
Dynamic Ensemble Selection using Fuzzy Min-Max

Hyperboxes

by

Reza Davtalab

MANUSCRIPT-BASED THESIS PRESENTED TO
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR A MASTER’S DEGREE WITH THESIS
IN SOFTWARE ENGINEERING

M.A.Sc.

MONTREAL, NOVEMBER 12, 2023

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Reza Davtalab, 2023



This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.



BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Rafael Menelau Cruz, Thesis supervisor

Department of Software and IT Engineering, École de technologie supérieure

Mr. Robert Sabourin, Thesis Co-Supervisor

Department of Systems Engineering, École de technologie supérieure

Mr. Alessandro Lameiras Koerich, Chair, Board of Examiners

Department of Software and IT Engineering, École de technologie supérieure

Mr. Jose Dolz, Member of the Jury

Department of Software and IT Engineering, École de technologie supérieure

Mr. Jean Paul Barddal, External Examiner

Graduate Program in Informatics Pontifical Catholic University

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON NOVEMBER 7, 2023

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE





ACKNOWLEDGEMENTS

I would like to thank my wife Esmat, for her support and encouragement without which this

journey would not have ended.

Thanks also to my supervisor Rafael Menelau-Cruz and my co-supervisor Robert Sabourin for

their insightful efforts and feedback during this project.





Sélection d’ensemble dynamique à l’aide d’hyperboîtes floues

Reza Davtalab

RÉSUMÉ

Les systèmes de sélection dynamique sont une bonne alternative pour atteindre une précision

accrue dans les problèmes complexes. Dans les techniques actuelles de sélection dynamique,

la compétence des classificateurs de base pour classifier le nouvel échantillon de requête est

estimée en fonction de leurs performances dans une petite région entourant l’échantillon de

requête. La plupart de ces techniques utilisent l’algorithme KNN pour estimer la compétence.

Cependant, l’algorithme KNN souffre d’une complexité élevée du système et est également

sensible à la distribution locale des données.

Dans ce projet, nous allons introduire un nouveau cadre de sélection dynamique d’ensemble qui

utilise des hyperboîtes floues pour estimer la compétence des classificateurs de base. Pour la

construction des hyperboîtes, la distribution des échantillons est prise en compte et plusieurs

échantillons proches les uns des autres sont représentés par une hyperboîte. Par conséquent, le

système final ne sera pas sensible à la distribution locale déséquilibrée des échantillons. De plus,

le système n’a besoin de conserver que les hyperboîtes plutôt que les données d’origine. De

plus, les hyperboîtes sont créées à partir d’échantillons mal classés. Ainsi, ils sont généralement

beaucoup moins nombreux que les échantillons. Nous nous attendons donc à ce que le cadre

proposé ait une complexité beaucoup plus faible et une précision plus élevée par rapport aux

techniques basées sur KNN. Les résultats expérimentaux montrent que le cadre proposé peut

améliorer les performances des systèmes de sélection dynamique à la fois en termes de précision

et de complexité de calcul.

Mots-clés: Ensemble de classifieurs, Sélection d’ensemble dynamique, hyperboîtes floues,

échantillons mal classés, Compétence du classifieur





Dynamic Ensemble Selection using Fuzzy Min-Max Hyperboxes

Reza Davtalab

ABSTRACT

Dynamic Selection systems are a good alternative to achieve higher accuracy in complex

problems. In current DS techniques, the competence of base classifiers to classify the new query

sample is estimated with regard to their performance in a small region surrounding the query

sample. Most of these techniques use the KNN algorithm to estimate competence. However, the

KNN algorithm endures a high complexity to the system and is also sensitive to the local data

distribution.

In this project, we are going to introduce a novel Dynamic Ensemble Selection framework that

uses Fuzzy Hyperboxes to estimate the competence of base classifiers. For the construction of

hyperboxes, the distribution of samples is considered and several samples that are close to each

other are represented by a hyperbox. Therefore, the final system will not be sensitive to the

local imbalance distribution of samples. Besides, the system needs only to keep the hyperboxes

rather than the original data. Furthermore, hyperboxes are made based on misclassified samples.

Thus, they are usually much fewer than samples. So we expect the proposed framework to have

much lower complexity and higher accuracy compared to KNN-based techniques. Experimental

results show that the suggested framework can improve the performance of DS systems in both

terms of accuracy and computational complexity.

Keywords: Ensemble of Classifiers, Dynamic Ensemble Selection, Fuzzy Hyperboxes,

Miss-classified samples, Classifier competence
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INTRODUCTION

Nowadays, we are faced with a large amount of data in different areas such as advertising

(Garcia et al. (2018)), education (Mahajan & Saini (2020)), healthcare (Dash, Shakyawar,

Sharma & Kaushik (2019)), economy (Modgil, Gupta, Sivarajah & Bhushan (2021)), and

entertainment (Hallur, Prabhu & Aslekar (2021)). A big part of this data is directly related

to humans and generated by them. In every interaction with technology, we are creating new

data that can describe us such as captured data by video cameras, credit cards, cell phones,

GPS devices, and other touchpoints, our data profile is growing exponentially. According to

reported statistics in 2020, an average of 4 petabytes of data were created on Facebook every

day, Facebook users also click the like button on more than 4 million posts every minute, 65

billion messages are sent on WhatsApp, 500 million tweets are sent by Twitter and 5 billion

searches are made 1.

Additionally, in most modern systems, we see the creation of streaming data that produces new

instances at any given time. This data is usually on a large-scale and each data point should be

processed online and is not available to process more in the following steps (Porto & Gomide

(2022)). So we should find a way to store the information captured from the previous data points

as much as possible. Thus, we have to develop good algorithms and techniques capable of

dealing with this amount of data. These algorithms must be able to handle complex, large-scale,

and stream data to extract valuable information.

Multiple Classifier System (MCS) is a solution to address these types of classification problems

(Cruz, Sabourin & Cavalcanti (2018a); Zyblewski, Sabourin & Woźniak (2021)) because they

can learn to capture multiple characteristics of data (Dong, Yu, Cao, Shi & Ma (2020)). MCS

uses multiple classifiers to compensate for each other’s weaknesses (Kuncheva (2014)). These

systems have been used in various pattern recognition applications in recent years (Nozari,

1 https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/
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Nazeri, Banadaki & Castaldi (2018); Vĳayanand, Devaraj & Kannapiran (2018); El-Melegy & El-

Magd (2019); Kalid, Ng, Tong & Khor (2020)). The reason for this tendency is the need for

more precision and efficiency, especially in cases where we face complex applications such as

data streams and concept drift (Jiao, Guo, Gong & Chen (2022)), handling noise (Walmsley,

Cavalcanti, Sabourin & Cruz (2022)), imbalanced data (Wang, Zhang & Yan (2023)).

Furthermore, recent works demonstrated that Dynamic Selection (DS) could be a better choice

for the combination of classifiers (Britto Jr, Sabourin & Oliveira (2014); Cruz et al. (2018a)). In

these systems, each given query sample is labeled by a subset of base classifiers from the original

pool of classifiers, which are usually selected with regard to their local competence. Estimation of

competence level is a key issue in DS approaches. In order to achieve that, they employ different

criteria to measure the local competence of classifiers, such as accuracy (Soares, Santana,

Canuto & de Souto (2006)), probabilities (Woloszynski, Kurzynski, Podsiadlo & Stachowiak

(2012)), ranking (Sabourin, Mitiche, Thomas & Nagy (1993)) and fuzzy rules (Elmi & Eftekhari

(2020)), in a small region surrounding the query instance (Cruz et al. (2018a)). In these

approaches, the local region in which the base competencies are estimated is defined by

K-Nearest Neighbor (KNN) technique (Cruz, Sabourin, Cavalcanti & Ren (2015c); Fernández-

Delgado, Cernadas, Barro & Amorim (2014); Xiao, Xiao & Wang (2016); Krawczyk, Galar,

Woźniak, Bustince & Herrera (2018); Cruz et al. (2018a); Cruz, Souza, Sabourin & Cavalcanti

(2019b)), while other methods utilize some techniques such as clustering (Lin et al. (2014)),

potential functions (Woloszynski & Kurzynski (2009); Woloszynski et al. (2012)) or decision

space (Giacinto & Roli (2001); Cavalin (2012); Batista, Granger & Sabourin (2012); Nguyen,

Luong, Dang, Liew & McCall (2020)).

In dynamic selection approaches, there is a pool of classifiers (𝐶). For each given unknown

sample (which is called query sample or xq in the rest of this document), a single classifier

𝑐𝑖 or a subset of classifiers (𝐶′ ⊆ 𝐶) is selected specifically to classify this query sample.
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Figure 0.1 Example of a two-class problem which will

be solved using two classifiers

These techniques involve identifying the subset of classifiers with the highest competence for

classification of xq. To estimate the competence of classifiers, we need a set of labeled samples.

This set can be either the training or validation set and is called the dynamic selection dataset

(DSEL). To illustrate how it works, suppose there is a classification problem with two circle

and square classes (Figure 0.1). We know the true class boundary. In this example, the class

boundary is shown by the red dashed line, and the predicted class boundaries are shown by

straight lines. All the correct classified samples by the related classifiers are highlighted in

green, while the misclassified samples are highlighted in red.

0.1 Problem Statement

Dynamic Selection system should choose the classifier able to classify an unknown instance or

the classifier that is competent for labeling the unknown instance. In this situation, we can use a

potential function approach like (Woloszynski & Kurzynski (2009); Woloszynski et al. (2012))

to select the best classifier. In these approaches, the competence level of classifiers is calculated
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regarding all instances of DSEL (Cruz et al. (2018a)). Thus, their complexity is linearly related

to the DSEL size. Therefore, these approaches suffer from high computational complexity and

are not a good choice for large-scale problems. Figure 0.2 shows that all the DSEL instances are

engaged in this process. This process is done for each classifier separately to classify each query

sample, thus we will have an extreme computational complexity.

Figure 0.2 Considering all samples to select a more

competent classifier in DS technique based on Potential

Function

To solve the mentioned problem, we can use clustering-based DS methods (Lin et al. (2014))

which have much lower computational complexity in the generalization phase. In these

approaches, the DSEL data are clustered during the training phase and the performance of all

base classifiers is estimated on each cluster. In the generalization phase, the most competent

classifiers on the nearest cluster are selected as the final ensemble. In other words, in the

generalization phase, it is just needed to calculate the distance between the query sample and

cluster centroids. Therefore, significantly reducing computational complexity. Figure 0.3
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illustrates how the clustering approach estimates the classifiers’ competence in the previous

example (Figure 0.1).

Figure 0.3 Simple example of dynamic selection

approaches

Cluster-based approaches are much faster during inference because the system only requires

to compute which cluster is closer to the query. Nevertheless, their accuracy falls behind

approaches based on KNN (Cruz et al. (2018a)). In addition, the performance of these systems

is highly dependent on the number of clusters determined by the user. The system is at risk of

underfitting and losing information if the number of clusters is too small, losing the fine-grained

information from the local region around the given query.

Therefore, most state-of-the-art DS approaches are KNN-based, which is more accurate than

clustering approaches. KNN-based approaches also have less complexity rather than potential

function approaches. In KNN-based techniques, the competence of base classifiers is estimated

according to the efficiency of these classifiers on K nearest neighbors of the given query sample

in the DSEL data, which is called Region of Competence (RoC). These techniques use different

criteria to estimate the competence of classifiers such as ranking (Sabourin et al. (1993)),
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accuracy (Woods, Kegelmeyer & Bowyer (1997)), probabilistic (Woloszynski & Kurzynski

(2011); Woloszynski et al. (2012)), behavior (Cavalin, Sabourin & Suen (2013)), and meta-

learning (Cruz, Sabourin, Cavalcanti & Ren (2015d); Cruz, Sabourin & Cavalcanti (2017a)).

Despite achieving better performance compared to DS based on clustering, KNN-based methods

present several limitations:

0.1.1 K value problem

In these approaches, finding the𝐾 nearest neighbors for each query sample is a high computational

cost process. In addition, even the optimized K value may not work correctly in all regions. For

example, as shown in Figure 0.4, two classifiers 𝑐1 and 𝑐2 are available to classify the query

sample (star point). The goal is to select the most locally competent classifier. If we set K=5

(larger circle), 𝑐2 will be selected as the most competent classifier because 𝑐2 is able to classify

4 out of 5 samples correctly in this region. However 𝑐2 is not able to classify the query sample

correctly, and it leads to the wrong classification of the query sample. While in the scenario

where K equals 3 (Small circle), KNN will select 𝑐1 which could classify all three samples

correctly in the local region. In this scenario, the selected classifier (𝑐1) is able to classify the

query sample correctly.

0.1.2 Sensitivity to unbalanced Distribution

KNN works based on the distance between points and it has a large sensitivity to the local

distribution of data and a high degree of overlap in data may lead to low accuracy (Cruz,

Sabourin & Cavalcanti (2018b)). These approaches also are not robust against noisy data

(Elmi & Eftekhari (2020)). Even KNN-based approaches can select classifiers that classify all

samples in the RoC as being from the same class (Oliveira, Cavalcanti & Sabourin (2017); Cruz,

Oliveira, Cavalcanti & Sabourin (2019a)). Thus, in this condition, KNN-based approaches could

not perform well, especially in the case that we have a high-density distribution of samples near
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Figure 0.4 K value problem in KNN-based DS

approaches. 𝑐1 accurately classifies the query sample

(star point), whereas 𝑐2 fails to do so. 𝑐2 is selected

as the most competent classifier by KNN when K=5

because its accuracy (4
5
) is higher in the local region

(large circle). While if K equals 3 (Small circle),

KNN will select 𝑐1 which is a better classifier in this

example

the class boundary than the other side. It could lead to wrong decisions surrounding this area.

In Figure 0.5 this issue is represented.

As shown in this figure, classifier 𝑐2 could successfully classify 4 out of 5 samples in the local

region so the KNN algorithm selects this classifier as the most competent classifier. However,

𝑐2 classifies the query sample in the wrong way. In general, the KNN algorithm has serious

challenges in low-density regions and local unbalanced distribution these issues in regions close

to boundaries cause very destructive effects.
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Figure 0.5 Local Distribution problem in KNN-based

DS approaches. 𝑐1 is able to classify the query sample

correctly but KNN selects 𝑐2 as the competent classifier

0.1.3 Limited Information

The next problem is using a small amount of available information to make decisions. KNN

just considers the information of RoC which is a small region of feature space. Thus, in many

conditions, the performance of two classifiers is the same inside the RoC, we cannot realize

which one is more competent, and this issue could lead to wrong decisions. Therefore, we

need more information to select the most competent classifier. Figure 0.6 shows how ignoring

information around the selected region could lead to making a wrong decision.

In this example, classifier 𝑐1 is a better classifier to classify the query sample (star point).

However, both classifiers 𝑐1 and 𝑐2 have the same performance in the local region (k=5).

Therefore KNN algorithm is not able to realize which classifier is the better choice to classify

the query sample.
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Figure 0.6 Ignoring extra information in KNN-based DS

approaches

To better represent the mentioned problems, we designed a simple experiment. Some popular

KNN-based DS approaches such as KNORA-E, KNORA-U, OLA, DES-KNN, and META-DES

techniques (with k=7) were utilized to solve P2 (Cruz, Sabourin & Cavalcanti (2015b)) problem

which is a 2-dimensional classification problem.

To fit these models, 1000 generated instances were used (which are shown in Figure 0.7) and

two classifiers were utilized. The classifiers were designed in such a way that classifier 1 labeled

all samples as class A (𝜔1 = 𝐴); on the contrary, classifier 2 labeled all samples as class B

(𝜔2 = 𝐵). It means, that for each given unknown sample, there is a classifier that classifies the

given sample correctly. In this example, 48 common misclassified samples have been found,

which are represented by red star markers in Figure 0.7.

As shown in this figure, in some areas marked by blue rectangles, the errors surely occurred

because of the imbalance in local distribution. In these areas, we have a dense distribution of

instances close to the class boundaries. In addition, in areas marked by purple rectangles, we

have some misclassified samples because of the K-value problem and limited information.
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Figure 0.7 Common misclassified samples of P2 dataset with

KNN-based DS approaches

To tackle these problems, some techniques are proposed that use a meta learner to select the

best ensemble of base classifiers (Nguyen et al. (2019); Cruz et al. (2017a, 2015c)). Despite

using meta-learners to estimate the competence level of classifiers, determining a proper set of

features to feed into meta-learner and training such meta learner is not easy. In addition, most of

the selected features are formed based on KNN algorithms which have the sample problem that

was mentioned earlier.
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0.1.4 Computational Complexity

In addition, KNN-based approaches have high complexity and are not efficient in large-scale

problems and real-time applications. Labeling of each query sample with current DS techniques

includes defining the region of competence (RoC). In this stage, we must find the K-nearest

neighbors of the query sample. It means the distance between the given data point and all

samples must be calculated, and it endures a huge calculation complexity to the system. So the

complexity of processing each query sample would be O(n), which n is the number of samples.

Therefore, we need DS systems that are less complex for large-scale applications, especially the

systems that need to answer real-time, such as self-driving cars, Air Traffic Control Systems,

Command Control Systems, etc (Davis & Cucu-Grosjean (2019)).

In addition, we need more efficient DS methods to process large-scale data. Worth noting that

the term "large-scale" is a relative concept that depends on many factors such as the processing

capacity of hardware, processing techniques, the type of problem, etc. However, in this study,

we will refer to the problems with more than 100k instances (and any number of features) as

large-scale problems.

Therefore, we need a new DS algorithm that can solve such problems accurately and fast.

0.2 Hypothesis

We hypothesize that defining and storing hyperboxes to represent the competence and incompe-

tence of classifiers could speed up the process of labeling in DS systems. On the other hand,

we believe that utilizing all available information surrounding the query sample could increase

the accuracy. Therefore, in this project, the competence and incompetence area (map) of each

classifier is defined and stored during the training phase. This information is used during the

generalization phase. In this way, the feature space will be partitioned into competence and
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incompetence regions for each classifier. Falling the query sample xq into the competence region

of the classifier 𝑐𝑖 means that this classifier is competent to classify xq. On the other hand, if the

sample falls into an incompetence area of 𝑐𝑖, this classifier is not competent to classify xq. In

Figure 0.8 the ideal condition for solving the example of Figure 0.1 is shown.

a) Competence area of classifiers 𝑐1 and 𝑐2 b) Incompetence area of classifiers 𝑐1 and 𝑐2

Figure 0.8 Ideal solution for the example of Figure 0.1

As shown in Figure 0.8, the competence and incompetence areas are illustrated in green and red,

respectively. Therefore in this example, 𝑐1 is more competent in classifying the query sample

rather than 𝑐2 because the query sample has fallen in the green area of 𝑐1. The main challenge is

determining and storing the confine of these areas. Defining the domain of such areas is not easy

and imposes a large computational complexity on the system unless some simpler structures

are used to represent these areas. For example, in two-dimensional feature space, we can cover

these areas with rectangles. Each rectangle could be defined using only two points. Therefore,

its computational complexity will not be high if there is an acceptable number of rectangles.

Hyperbox is a virtual concept that works like these rectangles, the difference is that hyperbox

can work in higher dimensional spaces too. Each hyperbox, in addition to its interior space, also

covers a small part of its vicinity. As we move away from the hyperbox, the coverage decreases

fuzzily. That is why it is called fuzzy hyperbox (Simpson (1992)).



13

The fuzzy aspect of the hyperbox gives us valuable information outside of the hyperbox and

we can estimate how far is the query sample from the competence or incompetence area of the

base classifier. Thus, we can make a decision even in case the query sample falls outside of all

hyperboxes. Here, we use 2-dimensional fuzzy hyperboxes to show how we can use them to

solve the problems of current dynamic selection approaches. As you can see in Figure 0.9, the

query sample is located outside of all hyperboxes, however, it is located close to a hyperbox of

classifier 𝑐1 (inside its green area of 𝑐1). Thus, this classifier is considered more competent than

classifier 𝑐2.

In Figure 0.9, some hyperboxes are used to simulate the ideal condition represented in Figure

0.8.

Figure 0.9 Solving the example of Figure 0.1 using

competence information stored by Fuzzy Hyperboxes

Hyperboxes can also be an alternative for dealing with local regions that are unbalanced. In

Figure 0.10, the sample example of Figure 0.5 could be solved using hyperboxes. As shown in

this figure, hyperboxes just stored the location of the instances that are located close to each

other, so in this case, the local density of samples could not affect the performance of the system.
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Figure 0.10 Solving the example of Figure 0.5 using

competence information stored by Fuzzy Hyperboxes

As you can see, the given query sample is located inside of a hyperbox that belongs to classifier

𝑐1, so this classifier is selected as a competent classifier.

Moreover, using hyperboxes, the information stored by all hyperboxes is available to make the

correct decision. Therefore, using hyperboxes more contextual information is leveraged while

performing the classifier selection and that will lead to better performance. In Figure 0.11 we

used some hyperboxes to represent the incompetence regions of each classifier, as you can see in

this figure, the query sample is further away from the incompetence region of classifier 𝑐2 rather

than classifier 𝑐1. Thus, 𝑐1 will be considered a more competent classifier than 𝑐2 in this case.

So we can estimate the local competence of classifiers by creating hyperboxes based on their

correct-classified or misclassified samples. In addition, hyperbox-based systems hyperbox-based

systems offer potential solutions to challenges associated with issues such as the K value,

limited information, and imbalanced local distribution of data in DS techniques. Therefore, we

hypothesize that Utilizing fuzzy hyperboxes in dynamic selection systems can increase the

accuracy and speed of the system.
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Figure 0.11 Solving the example of Figure 0.6 using

incompetence information stored by Fuzzy Hyperboxes

Besides, each hyperbox can represent a group of samples and it does not need to store and process

all DSEL instances during the generalization phase. It could significantly reduce memory cost

and time complexity in DS systems. Thus, we hypothesize that using hyperboxes decreases

the memory cost in DS systems and makes them faster to deal with large-scale problems.

Moreover, hyperbox-based approaches possess online learning capabilities with one pass through

the data. Therefore we hypothesize that hyperbox-based DS approach can improve its

performance as more data is added to DSEL and has incremental learning capability.

0.3 Main contributions

In this research, the concept of Fuzzy Min-Max Hyperbox has been utilized to reach better

performance in a new DS framework. This framework uses fuzzy hyperboxes to select the

best ensemble of classifiers among all available classifiers. In addition, the proposed approach

is capable of using only the misclassified samples to evaluate the competence of classifiers.
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According to the literature, the proposed framework is the first DS approach that uses only

misclassified samples to select the ensemble of classifiers.

0.4 Proposed approach

In this thesis, a new dynamic ensemble selection framework is proposed called FH-DES which

utilizes fuzzy hyperboxes to enhance classifier ensembles for accurate classification of unknown

samples. Fuzzy hyperboxes are similar to those in FMM neural networks, but in FH-DES they

are assigned to individual classifiers rather than classes and domains. Unlike traditional methods

that assess classifiers’ competence based on their strengths, FH-DES is able to consider both

the strengths and weaknesses of classifiers. Two approaches are presented for generating the

hyperboxes.

In the first approach, positive hyperboxes are created using correctly classified samples of

each classifier. These hyperboxes define regions in the feature space where a classifier excels,

accurately predicting the correct label. The second approach involves generating negative

hyperboxes based on a classifier’s misclassified samples. These hyperboxes represent regions

where the classifier is less accurate. Negative hyperboxes effectively model the capabilities of

classifiers, providing a more comprehensive evaluation.

According to the experimental results, the second approach which is based on misclassified

has distinctively higher accuracy rather than the method based on correct classified samples.

The misclassified-based FH-DES has also less computational complexity. In this approach,

the required negative hyperboxes of each classifier are generated during the training phase.

Hyperboxes of classifier 𝑐𝑖 and their membership functions form incompetence map of 𝑐𝑖 which

represents the regions of feature space that 𝑐𝑖 does not work properly.

In the generalization phase, the optimal ensemble of classifiers is selected based on the

incompetence values of the maps at the given query data point. Finally, the outputs of selected
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classifiers are combined using a weighted majority-voting algorithm, resulting in an effective

classification of unseen test samples. The proposed approach is more efficient regarding accuracy

and computational complexity. According to the experimental results, FH-DES has significantly

higher accuracy rather than most current DS approaches. Moreover, in some large-scale datasets,

the proposed approach generates hyperboxes only as much as 1% of the number of samples.

Related Publication: This thesis provides a journal paper submitted to the Information Fusion

journal in July 2023. This paper introduces FH-DES as a dynamic ensemble selection framework

to address challenges in KNN-based DES, enhancing generalization by modeling classifier

mistakes and discarding incompetencies. This approach significantly improves selection and

reduces computational costs compared to existing methods which makes this framework a good

alternative DS approach for processing large-scale datasets. In addition, a hyperbox contraction

process has been introduced in this paper to add incremental learning capability to the proposed

framework.

Moreover, a preliminary version of the proposed framework was published as follows: Davtalab,

Reza, Rafael MO Cruz, and Robert Sabourin. "Dynamic ensemble selection using fuzzy

hyperboxes." 2022 International Joint Conference on Neural Networks (ĲCNN). IEEE, 2022. In

this paper, the misclassified instances were applied to define the incompetence areas. Moreover,

this paper introduced a new membership function to measure the memberships differently with

softer boundaries that slightly increase the system’s accuracy.

0.5 Structure of the thesis

The next chapter has reviewed research on Multiple Classifier Systems (MCS), Dynamic

Selection (DS) approaches, also discussing aspects like competence region definition, selection

criteria, and methods in dynamic selection systems. Important aspects of fuzzy hyperboxes
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were explored, highlighting their capabilities in processing large-scale data and online adaptive

learning. In addition, various membership functions for hyperboxes have been reviewed.

Chapter 3 contains the journal paper submitted to the Information Fusion journal. This paper

explains the framework which is a hyperbox-based dynamic selection (FH-DES) approach and

contains the abstract, introduction, basic concepts on fuzzy hyperboxes, the proposed FH-DES

framework, related work, experimental protocol, results, conclusion, acknowledgments, and

appendix. In the conclusion chapter, a summary of the different steps and contributions of this

thesis has been reviewed and the obtained results have been explained. Finally, in the appendix

section, the conference paper that is extracted from the early steps of this research is discussed.



CHAPTER 1

RELATED WORK

This chapter provides the background knowledge of Multiple Classifier Systems, Dynamic

Selection approaches, and also Fuzzy Hyperboxes.

1.1 Multiple Classifier System (MCS)

Multiple Classifier Systems (MCS) is an ensemble learning solution for the complex and vast

amounts of data that we face today (Cruz et al. (2018a); Zyblewski et al. (2021)). A multiple

classifier system consists of three primary phases (Figure 1.1).

Figure 1.1 The three primary phases of an MCS system. In

the Generation phase, a pool of classifiers

(𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑀}) is generated. In the Selection phase, a

subset of classifiers (𝐶′) from the pool is selected (𝐶′ ⊆ 𝐶). In

the Integration phase, the outputs of selected classifiers are

aggregated to give the final decision

Several approaches have been proposed for each of the three phases (Cruz et al. (2018a)) and

some of them are reviewed in this section.

1.1.1 Classifier generation

The objective of this phase is to generate a collection of base classifiers that are both accurate

and diverse (Cruz et al. (2018a)). It is crucial for the base classifiers to be distinct, as there is

no benefit in combining experts that consistently produce similar outputs (Kuncheva (2014)).

Different primary strategies are employed to generate a diverse pool of classifiers (Cruz et al.

(2018a)).
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1.1.2 Selection

The selection process can take place in either a static or dynamic manner during the selection

stage. In static selection techniques, the Ensemble of Classifiers (EoC) is selected during the

training phase based on a selection criterion determined using the validation dataset. This same

ensemble is then utilized to predict labels for all test samples during the generalization phase.

Commonly employed criteria for selecting static ensembles include diversity (Cruz, Cavalcanti,

Tsang & Sabourin (2013)) and classification accuracy (Ruta & Gabrys (2005)).

1.1.3 Aggregation

The aggregation stage involves merging the results produced by the selected classifiers using a

fusion rule. The fusion of the underlying classifiers can be executed through the utilization of

class labels, as seen in the Majority Voting method. Alternatively, it can be accomplished by

employing the scores generated by the base classifier for each class within the classification task

(Cruz et al. (2018a)).

1.1.4 The Oracle

The Oracle refers to a hypothetical or ideal MCS defined in (Kuncheva (2002)). The Oracle is

often used as a comparison tool to assess how well other MCS approaches are performing. Since

Oracle knows the target labels of the test queries, it represents the upper limit of achievable

performance. The proposed MCS approaches in different research are compared to The Oracle

to determine how close they come to its performance and identify the strengths and weaknesses

of these approaches.

1.2 Dynamic Selection Systems (DS)

In dynamic selection systems, a subset of locally competent classifiers is selected to classify

each given query sample xq instead of aggregating the output of all classifiers. In this approach,

we need to estimate the competence of all classifiers around xq. To do this, Dynamic Selection
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Dataset (DSEL) is used to estimate the local competence of all classifiers. DSEL is a set of

labeled samples that can be either the training or validation set (Cruz et al. (2018a)). Then, a

subset of classifiers that have better performance around the query sample is selected. Finally,

the outputs of selected classifiers are aggregated to calculate the label of xq. Selecting classifiers

is the key point of these systems and usually involves three major steps (Cruz et al. (2018a)):

• Definition of the Region of Competence (RoC): includes defining the region where the

samples inside have similar features to the query sample. The competence of each classifier is

measured based on its performance in this region. For example in KNN-based DS approaches

the RoC of x𝑞 is defined as 𝜂𝑞 = {x1, ..., x𝐾} where x1, ..., x𝐾 are the K nearest samples to

the x 𝑗 from the DSEL data.

• Determination of the Selection Criteria: the final ensemble of classifiers for the classifica-

tion of x𝑞 is selected regarding the estimated competence level of base classifiers (𝛿𝑖,𝑞) in the

defined region (𝜂𝑞). Thus, we need an accurate criterion that represents the competence level

of classifiers according to the given local region.

• Determination of the Selection Approach: in this step, the final ensemble of classifiers

𝜙(x𝑞) which is a subset of the pool of classifiers (𝐶) is selected. Regarding the selection

approach, dynamic selection techniques are divided into two main groups: Dynamic

Classifier Selection (DCS) and Dynamic Ensemble Selection (DES). Therefore, the measured

competence level (𝛿𝑖,𝑞) is used to either select a single classifier (the most competent one) or

an ensemble containing multiple classifiers deemed competent.

Here, these three steps and their related research are reviewed.

1.2.1 Definition of the Region of Competence (RoC)

In most DS techniques, region of competence is defined by KNN technique (Cruz et al. (2018a)),

in some other research clustering (Lin et al. (2014)), Potential Function (Woloszynski et al.

(2012)), Decision Space (Cavalin et al. (2013)), and Graph-based methods (Hou, Xia, Xu & Sun

(2016)) are used.
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Clustering

In techniques that use clustering (Lin et al. (2014); de Souto, Soares, Santana & Canuto (2008);

Soares et al. (2006)), the samples of DSEL are clustered and then the performance of all base

classifiers are estimated on each cluster. Next, during the generalization phase, the nearest

cluster to the given query sample xq is estimated. Then, according to the competence of the

base classifiers in this cluster, the most competent classifiers are selected to classify the sample

xq. In these approaches, clusters are formed during the training phase, so in the generation

phase, the query sample xq is classified in a short time. However, these approaches often suffer

from low accuracy due to the query sample being distant from the centroid or unbalanced data

distribution. In addition, clustering methods usually require some user-defined parameters, and

their estimation is not an easy task.

KNN

As previously mentioned, most DES approaches define the RoC based on the KNN algo-

rithm (Cruz et al. (2018a); Britto Jr et al. (2014); Elmi & Eftekhari (2021); Choi & Lim

(2021); Elmi & Eftekhari (2020); Cruz et al. (2015c, 2017a); Cavalin et al. (2013); Ko,

Sabourin & Britto Jr (2008); Soares et al. (2006)). In these techniques, the competence of base

classifiers is estimated according to the classification accuracy of these classifiers on the K

nearest neighbors of the given query sample xq in DSEL. This method allows the estimation

of local competence of base classifiers. A lot of approaches have been introduced based on

the KNN algorithm. However, there are some drawbacks, e.g., the computing competence of

the base classifier that involves the calculation of distance between query sample xq, and the

whole DSEL. This means, classifying each query sample consists of a high computational cost,

and all DSEL samples must be maintained in memory. Therefore, this process imposes a high

computation and memory complexity on the DES system. In addition, as we discussed in the

problem statement subsection, these techniques suffer from the K value problem, imbalance

local distribution, and limited information problems.
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Nevertheless, some approaches have been proposed in recent years to tackle these problems

(Cruz et al. (2015d); Elmi & Eftekhari (2021, 2020); Choi & Lim (2021)). They aimed to

improve the performance of DS approaches and the quality of RoC using techniques such

as prototype selection (Cruz, Sabourin & Cavalcanti (2017b)), and adaptive distance (Cruz,

Cavalcanti & Ren (2011)). However, their performances are far from the performances of the

Oracle, which is an abstract concept denoting the upper bound for selection methods.

Potential Function

Different from the other DS approaches, all samples from DSEL are used to calculate the

competence level of classifiers regardless of the location of query sample xq (Cruz et al. (2018a)).

In other words, RoC consists of all samples of DSEL (Elmi & Eftekhari (2021)). However,

their effectiveness varies so that samples closer to the query sample are more influential in

the classifier competence calculation. In these approaches, a Gaussian potential function is

considered to calculate the influence of each sample like xk according to its distances to the

query xq as follows:

𝐾 (xk, xq) = 𝑒𝑥𝑝(−𝑑 (xk, xq)2) (1.1)

Many DS approaches are introduced using potential functions such as Dynamic Ensemble

Selection based on Kullback-Leibler divergence (DES-KL) (Woloszynski et al. (2012)), DS

systems based on the randomized reference classifier (RRC) (Woloszynski & Kurzynski (2011)),

and the approach based on logarithmic and exponential functions (Woloszynski & Kurzynski

(2009)). This type of DS approach usually has high accuracy. However, they suffer from high

computational complexity because the selection criteria is applied to all data points in DSEL and

aggregated according to Equation 1.1. While in KNN-based DS approaches just the influence of

samples that are located inside the RoC is estimated.
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Decision space

Decision space techniques are inspired by the Behavior Knowledge Space (BKS) (Huang & Suen

(1995)). In these methods, the label of the given sample xq all individual classifiers predict. The

similarity between the output profile of the query sample and the output profiles of the samples

in DSEL is used to calculate the region of competence. Several DS approaches are proposed

based on decision space such as Multiple Classifier Behavior (MCB) (Giacinto & Roli (2001)),

k-Nearest Output Profiles (KNOP) (Cavalin et al. (2013)) and META-DES (Cruz et al. (2015d,

2017a, 2019a)).

Graph-base

In graph-based approaches, the neighborhood of the presented sample is determined according

to the similarity between the predicted labels for the query sample and other training samples

(Hou et al. (2016)). To do so, the similarity of the query sample xq and its neighborhood is

estimated using two graphs named must-link and connot-link. The must-link graph connects all

samples that are closely related to each other or have the same labels, and assigns weights to

the edges according to the similarity of the pair of data points. The connot-link graph connects

the samples in the neighborhood with different labels. The competence level of all classifiers

is determined according to the structure and weights of these two graphs (Li, Wen, Li & Cai

(2019)).

1.2.2 Selection Criteria

After the determination of the competence region, the competence level of classifiers in this

region (𝛿𝑖,𝑞) should be calculated. The final ensemble of classifiers for the classification of

xq is selected regarding the estimated competence. Thus, we need an accurate criterion that

represents the performance of classifiers according to the given local region. The criteria can be

categorized into two groups: individual-based and group-based measures (Cruz et al. (2018a);

Elmi & Eftekhari (2021)). In Individual-based criteria, the competence of each base classifier is
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measured independently of the other classifiers of the pool. Many pieces of research have been

done in this area and several individual-based criteria have been introduced, such as Ranking

(Sabourin et al. (1993)), Accuracy (Woods et al. (1997)), Probabilistic (Woloszynski et al.

(2012)), Behavior (Giacinto & Roli (2001)), Oracle (Ko et al. (2008)), Meta-learning (Cruz

et al. (2015c)) and fuzzy sets (Elmi & Eftekhari (2020)). While in group-based measures,

the competence of classifiers is measured with regard to the performance of the final selected

ensemble. Diversity, Data Handling, and Ambiguity are three subgroups of this category (Cruz

et al. (2018a)).

1.2.3 Selection approach

In this step, the final ensemble of the classifier must be selected. Regarding the selection

approach, dynamic selection techniques are divided into two main groups: Dynamic Classifier

Selection (DCS) and Dynamic Ensemble Selection (DES). In DCS techniques, only one is

selected to classify the query sample xq while DES selects an ensemble of classifiers and then

aggregates their outputs.

From another perspective and according to the taxonomy proposed in (Elmi & Eftekhari (2021)),

DS techniques can be categorized into three groups: Threshold-Based (TB), Output-Based (OB),

and Probability-Based (PB). In the Threshold-Based group, the final classifiers are selected

regarding a predefined threshold (Elmi & Eftekhari (2021)). There are a lot of DS techniques in

this category such as KNOP (Cavalin et al. (2013)), KNORA-E (Ko et al. (2008)), KNORA-U

(Ko et al. (2008)), and DES-P (Woloszynski et al. (2012)). Output-Based approaches select

just the most competent classifier or a certain number of competent classifiers to form the final

ensemble based on a predefined hyperparameter. In this case, if only one classifier is selected,

the system will be DCS. MCB (Giacinto & Roli (2001)), OLA (Woods et al. (1997)), and LCA

(Woods et al. (1997)) are some of DS approaches in this category that select only the most

competent classifier among the pool. In the Probability-Based (PB) approach, the final ensemble

of classifiers is selected according to their probability coefficient by a probability tool such as a

roulette wheel algorithm. The probability is assigned to each base classifier according to its
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competence level (Elmi & Eftekhari (2021)).

1.2.4 DS algorithms

Several techniques have been introduced in the DS area. In Table 1.1, some of well well-known

DS approaches are listed. As shown in this table, current DS approaches use different methods

to define the Region of Competence (RoC) and different selection criteria to select the final

classifier(s). In this project, we are going to propose a new hyperbox-based DS algorithm in

which the competence level of base classifiers is estimated according to the membership degrees

of their hyperboxes. The details of the proposed approach are described in Chapter 2.

Table 1.1 A List of Dynamic Selection Techniques

Technique RoC Definition Construction Phase Selection criterion Type

DCS-Rank (Sabourin et al. (1993)) KNN Generalization Ranking OB

OLA (Woods et al. (1997)) KNN Generalization Accuracy OB

LCA (Woods et al. (1997)) KNN Generalization Accuracy OB

MCB (Giacinto & Roli (2001)) KNN Generalization Behavior OB

MLA (Smits (2002)) KNN Generalization Accuracy OB

DES-Cluster (Soares et al. (2006)) Clustering Training Accuracy & Diversity TB

DES-KNN (Soares et al. (2006)) KNN Generalization Accuracy & Diversity TB

KNORA-U (Ko et al. (2008) ) KNN Generalization Oracle TB

KNORA-E (Ko et al. (2008)) KNN Generalization Oracle TB

DES-RRC (Woloszynski & Kurzynski (2011)) Potential Function Generalization Probabilistic TB

DES-P (Woloszynski et al. (2012) ) Potential Function Generalization Probabilistic TB

DES-KL (Woloszynski et al. (2012)) Potential Function Generalization Probabilistic TB

KNOP (Cavalin et al. (2013)) KNN Generalization Behavior TB

CLAG (Hou et al. (2016)) Graph Generalization Accuracy TB

META-DES (Cruz et al. (2015d) ) KNN Generalization Meta-Learning TB

META-DES.Oracle (Cruz et al. (2017a)) KNN Generalization Meta-Learning TB

DSOC (Brun, Britto, Oliveira, Enembreck & Sabourin (2016) ) KNN Generalization Accuracy & Complexity TB

CHADE (Pinto, Soares & Mendes-Moreira (2016b)) Meta-Learning Generalization Meta-Learning TB

PCC-DES (Narassiguin, Elghazel & Aussem (2017)) Meta-Learning Generalization Meta-Learning TB

DISi (Pereira, Britto, Oliveira & Sabourin (2018)) KNN Generalization Oracle TB

DDES (Choi & Lim (2021) ) KNN Generalization Oracle TB

DES-hesitant (Elmi & Eftekhari (2020)) KNN Generalization Multi criteria TB

MLS (Elmi & Eftekhari (2021) ) Multi technique Generalization Multi criteria TB, OB, PB

DES-ML (Elmi, Eftekhari, Mehrpooya & Ravari (2023) ) A multi-label classifier Training Output of classifier OB

OLP++ (Souza, Sabourin, Cavalcanti & Cruz (2023) ) Recursive partitioning Generalization Output of classifier OB

In the following, some of the important DS approaches are discussed. These approaches were

chosen based on their performance reported in (Cruz et al. (2018a)) and (Elmi & Eftekhari

(2021)), and also based on their number of citations on the Google Scholar website.
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Overall Local Accuracy (OLA)

In this approach, the competence level of individual classifier 𝑐𝑖 is determined by its classification

accuracy in the local region (𝐾 nearest sample in DSEL set) (Woods et al. (1997)). Hence, the

competence of 𝑐 𝑗 is defined by:

𝛿𝑖 (xq) = 1/𝑘
𝑘∑

𝑘=1

𝑃(𝜔𝑙 |xk ∈ 𝜔𝑙, 𝑐𝑖) (1.2)

This approach is one of the earlier KNN-based approaches which has good performance in many

cases due to the consideration of overall accuracy in a small region.

Local Classifier Accuracy (LCA)

This approach is similar to OLA, with the only difference being that this approach estimates

the competence of classifiers based on the samples that belong to the same class (Woods et al.

(1997)). The local accuracy of each classifier is estimated with respect to the corresponding

samples with the same label as the query sample as follows:

𝛿𝑖 (xq) = (
∑
𝑥𝑘∈𝜔𝑙

𝑃(𝜔𝑙 |xk, 𝑐𝑖))/(
𝐾∑
𝑘=1

𝑃(𝜔𝑙 |xk, 𝑐𝑖)) (1.3)

Finally, the classifier presenting the highest competence level is selected,

MLA

This approach aims to tackle the problem of defining a suitable size of the competence region

(Smits (2002)). Previous approaches are very sensitive to the value of K, MLA tries to reduce

this sensitivity by weighting each K instance by its distance to xq. Therefore, the competence
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region is defined as below:

𝛿𝑖 (xq) =
𝑘∑

𝑘=1

𝑃(𝜔𝑙 |xk ∈ 𝜔𝑙, 𝑐𝑖)𝑊𝑘 (1.4)

DES-KNN

In this method, similar to previous approaches, the region of competence 𝜂𝑞 is defined based

on K nearest neighbors of xq. Then, the accuracy and diversity of the individual classifiers are

computed based on the 𝐾 neighbors. In the next step, 𝑁 most accurate classifiers and 𝐽 most

diverse classifiers are selected to compose the final ensemble of classifiers based on double Fault

measures (Soares et al. (2006)). Here, 𝐽 and 𝑁 , (𝐽 ≤ 𝑁) are user-defined parameters.

Multiple Classifier Behavior (MCB)

In this method, to determine the label of xq, the region of competence 𝜂𝑞 is estimated first,

and the similarity of the samples in this region to the sample xq is determined based on the

behavior knowledge space (BKS) and profile matrix of each sample (Giacinto & Roli (2001)).

Next, samples less similar to xq are removed from the set 𝜂𝑞 (based on a predefined parameter).

Therefore, the size of 𝜂𝑞 in this approach is not constant and may be variable. Finally, the

sample label is determined by the classification which is significantly more accurate than other

individual classifiers. If there is no such classifier, the output is determined by all classifiers in

the pool and by the majority voting method.

Modified Classifier Ranking (DCS-Rank)

In this approach, similar to previous methods, the region of competence 𝜂𝑞 is estimated (Sabourin

et al. (1993)). Next, the ranking of each individual classifier is computed as the number of

correctly classified samples in the region 𝜂𝑞. The classifier with the highest rank is considered

the most competent and query sample xq is classified by this classifier.
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KNORA-Eliminate

This approach is one of the efficient DES algorithms that firstly estimate the region of competence

𝜂𝑞 according to the predefined value of K (Ko et al. (2008)). The classifiers which have 100%

accuracy in this region are selected. Then, the outputs of these classifiers are aggregated using

the majority voting method. If there is no such classifier, the value of K is reduced, and the

procedure is restarted.

KNORA-Union

In this algorithm, the classifier ensemble includes all individual classifiers that are able to

correctly classify at least one sample in the region of competence 𝜂𝑞 (Ko et al. (2008)). The

outputs of these classifiers are aggregated by a majority voting scheme. In this scheme, the

number of votes of each individual classifier is equal to the number of samples that the classifier

classified correctly in 𝜂𝑞.

K-Nearest Output Profiles (KNOP)

This approach is similar to KNORA-U with the difference being that the similarities between

the query and the validation samples are measured in the decision space rather than the feature

space (Cavalin et al. (2013)). For this purpose, the output profiles of all samples of DSEL

are calculated. At the next stage, the similarity of these profiles is measured with the output

profile of query sample xq. Corresponding samples of similar profiles will form the region of

competence. Next, similarly to KNORA-U, the number of votes of each classifier equals the

number of samples in the region of competence that the classifier correctly recognizes.

META-DES

This method uses a meta-learner to determine the competence level of each basic classifier (Cruz

et al. (2015c)). After training all base classifiers in the pool, the meta-features are extracted

from the instances of the train set and dynamic dataset (DSEL). In the next step, a meta learner
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is trained by the extracted meta-features. This learner determines the competence level of each

classifier. According to a predefined threshold, the competent classifiers are selected for the

ensemble classifier. If no base classifier is selected, all classifiers of the pool are used to label

query sample xq with majority voting.

Another variant of this approach has been introduced known as META-DES.Oracle (Cruz et al.

(2017a)). This approach uses the Binary Particle Swarm Optimization (BPSO) algorithm to

select the best subset of meta-features for the training meta-learner. In this approach, the different

level of competence was estimated by oracle and the meta-learner is considered as the fitness of

the corresponding meta-features.

Local oracles with Discrimination Index (DISi)

This algorithm is an oracle-based dynamic ensemble selection method called Local Oracles with

Discrimination Index (DISi). This approach uses a discriminant index originally proposed in the

Item and Test Analysis (ITA) (Matlock-Hetzel (1997)) to better define the region of competence

(RoC). The closest neighbors are selected by KNN and then the discriminant index is calculated

for each of them. The concepts of Professor, Questions, and Student in ITA are represented by

competence measures, advisor (nearest samples), and classifiers respectively. The professor uses

this kind of index to rank questions to select the most promising ones to evaluate its students in

an exam (Pereira et al. (2018)).

Chained Dynamic Ensemble (CHADE)

This method is based on the multi-label classification technique, Classifier Chains (CC) (Read,

Pfahringer, Holmes & Frank (2011)). CHADE utilizes a meta-learner to predict the competence

of base classifiers and select a subset of them. In order to do so, the problem of dynamically

combining a set of classifiers is transformed into a multi-label classification problem. In the first

stage, the ensemble of classifiers is used to make predictions on DSEL. The predicted labels are

compared to true targets to achieve meta-features. Then, a meta-learner is utilized to learn and
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select the best set of classifiers. This approach does not rely on the nearest neighbors therefore it

does not need to define the regions of competence, however, this approach may converge to an

incorrect or local optimal.

Dynamic Ensemble Selection with Probabilistic Classifier Chains (PCC-DES)

This method is based on Probabilistic Classifier Chains. In reality, this approach is an improved

version of CHADE, but here, the label dependencies are captured explicitly. To do so, a

multi-label procedure based on Probabilistic Classifier Chains and Monte Carlo sampling is

utilized to minimize the actual loss function directly. Despite promising results reported in the

paper, it suffers from high computational complexity because many calculations are required to

classify any query sample.

Distribution-Base Dynamic Ensemble Selection (DDES)

This approach works based on KNN but utilizes different distance measurements to find the

nearest instances to overcome traditional problems of KNN such as sensitivity to the local

structure of the data and the presence of noisy or irrelevant attributes. Two different versions of

this approach are introduced in Choi & Lim (2021): DDES-I, which is an Independent dispersion

version, and DDES-M in which Mahalanobis distance is utilized. Both approaches are proposed

with the aim of improving the performance of the DS system by properly selecting reference data

points for the given query sample. The reported accuracy of these two approaches is promising

compared to other DES approaches, especially the DDES-M method which has better accuracy

than other DES methods. However, both these methods are based on the KNN algorithm, so

they have high computational complexity in the generalization phase.

Multi-Layer Selector (MLS)

In this method, the idea of combining DS methods via multi-layer selectors is offered

(Elmi & Eftekhari (2021)). Here, various competence measures are selected in a multi-
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layer structure that is expected to lead to an efficient selection of classification dynamically.

In each layer, the competence level of classifiers is calculated and the classifiers with high

competence levels are passed to the next layer. The best classifiers are passed to the last layer

therefore outputs of the last layer will be the final ensemble of classifiers. Different criteria could

be used in each layer, so in this way, some criteria are combined to measure the competence

level of classifiers. The authors of this paper have designed three different versions of MLS to

select classifiers in each layer, including MLSTB, MLSOB, and MLSPB. MLSTB utilizes a

Threshold-based selection approach and the classifiers with competence levels that are higher

than a predefined threshold are selected. In MLSOB, a certain number of classifiers are selected,

and in the MLSPB version, all classifiers have a chance to be selected according to their level of

competence. The reported results of this approach are very promising, however as same as the

DES-hesitant approach, it suffers from high time complexity to classify each query sample.

1.3 Fuzzy Hyperbox

Hyperbox was introduced by Simpson in 1992 (Simpson (1992)) to use in Fuzzy Min-Max

Neural Networks (FMM) (Simpson (1992); Simpson & Jahns (1993)). Hyperbox defined by its

two corners named Min (v) and Max (w) points. The size and location of hyperboxes are easily

adjusted by changing these two corners. Thus, it has a very simple and feasible structure to use.

Furthermore, hyperbox-based learning systems have some features that make them good tools in

machine learning applications (Khuat, Ruta & Gabrys (2021b)). These features are listed in the

following:

• Make Soft and Hard decision: Since hyperboxes have a fuzzy membership function they

can be used to make soft or hard decisions.

• Simple and Flexible structure: This feature of hyperboxes makes them an easy-to-use

component and allows us to combine and utilize them within other AI systems such as

feature selection (Akbulut (2019)), preprocessing (Kumar & Prasad (2020)), and security

applications (Vĳayanand et al. (2018)).
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• Scalability: Since the number of hyperboxes is usually much less than the number of learning

instances, we expect to have a faster system in the generalization phase.

• One pass learning: hyperbox-based approaches are single pass through learning that

makes them be able to learn data just by reading it once. This feature helps us to use

hyperboxes in cases where we need high-speed information processing, or real-time learning

(Khuat & Gabrys (2020)).

• Online adaption: Hyperboxes are generated during a learning process with one pass through

the data. Therefore, the hyperbox creation can continue until new samples arrive. It means

they can learn new concepts over time. Besides, hyperboxes are independent of each other, so

each of them can be removed without destroying the whole system. Therefore, the hyperboxes

that are not compatible with new concepts can be removed easily. These two key features

make hyperboxes capable of online adaption learning (Khuat, Chen & Gabrys (2020)).

• Granular data modeling: Hyperboxes could be utilized to design a granular model of data

(Lu, Ma, Pedrycz & Yang (2021); Liu, Diao & Guo (2019); Lu et al. (2018)). Granular

representation of data could decrease the processing complexity, especially in imbalanced

data, since the geometric domain of different classes can be represented by granules at a

suitable granularity level (Lu et al. (2021)).

1.3.1 Creation-Adjustment process

The creation and adjustment of hyperboxes is a simple process. When a new training sample (x)

arrives, the system checks if it falls inside a hyperbox. If there is such a hyperbox, no further

processing is required and the next training sample will be picked up. Otherwise, we must find a

hyperbox that is capable of expansion to include x. To expand the hyperbox 𝐵𝑗 to include this

sample, the following equations are used:

𝑣 𝑗𝑑 ← 𝑚𝑖𝑛(𝑣 𝑗𝑑, 𝑥𝑑); 1 ≤ 𝑑 ≤ 𝑛

𝑤 𝑗𝑑 ← 𝑚𝑎𝑥(𝑤 𝑗𝑑, 𝑥𝑑); 1 ≤ 𝑑 ≤ 𝑛
(1.5)
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Where 𝑥𝑑 is the value of sample x at 𝑑 − 𝑡ℎ dimension. 𝑛 shows the number of feature space

dimensions, and 𝑣 𝑗𝑑 and 𝑤 𝑗𝑑 are respectively 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 and 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 points at the 𝑑 − 𝑡ℎ

dimension of hyperbox 𝐵𝑗 . Figure 1.2 shows how the hyperbox 𝐵𝑗 is expanded to involve the

sample x. In this example, 𝑣 𝑗2 and 𝑤 𝑗1 are changed to expand the hyperbox.

Figure 1.2 Expansion of hyperbox 𝐵𝑗 to involve sample x

During this process, The maximum size of hyperboxes is limited by the user-defined parameter

𝜃, which in normalized datasets (mapped to [0-1]) are usually between 0 and 1. So, when a

hyperbox 𝐵𝑗 is expanding, the following constraints must be met:

𝜃 ≥ max
∀𝑑

(𝑤 𝑗𝑑 − 𝑣 𝑗𝑑); 1 ≤ 𝑑 ≤ 𝑛 (1.6)

If no expandable hyperbox is found, a new hyperbox is created with min and max points equal

to the corresponding points of the sample. Generally, the larger 𝜃, the fewer hyperboxes are

created, and the system is more traceable. However, as the 𝜃 gets large, the system underfits

the data that causes the increased error. On the other hand, small 𝜃 creates more hyperboxes

that potentially cause overfitting and decrease traceability. So there is a trade-off between the

accuracy and traceability of these networks.

Each hyperbox covers, in addition to its internal space, a port of its surroundings. The covered

domain by hyperboxes is defined by the following equation.

𝐵𝑗 = {vj,wj, 𝑏 𝑗 (x)} ∀x ∈ 𝐼𝑛 (1.7)
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In this equation, x = {𝑥1, 𝑥2, ..., 𝑥𝑛} is a single data point. wj = {𝑤 𝑗1, 𝑤 𝑗2, ..., 𝑤 𝑗𝑛} and

vj = {𝑣 𝑗1, 𝑣 𝑗2, ..., 𝑣 𝑗𝑛} are min and max points respectively. 𝑏 𝑗 is the membership function of

the hyperbox 𝐵𝑗 . Also, 𝐼𝑛 is 𝑛 dimensional feature space.

1.3.2 Contraction

After creating a new hyperbox or expanding one of the existing hyperboxes, the system inspects

the overlapping area of the extended hyperbox with hyperboxes from other classes. Two

hyperboxes overlap when each dimension is recognized in one case of Eq. 1.8. To handle this

overlap, the dimension (Δ) that has the least overlap, is selected for contraction.

𝑐𝑎𝑠𝑒1 : 𝑣 𝑗𝑖 < 𝑣𝑘𝑖 < 𝑤 𝑗𝑖 < 𝑤𝑘𝑖

𝑐𝑎𝑠𝑒2 : 𝑣𝑘𝑖 < 𝑣 𝑗𝑖 < 𝑤𝑘𝑖 < 𝑤 𝑗𝑖

𝑐𝑎𝑠𝑒3 : 𝑣 𝑗𝑖 < 𝑣𝑘𝑖 ≤ 𝑤𝑘𝑖 < 𝑤 𝑗𝑖

𝑐𝑎𝑠𝑒4 : 𝑣𝑘𝑖 < 𝑣 𝑗𝑖 ≤ 𝑤 𝑗𝑖 < 𝑤𝑘𝑖

(1.8)

If there is no overlap, no contraction is needed, otherwise regarding the type of overlap in the Δ

dimension; one case of Eq. 1.9 is activated to eliminate the overlapped area. Fig. 1.3 shows an

example of the contraction process between two hyperboxes.
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Figure 1.3 Contraction Process between

two overlapped hyperboxes

Case1: 𝑣 𝑗Δ < 𝑣𝑘Δ < 𝑤 𝑗Δ < 𝑤𝑘Δ

𝑣𝑛𝑒𝑤
𝑘Δ = 𝑤𝑛𝑒𝑤

𝑘Δ =
𝑣𝑜𝑙𝑑
𝑘Δ +𝑣𝑜𝑙𝑑

𝑗Δ

2
or alternatively

(𝑤𝑛𝑒𝑤
𝑗Δ = 𝑣𝑜𝑙𝑑𝑘Δ ).

Case2: 𝑣𝑘Δ < 𝑣 𝑗Δ < 𝑤𝑘Δ < 𝑤 𝑗Δ

𝑣𝑛𝑒𝑤
𝑗Δ = 𝑤𝑛𝑒𝑤

𝑘Δ =
𝑣𝑜𝑙𝑑
𝑗Δ +𝑤𝑜𝑙𝑑

𝑘Δ

2
or alternatively

(𝑣𝑛𝑒𝑤
𝑗Δ = 𝑤𝑜𝑙𝑑

𝑘Δ ).
Case3: 𝑣 𝑗Δ < 𝑣𝑘Δ ≤ 𝑤𝑘Δ < 𝑤 𝑗Δ

𝑖 𝑓 ( 𝑤𝑘Δ − 𝑣 𝑗Δ < 𝑤 𝑗Δ − 𝑣𝑘Δ)
𝑣𝑛𝑒𝑤
𝑗Δ = 𝑤𝑜𝑙𝑑

𝑘Δ ; 𝑒𝑙𝑠𝑒 𝑤𝑛𝑒𝑤
𝑗Δ = 𝑣𝑜𝑙𝑑𝑘Δ ;

Case4: 𝑣𝑘Δ < 𝑣 𝑗Δ ≤ 𝑤 𝑗Δ < 𝑤𝑘Δ

𝑖 𝑓 ( 𝑤𝑘Δ − 𝑣 𝑗Δ < 𝑤 𝑗Δ − 𝑣𝑘Δ)
𝑤𝑛𝑒𝑤

𝑘Δ = 𝑣𝑜𝑙𝑑𝑗Δ ; 𝑒𝑙𝑠𝑒 𝑣𝑛𝑒𝑤
𝑘Δ = 𝑤𝑜𝑙𝑑

𝑗Δ ;

(1.9)

Here, Δ indicates the selected dimension. It is worth noting that some part of the available infor-

mation is removed by conducting contraction (Khuat & Gabrys (2021)) and many researchers
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have tried to introduce alternative processes (Khuat et al. (2020); Davtalab, Dezfoulian & Man-

soorizadeh (2013)).

1.3.3 Membership Function

The membership function of the hyperbox is a crucial component in the fuzzy min-max neural

network technique. It is utilized to measure the membership degree of belonging of an arbitrary

instance to the hyperbox 𝐵𝑗 . The membership function of the hyperbox is usually defined in a

way that the degree of membership inside the hyperbox 𝐵𝑗 equals one, and it decreases when

the feature point moves away from the hyperbox.

Simpson’s Membership Function

In the original version of FMM, two different hyperboxes are introduced by Simpson for

supervised and unsupervised learning (Simpson (1992); Simpson & Jahns (1993)). In the

supervised version, the degree of membership is calculated by equation 1.10.

𝑏 𝑗 (x) = 1
2𝑛

∑𝑛
𝑖=1

[
max(0, 1 − max(0, 𝛾 min(1, 𝑥𝑖 − 𝑤 𝑗𝑖)))+
max(0, 1 − max(0, 𝛾 min(1, 𝑣 𝑗𝑖 − 𝑥𝑖)))

]
(1.10)

Where 𝛾 is a coefficient between 0 and 1 that regulates how fast the membership values decrease

as the distance between x and 𝐵𝑗 increases. Another version of this membership function has

been introduced in (Simpson & Jahns (1993)) which is used in unsupervised problems:

𝑏 𝑗 (x) =
1

𝑛

𝑛∑
𝑖=1

[1 − 𝑓 (𝑥𝑖 − 𝑤 𝑗𝑖, 𝛾) − 𝑓 (𝑣 𝑗𝑖 − 𝑥𝑖, 𝛾)] (1.11)

𝑓 (𝑟, 𝛾) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 𝑟𝛾 > 1

𝑟𝛾 if 0 ≤ 𝑟𝛾 ≤ 1

0 if 𝑟𝛾 < 0
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Here, 𝛾 is the sensitivity parameter regulating how fast the membership values decrease. This

function is similar to the previous one. Just with this difference, the membership levels of

this membership function decrease faster around the hyperbox. Figure 1.4 (a) depicts a two-

dimensional hyperbox and how to cover its vicinity in the supervised case. Figure 1.4 (b) shows

the introduced membership function for clustering applications. As is shown in these figures,

when the distance to the hyperbox increases, the membership levels in Figure 1.4 (b) decrease

faster than the other one.

b = 1 b = 1

b > .9

b > .7

b > .8

b > .5

b >
 .6
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0

1

(a)(a) (b)(b)

Figure 1.4 Membership function of Hyperbox in (a) introduced for supervised

applications, (b) introduced for unsupervised applications. (Sensitivity parameter 𝛾 = 0.4 in

both)

Gabrys’s Membership Function

Another important membership function has been provided by Gabrys and Bargiela (Gabrys & Bargiela

(2000)) as below:

𝑏 𝑗 (x) = min
𝑖=1..𝑛

(𝑚𝑖𝑛([1 − 𝑓 (𝑥𝑖 − 𝑤𝑖 𝑗 , 𝛾𝑖)],
[1 − 𝑓 (𝑣𝑖 𝑗 − 𝑥𝑖, 𝛾𝑖)])) (1.12)
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𝑓 (𝑟, 𝛾) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 𝑟𝛾 > 1

𝑟𝛾 if 0 ≤ 𝑟𝛾 ≤ 1

0 if 𝑟𝛾 < 0

(1.13)

Where 𝑎𝑖 is 𝑖𝑡ℎ dimension of a sample 𝐴, and 𝛾 is the sensitivity parameter that regulates how

fast the membership values decrease out of the hyperbox. Figure 1.5 illustrates the membership

value levels defined by this equation inside and around a two-dimensional hyperbox.

Figure 1.5 Hyperbox’s Membership function in GFMM approach

Here, we give an example to show how these membership functions work. Suppose, we have

two small groups of samples in which samples of the first group belong to class 1 (Circle) and

the other samples belong to class 2 (Square) as shown in Figure 1.6.

To analyze the effect of different membership functions and their predicted boundaries, two

hyperboxes are used to represent two groups of samples. Then the predicted boundary of these

two hyperboxes is investigated using different membership functions. As a simple benchmark,

we used a separator line that has the maximum distance to all samples (purple dashed line). In

Figure 1.7, we used Simpson’s membership function to predict the class boundary.

As can be observed in this figure, the predicted boundary in the region between the hyperboxes

is similar to the benchmark line but in the further areas, the predicted line tends to be parallel to
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Figure 1.6 Simple example: samples of

two classes with a separator line which has

the maximum distance to all samples

the coordinate axis. This can lead to many errors in decision-making. In Figure 1.8, Gabrys’s

membership is applied to the hyperboxes to predict the boundary between the classes. As

illustrated in Figure 1.8, although the overall shape of the predicted boundary is similar to

the benchmark line, regarding the distribution of samples, it is far from the benchmark line,

especially around the hyperboxes that the predicted line is close to the samples and errors are

more likely to occur.

Zhang’s Membership Funciton

These reviewed membership functions follow the basic definition of a hyperbox (defined using

only V and W points). Some other functions have been introduced that use information such as

the density of samples inside the hyperbox (Zhang, Liu, Ma & Wang (2011)), the geometric

centroid of samples (Alhroob, Mohammed, Lim & Tao (2019)), etc.
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Figure 1.7 Predicting the class boundary

using Simpson’s membership function

Figure 1.8 Predicting the class boundary

using Simpson’s membership function
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For example, the membership function introduced in (Zhang et al. (2011)) considers the density

of data in the hyperbox to bypass the effect of noise on the final decision. This membership

function is defined as below:

𝑏 𝑗 (x) = min
𝑖=1..𝑛

(𝑚𝑖𝑛( 𝑓 (𝑥𝑖 − 𝑤 𝑗,𝑖 + 𝜖, 𝑝 𝑗,𝑖),
𝑓 (𝑣 𝑗,𝑖 + 𝜖 − 𝑥𝑖, 𝑝 𝑗,𝑖))) (1.14)

where 𝜖 is a parameter representing noise, 𝑐 is the difference between the data core in the

hyperbox and the geometric center of the corresponding hyperbox, and 𝑓 is the ramp threshold

function which is defined as follows:

𝑓 (𝑟, 𝑐) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑒−𝑟
2×(1+𝑝)×𝜆 if 𝑟 > 0, 𝑝 > 0

𝑒−𝑟
2×(1−𝑝)×𝜆 if 𝑟 > 0, 𝑝 < 0

1 if 𝑟 < 0

(1.15)

In this equation, 𝜆 is a user-defined parameter to control the descending speed of the membership

function.

In Figure 1.9, the influence of parameter 𝑐 on the shape of the membership function is shown.

In this example, v = 0.45 and w = 0.55 are the min and max points of the hyperbox, respectively.

So, this membership function and similar approaches consider the distribution of samples

inside the hyperbox. Using this extra information could lead to more accuracy. However, these

types of membership functions usually impose a huge computational complexity on the system.

Therefore, they are not a good fit for large-scale problems and online learning which are two

important data types in this project. Thus, we focus only on the simple fuzzy hyperboxes that

are defined only using Min (v) and Max (w) corners.
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Figure 1.9 Influence of parameter p on

the shape of the membership function

1.3.4 Hyperbox and Fuzzy theory in Multiple Classifier System

Fuzzy hyperbox was initially used in fuzzy min-max neural networks for classification and

clustering purposes Simpson (1992); Simpson & Jahns (1993). Simultaneously, a similar

approach has been introduced, called Fuzzy-Artmap (Carpenter et al. (1992)) which uses a

similar manner to cover the required regions. Then, a generalized version of these networks called

general fuzzy min-max neural network (GFMM) was introduced in Gabrys & Bargiela (2000).

This approach utilizes a novel membership function for hyperboxes that uses smoother changes

at close distances (Equation 1.12). In the following years, many fuzzy min-max neural networks

were developed using fuzzy hyperboxes, primarily in classification area (Nandedkar & Biswas

(2007); Zhang et al. (2011); Davtalab et al. (2013); Waghmare & Kulkarni (2019); Khuat et al.

(2020); Xue, Huang & Wang (2020)).

Ensemble learning using fuzzy theory has also been active in recent years. In (Kurzynski & Krys-

mann (2014)), Kurzynski and Krysmann applied two fuzzy inference systems (Mamdani and

Sugeno) to develop a fuzzy competence estimator based on Randomized Reference Classifier

(RRC) (Woloszynski & Kurzynski (2011)) method to the learning competence measures in
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dynamic classification. In this way, the obtained probabilities of RRC are enhanced by the fuzzy

inference systems to reach better classification accuracy.

In 2013, Fatemipour and Akbarzadeh introduced a dynamic fuzzy rule-based system for

combining learners in a distribution environment (Fatemipour, Akbarzadeh-T & Ghasempour

(2014)). In this approach, the reliability of base learners over the entire feature space is estimated

using a fuzzy rule-based system. Then, to classify the unknown data xq the weight of each

classifier is estimated by the fuzzy system. The proposed system in this research is a fast

combination system. However, it suffers from a lack of accuracy and a large number of rules that

must be stored. An improved version of this system is proposed in (Fatemipour & Akbarzadeh-T

(2014)), in this version, unnecessary rules are eliminated using the genetic algorithm, however,

the improved system steal has low accuracy.

Davtalab et al in (Davtalab et al. (2013)) presented a multi-layer fuzzy min-max neural network

(MLF) that uses a number of similar classifiers in its structure. This network uses Fuzzy

hyperboxes to cover class domains. In practice, MLF is a combination of classifiers that utilizes

hyperbox-based classifiers.

In Trajdos & Kurzynski (2016), Trajdos and Kurzynski have utilized the local fuzzy confusion

matrix and the concept of RRC and confusion matrix to estimate the competence of classifiers

to determine class-dependent probabilities of misclassification and correct classification. This

model has been applied for multi-label (Trajdos & Kurzynski (2018)) and Imbalanced data

(Trajdos & Kurzynski (2020)) problems in recent years. As reported, the accuracy of these

approaches is promising. However, due to using RRC and determining the local region, they

have high computational complexity.

Dynamic Ensemble Selection based on Hesitant fuzzy (DES-hesitant) has been introduced

recently in Elmi & Eftekhari (2020). In this method, an appropriate ensemble of classifiers

is composed by combining different measurement methods using fuzzy hesitant. The best

classifiers are passed to the last layer. Then a hesitant fuzzy averaging method and arithmetic

mean score function is utilized to select the final ensemble of classifiers. Although this approach
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has good accuracy, all DSEL samples are engaged in the competence estimation process. This

issue increases its computational complexity.

In Table 1.2 a summary of fuzzy-based approaches is reported.

Table 1.2 Fuzzy-based methods of combining classifiers

Year Description Author Reference

2014 Extracting Fuzzy Rules Fatemipour and Akbarzadeh (Fatemipour et al. (2014))

2014 Extracting Fuzzy Rules and Optimization with Genetic Fatemipour and Akbarzadeh (Fatemipour & Akbarzadeh-T (2014))

2014 Enhance RRC results using Fuzzy inference Kurzynski et al. (Kurzynski & Krysmann (2014))

2016 Enhance RRC Using Fuzzy confusion matrix Trajdos et al. (Trajdos & Kurzynski (2016))

2018 Combining Multi-Label classifiers using Fuzzy confusion matrix Trajdos et al. (Trajdos & Kurzynski (2018) )

2020 Imbalanced data DES using Fuzzy confusion matrix Trajdos et al. (Trajdos & Kurzynski (2020))

2020 Dynamic Ensemble Selection based on Hesitant fuzzy Elmi and Eftekhari (Elmi & Eftekhari (2020))

1.4 Critical Analysis

In this chapter, related research in dynamic selection and fuzzy hyperboxes were reviewed.

According to the literature, high computational complexity in the generalization phase, the lack

of efficiency in unbalanced datasets, and problems related to the KNN algorithm in KNN-based

DS approaches are the main limitations of dynamic ensemble selection approaches. These

problems affect the efficiency of dynamic selections in large-scale and unbalanced datasets.

Therefore, we need alternative DS approaches to tackle these problems.

In addition, some important aspects of fuzzy hyperboxes were discussed in this chapter. A

fuzzy hyperbox is a simple tool with some good capabilities such as making soft and hard

decisions, processing large-scale data, and online adaptive learning. Different membership

functions have been introduced for hyperboxes. Some of them follow the original definition of

hyperboxes and use just min and max points. However, none of them allocate the membership

levels appropriately. Some other membership functions also use extra information such as the

density or centroid of samples to achieve higher accuracy. However, this type of membership

function has higher computational complexity too. Given that in this project we face large-scale

data, the first group of membership functions (simpler and faster) has been preferred.
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According to the literature, some research has been conducted to apply the fuzzy theory in the

DS field like DES-hesitant (Elmi & Eftekhari (2020)) but they suffer from high computational

complexity. Thus, we require a different approach for handling large-scale classification problems

and addressing imbalanced data.
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Abstract

Dynamic ensemble selection (DES) systems work by estimating the level of competence of each

classifier from a pool of classifiers and selecting the most competent ones for the classification

of a given test instance during inference time. The majority of dynamic ensemble selection

(DES) methods evaluate the competence of classifiers using the K-Nearest Neighbors to the

unknown query sample. However, KNN is very sensitive to local data distribution and needs

to store all data in memory. Moreover, it performs several computations for each individual

query sample. Thus, relying on the KNN technique hampers the use of DES approaches for

large-scale problems and situations where data distributions are non-uniform. This article

introduces a novel DES framework called FH-DES, which employs fuzzy hyperboxes to generate

a competence map or incompetence map for each classifier. The competence map is generated

from correctly classified samples to indicate the competence level of the classifier at each data

point in the feature space, whereas the incompetence map, which shows regions where the

classifier has low accuracy, is generated from misclassified samples. In this way, we can assess

the competence or incompetence level of the classifier just by using the map without having to

process previous samples. This feature results in a more accurate dynamic selection system with

lower computational complexity compared to other dynamic selection methods. Moreover, we

introduce several hyperbox expansion and contraction strategies that add incremental learning

capability to the framework while keeping the computational cost low. Experimental results

demonstrate that FH-DES achieves high classification accuracy with lower complexity than
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state-of-the-art dynamic selection methods. The source code for FH-DES is available at

https://github.com/redavtalab/FH-DES.

2.1 Introduction

Multiple Classifier Systems (MCS) is a popular research area in machine learning and pattern

recognition due to the fact that using several models leads to improved accuracy (Kuncheva

(2014)). In MCS, a pool of classifiers is generated and a subset of these models is used to

classify unseen samples. This subset may be static (SS) or dynamic (DS). In static selection, the

same subset of classifiers is used to classify all unknown samples. In contrast, dynamic selection

techniques use a specific subset of classifiers to classify each unknown sample. DS approaches

have been found to lead to more robust ensemble models as they identify and select classifiers

that are experts in the local region of the query instance, known as the Region of Competence

(RoC) (Kuncheva (2014); Britto Jr et al. (2014); Cruz et al. (2018a, 2017a)).

Thus, a crucial step in dynamic selection is the RoC definition and associated competence

evaluation processes, which are necessary to identify competent experts. The RoC is determined

based on a labeled set of examples, which is commonly composed of either the training or the

validation data and an algorithm for delineating a local region in the feature space where the

samples show similar characteristics with the query. This region is delineated using methods

such as K-Nearest Neighbor (KNN) in the majority of the state-of-the-art DS techniques (Cruz

et al. (2015d); Xiao et al. (2016); Krawczyk et al. (2018); Cruz et al. (2018a); Elmi & Eftekhari

(2020)).

Most of the state-of-the-art DS approaches are KNN-based (Cruz et al. (2018a)). Although

recent studies demonstrated that KNN-based techniques achieve better performance compared to

the other approaches (Cruz et al. (2018a)), they still suffer from several problems (as illustrated

in Figure 2.1):

• Sensitivity to Hyperparameters: K is a hyperparameter, even if it has been optimized using

an optimization process (Zhang, Cheng, Deng, Zong & Deng (2018)), which is a costly
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Figure 2.1 Problems of KNN-based DS approaches. (a) Sensitivity to

hyperparameter K, different classifiers are selected with K=3 and K=5 (K-value

problem), (b) High sensitivity to the local distribution of data, and (c) Limited

information problem. KNN uses limited available information. Only 𝑐1 could

correctly classify the query sample in all cases, while KNN (K = 5) selects 𝑐2 as a

competent classifier

process for large-scale problems. As shown in Figure 2.1(a), K = 5 results in the selection of

the wrong classifier (𝑐2) while K=3 can select the correct one.

• Sensitivity to local distribution: KNN algorithms work based on Euclidean distance and

have a great sensitivity to the local distribution of the data (Cruz et al. (2018b)) as well

as noisy data (Elmi & Eftekhari (2020)). Figure 2.1(b) shows an example in which an

unbalanced local distribution of instances can negatively affect the competence estimation as

it will be biased towards the most frequent class (majority class).

• Limited Information: KNN algorithm only considers the RoC information, which is a small

region of feature space. Only a small amount of available information is utilized to make

decisions. Thus, when the performance of two classifiers is the same inside the RoC, we
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cannot determine which is more competent, and this issue could lead to wrong decisions, as

shown in Figure 2.1(c).

• High computational and storage complexity: In the generalization phase of KNN-based

DS approaches, the nearest K neighbors of each query sample must be found, imposing

a considerable computational complexity on the system. Furthermore, all DSEL samples

should be stored, which is infeasible in large-scale and data stream applications.

Another alternative for RoC estimation is Clustering-based approaches (Soares et al. (2006)),

which utilize clusters as regions of competency and only require the storage and computation

of distances to the cluster’s centroids during the generalization stage. However, this method

provides a granular view of the region, which can cause the loss of local information necessary

for the proper selection of classifiers, thus resulting in lower accuracy when compared to

KNN-based approaches (Cruz et al. (2018a)). On the other hand, techniques based on potential

functions work by taking into account all data points in the competence estimation process.

Such an approach assigns higher weights to samples that are closer to the query sample, while

the weight diminishes with increasing distance (Woloszynski & Kurzynski (2011)). However,

it is even more computationally expensive than KNN-based approaches, as it not only entails

the calculation of the distance between all samples stored in memory but also requires the

combination of the information of the entire set with the application of the potential function.

Thus, current DS techniques are limited in their application to defining regions of competence,

resulting in sub-optimal competence estimates. Novel approaches are needed to improve

classification results and reduce computational costs, particularly for large-scale problems and

high-dimensional data where the notion of similarity in the Euclidean space is not trivial (Souza

et al. (2023))

Intuitively, if we have a competence map for each base classifier representing its competence

level at each data point in the feature space (Figure 2.2(a)), the labeling process of unknown

samples could be much faster in the generalization phase. As shown in Figure 2.2(a), the

competence map of the classifier 𝑐𝑖 can be formed based on its correct classifications (on DSEL).

Also, we can use misclassified samples to create the incompetence map of the classifier. In
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Figure 2.2(b), we have used the misclassified instances to create the incompetence map of the

classifiers 𝑐1 and 𝑐2 (the same classifiers from Figure 2.1(a)).

a) Competence map of classifiers 𝑐1 and 𝑐2 b) Incompetence map of classifiers 𝑐1 and 𝑐2

Figure 2.2 Competence and incompetence areas of classifiers in Figure

2.1(a)

As shown in this example, each classifier has a high level of competence surrounding its correct

classified samples (green areas). In this example, only 𝑐1 can correctly classify the query sample.

Moreover, the competence of 𝑐1 is estimated to be higher than that of 𝑐2 using their competence

maps. In contrast, the areas around the misclassified samples are marked in red to indicate

the low competence level of these regions. Farther distance from these areas means that the

classifier is more likely to be a competent classifier, and thus can be selected for prediction. We

can see that the query sample in this example is far from the incompetence region of 𝑐1, so we

can state that 𝑐1 is a better classifier than 𝑐2.

However, defining such a competence map for each classifier is not easy and imposes a large

computational complexity on the system unless some simpler structures are used to represent

these areas. For example, in a two-dimensional feature space, we can represent these areas using

rectangles. Each rectangle is defined by only two points: the minimum and minimum corners.

Each rectangle can summarize the information from multiple instances. Figure 2.3 (a) shows

how we can cover the competence areas of each classifier using a few rectangles. Similarly,

Figure 2.3 (b) shows how we can cover the incompetence areas (i.e., regions in which the

classifier makes mistakes) by the red rectangles. As such, the system’s computational complexity

will not be high if an acceptable number of rectangles represents all training samples.



52

In this work, we propose a new DES framework, called Fuzzy Hyperbox Dynamic Ensemble

Selection (FH-DES), to achieve the properties mentioned above. FH-DES is based on Fuzzy

Hyperboxes (Simpson (1992)), which are virtual rectangles capable of working in high-

dimensional spaces. Each hyperbox covers the interior space and also its surrounding area

with a fuzzy membership function. This fuzzy aspect gives us valuable information outside

the hyperbox, allowing us to estimate the competence of classifiers even if the query sample

falls outside all hyperboxes. Moreover, it can leverage more contextual information from

the local regions while other approaches, such as KNN-based methods, cannot. During the

training phase, FH-DES creates the hyperboxes for each base classifier 𝑐𝑖 to represent either its

competence or incompetence regions. This creates competence maps that are then used during

the generalization phase to estimate the competence level of classifiers. This approach allows for

most of the computation required to estimate the competence level of classifiers to be performed

during the training phase instead of the generalization phase, thus resulting in a much faster DS

system in the generalization phase. In addition, by using hyperboxes, FH-DES is not sensitive to

the local distribution of data as it is not affected by instance density.

Hyperboxes of classifier 𝑐𝑖 can be generated from either correctly classified samples or

misclassified samples. If hyperboxes are constructed from correctly classified samples, they

constitute the competence regions of 𝑐𝑖 (see Figure 2.3(a)) and are referred to as positive

hyperboxes. If hyperboxes are created from misclassified samples, they are known as negative

hyperboxes. In this case, the hyperboxes indicate the incompetence regions of 𝑐𝑖 (see Figure

2.3(b)), so if the query sample is distant from the hyperboxes (negative hyperboxes), the classifier

is more likely to be competent due to its distance from the misclassified samples of the classifier.

Furthermore, as illustrated in Figure 2.3, we can determine which classifier is more competent

even when the query sample lies outside of all hyperboxes. In this example, the query sample is

situated near the hyperbox of the classifier 𝑐1. Therefore, classifier 𝑐1 is inferred to be more

competent than classifier 𝑐2. Consequently, FH-DES captures the information of all hyperboxes

distributed in the feature space, thus averting the restricted information issue that current DES

approaches face.
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Figure 2.3 (a) Representing the competence map of classifiers using the

positive hyperboxes, and (b) Representing the incompetence map of

classifiers using the negative hyperboxes for the illustrated example in figure

2.1(a)

In our previous research (Davtalab, Cruz & Sabourin (2022)), we introduced a preliminary

version of FH-DES, which demonstrated that fuzzy hyperboxes offer a promising approach to

reducing computational complexity while maintaining satisfactory classification accuracy in

dynamic selection systems. However, it was hindered by the lack of mechanisms to control

the unauthorized expansion of the hyperboxes, thus limiting its classification accuracy and

incremental learning capabilities. In this paper, we expand on the fuzzy hyperboxes for dynamic

selection idea by incorporating a new learning algorithm and several hyperbox contraction

mechanisms to prevent unauthorized expansion hyperboxes. We also propose a new fuzzy

mechanism that can control the trade-off between accuracy and system complexity to avoid

over-generating new hyperboxes.

Experiments involving multiple datasets of different sizes and characteristics have demonstrated

that the proposed approach is more precise and has lower computational complexity than existing

DS techniques. Additionally, the system is capable of learning incrementally, as it can improve

its complexity while maintaining a low number of hyperboxes when applied to large-scale

datasets. Furthermore, our results have shown that taking into account misclassifications through

the use of negative hyperboxes results in more robust FH-DES systems. All evaluated scenarios
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indicate that accounting for misclassifications leads to enhanced DES systems with regard to

accuracy and complexity, thus demonstrating the importance of such information for classifier

selection and suggesting that future works in this field must factor it in when designing new

methodologies for classifier selection.

In summary, the main contributions of this paper are as follows:

• We present the FH-DES, a fuzzy-hyperbox dynamic ensemble selection framework. FH-

DES integrates fuzzy min-max neural networks and a novel smooth borders membership

function in order to address the intrinsic issues of KNN-based DES approaches, such as

high computational complexity in inference, sensitivity to local distribution, and lack of

contextual information. In addition, our proposed framework is able to model the classifier’s

mistakes (regions of incompetence), unlike conventional DES strategies that only model the

competencies of the base model;

• Our approach of modeling the misclassifications of classifiers and discarding incompetent

classifiers leads to an improved selection scheme, resulting in a significant improvement in

generalization performance when compared to existing methods, as well as a reduction in

computational cost;

• We evaluate several strategies for hyperbox selection, expansion, and contraction and

their relative impact on the proposed FH-DES system. We also propose a mechanism to

significantly reduce the number of generated hyperboxes during the training stage while

maintaining the generalization performance;

• We demonstrate the efficacy of the FH-DES in comparison to existing DES solutions over

large-scale classification tasks and demonstrate its incremental learning capabilities.

The rest of the paper is organized as follows. Section 2.2 provides an overview of the theoretical

background of dynamic selection systems and Fuzzy Hyperboxes. The proposed FH-DES

method is described in Section 2.3. Related work in DES and fuzzy hyperboxes is discussed in

Section 2.4. Experimental setup and results are presented in Sections 2.5 and 2.6, respectively.

Finally, the conclusion and future works are presented in Section 2.7.
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2.2 Basic Concepts on Fuzzy Hyperboxes

Table 2.1 Mathematical notation used in this paper

Symbol Description

𝜃 represents the maximum size of hyperbox

𝜇 a predefined threshold to select the best classifiers

𝜆 learning sensitivity parameter

𝑏 𝑗 the 𝑗-th hyperbox

𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑀} the pool consisting of M base classifiers

x𝑞 a test (query) sample with an unknown class label

𝑆+𝑖 a subset of DSEL correctly classified by 𝑐𝑖

𝑆−𝑖 a subset of DSEL samples misclassified by 𝑐𝑖

𝜂𝑞 = {x1, ..., x𝐾} the region of competence of x𝑞

Ω = {𝜔1, ..., 𝜔𝐿} the set of 𝐿 class labels

𝜙(x𝑞) the ensemble of selected classifiers to classify x𝑞

𝛿𝑖,𝑞 Estimated competence of classifier 𝑐𝑖 for x𝑞

𝐻+
𝑖 Positive hyperboxes of 𝑐𝑖

𝐻−
𝑖 Negative hyperboxes of 𝑐𝑖

𝐻∗ Selected hyperboxes for expansion process

Fuzzy MinMax Neural Networks (FMNN) is a type of neural network that is based on fuzzy set

theory and fuzzy hyperboxes. Fuzzy hyperbox was first introduced in fuzzy min-max neural

networks for classification and clustering applications (Simpson (1992); Simpson & Jahns

(1993)). The idea behind fuzzy hyperboxes is to define a box-like region in the feature space

that encompasses a set of training data points belonging to a particular category or class. Fuzzy

hyperbox has a simple and flexible structure that makes it possible to use it in different machine-

learning applications (Khuat et al. (2021b)). The Learning process in hyperbox-based approaches

is a one-pass learning mechanism that adapts to online and real-time stream data modeling on a
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per-sample basis (Porto & Gomide (2022)). As data is inputted, the data space is granulated

and continually adjusted through expansion and contraction operations. This ensures that the

number of hyperboxes accurately matches the data, and the structure of hyperboxes is modified

whenever necessary (Porto & Gomide (2022); Khuat et al. (2021b)). Each hyperbox is assigned

a membership function that represents the hyperbox’s domain. The granular rule-based model

created during learning is transparent, easily interpretable, and understandable (Porto & Gomide

(2022)). Hyperbox fuzzy modeling is ideal for data-intensive applications as the models it

generates are parsimonious (Porto & Gomide (2022)). In addition, hyperbox-based can be

used in different machine learning applications such as speech recognition, image processing

(Kumar, Kumar, Bajaj & Singh (2019)), rule extraction (Mohammed & Lim (2017)), feature

extraction (Akbulut (2019)), health care (Jahanjoo, Tahan & Rashti (2017)), cybersecurity

(Ahmed & Mohammed (2018)), missing value handle (Rey-del Castillo & Cardeñosa (2012)),

etc (Khuat, Ruta & Gabrys (2021a)).

The size and location of hyperboxes are easily adjusted by changing their corners, as it uses

a simple geometrical structure. Furthermore, hyperbox-based learning systems have some

properties that make them good tools for machine learning applications. These features are as

follows:

• Make Soft and Hard decision: Since hyperboxes have a fuzzy membership function, they

can be used to make soft or hard decisions.

• Simple and Flexible structure: This feature of hyperboxes makes them an easy-to-use

component and allows us to combine and utilize them within other AI systems such as

feature selection (Akbulut (2019)), preprocessing (Kumar & Prasad (2020)), and security

applications (Vĳayanand et al. (2018)).

• Scalability: Since the number of hyperboxes is usually much smaller than the number of

learning instances, we expect to have a faster system in the generalization phase.

• One pass learning: hyperbox-based approaches are single-pass through learning that enables

them to learn data just by reading it once. This feature helps us use hyperboxes when we

need high-speed information processing or real-time learning (Khuat & Gabrys (2020)).
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• Online adaptation: Hyperboxes are generated during a learning process with one pass

through the data. Therefore, the hyperbox creation can continue until new samples arrive. It

means they can learn new concepts over time. Besides, hyperboxes are independent of each

other, so each of them can be eliminated without destroying the whole system. Therefore,

the hyperboxes incompatible with new concepts can be eliminated easily. These two key

features make hyperboxes capable of online learning (Khuat et al. (2020)).

• Granular data modeling: Hyperboxes could be utilized to design a granular model of

data (Lu et al. (2021); Liu et al. (2019); Lu et al. (2018)). Granular representation of data

could decrease the processing complexity, especially in imbalanced data, since the geometric

domain of different classes can be represented by granules at a suitable granularity level (Lu

et al. (2021)).

2.2.1 Creation and Adjustment process.

When a new training sample (x) arrives, the system checks to determine if this sample falls

inside an existing hyperbox. If such a hyperbox is found, no further processing is necessary, and

the next training sample is picked up. Otherwise, we must find a hyperbox 𝑏 𝑗 that is capable of

expanding to incorporate x. To accomplish this, the following equations are used to extend the

hyperbox 𝑏 𝑗 :

𝑣 𝑗𝑑 ← 𝑚𝑖𝑛(𝑣 𝑗𝑑, 𝑥𝑑); 1 ≤ 𝑑 ≤ 𝑟

𝑤 𝑗𝑑 ← 𝑚𝑎𝑥(𝑤 𝑗𝑑, 𝑥𝑑); 1 ≤ 𝑑 ≤ 𝑟
(2.1)

Where 𝑥𝑑 is the value of sample x at 𝑑 − 𝑡ℎ dimension. 𝑟 shows the number of feature space

dimensions, and 𝑣 𝑗𝑑 and 𝑤 𝑗𝑑 are respectively 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 and 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 points at the 𝑑 − 𝑡ℎ

dimension of hyperbox 𝑏 𝑗 . Figure 2.4 shows how the hyperbox 𝑏 𝑗 is expanded to involve the

sample x. In this example, 𝑣 𝑗2 and 𝑤 𝑗1 are changed to expand the hyperbox.

During this process, The maximum size of hyperboxes is limited by the user-defined parameter

𝜃, which in datasets with features scaled in the range [0-1] are between 0 and 1. If no expandable
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Figure 2.4 Expansion of hyperbox 𝑏 𝑗 to involve sample x

hyperbox is found, a new hyperbox is created with min and max points equal to the corresponding

points of the sample. Generally, the larger 𝜃, the fewer hyperboxes are created, and the system is

simpler. However, as the 𝜃 gets large, the system may underfit the data, which causes increasing

errors. On the other hand, small 𝜃 creates more hyperboxes that potentially cause overfitting.

Each hyperbox covers, in addition to its internal space, a part of its surroundings according to a

fuzzy membership function. The covered domain by hyperboxes is defined by the following

equation:

𝑏 𝑗 = {v 𝑗 ,w 𝑗 , 𝑚 𝑗 (x)} ∀x ∈ 𝐼𝑟 (2.2)

where, x = {𝑥1, 𝑥2, ..., 𝑥𝑟} is a single data point. w 𝑗 = {𝑤 𝑗1, 𝑤 𝑗2, ..., 𝑤 𝑗𝑛} and v 𝑗 =

{𝑣 𝑗1, 𝑣 𝑗2, ..., 𝑣 𝑗𝑟} are min and max points respectively. 𝑚𝑗 is the membership function of

the hyperbox 𝑏 𝑗 and 𝐼𝑛 represents an 𝑟 dimensional feature space.

2.2.2 Membership Function

The membership function is a fundamental element in the hyperbox-based approach (Gabrys & Bargiela

(2000); Simpson (1992)), being employed to quantify the degree of membership or association

of an arbitrary example to the hyperbox 𝑏 𝑗 . This membership function is often defined such that

the membership degree within the hyperbox 𝑏 𝑗 is equivalent to one, and decreases as the data

point drifts away from the hyperbox. According to the fuzzy min-max neural networks literature
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Figure 2.5 Hyperbox’s Membership function in GFMM approach with its

membership levels

(Khuat et al. (2021b); Kenger & Özceylan (2023)), one of the most important membership

functions has been introduced by Gabrys and Bargiela (Gabrys & Bargiela (2000)) as follows:

𝑚𝑗 (x) = min
𝑖=1..𝑛

(𝑚𝑖𝑛([1 − 𝑓 (𝑥𝑖 − 𝑤𝑖 𝑗 , 𝛾𝑖)],
[1 − 𝑓 (𝑣𝑖 𝑗 − 𝑥𝑖, 𝛾𝑖)])) (2.3)

𝑓 (𝑟, 𝛾) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 𝑟𝛾 > 1

𝑟𝛾 if 0 ≤ 𝑟𝛾 ≤ 1

0 if 𝑟𝛾 < 0

(2.4)

Where 𝑥𝑖 is the 𝑖𝑡ℎ dimension of the sample x, and 𝛾 is the sensitivity parameter that regulates how

fast the membership values decrease out of the hyperbox. Figure 2.5 illustrates the membership

value levels defined by this equation inside and around a two-dimensional hyperbox. However, in

some cases, this membership function assigns a higher membership to further samples because

of its sharp corners. For example, in figure 2.5, points 𝑃 and 𝑆 have the same membership
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degree while 𝑆 is farther than 𝑃 to the hyperbox. This issue can affect the accuracy of the

system. Therefore, designing a new membership function with smoother corners can improve

the efficiency of hyperbox-based systems.

2.3 The proposed FH-DES framework

2.3.1 System Overview

In this paper, we present the Fuzzy Hyperbox-based Dynamic Ensemble Selection (FH-DES)

framework, which employs fuzzy hyperboxes to select the ensemble of classifiers containing the

most competent ones for classifying each unknown sample. These hyperboxes are analogous to

the hyperboxes of FMM neural networks, except that they are assigned to individual classifiers

rather than classes and domains. There are two options to generate the required hyperboxes.

In the first way, the correct classified samples of each classifier are used to generate the

hyperboxes (called positive hyperboxes). These hyperboxes delimit the regions in the feature

space where a classifier is competent. In other words, regions where it predicts the correct

label accurately. In the second option, the hyperboxes of the classifier are generated based on

its misclassified samples (called negative hyperboxes). The combination of these hyperboxes

represents the regions where the classifier is inaccurate. Hence, FH-DES can model the strengths

and weaknesses of the classifier, in contrast to other DS approaches where the classifiers are

only evaluated based on their strengths (competence) (Cruz et al. (2018a)). Figure 2.6 shows

the training and generalization phase of the proposed framework. The training phase contains

Hyperbox Creation and during the generalization phase Ensemble Selection process is conducted.

In the Hyperbox Creation step, the performance of base classifiers is evaluated using both

correctly and misclassified samples. Positive hyperboxes (𝐻+
𝑖 ), which indicate competence

regions, are created from correctly classified samples (𝑆+𝑖 ), while negative hyperboxes (𝐻−
𝑖 ),

representing incompetence regions, are formed using misclassified samples (𝑆−𝑖 ). The utilization

of misclassified samples is advantageous due to their tendency to reside in informative boundary

regions of classification tasks, as most classifiers make errors close to the class boundaries
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rather than close to the class means. Moreover, usually, there are fewer misclassified points than

correct ones, and that leads to less complex systems as fewer samples are needed for the training

and generalization steps.

During the Generalization step, as a new x𝑞 is presented to the system, its membership degree

related to each computed hyperboxes is calculated to estimate each base classifier’s competence

level. If positive hyperboxes are employed, the membership degree computed over positive

hyperboxes directly reflects the classifier’s competence level. Conversely, when negative

hyperboxes are utilized, the membership degree is subtracted from 1 to identify the classifiers

more likely to be competent in classifying the query sample. After estimating their competencies,

a selection threshold is computed based on all estimated competence levels, and used to filter

out the most competent classifiers to compose the ensemble 𝜙(x𝑞). Then, the outputs of the

selected classifiers are combined using the weighted majority-voting algorithm regarding the

calculated competence levels as in (Cruz et al. (2019b)).

2.3.2 Training phase

The FH-DES training phase involves the generation of hyperboxes to delineate the correct and

misclassified samples for each base classifier 𝑐𝑖. This hyperbox creation process is analogous to

the hyperbox create-adjustment process in FMM neural networks (Subsection 2.2.1). For each

classifier 𝑐𝑖, two sets of samples are used: correctly classified samples (𝑆+𝑖 ) and misclassified

samples (𝑆−𝑖 ). They are used to generate the hyperboxes, with 𝑆−𝑖 used to create the negative

hyperboxes and 𝑆+𝑖 used to prevent unauthorized growth. When generating the negative

hyperboxes, a sample x𝑡 is taken from 𝑆−𝑖 , and a hyperbox in 𝐻−
𝑖 is found, which encompasses

x𝑡 . If such a hyperbox is found, x𝑡 is omitted from the learning process, and no new hyperbox

is created. If no such hyperbox exists, then one is created at the same data point. At all times,

the negative hyperboxes should exclusively contain misclassified samples; if this is not the

case, then a contraction mechanism should be implemented to shrink the expanded hyperbox.

Algorithm 2.1 formalizes this process based on misclassified samples, generating the list of

negative hyperboxes (𝐻−
𝑖 ) which constitute the incompetence map (Figure 2.3 (b)). If the system
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is instead based on a competence map (Figure 2.3 (a)), then the correctly classified samples (𝑆+𝑖 )

are used in the main loop of the algorithm (line 2) to generate the positive hyperboxes (𝐻+
𝑖 ).

Algorithm 2.1 Hyperbox creation process in the training phase (based on misclassified samples)

Input: 𝑆−𝑖 , 𝑆
+
𝑖

1 𝐻−
𝑖 = {} ;

2 for each x𝑡 in 𝑆−𝑖 do
3 if the maximum membership of x𝑡 in 𝐻−

𝑖 is lower than 𝜆 then
4 Sort 𝐻−

𝑖 hyperboxes based on their centroids distance to x𝑡

5 Select subset 𝐻∗ ⊆ 𝐻−
𝑖 based on hyperbox selection strategy (subsection 2.3.2.1)

6 if There is any expandable hyperbox, 𝑏𝑒 in 𝐻∗ according to expansion criterion
(subsection 2.3.2.2) then

7 Expand 𝑏𝑒 to contain x𝑡 .

8 if 𝑏𝑒 contains any sample of 𝑆+𝑖 or causes any overlap then
9 Contract 𝑏𝑒 to handle overlap according to the contraction strategy

(subsection 2.3.2.3).
10 end if
11 end if
12 else
13 Create a new hyperbox at the x𝑡 data point and add it to 𝐻−

𝑖 .

14 end if
15 end if
16 end for
17 return 𝐻−

𝑖

In traditional hyperbox-based algorithms, training samples that are located inside one of the

current hyperboxes belonging to the same class are not processed and kept by the system because

they do not have any influence on the learned hypothesis. In other words, they do not change the

current set of hyperboxes distributions and do not need further processing. All other samples

are engaged in the learning process as they can affect the hyperboxes distribution either by

expanding or contracting existing ones or by generating an entirely new hyperbox. These steps

occur even for samples with high membership degrees to any of the existing hyperboxes sharing

the same class. Processing these samples may lead to the creation of unnecessary hyperboxes

and increase the computational complexity during training and generalization. Thus, in this
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paper, we propose using a learning sensitivity, hyperparameter (𝜆) to define a threshold and

determine samples that do not need to be engaged in the learning process.

This hyperparameter can control the computational complexity of the model. Setting 𝜆 = 1

implies that all samples are taken into account in the learning process, analogous to FMM

techniques (Khuat & Gabrys (2020)), regardless of the membership values computed for the

hyperboxes. Conversely, lowering this value allows for the system to scale to large datasets

as fewer samples are used in the learning process. Moreover, fewer hyperboxes are generated,

leading to a lower number of stored hyperboxes and membership calculations that need to be

performed during inference. Therefore, if accuracy is a priority over computational cost in small

to medium-sized classification problems, it is preferable to set it to 1. On the other hand, for

large-scale problems, the value can be decreased, as only samples with maximum membership

values to the same class’s hyperboxes that are lower than 𝜆 will be engaged in the learning

process; if not, the process will be terminated for x𝑡 , and the next learning sample will be

selected.

If the maximum membership value is lower than 𝜆 (line 3), the training sample is deemed

important, and the adjustment-creation step from the hyperbox learning process is activated.

In this case, hyperboxes within 𝐻−
𝑖 are sorted in ascending order with respect to their centroid

distance from the sample x𝑡 (Line 6). Then, the expansion candidates hyperboxes are selected

regarding Hyperbox Selection Strategy (subsection 2.3.2.1). In the next step, the expandability of

the selected hyperbox(es) is checked in order of distance. This step aims to find the best hyperbox,

among the selected ones, to be expanded to contain x𝑡 . This step is conducted according to the

Hyperbox Expansion criterion (subsection 2.3.2.2). If any hyperbox is expanded, the final step is

to validate whether the expanded hyperbox exceeds its region leading to hyperbox overlap (line

11). In a case where such overlap occurs, the contraction procedure removes possible overlaps by

shrinking the concerning hyperbox with respect to Hyperbox Contraction Strategy (subsection

2.3.2.3). If none of the selected hyperboxes can be expanded, a new hyperbox is created at the

same point and added to 𝐻−
𝑖 (lines 13 to 15). Hence, the training process consists of three main
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steps: Hyperbox selection, Hyperbox expansion, and Hyperbox contraction, which are described

in the following subsections.

2.3.2.1 Hyperbox Selection

The candidate hyperboxes are selected and passed to the expansion state in this step. There are

two strategies for selecting hyperboxes. The first strategy is selecting all hyperboxes in 𝐻−
𝑖 ,

which means that all existing hyperboxes in 𝐻−
𝑖 are selected and passed to the expansion state.

And the second option is selecting the nearest hyperbox from the sample x𝑡 in which the first

hyperbox of the sorted list (with the closest centroid) is selected and passed to the next state. In

the first selection strategy, similar to FMM neural networks, all hyperboxes are selected and

checked to find an expandable hyperbox. However, checking the expandability of all hyperboxes

may impose high computational complexity on the system for dealing with large data volumes.

Furthermore, the closest hyperbox likely requires the smallest increase in size to include the

sample x𝑡 . Thus, if this hyperbox cannot satisfy the expansion criterion, the other hyperboxes

that requires a bigger increase in hypervolume are even more likely to exceed the expansion

limitation and invalidate the expansion criterion.

In the second selection strategy, only the hyperbox with the closest centroid to the query sample

is selected. It could be a cheaper way to decrease the computational complexity of the FH-DES

system in the training phase. However, it may lead to the creation of more hyperboxes that

increase computational complexity in the generalization phase. The performance of both

selection strategies is investigated in the experimental section.

2.3.2.2 Hyperbox Expansion

This phase aims to expand the selected hyperbox(es) to contain the sample x𝑡 . Only one

expandable hyperbox is needed, so the rest of the hyperboxes are not checked if any expandable

one is found. The found hyperbox is expanded and passed to the contraction state in this case.

Otherwise, a new hyperbox is created to accommodate the training instance.
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Figure 2.6 The proposed FH-DES framework. (a) Training phase; during this phase,

all required hyperboxes are formed for each base classifier 𝑐𝑖. 𝑆−𝑖 is the set of samples

that were misclassified by 𝑐𝑖. 𝐻−
𝑖 is the set of negative hyperboxes formed based on 𝑆−𝑖

and belongs to the classifier 𝑐𝑖. (b) Generalization phase, the membership degree of

each hyperbox is calculated. So the maximum membership degree among the

hyperboxes which belong to the classifier 𝑐𝑖 is reported as the competence level of

classifier 𝑐𝑖. The best ensemble of classifiers 𝜙(x𝑞) is selected based on their

competence level estimation. Finally, the output of selected classifiers is aggregated

using the weighted majority-voting method
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Similarly to the FMM neural network learning process, hyperboxes cannot be extended infinitely,

and we need a strategy to limit its expansion. In this paper, we consider two criteria to prevent

the excessive expansion of hyperboxes. In the first approach, we use the hyperparameter 𝜃 in the

same way as used in FMM neural networks (Khuat et al. (2021b)). So 𝜃 works as a threshold to

control the maximum hyperbox size as defined in Equation 2.5. Generally, the smaller 𝜃, the

more hyperboxes are created. So this hyperparameter decides how many hyperboxes will be

created. After the expansion process also, all dimensions of hyperboxes should be smaller than

𝜃 otherwise the expansion is not acceptable.

𝜃 ≥ max
∀𝑑

(𝑤 𝑗𝑑 − 𝑣 𝑗𝑑); 1 ≤ 𝑑 ≤ 𝑛 (2.5)

In the second approach, similar to the IOL-GFMM algorithm (Khuat et al. (2020)), an overlap

pre-checking process is utilized as an expansion criterion. This process aims to prevent hyperbox

expansion only if it leads to an overlap (conflict area). So, in this process, all possible overlaps

are checked before doing the expansion. If the expansion causes any overlap, it will be prevented,

and another hyperbox will be selected for expansion. Otherwise, the hyperbox is selected as an

expandable hyperbox. Therefore, this approach allows hyperboxes to expand as much as it does

not cause any overlap. The pseudocode of this expansion stage using the overlap pre-checking

criterion is represented in the Algorithm 2.2. This algorithm is based on misclassified samples

and negative hyperboxes; if positive hyperboxes are used, the misclassified sample should be

utilized to confine these hyperboxes (line 5).

It should be noted that when we use the pre-check approach, no overlap occurs during the

competence hyperbox creation process, as an expansion only occurs when it does not invalidate

any of the exceeding conditions. Therefore, we do not need to use the contraction mechanism.

Furthermore, the pre-check approach allows us to eliminate the hyperparameter 𝜃, which controls

the maximum size a hyperbox can grow and can significantly influence the performance of the

framework (Davtalab et al. (2022)). However, this approach can generate many hyperboxes

in the boundary regions of large-scale problems because there are many negative and positive
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Algorithm 2.2 Hyperbox Expansion process using Overlap pre-checking criterion (based on

misclassified samples)

Input: x𝑡 , 𝐻
∗

1 for each 𝑏𝑒 in 𝐻∗ do
2 𝑏𝑐𝑎𝑛𝑑𝑖𝑑 ← a copy of 𝑏𝑒 ; /* Consider a copy of the current hyperbox

as candidate hyperbox */
3 Expand 𝑏𝑐𝑎𝑛𝑑𝑖𝑑 to contain x𝑡 (using Equation 2.1)

4 if Any correct classified sample is located in 𝑏𝑐𝑎𝑛𝑑𝑖𝑑 or the expansion causes any
overlap then

5 Reject 𝑏𝑒 and check the next hyperbox ; /* Candidate hyperbox is not
acceptable */

6 end if
7 else
8 return 𝑏𝑒 ; /* Stop the process and return 𝑏𝑒 as an expandable

hyperbox */

9 end if
10 end for

hyperboxes and samples which prevent any expansions of current hyperboxes. So for each new

DSEL sample more likely a new tiny hyperbox is created. Figure 2.7 illustrates how a large

number of samples cause the creation of tiny hyperboxes in boundary regions. As such, this

approach may suffer in the face of large-scale problems and incremental learning.

2.3.2.3 Hyperbox Contraction

Each hyperbox expansion might lead to hyperbox overlap. In the contraction state, these overlaps

should be discovered and handled. In this paper, we investigate two types of contraction

mechanisms. The first approach is Hyperbox-based Contraction, which is similar to the

contraction process of the original FMM neural networks (Simpson (1992)). In the second

approach, Instance-based Contraction is proposed that uses correct-classified samples to discover

overlaps.

In the hyperbox-based approach, the same original FMM contraction process (Simpson (1992);

Gabrys & Bargiela (2000)) is used to handle the overlaps. In this process, to have the minimum

adjustment, the smallest dimension of the overlapped area is selected to shrink the overlapped

hyperboxes. However, in the proposed approach we have positive and negative hyperboxes
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Figure 2.7 Overlap pre-check problem in large-scale datasets. In the

first row, there is a sparse dataset. The purple sample has arrived recently.

The red hyperbox expands to contain the new sample. Since no correct

classified sample falls inside the hyperbox (no overlap), the expanded

hyperbox is preserved. In the second row, we have the same problem

with more samples. When the hyperbox is expanded to contain the new

sample (purple sample), it also contains a correct classified sample. So,

the expansion is canceled (the expanded hyperbox returns to the

previous state), and a new hyperbox is generated for the purple sample

(𝐻+
𝑖 and 𝐻−

𝑖 ) instead of hyperboxes of different classes. Therefore, both positive and negative

hyperboxes are needed to find and handle overlaps. However, only one hyperboxes set is used in

the generalization phase. When the framework works based on misclassified samples, only the

negative hyperboxes (𝐻−
𝑖 ) are kept. The pseudocode of this method is illustrated in Algorithm 2.3.

If the framework is based on positive samples, in this algorithm, the set of negative hyperboxes

(𝐻−
𝑖 ) is used to find overlapped areas (line 1). Figure 2.8(a) represents how hyperbox-based

contraction eliminates the conflict area.
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Figure 2.8 Illustration of the hyperbox-based and instance-based

contraction strategies. (a) Hyperbox-based contraction: The given new

sample (star) was misclassified by 𝑐1, and the nearest negative hyperbox of

this classifier is expanded to contain it. However, this expansion leads to an

overlap. So the contraction mechanism is activated, shrinking the involved

hyperbox. (b) Instance-based contraction: the nearest negative hyperbox of

this classifier is expanded to contain the given sample. However, after this

expansion, a correct-classified sample falls inside the expanded hyperbox. So

the contraction mechanism is activated to shrink this hyperbox

Algorithm 2.3 Hyperbox-based Contraction Process (based on misclassified samples)

Input: 𝑏𝑒, 𝐻
+
𝑖

1 if there is any overlap between the expanded box and hyperboxes of 𝐻+
𝑖 then

2 for each overlap area do
3 Contract 𝑏𝑒 and the overlapped hyperbox

4 end for
5 end if

On the other hand, in the instance-based contraction approach, we do not need to inform

both negative and positive hyperboxes to perform the contraction mechanism. Instead, the

correct-classified samples (𝑆+𝑖 ) are used to discover overlaps and confine negative hyperboxes

of the classifier (𝐻−
𝑖 ). Figure 2.8(b) represents how the instance-based contraction handles the
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conflict area. The pseudocode of this approach is illustrated in Algorithm 2.4. As this model

does not need to keep and manage two sets of hyperboxes, i.e., negative and positive, it will

likely be more suitable for fast online training.

Algorithm 2.4 Sample-Based Contraction Process (based on misclassified samples)

Input: 𝑏𝑒

1 if there is any correct classified sample located in 𝑏𝑒 then
2 for each correct classified samples x𝑡 located in 𝑏𝑒 do
3 𝑠ℎ𝑟𝑖𝑛𝑘(𝑏𝑒,x)

4 end for
5 end if
6

7 𝑠ℎ𝑟𝑖𝑛𝑘(𝑏𝑒, x) ; /* x = {𝑥1, 𝑥2, ..., 𝑥𝑛} */
8 for each dimension 𝑑 in feature space do
9 if (𝑥𝑑 − 𝑣𝑒𝑑) < (𝑤𝑒𝑑 − 𝑥𝑑) then

10 𝑣𝑒𝑑 = 𝑥𝑑
11 end if
12 else
13 𝑤𝑒𝑑 = 𝑥𝑑
14 end if
15 end for
16 return 𝑏𝑒

2.3.3 Generalization phase

The generalization phase in FH-DES consists in selecting the most competent models for the

prediction of each new query, x𝑞, presented to the system. Its main steps are presented in

Algorithm 2.5. The first step consists in estimating the competence level of each base classifier

𝑐𝑖. This process is conducted based on its set of hyperboxes generated during the training phase

(e.g., 𝐻+
𝑖 for positive modeling, 𝐻−

𝑖 for negative modeling) and a membership function which is

used to estimate the membership value of x𝑞 to each hyperbox.

The competence level of each classifier 𝑐𝑖 for the classification of x𝑞 is measured based on the

calculated membership degree between x𝑞 and its set of hyperboxes, which is performed based

on a membership function. In this work, we propose a new membership function with smoother
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borders, called Smooth Borders Membership (SBM), in order to tackle the problems of Gabrys’

membership function that suffers from sharp borders as presented in Section 1.3. The proposed

SBM is shown in Equation 2.6.

Algorithm 2.5 Generalization process

Input: x𝑞

1 for each 𝑐𝑖 in 𝐶 do
2 Calculate the membership value 𝑚𝑗 to all hyperboxes

3 Calculate the competence 𝛿𝑖 (x𝑞) by eq 2.7,2.8

4 end for
5 Compute the selection threshold 𝜏𝑞 by eq 2.9

6 Select the ensemble of classifiers 𝜙(x𝑞) using eq 2.10

7 Aggregate outputs of selected classifiers using eq 2.11 to obtain the prediction 𝑦̂ Return 𝑦̂

𝑚 𝑗 (x𝑞) = ( | |𝑅𝑒𝐿𝑈 ( |o 𝑗 − x𝑞 | − (w 𝑗 − v 𝑗 )/2) | |2)2 (2.6)

where o 𝑗 denotes the center of the hyperbox 𝑏 𝑗 , v 𝑗 and w 𝑗 represent the minimum and maximum

corners, respectively. | |.| |2 indicates the L2-norm, and 𝑅𝑒𝐿𝑈 (·) is the Rectified Linear Unit

(ReLU) (Fukushima (1975)) function. The membership levels of SBM are depicted in Figure 2.9,

which exhibits smooth corners that result in closer data points receiving a higher membership

level. This is in contrast to Gabrys’s membership function (Figure 2.5), where point 𝑃 is closer

to the hyperbox than point 𝑆 yet has a lower membership estimation. This property consequently

provides better membership value estimates across the set of hyperboxes, leading to increased

accuracy (Davtalab et al. (2022)).

Note that in some cases, a noisy data point may cause a hyperbox to be formed in an undesirable

position leading to an inaccurate final decision. To address this issue, we consider the top two

hyperboxes with the highest membership value (𝑚𝑖+) and aggregate their membership values to

compute the competence level of the base classifier 𝑐𝑖, denoted by 𝛿𝑖 (x𝑞)). We refer to these

hyperboxes as the strong hyperboxes of 𝑐𝑖. Thus, when the proposed framework works based on
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Figure 2.9 The proposed Smooth-Border membership

function (SBM) utilized in the proposed FH-DES framework

correctly classified samples, the competence of the classifier 𝑐𝑖 to classify the query sample x𝑞

can be calculated as follows (Equation 2.7):

𝛿𝑖 (x𝑞) = (𝑚𝑖∗ + 𝑚𝑖+)/2 (2.7)

Analogously, when the framework is based on modeling misclassified samples, the competence

of classifiers is calculated as follows (Equation 2.8):

𝛿𝑖 (x𝑞) = 1 − (𝑚𝑖∗ + 𝑚𝑖+)/2 (2.8)

After obtaining the competence estimates of all base models, the system proceeds to the selection

process. In this phase, models are chosen based on their competence level estimates, with a

focus on identifying those more inclined towards making correct label predictions. The selection

process initiates by estimating a threshold, denoted as 𝜏𝑞, that is defined based on the competence

estimates computed for x𝑞 (Equation 2.9). This threshold plays a pivotal role in filtering the best

classifiers to compose the ensemble.



73

𝜏𝑞 = 𝜇 × max
𝑖=1..𝑀

(𝛿𝑖 (x𝑞)) (2.9)

where 𝜇 is a predefined hyperparameter set in a range between 0 and 1. Classifiers whose

competence is higher than this threshold are deemed competent and are selected to compose

the ensemble. Therefore, the final ensemble of classifiers for the classification of x𝑞 (𝜙(x𝑞)) is

formed considering the threshold 𝜏𝑞 according to Equation 2.10.

𝜙(x𝑞) = {𝑐𝑖 |𝛿𝑖 (x𝑞) ≥ 𝜏𝑞} (2.10)

It is important to mention that, When 𝜇 equals one, only the most competent classifier(s) is

selected. Lower 𝜇 values lead to a more permissive classifier selection system, increasing the

number of selected experts for performing the final decision.

Finally, in the aggregation step, the outputs of the selected classifiers are combined with weighted

majority voting such that classifiers with higher competence estimates (𝛿𝑖 (x𝑞) have a greater

influence on the final decision (Cruz et al. (2015c)). Equation 2.11 formalizes the weighted

majority voting used by FH-DES.

𝑦̂ = 𝑎𝑟𝑔 max
Ω

∑
∀𝑙 ∈Ω

𝛿𝑖 (x𝑞) | 𝑐𝑖 (x𝑞) = 𝑙, 𝑐𝑖 ∈ 𝜙(x𝑞) (2.11)

Where Ω represents the set of class labels. The choice for weighted majority voting in this work

is grounded on the DS literature, as the majority of DS methods are based on majority voting. In

particular, we use the weighted version based on competence estimates since the work presented

in (Cruz, Sabourin & Cavalcanti (2015a)) demonstrated that a weighed voting scheme leads

to improved accuracy. This aggregation rule is interesting since it only requires the predicted

labels, which allow aggregating responses of heterogeneous classifiers as well as models that are

not well calibrated for predicting reliable probability scores.
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2.3.4 Case Study

Case I. To illustrate how the proposed approach works, consider two classifiers (𝑐1 and 𝑐2) that

we wish to combine into an ensemble. 𝑐1 labels all samples as class A (purple), while 𝑐2 labels

them as class B (yellow). This implies that, for each unknown sample, there exists a classifier

that accurately classifies it. Figure 2.10 illustrates an example of the classification of a query that

is close to the class borders. Let us assume that 𝑏𝑖 and 𝑏 𝑗 are strong hyperboxes of classifier 1,

and 𝑏𝑡 and 𝑏𝑤 are strong hyperboxes of classifier 𝑐2 at the given point and are highlighted in bold.

The degree of membership of these hyperboxes is: 𝑚𝑖 = 0.7, 𝑚𝑗 = 0.2, 𝑚𝑡 = 0.3, 𝑚𝑤 = 0.2, and

𝜇 = 0.9. Using this information, the competence of each classifier around the data point x𝑞 is

computed (Equation (2.7)), giving 𝛿1(x𝑞) = 0.55 and 𝛿2(x𝑞) = 0.75 for 𝑐1 and 𝑐2, respectively.

The threshold parameter 𝜏𝑞 = 0.675 is then calculated based on the membership degree of the

strongest hyperbox (Equation (2.9)). This threshold leads to the selection of 𝑐2 only. Therefore,

the predicted label of the sample x𝑞 is 𝐵, which is a correct decision. In contrast, the low sample

density close to the class boundary can lead to wrong decisions in the KNN-based approaches.

Figure 2.10 Performance of the proposed approach in the

boundary regions

Case II - P2 problem example. In a more detailed example, we used the same classifiers (𝑐1

that labels all samples as class yellow, and 𝑐2 that labels them as purple) to solve the problem P2
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(Cruz et al. (2015b)) and compared the performance of the proposed framework and KNN-based

DES techniques such as KNORA-E, KNORA-U, OLA, DES-KNN, and META-DES (with k=7).

The problem P2 (Figure 2.11 (a)) is a binary classification with complex non-linear borders where

classes are defined in multiple decision regions determined by polynomial and trigonometric

functions (Figure 2.11) (Cruz et al. (2017a)). In this problem, both classes have the same prior

probability, and there are no overlapping regions between the two classes. Therefore, this dataset

can be a good choice for visualizing the modeling behavior of different classification systems.

According to the obtained results, 48 samples of 500 test data were misclassified by all KNN-

based approaches, while each query sample is classified correctly by one of the base classifiers.

These errors are represented by red star markers in Figure 2.11 (b). Most of these common

misclassified samples are located in regions where the local distributions of DSEL samples are

not uniform and are more likely errors due to KNN’s performance. Thus, showing how relying

just on KNN can limit DS systems. On the other hand, the FH-DES framework solved this

problem only using 61 hyperboxes and obtained higher accuracy than KNN-based approaches.

This framework could correctly classify 21 out of these 48 samples. These samples are shown

as green pentagons in Figure 2.11.

This example shows that the proposed framework can address some drawbacks of KNN-based

approaches and is more robust against the problems related to the local distributions of data,

namely regions with lower sample density as well as local imbalanced class distributions.

Case III - The impact of contraction mechanism in the training process. As mentioned

earlier, a preliminary version of FH-DES has been proposed in (Davtalab et al. (2022)) used

one group of misclassified or correct-classified samples during the training stage to create the

hyperboxes set. Therefore, it did not employ contraction mechanism or any other alternative to

confining the hyperboxes in their desired area as its training process has no knowledge about

the right boundaries from the regions of competence and incompetence of a given classifier.

Thus, allowing them to grow in unauthorized regions, hindering the system’s performance for

incremental learning and large datasets.
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Figure 2.11 Evaluating the proposed framework and KNN-based DES

approaches on the P2 problem. a) The DSEL set and classes domains in p2

problem. b) The P2 Test set. The common misclassified samples by

KNN-based DES approaches are highlighted in red. Instances with green

pentagons are the ones that were corrected by FH-DES

To illustrate the impact of the contraction mechanism, the P2 problem and pool of classifiers

composed of two classifiers are considered in this analysis.

In this example, the base classifiers are simple Perceptron linear models trained using 1000

training samples (500 instances for each class). The class domain determined by the classifier 𝑐1

on the P2 problem is shown in Figure 2.12(b), and the performance of 𝑐2 is shown in Figure

2.12(c). In this figure, samples of different classes are shown by small yellow and purple circles.

The predicted class domains by the classifiers are highlighted in yellow and purple as well.

Assume three samples x1, x2, and x3 that are presented to the system as shown in figures

2.12(d), (e), and (f), respectively. In this example, x1 and x2 are misclassified samples of the

related classifier. However, x3 is the correct classified one. Therefore, x1 and x2 are used to

build the negative hyperbox (es); however, x3 is neglected. With the arrival of the sample

x1, the first hyperbox is created at the same location (Figure 2.12(d)). When x2 appears, the

hyperbox is expanded to involve x2 (Figure 2.12(e)). This hyperbox is supposed to represent
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Figure 2.12 (a) Class areas in P2 Problem and the decision boundary of 𝑐1

and 𝑐2, (b) Classes domains determined by classifier 𝑐1, (c) Classes domains

determined by classifier 𝑐2, (d) Creating a negative hyperbox by arriving the

first sample, (e) Expanding the hyperbox to include x2, and (f) A

correct-classified sample falling inside the negative hyperbox

the incompetence area, however, by the expansion process, it exceeds the competence areas

(shown by blue hash). In the third step, x3 arrives. As shown in Figure 2.12(f), x3 has fallen

into the negative hyperbox, but it has been neglected because it is a correct classified sample.

Therefore, without a contraction mechanism, we cannot correct the errors that occurred during

the training process, as shown in Figure 2.12(f). To solve this problem, negative hyperboxes

should be confined to “incompetence regions”. To do so, in this paper, we used misclassified

samples to create the negative hyperboxes and also correct-classified samples to confine these

hyperboxes in incompetence areas during the training phase. However, only negative hyperboxes

of the classifiers are passed to the generalization phase.
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In addition, Figure 2.13 illustrates how the proposed framework can solve this problem utilizing

the contraction mechanism. In the first row of this example, the same classifiers are shown as

in the example in Figure 2.12. In addition, the hyperboxes were created and adjusted with the

contraction mechanism. On the left-hand side of the second row, the classification result of

the proposed approach without the contraction mechanism is shown. The same result using

the contraction mechanism is shown on the right-hand side. As observed, no correct-classified

sample has fallen inside the negative hyperboxes, which results in a more accurate system.

2.3.5 Computational and storage complexity

The main steps for selecting the most competent models in DES techniques are defining the

region of competence and applying the competence estimation criterion over this region. During

the region of competence estimation step, KNN-based DS approaches require computing the

distances between the new input x𝑞 and all other samples belonging to DSEL. Given that this set

comprises 𝑁 examples, such methods require storing all these 𝑁 examples for inference and

computing the distances between the query and all DSEL samples. Hence, it has a computation

and storage cost that increases linearly with the DSEL size (O(𝑁)).

Following the computation of regions of competence, these techniques proceed to estimate the

competence of each base model within the pool. This competence estimation corresponds to

applying a specific criterion over the k nearest instances. As the ensemble comprises a total of

𝑀 base models, the estimation procedure necessitates 𝑀 × 𝑘 applications of the competence

criterion to derive the competence estimates for each base model.

In contrast, in the proposed framework, we eliminate the need to keep DSEL instances as

the hyperboxes summarize a whole region of the feature space. Given that 𝑒 is the total

number of hyperboxes (i.e., contains the hyperboxes characterizing the regions of competence or

incompetence of all base models) found after the training stage, the total memory cost consumed

by the model in the worst-case scenario is 2× 𝑒. However, in real-world applications, the number

of hyperboxes is usually significantly lower than the number of training instances (𝑒 << 𝑁)
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Figure 2.13 Generated hyperboxes using the contraction mechanism on the

example of Figure 2.12 (First row) and defined the class domain by the

proposed framework without the contraction mechanism (left side of the

second row, accuracy = 78.5%) and the same result using the contraction

mechanism (right side of the second row, accuracy = 81.2%)

as previously presented in (Davtalab et al. (2022)). So that the storage cost does not increase

linearly with the dataset size. Moreover, the proposed method estimates the competence of the

base experts by computing the membership function to all hyperboxes, which requires a total

of 𝑒 calculation. Our proposed method, thus, has a complexity that increases linearly with the

number of hyperboxes generated (O(𝑒)).
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Thus, based on the assumption that (𝑒 << 𝑁), the computational complexity of the proposed

method is greatly reduced as it does not increase linearly with the dataset size. The whole

competence estimation procedure for the proposed method consists of O(𝑒) membership

calculations, while for state-of-the-art DES methods such as the META-DES (Cruz et al.

(2015c)). This principle extends to memory cost considerations as well; while each hyperbox

comprises a pair of instances (representing the minimum and maximum corners), the overall

count of hyperboxes generated by the system remains significantly lower than the total number

of instances present in the dataset. Thus, leading to a much smaller memory footprint.

2.4 Related Work

2.4.1 Dynamic Selection

In DS approaches, classifiers are selected based on their estimated competence level to classify

the given unknown sample x𝑞 is estimated. Then the outputs of selected classifiers are aggregated

to label x𝑞. There are a lot of details within these simple steps that have led to the creation of a

wide variety of DS systems (e.g., region of competence definition, selection criterion). Table

2.2 presents state-of-the-art DS approaches and categorizes them according to the main criteria.

This section focuses on the main aspects of DS systems and its difference from our proposed

framework.

2.4.1.1 Region of Competence (RoC)

Different DS approaches use different ranges of samples to estimate the competence of classifiers.

Most state-of-the-art DS approaches define a subset of DSEL samples that are more related to

the query sample. For example, KNORA-U (Ko et al. (2008)), KNORA-E (Ko et al. (2008)),

KNOP (Cavalin et al. (2013)), META-DES (Cruz et al. (2015d)), META-DES-Oracle (Cruz et al.

(2017a)), DSOC (Brun et al. (2016)), DISi (Pereira et al. (2018)), DDES (Choi & Lim (2021)),

DES-hesitant (Elmi & Eftekhari (2020)), and MLS (Elmi & Eftekhari (2021)), cluster-based DS

approaches like (Soares et al. (2006)), and Graph-Based approaches (Hou et al. (2016); Li et al.
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Table 2.2 Categorization of state-of-the-art dynamic selection techniques based on the

main properties investigated in this paper. OB, TB, and PB stand for Output-Based,

Threshold-Based, and Probability-Based selection, respectively. Techniques are ordered

based on their publication year

Technique RoC Definition Construction Phase Selection criterion Selection Type Year

DCS-Rank (Sabourin et al. (1993)) KNN Generalization Ranking OB 1993

OLA (Woods et al. (1997)) KNN Generalization Accuracy OB 1997

LCA (Woods et al. (1997)) KNN Generalization Accuracy OB 1997

MCB (Giacinto & Roli (2001)) KNN Generalization Behavior OB 2001

MLA (Smits (2002)) KNN Generalization Accuracy OB 2002

DES-Cluster (Soares et al. (2006)) Clustering Training Accuracy & Diversity TB 2006

DES-KNN (Soares et al. (2006)) KNN Generalization Accuracy & Diversity TB 2006

KNORA-U (Ko et al. (2008)) KNN Generalization Oracle TB 2008

KNORA-E (Ko et al. (2008)) KNN Generalization Oracle TB 2008

DES-RRC (Woloszynski & Kurzynski (2011)) Potential Function Generalization Probabilistic TB 2011

DES-P (Woloszynski et al. (2012)) Potential Function Generalization Probabilistic TB 2012

DES-KL (Woloszynski et al. (2012)) Potential Function Generalization Probabilistic TB 2012

KNOP (Cavalin et al. (2013)) KNN Generalization Behavior TB 2013

META-DES (Cruz et al. (2015d)) KNN Generalization Meta-Learning TB 2015

META-DES.Oracle (Cruz et al. (2017a)) KNN Generalization Meta-Learning TB 2017

DSOC (Brun et al. (2016)) KNN Accuracy & Complexity Generalization TB 2016

CHADE (Pinto, Soares & Mendes-Moreira (2016a)) Potential Function Generalization Meta-Learning TB 2016

PCC-DES (Narassiguin et al. (2017)) Potential Function Generalization Meta-Learning TB 2017

DISi (Pereira et al. (2018)) KNN Generalization Oracle TB 2018

DDES (Choi & Lim (2021)) KNN Generalization Oracle TB 2021

DES-hesitant (Elmi & Eftekhari (2020)) KNN Generalization Multi criteria TB 2020

MLS (Elmi & Eftekhari (2021)) Multi technique Generalization Multi criteria TB, OB, PB 2021

DES-ML Elmi et al. (2023) ) A multi-label classifier Training Output of classifier OB 2023

OLP++ (Souza et al. (2023)) Recursive partitioning Generalization Output of classifier OB 2023

FH-DES (proposed) Fuzzy Hyperboxes Training Membership Degree TB -

(2019)) define a fixed RoC over the query sample that is used to measure the competence of all

base classifiers. In some DS methods such as OLA and LCA (Woods et al. (1997)), DES-KNN

(Soares et al. (2006)), KNORA-U and KNORA-E (Ko et al. (2008)), RoC defined in feature

space.

Other DS techniques work in decision space in which the similarity between the output profile

of the query sample and the output profiles of the samples in DSEL is used to calculate the

region of competence. Several DS approaches are proposed based on decision space, such

as Multiple Classifier Behavior (MCB) (Giacinto & Roli (2001)), k-Nearest Output Profiles

(KNOP) (Cavalin et al. (2013)) and META-DES (Cruz et al. (2015d, 2017a, 2019a)). In a recent

work, Souza et al (Souza et al. (2023)) proposed a method based on a recursive partitioning

algorithm from decision trees to define regions of competencies for high-dimensional datasets.

However, all base classifiers use the same region of competence in these approaches. Moreover,

they do not take into account correct-classified (positive) samples and misclassified (negative)

samples while defining the region of competence (RoC). While, for the first time in the DS
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field, only one group of positive or negative samples is utilized to estimate the competence

level of the classifiers (Cruz et al. (2018a)). While in the proposed framework, the required

regions (competence or incompetence maps) are defined for each individual classifier regarding

its misclassified or correct-classified sample. This issue can increase the accuracy of the DS

system because a particular competence map is used for each specific classifier to estimate its

competence level.

2.4.1.2 Construction Phase

In most state-of-the-art DS approaches methods (Ko et al. (2008); Cavalin et al. (2013); Cruz

et al. (2015d); Pereira et al. (2018); Choi & Lim (2021); Elmi & Eftekhari (2020, 2021)) the

region of competence is defined during the generalization phase. As the majority of DS methods

are based on the KNN algorithm for this task, it involves computing distances to all instances

in DSEL in order to define this region. From the computational cost point of view, it imposes

a significant prediction cost, particularly when dealing with large datasets. Some recent DS

approaches like DES-ML (Elmi et al. (2023)) and also the proposed framework, the majority of

this process is performed during the training phase. In the proposed approach, the competence

or incompetence maps are formed during the training phase. This leads to less complexity in

the generalization phase compared to current DS approaches. The proposed FH-DES approach

also moves the biggest part of its computational cost to the training phase, that is, the hyperbox

creation step, requiring only the membership calculation during the inference phase. Thus, we

hypothesize it is more efficient for handling large-scale datasets.

2.4.1.3 Selection approach

Regarding the selection approach, dynamic selection techniques are divided into two main

groups: Dynamic Classifier Selection (DCS) and Dynamic Ensemble Selection (DES). In DCS

techniques, only one is selected to classify the query sample x𝑞 while DES selects an ensemble

of classifiers and then aggregates their outputs. From another perspective and according to

the taxonomy proposed in (Elmi & Eftekhari (2021)), DS techniques can be categorized into



83

three groups: Threshold-Based (TB), Output-Based (OB), and Probability-Based (PB). In the

Threshold-Based group, the final classifiers are selected regarding a predefined threshold, KNOP

(Cavalin et al. (2013)), KNORA-E (Ko et al. (2008)), KNORA-U (Ko et al. (2008)), and DES-P

(Woloszynski et al. (2012)) are in this category (Elmi & Eftekhari (2021)). Output-Based

approaches select a certain number of the most competent classifiers to form the final ensemble.

In this case, if only one classifier is selected, the system will be DCS. MCB (Giacinto & Roli

(2001)), OLA (Woods et al. (1997)), and LCA (Woods et al. (1997)) are some of the DS

approaches in this category that selects only the most competent classifier among the pool. In the

Probability-Based (PB) approach, the final ensemble of classifiers is selected according to their

probability coefficient by a probability tool such as a roulette wheel algorithm. The probability

is assigned to each base classifier according to its competence level (Elmi & Eftekhari (2021)).

The proposed approach selects the final ensemble of classifiers based on a threshold-based

scheme. However, different than current approaches, the threshold used for classifier selection is

adaptative, changing based on each query instance to take into account the estimated competence

level of all base classifiers for its classification (Equation 2.9). As such, we expect our method

to be more robust to handle the particularities of distinct local regions.

Table 2.3 Categorization of state-of-the-art fuzzy min-max network approaches and the

machine learning context they were employed. TB, OB and PB refer to threshold-based,

output-based, and probability-based selection schemes, respectively. Methods are ordered

based on their publication year

Technique Use contraction Membership Function Context Year

GFMM (Gabrys & Bargiela (2000)) Yes Gabrys’s Membership Function Classification 2000

SFMM (Likas (2001)) Yes Simpson’s Membership Function Reinforcement Learning 2001

DCFMN (Zhang et al. (2011)) No Data Core Membership Function Classification 2011

M-FMCN (Davtalab, Parchami, Dezfoulian, Mansourizade & Akhtar (2012)) No Gabrys’s Membership Function Classification 2012

MLF (Davtalab et al. (2013)) No Gabrys’s Membership Function Classification 2014

EFMN (Mohammed & Lim (2014)) Yes Simpson’s Membership Function Classification 2015

FMM-ETC (Seera, Randhawa & Lim (2018)) Yes Simpson’s Membership Function Clustering 2018

FMM-BSO (Pourpanah et al. (2019)) Yes Simpson’s Membership Function Rule Extraction 2019

IOL-GFMM (Khuat et al. (2020)) No Gabrys’s Membership Function Classification 2020

IOL_GFMM_HB (Kenger & Ozceylan (2023)) No Gabrys’s Membership Function Classification 2023

FH-DES (proposed) yes Smooth Borders Membership Classifier selection -
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2.4.2 Fuzzy Min-Max approaches

Fuzzy hyperboxes were introduced to represent domains of classes and clusters in fuzzy min-max

neural networks (Simpson (1992); Simpson & Jahns (1993)) and, due to their flexibility, have

been used in different machine learning applications contexts (Kenger & Özceylan (2023)) such

as clustering, classification, and rule extraction. Table 2.3 reports a summary of hyperbox-based

approaches.

Many hyperbox-based approaches have been introduced in recent years, which can be categorized

into two primary categories based on whether they utilize the contraction process or not (Khuat

et al. (2021b)). Most of them, like the original FMM (Simpson (1992)), use the contraction

process to address the overlapped areas between the hyperboxes that belong to different classes.

These approaches try to improve accuracy by reducing the size of hyperboxes involved in

the overlaps. General Fuzzy Min-Max neural network (GFMM) (Gabrys & Bargiela (2000)),

Enhanced Fuzzy Min-Max neural network (EFMN) (Mohammed & Lim (2014, 2017)), and

improved Fuzzy Min-Max neural network using Ensemble of Clustering Trees (FMM-ECT)

(Seera et al. (2018)) are some of the FMM approaches that use the contraction process to

handle the overlaps. On the other hand, some hyperbox-based approaches use special nodes

or mechanisms to handle the overlaps between the hyperboxes. For example, Data-Core-based

Fuzzy Min–Max neural network (DCFMN) (Zhang et al. (2011)) uses a mechanism to obtain the

geometric center of the hyperbox and the data core, modified Fuzzy Min–Max classifier using

compensatory neurons (M-FMCN) (Davtalab et al. (2012)) uses compensatory neurons, and

Multi-Level Fuzzy Min–Max neural network (MLF) (Davtalab et al. (2013)) utilizes a multi-layer

structure as an alternative for the contraction process and handling the overlaps of each layer by

the next layer. In addition, Improved Online Learning algorithm for General Fuzzy Min-Max

neural network (IOL-GFMM) (Khuat et al. (2020)) is an improved version of GFMM that uses

a novel overlap pre-checking process to avoid any overlapped areas between hyperboxes of

different classes. The same process is utilized in the Hybrid Model of improved online learning

FMM (IOLGFMM_HB) (Kenger & Ozceylan (2023)) this algorithm uses a mixed-integer

linear programming (MILP) model to improve the efficiency of hyperboxes generated by the
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IOL-GFMM algorithm. The overlap pre-checking process is an efficient method to prevent

generating overlap regions. However, the number of hyperboxes increases using this process. To

address this drawback in the proposed approach, we use the learning sensitivity parameter (𝜆)

alongside the pre-check process that controls the trade-off between accuracy and performance.

The membership function is another important element of hyperbox-based approaches. Simpson

has proposed two membership functions for classification (Simpson (1992)) and clustering

(Simpson & Jahns (1993)) applications. However, the membership values in these functions fail

to decrease gradually as the input data moves away from the hyperbox, which could result in

decreased accuracy. To address this issue, Gabrys and Bargiela have proposed the membership

function discussed in Section 1.3. As mentioned earlier, this function possesses sharp corners in

its membership levels (Figure 2.5). Special membership functions are used in hyperbox-based

approaches that do not use the contraction process. For example, DCFMN (Zhang et al. (2011))

uses a novel membership function regarding the geometric center of the hyperbox and the data

core. However, such memberships endure a high computational overhead to the system and

are not suitable for handling large volumes of data. Therefore, in the proposed approach, we

propose a novel membership function with smooth corners (2.9), which is simple and can also

mitigate the sharp corners problem from previous approaches.

It is important to mention that there exist other neural network approaches based on fuzzy

operators, such as Fuzzy-Artmap (Carpenter et al. (1992)), which use prototype nodes. Each

node consists of a recognition field that defines the area of the feature space it covers. These

prototypes are used to represent different categories and or classes. Fuzzy operators are then

used to calculate the match between the prototype nodes and the input samples. Another

alternative is using hyperspheres instead of hyperboxes to delimit regions in the input space

representing different classes (Kulkarni, Doye & Sontakke (2002); Mahindrakar & Kulkarni

(2022)). Nevertheless, the simple geometric structure of hyperboxes based on Min-Max points

has some advantages since they are not constrained to be centered around a specific point

which leads to more flexibility in representing non-linear and irregular decision boundaries.
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Furthermore, fuzzy hyperboxes tend to have a faster training process, especially in cases where

complex and overlapping data distributions are involved.

2.5 Experimental protocol

2.5.1 Datasets

In our experimental study, 42 different datasets in a wide variety of areas were used. They

were collected from OpenML (Van Rĳn et al. (2013)), and UCI (Asuncion & Newman (2007))

repositories. Table 2.4 presents the utilized datasets and their specifications. We considered

three groups of datasets in order to evaluate different aspects of the proposed approach. The first

group consisting of eight datasets was used to tune the proposed approach’s hyperparameters

following the same hyperparameter tuning methodology as Cruz et al. (Cruz et al. (2015d))

(rows 1 to 8). The next 30 datasets (rows 9 to 38) were used in our comparative study to evaluate

the FH-DES framework over small and medium-scale problems and compare its performance

against the state-of-the-art DES methods. The last 4 datasets (rows 39 to 42) are large-scale

datasets utilized to evaluate the scalability of the proposed approaches and incremental learning

capabilities. subsectionExperimental setup

2.5.2 Experimental setup

In all experiments, each dataset is randomly divided into three groups. The first group consists of

50% of the data that are used for training, the next 25% for the dynamic selection dataset (DSEL),

and the remaining 25% are used for testing. The division is performed by maintaining the prior

probabilities of each class. Furthermore, the datasets were normalized using the Min-Max

scaling technique (de Amorim, Cavalcanti & Cruz (2023)) with ranges between 0 and 1.

Similar to the experimental protocol used in (Cruz et al. (2018a)) and (Davtalab et al. (2022)),

the pool of classifiers contained 100 Perceptron classifiers that were calibrated using isotonic

method (Allikivi & Kull (2019)) by the validation data. These classifiers were generated using



87

the bagging technique (Breiman (1996)) by the Scikit-learn library (version: 1.0.1). The pool

was fixed for all techniques to ensure a fair comparison. Furthermore, each experiment was

carried out using 20 replications to obtain the mean and standard deviation results for each

dataset.

Table 2.4 Datasets considered in this work and their

main characteristics. Rows 1 to 8 represent datasets used

for tuning the technique. The 30 datasets used to evaluate

the method’s performance on small to medium-scale

problems are presented in rows 9 to 38. The last group

(rows 39 to 42) was used in the large-scale experiment

# Database Instances Features # Database Instances Features

1 Adult 690 14 22 Laryngeal1 213 16

2 Audit2 776 17 23 Laryngeal3 353 16

3 CTG 2126 21 24 Lithuanian 600 2

4 Cardiotocography 2126 21 25 Liver 345 6

5 Chess 3196 36 26 Mammographic 830 5

6 Credit-screening 690 15 27 Monk2 432 6

7 P2 1000 2 28 Phoneme 5404 5

8 Transfusion 748 4 29 Pima 768 8

9 Audit 771 26 30 Sonar 208 60

10 Banana 1000 2 31 Statlog 1000 20

11 Banknote 1372 4 32 Steel 1941 27

12 Blood 748 4 33 Thyroid 692 16

13 Breast 569 30 34 Vehicle 846 18

14 Car 1728 6 35 Vertebral 310 6

15 Datauser 403 5 36 Voice3 238 10

16 Faults 1941 27 37 Weaning 302 17

17 German 1000 24 38 Wine 178 13

18 Haberman 306 3 39 Sensor 919438 11

19 Heart 270 13 40 ArData 900000 5

20 ILPD 583 10 41 Incidents 2215023 9

21 Ionosphere 351 34 42 Agrawal 1000000 10

The performance of the proposed approach was compared with the state-of-the-art DS techniques,

which have been selected based on their performance according to a recent experimental study

(Cruz et al. (2018a)), different selection criteria (e.g., ranking, behavior, oracle, meta-learning),

and also regarding the availability of their implementation. These approaches including KNORA-
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U (Ko et al. (2008)), KNORA-E (Ko et al. (2008)), MCB (Giacinto & Roli (2001)), DES-KNN

(Woloszynski et al. (2012)), OLA (Woods et al. (1997)), Rank (Sabourin et al. (1993)), KNOP

(Cavalin et al. (2013)), and META-DES (Cruz et al. (2015d)). All these methods are based on

the KNN algorithm to define the region of competence and use different selection criteria to

select the final ensemble of classifiers (Cruz, Hafemann, Sabourin & Cavalcanti (2020)). In

addition, the Majority Voting (MV), Single Best (SB), and GFMM algorithm are considered

as lower-bound DS baselines. The Oracle concept (Kuncheva (2002)) as an upper-bound for

DS methods in our experiments. Results of the GFMM algorithm (that uses the hyperboxes for

classification directly) are reported in order to investigate whether using the hyperboxes in the

DS context is effective compared to its traditional usage.

To evaluate the strategies introduced in subsection 2.3.2, we consider ten configurations of the

proposed framework, as listed in Table 2.5. As discussed in Section 2.3, these variants can

be set up based on misclassified or correctly classified samples. In the first strategy, variants

utilize the incompetence map to estimate the competence of individual classifiers. While in the

second strategy, these variants are based on correct classified samples and use a competence

map to select the best ensemble of classifiers. When a variant is based on misclassified samples,

it is called negative variant and is shown by letter M e.g., FH_5-M. On the other hand, the

letter C shows a positive variants, which are based on correct classified samples. For example,

FH_5-C is the fifth variant in which the hyperboxes are built based on correct classified samples

of base classifies. In addition, FH_1-M and FH_1-C represent FH_DES-M and FH_DES-C,

respectively, introduced in our preliminary study (Davtalab et al. (2022)).

The proposed framework has two main hyperparameters: (𝜇), which defines a threshold to select

the top base classifiers, and Theta (𝜃), which defines the maximum size of hyperboxes. However,

in variants in which the overlap pre-check process is used (FH_2, FH_4, FH_9, and FH_10), the

learning sensitivity parameter or Lambda (𝜆) is utilized instead of 𝜃. As explained in subsection

2.3.2, 𝜆 controls the computational complexity of the model and makes a trade-off between

accuracy and performance. In this paper, we set 𝜆 to 1 to achieve maximum accuracy in small

and medium problems. In contrast, in large-scale problems where computational complexity is
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Table 2.5 Different variants of the proposed framework

Selection Strategy Expansion Criterion Contraction Strategy
Nearest_hyperbox All_hyperboxes Theta Overlap_pre-check Instance Hyperbox

FH_1 � � � � - -

FH_2 � � � � � �

FH_3 � � � � - -

FH_4 � � � � � �

FH_5 � � � � � �

FH_6 � � � � � �
FH_7 � � � � � �

FH_8 � � � � � �
FH_9 � � � � � �

FH_10 � � � � � �

important, we vary the 𝜆 value to study how it affects the number of hyperboxes generated in the

system and choose a value with a good accuracy vs computational complexity trade-off.

All hyperparameters are set in the range of 0 to 1. To tune these hyperparameters, we use

a process similar to that used by Cruz et al. (Cruz et al. (2015d)). Thus, the first eight

datasets from Table 2.4 (rows 1 to 8), which have not been used in the comparative study,

were used during this process to avoid biased estimation. Notably, variants FH_1 and FH_3

do not utilize the contraction process, so they do not need to select any contraction strategy.

The tuning experiments were carried out on all proposed variants using the tuning datasets.

The best hyperparameter values obtained from this experiment are reported in the Appendix

(Subsection 1).

The hyperparameters of the state-of-the-art DES methods are set regarding the original published

papers and reported values in (Cruz et al. (2018a)) (Table 2.6). Furthermore, all DES methods

are publicly available on the DESlib (Cruz et al. (2020)) library on GitHub2.

2.6 Results

In this section, we address the four research questions in different subsections. In subsection

2.6.1, we answer the research question "RQ1 - Does modeling the misclassified samples lead

to higher accuracy and less computational complexity compared to modeling the correctly

2 https://github.com/scikit-learn-contrib/DESlib
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Table 2.6 Used parameters and their

values in experiments

Method Hyperparameter Name Value

Perceptron

Maximum iteration 100

Tolerance 10𝑒 − 3

Alpha 0.001

Calibration method isotonic

Bagging
Number of estimators 100

bootstrap True

max-samples 1.0
KNN-based DS 𝐾 7

META-DES 𝐾𝑝 5

ℎ𝑐 80%

classified ones?". All FH-DES variants are evaluated in this subsection, and their performances

are analyzed based on classification accuracy and computational complexity over the 30 datasets.

This subsection also discusses the impact of different strategies for expansion and contraction

presented in this work. In Subsection 2.6.2, we address the question "RQ2 - Can the use of

fuzzy hyperboxes outperform state-of-the-art DS approaches?". To do so, the accuracy of

the proposed approaches on 30 datasets is compared to the state-of-the-art DS approaches using

statistical analyses. Then in Subsection 2.6.3, we address the research questions "RQ3 - Do

hyperboxes decrease the complexity of dynamic selection approaches?" and "RQ4 - Can

using a contraction process increase the accuracy of the proposed framework in large-scale

problems?". In This subsection, the large-scale datasets listed in Table 2.4 are used to evaluate

the time and space complexity of proposed variants compared to KNN-based DS approaches

and how the proposed framework behaves in an incremental learning scenario.

2.6.1 Modeling Misclassified vs Correct-classified samples

In the first step, we run all variants in Table 2.5 based on misclassified and correct classified

samples over the 30 datasets listed in Table 2.4 (rows 9 to 38). The specific result obtained from

all variants per dataset is reported in 2. According to the results of this experiment, variants

FH_2-C, FH_4-C, and FH_9-C have the best ranks among positive variants. Similarly, the

FH_2-M, FH_4-M, and FH_9-M variants have the best rank and accuracy among negative

variants. Variant FH_4-M obtained the highest accuracy among all negative and positive variants.
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All these approaches use the overlap pre-checking process to confine the expansion candidate

hyperboxes. In addition, FH_10-C and FH_10-M that utilize this technique also have good

accuracy. Therefore, we can state that the overlap pre-checking process can improve accuracy

in the FH-DES approach. This process prevents the growth of hyperboxes in the unauthorized

region compared to other variants. In addition, the pre-check approach cares about all previous

samples that have been learned before. All of them are kept inside the hyperboxes during the

training process. However, in the traditional contraction approach, some of the learned samples

are more likely to be located outside the hyperboxes at the end of the learning phase. These two

issues can affect the efficiency of the FH-DES.

To compare each variant’s positive and negative versions, we performed a pairwise comparison

between each negative variant and its equivalent positive variants using Sign test (Demšar

(2006)). This test has two hypotheses that include 𝐻0 and 𝐻1. 𝐻0 is the null hypothesis which

means that both techniques obtained statistically equivalent results, and rejection of 𝐻0 means

the classification performance obtained by the corresponding DS technique is significantly better

than the compared technique. The number of wins, ties, and losses are computed for each

technique compared to the baseline. The significance level of this test is determined by the

predefined parameter 𝛼, which in this paper is set 𝛼 = 0.05 to have 95% confidence. If the

number of wins is greater than or equal to a critical value, indicated by 𝑛𝑐, the null hypothesis

𝐻0 is rejected. The critical value is computed using equation 2.12:

𝑛𝑐 =
𝑛𝑒𝑥𝑝

2
+ 𝑧𝛼

√
𝑛𝑒𝑥𝑝

2
(2.12)

Where 𝑛𝑒𝑥𝑝 is the total number of experiments and 𝑧𝛼 = 1.645, for a significance level of

𝛼 = 0.05 (Cruz et al. (2017b)). In this test, we have 30 experiments (datasets). Therefore,

𝑛𝑒𝑥𝑝 = 30, and the critical value for this number of experiments is 𝑛𝑐 = 19.50. The average

accuracy of each variant’s negative and positive versions is calculated on the 30 datasets and

compared to each other. Figure 2.14 shows the result of the Sign test. For example, the first
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column of this chart shows that the negative version of FH_1 (called FH_1-M) on 22 out of 30

datasets has higher accuracy than FH_1-C.

Figure 2.14 Comparing the positive variants and negative variants using the

Win-Tie-Loss test on the 30 small datasets. The blue horizontal blue line

illustrates the critical value 𝑛𝑐 = 19.5

The results of the Sign test indicate that negative variants obtain higher accuracy compared to

the equivalent positive variants. To analyze the trade-off between performance and the number

of hyperboxes, the average accuracy rank and number of hyperboxes generated on the 30 datasets

were calculated are presented in Figure 2.15. The higher the accuracy of the algorithm and

the fewer hyperboxes it produces (located on the lower left side of the figure), the better the

algorithm. The results, shown in Figure 2.15, reveal that FH_4-M has the best rank among the

different variants of FH-DES in terms of average accuracy and number of hyperboxes generated,

and was selected as the best FH-DES. Its performance is evaluated against other DS approaches

later.

This experiment also revealed that not only the accuracy of negative variants is higher than their

corresponding positive variant, but most of them also generate fewer hyperboxes than positive
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versions. Therefore, answering RQ1, using hyperboxes generated based on misclassified

samples leads to more accurate and lower computational complexity dynamic selection

systems.

Figure 2.15 Average Ranking of different variants versus the number of

generated hyperboxes

2.6.2 State-of-the-art comparison

In Table 2.7, the results of the selected variant (FH_4-M) alongside the baseline methods

including majority voting (MV), single best (SB), and Oracle are reported. The Oracle approach

(Kuncheva (2002)) is a conceptual method that selects the base classifier that correctly labels

the query sample (if it exists). This concept is known as an upper limit to dynamic selection

approaches. Therefore, we do not consider this approach in the ranking of the approaches in

Table 2.7. In addition, the methods Majority-Voting (MV) and Single-Best (SB) are considered

lower-limit approaches. Furthermore, we have used general fuzzy min-max neural network

classifier (GFMM) (Gabrys & Bargiela (2000)) as a pure fuzzy hyperbox-based method to show

the difference in accuracy with the case where it is used as a dynamic selection method.
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Table 2.7 Average accuracy and standard deviation of selected variants

in comparison with baseline methods

DataSets Majority Voting (MV) Single Best (SB) GFMM FH_4-M Oracle
Audit 96.35(1.46) 97.05(1.17) 95.91(1.38) 97.07(1.21) 99.56(0.41)

Banana 86.26(1.7) 89.9(1.81) 89.98(5.49) 89.76(2.24) 92.82(1.84)

Banknote 98.72(0.61) 99.31(0.43) 95.57(2.4) 99.26(0.44) 99.84(0.27)

Blood 78.42(1.52) 77.27(1.13) 70.29(6.2) 77.99(1.54) 89.44(2.26)

Breast 96.78(1.42) 96.75(1.39) 95.0(2.11) 96.82(1.3) 99.02(0.64)

Car 70.34(1.07) 74.42(1.48) 77.62(1.61) 79.46(2.0) 83.44(0.96)

Datausermodeling 86.83(3.26) 88.47(2.53) 64.36(4.12) 88.76(2.45) 99.31(1.0)

Faults 68.73(2.2) 69.28(2.31) 67.21(2.04) 69.6(2.28) 91.55(1.06)

German 75.0(2.01) 75.12(1.93) 68.78(2.91) 75.42(2.33) 94.68(1.22)

Haberman 75.13(2.44) 75.19(2.43) 66.82(6.69) 75.39(2.77) 92.01(2.4)

Heart 83.31(3.84) 83.09(4.2) 76.91(4.16) 83.31(4.24) 97.43(1.85)

ILPD 71.99(2.64) 72.6(2.6) 65.89(4.2) 72.4(2.75) 96.2(1.41)

Ionosphere 87.27(2.2) 87.73(2.66) 91.82(2.14) 88.24(2.01) 97.84(1.52)

Laryngeal1 82.5(4.28) 82.69(4.15) 78.89(4.66) 82.96(4.21) 96.02(3.0)

Laryngeal3 70.22(3.3) 70.51(3.41) 66.29(4.31) 71.12(3.39) 90.06(2.57)

Lithuanian 84.47(1.84) 78.5(10.32) 91.23(3.69) 89.17(2.59) 93.67(1.86)

Liver 67.64(4.37) 67.36(4.8) 57.18(4.62) 68.97(4.48) 97.82(1.58)

Mammographic 80.96(2.61) 70.22(7.11) 72.04(5.76) 79.74(2.67) 92.14(2.85)

Monk2 78.61(3.39) 80.14(3.27) 62.31(3.47) 87.59(3.37) 97.27(1.11)

Phoneme 76.72(0.9) 74.93(0.92) 78.24(1.28) 77.88(1.04) 88.41(1.83)

Pima 77.06(1.93) 76.64(2.03) 69.77(2.91) 77.08(2.02) 93.46(1.34)

Sonar 77.31(5.66) 79.04(6.23) 86.54(4.9) 78.08(6.0) 98.46(1.88)

Statlog 75.28(2.05) 75.16(2.26) 69.88(2.36) 75.48(2.25) 93.94(1.62)

Steel 69.54(1.66) 70.08(1.89) 66.75(2.47) 70.53(2.13) 91.64(1.3)

Thyroid 95.98(1.35) 95.9(1.06) 95.26(1.42) 96.18(1.1) 98.64(0.74)

Vehicle 75.38(2.5) 75.4(2.27) 67.5(2.95) 75.83(1.78) 96.75(1.1)

Vertebral 83.93(4.1) 83.6(3.4) 77.93(3.94) 84.4(3.96) 96.67(2.37)

Voice3 78.5(3.07) 78.0(3.48) 70.08(4.9) 78.5(3.02) 92.67(1.53)

Weaning 80.46(4.15) 81.12(4.12) 77.76(3.0) 81.05(3.96) 97.5(2.12)

Wine 98.22(1.51) 98.44(1.59) 96.0(3.03) 98.44(1.59) 99.89(0.48)

Ave Rank 2.7 2.45 3.4 1.45 -

p-value <0.0001 <0.0001 <0.0001 - -

The Wilcoxon signed pair rank test, as suggested by (Stapor, Ksieniewicz, Garcia & Wozniak

(2021)), was conducted to evaluate whether the results between methods are statistically

significant. Since our goal is to compare the performance of the proposed FH_4-M to the

baseline, it was considered the control method in the pairwise comparison. The results of the

Wilcoxon test (p-values) are presented in the last row of Table 2.7. In all cases, the p-value

obtained is lower than 0.0001, indicating that the proposed method obtained statistically superior

results compared to all baseline methods.

In addition, we conducted a pairwise comparison between FH_4-M and the baseline approaches

using the Sign test (Demšar (2006); Cruz et al. (2017a)) to compare the methods from a different

perspective. The results are illustrated in Figure 2.16. Each column of this figure demonstrates

the number of wins, ties, and losses of FH_4-M against each baseline approach. For instance,
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the right bar in the plot shows that FH_4-M achieved 25 wins and 5 losses out of 30 datasets

against the GFMM. This analysis further demonstrates that using hyperboxes to select the best

ensemble of classifiers in the DS context yields higher average accuracy than when used in

the GFMM algorithm as a classification method. Therefore, this study suggests that FMM can

be used as a method to estimate the classifier’s competence, with promising results. Similar

results are observed when the proposed method is compared to standard baseline methods in the

ensemble literature.

Figure 2.16 Pairwise comparison between the FH_4-M and

other DS methods (𝑛𝑐 = 19.5). The number of wins, ties, and

losses of FH_4-M are highlighted in blue, orange, and green,

respectively

Next, we compare the results of our proposed FH-DES with the state-of-the-art DS approaches.

The average accuracy and standard deviation obtained by each approach per dataset is presented

in Table 2.8. Our FH_4-M attained the highest average accuracy in nine of the thirty datasets.

Additionally, this variant had the best rank and the highest average accuracy among all thirty

datasets, when compared to the other DS methods. In addition, the results of the Wilcoxon

test, highlighted in the last row of Table 2.8 demonstrate that the proposed method significantly

outperforms a few DES techniques (KNORA-U, MCB, KNOP, RANK, OLA) while obtaining
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statistically equivalent results to those of the META-DES, DESKNN, and KNORA-E, with an

𝛼 = 0.05.

Table 2.8 Average accuracy and standard deviation of the proposed method and other DS

approaches

DataSets KNORA-U KNORA-E MCB DESKNN OLA RANK KNOP META-DES FH_4-M
Audit 96.45(1.5) 97.2(1.13) 97.12(1.25) 96.99(1.17) 97.44(1.45) 97.1(1.31) 96.55(1.43) 96.87(1.15) 97.07(1.21)

Banana 87.6(2.01) 91.06(2.39) 91.22(2.24) 88.56(2.16) 91.08(1.85) 90.82(1.89) 86.66(1.86) 88.44(2.04) 89.76(2.24)

Banknote 98.86(0.51) 99.42(0.54) 99.31(0.65) 99.18(0.49) 99.34(0.56) 99.34(0.56) 98.85(0.54) 99.1(0.62) 99.26(0.44)

Blood 78.4(1.55) 76.23(2.35) 77.38(2.25) 77.78(1.7) 77.38(2.24) 76.15(2.38) 78.24(1.49) 77.97(1.7) 77.99(1.54)

Breast 96.82(1.24) 96.85(1.49) 96.57(1.56) 96.82(1.46) 96.71(1.78) 96.71(1.78) 96.85(1.2) 96.68(1.21) 96.82(1.3)

Car 71.31(1.17) 73.82(1.2) 73.61(1.18) 72.15(1.21) 73.82(1.2) 73.72(1.13) 71.25(0.99) 73.41(1.52) 79.46(2.0)
Datausermodeling 88.17(2.49) 91.34(2.58) 88.96(2.33) 90.25(2.29) 89.31(3.51) 89.06(3.56) 88.51(2.65) 90.69(2.29) 88.76(2.45)

Faults 69.61(2.27) 69.69(1.4) 68.55(1.72) 70.5(1.81) 68.85(1.58) 68.83(1.35) 69.74(2.48) 69.96(1.93) 69.6(2.28)

German 74.94(1.98) 74.14(2.89) 73.52(2.23) 75.14(2.38) 73.44(2.73) 73.42(2.4) 75.22(1.85) 74.82(2.19) 75.42(2.33)
Haberman 73.9(3.07) 71.36(4.45) 70.71(4.65) 73.7(3.69) 72.34(4.52) 71.62(4.67) 73.77(2.71) 71.88(4.86) 75.39(2.77)
Heart 83.24(3.87) 82.79(4.26) 82.28(3.49) 83.46(4.28) 82.28(5.06) 81.69(4.98) 83.46(3.75) 82.72(4.16) 83.31(4.24)

ILPD 72.19(2.55) 70.68(3.04) 70.82(2.57) 71.4(1.72) 70.68(2.97) 70.0(2.8) 71.95(2.04) 70.89(2.34) 72.4(2.75)
Ionosphere 87.78(2.43) 88.98(1.87) 87.16(2.57) 88.52(2.18) 87.39(2.18) 87.5(2.27) 88.01(2.23) 88.01(2.34) 88.24(2.01)

Laryngeal1 82.59(3.72) 82.78(4.19) 81.85(6.07) 82.41(4.16) 80.74(4.32) 81.76(3.76) 82.41(3.99) 82.31(4.08) 82.96(4.21)
Laryngeal3 70.84(3.56) 71.4(3.54) 70.34(3.83) 71.57(3.14) 71.74(4.77) 71.29(4.31) 70.73(3.38) 70.56(4.65) 71.12(3.39)

Lithuanian 87.1(1.8) 90.97(2.5) 90.83(2.59) 88.7(2.37) 91.13(2.09) 90.77(2.43) 86.33(1.95) 88.3(2.14) 89.17(2.59)

Liver 68.62(4.36) 68.16(5.06) 67.64(5.36) 70.92(4.47) 68.68(4.98) 67.76(5.26) 69.08(4.25) 68.33(4.23) 68.97(4.48)

Mammographic 81.11(2.65) 80.1(3.21) 80.38(3.0) 80.82(2.94) 80.41(2.68) 80.07(3.11) 80.94(2.8) 80.82(3.0) 79.74(2.67)

Monk2 79.4(3.38) 87.04(2.72) 85.74(3.74) 83.29(3.38) 84.54(3.76) 85.28(3.26) 81.3(3.97) 88.52(4.02) 87.59(3.37)

Phoneme 77.49(0.83) 80.05(1.0) 79.22(1.2) 77.84(0.89) 79.33(1.16) 79.82(1.1) 77.46(0.87) 79.69(1.05) 77.88(1.04)

Pima 77.06(2.19) 76.02(2.01) 74.71(2.48) 76.59(2.48) 75.6(2.48) 75.73(2.51) 77.29(2.21) 76.98(2.47) 77.08(2.02)

Sonar 77.4(5.8) 78.85(5.67) 76.92(4.94) 78.27(5.06) 76.63(5.55) 77.21(6.15) 77.4(5.64) 80.48(6.39) 78.08(6.0)

Statlog 75.3(2.31) 74.98(2.54) 73.88(2.64) 75.32(2.31) 74.42(2.31) 74.46(2.61) 75.24(2.39) 75.18(2.2) 75.48(2.25)
Steel 70.48(1.78) 71.07(1.75) 70.26(1.71) 71.62(1.91) 70.52(1.71) 70.13(1.86) 70.61(1.89) 70.78(2.15) 70.53(2.13)

Thyroid 95.98(1.31) 95.92(1.74) 95.78(1.45) 95.75(1.4) 96.16(1.59) 96.01(1.92) 95.95(1.33) 96.04(1.23) 96.18(1.1)
Vehicle 75.24(1.77) 75.66(2.36) 73.99(2.27) 75.5(2.09) 74.46(2.26) 74.86(2.41) 75.17(1.94) 74.72(2.04) 75.83(1.78)
Vertebral 83.46(5.44) 84.36(3.92) 84.36(3.26) 85.26(4.99) 84.04(3.59) 83.97(3.61) 83.91(5.22) 84.1(5.07) 84.4(3.96)

Voice3 78.75(2.63) 77.42(3.89) 76.75(3.51) 78.25(2.86) 77.75(3.51) 76.83(3.57) 78.5(2.52) 77.33(3.55) 78.5(3.02)

Weaning 80.86(3.94) 81.45(4.48) 81.32(4.59) 81.84(4.15) 80.79(4.98) 81.12(3.8) 80.66(4.14) 80.33(4.35) 81.05(3.96)

Wine 98.0(1.71) 98.11(1.45) 97.11(2.23) 98.33(1.55) 96.33(2.36) 96.33(2.36) 97.89(1.92) 98.11(1.76) 98.44(1.59)
Ave Rank 5.2 8 3.85 6.63 3.8 5.5 6.35 5.22 5.03 3.33
p-value 0.0002 0.4973 0.0029 0.4540 0.0096 0.0027 0.0006 0.0641 -

We also present the results of a Sign test between the proposed method and the state-of-the-art

ones to provide a more comprehensive understanding of the underlying results (Figure 2.17). The

test results show that the variant FH_4-M statistically outperforms the KNORA-U, MBC, OLA,

RANK, KNOP, and META-DES approaches. Additionally, FH_4-M had more wins against

KNORA-E and DESKNN, though there was no statistical significance according to this test.

This confirms the hypothesis that using fuzzy hyperboxes and learning from the base classifiers’

mistakes can mitigate the problems associated with defining a proper region of competence in

dynamic selection algorithms, leading to higher overall average accuracy. Given these results,

we can answer RQ2: yes, FH-DES can outperform state-of-the-art DES techniques.
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Figure 2.17 Pairwise comparison between the proposed (FH_4-M variant)

approach against the state-of-the-art DS approaches. The blue horizontal

blue line illustrates the critical value, 𝑛𝑐 = 19.5

2.6.3 Large-Scale Simulations

To validate the hypothesis that our proposed FH-DES is more computationally efficient than

state-of-the-art DS techniques, this section evaluates the efficiency of the selected variant (FH_4-

M) using large datasets. In particular, as shown in Section 2.3.5, the storage and computational

complexity of the proposed FH-DES depends solely on the number of hyperbox kept by the

system. Therefore, in this section, we study the number of hyperboxes generated by the proposed

framework for dealing with the large-scale datasets listed in Table 2.4 (rows 39 to 42). To

complete this experiment, the DSEL size was varied from 100 to 900,000 to examine its effect

on the number of hyperboxes generated and the system’s accuracy. Specifically, the following

DSEL sizes were utilized: S0: 100, S1: 1000, S2: 10K, S3: 100k, S4: 300k, S5: 500K, S6:

700K, and S7: 900K.

In this step, we tested three configurations with different values of the learning sensitivity

hyperparameter, 𝜆 (0.8, 0.9, and 1.0). Increasing the value of 𝜆 is likely to improve accuracy
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and increase the number of generated hyperboxes and overall computational complexity. Setting

𝜆 to 1.0 is expected to yield maximum accuracy with high computational complexity, while

𝜆 = 0.8 offers the lightest DS approach with satisfactory accuracy.

The accuracy versus complexity tradeoff of the three 𝜆 configurations is shown in Figure

2.18. The figure shows that the number of generated hyperboxes by FH_4M (𝜆 = 1.0) grows

significantly after step S4 (reaching 300K DSEL samples). Meanwhile, (FH_4M (𝜆 = 0.9) and

FH_4M (𝜆 = 0.8)) generate way less hyperboxes for the same dataset size. This analysis also

demonstrates that at step S4, the number of hyperboxes was reduced by 69% when 𝜆 was set to

0.8, with a minimal loss in accuracy relative to the configuration with 𝜆 = 1.0. Consequently, 𝜆

substantially impacts the system’s complexity as it depends solely on the number of hyperboxes

generated. Hence, a lower value of 𝜆 is preferable for generating fewer hyperboxes in experiments

with larger datasets. For this reason, 𝜆 was fixed at 0.8 for the remainder of the experiment.

a) Influence of 𝜆 on the number of hyperboxes for

the Sensor dataset

b) Influence of 𝜆 on classification accuracy for the

Sensor dataset

Figure 2.18 The influence of learning sensitivity parameter (𝜆) on accuracy and

number of generated hyperboxes. In this figure, FH_4M (𝜆 = 0.8), FH_4M (𝜆 = 0.9),

and FH_4M (𝜆 = 1.0) refer to FH_4-M variant with 𝜆 = 0.8, 𝜆 = 0.9, and 𝜆 = 1.0

respectively

In the subsequent phase of this experiment, the performance of the selected variant (FH_4-M)

was compared to that of META-DES and FH_1-M, which is the FH-DES variant does not utilize
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the contraction process (Davtalab et al. (2022)). The results obtained per dataset are presented in

Table 2.9. The Oracle’s accuracy is also indicated as the upper baseline for this analysis. It can

be observed that the FH_4-M variant (with 𝜆 = 0.8), which incorporates a contraction process,

is more accurate than FH_1-M. Moreover, the average accuracy of FH_4-M increases when

additional samples are added to DSEL. Contrarily, the average accuracy of FH_1-M usually

decreases with the addition of new samples. Compared to META-DES FH_4-M’s present

performance is equivalent to those of the META-DES for 3 out of 4 datasets.

In Figure 2.19, we visually depict the number of generated hyperboxes alongside the DSEL sample

count, focusing on KNN-based DS methodologies like the META-DES technique. Notably,

our proposed method stands out by generating a markedly smaller number of hyperboxes in

comparison to the DSEL dataset size. For instance, considering a dataset of 900,000 samples, our

approach generated a mere 5,610 hyperboxes for the Sensor dataset, representing less than 1%

of the total instances within this dataset. As elaborated in Section 2.3.5, our method necessitates

only one membership estimation per hyperbox, resulting in a mere 5,610 membership value

estimations. This figure is significantly lower when contrasted with other KNN-based DS

techniques that mandate the computation of distances with respect to all data points. Moreover,

the storage cost of our proposed method equates to maintaining 11,200 instances in memory for

inference—a notably lower overhead compared to the META-DES method, which retains the

entire 900,000 examples from the DSEL dataset.

In addition, we can also observe a plateau regarding the number of hyperboxes that are added

to the system as the dataset size increases. Thus, we can answer RQ3 confirming that the

proposed approach has lower computational complexity than KNN-based DS approaches from the

storage and computational perspectives while keeping an equivalent classification performance.

Moreover, the results obtained in Table 2.9 demonstrate that the proposed framework can also

learn incrementally using the contraction scheme, showing that it is a promising alternative for

scaling DS methods to large datasets.
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Table 2.9 Evaluating the system performance as the DSEL

Size Increases in an Incremental Learning Scenario: FH_1-M

Used as the baseline method which does not employ

contraction mechanism

DataSets META-DES FH_1-M FH_4-M Oracle
ArData100 92.12 90.58 92.73 94.01

ArData1000 90.78 90.99 92.77 94.01

ArData10k 91.06 90.74 92.77 94.01

ArData100k 91.74 90.84 92.78 94.01

ArData300k 91.99 90.84 92.87 94.01

ArData500k 92.07 90.82 92.87 94.01

ArData700k 92.06 90.80 92.87 94.01

ArData900k 92.06 90.86 92.90 94.01

Sensor100 95.9 95.90 95.73 99.09

Sensor1000 97.68 97.26 96.23 99.09

Sensor10k 98.21 97.40 96.23 99.09

Sensor100k 98.75 96.61 96.27 99.09

Sensor300k 98.78 96.39 97.13 99.09

Sensor500k 98.84 96.36 97.13 99.09

Sensor700k 98.84 96.36 97.13 99.09

Sensor900k 98.87 96.38 97.20 99.09

Incidents100 87.78 87.68 87.30 88.06

Incidents1000 87.86 83.70 87.30 88.06

Incidents10k 87.86 79.84 87.70 88.06

Incidents100k 87.86 77.76 87.83 88.06

Incidents300k 87.86 77.79 87.84 88.06

Incidents500k 87.88 75.85 87.87 88.06

Incidents700k 87.88 72.24 87.89 88.06

Incidents900k 87.88 71.95 87.89 88.06

Agrawal100 67.02 67.2 67.27 75.68

Agrawal1000 67.52 67.24 67.33 75.68

Agrawal10k 69.08 67.56 67.37 75.68

Agrawal100k 70.96 67.76 67.47 75.68

Agrawal300k 71.68 67.34 67.50 75.68

Agrawal500k 72.52 66.85 67.53 75.68

Agrawal700k 72.56 66.28 67.57 75.68

Agrawal900k 72.63 66.02 67.60 75.68
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2.7 Conclusion

This paper introduced a new dynamic ensemble selection framework based on fuzzy hyperboxes.

For each base classifier, hyperboxes are formed based on their correctly classified or misclassified

samples to define their ”competencies” and ”incompetencies” areas during the training phase.

Together with the application of a fuzzy membership function, the competence map is generated

from correctly classified samples and indicates the classifier’s competence at each data point in

the feature space. On the other hand, the incompetence map is generated from misclassified

samples and indicates the regions where the classifier has low accuracy. Therefore, the novel

approach presented in this study is the first to use only misclassified samples to select the most

competent classifiers in the dynamic selection area.

The experimental study conducted in this research paper addressed four research questions.

Firstly, the results showed that using hyperboxes in dynamic selection systems yielded greater

accuracy and reduced computational complexity in response to RQ1. Secondly, the findings

confirmed that fuzzy hyperboxes outperformed state-of-the-art dynamic ensemble selection

(DES) techniques, as addressed in RQ2. In addition, RQ3 was answered positively, demonstrating

that hyperboxes substantially reduced complexity compared to KNN-based DS approaches.

Lastly, results demonstrate that incorporating a contraction process improved accuracy in

large-scale problems, solving the main limitation of the preliminary approach based just on the

expansion mechanism. Thus, demonstrating that the proposed framework is a viable solution

for scaling DES methods to handle large datasets. On average, only 5k hyperboxes were

required to model datasets consisting of 900k samples (50 hyperboxes for each base classifier’s

misclassifications).

In conclusion, the research presented in this work highlights the potential of FH-DES as

a promising solution for addressing several of the main challenges within the domain of

dynamic ensemble selection (DES). Future works will explore different hyperbox generation

methodologies, including the Nested Generalization Exemplars (NGE) method (Salzberg

(2012)) and the exploration of alternative geometric structures such as fuzzy hyperspheres
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(Mahindrakar & Kulkarni (2022)). Furthermore, our future investigations will extend to the

application of the FH-DES framework in contexts involving data streams and concept drift.



CONCLUSION AND RECOMMENDATIONS

This thesis provides a comprehensive study of Dynamic Selection (DS) approaches and introduces

a novel dynamic ensemble selection. Most of the current state-of-the-art DS approaches are

based on the KNN algorithm. However, the KNN algorithms have a great sensitivity to the local

distribution of the data making it unsuitable for imbalanced classification problems. It also is

sensitive to hyperparameters and the optimized hyperparameters may not work correctly in all

regions (K-value problem). Moreover, KNN considers only limited information from the feature

space. However, the main problem with KNN is a lack of ability to analyze high-dimensional

datasets and handle large-scale problems.

The main contribution of this thesis is a new dynamic ensemble selection framework called

FH-DES which uses fuzzy hyperboxes to select the best ensemble of classifiers among all

available classifiers. The proposed approach aims to move most of the required computations

from the generalization phase to the learning phase in order to improve the performance of DS

approaches in both terms of accuracy and computational complexity. The proposed approach

is capable of using the incompetence maps that are generated only based on misclassified

samples. In this way, computational complexity is significantly reduced. Incompetence map

indicates the regions where the classifier has low accuracy. According to the literature, the

proposed framework is the first DS approach that uses only misclassified samples to select the

ensemble of classifiers. According to the experimental results, utilizing the incompetence map

significantly increases accuracy in comparison to the cases that use the competence map. In

addition, incompetence maps are formed based on fewer hyperboxes and consequently have less

computational complexity. Experimental results also show that the proposed approach has the

best rank among the compared methods and displayed better accuracy than all other approaches.

In some instances, the difference was significant.
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Furthermore, a contraction mechanism was proposed in this thesis to improve the incremental

learning capability of the framework. According to the obtained results, utilizing the contraction

mechanism increases the accuracy system when new learning samples are added to the system. In

addition, we can effectively scale up the proposed framework to handle large-scale problems with

lower computational complexity in comparison to the current DS systems. While KNN-based

approaches need to store and analyze all the DSEL data so they are not scaleable to be used

in large-scale classification applications. According to the obtained results, the proposed

framework has very light computational complexity in the generalization phase. This approach

has approximately 100 times less computational complexity than current DS approaches in some

large-scale datasets.

It’s worth noting that while our proposed method demonstrates promising outcomes, it does

show a slight sensitivity to the order of data. However, this challenge is more nuanced than

initially perceived, representing a subtlety rather than a significant obstacle. This issue could

be solved using a few replications and aggregating the resulting hyperboxes. Addressing this

subtlety will refine the method and ensure its adaptability to various scenarios.

3.1 Future works

The proposed framework has a flexible structure that could be used in different machine learning

areas. Looking forward, the following ideas need to be further explored:

• The proposed framework gives us an overall view of the competence of the base classifiers

and also the regions that do not work well. So it can be used for the pool generation step of

dynamic selection to have competent and diverse classifiers in the classifiers pool.

• Hyperbox-based approaches can easily handle high-dimensional problems. Therefore,

investigating the efficiency of the proposed approach in high-dimensional problems would

be interesting.
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• Hyperbox-based approaches can learn adaptively. Therefore, exploring their effectiveness

in the online learning field would be an attractive topic for future work. This capability

also allows us to use hyperboxes to detect and handle the concept drift in machine learning

problems.

• In hyperbox-based approaches, several samples that are close to each other are represented

by a hyperbox. In other words, we can use hyperboxes to represent the data granularly,

which could decrease the processing complexity. In this way, the learning system will not

be sensitive to the local imbalance distribution of samples which is suitable for solving

imbalance data. As a result, investigating the efficiency of hyperbox-based systems on

imbalanced data would be an interesting topic.
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1. Abstract

Most dynamic ensemble selection (DES) methods utilize the K-Nearest Neighbors (KNN)

algorithm to estimate the competence of classifiers in a small region surrounding the query

sample. However, KNN is very sensitive to the local distribution of the data. Moreover, it also

has a high computational cost as it requires storing the whole data in memory and performing

multiple distance calculations during inference. Hence, the dependency on the KNN algorithm

ends up limiting the use of DES techniques for large-scale problems. This paper presents a new

DES framework based on fuzzy hyperboxes called FH-DES. Each hyperbox can represent a

group of samples using only two data points (Min and Max corners). Thus, the hyperbox-based

system will have less computational complexity than other dynamic selection methods. In

addition, despite the KNN-based approaches, the fuzzy hyperbox is not sensitive to the local

data distribution. Therefore, the local distribution of the samples does not affect the system’s

performance. Furthermore, in this research, for the first time, misclassified samples are used

to estimate the competence of the classifiers, which has not been observed in previous fusion

approaches. Experimental results demonstrate that the proposed method has high classification

accuracy while having a lower complexity when compared with the state-of-the-art dynamic

selection methods. The implemented code is available at https://github.com/redavtalab/FH-

DES_ĲCNN.git.
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2. Introduction

Multiple Classifier Systems (MCS) are a good solution for the complex and vast amounts of data

that we face today (Cruz et al. (2018a); Zyblewski et al. (2021)). Different types of MCS have

been introduced, but many researchers concluded that Dynamic Selection (DS) could be a better

choice for the combination of classifiers (Britto Jr et al. (2014); Cruz et al. (2018a)). In DS

approaches, each given query sample is labeled by an ensemble of base classifiers which are

usually selected with regards to their local competence.

Estimation of competence level is a key issue in DS approaches. In this stage, Dynamic Selection

Data (DSEL) is used to evaluate the competence level of classifiers. For this purpose, the

efficiency of the classifiers in a small region surrounding the query instance on DSEL data is

considered as an estimation of the local competence of classifiers (Kuncheva (2014); Britto Jr

et al. (2014); Cruz et al. (2018a)). This region is called Region of Competence (RoC) and in most

of the DS approaches, this region is defined either by the K-Nearest Neighbor (KNN) technique

applied in the feature space (Cruz et al. (2015d); Fernández-Delgado et al. (2014); Xiao et al.

(2016); Krawczyk et al. (2018); Cruz et al. (2018a); Elmi & Eftekhari (2020)), clustering (Lin

et al. (2014)), potential functions (Woloszynski & Kurzynski (2009); Woloszynski et al. (2012))

or the KNN applied in the decision space (Giacinto & Roli (2001); Cavalin (2012); Batista et al.

(2012); Nguyen et al. (2020)).

KNN-based approaches are more popular; however, they suffer from high complexity in the

generalization phase. In this stage, for each query sample, its k nearest neighbors must be found.

This means that the distance between the given data point and all samples must be calculated,

which endures the system’s huge calculation complexity. Clustering-based approaches reduce

this complexity by adopting more coarse-grained regions of competence (clusters). They require

only require calculating distances to each cluster centroid and then selecting the most competent

classifiers according to the nearest cluster. However, the reduction in complexity comes with a

significant loss in accuracy compared with KNN-based approaches (Cruz et al. (2018a)).
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Figure-A I-1 Problems of KNN-based DS approaches. (a)

K-value problem, and (b) High sensitivity to the local

distribution of data. In both cases, just C1 could correctly

classify the query sample while KNN (K=5) selects C2 as a

competent classifier

Moreover, the selected K-value may not work correctly in all regions (K-value problem), even if

it has been optimized using an optimization process. As shown in Figure I-1-a, K=5 results

in selecting the wrong classifier (C2) while K=3 can select the correct one. Techniques based

on potential function aim to solve this problem by not having a K-value and considering all

data points during the competence estimation. In this case, it considers a potential function

that gives higher weights to the samples closer to the query while decreasing as the distance

increases (Cruz et al. (2018a)). However, its computational complexity is even higher compared

to KNN-based approaches as it not only suffers from the high computational cost of calculating

the distance between all samples in memory but also needs to aggregate the information of the

whole set with the application of the potential function.

Additionally, KNN works based on the Euclidean distance and has great sensitivity to the local

distribution of data. Hence, a high degree of overlap in the data may lead to a wrong decision

(Figure I-1-b). Finally, KNN just considers the samples of RoC, which contain a limited amount

of information. Thus, DS techniques can end up limited to the main problems of the KNN

technique, and new ways of estimating the classifier’s competence are needed in order to achieve

better classification results while reducing the computational cost.
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Intuitively, defining and storing each classifier’s competence and incompetence areas could

increase the labeling speed in the generalization phase. Falling the query sample xq into the

competence region of 𝑐𝑖 means that this classifier is competent to classify xq. Figure I-2

illustrates the initial idea of this approach to solve the example of Figure I-1-a. In this example,

Figure-A I-2 Competence and incompetence areas of

classifiers in Figure I-1-a

the competence of C1 is estimated higher than C2, because the query sample has fallen in the

green area of C1. However, defining the domain of such areas is not easy and imposes a large

computational complexity on the system, unless some simpler structures are used to represent

these areas. In a two-dimensional feature space, we can represent these areas using rectangles.

Each rectangle could be defined by only two points. Therefore, its computational complexity

will not be high if there are an acceptable number of rectangles to represent all training samples.

Hyperbox is a virtual concept that works like these rectangles; however, it is capable of working

in high-dimensional spaces. Each hyperbox covers the interior space and a small part of its

vicinity. As we move away from the hyperbox, its coverage decreases fuzzily according to a

membership function. That is why it is called fuzzy hyperbox (Simpson (1992)). The fuzzy

aspect of the hyperbox gives us valuable information outside of the hyperbox, and we can

estimate how far the query sample is from the competence or incompetence area of the base
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classifier. Thus, we can estimate the competence of classifiers even if the query sample falls

outside of all hyperboxes. We will discuss hyperboxes in detail in the section 3.

In Figure I-3, fuzzy hyperboxes are used to represent the competence regions in the examples of

Figures I-1. As illustrated in Figure I-3-a, the query sample is located outside of all hyperboxes.

However, it is located close to the hyperbox of classifier C1 (inside its green area of C1).

Therefore, this classifier is considered to be more competent than classifier C2.

Figure-A I-3 Solving the illustrated problems of KNN in

Figure I-1 using Fuzzy Hyperboxes based on correct classified

samples that represent competence areas

In summary, this research aims to answer the following research questions: (1) Can the use of

fuzzy hyperboxes lead to more accurate dynamic selection approaches? (2) Do the misclassified

samples have enough information to estimate the competence of classifiers? (3) Will the use of

hyperboxes lead to reduced computational complexity compared to current DS techniques?

The rest of the paper is organized as follows: In Section 3, the background of Fuzzy Hyperboxes

is reviewed. The proposed method is discussed in Section 4. Finally, the experimental results

and conclusion are discussed in Section 5 and Section 6, respectively.

3. Fuzzy Hyperbox
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Hyperbox was introduced by Simpson in 1992 as a building block for Fuzzy Min-Max Neural

Networks (FMM) (Simpson (1992); Simpson & Jahns (1993)). Hyperbox is defined by its two

corners named Min (v) and Max (w) corners.The size and location of the hyperboxes are easily

adjustable by changing these two corners. Hyperbox-based learning systems have some features

that make them promising tools in machine learning applications: the ability to make soft and

hard decisions, scalability, online adaptation, and the ability to model granular data (Khuat et al.

(2021b)).

3.1 Learning process

The learning process of hyperboxes is a single-pass process in which hyperboxes are formed

regarding learning data to cover the needed regions. During this process, for each learning

instance x, a hyperbox must be found that contains x or is expandable enough to contain this

sample. Figure I-4 shows how the hyperbox 𝐵𝑗 is expanded to involve the sample x. In this

example, 𝑣 𝑗2 and 𝑤 𝑗1 are changed to expand the hyperbox.

Figure-A I-4 Expansion of hyperbox 𝐵𝑗 to involve sample

x(𝑥1, 𝑥2)

The maximum size of hyperboxes is limited by the user-defined parameter 𝜃 during the learning

process. At the end of this process, if no expandable hyperbox is found, a new hyperbox is

created.



113

Each hyperbox is defined by the following equation.

𝐵𝑗 = {vj,wj, 𝑏 𝑗 (x)} ∀x ∈ 𝐼𝑛 (A I-1)

In this equation, x = {𝑥1, 𝑥2, ..., 𝑥𝑛} is a single data point. wj = {𝑤 𝑗1, 𝑤 𝑗2, ..., 𝑤 𝑗𝑛} and

vj = {𝑣 𝑗1, 𝑣 𝑗2, ..., 𝑣 𝑗𝑛} are min and max corners of the hyperbox, respectively. 𝑏 𝑗 is the

membership function of the hyperbox 𝐵𝑗 . Also, 𝐼𝑛 is 𝑛 dimensional feature space.

3.2 Membership Function

The membership function of the hyperbox is a crucial part of the fuzzy Min-Max neural network

technique. It is utilized to quantify the membership grade of an arbitrary instance to the hyperbox

𝐵𝑗 (between 0 and 1). The membership function of a hyperbox is usually defined so that the

degree of membership inside the hyperbox 𝐵𝑗 is equal to one and decreases when the feature

point moves away from the hyperbox.

Many membership functions were proposed for hyperboxes. However, the membership function

introduced by Gabrys and Bargiela (Gabrys & Bargiela (2000)) is the most popular membership

function among the fuzzy hyperbox’s applications (Khuat et al. (2021a)). It has a simple

structure (only the min and max points), and the membership value monotonically decreases by

increasing each side of the hyperbox. This function is defined as follows:

𝑏 𝑗 (x) = 𝑚𝑖𝑛𝑖=1..𝑛 (𝑚𝑖𝑛([1 − 𝑓 (𝑥𝑖 − 𝑤𝑖 𝑗 , 𝛾𝑖)],
[1 − 𝑓 (𝑣𝑖 𝑗 − 𝑥𝑖, 𝛾𝑖)])). (A I-2)

Where,

𝑓 (𝑟, 𝛾) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 𝑟𝛾 > 1

𝑟𝛾 if 0 ≤ 𝑟𝛾 ≤ 1

0 if 𝑟𝛾 < 0

(A I-3)
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Where 𝑎𝑖 is 𝑖𝑡ℎ dimension of a sample x, and 𝛾 is the sensitivity parameter that regulates the rate

with which the membership values decrease out of the hyperbox. However, this membership

function has sharp corners, which assigns a higher membership to further samples in some

cases. Membership levels around the hyperbox and the mentioned problem of this membership

function are shown in Figure I-5.

Figure-A I-5 Membership function proposed by Gabrys and

Bargiela and its corners problem

As can be observed, this function assigns the same membership value to the points P and S,

while P is closer to the hyperbox than S.

4. Proposed Framework (FH-DES)

Here, a novel DS framework based on fuzzy hyperboxes is introduced, called Fuzzy Hyperbox-

based Dynamic Ensemble Selection (FH-DES). In this approach, the competence or incompetence

areas of classifiers (Figure I-2) are defined by fuzzy hyperboxes.

When hyperboxes are built based on correctly classified examples (Figure I-3), they represent

regions where the classifiers work well or competence areas. This approach will be called FH-

DES-C in the rest of the paper. In contrast, when hyperboxes are built with misclassified samples,

the approach is called FH-DES-M, in which hyperboxes represent areas of incompetence. In
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this case, the classifier whose hyperboxes have a lower membership degree will be farther from

query sample xq, so it will be more competent to classify the query sample.

Therefore, the competence of the classifier 𝑐𝑖 to classify the given sample xq is estimated

according to the membership function of hyperboxes that belong to 𝑐𝑖.

As mentioned in section 3, Gabrys’s membership function (Gabrys & Bargiela (2000)) has

some problems in the corners of membership levels. To fix these problems, we introduce a new

membership function with smoother borders (SBM):

𝑏 𝑗 (xq) = ( | |𝑅𝑒𝐿𝑈 ( |oj − xq | − (wj − vj)/2) | |2)2 (A I-4)

Where oj is the center of hyperbox 𝐵𝑗 , vj and wj are min and max corners respectively, | |.| |2
indicates 2-norms, and 𝑅𝑒𝐿𝑈 (·) is the Rectified Linear Unit (ReLU) function as below:

𝑅𝑒𝐿𝑈 (𝑎) = 𝑚𝑎𝑥(0, 𝑎) (A I-5)

In Figure I-6, the membership levels of SBM are illustrated. The smooth borders of this function

help us to solve the mentioned problem in Figure I-5.

In this method, all necessary calculations to define competence (or incompetence) areas are

performed during the training phase and only membership values are calculated during the

generalization phase to label the query sample xq. Therefore, the proposed framework is

expected to have less complexity than KNN-based approaches. In addition, the computational

complexity of FH-DES-M should be less than FH-DES-C. Because the number of misclassified

samples is usually less than the correctly classified samples.

4.1 Training phase
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Figure-A I-6 The proposed Smooth-Border

membership function (SBM) for FH-DES

framework

During the training phase, after generating the pool of classifiers, all the needed hyperboxes are

formed according to the performance of the base classifiers (on DSEL data). It consists of the

expansion process of FMM (Simpson & Jahns (1993)).

In particular, suppose we want to use the FH-DES-M approach, and 𝑀𝑠𝑒𝑡𝑖 contains misclassified

samples of classifier 𝑐𝑖, all hyperboxes of 𝑐𝑖 are built using 𝑀𝑠𝑒𝑡𝑖 according to the learning

process of hyperboxes (Subsection 3.1). The set of hyperboxes, which belongs to the classifiers

𝑐𝑖, is called 𝐻𝑠𝑒𝑡𝑖. The distribution of hyperboxes depends on the order of the samples within

𝑀𝑠𝑒𝑡𝑖. Consequently, some hyperboxes can overlap in the feature space; However, it does not

affect the system’s performance.

Figure I-7 represents the training phase of the proposed approach based on misclassified samples.

As mentioned in Subsection 3.1, the hyperbox creation process for the classifier 𝑐𝑖 begins by

picking a sample of 𝑀𝑠𝑒𝑡𝑖 and finding a hyperbox of 𝐻𝑠𝑒𝑡𝑖 that includes (or can expand to

include) the picked sample. If such a hyperbox is not found, a new hyperbox is created at the

same point and added to 𝐻𝑠𝑒𝑡𝑖.

4.2 Generalization phase
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Figure-A I-7 Block Diagram of the training phase of

FH-DES based on misclassified samples

During the generalization phase, for each given query sample xq, the performance of all

classifiers is estimated based on their hyperboxes, and the best ensemble of classifiers is selected.

Specifically, for each query sample xq, the competence of the classifier 𝑐𝑖, represented by 𝛿𝑖, is

calculated as follows:

𝛿𝑖 (xq) = (𝑏𝑖∗ + 𝑏𝑖+)/2 (A I-6)

Here 𝑏𝑖∗ and 𝑏𝑖+ are the first and second highest membership values among the hyperboxes of 𝑐𝑖.

It should be noticed that in the correct-classified version (FH-DES-C), the membership value of

hyperboxes is related to the competence of the classifier. While in FH-DES-M, the membership

values of hyperboxes represent the incompetence of classifiers. Thus, the calculated competence

value should be deducted from 1 (𝛿𝑖 ← 1 − 𝛿𝑖) in the FH-DES-M version.

In the next step, the ensemble of the most competent classifiers is selected according to a global

threshold 𝜏𝑞. The threshold is defined by Equation A I-7.
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𝜏𝑞 = 𝜇 × max
𝑖=1..𝑀

(𝛿𝑖 (xq)) (A I-7)

In this equation, 𝜇 is a predefined parameter between 0 and 1. Therefore, the final ensemble of

classifiers (𝜙) is formed considering threshold 𝜏𝑞 as below:

𝜙(xq) = {𝑐𝑖 |𝛿𝑖 (xq) ≥ 𝜏𝑞} (A I-8)

Where 𝜇 is equal to one, only the most competent classifier(s) is selected. On the contrary, when

𝜇 equals zero, all classifiers will be selected. Finally, in the aggregation step, outputs of the

selected classifiers are combined with weighted majority voting by associating competence to

the classifiers as their weights:

𝑦̂ = 𝑎𝑟𝑔 max
𝜆

∑
∀𝑙 ∈𝜆

𝛿𝑖 (xq) | 𝑐𝑖 (xq) = 𝑙, 𝑐𝑖 ∈ 𝜙(xq) (A I-9)

Where 𝜆 is the set of unique class labels and 𝑙 represents the label of xq. The pseudocode of the

generalization phase is represented in the algorithm I-1.

Algorithm-A I-1 Labeling process of xq

Input: 𝜔, xq
Output: Predicted label of xq

1 Calculate the membership value of xq for all hyperboxes ;

2 Calculate competence of all classifiers by eq (A I-6) ;

3 Select the ensemble of classifiers by eq (A I-8) ;

4 Aggregate outputs of selected classifiers by eq (A I-9) ;

5 Label the given sample

In summary, unlike previous DS techniques, in this approach, the strength (competence) or

weakness (incompetence) of the classifiers is considered to select the final ensemble of the
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classifiers, while in current DS approaches, only their strength (competence) is considered as a

selection criterion (Cruz et al. (2018a)).

In addition, the approach solves some problems of the KNN-based approaches, such as the

K-value problem, sensitivity to the local distribution, and limited information. Therefore, we

expect the proposed method to have higher accuracy than KNN-based approaches. In addition,

since in the proposed framework, only hyperboxes are utilized in the generalization phase

(instead of instances), and the framework contains fewer hyperboxes than samples, it is expected

that the proposed approach will be faster than KNN-based DS techniques. This is especially true

in the FH-DES-M approach, where hyperboxes are formed based on only misclassified samples.

5. Experimental results

In this section, the efficiency of the proposed framework is evaluated using 30 datasets and

compared with other DS approaches. To have a better comparison, we used a similar experimental

protocol that is used in (Cruz et al. (2018a)) and (Cruz et al. (2015d)). In this experiment, the

pool of classifiers contained 100 perceptrons that were generated using the bagging technique

(Breiman (1996)). This pool was fixed for all techniques to ensure a fair comparison. In these

experiments, each dataset was randomly divided into 50% training data, 25% the dynamic

selection dataset (DSEL), and 25% test data. The division was performed by maintaining the

prior probability of each class. To implement different algorithms, DESlib toolkit (version

0.3.5) (Cruz et al. (2020)) was used. Furthermore, each experiment was conducted using 20

replications and the mean of the evaluation criteria has been reported. In all experiments, the

perceptron of the SciKit-learn library (Version: 1.0.1) is used as a base classifier. Some of the

parameters required in these experiments are reported in Table I-1.

The proposed framework has two main hyperparameters, including Theta (𝜃), which defines the

maximum size of hyperboxes, and Mu (𝜇) which defines a threshold to select top base classifiers.

Both hyper-parameters are set in the range 0 to 1. To tune these hyper-parameters, we use a

similar process to that used by Cruz et al.(Cruz et al. (2015d)). Ten different datasets, which
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Table-A I-1 Used parameters and their

values in experiments

Method Parameter Name Value

Perceptron

Maximum iteration 100

Tolerance 10e-3

Alpha 0.001

CalibratedClassifierCV
CV prefit

Calibration method isotonic

Bagging

Number of estimators 100

bootstrap True

max- samples 1.0

KNN-based DS K 7

META-DES
K_p 5

h_c 80%

have not been used in the comparative study, were used during this process to avoid biased

estimation. The tuning experiments were carried out using the same experimental protocol and

the optimal values found were 𝜃 = 0.27 and 𝜇 = 0.99. Therefore, these values were used in the

main experiments.

All simulation details are available in FH-DES’s GitHub repository3.

5.1 Datasets

In our experimental study, 40 different real-world datasets in a wide variety of areas were used.

These datasets were selected with different specifications to evaluate different aspects of the

proposed approach better. All datasets were collected from OpenML (Van Rĳn et al. (2013)),

UCI (Asuncion & Newman (2007)) repositories, and previous DS research. In Table I-2 the

utilized datasets and their specifications are listed. The first ten datasets in this table were

used to tune the proposed approach’s hyperparameters. The other 30 datasets were used in our

comparative study.

3 https://github.com/redavtalab/FH-DES_ĲCNN.git
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Table-A I-2 Dataset considered in this work and their main features

# Database Instances Features # Database Instances Features

1 Adult 690 14 21 Heart 270 13

2 Audit2 776 17 22 ILPD 583 10

3 CTG 2126 21 23 Ionosphere 351 34

4 Cardiotocography 2126 21 24 Laryngeal1 213 16

5 Chess 3196 36 25 Laryngeal3 353 16

6 Credit-screening 690 15 26 Lithuanian 600 2

7 Ecoli 336 7 27 Liver 345 6

8 Glass 214 9 28 Mammographic 830 5

9 P2 1000 2 29 Monk2 432 6

10 Transfusion 748 4 30 Phoneme 5404 5

11 Audit 771 26 31 Pima 768 8

12 Banana 1000 2 32 Sonar 208 60

13 Banknote 1372 4 33 Statlog 1000 20

14 Blood 748 4 34 Steel 1941 27

15 Breast 569 30 35 Thyroid 692 16

16 Car 1728 6 36 Vehicle 846 18

17 Datauser 403 5 37 Vertebral 310 6

18 Faults 1941 27 38 Voice3 238 10

19 German 1000 24 39 Weaning 302 17

20 Haberman 306 3 40 Wine 178 13

5.2 Performance of the proposed framework in different configurations

To determine the best configuration of the proposed framework, we compare their accuracy over

the 30 datasets. Thus, we examined the influence of misclassified samples and the smooth corner

membership function on the performance of the proposed framework. Therefore, there are four

different configurations of the proposed framework. FH-GC and FH-GM approaches are based

on the Gabrys membership function, which uses correct-classified and misclassified samples,

respectively. Two others utilize the proposed membership function (SBM). This group contains

FH-DES-C and FH-DES-M based on correct-classified and misclassified samples, respectively.

The classification accuracy of these approaches alongside their standard deviations is reported

in Table I-3.

We can see in this table that FH-DES-M achieved the highest accuracy in 13 out of 30 datasets.

Additionally, this approach achieved the highest average accuracy and the best average rank in

30 datasets. In addition, using the Gabrys membership function, FH-GM proposed framework

achieved the highest accuracy in 11 of 30 datasets.
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Table-A I-3 Average accuracy and standard deviation of the

proposed method in different configurations

DataSets FH_GC FH_GM FH_DES-C FH_DES-M

Audit 96.81(0.77) 96.94(0.8) 96.87(0.74) 96.87(0.92)

Banana 89.26(2.5) 89.4(2.23) 89.12(2.37) 89.5(1.68)
Banknote 99.1(0.57) 99.52(0.51) 99.13(0.66) 99.34(0.5)

Blood 77.57(2.32) 77.22(2.18) 77.46(1.98) 76.55(2.64)

Breast 96.47(1.52) 96.82(1.49) 96.29(1.49) 96.61(1.61)

Car 73.26(1.24) 72.96(1.09) 74.63(1.08) 74.11(1.25)

Datausermodeling 87.62(3.66) 91.19(4.03) 87.77(3.93) 91.29(3.63)
Faults 69.31(2.1) 69.74(2.28) 70.12(1.84) 70.38(2.03)
German 74.94(2.02) 74.92(2.28) 74.8(2.0) 74.86(2.27)

Haberman 71.23(3.99) 71.56(3.78) 71.36(3.88) 71.56(3.98)
Heart 83.01(3.82) 82.43(4.2) 82.79(3.89) 83.9(4.42)
ILPD 70.92(3.7) 70.34(3.7) 71.3(3.1) 70.65(2.59)

Ionosphere 88.75(2.43) 88.75(1.52) 88.35(2.21) 88.13(1.37)

Laryngeal1 81.85(3.69) 81.85(3.29) 81.94(3.25) 82.5(3.49)
Laryngeal3 71.8(3.46) 72.13(4.46) 71.01(4.15) 71.8(4.08)

Lithuanian 89.3(2.25) 90.57(2.21) 89.63(2.08) 90.5(2.32)

Liver 66.72(3.85) 69.43(4.88) 67.82(4.77) 69.14(4.34)

Mammographic 78.73(2.87) 79.18(2.82) 78.03(3.2) 78.87(2.73)

Monk2 79.03(3.18) 81.81(3.55) 86.2(2.85) 87.64(3.24)
Phoneme 77.73(0.91) 78.13(0.89) 77.81(0.97) 78.1(0.91)

Pima 75.47(1.91) 75.68(2.41) 74.9(2.46) 76.28(2.72)
Sonar 80.29(5.5) 80.48(5.84) 81.35(6.41) 79.62(5.42)

Statlog 75.1(2.6) 74.94(2.32) 75.26(1.91) 75.08(2.0)

Steel 70.64(1.58) 70.57(1.34) 70.72(1.67) 71.37(1.33)
Thyroid 95.92(1.56) 95.84(1.49) 95.87(1.32) 95.98(1.37)
Vehicle 74.17(1.83) 74.32(2.17) 74.53(2.1) 75.05(2.41)
Vertebral 82.88(3.83) 84.36(4.28) 82.44(3.54) 84.04(3.23)

Voice3 77.58(3.35) 77.33(3.39) 77.17(3.42) 76.58(3.09)

Weaning 80.72(4.77) 82.24(4.91) 81.25(4.94) 82.43(4.39)
Wine 97.67(1.79) 97.33(2.06) 97.11(2.23) 98.0(1.71)
Average 81.13 81.6 81.43 81.89
Ave Rank 2.93 2.26 2.80 1.95

In the next step, statistical analysis is conducted using the post-hoc Bonferroni-Dunn test

(Demšar (2006)). This test is applied to compare the ranks achieved by each DS method.

The average ranks of different configurations of the proposed framework and the result of the

Bonferroni-Dunn post-hoc test are presented in Figure I-8 using the Critical Difference (CD)

diagram. The performance of the two DS approaches is significantly different if their difference

in average rank is higher than the CD value.

According to the post-hoc test, FH-DES-M is significantly better than FH-GC. And there is no

significant difference between the other configurations of the proposed framework. However,

FH-DES-M is slightly better than others.
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Figure-A I-8 Critical Difference (CD) diagram for different

configurations of the proposed framework. The best algorithm

is the one presenting the lowest rank. Techniques that are

statistically equivalent are connected by a black bar

In the next step, a pairwise comparison is conducted to compare the obtained results of FH-DES-

M and FH-GM against the other configurations, based on Sign test (Demšar (2006)). In this

test, there are two hypotheses that include 𝐻0 (null hypothesis) and 𝐻1 (alternate hypothesis).

Rejection of 𝐻0 means that the performance of the corresponding DS technique is significantly

better than the compared technique. The number of wins, ties, and losses for each technique

is computed compared to the baseline. The significance level of this test is determined by the

predefined parameter 𝛼, which in this paper is set 𝛼 = 0.05 to have 95% confidence. If the

number of wins is greater than or equal to a critical value, denoted by 𝑛𝑐, the null hypothesis 𝐻0

is rejected. The critical value is computed using equation A I-10:

𝑛𝑐 =
𝑛𝑒𝑥𝑝

2
+ 𝑧𝛼

√
𝑛𝑒𝑥𝑝

2
(A I-10)

Where 𝑛𝑒𝑥𝑝 is the total number of experiments and 𝑧𝛼 = 1.645, for a significance level of

𝛼 = 0.05 (Cruz et al. (2017b)). In this test, we have 30 experiments (datasets). Therefore,

𝑛𝑒𝑥𝑝 = 30, so for this amount of experiments, the critical value is 𝑛𝑐 = 19.5. Obtained results

for FH-GM and FH-DES-M are represented in Figure I-9 and Figure I-10 respectively.

It can be observed that the proposed framework statistically has good performance using both

the Gabrys membership function and the proposed membership function. FH-DES-M is slightly
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Figure-A I-9 Pairwise comparison between the FH-GM and

other configurations of the proposed approach (𝑛𝑐 = 19.5)

Figure-A I-10 Pairwise comparison between the FH-DES-M

and other configurations of the proposed approach (𝑛𝑐 = 19.5)
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more accurate than FH-GM, but there is no significant difference. However, these two approaches

are significantly better than the correct-classified versions. Therefore, it can be concluded

that the misclassified samples contain more helpful information to estimate the competence of

classifiers rather than correct-classified ones. The reason is simple; boundary regions are usually

challenging in classification applications. Most classification errors occur in these areas, and

misclassified samples are usually found there. When we form hyperboxes based on misclassified

samples, most of the hyperboxes are formed in these areas. The proximity of hyperboxes to

the boundary regions means that the system makes a more precise decision in this region.

Thus, it results in higher accuracy during the generalization phase. Furthermore, according to

Figures I-10 and I-8, FH-DES-M statistically outperformed FH-GC and FH-DES-C and was

slightly better than FH-GM. Therefore, FH-DES-M was selected as the best configuration of the

proposed framework and compared with other DS approaches in the next step.

5.3 Comparison with state-of-the-art DS methods

The accuracy and standard deviation of the proposed framework and the state-of-the-art DS

approaches are reported in Table I-4. In this table, the Oracle approach (Kuncheva (2002)) is a

conceptual method that selects the base classifier which labels the query sample correctly if

such a base classifier exists.

We can see in Table I-4 that the proposed approach FH-DES-M achieved the highest average

accuracy among all DS approaches, and its average rank is very close to the DESKNN that

obtained the lowest rank.

Figure I-11 presents the average ranks of different DS techniques and the result of the Bonferroni-

Dunn post-hoc test using a critical difference diagram.

This figure shows that DESKNN and FH-DES-M have the best overall rank among the compared

methods, outperforming all DS approaches. However, there is no significant difference between

these DES approaches over the mentioned datasets. For a more fine-grained comparison
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Table-A I-4 Average accuracy and standard deviation of the proposed method and other

DES approaches

DataSets Oracle KNORA-E RANK KNORA-U OLA DESKNN META-DES KNOP FH-DES-M

Audit 99.56(0.5) 96.89(0.73) 96.71(0.74) 96.19(1.3) 97.02(0.93) 96.76(0.99) 96.74(1.04) 96.24(1.36) 96.87(0.92)

Banana 93.1(1.93) 90.94(1.79) 91.12(1.92) 87.52(1.9) 91.48(2.04) 88.2(1.87) 88.48(1.88) 86.6(1.71) 89.5(1.68)

Banknote 99.87(0.22) 99.43(0.53) 99.43(0.69) 98.82(0.56) 99.45(0.68) 99.2(0.47) 99.2(0.54) 98.85(0.55) 99.34(0.5)

Blood 89.6(2.42) 76.74(2.24) 76.66(2.07) 78.24(1.6) 77.62(2.46) 77.67(1.9) 77.99(1.51) 78.37(1.55) 76.55(2.64)

Breast 98.99(0.56) 96.61(1.67) 96.15(1.88) 96.78(1.49) 96.12(1.76) 96.71(1.35) 96.82(1.44) 96.75(1.37) 96.61(1.61)

Car 83.52(1.06) 73.85(1.24) 73.62(1.27) 71.25(1.1) 74.48(1.04) 72.31(0.79) 73.76(0.91) 71.27(1.07) 74.11(1.25)

Datausermodeling 99.06(1.19) 91.44(2.99) 89.21(3.82) 88.22(3.15) 89.55(3.32) 90.35(2.75) 90.64(2.77) 88.47(3.15) 91.29(3.63)

Faults 91.54(1.21) 69.97(1.54) 69.12(2.17) 69.6(2.13) 69.42(2.16) 70.51(2.01) 70.0(2.08) 69.7(2.15) 70.38(2.03)

German 94.54(1.45) 74.46(2.75) 73.86(2.35) 75.08(1.87) 73.92(2.9) 75.22(1.96) 74.94(1.93) 75.04(2.0) 74.86(2.27)

Haberman 92.4(2.06) 70.71(4.32) 70.84(4.2) 73.9(3.15) 71.36(4.24) 74.03(2.6) 72.21(3.3) 74.16(2.75) 71.56(3.98)

Heart 97.35(2.01) 82.35(4.26) 81.47(4.42) 83.9(3.93) 82.65(4.76) 83.75(3.96) 83.24(3.93) 83.75(3.9) 83.9(4.42)
ILPD 95.68(1.62) 70.31(3.04) 69.97(2.88) 72.09(2.08) 70.75(3.07) 70.89(1.57) 71.3(2.48) 71.64(1.72) 70.65(2.59)

Ionosphere 98.18(1.32) 89.32(1.66) 86.53(2.39) 88.07(2.02) 86.36(2.49) 88.24(2.25) 88.58(2.45) 87.95(2.47) 88.13(1.37)

Laryngeal1 95.28(3.82) 82.41(3.68) 82.13(4.15) 82.41(4.08) 82.04(4.02) 82.5(4.2) 82.13(4.73) 82.59(4.07) 82.5(3.49)

Laryngeal3 89.38(2.65) 71.18(3.26) 71.24(4.73) 71.29(3.73) 71.29(4.8) 71.4(3.67) 70.9(3.59) 71.18(3.49) 71.8(4.08)
Lithuanian 93.47(1.78) 91.1(2.1) 91.1(2.45) 86.9(2.0) 90.9(2.31) 88.6(2.34) 87.93(1.87) 86.37(1.89) 90.5(2.32)

Liver 97.93(1.91) 68.16(4.45) 67.64(3.26) 68.91(4.58) 69.66(3.96) 70.86(4.23) 68.74(3.94) 68.85(4.6) 69.14(4.34)

Mammographic 90.29(2.25) 77.81(2.77) 77.55(2.94) 79.04(2.5) 78.51(2.14) 79.42(2.45) 78.49(2.38) 79.13(2.55) 78.87(2.73)

Monk2 97.31(1.01) 86.99(3.46) 85.69(3.33) 79.44(3.63) 84.81(3.01) 83.06(3.53) 88.75(3.99) 81.3(3.69) 87.64(3.24)

Phoneme 87.75(1.75) 79.81(1.01) 79.62(1.03) 77.49(0.92) 79.09(1.03) 77.77(0.81) 79.51(1.05) 77.28(0.89) 78.1(0.91)

Pima 92.97(1.79) 76.12(2.53) 75.42(2.72) 77.03(2.08) 75.49(2.51) 76.54(2.45) 76.59(2.47) 77.21(2.08) 76.28(2.72)

Sonar 98.85(1.54) 78.08(5.21) 77.02(4.61) 77.31(5.69) 76.63(5.17) 77.98(5.49) 80.0(5.28) 77.4(5.83) 79.62(5.42)

Statlog 94.14(1.53) 74.72(2.42) 74.48(1.97) 75.22(2.33) 74.64(2.2) 75.42(2.08) 75.82(2.1) 75.42(2.43) 75.08(2.0)

Steel 91.55(1.44) 70.67(1.45) 69.9(1.94) 70.3(1.81) 70.02(1.68) 71.65(1.81) 71.05(1.77) 70.64(1.92) 71.37(1.33)

Thyroid 98.47(0.88) 95.84(1.43) 95.9(1.34) 95.9(1.37) 95.78(1.17) 95.78(1.2) 95.95(1.28) 95.84(1.34) 95.98(1.37)
Vehicle 96.89(1.02) 74.98(2.17) 74.83(2.5) 74.79(1.67) 74.25(2.07) 74.55(2.47) 74.81(2.24) 74.5(1.82) 75.05(2.41)
Vertebral 95.96(2.93) 83.33(4.05) 83.08(3.88) 82.44(4.27) 83.27(3.35) 84.1(4.82) 83.33(3.85) 83.01(4.42) 84.04(3.23)

Voice3 92.67(2.32) 77.0(3.32) 76.92(3.62) 78.58(2.85) 77.08(3.61) 77.83(2.79) 77.83(3.42) 78.75(2.58) 76.58(3.09)

Weaning 97.43(2.06) 81.32(4.26) 80.92(4.51) 80.99(4.6) 81.91(4.9) 82.5(4.25) 81.18(4.37) 80.92(4.66) 82.43(4.39)

Wine 99.78(0.67) 97.89(1.79) 96.56(3.02) 97.78(1.86) 96.67(2.77) 98.22(1.66) 97.78(2.11) 97.89(1.92) 98.0(1.71)

Average 94.78 81.68 81.16 81.18 81.41 81.73 81.82 81.24 81.89
Ave Rank - 3.32 5.1 3.88 4.18 2.42 2.85 3.78 2.47

Figure-A I-11 Critical Difference (CD) diagram

considering the all compared approaches. The best

algorithm is the one presenting the lowest rank and

techniques that are statistically equivalent are

connected by a black bar

between these techniques, we conducted a pairwise comparison between FH-DES-M and the

state-of-the-art DS techniques using the Sign test. The result of this test is shown in Figure I-12.
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Figure-A I-12 Pairwise comparison between the FH-DES-M

and other DS methods (𝑛𝑐 = 19.5)

As we can see in this figure, the proposed approach significantly surpasses five out of seven

state-of-the-art DS approaches. And it is slightly better than META-DES. Just the DESKNN

approach has a higher number of wins than FH-DES-M (17 losses for the FH-DES-M). But,

since the difference is lower than the threshold 𝑛𝑐 = 19.5, this difference is not statistically

significant.

5.4 Time complexity and Memory Cost

As we discussed earlier, in the KNN-based approaches, to label each query sample, its distance

to all DSEL samples is calculated, and then the K nearest samples are determined. If we used

big O notation that represents an upper bound to show how run time grows as the input size

grows (Knuth (1976)), KNN costs 𝑂 (𝑛), which n is the number of instances in DSEL. However,

the computational complexity in the proposed approach changes to 𝑂 (𝑒) which e is the number
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of hyperboxes. We expect that the number of generated hyperboxes be much smaller than the

size of the DSEL data (𝑒 << 𝑛), significantly reducing the computational cost of our system.

To validate this hypothesis, we analyze the number of hyperboxes generated by our system

considering two large-scale datasets: i) the Sensor dataset (Asuncion & Newman (2007)) which

contains 928K samples as a binary classification problem. ii) An artificial dataset, namely

ArData generated with Scikit-learn, which includes five features and two classes. We vary the

DSEL size from 1K to 900K to examine the influence of its size on the number of generated

hyperboxes. In each step, we added new samples to the DSEL data. In this experiment, two

small subsets of the dataset are selected randomly as train and test data so that each of them

contains 1000 samples. During all steps of this experiment, there was no overlap between the

test, train, and DSEL datasets. The pool of classifiers contained 100 perceptrons, similar to the

previous experiments.

Since the complexity of all KNN-based approaches is the same (𝑂 (𝑛)), during this experiment,

we examined only the META-DES approach as a strong and accurate KNN-based approach

(Cruz et al. (2018a)). In Table I-5, the accuracy obtained using FH-DES-M and META-DES in

different sizes of the DSEL data is reported.

This table shows that the proposed method and META-DES have similar accuracy in small data

sizes. However, with a larger data size, the accuracy of the KNN-based approach increases. In

particular, the accuracy of the META-DES gets close to the oracle’s accuracy for the Sensor

dataset as the dataset size increases. Because, in large-scale datasets, almost all regions of the

feature space are covered by DSEL instances. Thus, sufficient DSEL samples are available to

correctly estimate the base classifiers’ competencies and select a suitable ensemble of classifiers.

However, achieving such accuracy has a large computational complexity. In table I-6, the number

of hyperboxes generated by FH-DES-M and the number of DSEL samples are reported.

As presented in table I-6, the number of generated hyperboxes is considerably smaller than

the size of the DSEL data (𝑒 << 𝑛). For example, considering the 900K samples study case,

the proposed approach generates only 4,127 and 4,392 hyperboxes for the ArData and Sensor
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Table-A I-5 The accuracy of the proposed approach and

META-DES in different data sizes

DataSets Oracle META-DES FH-DES-M

Data1000 94.01(0.19) 90.78(0.07) 90.99(0.11)

Data10000 94.01(0.19) 91.06(0.14) 90.74(0.13)

Data100000 94.01(0.19) 91.74(0.09) 90.84(0.19)

Data300000 94.01(0.19) 91.99(0.08) 90.84(0.17)

Data500000 94.01(0.19) 92.07(0.15) 90.82(0.09)

Data700000 94.01(0.19) 92.06(0.17) 90.80(0.10)

Data900000 94.01(0.19) 92.06(0.16) 90.86(0.14)

Sensor1000 99.09(0.14) 97.68(0.2) 97.26(0.4)

Sensor10000 99.09(0.14) 98.21(0.19) 97.4(0.17)

Sensor100000 99.09(0.14) 98.75(0.16) 96.61(0.38)

Sensor300000 99.09(0.14) 98.78(0.16) 96.39(0.25)

Sensor500000 99.09(0.14) 98.84(0.15) 96.36(0.23)

Sensor700000 99.09(0.14) 98.84(0.16) 96.36(0.28)

Sensor900000 99.09(0.14) 98.87(0.15) 96.38(0.29)

Average Accuracy 96.74 95.37 93.98

Table-A I-6 Comparing the number of

generated Hyperboxes in FH-DES-M and number

of DSEL samples

#Sample
# Hyperboxes

ArData Sensor

1,000 530 1,115

10,000 1,313 2,407

100,000 2,679 3,849

300,000 3,457 4,167

500,000 3,818 4,290

700,000 4,026 4,331

900,000 4,127 4,392

datasets, respectively. In addition, we can also observe a plateau in the number of hyperboxes

added to the system as the dataset size increases. Between 700k to 900k samples, only 101

and 61 new hyperboxes were added to the system. On the other hand, all 900K samples should

be stored and processed for each query sample using KNN-based approaches. Thus, we can

confirm that the proposed approach has lower computational complexity than KNN-based DES

approaches from the storage and computational perspectives.
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6. Conclusion

This paper introduced a novel dynamic ensemble selection framework based on fuzzy hyperbox.

In this framework, competence or incompetence areas of classifiers are determined using fuzzy

hyperboxes. For each base classifier, hyperboxes are formed based on their correct-classified

samples to define the "competencies" and "incompetencies" areas. In addition, for the first

time in the dynamic selection area, the misclassified instances were applied to define the

incompetence areas. Moreover, this paper also introduced a new membership function to

measure the memberships differently with softer boundaries that slightly increase the system’s

accuracy.

Experimental results demonstrated that utilizing the misclassified samples could significantly

increase the accuracy of the proposed DS framework and decrease the computational complexity

compared to the correct classified samples. Additionally, the proposed approach based on

misclassified samples obtained the highest average accuracy compared to state-of-the-art DS

approaches.

Furthermore, the proposed framework also has lower storage and computational complexity

when compared to DS techniques based on KNN and potential function models for estimating the

regions of competence. According to the experimental results, the proposed method generates

about 4k hyperboxes (40 hyperboxes for modeling each base classifier’s misclassifications) in

datasets containing 900k samples. Thus, the proposed FH-DES can be an excellent alternative

for handling large-scale problems with DES approaches. Fuzzy hyperboxes also allow online

learning making it a suitable technique for handling streaming data. Future works will investigate

the use of FH-DES for dealing with data streams and concept drift.



APPENDIX II

SUPPLEMENTARY MATERIALS OF JOURNAL PAPER

1. Hyperparameter Tuning

As mentioned earlier, the best hyperparameters values of these variants are estimated using a

tuning process on the first 10 datasets in Table 2.4. The best values obtained from this process

are reported in Table II-1.

Table-A II-1 Best hyperparameter values found for different variants of FH_DES

FH_1-M FH_2-M FH_3-M FH_4-M FH_5-M FH_6-M FH_7-M FH_8-M FH_9-M FH_10-M

𝜃 0.27 - 0.5 - 0.7 0.7 0.4 0.5 0.7 0.9

𝜇 0.99 0.4 0.3 0.1 0.1 0.5 0.4 0.4 0.7 0.7

FH_1-C FH_2-C FH_3-C FH_4-C FH_5-C FH_6-C FH_7-C FH_8-C FH_9-C FH_10-C

𝜃 0.27 - 0.8 - 0.8 1.0 0.8 1.0 1.0 0.8

𝜇 0.99 0.4 0.1 0.4 0.3 0.4 0.1 0.1 0.2 0.6
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2. Ablation Study

Obtained accuracy of all positive variants for each specific dataset are reported in Table II-2.

Then the results of the negative variants per dataset are presented in Table II-3.

Table-A II-2 Average accuracy and standard deviation of positive variants (based on

correct classified samples)

DataSets FH_1-C FH_2-C FH_3-C FH_4-C FH_5-C FH_6-C FH_7-C FH_8-C FH_9-C FH_10-C

Audit 96.87(0.74) 96.09(1.48) 95.91(1.47) 96.04(1.48) 95.93(1.4) 95.98(1.44) 95.91(1.47) 95.88(1.45) 95.91(1.5) 96.11(1.19)

Banana 89.12(2.37) 87.3(1.9) 86.24(1.86) 87.22(1.98) 86.74(1.98) 86.18(1.96) 86.44(1.85) 86.28(1.78) 86.92(2.0) 86.16(1.83)

Banknote 99.13(0.66) 98.8(0.57) 98.67(0.57) 98.8(0.58) 98.79(0.55) 98.69(0.64) 98.76(0.55) 98.72(0.61) 98.8(0.58) 98.7(0.54)

Blood 77.46(1.98) 78.48(1.53) 78.4(1.33) 78.45(1.61) 78.24(1.62) 78.29(1.36) 78.24(1.47) 78.32(1.33) 78.5(1.55) 78.29(1.28)

Breast 96.28(1.49) 96.61(1.22) 96.4(1.28) 96.61(1.26) 96.5(1.25) 96.5(1.17) 96.36(1.24) 96.47(1.24) 96.54(1.28) 96.4(1.26)

Car 74.63(1.08) 73.63(1.21) 70.47(0.96) 73.6(1.29) 71.28(1.15) 71.31(1.19) 70.47(0.96) 70.46(1.06) 72.25(1.2) 70.52(1.12)

Datausermodeling 87.77(3.93) 88.47(2.68) 87.57(2.79) 87.67(2.77) 87.77(2.96) 87.82(2.75) 87.72(2.81) 87.62(3.04) 87.67(2.77) 87.57(2.53)

Faults 70.12(1.84) 69.15(2.4) 68.99(2.4) 69.03(2.34) 69.0(2.29) 69.06(2.33) 68.99(2.4) 68.98(2.36) 69.0(2.36) 69.06(2.44)

German 74.8(2.0) 74.68(1.9) 74.96(2.15) 75.16(2.15) 74.9(2.22) 74.98(2.19) 74.96(2.15) 74.96(2.15) 74.98(2.26) 75.06(2.14)

Haberman 71.36(3.88) 74.48(1.98) 75.32(2.25) 74.68(2.3) 74.87(1.89) 74.42(1.65) 75.13(2.33) 75.13(2.11) 74.94(2.22) 75.13(2.44)

Heart 82.79(3.89) 83.16(4.09) 83.01(4.25) 83.38(4.11) 83.24(4.25) 83.01(4.47) 83.01(4.25) 83.01(4.25) 83.31(4.17) 82.87(4.22)

ILPD 71.3(3.1) 71.95(2.72) 71.95(2.52) 71.92(2.77) 71.92(2.63) 71.95(2.64) 71.95(2.52) 71.92(2.52) 71.99(2.71) 71.71(2.64)

Ionosphere 88.35(2.21) 87.9(1.94) 87.27(2.61) 87.61(2.38) 87.44(2.55) 87.39(2.27) 87.27(2.61) 87.44(2.68) 87.61(2.38) 87.56(2.31)

Laryngeal1 81.94(3.25) 81.02(4.18) 80.56(4.24) 81.02(4.09) 80.56(4.08) 80.93(4.15) 80.56(4.24) 80.83(4.15) 80.83(4.35) 80.46(4.16)

Laryngeal3 71.01(4.15) 70.17(3.96) 69.83(3.52) 70.17(3.77) 70.06(3.66) 69.94(3.77) 69.83(3.52) 69.78(3.57) 69.83(3.68) 70.22(3.72)

Lithuanian 89.63(2.08) 86.13(1.69) 85.07(1.6) 86.3(1.74) 85.67(1.74) 85.0(1.71) 85.0(1.64) 84.7(1.77) 85.97(1.47) 85.43(1.77)

Liver 67.82(4.77) 67.93(4.48) 67.36(4.41) 68.22(4.72) 67.47(4.61) 67.76(4.25) 67.64(4.35) 67.82(4.47) 67.93(4.55) 67.53(4.25)

Mammographic 78.03(3.2) 80.94(2.78) 80.96(2.65) 81.13(2.57) 81.15(2.55) 81.06(2.57) 80.99(2.64) 81.06(2.53) 80.99(2.6) 80.91(2.62)

Monk2 86.2(2.85) 86.39(3.37) 80.79(3.35) 86.94(3.3)) 82.31(3.14) 82.55(3.3) 80.79(3.35) 80.79(3.35) 81.76(2.69) 81.53(2.53)

Phoneme 77.81(0.97) 77.01(0.9) 76.75(0.92) 76.83(0.93) 76.8(0.94) 76.79(0.94) 76.75(0.97) 76.76(0.92) 76.84(0.91) 76.79(0.9)

Pima 74.9(2.46) 76.88(1.88) 76.9(1.73) 76.93(1.75) 76.88(1.68) 76.95(1.91) 77.03(1.76) 76.95(1.81) 76.93(1.83) 76.95(1.75)

Sonar 81.35(6.41) 76.63(6.0) 76.63(6.5) 76.83(6.19) 76.83(6.45) 76.54(6.19) 76.63(6.5) 76.92(6.29) 77.02(6.3) 77.02(5.97)

Statlog 75.26(1.91) 75.26(2.02) 75.2(2.3) 75.3(2.19) 75.18(2.13) 75.18(2.17) 75.2(2.3) 75.16(2.12) 75.1(2.13) 75.5(2.47)

Steel 70.72(1.67) 70.06(1.82) 69.86(1.84) 69.86(1.76) 69.94(1.82) 69.85(1.82) 69.86(1.84) 69.85(1.75) 69.89(1.81) 69.95(1.65)

Thyroid 95.87(1.32) 95.55(1.33) 95.52(1.29) 95.61(1.19) 95.46(1.26) 95.43(1.29) 95.52(1.29) 95.49(1.23) 95.58(1.24) 95.49(1.31)

Vehicle 74.53(2.1) 75.52(2.23) 75.52(2.23) 75.42(2.25) 75.47(2.31) 75.42(2.31) 75.5(2.28) 75.35(2.17) 75.38(2.2) 75.52(2.16)

Vertebral 82.44(3.54) 84.33(3.74) 84.33(3.74) 84.27(3.86) 84.13(3.98) 84.2(3.71) 84.13(4.02) 84.2(3.66) 84.33(3.84) 84.47(3.96)

Voice3 77.17(3.42) 77.42(3.18) 77.58(2.71) 77.33(2.91) 77.08(3.37) 77.08(3.07) 77.58(2.71) 77.58(2.91) 77.33(3.18) 77.0(2.72)

Weaning 81.25(4.94) 80.39(4.12) 80.46(4.21) 80.2(4.0) 80.53(4.13) 80.79(4.31) 80.39(4.18) 80.53(3.92) 80.53(4.0) 80.53(4.03)

Wine 97.11(2.23) 97.33(1.94) 97.0(1.9) 97.11(2.0) 96.67(1.92) 97.67(2.27) 97.22(1.97) 97.33(1.94) 97.33(1.94) 97.56(2.1)

Average Accuracy 81.43 81.32 80.85 81.32 80.96 80.96 80.86 80.88 81.07 80.93

Average Rank 3.73 2.73 5.83 3.07 5.12 4.9 5.73 5.72 3.55 4.62
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Table-A II-3 Average accuracy and standard deviation of negative variants (based on miss

classified samples)

DataSets FH_1-M FH_2-M FH_3-M FH_4-M FH_5-M FH_6-M FH_7-M FH_8-M FH_9-M FH_10-M

Audit 96.87(0.92) 97.2(1.16) 97.05(1.11) 97.07(1.21) 97.05(1.17) 97.15(1.15) 97.2(1.0) 97.07(1.04) 96.97(1.0) 97.25(1.1)

Banana 89.5(1.68) 89.88(1.83) 90.08(2.91) 89.76(2.24) 86.7(1.92) 87.04(2.06) 87.74(2.28) 86.74(2.11) 91.14(2.49) 88.5(2.68)

Banknote 99.34(0.5) 99.34(0.41) 99.37(0.45) 99.26(0.44) 99.2(0.41) 99.15(0.49) 99.3(0.45) 99.17(0.47) 99.46(0.46) 99.48(0.45)

Blood 76.55(2.64) 77.94(1.65) 76.95(1.23) 77.99(1.54) 78.18(1.43) 78.29(1.48) 78.07(1.77) 78.45(1.26) 77.38(1.88) 76.74(1.44)

Breast 96.61(1.61) 96.85(1.12) 96.92(1.26) 96.82(1.3) 96.71(1.35) 96.68(1.25) 96.82(1.24) 96.89(1.28) 96.57(1.38) 96.78(1.35)

Car 74.11(1.25) 73.8(1.67) 73.77(1.73) 79.46(2.0) 78.62(1.71) 77.33(1.67) 73.77(1.73) 73.77(1.73) 79.12(2.15) 83.45(1.42)

Datausermodeling 91.29(3.63) 88.66(2.76) 88.51(2.66) 88.76(2.45) 88.37(2.6) 88.51(2.49) 88.76(2.7) 88.61(2.74) 90.69(2.49) 90.2(2.3)

Faults 70.38(2.03) 69.96(2.17) 69.56(2.33) 69.6(2.28) 69.35(2.23) 69.9(2.34) 69.77(2.25) 69.75(2.29) 70.16(2.18) 70.12(2.05)

German 74.86(2.27) 75.06(2.06) 75.1(2.07) 75.42(2.33) 75.14(2.04) 75.06(2.17) 75.18(2.04) 75.12(2.06) 74.98(2.19) 75.08(2.28)

Haberman 71.56(3.98) 74.81(2.48) 74.09(2.77) 75.39(2.77) 75.06(2.8) 75.52(2.14) 75.06(2.12) 75.52(2.02) 74.42(2.43) 73.44(2.61)

Heart 83.09(4.42) 83.38(4.24) 83.01(4.37) 83.31(4.24) 83.16(4.22) 83.01(4.52) 82.79(4.26) 82.87(4.44) 82.72(3.86) 82.5(3.78)

ILPD 70.65(2.59) 72.12(2.46) 72.16(2.15) 72.4(2.75) 71.92(1.71) 72.05(1.67) 72.09(1.5) 72.12(2.34) 72.26(2.08) 72.12(3.57)

Ionosphere 88.13(1.37) 88.18(1.98) 87.84(2.3) 88.24(2.01) 87.9(2.31) 87.9(2.25) 87.78(2.69) 87.84(2.3) 88.75(1.83) 88.3(2.1)

Laryngeal1 82.5(3.49) 82.87(3.74) 82.69(4.07) 82.96(4.21) 82.69(4.51) 82.69(4.27) 82.96(4.04) 83.06(3.81) 83.06(3.98) 83.43(4.03)

Laryngeal3 71.8(4.08) 71.01(3.55) 70.73(3.23) 71.12(3.39) 70.73(3.38) 71.29(4.29) 71.12(3.2) 70.9(3.41) 71.69(3.8) 71.69(3.01)

Lithuanian 90.5(2.32) 89.47(2.56) 75.87(10.44) 89.17(2.59) 86.37(1.95) 86.5(2.28) 87.93(2.63) 86.7(2.2) 90.4(2.54) 71.7(8.35)

Liver 69.14(4.34) 68.74(5.12) 67.01(4.35) 68.97(4.48) 67.76(4.07) 67.13(4.62) 68.68(4.74) 67.87(4.32) 69.66(3.9) 69.2(3.24)

Mammographic 78.87(2.73) 79.76(2.62) 70.77(7.45) 79.74(2.67) 72.21(8.79) 80.43(3.2) 71.97(6.61) 77.74(5.98) 79.42(2.86) 71.61(6.99)

Monk2 87.64(3.24) 82.64(3.38) 79.86(3.22) 87.59(3.37) 80.56(3.08) 80.56(3.08) 81.44(3.36) 79.95(3.26) 80.65(3.5) 81.44(3.7)

Phoneme 78.1(0.91) 78.6(0.87) 74.19(0.94) 77.88(1.04) 76.87(0.93) 76.85(0.92) 77.29(1.08) 76.95(1.0) 79.12(1.15) 76.02(1.35)

Pima 76.28(2.72) 77.01(2.19) 76.85(2.32) 77.08(2.02) 77.06(1.9) 77.34(2.3) 76.95(2.13) 76.98(2.09) 76.56(2.54) 77.08(2.32)

Sonar 79.62(5.42) 78.85(6.14) 79.33(6.55) 78.08(6.0) 78.75(6.1) 79.71(5.78) 79.71(6.62) 79.62(6.65) 79.9(5.46) 79.71(5.66)

Statlog 75.08(2.0) 75.44(2.11) 75.24(2.24) 75.48(2.25) 75.28(2.23) 75.3(2.25) 75.42(2.26) 75.32(2.27) 75.72(2.36) 75.42(2.2)

Steel 71.37(1.33) 70.58(2.1) 70.24(1.89) 70.53(2.13) 70.17(1.88) 70.71(2.16) 70.44(2.06) 70.3(1.92) 70.93(2.06) 70.78(2.16)

Thyroid 95.98(1.37) 96.18(1.1) 96.04(1.12) 96.18(1.1) 95.98(1.09) 96.27(1.26) 96.13(1.24) 96.13(1.17) 96.21(1.56) 96.33(1.35)

Vehicle 75.05(2.41) 75.83(2.23) 75.87(1.97) 75.83(1.78) 75.8(2.37) 75.75(2.22) 75.57(1.94) 75.71(2.04) 75.83(2.23) 75.61(2.09)

Vertebral 84.04(3.23) 85.07(4.33) 84.4(3.63) 84.4(3.96) 84.0(4.04) 84.6(4.03) 84.73(3.71) 84.93(4.2) 85.07(3.83) 83.87(3.29)

Voice3 76.58(3.09) 78.33(3.16) 77.58(3.89) 78.5(3.02) 77.58(3.43) 77.25(3.77) 77.83(3.21) 77.92(3.61) 77.0(3.52) 77.83(3.46)

Weaning 82.43(4.39) 81.18(3.72) 81.18(4.06) 81.05(3.96) 81.05(4.19) 80.79(3.85) 81.32(3.71) 81.38(4.04) 81.84(4.09) 81.78(3.93)

Wine 98.0(1.71) 98.56(1.45) 98.44(1.59) 98.44(1.59) 98.44(1.59) 98.56(1.27) 98.67(1.3) 98.67(1.3) 98.0(1.39) 98.11(1.45)

Average 81.89 81.91 80.69 82.22 81.29 81.64 81.42 81.47 82.19 81.19

Average Rank 5.15 3.3 6.07 3.27 6.18 4.82 4.55 4.68 3.13 3.85
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The number of hyperboxes generated by all variants of FH_DES over the 30 datasets is reported

in Tables II-4 and II-5 for the positive and negative versions, respectively.

Table-A II-4 Average Number of generated Hyperboxes in positive variants over the 30

small datasets

DataSets NO. Samples FH_1-C FH_2-C FH_3-C FH_4-C FH_5-C FH_6-C FH_7-C FH_8-C FH_9-C FH_10-C

Audit 193.0 3640.40 1321.15 2810.60 643.10 2876.60 2415.55 2810.60 2136.30 2223.70 18594.70

Banana 250.0 525.80 1093.90 374.10 877.10 300.45 146.85 377.75 142.75 877.10 2680.10

Banknote 343.0 668.85 817.05 510.20 489.60 445.65 240.70 570.15 212.25 514.00 6001.05

Blood 187.0 420.20 5290.15 379.55 4046.10 370.00 238.40 397.20 228.90 4047.30 7011.30

Breast 142.0 1881.65 711.10 902.80 421.60 1023.35 623.20 914.45 575.85 723.20 13064.90

Car 432.0 7217.85 5978.35 3952.20 2906.55 3908.10 3907.85 3952.20 3964.65 5893.35 30450.35

Datausermodeling 101.0 1651.65 1200.60 646.95 810.95 812.55 219.05 632.10 195.80 816.30 5949.00

Faults 485.0 8392.15 4547.60 3577.55 2839.40 4101.10 1477.05 3577.55 877.25 3058.00 32700.80

German 250.0 15232.35 4432.15 11284.70 2196.05 11748.95 11686.70 11284.70 11213.35 11304.95 18487.40

Haberman 76.0 579.60 1568.15 341.00 1102.45 357.00 235.65 360.50 228.85 1101.80 4419.00

Heart 67.0 3264.65 1103.90 2400.65 686.70 2445.80 2398.05 2400.65 2350.80 2383.50 5389.15

ILPD 146.0 1305.10 2336.25 754.55 1229.55 757.50 473.70 754.55 497.20 1515.55 10228.85

Ionosphere 88.0 2483.80 1037.45 1872.10 525.40 1957.00 1533.70 1872.10 1356.55 1445.55 7412.45

Laryngeal1 53.0 1213.80 666.65 767.10 442.50 792.80 481.45 767.10 467.70 721.30 4372.20

Laryngeal3 88.0 1035.95 971.50 718.90 655.00 681.25 359.35 719.00 330.60 761.95 6327.40

Lithuanian 150.0 478.60 955.00 306.60 720.50 286.60 137.45 284.15 136.70 720.45 2214.30

Liver 86.0 597.45 1479.45 321.50 927.75 323.55 228.00 319.25 224.25 965.40 4860.80

Mammographic 207.0 1067.25 5102.85 482.40 3053.40 504.80 432.10 482.40 427.90 3189.95 16651.00

Monk2 108.0 3358.20 2292.80 2809.80 1109.45 2788.35 2788.35 2809.80 2809.80 3132.70 8592.50

Phoneme 1351.0 1051.25 10896.20 481.80 6779.75 604.00 172.15 477.35 161.60 6779.40 26842.50

Pima 192.0 1474.85 2709.40 647.85 1638.35 703.85 354.00 621.85 318.55 1690.75 13378.70

Sonar 52.0 2230.00 241.35 1083.55 186.05 1342.20 731.10 1083.55 566.55 570.25 3843.95

Statlog 250.0 13158.65 4140.20 6746.50 2137.10 7956.70 7750.55 6746.50 6524.30 6717.50 18473.45

Steel 485.0 7481.90 4658.05 3425.60 2849.60 3882.25 1494.95 3425.60 843.40 3167.90 32865.50

Thyroid 173.0 1901.15 999.05 1128.20 519.15 1167.70 561.65 1128.00 508.75 845.70 16412.40

Vehicle 211.0 1738.75 2396.45 863.60 1649.25 921.85 384.95 899.70 287.15 1673.10 14542.85

Vertebral 75.0 617.30 930.45 350.85 624.35 346.85 211.45 356.20 209.65 680.15 4062.70

Voice3 59.0 1141.05 806.40 783.65 554.25 796.30 552.15 783.65 493.15 730.50 4548.25

Weaning 75.0 2047.25 1059.50 729.45 534.80 1022.05 484.75 728.85 385.00 649.10 5942.55

Wine 44.0 1177.75 204.15 630.20 171.85 648.50 364.80 629.50 290.30 309.70 4241.50

Average 213.97 2967.84 2398.24 1736.15 1444.26 1862.45 1436.19 1738.9 1298.86 2307. 11685.39

Average Rank - 7.97 6.43 4.80 3.83 5.80 2.93 4.83 1.87 5.93 10.00
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Table-A II-5 Average Number of generated Hyperboxes in negative variants over the 30

small datasets

DataSets NO. Samples FH_1-M FH_2-M FH_3-M FH_4-M FH_5-M FH_6-M FH_7-M FH_8-M FH_9-M FH_10-M

Audit 193.0 343.60 230.50 490.65 202.20 325.20 325.20 523.40 490.65 341.80 705.35

Banana 250.0 212.45 618.00 241.25 576.75 149.25 144.50 316.85 224.80 576.75 2852.20

Banknote 343.0 116.10 234.70 132.75 227.75 115.20 115.20 189.25 129.45 230.25 553.90

Blood 187.0 265.85 2826.40 350.15 2473.60 249.25 249.40 448.05 357.75 2476.05 3022.35

Breast 142.0 190.85 122.95 218.50 119.70 170.40 170.35 263.50 217.60 176.90 474.50

Car 432.0 3583.50 3333.15 6228.30 2422.85 1614.05 1614.30 6228.30 6228.30 2935.40 12749.65

Datausermodeling 101.0 524.15 587.55 652.50 496.65 388.45 376.45 809.30 641.25 552.85 1606.05

Faults 485.0 5355.15 3398.30 7167.00 2050.30 3776.40 3776.40 9259.85 7167.00 3801.80 15799.20

German 250.0 5855.15 2463.00 6153.15 1506.05 5294.75 5294.75 6245.20 6153.15 5243.40 6512.60

Haberman 76.0 435.20 1072.30 542.15 862.55 344.40 337.80 698.50 525.20 904.75 1742.95

Heart 67.0 1127.95 513.60 1161.55 362.85 1036.60 1036.60 1247.80 1161.55 1035.10 1310.85

ILPD 146.0 625.20 1288.90 778.20 888.45 445.05 445.05 1062.75 778.20 972.90 4371.15

Ionosphere 88.0 962.25 484.75 1085.15 317.75 841.35 841.35 1182.65 1085.15 780.90 1387.55

Laryngeal1 53.0 189.55 230.85 230.75 191.85 150.00 150.00 331.50 230.80 208.35 923.80

Laryngeal3 88.0 819.30 689.15 1002.75 562.60 671.65 667.70 1234.95 1002.35 783.15 2462.90

Lithuanian 150.0 249.55 572.10 297.40 547.45 208.15 202.70 344.40 267.85 537.50 1426.40

Liver 86.0 430.70 1095.10 567.95 780.45 317.95 314.25 743.45 548.20 834.95 2926.20

Mammographic 207.0 615.35 2807.55 731.50 2246.60 435.60 432.55 920.20 731.30 2359.35 4043.40

Monk2 108.0 1306.10 975.75 1870.70 661.80 1171.00 1171.00 2154.35 1870.70 1382.75 2207.50

Phoneme 1351.0 804.55 8241.45 1359.95 5727.40 587.65 570.35 2351.70 1401.80 5791.65 18815.45

Pima 192.0 856.75 1548.35 1112.00 1038.85 657.85 665.70 1548.95 1090.10 1159.45 4585.05

Sonar 52.0 919.50 112.65 1029.40 111.55 759.50 759.35 1181.60 1029.40 651.35 1356.05

Statlog 250.0 5218.10 2408.20 5974.95 1475.20 3977.30 3977.30 6164.15 5974.95 3666.30 6526.55

Steel 485.0 5188.45 3420.30 6850.20 2081.05 3656.05 3656.05 8556.85 6850.20 3706.40 15634.50

Thyroid 173.0 112.60 185.95 164.75 163.55 102.85 102.85 236.85 164.75 164.45 764.65

Vehicle 211.0 1169.80 1443.40 1373.25 1126.55 888.90 880.65 1854.60 1370.80 1271.90 5748.40

Vertebral 75.0 185.20 441.55 232.70 351.95 134.95 134.90 288.25 227.25 354.30 1179.95

Voice3 59.0 557.90 483.85 623.95 359.05 525.00 525.00 730.25 623.95 580.25 1351.75

Weaning 75.0 632.40 418.20 725.45 249.00 472.35 459.45 973.95 725.15 395.60 1556.55

Wine 44.0 127.90 100.65 142.15 100.60 117.40 117.35 154.35 142.15 117.40 171.00

Average 213.97 1299.37 1411.64 1649.7 1009.43 986.15 983.82 1941.52 1647.06 1466.46 4158.95

Average Rank - 4.50 5.47 6.27 3.50 2.57 2.20 8.00 5.93 5.53 10.00

3. Results of the Friedman test

3.1 Comparison against the baseline methods

The Friedman test with the Bonferroni-Dunn posthoc test was also used to perform a statistical

analysis on the reported results. This test is applied to compare the ranks achieved by each DS
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method. The best algorithm is the one that presents the best rank. The performance of the two

DS approaches is significantly different if their difference in average rank is greater than the CD

value. The techniques that are statistically equivalent are connected by a black bar. The result of

this test for the proposed framework and baseline methods is represented in Figure II-1 using

the Critical Difference (CD) diagram. According to the results of this test, the selected variant

(FH_4) has the best rank compared to the majority voting and the single-best approaches. Also,

as we can observe in Figure II-1, the average accuracy of FH_4 is significantly better than the

majority-voting and GFMM approaches.

1 2 3 4

FH_4-M

SB MV

GFMM

CD

Figure-A II-1 Comparing the selected variants and baseline approaches using the

Bonferroni-Dunn post-hoc test. The best algorithm is the one that presents the lowest rank,

and the techniques that are statistically equivalent are connected by a black bar.

3.2 Comparison against the state-of-the-art DS methods

We conducted the Friedman test with a post-hoc Bonferroni-Dunn analysis to compare the

performance of FH_4-M with the state-of-the-art DS approaches. Figure II-2 presents the results

of this test through a critical difference diagram. This figure demonstrates that the proposed

FH_4-M has the best rank compared to the state-of-the-art DS approaches. However, based on

global analysis, there is no statistically significant difference between the proposed method and

some of the other DS approaches across 30 small to medium datasets.
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1 2 3 4 5 6 7 8 9

FH_4-M

DESKNN

KNORA-E

META-DES

KNOP

KNORA-U

OLA

RANK

MCB

CD

Figure-A II-2 Result of the Bonferroni-Dunn post-hoc test using critical difference

diagram including the FH_4-M and other DS approaches. The best algorithm is the one that

presents the lowest rank, and the techniques that are statistically equivalent are connected by

a black bar.
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