
Proactive and Autonomic IoT Service Auto-scaling in

Constrained Edge Computing Environments

by

Ahmed BALI

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE
TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, "JULY 24, 2023"

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Ahmed Bali, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

M. Abdelouahed Gherbi, Thesis supervisor

Department of Software Engineering and IT, École de technologie supérieure

M. Tony Wong, Chair, Board of Examiners

Département de génie des systèmes, École de technologie supérieure

Mme. Kaiwen Zhang, Member of the Jury

Département de génie logiciel et des TI, École de technologie supérieure

M. Mohammad Hamdaqa, External Examiner

Department of Computer Engineering and Software Engineering, Polytechnique Montréal

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "JULY 11, 2023"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

FOREWORD

This doctoral thesis consists of a compilation of articles, with three complementary solutions

proposed for efficient and adaptive IoT service deployment on resource-limited edge devices,

primarily using AI-based techniques. These articles are presented in their original published

and submitted form, with only minor modifications to ensure compliance with the thesis

template. While each article addresses different aspects of the research problem, they are closely

interrelated and contribute to the overall goal of this thesis.

In addition to the incorporated articles, a dedicated section provides a comprehensive overview

of the background and literature review on the research topic. The thesis concludes with a

summary of the main findings and contributions of our work, along with potential avenues for

future research in this field.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation and gratitude to my

advisor, Professor Abdelouahed GHERBI, for his unwavering support, guidance, and mentorship

throughout my Ph.D. journey. His expertise, encouragement, and patience have been instrumental

in making this research possible. I am truly grateful for his mentorship, friendship, and invaluable

contributions to my academic and personal growth.

I extend my heartfelt thanks to the members of my thesis committee, Professor Kim Khoa

Nguyen, Professor Kaiwen Zhang, and Professor Mohamed Hamdaqa, for honoring me with

their participation in my thesis jury and their efforts in reviewing my thesis.

I am grateful to my parents, Laid and Nafissa, for their endless love, support, and encouragement

throughout my academic journey. Their unwavering belief in me and their sacrifices have been

the driving force behind my success. They instilled in me the values of hard work, perseverance,

and dedication, which have been vital to my accomplishments. I am thankful for their unwavering

support.

I express my deepest appreciation to my wife, Anfal. Her unwavering support and encouragement

throughout my PhD journey have been invaluable. Her patience, understanding, and love were

the pillars that sustained me through the ups and downs of this challenging journey. Her sacrifice

and dedication to our family made it possible for me to focus on my studies and achieve this

significant milestone. Without her, this achievement would not have been possible, and for that,

I am forever grateful.

Finally, I am grateful to all my beloved family for their constant support and encouragement, as

well as my friends and colleagues in the LASI lab for their camaraderie and insightful discussions

beyond research.

Mise à l’échelle automatique proactive des services IoT dans les environnements contraints
de l’informatique périphérique

Ahmed BALI

RÉSUMÉ

L’internet des objets (IdO) s’est considérablement développé avec l’utilisation généralisée de

capteurs dans divers domaines de la vie moderne, tels que les soins de santé et la construction. Le

nombre croissant de dispositifs (objets) connectés génère des quantités massives de données qui

ont un impact négatif sur les performances du système, en particulier sur le temps de réponse, qui

est très important pour les applications sensibles à la latence. L’informatique en périphérie (Edge

computing), qui délègue les tâches de l’informatique en nuage (Cloud) à des nœuds en périphérie

plus proches des sources de données, a été adoptée pour atténuer ce problème. Cependant,

les dispositifs IoT en périphérie sont limités en ressources et opèrent dans un environnement

hautement hétérogène, ce qui est traité en utilisant des conteneurs (Containers) comme technique

de virtualisation légère pour déployer des microservices.

La limitation des ressources constitue un défi important pour le déploiement de services à la

périphérie des réseaux IoT. Une gestion efficace des ressources des dispositifs périphériques

est essentielle pour répondre aux exigences des utilisateurs (par exemple, le temps de réponse)

et optimiser l’utilisation des ressources, ce qui augmente la capacité de déploiement. La mise

à l’échelle automatique des services (auto-scaling) est une solution interessante qui améliore

l’utilisation des ressources en ajustant dynamiquement le nombre d’instances de services en

fonction de la charge de travail. Cependant, les outils de la mise à l’échelle automatique

actuels, tels que Kubernetes, s’appuient principalement sur des approches réactives basées sur

des seuils, qui sont difficiles à configurer et moins efficaces pour traiter des charges de travail

complexes. Ces approches réactives entraînent un gaspillage dû au surprovisionnement des

ressources et une dégradation des performances lors de la libération des ressources. D’autre

part, la mise à l’échelle automatique proactive qui anticipe la charge de travail future nécessite

encore une amélioration en termes de précision des prévisions afin d’optimiser les performances

et l’efficacité du système.

L’objectif principal de ce travail est de proposer une approche pour le déploiement de services

IoT à la périphérie qui s’adapte aux exigences de performance, à la disponibilité des ressources

et à la dynamique de la charge de travail. Notre approche de l’adaptabilité du déploiement

des services est basée sur la boucle MAPE-K (Monitor-Analyze-Plan-Execute over a shared

Knowledge). Par conséquent, chaque phase de la boucle présente une étape dans la réalisation

de chaque contribution de notre travail. Chaque étape doit inclure une revue de la littérature,

l’étude et l’utilisation des techniques existantes et leur amélioration ou même la proposition de

nouvelles techniques, l’implémentation, l’expérimentation et la validation.

Notre première contribution vise à remédier aux limites des solutions basées sur les seuils. En se

basant sur le modèle de déploiement que nous proposons, encodé dans la logique des prédicats,

X

notre solution génère automatiquement des règles pour différentes phases, telles que l’analyse et

la planification.

La deuxième contribution propose une solution proactive de mise à l’échelle automatique. Elle

utilise un modèle des réseaux de neurones de type LSTM (Long Short-Term Memory), mémoire

à long terme et court terme, pour la prévision de la charge de travail grâce à sa précision et

à sa vitesse de prédiction. Pour améliorer davantage la précision, notre approche ajoute une

phase de caractérisation (featurization) automatique qui extrait des caractéristiques des séries

temporelles de données sur la charge de travail. Elle aborde également, de manière originale,

le problème de l’oscillation causé par les actions de mise à l’échelle fréquemment générées.

Les caractéristiques extraites par la phase de la caractérisation sont utilisées comme grille pour

atténuer le problème d’oscillation.

La troisième contribution vise à améliorer encore davantage la précision de la prévision de la

charge de travail tout en tenant compte de la limitation des ressources des dispositifs IoT. Notre

approche proposée d’apprentissage en ensemble dynamique (Dynamique Ensemble learning)

réduit efficacement les valeurs aberrantes et maintient une précision élevée dans la prévision de

la charge de travail et les performances d’auto-scaling.

Dans toutes nos contributions, nous avons validé notre approche à l’aide de diverses implémen-

tations. Nous avons également mené les expériences nécessaires en comparant nos résultats

avec des travaux connexes. Dans l’ensemble, la validation montre la faisabilité et l’efficacité

de nos différentes contributions. Enfin, nous avons mis en évidence plusieurs perspectives de

recherche et proposé des travaux futurs potentiels dans le cadre de l’étude présentée.

Mots-clés: Internet des objets (IoT), informatique périphérique, virtualisation, conteneur, Mise

à l’échelle automatique, boucle MAPE-K, LSTM, atténuation des oscillations, apprentissage

automatique, prévision des séries temporelles

Proactive and Autonomic IoT Service Auto-scaling in Constrained Edge Computing
Environments

Ahmed BALI

ABSTRACT

The Internet of Things (IoT) has greatly developed with the widespread use of sensors in

various areas of modern life, such as healthcare, and construction. The increasing number of

connected devices generates massive amounts of data that negatively impact system performance,

especially the response time, which is very important for latency-aware applications. Edge

computing, which delegates cloud tasks to edge nodes closer to data sources, has been adopted

to alleviate this issue. However, IoT devices at the edge are resource-constrained and operate in

a highly heterogeneous environment, which is addressed by using containers as a lightweight

virtualization technique for deploying microservices.

The limitation of resources poses a significant challenge to deploying services at the edge of IoT

networks. Effective resource management of edge devices is essential to meet user requirements

(e.g., response time) and optimize resource usage, which increases the deployment capacity.

Service auto-scaling is an interesting solution that improves resource utilization by dynamically

adjusting the number of service instances to match the workload. However, current auto-scalers,

such as Kubernetes, mostly rely on threshold-based reactive approaches, which are difficult to

configure and less efficient in dealing with complex workloads. These reactive approaches result

in wastage due to over-provisioning of resources and performance degradation during resource

releases. On the other hand, proactive auto-scaling that anticipates future workload still needs

improvement in forecasting accuracy to optimize system performance and effectiveness.

The main objective of this work is to propose an approach for deploying IoT services at the edge

that is adaptive to performance requirements, resource availability, and workload dynamics. Our

approach to service deployment adaptability is based on the MAPE-K (Monitor-Analyze-Plan-

Execute over a shared Knowledge) loop. Therefore, each phase of the loop presents a step in

the realization of each contribution of our work. Each step must include a literature review,

study, and use of existing techniques and their improvement or even proposal of new techniques,

implementation, experimentation, and validation.

Our first contribution aims at addressing the limitation of threshold-based solutions. Based

on our proposed deployment model, encoded in predicate logic, our solution automatically

generates rules for different phases, such as analysis and planning.

The second contribution proposes a proactive auto-scaling solution. It uses Long short-term

memory (LSTM) for workload forecasting thanks to its accuracy and prediction speed. For

further accuracy improvement, our approach adds an automatic featurization phase that extracts

features from time-series workload data to improve the workload prediction accuracy. It also

addresses, in an original way, the oscillation issue caused by the frequently generated scaling

XII

actions. The extracted features issued by the featurization phase are used as a grid to mitigate

the oscillation issue.

The third contribution aims to improve further the accuracy of workload forecasting while

considering the resource limitation of IoT devices. We have investigated a variety of known

prediction algorithms according to the metrics of accuracy and prediction time. Our proposed

Dynamic Ensemble learning approach effectively reduces outliers and maintains high workload

forecasting accuracy and auto-scaling performance.

In all our contributions, we have validated our approach with several proof-of-concept imple-

mentations. We also conducted the necessary experiments by comparing our results with related

work. Overall, the validation shows the feasibility and effectiveness of our different contributions.

Finally, we highlighted several research perspectives and proposed potential future work within

the scope of the presented study.

Keywords: Internet of Things (IoT), edge computing, virtualization, container, Auto-scaling,

MAPE-K loop, LSTM, Oscillation mitigation, machine-learning, time series forecasting

TABLE OF CONTENTS

Page

INTRODUCTION .1

0.1 Context and motivation .1

0.2 Problem Statement . 3

0.3 Research objectives . 7

0.4 Methodology . 8

0.5 Contributions . 9

0.6 Publications . 13

0.6.1 Articles . 13

0.6.2 Communications . 14

0.7 Thesis Organization . 15

CHAPTER 1 BACKGROUND AND LITERATURE REVIEW .. 17

1.1 Virtualization techniques for the Edge computing . 17

1.1.1 Brief background . 17

1.1.1.1 Internet of Things . 18

1.1.1.2 Edge computing . 19

1.1.1.3 Virtualization techniques . 20

1.1.2 Related work . 22

1.1.3 Positioning of our approach . 24

1.2 Auto-scaling techniques . 25

1.2.1 Brief background . 25

1.2.1.1 Auto-scaling concept . 25

1.2.1.2 Auto-scaling classification . 26

1.2.2 Related Work . 27

1.2.2.1 Reactive Auto-Scaling . 28

1.2.2.2 Proactive Auto-Scaling Approaches . 29

1.2.2.3 Featurization for Forecasting Accuracy Improvement 32

1.2.2.4 Oscillation Mitigation . 33

1.2.3 Positioning of our Work . 34

1.2.3.1 Our Reactive Approach . 34

1.2.3.2 Our Proactive Approach . 35

1.2.3.3 Our Featurization Approach . 36

1.2.3.4 Our Oscillation Mitigation . 37

1.3 Forecasting methods for the edge computing . 37

1.3.1 Brief background . 38

1.3.1.1 Machine Learning for IoT . 38

1.3.1.2 Methods for Time Series Prediction . 38

1.3.2 Related Work . 40

1.3.2.1 Machine learning at the Network Edge . 40

1.3.2.2 Widely used Forecasting Techniques . 41

XIV

1.3.2.3 Lightweight Forecasting Techniques . 43

1.3.2.4 Ensemble-Based Forecasting Learning . 44

1.3.3 Positioning of our approach . 46

CHAPTER 2 RULE BASED AUTO-SCALABILITY OF IOT SERVICES FOR

EFFICIENT EDGE DEVICE RESOURCE UTILIZATION 49

2.1 Introduction . 50

2.2 Related Work . 53

2.3 The Preliminary concepts of the proposed approach . 55

2.3.1 Overall Deployment Architecture . 55

2.3.2 Gateway level . 58

2.3.3 Cluster Functionality . 59

2.4 The container based IoT service deployment model . 59

2.4.1 Device submodel . 60

2.4.2 Service submodel . 62

2.4.3 Deployment submodel . 63

2.5 Auto-scaling solution process . 64

2.5.1 Knowledge reference . 65

2.5.1.1 General Rule model . 66

2.5.1.2 Formal deployment information model . 67

2.5.2 Monitoring step . 70

2.5.3 Evaluation step . 70

2.5.3.1 Container(instance) . 72

2.5.3.2 Device . 72

2.5.3.3 Cluster . 73

2.5.3.4 Service . 73

2.5.3.5 Evaluating algorithm . 75

2.5.4 Making decision step . 77

2.5.5 Generating scaling plan step . 78

2.5.6 Execute the scalability plan step . 80

2.6 Evaluation . 80

2.6.1 Evaluation Architecture . 80

2.6.2 Evaluation Scenario . 82

2.6.3 Results . 83

2.6.3.1 Auto-scalability behavior . 83

2.6.3.2 Resource utilization . 84

2.7 Conclusion . 86

CHAPTER 3 IMPROVING FORECASTING ACCURACY AND OSCILLA-

TION MITIGATION FOR PROACTIVE SERVICE AUTO-

SCALING USING AUTOMATIC DATA FEATURIZATION 87

3.1 Introduction . 88

3.2 Related Work and Background . 91

3.2.1 Virtualization and Autoscaling . 91

XV

3.2.2 Workload Forecasting Techniques . 93

3.2.3 Univariate and Multivariate Time Series . 94

3.2.4 Oscillation Mitigation . 96

3.3 Overall architecture . 97

3.4 Data collection and pre-processing . 98

3.4.1 Data scaling . 99

3.4.2 Data reframing and Horizon of prediction . 99

3.5 Forecasting based on data featurization .100

3.5.1 Our Time Series Featurization .100

3.5.2 Time Series Featurization Algorithm .103

3.6 LSTM Model .104

3.7 Oscillation mitigation .106

3.8 Experiments and Results .108

3.8.1 Simulator .108

3.8.2 Performance metrics .109

3.8.2.1 Evaluation metrics for the prediction model .109

3.8.2.2 Auto-scaler evaluation metrics . 111

3.8.3 Datasets .112

3.8.3.1 Worldcup 98 Dataset .112

3.8.3.2 NASA 95’ Dataset .113

3.8.3.3 Data Distribution .113

3.8.4 Evaluation Protocol .115

3.8.5 Evaluation of our forecasting approach .116

3.8.5.1 Comparison to related work .116

3.8.5.2 Result of the hyperparameter combination tests 117

3.8.5.3 Evaluation of the impact of our featurization mechanism

on the related work approaches .118

3.8.5.4 Finding and Analysis Summary of Our Featurization

Approach Evaluation .119

3.8.6 Evaluation of the auto-scaler .120

3.8.6.1 Reactive vs. our proactive approach .122

3.8.6.2 Our approach with vs. without oscillation mitigation123

3.8.6.3 Our approach with oscillation mitigation vs. related

work approaches .123

3.8.6.4 Combination of oscillation solutions .124

3.8.6.5 Finding and Analysis Summary of Our Oscillation Miti-

gation Approach Evaluation . 127

3.9 Conclusion .128

CHAPTER 4 PROACTIVE SERVICE AUTO-SCALING IN EDGE ENVIRON-

MENTS: METHODOLOGY, QUANTITATIVE ANALYSIS AND

IMPROVEMENTS . 131

4.1 Introduction . 131

XVI

4.2 Related Work .134

4.3 Methodology .139

4.4 Data processing and analysis . 141

4.4.1 Selected Dataset . 141

4.4.2 Data Pre-processing .142

4.4.2.1 Data scaling .143

4.4.3 Data Analysis .143

4.4.4 Data reframing .148

4.4.5 Horizon of prediction .148

4.5 Forecasting algorithms .148

4.5.1 ARIMA .149

4.5.2 LSTM .149

4.5.3 SVR . 151

4.5.4 BN . 151

4.5.5 RF .152

4.6 Model Evaluation .152

4.6.1 Prediction Accuracy Metrics .153

4.6.2 Runtime Metrics .154

4.6.3 Evaluation Process of Models .154

4.7 Ensemble Learning Technique Application .156

4.7.1 Our Application of Ensemble Learning .156

4.7.2 Problem Formulation .158

4.7.3 Proposed Dynamic Ensemble learning (DEL) .159

4.8 Model Selection .159

4.9 Integration of the Model in the Auto-scaling Process .160

4.10 Evaluation Results .162

4.10.1 Configuration of Models .163

4.10.1.1 ARIMA .163

4.10.1.2 LSTM .165

4.10.1.3 SVR .166

4.10.1.4 RF .166

4.10.1.5 BN . 167

4.10.2 Forecasting Resource Usage Evaluation . 167

4.10.3 Forecasting Accuracy Evaluation .169

4.10.4 Evaluation of Our Ensemble Learning (EL) Model . 171

4.10.4.1 Accuracy and Time Consumption . 171

4.10.4.2 Dynamic Ensemble Learning (DEL) .173

4.10.5 Auto-scaling Performance .174

4.10.5.1 Simulation Results .174

4.10.5.2 Experiments on Kubernetes .176

4.11 Discussion . 177

4.12 Conclusion .180

XVII

CONCLUSION AND RECOMMENDATIONS .183

BIBLIOGRAPHY .189

LIST OF TABLES

Page

Table 3.1 Hyperparameters of our LSTM learning algorithm .106

Table 3.2 Our featurization-based forecasting approach vs. related work116

Table 3.3 Forecasting results with varying the hyper-parameters: the numbers

of units and epochs. Our Model is compared to LSTM Model of

Imdoukh, Ahmad & Alfailakawi (2019) and Bi-LSTM Model of

Dang-Quang & Yoo (2021) .118

Table 3.4 The impact of our featurization mechanism on the related work

approaches (LSTM of Imdoukh et al. (2019) and Bi-LSTM of Dang-

Quang & Yoo (2021)) .119

Table 3.5 Reactive vs. our Proactive auto-scaling approaches with Worldcup

98’ and NASA Datasets .123

Table 3.6 Our proactive approach with vs. without oscillation mitigation with

Worldcup 98’ and NASA Datasets .124

Table 3.7 Our proactive approach with our grid-based oscillation mitigation

vs. related work (Work1 of Imdoukh et al. (2019)) and Work2 of

Dang-Quang & Yoo (2021) .125

Table 3.8 Using our predicted data, a comparison of our grid-based approach

(𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑) to its combination with 𝐶𝐷𝑇 mechanism

(𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇) .125

Table 3.9 Using the predicted data of Imdoukh et al. (2019) approach, a

comparison of our grid-based approach (𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑) to its

combination with 𝐶𝐷𝑇 mechanism (𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇)126

Table 3.10 Using the predicted data of Dang-Quang & Yoo (2021) approach, a

comparison of our grid-based approach (𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑) to its

combination with 𝐶𝐷𝑇 mechanism (𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇)126

Table 4.1 Comparison between ARIMA Models based on AIC and Error

Metrics .164

Table 4.2 Key Hyperparameters of Different Algorithms .168

Table 4.3 Training Time and Prediction Time of Different Models .169

XX

Table 4.4 Retraining Necessity to Improve the Prediction of ARIMA Model169

Table 4.5 Accuracy Results across Different Dataset Sizes .172

Table 4.6 Results of Dynamic Ensemble Learning .174

Table 4.7 Auto-scaling Results for Different Dataset Sizes .175

LIST OF FIGURES

Page

Figure 1.1 Levels of Edge computing . 20

Figure 1.2 Virtualization explanation scheme (Baeldung, Accessed 2023) 21

Figure 1.3 Containerization explanation scheme (Baeldung, Accessed 2023) 21

Figure 1.4 Types of Auto-scaling (Al-Dhuraibi, Paraiso, Djarallah & Merle,

2017) . 27

Figure 2.1 The Overall Architecture . 57

Figure 2.2 The Gateway level Architecture . 57

Figure 2.3 Cluster operation . 60

Figure 2.4 Device submode . 61

Figure 2.5 Service submodel with the container concept . 62

Figure 2.6 Container based Service deployment submodel . 64

Figure 2.7 Rule Based Autoscaling Process . 65

Figure 2.8 Rule model . 66

Figure 2.9 The evaluation architecture . 81

Figure 2.10 Scalability when the response time is Overexpectation . 84

Figure 2.11 Scalability when the response time is Underexpectation . 84

Figure 2.12 CPU usage during the scalability . 85

Figure 2.13 Memory usage during the scalability . 85

Figure 2.14 Network traffic during the scalability . 85

Figure 3.1 General Auto-scaling Process . 98

Figure 3.2 Time Series reframing, with window size =2 .100

Figure 3.3 Japanese candlestick information . 101

XXII

Figure 3.4 Line representation of Tesla stock .102

Figure 3.5 Representation of Tesla stock using Japanese candlesticks102

Figure 3.6 Overview of the proposed multivariate data structure. .104

Figure 3.7 A grid based on four features with the workload curve . 107

Figure 3.8 Architecture of the simulator .109

Figure 3.9 Representation of Worldcup 98’ dataset by number of requests per

minute .113

Figure 3.10 Representation of NASA 95’ dataset by number of requests per

minute .114

Figure 3.11 Data Distribution Comparison of Worldcup and NASA Datasets114

Figure 3.12 Our model prediction with WorldCup’98 dataset . 117

Figure 3.13 Our model prediction with NASA dataset . 117

Figure 3.14 Relative Improvement Percentage of Metrics: Our Approach vs.

Related Works .120

Figure 3.15 reactive Auto-scaler behavior using NASA’95 dataset .122

Figure 3.16 Auto-scaler behavior based on our proactive approach using

NASA’95 dataset .122

Figure 4.1 Followed Forecasting Methodology .140

Figure 4.2 WorldCup’98 Dataset: 40,000 Points (Minutes) .142

Figure 4.3 Data Decomposition .144

Figure 4.4 Data Density Plot .144

Figure 4.5 Seasonality Analysis .145

Figure 4.6 Stationary Analysis: Original Data .146

Figure 4.7 Stationary Analysis of Data: 1𝑠𝑡 Differenced Data, Logged Data,

1𝑠𝑡Differenced of Logged Data . 147

Figure 4.8 LSTM Unit Architecture .150

XXIII

Figure 4.9 Autocorrelation Function (ACF) .164

Figure 4.10 Partial Autocorrelation Function (PACF) .164

Figure 4.11 LSTM Model Training .165

Figure 4.12 Training and Testing Data of Different Data Sizes .170

Figure 4.13 Correlation Matrix: Actual vs Predicted Data for Different Models

and Data Sizes . 171

Figure 4.14 Distribution of Predicted Data: Violin Plot for Different Data Sizes 171

Figure 4.15 Dynamic Pod Auto-scaling Based on Workload . 177

LIST OF ALGORITHMS

Page

Algorithm 2.1 Evaluating . 76

Algorithm 2.2 Taking decision algorithm . 78

Algorithm 3.1 Feature Extraction Algorithm .103

Algorithm 3.2 Grid-based Oscillation Mitigation .108

Algorithm 4.1 Evaluate Models .155

Algorithm 4.2 Ensemble Learning Forecasting . 157

Algorithm 4.3 Ensemble Learning Optimization .160

LIST OF ABBREVIATIONS

ARIMA Autoregressive Integrated Moving Average

BN Bayesian Network

ETS École de Technologie Supérieure

IoT Internet of Things

IT Information Technology

LSTM Long Short-Term Memory

OS Operating System

PC Personal Computer

PMs Power Management Systems

RF Random Forest

RFID Radio Frequency Identification

SVR Support Vector Regression

VM Virtual Machine

INTRODUCTION

0.1 Context and motivation

The Internet of Things (IoT) has brought about a technological revolution that has revolutionized

various aspects of our daily lives, including health, transportation, and work. The innovative

vision of IoT has made its applications ubiquitous, playing an essential role in several areas.

These applications primarily rely on networks of small devices integrated into our surroundings,

such as environmental, healthcare, and industrial sensors. With constant development and

deployment of these devices, billions of connected devices are now present on the Internet

(Evans, 2011).

To meet the demand for cost-efficient and responsive IoT applications, a portion of IoT services

is being deployed at the network edge. Edge computing, a distributed computing model that

brings computation and data storage closer to the data source and the devices where it is

needed, is increasingly being used to support this deployment. In this topology, sensors transmit

their data to an intermediary device that handles processing tasks like data pre-processing

and aggregation (Venticinque & Amato, 2019). This approach ensures that only the relevant

observations or results are communicated to the cloud, avoiding the transmission of a significant

amount of data, which can reduce network traffic and enhance network performance. The need

for real-time data processing is particularly critical in certain use cases such as IoT healthcare

applications (Devarajan, Subramaniyaswamy, Vĳayakumar & Ravi, 2019), where immediate

action is necessary, making processing close to the resources of utmost importance.

To better understand the benefits of edge computing in IoT systems, consider a smart building

where cameras are used for surveillance and control purposes. In this scenario, the camera

captures real-time video footage that needs to be analyzed and processed to detect specific events

or objects, such as intruders or unauthorized activities. Traditionally, this data would be sent to

2

the cloud for processing and analysis. When it comes to surveillance and control applications,

real-time responsiveness is essential. By processing the data locally at the edge, the camera

can analyze the video feed in real-time and trigger immediate actions, when necessary, without

relying on cloud-based processing, which may introduce latency due to data transmission and

processing time.

Processing the data locally also reduces the burden on the network infrastructure. Video data is

typically large and bandwidth-intensive, which can lead to network congestion and increased

latency when transmitting to the cloud. By processing the data at the edge, only the relevant

information or alerts need to be sent to the cloud, significantly reducing the amount of data

transmitted and relieving the network traffic. This example demonstrates the importance of

processing data locally at the edge instead of relying solely on cloud-based processing. Local

processing improves responsiveness by analyzing the data in real-time, avoids network congestion

and latency, and enhances privacy and security. It showcases how edge computing can enable

efficient and effective IoT deployments, where IoT gateways, which can be resource-limited

edge devices, play a crucial role in ensuring immediate action and timely responses in critical

situations.

IoT devices at the network’s edge operate in a highly heterogeneous environment due to the diverse

processing capabilities, communication protocols, and software requirements. Containers, a

lightweight virtualization technique, have emerged as a solution to address the heterogeneity

challenge. By encapsulating application components and their dependencies, containers can

facilitate the deployment of microservices at the edge level, making it easier to manage and

scale applications while reducing the overhead associated with deploying traditional virtual

machines. Moreover, container orchestration techniques like Swarm (Swarm, 2022) facilitate

resource sharing among IoT edge devices that belong to the same cluster and provide ways

for containers to communicate across virtual networks. Additionally, Kubernetes (kubernetes,

3

2022b) introduces the concept of a pod, which is a group of one or more containers that share

network and storage resources and follow certain operating rules. A pod is the basic unit of

deployment. Within this context, service deployment is achieved by deploying a set of replicas

(i.e., containers or pods) on the available machines that are grouped into clusters. Overall, the

orchestration techniques provide efficient means of communication and resource allocation for

managing IoT devices.

0.2 Problem Statement

Deploying services to devices at the edge of IoT networks is a promising paradigm that can offer

significant benefits, particularly in reducing service response time. However, this approach is

often limited by resource constraints, which can restrict the ability to deploy services effectively.

Consequently, these resource constraints can limit the ability to take full advantage of this novel

paradigm, highlighting the critical need for efficient edge device resource management. Such

resource management is necessary to meet user requirements, such as response time while

reducing resource usage and increasing the deployment capacity for other microservices.

Service auto-scaling is an approach that addresses this need by improving resource utilization in

response to changing demand (i.e., workload). There are essentially two types of autoscaling,

vertical autoscaling and horizontal autoscaling (Al-Dhuraibi et al., 2017). The distinction

between these two types of scaling stems from the manner in which computing resources

are added to the infrastructure. In vertical autoscaling, computing power is added to existing

replicas/nodes. In contrast, horizontal autoscaling increases a system’s capacity by adding more

replicas (e.g., containers) to the environment, allowing for processing and memory load sharing

across multiple devices. In the edge computing context, resources are often limited, which

makes having a mechanism for increasing and decreasing computational resources (i.e., vertical

auto-scaling) on the same node less useful or even unrealistic. Therefore, horizontal auto-scaling

becomes more suitable by dynamically changing the number of replicas (e.g., containers or pods)

4

to distribute the processing load among devices that constitute a so-called cluster. Increasing

the number of service replicas increases the use of available computing resources. Conversely,

reducing the number of service replicas increases the availability of computing resources, which

can then be used for other deployed services.

Resource management is crucial at the edge level, where devices often face limited resources.

Achieving a balance between the use of computing resources and meeting user requirements, such

as response time, is essential. To achieve this, it is necessary to continuously and dynamically

maintain a number of replicas that neither exceeds the demand (overprovisioning) nor fall short

of it (under-provisioning). While increasing the number of replicas can improve the service’s

responsiveness (reducing latency), it also increases the usage of computational resources.

Reactive threshold-based approaches are commonly used by most current auto-scalers, including

industrial solutions like Kubernetes HPA, Google Cloud Platform, Amazon EC2, and Oracle

Cloud, due to their ease of implementation, as observed in Kovács (2019); Nguyen, Yeom,

Kim, Park & Kim (2020); Taherizadeh & Stankovski (2019). These approaches react to the

current system workload based on preconfigured thresholds. However, selecting appropriate

thresholds can be a challenging task, especially when dealing with complex workloads, as noted

in Imdoukh et al. (2019). Additionally, these reactive approaches lack proactivity, which limits

the system’s ability to adapt to the operational environment appropriately. The frequent changes

in the requested workload, such as HTTP requests, make it challenging for reactive approaches

to respond quickly, which can lead to performance issues.

The reactive approach responds to the current workload by adapting the system, such as

provisioning new containers or virtual machines. However, this adaptation process takes time,

which may not be suitable for the subsequent workload. This delay can result in a lag between

the actual workload demand and the system’s ability to scale or adjust accordingly.

5

Proactive auto-scaler anticipate future needs to adapt the system, whereas reactive auto-scalers

react following workload changes. Thus, one key factor that makes behavior proactive is the

ability to forecast future workloads and adapt the system accordingly at the right time. In

proactive scaling, an algorithm is used to predict future workloads based on historical data

(Lorido-Botran, Miguel-Alonso & Lozano, 2014).

There are two common categories of time series data analysis and forecasting methods used in the

literature. The first category includes algorithms based on statistical time series analysis, such as

ARIMA, which have been applied in various studies for workload forecasting, including Lorido-

Botran et al. (2014); Sangpetch, Sangpetch, Juangmarisakul & Warodom (2017); Calheiros,

Masoumi, Ranjan & Buyya (2014); Roy, Dubey & Gokhale (2011); Kan (2016); Li & Xia

(2016); Ciptaningtyas, Santoso & Razi (2017); Meng, Rao, Zhang & Hong (2016). The second

category involves using machine learning algorithms, which are increasingly applied to time

series analysis for workload forecasting, as seen in studies such as Sangpetch et al. (2017);

Imdoukh et al. (2019); Dang-Quang & Yoo (2021). Deep learning-based solutions, including

neural network (ANN) and LSTM algorithms, have also been used in studies such as Calheiros

et al. (2014); Goli, Mahmoudi, Khazaei & Ardakanian (2021). However, it should be noted

that most of these studies are intended for the cloud environment and do not consider resource

limitations, which may make applying these techniques in edge computing challenging. For

instance, in Imdoukh et al. (2019), authors mention that statistical approaches, such as ARIMA,

are known to be slow in responding to dynamic workload demands and can suffer from resource

overuse.

Furthermore, proactive auto-scalers using time series data analysis heavily rely on prediction

accuracy (Doan, Zaharie & Petcu, 2019). Several factors, including the workload pattern, history

windows, machine-learning models, and prediction horizon, affect the accuracy of predictions

(Lorido-Botran et al., 2014). Thus, to enhance auto-scalers’ performance, it is crucial to propose

6

solutions that improve prediction accuracy, enabling them to generate more appropriate actions,

either scaling up or down, in response to the real workload.

Another important aspect to consider is the continuous generation of actions by the auto-scaler,

which can lead to frequent changes in the number of replicas and result in oscillation issues that

waste resources. For example, at time t, the auto-scaler may add a recently released resource

from time t-1, or vice versa. Reactive auto-scaling can exacerbate to the oscillation of the

number of replicas due to its delayed response to the current workload. As the system adjusts its

resources based on the current workload, there is a lag between the workload change and the

system’s adaptation. This delay can result in an inadequate response to subsequent workloads,

leading to undesirable consequences such as increased costs from over-provisioning or decreased

performance from under-provisioning. Therefore, it is essential to consider oscillation mitigation

as an important functionality in the auto-scaling process. By reducing the number of unnecessary

changes in the number of replicas, system performance can be improved, and resource wastage

can be reduced.

Unfortunately, oscillation mitigation has not received sufficient attention in the literature. While

some works, such as Imdoukh et al. (2019); Dang-Quang & Yoo (2021), have proposed solutions

based on the cooling down principle. Simply introducing a delay before scaling down in response

to decreasing workload volume, as proposed by this strategy, may not be enough to effectively

mitigate oscillation. Its effectiveness depends on optimizing the cooling down period, which

can be challenging. A longer period can lead to more over-provisioning, while a shorter period

may reduce the efficiency of oscillation mitigation. Therefore, additional strategies are needed

to effectively mitigate oscillation in auto-scaling systems.

Container-based autoscaling solutions are still an open issue that needs to be addressed (Cardenas,

2018). Designing and implementing an efficient and adequate auto-scaler for containerized

7

services is challenging due to various factors, including dynamic workload characteristics,

resource constraints, and the distributed nature of IoT edge nodes.

0.3 Research objectives

The research problem of this work pertains to the deployment of services on edge devices, which

can offer significant benefits by reducing service response time. However, such deployments

are often limited by resource constraints of edge devices, which hinder the ability to deploy

services. Therefore, this research study aims to investigate solutions to improve the deployment

of container-based IoT services on devices within the same edge cluster. Specifically, we aim to:

• Investigate the use of the MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowledge)

loop for automatic service deployment and define a deployment model as shared knowledge.

We will propose and test an automatic solution that responds to the limitation of reactive

threshold-based approaches, which often suffer from the difficulty of defining threshold

values.

• Propose and validate a novel time-series data pre-processing technique to improve the

prediction accuracy of workload forecasting and test its effectiveness in a service auto-scaling

solution. We will also investigate the possibility of using the same pre-processing technique

for oscillation mitigation.

• Investigate algorithms and techniques to improve the accuracy of workload forecasting,

taking into consideration the resource usage aspect, and test their impact on the auto-scaling

process in the context of edge computing. We will evaluate the performance/resource usage

ratio of various forecasting techniques, ranging from widely adopted techniques such as

ARIMA and LSTM to less resource-intensive techniques such as SVR, RF, and BN. Finally,

we will investigate, even improve, the feasibility and utility of combining these forecasting

techniques.

8

0.4 Methodology

To achieve the aforementioned research objectives, this work follows a methodology inspired

by the MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowledge) loop. It is worth

mentioning that the MAPE-K loop is extensively used to make systems autonomous. The

Monitor step allows for system monitoring, the Analyze step analyzes the system’s state to

determine if intervention is needed, the Planning step generates an intervention plan, and the

final Execute step implements the generated plan. To ensure system autonomy, the process is

iterative.

In terms of the research methodology, each activity in the MAPE-K loop represents a step in

achieving an objective, where:

• The Monitor step includes a literature review and problem formulation. As this process is

iterative, this step may also include a review of the proposed solution currently in development

and validation;

• The Analyze step analyzes the nature of the problem and the intended solution. Depending

on the nature of the problem, the solution may be a proposal for a new process, the use of a

technique, or even its improvement to achieve the research objective. This step may include a

study and learning of existing techniques and tools, such as learning algorithms and datasets;

• The Planning step involves designing the proposed approach in various forms, such as formal

models, mathematical equations, algorithms, approaches, and strategies. The output of this

step may include elements of fine granularity, such as the experimentation protocol;

• The Execution step involves implementing the proposed approach from the Planning step,

conducting experiments, and validation;

In this methodology, the central element of the MAPE-K loop, Shared Knowledge, essentially

represents the result of the documentation activity that takes place with all the loop steps.

The output of the Monitoring step allows for the development of the problem description and

9

formulation as well as the literature review. The documentation of the Analyze step further

develops the problem and research gap description as well as a description of the selected

techniques. The documentation of the Planning step describes the proposed approach, including

different mathematical equations and algorithms. In the Execution step, the documentation logs

the test results and their discussions.

As the MAPE-K process advances and the number of iterations increases, the documentation

becomes increasingly rich and complete. This facilitates the process of compiling a research

article specific to the objective being addressed.

0.5 Contributions

The proposed contributions were guided by the limitations of the existing approaches, as

presented in the problem statement section. These limitations generally rely on the following

elements: resource-consuming, automatic processing as the automatic setting of thresholds,

workload forecasting accuracy, and oscillation mitigation.

The main objective of this work is to propose solutions for deploying containerized services at

the edge level that meet the requirements of resource limitations, environmental heterogeneity,

dynamic workload, and quality of service. To address the limitations of existing approaches, our

contributions are articulated around the following requirements:

• Developing resource-efficient solutions that can handle dynamic workloads and ensure the

quality of service without the need for resource-intensive processing;

• Automatic processing to maintain the deployed system in a suitable state. This automatic

aspect includes the configuration task, such as the setting of rule thresholds;

• Investigating and even improving forecasting techniques to improve workload forecasting

accuracy;

10

• Handling oscillation mitigation issues to ensure stable and efficient operation of containerized

services;

Overall, our contributions were motivated by the need to explore alternative techniques that can

improve the effectiveness and efficiency of containerized service deployment at the edge.

Our first contribution focuses on automating the deployment process to ensure service auto-

scaling and fair distribution of containerized services on devices in the same edge cluster.

To achieve this, we follow the MAPE-K (Monitor-Analyze-Plan-Execute-Knowledge) loop

framework, which provides a systematic approach for managing and controlling the deployment

process. A key aspect of our solution is the use of shared knowledge, which refers to the

deployment and rule models we have developed.

The deployment model captures the different system elements involved in the deployment

process, including the devices and services and their corresponding properties. The rule model,

which builds on the deployment model, defines specific rule categories for each autoscaling

process step, including evaluation, decision, scale, and verification. Both models are formulated

in predicate logic form, which enables using algorithms and strategies to automatically determine

thresholds and ensure efficient scaling.

We assessed the effectiveness of our approach based on various criteria, such as CPU and

memory usage, network traffic, and service response time. Our results demonstrate that the

proposed approach can efficiently adapt the system performance by adjusting the number of

replicas to meet the service performance requirements and ensure the optimal utilization of

system resources.

Our second contribution proposes an improved proactive service auto-scaling approach that

aims to address the research gap in workload forecasting accuracy and oscillation issues. Similar

11

to our first solution, it follows the MAPE-K loop to automatically maintain the required system

performance with optimal resource utilization to cope with dynamic workload changes.

To improve the forecasting model accuracy, we propose to add a data featurization operation

during the pre-processing data phase. Our proposed feature extraction is inspired by Japanese

candlesticks, widely used in the trading domain. The candlestick representation provides an

abstraction that allows traders to understand and predict stock evolution.

To mitigate oscillation, we propose a grid-based approach that benefits from the data and

features used for workload prediction improvement. It is also based on an economic concept,

namely a grid technique. Therefore, we call it grid-based oscillation mitigation, where the grid

lines are determined by the features extracted by our featurization operation used to improve

forecasting accuracy. Our original oscillation mitigation mechanism has the advantage of being

parameterless compared to related work techniques.

We evaluate our approach using the WorldCup’98 (Arlitt & Jin, 2000) and NASA (Dang-

Quang & Yoo, 2021) datasets, widely used in the literature on auto-scaling systems. The

results show a considerable improvement in forecasting accuracy when transforming the original

univariate time series data into a multivariate time series using our feature extraction approach.

The experiments reveal that by combining our grid-based oscillation mitigation with a commonly

used strategy, cool-down, outperforms the state-of-the-art techniques.

The third contribution addresses the complexity of designing and implementing an efficient

auto-scaler for containerized services on the Edge level, which is impacted by dynamic workload

characteristics and resource limitations. Consequently, our work focuses on addressing the

forecasting accuracy issue while considering resource usage, as computing on the Edge is

resource-limited. We propose a methodology to find suitable methods and techniques for

workload forecasting. First, we investigate the convenience and accuracy of common time series

12

data analysis and forecasting techniques such as ARIMA and LSTM. Second, we evaluate less

resource-intensive techniques such as SVR, RF, and BN, considering the performance/resource

usage ratio. Third, we evaluate the use of Ensemble learning to improve prediction accuracy,

addressing the optimization problem under the constraint of the number of forecasting algorithms

that can be applied. We formulate this problem as the Knapsack problem, which is an NP-

complete problem, and propose a heuristic technique to reduce the solution complexity. Our

proposed dynamic Ensemble learning approach effectively handles predicted data outliers and

maintains high accuracy and stability in workload forecasting.

As a complement to our first contribution, we conducted a separate study (Ahmed, Seghir, Al-

Osta & Abdelouahed, 2019) to evaluate the benefits of service deployment based on lightweight

virtualization technologies, such as Docker containers. Containerization offers advantages

such as reusability and easy duplication of deployments. Additionally, containers can help

alleviate the heterogeneity issue in IoT environments by enabling deployment and communication

between different software modules, regardless of the underlying framework. Containers can

be customized to cope with resource constraints on the target node. Container-based solutions

can also take advantage of orchestration techniques such as Swarm and Kubernetes, which

facilitate resource sharing between IoT devices and provide a means of communication between

containers across virtual networks. Our experiments demonstrate the potential of virtualization

tools in resource-constrained contexts such as edge computing.

Another paper (Bali, Al-Osta, Ben Dahsen & Gherbi, 2020) addresses the issue of overload in

monitoring and auto-scaling solutions, considering the resource limitations of Edge computing.

We argue that existing monitoring tools can consume a significant amount of resources, which is

often overlooked in the auto-scaling literature. To demonstrate this, we conducted an experiment

that showed the high resource consumption of the Cadvisor monitoring tool (cAdvisor, 2022)

when deployed on a resource-limited device such as the Raspberry Pi 3.

13

Our proposed monitoring approach relies on a rule-based model to evaluate the significance of

measured data metrics, such as CPU utilization exceeding 80%, before forwarding them to a

higher-level cluster node component for data aggregation. This mechanism helps reduce the

volume of measured data to be reported, reducing the computing workload required to process

this data. Our rule model features dynamic rule updating, including automatically set threshold

ranges. This automatic update of monitoring rules is based on the analysis of data metrics

collected from different cluster nodes, using a data mining technique, namely, the association

rule (Bali et al., 2020). Our evaluation shows a significant reduction in the communication

volume of monitoring metrics, which can translate into reduced resource consumption.

It is important to note that our last two contributions are not included in this manuscript,

as they were published separately as conference papers. Additionally, while we have other

publications related to the context of our work, but do not directly address our research problem,

in the following publication section, we will provide a comprehensive list of all our relevant

publications.

0.6 Publications

The publications are organized into two categories: Articles and Communications. They are

listed in chronological order based on their submission date.

0.6.1 Articles

• Al-Osta Mahmud, Ahmed Bali, and Abdelouahed Gherbi. "Event driven and semantic based

approach for data processing on IoT gateway devices." Journal of Ambient Intelligence and

Humanized Computing 10 (2019): 4663-4678;

• Bali, A., Al-Osta, M., Ben Dahsen, S., & Gherbi, A. (2020). Rule based auto-scalability of

IoT services for efficient edge device resource utilization. Journal of Ambient Intelligence

and Humanized Computing, 11, 5895-5912;

14

• Elrotub, M., Bali, A., & Gherbi, A. (2021). Sharing VM resources with using prediction

of future user requests for an efficient load balancing in cloud computing environment.

International Journal of Software Science and Computational Intelligence (ĲSSCI), 13(2),

37-64.

• Bali, Ahmed, Gherbi, A, and Yassine El Houm., Improved Forecasting based on Data

Featurization for Proactive Service Auto-Scaling. Submitted to: Journal of King Saud

University - Computer and Information Sciences. Minor revisions.

• Bali, Ahmed and Gherbi, A, Proactive IoT Service Auto-Scaling for an Efficient Edge

Resource Utilization: Methods and Improvements. Submitted to: Future Generation

Computer Systems. Under Review.

0.6.2 Communications

• Al-Osta, M., Ahmed, B., & Abdelouahed, G. (2017). A lightweight semantic web-based

approach for data annotation on IoT gateways. Procedia computer science, 113, 186-193;

• Bali, A., Al-Osta, M., & Abdelouahed, G. (2017). An ontology-based approach for IoT data

processing using semantic rules. In SDL 2017: Model-Driven Engineering for Future Internet:

18th International SDL Forum, Budapest, Hungary, October 9–11, 2017, Proceedings 18 (pp.

61-79). Springer International Publishing;

• Ahmed, B., Seghir, B., Al-Osta, M., & Abdelouahed, G. (2019). Containe based resource

management for data processing on iot gateways. Procedia Computer Science, 155, 234-241;

• Bali, A., & Gherbi, A. (2019, December). Rule based lightweight approach for resources

monitoring on IoT edge devices. In Proceedings of the 5th International workshop on

container technologies and container clouds (pp. 43-48).

15

0.7 Thesis Organization

As this work is article-based, this thesis is structured as follows: Chapter 1 provides a

comprehensive literature review and general background on the research topic. Chapters 2,

3, and 4 detail each publication in chronological order. Finally, we conclude the thesis by

summarizing the main findings and contributions of our work and discussing their implications

for future research in the field.

CHAPTER 1

BACKGROUND AND LITERATURE REVIEW

This chapter provides a comprehensive literature review of the state-of-the-art deployment of

IoT services on edge devices, serving as a foundation for our research contributions in this area.

We explore different aspects of deploying IoT systems on edge devices, including virtualization,

auto-scaling, and workload forecasting, examining each aspect in a separate section. Each

section starts with a brief overview of the relevant knowledge background, followed by a review

of existing related work to contextualize our research. Finally, we position our contributions by

identifying gaps and limitations within the existing literature, highlighting the originality and

significance of our proposed approach.

1.1 Virtualization techniques for the Edge computing

The potential benefits of containers for application deployment and management have garnered

significant attention in academic and industrial research communities. The section is divided

into three subsections. In the following subsections, we review existing literature on utilizing

containers for service deployment and resource management in edge computing. The first

subsection provides a brief background on virtualization and its use in edge computing. The

second subsection discusses the related work on using containers for service deployment and

resource management in the context of edge computing, considering the unique challenges

and opportunities presented by this environment. Finally, the third subsection describes the

positioning of our approach within the existing literature.

1.1.1 Brief background

Before we review virtualization techniques, this section briefly overviews some fundamental

concepts related to the topic.

18

1.1.1.1 Internet of Things

Kevin Ashton first introduced the concept of the Internet of Things (IoT) in 1999, which referred

to a tracking system that utilized RFID tags connected to the Internet and attached to physical

objects. Over time, this concept has evolved to encompass a broader range of interconnected

devices and systems that enable communication and data exchange between physical objects and

digital networks. This development has led to new applications and services that leverage the

vast amounts of data generated by connected devices, thereby improving efficiency, enhancing

decision-making, and enabling new business models across various industries and domains,

such as healthcare, transportation, and manufacturing. Consequently, IoT has emerged as a

significant area of research and innovation with crucial implications for the future of technology

and society.

IoT architecture design is a crucial process in the development of IoT systems, and several factors

influence this process, including scalability, interoperability, data storage reliability, and Quality

of Service (QoS), (Wu, Lu, Ling, Sun & Du, 2010; Gubbi, Buyya, Marusic & Palaniswami,

2013). Several proposals have been presented in the literature to address this process, including

different IoT architectural views, such as Mashal et al. (2015); Gubbi et al. (2013); Wu et al.

(2010). Typically, these proposals rely on a three-layer architecture comprising Perception,

Network, and Application layers.

The perception layer, or the device layer, consists of sensors and actuators that run various

functionalities to acquire data like temperature, humidity, location, weight, and pressure. The

network layer maintains bidirectional communication between the perception and application

layers by assigning unique addresses to all connected objects. This layer may incorporate various

short and long-distance communication protocols, including Bluetooth, ZigBee, WiFi, and Lora,

to facilitate the seamless transmission of information. The role of the application layer is to

provide customized services to customers upon requests.

This architecture can leverage cloud and edge computing to enhance its ability to offer advanced

services that cater to users’ needs. Cloud computing enables the IoT application to offer services

19

that require large-scale data processing and analysis. On the other hand, by utilizing edge

computing, the application IoT can perform data processing and analysis at the edge of the

network, reducing latency and enhancing the responsiveness of the system.

1.1.1.2 Edge computing

The growth in IoT networks and the exponential growth of associated data generated have

created new challenges in meeting the quality of service (QoS) requirements of various IoT

applications. The inadequacy of traditional cloud computing-based solutions in fulfilling the

time-sensitive and context-aware service needs of IoT applications has led to the emergence

of edge computing. It involves extending cloud capabilities to the network edge, closer to the

data source, to address these requirements. As a result, edge computing has become a crucial

element in IoT solutions, especially for handling time-sensitive applications and minimizing the

amount of data transmitted to the cloud. By adopting edge computing, IoT solutions can achieve

lower latency and higher bandwidth, enabling faster and more efficient data processing at the

network edge (Khan, Ahmed, Hakak, Yaqoob & Ahmed, 2019).

The various levels of Edge computing are depicted in Figure 1.1, encompassing devices ranging

from low-resource to high-performance servers in terms of computational capacity.

It is worth noting that our study in this work specifically targets resource-limited devices,

including IoT devices and gateways.

IoT devices: At the lowest level of IoT systems, IoT devices or sensor nodes comprise limited

resources, such as microcontrollers and sensors. Sensors measure environmental parameters

such as temperature and gas detection, and their accuracy is crucial for the overall performance

of IoT systems (Poongodi, Rathee, Indrakumari & Suresh, 2020; Yu et al., 2017). They detect

changes and events in the environment, serving as the digital backbone of IoT systems and

relaying information to higher layers for analysis and storage.

20

Figure 1.1 Levels of Edge computing and IoT

(Ashok & Christine, 2023)

Gateway devices: In the context of IoT, gateway devices play a crucial role in connecting

sensor nodes to cloud services or other remote networks. They can collect, aggregate, and

partially process sensory data from multiple nodes, as well as receive controlling instructions

and perform decision-making tasks. Recent improvements in gateway devices, which have more

computing resources than IoT devices (i.e., sensor nodes), have fueled the trend toward shifting

computing tasks to the network edge. By assigning data preprocessing tasks to IoT gateways,

system responsiveness can be improved for time-sensitive use cases (Yu et al., 2017; Al-Fuqaha,

Guizani, Mohammadi, Aledhari & Ayyash, 2015).

1.1.1.3 Virtualization techniques

Virtualization is a technology that enables the creation of useful IT services using resources

typically tied to hardware. It allows the full capacity of a physical machine to be utilized by

distributing it among multiple users or different environments (Hat, Accessed 2023). The

virtualization of systems has significantly evolved in recent years, providing system architects

and developers with a plethora of tools to leverage.

21

Virtualization and containerization are two widely used techniques for hosting applications in a

computing system. Virtualization involves creating virtual versions of computing resources,

while containerization involves encapsulating an application in a container with its operating

environment (Hat, Accessed 2023). These mechanisms enable the efficient use of resources and

the isolation of applications, improving their reliability and scalability.

Virtualisation Virtualization is a technique that allows a physical computer or server to be

partitioned into multiple virtual machines (VMs). Each VM is a self-contained computer

resource that runs on software rather than a physical machine. A "host" physical machine can

run one or more "guest" VMs, each with its operating system and applications. The VMs

operate independently of each other, even if they are running on the same host. This enables, for

example, a MacOS VM to run on a Windows host machine.

The process of virtualization is facilitated by hypervisor software. A hypervisor can be installed

directly on the hardware or on top of an operating system. It divides physical resources into

virtual environments for use by virtual machines. Figure 1.2 depicts a virtualization architecture.

Figure 1.2 Virtualization

explanation scheme (Baeldung,

Accessed 2023)

Figure 1.3 Containerization

explanation scheme (Baeldung,

Accessed 2023)

22

Containerization, a lightweight virtualization technique The containerization provides a

lightweight alternative to virtualization by using the host OS instead of installing a separate OS

for each VM (Hat, Accessed 2023). Containers provide a popular virtualization method that

allows applications to operate independently of the underlying host operating system. They can

host microservices, software processes, or large-scale applications, bundling all necessary files

such as executables, binary code, and configuration files. Compared to traditional virtualization,

containers are more lightweight, portable, and deploy faster with reduced overhead as they

do not need an entire operating system image. Container clusters, managed by a container

orchestrator like Kubernetes, can be used for large-scale application deployments (NetApp,

Accessed 2023). The containerization architecture is presented in Figure 1.3, which has been

sourced from Baeldung (Accessed 2023).

In the context of IoT environments, lightweight virtualization techniques, especially containers,

have gained widespread adoption for deploying and managing services on IoT devices to

address the challenges of a heterogeneous stack of technologies. Containers offer advantages

by packaging IoT services and their dependencies into independent and autonomous modules.

Additionally, container orchestration techniques, such as Swarm and Kubernetes, enable resource

management at the cluster level and provide a means of communication among containers over

virtual networks. In the following subsection, we review the literature on adopting virtualization

techniques in IoT applications.

1.1.2 Related work

Several studies have explored the use of container technologies, such as Docker, for virtualization

and resource management on edge devices in IoT networks. Ismail et al. (Ismail et al.,

2015) evaluated Docker’s effectiveness as an edge computing platform and found that it can

provide significant advantages for IoT applications regarding deployment, management, and

fault tolerance. Similarly, Morabito (Morabito, 2017) conducted a performance evaluation of

container virtualization on IoT edge devices and demonstrated the potential for reducing resource

overheads and improving scalability. Ruchika (Ruchika, 2016) also evaluated Docker for IoT

23

applications and found that it can provide effective means for managing resources and scaling

IoT applications on the edge. However, effective resource management in container-based edge

computing environments is a pressing need, as highlighted by these studies.

Given the growing importance of edge computing in IoT networks, there is a critical need to

explore the development of resource management strategies using container technologies. This

is an important research area that requires further investigation.

In Morabito & Beĳar (2016), a design approach is proposed for processing data at the network

edge using lightweight virtualization technologies like Docker containers. The approach is

customized for IoT applications, where functional components are implemented as reusable

containers, providing a flexible environment. It enables dynamic provisioning of various device

and data management functions along with orchestration capabilities. However, evaluating the

orchestration and data processing modules is not concrete, although CPU, memory, and network

usage are assessed.

A container-based approach for resource allocation in IoT, aimed at improving the utilization

of resources offered by edge devices while reducing network traffic, is proposed in Renner,

Meldau & Kliem (2016). The proposed approach facilitates the dynamic allocation of resources

to various applications and users, thereby optimizing data processing at the edge level rather

than transmitting it to the cloud. Although the feasibility of the approach has been assessed in

terms of performance, considering the resource-constrained nature of edge devices, the case

study presented primarily aims to demonstrate its feasibility rather than providing a thorough

analysis of resource utilization enhancements, such as CPU and memory.

The proposed approach in Brogi, Mencagli, Neri, Soldani & Torquati (2017) utilizes containers

for autonomic data stream processing application management and orchestration in the Fog layer.

Docker containers encapsulate Autonomic Applications (Apps), and Application Controllers

(ACs) interact with the Fog Node Controllers (FNCs) to manage resource allocation. Although

this approach enhances scalability and agility, it assumes a rich-resource infrastructure and does

not address resource-limited scenarios common in IoT applications.

24

1.1.3 Positioning of our approach

The reviewed literature highlights the positive impact of container technology on resource

utilization and its potential to address the challenge of heterogeneity. Virtualization is a

crucial component of cloud computing, allowing multiple work environments to run on a

single server. Detailed explanations of virtualization architecture, including technologies and

trends, are available in various sources, such as Varghese & Buyya (2018) and Pahl, Brogi,

Soldani & Jamshidi (2017). Containers, another virtualization property, enable microservices

to be deployed on cloud servers. Containers offer significant advantages, including scalability,

resource efficiency, and portability, making them an attractive option for modern application

development and deployment.

However, introducing container concepts brings new challenges for deploying container-based

applications. For instance, in monitoring, as containers work together to provide microservices,

they become a distributed system. Especially at a larger scale, they require monitoring many

dynamic parts, generating an explosion of metrics. For example, a monolithic application may

have 50 metrics to monitor, but its deployment based on containers multiplies the number of

metrics to monitor by the number of necessary containers (e.g., 30 containers). Assuming we

have 30 containers, the total number then becomes 50 * 30 = 1500 metrics.

As the use of container-based deployment continues to increase, there is a need for a new

monitoring approach that can effectively observe the health of the system. However, it is not

sufficient to only evaluate the feasibility and effectiveness of container-based deployment. An

effective approach for resource management using this technology also needs to be described to

ensure optimal utilization of resources. In our first contribution (Chapter 2), we define a model

describing the concepts related to service deployment using containers. Due to the ephemeral

nature of containers and their increasing scale, our model considers cluster and service concepts

instead of monitoring only individual container state. Our model aims to make the deployment

process automatic and optimize resource utilization fairly.

25

1.2 Auto-scaling techniques

This section focuses on the key functionality of distributed systems, auto-scaling, especially in

the context of edge computing. Edge computing involves delegating specific tasks from the cloud

to peripheral devices, such as gateways located closer to the data source. To ensure efficient task

distribution among computing devices in a network, automatic scaling is essential to determine

how computing and processing capabilities increase when extended to multiple machines.

1.2.1 Brief background

Elasticity is one of the fundamental properties of a cloud environment, allowing for managing

unpredictable changes in workloads (Fernandez, Pierre & Kielmann, 2014). In their article

(Al-Dhuraibi et al., 2017), Al-Dhuraibi et al. address the primary problems and research

challenges related to elasticity in the cloud, emphasizing the critical importance of optimizing

the auto-scaling process to ensure elasticity.

1.2.1.1 Auto-scaling concept

Auto-scaling is a technique commonly used in distributed computing, particularly in the context

of cloud computing, to dynamically adjust the allocation of computing resources across a cluster

of servers based on fluctuations in traffic load. Scaling is a key orchestration feature, providing

policy, description, and flexibility for managing containers and virtual machines in the cloud

environment (Kovács, 2019).

Auto-scaling is a powerful feature that enables dynamic management of server resources,

allowing them to be allocated or released in response to changes in user activity. For instance,

when user traffic surges, additional servers can be assigned to accommodate the increased load,

while a reduction in active servers during periods of low demand optimizes resource utilization.

To demonstrate this functionality, an example similar to the study Mishra, Sahoo & Parida (2020)

is presented, where the number of servers running behind a web application can be automatically

adjusted based on the number of active users. Since server requirements fluctuate throughout

26

the day, and servers are finite resources, it is critical to maintain an adequate number of servers

to support the current load.

The auto-scaling methodology is closely linked to the concept of load balancing, drawing

inspiration from it in order to maintain optimal performance across the computing environment

(Mishra et al., 2020). The benefits of auto-scaling extend beyond improved performance

to include increased efficiency and cost-effectiveness in providing computing resources. By

optimizing resource allocation based on real-time demand, auto-scaling minimizes wastage and

reduces the overall resource management cost.

1.2.1.2 Auto-scaling classification

Auto-scaling approaches can be classified into two categories:

Horizontal vs. vertical auto-scaling There are essentially two types of auto-scaling, vertical

and horizontal (Al-Dhuraibi et al., 2017), as presented in Figure 1.4. The difference between

these two types of scaling stems from the manner in which computing resources are added to

our infrastructure. In vertical auto-scaling, additional computing power is added to existing

replicas/nodes. In horizontal auto-scaling, additional capacity is achieved by adding more

instances (i.e., replicas) to the environment and sharing processing and memory load across

multiple devices, such as duplicating containers.

Reactive vs proactive auto-scaling Furthermore, auto-scaling is also categorized into two types:

proactive and reactive (Lorido-Botran et al., 2014).

Reactive auto-scaling algorithms respond to changes in workload or resource usage by adjusting

resource allocation at demand based on predefined rules and thresholds. This approach has been

used to develop numerous solutions, including industrial solutions such as Autoscaler Horizontal

Pod (HPA) of Kubernetes (Kubernetes, Accessed 2023b) and Amazon EC2 (Services", Accessed

2023).

27

Figure 1.4 Types of Auto-scaling (Al-Dhuraibi et al., 2017)

In the proactive auto-scaling approaches, the future resource demand is predicted based on

historical data, using techniques such as time-series analysis. For that, various statically and

machine learning algorithms are used, such as AutoRegressive Integrated Moving Average

(ARIMA) and Long Short-Term Memory (LSTM). The proactive approach has been implemented

in numerous solutions, such as those presented in Goli et al. (2021), Imdoukh et al. (2019), and

Calheiros et al. (2014).

1.2.2 Related Work

Auto-scaling is a popular research area, particularly in the context of cloud computing. In Kovács

(2019), auto-scaling is defined as the dynamic and automatic adjustment of computing resources

in a set of servers based on traffic workload. Scaling is also an essential aspect of orchestration

in terms of policy and flexibility for cloud containers and virtual machines. Auto-scaling is

beneficial for meeting customer resource requirements by reducing the number of active servers

when activity is low and launching new servers when activity is high.

The popularity of container-based deployment is increasing in various domains, including edge

computing, as demonstrated by research such as Khazaei, Bannazadeh & Leon-Garcia (2017)

28

and Wong, Zavodovski, Zhou & Kangasharju (2019). It is worth noting that in the case of

edge computing with limited resources, having a mechanism for increasing and decreasing

computational resources (i.e., vertical auto-scaling) on the same node is less useful or even

unrealistic. Therefore, horizontal auto-scaling becomes more suitable by dynamically changing

the number of replicas (e.g., containers or pods) to distribute the processing load among devices

that constitute a so-called cluster.

We present a comprehensive review of the related work in the field of auto-scaling techniques

for edge computing. We categorize this related work into four elements: Reactive Auto-Scaling

Approaches, Proactive Auto-Scaling Approaches, Featurization for Forecasting Accuracy

Improvement, and Oscillation Mitigation.

1.2.2.1 Reactive Auto-Scaling

For reactive auto-scaling that react to current system workloads, often based on predefined

thresholds, we examine various approaches and highlight their strengths and limitations.

In Khazaei et al. (2017), an Autonomic Management System (AMS) is proposed as a module for

managing resources and providing container-based auto-scaling solutions for IoT applications.

The resource management tasks are divided into three layers: Core-Cloud, Edge-Cloud,

and Aggregator (IoT gateways), and the system utilizes the Monitor-Analyze-Plan-Execute-

Knowledge (MAPE-K) loop. The AMS scales IoT applications by analyzing the workload and

internal state of the nodes.

In their study Wong et al. (2019), the authors aim to address the absence of location-awareness

features in container-based clustering and deployment techniques. To achieve this, they propose a

two-module approach consisting of classification and edge scheduling modules. The classification

module categorizes scaling requests based on user-defined metrics like CPU utilization. In

contrast, the edge scheduling module deploys containers to the edge node with the lowest possible

latency based on location. However, one notable limitation of these modules is that they do not

consider the overall system state when determining the need for scaling operations.

29

These previously presented works and others in Kovács (2019); Nguyen et al. (2020); Taher-

izadeh & Stankovski (2019), are a reactive approach. A reactive auto-scaler reacts following

workload changes. The reactive approaches are generally based on rules with predefined

thresholds, making these approaches easy to implement. However, the reactive approaches

still lack proactivity, which limits the system’s ability to adapt to the operational environment

appropriately. The frequent changes in the requested workload, such as HTTP requests, make it

challenging for reactive approaches to respond quickly, which can lead to performance issues.

More precisely, it generates oscillations due to sudden and unpredictable workload changes. As

a result, the reactive approach results in waste due to the over-provisioning of resources and

degradation of the system’s performance when releasing the resources that the system needs.

To overcome the limits of the reactive approaches in response to changes in system workload

demands, Klinaku et al. (Klinaku, Frank & Becker, 2018) proposed CAUS (Custom AUtoScaler)

tool, which is an elasticity control tool for containerized microservices. In addition to the reactive

mechanism, CAUS uses a second mechanism that manages additional containers as a pool to

meet changing needs during the silent period. Tests of CAUS have shown an improvement over

a purely reactive approach. Nevertheless, the use of the pool mechanism can generate unneeded

containers. Additionally, the performance of this approach to deal with load peaks depends on

custom threshold values.

1.2.2.2 Proactive Auto-Scaling Approaches

Proactive auto-scaler anticipates future needs to adapt the system. Thus, one key factor that

makes behavior proactive is the ability to forecast future workloads and adapt the system

accordingly at the right time. In the study Dang-Quang & Yoo (2021), the authors have shown

that their proactive auto-scaler surpasses Kubernetes’ default horizontal autoscaling pod (HPA)

in accurately and quickly provisioning and de-provisioning resources. This capability is a

significant aspect of proactive auto-scaling, which can forecast future workloads and adjust

the system accordingly at the optimal time. Proactive scaling involves using an algorithm to

30

forecast future workloads based on historical data (Lorido-Botran et al., 2014). The subsequent

paragraphs will discuss some proactive approaches.

Kan et al. (Kan, 2016) attempt to integrate both reactive and proactive approaches in their

"Docloud" approach, which is an elastic cloud platform based on the Docker container manager.

This platform adapts to changes in workload by adding or removing containers to meet the

system’s performance needs. The control that manages this automatic scaling operates in hybrid

mode, integrating proactive mode for "scaling down" and reactive mode for "scaling up". The

architecture of this platform consists of an HAProxy application load balancer, which serves

as the entry point for the web application, linked to a set of Docker containers for the web

application. In their approach, to perform proactive scaling down, the system needs to predict

future workloads by using the ARMA method (Roy et al., 2011). After obtaining the predicted

workload, the system must check if the previous workloads are lower than the provisioning level.

If this is the case, it introduces a delay before executing the scale-in to reduce the oscillation

effect. Similarly, Li and Xia (Li & Xia, 2016) also used the same scaling approach, but this time

they used an autoregressive moving average, which also gave good test results. However, Li and

Xia (Li & Xia, 2016) did not take into account the management of the oscillation problem in

their studies.

Ciptaningtyas et al. (Ciptaningtyas et al., 2017) proposed a resource elasticity controller

approach for containerized systems. The work experimented with different combinations of

parameters of the ARIMA "AutoRegressive Integrated Moving Average" model to optimize

the accuracy of future workload prediction. The test results in the study of Ciptaningtyas et al.

(Ciptaningtyas et al., 2017) show that the ARIMA model was able to achieve the lowest error

rate. However, the study overlooked the issue of oscillation mitigation and did not take into

account time series data analysis for the parameterization of the ARIMA model. This aspect

was partially discussed in the work of Meng et al. (Meng et al., 2016), which proposes the

tool CRUPA "Container Resource Utilization Prediction Algorithm". CRUPA is a container

management platform that uses the ARIMA algorithm to make predictions on future workloads

to meet the needs of automatically scaling containers in its platform. However, the approach’s

31

efficiency is only compared with the threshold-based (reactive) approach, without addressing

the oscillation mitigation or considering resource utilization during tool execution.

In Goli et al. (2021), the authors propose a proactive auto-scaling approach called Waterfall for

microservices applications. This approach uses machine learning models to predict Request

Rate and average CPU Utilization under a specific load. To achieve the target performance

objective, the approach employs Linear Regression (LR), Random Forest (RF), and Support

Vector Regressor (SVR) models. Additionally, Waterfall considers the impact of scaling one

microservice on other microservices under a given workload by utilizing the microservice

graph that shows the dependencies between microservices. Experimental results demonstrate

that Waterfall outperforms Kubernetes’ default HPA auto-scaler regarding response time and

throughput, indicating that considering the impact of dependencies and taking appropriate

measures in a timely manner can enhance the performance of microservices applications.

However, the study does not compare the performance of the proposed approach to the alternative

of independently auto-scaling each microservice. Moreover, the approach’s consideration

of dependencies can introduce complexity, which is not thoroughly examined in the study.

For example, cyclic dependencies and multiple dependencies for a microservice can occur,

necessitating the need to ensure the predecessors’ microservices before initiating auto-scaling.

Additionally, Waterfall does not address the issue of oscillation, which can occur due to rapid

changes in workloads.

In their work, Imdoukh et al. (Imdoukh et al., 2019) proposed a proactive approach for automatic

scaling of Docker containers using deep machine learning, specifically short and long-term

memory (LSTM). Their proposed auto-scaler architecture follows the MAPE-K control loop,

with a prediction model based on LSTM used to anticipate future HTTP workload and determine

the number of containers required to process incoming requests, thus avoiding delays from

starting or stopping containers. Similarly, authors of Dang-Quang & Yoo (2021) proposed an

approach based on the MAPE-K loop. They employed Bidirectional Long Short-term Memory

(Bi-LSTM) to predict the number of future HTTP workloads.

32

1.2.2.3 Featurization for Forecasting Accuracy Improvement

While many proactive auto-scaling studies have traditionally focused on univariate time series

data, such as workload, it has been widely recognized in the literature that incorporating

multivariate data (i.e., features) can significantly improve forecasting accuracy. Cetinski & Juric

(2015) demonstrated the importance of extending training data with relevant features, such as

the time of day and weekends.

In the context of auto-scaling, LSTM models have been shown to effectively capture complex

non-linear feature interactions when applied to multivariate data with numerous dimensions

and a substantial volume of data (Ogunmolu, Gu, Jiang & Gans, 2016). Laptev, Yosinski,

Li & Smyl (2017) proposed a novel LSTM architecture that leverages an autoencoder for feature

extraction, achieving superior performance compared to the vanilla LSTM model. In their data

preparation process, they incorporated additional specific features such as weather information

(e.g., precipitation, wind speed, temperature) and city-level information (e.g., current trips,

current users, local holidays). However, most of these additional features cannot be automatically

extracted and need to be logged during data collection.

Various classical statistical time series features have been considered in the literature to improve

forecasting accuracy. Hyndman, Wang & Laptev (2015) explored features such as mean,

variance, ACF (Auto-correlation Function), trend strength, linearity, peak, and season. Di,

Kondo & Cirne (2012) focused on important and predictive statistical properties of host load,

including mean load, load fairness index, noise-decreased fairness index, and N-segment pattern.

However, these derived features, particularly those related to trend and seasonality, usually

require manual analysis to identify their parameters. Chakraborty, Mehrotra, Mohan & Ranka

(1992) emphasized the significance of considering correlations among different metrics to

improve prediction accuracy and avoid the distortion of forecast models. They attempted to

select appropriate features, such as disk space, disk IO time, memory, and CPU.

To further illustrate the significance of incorporating relevant features, Wang et al. (2021)

established a dataset by collecting features of complex system simulation to improve the resource

33

prediction performance of simulation applications in the cloud. These features include average,

maximum, and minimum values of usage metrics such as CPU, memory, file system, network

(receive and send bytes), communication delay, and execution time. Similarly, Kao, Chang,

Cho & Shun (2020) focused on communication metrics, specifically incoming traffic, outgoing

traffic, number of connections, and network traffic load (per day). These features need to be

obtained during data logging since they are not derived automatically.

1.2.2.4 Oscillation Mitigation

Another important aspect to consider is the continuous generation of actions by the auto-scaler,

which can lead to frequent changes in the number of replicas and result in oscillation issues that

waste resources. For example, at time t, the auto-scaler may add a recently released resource

from time t-1, or vice versa. Therefore, it is essential to consider oscillation mitigation as an

important functionality in the auto-scaling process. By reducing the number of unnecessary

changes in the number of replicas, system performance can be improved, and resource wastage

can be reduced.

Unfortunately, oscillation mitigation has not received sufficient attention in the literature. To

overcome this limitation, the authors of Imdoukh et al. (2019) introduced a gradual decrease

technique (GDS), as a Cooling-Down Strategy (CDT), which introduces a delay before a resource

de-provisioning. The approach presented in Dang-Quang & Yoo (2021), employs also a resource

removal strategy (RRS), which removes some resources during workload bursts.

The two previous works propose GDS and RRS strategies to mitigate oscillation. Although these

strategies, GDS and RRS, have demonstrated efficacy in reducing oscillation, their effectiveness

depends on certain parameters such as delay, which require optimization to achieve optimal

results.

34

1.2.3 Positioning of our Work

In this section, we present the positioning of our research contributions within the context of

existing approaches for IoT service auto-scaling in the edge computing. Our contributions aim to

address the limitations of existing approaches and provide more efficient and effective solutions,

namely, a reactive approach, a proactive approach, a novel featurization technique for improved

forecasting accuracy, and an innovative oscillation mitigation strategy.

1.2.3.1 Our Reactive Approach

According to the reviewed literature, several works have addressed reactive auto-scaling using

rules with thresholds based on monitoring data collected at the server component level, such

as CPU and RAM (Kubernetes, Accessed 2023a; Taherizadeh & Stankovski, 2019). Reactive

approaches are often based on a predefined set of rules with thresholds, making them easy

to implement. Moreover, this simplicity makes the Reactive threshold-based approaches are

commonly used by most current auto-scalers, including industrial solutions like Kubernetes

HPA. However, selecting appropriate thresholds can be challenging, especially when dealing

with complex workloads, as noted in Imdoukh et al. (2019). To optimize the configuration

of thresholds, auto-scalers can use static heuristic techniques offline according to predefined

workloads (Zhong & Buyya, 2020). These strategies are unable to cope with highly dynamic

workloads in which applications must scale at runtime (Zhong, Xu, Rodriguez, Xu & Buyya,

2022).

To address the aforementioned gap, our approach presented in our first contribution employs

descriptive models to facilitate service deployment on IoT edge devices. It defines a rule set for

the various stages of the MAPE-K loop. Additionally, in conjunction with our work Bali et al.

(2020), our approach utilizes the association rule technique to automatically determine optimal

thresholds for reactive auto-scaling. Furthermore, our approach considers the overall cluster

load to promote resource sharing among devices within the same cluster. Unlike related works,

35

our approach considers the system state from individual elements, such as containers and nodes,

to the overall state of the cluster and service.

1.2.3.2 Our Proactive Approach

The proactive auto-scaling approach, which can anticipate future needs to adapt the system, has

been studied in several articles using time series data analysis Calheiros et al. (2014), Messias

et al. (2016), Prachitmutita, Aittinonmongkol, Pojjanasuksakul, Supattatham & Padungweang

(2018), Imdoukh et al. (2019), and Tang, Liu, Dong, Han & Zhang (2018). The literature uses

two common categories of time series data analysis and forecasting methods.

First, algorithms are based on statistical time series analysis (e.g., ARIMA) such as those

presented in Lorido-Botran et al. (2014); Calheiros et al. (2014); Roy et al. (2011); Kan (2016);

Li & Xia (2016); Ciptaningtyas et al. (2017); Meng et al. (2016). These statistical approaches

are slow in the case of dynamic workload demands and suffer from resource overuse (Imdoukh

et al., 2019). Since most of this work is intended for the cloud environment, the application of

these techniques in edge computing is restricted by resource limitations.

Second, there are deep learning-based solutions such as the neural network (ANN) and LSTM

algorithms, for instance, in Calheiros et al. (2014); Goli et al. (2021). In Imdoukh et al.

(2019); Dang-Quang & Yoo (2021), the experimental results show that LSTM model predicts as

accurately as the ARIMA model but with a faster prediction speed.

However, the efficiency of auto-scalers using time series data analysis is highly dependent on

prediction accuracy (Doan et al., 2019). This accuracy, in turn, depends on parameters such as

the workload pattern, history windows (Lorido-Botran et al., 2014) as well as a machine-learning

model and the prediction horizon. Thus, it is required to propose solutions that improve

prediction accuracy. As noted by Qu, Calheiros & Buyya (2018) and Cardenas (2018), there is

still a need to address the issue of container-based autoscaling, which remains an open research

problem.

36

To enhance prediction accuracy, our second contribution (Chapter 3) introduces an automated

approach based on feature extraction, or featurization, of the data. By extracting features such as

maximum and minimum values, a general description of the data window is obtained and used

to predict future workload. Incorporating these features results in significant improvements in

prediction accuracy. Unlike other solutions (e.g., Imdoukh et al. (2019); Dang-Quang & Yoo

(2021)), our model is multivariate, meaning that it utilizes both historical workload values

and the automatically generated features. This automatic generation reduces the need for data

preparation compared to classical multivariate approaches that require the collection of additional

features. In the subsequent subsection, we further emphasize the advantages of employing our

featurization approach.

1.2.3.3 Our Featurization Approach

In our approach, instead of relying on pre-existing multivariate features, we propose the

automatic extraction of features from the univariate data presented within each data window

using non-linear functions. Inspired by Japanese Candlesticks, a well-known technique used in

the trading domain, we apply this featurization technique to each data window, deriving features

automatically. This approach eliminates the need for manual analysis of statistical properties,

especially trend and seasonality parameters, which simplifies the data preparation process and

enhances the accuracy of time series forecasting.

By focusing on the data window, which serves as the prediction model (LSTM) input, we capture

window-specific features that contribute to improved short-term predictions. Moreover, the set

of generated features from a sequence of data windows helps shape the time series data patterns,

leading to enhanced long-term predictions.

Finally, it is worth noting that our featurization approach proposed in this study can be used in

other scientific fields where there is a need to make more accurate time-series forecasting, such

as transportation domain (Nguyen, Kieu, Wen & Cai, 2018), where there is a need for traffic

flow prediction.

37

1.2.3.4 Our Oscillation Mitigation

Our approach also benefits from the generated features to address the oscillation behavior. The

feature values form a value grid, where each line (i.e., value) represents a reference action. This

grid enables matching the actions generated by our auto-scaling system to the reference actions

to reduce the oscillation issue. We have called this original method of handling oscillation

’grid-based oscillation mitigation’.

Our approach has a further advantage, as the grid values change dynamically according to

the historical data window used. It is a parameterless mechanism that offers better oscillation

mitigation compared to the common used strategy, the cooldown timer (CDT). Additionally,

combining our approach with the CDT mechanism leads to even greater improvement in

oscillation mitigation. This makes our approach less demanding and more effective in handling

the challenging problem of oscillation in auto-scaling.

In the upcoming section, we will delve deeper into the aspect of prediction accuracy while also

considering the constraints imposed by resource limitations.

1.3 Forecasting methods for the edge computing

As the demand for real-time data processing and analysis continues to grow, edge computing has

emerged as a promising solution to address the challenges of latency, bandwidth limitations, and

data privacy. Accurate forecasting methods are essential to optimize resource allocation and

improve the quality of service in edge computing environments.

In this section, we will begin by introducing fundamental concepts of machine learning (ML)

and relevant concepts for forecasting methods in edge computing. We will then review existing

literature on forecasting methods, highlighting their strengths and limitations. Finally, we will

present our approach, which leverages machine learning techniques to enhance the accuracy of

resource forecasting in edge computing.

38

1.3.1 Brief background

1.3.1.1 Machine Learning for IoT

Machine learning (ML) techniques have become ubiquitous across many fields in computer

science, including pattern recognition and predictive modeling applications. These techniques

can perform classification, prediction, and clustering tasks by using statistical models trained

on data samples with measurable features. ML has gained attention in the IoT community for

improving system efficiency, as it can analyze data and generate scores that identify patterns or

indicate events of interest. ML algorithms can be categorized into four types: classification,

regression, clustering, and reinforcement, each with specific usage scenarios (Jagannath, Polosky,

Jagannath, Restuccia & Melodia, 2019; Samie, Bauer & Henkel, 2019).

Regression algorithms are classified as supervised learning, in which a predictive model is

created to show the relationship between input and output variables. This type of algorithm

is particularly useful for predicting numerical or continuous values, such as predicting future

energy usage in a smart grid by analyzing historical data (Samie et al., 2019; Zantalis, Koulouras,

Karabetsos & Kandris, 2019). Time series models of data are often used in these types of

applications.

1.3.1.2 Methods for Time Series Prediction

A time series is a sequence of data points recorded at regular intervals over time (Shumway & Stof-

fer, 2017). For example, the collected time series data represent the historical workload records

in our case. In dependence on the number of variables being observed at each time point,

there are two types of time series, univariate and multivariate (Hyndman & Athanasopoulos,

2018). While univariate time series data involves a single variable being observed, multivariate

time series data involves multiple variables being observed simultaneously. An example of

multivariate time series data, environmental data that contains the measurements of temperature,

39

rainfall, and air quality levels. The main goal of time series analysis is to predict future values of

the sequence based on its past values.

Time series prediction can be accomplished using linear regression (LR), a basic and uncom-

plicated model. The choice of method depends on the characteristics of the time series, such

as its level of stationarity and seasonality. In the literature, two commonly used methods are

statistical, as ARIMA model (Miller, 2015) and the deep learning techniques, such as LSTM

model (Greff, Srivastava, Koutník, Steunebrink & Schmidhuber, 2017).

Autoregressive Integrated Moving Average (ARIMA) is a popular method for modeling

stationary time series. It involves fitting a linear regression model to the time series after

differencing it to make it stationary. ARIMA models are characterized by three parameters: p,

d, and q. The order of the autoregressive part is represented by p, the order of differencing is

denoted by d, and the order of the moving average part is indicated by q (Miller, 2016).

Long Short-Term Memory networks (LSTM) is a type of deep learning model well-suited

for modeling complex, non-linear patterns in time series data. LSTMs use a series of memory

cells and gates to store and manipulate information about past values of the time series, allowing

them to capture long-term dependencies and patterns in the data. LSTMs have been used to

model a wide range of time series patterns, including multi-step ahead forecasting, multivariate

time series forecasting, and time series with irregular patterns (Greff et al., 2017).

In addition, Bayesian networks (BNs) (Mohammadi, Frick & Vouros, 2019), Random forest

(RF), support vector regression (SVR) (Pratama & Yang, 2019), and K nearest neighborhood

(KNN) (Zhang, Qi & Zhang, 2018) are used for regression tasks.

In order to improve the prediction accuracy, the Ensemble learning technique involves combining

multiple models to make predictions, as in Sommer, Klink, Tomforde & Hähner (2016). This

combination can be realized by averaging the predictions of multiple models, such as a neural

network and a decision tree. The idea behind ensemble learning is to take advantage of the

40

strengths of different models by combining their predictions. This can lead to a more robust and

accurate forecast than any single model could provide.

IoT-based prediction solutions have widely embraced regression models for various applications,

such as predicting demand in a bike-sharing system (Xu et al., 2020), detecting early signs

of heart disease (Kumar & Gandhi, 2018), and real-time monitoring of power consumption

(Arce & Macabebe, 2019). Similarly, we utilized regression models to predict future workload

in this thesis.

1.3.2 Related Work

As the number of IoT applications continues to grow, integrating artificial intelligence (AI)

algorithms into the network edge has gained popularity. In Merenda, Porcaro & Iero (2020),

the authors conducted a comprehensive study on the requirements for implementing machine

learning models and architecture at the IoT edge. The research also incorporates various

intensive experiments aimed at deploying machine learning models on edge devices with limited

resources.

1.3.2.1 Machine learning at the Network Edge

The paper Murshed et al. (2019) presents a comprehensive survey on the utilization of machine

learning at the network edge, covering various models and use cases. The authors also discuss

popular frameworks and hardware platforms that can run ML models on resource-constrained

edge devices. Two other surveys Cui et al. (2018) and Samie et al. (2019) also emphasize

the significance of incorporating machine learning in IoT applications, enhancing the devices’

capabilities for tasks such as information inference and data processing.

The integration of ML techniques with IoT systems has been studied extensively, spanning from

sensor nodes at the lowest level to interactive end services at the highest level. This integration

has highlighted the potential of machine learning methods to improve IoT applications. These

41

techniques can be employed for various purposes, such as optimizing the network, preventing

congestion, and efficiently allocating resources at the network level.

1.3.2.2 Widely used Forecasting Techniques

Many works used algorithms are based on statistical time series analysis (e.g., ARIMA and

exponential smoothing) such as those presented in Lorido-Botran et al. (2014); Sangpetch et al.

(2017); Calheiros et al. (2014); Roy et al. (2011); Kan (2016); Li & Xia (2016); Ciptaningtyas

et al. (2017); Meng et al. (2016). These techniques are based on historical data and rely on

the assumption that past behaviors (e.g., trends) will continue. Second, another approach that

has gained popularity in recent years is the use of deep learning-based techniques such as the

neural network (ANN) and LSTM algorithms, for instance, in Zhu, Zhang, Chen & Gao (2019);

Saxena & Singh (2022, 2021); Kumar, Saxena, Singh & Mohan (2020); Kumar, Singh & Buyya

(2021a); Imdoukh et al. (2019); Dang-Quang & Yoo (2021).

In Saxena & Singh (2021) work, a novel framework for energy-efficient resource allocation in

cloud data centers, based on an Online Multi-Resource Feed-forward Neural Network (OM-FNN).

The proposed framework predicts the resource requirements of incoming tasks and matches

them with the available capacity of virtual machines (VMs), consolidating the workload onto

energy-efficient physical machines. To achieve accurate resource predictions, the OM-FNN

utilizes task resource utilization data collected in 5-minute intervals to forecast usage for the next

prediction interval. Overall, this approach reduces energy consumption and enhances resource

utilization in cloud data centers. In their recent work, Saxena & Singh (2022) present a new

approach for workload forecasting in dynamic cloud environments, utilizing an adaptive neural

network model with a novel Auto Adaptive Differential Evolution (AADE) algorithm. This

univariate prediction model is designed to learn workload traces for consecutive prediction

intervals based on historical data, while the AADE algorithm is used to train a feed-forward

neural network with three-dimensional adaptation. This approach has the potential to improve

resource allocation and utilization.

42

A neural network model based on adaptive learning called BiPhase is proposed by Kumar et al.

(2020) for workload forecasting in cloud datacenters. The model utilizes an adaptive evolutionary

learning algorithm to improve the accuracy of the workload predictions. The framework can

adaptively learn from historical data to forecast workload for the future, providing an accurate

method for workload prediction in cloud data centers. This approach has the potential to improve

resource allocation and utilization. Kumar et al. (2021a) propose a method called self-directed

workload forecasting (SDWF) that improves future predictions by capturing forecasting error

trends. The model utilizes self-directed learning to adaptively enhance its predictions without

external guidance, potentially improving resource allocation and utilization in cloud resource

management.

The work Imdoukh et al. (2019) proposes a machine learning-based approach for auto-scaling

containerized applications, which aims to optimize performance and resource utilization. By

training a LSTM model using historical performance data, the proposed approach predicts

future resource requirements. Based on realistic workload experiments, it has been observed

that the LSTM model provides prediction accuracy comparable to that of the Auto-Regressive

Integrated Moving Average model while also offering a prediction speed that is 600 times faster.

Furthermore, the LSTM model outperforms the Artificial Neural Network model in autoscaler

metrics. Additionally, it was observed that using the LSTM model enables the prediction of

future workload, which in turn helps to optimize the use of replicas for handling workload.

On the other hand, in their study, Dang-Quang & Yoo (2021) utilized bidirectional long short-term

memory (BiLSTM), a deep learning technique for auto-scaling in Kubernetes. The BiLSTM

model was used to forecast future workload and determine the optimal number of replicas for

each application in the Kubernetes cluster. The BiLSTM model outperformed both the LSTM

model and the state-of-the-art statistical ARIMA model in short and long-term forecasting

accuracy on realistic workloads. It also provides significantly faster prediction speeds, ranging

from 530 to 600 times faster than ARIMA models for different workloads. Furthermore, the

BiLSTM model demonstrates better resource provision accuracy and elastic speedup than the

LSTM model.

43

Proposed in Zhu et al. (2019), a novel approach to enhance workload prediction accuracy in

cloud computing employs an LSTM encoder-decoder network with an attention mechanism.

The model can effectively learn from historical data to handle the dynamic nature of workloads

and refine predictions by focusing on critical input sequence components. This approach has the

potential to enhance resource utilization and allocation.

Deep learning’s inherent capacity to extract meaningful relationships from complex data makes

it an appropriate choice for accurate forecasting. In addition, deep-learning techniques can be

more flexible and powerful than traditional time series methods, but they often require more data

and computational resources. However, as mentioned in Imdoukh et al. (2019), the commonly

used forecasting approaches can be slow in responding to dynamic workload demands and may

lead to resource overuse. In our work, we specifically focus on forecasting techniques for edge

computing, taking into consideration both prediction accuracy and resource usage.

1.3.2.3 Lightweight Forecasting Techniques

Despite the widespread adoption of deep learning (DL) techniques, traditional ML techniques

like Bayesian Network, Support Vector Regression (SVR), linear regression (LR), and K-Nearest

Neighbors (KNN) continue to attract research interest due to their algorithmic simplicity and

efficacy, as noted in studies by Gao, Wang & Shen (2020); Kumar et al. (2021b).

The article by Raghunath & Annappa (2015) employs SVR to estimate load and predicted

performance factors for virtual machine migration. Similarly, Zhong et al. (2018) (Zhong,

Zhuang, Sun & Gu, 2018) combine SVR with the PSO optimization algorithm to estimate a load

of physical machines in cloud data centers. In Cetinski & Juric (2015), authors used the random

forest classifier to provide a model for workload forecasting in the data centers. Bayesian-based

methods are used in Dietrich, Nunna, Goswami, Chakraborty & Gries (2010); Di et al. (2012)

for forecasting purpose. In Tong, Hai-Hong, Song & SONG (2014), the Bayes methods have

nearly the same performance as SVM method.

44

However, these traditional techniques, such as Support Vector Machines (SVM) and Random

Forest (RF), are likely to have less accuracy compared to commonly used approaches such as

AutoRegressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM).

Additionally, the effectiveness of auto-scaling solutions that utilize time series data analysis

heavily relies on the accuracy of the forecasting model, as emphasized in Doan et al. (2019).

The challenge of achieving high prediction accuracy is not limited to lighter techniques but

also applies to commonly used methods such as ARIMA and LSTM. Therefore, improving the

accuracy of resource forecasting in container-based auto-scaling remains a significant challenge

that requires attention, as highlighted in Qu et al. (2018); Cardenas (2018).

1.3.2.4 Ensemble-Based Forecasting Learning

In the pursuit of improved forecasting accuracy, ensemble learning techniques emerge as a

compelling solution. Ensemble learning has demonstrated effectiveness in various fields, such

as wind gusts and electricity consumption forecasting (Wang et al., 2021). In the context of

auto-scaling, ensemble learning has also been explored in some works in the literature. For

example, a method proposed by Cao, Fu, Li & Chen (2014) for predicting CPU load employs an

ensemble approach that uses multiple models (called predictors), including Autoregression and

Exponential smoothing models, to generate predictions. The approach includes a prediction

optimization layer that dynamically adjusts the predictor parameters using the Adaptive Step

Size Random Search (ASSRS) strategy, (Schumer & Steiglitz, 1968), to maintain the predictor

performance.

In their study, Shariffdeen, Munasinghe, Bhathiya, Bandara & Bandara (2016) proposed an

ensemble-based load forecasting approach to improve the accuracy of auto-scalers. The authors

evaluated multiple prediction models to forecast various load patterns. To forecast cloud

resource usage, Rahmanian et al. (Rahmanian, Ghobaei-Arani & Tofighy, 2018) proposed a

learning-automata-based ensemble. The approach presented in Sommer et al. (2016) utilizes

load forecasting techniques to identify critical parameters for cloud data centers. It is capable of

45

handling non-stationary workloads by updating learning parameters without requiring re-training

of prediction models. The authors employed Weighted Majority and Simulatable Experts to

effectively manage large-scale and non-stationary workloads with massive streaming data.

The authors of Sommer et al. (2016) proposed an ensemble-based module that predicts virtual

machine (VM) utilization and incorporates a proactive VM migration policy utilizing predictive

overload detection. To forecast workloads, they developed two online learning ensemble learning

approaches (Singh & Rao, 2014). Similarly, Chen, Yuan, Liu & Li (2020) proposed a weighted

random forest model with an error correction mechanism for workload prediction. The model

used a set of random forests, each trained on different training sets, and the final prediction was

calculated by weighting the forecasts of each model.

In Gao et al. (2020), the authors compare several workload prediction methods and introduce

a clustering-based approach to enhance accuracy. This method involves categorizing tasks

into clusters and creating a prediction model for each category using either Prototype-based

Clustering Method (PCM) or Density-based Clustering Method (DCM) with ARIMA, Bayesian

Ridge Regression (BRR), or LSTM models. To allow for scheduling based on predicted workload,

the authors recommend performing predictions a specific time before the target time point.

In Kumar et al. (2021b), the authors conduct a comparative study of machine learning methods

such as LR, KNN, SVR, and ARIMA for web application workload forecasting. The proposed

prediction model aims to select the most suitable algorithm for workload features. Furthermore,

other studies such as Jiang, Perng, Li & Chang (2013); Liu et al. (2015); Cetinski & Juric (2015)

have employed hybrid forecasting methods that involve integrating multiple machine learning

models.

However, it should be noted that these works do not take into account the resource usage aspect,

which is a crucial constraint considered in our approach. The use of multiple models in the

Ensemble learning technique can significantly increase resource consumption, which is not

feasible in resource-limited edge computing environments.

46

In general, since the presented state-of-the-art solutions are intended for cloud computing

workload forecasting, the application of these techniques in edge computing can be restricted by

resource limitations. Unfortunately, this resource-constrained aspect is commonly overlooked in

the related work on auto-scaling.

1.3.3 Positioning of our approach

Given the limited resources available in the Edge computing context, our third contribution

(Chapter 3) places great emphasis on resource usage. We assess the suitability of state-of-

the-art forecasting techniques with respect to resource constraints. Specifically, our approach

investigates the feasibility of common, albeit potentially heavy, techniques, as well as the

usefulness of traditional machine learning methods that are potentially lighter, such as Support

Vector Regression (SVR), Random Forest (RF), and Bayesian Networks (BN). Furthermore,

to improve the prediction accuracy, we propose using Ensemble techniques that combine the

predictions of multiple models. This approach can enhance the robustness of the forecasting

process and provide more accurate and reliable predictions.

In Kumar et al. (2021a), the authors noted that using a single model may not be optimal for

modeling and forecasting various data types, as these models were created and trained for

specific workload types. Therefore, to address this issue, a combination of multiple methods

was employed to more effectively model and forecast workloads.

However, it is important to note that using Ensemble learning techniques can result in increased

resource consumption, as it involves using multiple models. Therefore, it is crucial to consider

the trade-off between prediction accuracy and resource usage. To address this challenge, we first

used a lightweight solution based on the weighted average, similar to the Weighted Majority and

Simulatable Experts techniques presented in Singh & Rao (2014). Second, we formalized this

optimization problem and proposed a heuristic solution that considers resource limitations when

selecting a limited number of models for the Ensemble learning process.

47

Lastly, our approach enables the distribution of training across multiple edge devices by training

a local ML model for each device. This improves scalability and addresses the challenges posed

by federated learning, a recently proposed distributed training approach that has communication

overhead, interoperability issues with heterogeneous devices, and resource allocation constraints,

as discussed in Lim et al. (2020). In our approach, the local models generate predictions that are

transmitted to another edge device, which computes a weighted average of all local predictions

using our optimization solution. This improves the accuracy of the predictions while reducing

the burden on individual edge devices.

CHAPTER 2

RULE BASED AUTO-SCALABILITY OF IOT SERVICES FOR EFFICIENT EDGE
DEVICE RESOURCE UTILIZATION

Ahmed Bali1 , Mahmud Alosta1 , Soufiene Ben Dahsen1 , Abdelouahed Gherbi1

1 Department of Software Engineering and IT, École de Technologie Supérieure

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Paper published in the Journal of Ambient Intelligence and Humanized Computing on June

2020.

ABSTRACT Conveying the workload of IoT systems from the cloud to edge nodes have been

widely adopted by industrial and academic sectors. This tendency is generally promoted to meet

the requirements of some time-sensitive use cases such as IoT healthcare applications. However,

IoT devices at the edge network are likely to be resource-limited, as well as, they perform under

an extremely heterogeneous environment in terms of the connected devices and the deployed

software modules. Thus, both of the aforementioned concerns have considerably led to hindering

the deployment process of services on IoT edge devices. In this paper, we propose an approach

to facilitate a scalable and lightweight solution for service deployment for efficient resource

utilization on IoT edge nodes. Our solution is based on the container concept, and we adopt the

cluster concept to define a group of IoT edge devices. Containers are lightweight virtualization

technique that enables services to be packaged and deployed with their dependencies regardless

of the host’s infrastructure, as well as, they facilitate the service communication and the update

process. Furthermore, containers are supported by some means of orchestration such as swarm.

These orchestration tools can be configured to enable services deployment and resources sharing

among IoT edge devices falling within the same cluster. However, they lack elasticity in terms

of auto-scaling up/down of services’ instances in corresponding to the resource utilization of

all cluster elements, as well as, service performance metrics. Our approach overcomes these

limitations by following an auto-scaling process based on MAPE-K loop, which is based on our

proposed rule model to generate a scaling plan by analyzing collected performance metrics of a

cluster. Our evaluation shows the efficiency of the proposed approach in adapting the system

50

performance to meet service performance requirements, and to meet the availability of system

resources.

Keywords: Edge Computing, Container, Resource Management, Auto-Scalability

2.1 Introduction

The innovative vision of the Internet of Things (IoT) has led to a technological revolution

in all the aspects of our lives, i.e., health, transportation, and work. IoT applications have

become ubiquitous and their influence in several areas of our daily life is indispensable. These

applications are mostly reliant on networks composed of tiny devices dipped in our surroundings,

for instance, in the form of environmental, healthcare, and industrial sensors. These devices

are in an ongoing process of development and deployment, leading to billions of devices

connected to the Internet (Evans, 2011). In traditional IoT network topology, these devices

communicate their captured observations directly or indirectly to central cloud services for

processing and decision making tasks. The latter is likely to be impacted by the latency resulted

from transferring data and requests bidirectionally between cloud services and sensor nodes.

Furthermore, transferring the ever-growing volumes of data generated by IoT devices following

the abovementioned topology has led to relative IoT costly solutions, in addition to network

bottleneck (Al-Osta, Bali & Gherbi, 2019).

The demand for cost-efficient and responsive IoT applications has recently pushed toward the

deployment of a portion of IoT services at the side of the network edge. In this topology, sensors

are configured to transmit their data to an intermediary device, which mainly handles some

processing tasks such as data pre-processing, aggregation and filtering (Venticinque & Amato,

2019). Afterward, it communicates the results or only the significant observations to the cloud.

Thus, a considerable amount of data is expected to be avoided to be transmitted to the cloud,

which implicitly would lighten the traffic. This would be reflected in the enhancement of

the network performance. Moreover, in some use cases such as IoT healthcare applications

51

(Devarajan et al., 2019), an immediate action is required; thus, real time data processing close to

their resources is of an utmost significance.

Nevertheless, devices at the edge are characterized by their limited resources compared to

the cloud, as well as, they are likely to be connected to several sensor nodes that periodically

push their data. By default, these sensor nodes are composed of set of heterogeneous devices

that, in some cases, rely on different protocols and technology stacks to communicate with

devices on the edge. Thus, the heterogeneity characteristics in the hardware level is reflected on

various services and applications deployed on top of the edge layer. This indeed would lead

to the amplification of the lack of the interoperability issue. In addition, handling this type of

technological diversity is likely to consume a considerable amount of resources on the edge

devices and to hinder the opportunity of fully taking advantages of the underlying technology.

To overcome aforementioned issues, lightweight virtualization technologies, such as containers,

have been widely adopted to facilitate service deployment and management on IoT edge devices

(Ahmed et al., 2019). Containers provide the advantage of packaging and running IoT services

and their dependencies in isolated and self-contained modules. Employing such technology in

IoT edge devices is likely to lead to the avoidance of the strict reliant on specific technology

since it has the capability to merge extreme different technologies in one virtualized software

component. In addition, the communication between these modules is maintained by some

kind of container management tools such as the docker engine. This is likely to contribute to

the mitigation of the heterogeneity challenge, as well as, to enable rational deployment of IoT

services at the network edge. In addition, containers can be customized to cope with resources

available on the target node. Moreover, container orchestration techniques such as Swarm enable

resource sharing between IoT edge devices falling within the same cluster and provide means of

communication between containers across virtual networks. However, they lack elasticity in

terms of auto-scaling up/down of services’ instances in corresponding to the resource utilization

of all cluster elements, as well as, service performance metrics.

52

In this work, we emphasize on the utmost necessity to investigate solutions to optimize the

deployment of container based IoT services on network edge devices taking into consideration

their resources restrictions. As well as, to automate the process of a fair distribution of these

services on devices falling within the same edge-cluster.

Our solution follows MAPE-K(Monitor-Analyze-Plan-Execute over a shared Knowledge) loop

(Computing et al., 2006). The shared knowledge is represented by our proposed rule and

deployment models. In the rule model, we defined four categories of rules namely evaluation,

decision, scale, and verification. Each one of them corresponds to a specific step of the proposed

auto-scaling process. While the deployment model captures the different system elements with

their properties involved in the deployment process such as the device and the service. The

proposed approach has been evaluated and several criteria are considered namely CPU and

memory utilization, and network traffic, as well as, the response time as a service performance

metric.

The main contributions presented by this work are briefly described as follows:

• Deployment Model: It contains concepts and properties to describe all possible elements

included within the deployment process.

• Rule Model: It uses concepts from the deployment model, and it contains several categories

of rules used to evaluate the need to scale and to generate the scaling plan.

• Proposing algorithms and strategies based on the rule model that defines our auto-scaling

process steps inspired from MAPE-K adaptation control loop introduced by IBM (Computing

et al., 2006).

The reminder of the paper is organized as follows: First, Section 2.2 discusses the related work

with respect to the approach proposed in this paper. Then, the preliminary concepts behind

the proposed approach will be presented in Section 2.3. Afterward, Section 2.4 discusses the

knowledge models used by the proposed auto-scaling process which presented in Section 2.5.

Followed by the evaluation and experimental results discussion in Section 2.6. Finally, Section

2.7 concludes the paper and highlights directions for future work.

53

2.2 Related Work

The use of containers has been recently an attractive subject of research for both industry and

academia. In this context, some research initiatives have been proposed to evaluate the feasibility

of employing containers on the edge of IoT networks taking into consideration their limited

resources. For instance, Ismail et al. (2015), Morabito (2017), and Ruchika (2016) have carried

out research studies to explore container virtualization technologies and their role as an effective

means to facilitate the development and to adapt (scale) IoT applications. To assess the impact of

the container on the IoT devices’ resources, IoT applications were developed and deployed in the

form of Docker containers, then Benchmark tools were used to measure their performance. Some

evaluation criteria have been considered such as deployment, resource and service management,

and fault tolerance. The results show that the use of Docker containers offers good performance.

However no clear approach is described for effective resource management. Although Docker

brings advantages for resource utilization in IoT context, it is only a working tool. Thus, it

is necessary to describe an effective approach for resource management purpose using this

technology. In the following, we investigate some recent work in comparison with the approach

presented in this study.

A design of data processing approach is proposed in Morabito & Beĳar (2016), it is an edge

oriented and its functional components are customized as reusable Docker containers. This

facilities building versatile environment for IoT applications, and enables elastic provisioning

of distinctive device and data management, as well as, orchestration capabilities. While their

implementation is determined on the evaluation of the CPU, Memory, and Network usage, it lacks

a concrete assessment of the orchestration and data processing modules, which is extensively

considered in our work.

A container-based resource allocation model was proposed in Renner et al. (2016) to increase the

use of resources offered by IoT devices and reduce the generated network traffic. The proposed

approach allows different applications and users to dynamically allocate the resources offered by

IoT devices and thus maximize data processing at the source level instead of sending them to the

54

cloud. The feasibility of this approach has been evaluated in terms of performance since IoT

devices are limited in terms of resources. However, the case study of the work is focused on

presenting the feasibility of the approach and not on improving the performance of resources

such as CPU and memory.

A resource management and orchestration approach based on containers is proposed in Brogi

et al. (2017) for supporting autonomic data stream processing applications on the Fog layer. Fog

nodes (FNs) are equipped by three main components namely Fog Node Controllers (FNCs),

Autonomic Applications (Apps), and Application Controllers (ACs). Apps are encapsulated in

the form of Docker containers; each of them runs an AC. The AC interacts with the FNC of the

corresponding FN to facilitate scaling up/down the set of resources (e.g., number of cores, CPU

time, and bandwidth) assigned to the Docker container. Unlike our work, their implementation

relies on rich-resource infrastructure and does not take into consideration scenarios where the

Fog node is resource-limited, which is the case in a considerable portion of IoT applications.

In Khazaei et al. (2017) the author proposed resource management module referred as the

Autonomic Management System (AMS). The main objective of this work is to provide container-

based IoT application auto scalability solution by means of distributing the resources management

task on three varied resources layers namely: Core-Cloud, Edge-Cloud, and Aggregator (IoT

gateways). Like our approach, this approach is based on Monitor-Analyze-Plan-Execute-

Knowledge (MAPE-K) loop, and it scales IoT applications mainly based on both workloads

and node internal state. In addition to both aforementioned scaling criteria, our approach

takes into consideration the overall cluster overload, which promotes resources sharing among

devices within the same level. For the knowledge base representation, our approach proposes

a descriptive model for service deployment on IoT edge devices as well as a rule set used by

the different steps of the MAPE-K loop. In addition, the service performance metrics such as

response time is considered.

The proposed approach in Wong et al. (2019) is presented to overcome some container based

clustering and deployment technique shortcomings, mainly, the lack of location-awareness

55

deployment feature. The solution is composed of two main modules namely classification, and

edge scheduling. The former module is proposed to classify received scaling requests based on

predefined user metrics such as CPU level. While the latter module is proposed to facilitate the

deployment process with the lowest possible latency by enabling closest location based selection

of containers to be deployed on the target edge node. This approach constraint on dealing with

scaling request without conducting an analysis on whether the current state requires scaling or

not, which is addressed by our approach.

2.3 The Preliminary concepts of the proposed approach

In this work, a solution based on container virtualization technology has been proposed to

overcome device limitation and deployment issues. This approach relies on some container

clusters concepts to promote resource sharing between devices and enable easy and independent

deployment of the hosting infrastructure. Furthermore, an auto-scaling mechanism of services

is proposed to meet both the resource limitation and the service requirements (e.g., service

response time). Typically, IoT topology is designed on the top of three essential layers namely

sensor nodes, gateways and the cloud. The sensor nodes continually send the data to the gateways

that store and process it if necessary, and then send it to the cloud for use as needed. Mostly,

gateway receives data from multiple sensor nodes, and due to resource limitations of IoT devices,

some gateways become overloaded and can no longer perform data processing tasks. Meanwhile,

it is likely to find some gateways that are not overloaded and have some available resources

within the same cluster. As a result, the work on resource management targets the workload

distribution between IoT devices at the network edge represents the essential element in our

approach.

2.3.1 Overall Deployment Architecture

In order to fully take benefits of resources available on IoT edge devices, they will be grouped

into clusters. A cluster includes a number of edge devices with one as manager while the rest

will be workers. The manager node, as indicated by its label, will take care of administering the

56

other worker nodes, as for the other gateways, they will just employ their resources to deploy

the services. Each gateway will be equipped with a container framework and its orchestration

mechanisms that are responsible on services deployment and communication within the same

cluster. This system decomposition will allow the gateways belonging to the same cluster to

share resources between them and communicate through a virtual network. Usually each gateway

receives data from one or more sensor nodes, but in the case of an overload; depending on our

approach the data processing could be delegated to another gateway within the same cluster in

order to fairly distribute the load. Each gateway in the system is encompassed of three different

categories of services namely reading service, processing service and sending service, these

constitute the workflow of data processing coming from the sensor nodes.

In order to facilitate the deployment of services on the gateways, their images are created with

all their dependencies (libraries, version, etc.) and stored in a registry. The latter is a centralized

service directory shared between all the gateways. So to deploy a service in a gateway, we need

just to access the registry and pull the corresponding image. With such a procedure, it would

be possible to overcome the problem of heterogeneity of the gateways, since the services are

created with all their dependencies and ready to be executed in containers regardless of the

infrastructure of the host. Having a centralized repository will also simplify the update, because

users just need to make a new build of the image subject to an update, instead of going through

all the gateways and make an update.

Figure 2.1 shows the high-level architecture of our system, the details of the essential components

will be detailed in the following sections. As illustrated, gateways are grouped into a set of

clusters. In each cluster, there is a manager gateway (in green) that manages other gateways.

The sensor nodes (in red) communicate directly with the gateways. The gateways of the same

cluster communicate with each other through an overlay (i.e., virtual) network. While they

communicate directly with the registry to instantiate services and execute them in containers

from existing images.

57

Figure 2.1 The Overall Architecture

Figure 2.2 The Gateway level

Architecture

58

2.3.2 Gateway level

In this work, more importance is given to the gateway as it represents the core element of our

solution. A gateway could be either Manager or Worker, but both share the same architecture.

The sole difference lays on the extra functionalities assigned to the manager gateway; so it can

run commands to orchestrate services deployment tasks, as well as, to mange the communication

between worker nodes.

Figure 2.2 shows the main elements of the gateway architecture. Each gateway is equipped with

a container engine to enable services to run as packaged containers. The chosen engine must be

able to support the cluster composition. Also, each gateway is equipped with a load balancer,

which intended to enable load distribution of similar service instances located in the gateways of

the same cluster.

A gateway contains three services that run continuously as containers and constitute the data

processing workflow from the sensor nodes. These three services are:

• Data Reading Service: This service receives data packets from sensor nodes on predefined

interval time; then it will store them in a given directory of the volume shared between the

services deployed on the gateway. Each data packet received includes SensorID, measured

value, and Timestamp.

• Data Processing Service: This service communicates with the volume directory to access

collected data and to apply data processing tasks required by the user.

• Cloud data transfer service: The main objective of this service is to facilitate communication

between the gateway level and the cloud level. This communication aims at enabling

messages exchange among the two levels. It includes tasks such as sending processed data to

the cloud, and receiving deployment and updating requests from the cloud.

As shown in Figure 2.2, the three aforementioned services use a shared volume to communicate.

The latter contains directories for storing the collected data and also for those that are processed.

So each service uses the proper directory to accomplish its tasks. While in the case of a gateway

59

manager, it communicates directly with the registry to deploy the services on the gateways, save

new images or update existing ones.

2.3.3 Cluster Functionality

Figure 2.3 illustrates the distribution of requests in a cluster consisting of three gateways. Each

gateway is identified by an IP address. As we explained in the gateway architecture, there are

three services shaping the data handling workflow. Since the data reading service is the first

component of the data treatment services chain, so it is implicitly realizable that the distribution

of reading tasks would automatically lead to decreasing the amount of data to be treated in the

following services on each gateway individually. With the launch of the system, the gateways

begin to receive data from the sensor nodes. The load balancer on each gateway receives requests

from the sensor nodes, then transfers them to the data read service of the same gateway, or

redirects them to another read service instance of another gateway. This division of tasks is based

on an overlay network. The data processing service of a gateway accesses the shared volume to

retrieve the data delivered by the read service of the same gateway, then it will process them and

insert them again in the shared volume. Afterwards, the ’cloud send service’ accesses the shared

volume to retrieve the data processed by the ’data processing service’ deployed on the same

gateway, and then transfers it to the cloud. Thus, in the case of IoT system composed of clusters

of gateway devices, each cluster will work independently following the aforementioned steps.

The goal behind this division of tasks is to have a balanced system; thus avoiding situations

where some gateways are overloaded; while others are relatively unburdened. The next section

presents our proposed deployment model that captures the different concepts presented in this

section.

2.4 The container based IoT service deployment model

This section demonstrates the abstract model proposed in this work to capture the set of concepts

involved in the deployment process. This model is intended to serve as a referenced knowledge

base to be used by our auto-scaling solution. Thus, the representation of this model is mainly

60

Figure 2.3 Cluster operation

focused to reveal the concepts related to the scalability process namely the devices and the

services as well as the assignment of services to the devices (i.e., the deployment). Gateways

can be grouped into clusters, to make it possible the sharing of resources, which contributes to

alleviating the problems of resource limitation.

For the purpose of simplicity and comprehension, we subdivide the proposed model into different

submodels as parts of the total view namely, Device, Service, and Deployment. Thus, our

model is formulated out of the union of these submodels, which are detailed in the following

subsections.

2.4.1 Device submodel

As previously mentioned (Figure 2.1), a typical IoT network topology is consisted of Edge

network devices and clouds. The hierarchy of Edge devices is essentially divided into two layers,

mainly the sensor and actuator nodes layer and gateway nodes layer. The solution presented

in this work is mainly targeting IoT gateway devices. These devices have recently witnessed a

significant technological leap in terms of improved computing and communication resources.

This has considerably contributed to facilitating the deployment of software modules and services

61

in the form of containers. Figure 2.4 shows the device part of our proposed model. It contains

Figure 2.4 Device submode

concepts and properties that represent the device specification. More specifically, these concepts

describe the device computing resources such as the processor and memory. This information

about resources is useful to evaluate the ability of a device to deploy a service. The device, as

part of a cluster, has by default the worker role. It can also play the role of manager who controls

and manages the other nodes. The reflexive relationship (i.e., property) ‘isConnectedTo’ defines

the existence of a connection between devices. The specification of connection between devices

is useful for the creation of the cluster networks. It is possible to define a set of networks, which

can be virtual (i.e., overlay network) that are used to deploy services. For example, two services

may use two different virtual networks for isolation purposes, while the instances of the same

service use the same network.

In the context of IoT, the device might be connected sensor/actuator nodes. Moreover, geo-

graphical location information is helpful in the service deployment process. It allows specifying

a specific region or even node for deploying a service. The following subsection gives more

description of the ’Service’ concept as a part of our model.

62

2.4.2 Service submodel

Following the microservices architecture model, an application consists of a set of services.

These services might be of different types such as sensing, actuating, data transferring and data

processing as presented in section 2.3.

Figure 2.5 Service submodel with the container concept

Figure 2.5 shows our service specification model part. It defines different concepts and properties

from a service deployment point of view. The relationship ‘communicatesWith’ is used to define

the communications between services. This information is useful for the deployment process in

order to deploy these services on devices that belong to the same cluster network, or that have

the relationship ‘isConnectedTo’ as presented in subsection 2.4.1. In addition the service model

contains a ‘Container’ concept which intended to facilitate the service deployment. To run the

container, the system needs to know its image, which is usually stored in a central registry.

63

Moreover, the service is characterized by a set of QoS metrics (i.e., criteria) that represents the

non-functional user requirements. Our approach is mainly focus on the service performance

metrics such as the response time, latency and the throughput. The proposed service model

specifies two metric delimiters (i.e., thresholds): the minimum and maximum values (minValue

and maxValue). For example, Metric=‘Response time’, minValue=30 ms, and maxValue=120

ms. The minimum threshold of the response time criterion (30 milliseconds) defines the best

requirement. In other words, the service does not require that the value to be lower than this

threshold. However, it requires that the value to be less than the maximum delimiter (120

milliseconds).

Noting that, there are two categories of criteria, negative as the response time and positive as the

throughput. The higher value of the response time indicates the lower quality (i.e., negative

quality). Contrariwise, the higher value of the throughput is the higher quality (i.e., positive

quality).Therefore, to treat these two metric categories, we can scale the positive criteria values

by using a decreasing utility function. We can just invert (multiplied by −1) the different criterion

values (including the delimiters 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒 and 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒). By this way, we can present only

the case of negative criteria such as the response time..

2.4.3 Deployment submodel

The previous submodels (Figures 2.4 and 2.5) describe the system components (i.e., elements)

namely the device and the service. The deployment submodel presented in Figure 2.6 represents

the semantic relation between submodels of the ‘Device’ and ‘Service’ concepts. It presents the

assignment of services to the different devices. An actual use case of the assignment represents

an instantiation of our general model. Each deployed service represents a number of instances,

which corresponds to the service replicas. Each service instance (i.e., replica) is deployed as a

container, which is placed on one of the cluster’s devices. In our model, the operator can specify

the ‘minReplica’ and ‘maxReplica’ properties to define the minimum and the maximum number

of replicas respectively. The values of this properties is an important parameter to our scalability

64

solution, where it automatically updates the number of replicas (‘nbrReplicas’ service property

in Figure 2.6).

Figure 2.6 Container based Service deployment submodel

The placement of the service instance (i.e. replica) depends on its requested resource specification.

Our model specifies for each service (i.e. implicitly its instances) a set of properties namely

the required, the preference, and the limit of each resource. The ‘required’ property means

the minimum of the resource value that is necessary to perform the service. For an efficient

performing, the ‘preference’ property value is specified by the developer, the system operator or

by history data analysis. Finally, the ‘limit’ property specifies the limit value that the service

cannot exceed. For example, a database service ‘db_service’ might require 100 Mbytes of

memory resource. The preference value is 120 Mbytes and its limit is 150 Mbytes.

2.5 Auto-scaling solution process

This section presents our solution of auto-scaling of services deployed on IoT edge devices. To

perform the auto-scaling, our approach follows a process inspired from MAPE-K (Monitor-

65

Analyze-Plan-Execute over a shared Knowledge) loop (Computing et al., 2006). Figure 2.7

presents our auto-scaling process, which is composed of five (05) steps, namely: Monitoring,

Evaluating, Making decision, Generating a scale plan, and Executing the scale plan. The

different steps and elements will be explained in the following subsections.

Figure 2.7 Rule Based Autoscaling Process

2.5.1 Knowledge reference

The knowledge reference represents the central element of the auto-scaling process loop. It

consists mainly of the proposed deployment model and a set of rules. The deployment model

makes the deployment information available to the scalability process. As an example of this

information, the resource availability of the device and the deployed services on the cluster.

These values of the deployment properties present an instantiation of our deployment model

presented in Section 2.4. In addition, we have proposed a rule model that serves the deployment

process in the steps of the evaluation, the taking decision of the scalability and the generation of

the scalability plan.

66

2.5.1.1 General Rule model

Our auto-scaling solution relies on the use of rules to maintain the functionality of services and

to meet their performance requirements while minimizing the utilization of resources.

Figure 2.8 Rule model

Figure 2.8 presents our rule model. In general, a rule evaluates the condition to generate the

conclusion. In the condition of a rule, predicates can be combined with the use of logical

operators such as AND, OR, and Not. In addition, numeric operators may be also used such

as +, −, 𝑠𝑢𝑚 and 𝐴𝑣𝑒𝑟𝑎𝑔𝑒. In addition, the rules are related to the system elements such as

the Device, Cluster, Service, and Service instance (i.e., replica). Based on that, the elements of

condition and the conclusion are diversified (e.g. Metric data and Element state) according to

the type of rules, which are the Evaluation, Decision, Scaling, and Verification rules. We will

give more details about these types of rules in the description of our auto-scaling process steps.

67

2.5.1.2 Formal deployment information model

For performing its different steps, the auto-scaling process needs the deployment information

such as the number of nodes on the cluster and the current usage of a node’s memory. The

first information is provided from the deployment specification; while the second information

is obtained from the monitoring collected data (monitoring metric data in Figure 2.7). This

information constitutes an instance of our abstract deployment model presented in Section

2.4. For that, we propose a formal representation to present this instantiation. It presents the

references (i.e., concepts and properties in our deployment model) of the information used by

the scalability process.

We have defined two types of information: the primitive and calculated information. The primitive

information is extracted directly from the monitoring data or the deployment specification. Our

formal representation called this extraction operation the ‘primitive function’. Whereas the

calculating function returns a calculated information. Noting that, we use the set theory for the

representation of the elements with their relationships.

We start by the definition of the set of Elements E. Given the set of elements

𝐸 = 𝐶 ∪ 𝐷 ∪ 𝐶𝑙 ∪ 𝑆 (2.1)

Where, C, D, Cl, and S are respectively the set of containers, nodes, clusters (in the case of

managing more than one cluster), and services.

Furthermore, 𝑅 is the set of monitored resources as CPU and Memory. Each resource has a

specific set of metrics, which is a part of a metric set 𝑀. For example, the CPU resource can

have the CPU time and CPU usage percent as metrics. In addition, 𝑃 is the set of performance

metrics such as the response time that concerns subsets of 𝐸 namely 𝑆 ∪ 𝐶.

68

Each recorded measured data of an element represents the values of the metrics of its monitored

resources as presented in the following mathematical function:

𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝐷𝑎𝑡𝑎𝑉𝑎𝑙𝑢𝑒𝑠 :

𝐸 × (𝑅 × 𝑀𝑚)𝑛 → R𝑚×𝑛

(𝑒, { (𝑟1, {𝑚1, . . . , 𝑚𝑚}) , . . . (𝑟𝑛 , {𝑚1, . . . 𝑚𝑚}) })

↦→ (𝑣1, . . . , 𝑣𝑚, . . . , 𝑣𝑚×𝑛) (2.2)

To obtain the current value of resource metric for a specific element from the monitoring data,

we propose the primitive function (i.e., mathematical function) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 :

𝐸 × 𝑅 × 𝑀 → R

(𝑒, 𝑟 , 𝑚) ↦→ 𝑣 (2.3)

We also define other primitive functions (mathematical function), which are presented in the

following equations.

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 :𝑆 → 𝑃(𝐶)

𝑠 ↦→ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑠) = {𝑐1, 𝑐2, . . . , 𝑐𝑘} (2.4)

Where 𝑘 = |{𝑐1, 𝑐2, . . . , 𝑐𝑘 }| is the number of replicas of service (as presented in Figure 2.6).

It corresponds the number of deployed containers corresponding the service image.

𝑡𝑦𝑝𝑒 :𝐶 → 𝑆

𝑐 ↦→ 𝑡𝑦𝑝𝑒(𝑐) = 𝑠 (2.5)

Where type(c) gives the service name (i.e., identification) of the deployed container c. i.e.,

𝑐 ∈ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑆).

As presented on the model of container based service deployment in Figure 2.6. Each service

𝑠 ∈ 𝑆 has a specification of resource allocation namely, required, limit, and preference as

follows:

𝑟𝑒𝑞𝑢𝑖𝑟𝑒 :𝑆 × 𝑅 × 𝑀 → R

(𝑠, 𝑟, 𝑚) ↦→= 𝑟𝑒𝑞𝑢𝑖𝑟𝑒((𝑠, 𝑟, 𝑚)) = 𝑣𝑎𝑙𝑢𝑒 (2.6)

69

For example 𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑑𝑏_𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦, 𝑢𝑠𝑎𝑔𝑒) = 100𝑀𝑏. The developer or operator

of the system estimate that each instance of the service 𝑑𝑏_𝑠𝑒𝑟𝑣𝑖𝑐𝑒 needs at least 100 Mb

of memory to work correctly. For simplicity of the representation, we will omit the metric

parameters.

Similarly, we define the 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 and 𝑙𝑖𝑚𝑖𝑡 functions. Knowing that, the preference

function means the estimated resource that allows the service to work efficiently. The limit

function represents the limitation (i.e., maximum) of resources that attributed to the instance

(container) of the service. For example, 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑑𝑏_𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦, 𝑢𝑠𝑎𝑔𝑒) = 120𝑀𝑏

and 𝑙𝑖𝑚𝑖𝑡 (𝑑𝑏_𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦, 𝑢𝑠𝑎𝑔𝑒) = 150𝑀𝑏

If these values are not defined, we can define them based on the current values or/and the history

values. For example, in the case of the limit property, its value can be defined by

𝑙𝑖𝑚𝑖𝑡 (𝑠, 𝑟) = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦(𝑑, 𝑟) × (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑠, 𝑟)
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑟) × |𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑠, 𝑑) | (2.7)

To simplify, we consider the hypothesis that these values are defined as presented in the service

deployment model in Figure 2.6. Contrariwise, the currentValue can be extracted from the

monitoring data as presented in Equation 2.3.

Noting that these resource specifications are the same for each instance (replicas).

For example, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑠, 𝑟)=𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑐, 𝑟).
For the set of devices (i.e., nodes), we define the following functions: 𝑖𝑛𝑡𝑖𝑎𝑙𝐴𝑏𝑖𝑙𝑖𝑡𝑦(𝑑, 𝑟) and

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦(𝑑, 𝑟). These functions have the same relation definition :

𝐷 × 𝑅 → R
For the cluster set Cl, we define the following functions:

𝑐𝑜𝑚𝑝𝑜𝑠𝑒 :𝐶𝑙 → 𝐷

𝑐𝑙 ↦→ 𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑐𝑙) = {𝑑1, 𝑑2, . . . , 𝑑𝑛} (2.8)

70

Where, 𝑛 = |𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑐𝑙) | is the number of nodes in the cluster.

𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 :𝐶𝑙 → 𝑆

𝑐𝑙 ↦→ 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 (𝑐𝑙) = {𝑠1, 𝑠2, . . . , 𝑠𝑚} (2.9)

Where, 𝑚 = |𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 (𝑐𝑙) | is the number of deployed services.

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝐼𝑛𝐷𝑒𝑣𝑖𝑐𝑒 : 𝑆 × 𝐷 → 𝑃(𝐶)

(𝑠, 𝑑) ↦→ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝐼𝑛𝐷𝑒𝑣𝑖𝑐𝑒(𝑠, 𝑑) = {𝑐1, 𝑐2, . . . , 𝑐ℎ} (2.10)

Where, ℎ = |𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝐼𝑛𝐷𝑒𝑣𝑖𝑐𝑒(𝑠, 𝑑) | is the number of service replicas in the device 𝑑.

2.5.2 Monitoring step

To minimize the resource utilization and to ensure meeting the system requirements, our

auto-scaling solution, firstly, needs to periodically monitor the system. This task can be fulfilled

by any tool of monitoring (e.g. cAdvisor and Prometheus) that reports the different measured

metrics such as CPU, Memory and Network usage. In our solution, we are interested in two

categories of measured data. The first category is related to the resources of the device such as

the CPU usage as well as the resources of the containers that are running on the device (i.e.,

the resource set 𝑅). The second category is related to the application or service performance

metrics such as the response time and latency (i.e., the performance metric set 𝑃). The system

analyzes the collected metric data in order to maintain the proper functioning of the system and

to adapt it in case of necessity as we will present in the following subsections.

2.5.3 Evaluation step

Based on the metric data obtained by the previous step, this step determines the current state of

different elements of the system and therefore its overall state. This step performs a preliminary

operation that filters the data taking into consideration only non-redundant data. This due to

the fact if a metric has the same value, then it does not make any change in the state. As we

71

mentioned in the previous step, the input data represent metric measures of the nodes and

services deployed on the cluster. The evaluation step is interested in the data concerning the

following elements (Container, Node, Cluster, and Service), which could be the sources of

scalability needs.

• Container: the resource attributed to the container is insufficient to perform the assigned task.

• Node: the node is overloaded in a manner that cannot scale any existing container or

add/activate new one.

• Cluster: the resource of the all cluster is not enough to perform well the different deployed

tasks.

• Service: the number of replications (i.e., instances) of the service is under/over the need of

the service to meet the user requirement like the response time.

Now we present the evaluation of the states of the different elements of 𝐶, 𝐷,𝐶𝑙, 𝑆 (Equation

2.1) by using the evaluation rules. The evaluation is based on the required, preference, and limit

usage properties presented in the deployment model (Figure 2.6) as well as equations 2.6 and

2.7.

In addition, our approach is flexible and the system operator can add new rules or modify the

different thresholds. To represent the different rules used in our solution, this paper adopts

the first order logic format. This format uses quantifiers such as ∀ and ∃, Terms (functions)

that begin with a lowercase letter (e.g. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑒, 𝑟)), and Predicates that start with an

uppercase letter (e.g. 𝐿𝑜𝑤𝑈𝑠𝑎𝑔𝑒(𝑒, 𝑟)).

The following equations represent a general model of the evaluation rules of the states:

∀𝑒 ∈ 𝐸,∀𝑟 ∈ 𝑅, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑒, 𝑟) ≤ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑒, 𝑟)

→ 𝐿𝑜𝑤𝑈𝑠𝑎𝑔𝑒(𝑒, 𝑟) (2.11)

∀𝑒 ∈ 𝐸,∀𝑟 ∈ 𝑅, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑒, 𝑟) < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑒, 𝑟)

→ 𝑀𝑒𝑑𝑖𝑢𝑚𝑈𝑠𝑎𝑔𝑒(𝑒, 𝑟) (2.12)

72

∀𝑒 ∈ 𝐸,∀𝑟 ∈ 𝑅, 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑒, 𝑟) < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑒, 𝑟)

→ 𝐻𝑖𝑔ℎ𝑈𝑠𝑎𝑔𝑒(𝑒, 𝑟) (2.13)

By definition the predicat 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑒, 𝑟) ≤ 𝑙𝑖𝑚𝑖𝑡 (𝑒, 𝑟) is always verified.

The following subsections provide more details about the limit, preference, and require properties

for each element type such as Container, Device, Cluster and Service as well as their usage in

the evaluation rules.

2.5.3.1 Container(instance)

This type of rule is used to evaluate the current state of the resources used by the container. The

currentValue and availableResource information can be extracted directly from the monitoring

data. The initialAbility information is available on the deployment model.

• 𝑙𝑖𝑚𝑖𝑡 (𝑐, 𝑟), 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑐, 𝑟), and 𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑐, 𝑟) information is available in the deployment

model.

• 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦(𝑐, 𝑟) = 𝑙𝑖𝑚𝑖𝑡 (𝑐, 𝑟)˘𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑐, 𝑟)

2.5.3.2 Device

This category of rules is intended to evaluate the state of the used resources of the device. The

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑟) information can also be extracted directly from the monitoring data and

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝑏𝑖𝑙𝑖𝑡𝑦(𝑑, 𝑟) from the deployment model.

73

The calculated functions are as follows:

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦(𝑑, 𝑟) = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝑏𝑖𝑙𝑖𝑡𝑦(𝑑, 𝑟)˘𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑟)

𝑜𝑡ℎ𝑒𝑟𝑈𝑠𝑎𝑔𝑒(𝑑, 𝑟) = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑟) −
∑

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑐𝑖 , 𝑟)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑑, 𝑟) = 𝑜𝑡ℎ𝑒𝑟𝑈𝑠𝑎𝑔𝑒(𝑑, 𝑟) +
∑

𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑐𝑖 , 𝑟)

𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑑, 𝑟) = 𝑜𝑡ℎ𝑒𝑟𝑈𝑠𝑎𝑔𝑒(𝑑, 𝑟) +
∑

𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑐𝑖 , 𝑟)

𝑙𝑖𝑚𝑖𝑡 (𝑑, 𝑟) = 𝑜𝑡ℎ𝑒𝑟𝑈𝑠𝑎𝑔𝑒(𝑑, 𝑟) +
∑

𝑙𝑖𝑚𝑖𝑡 (𝑐𝑖 , 𝑟)

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐹𝑜𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 (𝑑, 𝑟) = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝑏𝑖𝑙𝑖𝑡𝑦(𝑐, 𝑟) − 𝑙𝑖𝑚𝑖𝑡 (𝑑, 𝑟)
(2.14)

Where, the limits of each sum (
∑

) is from 𝑖 = 1 to |𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝐼𝑛𝐷𝑒𝑣𝑖𝑐𝑒(𝑆, 𝑑) | which means

the number of all service instances deployed in the device ‘𝑑’(as in Equation 2.10). The function

𝑜𝑡ℎ𝑒𝑟𝑈𝑠𝑎𝑔𝑒(𝑑, 𝑟) represents the resource usage used by process other than the system’s services

like the operating system.

2.5.3.3 Cluster

A cluster is composed of set of devices. For that, all the information functions (e.g., 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒

and 𝑙𝑖𝑚𝑖𝑡) have the same format, which is the sum of those of the devices.

𝑖𝑛 𝑓 𝑜𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑐𝑙) = ∑|𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑐𝑙) |
𝑖=1

𝑖𝑛 𝑓 𝑜𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑑𝑖, 𝑟) , where

𝑖𝑛 𝑓 𝑜𝐹𝑢𝑐𝑛𝑡𝑖𝑜𝑛 ∈ {𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝑏𝑖𝑙𝑖𝑡𝑦, 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒,

𝑜𝑡ℎ𝑒𝑟𝑈𝑠𝑎𝑔𝑒, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒, 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒, 𝑙𝑖𝑚𝑖𝑡, 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐹𝑜𝑟𝐷𝑒𝑝𝑙𝑜𝑦} (2.15)

𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑐𝑙) is defined in Equation 2.8.

2.5.3.4 Service

The service corresponds to all its deployed instances (replica containers). Two categories of

metrics are taken into consideration for the service:

74

• Metrics of resources (e.g. CPU and memory):

This case is similar to the cluster resource information.

𝑖𝑛 𝑓 𝑜𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠) = ∑𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑠)
𝑖=1

𝑖𝑛 𝑓 𝑜𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑐𝑖, 𝑟) where,

𝑖𝑛 𝑓 𝑜𝐹𝑢𝑐𝑛𝑡𝑖𝑜𝑛 ∈

{𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒, 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒, 𝑙𝑖𝑚𝑖𝑡} (2.16)

The function 𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑐𝑙) is defined in Equation 2.4.

• Performance metrics:

These metrics that are related to the service performance such as the response time, latency,

and throughput. In our actual approach, we propose to use two delimiters (i.e., thresholds):

the minimum and maximum values (minValue and maxValue), as defined in the service

presented in Figure 2.5. For example, the minimum threshold of the response time criterion

(e.g., 30 milliseconds) defines the best requirement. In other words, the service does not

require that the value to be lower than this threshold. However, it does require that the value

to be less than the maximum delimiter (e.g., 120 milliseconds).

The following rules, represent a general model to define the evaluation rules related to

performance metrics of services:

∀𝑠 ∈ 𝑆,∀𝑝 ∈ 𝑃,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑠, 𝑝) ≤ 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒(𝑠, 𝑝) →

𝑀𝑜𝑟𝑒𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (𝑠, 𝑝) (2.17)

∀𝑠 ∈ 𝑆,∀𝑝 ∈ 𝑃,

𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒(𝑠, 𝑝) < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑠, 𝑝) ≤ 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒(𝑠, 𝑝)

→ 𝐴𝑠𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (𝑠, 𝑝) (2.18)

∀𝑠 ∈ 𝑆,∀𝑝 ∈ 𝑃,𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒(𝑠, 𝑝) < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑠, 𝑝)

→ 𝑈𝑛𝑑𝑒𝑟𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (𝑠, 𝑝) (2.19)

75

Our approach introduces and focuses on the concept of states. It retains the use of other types of

rules, most notably those based on thresholds, which are mostly used in the literature and in the

technical tools.

Direct threshold rules:

In this category, the rules are based on specific metric values. The preconditions of the rule are

based on a basic comparison (i.e., <, ≤,=, ≥, >) as presented in the followed general formula:

∀𝑒 ∈ 𝐸,∀𝑟 ∈ 𝑅, ∃(𝑒, 𝑟, 𝑐𝑜𝑚𝑝, 𝑡ℎ𝑉) ∈ (𝐸 × 𝑅 × 𝐶𝑜𝑚𝑝𝑂 × R),

𝐶𝑜𝑚𝑝𝑂 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑒, 𝑟), 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒(𝑒, 𝑟))

→ 𝑆𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒(𝑒, 𝑟)) (2.20)

Where the quadruplet (𝐸 × 𝑅 × 𝐶𝑜𝑚𝑝𝑂 × R) defines the set of thresholds which is based on

the specification of the element (e.g. a device), the resource (e.g. the memory), the comparison

operator (e.g. ‘≥’), and the threshold value (e.g. 120𝑀𝑏𝑦𝑡𝑒𝑠).

Distance change rule:
The distance change rule is activated when the difference between the current metric value and

the previous one exceeds a predefined and configurable threshold. Consequently, this can be

interpreted as the speed of value change. Therefore, by this type of rule, the system can deduce

the necessity of scaling even the current metric values are reasonable (i.e., they do not activate

the state and direct threshold values). The following equation presents the general model of this

type:
∀𝑒 ∈ 𝐸, ∀𝑟 ∈ 𝑅, ∃(𝑒, 𝑟 , 𝑡ℎ𝑉) ∈ (𝐸 × 𝑅 × R) ,

𝐶𝑜𝑚𝑝𝑂 (|𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 (𝑒, 𝑟) − 𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒 (𝑒, 𝑟) | , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇ℎ𝑉𝑎𝑙𝑢𝑒 (𝑒, 𝑟))

→ 𝑆𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 (𝑒, 𝑟)) (2.21)

Where, ‘CompO’ verifies whether the difference between the current value of the resource

usage with the old usage exceeds the distance threshold value defined by ’distanceThValue’.

2.5.3.5 Evaluating algorithm

Algorithm 2.1 follows mainly three steps:

76

1. Data filtering(Lines 1 to 2): by the 𝑓 𝑖𝑙𝑡𝑒𝑟 operation, the algorithm eliminates the useless

data such as the repeated data(i.e., duplicated data). For that, it needs to update the old data

after each filtering operation (Line 2)).

2. Data extraction: in Line 3, the algorithm directly extracts the primitive data (corresponding

to primitive functions) from the monitoring data 𝑀𝐷. Based on the extracted data, Line

4 calculates the other data 𝐶𝑎𝑙𝑐𝑢𝑙_𝐷𝑎𝑡𝑎 such as those related to the cluster element, by

using the different equations presented in this paper.

3. Apply evaluation rules(Lines 5 to 13): The algorithm evaluates the condition of rules on the

prepared data (primitive and calculated data). As indicated in Line 6, it uses the deployment

model 𝐷𝑒𝑝𝑙𝑀𝑜𝑑𝑒𝑙 to check other properties of the rule such as the period (ex. 3 minutes)

and the rate(95%). These last metrics indicate that the rate of its verification is greater than

the rate value during the period value.

In the case of its verification, it adds the rule to the activated rule list (𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑟𝑢𝑙𝑒𝑠)

After that, it updates the state of the related element with the specified resource in the rule.

Algorithm 2.1 Evaluating

Input: 𝑀𝐷 〈𝐸, 𝑅, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠, 𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒𝑠〉,
𝐷𝑒𝑝𝑙𝑀𝑜𝑑𝑒𝑙 〈𝐸, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠,𝑉𝑎𝑙𝑢𝑒𝑠〉, 𝑅𝑢𝑙𝑒𝑠 〈𝑅〉

Output: 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑑𝑅𝑢𝑙𝑒𝑠(𝑅) = {}, 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒𝐵𝑦𝑅𝑒𝑠 〈𝐸, 𝑅, 𝑆𝑡𝑎𝑡𝑒〉 = {}

1 𝐹𝑖𝑙𝑡𝑟𝑒𝑑_𝑀𝐷 = 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑀𝐷);
2 𝑢𝑝𝑑𝑎𝑡𝑒𝑂𝑙𝑑_𝑀𝐷 (𝑀𝐷);
3 𝑃𝑟𝑖𝑚𝑖𝑡_𝐷𝑎𝑡𝑎 ← 𝑔𝑒𝑡𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠(𝐹𝑖𝑙𝑡𝑟𝑒𝑑_𝑀𝐷);
4 𝐶𝑎𝑙𝑐𝑢𝑙_𝐷𝑎𝑡𝑎 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒(𝑃𝑟𝑖𝑚𝑖𝑡_𝐷𝑎𝑡𝑎, 𝐷𝑒𝑝𝑙𝑀𝑜𝑑𝑒𝑙);
5 for 𝑟 ∈ 𝑅𝑢𝑙𝑒𝑠 do
6 if 𝑐ℎ𝑒𝑐𝑘_𝑟𝑢𝑙𝑒(𝑟, 𝑃𝑟𝑖𝑚𝑖𝑡_𝐷𝑎𝑡𝑎, 𝐶𝑎𝑙𝑐𝑢𝑙_𝐷𝑎𝑡𝑎, 𝐷𝑒𝑝𝑙𝑀𝑜𝑑𝑒𝑙) then
7 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑟𝑢𝑙𝑒𝑠 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑟𝑢𝑙𝑒𝑠 ∪ {𝑟};
8 if 𝑡𝑦𝑝𝑒(𝑟) = ‘𝑆𝑡𝑎𝑡𝑒′ then
9 (𝑒, 𝑟𝑒𝑠, 𝑠) = 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒(𝑟);

10 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒𝐵𝑦𝑅𝑒𝑠.𝑢𝑝𝑑𝑎𝑡𝑒(𝑒, 𝑟𝑒𝑠, 𝑠) ;

11 end if
12 end if
13 end for

77

2.5.4 Making decision step

This step analysis the result of the evaluating step to take decision about the need of the scalability

(whether scale up or down) of each system element. It based on the decision rules to allow

mapping between the results of the evaluation rules (especially the element state) and the decision

of the scalability.

In our solution, we focus on the state evaluation rule type that brings more autonomy to the

system for the scalability concern. Otherwise, in the case of the evaluation generated by the

other rule types (i.e., the direct threshold and distance change rule), the making decision step

translates directly their results such as the need of scalability that is specified by the system

operator.

The following evaluation presents some generic decision rules:

∀𝑒 ∈ (𝐶𝑙 ∪ 𝐷 ∪ 𝐶),∀𝑟 ∈ 𝑅, 𝑆𝑡𝑎𝑡𝑒(𝑒, 𝑟) = ‘𝐻𝑖𝑔ℎ𝑈𝑠𝑎𝑔𝑒′

→ 𝑁𝑒𝑒𝑑𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦((𝑒, 𝑟), ‘𝑈𝑝′) (2.22)

∀𝑒 ∈ (𝐶𝑙 ∪ 𝐷 ∪ 𝐶),∀𝑟 ∈ 𝑅, 𝑆𝑡𝑎𝑡𝑒(𝑒, 𝑟) = ‘𝐿𝑜𝑤𝑈𝑠𝑎𝑔𝑒′

→ 𝑁𝑒𝑒𝑑𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦((𝑒, 𝑟), ‘𝐷𝑜𝑤𝑛′) (2.23)

∀𝑠 ∈ (𝑆 ∪ 𝐶),∀𝑝 ∈ 𝑃, 𝑆𝑡𝑎𝑡𝑒(𝑠, 𝑝) = ‘𝑈𝑛𝑑𝑒𝑟𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛′

→ 𝑁𝑒𝑒𝑑𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦((𝑒, 𝑟), ‘𝑈𝑝′) (2.24)

∀𝑠 ∈ (𝑆 ∪ 𝐶),∀𝑝 ∈ 𝑃, 𝑆𝑡𝑎𝑡𝑒(𝑠, 𝑝) = ‘𝑂𝑣𝑒𝑟𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛′

→ 𝑁𝑒𝑒𝑑𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦((𝑒, 𝑟), ‘𝐷𝑜𝑤𝑛′) (2.25)

The rules are based on the state evaluations generated in the previous evaluation step, which is

used as an input in the taking decision algorithm:

78

Algorithm 2.2 Taking decision algorithm

Input: 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒𝐵𝑦𝑅𝑒𝑠 〈𝐸, 𝑅, 𝑆𝑡𝑎𝑡𝑒〉, 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑢𝑙𝑒𝑠 〈𝑃(𝑅)〉
Output: 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑑𝑅𝑢𝑙𝑒𝑠(𝑅) = {}, 𝑆𝑐𝑎𝑙_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 〈𝐸, 𝑅, 𝑆𝑒𝑛𝑠𝑒〉 = {}

1 for 𝑟 ∈ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑢𝑙𝑒𝑠 do
2 if 𝑐ℎ𝑒𝑐𝑘_𝑟𝑢𝑙𝑒(𝑟, 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒𝐵𝑦𝑅𝑒𝑠) then
3 𝑒 = 𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (𝑟);
4 𝑟𝑒𝑠 = 𝑔𝑒𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑟);
5 𝑠𝑒𝑛𝑠𝑒 = 𝑔𝑒𝑡𝑆𝑒𝑛𝑠𝑒(𝑎𝑝𝑝𝑙𝑦(𝑟));
6 𝑆𝑐𝑎𝑙_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑢𝑝𝑑𝑎𝑡𝑒(𝑒, 𝑟𝑒𝑠, 𝑠𝑒𝑛𝑠𝑒, ‘𝑊𝑜𝑟𝑠𝑡′);
7 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑑𝑅𝑢𝑙𝑒𝑠(𝑅) = 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑑𝑅𝑢𝑙𝑒𝑠 ∪ {𝑟};
8 end if
9 end for

Algorithm 2.2 checks the different decision rules (Lines 1-9). For each verified rule, it extracts

(Lines 4-6) the concerned elements namely the element and the resource as well as the result of

the applying rule. The algorithm uses the worst choice strategy to manage the case of multiple

and conflict scalability decision generated by different rules for the same element and resource.

It chooses the scale-up option instead of the scale-down, because it reflects a need to continue

operating the system and/or to meet user requirements. On the contrary, the scale-down is

important in terms of unloading the system’s resource usage, but it has less priority than the user

requirements.

2.5.5 Generating scaling plan step

This step generates the overall scalability plan based on the elementary decisions of the system

elements obtained in the previous step. To do that, it aggregates these elementary decisions and

manages the potential conflicts between them.

Example, an instance 𝑐1 of a service 𝑠 wants to scale-up for one performance metric 𝑝 ∈ 𝑃

(i.e. 𝑁𝑒𝑒𝑑𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦((𝑐1, 𝑝), ′𝑈𝑝′)). On the other hand, another instance 𝑐2 of the same

service 𝑠 wants to scale-down for the same metric 𝑝 (i.e., 𝑁𝑒𝑒𝑑𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦((𝑐2, 𝑝), ′𝐷𝑜𝑤𝑛′))
because its performance metric is over expectation. Furthermore, this step should verify, via

79

verification rules, that the generated plan meets the system constraints such as the available

resources. In order to reduce the complexity of the task of generating the scalability plan, we

follow the following heuristic strategies:

• Order of element types: This strategy firstly considers the aggregating elements such namely

the service and the cluster. The primitive and calculation functions of the aggregating

elements give to the system an overall indicators of the need and the ability of the scalability.

For example, if one service wants to scale-up by adding a new instance and the available

resources of the cluster are sufficient to satisfy this need; the system can accept its request, as

presented in the following scalability rules:

∀𝑠 ∈ 𝑆,∀𝑟 ∈ 𝑅, ∃𝑝 ∈ 𝑃, ∃𝑡ℎ ∈ R

𝑁𝑒𝑒𝑑𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦((𝑠, 𝑝), ‘𝑈𝑝′) ∧ (𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦(𝑐𝑙, 𝑟) > 𝑡ℎ)

→ 𝑆𝑐𝑎𝑙𝑒𝑈𝑝(𝑠) (2.26)

Where the service 𝑠 is deployed in 𝑐𝑙, which is the current cluster. The 𝑡ℎ presents a resource

availability threshold (e.g., 0) that allows to scale up a service 𝑠.

• Order of the scalability validation: the first order is from the aggregating element to

elementary elements as presented in the previous point. The second one is between the

type of elements, where the generator starts from software element type (i.e., service and

container) to the hardware element type (i.e., node and cluster).

This order is justified by the impact of the scalability of software elements on the hardware

element.

• Order of the scalability operation: in this strategy, we give the scale-down operation a higher

priority compared to the scale-up operation if they do not concern the same element. The

scale-down allows to drop the corresponding used resource. By taking into consideration the

dropped resources, the system can satisfy the new scale-up requests. But the system takes

the reverse order if the scalability operations concern the same element or the same type

such as the instances of the same service. For example, if a service needs to scale-up for

one performance metric and to scale-down for another one, the system cannot choose the

scale-down before finishing the scale-up request.

80

2.5.6 Execute the scalability plan step

The role of this step is to execute the scalability operations recorded in the generated plan. This

task can even be performed by an external tool. For example, in the validation of our approach,

we have used Jenkins pipeline tool.

2.6 Evaluation

This section highlights the steps followed to assess the feasibility and the performance of our

approach with resource-constrained devices as in the case of IoT edge environment. We used

Docker, Docker-Machine 1, and Docker-Swarm 2 to carry out our experiment. Docker-Machine

is used to create a set of limited resource virtual machines (VMs) configured with Docker

engine to simulate IoT edge nodes. Docker-Engine is used to create containers that run services

deployed on the VMs, as well as, to run the deployed management and monitoring tools. The

Docker-Swarm is used to create a cluster of VMs, one of them is deemed as a manager node,

while the rest is worker nodes. Some criteria are considered to evaluate the obtained results

namely the scalability, the response time, and the resource utilization.

2.6.1 Evaluation Architecture

The implementation and the deployment of our approach is based on a set of tools that are widely

used in the DevOps and Container community namely the monitoring tools NodeExporter,

cAdvisor, Prometheus 3, and Grafana 4 as well as the management tools such as Jenkins 5 and

AlertManager 6.

1 https://docs.docker.com/v17.09/machine/get-started/

2 https://docs.docker.com/engine/swarm/

3 https://prometheus.io/

4 https://grafana.com/

5 https://jenkins.io/

6 https://prometheus.io/docs/alerting/alertmanager/

81

As shown in Figure 2.9, our evaluation architecture is encompassed of set of modules that are

formed as virtual machines (VMs) and docker containers. Namely, three VMs are used including

one as a manger node, while the other two machines as worker nodes. Each node in the cluster

is equipped with Linux 2.6 as an operating system, 1-core CPU, and 1 GB of RAM. In addition,

it is equipped by a set of services deployed as docker containers. CAdvisor and Node-exporter

are deployed in each node to collect and to export the different metrics. In the node manager,

Prometheus service scrapes the collected data from all Node-exproter and Cadviser instances.

Communications between edge nodes and services are maintained by means of ports run on the

top of the host machine’s IP. In addition, containers are used to run management tools namely

Figure 2.9 The evaluation architecture

AlertManager and Jenkins to handle the different alerts and adapt the client service (i.e., Test

82

service). Our cluster manager service ensures that the architecture functioning is consistent with

our proposed approach.

From this perspective, we explain more this evaluation architecture in line with our approach:

• Monitoring step: to monitor the different nodes and the deployed services, Prometheus

scrapes the monitoring data metrics from the exporter tools namely CAdvisor and Node-

exporter as well as from the instances of our instrumented test service. While Grafana is

in charge of visualizing these metrics. Grafana tool is used to present in graphical way the

monitoring data.

• Evaluating step: our rule management service configures Prometheus to evaluate the

monitoring data as specified in our rule model. To do that, our cluster manager service

creates Prometheus alert rules based on the conditions and conclusions of the evaluation

rules.

• Taking decision and scaling steps: Alertmanger receives alerts from Prometheus. Our

cluster manager service also configures the mapping between the Prometheus alerts and

their Alertmanger handlers. The existence of the alert’s handler means that there is a scaling

decision. The handlers generate the corresponding actions. In our implementation, these

actions are the scalability operation such as the scale-up and scale-down, which we have

implemented in the Jenkins tool. Consequently, Jenkins executes the scaling operation by

adapting the current test service deployment.

2.6.2 Evaluation Scenario

The scenario of our experimentation is as follows:

1. Configure the cluster nodes with the aforementioned tools such as our manager service,

cAdvisor, and Prometheus. Also, start monitoring the utilization of the different resources

such as CPU, Memory, and Network traffic.

2. Deploy a test service with 03 replicas. The test service uses an instrumented metrics 7

to mainly send the response time metric, as well as the service name and the response

7 https://prometheus.io/docs/practices/instrumentation/

83

code. The service receives HTTP requests and record the performance metrics when the

response is sent back to the client. By this way the system (via Prometheus) can monitor the

performance metrics of the deployed service.

3. Impose a pressure on the service to increase significantly its response time and observe the

scalability of the system by monitoring the number of test service replicas (i.e., instances)

and the system resource utilisation. This is achieved by sending HTTP requests (10000

requests) with a delay parameter (500 ms). The test service has for the minReplicas and

maxReplicas properties, 01 and 05 respectively. In addition, it has 0.025 ms and 0.1 ms

values for the minValue and maxValue response time metrics.

2.6.3 Results

This section presents the results of our experimentation, which carried out based on the above

mention evaluation configurations. Two main evaluation objectives that our approach seeks to

demonstrate namely the auto-scalability of services and the reduction of resource utilization.

The first objective is intended to meet the performance metrics; while the second is intended to

meet the resource-limitation requirement.

2.6.3.1 Auto-scalability behavior

To monitor the auto-scalability behaviour we have used the number of service replicas metric.

Figure 2.10 presents an extract during the second step of the evaluation scenario. The service

descales to the one replica (i.e., minReplicas) because the response time is over expectation. In

other words, the response time value < minValue (i.e., 0.025). In contrast, in Figure 2.11 the

service scale-up to 5 replicas as long as the response time is under expectation because its value

> 0.1𝑚𝑠 (i.e., maxValue).

Obviously, in our current implementation, the system scales by only one replica each time. This

point is to be improved by taking into account the historical behaviour of the system in order to

adapt to the corresponding degree of scalability (number of replicas).

84

2.6.3.2 Resource utilization

Figures 2.12, 2.13, and 2.14 represent, respectively, the utilization of CPU and Memory, and

Network traffic. They show the average resource utilization by the nodes during the auto-

scalability of the service. The figures show that the resource utilization is directly proportional

to the number of replicas. Consequently, the experimentation proves the notable enhancement in

the resource utilization when the service is descaling. Since the nodes run an operating system

and other services such as monitoring services, there is still a remarkable utilization with the

minimum of service replicas (one instance per node).

Figure 2.10 Scalability when the response time is

Overexpectation

Figure 2.11 Scalability when the response time is

Underexpectation

85

Figure 2.12 CPU usage during the scalability

Figure 2.13 Memory usage during the scalability

Figure 2.14 Network traffic during the scalability

86

2.7 Conclusion

Edge devices have conveyed significant benefits to IoT networks by taking the charge of

performing some cloud tasks, by which alleviating the workload imposed on the network and

improve system responsivity. However, devices at the edge of IoT networks are featured by

its resource limitation, as well as, it is likely to perform within an extreme heterogeneous

environment. This has imposed more restrictions especially in terms of service deployment

and resource management. This paper presents a solution based on lightweight virtualization

technologies namely containers to facilitate efficient auto-scaling of service deployment on IoT

edge devices. The proposed approach adopts the cluster concept to define grouped IoT edge

devices, and it follows the MAPE-K loop to monitor the state of the cluster and the performance

of services deployed on its devices. In addition, the rule model is proposed to facilitate the

auto-scaling process of services. More specifically, it is designed to serve as reference knowledge

base used by the monitoring and analysis modules of our solution. Thus, a deployment plan

will be generated and transferred to the execution module. The obtained results proved the

efficiency of our approach in terms of auto scaling of services in corresponding to service

performance metrics (e.g. response time); while optimizing the resource utilization namely

CPU, memory and network traffic. As future work, we plan to perform more experimentation

in real IoT scenarios use cases considering more performance metrics such as throughput and

latency. In addition, to expand the feasibility of our approach, it would be of great significant

to investigate multi-level clusters, which will be of our interest as future work. Furthermore,

we are planning to improve the scaling plan generation step by integrating machine learning

techniques to analysis the historical behaviour of the system.

CHAPTER 3

IMPROVING FORECASTING ACCURACY AND OSCILLATION MITIGATION FOR
PROACTIVE SERVICE AUTO-SCALING USING AUTOMATIC DATA

FEATURIZATION

Ahmed Bali1 , Yassine El Houm1 , Abdelouahed Gherbi1

1 Department of Software Engineering and IT, École de Technologie Supérieure

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Paper submitted to the Journal of King Saud University - Computer and Information Sciences.

ABSTRACT Edge computing has gained widespread adoption for time-sensitive applications

by offloading a portion of IoT system workloads from the cloud to edge nodes. However, the

limited resources of IoT edge devices hinder service deployment, making auto-scaling crucial for

improving resource utilization in response to dynamic workloads. Recent solutions aim to make

auto-scaling proactive by predicting future workloads, overcoming the limitations of reactive

approaches. These proactive solutions often rely on time series data analysis and machine

learning techniques, especially Long Short-Term Memory (LSTM), thanks to its accuracy and

prediction speed. However, existing auto-scaling solutions often suffer from oscillation issues,

even when using a cooling-down strategy. Consequently, the efficiency of proactive auto-scaling

depends on the prediction model accuracy and the degree of oscillation in the scaling actions.

This paper proposes a novel approach to improve prediction accuracy and deal with oscillation

issues. Our approach involves an automatic featurization phase that extracts features from

time-series workload data, which improves forecasting accuracy. These extracted features also

serve as a grid for controlling oscillation in generated scaling actions. Our experimental results

demonstrate the effectiveness of our approach in improving prediction accuracy, mitigating

oscillation phenomena, and thereby enhancing the overall auto-scaling performance.

Keywords: Container, Auto-scaling, LSTM, Oscillation mitigation, Data featurization, Time

series Forecasting

88

3.1 Introduction

The Internet of Things (IoT), which promotes integration between objects in the real world and

services in the digital world, is influencing many aspects of our lives, such as health, education,

and construction. These uses rely primarily on networks composed of a large number of tiny

devices immersed in our environment, for example, in the form of environmental and health

sensors. The use of these devices is constantly growing, leading to a massive number of devices

connected to the internet (Evans, 2011). The massive data generated by IoT devices and their

limitations in computing and connectivity capabilities may increase the latency of services.

Edge computing, which offloads the workload of IoT systems from the cloud to edge nodes,

improves system responsiveness by minimizing latency. However, IoT devices at the edge

network are typically resource-constrained and heterogeneous, which can constrain the ability to

deploy services to IoT devices.

To address the heterogeneity of IoT technologies, lightweight virtualization technologies, such

as containers, have been extensively employed to facilitate the deployment and management of

microservices on edge IoT devices (Ahmed et al., 2019). The container can package the service

program with all its dependencies into a single module. Thus, services can be run stably and

faster, regardless of the operating environment.

Additionally, IoT edge devices within the same cluster can share resources and communicate

with each other via virtual networks thanks to container orchestration techniques such as Swarm

(Swarm, 2022). Furthermore, Kubernetes (kubernetes, 2022b) considers the concept of a pod,

which is a collection of one or more containers that share network and storage resources and

adhere to certain operating rules. A Pod presents the deployable primitive unit of computation.

In this context, the service deployment is presented by deploying a set of replicas (i.e., containers

or pods) on the available machines that are grouped into clusters. Each replica presents an

instance of the microservice to be deployed. Increasing the number of replicas improves

the service’s responsiveness (i.e., reduces latency) but consequently increases the usage of

computation resources.

89

Resource usage should be further considered at the edge level, where devices are often limited

in terms of resources. This requires a reasonable use of computing resources while meeting

user requirements (e.g., response time). Therefore, it is necessary to have, dynamically and

continuously, a number of replicas that does not exceed the need (i.e., over-provisioning) and

that is not less than the need (i.e., under-provisioning).

However, the current container tools (e.g., Swarm (2022) and kubernetes (2022b)) need to be

more elastic to scale deployed services automatically. Therefore, this reduces their ability to

continuously adapt in response to the operational environment, such as the frequent changes

in the requested workload (e.g., HTTP requests). In addition, the existing approaches lack the

proactivity aspect, which limits the system’s ability to adapt appropriately to the operational

environment.

Container-based autoscaling solutions are still an open issue that needs to be addressed, as

mentioned in Qu et al. (2018). Designing and implementing an efficient and adequate auto-scaler

for containerized services is challenging due to various factors, including dynamic workload

characteristics, resource constraints, and the distributed nature of IoT nodes at the edge.

Workload forecasting is an important factor in making auto-scaling behavior proactive. Therefore,

forecasting accuracy improvement is necessary to increase the auto-scaler performance in

generating actions (scale up or down) more adequately to the workload.

Moreover, the continuous generation of actions by the auto-scaler leads to a dynamic change in

the number of replicas, which generates an oscillation issue. The oscillation of the number of

replicas has considerable consequences on the system’s performance, such as cost increases

in resource usage in the case of over-provisioning and performance declines in the case of

under-provisioning. Moreover, adapting the number of replicas can generate latency in the

system if performed reactively.

Related work generally adopts the solution based on the cooling down strategy, which introduces

a delay before carrying out a scale-down request following a decrease in the workload volume.

However, this strategy is demanding since it depends on optimizing the cooling down period

90

parameter. If the period is long, it generates more over-provisioning; if it is short, that reduces

the efficiency of the oscillation mitigation.

To address the above issues, this work proposes a service auto-scaling approach that maintains the

desired performance with optimal resource utilization to cope with cases of dynamic workload

change (i.e., increase/decrease). Our approach is built upon several key contributions, which

are as follows:

• Adoption of the MAPE-K algorithm (Monitor, Analyze, Plan, and Execute) as a controlling

loop: We have implemented the different steps of the MAPE-K algorithm, allowing us to

effectively monitor system behavior, analyze data, plan appropriate actions, and execute

scaling operations.

• Proposal of data featurization approach: We introduced a data featurization operation that

enhances the accuracy of the forecasting model. By extracting automatically relevant features

from the data, we transform it from univariate to multivariate, thereby capturing more

information and improving the predictive capabilities of the model. The features extracted

are inspired by Japanese candlesticks, a widely used technique in the trading domain.

• Proposal of a grid-based approach for oscillation mitigation: Our approach includes a novel

grid-based mechanism for mitigating oscillations in system scaling. This mechanism takes

advantage of the data and features used for workload prediction improvement and is based

on an economic concept known as the grid technique. By aligning the grid lines with the

extracted features, we achieve effective oscillation mitigation. Notably, our mechanism is

parameterless compared to existing techniques proposed in related work.

• Evaluation of our approach using widely-used datasets: To validate the effectiveness of our

approach, we conducted comprehensive evaluations using datasets commonly used in the

literature on the auto-scaling of systems.

The remainder of the paper is organized as follows: Section 3.2 discusses the related work to

the approach proposed in this paper. Then, Section 3.3 shows the overall architecture of our

auto-scaling approach, followed by the presentation of the collection and pre-processing of data

in Section 3.4. Afterward, Section 3.5 presents our featurization approach. Our LSTM model for

91

forecasting the future workload is presented in Section 3.6. Section 3.7 presents our oscillation

mitigation approach. Section 3.8 discusses the experiments to evaluate our contributions. Finally,

we conclude this study and highlight our directions for future work in Section 3.9.

3.2 Related Work and Background

Many works are performed on auto-scaling at the cloud level in the literature. In (Kovács, 2019),

auto-scaling is defined as a method used in distributed computing, especially in the cloud, to

dynamically and automatically adjust the amount of computing resources in a set of servers

based on traffic workload. Additionally, scaling is a crucial component of orchestration in terms

of policy and flexibility for cloud containers and virtual machines. To explain the auto-scaling

feature, we take as an example (similar to that presented in (Mishra et al., 2020)) the number

of servers running behind a web application that can be automatically increased or decreased

depending on the number of active users. Since these measurements vary considerably during

the day and servers are a limited resource, it is often worthwhile to operate a sufficient number

of servers to support the current load. Auto-scaling is very useful for meeting customer service

requirements. It reduces the number of active servers when activity is low and launches new

servers when activity is high.

3.2.1 Virtualization and Autoscaling

The cloud is based on virtualization technology, which allows performing multiple work

environments on the same server. In this regard, (Varghese & Buyya, 2018; Pahl et al., 2017)

explain, in a simple and detailed way, the virtualization architecture, presenting the trends and

technologies involved in the cloud. Containers are considered a fundamental virtualization

property, which allows deploying microservices on the cloud server. Several domains increasingly

use containers, including service meshes, edge and fog computing, IoT, smart cars, and smart

cities, as in Ahmed et al. (2019); Jamshidi, Pahl, Mendonça, Lewis & Tilkov (2018); Khazaei

et al. (2017); Morabito et al. (2017).

92

There are essentially two types of autoscaling, vertical autoscaling and horizontal autoscaling

(Al-Dhuraibi et al., 2017). The distinction between these two types of scaling stems from the

manner in which computing resources are added to the infrastructure. In vertical autoscaling,

computing power is added to existing replicas/nodes. In contrast, horizontal autoscaling increases

a system’s capacity by adding more replicas (e.g., containers) to the environment, allowing for

processing and memory load sharing across multiple devices.

In the edge computing context, resources are often limited (e.g., IoT devices and Gateway devices),

which makes having a mechanism for increasing and decreasing computational resources (i.e.,

vertical auto-scaling) on the same node less useful or even unrealistic. Therefore, horizontal

auto-scaling becomes more suitable by dynamically changing the number of replicas (e.g.,

containers or pods) to distribute the processing load among devices that constitute a so-called

cluster.

Furthermore, auto-scaling approaches are classified into two types: reactive and proactive. As in

our previous work (Bali et al., 2020), the algorithm reacts to workload or resource utilization in

real-time according to a set of predefined rules and thresholds. In proactive scaling, an algorithm

is used to forecast future workload based on historical data (Lorido-Botran et al., 2014). The

difference is that, in proactive mode, the auto-scaler must predict workloads to adapt the system

to future needs, while in reactive mode, the system reacts in real-time to workload changes

(Lorido-Botran et al., 2014).

Due to the ease of implementation, most current auto-scalers use reactive threshold-based

approaches, as used in Kubernetes HPA, Google Cloud Platform, Amazon EC2, and Oracle

Cloud. For this purpose, many studies (Klinaku et al., 2018; Taherizadeh & Stankovski, 2019;

Nguyen et al., 2020) suggest using the reactive auto-scaling functionality offered by cloud servers.

However, selecting appropriate thresholds is difficult, especially when dealing with complex

workloads (Imdoukh et al., 2019). To optimize the configuration of thresholds, auto-scalers

can use static heuristic techniques offline according to predefined workloads (Zhong & Buyya,

2020). These strategies are unable to cope with highly dynamic workloads in which applications

93

must scale at runtime (Zhong et al., 2022).

In addition, although this improved reactive approach is simple, it is less efficient since it

generates oscillations due to sudden and unpredictable changes in workloads. As a result, the

reactive approach results in waste due to the over-provisioning of resources and degradation of

the system’s performance when releasing the resources that the system needs.

In (Dang-Quang & Yoo, 2021), the authors demonstrate that their proactive auto-scaler outper-

forms Kubernetes’ default horizontal autoscaling pod (HPA) in terms of accuracy and speed

when provisioning and de-provisioning resources.

3.2.2 Workload Forecasting Techniques

In proactive auto-scaling as in (Sangpetch et al., 2017; Imdoukh et al., 2019; Dang-Quang & Yoo,

2021), machine learning algorithms are often applied in time series analysis for workload

forecasting. Different ML algorithms are used to predict the future from historical data (Lorido-

Botran et al., 2014). The time series-based forecasting approaches bring more performance

compared to regular regression approaches, as they are specifically designed for forecasting

tasks. These approaches explicitly consider the sequential nature of the data and incorporate

past observations to make predictions, taking into account temporal patterns. In contrast, regular

regression models, such as Linear and Polynomial Regression, typically assume a constant

relationship between the input variables and the target variable, without explicitly accounting for

these temporal patterns. The literature uses two common categories of time series data analysis

and forecasting methods.

First, algorithms are based on statistical time series analysis (e.g., ARIMA) such as those

presented in Lorido-Botran et al. (2014); Sangpetch et al. (2017); Calheiros et al. (2014); Roy

et al. (2011); Kan (2016); Li & Xia (2016); Ciptaningtyas et al. (2017); Meng et al. (2016).

These statistical approaches are slow in the case of dynamic workload demands and suffer from

resource overuse (Imdoukh et al., 2019). Since most of this work is intended for the cloud

94

environment, the application of these techniques in edge computing is restricted by resource

limitations.

Second, there are deep learning-based solutions such as the neural network (ANN) and LSTM

algorithms, for instance, in Calheiros et al. (2014); Goli et al. (2021); Zhu et al. (2019);

Saxena & Singh (2022); Kumar et al. (2021a); Imdoukh et al. (2019); Dang-Quang & Yoo

(2021). In Imdoukh et al. (2019); Dang-Quang & Yoo (2021), the experimental results show

that LSTM model predicts as accurately as the ARIMA model but with a faster prediction speed.

However, the efficiency of auto-scalers using time series data analysis is highly dependent on

prediction accuracy (Doan et al., 2019). This accuracy, in turn, is dependent on parameters such

as the workload pattern, history windows (Lorido-Botran et al., 2014) as well as a machine-

learning model and the prediction horizon. Thus, it is required to propose solutions that improve

prediction accuracy. Therefore, container-based autoscaling is still an open issue that needs to

be addressed, as mentioned in Qu et al. (2018); Cardenas (2018).

In order to improve the accuracy of the prediction, our approach proposes an automatic solution

based on the feature extraction (i.e., featurization) of the data. The extracted features (such as

maximum and minimum) give a general description of the data window to be used to predict

the future workload. By adding these features, the accuracy of the prediction model has been

greatly improved, as shown in the evaluation section (Section 3.8). Unlike other solutions (such

as Imdoukh et al. (2019); Dang-Quang & Yoo (2021)), our model becomes multivariate, which

means that it uses, in addition to historical workload values, the automatically generated features.

This automatic generation makes our model less required in terms of data preparation compared

to other classical multivariate approaches that often need the collection process of other features

as we will discuss in the next element.

3.2.3 Univariate and Multivariate Time Series

While many auto-scaling studies have traditionally focused on univariate time series data, such

as workload, it has been widely recognized in the literature that incorporating multivariate

95

data (i.e., features) can significantly improve forecasting accuracy. Cetinski & Juric (2015)

demonstrated the importance of extending training data with relevant features, such as the time

of day and weekends.

In the context of auto-scaling, LSTM models have been shown to effectively capture complex

non-linear feature interactions when applied to multivariate data with numerous dimensions

and a substantial volume of data (Ogunmolu et al., 2016). Laptev et al. (2017) proposed a

novel LSTM architecture that leverages an autoencoder for feature extraction, achieving superior

performance compared to the vanilla LSTM model. In their data preparation process, they

incorporated additional specific features such as weather information (e.g., precipitation, wind

speed, temperature) and city-level information (e.g., current trips, current users, local holidays).

However, most of these additional features cannot be automatically extracted and need to be

logged during data collection.

Various classical statistical time series features have been considered in the literature to improve

forecasting accuracy. Hyndman et al. (2015) explored features such as mean, variance, ACF

(Auto-correlation Function), trend strength, linearity, peak, and season. Di et al. (2012) focused

on important and predictive statistical properties of host load, including mean load, load fairness

index, noise-decreased fairness index, and N-segment pattern. However, these derived features,

particularly those related to trend and seasonality, usually require manual analysis to identify their

parameters. Chakraborty et al. (1992) emphasized the significance of considering correlations

among different metrics to improve prediction accuracy and avoid the distortion of forecast

models. They attempted to select appropriate features, such as disk space, disk IO time, memory,

and CPU.

To further illustrate the significance of incorporating relevant features, Wang et al. (2021)

established a dataset by collecting features of complex system simulation to improve the resource

prediction performance of simulation applications in the cloud. These features include average,

maximum, and minimum values of usage metrics such as CPU, memory, file system, network

(receive and send bytes), communication delay, and execution time. Similarly, Kao et al. (2020)

96

focused on communication metrics, specifically incoming traffic, outgoing traffic, number of

connections, and network traffic load (per day). These features need to be obtained during data

logging since they are not derived automatically.

In our approach, instead of relying on pre-existing multivariate features, we propose the

automatic extraction of features from the univariate data presented within each data window

using non-linear functions. Inspired by Japanese Candlesticks, a well-known technique used in

the trading domain, we apply this featurization technique to each data window, deriving features

automatically. This approach eliminates the need for manual analysis of statistical properties,

especially trend and seasonality parameters, which simplifies the data preparation process and

enhances the accuracy of time series forecasting. By focusing on the data window, which serves

as the prediction model (LSTM) input, we capture window-specific features that contribute to

improved short-term predictions.

3.2.4 Oscillation Mitigation

Another important aspect to consider is the continuous generation of actions by the auto-scaler,

which can lead to frequent changes in the number of replicas and result in oscillation issues that

waste resources. For example, at time t, the auto-scaler may add a recently released resource

from time t-1, or vice versa. Therefore, it is essential to consider oscillation mitigation as an

important functionality in the auto-scaling process. By reducing the number of unnecessary

changes in the number of replicas, system performance can be improved, and resource wastage

can be reduced.

Unfortunately, oscillation mitigation has not received sufficient attention in the literature. To

overcome this limitation, Imdoukh et al. (2019); Dang-Quang & Yoo (2021) have integrated the

oscillation mitigation technique into the autonomous and self-adaptive MAPE-K loop system

(Arcaini, Riccobene & Scandurra, 2015). Therefore, we compared the results in our study with

those in Imdoukh et al. (2019); Dang-Quang & Yoo (2021), as they had good results on the data

97

analysis and implementation of an auto-scaling system, as well as they considered the oscillation

mitigation issue.

Our grid-based oscillation mitigation approach benefits from the generated features. The feature

values form a value grid, where each line (i.e., value) represents a reference action. This grid

enables matching the actions generated by our auto-scaling system to the reference actions

to reduce the oscillation issue. We have called this original method of handling oscillation

’Grid-based oscillation mitigation’. Our approach has a further advantage, as the grid values

change dynamically according to the historical data window used. The literature approaches

often use the cooldown timer (CDT) principle (Imdoukh et al., 2019), which delays the execution

of a scaling-down request due to decreased workload volume. However, this CDT solution

requires finding an optimized delay timer value. In contrast, our oscillation processing approach

is less demanding since it is a parameterless mechanism. In addition, it can improve the

oscillation mitigation compared to the related work approaches. Moreover, combining our

grid-based approach with the CDT mechanism significantly improves the oscillation mitigation.

Finally, it is worth noting that our approach proposed in this study can be used in other scientific

fields where there is a need to make more accurate time-series forecasting, such as transportation

domain (Nguyen et al., 2018), where there is a need for traffic flow prediction.

3.3 Overall architecture

Our approach follows MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowledge)

(Computing et al., 2006) loop to ensure the auto-scaling. In our context, MAPE-K presents the

general process of the auto-scaling as presented in Figure 3.1. First, the auto-scaler monitors the

system by logging all the measurement data (e.g., number of HTTP requests and CPU) captured

during the monitoring. This historical data represents the time-series data, which will be used

for model training and forecasting purposes. Second, the auto-scaler analyses the monitoring

data to evaluate the system state. It forecasts the future workload, while the planning phase

generates the plan that contains scaling actions, especially the increasing/decreasing of service

98

replicas. The generated plan takes into consideration the oscillation issue. The last step of the

MAPE-K module will execute the generated plan. In our case, the prediction model is part of

the knowledge central to the MAPE-K loop, as shown in Figure 3.1.

Figure 3.1 General Auto-scaling Process

3.4 Data collection and pre-processing

The data collection is based on the monitoring phase. In our case, we use univariate time series

data. We organized the dataset to have only two useful pieces of information, the time (period)

and the count of HTTP requests. So, the overall dataset is aggregated and transformed such that

each record represents the total workload (i.e., number of HTTP requests) per minute.

Time-series data can be collected and stored by the Prometheus tool, which aggregates metrics

from monitoring tools such as CAdvisor and Node Exporter.

We use the Worldcup98 Dataset (Arlitt & Jin, 2000) and NASA dataset (Dang-Quang & Yoo,

2021) to evaluate and compare our forecasting approach to literature models. The Worldcup98

Dataset contains the HTTP request logs for approximately 1.3 billion total requests made to

the FIFA World Cup Website between April 30 and July 26, 1998. In contrast, NASA’95

Dataset contains a two-month log of all HTTP requests made to the Florida NASA Kennedy

Space Center web server. These datasets were used extensively to evaluate auto-scalers in the

99

cloud computing literature (Imdoukh et al., 2019). We present further the used datasets in the

evaluation section (Section 3.8).

3.4.1 Data scaling

The scaling of data can increase the performance of some ML algorithms, such as LSTM, in

our case. Scaling is changing the values of numeric variables to have relevant properties. As a

result, data are transformed to be bounded within a newly defined range, such as [0, 1], using the

min-max scaling mechanism as presented in Equation 3.1.

𝑥
′
=

𝑥 − 𝑚𝑖𝑛(𝑥)
𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥) (3.1)

Where 𝑥
′
, x, min(x), and max(x) represent the scaled value, original value, minimum value of

the feature in the dataset, and maximum value, respectively.

3.4.2 Data reframing and Horizon of prediction

The data reframing step aims to transform the data into a format suitable for a supervised learning

task. In this process, we use the previous time steps as input variables, while the next time

step is used as the output variable. As shown in Figure 3.2, the data are represented as a list of

sequences of time series data. It corresponds to a sliding window concept (e.g., a window of

two values in Figure 3.2) that is used to predict the value at the next moment (i.e., step).

The prepared data in the previous step is sufficient for the single-step prediction. For the case of

multi-step prediction (e.g., next fifth-time step), we put the corresponding output value in the

training process. However, this approach is not practical since it may require many models that

match the size of the forecasting horizon. For example, five models are needed in the case of a

prediction horizon of the length of five-time steps. Another alternative is the recursive multi-step

prediction (Imdoukh et al., 2019). However, its limitation is the degradation of accuracy as the

size of the horizon increases.

100

Figure 3.2 Time Series reframing, with window size =2

3.5 Forecasting based on data featurization

The analysis phase of the MAPE-K loop (in Figure 3.1) is based on forecasting the future

workload. Predicting the future workload is essential in making the auto-scaling process proactive.

This prediction is based on quantitative forecasting using the collected and pre-processed data of

the monitoring step. The collected data represents the historical workload data. To improve the

forecasting algorithm (LSTM in our case) accuracy, we propose to add a featurization phase.

The time-series featurization allows transferring the model from univariate (e.g., contains only

the workload data) to multivariate by extracting new information from data, as we will present

in the following subsection.

3.5.1 Our Time Series Featurization

Our approach adds a step of time series featurization (i.e., feature extraction) to improve

prediction accuracy. The added features are derived from the input data. In particular, the

features summarize the time series window data.

We formulate the data featurization as follows. First, we define the workload data of an instant 𝑡

as 𝑑𝑡 . Accordingly, a time series data 𝑇𝑆 can express as:

101

𝑇𝑆 =< 𝑑0, 𝑑1, · · · , 𝑑𝑛 >. The featurization can modeled as function:

𝐹 : 𝐷𝑠 → 𝐷𝑘

𝑊𝑖 =< 𝑑𝑖, 𝑑𝑖+1, · · · 𝑑𝑖+𝑠 >→< 𝑓𝑖1, 𝑓𝑖2, · · · , 𝑓𝑖𝑘 >
(3.2)

Where, 𝐷 represents the domain of data value (e.g., integer or real), 𝑊𝑖 contains 𝑠 values, and

the function generates 𝑘 features.

In our approach, the features are inspired by the Japanese Candlestick concept (Tam, 2015) used

in the economic domain for trading different assets such as Stocks and Futures. Four useful

pieces of information are provided by a candlestick, namely, open, low, high, and close, as

presented in Figure 3.3.

Figure 3.3 Japanese candlestick information

Furthermore, the Japanese candlestick gets an abstraction, allowing the trader to comprehend the

stock evolution better. Figure 3.4 presents the line representation corresponding to the sequence

of Tesla stock price values (i.e., time series data). In contrast, Figure 3.5 presents the equivalent

representation based on the Japanese candlesticks, where each candlestick summarizes one day

period.

Inspiring from Japanese Candlestick provides interesting advantages to our featurization approach

that provides additional information about the data windows. The featurization incorporates

102

Figure 3.4 Line representation of

Tesla stock

Figure 3.5 Representation of Tesla

stock using Japanese candlesticks

time-based features, namely open (i.e., the first value of a window) and close (i.e., the last value

of a window), as well as value-based features, namely, maximum and minimum. The extracted

features abstract and generally describe the data presented in the window, which allows capturing

of short-term dependencies.

In addition, our featurization approach allows the transfer of univariate data to multivariate data.

Our approach avoids generating linearly dependent features, which potentially cause instability

or overfitting in the models. The non-linear functions (e.g., max and min) applied to the data

have introduced variations in the derived features, leading to a diversity of information, which is

beneficial for the forecasting model as it captures different aspects of the underlying patterns.

Besides adopting the Japanese Candlestick concept, our approach has the advantage of automatic

feature generation, which makes it less requiring compared to most related work approaches

that need to collect the features on the data preparation phase, as in Wang et al. (2021) (e.g.,

CPU, Memory, and network), or even make manual analysis for feature generation such as the

statistical properties as in Hyndman et al. (2015) (e.g., trend and seasonality). The following

subsection describes our featurization process.

103

Algorithm 3.1 Feature Extraction Algorithm

Input:
𝑇𝑆 =< 𝑑0, 𝑑1, ..., 𝑑𝑛 >
𝑠 : window size

Output: 𝑟𝑒 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎

1 𝑟𝑒 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎 ← {};
2 for 𝑖 ← 0 to 𝑛 − 𝑠 do
3 𝑤 ←< 𝑑𝑖, ..., 𝑑𝑖+𝑠 >;

4 𝑜𝑝𝑒𝑛 ← 𝑑𝑖;
5 𝑐𝑙𝑜𝑠𝑒 ← 𝑑𝑖+𝑠;
6 𝑙𝑜𝑤 ← 𝑚𝑖𝑛(𝑤);
7 ℎ𝑖𝑔ℎ ← 𝑚𝑎𝑥(𝑤);
8 𝑤 ← reformulateData(w, [open, close, low, high, average]);

9 reformulatedData.append(w);

10 end for

3.5.2 Time Series Featurization Algorithm

To map the candlestick concept to our context, we consider that the window is the equivalent to

the period (e.g., 3 m, 15 m and 1 day).

Given the window: 𝑤 = {𝑑𝑡−𝑛, 𝑑𝑡−𝑛−1, ..., 𝑑𝑡}, so the candlestick futures are obtained by the

equations 3.3, 3.4, 3.5, and 3.6.

𝑂𝑝𝑒𝑛 = 𝑑𝑡−𝑛 (3.3)

𝐶𝑙𝑜𝑠𝑒 = 𝑑𝑡 (3.4)

𝐿𝑜𝑤 = min(𝑤) (3.5)

𝐻𝑖𝑔ℎ = max(𝑤) (3.6)

Figure 3.6 presents an extract of time-series data organized in periods with its features.

Other information, as an indicator, can be added as the average (Equation 3.7):

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑛

𝑛−1∑
𝑖=0

𝑑𝑡−𝑖 (3.7)

104

Figure 3.6 Overview of the proposed multivariate data

structure.

Our time series featurization process is presented in Algorithm 3.1. The data sequence is passed

in parameters. The window size is used to reformulate the data in Line 3. Lines 4-7 extract the

features, which are concatenated to the initial window in Line 8.

The time complexity of the feature extraction part of the algorithm is linear (i.e., 𝑂 (𝑛)) to the

input size, which corresponds to | 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | × 𝑤𝑧, where | 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 | is the number of features

to extract and 𝑤𝑧 represents the window size.

3.6 LSTM Model

LSTM is a deep learning algorithm, an advanced type of recurrent neural network (RNN).

Recurrent neural networks are distinguished by an ability to memorize from prior inputs to

influence the current input and output. Due to the vanishing gradient problem (Hu, Huber,

Anumula & Liu, 2018), RNNs forget what they have seen in previous layers and do not learn

appropriately with long-term dependency cases. LSTM overcomes this drawback of RNN by

using gate mechanisms that control the information flow. Thus, LSTM is highly adapted to

predicting the following sequence in time-series data, such as workload over time. An LSTM

network is formed by linking many LSTM units (cells).

105

An LSTM neuron comprises an internal memory (cell) controlled by the three gates of input,

forget, and output. The role of any gate is to regulate the volume of data that passes through

it. The input gate decides whether the input should change the cell’s content. Its output 𝐶′
𝑡 is

obtained by equations 3.9 and 3.10. The forget gate determines whether to reset the cell content

to 0; its output corresponds to 𝑓𝑡 calculated by Equation 3.8. These outputs of the two gateways

present the base to calculate the new cell state 𝐶𝑡 calculated by Equation 3.11. Finally, the output

gate determines if the cell content (i.e., 𝐶𝑡) should impact the output of the cell ℎ𝑡 as presented

in equations 3.12 and 3.13.

𝑓𝑡 = 𝜎(𝑊𝑓 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏 𝑓) (3.8)

𝑖𝑡 = 𝜎(𝑊𝑖.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3.9)

𝐶′
𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3.10)

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶′
𝑡 (3.11)

𝑜𝑡 = 𝜎(𝑊𝑜.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3.12)

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) (3.13)

Where 𝑊 and 𝑏 represent the weights and bias, respectively. In addition, 𝜎 (sigmoid) and 𝑡𝑎𝑛ℎ

denote the used activation functions.

106

Table 3.1 summarizes the configuration of our LSTM model. We have chosen a Sequential

LSTM architecture (i.e., a pipeline architecture). The input layer corresponds to the sliding

window size (30 in our case), whereas the output layer contains only one neural cell. We

configured the input and the hidden layers with a 20% dropout after each layer. Dropout is a

regularization technique used to prevent data overfitting. We used backpropagation and the

Adam optimizer to fit the model. Our epochs are set to 20, and our batch size is set to 10.

Table 3.1 Hyperparameters of our LSTM learning algorithm

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
Number of layers 2 layers

Input size 17

Output size 1

Units 30

Loss function MAE

Optimizer adam

Batch size 512

Epochs 50

3.7 Oscillation mitigation

The sudden and constant change in the number of replicas the auto-scaler generates can be costly,

impacting the system’s efficiency. This frequent change generates the oscillation phenomenon.

To address this issue, auto-scaling related works, as in (Dang-Quang & Yoo, 2021; Imdoukh

et al., 2019), limit the oscillation by using the cooldown timer (CDT) and the rate of change

mechanisms by using scaling down ratio (SDR). Therefore, the performance of these oscillation

mitigation approaches depends on tuning the values of these parameters (i.e., CDT and SDR).

In contrast, our oscillation mitigation approach has the advantage of being parameterless due to

using features extracted for the forecasting phase. The extracted features generate a selection

grid to reduce the action volatility. This grid consists of elements representing the features

extracted from the values of the time series window (e.g., 15 previous workload values). Figure

3.7 shows an example of a grid composed of four features: open, low, high, and close. Our

approach selects the top line closest to the calculated action value.

107

Figure 3.7 A grid based on four features with

the workload curve

The grid lines defined by the features are used to cap the value of the number of replicas

calculated by the planner. During a requested resource reduction (i.e., down-scaling), the least

great line of the value issued by the planner is selected.

Algorithm 3.2 gives an overview of these steps. At each execution, the algorithm estimates (Line

2) the future workload using a prediction model (e.g., LSTM), which needs a data window as a

parameter. A downscale is needed if the obtained number is lower than the current workload.

In this case, to reduce the oscillation effect, our approach changes the workload value by a

value belonging to the feature set (obtained as input by Line 3.2). The feature set values, which

represent the grid lines, are generated by Algorithm 3.1. The function ’getNextProof’ (lines

7-10) returns a value from the grid that is the least value greater than the predicted workload

value.

Afterward, the algorithm calculates (Line 6) the corresponding number of replicas needed by

dividing the predicted workload value by the replica capacity (i.e., replicaCapacity), which

represents the capacity in terms of workload. In other words, the replicaCapacity represents the

number of requests a replica can handle in a given period (e.g., one minute).

108

Algorithm 3.2 Grid-based Oscillation Mitigation

Input:
𝑤 =< 𝑑𝑡−𝑤𝑧 , ..., 𝑑𝑡−1, 𝑑𝑡 >
𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑆𝑒𝑡 = {𝑙𝑜𝑤(𝑤), 𝑜𝑝𝑒𝑛(𝑤), 𝑐𝑙𝑜𝑠𝑒(𝑤), ℎ𝑖𝑔ℎ(𝑤)}
Output: 𝑛𝑒𝑤𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠

1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ← 𝑑𝑡 ;

2 predictedNextWorkload ← predict(ForecastingModel, w);

3 if (predictedNextWorkload < currentWorkload) then
4 predictedNextWorkload ← getNextRoof(predictedNextWorkload,propertySet);

5 end if
6 newReplicas ← predictedNextWorkload / replicaCapacity;

7 Function getNextRoof(𝑒𝑙𝑡, {𝑒𝑙1, 𝑒𝑙2, ...𝑒𝑙𝑛}):
8 𝑠𝑢𝑏𝑆𝑒𝑡 ← inferior(𝑒𝑙𝑡, {𝑒𝑙1, 𝑒𝑙2, ...𝑒𝑙𝑛});
9 roof ← min(subSet);

10 return roof;

3.8 Experiments and Results

In this section, the main objective of the evaluation is to present the feasibility and utility of

our two contributions, namely time series featurization, which improves the accuracy of the

forecasting model, and our oscillation mitigation approach, which improves the auto-scaling

efficiency. To achieve this objective, each of the following subsections presents an important

aspect of the evaluation.

3.8.1 Simulator

To examine our approach, we developed a simulation program in Python (using the NumPy,

Pandas, Scikit-learn, and Keras libraries) to test and compare our results with related work

(Imdoukh et al., 2019; Dang-Quang & Yoo, 2021). This simulator allows us to scale replicas

according to the prediction data generated by the machine learning model presented in Section

3.6. As shown in Figure 3.8, the simulation tool consists of 5 phases, following the MAPE-K

loop, which includes monitoring the auto-scaling and evaluating the results to verify the impact

of models on the scaling process.

109

Figure 3.8 Architecture of the simulator

3.8.2 Performance metrics

Two types of metrics are considered: forecasting model metrics and auto-scaling metrics.

3.8.2.1 Evaluation metrics for the prediction model

The regression models selected in this study, LSTM and Bi-LSTM, allow the prediction of future

sequences of a dataset according to the parameters acquired during its training. The efficiency of

these forecasting models is evaluated according to their generalization error rate (i.e., accuracy).

The accuracy evaluation in regression analysis consists of comparing the original target with the

predicted one. For that measures, we can use different metrics such as Mean Absolute Error

(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-Squared (R2),

which help to explain the errors and predictive ability of the model (Chicco, Warrens & Jurman,

2021). These measures are defined as follows:

• MAE (Mean absolute error) represents the difference between the actual and predicted values

calculated by averaging the absolute errors over the dataset (Eq. 3.14).

• MSE (Mean Squared Error) represents the average squared difference between the actual and

predicted values (Eq. 3.15).

• RMSE (Root Mean Squared Error) represents the standard deviation of the prediction by the

square root of MSE (Eq. 3.16).

• Coefficient of determination (R-Squared) represents the proportion of the variance for a

dependent variable that is predictable from one or more independent variables in a regression

110

model. The proportion value, which normally ranges from 0 to 1, explains the correlation

between variables that correspond to actual and predicted values in the forecasting case.

Thus, the higher the value, the better the model (Eq. 3.17).

𝑀𝐴𝐸 =
1

𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (3.14)

𝑀𝑆𝐸 =
1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (3.15)

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸 =

√√√
1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (3.16)

𝑅2 = 1 −
∑

𝑖
(
𝑦𝑖 − 𝑦𝑖

)2
∑

𝑖
(
𝑦𝑖 − 𝑦𝑖

)2 (3.17)

Where 𝑦, 𝑦𝑖 and 𝑦𝑖 represent actual value, predicted value, and mean of actual values y,

respectively.

As shown by equations, MSE and MAE are error metrics that quantify the difference between

predicted and actual values. A lower value for these metrics indicates better performance,

meaning the model’s predictions are closer to the actual values. Root Mean Squared Error

(RMSE), as it is the square root of MSE, penalizes further larger errors, giving a better

representation of the overall prediction performance. Thus, a model having a lower MSE value

implies that it has a lower value of RMSE. Additionally, we included the R-squared (R2) metric

to assess the proportion of variance in the predicted values, obtained by forecasting models,

compared to actual values. It represents an informative metric of the model goodness-of-fit,

where a higher value indicates a better fit.

111

3.8.2.2 Auto-scaler evaluation metrics

The performance evaluation of our auto-scaling simulator is based on two essential points:

elasticity and provisioning rate. For this purpose, we have chosen to use the metrics proposed

in Herbst et al. (Herbst et al., 2016) and Bauer et al. (Bauer, Grohmann, Herbst & Kounev,

2018a). These metrics are used in several literature studies on auto-scaling, such as Imdoukh

et al. (2019); Dang-Quang & Yoo (2021); Bauer, Herbst, Spinner, Ali-Eldin & Kounev (2018b):

• Under-provisioning metric (𝜃𝑢) indicates the number of missing replicas (e.g., containers)

needed to reach the requested number of replicas in a time interval (Eq. 3.18).

• Over-provisioning metric (𝜃𝑜) represents the supplied replicas that exceed the demanded

number, as shown in Eq. 3.19.

• Under-provisioning time (𝑇𝑢) reflects the time during which the simulator was under-

provisioning (Eq. 3.20)

• Over-provisioning time (𝑇𝑜) reflects the time during which the simulator was over-provisioning

(Eq. 3.21)

• Elasticity speedup (𝜖𝑛) reveals the performance gain obtained by using a proactive auto-scaler.

In this work, the elasticity speedup is calculated by a ratio between two cases: using a

proactive auto-scaler and a reactive auto-scaler, which are represented in Eq. 3.22, by the 𝑝

and 𝑟 indices, respectively. In contrast to the previous metrics, the higher the 𝜖𝑛 value, the

higher the auto-scaler performance. In other words, the best auto-scaler has less 𝜃𝑢, 𝜃𝑜, 𝑇𝑢, 𝑇𝑜

values and essentially a higher 𝜖𝑛 value.

𝜃𝑢 =
100

𝑇

𝑇∑
𝑖=1

𝑚𝑎𝑥(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) − 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡), 0)
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) Δ𝑡 (3.18)

𝜃𝑜 =
100

𝑇

𝑇∑
𝑖=1

𝑚𝑎𝑥(𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡) − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡), 0)
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) Δ𝑡 (3.19)

112

𝑇𝑢 =
100

𝑇

𝑇∑
𝑖=1

max(𝑠𝑔𝑛(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) − 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡)), 0)Δ𝑡 (3.20)

𝑇𝑜 =
100

𝑇

𝑇∑
𝑖=1

max(𝑠𝑔𝑛(𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡) − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡)), 0)Δ𝑡 (3.21)

𝜖𝑛 =

(
𝜃𝑢,𝑟
𝜃𝑢,𝑝

.
𝜃𝑜,𝑟
𝜃𝑜,𝑝

.
𝑇𝑢,𝑟
𝑇𝑢,𝑝

.
𝑇𝑜,𝑟

𝑇𝑜,𝑝

) 1
4

(3.22)

Where, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) represents the correct number of replicas corresponding to the actual

workload. In contrast, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡) represents the number of replicas offered by the auto-scaler

according to the predicted value of the workload. Δ𝑡 corresponds to the time interval (e.g., each

1 minute) to check the change in the workload. 𝑇 represents the entire evaluation period and

𝑠𝑔𝑛() is the sign function.

3.8.3 Datasets

3.8.3.1 Worldcup 98 Dataset

The Worldcup 98 Dataset contains the HTTP request logs of more than 1.3 billion requests from

the 1998 FIFA World Cup website in France between April 30 and July 26 (Arlitt & Jin, 2000).

This high request load is due to the number of spectators worldwide who followed this event.

The Worldcup’98 Dataset is often used by researchers working on auto-scaling in the cloud.

Moreover, this will allow us to compare our results with other studies such as Imdoukh et al.

(2019); Dang-Quang & Yoo (2021).

The data structure of this dataset contains the following properties: timestamp, clientID, objectID,

size, method, status, type, and server Arlitt & Jin (2000). In order to better manage this data,

we performed a preprocessing by grouping all logs occurring in the same minute into a single

cumulative record, as in Imdoukh et al. (2019). As a result, the information about the number of

113

requests corresponds to the number of received requests in one minute. Figure 3.9 plots the

obtained dataset.

Figure 3.9 Representation of Worldcup 98’ dataset by

number of requests per minute

3.8.3.2 NASA 95’ Dataset

The NASA 95’ Dataset provides a two-month log of HTTP requests to the NASA Kennedy Space

Center web server in Florida. This dataset contains 3,461,612 requests collected between July 1,

1995, at 00:00:00 and August 31, 1995, at 23:59:59. The timestamps are accurate to one second. It

should note that no accesses were reported from 01/Aug/1995:14:52:01 to 03/Aug/1995:04:36:13

since the web server was shutdown due to Hurricane Erin (Dang-Quang & Yoo, 2021). Figure

3.10 plots a part of the dataset.

3.8.3.3 Data Distribution

The distribution of the NASA’95 dataset is less complicated than that of Worldcup 98’ (Dang-

Quang & Yoo, 2021). Figure 3.11 presents the data distribution for two datasets: Worldcup

and NASA. The Worldcup dataset exhibits a higher degree of variation and the presence of

outliers compared to the NASA dataset. This is evident from the wider spread of data points in

the Worldcup dataset. Notably, the high difference between the median value, 3884, and the

114

Figure 3.10 Representation of NASA 95’ dataset by number

of requests per minute

maximum value that exceeds 200,000 indicates the presence of extreme values in the Worldcup

dataset. On the other hand, the NASA dataset shows less variation and a smaller range of values,

with the maximum value being around 300. The median value of the NASA dataset is 29,

indicating a relatively concentrated distribution of data points.

Figure 3.11 Data Distribution Comparison of Worldcup and

NASA Datasets

Indeed, the Worldcup 98’ dataset has a high degree of variation in its value, with peaks that are

difficult to predict, as well as a less well-defined pattern compared to the NASA 95’ dataset, in

terms of trend and seasonality.

115

3.8.4 Evaluation Protocol

First, we have rebuilt the forecasting models proposed in the literature to reproduce these tests in

the same operating environment and execution conditions. This will allow us to have reproducible

and non-biased results. Consequently, we have kept the same configuration hyperparameters

proposed in each approach.

Second, the efficiency evaluation of each forecasting algorithm will be based on its performance

results. However, the configuration parameters proposed for these algorithms (Imdoukh et al.

algorithm in (Imdoukh et al., 2019), Dang et al. algorithm in (Dang-Quang & Yoo, 2021) and

our algorithm in Table 3.1) are not sufficient to cover all our test cases, whether during the

prediction stage or the auto-scaling of the system.

Therefore, we need to test several combinations of the key hyper-parameters of these models to

verify their impact on the different approaches’ contributions by analyzing the change in the

forecasting results. In addition, this study, according to multiple combinations of settings and

parameters, dedicates the best model with the optimal configuration.

Third, every dataset we have chosen (i.e., Worldcup’98 and NASA’95) will be divided into

two parts: train the model and do the tests. For this purpose, we were inspired by the "Pareto

(80-20)" principle (Dunford, Su & Tamang, 2014) to make our division. Thus, we chose to keep

80% of the data available for training the algorithms against 20% for testing for each dataset.

The execution results of the test data were then analyzed, following the performance metrics, to

evaluate the success rate of these forecasts.

Finally, we experimented with our predicted data as well as those of Imdoukh et al. (Imdoukh

et al., 2019) and Dang et al. (Dang-Quang & Yoo, 2021) in our simulator, to choose the best

auto-scaling approach, which deals most effectively with the oscillation mitigation. These

approaches are evaluated according to the metrics presented in Subsection 3.8.2.

116

3.8.5 Evaluation of our forecasting approach

We first need to reproduce forecasting approaches proposed in the forecasting literature and

test them in the same operating conditions. Specifically, we consider for comparison the two

approaches (Imdoukh et al., 2019; Dang-Quang & Yoo, 2021) since they both use the deep

learning technique and treat the oscillation issue. Imdoukh et al. (Imdoukh et al., 2019) use

LSTM model, whereas Dang et al. (Dang-Quang & Yoo, 2021) use Bi-LSTM model.

Next, we aim to ensure that our featurization-based approach can produce accurate forecasts by

comparing it to these related works. Then, we will further evaluate the featurization impact on

the forecasting results.

3.8.5.1 Comparison to related work

For the evaluation of the regression model, we used the metrics presented in Subsection 3.8.2,

namely RMSE, MSE, MAE, and 𝑅2. Table 3.2 records the evaluation metrics compared to

related work.

Table 3.2 Our featurization-based forecasting approach vs. related work

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝑆𝐸 𝑀𝐴𝐸

NASA

LSTM (Imdoukh et al., 2019) 0.0811 0.6430 0.0066 0.0607

Bi-LSTM (Dang-Quang & Yoo, 2021) 0.0813 0.6409 0.0066 0.0609

Our Model 0.0016 0.9993 2.6343e-06 0.0015

Worldcup’98

LSTM (Imdoukh et al., 2019) 0.0023 0.9862 5.1755e-06 0.0016

Bi-LSTM (Dang-Quang & Yoo, 2021) 0.0020 0.9898 3.8043e-06 0.0013

Our Model 0.0006 0.9990 3.5793e-07 0.0004

During these tests, we noticed that the results of the two related work approaches were consistently

close, with occasional variations in performance where one approach outperformed the other.

Nevertheless, our approach with the featurization always performed well in these tests and

outperformed other approaches.

117

In the case of the NASA dataset, the improvement of our approach is more impressive. As

demonstrated in Subsubsection 3.8.3.3 of the data description, the NASA dataset has a more

stable pattern, which can positively impact the forecasting error. In the case of the Worldcup’98,

there are a lot of workload peaks, which increases the number of outliers in the difference

between the predicted and actual data. These significant and frequent differences hide in part

the improvement in the overall evaluation metrics, such as RMSE and MAE.

Our model exhibited remarkable performance for the NASA dataset, surpassing the best values

reported in the related works. Notably, our model demonstrated approximately improvements of

98%, 55%, 99%, and 97% in RMSE, R2, MSE, and MAE, respectively.

This reduction in the error rate has, therefore, impacted the quality and accuracy of the

forecasting as presented in figures 3.12 and 3.13, which visualize the prediction of our model

on Worldcup’98 and NASA dataset respectively. The red color represents the actual dataset,

whereas the prediction of our model is plotted using the blue color. It is clear that our model fits

well with the test dataset.

Figure 3.12 Our model prediction

with WorldCup’98 dataset
Figure 3.13 Our model prediction

with NASA dataset

3.8.5.2 Result of the hyperparameter combination tests

To further evaluate the effect of the featurization mechanism, we decided to change the LSTM

hyperparameters of the different approaches to see if that impacts our findings. We have chosen

the following hyperparameters: the number of units and the number of epochs. The number of

118

units corresponds to the dimension of the inner cells. Whereas the number of epochs defines the

number of times, the learning algorithm will change the network’s weights.

Table 3.3 shows that our approach, regardless of the changed hyperparameters, outperforms

related work thanks to our featurization mechanism. As in the previous test category, the

improvement with the NASA dataset is more apparent and significant.

Table 3.3 Forecasting results with varying the hyper-parameters: the numbers of

units and epochs. Our Model is compared to LSTM Model of Imdoukh et al. (2019)

and Bi-LSTM Model of Dang-Quang & Yoo (2021)

𝐶𝑎𝑠𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝑆𝐸 𝑀𝐴𝐸

30 units with 50 Epochs

NASA

LSTM 0.0811 0.6430 0.0066 0.0607

Bi-LSTM 0.0813 0.6409 0.0066 0.0609

Our Model 0.0024 0.9997 6.1537-06 0.0017

Worldcup’98

LSTM 0.0023 0.9861 5.1755e-06 0.0016

Bi-LSTM 0.0020 0.9898 3.8042e-06 0.0013

Our Model 0.0006 0.9990 3.5793e-07 0.0004

20 units with 120 Epochs

NASA

LSTM 0.0807 0.6468 0.0065 0.0606

Bi-LSTM 0.0817 0.6381 0.0067 0.0610

Our Model 0.0044 0.9989 1.9779e-05 0.0027

Worldcup’98

LSTM 0.0038 0.9609 1.4625e-05 0.0035

Bi-LSTM 0.0021 0.9884 4.3315e-06 0.0017

Our Model 0.0017 0.9916 3.1499e-06 0.0015

10 units with 50 Epochs

NASA

LSTM 0.0816 0.6389 0.0067 0.0614

Bi-LSTM 0.0823 0.6326 0.0068 0.0614

Our Model 0.0073 0.9971 5.2620e-05 0.0051

Worldcup’98

LSTM 0.0044 0.9485 1.9246e-05 0.0040

Bi-LSTM 0.0023 0.9858 5.3124e-06 0.0018

Our Model 0.0019 0.9907 3.4721e-06 0.0017

3.8.5.3 Evaluation of the impact of our featurization mechanism on the related work
approaches

In the previous test category, we tested the impact of our featurization mechanism by tuning

two key hyperparameters: the number of units and the number of epochs. In this test category,

119

we consider the overall hyperparameters of related work models by applying our featurization

mechanism to the data before using the forecasting algorithms of the related work (Imdoukh

et al., 2019; Dang-Quang & Yoo, 2021).

As presented in Table 3.4, our featurization mechanism improves the forecasting accuracy of the

related work, especially in the case of the NASA dataset. For example, our approach achieves an

improvement of approximately 92% in 𝑅𝑀𝑆𝐸 and 55% in 𝑅2 for the LSTM model. Additionally,

it significantly improves the performance of the Bi-LSTM model with approximately 84%

improvement in 𝑅𝑀𝑆𝐸 and 55% improvement in 𝑅2.

Table 3.4 The impact of our featurization mechanism on the related work approaches

(LSTM of Imdoukh et al. (2019) and Bi-LSTM of Dang-Quang & Yoo (2021))

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝑆𝐸 𝑀𝐴𝐸

NASA

LSTM 0.0811 0.6430 0.0066 0.0607

LSTM ⊕ our featurization 0.0056 0.9983 3.1902e-05 0.0043
Bi-LSTM 0.0813 0.6409 0.0066 0.0609

Bi-LSTM ⊕ our featurization 0.0130 0.9908 0.0002 0.0099

Worldcup’98

LSTM 0.0022 0.9861 5.1755 0.0016

LSTM ⊕ our featurization 0.0016 0.9935 2.4442e-06 0.0010
Bi-LSTM 0.0019 0.9898 3.8043e-06 0.0013

Bi-LSTM ⊕ our featurization 0.0052 0.9289 2.6619e-05 0.0051

3.8.5.4 Finding and Analysis Summary of Our Featurization Approach Evaluation

Our featurization approach has demonstrated significant improvements in forecasting accuracy.

This conclusion is based on a comprehensive evaluation, including: comparison to related work,

comparison to models with varied hyperparameters, and an assessment of the impact of our

featurization on existing forecasting works.

Figure 3.14 illustrates the percentage improvement achieved by comparing our forecasting model

to the best values of compared related works, whose accuracy values are presented in Table 3.2.

In both datasets, our approach outperformed other models regarding accuracy metrics such as

RMSE, MSE, and MAE. In the WorldCup dataset, the R2 value of our model was similar to that

120

Figure 3.14 Relative Improvement Percentage of Metrics:

Our Approach vs. Related Works

of other models that already have high R2 values (around 0.99). This similarity indicates that

our model captures similar levels of variance in the data as the other models while still achieving

superior performance in error metrics.

It is worth noting that the different metric values are calculated based on scaled data. In the

case of descaling the data (i.e., inverting the scaling process), the metric values increase while

maintaining the same improvement percentage.

3.8.6 Evaluation of the auto-scaler

This subsection aims mainly to evaluate our oscillation mitigation approach through the evaluation

of the auto-scaler performance. Therefore, we will discuss our strategies and the results of the

tests carried out on the auto-scaling simulator. We have implemented our auto-scaling simulator

in two modes: the reactive and the proactive modes. Like most commercial solutions, the

reactive mode does not use the prediction functionality.

121

The reactive approach will be used as a baseline to compare the improvement offered by the

proactive approaches, as well as in the calculation of the autoscaling performance metrics,

notably the 𝜖𝑛 metric (Elasticity speedup in Eq. 3.22).

The proactive mode allows us to analyze the performance of our proactive approach and

compare it to related work, namely Imdoukh et al. (Imdoukh et al., 2019) and Dang et al.

(Dang-Quang & Yoo, 2021).

To allow comparison of our auto-scaling approach with those proposed in the literature, we need

to run our auto-scaling simulator for all the approaches under the same conditions proposed in

the literature. The auto-scaling simulator uses the predicted data collected during the previous

tests.

In these tests, we considered five auto-scaling approaches:

• The reactive approach: scaling uses the current monitoring data without the forecasting

ability. This simple category represents most industrial auto-scaling solutions.

• Our proactive approach (𝑂𝑢𝑟𝑃𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒): represents our proactive approach that uses the

data generated from our featurization-based forecasting algorithm without processing the

oscillation issue.

• Our Proactive & Grid approach (𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑): represents our proactive approach

with the use of our grid-based oscillation mitigation approach.

• Work1 : is the approach proposed in the literature (Imdoukh et al., 2019) using our predicted

data. It suggested a cooldown timer (CDT) of 10 seconds with a scaling down ratio (SDR) of

40%.

• Work2 : the approach proposed in the literature (Dang-Quang & Yoo, 2021) using the

predicted data generated by our featurization-based approach. It chooses 60 seconds for the

CDT and 60% for the SDR.

122

3.8.6.1 Reactive vs. our proactive approach

In this first test category, we show the improvement provided by our proactive approach based

on the featurization forecasting mechanism.

Comparing two figures 3.15 and 3.16, we see that our proactive approach can shorten the

response time due to its prediction of the changes in resource requirements in the system. In

addition, our forecasting approach has substantially improved the metrics values of test results

for both datasets (NASA and WorldCup) compared to the reactive approach, as presented in

Table 3.5.

Thanks to the forecasting mechanism, our proactive approach reduces the variation between the

current and the needed resources (i.e., replicas), which improves the auto-scaling performance.

For instance, in the case of Worldcup dataset, our model improves the metric values of over-

provisioning (𝜃𝑜), under-provisioning (𝜃𝑢), over-provisioning time (𝑇𝑜), under-provisioning

time (𝑇𝑢) and elasticity speedup (𝜖𝑛) by about 55%, 76%, 55%, 33%, and 140%, respectively.

Moreover, our proactive approach improves the overall auto-scaling performance (i.e., 𝜖𝑛) by

about 206% in the case of the NASA dataset. This significant improvement demonstrates

the importance of the proactive behavior of our approach, which uses our featurization-based

forecasting approach.

Figure 3.15 reactive Auto-scaler

behavior using NASA’95 dataset

Figure 3.16 Auto-scaler behavior

based on our proactive approach

using NASA’95 dataset

123

Table 3.5 Reactive vs. our Proactive auto-scaling

approaches with Worldcup 98’ and NASA Datasets

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑀𝑒𝑡𝑟𝑖𝑐 𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑂𝑢𝑟𝑃𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒

NASA

𝜃𝑜 2.8139 0.0493
𝜃𝑢 1.1794 1.1993

𝑇𝑜 13.3070 9.5947
𝑇𝑢 13.2231 11.6587
𝜖𝑛 1 3.0659

Worldcup’98

𝜃𝑜 10.1007 4.4949
𝜃𝑢 4.6103 1.0628
𝑇𝑜 20.2554 9.0138
𝑇𝑢 20.4295 13.5262
𝜖𝑛 1 2.3983

3.8.6.2 Our approach with vs. without oscillation mitigation

To evaluate the impact of our oscillation mitigation approach on the auto-scaling behavior,

we compare our proactive approach with and without the oscillation mitigation. Table 3.6

summarizes the test results. Our oscillation mitigation approach was able to improve the

performance of the auto-scaler enormously. It improved the overall Elasticity Speedup metric

(𝜖𝑛) by about 400% with the NASA’95 dataset and 108% with the WorldCup’98 dataset.

Our grid-based mechanism can increase the over-provisioning metric, 𝜃𝑜, as it can choose a

higher value than the predicted one in the case of downscaling needs. For example, in the case of

the NASA dataset, the 𝜃𝑜 metric is increased by about 46%. Moreover, against expectation, our

approach has reduced the time when the system is over-provisioning (𝑇𝑜 metric). The dynamics

of our grid and the predicted workload explains this improvement. As a result, the overall

performance of auto-scaling is greatly improved.

3.8.6.3 Our approach with oscillation mitigation vs. related work approaches

This test category aims to compare our oscillation mitigation mechanism to the related work

(Imdoukh et al., 2019; Dang-Quang & Yoo, 2021) that both proposed an oscillation mitigation

124

Table 3.6 Our proactive approach with vs. without oscillation mitigation with

Worldcup 98’ and NASA Datasets

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑀𝑒𝑡𝑟𝑖𝑐 𝑂𝑢𝑟𝑃𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑

NASA

𝜃𝑜 0.0493 0.0722

𝜃𝑢 1.1993 0.2543
𝑇𝑜 9.5947 0.2916
𝑇𝑢 11.6587 2.0095
𝜖𝑛 3.0659 15.2634

Worldcup’98

𝜃𝑜 4.4949 0.6567
𝜃𝑢 1.0628 1.0508
𝑇𝑜 9.0138 4.5799
𝑇𝑢 13.5262 9.8195
𝜖𝑛 2.3983 4.9919

strategy by restricting the periodicity and rate of change. Work1 (Imdoukh et al., 2019) proposed

a cooldown timer (CDT) of 10 seconds with a scaling down ratio (SDR) of 40 percent, while

Work2 (Dang-Quang & Yoo, 2021) chooses 60 seconds for the CDT and 60 percent for the SDR.

To neutralize the forecasting effect of each approach, we use the same forecasting data generated

by our forecasting approach.

It is interesting to note that our oscillation mitigation approach proposes an original mechanism

that has the advantage of being agnostic to any parameters to optimize (i.e., parameterless), unlike

other related work mechanisms. Considering this originality, our approach slightly improved

the overall auto-scaling performance compared to established and widely used mechanisms, as

presented in Table 3.7.

These findings led us to consider combining these approaches for potential improvement, as

discussed in the following evaluation element.

3.8.6.4 Combination of oscillation solutions

In this test category, we investigate the feasibility and utility of combining our grid-based

oscillation mitigation approach with the related work commonly used mechanism, namely, the

125

Table 3.7 Our proactive approach with our grid-based oscillation mitigation vs.

related work (Work1 of Imdoukh et al. (2019)) and Work2 of Dang-Quang & Yoo

(2021)

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑀𝑒𝑡𝑟𝑖𝑐 𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 𝑊𝑜𝑟𝑘1 𝑊𝑜𝑟𝑘2

NASA

𝜃𝑜 0.0722 0.0828 0.0732

𝜃𝑢 0.2543 0.2565 0.2501
𝑇𝑜 0.2916 0.2954 0.2954

𝑇𝑢 2.0095 2.0202 2.0082
𝜖𝑛 15.2625 14.6498 15.2237

Worldcup’98

𝜃𝑜 0.6567 0.9125 0.8357

𝜃𝑢 1.0508 1.3457 0.9761
𝑇𝑜 4.5799 4.3529 4.6044

𝑇𝑢 9.8195 10.0019 9.8665

𝜖𝑛 4.9919 4.3572 4.7753

cooldown time (CDT). The CDT adds a delay when a downscaling request is received to confirm

the persistence of this need.

To deduce general findings on the performance of the combination of mechanisms, we performed

intensive experiments taking into consideration different contextual parameters, namely, the

predicted data and the CDI values as presented in tables 3.8, 3.9 and 3.10.

Table 3.8 Using our predicted data, a comparison of our grid-based approach

(𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑) to its combination with 𝐶𝐷𝑇 mechanism

(𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇)

𝐶𝑎𝑠𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇
Case1: CDT = 10s 𝜃𝑜 0.0722 0.4526

𝜃𝑢 0.2543 0.0366
𝑇𝑜 0.2916 2.0167

𝑇𝑢 2.0095 0.5605
𝜖𝑛 15.2625 13.2899

Case1: CDT = 60s 𝜃𝑜 0.0722 0.1539

𝜃𝑢 0.2543 0.0061
𝑇𝑜 0.2916 0.4268

𝑇𝑢 2.0095 0.0694
𝜖𝑛 15.2625 67.6469

126

Table 3.9 Using the predicted data of Imdoukh et al. (2019) approach, a comparison

of our grid-based approach (𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑) to its combination with 𝐶𝐷𝑇
mechanism (𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇)

𝐶𝑎𝑠𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇
Case1: CDT = 10s 𝜃𝑜 0.0722 0.0336

𝜃𝑢 0.2543 0.5066

𝑇𝑜 0.2916 0.1973
𝑇𝑢 2.0095 7.0110

𝜖𝑛 15.2625 12.5497

Case1: CDT = 60s 𝜃𝑜 0.0722 0.0119
𝜃𝑢 0.2543 0.1280
𝑇𝑜 0.2916 0.0480
𝑇𝑢 2.0095 2.2090
𝜖𝑛 15.2625 43.6019

Table 3.10 Using the predicted data of Dang-Quang & Yoo (2021) approach, a

comparison of our grid-based approach (𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑) to its combination with

𝐶𝐷𝑇 mechanism (𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇)

𝐶𝑎𝑠𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 𝑂𝑢𝑟𝑃𝑟𝑜𝑊𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇
Case1: CDT = 10s 𝜃𝑜 0.0722 0.0337

𝜃𝑢 0.2543 0.4981

𝑇𝑜 0.2916 0.1973
𝑇𝑢 2.0095 6.9737

𝜖𝑛 15.2625 12.6064

Case1: CDT = 60s 𝜃𝑜 0.0722 0.0119
𝜃𝑢 0.2543 0.1261
𝑇𝑜 0.2916 0.0480
𝑇𝑢 2.0095 2.1983

𝜖𝑛 15.2625 43.8206

Two cases of CDT values are considered: CDT=10ms and CDT=60ms. In the case of CDT=10ms,

the combination is less efficient. The case of a small value of CDT (e.g., 10ms) pushes to make

more auto-scaling operations, which worsens the situation by increasing the oscillation issue.

In contrast, the combination with the CDT=60 case significantly improved the performance of

the auto-scaling. It improves the overall performance metric (𝜖𝑛) by approximately 343%, 185%,

and 187% considering the predicted data used in tables 3.8, 3.9 and 3.10, respectively.

127

In addition, this fairly high value of CDT (i.e., 60ms) can increase the over-provisioning

metrics, 𝑇𝑜 and 𝜃𝑜, as the case in Table 3.8. Since the CDT mechanism adds a delay time, our

approach reduces the number of resources to shrink. However, despite this possible increase

in over-provisioning metrics, the combination significantly improves the under-provisioning

metrics, which is reflected in the overall performance of the auto-scaling represented by Elasticity

speedup (𝜖𝑛).

3.8.6.5 Finding and Analysis Summary of Our Oscillation Mitigation Approach
Evaluation

First, our proactive approach, which builds upon our featurization approach to improve workload

forecasting, delivers significantly enhanced auto-scaling performance compared to the reactive

approach.

Second, the improved performance is further multiplied by combining our featurization approach

with our proposed oscillation mitigation mechanism, referred to as OurProWithGrid. The

overall auto-scaling performance of our approach surpasses that of the related works for both

datasets. Notably, our grid-based oscillation mitigation approach offers the advantage of being

parameterless, unlike common mechanisms employed in related works.

Finally, we explored the combination of our grid-based oscillation mitigation approach with

established mechanisms, particularly the CDT (Cool Down Timer). The results demonstrate that

the combination, when paired with an optimized CDT value, leads to multiplied auto-scaling

performance compared to using only the CDT mechanism. It is important to note that this

combination requires the use of the CDT parameter, which implies it is not parameterless. As a

result, we plan to explore the utilization of optimization techniques to determine the optimal

CDT value as part of our future work, as discussed in the conclusion section.

128

3.9 Conclusion

In this work, we addressed the resource management of IoT systems, specifically service

auto-scaling at the edge computing level. Edge devices are equipped with relatively powerful

resources (processors, memories, and graphics cards), capable even of running machine learning

applications. These (mini) computers are close to IoT devices and can make decisions without

cloud infrastructure. Our study aims to optimize edge devices’ resource management for better

service performance and efficient resource utilization. To do so, we chose to rely on existing

techniques and methods used in the cloud, such as containerization and proactive auto-scaling.

Our main contribution focused on two mechanisms. First, we implemented the machine learning

method LSTM, which allowed us to predict upcoming resource change requests. This helped

to adapt to changes in resource requirements proactively. In addition, we made an original

improvement to our LSTM prediction model by adding data featurization techniques, notably

based on the Japanese Candlestick concept. This technique allowed our prediction model to

extract the most correlations between the input data, to have more accurate prediction results.

This study compared our model to other prediction models proposed in the literature to prove

its efficiency rate. Then, our second contribution focused on the oscillation mitigation of

auto-scaling. Our approach introduced a selection grid concept in the action generation phase to

control the autonomous and self-adaptive systems based on MAPE-K loop. This grid is built

from the features of historical workload data preceding the moment of the change request. This

technique allows having the number of replicas closest to our objectives during the planning phase

of the feedback MAPE-K loop. Compared to related work, our approach to oscillation mitigation

has the advantage of being parameterless, requiring no parameter optimization. In addition

to this advantage, it could improve performance compared to related work. Combining the

promising mechanisms proposed in this study can considerably improve the service auto-scaling

performance. Compared to the existing studies in the literature, this efficient solution can also

be implemented in different domains (e.g., network) to benefit from better autonomous and

self-adaptive resource management in a proactive mode.

129

For our future work, while our featurization method based on Japanese candlesticks has shown

promising results, we plan to investigate using the candlestick patterns in our feature grid to

improve the accuracy and power of our forecasting model. Candlestick Patterns are widely

used in technical analysis and can provide valuable insights into market trends and price

movements. Additionally, we plan to apply optimization techniques to enhance the combination

of our grid-based oscillation mitigation mechanism with the commonly used CDT mechanism,

as our experimentation has indicated the potential for significant improvement through this

combination.

CHAPTER 4

PROACTIVE SERVICE AUTO-SCALING IN EDGE ENVIRONMENTS:
METHODOLOGY, QUANTITATIVE ANALYSIS AND IMPROVEMENTS

Ahmed Bali1 , Khalifa Serraye1 , Abdelouahed Gherbi1

1 Department of Software Engineering and IT, École de Technologie Supérieure

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Paper submitted to the journal of Future Generation Computer Systems.

ABSTRACT Edge computing has become increasingly popular in addressing the time-sensitive

demands of IoT applications by offloading workload from the cloud to edge nodes. However,

the limited resources of IoT edge devices pose challenges for service deployment, necessitating

auto-scaling to optimize resource utilization in response to dynamic workloads. Proactive

auto-scaling, which leverages workload prediction to anticipate future demands, has emerged as

an interesting approach.

In this study, we assess the performance of forecasting techniques in a resource-constrained

environment using a proposed methodology. We evaluate established methods such as Auto-

Regressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM), as

well as lightweight alternatives including Support Vector Regression (SVR), Random Forest

(RF), and Bayesian Network (BN). Furthermore, we investigate the effectiveness of Ensemble

learning in improving forecasting accuracy and optimizing resource utilization. The experimental

results demonstrate the effectiveness of our proposed Dynamic Ensemble learning technique,

consistently achieving high forecasting accuracy and auto-scaling performance.

Keywords: Edge computing, Virtualization, Auto-scaling, Time series Forecasting, ARIMA,

LSTM, SVR, RF, BN, Ensemble learning

4.1 Introduction

The pervasive nature of Internet of Things (IoT) applications has profoundly impacted various

aspects of our daily lives. These applications heavily rely on networks of small devices embedded

in our surroundings, such as environmental, healthcare, and industrial sensors. As a result,

132

billions of devices are now interconnected (Evans, 2011), generating massive amounts of

data. However, this abundance of data can negatively impact network performance, leading

to increased service latency. To address these challenges, edge computing has emerged as a

promising solution. By offloading the workload of IoT systems from the Cloud to edge nodes,

edge computing improves system responsiveness and minimizes latency. However, the edge

network is often characterized by resource-limited devices and the heterogeneity of technologies

used, which limits service deployment capabilities.

To address the heterogeneity of the IoT technology stack, lightweight virtualization technologies

such as containers have gained significant adoption (Ahmed et al., 2019). Containers offer a

convenient solution for packaging and executing IoT services along with their dependencies

in self-contained and isolated modules. This approach helps mitigate compatibility issues and

enhances portability across different IoT devices. Moreover, container orchestration techniques

like Swarm enable resource sharing among IoT edge devices within a cluster. They facilitate

the efficient utilization of resources and provide seamless communication capabilities between

containers across virtual networks. In this context, service deployment involves allocating

a set of replicas (e.g., containers or pods) to distribute the processing load among available

devices organized into clusters. Each replica represents an instance of the service to be deployed.

Increasing the number of replicas improves service response time by reducing latency, but it

also increases the utilization of computational resources. Thus, resource utilization needs to be

optimized while ensuring efficient service performance.

As previously mentioned, devices at the edge level are typically characterized by limited resources,

which necessitates a delicate balance between meeting Quality of Service (QoS) requirements,

such as response time, and efficiently utilizing computing resources. Auto-scaling plays a crucial

role in dynamically adjusting the number of replicas, reducing both the over-provisioning and

under-provisioning of resources.

However, reactive auto-scaling approaches commonly employed in industrial solutions like

Kubernetes HPA, Google Cloud Platform, Amazon EC2, and Oracle Cloud lack proactivity and

133

struggle to adapt to frequent and dynamic workload changes. In contrast, proactive auto-scalers

anticipate future needs (Lorido-Botran et al., 2014) and dynamically adjust the system, leading

to improved responsiveness and performance. While widely used time series data analysis

and forecasting techniques such as Autoregressive Integrated Moving Average (ARIMA) and

Long Short-Term Memory (LSTM) have been successfully applied for workload forecasting in

auto-scaling studies like Sangpetch et al. (2017); Imdoukh et al. (2019); Dang-Quang & Yoo

(2021), their applicability in resource-constrained edge devices remains uncertain due to the

predominant focus on cloud environments in existing auto-scaling studies.

Developing an efficient auto-scaling system for containerized services in the edge environment

is challenging owing to factors including dynamic workload characteristics, resource limitations,

and the distributed nature of IoT nodes. Therefore, it is imperative to explore less resource-

intensive techniques such as Support Vector Regression (SVR), Random Forest (RF), and

Bayesian Network (BN) and evaluate their performance/resource usage ratio, as well as their

impact on the service auto-scaling process. Additionally, the potential of ensemble learning in

improving prediction accuracy and its suitability for resource-constrained environments need to

be investigated. Therefore, this study aims to address the following research questions:

• RQ1: Are widely adopted time series data analysis and forecasting techniques, such as

ARIMA and LSTM, relevant and effective in resource-constrained edge environments?

• RQ2: Can less resource-intensive techniques like SVR, RF, and BN outperform widely

adopted approaches regarding the performance/resource usage ratio?

• RQ3: Does ensemble learning potentially improve forecasting accuracy, and is it appropriate

for resource-constrained environments?

• RQ4: To what extent do resource-aware workload forecasting influence the service auto-

scaling process?

By investigating these aspects, this study aims to enhance the understanding of forecasting

techniques, resource optimization, and auto-scaling mechanisms in the context of edge computing,

ultimately contributing to developing efficient auto-scaling solutions for containerized services

at the edge environments. In summary, this work makes the following contributions:

134

• Proposing a methodology that allows for combining and evaluating different forecasting

algorithms to enable proactive service auto-scaling in the context of edge computing.

• Conducting an in-depth analysis of workload characteristics and their impact on forecasting

techniques, specifically focusing on ARIMA.

• Proposing the Dynamic Ensemble learning technique, a weighted-average Ensemble learn-

ing approach that dynamically adapts to the resource-constrained edge environment by

continuously adjusting the included forecasting algorithms.

• Performing a comparative study of forecasting techniques, including the proposed Dynamic

Ensemble learning technique, considering prediction accuracy, resource usage, and auto-

scaling performance in the constrained edge environment.

The remainder of the paper is structured as follows: Section 4.2 provides an overview of the

related work in auto-scaling for containerized services. The methodology followed to address the

research questions is presented in Section 4.3. The different phases of the methodology are then

detailed in separate sections: data processing and analysis (Section 4.4), forecasting algorithms

(Section 4.5), evaluation of models (Section 4.6), application of the ensemble learning technique

(Section 4.7), model selection (Section 4.8), and the use of the selected model in the auto-scaling

process (Section 4.9). The experimental evaluation is presented in Section 4.10, followed by a

discussion of the results in Section 4.11. Finally, Section 4.12 concludes the paper and highlights

directions for future work.

4.2 Related Work

The cloud relies on virtualization technology, which enables the execution of multiple work

environments on the same server. The trends and technologies involved in cloud virtualization

architectures are discussed in Varghese & Buyya (2018); Pahl et al. (2017). Containers considered

a fundamental aspect of virtualization, facilitate the deployment of microservices on cloud

servers.

135

Containers also offer advantages in the edge computing context, providing a lightweight and

portable method to deploy services across various edge devices. This deployment ability

simplifies application management and updates at the edge. Several research studies have

evaluated the feasibility of using containers in edge computing while considering the devices’

limited computing and storage resources. Ismail et al. (Ismail et al., 2015), Morabito et al.

(Morabito, 2017), and Ruchika et al. (Ruchika, 2016) have examined the use of container

virtualization technology for developing and scaling IoT applications. These studies have

demonstrated that Docker containers can offer good performance. Furthermore, the work

proposed by Morabito et al. (Morabito & Beĳar, 2016) presents a container-based data

processing approach for edge computing, where the functional components are designed as

reusable containers. This container-based design enables elastic provisioning of data management

with orchestration capabilities. Other research studies address the limitations of container-based

clustering and deployment techniques. For instance, Wong et al. (Wong et al., 2019) address

the lack of location-aware deployment features and aim to minimize deployment latency by

selecting containers to deploy on the nearest edge node.

The auto-scaling process is highly important for optimizing resource usage while meeting

customer requirements. It enables the automatic adjustment of computing entities (e.g., web

servers, virtual machines, containers, or pods) based on dynamic computing needs, which can

be measured using various metrics such as the number of users (Mishra et al., 2020), workload

(Elrotub, Bali & Gherbi, 2021), and resource usage like CPU usage (Bali et al., 2020).

Several studies have explored auto-scaling at the cloud level. Kovács et al. (Kovács, 2019) define

auto-scaling as a method used in distributed computing, particularly in the cloud, to dynamically

and automatically adjust computing resources based on traffic workload. Scaling is also crucial

for orchestration in terms of policy and flexibility for cloud containers and virtual machines.

Brogi et al. (Brogi et al., 2017) propose a resource management and orchestration approach

based on containers to support autonomic data stream processing applications in the fog layer.

At the edge level, other works address the challenges of limited-resource IoT devices. Renner

et al. (Renner et al., 2016) propose a container-based resource allocation model to maximize

136

the utilization of IoT device resources and reduce network traffic by enabling dynamic resource

allocation at the source level. This approach enables diverse applications and users to utilize the

resources provided by IoT devices, leveraging local data processing instead of transmitting data

to the cloud.

There are two main types of auto-scaling: vertical auto-scaling and horizontal auto-scaling

(Al-Dhuraibi et al., 2017). The distinction between these types lies in how computing resources

are added to the infrastructure. In vertical auto-scaling, computing power is added to existing

replicas or nodes. On the other hand, horizontal auto-scaling increases system capacity by

adding more replicas (e.g., containers) to the environment, enabling load sharing across multiple

devices in terms of processing and memory. In the edge computing context, where devices

operate within resource-constrained environments, all available resources are dedicated to the

service deployment process. As a result, horizontal auto-scaling, which dynamically adjusts the

number of replicas (e.g., containers or pods) to distribute the processing load among devices in

a cluster, becomes particularly suitable.

Furthermore, auto-scaling approaches can be classified into two types: reactive and proactive.

Reactive auto-scalers respond to current workload changes. Due to its simplicity, the reactive

approach is used in most current auto-scalers, including popular solutions like Kubernetes

HPA, Google Cloud Platform, Amazon EC2, and Oracle Cloud. However, the reactive

approach is unable to cope with highly dynamic workloads in which applications must scale

at runtime (Zhong et al., 2022). Consequently, it leads to resource over-provisioning and

performance degradation when releasing necessary resources. In contrast, proactive scaling

involves forecasting future workload using historical data (Lorido-Botran et al., 2014). In

Dang-Quang & Yoo (2021), the authors demonstrate that their proactive auto-scaler outperforms

Kubernetes’ default horizontal autoscaling pod (HPA) regarding accuracy and speed during

resource provisioning and de-provisioning. Proactive auto-scaling, as in Sangpetch et al. (2017);

Imdoukh et al. (2019); Dang-Quang & Yoo (2021), leverages machine learning (ML) algorithms

for workload forecasting using time series analysis. Different ML algorithms are used to predict

the future from historical data (Lorido-Botran et al., 2014). The success of future workload

137

forecasting relies on factors such as the workload pattern, history windows, the chosen ML

model, and the prediction horizon.

Workload forecasting in the context of auto-scaling often relies on time series methods, broadly

categorized into two main categories: statistical time series analysis and deep learning-based

techniques. Statistical time series analysis algorithms, such as ARIMA (AutoRegressive

Integrated Moving Average) and exponential smoothing, have been widely used in workload

forecasting (Lorido-Botran et al., 2014; Sangpetch et al., 2017; Calheiros et al., 2014; Roy

et al., 2011; Kan, 2016; Li & Xia, 2016; Ciptaningtyas et al., 2017; Meng et al., 2016). These

techniques make predictions based on historical data and assume that past behaviors and trends

will continue. On the other hand, deep learning-based techniques, such as Artificial Neural

Networks (ANN) and Long Short-Term Memory (LSTM) algorithms, have gained popularity

in recent years for workload forecasting, such as Calheiros et al. (2014); Goli et al. (2021);

Imdoukh et al. (2019); Dang-Quang & Yoo (2021).

However, these commonly used approaches are slow in dynamic workload demands and

resource-constrained environments (Imdoukh et al., 2019). They can be computationally

intensive and require large amounts of data, notably deep-learning techniques, making them less

suitable for edge computing scenarios. The related work on auto-scaling often overlooks the

resource-constrained aspect since most of them are intended for the cloud environment. Our

work evaluates the suitability of using these techniques in a resource-constrained environment.

In addition, we also assess alternative machine learning techniques that are potentially lighter,

such as Support Vector Regression (SVR), Random Forest (RF), and Bayesian Networks (BN).

It is worth mentioning that these techniques have also been employed in the literature for

workload prediction purposes. For instance, SVR has been applied in workload estimation and

performance prediction for tasks like virtual machine migration (Raghunath & Annappa, 2015).

RF has been used as a classifier for workload forecasting in data centers (Cetinski & Juric, 2015).

Chen et al. (Chen et al., 2020) Chen et al. proposed a workload prediction scheme that utilized a

weighted random forest, which involved employing multiple random forest models, each trained

138

on distinct training sets. The final forecast was computed by weighing the forecasts of each

model. Bayesian-based methods have also been employed for workload forecasting purposes

(Dietrich et al., 2010; Di et al., 2012). The performance of Bayesian methods has been found to

be comparable to the Support Vector Machines (SVM) in load forecasting (Tong et al., 2014).

However, older techniques like SVM and RF may have lower accuracy than widely used

techniques like ARIMA and LSTM. Auto-scalers’ efficiency utilizing time series data analysis

depends on prediction accuracy (Doan et al., 2019) regardless of the forecasting techniques used.

Therefore, container-based auto-scaling remains an open issue that needs to be addressed, as

mentioned in Qu et al. (2018); Cardenas (2018).

To improve prediction accuracy, this study explores the Ensemble learning technique, which

combines the predictions of multiple models. It has been observed that relying on a single

model may not effectively model and forecast different data types, as these models are often

developed and trained for specific workload patterns (Kumar et al., 2021a). Therefore, the

approach of combining various methods in an Ensemble learning model is employed to enhance

the modeling and forecasting of workloads.

Ensemble learning techniques have shown effectiveness in various fields, including wind gust

and electricity consumption forecasting (Wang et al., 2021). Ensemble learning has also been

explored in the literature in the context of auto-scaling. For example, Cao et al. (Cao et al., 2014)

proposed an ensemble method for forecasting CPU load, which utilizes multiple models such as

Autoregression and Exponential smoothing. Their approach dynamically replaces predictors

to maintain the overall performance of the predictor set. They also introduced a prediction

optimization layer that adjusts predictor parameters using the Adaptive Step Size Random Search

(ASSRS) strategy (Schumer & Steiglitz, 1968). Similarly, in their study, Sommer et al. (Sommer

et al., 2016) proposed an ensemble-based forecasting tool to predict the future utilization of

virtual machines (VMs) to enable proactive VM migration. Shariffdeen et al. (Shariffdeen et al.,

2016) presented an ensemble-based load forecasting approach specifically designed to enhance

auto-scalers’ accuracy. To achieve this goal, the authors evaluated various prediction models,

139

considering different load patterns. The work conducted by Rahmanian et al. (Rahmanian et al.,

2018) introduced a learning-automata-based ensemble approach for forecasting cloud resource

usage. By employing load forecasting techniques, Singh et al. (Singh & Rao, 2014) aimed

to reduce power usage, cooling, and CO2 emissions in cloud infrastructures. They utilized

Weighted Majority and Simulatable Experts to handle large-scale workloads with extensive

non-stationarity and massive online streaming data.

However, many existing hybrid forecasting methods, such as those discussed in Jiang et al.

(2013); Liu et al. (2015); Cetinski & Juric (2015), often encounter challenges related to high

computational complexity, especially during the training phase. Moreover, these methods

typically do not explicitly consider resource usage as a significant constraint, a crucial aspect

addressed in this study. It is worth noting that Ensemble learning techniques, which involve

utilizing multiple models, can potentially result in increased resource consumption.

To strike a balance between prediction accuracy and resource usage, this work proposes a

lightweight Ensemble learning solution based on the weighted average. By considering the

resource limitations, the optimization problem is formally modeled, and a heuristic solution is

proposed to dynamically select the models in the Ensemble learning process. This approach

ensures that the proposed Ensemble learning method used for forecasting is optimized to achieve

highly accurate predictions while efficiently utilizing available resources.

4.3 Methodology

In this study, we follow the methodology presented in Figure 4.1, which contains mainly the

steps of the general forecasting process: Data collection, processing, and analysis, training of the

forecasting algorithms, and evaluation of models. For the evaluation, we consider the prediction

accuracy and the time consumption. In addition, our process applies Ensemble learning for the

purpose of improving prediction accuracy. The best model is selected according to evaluation

metrics, such as accuracy and resource utilization. The last step evaluates the impact of the

chosen model on the auto-scaling process.

140

Figure 4.1 Followed Forecasting Methodology

As mentioned in the related work section (Section 2.2), forecasting the future workload is

essential to make the auto-scaling process proactive. The forecasting operation is based on the

quantitative forecasting of collected and pre-processed data in the first step. After that, depending

on the forecasting algorithm (e.g., ARIMA) to apply, specific analysis may be required, such as

the trend and seasonality. Different forecasting algorithms are considered, some are widely used

(e.g., ARIMA and LSTM) and others are investigated for reducing resource utilization. After the

training phase of the different forecasting algorithms, we investigate using the Ensemble learning

technique that combines the predictions of multiple models to improve forecasting accuracy.

Considering the resource-limitation of devices, we also asses the resource consumption metrics

in the evaluation. Consequently, we consider the resource availability, in addition to the accuracy,

for selecting the best model. As present in Figure 4.1, the best model is one of the following

models: The best model in accuracy, the most lightweight model, the best in accuracy/time

ratio, and the Ensemble learning model. Finally, we evaluate the application of the chosen

141

model on our auto-scaling solution. The following sections give more details about the different

methodology steps.

4.4 Data processing and analysis

To predict the workload, the forecasting algorithms need, as input, the time series data of the

historical workload. A Time series dataset is a specialized form of data collection specifically

optimized to store data with timestamps, enabling efficient analysis and understanding of trends,

patterns, and fluctuations over time.

4.4.1 Selected Dataset

The auto-scaling system uses the time series data, such as CPU usage, HTTP requests) that

is collected from the current service deployment. Different tools (such as CAdvise and Node

Exporter) are usually used to collect different metrics of containerized services. Other tools as

Prometheus, collect data from different cluster nodes. Prometheus stores data in the form of

time series data. However, using this kind of collected data make our evaluation related to the

data collected from a specific deployed system.

To avoid the limitations of small-scale evaluations, we conducted a large-scale assessment using

the Worldcup’98 dataset (Arlitt & Jin, 2000). This approach ensures reproducibility, comparison

with existing research, and a more robust thorough of our evaluation methodology. This dataset

was used extensively to evaluate auto-scalers in the cloud computing literature (Imdoukh et al.,

2019). The dataset used in this study comprises the HTTP request logs from the FIFA World

Cup Website in 1998, spanning from April 30 to July 26. It contains approximately 1.3 billion

total requests. Each log entry includes various information such as a timestamp, client ID, HTTP

method, and status.

142

4.4.2 Data Pre-processing

As mentioned, our auto-scaling approach uses a system historical data, representing time series

data. WorldCup’98 dataset is a univariate time series forecasting. We organized the dataset to

have only two useful pieces of information the time (period) and the count of HTTP requests.

So, the overall dataset is aggregated and transformed such that each record represents the total

workload, HTTP requests, per minute. Noting that, in the evaluation phase, we will consider

different dataset sizes (10000, 20000 and 40000). Each case will be split into two parts training,

75%, and testing, 25%. Figure 4.2 presents a reduced data of 40000 points. One distinguishing

characteristic of the WorldCup’98 DataSet, setting it apart from other workload datasets like

NASA (Dang-Quang & Yoo, 2021), is its significant variation characterized by large peaks.

This wide variation poses challenges for various prediction techniques, making it particularly

valuable for our analysis in this study.

Figure 4.2 WorldCup’98 Dataset: 40,000 Points (Minutes)

143

4.4.2.1 Data scaling

In our case study, data scaling can enhance the performance of specific machine learning

algorithms like Support Vector Regression (SVR) and LSTM (to converge faster). This process

adjusts the range of independent variables or features in the dataset to a common scale, promoting

equal weighting of each feature during model training. In this case, we employ min-max scaling,

which transforms the data such that all feature values fall within a defined range, such as [0, 1],

allowing the algorithm to converge more efficiently. A Min-Max scaling is typically performed

using the Equation 4.1.

𝑥
′
=

𝑥 − 𝑚𝑖𝑛(𝑥)
𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥) (4.1)

Where, x is the original value of feature f and 𝑥
′
is the scaled value.

4.4.3 Data Analysis

In the case of ARIMA algorithm, the time-series data must be stationary. The trend and

seasonality that affect the value of the time series at different times (Hyndman & Athanasopoulos,

2018) make the time series non-stationary. For that, we need to perform additional analyses

in order to extract more information about the time series, which can be composed of a trend,

seasonal components, and Residuals (i.e., a reminder component).

As illustrated in Figure 4.2, it can be observed that the variation of the time series is not dependent

on its level, indicating that an additive decomposition is the most suitable (Hyndman & Athana-

sopoulos, 2018) as presented in Equation 4.2.

𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 (4.2)

144

Where, at period t, 𝑦𝑡 is the data, 𝑆𝑡 is the seasonal component, 𝑇𝑡 is the trend-cycle component,

and 𝑅𝑡 is the residual component. Figure 4.3 depicts the shape of the used time series dataset

when broken down into the components mentioned above.

Figure 4.3 Data Decomposition

Figure 4.4 Data Density Plot

Our time series shows a fluctuating trend with a slight upwards. The residuals’ variance is less

than the historical data, and it is a little stable through time with a slight increase at the end,

145

which shows that the series exhibits more random behavior at the end. Figure 4.4 shows the

distribution of the residual data (right plot) compared to the original data distribution. The

residual data is a normal distribution (Gaussian) centered on zero. Therefore, the residuals have

zero mean and constant variance, meaning white noise.

To analyze the seasonality further, we consider different seasonality resolutions: hourly, daily,

and weekly. Figure 4.5 plots individually these seasonal components. To accurately calculate

the daily component, it is first essential to subtract the hourly component and then apply the

weekly decomposition step after all other relevant seasonal components have been removed from

the data. The seasonal patterns in the data reveal a relatively insignificant hourly seasonality,

Figure 4.5 Seasonality Analysis

while no discernible daily or weekly seasonality can be observed.

To further investigate whether the time series data is stationary, we perform further analyses

on the mean, variance, and autocorrelation features. Figure 4.6 visualizes the evolution of

146

these features. It is important to mention that a stationary time series requires a constant mean,

Figure 4.6 Stationary Analysis: Original Data

variance, and autocorrelation, which is not true for our time series dataset.

Some forecasting algorithms, such as ARIMA (Hyndman & Athanasopoulos, 2018), require

converting the time series data to be stationary. Even for LSTM, removing non-stationary

elements from the data, it will make the prediction task less complex and thus make it more

efficient (Brownlee, 2016). Since we have a slight trend, the log transformation can help remove

the trend component. If we consider the weak hourly seasonal, we can differentiate the data.

To evaluate the logarithm transformation and the differencing impact, Figure 4.7 plots statistical

features of the 1𝑠𝑡 differencing on the original time series data, its logged transformation and

the 1𝑠𝑡 differencing on the logged data. As in Figure 4.6, the presented features are the mean,

variance and the autocorrelation, which need to be stable to make the transformed data stationary.

In the first differencing over the original data, the variance is not stable, in contrast to the two

other cases of the logged data. Moreover, the differencing of the logged data makes the value

of means close to zero. By this analysis, we conclude that the first differencing of the log

transformation of the used dataset ensures that the dataset is stationary, which is helpful for

forecasting algorithms.

147

Figure 4.7 Stationary Analysis of Data: 1𝑠𝑡 Differenced Data,

Logged Data, 1𝑠𝑡Differenced of Logged Data

It is worth mentioning that Dicky-Fuller test (Dickey & Fuller, 1979) considers the data non-

stationary since the p-value is greater than 0.05. However, since our time series data has slight

trend and seasonal components, the p-value of 0.056638 is very close to the reference value of

0.05. In addition, based on the statistical critical values, Dicky-Fuller test considers the data

stationary with 90% certain. We will discuss this aspect further in the evaluation of ARIMA

algorithm.

148

4.4.4 Data reframing

The data reframing step aims to convert the time series prediction task into a supervised learning

task by utilizing previous time steps as input variables and the subsequent time step as the output

variable. In simpler terms, it is possible to predict the value at the next time step by using a

sequence of numbers from a time series dataset, known as a sliding window.

Formally, let 𝑇𝑆 =< 𝑑1, 𝑑2, . . . , 𝑑𝑛 > represents the original time series data, where each 𝑑𝑖

corresponds to a data point at time 𝑖. The window size is defined by 𝑆 a positive integer. The

data reformulation involves partitioning the original time series into overlapping windows of

size 𝑆. The 𝑖𝑡ℎ input-output pair consist of the window 𝑊𝑖 =< 𝑑𝑖, 𝑑𝑖+1, . . . , 𝑑𝑖+𝑆−1 > and the

corresponding value 𝑦𝑖 = 𝑑𝑖+𝑆.

4.4.5 Horizon of prediction

The data prepared in the previous step is suitable for single-step prediction. For multi-step

prediction, a straightforward approach is to include the corresponding output value in the training

process. However, this approach is impractical as it would require multiple models, one for

each horizon step. For example, five models would be needed for a prediction horizon of

five-time steps. An alternative approach is recursive multi-step prediction, but its limitation is

that accuracy decreases as the horizon size increases.

4.5 Forecasting algorithms

In this study, our initial focus is on two commonly employed prediction methods: ARIMA

and LSTM. We also consider a less resource-intensive technique, namely SVR. The following

subsections present these three techniques and their use in our working context.

149

4.5.1 ARIMA

ARIMA models are designed to capture the autocorrelation and stationary of time series data.

They have proven to be highly accurate for short-term forecasting of statistically dependent time

series (Box, Jenkins, Reinsel & Ljung, 2015). To utilize ARIMA for workload forecasting, the

historical workload data is fitted to the model by specifying the hyper-parameters p, d, and q of

the ARIMA model. The AR parameter (p) represents the number of lags in the autoregressive

term, the differencing parameter (d) determines the degree of differencing required to make the

time series stationary, and the MA parameter (q) signifies the size of the moving average window

used in the model. The AR and MA terms are presented in equations 4.3 and 4.4, respectively.

𝑌𝑡 = 𝛼 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + · · · + 𝛽𝑝𝑦𝑡−𝑝 + 𝜖𝑡 (4.3)

Where, 𝑦𝑡 − 𝑖 is the 𝑖𝑡ℎ lag of the series, 𝛽𝑖 is its coefficient, and 𝛼 is the intercept term. The

values of these coefficients are estimated by training the model.

Moving Average (MA) term of order 𝑞 depends on the lagged forecast errors as expressed in

Equation 4.4.

𝑌𝑡 = 𝛼 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + · · · + 𝜃𝑝𝜖𝑡−𝑞 (4.4)

Where, 𝜖𝑡 is white noise (Hyndman & Athanasopoulos, 2018) and 𝜃𝑖 is a coefficient.

After making the time series stationary by differencing it (𝑦′) in the number of d, the ARIMA(p,d,q)

model combines AR and MA terms Auto-Regressive (AR) term, as presented in Equation 4.5.

𝑌𝑡 = 𝛼 + 𝛽1𝑦
′
𝑡−1 + · · · + 𝛽𝑝𝑦

′
𝑡−𝑝 + 𝜃1𝜖𝑡−1 + · · · + 𝜃𝑝𝜖𝑡−𝑞 + 𝜖𝑡 (4.5)

4.5.2 LSTM

Long Short-Term Memory (LSTM) is an advanced version of recurrent neural networks (RNN)

that addresses the vanishing gradient problem, often hampers the learning capability of RNNs.

150

LSTM models effectively predict sequences in time-series data, such as workload patterns over

time.

The LSTM network comprises interconnected LSTM units. Each unit has an internal memory

cell and incorporates three gates: the input gate, the forget gate, and the output gate. The gates

employ sigmoid functions and multiplication operations to regulate the flow of information.

The input gate determines whether the input should modify the cell’s content, while the forget

gate decides whether to reset the cell’s content to 0. The output gate governs whether the cell’s

content should influence the neuron’s output.

Figure 4.8 depicts the architecture of an LSTM unit, illustrating the various outputs of the gates

as expressed in the following equations.

Figure 4.8 LSTM Unit Architecture

𝑓𝑡 = 𝜎(𝑊𝑓 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏 𝑓) (4.6)

𝑖𝑡 = 𝜎(𝑊𝑖.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4.7)

𝐶′
𝑡 = tanh(𝑊𝑐.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4.8)

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶′
𝑡 (4.9)

𝑜𝑡 = 𝜎(𝑊0.[ℎ𝑡−1, 𝑥𝑡] + 𝑏0) (4.10)

151

ℎ𝑡 = 𝜎(𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡)) (4.11)

Where, 𝑊 and 𝑏 represent the weights and bias, respectively. In addition, 𝜎 (sigmoid) and 𝑡𝑎𝑛ℎ

denote the used activation functions.

4.5.3 SVR

Support Vector Regression (SVR) is another machine learning algorithm that can be used for

time series forecasting. It is a regression algorithm based on the principles of support vector

machines, which are commonly used for classification tasks. In SVR, the goal is to find a

function that best maps the input features to the target variable. This function best fits the data

while maximizing the margin, i.e., the distance between the function and the closest data points.

These closest data points are known as support vectors (Steinwart & Christmann, 2008), and

they play a critical role in determining the final regression function. To simplify, the prediction

for a new instance, X’, can be made by plugging it into the learned regression function, f(X’) as

presented in Equation 4.12.

𝑓 (𝑋′) = 𝑊′ × 𝑋′ + 𝑏 (4.12)

Where, 𝑊 is the weight vector and 𝑏 is the bias term, learned during the training process, and 𝑋′

is the feature vector for the new instance.

4.5.4 BN

Bayesian networks, which can be used for time series forecasting, represent probabilistic graphical

modeling for building models from data. A Bayesian network is an acyclic-directed graph,

where each node is associated with quantitative probabilistic information. Each node is attached

to a random variable and to links (arcs) connecting it to other nodes. A link from the node 𝑋 to

the node 𝑌 means that 𝑋 is the parent of 𝑌 and implies a conditional dependency relationship

between them. Each node 𝐴𝑖 is characterized by a conditional probability distribution, expressed

152

in Equation 4.13.

𝑃(𝐴𝑖 |𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐴𝑖)) (4.13)

Bayes’ theorem, described by Equation 4.14, allows the calculation of conditional probability

distributions for a set of interacting variables.

𝑃(𝐻 |𝐸) = 𝑃(𝐸 |𝐻) × 𝑃(𝐻)
𝑃(𝐸) (4.14)

Where, 𝐻 is the hypothesis and 𝐸 is the evidence. 𝑃(𝐴|𝐵) is generally interpreted as "the

probability of 𝐴 given 𝐵", where 𝐴 is the dependent variable and 𝐵 is the independent variable.

The theorem of Bayes determines the probability of the hypothesis 𝐻 based on the evidence 𝐸 .

4.5.5 RF

Random Forest (RF) is a tree-based ensemble machine learning algorithm that operates by

constructing a set of decision trees from a random subset of the training data and then aggregating

their predictions to produce the final prediction. The prediction for a new instance, 𝑋′, is made by

passing it through each of the 𝑇 decision trees and aggregating the predictions. The aggregation

can be done by taking the average of the individual trees’ predictions, as presented in Equation

4.15.

𝑓 (𝑋′) = 1

𝑇

𝑇∑
𝑛=1

𝑓𝑖 (𝑋′) (4.15)

Where, 𝑓𝑖 (𝑋′) is the prediction made by the decision tree number 𝑖, and 𝑇 is the number of trees

in the forest.

4.6 Model Evaluation

We used the prediction accuracy and time consumption metrics for the algorithm performance

evaluation.

153

4.6.1 Prediction Accuracy Metrics

The efficiency of the forecasting models is based on the error evaluation between the actual and

predicted data. Different models are considered to explain the errors and predictive ability of

models (Chicco et al., 2021), the Root Mean Square Error (RMSE) presented in eq. 4.18 and

the coefficient of determination (𝑅2) presented in Eq. 4.19. The Mean Absolute Error (MAE)

and Mean Square Error (MSE) can also be considered for further comparison (equations 4.16

and 4.17). In addition, we considered Mean Absolute Percentage Error (MAPE) 4.20, which

gives an idea of the magnitude of the error in percentage form. The percentage values, as scaled

quality values, serve in applying the Ensemble learning technique (Section 4.7).

𝑀𝐴𝐸 =
1

𝑛

𝑛∑
𝑖=1

‖𝑦𝑖 − 𝑦𝑖‖ (4.16)

𝑀𝑆𝐸 =
1

𝑛

𝑛∑
𝑖=1

(
𝑦′𝑖 − 𝑦𝑖

)2

(4.17)

𝑅𝑀𝑆𝐸 ==
√
𝑀𝑆𝐸 =

√√
1

𝑛

𝑛∑
𝑖=1

(
𝑦′𝑖 − 𝑦𝑖

)2

(4.18)

𝑅2 = 1 −
∑

𝑖
(
𝑦𝑖 − 𝑦𝑖

)2
∑

𝑖
(
𝑦𝑖 − 𝑦𝑖

)2 (4.19)

𝑀𝐴𝑃𝐸 =
100

𝑛

𝑛∑
𝑖=1

‖ 𝑦𝑖 − 𝑦𝑖
𝑦𝑖

‖ (4.20)

Where, 𝑦, 𝑦𝑖 and 𝑦𝑖 represent the actual value, predicted value, and mean values of the variable

y, respectively.

Since the MAPE error is a percentage value (i.e., from 0 to 1), we used is it to calculate the

model quality, as presented in Equation 4.21.

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑚𝑖) = 1 − 𝑀𝐴𝑃𝐸 (𝑚𝑖) (4.21)

154

It is worth noting that we utilize this Quality metric in our work, particularly when applying the

Ensemble learning method.

4.6.2 Runtime Metrics

To evaluate the resource usage aspect, we considered the runtime for both the model training

(i.e., training time) and its prediction speed (i.e., prediction time).

• Training time: its value informs if the model can be trained on the device. This time

corresponds to the execution time of the training without a testing phase.

• Prediction time: it also verifies the possibility of using the trained model on the resource-

constrained device. Moreover, it gives an idea about how much of the device’s prediction

capacity has been used. For example, consider an auto-scaler that updates the state of a

system (e.g., scaling the number of replicas) every minute. It may reserve only 10 seconds

for workload forecasting and the rest (i.e., 50 seconds) for planning and executing the scaling

plan. If the prediction operation using a forecasting algorithm takes 5 seconds, then the

prediction by the model uses half of the device’s prediction capacity.

In addition, if the auto-scaling system uses more than one forecasting model, the prediction

time is the sum of the prediction times of each used model as presented in Equation 4.22. The

assumption of worst-case sequential execution of forecasting models is driven by resource

limitations, especially memory constraints, which may restrict the parallel execution of models.

𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑃𝑇 =
|𝑚𝑜𝑑𝑒𝑙𝑠 |∑

𝑖=1

𝑃𝑇𝑖 (4.22)

4.6.3 Evaluation Process of Models

Using the different evaluation metrics, the evaluation process of forecasting models is presented

in Algorithm 4.1. It calculates the prediction time of each model based on the testing time. The

155

training time of models is supposed to be calculated in the previous step of our methodology

(i.e., Train forecasting algorithms).

The algorithm has, as inputs, the set of forecasting models (𝑀𝑜𝑑𝑒𝑙𝑠) and the test dataset (𝑇𝑆𝑡𝑒𝑠𝑡)

reformulated in the form of a sequence of time series windows (𝑊𝑖). The next values of different

time series windows are stored in list 𝑎𝑐𝑡𝑢𝑎𝑙𝐷𝑎𝑡𝑎 (Line 1). In the nested loop (lines 5-8), the

list of predicted values adds the predicted value obtained by using a forecasting model. In

addition, the algorithm calculates the testing time and the average of the predicting time in lines

10 and 11, respectively. Finally, it calculates, in Line 12, the different error metrics based on the

𝑎𝑐𝑡𝑢𝑎𝑙𝐷𝑎𝑡𝑎 and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎. The model quality is calculated based on the MAPE metric,

as presented in Equation 4.21.

Algorithm 4.1 Evaluate Models

Input:
𝑀𝑜𝑑𝑒𝑙𝑠 = {𝑀1, 𝑀2, · · · , 𝑀𝑛}
𝑇𝑆𝑡𝑒𝑠𝑡 =< 𝑊1 =< 𝑥1, 𝑥2, · · · , 𝑥𝑠 >,𝑊2 =< 𝑥2, 𝑥3, · · · , 𝑥𝑠+1 >, · · · ,𝑊𝑚 =<
𝑥𝑚−𝑠−1, · · · , 𝑥𝑚−1 >>
Output: 𝑀𝑜𝑑𝑒𝑙𝑠

1 𝑎𝑐𝑡𝑢𝑎𝑙𝐷𝑎𝑡𝑎 ←< 𝑥𝑠+1, 𝑥𝑠+2, · · · , 𝑥𝑚 >;

2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎 ←<>;

3 for 𝑚𝑜𝑑𝑒𝑙 in 𝑀𝑜𝑑𝑒𝑙𝑠 do
4 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 ← 𝑁𝑜𝑤();
5 for Each 𝑊𝑖 in 𝑇𝑆𝑡𝑒𝑠𝑡 do
6 𝑝𝑟𝑒𝑑 ← 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑊𝑖);
7 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑟𝑒𝑑);
8 end for
9 𝑒𝑛𝑑𝑇𝑖𝑚𝑒 ← 𝑁𝑜𝑤();

10 𝑚𝑜𝑑𝑒𝑙.𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑇 ← 𝑒𝑛𝑑𝑇𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒;

11 𝑚𝑜𝑑𝑒𝑙.𝑃𝑇 ← 𝑚𝑜𝑑𝑒𝑙.𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑇/|𝑎𝑐𝑡𝑢𝑎𝑙𝐷𝑎𝑡𝑎 |;
12 𝑀𝐴𝐸, 𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸, 𝑅2, 𝑀𝐴𝑃𝐸 ← 𝑒𝑟𝑟𝑜𝑟𝑠(𝑎𝑐𝑡𝑢𝑎𝑙𝐷𝑎𝑡𝑎, 𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎);
13 𝑚𝑜𝑑𝑒𝑙.𝑄 ← 100 − 𝑀𝐴𝑃𝐸 ;

14 end for

156

4.7 Ensemble Learning Technique Application

Ensemble learning is a technique that involves combining the predictions of multiple models in

order to improve forecasting accuracy. The idea behind ensemble learning is to take advantage

of the strengths of different models by combining their predictions together. This can lead

to a more robust and accurate forecast than any single model could provide (Zhou, 2012).

Ensemble methods can be powerful for time series forecasting as it allows combining the

strength of different algorithms, reduce overfitting, and improve generalization (Wheelwright,

Makridakis & Hyndman, 1998). Several ensemble learning can be used to improve forecasting

accuracy, such as Bagging, Boosting, Stacking, and Blending (Zhou, 2012).

4.7.1 Our Application of Ensemble Learning

In our case, we consider the multiple trained models, such as ARIMA, LSTM, RF, BN, and

SVR. Our Ensemble learning combines their predictions to improve the overall performance.

Considering the resource limitation, we use a basic technique, Weighted Average, which avoids

training a new model for the combination. Different weights are assigned to forecasting models

to define the prediction quality (defined in Equation 4.21).

The weight of each model is its scaled prediction quality value, calculated by Equation 4.23.

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑚𝑖) = 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑚𝑖)∑|𝑚𝑜𝑑𝑒𝑙𝑠 |
𝑖=1

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑚𝑖)
(4.23)

Algorithm 4.2 presents our ensemble learning solution. The algorithm takes as input the set of

models to consider, along with their prediction quality. It also receives the time series window

for predicting the next value or the prediction horizon.

In Line 7, it calculates the weights of different models according to Equation 4.23. Afterward,

in lines 6-9, it calculates the prediction of the ensemble learning based on the predictions

157

Algorithm 4.2 Ensemble Learning Forecasting

Input:
𝑀𝑜𝑑𝑒𝑙𝑠 = {𝑀1, 𝑀2, . . . , 𝑀𝑘 }
𝑊 =< 𝑥𝑡−𝑠, 𝑥𝑡−𝑠−1, ..., 𝑥𝑡−1, 𝑥𝑡 >
Output: 𝐸𝐿𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

1 𝑠𝑢𝑚 ← 0;

2 for 𝑚𝑜𝑑𝑒𝑙 in 𝑀𝑜𝑑𝑒𝑙𝑠 do
3 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑚𝑜𝑑𝑒𝑙.𝑄𝑢𝑎𝑙𝑖𝑡𝑦;

4 end for
5 𝐸𝐿𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ← 0;

6 for 𝑚𝑜𝑑𝑒𝑙 in 𝑀𝑜𝑑𝑒𝑙𝑠 do
7 𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑚𝑜𝑑𝑒𝑙.𝑄𝑢𝑎𝑙𝑖𝑡𝑦/𝑠𝑢𝑚;

8 𝐸𝐿𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ← 𝐸𝐿𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑀𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑊) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡;

9 end for

of different models. Finally, the algorithm generates the prediction set of different models,

including Ensemble learning, for their use in model selection.

It should be noted that if the models’ predictions have already been calculated in the previous

step, they can be sent to the algorithm that uses them instead of calculating them. As a result, the

execution time of the algorithm becomes significantly reduced. For the sake of understanding,

we included calculating the predictions of the models in the algorithm. Also, for the same

reason, we presented how to calculate the forecast of the ensemble learning for a single window.

To calculate the Ensemble learning model’s quality and average prediction time on the test

dataset, we use the same Algorithm 4.1. Except for the prediction operation (Line 6) should call

Algorithm 4.2.

In the evaluation section (Section 4.10), we will evaluate the utility of adding ensemble learning.

However, using Ensemble learning can increase the complexity of models (Seni & Elder,

2010). It requires the execution of all models instead of only one model. In the context of

resource-constrained devices, the problem becomes worse. Resource limitation may prevent

the execution of all models, either for memory limitation or exceeding the time allocated for

158

prediction. As a result, we aim to propose a solution that adapts the set of models to be

considered in Ensemble learning according to the availability of resources.

4.7.2 Problem Formulation

Given multiple models, each with a prediction time and a quality value. In addition, given a

maximum prediction time for the workload prediction, the optimization problem aims to answer

the question: which forecasting models should be integrated into the ensemble learning model

to maximize the total value of quality without exceeding the maximum prediction time allowed

by the auto-scaler?

We have a maximum prediction time for the Ensemble learning model and 𝑛 forecasting models.

For each model i (𝑚𝑖), we have a prediction time 𝑃𝑇𝑖 and a quality value 𝑄𝑖.

The decision variable 𝑥𝑖 associated with the model 𝑚𝑖 is defined as follows: 𝑥𝑖 = 1 if the model

𝑚𝑖 is considered in the ensemble learning model, and 𝑥𝑖 = 0 if the model 𝑚𝑖 is not selected.

In our problem, we define a single constraint: the sum of the prediction times, 𝑃𝑇𝑖, of all the

models in the ensemble learning must be less than or equal to the maximum prediction time,

𝑀𝑎𝑥𝑇𝑃, as presented in Equation 4.24.

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑚𝑖) =
𝑛∑

𝑖=1

𝑥𝑖 × 𝑃𝑇𝑖 ≤ 𝑀𝑎𝑥𝑃𝑇 (4.24)

Finally, the objective function aims to maximize the total quality value of the models integrated

into the ensemble learning (Equation 4.25).

max

𝑛∑
𝑖=1

𝑥𝑖 ×𝑄𝑖 (4.25)

Our problem can be mapped to the knapsack problem (Kellerer et al., 2004). Where, the

prediction models to be considered in the Ensemble learning correspond to the objects to be put

159

in the knapsack. A model’s quality and prediction time correspond to the value and weight of an

object, respectively. Whereas the total allowed prediction time corresponds to the maximum

allowed weight for the knapsack. It should be noted that the knapsack problem is one of the 21

NP-complete problems identified by Richard Karp (Karp, 1975).

4.7.3 Proposed Dynamic Ensemble learning (DEL)

Given the resource constraints, we solve this optimization problem using a heuristic method

instead of exact methods, which can be time-consuming and demand more resources. However,

heuristic solutions allow us to obtain an approximate solution quickly, but not necessarily

optimal.

Our heuristic solution, presented in Algorithm 4.3, is based on sorting the different models (Line

4) according to the values of the ratio 𝑄𝑖/𝑃𝑇𝑖 of the models calculated in the first loop (lines

1-3). Then, it selects, in order, the models one by one (Line 7) and if the maximum prediction

time is still respected (Line 7), it adds the selected model to the set of models in the ensemble

learning (Line 8).

4.8 Model Selection

For the model selection phase of our methodology, we expect to have as output a set of models,

including the Ensemble learning model. The model selection process is similar to the application

of Ensemble learning, where we consider both the quality and prediction time (PT) of models.

The selected model has the best forecasting accuracy compared to the feasible models, which can

be executed on the restricted-resource device. A feasible model means that its time prediction is

less or equal to the maximum prediction time authorized by the auto-scaling system. Equations

4.26 and 4.27 present the extraction of the feasible models and the model selection, respectively.

𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑀𝑜𝑑𝑒𝑙𝑠 = {𝑚 ∈ 𝑀𝑜𝑑𝑒𝑙𝑠 | 𝑃𝑇 (𝑚) ≤ 𝑀𝑎𝑥𝑃𝑇} (4.26)

160

Algorithm 4.3 Ensemble Learning Optimization

Input:
𝑀𝑜𝑑𝑒𝑙𝑠 = {𝑀1, 𝑀2, . . . , 𝑀𝑛}
𝑀𝑎𝑥𝑃𝑇
Output: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠

1 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 ← {}for 𝑚𝑜𝑑𝑒𝑙 in 𝑀𝑜𝑑𝑒𝑙𝑠 do
2 𝑚𝑜𝑑𝑒𝑙.𝑜𝑝𝑡_𝑣𝑎𝑙𝑢𝑒 ← 𝑚𝑜𝑑𝑒𝑙.𝑄/𝑚𝑜𝑑𝑒𝑙.𝑃𝑇

3 end for
4 𝑆𝑜𝑟𝑡𝑒𝑑_𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝑆𝑜𝑟𝑡 (𝑀𝑜𝑑𝑒𝑙𝑠, 𝑜𝑝𝑡_𝑣𝑎𝑙𝑢𝑒, 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔);
5 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑃𝑇 ← 0

6 for 𝑖 = 0 in |𝑆𝑜𝑟𝑡𝑒𝑑_𝑀𝑜𝑑𝑒𝑙𝑠 | do
7 𝑚𝑜𝑑𝑒𝑙 ← 𝑆𝑜𝑟𝑡𝑒𝑑_𝑀𝑜𝑑𝑒𝑙𝑠[𝑖] 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑃𝑇 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑃𝑇 + 𝑚𝑜𝑑𝑒𝑙.𝑃𝑇 if

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑃𝑇 ≤ 𝑀𝑎𝑥𝑃𝑇 then
8 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 ∪ 𝑚𝑜𝑑𝑒𝑙

9 else
10 𝑏𝑟𝑒𝑎𝑘
11 end if
12 end for

Where, 𝑀𝑜𝑑𝑒𝑙𝑠 is the set of all models, 𝑃𝑇 is the prediction time and 𝑀𝑎𝑥𝑃𝑇 is the maximum

time reserved for the prediction operation.

∀𝑚 ∈ 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑀𝑜𝑑𝑒𝑙𝑠, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙) ≥ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑚) (4.27)

4.9 Integration of the Model in the Auto-scaling Process

In this last step, we apply the selected model in the auto-scaling process. The role of the selected

model is to predict the future workload. According to the predicted workload, the auto-scaler

proactively adapts the system resource by scaling up\down the service replicas.

To assess the efficiency of auto-scaling, we adopt the metrics proposed by Herbst et al. (Herbst

et al., 2016) and Bauer et al. (Bauer et al., 2018a), which are widely utilized in the literature on

auto-scaling, such as Imdoukh et al. (2019); Dang-Quang & Yoo (2021).

161

The under-provisioning metric, denoted as 𝜃𝑈 , quantifies the number of replicas (e.g., containers)

required to meet the desired number of replicas, as represented in Equation 4.28. Additionally,

the under-provisioning time (𝑇𝑢) captures the duration during which the simulator experienced

under-provisioning, as indicated in Equation 4.29.

𝜃𝑢 =
100

𝑇

𝑇∑
𝑖=1

𝑚𝑎𝑥(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) − 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡), 0)
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) Δ𝑡 (4.28)

𝑇𝑢 =
100

𝑇

𝑇∑
𝑖=1

max(𝑠𝑔𝑛(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) − 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡)), 0)Δ𝑡 (4.29)

Where, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) represents the correct number of replicas corresponding to the actual

workload, while 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡) represents the number of replicas offered by the auto-scaler based

on the predicted workload value. The time interval for checking the workload change is denoted

as Δ𝑡, typically set at a minute level. The evaluation period is represented by 𝑇 , and the function

𝑠𝑔𝑛() denotes the sign function.

On the other hand, the over-provisioning metric, denoted as 𝜃𝑂 , quantifies the number of replicas

supplied that exceed the desired number, as expressed in Equation 4.30. Additionally, the

over-provisioning time (𝑇𝑜) indicates the duration during which the auto-scaler experienced

over-provisioning, as illustrated in Equation 4.31.

𝜃𝑜 =
100

𝑇

𝑇∑
𝑖=1

𝑚𝑎𝑥(𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡) − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡), 0)
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) Δ𝑡 (4.30)

𝑇𝑜 =
100

𝑇

𝑇∑
𝑖=1

max(𝑠𝑔𝑛(𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 (𝑡) − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡)), 0)Δ𝑡 (4.31)

Finally, the Elasticity speedup (𝜖𝑛) reveals the performance gain obtained by using a proactive

auto-scaler. In this work, the elasticity speedup is calculated by a ratio between two cases: using

a proactive auto-scaler and a reactive auto-scaler, which are represented, in Eq. 4.32, by the 𝑝

162

and 𝑟 indices, respectively.

𝜖𝑛 =

(
𝜃𝑢,𝑟
𝜃𝑢,𝑝

.
𝜃𝑜,𝑟
𝜃𝑜,𝑝

.
𝑇𝑢,𝑟
𝑇𝑢,𝑝

.
𝑇𝑜,𝑟

𝑇𝑜,𝑝

) 1
4

(4.32)

In contrast to the other metrics, the higher the 𝜖𝑛 value, the higher the auto-scaling performance.

In other words, the best auto-scaling has less 𝜃𝑢, 𝜃𝑜, 𝑇𝑢, 𝑇𝑜 values and essentially a higher 𝜖𝑛

value.

4.10 Evaluation Results

In this section, we outline the steps taken to evaluate the feasibility and performance of our

approach within the constraints of resource-limited devices, specifically in the context of IoT

edge environments. The evaluation focuses on forecasting algorithms, including ARIMA,

LSTM, SVR, RF, and BN. It considers the accuracy and execution time metrics discussed in

Section 4.6, such as 𝑀𝑆𝐸 , 𝑀𝐴𝐸 , 𝑅𝑀𝑆𝐸 , 𝑅2, and 𝑀𝐴𝑃𝐸 . Furthermore, we evaluate the

impact of predictions on the auto-scaling process using the metrics presented in Section 4.9. The

evaluation process follows the steps of the MAPE-K loop: Monitoring, Analysis, Planning, and

Execution. In the monitoring phase, prediction data is obtained from the forecasting techniques

applied to the WorldCup’98 dataset. The analysis phase involves the auto-scaler assessing the

need for scaling, whether up or down, based on the difference between the current workload and

the predicted workload generated by the forecasting algorithms. The planning phase calculates

the number of replicas (e.g., containers) required to meet the predicted workload, considering

the maximum capacity of a replica (e.g., one container can process 500 requests per minute).

Finally, the execution phase scales the system to the new number of replicas.

For the implementation of the prediction algorithms and the auto-scaler, we utilized Python with

the Scikit-learn and Keras libraries. To evaluate the performance of forecasting algorithms on

resource-constrained devices, we conducted experiments on a Raspberry Pi 3 Model B, equipped

with the Raspbian operating system, a 1-core CPU, and 1 GB of RAM.

To ensure diverse experimentation and comprehensive analysis, we considered three classes

of dataset sizes: 10,000 points (10k), 20,000 points, and 40,000 points, classified as Small,

163

Medium, and Large data sizes, respectively. Each data point represents the number of requests

received in a minute. Figure 4.12 illustrates these three size classes. In the case of 10k size

Subfigure 4.12a, the testing data exhibits patterns similar to the training data. For the 20k size

Subfigure 4.12b, the testing data contains additional patterns not present in the training data,

characterized by diverse request peaks, which make them challenging to predict. In the case of

40k size Subfigure 4.12c, we introduced highly varied data into the training data portion. It is

important to note that a 75%-25% ratio was used to split the data for training and testing the

models.

4.10.1 Configuration of Models

Table 4.2 summarizes the configuration parameters for the various forecasting models used in

this study. In the following subsubsections, we briefly explain the model parametrization for

each algorithm, highlighting the key parameters tuned to optimize the model performance.

4.10.1.1 ARIMA

To utilize ARIMA, we need to determine the model order ARIMA(p,d,q), where p represents the

order of the Auto-regressive (AR) part (i.e., the number of AR terms), d represents the order of

differencing ("I" part), and q represents the order of the Moving-average (MA) part. In Section

4.4, we discussed the aspect of data differencing to make the data stationary. We demonstrated

that applying first-order differencing (d=1) on the logged data suffices.

In addition, we can determine the values of p and q, by analyzing the autocorrelation and partial

autocorrelation (PACF) of the stationarized data represented, respectively, in Figure 4.9 and

Figure 4.10. This blue area indicates the significance threshold that corresponds to the 95%

confidence interval, which is statistically non-zero.

The auto-ARIMA function selects the best model based on the AIC value during the training

phase. However, the selected model, ARIMA(8,0,1), has a high autoregressive order (p = 8).

Consequently, this increased value of p can potentially result in overfitting of the model to the

164

Figure 4.9 Autocorrelation Function (ACF)

Figure 4.10 Partial Autocorrelation Function (PACF)

training data, leading to less efficient performance on the test data. This observation helps

explain the results presented in Table 4.1, where our analysis-based model outperforms the

auto-ARIMA model across most accuracy metrics. Furthermore, increasing the values of 𝑝 or 𝑞

Table 4.1 Comparison between ARIMA Models based on AIC and Error Metrics

ARIMA Model Order AIC MSE RMSE MAE R2̂ MAPE
Analysis-based (2,1,2) -1577.6352 27435.0543 165.6353 127.6111 0.8279 0.1159
Auto-ARIMA (8,0,1) -1630.592 29167.4965 170.7849 130.7615 0.8171 0.1164

165

can increase the complexity of the model, resulting in longer training times. Considering these

factors, we use our analysis-based model (ARIMA(2,1,2)) for our evaluation.

4.10.1.2 LSTM

For the LSTM model, we employed a sequential architecture. The input layer corresponds to a

sliding window size of 30, while the output layer consists of a single neural cell. We utilized

the Adam optimizer to train the model. To optimize the hyperparameters of our LSTM model,

we performed a grid-search technique. The values for the grid were obtained from previous

literature works (Imdoukh et al., 2019; Dang-Quang & Yoo, 2021) and an initial model. After

evaluating different combinations, we determined that setting the number of units to 100, the

number of epochs to 50, and the batch size to 64 yielded the best results (Table 4.2).

It is worth noting that the LSTM model can achieve higher accuracy when increasing the data

volume, as it is a deep learning algorithm, as shown in Figure 4.11, where the test loss and train

loss gradually become closer when increasing the data volume. However, the increase in data

is limited by resource availability, as presented in the previous subsection. It is important to

mention that in the 10k case, the model is not well trained, as there is a considerable difference

between the training and loss plots. Additionally, the plateauing effect in the 40k case suggests

that the model might not be overtrained.

a) Case of Data size=10k b) Case of Data size=20k c) Case of Data size=40k

Figure 4.11 LSTM Model Training

166

4.10.1.3 SVR

For SVR (Support Vector Regression), two main hyperparameters are to consider: C and gamma.

A higher value of C indicates a smaller-margin hyperplane. We experimented with several values

of C, including 0.1, 1, 10, and 100. As for gamma, we tested the values of 0.01, 0.1, and 1. A

higher gamma value focuses only on points close to the boundary lines when determining the

position of the hyperplane. In contrast, a lower gamma value considers points both close and far

from the boundary lines. Additionally, SVR offers various kernel function options such as linear,

RBF (Radial Basis Function), poly, and sigmoid. We also considered the epsilon hyperparameter,

which can take values of 0.01, 0.1, and 1. Similar to other models, we conducted a grid search to

optimize the model configuration by exploring different combinations of hyperparameter values.

The selected SVR model and its hyperparameter settings are presented in Table 4.2.

4.10.1.4 RF

For the Random Forest algorithm, there are two main hyperparameters to consider: the number

of trees (number_trees) and the maximum depth of each decision tree in the forest (max_-

depth). Increasing the number_trees can improve the model’s performance but also increases

computation time and the risk of overfitting. On the other hand, the max_depth parameter limits

the depth of the trees, which helps prevent overfitting and enhances the model’s generalization

performance. To tune these hyperparameters, we conducted a grid search with the following

values: number_trees (50, 100, 150) and max_depth (5, 10, 15). As shown in Table 4.2, the

best configuration is number_trees = 150 and max_depth = 10. We evaluated the models’

performance based on the negative mean squared error. The results may vary since the Random

Forest algorithm randomly selects subsets of features and data points at each split. To ensure

reproducibility, we set the random_state hyperparameter to 42.

167

4.10.1.5 BN

For the BN (Bayesian Network) algorithm, we utilized the PyBATS package in Python for

Bayesian time series analysis. PyBATS is based on Dynamic Generalized Linear Models

(DGLM), which allows coefficients to change dynamically over time, generalizes based on the

observation distribution (e.g., Normal or Poisson), and linearly combines coefficients multiplied

by predictors. Similar to other models, we performed a grid search to determine the best

configuration of model parameters. Table 4.2 presents the considered parameters, including the

distribution family (family = "Poisson") for analyzing count-based time series, the number of

samples (nsamps = 100) for obtaining credible intervals and point estimations, the prior length

(prior_length = 6) used to define the prior distribution, the random effect extension (rho = 0.9)

that increases forecast variance, and the discount factors for trend and regression components

(deltrend = 0.5 and delreg = 0.9).

4.10.2 Forecasting Resource Usage Evaluation

We assessed the viability of different models on resource-constrained devices, specifically the

Raspberry Pi in our case. The assessment considered the resource requirements for training

the models and using them for predictions. The assessment focused on evaluating the models’

performance within the resource limitations. Considering the constrained resources, we limited

the training and testing data to the first 10,000 points (minutes) of the dataset. It is important to

note that we maintained a 75%-25% ratio for training and testing the models. Table 4.3 presents

the average training and prediction times for the different models. Among the models, the LSTM

algorithm required the longest training time as a deep learning algorithm. Moreover, when

dealing with larger datasets (e.g., 20,000 points), we observed the need to reduce the complexity

of the LSTM model, such as by reducing the epoch value, to ensure successful training on the

Raspberry Pi. The training times for the remaining models were reasonable, as they did not

exceed one minute. Regarding prediction time, all models could quickly predict a single value,

usually in less than one millisecond.

168

Table 4.2 Key Hyperparameters of Different Algorithms

𝑀𝑜𝑑𝑒𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
ARIMA Order of differencing (d) 1

AR order (p) 2

MA order (q) 2

Goodness-of-fit statistics AIC

LSTM Number of layers 2

Input size 30

Output size 1

Units 100

Optimizer adam

Batch size 64

Epochs 50

Loss function MSE

SVR Kernel function RBF

Regularization parameter (C) 10

Width of the Gaussian radial basis function (𝛾) 0.01

epsilon (𝜖) 0.01

Goodness-of-fit statistics Negative MSE

RF Number of trees 150

Maximum depth of each tree 10

Random_state 42

Goodness-of-fit statistics Negative MSE

BN Distribution family Poisson

Number of samples 30

Prior length 6

Random effect extension 0.9

Discount factor for trend 0.5

Discount factor for regression 0.9

However, it is important to consider the aspect of model retraining during the prediction operation.

For example, in the case of ARIMA model, retraining is necessary for each prediction to maintain

accuracy. If the model is not retrained by incorporating new values, the forecast will generate a

stable value for long-term predictions. Table 4.4 demonstrates that iterative retraining (after

each prediction) outperforms the model without retraining by a factor of 13 in terms of MSE

metric, for example. Considering this, the effective prediction time of the ARIMA model on the

169

Raspberry Pi would be the sum of the prediction and retraining times, resulting in approximately

27 seconds. We also explored the accuracy-to-prediction time ratio by incorporating periodic

retraining after a certain number of predictions (e.g., every 100 or 30 predictions), as shown in

Table 4.4.

Furthermore, our evaluation revealed that iterative retraining could also improve the prediction

accuracy of the RF and BN models. Therefore, if forecasting accuracy is a high priority, it is

necessary to consider the retraining time in addition to the prediction time for these models.

Table 4.3 Training Time and Prediction Time of Different Models

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑇𝑖𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝐴𝑅𝐼𝑀𝐴 𝐿𝑆𝑇𝑀 𝑆𝑉𝑅 𝑅𝐹 𝐵𝑁

Small
Training time 27.2963 3349.0086 34.1058 5.6457 14.7178

Prediction time 0.0098 0.0093 0.0059 0.0825 9.2128 × 10−06

Table 4.4 Retraining Necessity to Improve the Prediction of ARIMA Model

Retraining type 𝑀𝑆𝐸 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝑃𝐸
Without retraining 357651.5200 494.7020 598.0397 -1.2424 0.3680

With periodic retraining

(after 100 predictions) 61597.9105 196.0479 248.1892 0.6137 0.1841

With periodic retraining

(after 30 predictions) 49186.2131 172.1206 221.7796 0.6916 0.1607

Iterative training

(after each prediction) 27340.1252 127.5014 165.3484 0.8285 0.1158

4.10.3 Forecasting Accuracy Evaluation

Table 4.5 shows the accuracy of different trained models using different data size cases: 10k, 20k,

and 40k. Unexpectedly, the commonly used models, ARIMA and LSTM, do not outperform

other lightweight models, except in the case of 10k, where ARIMA and LSTM have the best

results, excluding the Ensemble learning model (EL). In other cases, the lightweight models,

namely BN, could achieve better results. Even in the 10k case, the SVR model has a better

RMSE metric value compared to LSTM. In general, we observe that the results are close, making

it sensible to consider the accuracy/time ratio.

170

To explain the similarity in accuracy among different models, we investigated the correlation

between the actual data and predicted data for different data size cases, as presented in Figure

4.13. The correlation matrices for the 10k and 40k cases (Figures 4.14a and 4.14c) clearly

demonstrate high correlation, which is reflected in the accuracy results, particularly the 𝑅2

metric shown in Table 4.5. Notably, the 40k case exhibits higher correlation than the 10k

case. Thus, incorporating additional patterns in the training data, as shown in Figure 4.12c,

improves the overall performance of the models. Adding data patterns to the training data can

reduce or even avoid overfitting effects. Table 4.5 shows improved MAPE metric values. It is

important to remember that the MAPE metric is a percentage value (between 0 and 1), allowing

for comparisons between different data size cases.

In the 20k case (Figure 4.12b), which contains significant variation in the testing data, Figure

4.14b demonstrates a considerable decrease in the correlation between the actual data (Test_Data)

and predicted data of different models, which significantly impacts the 𝑅2 value. However, this

decrease in correlation does not significantly affect the values of the other accuracy metrics:

MSE, MAE, RMSE, and MAPE. This can be explained by the fact that the distance between

the actual and predicted values plays a more important role in these accuracy metrics than

correlation. For instance, a correlated pair of actual and predicted values may have a greater

distance than a less correlated pair. This aspect can be further clarified with the data distribution

analysis, which will be presented in the next element of the Ensemble learning evaluation.

a) Small Data=10k b) Medium Data=20k c) Large Data=40k

Figure 4.12 Training and Testing Data of Different Data Sizes

171

a) Small Data=10k b) Medium Data=20k c) Large Data=40k

Figure 4.13 Correlation Matrix: Actual vs Predicted Data for Different

Models and Data Sizes

a) Small Data=10k b) Medium Data=20k c) Large Data=40k

Figure 4.14 Distribution of Predicted Data: Violin Plot for Different Data

Sizes

4.10.4 Evaluation of Our Ensemble Learning (EL) Model

For the evaluation of the proposed Ensemble Learning model, we consider the accuracy and

time consumption of the EL model, as well as its dynamic aspect, which selects the models to

consider based on the availability of resources determined by the available forecasting time.

4.10.4.1 Accuracy and Time Consumption

Table 4.5 presents the accuracy of the Ensemble Learning model (EL) in a separate line. In all

cases, the EL model demonstrates good accuracy compared to the single models. Despite being

172

Table 4.5 Accuracy Results across Different Dataset Sizes

𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒 𝑀𝑜𝑑𝑒𝑙𝑠 𝑀𝑆𝐸 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝑃𝐸 𝑄𝑢𝑎𝑙𝑖𝑡𝑦

10k

ARIMA 27435.0543 127.6111 165.6353 0.8279 0.1159 0.884

LSTM 29259.0771 130.5017 171.0528 0.8151 0.1145 0.8854

SVR 27826.8364 128.2523 166.8137 0.8241 0.1154 0.8845

RF 29067.5173 130.7628 170.4919 0.8163 0.1173 0.8826

BN 31179.6508 136.7604 176.5776 0.8045 0.1228 0.8771

EL 27564.5471 127.4891 166.0257 0.8258 0.1143 0.8856

20k

ARIMA 1469209.2302 256.1708 1212.1094 0.3876 0.1514 0.8485

LSTM 1938833.7423 227.0645 1392.4201 0.1964 0.1273 0.8726

SVR 2039238.156 243.6274 1428.0189 0.1548 0.1397 0.8602

RF 2190145.9282 227.3979 1479.9141 0.0923 0.1217 0.8782
BN 1190752.2868 236.1388 1091.2159 0.5036 0.1446 0.8553

EL 1235524.0926 219.23636 1111.5413 0.4879 0.1285 0.8714

40k

ARIMA 58753.3252 189.5252 1212.1094 0.9243 0.0874 0.9125

LSTM 91801.5052 231.9231 302.9876 0.8819 0.0957 0.9042

SVR 84693.7665 219.7276 291.0219 0.8911 0.0919 0.9080

RF 94786.2199 219.5011 307.8737 0.8781 0.0903 0.9096

BN 56052.0033 184.4365 236.7530 0.9278 0.0849 0.9150

EL 61987.3997 190.0018 248.9726 0.9203 0.0829 0.9171

based on the weighted average of predictions, the EL model achieves the best results for some

metrics, namely MAE and MAPE. This improvement can be attributed to averaging prediction

values, which helps reduce outliers (i.e., extreme differences between actual and predicted data).

Figure 4.14 employs the Violin Plot visualization technique to gain insights into the nature

of these differences between actual and predicted data (i.e., predicted data - actual data) and

compare their distribution characteristics across the models. In all cases, especially the 20k case,

the central tendency of the differences, particularly the median, is close to zero, indicating that

most actual and predicted values are similar.

In the 20k case, the narrower distribution observed for the EL model demonstrates its capability

to reduce the occurrence of extreme differences compared to other models with different

distribution patterns. The extent to which EL has reduced the maximum and minimum limitation

values can be observed. However, for the 10k case, the EL model does not significantly improve

173

the outlier aspect since the data distributions of the different models are similar. On the other

hand, in the 40k data size case, EL significantly reduces the distribution compared to the RF

model.

Regarding time consumption, there is no training time for the Ensemble Learning model based

on the weighted average if the involved models are already trained. However, if the models

require training, the training time in the worst case will be the sum of the training times of

the involved models. The prediction time corresponds to the sum of the prediction times of

the different models, along with the computing time of the weighted average, which is very

small (2.1511𝑒 − 05). The experiments found that the average prediction time for EL is 0.1075.

However, if we consider the iterative retraining of the models, the prediction time will increase

significantly. This highlights the importance of considering the dynamic aspect of Ensemble

Learning, as we will discuss in the next element.

4.10.4.2 Dynamic Ensemble Learning (DEL)

The evaluation of the proposed dynamic Ensemble Learning is based on the prediction time

of each forecasting model discussed in Subsection 4.10.2. Specifically, we consider the utility

of model retraining to improve forecasting accuracy. As a result, the prediction time can be

extended for certain models, such as ARIMA (from 0.0089 to 27.3052).

Table 4.6 presents various cases based on the defined maximum prediction time (Max PT). The

limitation on prediction time is used in our optimization model as a constraint (Equation 4.24)

to select the models that form the Ensemble Learning model (referred to as "Used Models" in

Table 4.6). The case that includes all five models (Max PT = 50) achieves the highest accuracy.

However, as shown in Table 4.6, increasing the number of models does not automatically lead

to improved forecasting accuracy, as observed in the cases of Max PT = 10 and Max PT = 30.

Therefore, the addition of the BN model did not enhance the overall performance (𝜖𝑛) of the

Ensemble Learning model. Finally, the "Effective PT" in Table 4.6 represents the actual time

174

Table 4.6 Results of Dynamic Ensemble Learning

Max PT Used Models Eff.PT 𝑀𝑆𝐸 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑅2 𝑀𝐴𝑃𝐸
5 SVR, LSTM 0.016 28002.7269 129.2408 167.3401 0.8230 0.1177

10 SVR, LSTM,

RF 5.666 27649.4064 128.2412 166.2811 0.8253 0.1164

30 SVR, LSTM,

RF, BN 20.386 27668.7384 128.2982 166.3392 0.8251 0.1161

50
SVR, LSTM,

RF, BN, ARIMA 47.686 27570.1312 128.0019 166.0425 0.8258 0.1158

consumed by the forecasting models comprising the Ensemble Learning model on the Raspberry

PI.

4.10.5 Auto-scaling Performance

To evaluate the effectiveness of different forecasting algorithms for auto-scaling, we utilized

the WorldCup’98 dataset as a consistent input for the auto-scaler. The auto-scaling process

dynamically adjusts the number of replicas (e.g., containers) based on the incoming request

volume, following the iterative phases of the MAPE-K (Monitoring, Analyzing, Planning,

and Execution) loop. Our experimental evaluations comprised two categories: simulation

experiments and real experiments implemented with Kubernetes.

4.10.5.1 Simulation Results

In the first category of experiments presented in Table 4.7, we evaluated various forecasting

algorithms using auto-scaling evaluation metrics. The experiments involved testing datasets

with 10k, 20k, and 40k data points, where each data point represented the number of requests

received per minute. The maximum replica capacity was set to 500 requests per minute.

Based on the results presented in Table 4.7, the LSTM model demonstrated better overall

performance (as measured by the 𝜖𝑛 value) for the 10k and 40k data point cases, despite not

having the highest forecasting accuracy. This discrepancy can be attributed to the nature of the

175

Table 4.7 Auto-scaling Results for Different Dataset Sizes

𝑆𝑖𝑧𝑒 𝑀𝑜𝑑𝑒𝑙𝑠 𝜃𝑜 𝜃𝑢 𝑇𝑜 𝑇𝑢 𝜖𝑛
Reactive 6.4803 4.2837 14.2162 14.2162 1.0000

LSTM 7.7395 2.5344 15.8299 9.2712 1.1790
ARIMA 6.6869 3.1248 13.2388 11.3765 1.1530

10k SVR 6.3022 3.1821 12.5506 11.4574 1.1784

RF 6.4372 3.2557 12.6720 11.7813 1.1547

BN 6.9062 3.6686 14.4129 12.672 1.0470

EL 6.7105 3.1167 13.2793 11.2550 1.1549

Reactive 7.2345 4.3284 14.9325 14.7112 1.0000

LSTM 5.4080 4.4877 11.5291 16.0362 1.1127

ARIMA 7.2800 4.6590 14.5271 15.2716 0.9777

20k SVR 6.6274 4.4410 13.4406 15.7746 1.0246

RF 4.5372 4.9730 10.1207 17.5251 1.1450
BN 7.1517 4.2633 14.2253 14.8692 1.0162

EL 5.8294 4.1751 12.3340 14.7283 1.1168

Reactive 4.4953 3.5546 18.9788 18.9888 1.0000

LSTM 1.6531 6.8376 5.5767 37.9438 1.2456
ARIMA 4.4533 3.4629 18.7061 18.6659 1.0169

40k SVR 2.8295 5.4982 9.1374 32.4172 1.0573

RF 3.2776 4.7051 12.2668 26.4292 1.0359

BN 4.2743 3.4211 18.024 18.5255 1.0421

EL 2.9466 4.4765 10.8224 25.8375 1.1178

auto-scaling process, which focuses on the difference between demanded and supplied replicas

rather than relying on the difference between actual and predicted workload data. Thus, even if

the difference between actual and predicted data is within the capacity limits of the replicas, no

adjustment in the number of replicas is necessary.

In all cases, there was consistently a lightweight algorithm that performed well in either over-

provisioning or under-provisioning scenarios, as well as in the overall performance metric (𝜖𝑛).

Notably, the RF model yielded the best results for the 20k dataset.

Regarding stability, the Ensemble Learning (EL) model achieved good performance, consistently

ranking around the 2nd position across all cases. This stability in result quality makes the EL

model particularly appealing, as it outperforms other models that may excel in one case but

176

perform poorly in others. For example, the RF model ranked first for the 20k case but third for

the remaining two cases.

4.10.5.2 Experiments on Kubernetes

In the experiments conducted on Kubernetes, we utilized the Nginx service using its DockerHub

image, a widely used web server and proxy server software. The following parameters were set

for the experiments:

• Minimum number of pods: 1

• Maximum number of pods: 100

• Workload per replica (maximum capacity): 100

To mitigate the impact of oscillations, the PRR (Pods Removal Rate) parameter was set to 0.9.

This parameter determines the proportion of pods to be removed when there is a decrease in the

number of HTTP requests. By setting PRR to 0.9, the system is designed to remove a significant

fraction of pods in each iteration, gradually adjusting in response to diminishing workload.

To perform the experiments, HTTP requests were sent to an application deployed on Kubernetes.

The Nginx service was deployed in Kubernetes’s "default" namespace and exposed on a specific

port, 30651. Jmeter was configured to send requests corresponding to the WorldCup’98 dataset

periodically. The requests were sent over 3 hours.

Figure 4.15a illustrates the response of the reactive autoscaler to changes in workload. It shows

the number of pods (blue line) in relation to the number of HTTP requests received by the Nginx

pods (red line). The reactive autoscaler often exhibits a delay before adjusting the number of

pods in response to workload changes.

On the other hand, Figure 4.15b demonstrates the changes applied to the number of pods by

the proactive autoscaler based on the predicted future workload. In this experiment, the LSTM

model was used for prediction, as it had the best value of the MAPE metric and the best overall

auto-scaling performance in the simulation with the 10k data size. The proactive autoscaler

177

a) Reactive Approach b) Proactive Approach

Figure 4.15 Dynamic Pod Auto-scaling Based on Workload

frequently adapts the number of pods in advance to workload changes, leveraging the forecasting

model. Overall, the proactive autoscaler demonstrates more proactive behavior in adjusting the

number of pods, while the reactive autoscaler tends to have a delay in response.

4.11 Discussion

Based on the evaluation results, the discussion section presents our observations and findings

related to the research questions in the Introduction section. The following key points emerge

from our analysis:

• The training of LSTM model, as a widely used deep-learning technique for time series

forecasting, is unsuitable for resource-constrained devices such as Raspberry Pi. In contrast,

ARIMA, a statistical technique, can be trained reasonably for limited data sizes (e.g., 10k).

As highlighted by research question RQ1, we evaluated the performance of LSTM and

ARIMA as widely adopted techniques for time series forecasting. In the context of resource-

constrained devices, our evaluation revealed that training an LSTM model is not practical,

even with small data sizes. For instance, when using a data size of 10k, LSTM training

on a Raspberry Pi took approximately 3349 seconds. Furthermore, attempting to increase

the data size (e.g., 20k) proved challenging, as the device struggled to support the training

process unless we significantly reduced the model’s complexity (e.g., by minimizing the

epoch value), which can impact the model’s accuracy.

178

Therefore, it is advisable to train LSTM models on more powerful devices, whether in Edge,

Fog or even the cloud, with the possibility of utilizing techniques such as federated learning.

In contrast, the prediction time of the LSTM model was sufficiently fast and suitable for

resource-constrained devices.

On the other hand, the statistical technique ARIMA exhibited reasonable training times

(around 27 seconds) on a Raspberry Pi for small datasets (e.g., 10k). However, it is important

to note that the ARIMA model needs to be retrained after each prediction to maintain

its forecasting accuracy, which can be time-consuming on resource-constrained devices.

Moreover, if a large volume of data is involved, training ARIMA on more powerful devices

is more practical.

Regarding forecasting accuracy, our evaluation indicates that the accuracy of these models is

relatively close regardless of the dataset size. Furthermore, our experiments demonstrate

that these heavy techniques, such as LSTM and ARIMA, perform well when the current data

patterns are similar to the training data patterns (as observed in Figure 4.12a). However, in

cases where significant differences exist between the patterns, alternative lighter techniques

such as Support Vector Regression (SVR), Random Forest (RF), and Bayesian Networks

(BN) or their combinations could be considered, as we will discuss in the following points.

• Alternative techniques that are less resource-intensive, such as Support Vector Regression

(SVR), Random Forest (RF), and Bayesian Networks (BN), demonstrate comparable accuracy

and overall performance to widely used techniques like ARIMA and LSTM.

The exploration of alternative models is motivated by the need to find lighter models that

require fewer resources, particularly in terms of training time. The evaluation assesses the

suitability of these models for resource-limited devices, taking into account the iterative

retraining required in the forecasting operation.

In terms of time consumption, Random Forest (RF) proves to be the lightest model among the

evaluated techniques while also achieving comparable or even superior accuracy compared

to Support Vector Regression (SVR) and Bayesian Networks (BN).

Against our expectations, the accuracy of these alternative models is comparable to widely

used techniques like ARIMA and LSTM, which are more resource-intensive. Consequently,

179

this observation emphasizes the importance of considering the performance-to-resource

usage ratio when selecting a forecasting model. It encourages further exploration and

consideration of these alternative techniques, particularly in resource-constrained scenarios

where efficient resource utilization is crucial.

• Our dynamic and weighted-average based Ensemble learning maintains a high level of

accuracy and stable performance compared to individual models, primarily due to its ability

to effectively reduce outliers, representing extreme differences between actual and predicted

workload data.

Our Dynamic Ensemble learning model (DEL) considers both accuracy and computational

time during the model selection process, ensuring compatibility with available resources

while aiming to improve prediction accuracy.

Regarding training time, the evaluation demonstrates that the Ensemble learning approach is

lightweight when utilizing pre-trained models. However, if new models are included, they

would need to be trained beforehand to be incorporated into the Ensemble learning model.

Our Ensemble learning approach consistently achieves high accuracy in most cases, par-

ticularly when evaluated using the Quality metric (i.e., MAPE). In the remaining cases, it

maintains a commendable rank, typically around 2nd place, compared to individual models.

This can be attributed to the Ensemble learning’s ability to reduce the presence of outliers,

which are extreme differences between the actual and predicted data. These outliers can

negatively impact the performance of auto-scaling. Furthermore, the evaluation reveals

that the accuracy of the Ensemble learning model is not solely dependent on the number

of included models but also on their quality. Consequently, adding a new model to the

Ensemble learning may decrease the overall accuracy and performance in certain cases.

• The evaluation highlights the significant performance improvement achieved by adopting

proactive auto-scaling, leveraging workload forecasting, compared to a reactive approach.

Our evaluation highlights the significant impact of adopting a proactive approach, known as

proactive auto-scaling, on the performance of auto-scaling systems. Proactive auto-scaling

leverages workload forecasting to anticipate future demands and enables the system to adapt

before the new workload arrives.

180

In our evaluation, we compared the performance of a reactive model, which reacts to changes

in workload without forecasting, to a proactive model that utilizes LSTM, the best forecasting

model based on the MAPE metric. The results demonstrate a substantial improvement in

the proactive model compared to the reactive model. It is important to note that a higher

forecasting accuracy does not necessarily guarantee better auto-scaling performance.

Our analysis indicates that minor differences between the actual and predicted data, below

the capacity of the replicas or containers, may have minimal or no effect on the auto-scaling

performance. In addition, other elements can also impact the auto-scaling performance, such

as the oscillation of scaling actions.

4.12 Conclusion

Edge computing has brought notable benefits to IoT networks by offloading tasks from the cloud,

reducing network workload, and enhancing system responsiveness. However, operating within a

resource-constrained and heterogeneous environment presents challenges in service deployment

and resource management. To address these issues, this paper proposes a proactive approach

that predicts future workload to adjust the number of deployed service replicas dynamically.

A research methodology is followed to select an appropriate forecasting algorithm capable of

effectively handling auto-scaling challenges in Edge environments.

The study conducted in this paper includes experiments and discussions that address research

questions concerning the suitability of widely used forecasting algorithms, the exploration of

lightweight alternatives, the efficacy of Ensemble learning, and the impact of predictions on the

auto-scaling service process.

Future work involves conducting additional experiments to further evaluate the presented

algorithms, considering optimization techniques for hyper-parameter selection, and incorporating

additional performance metrics such as CPU and memory usage. Additionally, exploring

techniques within Ensemble learning, such as blending, is planned to improve prediction

accuracy. Furthermore, investigating alternative techniques to address the optimization problem

181

presented in this work, aiming to optimize the trade-off between prediction quality and resource

usage in the model selection process of the proposed Dynamic Ensemble learning, is part of the

future research direction.

CONCLUSION AND RECOMMENDATIONS

The deployment of Internet of Things (IoT) services at the network edge through edge computing

has become increasingly popular due to its cost-effectiveness and improved responsiveness.

However, the resource constraints and heterogeneity of edge devices in IoT networks present

significant challenges for efficient service deployment and resource utilization. This study

proposes using lightweight virtualization technologies, specifically containers, to enable the

auto-scaling of services on edge devices. Furthermore, our work investigates the optimization of

shared resource management on edge devices, including the integration of machine learning

techniques. Enhancing service performance and resource utilization improves IoT services’

overall efficiency and responsiveness at the Edge.

Consequently, this research aims to improve the deployment of container-based IoT services on

edge devices within the same cluster. Specifically, this work aims to address the limitations of

existing approaches and improve the effectiveness and efficiency of deploying containerized

services at the Edge. Our contributions include developing resource-efficient solutions that

can handle dynamic workloads and ensure the quality of service, automatic processing for

maintaining the system in a suitable state, investigating and improving forecasting techniques to

enhance workload forecasting accuracy, and addressing oscillation mitigation issues to ensure

the stable and efficient operation of containerized services.

Our first contribution automates the deployment process for service auto-scaling and fair

distribution of containerized services on devices in the same edge cluster using the MAPE-K

loop framework and our deployment model and rule model as shared knowledge. This enables

efficient scaling through automatic threshold determination and evaluation based on system

performance criteria. Our evaluation shows the effectiveness of this approach in adapting system

performance by changing the number of replicas to meet service performance requirements and

the availability of system resources.

184

Our second contribution proposes an improved proactive service auto-scaling approach that

addresses the research gap in workload forecasting accuracy and oscillation issues. We add data

featurization inspired by Japanese candlesticks to improve forecasting accuracy and propose

a grid-based oscillation mitigation approach that uses the same features. Our evaluation

shows considerable improvement in forecasting accuracy and outperformance of state-of-the-art

techniques in combination with a cool-down strategy, which is a commonly used strategy.

Our third contribution proposes a methodology to address the complexity of designing an

efficient auto-scaler for containerized services on the Edge, which is impacted by dynamic

workload characteristics and resource limitations. We investigate the accuracy and convenience

of common time series data analysis and forecasting techniques, evaluate less resource-intensive

techniques, and explore the use of Ensemble learning to improve prediction accuracy while

considering the performance/resource usage ratio. We formulate the optimization problem of

selecting the appropriate forecasting algorithms as a Knapsack problem and propose a heuristic

technique to reduce the solution complexity. The experiments demonstrate that the proposed

Dynamic and weighted-average Ensemble learning approach maintains high forecasting accuracy

and auto-scaling performance in resource-constrained context.

This thesis has presented novel solutions to significant challenges in the field of containerized

service deployment at Edge computing. We believe that our contributions have the potential to

significantly advance the state of the art and open up new avenues of research. However, there is

still much work to be done to fully address the complex and evolving challenges in this field. As

such, we propose several avenues for future research that build upon the work presented in this

thesis:

Improving the use of our deployment and rule model: This improvement focuses on the

deployment knowledge component. It addresses the issue of the many existing Description

Specific Languages (DSLs) that describes the deployment for a specific tool. We plan to model

185

our proposed IoT service deployment model using semantic techniques as we have previous work

in this domain (e.g., Bali, Al-Osta & Abdelouahed (2017)). Semantic Web techniques can bring

various advantages, such as automatic instantiation and verification of the deployment models.

By using ontologies, we can represent the deployment knowledge in a machine-understandable

format and enable automated reasoning to validate the consistency of the deployment model.

This will allow for more efficient and reliable deployment of IoT services, as well as easier

integration with other systems.

Exploring other feature extraction techniques: While our featurization method based on

Japanese candlesticks has shown promising results, other feature extraction techniques may

further improve forecasting accuracy. We plan to investigate other trading techniques (i.e.,

indicators), such as Relative Strength Index (RSI) and Moving average convergence/divergence

(MACD), which can provide more rich information on the time series window.

Enhancing LSTM architecture: One area for future improvement is the architecture of our

LSTM model. Specifically, we plan to explore ways to better incorporate the featurization

principle into the LSTM model or add attention mechanisms to give more weight to important

features.

Optimizing oscillation mitigation: Another avenue for future work is to optimize further the

combination of our grid-based oscillation mitigation approach and the commonly used cool-down

technique (CDT). One potential approach is to apply optimization techniques, such as genetic

algorithms or particle swarm optimization, to find the optimal values of the grid parameters and

CDT cool-down period for different workload characteristics and system configurations.

Improving the Planning phase of the MAPE-K loop: In our work, we generate the plan of

auto-scaling actions after deducing the predicted workload in the previous phase, the Analysis

phase. However, to further enhance the generated plan, we plan to explore more advanced

186

techniques, particularly reinforcement learning. This will involve developing and training

reinforcement learning models to learn the optimal actions to take in response to predicted

workloads.

Optimizing the accuracy of our workload forecasting methodology: We aim to investigate

other optimization techniques for (hyper)parameter selection and incorporate more performance

metrics such as CPU and memory usage to comprehensively understand our approach’s

performance. Moreover, we will explore other techniques used in Ensemble learning, such

as blending, to improve the prediction accuracy and assess their effectiveness compared to

the existing techniques. Additionally, we plan to investigate other approaches to address

the optimization problem presented in our work, which aims to optimize the prediction

quality/resource usage ratio in the model selection of the Ensemble learning.

Extending to other auto-scaling scenarios: To gain a more comprehensive understanding of

our approach’s performance, we plan to experiment with large-scale industry use cases with

different hardware platforms. This will involve collecting and analyzing data from actual usage

scenarios to assess the accuracy and efficiency of our approach under varying conditions. In this

scope, we aim to investigate how our approach can be extended to other auto-scaling scenarios

beyond containerized services on the Edge. For example, investigating multi-level clusters

and managing resources in hybrid cloud-edge environments. By applying our approach to

different scenarios, we can assess its versatility and potential for wider adoption, leading to the

development of more efficient and effective auto-scaling systems that can meet the demands of

modern computing environments.

Implementing a fully built auto-scaler: Lastly, we aim to further enhance the practical

applicability of the research findings by developing a fully built auto-scaler solution that can be

readily used in practice. This solution should incorporate the proposed deployment and rule

187

models, the improved proactive auto-scaling approach, and the optimized oscillation mitigation

techniques.

Overall, by implementing a fully built auto-scaler solution, conducting real-world validations,

and incorporating machine learning algorithms, the research outcomes can have a direct impact

on the industry, facilitating the deployment of efficient and effective containerized services at

the edge, and paving the way for advancements in edge computing and IoT deployments.

Finally, as a memorable statement: our work is a vital step towards making auto-scaling

containerized services on the IoT Edge more efficient and effective. By pushing the boundaries

of what is possible, we may unlock the full potential of this technology, paving the way for a

brighter and more connected future. Let us strive towards a world where the IoT empowers us to

work smarter, faster, and more innovatively than ever.

BIBLIOGRAPHY

Ahmed, B., Seghir, B., Al-Osta, M. & Abdelouahed, G. (2019). Container based resource

management for data processing on IoT gateways. Procedia Computer Science, 155,

234–241.

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N. & Merle, P. (2017). Elasticity in cloud computing:

state of the art and research challenges. IEEE Transactions on Services Computing,

11(2), 430–447.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. & Ayyash, M. (2015). Internet

of things: A survey on enabling technologies, protocols, and applications. IEEE
communications surveys & tutorials, 17(4), 2347–2376.

Al-Osta, M., Bali, A. & Gherbi, A. (2019). Event driven and semantic based approach for data

processing on IoT gateway devices. Journal of Ambient Intelligence and Humanized
Computing, 10(12), 4663–4678.

Arcaini, P., Riccobene, E. & Scandurra, P. (2015). Modeling and analyzing MAPE-K feedback

loops for self-adaptation. 2015 IEEE/ACM 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 13–23.

Arce, J. M. M. & Macabebe, E. Q. B. (2019). Real-Time Power Consumption Monitoring and

Forecasting Using Regression Techniques and Machine Learning Algorithms. 2019
IEEE International Conference on Internet of Things and Intelligence System (IoTaIS),
pp. 135–140.

Arlitt, M. & Jin, T. (2000). A workload characterization study of the 1998 world cup website.

IEEE network, 14(3), 30–37.

Ashok, I. & Christine, O. [https://www.ibm.com/cloud/architecture/architectures/edge-

computing/]. (2023). Edge Computing Architecture.

Baeldung. [https://www.baeldung.com/cs/virtualization-vs-containerization]. (Accessed 2023).

Virtualization vs Containerization.

Bali, A., Al-Osta, M. & Abdelouahed, G. (2017). An ontology-based approach for IoT data

processing using semantic rules. SDL 2017: Model-Driven Engineering for Future
Internet: 18th International SDL Forum, Budapest, Hungary, October 9–11, 2017,
Proceedings 18, pp. 61–79.

190

Bali, A., Al-Osta, M., Ben Dahsen, S. & Gherbi, A. (2020). Rule based auto-scalability of IoT

services for efficient edge device resource utilization. Journal of Ambient Intelligence
and Humanized Computing, 1–18.

Bauer, A., Grohmann, J., Herbst, N. & Kounev, S. (2018a). On the value of service demand

estimation for auto-scaling. International Conference on Measurement, Modelling and
Evaluation of Computing Systems, pp. 142–156.

Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A. & Kounev, S. (2018b). Chameleon: A hybrid,

proactive auto-scaling mechanism on a level-playing field. IEEE Transactions on Parallel
and Distributed Systems, 30(4), 800–813.

Bernstein, D. (2014). Containers and cloud: From lxc to docker to kubernetes. IEEE cloud
computing, 1(3), 81–84.

Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015). Time series analysis:
forecasting and control. John Wiley & Sons.

Brogi, A., Mencagli, G., Neri, D., Soldani, J. & Torquati, M. (2017). Container-Based Support

for Autonomic Data Stream Processing Through the Fog. European Conference on
Parallel Processing, pp. 17–28.

Brownlee, J. (2016). Machine learning mastery with Python: understand your data, create
accurate models, and work projects end-to-end. Machine Learning Mastery.

cAdvisor, G. [https://github.com/google/cadvisor]. (2022). cAdvisor Open source.

Calheiros, R. N., Masoumi, E., Ranjan, R. & Buyya, R. (2014). Workload prediction using

ARIMA model and its impact on cloud applications’ QoS. IEEE transactions on cloud
computing, 3(4), 449–458.

Cao, J., Fu, J., Li, M. & Chen, J. (2014). CPU load prediction for cloud environment based on a

dynamic ensemble model. Software: Practice and Experience, 44(7), 793–804.

Cardenas, Y. M. R. (2018). Scaling policies derivation for predictive autoscaling of cloud

applications.

Cetinski, K. & Juric, M. B. (2015). AME-WPC: Advanced model for efficient workload

prediction in the cloud. Journal of Network and Computer Applications, 55, 191–201.

Chakraborty, K., Mehrotra, K., Mohan, C. K. & Ranka, S. (1992). Forecasting the behavior of

multivariate time series using neural networks. Neural networks, 5(6), 961–970.

191

Chen, M., Yuan, J., Liu, D. & Li, T. (2020). An adaption scheduling based on dynamic

weighted random forests for load demand forecasting. The Journal of Supercomputing,

76, 1735–1753.

Chicco, D., Warrens, M. J. & Jurman, G. (2021). The coefficient of determination R-squared is

more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis

evaluation. PeerJ Computer Science, 7, e623.

Ciptaningtyas, H. T., Santoso, B. J. & Razi, M. F. (2017). Resource elasticity controller for

Docker-based web applications. 2017 11th International Conference on Information &
Communication Technology and System (ICTS), pp. 193–196.

Computing, A. et al. (2006). An architectural blueprint for autonomic computing. IBM White
Paper, 31(2006), 1–6.

Cui, L., Yang, S., Chen, F., Ming, Z., Lu, N. & Qin, J. (2018). A survey on application of

machine learning for Internet of Things. International Journal of Machine Learning and
Cybernetics, 9(8), 1399–1417.

Dang-Quang, N.-M. & Yoo, M. (2021). Deep learning-based autoscaling using bidirectional

long short-term memory for kubernetes. Applied Sciences, 11(9), 3835.

Devarajan, M., Subramaniyaswamy, V., Vĳayakumar, V. & Ravi, L. (2019). Fog-assisted

personalized healthcare-support system for remote patients with diabetes. Journal of
Ambient Intelligence and Humanized Computing, 1–14.

Di, S., Kondo, D. & Cirne, W. (2012). Host load prediction in a Google compute cloud

with a Bayesian model. SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pp. 1–11.

Dickey, D. A. & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series

with a unit root. Journal of the American statistical association, 74(366a), 427–431.

Dietrich, B., Nunna, S., Goswami, D., Chakraborty, S. & Gries, M. (2010). LMS-based low-

complexity game workload prediction for DVFS. 2010 IEEE International Conference
on Computer Design, pp. 417–424.

Doan, D. N., Zaharie, D. & Petcu, D. (2019). Auto-scaling for a streaming architecture with fuzzy

deep reinforcement learning. European Conference on Parallel Processing, pp. 476–488.

Dunford, R., Su, Q. & Tamang, E. (2014). The pareto principle.

192

Elrotub, M., Bali, A. & Gherbi, A. (2021). Sharing VM resources with using prediction of

future user requests for an efficient load balancing in cloud computing environment.

International Journal of Software Science and Computational Intelligence (ĲSSCI),
13(2), 37–64.

Evans, D. (2011). The internet of things: How the next evolution of the internet is changing

everything. CISCO white paper, 1(2011), 1–11.

Fernandez, H., Pierre, G. & Kielmann, T. (2014). Autoscaling web applications in heterogeneous

cloud infrastructures. 2014 IEEE international conference on cloud engineering, pp. 195–

204.

Gao, J., Wang, H. & Shen, H. (2020). Machine Learning Based Workload Prediction in Cloud

Computing. 2020 29th International Conference on Computer Communications and
Networks (ICCCN), pp. 1–9.

Goli, A., Mahmoudi, N., Khazaei, H. & Ardakanian, O. (2021). A Holistic Machine Learning-

based Autoscaling Approach for Microservice Applications. CLOSER, pp. 190–198.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. & Schmidhuber, J. (2017). LSTM:

A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems,
28(10), 2222–2232.

Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. (2013). Internet of Things (IoT): A vision,

architectural elements, and future directions. Future generation computer systems, 29(7),

1645–1660.

Gupta, V., Kaur, K. & Kaur, S. (2017). Performance comparison between light weight

virtualization using docker and heavy weight virtualization. International Journal of
Advanced Technology in Engineering and Science, Volume, 1(05), 509–514.

Hat, R. [https://www.redhat.com/en/topics/virtualization]. (Accessed 2023). Virtualization:

What it is and why it matters.

Herbst, N., Krebs, R., Oikonomou, G., Kousiouris, G., Evangelinou, A., Iosup, A. & Kounev,

S. (2016). Ready for rain? A view from SPEC research on the future of cloud metrics.

arXiv preprint arXiv:1604.03470.

Hu, Y., Huber, A., Anumula, J. & Liu, S.-C. (2018). Overcoming the vanishing gradient problem

in plain recurrent networks. arXiv preprint arXiv:1801.06105.

Hyndman, R. J. & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.

193

Hyndman, R. J., Wang, E. & Laptev, N. (2015). Large-scale unusual time series detection. 2015
IEEE international conference on data mining workshop (ICDMW), pp. 1616–1619.

Imdoukh, M., Ahmad, I. & Alfailakawi, M. G. (2019). Machine learning-based auto-scaling for

containerized applications. Neural Computing and Applications, 1–16.

Iram, T., Shamsi, J., Alvi, U., ur Rahman, S. & Maaz, M. (2019). Controlling Smart-City Traffic

using Machine Learning. 2019 International Conference on Frontiers of Information
Technology (FIT), pp. 203–2035.

Ismail, B. I., Goortani, E. M., Ab Karim, M. B., Tat, W. M., Setapa, S., Luke, J. Y. & Hoe, O. H.

(2015). Evaluation of docker as edge computing platform. 2015 IEEE Conference on
Open Systems (ICOS), pp. 130–135.

Jagannath, J., Polosky, N., Jagannath, A., Restuccia, F. & Melodia, T. (2019). Machine learning

for wireless communications in the Internet of Things: A comprehensive survey. Ad
Hoc Networks, 93, 101913.

Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J. & Tilkov, S. (2018). Microservices: The

journey so far and challenges ahead. IEEE Software, 35(3), 24–35.

Jiang, Y., Perng, C.-S., Li, T. & Chang, R. N. (2013). Cloud analytics for capacity planning

and instant VM provisioning. IEEE Transactions on Network and Service Management,
10(3), 312–325.

Kan, C. (2016). DoCloud: An elastic cloud platform for Web applications based on Docker.

2016 18th international conference on advanced communication technology (ICACT),
pp. 478–483.

Kao, C.-C., Chang, C.-W., Cho, C.-P. & Shun, J.-Y. (2020). Deep learning and ensemble

learning for traffic load prediction in real network. 2020 IEEE Eurasia Conference on
IOT, Communication and Engineering (ECICE), pp. 36–39.

Karp, R. M. (1975). On the computational complexity of combinatorial problems. Networks,
5(1), 45–68.

Kellerer, H., Pferschy, U., Pisinger, D., Kellerer, H., Pferschy, U. & Pisinger, D. (2004).

Multidimensional knapsack problems. Springer.

Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I. & Ahmed, A. (2019). Edge computing: A

survey. Future Generation Computer Systems, 97, 219–235.

194

Khazaei, H., Bannazadeh, H. & Leon-Garcia, A. (2017). SAVI-IoT: A self-managing container-

ized IoT platform. 2017 IEEE 5th International Conference on Future Internet of Things
and Cloud (FiCloud), pp. 227–234.

Klinaku, F., Frank, M. & Becker, S. (2018). CAUS: an elasticity controller for a container-

ized microservice. Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, pp. 93–98.

Kovács, J. (2019). Supporting programmable autoscaling rules for containers and virtual

machines on clouds. Journal of Grid Computing, 17(4), 813–829.

kubernetes. [Accessed: 2022-11-30]. (2022a). Production-grade container orchestration.

Retrieved from: https://kubernetes.io/.

kubernetes. [https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/]. (2022b). What

is Kubernetes.

Kubernetes. [https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/]. (Ac-

cessed 2023a). Horizontal Pod Autoscaling.

Kubernetes. [https://kubernetes.io/docs/concepts/overview/]. (Accessed 2023b). Kubernetes

Overview.

Kumar, J., Saxena, D., Singh, A. K. & Mohan, A. (2020). BiPhase adaptive learning-based

neural network model for cloud datacenter workload forecasting. Soft Computing, 24,

14593–14610.

Kumar, J., Singh, A. K. & Buyya, R. (2021a). Self directed learning based workload forecasting

model for cloud resource management. Information Sciences, 543, 345–366.

Kumar, K. et al. (2021b). Forecasting of cloud computing services workload using machine

learning. Turkish Journal of Computer and Mathematics Education (TURCOMAT),
12(11), 4841–4846.

Kumar, P. M. & Gandhi, U. D. (2018). A novel three-tier Internet of Things architecture with

machine learning algorithm for early detection of heart diseases. Computers & Electrical
Engineering, 65, 222–235.

Laptev, N., Yosinski, J., Li, L. E. & Smyl, S. (2017). Time-series extreme event forecasting with

neural networks at uber. International conference on machine learning, 34, 1–5.

195

Li, Y. & Xia, Y. (2016). Auto-scaling web applications in hybrid cloud based on docker. 2016
5th International conference on computer science and network technology (ICCSNT),
pp. 75–79.

Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D. & Miao,

C. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 22(3), 2031–2063.

Liu, C., Shang, Y., Duan, L., Chen, S., Liu, C. & Chen, J. (2015). Optimizing workload category

for adaptive workload prediction in service clouds. Service-Oriented Computing: 13th
International Conference, ICSOC 2015, Goa, India, November 16-19, 2015, Proceedings
13, pp. 87–104.

Lorido-Botran, T., Miguel-Alonso, J. & Lozano, J. A. (2014). A review of auto-scaling

techniques for elastic applications in cloud environments. Journal of grid computing,

12(4), 559–592.

Lu, Y., Panneerselvam, J., Liu, L. & Wu, Y. (2016). RVLBPNN: A workload forecasting model

for smart cloud computing. Scientific Programming, 2016.

Mashal, I., Alsaryrah, O., Chung, T.-Y., Yang, C.-Z., Kuo, W.-H. & Agrawal, D. P. (2015).

Choices for interaction with things on Internet and underlying issues. Ad Hoc Networks,
28, 68–90.

Meng, Y., Rao, R., Zhang, X. & Hong, P. (2016). CRUPA: A container resource utilization

prediction algorithm for auto-scaling based on time series analysis. 2016 International
conference on progress in informatics and computing (PIC), pp. 468–472.

Merenda, M., Porcaro, C. & Iero, D. (2020). Edge Machine Learning for AI-Enabled IoT

Devices: A Review. Sensors, 20(9), 2533.

Messias, V. R., Estrella, J. C., Ehlers, R., Santana, M. J., Santana, R. C. & Reiff-Marganiec, S.

(2016). Combining time series prediction models using genetic algorithm to autoscaling

web applications hosted in the cloud infrastructure. Neural Computing and Applications,
27, 2383–2406.

Miller, T. W. (2015). Forecasting Time Series Data with ARIMA. Pennsylvania State University.

Miller, T. W. (2016). Forecasting Time Series Data with ARIMA. Pennsylvania State University.

Mishra, S. K., Sahoo, B. & Parida, P. P. (2020). Load balancing in cloud computing: a big

picture. Journal of King Saud University-Computer and Information Sciences, 32(2),

149–158.

196

Mohammadi, K., Frick, R. & Vouros, G. A. (2019). Time series forecasting using Bayesian

networks: A survey and systematic review. Expert Systems with Applications, 137,

286–305.

Morabito, R. (2017). Virtualization on internet of things edge devices with container technologies:

a performance evaluation. IEEE Access, 5, 8835–8850.

Morabito, R. & Beĳar, N. (2016). Enabling data processing at the network edge through

lightweight virtualization technologies. 2016 IEEE International Conference on Sensing,
Communication and Networking (SECON Workshops), pp. 1–6.

Morabito, R., Petrolo, R., Loscrì, V., Mitton, N., Ruggeri, G. & Molinaro, A. (2017). Lightweight

virtualization as enabling technology for future smart cars. 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), pp. 1238–1245.

Murshed, M., Murphy, C., Hou, D., Khan, N., Ananthanarayanan, G. & Hussain, F. (2019).

Machine learning at the network edge: A survey. arXiv preprint arXiv:1908.00080.

NetApp. [https://www.netapp.com/devops-solutions/what-are-containers/]. (Accessed 2023).

What are Containers?

Nguyen, H., Kieu, L.-M., Wen, T. & Cai, C. (2018). Deep learning methods in transportation

domain: a review. IET Intelligent Transport Systems, 12(9), 998–1004.

Nguyen, T.-T., Yeom, Y.-J., Kim, T., Park, D.-H. & Kim, S. (2020). Horizontal pod autoscaling

in Kubernetes for elastic container orchestration. Sensors, 20(16), 4621.

Ogunmolu, O., Gu, X., Jiang, S. & Gans, N. (2016). Nonlinear systems identification using

deep dynamic neural networks. arXiv preprint arXiv:1610.01439.

Pahl, C., Brogi, A., Soldani, J. & Jamshidi, P. (2017). Cloud container technologies: a

state-of-the-art review. IEEE Transactions on Cloud Computing, 7(3), 677–692.

Poongodi, T., Rathee, A., Indrakumari, R. & Suresh, P. (2020). IoT Sensing Capabilities: Sensor

Deployment and Node Discovery, Wearable Sensors, Wireless Body Area Network

(WBAN), Data Acquisition. In Principles of Internet of Things (IoT) Ecosystem: Insight
Paradigm (pp. 127–151). Springer.

Prachitmutita, I., Aittinonmongkol, W., Pojjanasuksakul, N., Supattatham, M. & Padungweang,

P. (2018). Auto-scaling microservices on IaaS under SLA with cost-effective framework.

2018 Tenth International Conference on Advanced Computational Intelligence (ICACI),
pp. 583–588.

197

Pratama, M. F. & Yang, B. S. (2019). Random forest for time series forecasting: A review.

Expert Systems with Applications, 116, 456–472.

Qu, C., Calheiros, R. N. & Buyya, R. (2018). Auto-scaling web applications in clouds: A

taxonomy and survey. ACM Computing Surveys (CSUR), 51(4), 1–33.

Raghunath, B. R. & Annappa, B. (2015). Virtual machine migration triggering using application

workload prediction. Procedia Computer Science, 54, 167–176.

Rahmanian, A. A., Ghobaei-Arani, M. & Tofighy, S. (2018). A learning automata-based

ensemble resource usage prediction algorithm for cloud computing environment. Future
Generation Computer Systems, 79, 54–71.

Renner, T., Meldau, M. & Kliem, A. (2016). Towards container-based resource management for

the internet of things. 2016 International Conference on Software Networking (ICSN),
pp. 1–5.

Roy, N., Dubey, A. & Gokhale, A. (2011). Efficient autoscaling in the cloud using predictive

models for workload forecasting. 2011 IEEE 4th International Conference on Cloud
Computing, pp. 500–507.

Ruchika, V. (2016). Evaluation of Docker for IoT Application. International Journal on Recent
and Innovation Trends in Computing and Communication, 4(6), 624–628.

Samie, F., Bauer, L. & Henkel, J. (2019). From cloud down to things: An overview of machine

learning in internet of things. IEEE Internet of Things Journal, 6(3), 4921–4934.

Sangpetch, A., Sangpetch, O., Juangmarisakul, N. & Warodom, S. (2017). Thoth: Automatic

Resource Management with Machine Learning for Container-based Cloud Platform.

CLOSER, pp. 75–83.

Saxena, D. & Singh, A. K. (2022). Auto-adaptive learning-based workload forecasting in

dynamic cloud environment. International Journal of Computers and Applications, 44,

541–551.

Saxena, D. & Singh, A. K. (2021). A proactive autoscaling and energy-efficient VM allo-

cation framework using online multi-resource neural network for cloud data center.

Neurocomputing, 426, 248–264.

Schumer, M. & Steiglitz, K. (1968). Adaptive step size random search. IEEE Transactions on
Automatic Control, 13(3), 270–276.

198

Seni, G. & Elder, J. F. (2010). Ensemble methods in data mining: improving accuracy through

combining predictions. Synthesis lectures on data mining and knowledge discovery, 2(1),

1–126.

Services", A. W. [https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-

auto-scaling.html]. (Accessed 2023). Service Auto Scaling.

Shariffdeen, R., Munasinghe, D., Bhathiya, H., Bandara, U. & Bandara, H. D. (2016). Adaptive

workload prediction for proactive auto scaling in PaaS systems. 2016 2nd International
Conference on Cloud Computing Technologies and Applications (CloudTech), pp. 22–29.

Shumway, R. H. & Stoffer, D. S. (2017). Time series analysis and its applications: with R
examples. Springer.

Singh, N. & Rao, S. (2014). Ensemble learning for large-scale workload prediction. IEEE
Transactions on Emerging Topics in Computing, 2(2), 149–165.

Sommer, M., Klink, M., Tomforde, S. & Hähner, J. (2016). Predictive load balancing in

cloud computing environments based on ensemble forecasting. 2016 IEEE International
Conference on Autonomic Computing (ICAC), pp. 300–307.

Steinwart, I. & Christmann, A. (2008). Support vector machines. Springer Science & Business

Media.

Swarm. [https://docs.docker.com/engine/swarm/]. (2022). Swarm mode overview.

Taherizadeh, S. & Stankovski, V. (2019). Dynamic multi-level auto-scaling rules for containerized

applications. The Computer Journal, 62(2), 174–197.

Tam, F. K. (2015). The Power of Japanese Candlestick Charts: Advanced Filtering Techniques
for Trading Stocks, Futures, and Forex. John Wiley & Sons.

Tang, X., Liu, Q., Dong, Y., Han, J. & Zhang, Z. (2018). Fisher: An efficient container load

prediction model with deep neural network in clouds. 2018 IEEE Intl Conf on Parallel
& Distributed Processing with Applications, Ubiquitous Computing & Communications,
Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing
& Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 199–206.

Tong, J.-j., Hai-Hong, E., Song, M.-n. & SONG, J.-d. (2014). Host load prediction in

cloud based on classification methods. The Journal of China Universities of Posts and
Telecommunications, 21(4), 40–46.

199

Varghese, B. & Buyya, R. (2018). Next generation cloud computing: New trends and research

directions. Future Generation Computer Systems, 79, 849–861.

Venticinque, S. & Amato, A. (2019). A methodology for deployment of IoT application in fog.

Journal of Ambient Intelligence and Humanized Computing, 10(5), 1955–1976.

Wang, S., Zhu, F., Yao, Y., Tang, W., Xiao, Y. & Xiong, S. (2021). A computing resources

prediction approach based on ensemble learning for complex system simulation in cloud

environment. Simulation Modelling Practice and Theory, 107, 102202.

Wheelwright, S., Makridakis, S. & Hyndman, R. J. (1998). Forecasting: methods and
applications. John Wiley & Sons.

Wong, W., Zavodovski, A., Zhou, P. & Kangasharju, J. (2019). Container deployment strategy

for edge networking. Proceedings of the 4th Workshop on Middleware for Edge Clouds
& Cloudlets, pp. 1–6.

Wu, M., Lu, T.-J., Ling, F.-Y., Sun, J. & Du, H.-Y. (2010). Research on the architecture of

Internet of Things. 2010 3rd International Conference on Advanced Computer Theory
and Engineering (ICACTE), 5, V5–484.

Xu, T., Han, G., Qi, X., Du, J., Lin, C. & Shu, L. (2020). A Hybrid Machine Learning Model

for Demand Prediction of Edge-Computing based Bike Sharing System Using Internet

of Things. IEEE Internet of Things Journal.

Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C., Lin, J. & Yang, X. (2017). A survey on the

edge computing for the Internet of Things. IEEE access, 6, 6900–6919.

Zantalis, F., Koulouras, G., Karabetsos, S. & Kandris, D. (2019). A review of machine learning

and IoT in smart transportation. Future Internet, 11(4), 94.

Zhang, Y., Qi, Y. & Zhang, L. (2018). Time series forecasting using k-nearest neighbor

regression. Applied Soft Computing, 69, 425–437.

Zhang, Y., Wang, Y. & Luo, G. (2020). A new optimization algorithm for non-stationary time

series prediction based on recurrent neural networks. Future Generation Computer
Systems, 102, 738–745.

Zhong, W., Zhuang, Y., Sun, J. & Gu, J. (2018). A load prediction model for cloud computing

using PSO-based weighted wavelet support vector machine. Applied Intelligence, 48,

4072–4083.

200

Zhong, Z. & Buyya, R. (2020). A cost-efficient container orchestration strategy in kubernetes-

based cloud computing infrastructures with heterogeneous resources. ACM Transactions
on Internet Technology (TOIT), 20(2), 1–24.

Zhong, Z., Xu, M., Rodriguez, M. A., Xu, C. & Buyya, R. (2022). Machine learning-based

orchestration of containers: A taxonomy and future directions. ACM Computing Surveys
(CSUR).

Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms. CRC press.

Zhu, Y., Zhang, W., Chen, Y. & Gao, H. (2019). A novel approach to workload prediction using

attention-based LSTM encoder-decoder network in cloud environment. Eurasip Journal
on Wireless Communications and Networking, 2019(1), 1–15.

