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Apprendre à localiser des objets avec une supervision limitée

Akhil Pilakkatt Meethal

RÉSUMÉ

Les détecteurs d’objets profonds sont omniprésents dans les industries d’aujourd’hui, répondant à

de nombreuses exigences telles que l’inspection, l’automatisation, la surveillance, la surveillance,

etc. détecteurs profonds affamés. L’étiquetage des images avec des cadres de délimitation est

coûteux et prend du temps. Le coût est prohibitif lorsqu’une forte expertise est nécessaire pour

l’étiquetage, par exemple, un radiologue étiquetant des images médicales. De plus, les détecteurs

entièrement supervisés actuels ne suffiront pas à notre demande croissante car il est pratiquement

impossible d’étiqueter des milliers d’images pour chaque tâche de détection d’objet que nous

voulons résoudre. Ainsi, pour atténuer ce défi d’annotation pour la formation des détecteurs

profonds modernes, la communauté explore de nombreuses directions, y compris la formation

faiblement supervisée, auto-supervisée, semi-supervisée, adaptative au domaine et à quelques

coups.

Pour contribuer à cet effort, dans cette thèse, nous avons exploré des méthodes faiblement

supervisées et semi-supervisées pour entraîner des systèmes de localisation pour la localisation

mono-objet et multi-objet. Avec des méthodes faiblement supervisées, nous avons observé que

les chercheurs utilisent une architecture par défaut et proposent des techniques pour améliorer sa

localisation. Nous avons identifié les limites des architectures par défaut pour la localisation et la

détection faiblement supervisées. Ensuite, nous nous sommes concentrés sur des architectures

alternatives qui répondent à ces limitations et sont faciles à utiliser. Nos architectures proposées

ont également montré des performances améliorées. Pour les méthodes semi-supervisées, nous

nous concentrons sur l’amélioration de leur utilisabilité sur des applications utilisant l’imagerie

aérienne. L’imagerie aérienne connaît un intérêt croissant de nos jours où de grandes collections

d’images sont collectées à l’aide de drones et de satellites en mode surveillance. Il n’est pas

possible d’utiliser cette collection sans méthodes semi-supervisées efficaces car les étiqueter

n’est tout simplement pas une option. Différent des images naturelles, les images aériennes

ont une résolution élevée en pixels et les objets sont minuscules. Une application directe des

méthodes modernes de détection semi-supervisée sur ces images ne donnera pas les meilleurs

résultats. Nous proposons une détection semi-supervisée sur mesure pour la détection d’objets

minuscules sur des images aériennes à haute résolution.

La première contribution de cette thèse est une architecture de localisation d’objet faiblement

supervisée entièrement convolutive avec un composant de localisation apprenable. Différente

de l’architecture CAM par défaut, notre méthode est entièrement convolutive et possède des

composants séparés pour l’apprentissage de la localisation. Nous avons utilisé des transformateurs

spatiaux de manière convolutive pour apprendre la localisation sous une forme paramétrique

où la paramétrisation est de transformations affines. L’un des défis majeurs des méthodes de

localisation faiblement supervisées est la localisation discriminative des régions. Dans notre

architecture, cela peut être facilement réduit en spécifiant une contrainte de régularisation sur
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les paramètres de localisation appris. Grâce à des études empiriques approfondies, nous avons

établi une localisation améliorée et un contrôle flexible de notre projet de réseau de localisation

entièrement convolutif faiblement supervisé.

La deuxième contribution propose une méthode pour réutiliser les architectures de détection

d’objets existantes pour la détection d’objets faiblement supervisés au lieu du choix par défaut

WSDDN. Bien qu’il existe de nombreuses architectures de détection d’objets proposées pour la

détection d’objets génériques, les chercheurs travaillant sur des détecteurs faiblement supervisés

utilisent l’architecture WSDDN car il n’est pas possible de traduire la supervision globale au

niveau de l’image fournie par les étiquettes d’image en étiquettes locales au niveau de l’instance.

Nous avons proposé uneméthode de construction de pseudo-étiquettes basée sur l’échantillonnage

à l’aide de laquelle les étiquettes au niveau de l’image peuvent être traduites en étiquettes au

niveau de l’instance, entraînant ainsi le détecteur à l’aide de détecteurs prêts à l’emploi. Nous

avons également montré que les performances du détecteur basé sur l’échantillonnage peuvent

être améliorées de manière significative en utilisant des images annotées.

La troisième contribution concerne l’adaptation des détecteurs semi-supervisés grand public

pour s’entraîner sur des images aériennes à haute résolution. La détection d’objets d’images

aériennes peut bénéficier de manière significative si des détecteurs semi-supervisés efficaces

peuvent être conçus car de nombreuses images sont collectées en mode surveillance à l’aide

de drones et de satellites. Ils ne sont tout simplement pas utilisés pendant la formation en

raison du manque d’annotations. Nous avons observé que les minuscules objets dans les

images aériennes à haute résolution ne peuvent pas être pseudo-étiquetés efficacement pour

une formation semi-supervisée. Pour résoudre ce problème, nous avons utilisé des cultures de

densité où les régions à forte concentration de petits objets sont identifiées et rognées. Ces

régions sont ensuite traitées par mise à l’échelle pour une meilleure détection des petits objets.

Cette formation basée sur la densité des cultures est mise en œuvre dans le détecteur, ce qui

donne plus de pseudo-étiquettes pour les objets minuscules, ce qui se traduit par une détection

améliorée des objets semi-supervisés sur les images aériennes.

Mots-clés: détection d’objets, localisation, apprentissage faiblement supervisé, apprentissage

semi-supervisé
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ABSTRACT

Deep object detectors are omnipresent in today’s industries meeting many requirements like

inspection, automation, surveillance, monitoring, etc. One of the important bottlenecks in

developing today’s object detection systems is the need for a huge collection of labeled data to

train the data-hungry deep detectors. Labeling images with bounding boxes is expensive and

time-consuming. The cost is prohibitively high when strong expertise is needed for labeling, for

example, a radiologist labeling medical images. Also, the current successful fully supervised

detectors won’t scale for our growing demand as it is practically impossible to label thousands

of images for every object detection task we want to solve. Thus to mitigate this annotation

challenge for training modern deep detectors, the community is exploring many directions

including weakly supervised, self-supervised, semi-supervised, domain adaptation, and few-

shot training. To contribute to this effort, in this thesis, we explored weakly supervised and

semi-supervised methods for training localization systems for single-object and multi-object

localization. We identified the limitations and the training difficulties of the current main-stream

weakly supervised and semi-supervised detection techniques. Then we proposed alternate

designs and training techniques to mitigate this.

The first contribution of this thesis is a fully convolutional weakly supervised object localization

architecture with a learnable localization component. Different from the default architecture

CAM (Class ActivationMapping), ourmethod is fully convolutional and has separate components

for learning localization. We used spatial transformers in a convolutional fashion for learning

the localization with affine transformations. One of the major challenges of weakly supervised

localization methods is the localization focus on discriminative regions. In our architecture, this

can be reduced easily by a regularization constraint on the learned parameters. With extensive

empirical studies, we established improved localization and flexible control of our proposed

fully convolutional weakly supervised localization network.

The second contribution is a method to reuse the existing fully supervised object detection

architectures for weak supervision. While there are plenty of object detection architectures

proposed for supervised object detection, researchers working on weakly supervised detectors

use the WSDDN (Weakly Supervised Deep Detection Networks) architecture because it is

straightforward to train WSDDN with weak image-level labels. WSDDN computes class

probabilities of region proposals and aggregates these probabilities to produce image-level

class probabilities. Given only the global image-level labels in weakly supervised settings,

there is no efficient technique to label object regions using them so as to train the system

using fully supervised detectors. To address this, we proposed a sampling-based pseudo-label

construction method, using which region-level labels are derived from the image labels. With

these pseudo-labels for regions, we can train any off-the-shelf fully supervised detection method,

thus eliminating the need for customized architectures for weakly supervised object detection. We
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also showed that the performance of the sampling-based detector can be improved significantly

by using a few annotated images.

The third contribution is about adapting the main-stream semi-supervised detectors to train

on high-resolution aerial images. Aerial image object detection can benefit significantly if

effective semi-supervised detectors can be designed because plenty of images are collected in

surveillance applications using drones and satellites. Those images are simply not used during

training because of the lack of annotations. We observed that the tiny objects in high-resolution

aerial images cannot be pseudo-labeled effectively for semi-supervised training. To fix this, our

proposed zoom-in detector uses density crops where regions with high concentrations of small

objects are identified and cropped out. These regions are then upscaled for better detection of

small objects. This density crop-based training is implemented within the detector giving more

pseudo labels for tiny objects which translates to improved semi-supervised object detection on

aerial images.

Keywords: object detection, localization, weakly supervised learning, semi-supervised learning
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INTRODUCTION

0.1 Object Localization

Object localization is the task of identifying and precisely locating the position of one or more

objects within an image. The localization returns the bounding box coordinates (usually in terms

of top-left and bottom-right corners) that tightly enclose the object(s) of interest. This is different

from the widely studied computer vision task of image classification where we only need to

identify the object classes present in the image. In object localization, we need to identify the

"where" the predicted objects are present in the image. Figure 0.1 shows image understanding

problems in computer vision in the increasing order of their complexity. Localization is the

next complex task after classification and is an important component in the subsequent more

complex tasks of object detection and instance segmentation.

Figure 0.1 Computer vision problems in the increasing order of complexity. Taken

from cs231n standford 2015

Generally, instance-level recognition tasks from an image are referred to as dense prediction

problems. Both object detection and instance segmentation are dense prediction problems where

localization is an integral component. In object detection tasks, localization is used to identify

the location of multiple objects in the image. The detector uses a classification and localization

head to predict multiple objects in the image. The classification head predicts the object category.
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The localization head is the one that gives the required object localization. It is achieved by

regressing the bounding box coordinates of the ground truth box given by a human annotator.

In addition to the classification and localization of bounding box regions, instance segmentation

aims to predict pixel-level labels for each object inside the bounding box. This is also called pixel-

level localization. The combination of accurate localization and pixel-wise segmentation enables

instance segmentation models to provide detailed and fine-grained information about objects

within an image. In addition to classification and localization heads, instance segmentation also

uses a mask head to predict the pixel masks for each object. Given the localization from the

localization head, the mask head makes pixel-level predictions for all pixels inside the box.

As localization is a vital component for the majority of computer vision tasks, we need better

localization for a deeper understanding of the objects present in an image or scene. For example,

in applications like autonomous driving, accurate object localization is vital for making safe

and reliable decisions. In medical imaging, precise object localization is critical for identifying

abnormalities, such as tumors or lesions. In retail environments, accurate localization of products

on shelves or in storage helps in managing inventory. Next, we will discuss the challenges in

learning better localization.

0.2 Challenges in Object Localization

Getting better localization is correlated with getting better representation or features from the

image/object regions. The feature learning for localization has gone through a significant evolu-

tion, starting from using traditional features like SIFT (Lowe, 1999) and HOG (Dalal & Triggs,

2005a) to modern deep features with transformers (Vaswani et al., 2017). A closely related

evolution can be seen in the localization ability of object detectors from Dalal & Triggs (2005b);

Felzenszwalb, Girshick, McAllester & Ramanan (2010) to Carion et al. (2020). When deep

learning (DL models) entered the main-stream (Krizhevsky, Sutskever & Hinton, 2012), object
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localization initially took a new shape where the deep features are used for feature engineering

but the localization is predicted separately in a second stage after feature learning (Sermanet

et al., 2014; Girshick, Donahue, Darrell & Malik, 2014). Later end-to-end prediction of the

localization became more popular with improved speed and accuracy (Ren, He, Girshick & Sun,

2015; Liu et al., 2016). As the popular localization from 2015 onwards relies on DL models, the

research in this thesis (started in 2018) is focused on deep object detectors. First, we will present

the main challenges in the modern deep object localization methods which justifies this research.

0.2.1 Appearance variation

There is significant variance in appearance for objects of the same class in images collected from

the real world. The appearance variation can be due to lighting (e.g., day and night images),

camera angle, occlusion, clutter, and many others (Liu et al., 2019). Variations can also arise

due to temporal evolution, for example, wear and tear of the components in a machine. These

variations in appearance also undermine the standard assumption of the deep models which

states that the training and test data comes from the same distribution. This appearance variation

also creates significant confusion between classes, especially in fine-grained detection problems

like (Welinder et al., 2010). Figure 0.2 shows a localization problem where two bird species

are visually similar, in the CUB-200 dataset. More about appearance variation and the issues it

creates when learning with inexact annotations is presented in chapter 2.

0.2.2 Scale variation

Variation in object scale is ubiquitous in localization. Object instances can exhibit significant

variation in size. For example, the same objects from the aerial view appear smaller in size than

the front view (e.g.: the difference in scale for the person and vehicle classes between the aerial

dataset VisDrone (Zhu et al., 2018) and natural images of Pascal VOC dataset (Everingham,

Gool, Williams, Winn & Zisserman, 2010)). This can create confusion among classes, missing
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Figure 0.2 Fine-grained localization of bird

species in the CUB-200-2011 dataset

detection due to low appearance information, and reduced confidence in detected objects (Oksuz,

Cam, Kalkan & Akbas, 2021). Figure 0.3 shows an instance of scale variation where a reduction

in object scale resulted in low confidence for the "kite" category and missing prediction for the

"snowboard" category.

Figure 0.3 Scale inconsistent detection.

Taken from Guo et al. (2022)

0.2.3 Annotation of labeled data

To train the localization head, we need the location information of all categories of interest present

in the image either in the form of bounding boxes or pixel-wise masks. Unlike the image-level

class labels, getting location annotation is costly and time-consuming (Liu et al., 2021a; Xu et al.,
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2021; Tang, Chen, Luo & Zhang, 2021; Li, Yuan & Li, 2022a; Bilen & Vedaldi, 2016; Tang,

Wang, Bai & Liu, 2017; Li et al., 2022b; Antonelli et al., 2022; Köhler, Eisenbach & Gross,

2021). See figure 0.4 for a comparison of labeling time for different types of annotations. Thus

getting sufficient annotated images to train the localization head is costly in practical applications.

Figure 0.4 Annotation time for different types of annotations.

Taken from Bearman et al. (2015)

0.2.4 Long-tail distribution of objects

Many object classes in the real world exhibit a long-tailed distribution. This creates more bias

towards the prediction of the dominant classes (Oksuz et al., 2021). Recently LVIS (Gupta,

Dollar & Girshick, 2019) dataset was released to study the long-tailed object detection problem

more effectively. The performance of state-of-the-art methods on balanced datasets showed

significant deterioration in this dataset. The long-tail problem is undermining the classification

abilities during recognition. Their impact is similar in classification and localization as well.

The most visible impact of this challenge is in low confidence or no detection of the tail classes.

Figure 0.5 shows the confidence distribution of object classes in the long-tail context.
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Figure 0.5 Long-tail distribution of objects

classes show significant variations in prediction

confidence of head and tail classes. Taken from

Zang et al. (2023)

0.3 Annotation Challenge in Deep Localization Methods

Among the many challenges we discussed so far, the focus of this thesis is on the annotation

challenge of modern localization methods. Deep detectors and localizers are inherently label-

hungry. Their success recipe is in training with large annotated datasets like MS-COCO (Lin

et al., 2014) and OpenImages (Kuznetsova et al., 2020). As deep learning-based methods are

winning the margin significantly over traditional methods, the value of reducing annotation costs

is increasing. Practical applications can collect thousands of raw images from their deployment,

but the bottleneck in using these images is the lack of annotations. It is important to reduce the

impact of this bottleneck through research for the increased adoption of deep learning-based

localization techniques.

0.4 Research Gap

In the past years, we have seen immense progress in the localization accuracy of the methods

learning to localize objects with reduced supervised data. Among the many methods for learning

with reduced supervised data, we focus our attention on weakly supervised and semi-supervised
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methods in this thesis. In weakly supervised methods, both WSOL (Weakly Supervised Object

Localization) and WSOD (Weakly Supervised Object Detection) have benefited immensely

from deep features to improve localization. In semi-supervised methods, better localization

helped in pseudo-labeling the unlabeled data more accurately, thereby improving the detection

performance. However, some important issues remain to be addressed.

WSOL focuses on single-object localization using image-level supervision. The default

component of modern WSOL approaches in the recent literature is an architecture called

Class Activation Maps (CAMs) (Zhou et al., 2016). Other methods in the literature propose

techniques on top of the CAM architecture to further improve the localization (Zhang et al.,

2018a; Singh & Lee, 2017; Choe & Shim, 2019; Choe. et al., 2020). CAM is repurposing a

classification network to do localization with restrictive architectural choices (a global average

pooling and fully connected layers must be required at the end). The localization is derived from

classification activation, not explicitly learned. During our studies in 2018, fully convolutional

models were popular design choices due to increased computational efficiency and reduction

in model parameters (Tian et al., 2019; Long, Shelhamer & Darrell, 2015; Dai, Li, He & Sun,

2016). So the natural question was how can we design a WSOL system with a fully convolutional

architecture where localization-specific parameters can be explicitly learned. We addressed this

in our first contribution.

WSOD aims to detect multiple objects (even from different classes) in an image using image-

level supervision. The first deep weakly supervised object detection method is proposed by

Bilen & Vedaldi (2016) called Weakly Supervised Deep Detection Networks (WSDDN). Other

methods in the literature are built on top of the WSDDN architecture to further improve the

localization accuracy by solving mainly the discriminative region localization problem of weakly

supervised methods (Diba, Sharma, Pazandeh, Pirsiavash & Gool, 2017; Tang et al., 2017; Li,

Huang, Li, Wang & Yang, 2016; Wan, Wei, Jiao, Han & Ye, 2018). Fundamentally, the WSDDN
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architecture and its training process (using MIL pooling) significantly deviate from the fully

supervised detectors. Due to this, advances in fully supervised detection research are not easy to

adapt to WSODs. Can we solve the WSOD problem with existing fully supervised detectors?

Bringing them in a common platform in terms of architecture and loss functions could make the

techniques in one useful for the other. This is an important aspect that the community hasn’t

paid much attention to. Existing WSODs are mainly focusing on improving the WSDDN model

in a race to close the performance gap with fully supervised detectors.

Semi-Supervised Object Detection (SSOD) aims to train a detector with few annotated images

and a large collection of unlabeled images. Our focus on SSOD is to use them for tiny object

detection in aerial images. Typically aerial image collection mechanisms are deployed in

surveillance mode with satellites and drones frequently visiting the given location. Due to this,

many images are being collected, but only a fraction of them is utilized for the standard fully

supervised training as it is not possible to label this vast collection of images with tiny objects.

Thus the potential of SSOD is significant in this area to better utilize the whole images collected.

The most widely used SSOD strategy in recent literature is based on the mean-teacher method

(Tarvainen & Valpola, 2018). While the vanilla mean-teacher-based STAC (Sohn et al., 2020)

detector has undergone significant changes in recent years, using them on tiny object localization

in its current form is challenging. Aerial images are usually very high in pixel resolution and

objects are tiny and often appear clustered. Due to these differences, even the popular fully

supervised detectors cannot be used standalone to get good detection performance (Yang, Fan,

Chu, Blasch & Ling, 2019; Duan, Wei, Zhang, Qu & Wang, 2021; Deng et al., 2020; Yang,

Huang & Wang, 2022). Additional modules to deal with the scale imbalance are often used

and the images are processed as tiles. Using the standard mean-teacher-based detector alone, in

this case, is not optimal. One could add additional modules to aid small object detection, but

training them in the mean-teacher settings is not straightforward. First, the mean-teacher method

needs pseudo labels to train. How can one compute pseudo-labels for the added modules?
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The added modules are often trained before the detector training, but how can we incorporate

this multi-stage training in mean-teacher settings which is also inherently multi-stage (with a

supervised burn-up stage followed by mean-teacher training)? We hypothesize these challenges

might be the reason why semi-supervised detectors are not popular in aerial images.

0.5 Contributions

The contributions of this thesis are focused on addressing the research gap discussed above. For

the weakly supervised methods, the contributions are more on the architectural side innovations

addressing some of the fundamental questions. This is orthogonal to existing research which is

mostly focused on performance improvement. For the semi-supervised methods, our contribution

is mainly focused on adapting the popular mean-teacher system to aerial images for localizing

tiny objects in high-resolution images.

The main contributions are

• A fully convolutional design for weakly supervised object localization. Different from

CAM-based WSOLs, localization is explicitly learned by applying spatial transform in a

convolutional fashion. Additional regularizations are proposed to reduce the discriminative

region localization problem and improve scale-specific localization in the right feature

pyramid level.

Related publication:

Convolutional STN for weakly supervised object localization, in International Conference on

Pattern Recognition (ICPR), 2020.

• A weakly supervised and semi-weakly supervised detector that can be trained with off-the-

shelf detection architectures. No change in the architecture or loss function is needed, unlike

existing weakly supervised detectors. It learns to use images with weak labels by sampling

region proposals from right object locations as pseudo-ground-truth boxes.
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Related publication:

Semi-Weakly Supervised Object Detection by Sampling Pseudo Ground-Truth Boxes, in

International Joint Conference on Neural Networks (IJCNN), 2022.

• A density-guided cropping and semi-supervised detection method for aerial images. Different

from existing approaches (that use additional density extraction modules), object regions

with clustered small objects are cropped out from high-resolution images reusing the detector

itself. Inference is performed on them after upscaling for better small object detection. This

design is easy to adapt to a semi-supervised mean-teacher detector where we identify density

crops on labeled and unlabeled images, and use them to augment the training set to further

boost the performance.

Related publication:

Cascaded Zoom-in Detector for High-Resolution Aerial Images, in IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPRw), 2023.

Density Crop-guided Semi-supervised Object Detection in Aerial Images, in IEEE Transac-

tions on Geoscience and Remote Sensing (TGRS), 2023. Under review.

0.6 Thesis Organization

The organization of this thesis is as follows. In chapter 1, we present the settings of weakly

supervised object localization, weakly supervised object detection, and semi-supervised object

detection in detail along with other approaches for reducing the annotation cost. We will then

dive into the challenges of learning better localization in these settings, and review the existing

research works, and the limitations of mainstream methods. This discussion will shape the focus

of our contribution. Then, we also discuss the core components of our proposed solutions and

present their values in solving the localization challenges with reduced annotations.

In chapter 2, we present the first contribution, Convolutional STN for WSOL. First, we present

the localization abilities of STN when used in classification settings. However, these results are
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on synthetic images of MNIST with clear foreground-background separation. We present the

issues when using STN for localization on natural images. With our Convolutional STN design,

we addressed these issues and obtained impressive results on localization in CUB-200-2011,

and ImageNet datasets.

In chapter 3, the sampling-based WSOD is presented which uses the existing fully supervised

architectures and trains them in a weakly supervised fashion by sampling region proposals as

pseudo-GT boxes. Their performance gap with WSODs based on classical WSDDN architecture

is studied empirically on the Pascal VOC dataset. To address this, we focus on our method using

fully supervised detectors for WSOD permits training with accurate ground-truth (GT) labels as

well. So, we propose to use a small fraction of images with GT annotation which resulted in a

significant performance boost beating existing WSODs and the vanilla mean-teacher detector

STAC. We also present the difficulty of the object proposal sampling on localizing small objects.

In chapter 4, our focus is on tiny object detection with less supervised data. We present the

challenges in designing semi-supervised detectors for tiny object detection. We will focus on

using density crops for accelerating tiny object detection which identifies the clusters of small

objects and performs a focus and detect operation on those cluster regions. We then introduce a

method to do density crop-based detection for tiny images where density crops are identified by

the detector itself. As we can do "focus and detect" with our detector itself, we use the resulting

architecture and perform semi-supervised learning on them using the mean-teacher method.

Finally, we conclude the thesis with a discussion of the key findings and recommendations for

future research in this direction.





CHAPTER 1

BACKGROUND

In this chapter, we will present the technical details of existing methods for weakly and semi-

supervised object detection and localization. We will try to understand the challenges in the

respective problem settings as well as with the existing solutions.

1.1 Weakly Supervised Object Localization

Weakly supervised object localization (WSOL) is a technique in computer vision that aims

to train object localization models using a limited amount of labeled data, often with only

image-level annotations instead of precise bounding box annotations. Unlike traditional object

localization, where models are trained on images with accurate bounding box annotations,

WSOL with weaker forms of supervision avoids the laborious process of creating bounding box

annotations. Figure 1.1 shows a high-level view of a WSOL system.

Figure 1.1 A high-level overview of the WSOL

system using weak image-level labels for

localization

Localizing objects with such a weaker form of supervision comes with several challenges. We

will review the main challenges in WSOL next.
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1.2 Challenges in Weakly Supervised Object Localization

In this section, we will discuss the challenges in weakly supervised object localization systems.

As these challenges are fundamentally affecting the localization ability of the WSOL systems,

recent research in WSOL is trying to address one or more of them.

1.2.1 Context misunderstood with object

This is one of the important problems faced by weakly supervised systems. As we don’t have

a bounding box to clearly specify the object boundaries, WSOL mostly misunderstands the

object and its context. For example, consider the images of the bike class shown in figure 1.2.

Bike images usually have a person as the rider, a road in the background, etc. Since we only

give the supervision as the presence of a bike in the image, WSOL may incorrectly localize a

"person+bike" as the bike category as both are present together in most training images.

Figure 1.2 Context of Motorbike: Road, Person

But, context information is not always detrimental to building weakly supervised detection

systems. Kantorov, Oquab, Cho & Laptev (2016) utilized context information in a constructive

manner to improve localization. They proposed to use additive and contrastive context descriptors

to the region features to achieve this. The additive model encourages the predicted object region

to be supported by its context region. The contrastive model encourages the predicted regions to

be outstanding from their context region.
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1.2.2 Selection of the most discriminative object regions

This is another common issue with weakly supervised systems. Since we optimize a classification

objective, the weights learned will be strongly correlated to object parts to facilitate easier

discrimination of the classes. As the training objective has no constraint regarding localization,

the classifier will simplify its job by tuning its weights to recognize the discriminative object

parts shown in figure 1.3. In WSOL this will result in the obtained segmentation mask around

discriminative object parts. Whereas in WSOD, object proposals from discriminative regions

will be returned as the detection output.

Figure 1.3 WSOL localizing discriminative object parts of

the objects instead of the correct localization

Methods like ACOL (Zhang et al., 2018a) and ADL (Choe & Shim, 2019) are addressing this

limitation of the CAM method (Zhou et al., 2016) widely used in the community. The studies

from these papers observed that adapting the basic CAM with localization-specific learnable

components improves the discriminative region localization of WSOL. We take inspiration from

this in our CSTN.

1.2.3 Intra-class variation challenge in localization

Intra-class variations are a problem in both fully supervised and weakly supervised settings.

However, the impact is more severe in the case of weakly supervised detectors, since we are not

giving exact object location to learn the common features. For example, consider the variations
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of the class "motorbike" shown in figure 1.4. Regardless of the scale, appearance, occlusion,

aspect ratio, background clutter, etc., WSOL methods are expected to localize them correctly. In

practice, it is observed that they localize very poorly under such variations.

Figure 1.4 Intra-class variations for the category motorbike

When enclosing object instances that contain a lot of background regions in a tightly fitting box,

the localization goes to discriminative regions as the appearance model is consistent in such

regions regardless of the variations of the object as a whole. This might be the case with poor

localization on the "person" class in most of WSOL methodss. The "person" class has so many

variations in terms of clothing, color, context, etc. The face is relatively easy to localize as the

appearance model of a face will have fewer variations.

1.3 Standard Weakly Supervised Object Localization Approach

Class activation Mapping (CAM) is the popular method for single object localization with weak

image labels. Proposed by Zhou et al. (2016) in 2016, CAM offers a simple method to extract

activation maps from the classifiers. Other methods in the literature like ACoL (Zhang et al.,

2018a), ADL (Choe & Shim, 2019), HaS (Singh & Lee, 2017) and SPG (Zhang, Wei, Kang,

Yang & Huang, 2018b) are improvements on the basic CAM to produce better localization.

Figure 1.5 shows the standard CAM architecture.
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Figure 1.5 Architecture of CAM, the baseline system for WSOL.

Taken from Zhou et al. (2016)

It consists of the feature extraction layers from a CNN backbone, followed by a Global Average

Pooling (GAP) layer and a fully connected layer that gives the final class predictions. CAM uses

a weighted sum of the final feature map to generate a saliency map from a standard classification

network. Here the weights are basically the coefficient of the predicted class from the last fully

connected layer after GAP. Let 𝑓𝑘 (𝑥, 𝑦) represent the activation of a unit 𝑘 at spatial location

(𝑥, 𝑦) in the last convolutional feature map. The result of performing GAP on unit 𝑘 will be

𝐹𝑘 =
∑
𝑥,𝑦

𝑓𝑘 (𝑥, 𝑦) (1.1)

The input to the softmax layer at the end for a class 𝑐 is computed as

𝑆𝑐 =
∑
𝑘

𝑤𝑐
𝑘𝐹𝑘 (1.2)

where 𝑤𝑐
𝑘 is the weight corresponding to class 𝑐 for unit 𝑘 . Plugging in the expression of 𝐹𝑘 in

𝑆𝑐
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𝑆𝑐 =
∑
𝑘

𝑤𝑐
𝑘

∑
𝑥,𝑦

𝑓𝑘 (𝑥, 𝑦) =
∑
𝑥,𝑦

∑
𝑘

𝑤𝑐
𝑘 𝑓𝑘 (𝑥, 𝑦) (1.3)

Let’s define 𝑀𝑐 (𝑥, 𝑦) as the class activation map for class 𝑐 at spatial location (𝑥, 𝑦).

𝑀𝑐 (𝑥, 𝑦) =
∑
𝑘

𝑤𝑐
𝑘 𝑓𝑘 (𝑥, 𝑦) (1.4)

We get the activation map for the class 𝑐 in 𝑀𝑐. This weighted saliency map is then up-scaled

to image resolution and binarized by thresholding to obtain a mask. The box enclosing the

max-connected component from the obtained mask is returned as the object location. The

localization issues faced by the base CAM stem from its lack of position awareness, strong

activation from small parts of the object while maximizing the classification score, and the

bilinear interpolation of the saliency map.

Since CAM’s training objective is primarily focused on achieving a high level of classification

accuracy, its localization tends to correspond with the most discriminative object region. Figure

1.6 illustrates this problem and the solution proposed by Zhang et al. (2018a). Most of

the recent WSOL techniques propose updated versions of the CAM that can avoid the bias

towards the discriminative region (Singh & Lee, 2017; Zhang et al., 2018a,b). They typically

seek to erase or hide the most discriminative region during training so that the classifier will

focus on other relevant object regions. To achieve this, they leverage different strategies, like

using multiple classifiers to localize complementary regions(ACoL) (Zhang et al., 2018a),

self-produced guidance(SPG) (Zhang et al., 2018b), randomly hiding patches from the input

image (HaS) (Singh & Lee, 2017).

The different strategies for erase and learn are summarized and their issues are analyzed in

detail by Mai et al. (2020). They summarized erase strategies as random erase, step-wise erase,

and multi-branch erase. Figure 1.7 illustrates these strategies. While erase and learn was the

fundamental strategy to deal with the discriminative localization problem in WSOL, we took a
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Figure 1.6 CAM localizing discriminative object parts. Taken from Zhang et al.
(2018a)

different route and learned the localization with respect to reference boxes to solve this problem.

This is in practice similar to learning with respect to anchor boxes in fully supervised detectors

(Ren et al., 2015). As the localized boxes are a small perturbation from the reference boxes of

the matching level of the feature pyramid, we could avoid the large shrinking of the localization

to discriminative areas. Basic CAM has no component for learning better localization, it is

just a simple classification architecture that gives an activation map as a bi-product. Erase and

learn methods are fundamentally adding more components to learn better localization. We also

used learnable localization, but instead of following the erase and learn strategy, we used spatial

transformers (Jaderberg et al., 2015) for learning localization.

1.4 Spatial Transformer Networks for Localization

We used a Spatial Transformer Network (STN) for constructing a learnable localization

component for our WSOL algorithm. An STN (Jaderberg et al., 2015) is a learnable module that

can be placed at any layer(s) of a CNN. It learns an affine transformation (other transformations

are also possible) of its input to maximize the learning objective of the network (initially

the authors proposed to maximize the classification accuracy, but later several use cases are
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Figure 1.7 Different strategies for erase and learn. Taken from Mai

et al. (2020)

being discovered like in image captioning (Johnson, Karpathy & Fei-Fei, 2016), disentangled

representation learning (Detlefsen & Hauberg, 2019) and image composting (Lin, Yumber,

Wang, Shechtman & Lucey, 2018) etc). STN applies a spatial transformation to its input feature

map in the forward pass where the transformation magnitude is conditioned on the same input

itself. STN is used in learning the localization within our weakly supervised localization system.

Figure 1.8 illustrates the architecture of an STN block.

Figure 1.8 A spatial transformer module. Taken from Jaderberg et al. (2015)



21

The input feature map𝑈 is passed through the Localization net which predicts the transformation

parameter 𝜃. The transformation 𝑇𝜃 (𝐺) is then applied to the regular sampling grid 𝐺. The

resulting positions are sampled by the sampler (using bilinear interpolation) giving the final

feature map 𝑉 . The transformation typically used is an affine transformation, so the 𝜃 vector

is 6-dimensional. The localization network can be fully connected or convolutional with the

only restriction of predicting the right size 𝜃 at the end. Let (𝑥𝑢, 𝑦𝑢) be a position in the input

feature map𝑈. Considering an affine transformation by 𝑇𝜃 the resulting sampling location will

be obtained as

���
𝑥𝑠

𝑦𝑠

��� =

⎡⎢⎢⎢⎢⎣
𝜃11 𝜃12 𝜃13

𝜃21 𝜃22 𝜃23

⎤⎥⎥⎥⎥⎦
������
𝑥𝑢

𝑦𝑢

1

������
(1.5)

The sampling kernel is then applied at each
���
𝑥𝑠

𝑦𝑠

��� to get the value at a corresponding pixel location
in 𝑉 . A bilinear sampling kernel is commonly used.

𝑉𝑐
𝑖 =

𝐻∑
𝑛

𝑊∑
𝑚

𝑈𝑐
𝑛𝑚𝑚𝑎𝑥(0, 1 − |𝑥𝑠𝑖 − 𝑚 |)𝑚𝑎𝑥(0, 1 − |𝑦𝑠𝑖 − 𝑛|) (1.6)

where 𝑉𝑐
𝑖 is the output value computed for pixel (𝑥𝑖, 𝑦𝑖) in channel 𝑐.

1.5 Supervised Object Detection

Fully supervised object detection needs bounding box annotations for each object present

in the image. Fully supervised object detectors are broadly classified into two: one-stage

(Redmon & Farhadi, 2017; Liu et al., 2016) and two-stage (Ren et al., 2015; Lin et al., 2017b)

detectors. Two-stage object detectors have a first stage that extracts RoIs (candidate object

regions) whose reliability as a potential candidate region is quantified by their objectness score.

Earlier approaches extract these RoIs using low-level image features in R-CNN (Girshick et al.,
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2014), Fast R-CNN (Girshick, 2015), etc. Later, end-to-end two-stage models emerged as more

accurate detectors, where an additional learnable head called RPN (Region Proposal Network)

is used to regress candidate regions (Ren et al., 2015; Lin et al., 2017b; Dai et al., 2016). In

contrast, one-stage object detectors avoid the RoI extraction stage and classify and regress

directly from each location in the feature map. They are generally fast and applicable to real-time

object detection (Redmon & Farhadi, 2017; Redmon, Divvala, Girshick & Farhadi, 2016; Liu

et al., 2016). Though the two-stage detectors are typically slower compared to their one-stage

counterparts, extracting reliable candidate regions in the first stage provides an edge in terms of

localization accuracy.

Figure 1.9 Components of a typical two-stage object detector.

Taken from Girshick (2015).

We will now review both types of architecture in detail. Figure 1.9 shows a high-level abstraction

of a two-stage fully supervised object detector. It consists of a feature extraction module that

extracts whole image features, RoI feature extraction which gives region-level features, the heads

for classification, and bounding box localization. In the above example, a Deep ConvNet is

giving the image-level features. Region-level features are obtained by projecting RoIs from

the image space to the feature map and then performing RoI pooling. The classification head

is implemented by a softmax layer; the localization head is implemented by a bounding box

regressor. The regressor will predict the four corners of the bounding box enclosing the object.
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Let the predictions for each RoI 𝑟 be (𝑝𝑟 , 𝑏𝑟) where 𝑝𝑟 is a softmax vector over the number of

classes and 𝑏𝑟 represents the top left and bottom right coordinates of the predicted box. During

training, the predictions are matched with the given ground truth, and regions are labeled as

foreground or background based on their overlap with any of the ground-truth boxes. If the

overlap is above a threshold 𝜏 the region is designated as foreground. Its label is assigned to

be the label of the corresponding ground-truth box. Let the GT be denoted as (𝑢, 𝑣) where 𝑢

contains the list of labels and 𝑣 contains the list of GT box coordinates. The multi-task loss

function is then computed as

𝐿 (𝑝, 𝑏, 𝑢, 𝑣) = 𝐿𝑐𝑙𝑠 (𝑝, 𝑢) + 𝜆[𝑜 ≥ 𝜏]𝐿𝑟𝑒𝑔 (𝑏, 𝑣) (1.7)

Where 𝐿𝑐𝑙𝑠 (𝑝, 𝑢) = −𝑙𝑜𝑔𝑝𝑢 can be, for example, the log loss for true class 𝑢. 𝐿𝑟𝑒𝑔 (𝑏, 𝑣) can be

𝐿1 loss, 𝐿2 loss or a combination of them (Girshick, 2015). There are more variants for 𝐿𝑐𝑙𝑠 and

𝐿𝑟𝑒𝑔 in modern object detectors (Lin, Goyal, Girshick, He & Dollar, 2017a; Tian et al., 2019).

In one-stage detectors, rather than using RoIs, predictions are made from every point or grid

of points in a feature map. Both the classification and localization heads make a prediction

at each point. During training, they are matched with the available GT, and classification and

localization losses are computed as explained before. Instead of a curated set of predictions from

confident RoIs, dense predictions are made at every point in one-stage detectors, thus creating

many noisy predictions. Post-processing (like NMS) then removes the noisy predictions giving

the final output. Figure 1.10 illustrates a typical one-stage detector architecture.

Among the one-stage detectors, a popular category at the current time is anchor-free detection.

Popularized by the Faster RCNN paper (Ren et al., 2015), anchor boxes are pre-defined template

boxes of various scale and aspect ratios. They are placed at every point on the feature map.

The predictions are made as offset to these anchor boxes as shown in figure 1.11 left so that

the gradient-based methods can easily learn these small offset values instead of direct box

coordinate prediction. During training, anchors are matched to the GT boxes and they are labeled
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Figure 1.10 Components of a typical one-stage object detector. Taken from Liu

et al. (2016)

as foreground and background. The problem with using anchor boxes is their size must be

hand-picked carefully to match the average object size range in the dataset (Redmon & Farhadi,

2017) for the best results. Anchor-free detectors like FCOS (Tian et al., 2019) and CenterNet

(Duan et al., 2019) are avoiding this manual process and making the training pipeline more

automated. FCOS for example, is predicting the offset to top, bottom, left, and right ends from

each pixel position in the feature map as shown in figure 1.11 right.

Another category of detectors getting popular these days is one that models object detection

as a set prediction problem. DETR (Carion et al., 2020) is the pioneer in this line of work

with a transformer (Vaswani et al., 2017) based backbone. An encoder-decoder architecture

makes set predictions, they are then matched with available GT using the Hungarian bipartite

matching algorithm. One of the main attractions of the set prediction design is they don’t need

post-processing like NMS. So the predictions can be directly used without additional processing.

1.6 Reducing the Annotation Cost in Object Detection

To reduce the annotation burden, researchers explored multiple research directions including

semi-supervised detection (Sohn et al., 2020; Liu et al., 2021a), weakly supervised object

detection (Cinbis et al., 2016; Bilen & Vedaldi, 2016), semi-weakly supervised object detection

(Fang et al., 2021; Chen, Yang, Zhang, Zhang & Sun, 2021), Few-shot Object Detection
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Figure 1.11 Anchor-based vs anchor-free prediction from a point in the

feature map. Taken from Tian et al. (2019)

(Antonelli et al., 2022), Domain adaptive object Detection (Li et al., 2022b) among many others.

We will now briefly review these research directions.

1.6.1 Semi-supervised object detection

Semi-supervised object detection (SSOD) aims to train a detector with limited labeled data and a

large collection of unlabeled data (Liu et al., 2021a; Guo et al., 2022; Tang et al., 2021). Let 𝐷𝑙

and 𝐷𝑢 denote the labeled and unlabeled data respectively. In a semi-supervised setting, we have

𝐷𝑢 >> 𝐷𝑙 and there is a closed set assumption that states that the unlabeled data contains the

same object classes as labeled. This is assumed because the data collection process is the same

for all data points and annotations are created only for a small fraction of the total data collected.

To learn the detector in a semi-supervised setting, the most popular approaches are consistency

regularization and/or pseudo labels (Sohn et al., 2020). Consistency regularization works by

enforcing consistent predictions between differently augmented versions of unlabeled input

images (Jeong, Lee, Kim & Kwak, 2019). The pseudo-labeling approach works by computing

pseudo labels for the unlabeled images (Xu et al., 2021).
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1.6.2 Weakly supervised object detection

Weakly supervised object detection (WSOD) aims to train an object detector with classification

data where image-level annotations are only available. As we observed the annotation time in

figure 0.4, image-level labels are easier to provide than instance-level labels. Thus in the real

world, we see large annotated datasets for classification (e.g., ImageNet (Russakovsky et al.,

2015)) than for detection ((Lin et al., 2014; Everingham et al., 2010)). What if we can learn

object detectors from this wealth of classification data? WSOD tries to address this research

question. Typically a weakly supervised detector is trained following the Multiple Instance

Learning (MIL) approach (Zhang, Han, Cheng & Yang, 2021). To do that, we first obtain

object/region proposals (probable candidate boxes) from the input image. Then features are

extracted from these region proposals and their softmax class probabilities are computed. A MIL

pooling operation then aggregates these region-level class probabilities and produces image-level

class probabilities. It is then used to train the detector using the weak image labels available.

1.6.3 Semi-weakly supervised object detection

Semi-weakly supervised detection(Semi-WSOD) aims to combine the best of both worlds. Using

the limited available labeled data, it can learn better localization cues over a weakly supervised

detector. Whereas, by having weak image-level annotations on the unlabeled data, candidate

object regions can be pseudo-labeled more accurately, consistent with the image-level labels

(Chen et al., 2021; Meethal, Pedersoli, Zhu, Romero & Granger, 2022; Fang et al., 2021). Some

works considered point-level annotations in addition to the image-level labels semi-weakly

supervised setting (Chen et al., 2021).

1.6.4 Few-shot object detection

Few-shot object detection aims to detect novel object categories with only a few annotated

instances of them (Köhler et al., 2021). It assumes access to abundant labeled source data with

bounding box annotations. This source data is used to learn generic object characteristics and
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when a novel class is presented with a few annotations, the classification heads learn to identify

them. In this setting, when we say K-shot object detection, we have exactly K annotated instances

per novel category. Recently, with powerful large vision-language models like CLIP (Radford

et al., 2021), localizing novel objects with zero instances for training (Zero-shot Detection) is

gaining attention (Zhong et al., 2022).

1.6.5 Domain adaptive object detection

Domain adaptive object detection aims to learn an object detector with labeled source domain and

unlabeled target domain (Li et al., 2022b). This is the most popular type of domain adaptation,

also referred to as unsupervised domain adaptation (UDA). There are more variations where

weak labels or full labels are available for the target domain, but UDA is widely used as we have

zero annotation cost for the target domain in that setting. As we have seen before, appearance

variation results affect the generalization ability of deep detectors. Domain adaptation methods

explicitly train the detector to improve the generalization to a new domain. In such cases, the

knowledge about object classes learned from the source domain can be transferred to facilitate

better detection of the same objects in the target domain. Recently, the mean-teacher combined

with adversarial training has emerged as a successful recipe in domain adaptive object detection

(Li et al., 2022b).

Among the many possible research directions discussed so far to reduce the annotation cost,

the focus of this thesis is on semi-supervised and weakly supervised learning techniques. We

chose this setting keeping the reusability of the existing data collections in mind. To train

weakly supervised detectors, the classification data available in plenty can be reused. To train in

semi-supervised detectors, the raw data collected from the practical deployment can be reused.

Generally from the data collected, only a subset is annotated and the remaining is ignored.

However, the semi-supervised detectors can use both sets.
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1.7 Weakly Supervised Object Detection

Figure 1.12 illustrates the problem settings of Weakly Supervised Object Detection (WSOD).

The data is provided with weak image-level labels as supervision. If we can train the detector

with image-level labels, the vast collection of classification datasets available will be useful

for building object detectors. Apart from the image labels, point annotations and scribble

annotations are also considered as weak annotations (Chen et al., 2021).

Figure 1.12 Weakly supervised object detection

problem settings

While it is appealing to train object detectors with classification data, using this inexact

supervision comes with many challenges. Next, we will discuss those challenges.

1.8 Challenges in Weakly Supervised Object Detection

The fundamental challenges of discriminative region selection and context misunderstanding

due to inexact supervision remain the same here as well. This is similar to WSOL, it stems from

using only image-level labels for object localization. In addition to this, there are additional

challenges in WSOD compared to WSOL.
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1.8.1 Problems with multiple instances

When there are multiple instances of the same class in close proximity, WSD tends to localize

all such instances together as one instance of that class. See figure 1.13 for some examples. This

is due to a strong feature response from that region in the presence of multiple objects. In a fully

supervised case, this can be avoided reasonably well due to the separate ground truth provided

for each instance.

Figure 1.13 Multiple instances of "person" and "bird" class are localized as a single

object. Taken from Zhang et al. (2018c). Here the red boxes are generated from WSDDN.

The green ones are obtained after the accurate proposal mining techniques proposed by

them

1.8.2 Slow inference

The detectors in the weakly supervised category are much slower compared to their fully

supervised counterparts. The fast fully supervised detectors are single-shot ones which don’t

use object proposals. The region proposal stage consumes at least 250 ms (Shen, Ji, Zhang,

Zuo & Wang, 2018). Since a majority of the weakly supervised detectors are based on region

proposals, this delay is unavoidable. The only method which reported the inference time is

(Shen et al., 2018). Their framework obtained an inference speed of 118 FPS based on SSD300

(Liu et al., 2016) architecture and 50 FPS on SSD500. This is simply by retraining an SSD

detector with WSDDN detection results as pseudo ground truth. The detection speed of other

systems as measured by Shen et al. (2018) under the same settings is given below in table 1.1.
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Table 1.1 Detection speed of different weakly supervised

detectors. Here, except W2F, all other methods are reported from

the experiments on the same settings (GTX 1080Ti GPU with

cuDNN v6 on Intel i7-6900K@3.20GHz). The result of W2F is

from an independent experiment (on Pascal TITAN X)

Method FPS

WSDDN (Bilen & Vedaldi, 2016) 0.27

WSD with progressive domain adaptation (Li et al., 2016) 2.11

ContextLocNet (Kantorov et al., 2016) 0.38

OICR (Tang et al., 2017) 0.28

Self-taught WSD (Jie, Wei, Jin, Feng & Liu, 2017) 1.73

W2F (Zhang et al., 2018c) 1.25

GAL FWSD (Shen et al., 2018) 118

1.8.3 Localization getting stuck in poor local optima

This is a problem faced by methods popular in the pre-deep learning era. The standard training

process of a weakly supervised detector then starts with an initial set of proposed object regions.

Then a detector is trained on these proposals which can be used to score regions. With that, we’ll

choose better region proposals in the next re-location stage and re-train the detector. During the

learning process, this alternating re-localization and re-training process continues. There are

several issues we face with such a learning process. One case is that the detector may get stuck

at the initial regions proposed and hardly move during the subsequent re-localization steps (this

problem is generally called degenerate re-localization (Cinbis et al., 2016)). Figure 1.14 shows

a case in which multiple objects of the bicycle category are localized due to bad initialization.

We can see that the localization got stuck in the initial window and hardly moved from there in

successive iterations.

The problem of localization getting stuck in the initialization was observed by Cinbis et al.

(2016). The high dimensionality of the feature vectors and alternating optimization are identified

as the main factors responsible for this. They proposed a multi-fold training strategy to overcome

this. The object detectors are trained on all folds except a held-out one and re-localized on the

held-out fold. This helps to avoid the bias introduced when training and re-localizing on the
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Figure 1.14 Re-localization gets stuck in the initial proposal. Taken from Cinbis

et al. (2016)

same set of images. This doesn’t occur in modern WSOD like WSDDN (Bilen & Vedaldi, 2016)

and its several variants since they don’t perform this alternating re-localization and re-training.

1.9 Standard Weakly Supervised Object Detection Approach

Now we will try to understand the design of existing weakly supervised detectors and their

shortcomings. Figure 1.15 presents an abstract architecture of the popular WSOD systems.

Figure 1.15 Typical WSOD architecture

It consists of three main components. A proposal extractor, a feature extractor, and an

aggregation operation to combine proposal classification scores to image classification scores.

Object proposals are candidate regions in an image with a high chance of an object being

present. It has distinctive characteristics from background regions including a well-defined
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closed boundary in space, a different appearance from its surroundings, and sometimes it

is unique within the image and stands out as salient (Alexe, Deselaers & Ferrari, 2010).

Typically in weakly supervised detectors, we compute the object proposals in the training images

apriori (Bilen & Vedaldi, 2016; Diba et al., 2017). Commonly used techniques for proposal

extraction are selective search (van de Sande, Uijlings, Gevers & Smeulders, 2011) and edge

box (Zitnick & Dollar, 2014).

The feature extractor extracts features from the whole image. Typically a ConvNet is used in

modern deep weakly supervised detectors for this (Zhang et al., 2021; Bilen & Vedaldi, 2016).

Next, we need to compute region-level features to understand the class of objects present in

a region. RoI pooling operation does this task by pooling features from each object proposal

extracted from the image. The advantage of this architecture is that the expensive image-level

feature computation step needs to be performed only once. The features for each candidate

proposal can be extracted by the RoI Pooler with an inexpensive computation (Girshick, 2015).

The region-level computations are highlighted by a dashed box in the figure. Once we have

the RoI features, it is passed through subsequent fully connected layers giving region-level

classification scores.

Next, we need to perform an aggregation operation to compute the image-level classification

score from the region-level scores. This is typically done by a MIL (Multiple Instance Learning)

pooling operation. Suppose there are 𝑁 regions proposals in an image. Let us denote by 𝑠𝑖 the

score of the 𝑖th region proposal which is a vector of length 𝐶 where 𝐶 is the number of classes in

the dataset. The MIL pooling operation computes the weights 𝜃𝑖 for each region proposal and

performs the aggregation to get the image-level score as 𝐼𝑠

𝐼𝑠 =
𝑁∑
𝑖=1

𝜃𝑖𝑠𝑖 (1.8)

𝐼𝑠 is also a vector of length 𝐶. It can be then used to compute the image classification loss as we

have class labels for the image. Typically a binary cross-entropy function is used to compute
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the loss. Let the scores of the class 𝑐 in the 𝑖th region proposal 𝑝𝑖 is 𝑠
𝑐
𝑖 = 𝑓𝑐 (𝑝𝑖, 𝐼) where 𝑓 is

the RoI pooling operation. The weights 𝜃𝑖 associated with the region proposal are computed as

normalized scores:

𝜃𝑖 =
exp{

𝑠𝑐𝑖
𝑇 }∑

𝑗 exp{
𝑠𝑐𝑗
𝑇 }

(1.9)

with 𝑇 being the temperature parameter that defines the sharpness of the weight distribution and

is a hyper-parameter of the learning approach. In this way, boxes with higher scores will have

more impact on the learning and the learning will focus more and more on the locations of the

image that are more likely to contain the object of interest. At inference, those regions can be

extracted to get the bounding box locations of the corresponding object. While this formulation

works well, it is computationally expensive because it has to evaluate at each training iteration

and for each image all box locations 𝑝𝑖. This architecture is first proposed by Bilen & Vedaldi

(2016) (referred to as WSDDN) and further popularized with additional components for better

instance localization by Diba et al. (2017); Tang et al. (2017); Zhang et al. (2018c) etc. These

methods are in general finding solutions for the challenges faced by the WSDDN model. Next,

we will try to understand the main challenges in the WSOD.

1.10 Importance Sampling for Weakly Supervised Object Detection

We used importance sampling in the design of our weakly supervised object detection. Important

sampling gives us a way to approximate quantities from a distribution when we cannot sample

from that particular distribution and compute a Monte Carlo estimate of the quantity. We

used importance sampling in our sampling-based pseudo-label mining for weakly supervised

object detection. With importance sampling, we computed the expected score of regions by

sampling from an alternate distribution of scores. Suppose we have a distribution 𝑝(𝑥) and we

are interested in calculating the expected value of the random variable 𝑥 from this distribution.

If we can generate samples from 𝑝(𝑥), we can simply use the Monte Carlo estimation to get an



34

estimate of the expectation as follows:

𝐸 (𝑥) =
∫

𝑥𝑝(𝑥)𝑑𝑥 ≈
1

𝑛

𝑛∑
𝑖=1

𝑥𝑖 (1.10)

where 𝑛 is the number of samples generated. The difficulty is when sampling from 𝑝(𝑥) is

difficult. In this case, we can use importance sampling and compute the expected value by using

an alternate distribution from which sampling is easy. Suppose 𝑞(𝑥) is the alternate distribution,

the expectation then is equivalent to

𝐸 (𝑥) =
∫

𝑥𝑝(𝑥)𝑑𝑥

=
∫

𝑥
𝑝(𝑥)

𝑞(𝑥)
𝑞(𝑥)𝑑𝑥

≈
1

𝑛

∑
𝑖∼𝑞

𝛽𝑖𝑥𝑖

(1.11)

where 𝛽𝑖 =
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

is the ratio of densities. The important thing is the 𝑥’s are now sampled from

the 𝑞 distribution and we only need the ratio of these densities to offset for the correction due to

sampling from a different distribution. The 𝑞 distribution is usually a simple one from which

sampling is easy. Figure 1.16 illustrates a simple example where importance sampling helps in

estimation. We have a Gaussian distribution (red curve) with parameters 𝑁 (𝜇 = 0, 𝜎 = 1.5).

Suppose we are interested in estimating the tail probability at the shaded regions. Sampling from

the red distribution 𝑝(𝑥) in this case hardly fetches samples from the tail region, so our direct

Monte Carlo estimation will be incorrect. Otherwise, we need a prohibitively huge number of

samples to estimate it correctly. Now let’s consider another Gaussian distribution (green curve)

with parameters 𝑁 (𝜇 = 2.5, 𝜎 = 1.5). Sampling from this distribution 𝑞 has a higher chance of

fetching samples from the required tail region of 𝑝. Thus with the help of importance sampling

using an alternate distribution, we can estimate the tail probability much easily.

In WSOD, we compute image-level scores computed using instance-level scores with MIL

pooling as in equation 1.8. The 𝜃𝑖’s in this case are the weight of a proposal which is equivalent

to 𝑝(𝑥). 𝜃𝑖’s are obtained by evaluating the expensive RoI pooling operation at every iteration
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Figure 1.16 Importance sampling for estimating

tail probability of a distribution

for each proposal. In our formulation, we construct an alternate distribution 𝑞(𝑥) where the

probabilities are obtained by a score propagation process that evaluates only a few sampled

proposals instead of the whole set at every iteration per image. As the accumulated scores nearly

approximates the original semantics of a region the ratio of densities 𝛽𝑖’s in this case is close to

1. Thus 𝐼𝑐𝑠 in this case for a class 𝑐 will be approximated as:

𝐼𝑐𝑠 ≈
∑

𝑘∼M(𝛽 ‖)

𝑠𝑐𝑘 (1.12)

Where M is a multinomial distribution over the score vector 𝛽. In this way, we limit the

expensive evaluation of the RoI pooling operation to 𝑘 times.

1.11 Semi-supervised Object Detection

Semi-supervised object detection involves training object detection models using a combination

of both labeled and unlabeled data. In the semi-supervised learning settings, we have a small set

of labeled images 𝐷𝑠 = {𝑥𝑖, 𝑦𝑖}
𝑁𝑠

𝑖=1 and a large collection of unlabeled images 𝐷𝑢 = {𝑥𝑖}
𝑁𝑢

𝑖=1. Here

𝑁𝑠 and 𝑁𝑢 are the number of images in the labeled and unlabeled sets respectively. 𝑥𝑖’s are the

observed datapoints and 𝑦𝑖’s are the corresponding labels. Note that labels are only available for
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the supervised set. Figure 1.17 presents an illustration of the semi-supervised object detection

settings.

Figure 1.17 Semi-supervised object detection

problem settings

Let’s denote the underlying distribution from which 𝑥𝑖’s are sampled as 𝑝(𝑥). A necessary

condition for semi-supervised learning to be possible is that 𝑝(𝑥) should contain information

about the posterior distribution 𝑝(𝑦 |𝑥) (van Engelen & Hoos, 2019). In that case, one might be

able to use unlabelled data to gain information about 𝑝(𝑥), and thereby about 𝑝(𝑦 |𝑥). Otherwise,

the unlabeled data is not useful for improving the label prediction (Zhu, 2008). Figure 1.18

shows an example of this with one of the most commonly used assumptions in semi-supervised

learning, called the "low density" assumption. The low-density assumption states that the

decision boundary should not pass through high-density areas in the input space. In the figure, a

binary classification setting is shown. The labeled data points are shown with + and ∇ signs.

If only the limited labeled data points are considered, the decision boundary obtained will not

separate the two classes well as they have limited information (solid line). Using the large

collection of unlabeled data, we could model the density function better and place the decision

boundary at regions with less data density. As we can observe from the figure, this gives the
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optimal decision boundary so our model will generalize better. This is how the semi-supervised

methods help in improving the predictive accuracy of models.

Figure 1.18 Impact of semi-supervised learning in the decision

boundary. Taken from van Engelen & Hoos (2019)

While the majority of the semi-supervised papers are in the classification literature, in recent

days they have equally become popular in object detection. The Mean-teacher based methods

((Guo et al., 2022; Li et al., 2022a; Liu et al., 2021a; Xu et al., 2021; Tang et al., 2021; Chen

et al., 2022)) emerged as a clear winner with impressive results on the MS-COCO detection

benchmark (Lin et al., 2014) using very few annotated images. We will also use the mean-teacher

framework for our small object detection problem settings. Next, we will review the major

challenges in learning object detectors in semi-supervised settings.

1.12 Challenges in Semi-supervised Object Detection

We will discuss the main challenges in semi-supervised object detection in the following

subsections. These challenges are mainly coming from how the unlabeled data is collected and

how they are utilized in the learning process.
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1.12.1 Unknown classes in the unlabeled data

The unlabeled data used in practical settings for semi-supervised object detection is not well

curated. There might be unknown objects in it and we might be unaware of it. The majority of

the semi-supervised methods use unlabeled data with pseudo-labels. When there are unknown

classes, it might get pseudo-labeled as one of the known classes creating confusion in the

detector learning process. Due to this unknown aware semi-supervised detection is getting

popular nowadays (Du, Wang, Gozum & Li, 2022). Sometimes there will be no objects in the

unlabeled images. This can also result in spurious pseudo-labeling that negatively impacts the

model’s performance. In some cases, domain shift is also observed in the unlabeled images.

1.12.2 Balancing the ratio of labeled and unlabeled samples

A good balance of labeled and unlabeled samples is crucial for semi-supervised object detection.

Having so many unlabeled samples results in the model learning more with noisy pseudo labels.

This is detrimental to the performance. Using mainly the samples from the labeled set results

in inefficient utilization of the unlabeled data. Modern semi-supervised detectors achieve this

balance at the minibatch level. Particularly, in a minibatch, they take an equal number of labeled

and unlabeled samples (Liu et al., 2021a; Tang et al., 2021; Xu et al., 2021). While practically

this works to some extent, we have no theoretical justification of what is the right strategy.

Assigning low weights to the unsupervised loss is also pursued in some papers. But this results

in an extra hyperparameter which is difficult to tune.

1.12.3 Choosing the threshold for Pseudo-labeling

Pseudo-labeling is the most popular strategy for using unlabeled data in the semi-supervised

learning process. Typically this is accomplished by using a confidence threshold so as to avoid

noisy labels (Guo et al., 2022; Liu et al., 2021a). Predictions from unlabeled images with a

confidence score above a threshold are designated as pseudo-labels. Choosing this threshold

value is tricky. Most of the methods used higher threshold values to avoid noise, but this results
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in the dominant classes getting more pseudo labels. If the dataset is imbalanced, this can

seriously damage the performance compared to using supervised-only training. Recently, it has

also observed that for one-stage detectors with severe foreground-background imbalance, using

a single threshold is detrimental (Chen et al., 2022).

1.13 Mean-teacher Framework for Semi-supervised Object Detection

Figure 1.19 Mean-teacher framework for semi-supervised object detection

Recent advances in semi-supervised object detection are following the mean-teacher framework

for semi-supervised learning (Tang et al., 2021; Sohn et al., 2020; Xu et al., 2021; Liu et al.,

2021a; Chen et al., 2022; Guo et al., 2022). It combines consistency regularization and pseudo-

label-based learning to give the best of the main-stream semi-supervised learning strategies.

Figure 1.19 illustrates the mean-teacher framework for semi-supervised object detection. It

consists of two networks; a teacher and a student network. The student network is learned

by backpropagation optimizing the combined supervised and unsupervised loss. The teacher

network is a temporal ensemble of the student weights updated through the Exponential Moving

Average (EMA) during the course of training. Let 𝜃𝑡 and 𝜃𝑠 denote the teacher and student

networks weights respectively. Let 𝛼 ∈ [0, 1] be a hyperparameter controlling the rate of update.
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The teacher network weight update using EMA is performed as follows:

𝜃𝑡 = 𝛼 ∗ 𝜃𝑡 + (1 − 𝛼)𝜃𝑠 (1.13)

The purpose of the teacher network is to provide pseudo-labels for unlabeled images. The

teacher network receives a weakly augmented version of unlabeled images in a batch. The

weak augmentation typically used are resizing and horizontal flipping (randomly applied). It

then predicts the detection outputs which are post-processed to synthesize pseudo labels. The

post-processing commonly used are confidence thresholding and Non-Maximal Suppression

(NMS). As the teacher network accumulates the weights of a changing student network at a slow

pace (controlled by a momentum parameter in the EMA), it is generally more accurate and so

we use the teacher predictions for pseudo labeling (Tarvainen & Valpola, 2018).

The student network receives a strongly augmented version of the unlabeled image. The strong

augmentation typically used includes color jittering, grayscale, Gaussian blur, and cutout patches

which perform only pixel-level transforms, thus the bounding box labels need not be transformed.

The student makes its predictions and a loss is computed between the pseudo labels provided

by the teacher network. This ensures a consistent prediction between the strong and weak

augmented versions of the same image. Note that consistency regularization is a widely used

technique in semi-supervised learning (van Engelen & Hoos, 2019). The labeled data points

in a minibatch are treated by the student network the same way as in the fully supervised

setting where a supervised loss can be computed with the real ground truth provided. For the

unlabeled data points, the same loss is computed but with pseudo-ground truth this time. The

combined loss is then backpropagated to update the student network. Let L𝑠𝑢𝑝 and L𝑢𝑛𝑠𝑢𝑝

denote the supervised and unsupervised loss respectively. Let 𝜆 be a hyperparameter controlling

the trade-off between these losses. The combined loss is estimated as follows:

L = L𝑠𝑢𝑝 + 𝜆L𝑢𝑛𝑠𝑢𝑝 (1.14)
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In this framework, consistency regularization and pseudo labels - the two most widely used

strategies in semi-supervised learning - are combined in an efficient way to get the best of

both. However, existing methods mostly use one of these strategies in their SSL formulation.

We hypothesize that the reason why the mean-teacher framework is better than all existing

semi-supervised frameworks is due to this reason.

1.14 Density Crops for Small Object Detection

As we used semi-supervised object detection for detecting small objects, additional techniques

were needed to boost the performance of small object detection. In our work, we relied on

density crops for this, which perform small object detection in a focus and detect manner. With

density crops, the regions clustered with small objects are "focused" and cropped out, then

"detection" is performed on these crops as well as the original images. Density cropping is a

widely used strategy in aerial image object detection. As the objects are tiny (and usually appear

clustered) and the images are very high in pixel resolution, crops from clustered regions are

extracted and processed by upsampling to facilitate better small object detection. A detector

trained in the standard way in this imagery detects only the bigger objects and small objects will

be mostly missed by the detector. Figure 1.20 shows an example of a Faster RCNN detector

trained in the conventional way not producing any detection of the tiny objects.

Density crops as shown in figure 1.21 identify the regions where a cluster of small objects is

present. These regions are then cropped out and processed in higher resolution after up-scaling

for improved small object detection. The detection results from the crops are then merged with

the detection on the input image Duan et al. (2021); Li et al. (2020); Yang et al. (2019). Density

crops in effect are doing a focus-and-detect process.

The idea of focus and detection using density crops is exploited by many researchers (Duan

et al., 2021; Yang et al., 2019; Li et al., 2020; Deng et al., 2020). Figure 1.22 shows an

example proposed by Li et al. (2020). It basically identifies the cluster of small objects using

an external density crop extraction module. The detection of the original image and upscaled
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Figure 1.20 Detection results from a Faster RCNN detector trained in

the conventional way

Figure 1.21 Density crops identified from an image. Note that the bigger

objects are already detected from the original image. We identify regions

with clusters of small objects using the density crop extraction process

crops are implemented by a standard detector. This way of using external modules for crop

identification comes with challenges. They add additional parameters to train, training can

become a multi-stage process (where the crop module is trained first for reliable crops, then the
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detector is trained) and changes also happen in the loss function. Due to this, the detector used

here cannot be easily trained in a semi-supervised fashion to reduce annotation costs. Because it

is very difficult to adapt the semi-supervised training process to the density extraction module.

We address this problem in our proposed cascaded zoom-in detector.

Figure 1.22 An example architecture of a density crop-based detection system. Taken

from Li et al. (2020)





CHAPTER 2

CONVOLUTIONAL STN FOR WEAKLY SUPERVISED OBJECT LOCALIZATION

To localize the objects in images, the standard approach is to train the network with bounding

box annotations. However, as we have seen, annotating object instances in an image is a

time-consuming and costly affair. And it also won’t scale to every detection problem we want

to solve. Thus it is important to reduce this annotation burden with algorithmic solutions. As

we have seen, classification labels are cheap to obtain and they are large in quantity compared

to detection labels (e.g., 1.2 million in ImageNet (Russakovsky et al., 2015) vs 11k in Pascal

VOC 2012). A natural question then is, can we train the detection network with this incomplete

image-level supervision and obtain object location as a bi-product? If this is feasible, one could

obtain millions of images with class labels scrapped from the web-scale data and train a detector

without the expensive box annotations. Though the web-scale data will be inherently noisy, can

we beat the network trained using a small amount of precise location information with a network

trained on a large quantity of weak noisy labels? Weakly supervised learning on images is trying

to address this question.

In general, an image will contain multiple objects. The target of the detection method is to locate

each object present in the image with a bounding box. Weakly supervised detectors (WSOD) are

trained with image labels for this task. In order to simplify the problem settings, in this chapter,

we will focus on localizing a single dominant object present in the image using the image label.

This problem setting is called Weakly Supervised Object Localization (WSOL). We proposed a

technique called Convolutional Spatial Transformers (CSTN) for learning to localize objects

from image labels. The CSTN is designed with multiple location prediction, so as such it can be

adapted to detect multiple objects from an image.

A closely related research direction toWSOL in the computer vision community is the explainable

AI for images (Vilone & Longo, 2020; Linardatos P,Papastefanopoulos V, 2020; van der Velden,

Kuijf, Gilhuijs & Viergever, 2022). Explainable AI in images cares about generating visual

explanations for a classifier’s prediction. This will help to explain why an image classifier



46

is making a particular prediction to the non-deep learning community. For example, it is

important to produce visual explanations of the predictions made in areas like medical images

to have trust in the deep learning algorithms (van der Velden et al., 2022). Methods like

CAM (Zhou et al., 2016), gradCAM (Selvaraju et al., 2017), gradCAM++ (Chattopadhay,

Sarkar, Howlader & Balasubramanian, 2018), LIME (Ribeiro, Singh & Guestrin, 2016), TCAM

(Belharbi, Ben Ayed, McCaffrey & Granger, 2023) and FCAM (Belharbi et al., 2022) are

focussing on extracting visual explanations from the classifier prediction. A bounding box

localization can be produced from the resulting segmentation mask by thresholding it and finding

the maximally connected component. The techniques from both research directions are used to

localize objects using image-level supervision.

The core component of our proposed WSOL method is a Spatial Transformer Network (STN)

(Jaderberg et al., 2015). Preliminary studies have observed the localization ability of STN in

classification settings on synthetic datasets like MNIST. We will present how the basic STN is

learning to localize the objects in classification settings. The difficulties when using STN on

natural images will be discussed thereafter, which will pave the way for the CSTN design.

2.1 Why STN for Localization?

Deep convolutional neural networks (CNNs) with Class Activation Maps (CAM) (Zhou et al.,

2016) are a prominent solution in the literature for WSOL problems (Singh & Lee, 2017; Zhang

et al., 2018a; Zhou et al., 2016). They use spatial class-specific localization maps where high

activations indicate the location of the corresponding object of the class. CAMs are obtained

through standard convolution, and as such, are limited in their ability to accommodate large and

unknown transformations, and variations in object scale, orientation, and pose (Dai et al., 2017;

Jaderberg et al., 2015). Learning a transformation-invariant operation that can simultaneously

handle different transformations is desirable for visual recognition systems. Spatial Transformer

Networks (STNs) (Jaderberg et al., 2015) have been proposed as a differentiable module that

allows for spatial transformation of data within a CNN without manual intervention. This

provides the network with flexibility in terms of adaption to the input image variations. Since
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the location of the activation in CAMs is intrinsically dependent on the convolution operation,

flexible convolution operation that adapts to scale, orientation, and other possible variations are

preferable.

We believe that explicit components for learning localization should be present in a WSOL

system. To this end, we propose to adapt a spatial transformed network to learn better localization.

When used in a classification setting, STN crops out the relevant regions of the image so as to

maximize the classification accuracy. See figure 2.1 for the transformation produced by STN on

MNIST (Deng, 2012) dataset. However, naively adapting this global transformation to natural

images doesn’t do good with localization accuracy. When used on natural images, STN tends to

focus on some discriminative object regions as shown in figure 2.2. Even with multiple STNs in

parallel, each tends to specialize in certain object parts as shown in the figure. This is probably

due to the large variation in the background on natural images, unlike MNIST digits. Also, the

global transform producing a single bounding box is not suitable for localizing multiple objects

if one wants to use them for detection. So we propose a novel adaptation of STN that addresses

these limitations. We called it convolutional STN because it applies the spatial transform in a

convolutional fashion. Next, we will illustrate the difference between the regular convolution vs

STN convolution.

2.2 Regular Convolution vs STN Convolution

In this work, we investigate the use of STN (Jaderberg et al., 2015) as an adaptive convolution

operation to replace standard convolution. We refer to this operation as Convolutional STN

(CSTN). This adaptation is achieved through the application of an STN convolution over each

location. STN model learns affine transformations that can cover different variations including

translation, scale, and rotation, allowing to better attend to different object variations. This

provides more flexibility compared to standard convolution. Figure 2.3 illustrates the difference

between both types of convolution. In standard convolution, the sampling grid of the convolution

is fixed (hence it has a fixed receptive field) while in our CSTN, we transform the sampling
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Figure 2.1 STN in action on the MNIST digit

classification problem. Taken from Jaderberg et al.
(2015). When fed with the (a) distorted MNIST

images during training, (b) the Localization

network of STN predicts a transform to align them

properly, and (c) sampling from the aligned region

by the sampler of STN

Figure 2.2 STN applied on the whole image localizing

discriminative object parts. Taken from Jaderberg et al. (2015). In
the top row, 2 STN are used parallel whereas 4 STN is used in the

bottom row. With 2-STN one of the transformers (shown in red)

learns to detect heads, while the other (shown in green) detects the

body, and similarly for the 4 STN

grid using spatial transformers and sample the input feature map from the resulting locations

allowing it to have a varying receptive field.
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Figure 2.3 An illustration of the difference

between standard convolution and CSTN. 𝑃 and 𝑃′

are the depth of the feature maps

The CSTN is in principle similar to deformable convolution proposed by Dai et al. (2017). To

break the fixed geometry of a standard convolution, it learns a set of offsets for each position in

the regular sampling grid. Deformable convolution has demonstrated improvements in object

localization for the fully supervised object detectors (Dai et al., 2017; Zhang & Kim, 2019).

However, the deformation learned in this way is not a centralized one as each pixel in the

sampling grid can move independently resulting in an irregular shape for the convolution. Active

convolution unit proposed by Jeon & Kim (2017) attempts to learn the shape of the convolution.

All these deformable convolution methods are studied in fully supervised algorithms, we are the

first to study them in weakly supervised settings.

While the CSTN is able to adapt to relatively small local variations, it still faces the issue of

adapting to large variations in terms of the receptive field. To alleviate this issue, we consider

localizing objects of different scales at different levels (i.e., layers), using the FPN (Lin et al.,



50

2017b). The CSTN is applied at different levels of the feature pyramid. As the receptive field

from the low layers can process only small regions of big objects, local convolution at that layer

tends to localize small discriminative regions while missing the entire object. However, such

layers are more adequate to localize small objects while high layers can miss them due to their

large receptive field. To deal with this, an additional regularization term is introduced to drive

specific layers to compete for the right scale. A joint probability over scale, location, and class is

formulated based on the class scores through an aggregation process. This sums up the overall

design of our CSTN for WSOL. The main contributions can be summarized as follows:

• a novel approach for WSOL with convolutional spatial transforms that explicitly learns to

localize during classification.

• an adaptation of the FPNmodel (Lin et al., 2017b) to weakly supervised settings for localizing

objects of different scale, where the STN need to learn a small transform for the right scale.

• an empirical validation of the proposed approach over CUB-200-2011 bird dataset (Welinder

et al., 2010) and ILSVRC 2012 (Russakovsky et al., 2015) localization dataset.

Next, we will present the detailed formulation of our CSTN for weakly supervised object

localization.

2.3 Convolutional STN for Weakly Supervised Object Localization

To explain our architecture for WSOL, we start from the last convolutional layer of a CNN

and show how it is used for object localization (see Figure 2.4(a)). Similar to one-stage object

detection methods (e.g., SSD (Liu et al., 2016), YOLO (Redmon & Farhadi, 2017)), we consider

the location of a filter as the rough center of the object. In one-stage detectors, this location is

then associated with a set of class probabilities that define which object is more likely to appear

at that location and the coordinates of the object’s bounding box, estimated as a regression. In

our case, we do not have information about the bounding box of the object as our problem is

weakly supervised (we only have image-level labels). Thus, to go from object labels to image

labels we need an aggregation mechanism as detailed in the next subsection.
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Figure 2.4 Basic components of our system: (a) One of the last convolutional layers of

a CNN can already provide some information about the center of the object. (b) Our joint

probability in location and classes is used to learn localization in a Weakly supervised

manner (see text). (c) Using a multi-scale approach we can find not only the position of

the object but also the scale (d) Adding our CSTN, we obtain a more refined localization

of the object of interest

2.3.1 Joint class and location distribution

In our model, the last convolutional layer is a feature map 𝑓 with 𝐻 ×𝑊 = 𝐿 locations and

𝐶 channels equivalent to the number of classes to classify. As shown in Figure 2.4(b), we

can consider this feature map as voting for the most likely position and class in an image. We

can thus convert this feature map into a multinomial probability distribution over classes and

positions by applying a softmax on the two spatial dimensions and on the channels too. As we

want each class and location to compete, we need to compute a single softmax on the three

dimensions. Thus, instead of the common distribution over classes 𝑝(𝑐) as for classification,

here we model the output of the CNN as a joint probability over classes and image locations:

𝑝(𝑐, 𝑙) =
exp( 𝑓𝑐,𝑙)∑𝐶,𝐿

𝑐′=1,𝑙 ′=1 exp( 𝑓𝑐′,𝑙 ′)
. (2.1)

With this joint probability distribution, we can obtain the class labels by marginalizing over

locations: 𝑝(𝑐) =
∑

𝑙 𝑝(𝑐, 𝑙). This can be used to train our model for classification with standard
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cross-entropy loss. However, with the joint probability, we can also obtain the maximum a

posteriori (MAP) of the best location 𝑙∗ and class 𝑐∗ for a given image: 𝑐∗, 𝑙∗ = arg max𝑐,𝑙 𝑝(𝑐, 𝑙).

This is the information required to estimate the location and class of the object of interest. This

approach is simple and works well to find the center of the object. However, we are interested in

getting the bounding box of the object in the image. We can consider the bounding box of the

object as proportional to the receptive field of the used feature map. However, this would lead to

square bounding boxes at the same scale. To overcome the scale problem, in the next section,

we extend our approach to a multi-scale representation.

2.3.2 Multiscale search

For searching at multiple scales we use feature pyramids (Lin et al., 2017b), because it does not

add much computational cost to the method and it works quite well on several problems. With

the feature pyramid, instead of considering a single feature map 𝑓𝑐,𝑙 , we use a representation

composed by 𝑆 feature maps, each representing the image at a different scale. Thus, we can

extend our joint distribution to also scales: 𝑝(𝑐, 𝑙, 𝑠) (see Figure 2.4(c)). Again, by marginalizing

over locations and scales we can obtain 𝑝(𝑐) used for training, and by selecting the MAP, we can

find the location 𝑙∗ and 𝑠∗ of the object of interest. Now, we can find objects at different scales

and different locations. However, still, all objects will have the same aspect ratio. A possible

solution would be to use convolutional filters of different sizes that will generate different

receptive fields and therefore different bounding box shapes. However, this approach will

increase the computational cost and will be able to provide only discrete object sizes (defined by

the convolutional filters aspect ratio). In the next subsection, we show how to learn a weakly

supervised model that can adapt to any object size and aspect ratio.

2.3.3 Convolutional STN

While in fully supervised object detection most of the approaches regress a bounding box with

the right object size, for weakly supervised models it is not possible because there is no ground

truth to regress. In the original spatial transformer network (STN), a localization network is
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trained to find global image transformations that can better represent the data and therefore

minimize the training loss. The authors of the original paper (Jaderberg et al., 2015) show that

their approach improves the classification performance by focusing on the object of interest and

at the same time being able to localize the object of interest without annotations in a weakly

supervised manner.

However, we observed that STN works well when the data is quite clean (e.g., extended MNIST)

and the sought transformations are relatively small. This is because the localization network

of STN is trained with gradient descent, which is a local optimization. This means that when

the transformation is too large or there is too much noise in the image, the local optimization

will not be able to regress the correct transformation to localize the object and the training will

fail. To overcome this problem, we propose to apply STN in a convolutional fashion. As shown

in Figure 2.4(d), for each feature map location we apply a localization network that reads the

local features and generates a transformation based on those. As the STN is applied locally

to each part of the image, the required transformation is smaller and it is more likely that the

simple gradient-based optimization used will work. Thus, in this work, the last layer is now

composed of two stages: i) estimation of the local transformations 𝜃 = 𝑙𝑜𝑐( 𝑓 ), in which 𝑙𝑜𝑐 is a

convolutional localization network that for each feature map location 𝑓𝑙 returns a corresponding

transformation 𝜃𝑙 . ii). The final representation 𝑓 ′ is the result of a convolution in which the

convolutional filters are now applied with the feature map transformations 𝜃: 𝑓 ′ = 𝑐𝑜𝑛𝑣( 𝑓 , 𝜃).

The new layer is not much more expensive than a normal convolution because the additional

computation is due only to the localization network. In contrast, being able to adapt the receptive

field of the network to the local content of the image improves not only object localization but

also image classification. Even though powerful, in the experimental evaluation, we note that

the convolutional spatial transformer tends quite easily to overfit the training data. To avoid that

in the next subsection we present two regularization techniques.
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2.3.4 Regularization

Our multi-scale convolutional STN tends to focus on small regions. This is because, during

training, the selected bounding boxes shrink to the most discriminative part of an object while

the classification performance improves. To address this, we added a regularization/penalty term

to the classification loss which prevents the affine transformation 𝜃𝑖 from having large deviations

from its reference location 𝜃𝑟𝑒 𝑓 . This regularization term is,

𝐿𝜃 =
∑
𝑠∈𝑆

ℎ𝑠×𝑤𝑠∑
𝑖=1

| |𝜃𝑟𝑒 𝑓 − 𝜃𝑖 | |
2 . (2.2)

Here we choose 𝜃𝑟𝑒 𝑓 =

⎡⎢⎢⎢⎢⎣
1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦ corresponding to the identity transform.
The multi-scale search has also a bias toward localizing large objects from the lower levels of a

feature pyramid. It is due to the fact that, in many cases, object parts are more discriminative

than the entire object; lower-level layers will get strong activation for object parts of the large

objects. In order to make the higher levels compete for localizing large objects, we enforce

the difference between the maximum activation of the two levels to be zero or negative, such

that the higher feature map will be more likely to be selected. This can be applied on any two

scale-adjacent feature maps 𝑠1 and 𝑠2,

𝐿𝑠𝑐𝑎𝑙𝑒 (𝑥) = max

(
0,max

𝑙
𝑝(𝑠 = 𝑠1, 𝑙, 𝑐 = 𝑐∗|𝑥) −max

𝑙
(𝑝(𝑠 = 𝑠2, 𝑙, 𝑐 = 𝑐∗|𝑥)

)
(2.3)

Notice that for small objects that get localized from the lower level, this does not induce any

penalty. Though competitiveness among the levels can be ensured in many ways, this simple

regularization term has given satisfactory results in our experiments.

With these regularization terms, the final loss function optimized by our model is:

𝐿 (𝑥, 𝑦) = 𝐿𝑐𝑙𝑠 (𝑥, 𝑦) + 𝜆𝐿𝜃 + 𝛼𝐿𝑠𝑐𝑎𝑙𝑒 (𝑥) (2.4)
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where 𝐿𝑐𝑙𝑠 (𝑥, 𝑦) is the multi-class cross-entropy loss, 𝛼 and 𝜆 are hyper-parameters to specify

the strength of the STN and multi-scale regularization respectively.

2.3.5 Complete system

Figure 2.5 Overall CSTN system for WSOL when applied to multiple levels of the

feature pyramid. The class probabilities for training are obtained by marginalizing the

probabilities across the location and pyramid levels

Figure 2.5 summarizes our complete system. Given an image, a feature pyramid network builds

semantic representations of the image at different scales. On all the scales, a CSTN is applied so

that for each location and scale a localization bounding box is estimated. Finally, the scores

of the STN are converted to a joint probability 𝑝(𝑐, 𝑙, 𝑠) over classes, locations, and scales.

This can be converted to 𝑝(𝑐) by marginalizing over scales and locations to obtain the class

probabilities needed to train the model in a weakly supervised manner. During training the

proposed regularization is also applied. The joint probability is used at test time to localize the

object by finding the maximum scoring transformation. This is estimated over the scales and

location as shown below.
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𝑏𝑏𝑜𝑥𝑐
∗

𝑚𝑎𝑥 = max
𝑠,𝑙

𝑝(𝑠, 𝑙, 𝑐∗) (2.5)

2.4 Experiments

The detailed empirical study and ablations of the regularization terms are presented in this

section. The datasets and experimental setup are detailed first.

2.4.1 Experimental setup

We evaluated our multiscale convolutional STN model on the CUB-200-2011 dataset (Welinder

et al., 2010) and ILSVRC 2012 (Russakovsky et al., 2015) localization dataset. CUB-200-2011

contains 11,788 images of 200 bird species with 5,994 images for training and 5,794 for testing.

The ILSVRC 2012 dataset contains 1.28M training images and 50,000 validation images. There

are 1000 categories of objects. For both datasets, we evaluate the performance in terms of

classification and localization accuracy. An image is said to be correctly localized if the predicted

class matches the true class and the predicted bounding box has a 50% overlap with the ground

truth. The localization accuracy is denoted as Top-1 Loc in the results. For explicitly measuring

the localization performance(regardless of the classification accuracy), another metric called

GT-Known Loc is used where the GT image label is provided. In that case, localization is

deemed correct if the 50% overlap criterion is satisfied. Unlike CAM, our method can provide

multiple bounding boxes per image. But in Top-1 Loc we are only using the box with the

highest score. When this top-scoring box is centered on the object, we get the best bounding

box. However, this is not always the case with CSTN, especially when the top-scoring box is

focusing on the discriminative object regions. There could be other boxes, for which the score is

very close to the top box but they overlap well with the ground-truth box. So we also considered

a metric which we call the Top-5 box localization where we check if one among the top five

boxes with high scores has 50% overlap with the object. Top-5 box localization gives interesting
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results regarding the localization ability of our method in contrast to the CAM. We measured

GT-Known Top-5 box Loc in this comparison.

We used ResNet101 (He, Zhang, Ren & Sun, 2016) as the backbone network which is pre-trained

on ImageNet (Russakovsky et al., 2015). We removed the last average pooling and fully

connected layer and added an additional convolution(with 3 × 3 filter size and padding 1) and

batch norm (Ioffe & Szegedy, 2015) layer. Feature pyramid is obtained from this network with

its last two levels as described in Lin et al. (2017b). The input images are resized to 320 × 320

pixels. For data augmentation, we used horizontal flip with 50% probability. Images are

normalized with mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225] as in ImageNet

training (Russakovsky et al., 2015). The model is trained on NVIDIA GTX 1080 GPU with

12GB memory.

2.4.2 Ablation Studies

The ablation studies are conducted to assess the impact of spatial transform, multi-scale

localization, and the regularization on 𝜃. We used CUB-200-2011 dataset in our ablation

experiments.

2.4.2.1 Impact of CSTN over normal Convolution

To assess the importance of the spatial transform, we computed the localization accuracy when

the default box is used for localization instead of the transformed output from STN. Note that

this does not change the training procedure, since CSTN is still used the same way to learn

the localization. At the implementation level, instead of using the transformed coordinates, we

used the original coordinates to compute the localization performance. Table 2.1 shows the

result of this study on both datasets. It can be observed that the transform is improving the

localization around 5-8%. To see this impact visually, figure 2.6 shows some sample images

where the transform is modifying the original receptive field box to improve the localization. It

also highlights some failure cases where the transform is producing wrong localization.
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Table 2.1 Impact of transform on the localization

performance. For both datasets, the CSTN is important to

obtain good localization performance

Dataset Top-1 Loc
without transform with transform

CUB-200-2011 40.64 49.03

ImageNet 36.69 42.38

Figure 2.6 Demonstration of transforms learned by CSTN on CUB-200-2011 and

ILSVRC dataset. The last column shows some failed localization on the ILSVRC dataset.

The non-transformed box is shown in blue, the transformed box is in red, and the ground

truth is in green

To further study whether the CSTN is learning a good representation for localization we compared

the localization performance with and without CSTN. For the case without CSTN, we used the

same architecture and classification head, the only difference is that no transform is learned

in this setting, i.e., instead of CSTN, a normal convolution is used. The classification head is

now classifying the fixed sampling space of the convolution. Table 2.2 shows the result of this

study on the CUB-200-2011 dataset. It can be observed that without CSTN, the localization

performance has reduced drastically. The classification performance also goes low but the
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impact is less. This means that the CSTN not only learns to better localize objects in the image,

but it also learns a better representation of the object that produces an improved classification.

Table 2.2 Localizing with and without

convolutional STN on CUB-200-2011 dataset. It can

be observed that the CSTN is very effective in

learning a good representation for localization. It

improves the localization by 26.79%

Type Top-1 Class Top-1 Loc
Without conv STN 77.40 21.64

With conv STN 78.46 49.03

2.4.2.2 Impact of multi-scale regularization

The multi-scale localization is another important component in our model. To assess the

importance of this, we conduct ablation experiments with localization from two levels of the

feature pyramid independently and compare it with the model where these levels are combined.

Figure 2.7 shows the results of this study. Here a histogram is created by dividing the area of

the bounding box into 10 bins of equal size. The histogram shows in green the total number

of samples at each resolution and in blue and red the percentage of images that are correctly

localized in each bin for the model without and with bounding box transformations respectively.

From figure 2.7(a) and 2.7(b) we see that different levels are specialized on different object sizes.

With the multi-scale model (Figure 2.7(c)) we balance the localization between the two levels and

improve the localization accuracy. Notice also that the effect of the bounding box transformation

becomes stronger when using a multi-scale model. This is in line with our hypothesis that the

STN performs a local optimization and for improved performance, the transformations should

be relatively small from a reference size. This can be compared to learning the transforms with

respect to anchor boxes in the fully supervised object detectors (Ren et al., 2015).
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a) Localization from level 4 (Top-1 Loc is 37.78%)

b) Localization from level 5 (Top-1 Loc is 42.91%)

c) Localization with the multi-scale model combining levels 4 and 5 (Top-1

Loc is 48.43%)

Figure 2.7 Impact of multi-scale localization. Localization from each level is compared

with the multi-scale model which combines all levels. The histogram is created by dividing

the area of all bounding boxes into 10 equal bins. Green bars show the number of images

in each bin, the red bar shows the number of images that are correctly localized by CSTN

in that bin and the blue bars show the number of images correctly localized without the

bounding box transformation
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2.4.2.3 Impact of 𝜃 regularization

Another key component of our method is the regularization on 𝜃. We observed that without this

regularization, the learned transformations are not from the distribution of possible bounding

boxes. The transformations tend to overfit and shrink to discriminative image parts resulting

in poor localization. Figure 2.8 shows samples of bounding boxes learned without using

regularization on 𝜃. To obtain a good localization, tuning the hyperparameter 𝜆 is critical.

Table 2.3 shows the performance in classification and localization for different values of 𝜆. As

expected, while the model classification is barely affected, localization is highly affected by this

parameter. For the regularization on the scales, we found that 𝛼 can vary in a range of values

without affecting too much the localization results. Thus we did not include a study on that.

Figure 2.8 Transforms learned without using the

regularization on 𝜃. The receptive field box is shown in
blue, the transformed box is red and the ground truth is

green. It can be observed that the boxes learned without

this regularization are not from the distribution of

possible bounding boxes

2.4.3 Comparison with state-of-the-art methods

We compare the localization of the CSTN with state-of-the-art solutions for WSOL. Results are

summarized in table 2.4 and table 2.5 for CUB-200-2011 and ILSVRC 2012 respectively.
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Table 2.3 Impact of 𝜆 on classification and
localization accuracy. For a high value of 𝜆
the localization accuracy tends to be the one

obtained without STN. For no regularization,

the transformations become too strong and

focus on small parts of the object thus

producing a very poor localization score

𝜆 Top-1 Loc Top-1 Class
0.01 27.39 78.98

0.001 30.88 78.63

0.0001 49.03 78.46

0.00001 45.52 78.25

0 5.13 77.32

On the CUB-200-2011 dataset, CSTN performs better than all the CAM-based methods. except

the ADL (Choe & Shim, 2019). In this dataset, the scale of objects is distributed unevenly, i.e.,

many objects are of nearly the same size and extreme variations in the size are very less (not too

many small and large objects). As shown in the ablation study, different levels of the CSTN

specialize on different scales, therefore, we can get the best of the localization from this model by

focusing more on the crowded scales (where there are many objects). The hyper-parameter 𝛼 is

not very sensitive to the Top-1 Loc, so it can be tuned fairly easily. The difference in performance

with ADL is mostly due to the wrong location selection as the recall is still close to 99%(so the

CSTN is able to produce transformations that match the object sizes). The GT-Known Top-5 Loc

is around 2.5% higher than the GT-Known Loc of the ADL. This also reinforces our claim that

the CSTN is learning better localization. Compared to all the CAM-based methods including the

state-of-the-art ADL (Choe & Shim, 2019), CSTN has some clear advantages. These methods

need rigorous tuning of their hyperparameters to obtain good localization. The hyperparameters

of CSTN are not very sensitive to localization accuracy. The 𝛼 regularization term can be

avoided if we can find a suitable heuristic that tells whether the object is small or large. Thus

small objects can be localized from the lower level and large ones from the higher level. Then it

works similarly to the level selection in multi-scale fully supervised detectors based on the area

of the ground truth box. The 𝜃 regularization is also fairly easy to tune as shown in the ablation



63

experiments. Recent studies observed that WSOL algorithms which improve the localization

based on erase and learn strategy (Zhang et al., 2018a; Choe & Shim, 2019; Singh & Lee, 2017)

are very sensitive to their hyperparameters (Choe. et al., 2020).

Table 2.4 Performance comparison on the CUB-200-2011 test set.

Convolutional STN performs better than all other methods, except ADL.

The Top-1 class is left blank for some methods because it is not reported

in the original paper

Method Top-1 Loc GT-Known Loc Top-1 Class
CAM (Zhou et al., 2016) 41.00 71.13 -

HaS (Singh & Lee, 2017) 44.67 73.32 76.64

ACoL (Zhang et al., 2018a) 45.92 75.30 71.90

SPG (Zhang et al., 2018b) 46.64 74.11 -

ADL (Choe & Shim, 2019) 62.29 78.62 80.34

CSTN 49.03 76.06 78.46

CSTN Top-5 box - 81.14 -

On the ILSVRC dataset, CSTN is outperformed by many of the CAM-based methods. This is

probably due to the sensitivity to the scale. The number of objects in different scales is nearly

uniformly distributed in this dataset. So the multi-scale localization should specialize on each

scale equally well in this case. This can be better explained with the histogram of localization

on ImageNet shown in figure 2.9. As we can see, it favors the localization towards large objects

in this case. As a result, it fails to localize most of the smaller objects. The GT-Known Top-5

Loc in this case is comparable to the GT-Known Loc of the state-of-the-art methods including

ADL and SPG.

We believe that improving the multi-scale localization component of our method can close this

performance gap compared to the state-of-the-art CAM-based WSOL. If we try to localize an

object with the wrong scale (i.e, from the wrong level of the feature pyramid), it will end in

getting stuck at some discriminative object region. Figure 2.10 shows some failure cases of

this when localizing large objects using CSTN. Since the end goal of STN is still to get a good

classification, it will not try to localize the integral object. The softmax aggregation strategy is

a simple and straightforward expansion to introduce the multi-scale capability. Having better
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Table 2.5 Performance comparison on the ILSVRC validation set. The

Top-1 Loc is competitive but due to the sensitivity to scale, convolutional

STN fails to localize small objects. The sensitivity of the CAM to scale is

less, so this can be the reason for the difference in Top-1 Loc

Method Top-1 Loc GT-Known Loc Top-1 Class
CAM (Zhou et al., 2016) 42.80 61.10 66.60

HaS (Singh & Lee, 2017) 45.21 63.12 70.70

ACoL (Zhang et al., 2018a) 45.83 62.73 67.50

SPG (Zhang et al., 2018b) 48.60 64.24 -

ADL (Choe & Shim, 2019) 48.43 63.72 75.85

CSTN 42.38 60.48 69.48

CSTN Top-5 box - 63.45 -

Figure 2.9 Histogram of localization on ImageNet validation

set. The histogram is created by uniformly dividing the range

of the area of objects in the validation set. It can be observed

that the small objects are not localized well by CSTN

methods to select the matching scale can bring the benefit of CSTN to all such multi-scale

improvements. Moreover, improving the box selection strategy can also give better Top-1 Loc,

since our GT-Known Top-5 Loc is always good.
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Figure 2.10 Localizing large objects using the wrong scale.

The STN fails to learn large transforms for this case to give

an accurate localization The receptive field box is shown in

blue, the transformed box is red and the ground truth is green

2.5 Conclusion

In this work, we introduced a novel method for weakly supervised object localization. Different

from the dominant paradigm of Class Activation Maps, we showed that the use of a convolutional

spatial transformer can lead to a competitive performance in localization. Compared to the

activation map-based methods, the convolutional spatial transformer is less sensitive to their

hyperparameters for weakly supervised localization. This component can be plugged into any

convolutional network giving an end-to-end weakly supervised localization module. Different

from CAMs, CSTN can give multiple box predictions but selecting the correct localizing box has

to be carefully designed. The learning of the convolutional STN is fairly easy and it adds a few

additional convolutional layers to the standard CNN. Our Convolutional STN with multi-scale

localization gives competitive results on the benchmark datasets. Empirical study reveals that

the localization with convolutional STN is sensitive to the object scale and we proposed two

regularization strategies to deal with it.

The main limitation of the proposed STN is its struggle to handle object scale variation. The

impact of this struggle is visible in the localization results from the ImageNet dataset which has

a large variation in scale compared to the CUB-200-2011 dataset. Furthermore, preliminary
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studies conducted on the PASCAL VOC dataset agree with the same observation. The PASCAL

VOC dataset has multiple objects per image unlike the ImageNet dataset because it is an object

detection dataset. The multi-scale regularization component proposed here is not easy to use

with more than two levels of the feature pyramid. Thus we concluded that the practical benefit of

using CSTN for weakly supervised object detection will be less. Especially, CSTN is difficult to

use for localizing multiple objects of varying sizes from an image. Although the transformation

learned at one of the feature levels can localize the object well, it is hard to find the best box

based on the joint probability alone. So the selection of the best bounding box for multiple

objects cannot be easily performed. In FPN while considering multiple feature levels and every

position in each feature level, there will be dense box predictions (of the order of 100k) to make

this search process very hard. Thus we resort to not using the CSTN on the weakly supervised

detection research. Instead, we will investigate WSOD with candidate proposals obtained from

selective search or edge box in the next chapter.



CHAPTER 3

SEMI-WEAKLY SUPERVISED OBJECT DETECTION BY SAMPLING PSEUDO-GT
BOXES

While WSOL solves the simple problem of localizing the single dominant object in the image,

we often need to localize multiple object instances belonging to different categories from a single

image. This is typically achieved with object detectors in computer vision (Girshick et al., 2014;

Sermanet et al., 2014). Object Detection(OD) is a multi-task optimization problem that typically

has a classification head and a localization head for instance/object classification and localization.

The classification head will identify the object category localized by the localization head. The

classification head typically optimizes cross-entropy loss and the localization head optimizes

regression loss.

As our fundamental goal is to reduce annotation efforts, we are pursuing weakly supervised and

semi-supervised methods for object detection. As we have seen in chapter 2, the Conv-STN

model is struggling to localize objects when there are multiple instances and more categories of

objects in an image. So we need advanced techniques to use weak image-level labels for detecting

multiple object instances. In this chapter of the thesis, we focus on semi-weakly supervised

object detection where we leverage weak-image level labels along with a few bounding box

annotated images to efficiently train object detectors with less annotation burden. We propose

an efficient method to obtain pseudo-GT labels on weakly labeled images. Then we train the

detector with weakly labeled and fully labeled images together. The remainder of this chapter

is organized as follows. First, we present our sampling-based learner for WSOD where we

can plug in off-the-shelf detectors and train it with weak image-level labels. However, the

localization of multiple objects in an image is still challenging. To mitigate this, we use a few

images with bounding box annotations and design a semi-weakly supervised detector in section

3.3. Empirical studies to understand the strength and weakness of the proposed system is further

presented.
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Even today the advancements for WSOD are mainly focusing on techniques for better instance

localization and ambiguity resolution (Vo et al., 2022; Huang, Zou, Kumar & Huang, 2020) of

the WSDDN model. However, the customized architecture for WSOD is making it difficult to

translate the advances in fully supervised detection available in weakly supervised detection.

What if we can utilize off-the-shelf detection architectures for weakly supervised object detection?

We tried to address this research problem in this work.

3.1 Sampling-based Weakly Supervised Object Detection

Figure 3.1 Our sampling based WSOD with of-the-shelf detector

Figure 3.1 illustrates the design of our sampling-based weakly supervised detector. Suppose

we have object proposals extracted from each image in the training set. For each image, we

also have an associated score matrix in memory with size 𝑁 × 𝐶 that stores the score of each

proposal for each category. With the given weak labels provided for an image, we sample 𝐾

boxes for each category label. These boxes are considered pseudo-GT boxes. Then we pass the

pseudo GT boxes and the image to the detection network which computes the loss and produces

output detections. The output detection includes a set of boxes and corresponding classification

scores. The classification scores are propagated back to the object proposals based on an overlap

criterion. As we can observe, the detection network can be any off-the-shelf fully supervised

detection architecture. Because we use pseudo-GT in place of real GT in a fully supervised
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case, a network architecture can be readily plugged into this framework. Now we will see the

components of this framework in more detail.

3.1.1 Sampler

Let the scores of the class 𝑐 in the 𝑖th region proposal 𝑝𝑖 is 𝑠
𝑐
𝑖 = 𝑓𝑐 (𝑝𝑖, 𝐼) where 𝑓 is the RoI

pooling operation. Let us denote by ℎ𝑐 the weighted sum of scores for a class 𝑐

ℎ𝑐 =
𝑁∑
𝑖=1

𝜃𝑖 𝑓𝑐 (𝑝𝑖, 𝐼), (3.1)

Here, we propose to approximate ℎ𝑐 with Monte Carlo sampling, in which instead of computing

the sum over entire bounding box locations we uniformly sample 𝐾 boxes:

ℎ𝑐 ≈ ℎ̂𝑐 =
∑
𝑘∼U

𝜃𝑘 𝑓𝑐 (𝑝𝑘 , 𝐼), (3.2)

where 𝜃𝑘 is the weight associated with the bounding box 𝑘 . This allows us to compute only 𝐾

evaluations of the expensive 𝑓 , while using an unbiased estimation of the weakly supervised

scoring function. We call these samples pseudo-GT bounding boxes these samples can be passed

to the detection algorithm as ground truth annotations. This allows our algorithm to use any

off-the-shelf object detector without modification.

However, when sampling, the weights 𝜃𝑘 associated with each bounding box score cannot be

computed directly because it is the normalized version of the object score 𝑓𝑐 (𝑝𝑘 , 𝐼) for the box

𝑝𝑘 , but we do not have all scores for the normalization factor, as we sampled only a few boxes.

Instead, for each image 𝐼 we keep in memory the scores 𝑠𝑖 (obtained using the score propagation)

associated with the proposal 𝑝𝑖 and update only the score of the 𝐾 sampled bounding boxes.

Then, 𝜃𝑘 will be computed as the normalized version of 𝑠𝑘 :

𝜃𝑘 =
exp{ 𝑠𝑘𝑇 }∑
𝑗 exp{

𝑠 𝑗
𝑇 }

(3.3)
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At convergence where the scores 𝑓 do not change anymore, ℎ̂ becomes ℎ. Therefore ℎ̂ is an

unbiased estimation of ℎ. While this approach would work, sampling uniformly any possible

image bounding box proposal 𝑝𝑙 would make the learning very slow because most of the

time the sample would not come from the object of interest. Instead, in this work we use

an importance sampling approach. We use 𝜃𝑘 as sampling probabilities associated with a

multinomial distributionM(𝜃𝑘 ) to sample bounding boxes so that the bounding box proposal 𝑝𝑘

would have a probability 𝜃𝑘 to be sampled. In this case, in order to maintain the same estimation

of ℎ we need to divide by the sampling probability 𝜃𝑘 . Thus the final estimation of ℎ will be:

ℎ̂ =
∑

𝑘∼M(𝜃𝑘)

𝑓𝑐 (𝑝𝑘 , 𝐼) (3.4)

which is again an unbiased estimator of the classification score of an image, but with lower

variance.

We also considered other approaches for sampling and the proposed importance sampling

emerged as a clear winner in more practical settings. Ideally, we want the sampler to explore

the search space of candidate regions well and at the same time sample more from the regions

which has higher accumulated scores. To balance this explore-exploit tradeoff we considered

a multi-armed bandit sampler. It has two components; The explore component which assigns

higher scores for the regions that are not explored. The exploit component gives higher scores to

regions with higher classification scores for the given class. The final score of a region proposal

is a weighted sum of the two as shown below:

𝑚𝑐
𝑘 =

exploit︷︸︸︷
𝑠𝑐𝑘 +

explore︷����︸︸����︷
𝛽

√
𝑙𝑜𝑔𝑛

𝑜𝑘
(3.5)

where 𝛽 is a hyperparameter to control the tradeoff between the two. Here 𝑜𝑘 is a measure

quantifying how often a proposal is sampled and 𝑛 is the current epoch. 𝑜𝑘 is updated as the
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IoU of the max-overlapping detection box to the proposal box 𝑝𝑘 in a given epoch:

𝑜𝑘 = 𝑜𝑘 +max
𝑗
IoU(detection_box 𝑗 , 𝑝𝑘 ) (3.6)

The sampling in this case is performed by selecting top 𝐾 proposals based on the score 𝑚𝑐
𝑘 . Let

B̂𝑐 denote the sampled pseudo GTs for the class 𝑐. With a multi-armed bandit sampler, B̂𝑐 is

obtained as:

B̂𝑐 = topk(𝑚𝑐
𝑘 ) (3.7)

While the explore-exploit paradigm works when the sampling is performed on a small set of

curated proposals per image, it does not converge when there are 2,000+ proposals per image.

Oftentimes, we extract thousands of proposals per image to have a good recall of all objects

present in the image. More details will be provided in the results section.

3.1.2 Score propagation

Score propagation is the component that updates the score values S𝑃 of the object proposals P.

If the output bounding boxes of the detectorD would correspond to the object proposals P as in

Girshick (2015), we could directly copy the detection values to our pool of proposals. Instead, as

in modern detectors the output detectionsD are generated by a regression, we propose a method

to propagate the scores from the output detection D to the scores S𝑃 of our object proposals.

During learning, the proposals will accumulate scores from their overlapping boxes produced by

the detector. In our design, we define the score propagation according to the overlap between a

proposal 𝑝𝑖 and a detection 𝑑𝑖. This will help the proposals to aggregate the detection scores of

its neighborhood region during learning.

The score values are initialized to 0. Then, during learning, their scores will be updated based

on detection scores. We explored several criteria for propagating the score and observed that

propagating scores from the maximum overlapping detection boxes helped the model collect

better semantics for the region. Thus, we define 𝛾 as the maximum intersection over union
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between proposal 𝑝 and all detection boxes 𝑑 ∈ D: 𝛾 = max𝑑∈D
𝑝∩𝑑
𝑝∪𝑑 . So, for each proposal 𝑝𝑖

present in the image, we propagate its score 𝑠𝑖,𝑐 proportional to 𝛾:

𝑠𝑖,𝑐 = (1 − 𝛾)𝑠𝑖,𝑐 + 𝛾 · 𝑠𝑑,𝑐, (3.8)

where 𝑠𝑑,𝑐 is the score of the maximum overlapping detection box 𝑑 for category 𝑐. In this way,

scores associated to the proposal 𝑙 with high overlap with the detection 𝑑 will receive a strong

update, while scores of detections with low overlap will not influence the stored score 𝑠𝑖,𝑐.

As the key components of our sampling-based WSOD are presented, we will now try to

understand the training process. The training process is shown in 3.2

Figure 3.2 Sampling based WSOD training

The steps of one iteration in the training process are as follows:

(1) sample: For each proposal 𝑝𝑖 ∈ P we have the corresponding classification score 𝑠𝑖,𝑐 for a

given class 𝑐. This score is accumulated based on the detector output via the score propagation

process. For each given class present in an image, we consider the scores of all proposals P,

denoted by S𝑃 and sample K boxes based on the multinomial distributionM with probabilities

𝜃 computed as in Eqn.3.3. The sampling step returns a set of boxes B̂ and corresponding labels

Ĉ which we consider as pseudo-GT in the subsequent detect step.
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(2) detect: This can be performed with any detector. The detector takes as input the pseudo

ground truth (B̂, Ĉ) sampled by the sampler for an image 𝐼 and returns detections D with

associated scores S𝐷 for all classes.

(3) update: The update step involves the score propagation process that updates the score

values S𝑃 of the object proposals P using equation 3.8.

3.2 Experiments with Sampling-based WSOD

We did extensive empirical studies to understand the strengths and limitations of our sampling-

based WSOD. We used Faster RCNN (Ren et al., 2015) as our backbone detector. The backbone

is an ImageNet (Russakovsky et al., 2015) pre-trained Vgg16 (Simonyan & Zisserman, 2015)

network. The dataset used is Pascal VOC 2007 (Everingham et al., 2010). Object proposals

are extracted from the training images using selective search algorithm (van de Sande et al.,

2011). From an image, 2000 object proposals are extracted with a recall of approximately 92%.

However, keeping so many proposals, means that we need to keep a large set of scores in memory.

This will make the algorithm slow and more noisy at the beginning of the training as there are

many possible regions to explore. In the experiments, we tested to use of a Class Activation Map

(CAM) model (Selvaraju et al., 2017) to reduce the number of proposals. Activation Maps using

the gradCAM method are computed as shown in figure 3.3 as a preprocessing step. Then the

selective search proposals overlapping with CAMs are subsampled to get a reduced set of more

accurate proposals. In practice, for each image and for each class present in an image, we extract

its CAM. Then, for each CAM region, only the proposals that overlap at least 𝜌 with that CAM

region are kept. The final set of proposals will be the union of the proposals selected for each

class. This has resulted in approximately 500 proposals per image with a recall of approximately

88% (a reduction of 4% in the recall). CAM methods are used by some authors to refine the

initial selective search proposals (Cheng, Yang, Gao, Guo & Han, 2020).
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Figure 3.3 Activation maps obtained from gradCAM

3.2.1 Comparison with other methods

Table 3.1 shows the results of our sampling-based WSOD. It can be observed that importance

sampling gives the best results regardless of the proposal type used. However, the gap is narrowed

when CAM proposals are used. But our results are trailing when compared to customized popular

weakly supervised architectures, except the base model WSDDN. As other weak detectors are

built on top of the base model WSDDN, it is possible that additional acceleration is required in

our case to make further improvements. So we tried to investigate the failure cases of our model.

We visualized the output detections from our model. Figure 3.4 shows the results. It can be

observed that our model is producing many discriminative regions of the actual object as outputs.

For example The faces of animals, and humans, the tires of vehicles, etc. Such discriminative

regions will show a strong response to filters learned by a ConvNet in the classification settings

(Zhou et al., 2016). As the weakly supervised detectors are trained with classification labels,

the problem of discriminative localization is ubiquitous in WSOD algorithms (Zhang et al.,

2021). Existing methods in the literature use context (Kantorov et al., 2016), instance classifiers,

(Tang et al., 2017), entropy minimization (Wan et al., 2018), etc., to cop up with discriminative

localization.
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Table 3.1 Results of the sampling-based WSOD with Vgg16

backbone

Settings mAP

With selective search proposals (2000 per image)
WSOD with importance sampling 26.72

WSOD with bandit sampler 14.99

With CAM refined proposals (500 per image)
WSOD with importance sampling 34.91

WSOD with bandit sampler 27.21

WSDDN (Bilen & Vedaldi, 2016) 34.80

WCCN (Diba et al., 2017) 42.80

OICR (Tang et al., 2017) 41.20

PCL (Tang et al., 2018a) 43.50

CASD (Huang et al., 2020) 56.80

Fully supervised 69.90

Figure 3.4 Many wrong localizations of

discriminative regions of an object

3.2.2 Issues in sampling when learning with weak labels

We conducted several studies to understand the issues faced by the sampler when training with

weak image labels alone. These experiments revealed that the sampler is also facing the common

issues of the WSODs. Particularly, the problem with discriminative object regions and the
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inability to localize multiple instances of the same class properly. Below we present this with

experimental evidence.

3.2.2.1 Proposals are sampled from discriminative regions

We also tried to understand the type of proposals sampled by our sampler. Figure 3.5 shows

the plot from this study. Here "small proposals" indicate that the sampled object proposal is

a discriminative area inside the ground-truth box. "No overlap" stands for the case when the

sampled box has no overlap with the ground truth (this can happen from frequently co-occurring

background with an object). Large proposals are those which overlap with the ground-truth

boxes but are not enclosed inside (area-wise they are usually bigger than the object). It can be

observed that as the training progresses, the sampler is sampling more discriminative small

proposals around the object. We can also observe that the mAP is going down accordingly due to

that. At the beginning of the training, large proposals are dominant probably because their scores

get updated fast from the overlapping detection boxes. However, as the training progresses,

discriminative object regions get more accumulated scores from the score propagation, so the

sampler gets biased toward them.

Figure 3.5 Type of proposals sampled over the

training epochs
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3.2.2.2 Problem with multiple instances of the same class

Apart from the discriminative region issue, the sampler also has issues when sampling in the

presence of multiple instances of the same class present in an image. In such cases, the score

propagation accumulates more score on one instance and that region gets sampled repeatedly.

Figure 3.6 highlights this problem. As we can observe, though there are two cats in the image,

the score of proposals for the one on the left is much higher than the one on the right. This

results in the sampling process selecting more proposals around the white cat while completely

ignoring the black cat.

Figure 3.6 When multiple instances of the same class

are present, one of them becomes dominant in the

sampling process

The rationale for designing the Multi-Armed Bandit (MAB) sampler is this observation. As the

MAB has a separate component for promoting exploration, the sampler may search more in the

hypothesis space. In a controlled experiment with curated proposals, we observed that this is the

case. Table 3.2 shows the results. There are two settings shown here. In the first setting, we

assume there are 20 proposals per image. These proposals are obtained by adding ground-truth

boxes of all instances and the remaining as random proposals extracted from the image using

selective search. So this is a curated set of proposals offering a small search space (20 boxes).

The second setting is our regular WSOD where 2000 object proposals are extracted from an

image. With less number of proposals, the explore component pushes the MAB sampler to
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Table 3.2 Comparison of multi-armed bandit

and importance sampler with different number of

proposals per image

Settings mAP

With 20 proposals per image)
WSOD with importance sampling 55.02

WSOD with bandit sampler 51.87

With 2000 proposals per image
WSOD with importance sampling 26.72

WSOD with bandit sampler 14.99

explore the hypothesis space well and it quickly converges to the right locations by making the

exploit score dominant. The importance sampler on the other hand is not exploring the search

space well, so it misses many instances of the same class. With 2000 proposals per image,

the MAB sampler keeps on exploring the huge search space and never converges. While the

importance sampler finds some dominant instances for each given class and on average performs

better than the MAB sampler.

Following the common practices in WSOD, we could use techniques like context information

(Kantorov et al., 2016), instance classifiers (Tang et al., 2017), entropy minimization (Wan et al.,

2018) etc to minimize the localization difficulty. However, such detectors are difficult to train as

they involve many hyperparameters and stages of training. We can see that the result of the best

method using such techniques in table 3.1 is still far from the fully supervised upper bound. So

we took an alternate route. We tried to investigate whether by using a few labeled images we

improved the detector. It is practically feasible to get a few annotated images in most of the

object detection settings. This gave rise to our semi-weakly supervised detector explained in the

next section.

3.3 Semi-weakly Supervised Object Detection

Fig 3.7 illustrates the overall system design of our semi-weakly supervised detector. For every

input image, the detector is employed in a different way, depending on the available annotation
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Figure 3.7 Proposed method for semi-weakly supervised object detection

level. For the fully-labeled images, we perform a normal forward-backward cycle by taking the

real GT annotations provided. For the weakly-labeled images, we use our sampling approach to

select the most likely bonding boxes for each class in the image, to use them for training as a

pseudo ground-truth. This allows us to use the same detector employed for the fully-labeled

images and also for the weakly-labeled ones. When combining weakly and fully supervised

learning, we need to determine the right importance to associate with the two learning tasks. For

doing that, we rely on a hyper-parameter that defines the sampling ratio between the fully- and

weakly-labeled images. The rest of this section introduces the learning steps of both strongly

and weakly annotated categories. Then, we present how their sampling ratio is applied within

the training process.

3.3.1 Learning with strong annotations

For the images that are strongly annotated (.i.e bounding box annotation for each object present),

the learning step is straightforward. Given an input image 𝐼, the ground truth (GT) annotations

are defined with the bounding box positions B = {𝑏0, 𝑏1, · · · 𝑏𝑁 } and corresponding classes

C = {𝑐0, 𝑐1, · · · 𝑐𝑁 }. 𝑏 = (𝑥0, 𝑦0, 𝑥1, 𝑦1) is a vector with 4 values that represent for instance the
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top left and bottom right corner of a box, while 𝑐 ∈ C is a discrete value that represents the

object category. In our experiments we use faster RCNN as detector Ren et al. (2015), and thus

use a loss as:

𝐿𝐹 =
∑
𝑗∈D

∑
𝑖∈B

1

𝑁𝑐𝑙𝑠
𝐿𝑐𝑙𝑠 ( 𝑓𝑐𝑖 (𝑑 𝑗 , 𝐼)) + 𝜆

1

𝑁𝑟𝑒𝑔
𝐿𝑟𝑒𝑔 (𝑐𝑖, 𝑑 𝑗 , 𝑏𝑖), (3.9)

For each GT bounding box 𝑏𝑖 it generates a loss based on the scores 𝑓𝑐𝑖 and overlap of the

obtained detections 𝑑 𝑗 . 𝐿𝑐𝑙𝑠 and 𝐿𝑟𝑒𝑔 denote the classification and localization loss, respectively.

𝑁𝑐𝑙𝑠 and 𝑁𝑟𝑒𝑔 are the normalization factors that depend on the number of foreground and

background RoIs considered. 𝜆 is a hyperparameter that controls the relative importance of the

classification and localization loss. Note that the exact form of loss can vary according to the

fully supervised detector architecture used in the model, but our approach is independent of the

specific fully supervised loss.

3.3.2 Learning with weak annotations

The weakly supervised stream works exactly as explained before. In case of weak supervision,

we know the object classes that are present in the image 𝑐, but not the bounding box locations 𝑏𝑖.

To this end, we used our sampling approach to get bounding box locations of categories present

in the image. For sampling, we used the importance sampler; the score propagation is used as

before. The sampled boxes and their object classes are then used as the pseudo-label for the

weakly labeled images. The weakly labeled image along with its pseudo label (B̂ and Ĉ) is fed

to the detector and the loss is computed the same way as in equation 3.9 but with pseudo labels.

𝐿𝑊 =
∑
𝑗∈D

∑
𝑖∈B̂

1

𝑁𝑐𝑙𝑠
𝐿𝑐𝑙𝑠 ( 𝑓𝑐𝑖 (𝑑 𝑗 , 𝐼)) + 𝜆

1

𝑁𝑟𝑒𝑔
𝐿𝑟𝑒𝑔 (𝑐𝑖, 𝑑 𝑗 , �̂�𝑖), (3.10)

While the fully supervised object detector uses ground truth boxes that are correct, the weakly

supervised counterpart estimates the object box location during training, and therefore the

estimation can be noisy. Thus, when learning with strong and weak labels we might want to set
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a hyper-parameter value that balances the relative importance of the two losses. In this case the

final loss is 𝐿 = 𝐿𝐹 + 𝜆𝐿𝑊 . To control the relative importance of the losses, we expressed the

weight 𝜆 with a sampling ratio for the input data instead. Specifically, we use a ratio parameter 𝑟

that controls the amount of training data from the fully and weakly labeled pool of data. For

instance, 𝑟 = 0.6 means that 60% of the data is from the pool of the fully-labeled samples and

40% from the weakly-labeled samples in a minibatch. With this design, we can feed both the

fully annotated and weakly annotated images in parallel to the model and train it in a single

stage.

3.3.3 Learning algorithm

The proposed learning algorithm with two streams of annotated data is summarized in Algo-

rithm 10. For the sake of simplicity, the algorithm is shown for the case of a single image 𝐼, but

it could be trivially extended to a batch of images.

For supervised samples, our algorithm uses directly the bounding box annotations B and

the corresponding classes C for inference (detect). For weak supervision, the inference is

performed on pseudo-GT annotations (B̂, Ĉ) that are obtained by sampling object proposals

(sample). Then, the obtained detections D and scores S𝐷 are used to update the proposal

scores (S𝑃). In both cases, the obtained detections D and scores S𝐷 are used to compute the

loss 𝐿 and update the recognition model (backprop).

The sample, detect, and update steps are the same as the weakly supervised detection.

3.4 Experiments with Semi-WSOD

The empirical studies are conducted on Pascal VOC 2007 and 2012 (Everingham et al., 2010).

Particularly, VOC 2007 is used as the fully labeled set (5011 images) and VOC 2012 as the weakly

labeled set (17125 images). Images are sampled randomly to create fully annotated and weakly

annotated splits. For evaluation, the VOC 2007 test set is used (4952 images). The standard VOC

AP metric (AP 50) is used to measure the performance of the model. The network is trained
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Algorithm 3.1 Semi-Weakly supervised learning with Pseudo GT

Input: Image: I, GT:(B, C) proposals and scores: (P,S𝑃)

1 if B ≠ ∅ then
2 fully supervised ;

3 D,S𝐷 = detect(I, B, C);
4 else
5 weakly supervised;
6 B̂, Ĉ = sample (P,S𝑃, C) ;

7 D,S𝐷 = detect (I, B̂, Ĉ) ;
8 S𝑃 = update (P,D,S𝐷);

9 end if
10 backprop( I , B, C,D,S𝐷)

end-to-end using stochastic gradient descent(SGD) with a momentum of 0.9 and a weight decay

of 0.0005. The initial learning rate is set to 1e-2 and decayed at epochs [5,10] by a factor of 10.

We trained the model for 20 epochs with a batch size of 8. The temperature parameter 𝑇 for the

multinomial distribution used for sampling is set to 2.5. From an image for each class present,

we sample 𝐾 = 5 object proposals as pseudo-GT during training. During training, the shorter

edges of input images are randomly re-scaled within {480, 576, 688, 864, 1200} to introduce an

augmentation in the image scale. Random horizontal flipping is also used. Object proposals are

extracted using the selective search algorithm (van de Sande et al., 2011) and then refined using

CAM (Selvaraju et al., 2017). Images are normalized with mean = [0.485, 0.456, 0.406] and

std = [0.229, 0.224, 0.225], as in ImageNet training (Russakovsky et al., 2015). The network is

trained on an NVIDIA V100 GPU with 32GB memory.

3.4.1 Comparison with state-of-the-art methods

Table 3.3 shows the comparison of our method with state-of-the-art methods for semi- and

weakly-supervised learning of object detectors (with ResNet50 backbone (He et al., 2016)). We

first evaluate our method for semi-weakly supervised training. The only other method performing

Semi-weakly supervised learning is WSSOD (Fang et al., 2021). In this setting, our method

outperforms it, while being also more flexible (our method is not detector-specific). Compared
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Table 3.3 mAP performance of state-of-art methods on VOC 2007 test set.

Models are trained using VOC 2007 as the fully annotated set, and VOC 2012 as

the weakly annotated set

Method AP 50 AP
Fully Supervised VOC07 (lower bound) 74.4 -

Semi-Weakly-Supervised VOC07 (fully) + VOC12 (weakly)
WSSOD (Fang et al., 2021), ArXiv 2021 78.9 -

Ours 79.4 47.3

Semi-Supervised VOC07 (fully) + VOC12 (unsup.)
CSD (Jeong et al., 2019), NeurIPS 2019 74.7 42.7

STAC (Sohn et al., 2020), ArXiv 2020 77.4 44.6

WSSOD (Fang et al., 2021), ArXiv 2021 78.0 -

ISD (Jeong, Verma, Hyun, Kannala & Kwak, 2021), CVPR 2021 74.4 -

Ours 77.8 44.2

Fully Supervised VOC07+VOC12 (upper bound) 80.9 -

to the model trained only on VOC 2007 with full supervision (lower bound), we observed a

significant improvement (5.0%) when using additional weak labeled data, approaching a model

with full annotations in both datasets (upper bound). Figure 3.8 shows a qualitative evaluation

of our model’s detection results where we visualized the confident predictions.

We then compare our model to the state-of-the-art in the normal semi-supervised settings

where unlabeled data is provided without any labels. To report the results of our method in

semi-supervised settings, we trained a classifier on the available fully labeled images and used

that classifier to obtain image-level labels for the unlabeled images. This requires the training of

an additional classifier, but it is less expensive than the detector pre-training used in most of the

semi-supervised methods. Results indicate a significant improvement in terms of performance,

with the additional moderate cost of collecting weak image-level labels. In the semi-supervised

case also, our method shows an improvement of 3.4%, outperforming most of the methods

in terms of mean average precision with an IOU threshold at 0.5 (AP 50) and mean average

precision averaged over several IOU: 0.5- 0.9 (AP).
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Figure 3.8 Visualization of detection results of our

Semi-WSOD model

3.4.2 Ablation studies

Several ablation studies are conducted in order to assess the individual components of our

proposed model. First, we study the working of the sampler and score propagation modules.

Different methods for doing score propagation are studied. Then, we analyze the performance

of our method with varying degrees of supervision (changing the number of supervised data

points). Finally, we study different types of errors made by the model. All of these studies

are conducted on PASCAL VOC 2007 by training the model using its trainval (training and

validation images combined) set and testing on its test set. We use 10% annotated images in this

analysis, while the rest of the images are weakly annotated.
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3.4.2.1 Sampler and score propagation

To understand the sampling progress, we analyzed the sampled proposals over the training

epochs. Figure 3.9 illustrates an example sampling process during the training phase for the

person category. It can be observed that, though in the beginning, we sample pseudo-GT boxes

randomly from the image, it converges to meaningful locations for the person category in the later

stages. This also shows the exploration and exploitation phases during the course of training.

a) Epoch 1 b) Epoch 5 c) Epoch 10 d) Epoch 15

e) Epoch 20 f) Epoch 25 g) Epoch 30 h) Epoch 35

Figure 3.9 Evolution of the Pseudo GT sampling. While in the first iterations of the

training, bounding boxes are samples almost randomly (exploration), after some training,

the algorithm learns to sample only from meaningful locations (exploitation)

To understand whether the sampler is learning a meaningful object location, we analyze the

heatmap produced by the score distributions of the object proposals for a given class. To obtain

the heatmap, for each pixel location, the scores from all object proposals covering that pixel are

added, and then normalized by the number of object proposals covering that pixel. Fig. 3.10

shows some examples of heatmaps. It can be observed that active regions of heatmaps correlate
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well with object locations, and hence the sampler is finding meaningful semantic information

through sampling and score propagation. We also notice that for small objects (ducks on the

top right image) or objects with a recurrent background (train), the sampler selects not only the

object of interest but also some background. However, this is a common problem of all weakly

supervised approaches.

Figure 3.10 Heatmaps of sampler scores for images belonging to different categories

from the Pascal VOC dataset

Next, we will ablate the score propagation component. Score propagation can be from all

detection boxes or a selected set of boxes matching some quality criteria. We considered 3

settings: (1) score propagation from all detection boxes, (2) from the maximum overlapping

boxes, and (3) from the maximum overlapping boxes when the IOU overlap is above a threshold 𝑡.

We found that 𝑡 = 0.3 provides the best performance. Table 3.4 summarizes the results from this
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Table 3.4 Analysis of score propagation strategies. mAP

performance is measured on a weakly semi-supervised model using

10% full annotations and remaining weakly-labeled images on the

VOC 2007 dataset

Score Propagation Strategy mAP

Propagate from all boxes 57.2

Propagate from max-overlapping boxes 58.3

Propagate from max-overlapping boxes when IOU > 𝑡 60.3

study on the VOC 2007 dataset. The model is trained using different 10% splits on its trainval

set, and evaluated on the test set. It can be observed that propagating scores from the maximum

overlapping detection box of each proposal provide the highest mAP accuracy. When the overlap

is above a threshold 𝑡 imposes more quality constraints for score propagation, and improves

results. Score propagation from all detection boxes does not perform well, although it can

provide a smoother update to the object proposal scores. This may be due to the concentration

of the high scores over large proposals when all detection boxes are propagating their scores.

This results in an incorrect sampling of over-sized proposals, especially for smaller objects.

3.4.2.2 Impact of fully annotated images

Figure 3.11 Change in mAP with varying amounts of fully

annotated images during training on the VOC 2007 dataset



88

Table 3.5 Impact on mAP performance of the ratio for

fully to weakly-annotated images

Settings mAP

10% fully annotated images 50.9
10% fully annotated and remaining weakly
annotated images (without ratio balancing) 47.5
10% fully annotated and remaining weakly
annotated images (with ratio balancing) 60.3

In Figure 3.11 we compare the performance of a detector baseline trained only with strong labels

(red line) with a model trained with strong and weak labels using our sampling approach (green

line). As expected, the gain of our model is more significant when the amount of strong labels is

reduced. For instance, with 5% of strong labels, our model improves over the baseline by 10

points. It is also reaching the best weakly supervised model’s performance (Huang et al., 2020)

with a very easy training process using 250 labeled images. When increasing the percentage of

strong labels, the gain reduces. This experiment shows how our approach is useful when the

amount of fully labeled data is limited. In this setting, our model can approach the performance

of a fully supervised model, but with much fewer annotations.

3.4.2.3 Impact of the ratio parameter

We analyze the importance of the ratio parameter 𝑟 for balancing the number of fully and weakly

annotated training images. In Table 3.5, it can be observed that without this balancing term, the

detection performance is even worse than the settings where only annotated images are used.

With the proper ratio balancing (𝑟 = 0.7), the mAP performance of the detector significantly

outperforms the baseline using only fully supervised images. Thus by tuning this ratio parameter,

we can effectively leverage the large pool of weakly annotated images. One of the appealing

properties of this strategy is that it does not require any change to the model architecture or loss

function.
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Table 3.6 Impact on mAP performance of using proposals filtered by a

CAM method

% of images with bounding
box annotations

mAP without
CAM proposals

mAP with
CAM proposals

0% 26.7 34.9

5% 48.4 53.1

10% 57.6 60.3

20% 64.6 65.5

3.4.2.4 Impact of CAM proposals

Table 3.6 shows the impact on performance when subsampling object proposals based on their

overlap with class activation maps during sampling. The CAM is obtained by training a vgg16

(Simonyan & Zisserman, 2015) network on the multi-label VOC 2007 image-level labels. Then

the overlap of selective search proposals (van de Sande et al., 2011) to the CAM of all classes

present in the image is computed. Based on the overlap, the object proposals without sufficient

overlap to the CAM, which are perhaps from the image background region, are ignored. This

results in a slight loss of recall, but an improvement in terms of the mAP, especially with few

fully annotated images, due to the reduction of noisy proposal regions that could misguide the

sampler. In practice, we used an overlap threshold of 0.1 which resulted in a 5% reduction

of recall, but the average number of proposals is reduced 4 times to approximately 500 object

proposals per image. From table 3.6, it is clear that filtering noisy proposals using CAM brings

improvement in mAP. However, the impact of the CAM proposals reduces with the availability

of more fully annotated images. This is according to the general facts that with more annotations,

the appearance model will be more accurate and hence, the model itself will be powerful enough

to better distinguish objects.

3.4.3 Type of errors the model is making

The distribution of the error of our model is also analyzed using the TIDE (Bolya, Foley,

Hays & Hoffman, 2020) evaluation tool (see Figure 3.12). It can be observed that the localization
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Table 3.7 Results comparison on the COCO

dataset with different percentages of labeled images.

Settings 1% 5% 10%
Supervised 11.6 18.7 23.8

STAC (Sohn et al., 2020) 14.0 24.4 28.6

Soft-teacher (Xu et al., 2021) 20.5 30.7 34.0

Ours 15.4 22.9 24.3

error contributes the most toward the overall errors made by our detection model. This is

expected, since there is a large fraction of images without bounding box labels, so the objectness

distilled from a small fraction of fully annotated images is insufficient to capture large variations

in appearance. Missed ground truth is the next major error with our model. This is mainly the

consequence of the exploration capacity of the sampler. Once some dominant object regions

start providing higher scores from the score propagation, the sampler can miss other difficult

instances, especially smaller objects. Thus, our sampler will not sample candidate proposals

from those regions, and they remain undetected. Frequently co-occurring background regions

are also challenging for the sampler since such regions can also accumulate higher scores over

time from the score propagation block. Those regions might also be sampled many times,

resulting in detection boxes in background regions.

3.4.4 Limitations

While using a few labeled images along with weakly labeled images helped us to improve

the localization difficulty of a purely weakly supervised detector, there are still challenges

to overcome. It was evident when our method was studied on the MS-COCO (Lin et al.,

2014) dataset. Table 3.7 shows the results from this study. We compared our model with the

semi-supervised methods where annotations are provided for 1%, 5%, and 10% of the available

training set images.

Compared to STAC (Sohn et al., 2020), our method is better only in the 1% case. But the

Soft-teacher method (Xu et al., 2021) outperforms us in all benchmarks. Both STAC and
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Figure 3.12 Evaluation of performance loss.
TIDE Evaluation of detection results. Error

types are: Cls: localized correctly but classified
incorrectly, Loc: classified correctly but

localized incorrectly, Both: both cls and loc
error, Dupe: duplicate detection error, Bkg:
detected background as foreground, Miss:

missed ground truth error

Soft-teacher are using mean-teacher (Tarvainen & Valpola, 2018) approach. The key difference

between their approach to ours is in the pseudo-label box location. In our case, the pseudo

labels are sampled from a pre-computed set of object proposals, so the location of pseudo labels

remains fixed throughout the training. With the mean-teacher method, the pseudo-ground-truth

boxes are provided by a teacher network that is continuously improving as the training progresses.

The mean-teacher network learns to produce pseudo boxes of varying sizes improving the recall.

Our pseudo boxes are fixed. While the Pascal VOC dataset has bigger objects with less scale

variance, for MS-COCO the scale variation is high and contains many small objects. The

pre-computed proposals are not meeting these quality requirements. Their recall is close to 75%
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Table 3.8 Comparison of other weakly supervised methods

with ours with 1% labels on the COCO dataset.

Settings COCO AP
MELM (Wan et al., 2018) 7.8

Instance-Aware WSOD (Ren et al., 2020) 12.6

CASD (Huang et al., 2020) 13.9

Ours(with 1% labels) 15.4

and they mostly miss the small objects. This explains the reason for the performance drop of our

method in the MS-COCO dataset.

We also tried to understand how well our method favors the weakly supervised detectors on

the MS-COCO dataset. Table 3.8 shows the comparison. In general, the weakly supervised

detectors are not performing well on the COCO dataset. The reason is as explained before,

they rely on the object proposals from selective search (van de Sande et al., 2011) or edge box

(Zitnick & Dollar, 2014) method which has a low recall on datasets with high scale variation.

With 1% labeled images, our approach however performs better than all the WSODs while still

using an off-the-shelf Faster RCNN detector with a large collection of weakly labeled images.

This alleviates the need for customized architectures to train on weakly labeled images.

3.5 Conclusion

We proposed a sampling-based learning method to train off-the-shelf detectors with weak

image-level labels. It can be trained with weak image-level labels alone or with a mix of weak

and strong labels (with exact bounding box locations). While the method works fine with weak

labels alone with a performance comparable to the baseline models of existing WSODs, the best

utility is when combined with a small amount of fully annotated images. When combined with

a small fraction of labeled images, we get the best results among other methods using weak and

strong labels. Compared to the recent WSODs with customized architecture, multiple stages

of training, and complicated training objectives, our method offers a flexible alternative where

an off-the-shelf detector can be directly used and trained in a single stage just like the standard
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fully supervised training. With a few annotated images, our results significantly outperform

existing WSODs on all datasets. Using single-stage learning, our method effectively makes

use of the images with only weak image-level labels by sampling pseudo-GT boxes from the

object proposals extracted in that image. The scores for sampling proposals are obtained via the

proposed score propagation mechanism.

Experiments on the MS-COCO reveal the need to refine pseudo-bounding boxes during training.

Our method with a fixed set of pre-computed object proposals fails to localize small objects

properly. With the modern end-to-end mean-teacher methods, object proposals are improving

during the training and they localize the small objects better. In the next chapter, we will be

dealing with a practical application setting of object detection where small objects dominate

the input image. We will explore the capability of the mean-teacher detector in that setting and

propose techniques for improving small object detection.





CHAPTER 4

DENSITY CROP-GUIDED SEMI-SUPERVISED DETECTION FOR AERIAL IMAGES

In this chapter, we consider the problem setting of object detection from high-resolution aerial

images. Typically in aerial images, the objects are very small as they tend to cover a large area

from the top (Cheng et al., 2023). On top of that, the small objects appear in clusters increasing

the localization difficulty further (Yang et al., 2019). The images usually have a very high pixel

resolution (2k to 16k in the popular benchmark datasets). Thus learning with fewer bounding box

annotations is practically very demanding in aerial image object detection. Creating bounding

box annotations for tiny objects is even more difficult than the natural images of Pascal VOC or

MS-COCO. Unlike natural images, sometimes domain expertise is also required to annotate

object classes with fine-grained differences (eg: building types, vegetation types). Thus there are

chances for ambiguity even in providing weak image-level labels. Considering these practical

difficulties, we attempt to use semi-supervised detection for the problem settings in this chapter

so that unlabeled data can be supplied without any processing or labeling.

The success of deep learning based object detection methods on natural images (Lin et al.,

2017b; Carion et al., 2020; Cai & Vasconcelos, 2018; Tian et al., 2019; Ren et al., 2015;

Redmon & Farhadi, 2017), has resulted in a fast growth of their adoption to many downstream

applications, including aerial image detection from drones or satellites, for earth monitoring,

surveillance, inspection, etc (Lacoste et al., 2021; Xia et al., 2018; Cheng, Zhou & Han, 2016;

Han, Ding, Xue & Xia, 2021; Long, Gong, Xiao & Liu, 2017). However, unlike natural images

in the Pascal VOC (Everingham et al., 2010) and MS-COCO (Lin et al., 2014) datasets, aerial

images are captured in high pixel resolution and are typically comprised of many small objects,

that are sparsely distributed in crowded object regions. As a comparison, the average number of

objects in Pascal VOC and MS-COCO images are 3 and 7, respectively, whereas images in the

VisDrone (Zhu et al., 2018) and DOTA (Xia et al., 2018) datasets – two popular benchmarks in

the aerial detection community – have an average number of 53 and 67 objects, respectively. The

average width of Pascal VOC and MS-COCO images are 500 and 640 pixels, respectively, while
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the same in VisDrone and DOTA images are 1500 and 4000 pixels, respectively. Therefore,

improvements observed in object detection methods applied to natural images do not easily

translate to object detection in high-resolution images from drones and satellites. Though

Semi-supervised Object Detection(SSOD) has achieved tremendous progress in recent years on

natural images (Guo et al., 2022; Li et al., 2022a; Liu et al., 2021a; Xu et al., 2021; Tang et al.,

2021; Jeong et al., 2019; Sohn et al., 2020; Meethal et al., 2022), we are yet to see large-scale

adoption of them on aerial images. We hypothesize that the above mentioned difficulties

contributed to the lower adoption rate of semi-supervised detectors in aerial image detection. In

this chapter, we will investigate methods to do semi-supervised object detection in this imagery

considering the challenges particular to the aerial imagery.

4.1 Density Crops for Small Object Detection

As we have seen, the mean-teacher semi-supervised detection works with a single backbone

detector whose target for the unlabeled data can be obtained by the pseudo-labeling approach.

But existing methods perform small object detection from high-resolution aerial images by

cropping clustered object regions with the help of an external "crop module" as shown in the

figure 4.1 (c). For example, Yang et al. (2019) proposed to use a separate network called ClusNet

to extract clustered object regions. Li et al. (2020) employed a density generation module to

identify the dense regions. Though such density-based methods work in a purely supervised

setting, it is not immediately clear how they can be trained in a semi-supervised setting like the

mean-teacher framework. The pseudo ground-truths for the "crop module" on unlabeled images

are difficult to obtain. Moreover the "crop module" is often trained in a separate stage before

the detector training. This multi-stage training is also difficult to translate to the mean-teacher

network where the training is end-to-end.

Note that the uniform cropping shown in figure 4.1 (b) is also a widely used technique for dealing

with the scale issue of small objects in aerial images. In uniform cropping, the input image

is cropped into uniform patches, and then object detection is performed on these patches in

high resolution by upsampling. Although these uniform patches help to improve the accuracy,
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(a) Baseline (b) Uniform crops (c) Density crops (d) Our approach

Figure 4.1 objects in high-resolution aerial images. (a) The image is down-scaled and

processed at the detector’s input size. (b) The image is split into uniform, possibly

overlapping patches, and each patch is processed by the detector. (c) An external learnable

module crops the image into dense object regions. Each crop is re-scaled and processed at

the detector’s input size. (d) Our proposed CZ detector is re-purposed to detect the density

crops along with the base class objects, eliminating the need for an external module. Each

crop is re-scaled and processed at the detector’s input size in a second stage of inference.

Blue arrows show the path of the original image and red shows the path of density crops

this approach does not respect the distribution of the objects in the image, and hence the scale

normalization achieved is not optimal (Yang et al., 2019; Li et al., 2020). As the objects in

aerial images usually appear crowded in sparsely distributed regions of the image, density-based

cropping usually yields better results than uniform cropping. Since it is difficult to input

high-resolution aerial images directly to a detector due to the computational cost and large

memory footprint, they are often resized to the standard input size range of 300-512 pixels(see

Fig. 4.1 (a)). This rescaling, coupled with the feature down-sampling in ConvNets, often

results in feature representations linked to small objects diminished or corrupted by the noisy

background activations (Yang et al., 2022).
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While uniform cropping is still inferior to density-based crops, practitioners still use it widely

due to the simplicity it offers. Existing density-based approaches rely on an external crop module

and more parameters to train whereas the uniform crops can be wrapped on top of a standard

object detector. Also, many approaches resort to multi-stage training where density cropping

modules are trained first. Even with single-stage end-to-end methods, the crops obtained are

noisy in the beginning and are only useful for aiding small object detection in the later stages of

the training (Yang et al., 2019).

To get the best out of the density-based cropping and the practical simplicity of the uniform

cropping approach, we designed a density-based detection approach with the detector itself as

shown in figure 4.1 (d). The detector identifies the base class objects and density crops from the

image. It then zoom-in on the density crops by detecting small objects on the up-scaled crops

from there. The detection from the crops and the original image are later merged. We call our

detector with the zoom-in capability a Cascade Zoom-in (CZ) Detector. As the entire process

is wrapped on top of a standard detector, the mean-teacher framework can be easily applied

here. We simply make use of the detector itself to discover the density crops, by adding the

"crop" as a new class to the detector. The crops are labeled as a pre-processing step using a crop

labeling algorithm, and hence the detector receives a consistent signal of what constitutes a crop

during training. During inference, while other methods require complex post-processing to filter

the noisy crops, we can simply perform it based on the confidence of the "crop" class from the

detector.

4.2 Cascaded Zoom-in Detector

Figure 4.2 illustrates the training and testing of our CZ Detector. First, the density crops are

extracted from each training image as a pre-processing step, using our crop labeling algorithm.

These density crops are added as a new class to be detected in the corresponding image. Then

we augment the training set with the higher resolution version of the density crops, and the

corresponding ground truth (GT) boxes of objects inside the crop. Then, the detector is trained

as usual. This training process has an almost negligible overhead over standard detector training,
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Figure 4.2 Overview of our proposed Cascaded Zoom-in detector.

During training (top), density crops are extracted, and labeled as a

new class (red boxes) on the original image. The training set is

augmented with the rescaled density crops and the corresponding

ground truth boxes within these crops. During the first stage of

inference (bottom), the base class objects and density crops (red

boxes) are detected on the whole image. In the second stage, the

density crops are rescaled to a common larger size, and a second

inference is performed. Finally, the detections on density crops are

combined with the detections on the whole image

and it is similar to that of uniform crop-based training. The inference is performed in two stages.

In the first stage, the base class objects and density crops are detected from each input image. In

the second stage, high-quality density crops are selected based on their confidence score, and

another inference is performed on an up-sampled version of these crops. Finally, the detections

from stages one and two are fused to get the output detection. Compared to standard object

detector learning, the extra work required at training time is the crop labeling which can be

performed as a pre-processing step. While making predictions, the extra work required is one

more inference. As both of these processes don’t require any significant modification on a normal

object detection pipeline, similar to uniform crops, our method can be easily incorporated for

accelerating small object detection.
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Wewill now dive into how to transform any detector into a cascaded zoom-in (CZ) object detector.

Let us consider the original image, which is kept at its high image resolution, the down-sampled

image, which is an image containing the same view of the original, but down-scaled to the

detector input size, and the cropped images, which are the selected regions of the image that

are up-scaled to the detector input size. First, we will present the crop labeling algorithm that

labels the crowded object regions as "density crops" and augments the training data by adding

up-scaled versions of those regions. Then, we will look into the two-step inference procedure

shown above.

4.2.1 Training with density crops

In order to use a standard detector for our approach, we need to add a new class that we call

"density crop" to the training annotations. In this way, our approach is detector agnostic (as we

don’t change the internals of the detector, we just add one additional class to the list of target

classes) and does not require any additional component than the detector itself. The density crop

class should label those parts of the image that contain many small objects and include them in a

bounding box. This will allow training and inference to focus on those parts by analyzing them

in higher image resolution. Several different ways could be considered for defining the density

crop. The quality constraints we used to define density crops are: (i) they should enclose groups

of small target objects, (ii) they are easy to localize at inference time, and (iii) they are optimal

in number to reduce the computational cost.

We note that existing methods leveraging density crops are computing the density crops on the fly

during the detector training (Yang et al., 2019; Duan et al., 2021; Li et al., 2020). They predict

density maps and synthesize the crops from them by post-processing. But recently it has been

shown that such prediction-based label assignments are error-prone (Zhou et al., 2022). Instead

selecting a max-size object proposal that will enclose the object very likely and give a more

consistent signal during the course of training works better. Zhou et al. (2022) used the biggest

object proposal from the RPN for label assignment. Their observations are shown in figure 4.3.

The prediction-based labels are changing a lot during the course of training (top row). Also,
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they may produce boxes that cover objects partially as well. Whereas the max-size box gives a

consistent signal and always encloses the objects in its boundary (bottom row). In our case, the

crops are evolving as the training of the density module is progressing. Also, the density maps

may not cover the entire clusters as we do thresholding and find the regions with maximum

activation which might lose the boundaries of the clusters. Based on these observations, we

decided to label the density crops apriori so they stay consistent during the training. Also, the

crop labeling algorithm produces crops that enclose the cluster of objects in a much bigger box.

This is similar to the max-size box, so we have no issue with partial covering as well.

Figure 4.3 Observation from Detic when training with prediction based labels. Taken

from Zhou et al. (2022). Top: The prediction-based method selects different boxes
across training, and the selected box may not cover the objects in the image. Bottom: By

simply selecting the max-size proposal, we get a box that covers the objects and is more

consistent across training. All boxes with scores > 0.5 are shown in blue and the

assigned (selected) box in red

Algorithm 13 describes the procedure we used for discovering and labeling density crops from

the GT annotations. In summary, we perform an iterative merging of the GT boxes to discover

the density crops. In the first step, all GT boxes B are scaled by expanding the min and max

coordinates of the boxes by 𝜎 pixels (scale(B, 𝜎)). Then we calculate the pairwise Intersection

over Union (IoU) between the scaled boxes (pairwise_IoU(D)) in 𝑂 as a |D| × |D| matrix.

Connections are labeled in 𝐶 by assigning one to all overlap values above a threshold 𝜃 in

the pairwise IoU matrix 𝑂. Then we select in 𝐶 the row 𝑚∗ with the maximum number of

connections. An enclosing box is computed (enclosing_box(𝐶𝑚∗)) by finding the min and
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Algorithm 4.1 Density Crop Labeling Algorithm

Input: B: GT boxes in an image

Output: D: Density crops

Parameters :𝑁: no. of merging steps,
𝜎: expansion pixels,
𝜃: overlap threshold,
𝜋: maximum crop size

1 1. D ← scale(B, 𝜎);
2 2. for 𝑖 ← 1 to 𝑁 do
3 a) 𝑂 = pairwise_IoU(D)

4 b) 𝐶 = 𝑂 > 𝜃 (connection matrix)
5 c) D ← ∅

6 while |𝐶 | > 0 do
7 i) 𝑚∗ = argmax𝑚

(∑
𝑖 𝐶𝑚,𝑖

)
8 ii) 𝑑 = enclosing_box(𝐶𝑚∗)

9 iii) D ←D + 𝑑
10 iv) 𝐶𝑚∗ = 0

11 end while
12 d) D ← filter_size(D, 𝜋)

13 end for

max coordinates of all crop members connected to 𝑚∗. The newly obtained crop box is added to

the list of crops and the row 𝐶𝑚∗ is set to zeros. Subsequently, the crops that are bigger than a

maximum threshold 𝜋 are removed from the list D (filter_size(D, 𝜋)). This procedure of

iterative merging is performed 𝑁 times. The crop size threshold 𝜋 used here is the ratio of the

area of the crop to that of the image.

The quality of the crops is important for our method. It is in fact the iterative merging that brings

out the best quality crops. Naive scaling and merging to find the maximum enclosing boxes

based on pairwise IoU results in either bad crops or too many small crops (with fewer objects in

them) depending on the value of the scaling factor. Iterative merging produces good-quality

crops enclosing groups of small objects respecting the quality constraints. In the experiments

section, we present the ablation studies validating the effectiveness of our density crop labeling

algorithm. We also show that hyperparameters of the algorithm can be easily set.
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With the newly obtained crop labels, we can also augment the training set with additional image

crops. The original image and its annotations B are down-scaled using the maximum training

size 𝑊 × 𝐻. Note that it is expected the detector will not detect many small objects in the

down-scaled image. But the augmented up-scaled version of the density crop 𝑑 ∈ D of a given

image will have those small objects that fall inside the crop in higher pixel size. This will reduce

the extreme scale variation at training time. We used bilinear interpolation for up-scaling the

density crops. The crop labeling can be performed as a pre-processing step. The up-scaled

version augmentation of density crops is simply a data augmentation process. Thus our method

does not introduce any change in the standard training pipeline of a detector, except when the new

class "density crop" is added. In this regard, it is practically easy to use like uniform cropping.

4.2.2 Inference with density crops

As the detector is trained to recognize density crops, at inference time, we can get the density

crop from its prediction itself. Figure 4.2 bottom explains our inference process in detail. It

consists of two stages. In stage one, it predicts the base class objects and density crops on the

input image. Then we select the high-quality density crops based on their confidence score. In

stage two, the upscaled density crops are passed through the same detector again, producing

small object detection on the density crops. Finally, we re-project the detections on the crops

to the original image and concatenate them with the detections on the original image. Let

𝑐 ∈ C be an up-scaled crop image of size (𝐼𝑊𝑐 , 𝐼𝐻𝑐 ) defined by its bounding box coordinates

(𝑐𝑥1, 𝑐𝑦1, 𝑐𝑥2, 𝑐𝑦2) in the original image. Given the scaling factors (𝑆
𝑊
𝑐 , 𝑆

𝐻
𝑐 ) = (

𝑐𝑥2−𝑐𝑥1
𝐼𝑊𝑐

,
𝑐𝑦2−𝑐𝑦1

𝐼𝐻𝑐
),

the re-projection box 𝑝𝑖 scales down and shifts the detection boxes (𝑥1,𝑖 , 𝑦1,𝑖 , 𝑥2,𝑖 , 𝑦2,𝑖) ∈ B
𝑐 in

the crop 𝑐 as:

𝑝𝑖 =(𝑆
𝑊𝑥1,𝑖 , 𝑆

𝐻𝑦1,𝑖 , 𝑆
𝑊𝑥2,𝑖 , 𝑆

𝐻𝑦2,𝑖)

+ (𝑐𝑥1, 𝑐𝑦1, 𝑐𝑥1, 𝑐𝑦1) (4.1)

The Non-Maximal Suppression(NMS) is then applied to remove duplicate detections. While

other methods need complex post-processing to filter the noisy crops (Yang et al., 2019), we can
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simply use the confidence score of the density crops to do the same. Stage one of the inference

is the standard inference procedure in any detector. The filtering of the noisy crops can be easily

performed with the confidence scores given by the detector. The second stage of the inference is

performed with the same detector, but a different input (the up-scaled density crops). So, we are

simply repeating the standard inference procedure of a detector one more time. All of these

operations can be easily wrapped on top of the inference procedure of any detector, thus keeping

the simplicity of the uniform cropping approach at inference time too.

4.3 Experiments with CZ Detector

Datasets and evaluation measures. For the evaluation of methods, we employed two popular

challenging benchmark datasets for Aerial Image Detection, namely the VisDrone (Zhu et al.,

2018) and DOTA (Xia et al., 2018) datasets. The measure used for assessing and comparing the

performance of methods is COCO style average precision (AP) (Lin et al., 2014). The AP of

small, medium, and large objects are also reported, particularly to understand the performance

of our method for small object detection. Finally, the number of frames per second (FPS) is

reported as a measure of time complexity.

VisDrone. This dataset contains 8,599 drone-captured images (6,471 for training, 548 for

validation, and 1,580 for testing) with a pixel size of about 2000 ×1500 pixels. The objects are

from ten categories with 540k instances annotated in the training set, mostly containing different

categories of vehicles and pedestrians observed from drones. It has an extreme class imbalance

and scale imbalance making it an ideal benchmark for studying small object detection problems.

As the evaluation server is closed now, following the existing works, we used the validation set

for evaluating the performance.

DOTA. This dataset is comprised of satellite images. The images in this dataset have a pixel

size ranging from 800×800 to 4000×4000. Around 280k annotated instances are present in

the dataset. The objects are from fifteen different categories, with movable objects such as

planes, ships, large vehicles, small vehicles, and helicopters. The remaining ten categories are
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roundabouts, harbors, swimming pools, etc. Many density crop-based detection papers report

results only on movable objects(Yang et al., 2019) with the assumption that immovable objects

usually won’t appear crowded. But they are also small objects, so we kept all classes to assess

the improvement in small object detection. The training and validation data contain 1411 images

and 458 images, respectively.

Implementation details. The Detectron2 toolkit (Wu, Kirillov, Massa, Lo & Girshick, 2019)

was used to implement our CZ detector. The backbone detector used in our study is primarily

Faster RCNN (Ren et al., 2015), but we also show results on the modern anchor-free one-stage

detector FCOS (Tian et al., 2019). We used Feature Pyramid Network (FPN) (Lin et al., 2017b)

backbone with ResNet50 (He et al., 2016) pre-trained on ImageNet (Russakovsky et al., 2015)

dataset for our experimental validation. For data augmentation, we resized the shorter edge to

one randomly picked from (800, 900, 1000, 1100, 1200), and applied horizontal flip with a 50%

probability. The model was trained on both datasets for 70k iterations. The initial learning rate

is set to 0.01 and decayed by 10 at 30k and 50k iterations. For training, we used one NVIDIA

A100 GPU with 40 GB of memory.

4.3.1 Comparison with state-of-the-art methods

Table 4.1 compares our approach with the existing methods on the VisDrone dataset. Similarly

to us, some methods perform density cropping (Yang et al., 2019; Li et al., 2020; Duan

et al., 2021; Deng et al., 2020), while QueryNet (Yang et al., 2022) and CascadeNet (Zhang,

Izquierdo & Chandramouli, 2019) use other approaches to improve the detection performance

on aerial images. We obtained the best detection AP among the state-of-the-art methods. Only

for large objects, DensityMap performs better than our approach. This is probably because our

method gets biased to detect small objects, thanks to the additional crops on training. In fact,

for small object detection, we obtained the best AP𝑠, significantly outperforming all existing

approaches. AP𝑚 also shows a good improvement of more than 2 percentage points.
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Table 4.1 Performance of our proposed method compared against state-of-art

approaches with Faster RCNN detector on the VisDrone validation set (results in %).

"MF" stands for model fusion

Method AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙

ClusterNet (Yang et al., 2019) 26.72 50.63 24.70 17.61 38.92 51.40

DensityMap (Li et al., 2020) 28.21 47.62 28.90 19.90 39.61 55.81
CDMNet (Duan et al., 2021) 29.20 49.50 29.80 20.80 40.70 41.60

GLSAN (Deng et al., 2020) 30.70 55.40 30.00 - - -

QueryDet (Yang et al., 2022) 28.32 48.14 28.75 - - -

CascadeNet (Zhang et al., 2019) 28.80 47.10 29.30 - - -

CascNet+MF (Zhang et al., 2019) 30.12 58.02 27.53 - - -

CZ Det. (Ours) 33.22 58.30 33.16 26.06 42.58 43.36

4.3.2 Comparison with baselines

Table 4.2 presents a comparison between uniform cropping and density cropping on the VisDrone

dataset, with and without the last feature map of the feature pyramid (P2), which has a strong

impact in memory and computation (Yang et al., 2022). For the uniform cropping, we crop

the original image into 4 equal-sized crops by splitting at half height and width. In order to

have a fair comparison, we use our method with a confidence threshold of 0.7 to obtain an

average of 1-3 crops per image. The observations in the table suggest that uniform cropping

improves performance compared to vanilla training on the whole image, but it is still inferior

to our density-based cropping. When high-resolution feature maps P2 are not used, density

cropping gains more than 3.5 percentage points in AP, and the AP of small objects is improved

by 3.4 percentage points. It is worth noting that compared to uniform cropping, our approach

introduces additional parameters to recognize one extra class and no changes in learning and

inference dynamics. So this can be easily used as a plug-and-play replacement for the uniform

crop-based training, popular among the community. In terms of frame rate, our approach is

slightly slower than uniform crops. However, we observe that our method without the expensive

P2 features performs better than uniform crops with P2, while also being faster. In Figure 4.4, a

visual comparison of the highly confident detections between the baseline model and our density

crop-based model is shown. When the density crops are used, we can observe an increase in the
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number of detections. It can be observed that more objects are getting discovered in the crop

regions when the detection results from the second inference are augmented. This explains the

impact of our zoom-in detector for small object detection in high-resolution images.

Table 4.2 Comparison of detection performance between a baseline

detector, uniform crops, and density crops on the VisDrone dataset (1.5K

pixels). The results are in %. The small, medium, and large objects are

grouped according to the coco evaluation protocol

Settings AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙 FPS
Without P2
Baseline 29.48 51.68 29.55 22.33 38.66 39.30 26.31

Uniform crops 30.68 54.44 30.54 22.91 40.62 41.03 12.30

CZ Det. (ours) 33.02 57.87 33.09 25.74 42.93 41.44 11.64

With P2
Baseline 30.81 55.06 30.68 23.97 39.19 41.17 18.25

Uniform crops 31.73 56.31 31.57 25.13 40.41 41.06 9.85

CZ Det. (ours) 33.22 58.30 33.16 26.06 42.58 43.36 8.44

To further verify the observations, we repeated the same type of study in the satellite images of

the DOTA dataset. In this dataset images are at higher pixel size (4k pixels), thus due to memory

constraints, the baselines are already performing uniform cropping. Table 4.3 shows the results

of a uniform cropping baseline and our CZ detector for two different configurations. Similar to

VisDrone, significant improvement is seen in the case of not using high-resolution features P2,

with a gain of 2.9 percentage points. APs of small and medium objects are improved by 3.0 and

4.0 percentage points respectively from the baseline without using high-resolution features. In

terms of computation, we can see that, as expected, our approach has a slightly slower frame

rate than the baseline. However, this is compensated by the higher detection accuracy. We see

for instance that the best baseline with P2 features has an AP of 33.44% with an FPS of 0.49,

while our CZ detector without P2 features has a higher AP (34.14%) while being also faster

(0.62 FPS).
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Figure 4.4 Visualization of density crop-based detection. (a) the original image and its

GT. (b) detection with the baseline detector. (c) detection with density crops; the density

crops are shown in red color. Our method detects more objects, especially inside the crop

regions

Table 4.3 Performance comparison of our method against baselines on

DOTA dataset (4k pixels). The results are in %

Settings AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙 FPS
Without P2
Baseline 31.29 51.57 33.10 12.69 34.04 42.83 0.93

CZ Det. (Ours) 34.14 56.69 35.69 15.66 38.16 44.20 0.62

With P2
Baseline 33.44 54.03 35.56 16.86 36.76 43.65 0.49

CZ Det. (Ours) 34.62 56.86 36.17 18.17 37.84 43.83 0.30

4.3.3 Ablation studies

The effectiveness of the proposed CZ detector is characterized by ablation experiments on the

VisDrone dataset. We perform ablation studies to understand the impact of density crops at
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training and test time, the impact of the quality of the crops, and the impact of the iterative

merging in the crop labeling algorithm.

4.3.3.1 Density crops effect at training and inference

We used density crops at the training and test time to achieve the best performance. In particular,

while training, the rescaled density crops are augmented with the training images; while testing

we do the two-stage inference where stage one performs inference on the whole image and stage

two performs inference on the density crops. In this section, we study the importance of this

configuration. Table 4.4 shows the results. When the density crops are not augmented with

the training set but only used in the two-stage inference, the improvement is marginal over the

baseline (most importantly, AP𝑠 has no change). This is because the scale imbalance in the

input image is not mitigated as the detector does not see the small objects at a bigger scale.

When density crops are added to the training set, the detection accuracy improves significantly.

However, the inference is still happening on the whole image so the detection accuracy of

small objects is affected. When inference is performed on the density crops and fused with the

detection on the whole image, we get the best results.

Table 4.4 Detection results with and without density crops at

train time and test time (results in %)

Train Test AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙

29.48 51.68 29.55 22.33 38.66 39.30

� 29.93 53.29 29.52 22.33 39.35 39.46

� 32.64 57.36 32.78 24.81 43.04 41.07

� � 33.02 57.87 33.09 25.74 42.93 41.44

4.3.3.2 Impact of the quality of crops

Figure 4.5 illustrates how the confidence of crops impacts the detection accuracy and the

number of density crops extracted. The impact is studied for two settings, with and without the

high-resolution features P2. This is to verify how the density crops aid small object detection
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with and without utilizing expensive high-resolution feature maps. The crop confidence, which

is used as the proxy for crop quality, is varied from 0.1 to 0.9. In general, with lower confidence

values, we are observing more crops but many of them are noisy and redundant even after

Non-Maximal Suppression. So when the quality of the crops is low, the detection accuracy

decreases (Figure 4.5 left). When the quality is increased, the accuracy increases until 0.7, and

then it gradually comes down as we use very few crops in that case. The trend is the same with

and without P2.

From Tables 4.2 and 4.3, we observed that density crops obtained better gain in detection

accuracy over the baseline without high-resolution features. Though this is expected, we decided

to understand how exactly this is happening. We analyzed the number of density crops retained

after filtering out the low-quality crops at multiple confidence levels ranging from 0.1 to 0.9.

Figure 4.5 right shows the results with and without high-resolution features P2. It can be

observed that for "without P2", we are getting more density crops at all confidence levels. With

higher crop confidence levels, we get more high-quality crops for the "without P2" case, hence

we observe a better gain in detection accuracy over the baseline. We used a confidence of 0.7 in

all our experiments to have the best trade-off between detection precision and speed. While

other methods use post-processing on the crop detections (Yang et al., 2019) or density maps

(Li et al., 2020) to filter the noisy crops during inference, we can filter them out based on their

confidence score simplifying the inference procedure.

4.3.3.3 Why iterative merging for crop discovery?

Simply scaling and doing a one-step merging operation to create density crops results in

sub-optimal crops. We empirically verify this with multiple scaling strategies and argue that

the iterative merging strategy is superior to them. Yang et al. (2019) also used iterative crop

merging on the output of their crop detection module to reduce the redundant crops. This has to

be performed at training and test time to refine the initial crop detections. To label the crops for

training, they used a single-step aggregation. Our iterative merging for labeling crops can be
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Figure 4.5 Change in detection precision and the number of crops according to crop

confidence. The crop confidence is varied from 0.1 to 0.9. The crop confidence for

best detection accuracy is 0.7

performed as a pre-processing step before training. We avoided redundant crops at inference, by

filtering them out based on the confidence score.

Table 4.5 top provides the comparative results of single-step merging with our iterative merging

strategy where GT boxes are scaled by a scaling factor. Using a low scaling factor creates

too many crops, containing fewer objects. More specifically, it produces multiple small crops

containing fewer objects in crowded regions in the image. When the scaling factor is increased,

the number of crops decreases and performance increases up to a point but declines later as the

crops become too big and the object density of the image is less respected. This is because

large scaling factors significantly blow up the big GT boxes and it alters the density of the crops.

The detection performance obtained is also far below our iterative merging. Table 4.5 bottom

shows the same comparison when GT boxes are scaled by constant pixel values. As this avoids

the blowing of large bounding boxes due to the constant scaling, the detection performance is

better than the former one. Iterative merging produces the optimal number of crops with the best

performance. The scaling used in the iterative merging is small and only performed at the first

stage of merging. We used 20 pixels as the scaling magnitude. Large values are not possible
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here since the filter_size operation while restricting the crop size will reduce the number

of crops. Thus it is easy to set.

Table 4.5 Comparison of iterative merging strategy with single-step

merging where GT boxes are scaled according to scaling factors, and scaled

uniformly by pixel values (results in %)

Scaling # crops AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙

Baseline 0 29.48 51.68 29.55 22.33 38.66 39.30

factor = 2.0 74417 24.39 44.38 23.73 15.96 34.96 47.24

3.0 67906 30.64 53.71 30.68 23.23 40.64 39.35

6.0 43300 31.30 55.33 31.42 23.79 41.06 38.40

8.0 34663 30.95 55.18 30.31 23.38 40.93 39.24

pixels = 30 62677 31.26 54.55 31.50 23.83 40.78 50.07

60 46753 31.98 55.84 32.07 25.12 41.11 45.52

90 35442 31.47 55.62 30.96 24.03 41.27 44.08

120 25146 31.07 54.74 30.95 23.18 41.43 42.39

Ours 14018 33.02 57.87 33.09 25.74 42.93 41.44

4.3.4 Results with other detectors

To validate the effectiveness of our approach with other detection architectures, we conducted

experiments on the modern anchor-free one-stage detector FCOS (Tian et al., 2019). Table 4.6

shows the performance comparison of the vanilla FCOS detector with our density crop-based

FCOS detector. Similar to the results in Table 4.2, AP is improved by a significant margin, and

AP𝑠 has gained almost 5 percentage points. We can also see that density crop-based FCOS

has superior performance than their Faster RCNN counterpart in terms of most of the metrics.

This is interesting because other density-based approaches weren’t producing better results with

one-stage detectors than the two-stage ones.

4.4 Density Crop-guided Semi-supervised Detector

In this section, we will elaborate on the semi-supervised detection method proposed which is

guided by density crops from clusters of objects. The annotation challenge is further exacerbated
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Table 4.6 Results with anchor free detector FCOS on the Visdrone dataset

(results in %). All results are without using P2

Settings AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙 FPS
Base FCOS 29.51 50.40 29.92 21.25 40.51 37.29 26.01

CZ FCOS Det. 33.67 56.20 34.15 26.16 43.98 46.87 12.69

in aerial images where the annotators have to label small objects often distributed as crowded

in those clusters on high-resolution images. Getting sufficient labeled data is difficult in aerial

images, especially at instance-level recognition tasks like object detection (Xu et al., 2021; Liu

et al., 2021a; Meethal et al., 2022), limiting the scalability of the popular supervised detectors

to aerial images. Practical applications with aerial imagery produce large amounts of unlabeled

data (Caillouet, Giroire & Razafindralambo, 2019; Sun, Shao, Cheng, Huang & Wang, 2022;

Song et al., 2021) but they are simply not utilized in the learning process. This builds a perfect

scope for semi-supervised detectors in aerial images where we can train a detector with limited

annotated images and a large collection of unlabeled data.

Though Semi-supervised Object Detection(SSOD) has achieved tremendous progress in recent

years on natural images (Guo et al., 2022; Li et al., 2022a; Liu et al., 2021a; Xu et al., 2021;

Tang et al., 2021; Jeong et al., 2019; Sohn et al., 2020; Meethal et al., 2022), we are yet

to see large-scale adoption of them on aerial images. Needless to say, the mean-teacher

based semi-supervised learning framework is the core component behind the success of these

semi-supervised detectors. Even though the mean-teacher based semi-supervised detectors are

excellent in natural images, their direct translation on aerial images is not optimal as we will

see from the empirical studies. With our density crop-guided semi-supervised detection, we

improved the vanilla mean-teacher significantly. We believe that the reason why the vanilla

mean-teacher method struggles is because it is not produce enough pseudo-labels for small

objects. The number of target objects is fairly high in aerial images compared to natural images.

For example, the average number of objects in Pascal VOC and MS-COCO images are 3 and 7,

respectively, whereas images in the VisDrone (Zhu et al., 2018) and DOTA (Xia et al., 2018)
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datasets – two popular benchmarks in the aerial detection research – have an average number of

53 and 67 objects, respectively. The pseudo label-based mean-teacher detectors, in this case, are

not labeling enough small objects in the unlabeled images. This is probably due to the fact that a

baseline detector will not detect enough small objects on high-resolution aerial images. Figure

4.6 summarizes our observation. When the detector is trained with density crops, it creates more

pseudo-GT boxes compared to the vanilla mean-teacher training.

Figure 4.6 Average number of pseudo-GT boxes over iteration in

a minibatch. The density crop-guided mean-teacher is producing

more pseudo labels compared to the vanilla mean-teacher method.

This will result in more pseudo-labels for small objects

While density crops can be used in supervised settings with external learnable modules and

additional loss functions (Duan et al., 2021; Yang et al., 2019; Li et al., 2020), using them in

the semi-supervised settings with mean-teacher method (Tarvainen & Valpola, 2018) requires

the crops to be detected with the detector itself. This is where the CZ Detector design shines

compared to other density-based approaches. The external module in other approaches may

need additional loss functions and often times they are trained before the detector with sufficient

labeled data. Also, it is not immediately clear how to construct pseudo labels for the density

module if one wants to train them in the mean-teacher settings using unlabeled images.
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With the CZ detector, density crops can be identified on the labeled and unlabeled images. For

the labeled images, they are identified as apriori with the available ground-truth (GT) labels. For

the unlabeled images, pseudo-GT predictions are utilized to locate the cluster of small objects

and then labeled as density crops. Crops identified on both labeled and unlabeled images are

used to augment the training set. The augmented crops result in more samples of small objects

seen at higher pixel resolution improving their detection chance. The detector is then trained in

the mean-teacher fashion with weak-strong augmentation consistency and pseudo labels for the

unlabeled images. At inference, detection is performed separately on both the input image and

upscaled density crops if any are present in that image. They are then fused and post-processed

to get the final results. Figure 4.7 shows how the density crops are improving the detection

AP on the VisDrone dataset. It can be observed that by utilizing the density crops effectively

in the semi-supervised settings, our detection accuracy increases significantly over the vanilla

semi-supervised detector, as seen in the fully supervised settings.

Figure 4.7 Change in mAP over the epochs with and without

density crops on supervised and semi-supervised settings. FS:

Fully Supervised, FS+C: Fully supervised + density crops, SS:

Semi-supervised ( mean-teacher baseline), SS+C: Semi-supervised

+ density crops (on labeled and unlabeled images)

Our main contributions can be summarized as follows:
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(1)A density-crop guided semi-supervised detector is proposed for aerial images. It adapts the

vanilla mean-teacher semi-supervised detector with mechanisms to identify and process the

cluster of small objects, improving their suitability for training semi-supervised detectors on

high-resolution aerial images.

(2)We empirically validate the benefits of our semi-supervised detection method on aerial images

from drones (VisDrone) and satellites (DOTA), and observed a consistent improvement in the

detection accuracy on both datasets over the supervised training on the labeled data.

4.4.1 Semi-supervised training

Semi-supervised learning takes place by distilling the weights of a detector (called a student

network) during training to another identical copy of the network (called the teacher network)

by exponential moving average (EMA). The teacher network is generally more stable due to

the slower pace at which it temporally ensembles the noisy student weights, so it is used to

give pseudo-GT for the unlabeled images (Liu et al., 2021a). The student network learns its

weights by optimizing a combination of supervised and unsupervised loss. For the labeled

data, we have the GT annotations to compute the supervised loss L𝑠𝑢𝑝. Let the available

labeled data is 𝐷𝑠 = {𝑥𝑖, 𝑦𝑖}
𝑁𝑠

𝑖=1, where each 𝑦𝑖 is a bounding box coordinate and its class label

(𝑦𝑖 = (𝑏𝑖, 𝑐𝑖)). Here 𝑁𝑠 is the number of labeled samples. For the unlabeled data 𝐷𝑢 = {𝑥𝑖}
𝑁𝑢

𝑖=1,

we get pseudo-GT �̂�𝑖 from the teacher network which is used to calculate the unsupervised

loss L𝑢𝑛𝑠𝑢𝑝. Here 𝑁𝑢 is the number of unlabeled samples. Finally, the network is trained by

optimizing the following loss

L = L𝑠𝑢𝑝 + 𝜆L𝑢𝑛𝑠𝑢𝑝 (4.2)

where 𝜆 is a hyperparameter to control the relative importance of the supervised and unsupervised

loss. Figure 4.8 shows the overall architecture of our semi-supervised learning system. At each

iteration, we sample a minibatch of labeled and unlabeled samples following a preset ratio 𝑑𝑟 .

Each data point in the minibatch undergoes two types of transformation, referred to as weak

and strong augmentation. The weak augmentation is simply the rescaling and horizontal flip
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Figure 4.8 The pipeline of our proposed density crop guided semi-supervised detection.

The training data contains both labeled and unlabeled images. There are two networks

that are identical copies of the backbone detector. The student network is learned via

backpropagating the loss gradients, whereas the teacher network is an exponential

moving average (EMA) of the student weights. The labeled images are passed through

the student network and supervised loss L𝑠𝑢𝑝 is calculated. Unlabeled images are passed

to the teacher network, whose predictions are then filtered (we used confidence

thresholding here) to get good-quality pseudo-labels. If there are dense clusters of small

objects in the unlabeled image, such clusters are cropped and passed after up-scaling to

the teacher network. Then pseudo-labels are computed on newly added density crops as

well in a similar fashion. A strongly augmented version of the unlabeled images and their

density crops are then passed to the student network. The loss L𝑢𝑛𝑠𝑢𝑝 is calculated based

on the pseudo-labels obtained before. The combined loss is then backpropagated to

update the student weights. Teacher weights are then updated by EMA of the student

weights

transformation. The strong augmentation includes color jittering, grayscale, Gaussian blur,

and cutout patches which perform only pixel-level transforms, thus the bounding box labels

need not be transformed. We followed the scale ranges provided in Liu et al. (2021a) for the

strong augmentation. The augmented images then go through the mean-teacher semi-supervised

learning process. We followed Liu et al. (2021a) for the mean-teacher training implementation.
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We compute density crops on the unlabeled images using pseudo-labels from the teacher. This

is then used to augment more crops, this time from the unlabeled images. In the following, we

will describe the semi-supervised learning process in detail.

4.4.1.1 Burn-in stage

To get reliable pseudo-GT for the unlabeled images, the teacher network should have a good

initialization. Typically, existing methods perform a supervised pre-training with the available

supervised data to get this good initialization (Sohn et al., 2020; Tang et al., 2021; Liu et al.,

2021a). This supervised pre-training is called the Burn-in stage. During burn-in, we optimize

L𝑠𝑢𝑝 only which is a sum of classification and localization losses of the detector:

L𝑠𝑢𝑝 =
𝑁𝑠∑
𝑖=1

L𝑐𝑙𝑠 ( 𝑓𝑊 (𝑥𝑖), 𝑦𝑖) + L𝑟𝑒𝑔 ( 𝑓𝑊 (𝑥𝑖), 𝑦𝑖) (4.3)

that are defined as in Ren et al. (2015). After burn-in, the weights of the network𝑊 are copied

to the teacher (𝑊 → 𝑊𝑡) and student network (𝑊 → 𝑊𝑠). From this point, unsupervised data is

also used in the learning process with teacher-student mutual learning.

4.4.1.2 Teacher-student learning stage

The teacher-student learning process optimizes the loss in equation 4.2 to learn the student network

(with backpropagation), whereas the teacher network is learned by temporally accumulating the

student weights (with EMA). It combines consistency regularization and pseudo label-based

learning - the most popular approaches for semi-supervised learning - in one framework. The

consistency regularization is ensured with the weak-strong augmentation prediction consistency.

Pseudo-label-based learning is performed by producing pseudo-labels on the unlabeled images.

The weakly augmented version of unlabeled data first goes through the teacher network producing

the instance predictions. Let 𝑦
𝑝𝑟𝑒𝑑
𝑗 = (𝑏

𝑝𝑟𝑒𝑑
𝑗 , 𝑐

𝑝𝑟𝑒𝑑
𝑗 , 𝑝

𝑝𝑟𝑒𝑑
𝑗 ) be instance predictions containing
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predicted box 𝑏
𝑝𝑟𝑒𝑑
𝑗 , class 𝑐

𝑝𝑟𝑒𝑑
𝑗 and probability 𝑝

𝑝𝑟𝑒𝑑
𝑗 where 𝑦𝑝𝑟𝑒𝑑 is obtained as

𝑦𝑝𝑟𝑒𝑑 = 𝑓𝑊𝑡 (𝑥) (4.4)

This prediction then undergoes confidence thresholding to produce pseudo labels �̂�. The

confidence thresholding considers all predictions with a class probability above a threshold 𝜏 as

foreground instances:

�̂� = {𝑦𝑝𝑟𝑒𝑑𝑗 |𝑝
𝑝𝑟𝑒𝑑
𝑗 > 𝜏,∀ 𝑗 ∈ 𝑦𝑝𝑟𝑒𝑑} (4.5)

This is the filtering process shown in figure 4.8. We then obtain the pseudo labels for the

unlabeled images and compute the L𝑢𝑛𝑠𝑢𝑝. For that, the strongly augmented version of the

unlabeled data is passed through the student network to get the predictions. The unsupervised

loss is then applied to the classification head as follows:

L𝑢𝑛𝑠𝑢𝑝 =
𝑁𝑢∑
𝑖=1

L𝑐𝑙𝑠 ( 𝑓𝑊𝑠 (𝑥𝑖), �̂�𝑖) (4.6)

L𝑢𝑛𝑠𝑢𝑝 is not applied to the localization head of the detector because the pseudo labeling with

confidence thresholding is suitable only for estimating confident class predictions; it has no

information about the bounding box correctness. After computing L𝑢𝑛𝑠𝑢𝑝, we update the student

network weights𝑊𝑠 by optimizing equation 4.2. The teacher weights𝑊𝑡 are then updated by

EMA as follows:

𝑊𝑡 = 𝛼𝑊𝑡 + (1 − 𝛼)𝑊𝑠 (4.7)

where 𝛼 is a hyperparameter that controls the pace at which the student weights are updated to

the teacher weights.

4.4.1.3 Semi-supervised training algorithm

Algorithm 4.2 summarizes our density crop-guided semi-supervised training process. Given

the labeled and unlabeled data 𝐷𝑠 and 𝐷𝑢 respectively, we first compute and label crops in 𝐷𝑠

using the available ground-truth labels. The training process then begins. We load a batch of
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Algorithm 4.2 Density-crop Semi-supervised Training

Input: labeled and unlabeled images: 𝐷𝑠, 𝐷𝑢

Output: teacher and student weights: 𝑊𝑡,𝑊𝑠

Parameters :𝑛: start of labelling 𝐷𝑢 iteration,

𝑁: maximum iterations, 𝜇: learning rate
1 1. M = crops(𝐷𝑠) # Compute crops on 𝐷𝑠

2 2. 𝐷𝑠 ← 𝐷𝑠 + 𝑀 # Add M to 𝐷𝑠

3 3. for 𝑖 ← 1 to 𝑁 do
4 a) 𝑥𝑠, 𝑦 ← batch(𝐷𝑠)

5 b) 𝑥𝑢 ← batch(𝐷𝑢)

6 b) Compute L𝑠𝑢𝑝 (𝑥𝑠, 𝑦) using eqn. 4.3
7 c) Obtain �̂�𝑢 using eqn. 4.5
8 d) Compute L𝑢𝑛𝑠𝑢𝑝 (𝑥𝑢, �̂�𝑢) using eqn. 4.6
9 e) Compute L using eqn. 4.2

10 f)𝑊𝑠 ← 𝑊𝑠 − 𝜇 𝜕L
𝜕𝑊𝑠

11 g) update𝑊𝑡 using eqn. 4.7

12 i) if i == n then
13 for 𝑗 ← 1 to |𝐷𝑢 | do
14 I) compute �̂� 𝑗 using eqn 4.5

15 II) m = crops(𝑥
𝑗
𝑢, �̂�

𝑗 ) # Gets crops on 𝑥
𝑗
𝑢

16 III) 𝐷𝑢 ← 𝐷𝑢 + 𝑚 # Add m to 𝐷𝑢

17 end for
18 end if
19 end for

images from both the labeled and unlabeled pool. The batch loaded from labeled pool 𝑥𝑠 is

directly used to calculate L𝑠𝑢𝑝. For the batch from unlabeled pool 𝑥𝑢, strongly augmented and

weakly augmented versions are produced. The teacher processes weakly augmented images

computing pseudo labels �̂�𝑢 for the images in 𝑥𝑢. This is then used to compute L𝑢𝑛𝑠𝑢𝑝 where

the loss is computed against the student predictions obtained using strongly augmented images.

The combined loss L is backpropagated, and then teacher weights are updated using the EMA

update rule in equation 4.7. When this training process is converged (after a sufficient number

of iterations 𝑛), crops are computed on the unlabeled images and used to further augment 𝐷𝑢.
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4.4.2 Density Crops on unlabeled images

As density crops help to process crowded image regions in higher pixel resolution and improve

small object detection performance, it is useful to find them on unlabeled images as well.

Moreover, there are more unlabeled images than labeled images in the standard semi-supervised

settings. Thus we will be able to recover more density crops if we identify them from the

unlabeled images. While for the labeled data 𝐷𝑠 we have the GT labels 𝑦 to run crop-labeling

algorithm 13, we don’t have annotations for the unlabeled data 𝐷𝑢 to produce density crops. As

we have plenty of unlabeled images, we could get more augmented crops from dense regions

of unlabeled images, also increasing samples for the crop category. Thus we expect further

improvement in performance if density crop-based learning can be utilized on unlabeled images

as well. To do so, we rely on the predictions of the teacher network. Particularly, we utilize the

pseudo labels provided by the teacher network to label crops on the unlabeled images, again

using algorithm 13.

After the semi-supervised training with labeled and unlabeled data (where crops are only

augmented on labeled images) is converged, we use the final teacher model to get the predictions

on the unlabeled images. These predictions are then processed to get accurate pseudo GTs

following confidence thresholding as in equation 4.5. Crop labeling on the unlabeled images is

then performed following algorithm 13 this time with pseudo-GT boxes. The semi-supervised

training is then continued as before but with more unlabeled data points obtained from the

cluster of small objects in the unlabeled images. As the clusters mostly remain intact on the

unlabeled images at this point, it is not necessary to recompute them at every iteration. We

recomputed them at every 10,000 iterations to make the training faster.

4.5 Experiments with Semi-supervised CZ Detector

The empirical study is again performed on the VisDrone (Zhu et al., 2018) and DOTA (Xia

et al., 2018) datasets. A Faster RCNN (Ren et al., 2015) model with FPN (Lin et al., 2017b)

backbone is used as the detector.
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4.5.1 Comparison with different percentages of labeled data

We analyzed the effectiveness of our semi-supervised learning method by using partially labeled

data from the train set of VisDrone and DOTA datasets. In particular, we used 1%, 5%, and 10%

randomly chosen data points from the train set as labeled data and the remaining as unlabeled

for the semi-supervised training. There are five settings in the comparison; supervised baseline,

supervised baseline with density crops (Supervised + Dcrop), semi-supervised with the mean

teacher (SSOD), SSOD with density crops on labeled images (SSOD + Dcrop (L)), and SSOD

with density crops on labeled and unlabeled images (SSOD + Dcrop (L + U)). These settings

progressively assess the impact of the components of our density crop-guided semi-supervised

object detection.

Table 4.7 presents the results for the VisDrone (Zhu et al., 2018) dataset. It compares the

detection average precision values obtained using the COCO evaluation protocol (Lin et al.,

2014) for Intersection over Union (IoU) thresholds [0.5:0.05:0.95] (AP), and 0.5 (AP50). It

can be observed that AP is improved by more than 6% in all cases with our density-guided

SSOD over their supervised baseline. Compared to the vanilla mean-teacher method (SSOD),

our density crop-guided SSOD shows an average improvement of more than 2% on all metrics.

Compared to 1% and 5% cases, with very limited labeled samples per class, 10% shows a better

boost in performance while leveraging density crops with SSOD. Another interesting result

is that the improved performance with semi-supervised learning for 1% settings is more than

that of supervised training with 5% labels and 2% below with the 10% labels. This is achieved

with less than 100 labeled samples. AP50 has a gain of more than 5% compared to the vanilla

mean-teacher when semi-supervised learning is performed with density crops in the 10% setting.

We also studied how the AP of small, medium, and large objects behave in the same five settings

described above. Figure 4.9 shows the results. The trend here is similar to that of table 4.7.

Using density crops increases the detection accuracy both in supervised and semi-supervised

settings. Compared to the supervised settings, the AP of all-sized objects increases by more

than 5% when semi-supervised learning is performed with density crops. The improvement
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Table 4.7 Performance comparison of our density crop guided semi-supervised object

detection with 1%, 5%, and 10% labeled images on the VisDrone dataset. The detection

speed is also reported in FPS. SSOD - semi-supervised detection with mean-teacher,

Dcrop(L) - density crops on the labeled images, Dcrop (L + U) - density crops on the

labeled and unlabeled images

Settings 1% (#Labeled =64) 5% (#Labeled =323) 10% (#Labeled =647)

AP AP50 AP AP50 AP AP50

Supervised 10.7±0.2 23.5±0.2 16.1±0.1 32.6±0.2 19.3±0.1 37.7±0.2
Supervised + Crop 13.0±0.2 27.0±0.2 20.9±0.3 40.2±0.3 23.3±0.2 43.9±0.3
SSOD 15.3±0.3 29.2±0.5 21.9±0.2 40.6±0.3 24.4±0.2 43.1±0.2
SSOD + Crop (L) 16.6±0.2 31.1±0.2 22.5±0.1 41.3±0.2 26.5±0.2 47.5±0.1
SSOD + Crop (L + U) 17.2±0.2 31.2±0.2 23.6±0.2 42.3±0.2 27.5±0.2 49.0±0.1

over the vanilla mean-teacher is more than 3% in most settings. The APs of small, medium, and

large objects with fully supervised training using 100% labeled data are 25.74, 42.93, and 41.44

respectively. It can be observed that our model with 10% labeled data performs competitively

with this fully supervised upper bound.

Figure 4.9 Detection AP of small, medium, and large objects

with different percentages of supervised data on the VisDrone

dataset. FS: fully supervised, FS+C: fully supervised with crops,

SS: vanilla mean-teacher, SS+C: mean-teacher with density crops

on labeled images, SS+C+U: mean-teacher with density crops on

all images



124

We further verified this observation by conducting the same type of study in the satellite images

of the DOTA dataset. Table 4.8 shows the results. The magnitude of improvements is comparable

to that of the VisDrone dataset. AP shows an average improvement above 2% compared to

the mean-teacher method. AP50 has a gain of more than 3% in this dataset compared to the

mean-teacher. Also, the APs of small, medium, and large objects are studied in the same way

as above. Figure 4.10 shows the results. APs of small, medium, and large objects with 100%

supervised data on the DOTA dataset are 15.66, 38.16, and 44.2 respectively. While for small

objects, our method with 10% labeled data is 3% below the supervised upper bound, the gap

is around 10% for medium and large objects. This implies the boost from the density-guided

training is more concentrated on the small objects. All of these experiments confirm the impact

of each component in our model as well. The performance gain with our density-guided

semi-supervised detector over the supervised baseline is significant and consistent.

Figure 4.10 Detection AP of small, medium, and large objects

with different percentages of supervised data on the DOTA dataset.

FS: fully supervised, FS+C: fully supervised with crops, SS:

vanilla mean-teacher, SS+C: mean-teacher with density crops on

labeled images, SS+C+U: mean-teacher with density crops on all

images

We also produced a qualitative comparison of the detection results from our semi-supervised

model with that of its supervised baseline. Figure 4.11 shows the comparison on the DOTA (top
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Table 4.8 Performance comparison of our density crop guided semi-supervised

object detection with 1%, 5%, and 10% labeled images on the DOTA dataset. SSOD -

semi-supervised detection with mean-teacher, Dcrop(L) - density crops on the labeled

images, Dcrop (L + U) - density crops on the labeled and unlabeled images

Settings 1% (#Labeled=14) 5% (#Labeled=71) 10% (#Labeled =141)

AP AP50 AP AP50 AP AP50

Supervised 5.6±0.3 12.4±0.5 14.6±0.1 25.5±0.2 19.2±0.2 34.4±0.4
Supervised + Crop 6.8±0.2 14.2±0.4 16.0±0.2 29.0±0.4 20.4±0.2 36.5±0.5
SSOD 8.9±0.2 16.2±0.4 16.8±0.1 29.6±0.2 23.2±0.1 39.5±0.3
SSOD + Crop (L) 9.7±0.2 18.4±0.3 18.4±0.2 31.6±0.3 24.3±0.1 42.3±0.1
SSOD + Crop (L + U) 10.3±0.2 19.7±0.2 20.0±0.1 34.8±0.2 25.2±0.1 43.1±0.2

two rows) and VisDrone (bottom two rows) datasets. The supervised baseline is shown at the

top and the semi-supervised results at the bottom among each pair of rows. We can see that

many tiny objects are getting detected with our density-guided semi-supervised detector. In

the case of VisDrone datasets, the baseline detector is missing most of the small objects at the

farther end of the camera, whereas our method with zoom-in capability is discovering them.

In the DOTA dataset, the missing happens at a much higher rate as the images are very high

in pixel resolution. Objects like small cars are mostly missed by the baseline detector on the

DOTA dataset. But our method shows impressive results in detecting them.

4.5.2 Comparison with other semi-supervised detectors

As other density-based approaches for small object detection use an external module (and

multi-stage training) for crop extraction, we cannot adapt them to the semi-supervised settings

with mean-teacher. So, we choose the recently proposed scale-aware detection QueryDet (Yang

et al., 2022) as it also accelerates small object detection with a detector itself. In particular,

they proposed sparse querying on the high-resolution feature maps to improve small object

detection. This is implemented on the feature pyramids within a detector, so we can wrap the

mean-teacher training on top of this method. We used the VisDrone dataset with 10% labels in

this study. The result is shown in table 4.9. Our method has an AP of more than 7% compared

to the QueryDet semi-supervised detector. The AP𝑠 is improved by 7% whereas AP𝑚, AP𝑙 has
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Figure 4.11 Qualitative comparison of detection results between supervised baseline and

semi-supervised detector trained with density crops. More objects are detected with our

semi-supervised zoom-in detector, especially the small ones

an improvement of more than 10%. While the semi-supervised QDet has an improvement of 3%

over its supervised baseline, our method has an improvement of 8% over the supervised baseline.

Note that the supervised baselines are different here because QueryDet proposed a method

specific to the RetinaNet (Lin et al., 2017a) detector. This study establishes the superiority of

density-based detection over scale-aware training as well.
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Table 4.9 Performance comparison with QueryDet method for

small object detection in the semi-supervised settings using 10%

labeled images on the VisDrone dataset

Settings AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙

Sup. QDet 16.58 31.13 15.45 10.89 23.93 23.46

Sup. Ours 19.26 37.73 17.48 12.94 26.85 26.65

QDet SSOD 19.56 35.78 18.67 13.90 26.17 30.53

Ours 27.46 48.95 26.92 19.88 37.73 36.31

4.5.3 Inference

The inference with density crops can be performed in two ways; taking the crop prediction

directly from the model or running the cluster labeling algorithm with output detections. While

the crop predictions are fast for inference, we observed that running the cluster labeling algorithm

on the detection output is slightly more accurate. So one can choose the inference procedure

among the two based on the speed vs accuracy trade-off of the downstream application. In

the results reported so far, we used crop predictions directly from the model. To compare the

performance of both we performed inference in two ways and reported the performance in

table 4.10. In this study, the VisDrone data set with 10% labels is used. We can observe that

while the improvement is small in AP, AP50 has a gain of more than 1%. We can also see that

crop-labeled inference is improving the AP of small objects significantly, but at the same time,

the AP of medium and large objects is declining. As the data set is dominated by small objects,

we still observe an overall improvement in performance. We also reported the detection speed in

Frames Per Second (FPS). The FPS is only reduced by 5 frames when the expensive crop-labeled

inference is used.

Table 4.10 Results comparison of inference with predicted crops vs labeled

crops based on prediction. The Visdrone dataset with 10% labels is used in

the study

Settings AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙 FPS
Inference with
Predicted crops 27.46 48.95 26.92 19.88 37.73 36.31 12.45
Inference with
labeled crops 27.78 50.02 27.12 20.99 36.32 35.84 7.17
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4.5.4 Comparison with the supervised upper-bound

In table 4.11, we compare the results of our semi-supervised model with the fully supervised

upper bound where 100% images are labeled. The setting used here is 10% labeled images. The

lower bound of the performance when only the available 10% labeled data is also provided. It

can be observed that our method with 10% labeled data is approximately 6% points close to the

upper bound, both in the AP and AP𝑠. AP𝑚 and AP𝑙 are also showing a similar trend. Therefore,

it can be concluded that, by effectively leveraging unlabeled data, our method is able to achieve a

performance close to the fully supervised upper bound, while using minimal labeled data points.

Table 4.11 Performance comparison with the fully supervised

upper-bound on the VisDrone dataset with 10% labeled images

Settings AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙

Lower bound
10% Labeled 19.26 37.73 17.48 12.94 26.85 26.65

Semi-supervised
Ours 27.46 48.95 26.92 19.88 37.73 36.31

Upper bound
100% Labeled 33.22 58.30 33.16 26.06 42.58 43.36

4.5.5 Computational cost

Using unlabeled data for mean-teacher training comes with additional training costs. Exponen-

tially averaged teacher weights must be learned with a small 𝛼 value to have stable distillation.

We used a 0.9996 following the standard practices (Liu et al., 2021a; Tang et al., 2021). This

results in many iterations for the mean-teacher training. In table 4.12, we compared the training

iterations and time for different settings. Inference time per image is also provided. Finding

crops on unlabeled images is performed only after the pseudo labels on unlabeled images are

converged. The augmentation then adds an additional set of crops to the training process. That is

why the SS+C (L+U) setting is taking longer iterations. For inference, the difference when using

crops is due to the second detection performed on the crops. Even though there is an effective

increase in training and inference time, the improvement in detection performance is significant.
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Table 4.12 Comparison of the training and test time for fully supervised and

semi-supervised methods with and without density crops. All settings are

evaluated using one A100 GPU with the Visdrone dataset having 10% labels

Settings FS FS+C SS SS+C (L) SS+C (L+U)
Train iters 5k 15k 65k 75k 180k

Train time in HH:MM 1:03 2:28 15:36 15:19 33:35

Test time in s/image 0.0348 0.0661 0.0348 0.0661 0.0661

4.5.6 Analysis of the type of errors

To understand how the addition of semi-supervised learning and density crops affects the

detector’s abilities, we profiled different error types based on the TIDE (Bolya et al., 2020)

evaluation protocol. Figure 4.12 shows the comparison results. With the addition of density

crops on a supervised detector, we observe the localization error reduced. Other types of errors

remain mostly the same. With semi-supervised training using the vanilla mean-teacher method,

the classification error is reduced. Using density crops with semi-supervised learning is reducing

the localization error similar to the fully-supervised case and other errors remain the same mostly.

Compared to fully supervised detectors, semi-supervised detectors reduce classification error,

but they tend to miss objects too. This is probably due to the imbalance in object classes of this

dataset such that dominant classes get more pseudo-labels on unlabeled images. This can result

in rare class objects being missed on the unlabeled images.

4.6 Conclusion

In summary, our proposed CZ Detector is observed effective in improving small object detection

both in fully supervised and semi-supervised settings. It is easy to use like a plug-and-play

module due to the fact that it can be embedded within any detection architecture. This is

bringing the simplicity of uniform cropping or sliding window approach which is widely used

by practitioners for training fully supervised detectors on aerial images. The density cropping

approach that researchers proposed in the past is difficult to use in practice due to additional

learnable components for density extraction, change in loss functions, and multi-stage training.



130

(a) Supervised (b) Supervised + Crop (c) SSOD (d) SSOD + Crop

Figure 4.12 TIDE evaluation of detection results of the detectors trained with (a)

supervised, (b) supervised with density crops, (c) vanilla semi-supervised, and (d)

semi-supervised with density crops modes. Error types are: Cls: localized correctly but
classified incorrectly, Loc: classified correctly but localized incorrectly, Both: both cls and
loc error, Dupe: duplicate detection error, Bkg: detected background as foreground, Miss:

missed ground truth error

The training step of the CZ Detector simply adds an additional class called "density crop" to the

detector whose labels are obtained from a crop labeling algorithm. The inference is performed

in two steps, one on the original image and then on the up-scaled version of the high-quality

crops detected from it. For both modifications, we re-purpose the original detector similar to the

uniform cropping.

Our proposed adaptation of the mean-teacher semi-supervised method to high-resolution aerial

images for the detection of small objects with density crops is also shown to be effective. This is

achieved by identifying the clusters of small objects from labeled and unlabeled images and

processing them in higher resolution. For the labeled images, the original ground truth is used for

cluster identification, whereas the pseudo ground-truth labels from the mean-teacher detector are

used on unlabeled images. The embedding of the cluster identification within the detector made

it possible to wrap the mean-teacher training on top of it. The clusters identified are cropped

and used to augment the training set. The training with augmented crops is producing more

pseudo-labels than the vanilla mean-teacher. This translates to improved detection performance.
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The inference is performed on the original image and crops of clusters obtained on it to boost

the small object detection. Empirical studies on the popular benchmark datasets reveal the

superiority of our method over supervised training and vanilla mean-teacher training. We also

find more boost in performance for density-based approaches than the scale-aware training with

the mean-teacher method for small object detection.





CONCLUSION AND RECOMMENDATIONS

The contributions of this thesis explored techniques for localizing objects under reduced

supervision settings, particularly weakly supervised and semi-supervised. In weakly supervised

settings, for localization (a single object), the explainability-centric architecture was the dominant

one. We observed that localization should be learned for accurate bounding boxes and proposed

a localization-centric architecture. For detection (multiple objects), we proposed a learning

scheme that facilitates the reusing of existing fully supervised detectors. This avoids the need for

customized detection architectures for weakly supervised object detection. Thus, in summary,

our contributions to the weakly supervised settings were innovations in architecture. For the

semi-supervised methods, notable success has been achieved with natural images, but the same

is not easy to translate into other images. We observed the difficulty in using the popular

mean-teacher semi-supervised detectors on high-resolution aerial images with tiny objects.

Applications using aerial images usually collect a significant amount of unlabeled data as they

are usually deployed in surveillance mode. We proposed semi-supervised learning with density

crops on these images to improve the localization. Particularly, the localization of tiny objects

showed significant improvements.

The first takeaway of this thesis is that localization cannot be merely obtained as a byproduct

of the classification activation. While such localization might be sufficient for explainability,

for precise localization, a classification network alone is not sufficient. Instead, a separate

component has to be used to learn for localization. We highlight that this is the reason why

methods proposed on top of the explainability-centric architecture CAM use erase and learn

techniques to produce integral object localization. From this observation, we argue that for better

localization we should use a localization-centric architecture which has explicit components

for learning localization. To this end, we propose to use spatial transformers in a convolutional

fashion for learning localization. The localization network in the spatial transformer learns the

required localization. The entire architecture is designed in a fully convolutional fashion. A
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common issue when localizing objects with weak labels is the resulting localization focusing

on the discriminative image regions. In our method, this is easily handled by regularizing the

spatial transformation parameters by minimizing their distance with reference transforms.

A second takeaway from this research is that for weakly supervised object detection, customized

architecture with MIL pooling is not required. One can use the existing fully supervised

detection architectures and train them on weakly labeled datasets. Our proposed sampling and

score propagation recipe will do the translation process to train fully supervised detectors on

weak labels. Within this recipe many customizations are possible. The object proposals can

be obtained using unsupervised localization results from modern foundation models. Other

sampling distributions can be used, not necessarily the multinomial distribution. The score

propagation logic can be altered corresponding to the RoI to ground-truth matching process

used in the backbone detector. In summary, many customizations are possible in this basic

sampling and score propagation recipe proposed here. It is also interesting to see that with this

new architecture, both the bounding box supervision and image label supervision can be used in

the same way. Thus at one end, we can easily use the existing classification datasets for detection

because we do the same training and testing process as the conventional object detectors. On the

other end, bonding box supervision can be easily injected to make the model better. So we hope

in the future, training object detectors with both classification and detection datasets will be

possible.

Finally, we hope our studies on aerial images shed light on the possibilities of semi-supervised

learning on these images. Practical applications often collect large amounts of images but only

annotate a fraction of them to avoid annotation costs. Then they train the object detection model

using only a small set of annotated images. But the unlabeled images are vast in number and they

are simply not utilized in the learning stages. This is where semi-supervised training of object

detectors is important. While for natural images the literature is huge with many techniques
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for training semi-supervised detectors, they don’t easily translate to particular applications. In

applications using aerial imagery, we often deal with tiny objects on high-resolution images. As

the standard detectors themselves struggle with localization here, additional modules to improve

localization are often used. They work in a focus and detect fashion where clusters of small

objects are identified and focused for accurate detection. However, this setup is not easy to train

in semi-supervised settings. To mitigate this, we proposed to identify the focus regions with

the help of a detector alone, not using additional modules. Then focus regions are identified

on labeled and unlabeled images are used to augment the training set. The detector is then

trained in a semi-supervised fashion using the mean-teacher method. Inference is performed in

two stages where the detection of the focused region constitutes the second stage. This system

improved the semi-supervised object detection on aerial images significantly.

We presented an array of techniques for improving localization when training with reduced

supervision. We hope the findings of this thesis will be valuable to the community. In particular,

we recommend more research opportunities in the following findings. First, it brings an exciting

line of possibilities when classification data and detection data can be used together for training

object detectors. Our sampling-based training recipe can act as a strong proof of concept opening

doors to this possibility. We conjecture that for open-world type settings where the object classes

are unlimited, this recipe can serve new designs. The caption data from the web can provide

unlimited noisy weak labels for open-world training. With existing detection datasets where

annotations are available for their object classes, we can learn class-agnostic localization which

will help other classes without box annotations. It will be interesting to see how our vanilla

sampler needs modifications when using noisy weak labels. We also hope our studies convey

the importance of utilizing unlabeled data collected from the deployment of aerial images. They

carry important information from which we can learn more about data distribution and hence use

them for learning better decision boundaries. Our density crop-guided semi-supervised detector

tailored for high-resolution aerial images with tiny objects can produce better localization of
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them. It will be interesting to see how this density crop-guided semi-supervised learning system

translates to other detector families such as one-stage, anchor-free, and set prediction-based

detectors.
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