (4.10) by

a partially regularized VAE network (PRVNet).

−Ez∼q(z|x) [log pθ (x|z)]+β ·KL(qφ (z|x)||p(z)) (4.10)

Selecting a value for β

We propose an algorithm for selecting the best value of β . At the beginning of the training

phase, we set β = 0 and gradually increase its value to 1. We linearly anneal the KL term

slowly over a large number of gradient updates to φ and θ and record the best value of β when
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the performance reaches the peak Liang & et al. (2018). After figuring out the best value of β ,

which we denote here as β∗, we retrain the model with the values of β starting from 0 to β∗. If

the computation power is limited, we can stop increasing β once we notice a degradation in the

validation metric. In this way, training our model does not incur any additional cost compared

with training traditional VAE models.

Training PRVNet
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Figure 4.3 Variatinal autoencoder with reparameterization trick versus classical point

estimate autoencoders

Recall that the proposed model optimizes the function in (4.10) while VAE is trained to op-

timize the standard ELBO function given in (4.6). We can obtain an unbiased estimate of

(4.10) by sampling zc ∼ qφ and optimize it by stochastic gradient descent. However, the chal-

lenge is that we cannot trivially take gradients with respect to φ through this sampling. The

reparameterization trick solves this challenge by sampling ε ∼ N (0, Ik) and reparametrize the

generated latent code such that, zc = μφ (xc) + ε �σφ (xc) Kingma & Welling (2013). This

way, the stochasticity in the sampling process is eliminated and the gradient with respect to φ
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now can be back-propagated through the sampled latent code zc. A detailed description for the

training process is given in Algorithm 4.1.

4.4 Simulation Results and Analysis

4.4.1 Experiment Setup

Architecture Details

The encoder and decoder models are convolutional neural networks (CNN)-based architec-

tures. We set the batch size to 128. The model weights are initialized according to He initial-

ization He & et al. (2015). We optimize the model using Adam optimizer Kingma & Ba (2014)

with 0.1 learning rate for 1000 epochs. The function proposed in (4.10) is used as the model

loss function. To alleviate the effect of overfitting, we employ a weight decay of 1−4 for kernel

and bias weights.

Dataset

We consider two types of scenarios as given in Wen & et al. (2018): the outdoor scenario

at 300MHz and the indoor scenario at 5.3GHz. The channels are generated following the

default settings of COST 2100 Liu & et al. (2012). At the BS, a uniform linear array (ULA)

with Nt = 32 is considered. For the FDD system, we set Nc = 1024 in the frequency domain

and Na = 32 in the angular domain. The dataset contains 150,000 independently generated

channels divided into three parts. The train, validation, and testing parts consist of 100,000,

30,000, and 20,000 channel matrices, respectively.

4.4.2 Performance of PRVNet

We compare the performance of PRVNet with three CS-based methods, namely, Lasso L1-

solver Daubechies et al. (2004), TVAL-3 Chengbo & et al. (2009), and BM3D-AMP Met-

zler & et al. (2016). Moreover, two recent deep learning-based methods, namely, CsiNet
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Table 4.1 Comparison of NMSE (db) for different methods

CR Methods
NMSE (db)

Indoor Outdoor

1/4

LASSO -7.59 -5.08

BM3D-AMP -4.33 -1.33

TVAL3 -14.87 -6.90

CsiNet -17.36 -8.75

CRNet -26.99 -12.71

PRVNet (our) -27.7 -13.9

1/16

LASSO -2.72 -1.01

BM3D-AMP 0.26 0.55

TVAL3 -2.61 -0.43

CsiNet -8.65 -4.51

CRNet -11.35 -5.44

PRVNet (our) -13 -6.1

1/32

LASSO -1.03 -0.24

BM3D-AMP 24.72 22.66

TVAL3 -0.27 0.46

CsiNet -6.24 -2.81

CRNet -8.93 -3.51

PRVNet (our) -9.52 -4.23

1/64

LASSO -0.14 -0.06

BM3D-AMP 0.22 25.45

TVAL3 0.63 0.76

CsiNet -5.84 -1.93

CRNet -6.49 -2.22

PRVNet (our) -6.9 -2.53

Wen & et al. (2018) and CRNet Lu et al. (2020), are also considered in the comparison. To

evaluate the performance of different methods, we measure the distance between the original

CSI matrix, Ha, and the reconstruction image, Ĥa, using the normalized mean square error

(5.12).

NMSE (db) = 10log E

(∥∥Ha − Ĥa
∥∥2

2

‖Ha‖2
2

)
. (4.11)
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Table 5.4 and Fig. 5.6 show the performance of the proposed PRVNet against different bench-

mark models. We can see that PRVNet outperforms all classical CS-based methods as well

as recent deep learning-based methods. PRVNet with the proposed loss function in (4.10) is

capable of capturing CSI features to increase the reconstruction accuracy at the BS. Unlike

the other benchmark models which do not consider channel noise in their model design, an

advantage of the proposed model is its robustness against different noise levels. This property

will be further investigated shortly.

Table 4.2 The effect of annealing β to different values

on indoor scenario for a compression ratio 1/4

β annealing strategy NMSE (db)

No annealing -25.83

Annealing β to the maximum (β=1) -26.32

Annealing β to 0.3 -27.7

The effect of β annealing has been studied and demonstrated in Table 4.2. We can see that the

model achieved the highest NMSE when no β -annealing has been applied. Under the same

dataset and compression ratio, the model achieved lower NMSE when β has been annealed

to 1. The best NMSE has been achieved by annealing β from 0 to 0.3 and completing the

training epochs without further increase in the value of β . Although, this value might be sub-

optimal compared to a thorough grid search. The proposed algorithm is much more efficient

and achieves a similar performance.

Table 4.3 The robustness of the proposed PRVNet

under different signal-to-noise ratios.

SNR (db) NMSE (db)

35 -27.7

32 -26.56

29 -25.81

26 -25.6

23 -24.95
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Figure 4.4 Top: indoor, bottom: outdoor. Comparison (in terms of the reconstruction

loss measured in NMSE) between the proposed model and other works in literature

To further evaluate the robustness of the proposed model under different noise conditions, we

simulate the AWGN feedback channel by adding random Gaussian noise to the codeword and

passing it through the decoder model such that:

z̄ = z+ ε, (4.12)
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Figure 4.5 The NMSE(db) under different SNR(db) values

where ε ∼ N (0,σn). The degradation of the NMSE with different SNR values is shown in

Table 4.3. We can see that the proposed PRVNet model shows outstanding robustness against

different noise levels, see Fig. 4.5. We notice a slow degradation in the NMSE when the noise

level increases, which indicates that the codewords generated by the proposed PRVNet model

can still convey relevant features about the original CSI matrix even under noisy conditions.

This can be explained by the fact that PRVNet, unlike other models in the literature, learns a

distribution for each dimension in the codeword. This makes the effect of the noise much less

severe than in point estimate models because even with the noise, a value in the codeword may

still look as being sampled from the same learned distribution.

4.5 Conclusion

In this paper, a novel deep learning model, PRVNet, has been proposed for downlink channel

state information (CSI) feedback in MIMO-FDD systems. The PRVNet customizes the tra-

ditional variational autoencoder objective to incorporate the special characteristics of the CSI

feedback problem. Unlike prior work that assumes an ideal feedback channel, we modeled

an AWGN feedback channel and proved that the codewords generated by PRVNet are more
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robust against varying noise conditions. The proposed model outperforms state-of-the-art deep

learning-based and compressive-sensing-based models in both noise-free and noisy channel

conditions.
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Abstract: Industry 5.0 refers to the fifth industrial revolution that leverages advanced technolo-

gies such as the Internet of Things (IoT) and artificial intelligence (AI) to increase efficiency,

productivity, and flexibility in manufacturing and other industries. Wireless IoT devices help

collect and transmit real-time data to support intelligent decision-making, while AI algorithms

process and analyze the data to optimize production processes, predict equipment failure, and

enhance supply chain management. To achieve efficient integration for the data fused by var-

ious sensors, the data should be perfectly synchronized and out-of-errors. In cellular-based

sensors, this requires the base station (BS) to know the state of the channel at each node. In

this work, we propose a novel method for CSI compression by learning an approximation for

a sufficient statistics function. Our method establishes a new category of compression tech-

niques based on the theory of sufficient statistics. Moreover, We present a detailed analysis

of the upper bound of the prediction error in our specific scenario. We develop a Bayesian

optimization framework to optimally select the adopted neural network architecture. The ex-

perimental results confirm that our solution outperforms both conventional and learning-based

solutions in terms of reconstruction error, model size, and scalability.

Keywords:

CSI feedback, MIMO-FDD systems, Industry 5.0
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5.1 Introduction

Consumer electronics have become miniaturized powerful computers with a wide range of

functions due to the integration of information technology. These devices are often used in

interconnected networks of products and services. In this regard, Industry 5.0 is considered

to combine human expertise along with intelligent, efficient and precise machines enabling

futuristic technologies such as Internet of things (IoT), artificial intelligence (AI), industrial

automation, health informatics, and collaborative robots to name a few. In this regard, data

fusion from multiple wireless IoT nodes is one of the main challenges. Moreover, accurate

synchronization and error-free transmission are crucially required to achieve efficient data in-

tegration. To this end, a base station (BS) should obtain timely updates on the channel state

of each node. This process is known as the channel state information (CSI) feedback process.

The BS uses this feedback to adjust the transmission parameters for each node according to its

current channel status. Therefore, the need for an accurate CSI feedback mechanism for data

fusion and data integration in industry 5.0 becomes clear.

Massive multiple-input multiple-output (MIMO) technology is considered as one of the main

enablers of beyond 5G (B5G) systems. Using beamforming technologies, MIMO systems en-

hance channel capacity and throughput by using hundreds of antennas Wen & et al. (2018).

To improve the performance gain of MIMO, the BS requires access to downlink CSI, which

is available in time division duplexing (TDD) systems where channel reciprocity is achieved

Liang & et al. (2020). In frequency division duplexing (FDD), only the UE can estimate and

transmit the channel back to the BS Guo & et al. (2020). However, transmitting a large CSI

matrix to the BS consumes a significant amount of bandwidth. Therefore, the UE should

compress the matrix before transmitting it to the BS. According to the rate/distortion theory

Blau & Michaeli (2019), the cost of increasing the compression ratio is increasing the recon-

struction distortion.

Different techniques have been employed to achieve a good rate/distortion balance in CSI com-

pression. Principal component analysis, vector quantization, compressive sensing, and deep
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Figure 5.1 The autoencoder architecture widely adopted in the literature for CSI

compression

learning are among the widely used techniques in this task. Deep learning techniques achieved

a significant improvement in the reconstruction distortion for a given compression ratio com-

pared with other conventional methods. These methods mainly work by nonlinearly projecting

its input to a smaller space (i.e., latent space) using encoder architecture parameterized by pa-

rameters φ , as shown in Fig. 5.1. These methods, jointly learn the inverse mapping from the

latent space to the input space by a decoder parameterized by parameters θ . Although they

achieved a competitive performance compared with conventional techniques, some limitations

are inherited in the applicability of such systems, such as:

- Autoencoders have a fixed size input. Therefore, the BS should maintain a separate model

for each supported compression ratio. Although some work has proposed adaptive rate

models Wang & et al. (2021), they achieve this by a padding module that pads the code-

words. This padding trick could harm the reconstruction accuracy.

- Autoencoders work by learning the deep features of their input. These features significantly

change between different propagation environments (e.g., indoor and outdoor). Therefore,
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a different model should be trained for different environments. Specifically, a separate

model should be trained for each setting of the compression ratio, propagation scenario,

and the number of antennas. For example, 24 models are required at the UE side to support

2 propagation scenarios, 3 configurations of BS antennas, and 4 settings of compression

ratios.

- Some prior work proposed complex architectures (e.g., attention-based models, LSTM-

based models) with large model sizes and higher computational complexity. Unfortunately,

the complexity of such models keeps them far away from the current UE capabilities.

Table 5.1 Summary of the notation adopted in the text.

Notation Meaning

H Bold-faced capital letters denote matrices

a Bold-faced small letters denote vectors

‖·‖ Cardinality (i.e., the number of elements in a matrix)

|| · ||2 Euclidean norm

|| · ||F Frobenius norm

vec(H) Vectorization of the matrix H in column-first order

λmin(H) The minimum eigenvalue of a symmetric matrix H

I The identity matrix

[n] The set {1,2, . . . ,n}
N (μ,σ) A Gaussian distribution with mean μ and variance σ

σ(·) ReLU activation in the form of σ(x) = max(0,x)

I(E) The indicator function of an event E

This work presents the first attempt for neural CSI compression beyond the nonlinear projec-

tion using autoencoders. We propose a novel technique for CSI feedback by instance-aware

optimization. This method has its roots in the learning theory, specifically in the bias/variance

tradeoff. Simply, bias and variance count for how much good the model is behaving in seen

and unseen data, respectively. These two error terms are inversely proportional such that de-
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Figure 5.2 The total error of a neural network model as the combination of the bias and

variance error terms Neal & et al. (2018)

creasing one term will increase the other as indicated in Fig. 5.2. To the best of our knowledge,

this is the first work to answer the following question:

Question: What is the optimal combination of bias/variance errors for the CSI compression

problem? and what is the optimality of such a method in terms of error upper bound and the

employed architecture?

To answer these questions, we propose an instance-aware optimization technique. In this case,

the optimal bias/variance combination is no longer a midpoint between the two error terms.

Rather, it is a point with a low bias (even with high variance). In this case, we do not consider

the variance due to the fact that we optimize a model per each instance. Therefore, for each

sampled channel, we approximate a nonlinear sufficient statistics function using a neural net-

work as a function approximator. Given an instance, H, a sufficient statistic function, τ(H),

is a function that contains all the information in H required to compute any estimate. The
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parameters of such a function are interpreted as the codeword. Extensive experiments prove

that our reconstruction distortion and model size are significantly reduced compared to other

state-of-the-art solutions. Moreover, it is a modular solution that works with different system

configurations. We can summarize the contributions of our work as follows:

- An efficient enabler for fused data integration in IoT and industry 5.0 through a highly

accurate CSI feedback mechanism.

- Proposing a new modeling for the CSI compression by approximating a sufficient statistics

function for each channel matrix. The compressed representation of the CSI matrix is,

simply, the weights of the trained neural networks.

- A detailed error upper bound analysis for the specific proposed scenario, which allows us

to better understand the proposed solution behavior.

- A Bayesian framework for optimizing the neural network model for each instantaneous

channel to adapt the changes in each channel distribution.

- Taking a fundamental step towards opening a new direction for CSI compression other than

nonlinear projection. This work combines concepts from learning theory (bias/variance

tradeoff) Yang & et al. (2020), information theory (sufficient statistics) MacKay & Mac Kay

(2003), and approximation theory (error upper bounds) Elbrächter & et al. (2019) for CSI

compression.

The rest of this paper is organized as follows: Section 5.3 introduces the system model. Section

5.4 describes the proposed method. Section 5.5 provides an upper bound analysis for the error.

The experimental results are shown in Section 5.6. An overview of the literature work is given

in Section 5.2. Section 5.7 concludes the work.

5.2 Literature Review

Prior work is categorized into two primary classes: conventional-based and deep learning-

based techniques, see Table 5.2. Conventional techniques contain principal component anal-
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Table 5.2 A Comprehensive taxonomy for the literature work based on the applied

technique

Applied Technique Publications

Conventional Techniques

Principal Component Analy-

sis (PCA)

Joung et al. Joung et al.
(2016), Joung et al. Joung

(2016)

Vector Quantization (VQ) Kang et al. Kang & Choi

(2021), Ying et al.

Ying & et al. (2014)

Compressive Sensing Rao et al. Rao & Lau (2014),

Lu et al. Lu & et al. (2015),

Gao et al. Gao & et al.

(2018)

Deep Learning
Convolutional Autoencoders Wen et al. Wen & et al.

(2018), Lu et al. Lu et al.
(2020)

Recurrent Autoencoders Liu et al. Liu et al. (2021),

Wang et al. Wang & et al.

(2018a)

ysis, vector quantization, and compressive sensing techniques. In vector quantization, the BS

builds a codebook of channels Kang & Choi (2021), where a new CSI matrix is encoded by

determining its nearest point in the codebook and assigning it to the corresponding index. Eu-

clidean distance and Cosine similarity are commonly employed metrics to measure the distance

between two data points. The distance between the nearest codebook entry and the current

channel is used as a measure of reconstruction loss. However, these methods have two major

drawbacks: 1) increasing antenna numbers results in a larger codebook, and 2) longer encod-

ing/decoding time due to the incorporated linear search in the codebook. Another research

avenue explores the use of compressive sensing (CS) for CSI compression Rao & Lau (2014);

Gao & et al. (2018); Lu & et al. (2015). While CS-based methods have demonstrated improved

performance in comparison to earlier methods, they mandate a sparsity constraint on the chan-

nel matrix, which may not be satisfied in modern MIMO systems. Moreover, these methods

use iterative algorithms for solving a system of equations, which can pose challenges in terms

of real-time requirements.
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Inspired by the exceptional performance of deep learning, various proposals have been made

for deep learning-based CSI compression Lu et al. (2020); Hussien et al. (2020); Guo et al.

(2020). This approach endeavors to overcome the limitations of conventional techniques while

capitalizing on the superior proven capabilities of learning methods. The common approach

employed by these methods is the utilization of autoencoder-based architectures, as illustrated

in Fig. 5.1. The encoder part of the autoencoder transforms the input channel into a lower

dimensional space. Using compressed latent codes, the decoder reconstructs the original in-

put. One of the early proposals was presented in Wen & et al. (2018), where a convolutional

neural network (CNN) was used to learn the features of the CSI matrices. The authors intro-

duced a model named CsiNet, which significantly outperformed state-of-the-art models. The

exceptional performance of CsiNet spurred further research to enhance its effectiveness and ap-

plication. For instance, in Hussien et al. (2020), partially regularized variational autoencoders

were proposed to tackle the noise in the feedback channel, while in Lu et al. (2020), a novel

architecture was presented to extract CSI features from multiple resolutions.

5.3 Problem Definition and Setup

Figure 5.3 An overview of the system model

We consider a single-cell massive MIMO system consisting of a base station (BS) and user

equipment (UE), as shown in Fig. 5.3. The BS has Nt transmit antennas, where Nt is signif-

icantly greater than 1. The UE is equipped with a single receive antenna. The system oper-
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ates using an orthogonal frequency-division multiplexing (OFDM) scheme, with Nc orthogonal

subcarriers. The received signal at the nth subcarrier is described by the following equation:

yn = hT
n vnxn + zn (5.1)

where hn is the channel vector, vn is the transmit beamforming vector, xn is the transmitted

signal, and zn is additive white Gaussian noise.

The CSI matrix H consists of the concatenation of the instantaneous channel vectors at all

subcarriers and can be expressed as H = [h1,h2, . . . ,hNc] ∈ C
Nc×Nt . The complete downlink

instantaneous CSI matrix has a dimension of Nc×Nt complex numbers, which is equal to 2NcNt

real numbers when taking into account the real and imaginary components of each complex

value. The increasing number of antennas and subcarriers leads to a significant increase in

the size of the matrix, resulting in a substantial amount of bandwidth being consumed for

the feedback process. Furthermore, the extended transmission time for this large volume of

information increases the likelihood of the feedback being outdated.

The CSI matrix is transformed into the angular-delay domain through the application of a 2D

Discrete Fourier Transform (2D-DFT), as represented by the equation:

H′ = FdHFa (5.2)

where Fd ∈ C
Nc×Nc , and Fa ∈ C

Nt×Nt are the two DFT matrices. The result of this transforma-

tion, H′, contains elements that represent a specific path delay and angle of arrival (AoA). Only

the first Na rows of H′ contain valuable information, while the remaining rows, with near-zero

values, can be discarded without causing a significant loss of information. By retaining only

the first Na rows, a new matrix, Ha ∈ C
Na×Nt , is created with a reduced size of 2NaNt where

Na < Nc.
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The real and imaginary parts of the complex values in Ha are concatenated along the third

dimension of Ha to form a tensor. The elements of the resulting tensor, Ha ∈ R
Na×Nt×2, are

then normalized to fall in the range of [0,1].

5.4 Proposed Solution

5.4.1 Background on Learning Theory

In neural network functions, a balance is usually sought between approximation error and es-

timation error. Approximation error measures the difference between the true target function

and the closest neural network of a given architecture, while estimation error measures the

difference between that closest function and the estimated function. The approximation error,

also known as statistical risk or variance, affects a network’s ability to generalize to new data

points. Whereas the estimation error, also known as the model bias, controls the model behav-

ior on the training dataset. It is well known that low bias comes at the cost of high variance,

but rethinking the modeling of CSI compression could lead to significant improvements.

In CSI compression, the goal is to find a compressed representation of the CSI matrix that

retains enough information from the original data to allow for efficient and minimally distorted

reconstruction. The method used to achieve this representation, whether it be a universal model

or a specifically trained model, is not important. The focus is on reducing reconstruction loss

at a given compression rate. Using instance-based optimization eliminates variance error and

focuses the optimizer on reducing bias error, leading to lower reconstruction loss at a given

compression ratio, as shown by the results.

5.4.2 Model Description

Prior work modeled the problem of neural CSI compression as jointly optimizing an encoder

and decoder parameters, φ and θ respectively, to minimize the l2 loss between a ground truth
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Figure 5.4 The proposed shallow network for learning a highly biased

representation for a CSI channel H

channel and its reconstruction such that:

min
φ ,θ

∥∥H− fθ ( fφ (H))
∥∥

2
. (5.3)

The limitations of this modeling have been discussed earlier in section 8.1. In this paper, we

present a new modeling that learns a function parameterized by parameters ω , f : R2 → R
2,

such that:

fω(i, j)∼= [R(Hi, j), I(Hi, j)] ∀i ∈ [Na], j ∈ [Nt ], (5.4)
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where i, j are the row, column indices in the channel matrix. The real and imaginary compo-

nents of complex numbers are denoted by R(·) and I(·). Finally, [n] = {1,2, . . . ,n}. When the

training completes, the trained weights, ω , is treated as the compressed codeword.

The proposed formulation considers the channel matrix, H, with dimensions Na × Nt as a

dataset D such that D = {((i, j),Hi, j)}i=Na, j=Nt
i=1, j=1 . The input to the model is constant and does

not depend on the current channel being compressed, with only the labels changing. According

to Shannon’s theory Shannon et al. (1959), this results in zero entropy for the degenerate distri-

bution of the input, meaning there is no need to transmit the input matrix to the BS. The original

matrix can be reconstructed using only the model parameters, ω , and the matrix dimensions

(i.e., Na and Nt) by plugging the index vectors into the function fω such that:

Ĥ = fω(i, j) (5.5)

where i = [Na] and j = [Nt ]. Approximating this function with a neural network is easier than

approximating the true underlying channel distribution, making it possible to achieve good

performance with a shallow architecture (one hidden layer with few nodes, as shown in Fig.

5.4). Algorithm 1 shows the details of the encoding process at the UE and the decoding process

at the BS side.

Recall that the total error of a neural network consists of two terms namely the estimation error

and approximation error:

L ( fω) = La( fω)+Le( fω) (5.6)

where La( fω) is the approximation error of the function fω and Le( fω) is the estimation error.

We employ a neural network model for approximating fω with an instance-aware optimization.

In this case, we eliminate the contribution of the approximation error, and the optimizer is

dedicated to minimizing the estimation error. This helps achieve better results compared with

traditional neural network optimization methods. Fig. 8.2 shows the overall system and how it

works on both sides.
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Figure 5.5 A general overview of the proposed framework at the BS and UE sides

Algorithm 5.1 CSI compression using the proposed method.

1 Input: A new channel matrix, H
2 Encoding at the UE

- Generate a dataset, D , from H, such that: D = {((i, j),Hi, j)}i=Na, j=Nt
i=1, j=1 .

- Initialize a neural network model with initial weights ω ′.

- Train the model, fω ′ , for n epochs to get a trained-model parameters ω .

- Transmit the trained-model parameters ω to the BS.

Decoding at the BS
- Initialize a new model with the received weights ω .

- Plug the fixed input matrix (i.e., the indices of the channel matrix) to obtain a

reconstruction for the original channel, Ĥ.
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The proposed modeling approach introduces a new type of compression algorithm that uti-

lizes learning internal representations of the data instead of traditional projection techniques.

This offers a new way to reduce approximation error for compression applications. A main

advantage of the proposed solution is being not constrained to certain propagation scenarios or

MIMO settings, eliminating the need for the UE to keep multiple models for different scenar-

ios.

5.4.3 Information Theoretic Background

Information theory serves as a theoretical foundation of our work. The weights of the shallow

network are interpreted as the parameters of a parameterized function fω . The function is an

approximation for the sufficient statistics of the sampled channel.

Definition 5.1. For a family of distributions, fθ (X), a function T (X) is said to be sufficient

statistics if X is independent of θ given T (X) for any distribution on θ .

According to definition 5.1, this means that a sufficient statistics function should contain

enough information about the sample, X , such that:

P(θ |X)≤ P(θ |T (X)), (5.7)

with the equality is only satisfied when the function T (X) keeps all information in X without

any loss. For tractable distributions, such as Gaussian, a closed-form equation for the sufficient

statistics can be derived. However, for distributions with unknown parameters, θ , it is not

feasible to derive such an equation. To tackle this issue, we leverage the capabilities of neural

networks for function approximation to learn a good approximation for T (X).

5.5 Bounds Analysis

Notation: During this text, we refer to vectors by small bold-face letters and matrices by capital

bold-face letters. The Euclidean norm of a matrix A is denoted by || · ||2. The vectorization of
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a symmetric matrix, H, in a column-first order is denoted by vec(H). A Gaussian distribution

with mean μ and variance is denoted by N (μ, ). We denote the indicator function of an

event E by I{E}. The identity matrix is referred to as I and the set {1,2,3, . . . ,n} is referred to

as [n]. The ReLU activation function is referred to as σ(·) such that σ(x) = max(0,x). Table.

5.1 summarizes the used notation; some notations are used in the appendix.

5.5.1 Defining A Shallow Neural Network

We considered a two-layers neural network with ReLU activation. The hidden layer has h

nodes. The neural network function is defined as:

fW,a(x) =
1√
h

h

∑
i=1

aiσ(WT
i x), (5.8)

where x ∈ R
d is a d-dimensional input vector, W ∈ R

d×h is the weight matrix of the first

layer such that Wi is the weight vector associated with the node i in the hidden layer. The

weight vector of the second layer is given by a = (a1,a2, . . . ,ah)
T ∈ R

h. A set of n labeled

samples S = {xi,yi}n
i=1 is available for training. These samples are i.i.d, with an underlying

data distribution D over Rd ×R. For each sample (xi,yi), we assume ||xi||2 = 1 and |y| ≤ 1.

The weights are randomly initialized. The model is trained over the dataset S using gradient

descent to minimize the l2-loss given by:

Φ(W,a,S ) =
1

n

n

∑
i=1

(yi − fW,a(xi))
2 (5.9)

5.5.2 Bounding the Generalization Error for Our Model

Given the dataset S = {xi,yi}n
i=1, we define a new matrix H∞ ∈R

n×n called Gram matrix such

that:
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H∞ = Ew∼N (0,I)[xT
i x jI{wT xi ≥ 0,wT x j ≥ 0}]

= xT
i x j(π − arccos

(
xT

i x j
)
)/2π, ∀i, j ∈ [n].

(5.10)

This matrix has been extensively studied in Arora et al. (2019); Du (2018). It can be interpreted

as a Gram matrix from a kernel associated with the ReLU function. For a sufficiently large

number of nodes in the hidden layer, h, if H∞ is positive definite, it is shown that gradient

descent optimization converges to zero loss Du (2018).

Theorem 1. Consider ε ∈ (0,1) as a fixed failure probability. Assume a sample S = {xi,yi}n
i=1

is i.i.d. sampled from a (λo,ε/3,n)-nondegenrate distribution D , k=O(λoε/n), h≥ k−2 Poly(n,λ−1
0 ,ε−1).

Consider a mean square error loss function, l : R×R → [0,1] Then, with a probability at

least (1− ε), a two-layers NN fW,a has a population loss of LD( fW,a) = E(x,y)∼D [l( fW,a(x),y)]

bounded as:

LD( fW,a)≤
 

2yT (H∞)−1y
n

+O(

 
log n

λ0ε
n

) (5.11)

To compute this bound, the Gram matrix H∞ should be invertible. However, this condition is

not always satisfied. Furthermore, the model input in our method is fixed to the indices of the

channel matrix. This input does not change with every channel. Therefore, this matrix should

be replaced by an identity matrix I of size n where n = 2NaNt .

5.6 Experimental Results

Table 5.3 Experimental Setup

Channel Model COST 2100 channel model Liu & et al. (2012)

Number of antennas in the the BS ULA with 32 antennas

Number of antennas in the UE 1

Development environment TensorFlow2.1.0 + python 3.6

Size of the dataset 150,000 channels

Propagation environments Indoor and outdoor
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This section presents the different results of evaluating our proposed method. The results of

channel reconstruction for different propagation environments (e.g., indoor and outdoor envi-

ronments) compared with state-of-the-art learning methods are shown in 5.6.1. The perfor-

mance of our method in end-systems is given in 5.6.2. The results of Bayesian optimization

are presented in 5.6.3. Finally, we show and discuss when and why our method does not work

in 5.6.4. The used dataset has 150,000 CSI realizations for indoor and outdoor scenarios gen-

erated using the settings in table 5.3. For the complete description of the dataset, we refer the

readers to Hussien et al. (2020). The reconstruction quality is measured by the NMSE given in

(5.12).

NMSE (db) = 10log E

(∥∥Ha − Ĥa
∥∥2

2

‖Ha‖2
2

)
. (5.12)

5.6.1 Results and Discussion

The plots in Fig. 5.6 show how well different methods perform in indoor and outdoor environ-

ments. The figure shows a comparison between our method with different conventional tech-

niques (i.e., LASSO Daubechies et al. (2004), BM3D-AMPMetzler & et al. (2016), TVAL3Li

et al. (2009)) and deep learning-based techniques (i.e., CsiNetWen & et al. (2018), CRNetLu

et al. (2020)). We can see that our method significantly outperforms other methods in terms

of the reconstruction distortion measured by NMSE. The obtained results confirm the superi-

ority of our proposed method compared with other methods. Due to its focus on minimizing

one source of errors (i.e., estimation errors), the optimizer is able to achieve superior perfor-

mance. Moreover, sufficient statistics functions learn informative features only and remove any

redundancies in the considered sample. Table. 5.4 shows the NMSE values for each method.

Time Complexity: Despite the adopted per-instance training strategy, the time complexity of

our method is still on-the-bar with other methods. This is a straight consequence of using a

model with a small number of parameters. As a result, our model’s training time is comparable
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Table 5.4 Comparison of NMSE (db) for different methods

CR Methods NMSE (db)
Indoor Outdoor

1/4

LASSO -7.59 -5.08

BM3D-AMP -4.33 -1.33

TVAL3 -14.87 -6.90

CsiNet -17.36 -8.75

CRNet -26.99 -12.71

(Our method) -36.66 -22.69

1/16

LASSO -2.72 -1.01

BM3D-AMP 0.26 0.55

TVAL3 -2.61 -0.43

CsiNet -8.65 -4.51

CRNet -11.35 -5.44

(Our method) -32.10 -19.13

1/32

LASSO -1.03 -0.24

BM3D-AMP 24.72 22.66

TVAL3 -0.27 0.46

CsiNet -6.24 -2.81

CRNet -8.93 -3.51

(Our method) -28.95 -15.94

1/64

LASSO -0.14 -0.06

BM3D-AMP 0.22 25.45

TVAL3 0.63 0.76

CsiNet -5.84 -1.93

CRNet -6.49 -2.22

(Our method) -23.61 -12.32

Table 5.5 FLOPS for Different Models Compared with our Model.

CR=1
4 CR=1

8 CR= 1
16 CR= 1

32

CsiNet-LSTM 412.9 M 410.8 M 409.8 M 409.2 M

MarkovNet 44.5 M 42.4 M 41.3 M 40.8 M

MarkovNet CNN 41.2 M 40.7 M 40.5 M 40.4 M

CsiNet 7.8 M 5.7 M 4.7 M 4.1 M

CRNet 7.7 M 5.6 M 4.5 M 4.0 M

Deep AE 6.3 M 5.8 M 5.5 M 5.4 M

Our Method (500 Epochs) 520 K 283 K 128 K 66 K
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Figure 5.6 Evaluating the proposed model in comparison with other state-of-the-art

models

to other models’ inference time. Table 5.5 shows the floating-point operations (FLOPS) for

different models. Furthermore, Fig. 5.7 shows the error for a 300 epochs training session. We

can see that the error slightly improves after a relatively small number of epochs, therefore we

can stop the training earlier to reduce the encoding time. Note that in certain modern commu-

nications scenarios, such as vehicular networks, the UE has strong computational capabilities.

For example, the computation power of Tesla vehicles can run the auto-pilot that can process

2300 frames per second Talpes & et al. (2020). The computation resources of such vehicles are
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Figure 5.7 The error decay with training epochs

powerful enough to be used in Cryptocurrency mining, which requires extensive computations.

This implies that training a shallow-net for CSI compression will be much more feasible.

Table 5.6 The number of parameters for different models in the literature

1/4 1/16 1/32 1/64

CsiNet-LSTM Wang & et al. (2018b) 132.7 M 123.2 M 118.5 M 116.1 M

Deep AE Jang & et al. (2019) 3.2 M 2.9 M 2.8 M 2.7 M

CsiNet CsiNetWen & et al. (2018) 2.1 M 1.1 M 0.5 M 0.3 M

CRNet Lu et al. (2020) 2.1 M 1.1 M 0.5 M 0.3 M

MarkovNet Liu et al. (2021) 2.1 M 1.1 M 0.5 M 0.3 M

MarkovNet-CNN Liu et al. (2021) 34.9 K 27.8 K 24.2 K 22.4 K

Our method 512 128 64 32

Space Complexity: Table 5.6 displays the number of parameters in different studies in the

literature. Our model has a notably smaller number of parameters compared to other methods.

The model parameters in our approach serve as the compressed representation of the channel,

while other methods require a larger number of weights to perform nonlinear projections onto a

lower dimensional space, particularly for complex architectures like LSTM and attention-based

models.
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Scalability: A problem inherited in traditional autoencoder-based solutions (almost all neural

network solutions) is that a given model is designed with a certain input size. For example,

for a MIMO system with 32 transmit antennas, single receive antennas, and 1024 subcarriers,

the model input is 1024× 32. However, during the handover, the UE may connect to another

BS with a different number of transmit antennas, 64 for example. Subsequently, the channel

size will be 1024× 64, and a new model is required. To handle this handover, the UE should

maintain a set of models for each possible input size and compression ratio, which is not

affordable in the context of current UE resources. On the other hand, the proposed method

uses the weights of the model as a compressed representation for the input channel. A model

will be trained for each channel and no need to maintain different models for different input

sizes. This makes our solution more scalable and efficient. Furthermore, it bridges the gap

between academic work and its applicability in real-life scenarios.

5.6.2 Performance Evaluation for Downstream Tasks

After being received at the BS, the CSI information is used in many possible tasks such as link

adaptation Kim et al. (2015); Ku & Walsh (2014); Hussien & et al. (2021) or beam forming

Yue et al. (2015); Liu & Lau (2016). These tasks are called downstream tasks in the machine

learning regime. Therefore, using only the reconstruction distortion (measured by NMSE as

given in Eq. 5.12) to evaluate certain CSI compression techniques is not enough. This concern

becomes more clear when we obtain high NMSE, while the lost information is very sensitive to

the accuracy of the downstream task. In this case, using the reconstruction distortion only as a

performance measure can lead to severe degradation in the accuracy of these tasks. To illustrate

this point, we evaluated our method in a link adaptation task at the BS. Link adaptation is the

process of adaptively tuning various transmission parameters (e.g., modulation and coding

scheme (MCS), guard interval, etc.) to maximize the system throughput.

We follow the same experimental setup applied in Hussien & et al. (2021). We tested three

propagation environments (namely, Suburban Macro-cell, Urban Macro-cell, and Rural Macro-

cell). For each scenario, we used two datasets with 10K and 50K data points each, as indicated
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in Hussien & et al. (2021). Moreover, we tested four different compression ratios (namely,

1
4 , 1

8 , 1
16 , and 1

32). The accuracy of the link adaptation task is measured by the percentage of

retransmissions to the total number of transmissions. We compare the performance in the cases

of using the original CSI (without compression) and using the reconstruction generated by our

method using the indicated compression ratios. Fig. 5.8 shows the results of each scenario. We

can see that the percentage of retransmissions increases by a small margin with increasing the

compression ratio. For example, in the worst scenario of Urban Macro-cell, the percentage of

retransmissions has increased from 14% with the original CSI to 16.15% with a compression

ratio of 1
32 . This represents around 15% degradation in the downstream task to save around

97% of the consumed bandwidth in the feedback process.

5.6.3 Bayesian Hyperparameters Optimization

Algorithm 5.2 Bayesian hyperparameters optimization

1 Input: Set of evaluation points D = {(xi,yi)}N
i=1

2 model ← G P .fit(X ,Y )
3 While Not converged do
4 xnew ← acquisition.optimize()

5 ynew ← evaluate(xnew)

6 D .add(xnew,ynew)

7 model.update(D)

8 End-while
9 return model.result()

The proposed solution has two hyperparameters, namely the number of layers, L, and the

number of nodes in each layer {nl}l=L
l=1. These hyperparameters largely affect the performance

of the proposed method. These hyperparameters are constrained by the condition that the total

number of weights in the model should equal the dimension of the reduced data. Specifically,

given a channel matrix, H, and a compression ratio γ , then the dimension of the reduced data

is d = ‖H‖× γ , where ‖·‖ is the cardinality of a matrix (i.e., the total number of elements in
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Figure 5.8 The accuracy of using the reconstruction in link adaptation (as one of the

downstream tasks) at the BS
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Figure 5.9 A comparison between optimized versus handcrafted models. For optimized

models, we used Bayesian optimization to optimize the free hyperparameters (i.e., the

number of layers and the number of neurons in each layer)

the matrix). Therefore, the constraint on the values of the hyperparameters can be given as:

d =
L−1

∑
l=1

nl ×nl+1. (5.13)
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Specifically, using the model weights as the compressed representation for the input channel

imposes this constraint. Based on the model architecture, this constraint may be difficult to

satisfy. Therefore, we relax it by replacing the equality with inequality such that:

L−1

∑
l=1

nl ×nl+1 ≤ d. (5.14)

In this case, we guarantee the total number of weights is less than or equal to the target dimen-

sion.

The main challenge of hyperparameter optimization is that we do not have a closed form for

the objective. However, Bayesian optimization (BO) is a seminal tool for solving these black-

box optimization problems Shahriari & et al. (2015). BO does not impose any assumptions

on the form of the objective function. It has been widely used to optimize hard-to-evaluate

functions and proved to be more efficient than its rivals such as random or grid search. For

more information on BO, we refer to Snoek et al. (2012).

The existing automated machine learning (AutoML) libraries (e.g., AutoKeras Jin et al. (2019))

do not support constraining the number of parameters. Therefore, we used Scikit-optimize

Head et al. (2018), a sequential model-based optimization library for BO, to build our own

framework. We used the expected improvement (Eq. 5.15) as our acquisition function. We

set the number of calls to 10, this means that ten different combinations will be evaluated. We

evaluated the BO on an indoor channel.

EI(x) = E( f (x)− f (x+)), (5.15)

where x+ is the best point observed so far.

Fig. 5.9 compares the performance of optimized models with handcrafted models. We measure

the performance of each model using NMSE given in (5.12). We can see the advantage of
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hyperparameter optimization in the achieved NMSE. More improvements can be achieved by

increasing the number of calls, which means we try more combinations.

An increasing trend in the improvement achieved by the optimized model can be observed

in Fig. 5.9 (outdoor scenario). Specifically, we can see the optimized model outperforms

the handcrafted model by a large margin in the outdoor scenario compared with the indoor

scenario. This margin increases with increasing the compression ratio. This means that the

advantage of the Bayesian optimization framework increases by increasing the complexity of

the compression problem (i.e., using more complex propagation scenarios or increasing the

compression ratio).

5.6.4 Analysis of Failure Cases

Figure 5.10 The reconstruction error for various randomness degrees

It is well known that neural networks learn the patterns present in the data. Projecting this to our

problem, this requires the CSI matrix to have some correlation between its dimensions for the

method to be effective. As a result, the proposed method is expected to fail for channels com-
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posed of completely random numbers, especially with a shallow network. However, a deeper

neural network that can memorize the input data may perform better, although it may result in

a number of weights larger than the input channel, compromising the concept of compression.

In CSI compression, the indices of the channel represent the physical characteristics of the

underlying wireless environment. Therefore, there is a strong correlation between the channel

indices and the elements in the channel matrix (i.e., the channel gain of each subcarrier).

To test this idea, we generate a convex combination between one real and one random channel,

namely H and R respectively, according to Eq. (5.16):

C = αR+(1−α)H. (5.16)

Both channels are normalized to fall between [0,1]. The parameter α determines the level

of randomness in the resulting channel, C. We tried 10 different values for α , ranging from

0 to 1 with a step size of 0.1. The results are displayed in Fig. 5.10, which shows that the

reconstruction error increases as randomness in the channel increases. The shallow network

successfully learned a good representation of the real channel (α = 0), but failed to do so for a

completely random channel (α = 1).

5.7 Conclusion

To achieve efficient data integration for industry 5.0 applications, the captured data should

maintain a high degree of synchronization for error-free transmissions. Satisfying these re-

quirements necessitates the base station (BS) to acquire the instantaneous channel state infor-

mation (CSI) of each node in a process called CSI feedback. To save bandwidth and power,

the CSI should be compressed before transmission. In this work, we present a new learning-

based compression technique for CSI in massive MIMO systems. Unlike prior work which

uses autoencoder-based architectures for compression via nonlinear projection, we introduce a

novel approach based on information theory. Our method leverages neural networks to learn
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a nonlinear sufficient statistic for the input channel. We use instance-aware optimization to

train a shallow network to approximate the statistic for each channel sample which reduces the

approximation error (variance) and increases the estimation error (bias). Moreover, we provide

an error-bound analysis for the proposed method. We also implement a Bayesian optimization

framework to determine the best model for the given channel distribution. Our method out-

performs other state-of-the-art works in terms of reconstruction loss and model size. It also

demonstrated robust performance in downstream tasks such as link adaptation.
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PART 3: Link Adaptation



CHAPTER 6

TOWARDS MORE RELIABLE DEEP LEARNING-BASED LINK ADAPTATION
FOR WIFI 6
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Mohamed Cheriet, and Gwenael Poitau
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Abstract : The problem of selecting the modulation and coding scheme (MCS) that maximizes

the system throughput, known as link adaptation, has been investigated extensively, especially

for IEEE 802.11 (WiFi) standards. Recently, deep learning has widely been adopted as an ef-

ficient solution to this problem. However, in failure cases, predicting a higher-rate MCS can

result in a failed transmission. In this case, a retransmission is required, which largely degrades

the system throughput. To address this issue, we model the adaptive modulation and coding

(AMC) problem as a multi-label multi-class classification problem. The proposed modeling

allows more control over what the model predicts in failure cases. We also design a simple,

yet powerful, loss function to reduce the number of retransmissions due to higher-rate MCS

classification errors. Since wireless channels change significantly due to the surrounding en-

vironment, a huge dataset has been generated to cover all possible propagation conditions.

However, to reduce training complexity, we train the CNN model using part of the dataset.

The effect of different subdataset selection criteria on the classification accuracy is studied.

The proposed model adapts the IEEE 802.11ax communications standard in outdoor scenarios.

The simulation results show the proposed loss function reduces up to 50% of retransmissions

compared to traditional loss functions.

keywords :

Link adaptation, multi-class classification, WiFi 6
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6.1 Introduction

Nowadays, dynamic resource allocation and link adaptation techniques have been incorporated

into different wireless standards to support the quality of service (QoS) requirements while

serving the increased number of users Xu & et al. (2019). Link adaptation represents a key

element in determining the system’s latency and throughput performanceShariatmadari & et al.

(2016). Fortunately, machine learning is anticipated to provide viable solutions to the link

adaptation challenges in wireless systemsO’Shea & Hoydis (2017).

In the literature, the link adaptation problem has been modeled either as a reinforcement learn-

ing problem Saxena & et al. (2019); Mismar et al. (2019), or as a multiclass classification

problem where the class labels represent different modulation and coding scheme (MCS) com-

binations Elwekeil & et al. (2018); Karmakar & et al. (2019); Dong & et al. (2018); Li & et al.

(2019); Blanquez-Casado & et al. (2019). According to this modeling, each data point can

belong to a single class and a supervised machine learning model can be trained to select the

ideal MCS based on the training data. However, supervised models, generally, have a certain

level of accuracy Jagannath & et al. (2018). In this case, failing to predict the ideal MCS has

unpredictable implications on the system throughput. In fact, predicting a higher-rate MCS will

result in a failed transmission and, consequently, a retransmission is required which largely de-

grades the system throughput. These problems come from the fact that modeling the problem

as a multiclass classification has no control over what the model can predict in failure cases.

Now the question is, if the model failed to predict the optimal MCS, can we train it to predict

a suboptimal one?

To answer this question, we model the link adaptation problem, for the first time, as a multi-

label multi-class classification. In this modeling, a data point is allowed to belong to more

than one class at the same time (all the successful MCS in the AMC problem). Therefore,

the model learns to predict not only the optimal MCS but also all suboptimal ones. Such a

modeling approach gives more control to what the model learns from the training phase and

what it can predict in failure cases. However, we need to enforce the model to avoid predicting
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higher-rate MCSs that may produce retransmissions. To solve this issue, we propose a new

loss function that adds more penalization to such cases. The proposed loss function reduces

the number of retransmissions compared to the traditional crossentropy loss function, which is

widely employed in the literature. Fig. 6.1 shows an overview of the proposed system.

As wireless channels vary significantly according to the surrounding environment, a huge

dataset is required to cover all possible channel variations. However, it is computationally

expensive to utilize all the samples for training. In this work, we examine different selection

criteria for the training dataset. The selection criteria are based on domain knowledge and our

understanding of the nature of wireless channels. For orthogonal frequency-division multi-

plexing (OFDM)-based systems, we assume an interference-free, noise-free, single-user, and

single-input single-output setup. In this case, the delay dispersion of the channel is the decisive

factor on the MCS selection. Hence, instead of randomly selecting the training subdataset, we

select the subdataset that comprises a uniform (or as close as possible to a uniform) distribution

of the channel’s delay dispersion behaviors. Given that the channel dispersion behavior is not

easy to be fully characterized, for such selection to take place, we employ well-known criteria

characterizing the delay dispersion such as root-mean-square delay spread and window delay

spread.

The contributions of this work can be summarized as follows:

- We modeled the problem of AMC as a multi-label multi-class classification problem. The

model is trained to predict all the possible labels for successful transmission (including the

optimal MCS and suboptimal ones).

- We employed a convolutional neural network (CNN) with an innovative loss function. The

proposed model allows controlling what transmission parameters combination to predict

when failing to predict the optimal one.

- We studied the impact of training subdataset selection criteria on the AMC problem and

highlighted the corresponding effect on classification accuracy.
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6.2 Problem Formulation, Dataset Generation, and Training Subdataset Selection

6.2.1 Problem Formulation
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Figure 6.1 System Overview

Table 6.1 IEEE 802.11ax bitrate for different single user TMs.

MCS Ns Modulation Coding
20MHz

0.8 GI 3.2 GI

0 1 BPSK 1/2 8.6 7.3

1 1 QPSK 1/2 17.2 14.6

2 1 QPSK 3/4 25.8 21.9

3 1 16-QAM 1/2 34.4 29.3

4 1 16-QAM 3/4 51.6 43.9

5 1 64-QAM 2/3 68.8 58.5

6 1 64-QAM 3/4 77.4 65.8

7 1 64-QAM 5/6 86 73.1

8 1 256-QAM 3/4 103.2 87.8

9 1 256-QAM 5/6 114.7 97.5

10 1 1024-QAM 3/4 129 109.7

11 1 1024-QAM 5/6 143.4 121.9
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Assume we have C different combinations of MCS and guard intervals, GI, each of them called

a transmission mode, (TM). The TMs are indexed as i ∈ I ⊂ N, where the cardinality of I is

the number of available combinations. The index, i, hereafter referred to as the class distinctly

maps to a combination of MCS and GI. We adopt the IEEE 802.11ax standard for a single-

input single-output system at 0.8 and 3.2 guard intervals with a fixed bandwidth of 20 MHz as

shown in table 6.1. Therefore, in terms of multi-label multi-class classification, link adaptation

is the problem of selecting all the class labels, i, to which a certain channel realization belongs.

Thus, for a certain channel realization chn, the classifier selects all the labels, i, corresponding

to all valid transmission modes T Mi. Then, we can express the classifier function as a function

F that maps a channel realization chn to a set of labels y ⊂ {1,2, . . . ,C} as:

F(chn) = y = {i : T X(chn,T Mi) = 1}, (6.1)

where T X(chn,T Mi) = 1 when transmitting a packet through a channel given by chn with

transmission configuration given by T Mi is successful, and zero otherwise. From the predicted

TMs, we select the TM corresponding to the highest data rate. As shown in Fig. 6.1, a user

station (STA) sends the estimated channel state information (CSI) to the access point (AP). The

AP then uses the received CSI to adapt the transmission parameters for the next transmission.

6.2.2 Datasets Generation

We selected four scenarios with diverse delay dispersion characteristics: urban micro-cell,

suburban macro-cell, urban macro-cell, and rural macro-cell. Using the Matlab WINNER II

toolboxBultitude & Rautiainen (2007), for each scenario, 50,000 channels are generated. For

each channel, we use the Matlab IEEE 802.11ax toolbox to simulate transmitting a packet

using all available TMs. We split the generated channels into 80% training and 20% testing.
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6.2.3 Selection of Training Subdatasets using Different Delay Dispersion Criteria

The training subdatasets are constructed using two approaches: random selection criteria and

different delay-spread-based selection criteria. Based on the random approach, Cases 1 & 2

are identified, and based on the delay-spread approach, Cases 3, 4, & 5 are identified.

The random selection criteria (Cases 1 & 2)

The random approach is applied in the following two ways:

- Case 1, Random Full Dataset (RandomFD): all data points (i.e., a total of 160,000 data

points; 40,000 points from each of the four scenarios) are used for training.

- Case 2, Random Partial Dataset (RandomPD): the training subdataset is composed of data

points selected randomly and equally from each scenario.

RandomFD represents a reference case where all data points are used for training, and Ran-

domPD is the typical widely-used way of reducing the number of data points through random

selection.

The delay-spread-based criteria (Cases 3, 4, & 5)

The delay-spread-based selection approach is applied to select different training subdatasets

each of which has the same number of data points as RandomPD. Unlike RandomPD, the data

points of the built subdatasets are selected to represent the full delay dispersion behavior of

RandomFD. Using this approach, from the total 160,000 available data points, we select the

subdataset points such that the distribution of the delay dispersion metric will be as close as

possible to uniform.

Let’s assume RandomFDi to be the ith data point in the RandomFD dataset; S (RandomFDi)

is its corresponding delay dispersion evaluated based on a specific metric of interest, S ; i =

1,2, ..., I (where I is the total number of data points in RandomFD), and minS (RandomFD) &
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maxS (RandomFD) are the minimum and maximum obtained delay dispersion values, respec-

tively, among all the data points of RandomFD. We assume the interval [minS (RandomFD) ,

maxS (RandomFD)] to be divided into Z equal disjoint sub-intervals. We define the histogram

of S (RandomFD) as the function that counts the number of delay-spread observations, nz, that

fall into the zth sub-interval, where z = 1,2, . . . ,Z, and nmin & nmax are the minimum and maxi-

mum number of observations, respectively, obtained per sub-interval using the full dataset i.e.,

RandomFD.

Our proposed delay-spread-based approach to select a subdataset from RandomFD given a

histogram, mz, is as follows.

max
nmax≥x≥nmin

Z

∑
z=1

mz

mz = min(x,nz)

s.t.
Z

∑
z=1

mz ≤ T,

(6.2)

where T is the total number of data points in the selected subdataset.

The value of x determines the maximum number of data points at each of the Z intervals,

which results in selecting a subdataset with a histogram that exhibits a tendency toward having

a uniform distribution of the delay dispersion behavior over the [minFD,maxFD] range. The

possibility of ending up with a perfect uniform distribution increases as the number of data

points in RandomFD increases.

Based on the applied delay-spread metric (i.e., S ), which is our design criterion, we can now

define the differences among Case 3, Case 4, and Case 5 of the studied cases.

- Case 3, root-mean-square delay spread Partial Dataset (rmsPD). In this case, the training

dataset is selected using the delay-spread metric defined as the normalized second-order

moment of the delay profile of the channels.
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- Case 4, window (40%) delay spread Partial Dataset (W40%PD). In this case, we character-

ize the delay dispersion using the delay window parameter which is defined as "the length

of the middle portion of the power delay profile containing a certain percentage of the total

power found in that impulse response" (p. 4, ITUR-R). Here we use the 40% as our design

criterion.

- Case 5, window (70%) delay spread Partial Dataset (W70%PD). In this case, we use the

same definition of the delay dispersion metric as in Case 4; however, here we use the win-

dow that contains 70% of the power of the delay profile.

6.3 Proposed Deep-Learning Approach for AMC

The convolutional neural networks (CNNs) have shown superior performance in different do-

mains including computer vision, natural language processing, speech synthesis, etc O’Shea & Hoy-

dis (2017). One main advantage of CNNs is their proven capabilities in processing raw data.

This advantage eliminates the burdens of data pre-processing. Inspired by this, we propose a

CNN-based approach for AMC in IEEE 802.11ax.

6.3.1 CNN Model

The proposed deep convolutional neural network (DCNN) includes convolutional layers, av-

erage pooling layers, and fully-connected layers. Typically, the first hidden layer is a convo-

lutional layer with 20 filters. The second hidden layer is a convolutional layer of 32 filters,

followed by an average pooling layer with a pool size of 4. Then, another convolutional layer

is added with 64 filters followed by an average pooling layer with a pool size of 2. A convolu-

tional layer consisting of 32 filters is added, followed by an average pooling layer with a pool

size of 2. For all convolutional layers, every filter has a size of 10 × 2, with ReLU activation,

F(x) = max(x,0). After the 4 convolutional layers, there are 2 fully-connected layers. The

fully-connected layers contain 50 and C neurons respectively, where C is the number of avail-

able TMs. Since one channel can belong to many classes at the same time, we used Sigmoid
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activation function (6.3) in the output layer to approximate the multinomial distribution of the

class labels. To relieve the effect of overfitting, an l2 regularizer is added to the last two layers.

σ(x) =
1

1+ e−x (6.3)

For training the model, an Adam optimizer Kingma & Ba (2014) is adopted along with our

customized loss function (section 6.4). The DCNN is trained for 1000 epochs with a batch size

of 128. After training the DCNN, it is deployed for predicting the appropriate TMs.

6.3.2 Dataset Description

Consider a labeled dataset consisting of pairs of x and y where x represents different CSI in

different selection cases described in subsection 6.2.3. The label vector y is a vector in {0,1}C

where C is the number of the available T Ms (i.e., the number of classes). If the ith position

in the label vector of the jth data instance is set to one, this indicates that transmission over a

channel with CSI equal to jth CSI in the dataset using the ith transmission mode will result in a

successful transmission. In the same way, 0 indicates a failed transmission. In our experiments,

the label vector is 24th-dimensional vector representing the different available combinations of

MCS and GI.

6.3.3 Evaluation Metrics

To evaluate the proposed model in the context of communication systems efficiency, we ap-

plied two system-specific evaluation metrics, namely, data-rate loss (DRL) and the number of

retransmissions (NR). We define δ as:

δ = R(T Mi)−R(T Mi), (6.4)

where R(·) is a function that maps a TM to the data rate associated with this TM, T Mi is the

optimal TM given in the dataset, and T Mi is the predicted TM. A positive value of δ means
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predicting TM with a rate higher than the optimal one. This implicitly incurs a retransmission.

The number of retransmissions is given by NR metric. A negative value of δ implies that the

model predicts suboptimal TM, which leads to a rate loss. The difference between the data

rates of T Mi and T Mi is given by DRL.

6.4 Proposed Customized Loss

6.4.1 Why we need a customized loss

The traditional loss function used in multi-label multi-class classification problems is crossen-

tropy (6.5).

CE(y, ŷ) =−
C

∑
i=1

yi log(ŷi)+(1− yi) log(1− ŷi), (6.5)

where C is the total number of classes, which equals to the dimension of y. We can see that

the function in (6.5) treats all wrong predictions equally which is not relevant to the considered

AMC problem. We can see that equation (6.5) pushes the model toward learning the true

distribution of class labels. Although this is the ultimate goal of any classifier, in some cases

we aim to emphasize a certain types of errors (false positives or false negatives).

Definition 6.1. The label vector of a data instance i is denoted as yi. The set of positive indices

in yi denoted as y+i = { j : yi( j) = 1}, the set of negative indices denoted as y−i = { j : yi( j) = 0}
where yi( j) is the jth index in the vector yi and j ∈ {1,2, . . . ,C}.

Definition 6.2. The predicted label vector for a data instance i is ŷi. The set of predicted

positive indices in ŷi is denoted by ŷ+i = { j : ŷi( j) = 1}, and the set of predicted negative

indices is ŷ−i = { j : ŷi( j) = 0} where ŷi( j) is the jth index in the vector ŷi and j ∈ {1,2, . . . ,C}.

Definition 6.3. Given a classifier f , the false positive, and false negative are defined as:

f p( f ) = ∑
j∈ŷ+i

1 : j ∈ y−i
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f n( f ) = ∑
j∈ŷ−i

1 : j ∈ y+i

In the problem under consideration, a false positive in a higher-rate MCS may lead to retrans-

mission, which is very costly in terms of bandwidth resources. However, a false negative indi-

cates selecting a lower-rate T M, which can be tolerated than retransmission. For this reason,

we aim to design a loss function that emphasizes on false positives more than false negatives.

6.4.2 Proposed Loss

We propose a new customized loss function that adds more penalization on false positive pre-

dictions. Since the proposed loss function emphasizes on false positives, we named it Crossen-

tropy+, CE+. The new loss is given by:

CE+ (y, ŷ) = CE(y, ŷ)+φ (y, ŷ) , (6.6)

where CE(y, ȳ) is the traditional crossentropy given in (6.5) and φ (y, ŷ) is an extra penalization

term for false positive predictions given by:

φ (y, ŷ) = β ×
C

∑
i=1

(yi −1)2 × ŷi, (6.7)

where C is the total number of classes and β is a weight term added to control the credit

assigned for the traditional crossentropy term and the newly added term. Setting β to a large

value may lead the model to predict ŷ = {0}C vector which minimizes the second term and

completely ignores the first term. On the other hand, if we set β ≤ 1, the model may ignore

it and learns parameters that minimize only the first term of (6.6). We set β = 1.3 for all the

experiments in this work. However, in the future, we can learn a value for β to meet different

QoS requirements (may be different for a WiFi public network than for a 5G URLLC network).
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6.5 Experimental Results

We organize this section into two subsections: the prediction results of the DCNN model us-

ing the different proposed delay-spread-based subdataset selection criteria, and the improved

prediction results achieved by adapting the proposed loss function.

6.5.1 Results of AMC using DCNN Model

To evaluate the effect of the training set size, we trained the model with varying set sizes,

namely, 10K, 20K, 30K, 40K, and 50K channels, for each selection criterion. We also consider

a larger RandomFD dataset. For each training set, we test the model using three different

scenarios, namely, suburban macro-cell (C1), urban macro-cell (C2), and rural macro-cell (D1).

Fig. 7.3 shows the percentage of retransmissions to the total data points in each test scenario.

We can see that, among the different selection criteria, W40%PD obtained the best perfor-

mance in all the test scenarios. Also note that for all criteria, scenario D1 obtained a higher

retransmission rate compared to both C1, and C2. This figure also shows that RandomPD

and rmsPD training subdatasets always obtain higher retransmission percentages compared to

W40%PD and W70%PD. We observe that the performance is largely improved with increasing

the size of the training dataset. However, little or no improvement has been recorded when the

size increases from 40K to 50K. According to the VC-dimension theorem Bishop et al. (1995),

this saturation happens when the number of training data points reaches a threshold, Nvc, after

which adding more data points does not improve the learning anymore.

Fig. 6.3 shows the percentage of data rate loss obtained using the DCNN-model with different

training subdataset selection criteria. As explained in section 6.4, a data rate loss happens when

the model predicts a false negative in the index of the ideal TM. The figure shows an inverse

trend between the retransmission rate and the data rate loss. However, it is worth noting that

since the overall system performance is decided by both: rate loss and retransmission rate,

it is more likely to tolerate a reasonable rate loss rather than repeated retransmissions. We

can see that W40%PD, which results in the best performance in terms of retransmissions,
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Figure 6.2 The percentage of retransmissions in each test scenario

obtained around -3.1% rate loss in the worst case (scenario C2). Based on these observations,

we can conclude that training a model based on W40%PD gives the best performance in the

retransmission with acceptable rate loss. Also, the proposed DCNN approach obtained near-
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optimal TM selection. However, we can further improve the model performance by introducing

the proposed loss function as described in the next subsection.

Figure 6.3 The percentage of data-rate loss in each test scenario
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6.5.2 The Performance of the Proposed Loss-Function

Figure 6.4 The percentage of retransmissions and rate loss for W40%PD in scenario C2

for models trained with crossentropy and our proposed loss function (6.6)

To evaluate the performance of the proposed loss function, we trained a model with traditional

crossentropy and our proposed loss functions. To obtain a fair comparison, we used the same

model capacity in the two cases. We also fixed all other hyperparameters (e.g., the same number

of epochs, initialization, activation, regularizer, optimizer, and learning rate).
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Table 6.2 Percentage of retransmission and rate loss for models trained

with classical crossentropy loss function (CE) and the proposed

loss function (PLoss)

Percentage of Retransmission

RandomPD rmsPD W40%PD W70%PD

CE PLoss CE PLoss CE Ploss CE Ploss

10K 14.00 14.00 11.48 10.93 7.42 5.84 11.52 9.26
20K 7.51 6.74 10.79 7.47 5.43 3.75 7.05 6.36
30K 6.50 3.72 9.77 9.06 5.95 3.80 5.85 4.40
40K 3.38 3.03 5.24 5.26 2.33 1.76 4.28 3.88
50K 6.63 3.47 9.70 3.57 2.20 1.62 3.98 3.64

Percentage of Rate Loss

10K 0.0 0.0 0.48 0.52 4.29 6.40 1.12 2.82

20K 5.38 6.91 0.51 1.20 6.49 7.68 3.63 4.46

30K 4.76 6.39 0.75 1.06 5.52 7.76 4.69 6.71

40K 7.61 8.81 4.38 4.03 12.46 14.94 7.91 5.75

50K 3.42 5.21 1.01 5.60 15.88 16.46 7.60 8.75

The results of training the model using the two loss functions are shown in Table 6.2. The table

shows the number of retransmissions in scenario C2. We selected this test scenario since it has

the largest percentage of retransmissions compared to other scenarios, as shown in Fig. 7.3.

We can see that the proposed loss function has largely reduced the number of retransmissions

under all selection criteria and dataset sizes. The proposed loss function obtained more than

50% improvement over traditional crossentropy in some cases.

Table 6.2 shows the percentage of rate loss for each training set size. We can see that the

rate loss using our proposed loss function is larger than that of traditional crossentropy. Given

that the model capacity is the same, this can be explained by the fact that reducing the false

positives may result in increased false negatives. However, depending on the specifications

of the used communication system (specifically the cost of retransmissions compared to rate

loss), varying the value of β in (6.7) provides a wide range of fine-tuning to meet different

performance requirements.
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6.6 Conclusion

A convolutional neural network framework for adaptive modulation and coding (AMC) in

IEEE 802.11ax has been presented. We modeled the problem of AMC as a multi-label multi-

class problem. The results showed that traditional loss functions are limited in solving such

problems. We proposed a new loss function that increases the reliability of the adaptation

framework. The proposed loss function proved to outperform the traditional crossentropy func-

tion. We also studied the impact of subdataset selection on the model performance. Empiri-

cally, we concluded that the window delay 40% subdataset selection criterion and the proposed

loss function give the best throughput/reliability compromise.
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Abstract: Over the past decade, artificial intelligence (AI) has demonstrated remarkable per-

formance across various domains, including wireless communications. The predominant ap-

proach in this field has been the utilization of a conventional workflow known as model-centric

AI. Under this paradigm, a dataset is prepared in advance and kept fixed, while a model is devel-

oped and iteratively improved to reach a satisfactory performance. Although this approach has

yielded promising results in several domains, it primarily emphasizes one component, namely

the AI model. Thereby neglecting an essential yet often underestimated resource: the data.

The significance of data as a resource cannot be overstated, as it represents 50% of the overall

resources involved in an AI model, which consists of both the algorithm and the data. In con-

trast, data-centric AI approaches adopt a different perspective by assigning a higher priority to

data. In this paradigm, the model is held constant, and the dataset is continuously modified and

enhanced until a desirable performance is reached. This article aims to explore the emerging

data-centric paradigm in AI development. Specifically, we propose a data-centric approach

for addressing the wireless link adaptation problem in the IEEE 802.11ax standards. Leverag-

ing our domain knowledge, we introduce relevant metrics for constructing the datasets in this

scenario. Our findings demonstrate that the data-centric approach surpasses the conventional

model-centric approach, yielding promising results.

Keywords: Data-centric AI, link adaptation, model-centric AI
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7.1 Introduction

Over the past decade, the field of artificial intelligence (AI) has experienced a paradigm shift,

particularly in the realm of deep learning. The remarkable capabilities of deep learning mod-

els have become evident through their exceptional performance across various domains and

problem sets. Notably, these models have surpassed human performance in intricate and de-

manding tasks, such as ChatGPT Du et al. (2023). The catalysts behind this revolution can

be attributed to advancements in computational power and the growth of vast amounts of data.

Consequently, AI techniques have found widespread application in diverse domains, consis-

tently delivering increasingly extraordinary performance. However, it is noteworthy that many

of these AI success stories primarily stem from advancements in algorithmic modifications and

learning techniques within AI models. Nevertheless, it is imperative to recognize that an AI

model comprises two fundamental components: data and model. In the conventional model-

centric AI approach, an AI solution is developed by gathering a collection of data points,

which undergo minimal preprocessing. Subsequently, the dataset is held fixed, and a model

is constructed and trained using this dataset. The model then undergoes multiple iterations of

refinement and hyperparameter-tuning until a satisfactory level of accuracy or loss is reached.

However, this approach often underestimates the critical role that data can play in enhancing

the performance of the model Sambasivan (2021).

Recently, the distinguished AI pioneer, Andrew Ng, introduced a novel AI development ap-

proach known as ”data-centric AI”, accompanied by the launch of an international compe-

tition centered around this methodology Andrew Ng. This approach represents a complete

inversion of the traditional model-centric approach, wherein the focus lies on refining and en-

hancing the data while keeping the model fixed, thereby improving the obtained performance.

Notably, this data-centric paradigm has exhibited remarkable advancements in model perfor-

mance compared to the conventional model-centric approach. The model-centric approach

has exerted significant influence over various aspects of research, competitions, development

tools, and even the AI job market. Consequently, most development tools have predominantly

emphasized model development, with relatively less attention dedicated to data collection and
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preparation. However, a current trend is emerging, aiming to reach a balance between the ef-

forts expended on data and model development. It is believed that models have now attained a

level of maturity enabling them to learn complex functions proficiently. Conversely, data still

lacks this level of maturity, necessitating further investigation to uncover its untapped potential.

During a recent presentation, Andrew Ng highlighted the potential of the data-centric approach

in addressing the steel-sheet defect detection problem. Ng and his team reported a signifi-

cant 16.9% improvement in accuracy when employing the data-centric approach, surpassing

the performance of the baseline model. In contrast, the traditional model-centric approach

failed to yield any improvement beyond the capabilities of the baseline model, likely due to

the complexity already achieved by the baseline model itself. This outcome effectively under-

scores the inherent power of data in conjunction with a specific AI model Bansal et al. (2019);

Daniels & Heath (2010).

This article delves into the potential of data within the wireless communications domain,

specifically in the context of link adaptation (LA) in IEEE 802.11ax protocol standards. The

focus lies on introducing a convolutional neural network (CNN) model that adheres to the prin-

ciples of the data-centric approach. In this endeavor, we leverage domain expertise to propose

and evaluate diverse criteria for generating datasets, encompassing both the widely employed

random criterion and novel alternatives for LA problems. By training the same model on

datasets constructed using these various criteria, we highlight the efficacy of this approach in

AI development. Additionally, we shed light on key areas of research that warrant further

investigation in future endeavors.

The subsequent sections of this article are structured as follows: an introductory overview of

the link adaptation problem is provided, offering insights into its significance and challenges.

Subsequently, a comprehensive discussion is presented on two distinct approaches to AI de-

velopment, highlighting the conventional model-centric approach alongside the proposed data-

centric approach. Within the context of link adaptation, the data-centric approach is explored,

accompanied by a thorough presentation of the obtained results, clarifying its effectiveness.

Lastly, the article delves into a discussion of the principal opportunities and challenges associ-
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ated with the data-centric approach, providing valuable insights into its practical implications.

Moreover, potential avenues for future research are suggested, aiming to foster further investi-

gation and advancements in this field.

7.2 Model-centric Vs Data-centric AI

As previously mentioned, the model-centric AI approach is primarily focused on exploring

the depths of the model itself, primarily through meticulous examination of potential areas for

improvement within the algorithm, see Fig. 7.1. This can involve exploring diverse hyperpa-

rameter configurations or introducing novel components to the learning approach. Throughout

this process, the dataset remains unchanged and undergoes no further processing. However,

we contend that the development of effective AI solutions necessitates a certain level of com-

promise between the model-centric and data-centric approaches. Moreover, considering the

greater potential inherent in the data, it becomes imperative to dedicate increased attention to

the critical aspects of data collection, labeling, and cleaning. In numerous real-world scenar-

ios, it has been observed that significant enhancements in model performance can be achieved

through diligent data processing, surpassing the gains obtained through model-centric improve-

ments.

Prior to the advent of the era of "Big Data," the primary concern in building AI models revolved

around the size of the dataset. However, with the proliferation of the Internet of Things (IoT)

and advancements in sensing technologies, the quantity of data has ceased to be a major obsta-

cle. Instead, the focus has shifted towards the quality of the data, as label consistency and the

absence of noise can significantly enhance the performance of models. While achieving this

objective may pose challenges in certain domains, such as segmentation or detection, where

data collection can be costly, it is relatively simpler in domains like wireless communications.

This is due to the availability of a multitude of simulators that facilitate data generation and

labeling. Furthermore, the role of domain knowledge becomes crucial once again, playing a

vital part in constructing AI models. Given that effective data cleaning necessitates a strong
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understanding of the problem domain, the involvement of domain experts is imperative in this

process, as they can contribute to the development of more robust and powerful AI models.

7.3 Link Adaptation for IEEE 802.11ax

Figure 7.2 A data-centric AI framework for link adaptation in WiFi 6.

With the growth of connected nodes and the rapid expansion of IoT applications, the demand

for intelligent communications has become increasingly inevitable. To meet the requirements

of quality of service (QoS) in such environments, the adoption of techniques like link adap-

tation and dynamic resource allocation is essential Tong et al. (2023). In a typical wireless

communication scenario, it is crucial to adapt various transmission parameters based on the

prevailing channel conditions. Examples of such parameters include modulation and coding

schemes (MCS), guard interval (GI), number of spatial streams, etc. However, wireless chan-
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nels are subject to continual variations over time, making the selection of these parameters on

a global basis a challenging task. Thus, a dynamic adaptation mechanism is essential. Link

adaptation, which involves the selection of appropriate transmission parameters in response

to dynamic channel conditions, plays a critical role in optimizing the latency and throughput

performance of the system Mota et al. (2019).

Traditional approaches to link adaptation have often relied on simple techniques such as lookup

tables, where a basic channel quality metric is mapped to specific parameter configurations.

Typically, the channel quality indicator (CQI) has been widely employed as a metric to evalu-

ate channel quality. In earlier WiFi protocol standards like IEEE 802.11b, 802.11c, or 802.11g,

these conventional techniques yielded satisfactory performance improvements. However, in

more complex standards like IEEE 802.11ax, which encompass a vast number of parameter

settings, these basic approaches fall short of meeting expectations Yang et al. (2019). More-

over, utilizing a basic channel quality metric like CQI, which represents a scalar value, restricts

the ability of adaptation techniques to perceive the dynamics of the wireless channel. Instead,

channel state information (CSI) offers a more comprehensive understanding of the channel

characteristics. Consequently, there is a growing demand for more sophisticated techniques

that can overcome the limitations of these conventional approaches Elwekeil & et al. (2018).

Fig. 7.2 shows a typical design of a link adaptation system based on the CSI feedback.

In light of these considerations, there arises an inherent necessity for more effective techniques

to address the emerging challenges. Machine learning (ML) techniques have demonstrated

their effectiveness in tackling various complex problems, such as semantic segmentation, au-

tomatic image captioning, sentiment analysis, and others. Within the domain of wireless com-

munications, ML has found widespread application in tasks such as channel classification,

CSI compression, beam selection, etc. Consequently, supervised and reinforcement learning

methods have been extensively adopted to develop more efficient link adaptation techniques

for modern communication systems. Unsurprisingly, ML-based approaches have exhibited

superior performance compared to conventional lookup tables in terms of throughput and re-

liability. However, it is worth noting that all existing techniques described in the literature
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have adhered to a model-centric approach for AI, commonly referred to as model-centric AI.

Within this framework, the primary focus and contributions are directed towards constructing a

high-performing model, with the notion of a "good" model being one that achieves the highest

accuracy on the testing dataset Dong & et al. (2018).

7.4 Data-centric AI Design Issues

Although data-centric AI has several benefits, some design issues must also be considered.

Here are some of them:

- Data Quality: Data-centric AI heavily relies on the availability of high-quality and relevant

data. However, ensuring data quality can be challenging. Issues such as data incomplete-

ness, inaccuracies, biases, and data drift can affect the performance and reliability of AI

systems. Data cleaning, preprocessing, and continuous monitoring are essential to mitigate

these issues.

- Data Bias and Fairness: Biases present in training data can lead to biased predictions and

discriminatory outcomes. Data-centric AI systems may inadvertently learn and perpetuate

biases present in the data, leading to unfair or unethical decision-making. Addressing bias

and promoting fairness in AI systems require careful consideration of the data collection

process, diverse and representative datasets, and algorithmic fairness techniques.

- Data Privacy and Security: Data-centric AI involves collecting, storing, and analyzing vast

amounts of data. This raises concerns about data privacy and security. Organizations must

implement robust data protection measures, comply with relevant regulations (e.g., GDPR),

and ensure secure data handling practices to protect sensitive information and maintain user

trust.

- Data Governance and Ownership: With data-centric AI, questions arise about data owner-

ship, access, and control. Organizations must establish clear data governance frameworks,

including data rights, data sharing agreements, and accountability mechanisms. Trans-
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parency and consent in data collection and usage become crucial to address concerns related

to data control and ownership.

- Data Scalability and Infrastructure: Managing large volumes of data requires scalable and

efficient infrastructure. Data-centric AI systems need to handle real-time data streams, pro-

cess high-dimensional data, and support distributed computing for training and inference.

Designing robust and scalable data pipelines, storage systems, and computing infrastructure

is essential for effective data-centric AI.

- Interpretability and Explainability: Data-centric AI models, such as deep learning neural

networks, are often considered black boxes, making it challenging to understand the ratio-

nale behind their decisions. Interpretability and explainability techniques aim to provide

insights into the model’s internal workings and enable humans to understand and trust AI-

generated outcomes. Ensuring transparency and interpretability can be crucial, especially

in high-stakes domains like healthcare or finance.

- Channel and Environment Dynamics: Wireless channels exhibit variability due to factors

such as fading, interference, and mobility. Dynamic environments pose challenges for data-

centric AI models that rely on historical data and may struggle to adapt to changing channel

conditions. Designing AI models that can adapt in real-time to varying channel conditions

and environmental dynamics is essential for reliable and robust wireless communication

systems.

- Ethical Considerations: Data-centric AI raises several ethical considerations, including is-

sues related to privacy, fairness, accountability, and bias. Ethical design frameworks should

be employed to guide the development and deployment of AI systems. Stakeholder engage-

ment, interdisciplinary collaboration, and adherence to ethical guidelines can help address

these concerns.

It is important to employ a holistic and multidisciplinary approach that includes domain ex-

perts, data scientists, ethicists, and policymakers when addressing these design issues.
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7.5 Data-centric AI for Link Adaptation

7.5.0.1 Dataset Description

To embrace the data-centric approach, the model was trained on diverse datasets, each selected

based on distinct criteria while maintaining a common structure. A typical dataset utilized for

model training consists of a collection of paired instances denoted as x and y, where x represents

various channel matrices generated from different communication scenarios. The label vector y

is an element of the set {0,1}C, where C denotes the number of classes and the classes represent

the different transmission modes. Specifically, if the transmission of a packet through a channel

described by xi, using transmission mode T Mj, is successful, the corresponding entry yi( j) is

assigned a value of 1. Conversely, yi( j) = 0 indicates a failed transmission when using the

j-th transmission mode with the channel state xi. Consequently, the label vector maintains a

24-dimensional structure, representing the success or failure of various transmission modes

under specific CSI conditions Deng & et al. (2017). Notably, an exhaustive search strategy

is employed to construct the ground truth data. Each dataset is divided into an 80% training

subset and a 20% testing subset to facilitate model evaluation LeCun et al. (2015).

7.5.1 Data-centrism for Link Adaptation

The training subdatasets have been generated utilizing two distinct approaches: the random

selection criterion and the delay-spread-based selection criteria. Delay-spread refers to the

difference in arrival times between the earliest and latest arriving signals in a wireless commu-

nication channel, indicating the spread or dispersion of signal propagation delays. Employing

the random approach, we identified datasets DS1 and DS2 as subdatasets. Conversely, by em-

ploying the delay-spread approach, we identified datasets DS3, DS4, and DS5 as additional

subdatasets.
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7.5.1.1 Datasets DS1 and DS2: Random Sampling

To generate datasets DS1 and DS2, we adopted the random approach as follows:

- DS1: Complete Random DS: This dataset represents the complete dataset and contains

a total of 160,000 channels; 40,000 channels are sampled from each of the four scenarios.

DS1 represents the aggressive scenario where the whole dataset is used for training. Al-

though it is usually better to train on large datasets, this imposes certain restrictions on the

capacity of the trained model to prevent overfitting/underfitting problems. Moreover, the

required computation resources may also be a bottleneck in the training phase.

- DS2: Partial Random Dataset: This is a subset of DS1 and composed of channels selected

randomly and equally from each scenario. Specifically, it contains 40,000 channels sampled

as 10,000 random channels from each scenario. Random sampling with an equal likelihood

for each scenario is a widely adopted technique for reducing the dataset size when the size

of the complete dataset is huge and it is difficult to use the whole dataset for training.

7.5.1.2 The Delay-spread-based Criteria (DS3, DS4, & DS5)

This subsection shows how domain knowledge can be exploited to sample subdatasets in a

more efficient way. The delay-spread-based selection approach is employed to create distinct

training subdatasets, each containing the same number of data points as DS2. In contrast to

DS2, the data points in these subdatasets are carefully chosen to capture the complete range of

delay dispersion characteristics exhibited by DS1. By utilizing this approach, a subset of data

points is selected from the pool of 160,000 available points, ensuring that the distribution of

the delay dispersion metric closely approximates a uniform distribution Alamgir et al. (2020).

Let DS1i represent the ith data point in the DS1 dataset, and let S (DS1i) denote its corre-

sponding delay dispersion evaluated using a specific metric of interest S . Here, i ranges from

1 to I, where I represents the total number of data points in DS1. The minimum and maximum

delay dispersion values obtained among all data points in DS1 are denoted as minS (DS1)
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and maxS (DS1), respectively. We partition the interval [minS (DS1),maxS (DS1)] into Z

equally spaced and non-overlapping sub-intervals. The histogram of S (DS1) is defined as a

function that tallies the number of delay dispersion observations, denoted as nz, falling within

the zth sub-interval. Here, z ranges from 1 to Z. Additionally, nmin and nmax represent the

minimum and maximum number of observations per sub-interval, respectively, obtained us-

ing the full dataset DS1. The proposed approach for selecting a subdataset from DS1, based

on the histogram mz, relies on the following delay-spread-based methodology: By setting the

value of x, we can determine the maximum number of data points allotted to each of the Z

intervals, consequently leading to the selection of a subdataset with a histogram showcasing a

tendency toward a more uniform distribution of the delay dispersion behavior across the range

[minFD,maxFD]. As the number of data points in the DS1 dataset increases, the likelihood of

achieving a perfect uniform distribution also increases.

Using the delay-spread as a selection criterion, we sampled three different datasets, namely

DS3, DS4, and DS5, as follows:

- DS3: root-mean-square delay-spread Partial Dataset (rmsPD). Here, the training dataset is

sampled using the delay-spread metric defined as the normalized second-order moment of

the delay profile of the channels.

- DS4: window (40%) delay spread Partial Dataset (W40%PD). In this case, the characteriza-

tion of delay dispersion revolves around the utilization of the delay window parameter, de-

fined as "the length of the central segment within the power delay profile that encompasses

a specific percentage of the total power present in the impulse response" (p. 4, ITUR-R).

For our particular investigation, we employed a design criterion of 40% to determine the

length of the delay window.

- DS5: window (70%) delay spread Partial Dataset (W70%PD). We employ the same def-

inition of the delay dispersion metric as that utilized in DS4. However, in this case, we

consider the window that encompasses 70% of the power within the delay profile.
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7.5.2 Datasets Generation

WINNER II (Wireless World Initiative New Radio) is an international research project con-

ducted under the framework of FP6 (Framework Program 6) initiated by the European Com-

mission. Its primary objective is to develop the radio interface for systems beyond 3G. Oper-

ating within the frequency ranges up to 6 GHz, WINNER II encompasses diverse indoor and

outdoor propagation scenarios, ranging from urban to rural environments, including a com-

bination of these settings. The project adopts a Geometry-based Stochastic Channel Model

(GSCM) classification, whereby the propagation channel is represented as a collection of mul-

tipath clusters, with each cluster containing multiple (typically 10 to 30) multipath compo-

nents. Utilizing extensive measurement campaigns, these multipath components are extracted,

analyzed, and subsequently clustered based on their angle-of-arrival, angle-of-departure, de-

lay, and power attributes. Consequently, each propagation scenario is characterized by distinct

parameters, such as the number of clusters, their spatial distribution, power levels, and the

characteristics of their constituent multipath components. WINNER II offers models for 12

propagation scenarios. In this study, we selected four communication scenarios, namely ur-

ban micro-cell, suburban macro-cell, urban macro-cell, and rural macro-cell, each exhibiting

diverse delay dispersion characteristics. Employing the MATLAB WINNER II toolbox, we

generated 50,000 channels for each scenario. We adopted an exhaustive search strategy to

build the dataset labels using MATLAB IEEE 802.11ax toolbox.

7.5.3 Model Setup

Since we follow a data-centric approach, we fix the model architecture and change the dataset

pipeline to improve the model performance. The fixed architecture includes convolutional lay-

ers, average pooling layers, and fully-connected layers. The first hidden layer is a convolutional

layer with 20 filters followed by a 32-filters convolutional layer. An average pooling layer with

a pool size of 4 is then applied. Another convolutional layer with 64 filters is added followed

by an average pool operation with a pool size of 2. Lastly, a convolutional layer with 32 filters

is added followed by an average pool with a pool size of 2. A ReLU activation has been used
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in all convolutional layers. This convolutional architecture is followed by 2 fully-connected

layers. The fully-connected layers contain 50 and C neurons respectively, where C is the num-

ber of classes (available TMs). The output layer in the link adaptation problem approximates a

multinomial distribution. Therefore, a Sigmoid activation has been applied at the output layer.

An l2 regularization term has been adopted to avoid the overfitting effect. Overfitting in neural

networks refers to a condition where the model learns the training data well, resulting in poor

generalization to new, unseen data. The model has been trained to 1000 epochs using Adam

optimizer Jais et al. (2019) with 0.01 learning rate to minimize the Crossentropy function. The

weight updates were propagated after each of the 128 channels. The best-performing model,

in terms of reliability measured by the PER, has been deployed to infer the best TM.

7.5.4 Performance Evaluation

Fig. 7.3 shows the performance of the same model trained on different datasets. A significant

improvement has been obtained by training the model on a dataset selected according to the

W40% selection criteria in different communication scenarios. The performance of the model

trained on a randomly selected subdataset has shown higher PER compared with other models.

This emphasis is on the potential of a data-centric approach in wireless problems in general

and especially for link adaptation.

7.5.4.1 High-Quality Data or Larger Dataset Size?

An imprecise belief has been established from the literature work that more data is always

better. Although large data sizes are one of the strongest points of any AI model, concentrating

on collecting larger datasets is not always the magic solution. The quality of the data is an

important factor that is consistently underestimated in the literature. Fig. 7.3 shows that, in

different scenarios, we can reach the same performance of the 35K dataset (selected according

to RMS) by only the 10K dataset (selected according to W40%). This suggests that investing

enough time to understand the problem specifics and obtaining clean data can be equivalent

to/or more important than generating more data points.
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Figure 7.3 The system’s reliability measured in packet error rate (PER)
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7.6 Opportunities and Challenges

Since its recent launch, data-centric AI has attracted great attention. A huge contribution room

is available for researchers from both industry and academia for improving and shaping the

future of data-centric AI in wireless communications. This work just opened the door for,

and highlighted the power of, data-centric AI solutions. However, a long line of wireless

communication problems still waiting to be explored in the same way, such as wireless channel

selection, CSI feedback, beamforming, or transmit antenna selection.

Although the recent advances in mode-centric AI could be considered metrics-driven, there is

a considerable lack of metrics for metrics to evaluate the goodness of data in data-centric AI.

Furthermore, the nature of data is different for different problems. This opens the door for

a long path of research on metric development for evaluating the goodness of data for each

problem.

Since the data-driven approach mainly depends on data collection, labeling, and wrangling

pipeline, a large contribution room is opened for domain experts, without a solid background

in AI, to involve in building and improving the performance of AI models. Although some

enterprises do not have an AI expert within their staff, they definitely have some data experts

who have solid domain experience. Those domain experts can participate in building powerful

AI solutions for their enterprises. The domain knowledge will be a strong point added to the

power of the AI models. This will help in widening the spread of AI and making it available to

more sectors and businesses.

One of the main challenges facing this new approach to AI development is the lack of tools

designed for collecting, monitoring, and evaluating the goodness of data. Another barrier fac-

ing all data-driven solutions in wireless communications is the lack of a standardized publicly

available dataset for each problem. This diverts the formulations of the problem between the

different works and complicates the comparison between different models and formulations.

To facilitate the comparison of different proposed works, we should agree on a certain problem

formulation. For example, a link adaptation problem should be treated as a classification prob-
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lem or as an MDP? Standardizing such formulations makes the efforts of different researchers

aligned to the same objective and increases the comparability between different proposed tech-

niques.

7.7 Conclusion

This article presents a novel data-centric framework for addressing the wireless link adapta-

tion problem within the context of the IEEE 802.11ax protocol standard. We introduce a set

of specific criteria for the collection and preparation of datasets that are tailored to the unique

requirements of link adaptation. Through a comprehensive evaluation, we demonstrate the

potential enhancements in model performance achieved by adopting the principles of data-

centric artificial intelligence, with a particular emphasis on leveraging domain knowledge to

gain valuable insights. Furthermore, we analyze the various opportunities and challenges that

arise with the emergence of the data-centric approach in the field of wireless communications.

Our findings underscore the promising prospects of this approach in developing intelligent

communication systems capable of meeting the increasing demands for quality of service. The

observed improvements showcased in this study serve as a compelling motivation for further

exploration of the data-centric approach by other researchers, who can investigate its effective-

ness in addressing diverse communication problems. Finally, we outline several noteworthy

research directions that merit attention in future endeavors, building upon the contributions

presented in this article.
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Abstract: In the Internet of Things (IoT) regime, the sensors usually have limited bandwidth

and power resources. Therefore, in a distributed setup, each sensor should compress and quan-

tize the sensed observations before transmitting them to a fusion center (FC) where a global

decision is inferred. Most of the existing compression techniques and entropy quantizers con-

sider only the reconstruction fidelity as a metric, which means they decouple the compression

from the sensing goal. In this work, we argue that data compression mechanisms and entropy

quantizers should be co-designed with the sensing goal, specifically for machine-consumed

data and machine-to-machine (M2M) communications. To this end, we propose a novel deep

learning-based framework for compressing and quantizing the observations of correlated sen-

sors. Instead of maximizing the reconstruction fidelity, our objective is to compress the sensor

observations in a way that maximizes the accuracy of the inferred decision (i.e., sensing goal)

at the FC. Unlike prior work, we do not impose any assumptions about the observations’ dis-

tribution which emphasizes the wide applicability of our framework. We also propose a novel

loss function that keeps the model focused on learning complementary features at each sensor.

The results show the superior performance of our framework compared to other benchmark

models.

keywords :

Distributed inference, statistical hypothesis testing, neural networks, discrete-representation

autoencoders
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8.1 Introduction

Many wireless Internet of things (IoT) applications employ a distributed inference mechanism

e.g., radar systems, multi-view surveillance systems, or multi-sensory human activity recogni-

tion. In the later system, for example, a human wears multiple, spatially-distributed, sensors

(e.g., gyroscope and accelerometer). A decision about a human activity (e.g., walking, running,

etc.) is inferred from the received sensor signals. In such a scenario, if each sensor considered

only its local observations for decision inference, the error probability would be much higher

compared to the scenario in which a global decision is inferred from the aggregated sensor data

Salehkalaibar & et al. (2018).

To tackle this problem, a distributed setup may be employed in which the sensed data (a.k.a,

environment observations) are sent to a central node, called fusion center (FC). The FC in-

fers a global decision based on the aggregated data received from all sensors. However, the

sensors usually have limited power and bandwidth resources. For example, each sensor may

have a fixed data rate of, R bps. Therefore, it should compress and quantize its sensed ob-

servation to fit the assigned bit rate. The FC, then, performs a specific inference task (i.e.,

the sensing goal). However, the FC infers the decision from only partial information due

to the compression and quantization steps. This may result in a reduced decision accuracy

at the FC Salehkalaibar & et al. (2018). Optimally processing the observations at each sen-

sor can minimize the degradation of the decision accuracy Abdi & Ristaniemi (2020). For

conditionally-independent sensor observations, an optimal decision can be easily reached us-

ing Bayesian inference theory Zhu & et al. (2019). However, the conditional-independence

assumption does not hold for many real-life problems. In prior work, Chamberland & Veer-

avalli (2007); Tay & et al. (2009), the authors assume that the statistical distribution of sensor

observations is priorly known. In this case, the goal is to design an optimal decision rule that

maximizes the likelihood of the correct decisions. Unfortunately, in many practical applica-

tions, this distribution is not priorly known which increases the problem’s complexity. In this

case, data-driven solutions provide practical and efficient alternatives.
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Although different works in the literature propose compression and quantization techniques

for sensor data, their goal was mainly obtaining a high-fidelity reconstruction at the FC. This

seems relevant for human-consumed data such as images and videos. However, for machine-

consumed data, adopting reconstruction fidelity as a metric is doubtful. Indeed, the accuracy

of the inferred decisions is more crucial than having a good reconstruction.

In this work, we tackle the problem of compressing and quantizing correlated-sensor observa-

tions for distributed inference tasks. Our main objective is to maximize the accuracy of the

inferred decision rather than minimizing the reconstruction loss. While most of the literature

work assumes sensor independence for mathematical tractability, we address the more chal-

lenging scenario of correlated sensors. We argue that this correlation can be exploited to obtain

higher compression ratios without a considerable reduction in decision accuracy. Typically, this

can be achieved by transmitting the unique features of each sensor and avoiding transmitting

redundant features which are likely to be transmitted by other nodes in the network. In other

words, we can formulate our research question as: can we distributively screen redundancies

in sensor observations to transmit only informative data without imposing any assumptions on

the distribution of the observations?

To answer this question, we exploit the recent advances in statistical learning techniques, es-

pecially deep learning. We propose a novel deep-learning framework for compressing and

quantizing the observations at each sensor. In addition, the framework is jointly trained with

the decision rule at the FC in an end-to-end fashion to maximize the accuracy of the inferred

decision. End-to-end learning refers to training a complex system by applying gradient-based

learning to the system as a whole Glasmachers (2017). We also propose a new loss function

that helps the sensors in learning decision-aware representations of observations. Furthermore,

we propose a training algorithm to efficiently train the proposed framework. Extensive re-

sults show the robustness and superiority of our proposed framework compared with different

benchmark models.
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8.1.1 Related Work

Similar work has been proposed for specific problems. For example, a line of work has been

proposed for the problem of human activity recognition Yang & et al. (2008); Guo & et al.

(2012); Huynh (2008); He & et al. (2012). In this problem, the hypotheses are the different

human actions, while the data comes from multiple sensors fixed on the actor’s body (e.g.,

gyroscope, accelerometer, etc.). The authors in Yang & et al. (2008) aimed to achieve a high

action-classification accuracy with the minimum bandwidth consumption. At each sensor, the

decision is inferred from the local information. The FC then takes a global decision using

a majority-voting mechanism. Although they obtained good results, this approach ignores

any complementary information captured by other sensors. Another work has been proposed

for the problem of earthquake detection from wireless IoT sensors network Faulkner & et al.

(2011). They presented a distributed approach for rapid detection of earthquakes using cell

phone accelerometers, consumer USB devices, and cloud computing-based sensor fusion. The

work in Faulkner & et al. (2011) learns a threshold for each sensor involved in the network in a

way that maximizes the performance of the anomaly detection algorithm employed at the FC.

Experimental results showed that this approach successfully distinguished between seismic

motion and acceleration due to normal daily activities.

The work in Raghavan & Baras (2019) studied the problem of binary hypothesis testing with

two observers, where the collected observations are assumed to be statistically correlated. To

infer a decision, one of three solutions can be adopted. The first is a centralized solution in

which the observations collected by both observers are sent to the FC. A global decision is

inferred at the FC from the received sensor observations. The main concern of this solution

is the huge bandwidth incurred in fusing the raw observations to the FC. The second solu-

tion makes each observer rely on their own locally collected observation. Then, each node

exchanges its, locally inferred, decision with the other sensor to reach a global decision. The

main limitation of this solution is that each sensor depends only on its local information and

ignores any complementary information captured by the other sensor. In the last solution, each

observer formulates the problem as a sequential hypothesis-testing problem. The authors in
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Bouchoucha & et al. (2015) proposed a framework for exploiting the correlation between ob-

servations to reduce the mean square error of the distributed estimation. Specifically, each node

predicts its next observation and transmits the quantized prediction errors to the FC instead of

the quantized observations.

In the context of task-aware compression, a similar problem has been addressed in Chin-

chali & et al. (2018); Hu & et al. (2020); Amer (2020). For example, the authors in Chin-

chali & et al. (2018) used a reinforcement learning (RL) agent at each sensor to compress the

observations before fusing them to the FC. The reward function at each agent considers its

commitment to the assigned bandwidth. Although they achieved a good performance, there is

a probability that the agent does not meet the bandwidth constraints after deployment. While

in Hu & et al. (2020), the authors proposed Starafish, an image compression framework that

outperforms JPEG by up to 3X in terms of bandwidth consumption and up to 2.5X in power

consumption. The authors in Hu & et al. (2020) used an AutoML technique to search for tiny

ML models that can work on power AIoT accelerators.

We can summarize the limitations of the literature work, which we addressed in our work, as 1)

the conditional-independence assumption of the sensor observations is not always held; 2) the

conditional-independence assumption ignores the potential opportunity to benefit from com-

plementary features captured by different sensors; 3) the compression algorithms are designed

independently from the sensing goal; 4) the limited power of analytical-based techniques in

dealing with a large number of possible decisions and correlated sensors.

Contribution

This paper presents a novel deep learning-based compression framework for correlated-sensors

data compression and quantization. Discrete representation autoencoders are adopted at each

sensor to generate the compressed quantized form of the observations. At the FC, a multi-layer

perceptron (MLP) architecture is adopted to jointly learn the decision rule with the sensor

encoders. The main contribution of this work comes in three folds:
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1. Extending autoencoders to learn a compressed and quantized representation for correlated-

sensor observations. This learned representation conveys the complementary features at

each sensor observation which helps maximize the likelihood of the correct decision at the

FC while satisfying a communication constraint. This representation is jointly learned with

the decision rule at the FC in an end-to-end fashion to maximize the decision accuracy.

2. Proposing a novel loss function that encourages the model to learn the unique features of

each sensor. The function learns the soft probabilities of a baseline model trained using

the raw observations. Moreover, we present a training algorithm that efficiently works in

a wide range of applications.

3. Eliminating the conditional-independence assumption between sensor observations which

has been widely adopted for mathematical tractability. Moreover, we consider a multi-

hypothesis problem, which is more complex and realistic than the simple binary hypothesis

problem assumed in most of the literature work.

The rest of this paper is organized as follows: Section 8.2 formulates the problem. In Section

8.3, we describe the various elements of the proposed framework. The discussion and the

experimental results are given in Section 8.4. Section 8.5 concludes our work.

8.2 Problem Statement

Notation: Through this text, we refer to random variables by italic capital letters (e.g. X).

Small letters refer to one realization of a random variable (e.g., x). Superscripts denote the

sensor number. For example, xi denotes the observation at sensor i. The observations are

referred to by X while Y refers to the random variable of the labels (i.e., the target decisions at

the FC). The parameters of the encoder at the ith sensor is referred to as φi. The parameters of

the decision rule at the FC is referred to by ω . The log(·) function uses a base of 2. Table 8.1

summarizes the used symbols and notations. Through the text, we use the terms observations

and data-points interchangeably. The terms decision and sensing goal have the same meaning.
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Table 8.1 The notation used through the text

Symbols Description
xi The current observation of the ith sensor.

zi The compressed and quantized representation for the current observation at

the ith sensor.

φi The encoder parameters of the ith sensor.

fφi The encoder function at the ith sensor given by a neural network parameter-

ized by parameters φi.

y j The label of the jth data point.

ŷ j The predicted label of the jth data point.

θ The parameters of the decision function (i.e., decision rule) at the FC.

ω The parameters of the decision function given the raw-observations.

S The total number of sensors.

C The number of possible classes (i.e., decisions) to be predicted at the FC.

d The dimension of the raw observations.

n The dimension of the compressed and quantized observations.

R The bandwidth (in bps) assigned to each sensor.

χ The observation space, Rd .

Z The latent space, {0,1}n.

gθ The decision rule at the FC given by a neural network parameterized by

parameters θ .

S
n An n-dimensional vector where each element belongs to the set S.

CE(·) Crossentropy loss function, given in Eq. 8.7.

KL(·) KL-Divergence loss given in Eq. 8.3.

Suppose Y is a discrete random variable, representing a hypothesis about an environment.

The variable takes values: y ∈ {1,2, . . . ,C } where C is the number of possible hypotheses or

classes. Our goal is to form an estimate, Ŷ , of the true hypothesis, based on a set of observations

collected from a set of S sensors. Accordingly, for each t = 1, . . . ,S , let xt represents the

observation at node t, where xt ∈R
d in some space χ known as the observation space. The set

of all observations corresponds to an S -dimensional random vector X = (x1,x2, . . . ,xS )∈ χS

drawn from the conditional distribution P(X |Y ).

Our objective is to reach an optimal estimate Ŷ for the true labels Y at the FC. If the FC

has access to the distribution of the observations, P(X |Y ), then an optimal decision rule can

be easily formulated. For example, with a binary hypothesis, an optimal decision rule can be

reached by means of a likelihood ratio test: P(X |Y = 1)/P(X |Y =−1). However, in real-world
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problems, the FC does not know the distribution of the observation a priori, and it has access to

only summarized forms of the original observations, zt , for all values of t. More specifically,

we assume that each sensor, t, is restricted to a given bandwidth of, R, bps. Therefore, each

sensor is allowed to transmit an n-dimensional message, zt ∈ {0,1}n, taking values in some

space Z, such that n ≤ R. The conversion from the observation space, χ , to Z-space is carried

out by an encoder q : χ → Z. The encoder, q, maps an input observation, x, in χ-space, to

a codeword, z, in Z-space. This encoded observation, z, will be sent to the FC. To compute

the estimate Ŷ , the FC applies a certain decision rule, gθ , on the aggregated received messages

such that Ŷ = gθ (z1,z2, . . . ,zS ). It is known from the rate-distortion theory that the rate,

R, and the distortion at the receiver (in terms of reconstruction loss) are inversely proportional

Blau & Michaeli (2019). Therefore, a larger rate, R, implies better reconstruction fidelity at the

receiver end. However, in our problem, we are not concerned about reconstruction fidelity as

our main objective. Rather, we are more interested in maximizing the accuracy of the inferred

decisions.

Inherently, increasing the rate, R, will increase the information included in a message, zt ,

which increases the FC accuracy. In other words, increasing the rate, R, increases the mu-

tual information, I, between the joint distributions P(Ŷ |Z) and P(Ŷ |X). However, for limited

bandwidth systems, increasing the bandwidth is not a practical option and each sensor should

respect the assigned bandwidth. In this case, for correlated sensor observations, the redundancy

between the different sensor observations can be exploited to obtain more efficient compres-

sion with minimal loss in the decision accuracy at the FC. This can be reached by optimizing

the function given in (8.1). Note that the same objective of Eq. (8.1) can be received from Eq.

(8.2) by minimizing the KL-divergence between the two distributions, as described below.
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min
φ ,θ

1

N

N

∑
j=1

− log
(
gθ (z j) = y j

)
s.t. φ = [φ1,φ2, . . . ,φS ],

z j = ( fφ1
(x1), fφ2

(x2), . . . , fφS(x
S )),

fφi ∈ {0,1}n ∀i ∈ {1,2, . . . ,S },
n ≤ R

(8.1)

where N is the total number of points in a test set, gθ is the decision function at the FC

parameterized by parameters θ , fφi is the encoder function at the ith sensor parameterized by

φi, and R is the bandwidth assigned for each sensor. The function in (8.1) optimizes 1) the

encoder parameters φ = [φ 1,φ 2, . . . ,φ S] and 2) the decision rule parameters θ , to minimize

the negative log likelihood loss. fφ i(xi) denotes the compressed and quantized version of the

observation at the ith sensor. For example, fφ 1(x1) is the compressed and quantized version

of the observation at the 1st sensor. Since the output of the quantizer is binary quantized,

it belongs to {0,1}n where n is the dimensionality of the compressed representation, which

should be less than or equal to the assigned bandwidth R.

The same objective can be formulated in terms of the Kullback–Leibler divergence between the

two conditional distributions of the decision given the raw observations and the compressed

messages as given in (8.2) and (8.4).

min

ω,θ ,φi KL
(
P(Ŷ |X) ||P(Ŷ |Z))

s.t. φ = [φ1,φ2, . . . ,φS ],

P(Ŷ |X) = fω
Ä

x1,x2, . . . ,xS
ä
,

P(Ŷ |Z) = gθ
Ä

fφ1
(x1), fφ2

(x2), . . . , fφS (xS )
ä
,

fφi ∈ {0,1}n ∀i ∈ {1,2, . . . ,S },
n ≤ R

(8.2)



172

where ω is the parameters of a benchmark model (i.e., a larger neural network model trained

to classify the raw observations without compression). But the KL-divergence is given by:

KL(P||Q) = ∑
i

P(i) log

Å
P(i)
Q(i)

ã
(8.3)

Substituting the KL term in (8.2) by (8.3), we get Eq. (8.4).

min

ω,θ ,φi ∑
i

P(Ŷi|Xi) log

Ç
P(Ŷi|Xi)

P(Ŷi|Zi)

å
s.t. φ = [φ1,φ2, . . . ,φS ],

P(Ŷ |X) = fω
Ä

x1,x2, . . . ,xS
ä
,

P(Ŷ |Z) = gθ
Ä

fφ1
(x1), fφ2

(x2), . . . , fφS (xS )
ä
,

fφi ∈ {0,1}n ∀i ∈ {1,2, . . . ,S },
n ≤ R

(8.4)

The following two points should be considered. Firstly, the message space {0,1} is signifi-

cantly smaller than the observation space R. Secondly, the required dimension for the mes-

sage, n, is substantially smaller than that of the raw observation, d (i.e., n � d). Therefore,

the problem can be thought of as finding, for each sensor, t, an optimal encoder/quantizer q:

q(xt) = zt that maximizes the mutual information between the two distributions P(Y |X) and

P(Ŷ |Z) under a certain communication rate R. Note that although Eq. (8.4), which is mainly

proposed for correlated observations, can also be used for independent observations, this will

not be really beneficial in terms of either the compression ratios or the accuracy of the inferred

decision.
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Figure 8.1 Diagram demonstrating the system model. On the left, we see

the sensor observations going through the discrete encoders to obtain the

compressed quantized form of the observations. Then these messages are

sent to the FC which passes the aggregated message to the neural network

architecture to get a hypothesis estimation

8.3 Proposed Framework

8.3.1 Autoencoders

One of the powerful deep-learning architectures that achieved state-of-the-art results in differ-

ent contexts is the autoencoder (AE). AE is a neural-network architecture consisting of two

models namely, encoder and decoder models. The encoder maps an I-dimensional input to an

O-dimensional codeword, where O � I. The decoder then reconstructs the input from this,

compressed, codeword. This codeword is usually referred to as the latent representation and

it belongs to a space called the latent space. This process is performed in an end-to-end fash-

ion which implies that the encoder learns to compress the data in a way that helps the decoder

in the reconstruction process. If the codeword is quantized (binary or multi-level), then the
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Figure 8.2 The proposed framework for deep distributed inference in wireless

sensor networks

architecture is referred to as discrete representation’s autoencoder. For further details on

autoencoder architecture, we refer to Majumdar (2018).

According to the aforementioned problem formulation, our objective is to jointly learn an opti-

mal encoder and quantizer at each sensor, qt : qt(xi) = zi, and an optimal decision rule at the FC

gθ (z1,z2, . . . ,zS). To this end, we adopt a discrete-representation autoencoder at each sensor

node to compress and quantize the sensor observations, see Fig. 8.1. It is worth differentiating

between compression and quantization in this context. By compression, we mean the mapping

from a higher-dimensional to a lower-dimensional space, f : Sd → S
n, where n � d and S is

a certain set. On the other hand, quantization is mapping the values of individual dimensions

from a set S1 to a set S2, where the cardinality of S1 is smaller than that of S2, (i.e., |S1|< |S2|).

Each sensor transmits the output of its encoder model to the FC. The output of the encoder

model at sensor i is given by: fφi(·) where φi is the parameters of the ith sensor. At the FC,
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an MLP neural network parameterized by parameters, θ , is used to approximate the optimal

decision rule as depicted in Fig. 8.2. The decision rule at the FC is given by:

gθ ([ fφ1
(x1), fφ2

(x2), . . . , fφS(x
S )]). (8.5)

where xi is the current observation at the ith sensor.

8.3.2 Implementation Details

The encoder architecture at each sensor is an MLP of three fully-connected layers with ReLU

activations. In the output layer of the encoder, a QSigmoid activation is used Moons & et al.

(2017). In the FC, we used six fully connected layers with ReLU activations in the hidden

layers and Softmax activation in the output layer.

The model weights are initialized using He initializer He & et al. (2015). The models are

trained using Adam optimizer Kingma & Ba (2014), with (0.01) learning rate and optimized

to minimize our proposed loss function given in Eq. (8.8). Due to the adopted end-to-end

training, the encoders will learn to encode the unique features at each sensor that help the FC

to infer the correct decisions. Furthermore, the FC model optimizes its weights to maximize the

likelihood of the correct decision given the encoded observations. Therefore, we can interpret

the optimization of the classifier weights at the FC as learning an optimized threshold function

for the decision rule.

8.3.3 Training Procedure

We propose a three-phase training algorithm for the proposed framework. In the first phase,

we train an autoencoder at each sensor. The autoencoders are trained for input reconstruction

from compressed codewords by minimizing the l2-loss given in Eq. (8.6).
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Algorithm 8.1 The training procedure for the proposed framework, S , sensors

Input: Dataset D, consisting of N observation/label tuples acquired from S sensors

Output: Model parameters, θ , and φi for i ∈ {1,2, . . . ,S }
1 At each sensor, si, train an AE to reconstruct its input using observations in D
2 Train an inference model, I1, to approximate the conditional distribution p(Ŷ |X)
3 Freeze the weights of I1, known as ω
4 Train an inference model, I2, (jointly with the encoders weights, φi for

i ∈ {1,2, . . . ,S }) to approximate the conditional distribution p(Ŷ |Z)
5 Return the learned parameters of I2 (i.e., ω), along with φi for i ∈ {1,2, . . . ,S }

min
φ ,θ

1

N

N

∑
i=1

‖xi − x̂i‖2, (8.6)

where xi is the ith observation, x̂i is the reconstruction, and N is the total number of obser-

vations in a dataset. In the second phase, we, independently, train an inference model, I1,

that takes as input the raw observations, X = [x1,x2, . . . ,xS ], and outputs the corresponding

decision. Note that the inputs to this model are the raw observations without compression or

quantization. The model is trained to optimize the classical Crossentropy function (8.7).

min
θ
[−

C

∑
i=1

yi log(ŷi)+(1− yi) log(1− ŷi)], (8.7)

where yi and ŷi are the true and predicted one-hot encoded label vectors of the ith data point,

and C is the number of classes. The output of the model I1 approximates the conditional

distribution P(Ŷ |X). The set of parameters in the model I1, denoted by vector ω , is then frozen

and it will be used only for computing the value of the inference model loss function at the FC.

This model represents the benchmark model that we aim to mimic after the compression and

the quantization take place. We elaborate more on this part in subsection 8.3.4.

In the third and last phase, we use the encoder model (of the AE trained in the first phase)

at each sensor to compress the captured observations. The output of the encoder at sensor i

is denoted by zi. The parameters of an encoder model of an AE at the sensor, i, are denoted

by φi. Accordingly, zi = fφi(xi). The outputs of all the encoders are concatenated and fed to
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an inference model, I2, with parameters θ to predict the output. In this case, the output of I2

approximates the conditional distribution P(Ŷ |Z). It is worth noting that the weights of I2, θ ,

are trained jointly with the encoder’s weights, φi, at each sensor. This means that the training in

the last phase is done in an end-to-end fashion between the encoder weights and the parameters

of the decision rule at the FC. Algorithm 8.1 summarizes the training procedure.

8.3.4 Proposed Loss Function

In the first and second phases of the training, we optimize the MSE and Crossentropy loss

functions, respectively. As we move to the third phase of the training, where the sensor en-

coders and the FC inference model are jointly trained, it is observed that minimizing traditional

Crossentropy is insufficient in tackling the problem at hand. Recall from the previous section

that the objective of the proposed framework is to make the encoders benefit from the redun-

dancies (between the sensor observations) to obtain high compression ratios without harming

the decision accuracy. This implies that encoders should learn to encode the complementary

features of their observation. To this end, we propose a novel loss function given by Eq. (8.8).

L (Y,Ŷ ) =CE(Y,Ŷ )+KL(P(Ŷ |X)||P(Ŷ |Z)) (8.8)

The proposed function helps the model to learn a joint conditional distribution for the decision

given the compressed observations, P(Ŷ |Z), which is as similar as possible to the joint con-

ditional distribution for the decision given the uncompressed observations, P(Ŷ |X). This term

reduces the loss in decision accuracy due to the compression of the sensor observations. Given

a limited budget of bit rate to encode the observations, we argue the proposed function encour-

ages the encoders to encode only the relevant features that help in maximizing the likelihood

of the correct decision at the FC.

During the end-to-end optimization of the proposed loss function, the encoders will tend to

eliminate the mutual information between the correlated sensors’ observations and encode only
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the relevant features to satisfy the bandwidth constraint. Although this setting is derived from

correlated data, it works also for independent sensors. However, the inter-observation redun-

dancy is much less and the compression can hurt the inferred decision accuracy.

Note that we handcrafted a model for each dataset to achieve the highest possible accuracy.

The models have been selected according to the proposed loss function, Eq. (8.8), such that it

emphasizes learning complementary features at each sensor. To this end, the second term in

Eq. (8.8) adds a regularization term based on the KL-divergence between the conditional prob-

ability distribution of the decision given the full observation P(Ŷ |X), and the distribution of the

decision given the compressed and quantized version of the observations P(Ŷ |Z). Moreover,

our model jointly learns a quantizer function (entropy encoder) along with the source encoder.

Jointly learning the encoders with the decision rule encourages the model to learn only the

complementary features at each sensor. The proposed models work well with each problem

without overwhelming the framework with complex architectures such as AlexNet, ResNet,

GoogleNet, etc LeCun et al. (2015). The power of these complex models is required mainly

for high-dimensional observation space, such as surveillance cameras. In this case, the hidden

(deep) convolutional layers can extract spatial features in the observations in an efficient way.

However, in lower-dimensional observation space, as in our case, handcrafted models are good

enough. This conclusion is compatible with the findings reported in Suto & Oniga (2019).

8.3.5 Dataset Preparation

The proposed framework is general and widely applicable in different problems. For the frame-

work to be employed in a certain distributed inference task, a dataset should be prepared for

training purposes. A typical dataset consists of N data points along with the associated labels

{xi,yi}N
i=1. Each data point, xi, represents the concatenation of simultaneous readings from S

sensors such that xi = [x1
i ,x2

i , . . . ,xS
i ]. The label yi ∈ {1,2, . . . ,C } is the target hypothesis (i.e.,

class) associated with these sensor readings. It is worth noting that these readings are assumed

to be perfectly synchronized and each data point represents the readings at the same time step.
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8.4 Results and Discussion

Various datasets have been used to evaluate the performance of the proposed framework. Each

dataset represents a different environment setting and generating distribution.

8.4.1 Distributed Inference Accuracy

Comparative Evaluation

Table 8.2 The classification accuracy of the proposed framework under

different compression ratios compared with benchmark models on the

WARD dataset

Method CR=2 CR=4 CR=8
Cheng et al. (ASRCM) Cheng & et al. (2017) 94% 88% 83%

Cheng et al. (NN) Cheng & et al. (2017) 82% 78% 75%

Zhang et al. Zhang & Sawchuk (2013) 87% 83% 80%

Our Framework 99.7% 97.4% 95.6%

Table 8.3 The classification accuracy of the proposed framework at

compression ratio (CR=2) compared with benchmark models on the

WARD dataset

Method Detection Accuracy
Zhu et al. Zhu & et al. (2019) 99.00%

Yang et al. Yang & et al. (2009) 93.60%

Huynh Huynh (2008) 96.97%

He et al. + PCA He & et al. (2012) 76.31%

He et al. + LDA He & et al. (2012) 40.30%

He et al. + GDA He & et al. (2012) 99.20%

Guo (Majority voting) Guo & et al. (2012) 94.96%

Guo (Maximum) Guo & et al. (2012) 96.20%

Guo (WLOP) Guo & et al. (2012) 98.02%

Guo (WLOGP) Guo & et al. (2012) 98.78%

Sheng et al. Sheng & et al. (2016) 95.90%

Oniga and Jozef Oniga & Jozsef (2015) 98.10 %

Our Framework 99.7%
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To evaluate the effectiveness of the proposed framework, we used a publicly available dataset

called Wearable Action Recognition Database (WARD) presented in Yang & et al. (2009).

The obtained performance is compared against three other baseline models applied to the same

dataset. The dataset is designed for human activity recognition from sensors’ data. This dataset

is collected from five sensor boards attached to different points in the human body. Each sensor

board has a tri-axial accelerometer and a bio-axial gyroscope with three and two-dimensional

outputs respectively. Each human operator performs 13 different actions which represent the

labels (classes) to be predicted by the classifier at the FC.

Figure 8.3 Comparing model accuracy under different compression ratios

Table 8.2 and Fig. 8.3 show a comparison between the performance of the proposed framework

and the baseline models under different compression ratios. We can see from table 8.2 that the

performance of our framework outperforms other models under all compression ratios. We

can see that our framework preserves high accuracy even under high compression ratios. For

example, increasing the compression ratio from 2 to 8 decreased the accuracy by 4.1% only

(i.e., from 99.7% to 95.6%). This is a small margin compared with 11% loss in Cheng et al.

(ASRCM) Cheng & et al. (2017), and 7% in Cheng et al. (NN) Cheng & et al. (2017) and

Zhang et al. Zhang & Sawchuk (2013).
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Table 8.3 shows the classification accuracy of the proposed framework compared with the accu-

racy of other works in the literature. The table reports results for Zhu et al. Zhu & et al. (2019),

Yang et al. Yang & et al. (2009), Huynh Huynh (2008), He et al. He & et al. (2012), Guo et

al. Guo & et al. (2012), Oniga et al. Oniga & Jozsef (2015), and Sheng et al. Sheng & et al.

(2016). It is clear from the table that the proposed framework achieves state-of-the-art accuracy

compared with the aforementioned works. In addition, the proposed framework involves the

minimal required bit rate, R, from the sensors to the FC, which highly contributes to power

saving and prolongs the sensors’ lifetime. These results can be attributed to the fact that we

learn complementary features between correlated sensors that highly contribute to improving

the decision accuracy rather than learning local features for each sensor. This learning behav-

ior is motivated by the proposed loss function, Eq. (8.8). Moreover, our framework jointly

learns a quantizer function q : χ → Z with the encoder function which minimizes the end-to-

end error and improves the accuracy of the sensing task. Note that the work in Zhu & et al.

(2019) explores the correlation between the sensor observations to disable the transmission on

the sensors that did not capture new relevant features and thus save the consumed bandwidth.

Comparatively, in our work, we exploit this correlation to transmit only the relevant comple-

mentary features. Consequently, we contribute in two directions, namely, saving the consumed

bandwidth and, at the same time, improving the decision accuracy.

Artificial Problem

We tested the proposed framework with four datasets, which are: 1) MNIST LeCun (1998), 2)

Fashion-MNIST Xiao & et al. (2017), 3) Street View Houses (SVH) Netzer & et al. (2011),

4) CIFAR-10 Krizhevsky & et al. (2009). For each dataset, we used different Compression

Ratios, CR. CR is defined as the ratio between the uncompressed dimension and compressed

dimension Sayood (2017). It is worth noting that the compression ratios of the literature work

consider only compression by dimensionality reduction (i.e., any input or output dimension

∈ R). Based on that, the input and output space remains the same. Unlike prior methods,

we go beyond to counts for the quantization (since an input dimension is ∈ R while an output

dimension is quantized ∈{0,1}). In these experiments, we simulate two sensors (s1,s2) sending
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Figure 8.4 The decision accuracy of the proposed framework with four

datasets under three compression ratios. The baseline model represents the

case in which we fuse the raw observations to the FC without compression

their data to a FC. Assume the observations at sensor s1 belong to a class Ci and at sensor s2

belong to a class Cj. The decision rule at the FC can be defined as:

ψ(z1,z2) =

⎧⎨
⎩ i i f i = j

−1 i f i �= j
(8.9)

In other words, the decision will be the class label if the two observations belong to the same

label, and -1 otherwise. Since each dataset consists of images belonging to one out of 10 total

classes, we expect the classifier to have 11 classes. In order to make a fair comparison, we used

the same classifier capacity (e.g., number of layers, number of nodes in each layer, activation

functions, etc.) for each dataset. We compared the obtained results with the baseline model

accuracy. The baseline model is defined as a neural network that takes the raw observations

as input. In this case, the FC has complete knowledge of sensed data, which represents the

optimal case in terms of data availability.
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Fig. 8.4 shows the obtained results in each case. We can notice that the framework performance

approaches the baseline with the lowest compression ratio, CR = 2. A small loss in accuracy

is reported with higher CRs (i.e., CR = 4 and 8). However, the obtained accuracy is still high

even with the highest CR. For example, we obtained 95.3% of the baseline with CR = 8 in

the MNIST dataset. This means compressing the observations to only 12.5% of their original

dimension with quantization, results in a 4.7% of accuracy reduction.

Figure 8.5 A heatmap representation for the confusion matrix of an MNIST

classifier with 98-dimension latent code corresponding to a compression ratio

of 8. The class label F here represents class label -1

In the reconstruction of the training dataset, we randomly shuffle the datasets at each sensor.

Consequently, most of the observation combinations fall in the class of -1 (i.e., the two ob-

servations are not in the same class). This produces an imbalanced class distribution. Due

to this imbalance, we report the confusion matrix of the framework classifier for the MNIST

dataset and 98-dimension latent code in Fig. 8.5. We can see from Fig. 8.5 that the proposed

framework is capable of inferring the right decision with high accuracy even with imbalanced

data.
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The key idea of compressing correlated sensors’ data is extracting complementary information

from correlated observations and ignoring any redundancies. Our proposed loss function (Eq.

8.8) achieves this goal by incorporating a KL divergence term to the loss function between

the soft labels generated by a baseline model (e.g., a large model trained on raw observations

to predict P(Y |X)) and the decision function at the FC, P(Y |Z). To minimize this term, we

encode only the complementary features that help the FC to mimic the behavior of the baseline

model. As described in Algorithm. 8.1, we jointly train the encoder models at each sensor

with the decision function at the FC in an end-to-end fashion. This end-to-end training makes

the encoders jointly learn these features with the decision function as they receive penalization

based on the distance between the predicted distribution and that of the baseline model.

We also consider a convex combination between these two terms in Eq. (8.8) as follows:

L (Y,Ŷ ) = φ CE(Y,Ŷ )+(1−φ)(KL(P(Ŷ |X)||P(Ŷ |Z))) (8.10)

We experimented different values for φ in the range [0,1] with 0.1 step size. We note that the

best results are obtained at different values for φ for different datasets. For example, using

φ equals 0.4 gave the best results with MNIST while 0.5 and 0.7 gave the best results with

Fashion-MNIST and CIFAR10. This can be attributed to the different distribution of the obser-

vation and the class weights in each dataset. Therefore, we recommend trying different values

of φ and using the value with the best results.

Indoor Localization

We test our proposed framework on a dataset for indoor localization using WiFi fingerprint.

The dataset consists of 7175 fingerprints collected from 489 different locations (almost 15 fin-

gerprints per location). The training dataset was compiled by taking samples at every 3 meters

on average with 15 samples per location. The time at each location was approximately 40

seconds performing consecutive scans with a bq Aquaris E5 4G device using Android stock

6.0.1 without making any movements during the process. For a complete description of the

dataset and the dataset collection protocol, we refer the reader to González & et al. (2019).
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Figure 8.6 Interpolation between two points in the latent space. We choose a

start and end point, then we gradually flip a bit each time along the different bits

between the two vectors. The starting point is shown in the top-left corner, and

the endpoint is in the bottom right

Figure 8.7 The accuracy of indoor localization problem using the proposed

framework
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Fig. 8.7 shows the degradation in the accuracy due to the increase in the compression ratio.

Note that the objective of this experiment is not to achieve state-of-the-art results in the clas-

sification. Rather, we aim to highlight how much accuracy we can lose due to the observation

compression. It is clear from Fig. 8.7 that the decrease in the accuracy due to observation

compressing using our proposed framework is much less compared with compression using

traditional autoencoders.

8.4.2 Semantics of the Latent Representation

Figure 8.8 Reconstruction of MNIST data images using a 98-dimensional discrete

latent code. The top row shows the original input, while the reconstruction is shown

in the bottom row

In AE-based architectures for dimensionality reduction, a special interest is paid to the ro-

bustness of the learned codewords in the latent space Choi & et al. (2019). To evaluate the

robustness of such codewords, we interpolate between different points in the latent space and

qualitatively observe the gradual changes in the reconstructed data. This experiment verifies

that the model: (a) has injected enough redundancies into the codewords and consequently the

model is capable of reconstructing the input even with codeword errors, (b) has learned relevant

features for the underlying structure of the data.

We randomly select two test points to represent the start and end points. In each step, we

flip a bit in the latent codeword, fed the new codeword to the decoder model, and observe the

gradual changes in the reconstruction. Algorithm 8.2, describes this experiment in more detail.

Fig. 8.6 shows the gradual transition in the digit shape with the gradual bit flipping. We can
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Algorithm 8.2 The procedure for evaluating the semantics of the latent codewords

1 Randomly select two random points x1, x2

2 Encode each data point using the encoder function, fφ :

3 z1,z2 = fφ (x1), fφ (x2);
4 h = z1 ⊕ z2;

5 i=0;

6 while i < len(h) do
7 if h[i] equals 1 then
8 Flip the bit at z1[i];

9 i = i + 1;

10 x̄1i = fθ (z1); where fθ is the decoder function.

11 Plot x̄1i;

12 End-if
13 End-while

observe that decrementing the hamming distance between the start and end points, by flipping

bits, slowly alters the digit characteristic until it reaches the endpoint.

8.4.3 Rate/Computation Tradeoff

While compressing the observations reduces bandwidth consumption for transmission, it comes

at a cost in accuracy and computation. The required computation resources (measured by the

floating-point operations (FLOPS)) increase according to the model complexity (measured by

the number of weights). Moreover, increasing the model complexity leads to improved com-

pression, and consequently improved decision accuracy at the FC. Therefore, a design decision

should compromise between the model complexity on the one hand, and the consumed com-

putations and FC accuracy on the other hand. However, the training phase can be done offline

(before the deployment of the sensors), and only the inference will take place during the op-

eration which requires only one forward pass (a very small number of FLOPS) to predict the

encoded messages. Fig. 9 shows this trade-off trend between the computation requirement

(measured by FLOPS) and the model accuracy. In this figure, we can see that increasing the

model accuracy requires adopting smaller compression ratios which imply higher data trans-

mission. On the other hand, a smaller compression ratio requires transmitting more data and
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Figure 8.9 Tradeoff between model accuracy (achieved at different compression

ratios) and the consequent increase of computation requirement

requires more computational resources at each sensor. The optimization of compression ratios

is out of the scope of this paper and will be explored in our future work.

8.4.4 On Quantizer Design

Different techniques for quantizer design have been proposed on the literature. Some work

proposed analytical techniques for the quantizer design. These techniques give a precise de-

scription for the optimality of the quantizer and, in some cases, they specify the quantizer

performance (in the form of error bound or other criteria). However, to derive this mathemati-

cal analysis, these techniques assume certain statistical properties in the sensor data. There are

many cases in which we do not have prior knowledge of this information. For example, the

quantizer proposed on Vempaty et al. (2014) studied Gaussian observations. On the other hand,

our proposed quantizer design does not impose any restrictions or assumptions on the distribu-

tion of the raw observations. Other learning-based quantizer designs either do not address the

case of correlated observations or do not consider the accuracy of the inferred decision on the
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loop. The authors in Choi & et al. (2019) proposed a learning-based quantizer in the channel

coding regime. However, they did not consider the accuracy of the decisions inferred from this

compressed data. In this work, we address this gap.

8.4.5 Applicability

Figure 8.10 The decision accuracy for a wireless link adaptation problem under

different compression ratios. The results confirm the general applicability of the

proposed system to problems from different domains

Our framework along with the proposed loss function, Eq. (8.8), and the training procedure

given in Algorithm. 1 can work with any type of parallel distributed detection network. This

type of setting has various applications in wireless IoT. Although minor customizations are

required to fit each specific problem, the framework is still widely applicable to different

problems from various domains. In this paper, we reported the experimental results on var-

ious types of sensors and applications (e.g., image classification, human activity recognition,

etc.). Specifically, we experimented with 5 different datasets (MNSIT, Fashion MNIST, SVHN,

CIFAR-10, WARD) representing three different types of sensors (cameras, gyroscope, and ac-

celerometer). To further evaluate the generality of our framework, we evaluated a completely

different domain (i.e., wireless link adaptation) using three datasets combined in a global one

Hussien & et al. (2021). In this scenario, the sensors are the antennas at each mobile node,
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the observations are the channel state information (CSI) captured at each mobile, and the en-

vironment is the wireless channel Hussien et al. (2020). The sensors send their observations

to an FC to infer a global decision. The base station (BS) acts as an FC in this case, and the

decision is the selected modulation and coding scheme (MCS). The results shown in Fig. 8.10

show a minor loss in the adaptation decision at the FC with the increase in the adopted CR. For

example, when compressing the original raw observations (i.e., CSI in this case), the accuracy

only drops from 94.25% to 93.7%. This means only 0.55% loss in accuracy is achieved while

saving 75% of the original bandwidth. The obtained results confirm the general applicability

of our proposed method in different domains and problems.

8.4.6 Results of Input Reconstruction

A task of input reconstruction was performed to evaluate the robustness of the learned features.

In this experiment, MNIST and Fashion-MNIST datasets are used in the evaluation. We used

a CR = 8, which corresponds to a latent code of 98-bit. Fig. 8.8 shows the result of the input

reconstruction.

8.5 Conclusion

In this paper, we proposed a deep-learning framework for compressing correlated sensor obser-

vations in distributed inference problems. The proposed framework employs discrete represen-

tation autoencoders to encode the observations at each sensor. A novel loss function has been

proposed to improve the accuracy of the framework. A multi-layer perceptron architecture

has been used at the FC to jointly learn the decision rule. The proposed framework addresses

the hard-to-tackle problem of correlated sensor observations and does not assume any prior

knowledge about the distribution of the observations. The framework has been extensively

tested using different datasets and has demonstrated significant performance improvements.



CONCLUSION AND RECOMMENDATIONS

9.1 Conclusions

In this dissertation, we presented a learning framework for optimized control of wireless links.

The work started by building an efficient technique for carrier frequency offset (CFO) estima-

tion. The predicted CFO is used for signal correction to compensate for the predicted CFO.

The signal is then used for channel estimation to calculate the channel state information (CSI).

The user equipment (UE) should send the estimated CSI to the gNB, which is a time and

bandwidth-expensive process. At this time, the second part of the proposed framework then

comes to the scene to optimize the time and bandwidth consumed in this feedback process.

Part 2 of the dissertation discusses the problem of CSI compression in MIMO-FDD systems

along with our proposed solutions. We proposed two main solutions: 1) the first solution is an

autoencoder-based architecture based on the variational autoencoders (VAE), and 2) the second

solution is a neural compression technique based on leveraging the bias/variance tradeoff for

CSI compression. The gNB uses the CSI feedback in several functionalities such as link adap-

tation, beamforming, mobility management, resource allocation, etc. The proposed framework

builds on the received CSI feedback from part 2 to develop a reliable link adaptation technique.

This represents the third module in our proposed learning framework. This module exploits the

CSI feedback to predict the best modulation and coding scheme (MCS), guard interval (GI),

and other PHY transmission parameters that best suits the current channel conditions. As a part

of this module in the framework, we developed a custom loss function that focuses more on

minimizing the false positives in the classes corresponding to retransmissions. This approach

has dual benefits for reliability and power aspects. Furthermore, we investigated the potential

of data-centric AI in the problem of link adaptation. We studied and analyzed several selec-

tion criteria on the performance of a link adaptation model and concluded that good dataset

selection can lead to improvements in the model’s accuracy.

From the earlier chapters, we can conclude that the integration of AI and ML techniques holds

great potential for enhancing next-generation networks across various aspects. The incorpora-
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tion of AI and ML methods enables realizing heightened Quality of Service (QoS) standards,

facilitates precise prediction of future network conditions, and aids in the planning and man-

agement of network resources, including wireless links, well in advance. Our dissertation

demonstrates that by adopting and customizing ML techniques, higher levels of accuracy can

be achieved. The advantages of our proposed framework can be summarized as follows:

- Enhanced Accuracy: The proposed framework exhibits high accuracy in diverse communi-

cation tasks, such as CFO estimation, CSI feedback, and link adaptation.

- Real-Time Performance: By leveraging the proposed framework, substantial time savings

are realized compared to conventional techniques, enabling real-time execution of numer-

ous tasks.

- Scalability: The proposed framework demonstrates high scalability, accommodating high-

dimensional inputs and outputs. This adaptability enables the framework to be effectively

employed with various transmit and receive antenna configurations.

- Task Integration: Our framework facilitates the integration of multiple tasks into a single

step. For instance, we exemplified this capability by combining CSI compression with link

adaptation in an end-to-end model. This approach offers several advantages to modern com-

munications systems, ranging from time efficiency to comprehensive resource management

and provisioning.

Despite the aforementioned advantages of the proposed framework, certain areas for improve-

ment warrant attention, including:

- Incorporating Channel Estimation: The current framework does not encompass channel

estimation in the loop. Integrating channel estimation into the system can significantly

enhance reliability and performance, especially when jointly optimized with other stages in

the pipeline.
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- Comprehensive CFO Estimation: While we addressed CFO estimation as a standalone

problem, further exploration could involve integrating CFO estimation with other tasks.

Designing an end-to-end model that includes CFO estimation alongside CSI feedback and

link adaptation could be of great interest.

- Energy Considerations: The proposed framework primarily focused on system throughput

and reliability, but it neglected to consider the energy consumption aspect. Considering

energy efficiency is crucial in the design of modern communication systems.

9.2 Recommendations and Future Work

Based on our previous discussion, we can define some directions for future work such as:

- Although ensemble models obtained a competitive performance in the CFO estimation

problem as shown in Chapter 1, more efficient dimensionality reduction techniques can

be exploited. Moreover, automatically adapting the model architecture through automated

ML techniques can be a promising direction to explore.

- Joint optimization brings several advantages to the overall system performance. In this

work, we considered joint optimization of CSI compression and link adaptation. However,

other functionalities that also depend on the CSI have not been considered such as beam-

forming. We think jointly optimizing CSI compression and beamforming could be a very

promising direction.

- Instead of the fixed compression ratio considered in the CSI compression problem, we can

gain a lot of flexibility, bandwidth, and performance gains if we considered an adaptive

approach for specifying compression ratios. Adapting compression ratios can depend on

the current CSI matrix, feedback channel, and the correlation between the old and new CSI

matrices.
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- Although our objective in the link adaptation work is maximizing throughout and link re-

liability, we can incorporate more factors such as power consumption. A large margin of

improvement can be reached if we considered the power cost of these methods.

- The lifetime of the proposed models has not been verified after deployment. Some models

can give very good performance on the training/testing datasets, but this performance is

degraded over time due to many factors including but not limited to data drift.



APPENDIX I

PROOF OF THEOREM 1

In this appendix, we provide the derivation of theorem 1 as given by Du (2018). Assume the

distribution D is a (λ0,ε/3,n)-non-degenerate distribution. Then, with a probability (1−ε/3),

the minimum eigenvalue of the Gram matrix is greater than or equal λ0 such that: λmin(H∞)≥
λ0. For any sample S , the following points are always satisfied:

- First:

Φ(W(k))≤ (1− ηλ0

2
)k O(

n
ε
)≤ 1

2
(11)

where W(k) is the weight matrix at the kth iteration. Accordingly, the upper bound for the

training error can be derived as:

LS ( fW(k),a) =
1

n

n

∑
i=1

L( fW(k),a(xi),yi) (12a)

=
1

n

n

∑
i=1

L(ui(k),yi) (12b)

where ui(k) is the prediction of the neural network at the kth epoch for the ith observation.

LS ( fW(k),a) =
1

n

n

∑
i=1

[L(ui(k),yi), l(yi,yi)] (13a)

≤ 1

n

n

∑
i=1

|L(ui(k)− yi)| (13b)

≤ 1√
n
||L(u(k)−y)||2 (13c)

=

 
2Φ(W(k))

n
(13d)

≤ 1√
n

(13e)



196

- Second: ||Wr(k)−Wr(0)||2 ≤ R (∀r ∈ [m]) and ||W(k)−W(0)||F ≤ B, where:

R = O(
n

λ0
√

m
√

ε
), (14)

B =
»

yT (H∞)−1y +O(
nk

λ0ε
) +

poly(n,λ−1
0 ,ε−1)

k1/2m1/4
(15)

It is worth to note that B ≤ O(
»

n
λ0
).

- Third: Let Bi = i (i = 1, 2, . . .). Simultaneously for all i, the function class FW (0),a
Ri,Bi

has

Rademacher complexity bounded as:
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W (0),a
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2R2
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10
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Let i∗ be the smallest integer such that: B≤Bi∗ . Then we have i∗ ≤O(
»

n
λ0
) and Bi∗ ≤B+1.

From above we know fW (k),a ε FW (0),a
Ri,Bi∗ , and:
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=

 
yT (H∞)−1y

2n
+

1√
n
+O(
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nk
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Poly(n,λ−1
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m1/4k1/2
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Next, from the theory of Rademacher complexity and a union bound over a finite set of

different i’s, for any random initialization (W(0),a), with probability at least (1− ε/3) over

the sample S , we have:

Sup
f εFW (0),a

Ri,Bi

{LD( f )−LS( f )} ≤ 2RS(F
W (0),a
Ri,Bi

)
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log n
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Finally, taking a union bound, we know that with probability at least (1− 2
3ε) over the

sample S and the random initialization (W(0),a) a), the followings are all satisfied (for

some i∗):
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These together imply:

LD

Ä
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ä
≤ 1√

n
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This completes the proof.
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