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Déchargement informatique sensible à l’énergie en utilisant des techniques
d’apprentissage par renforcement

Meriem MECHENNEF

RÉSUMÉ
Face à l’évolution rapide de la 5G et à l’avènement de l’ère 6G, le déchargement informatique

devient un élément clé pour l’exécution de tâches mobiles au sein des infrastructures de calcul en

périphérie. Ce changement de paradigme implique le transfert de tâches de calcul gourmandes

en ressources vers des serveurs externes à proximité du réseau, offrant ainsi la possibilité

d’optimiser l’efficacité. Cependant, afin d’assurer une qualité de service constante pour les

nombreux utilisateurs impliqués, une planification méticuleuse des décisions de déchargement

doit être prise, ce qui implique potentiellement un transfert de tâches entre sites pour répondre

aux diverses exigences d’application des utilisateurs mobiles.

Dans ce mémoire, notre attention se porte sur une infrastructure informatique de périphérie

multi-accès avec multi-utilisateurs et collaboration multi-sites, où les appareils mobiles ont

la capacité de décharger leurs tâches informatiques vers les sites en périphérie disponibles.

Notre objectif est de minimiser le délai de bout en bout subi par ces tâches et la consommation

d’énergie du système. Ces deux mesures cruciales constituent collectivement le coût global de

l’ensemble du système et sont fondamentales pour l’expérience de l’utilisateur. Le défi central

consiste à coordonner ces objectifs, garantissant une convergence harmonieuse de l’optimisation

des performances, de la satisfaction de l’utilisateur et de l’efficacité énergétique.

Pour relever ce défi, nous introduisons un mécanisme sophistiqué en deux étapes basé sur

l’apprentissage par renforcement, une approche de pointe qui nous permet d’affiner de manière

itérative les décisions des appareils mobiles concernant le déchargement des tâches vers les

serveurs en périphérie, ainsi que les décisions de ces derniers concernant le transfert des tâches

entre eux. Ce processus itératif d’optimisation est au cœur de notre approche, guidant la

coordination fluide des tâches informatiques pour atteindre un équilibre délicat entre de faibles

latence et l’efficacité énergétique. La première étape est celle où les appareils mobiles déterminent

de manière autonome s’ils doivent décharger leurs tâches vers les serveurs au périphérie auxquels

ils sont connectés ou les exécuter localement. Cette décision de déchargement des tâches

distribuée est prise en utilisant un mécanisme itératif basé sur l’apprentissage par renforcement

appelé Stochastic Learning Automata (SLA). La deuxième étape, qui assure l’équilibrage de

la charge sur l’infrastructure en périphérie, est réalisée à l’aide d’un Deep Q-Network (DQN)

formé hors ligne et utilisé à la fin de chaque itération de la première étape. Ces deux étapes

sont intégrées dans un mécanisme de déchargement informatique coopératif multi-tours qui

optimise de manière itérative les décisions prises à la fois par les appareils mobiles et les sites

en périphérie, conduisant finalement à la convergence stable du problème d’optimisation.

Nos résultats expérimentaux avec différents nombres d’appareils mobiles et sites en périphérie

montrent que notre solution réduit la latence et la consommation d’énergie des appareils mobiles.

Comparé à la solution proposée par des travaux antérieurs qui ne prend pas en charge l’équilibrage
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de la charge au niveau de l’infrastructure en périphérie, notre solution obtient de meilleurs

résultats.

Mots-clés: déchargement de tâches, répartition de charge, apprentissage par renforcement,

automates d’apprentissage stochastique, apprentissage par renforcement profond, minimisation

de la latence, minimisation de la consommation d’énergie



Energy-aware Computational Offloading using Reinforcement Learning Techniques

Meriem MECHENNEF

ABSTRACT

In the rapidly evolving landscape of 5G and the emerging 6G era, computational offloading

is becoming a game-changer for mobile task execution within edge computing infrastructures.

This paradigm shift involves the transfer of resource-intensive computational tasks to external

servers nearby in the network, offering the potential for optimized efficiency. Yet, to ensure

consistent Quality of Service (QoS) for the numerous users involved, meticulous planning of the

offloading decisions should be made, which potentially involves inter-site task transferring to

meet the diverse application requirements of mobile users.

In this thesis, our focus extends to a multi-user Multi-Access Edge Computing (MEC) infrastruc-

ture with multi-site collaboration, where Mobile Devices (MDs) have the capability to offload

their computational tasks to the available Edge Sites (ESs). Our goal is to minimize end-to-end

delay experienced by these tasks and the energy consumption of the system. These two important

measures collectively constitute the overall cost of the entire system and are fundamental for

the user experience. The central challenge is to coordinate these goals, ensuring a seamless

convergence of performance optimization, user satisfaction, and energy efficiency.

To tackle this challenge, we introduce a sophisticated two-stage mechanism based on Rein-

forcement Learning (RL), a cutting-edge approach that enables us to iteratively refine the

MDs’ decisions regarding task offloading to ESs, as well as the ESs’ decisions regarding the

transfer of tasks between themselves. This iterative optimization process lies at the core of

our approach, guiding the seamless coordination of computational tasks to achieve a careful

balance between low delays and energy efficiency. The first stage is where individual MDs

autonomously determine whether to offload their tasks to the attached ES or execute the tasks

locally. This distributed task-offloading decision is done using an iterative RL-based mechanism

called Stochastic Learning Automata (SLA). The next stage which ensures load balancing across

the edge infrastructure is achieved using an offline-trained Deep Q-Network (DQN) employed at

the end of each iteration in the first stage. These two stages are integrated into a multi-round

cooperative computational offloading mechanism which iteratively optimizes the decisions made

by both the MDs and the ESs, ultimately leading to the stable convergence of the optimization

problem.

Our experimental results using different numbers of MDs and ESs show that our framework

decreases the delay of the tasks and the energy consumption of MDs. Compared to the solution

proposed by prior work which doesn’t support load balancing at edge infrastructure our solution

gives better results.
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INTRODUCTION

0.1 Context

The expeditious development of the Internet of Things (IoT) alongside the advent of the 5G/6G

wireless networks has given rise to a plethora of diverse mobile applications, such as Augmented

Reality (AR) and Virtual Reality (VR). These applications are typically computationally intensive

and time-sensitive, for instance, in order to provide an authentic VR experience, VR systems

often require latency of less than 10ms (Chu, Jia, Yu, Lui & Lin, 2023). Despite advancements

in MDs technology, their limited computational capabilities and battery lifetime still fall short of

the proper execution of such applications. This drives the necessity to offload their workloads to

resource-rich devices.

Leveraging Cloud Computing (CC), with its abundance of computational resources, can alleviate

the issue to some extent. Yet, it’s crucial to acknowledge that the QoS could be negatively

affected by high transmission delays caused by the geographical distance between MDs and

remote cloud servers (Avgeris et al., 2022; Akhlaqi & Hanapi, 2023). To mitigate this, MEC

arises as a viable solution, its fundamental principle involves pushing the computing capabilities

at the edge of the wireless network. MEC architecture employs wireless Access Points (APs) to

establish a connection between end users ESs, thus enabling MDs to offload computationally

intensive tasks to their corresponding local ESs for processing without incorporating excessive

communication pathways toward a remote cloud infrastructure. This mechanism, known as task

offloading, is key in addressing the challenge of limited computational resources, minimizing

the latency of computing tasks, and enhancing energy efficiency (Saeik et al., 2021).

For the purposes of this thesis, the acronym MEC will be used exclusively to denote Multi-

access Edge Computing, as per the expanded definition established by the MEC Industry

Specification Group (ISG) during the 2016 MEC World Congress. This shift reflects the
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expanded support of MEC for multiple access technologies, including fixed and wireless

networks (Singh, Sukapuram & Chakraborty, 2023).

0.2 Problematic

Despite the several advantages yielded by employing Edge Computing (EC) for task offloading

such as low latency and energy efficiency, it also raises new challenges that require meticulous

attention.

One significant research obstacle in MEC systems is the decision-making process related to

offloading - whether to offload a task to the ES or to execute it locally on the MD. Improperly

planned computational offloading may result in various disturbing phenomena during the

transmission and processing of the tasks, including unexpected increases in propagation and

processing delay, as well as downtime (Bouhoula, Avgeris, Leivadeas & Lambadaris, 2022). In

that case, the trade-off between on-device execution and offloading at the local ES should be

investigated.

Moreover, unlike the cloud, the computational resources available at the edge infrastructure

are confined to micro data centers, consisting of only a few servers. There might be scenarios

where the offloading of tasks from MDs to their associated local ESs becomes impractical

due to varying loads at the edges. For instance, a situation where multiple MDs within the

coverage of an ES offload their tasks simultaneously could cause a substantial increase in

response latency, as the ES becomes suddenly overwhelmed with offloaded tasks. Therefore,

redirecting these offloaded tasks for processing from overloaded local ES to underloaded remote

ones can potentially alleviate the pressure on overloaded sites and enable load balancing across

the edge infrastructure. Ideally, the offloading decision and resource allocation should be jointly

optimized to enhance the overall QoS.
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Overall, carefully determining the offloading strategy in a multi-site edge infrastructure, for

achieving load balancing while minimizing processing delay and energy consumption is an

imminent challenge. It results in a mixed integer programming problem that is non-convex and

difficult to solve.

0.3 Objectives

In this thesis, our main objective is the joint optimization of task offloading decisions and

computation resource allocation within cooperative MEC environment. We consider a multi-site

MEC infrastructure wherein each MD has a single computationally intensive task to be processed.

Our aim is to allocate computational resources among the competing MDs such that we minimize

the weighted sum cost in terms of the completion time and the energy consumption for all the

MDs, while simultaneously ensuring a load balancing across the edge infrastructure.

By leveraging the power of RL, we propose a novel two-stage computational offloading

mechanism to achieve the said objectives. In the first stage, the offloading decision problem is

solved using a decentralized approach based on SLA which enables distributed and autonomous

decision-making. MDs act as SLA and in every iteration of this process, each one independently

selects whether to offload to the attached ES or execute the task locally on the device (MD-to-ES

offloading), aiming at achieving its objectives. For the second stage, we integrate an ES-to-ES

cooperative offloading mechanism which aims to balance the workload in the infrastructure, by

proactively transferring the MD’s offloaded tasks from the overloaded to underloaded sites. An

offline-trained DQN is utilized to make these decisions at the end of each iteration of the first

stage and the updated processed delays are fed back to the MDs for them to reconsider their

offloading decisions. Finally, these two stages are combined into a multi-round cooperative

computational offloading mechanism, which iteratively optimizes the offloading and transferring

decisions until they converge to a stable solution.
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0.4 Structure of the thesis

Our thesis is organized into four distinct chapters, each with a specific focus, detailed as follows.

In Chapter 1, the main general topics in this thesis are described, and then we overview the

relevant related work within MEC. In Chapter 2, we outline our system, formulate our task

offloading optimization problem, and detail our proposed solution. In Chapter 3, the performance

evaluation of our proposed framework is presented and examined.



CHAPTER 1

BACKGROUND AND RELATED WORK

In this chapter, we provide a background view of MEC, task offloading techniques, and RL.

Furthermore, we overview the relevant related work within MEC.

1.1 Multi-Access Edge Computing

MEC has recently been at the forefront of both academic and industrial focus, viewed as an

influential technology to boost computational performance and prolong the lifespan of MDs. It

provides a new ecosystem in which operators can open their Radio Access Network (RAN) edge

to authorized third parties, such as application developers or content providers, expanding the

scope of services and applications that can be offered to end-users. (Singh et al., 2023; Zhou,

Jadoon & Khan, 2023)

This groundbreaking approach restructures the conventional network architecture, typically

comprising just a client and a server, by incorporating an extra component in the mix. Specifically,

MEC servers represent this new intermediary element placed at the periphery of the network

(e.g., base stations and access points), forming a novel development framework comprising the

Client, Edge server, and Remote Server. The standard two-layer structure of the MEC system is

illustrated in Figure 1.1. At the devices’ layer, a variety of MDs exist, capable of exchanging

information with local APs within the edge environment. The decision of whether to offload

specific tasks to the MEC servers is first considered at this layer. In the edge layer, ESs are

situated, each consisting of a small data center connected to a wireless AP to provide offloading

services for the resource-constrained MDs of its coverage area.

By extending cloud computing capabilities and IT services nearer to the users, MEC allows the

execution of heavy-duty and latency-sensitive applications on resource-limited MDs. Essentially,

when local resources are not adequate for prompt processing, devices can offload their tasks to

MEC servers and due to their proximity, devices do not need to endure high latency to utilize

their services (Avgeris, Mechennef, Leivadeas & Lambadaris, 2023). Consequently, MEC
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Figure 1.1 Architecture of Multi-access Edge Computing

provides substantial cuts in both latency and energy consumption for devices, while concurrently

relieving network congestion. MEC opens the door to a multitude of novel key applications, the

primary use cases currently recognized are AR and VR, connected vehicles, industrial IoT and

Healthcare, among others (Avgeris, 2021).

1.2 Task Offloading

MEC addresses the deficiencies of MD execution resources by performing task offloading. It is

a key point in the research of MEC and stands out as a significant challenge to fully leverage the

benefits that MEC presents. As mentioned earlier, task offloading is a process of transferring

computational tasks from one platform to another, and with proper design and planning, it can

improve the computational efficiency of mobile entities, leading to a reduction in both latency and

the overall energy consumption of the ecosystem (Shakarami, Ghobaei-Arani & Shahidinejad,

2020).

A task is a unit of work or requests to be completed remotely as a part of application components,

it can be either application code, process, data, or service requests. The MD’s decision to offload
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or locally execute a task depends on different factors, such as QoS requirements and the device’s

battery life. Tasks meant for remote processing are sent over the wireless network to a distant

server. Meanwhile, tasks kept on the device are processed locally using its available computing

power. The final output of the application is then generated by combining the results of both

local and remote tasks (Saeik et al., 2021). Figure 1.2 shows these two types of task offloading

and are described as follows:

• Binary/Full Offloading: In this type of offloading, the whole application data is transferred

and processed at the edge server. The key to a successful (or beneficial) full offloading is to

allocate sufficient radio and computation resources such that both the transmission time and

energy can be minimized (Zhang, 2023).

• Partial Offloading: In this case, MDs offload part of the data to the edge server, while the

rest of the data are processed locally. This type of offloading can benefit from both local and

remote resources and it consists of a transmission procedure, a remote execution procedure,

and a result send-back procedure. However, it introduces an additional layer of complexity,

requiring the determination and scheduling of tasks to be offloaded. This process must

consider the potential energy and resource constraints of the end device (Saeik et al., 2021).

a) Full offloading b) Partial offloading

Figure 1.2 Offloading procedure
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The offloading scheme includes the following key components (Lin, Zeadally, Chen, Labiod & Wang,

2020):

• Task partition: If a task is partitionable as in the case of partial offloading, we need to

optimally partition the task before offloading. Otherwise, the whole task should be offloaded

to an edge server.

• Offloading decision: It is a critical decision to decide whether to offload the task to an edge

server or execute it locally, that needs to be planned properly. This offloading decision engine

estimates the required energy and completion time in both cases and then decides to whether

or not the MDs will save energy and time by offloading a given task. For example, offloading

is not beneficial if the MDs consume energy on offloading the task more than on executing it

on the device. Therefore, an offloading decision is vital to make the offloading beneficial for

MDs.

• Resource allocation: The available bandwidth and computational resources are limited, thus

good system performance would require a judicious distribution of these resources between

the users.

In order to fully exploit the benefits of task offloading an intelligent solution that harnesses the

potential of Artificial Intelligence (AI) is required. In the subsequent section, we introduce RL

which is a pivotal element of our approach.

1.3 Reinforcement Learning

RL is a sub-category of Machine Learning (ML). Unlike supervised and unsupervised learning,

RL relies on a trial-and-error approach. RL can start learning from scratch and attain human-level

decision-making gradually through a set of actions and rewards from these actions. Hence, it

can solve sequential decision-making problems, where the selected action not only affects the

immediate reward achieved but impacts the upcoming situations and, through that, all subsequent

rewards. The agent learns the best behavior in an uncertain, potentially complex environment

while having no knowledge about which actions to take, but instead must discover which ones

yield the most reward by trying them. These two characteristics —delayed reward and trial-and-
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error search— are the two most important distinguishing features of RL. (Rezagholizadeh, 2022;

Sutton & Barto, 2018)

Typically, an RL setup is composed of four main components: environment, agent, action and

reward. The environment provides the agent, which is the learning entity that interacts with it,

with different possible states that could exist in the problem it has to react to and feedback which

is the reward signal to tell it what actions led to success (or failure). These four components

represent a Markov decision process (MDP).

1.3.1 Markov Decision Process

MDP is a generalized framework used to model decision-making problems in RL. It provides a

mathematical formalism for modeling an agent’s interactions with an environment defining the

structure and components of the RL problem (Sutton & Barto, 2018; Arulkumaran, Deisenroth,

Brundage & Bharath, 2017; Chen, Qu, Tang, Low & Li, 2021a). MDP is defined by a 5-tuple as

(𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where:

• 𝑆 and 𝐴 denote a finite state and action set respectively.

• 𝑃(𝑠(𝑡+1) |𝑠𝑡 , 𝑎𝑡) is the state transition probabilities or transition dynamics, it gives the

probability distribution of the next state given the current state and action. In most real-life

applications, the transition dynamics are not known due to the fact that it is hard to come up

with a model of the environment and this is where model-free RL algorithms can be used

(Sadiki, Bentahar, Dssouli, En-Nouaary & Otrok, 2023)

• 𝑅 is an immediate reward after performing the action 𝑎𝑡 under state 𝑠𝑡 .

• 𝛾 ∈ [0, 1] is a discount factor to reflect the diminishing importance of current rewards on

future ones, with lower values placing more emphasis on immediate rewards.

The basic concept behind RL is illustrated in Figure 1.3, where the agent and environment

interact in a sequence of discrete time steps, 𝑡. At each time step 𝑡 = 1, 2, 3, ..., the agent is

in a certain state 𝑠𝑡 and takes one of the possible actions 𝑎𝑡 . The agent’s action causes the

environment to change from 𝑠𝑡 to 𝑠(𝑡+1) , generating a reward 𝑟 (𝑡+1) . The agent then performs
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Figure 1.3 Basic Interaction in RL

another action for this new state 𝑠(𝑡+1) triggering a reward, and so on. The rewards provided by

the environment determine the best sequence of actions.

This process of selecting an action from a given state transitioning to a new state and receiving

a reward happens sequentially over and over again which creates a trajectory or episode that

shows a sequence of state, actions, and rewards (Sutton & Barto, 2018). In other words, an

episode or trajectory represents one full run through all steps that end at a terminal point. In

episodic tasks, this process ends when a terminal state is reached, which is followed by resetting

the environment to a standard starting state or to a random sample from possible states. The

next episode then starts independently from the previous one.

Policies and Value Functions

Any strategy that the agent follows to decide which action to pick in a given state, is called

a policy. Formally, a policy 𝜋 is a mapping from the state space to potential actions. It can

be deterministic, meaning it prescribes a single action for each state, or stochastic, where it

provides a probability distribution over actions. The choice of policy significantly influences the

agent’s performance and its ability to learn and adapt to the environment. Notably, there are two

main categories of RL methods based on their treatment of policies: on-policy and off-policy

methods. On-policy methods focus on improving the policy currently in use, directly seeking
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the optimal policy. In contrast, off-policy methods, concentrate on learning a value function and

then derive a policy based on the learned values. (Li, 2022)

Each episode ends in a terminal state in 𝑇 time steps and yields a cumulative reward called a

return defined as

𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3 + ... + 𝑟𝑇 (1.1)

This reward will be discounted by 𝛾 (discount rate or factor (0 < 𝛾 < 1)) to the exponent of the

time step. This controls how soon future rewards are ignored. In other words, if 𝛾 = 0, then only

the present reward is taken into consideration. With this we define the discounted return as

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+2 + ... =
𝑇∑

𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (1.2)

The goal of the RL agent is to learn an optimal policy denoted by 𝜋∗, that maximizes this

expected discounted return. The agent should know how good it is to be in a specific state or,

how good it is to perform a given action in a specific state. This notion of how good a state or a

state-action pair is is given in terms of expected return. Almost all RL algorithms consider two

value functions:

• State-Value Function: The state-value function represents the expected return an agent can

obtain by starting from state 𝑠 at time 𝑡 and following a particular policy 𝜋. In other words, it

tells us the total return we can expect in the future if we start from that state

𝑉𝜋 (𝑠) = E𝜋 (𝐺𝑡 |𝑠𝑡 = 𝑠) (1.3)

• Action-Value Function: The action-value function or 𝑄-function for brevity, is closely

related to the state-value function but adds another dimension by considering not only the

state but also a specific action. It represents the expected return an agent can obtain by from

state 𝑠 at time 𝑡, taking action 𝑎 and following policy 𝜋.



12

The output from this function is called a 𝑄-value, the letter 𝑄 refers to the quality of taking a

given action in a given state

𝑄𝜋 (𝑠, 𝑎) = E𝜋 (𝐺𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (1.4)

Once we have the respective Value Functions, we use them to compare the policies learned by

the agent. The one with the highest Value Function yields higher expected returns and is called

optimal policy denoted 𝜋∗. The equivalent optimal state-value and action-value functions are

𝑉∗(𝑠) and 𝑄∗(𝑠, 𝑎), respectively (Winder, 2020). In contrast, the action-value Function enables

the derivation of a policy independently of any model, this makes it necessary for model-free

methods such as Q-Learning (QL).

Bellman Optimality Equation

A fundamental property that is frequently used in MDP called Bellman optimality equation

represents the recursive relationship of the value function (Zhang, 2020). 𝑄∗ must satisfy this

equation defined as

𝑄∗(𝑠, 𝑎) = E[𝑟𝑡+1 + 𝛾 max
𝑎′

𝑄∗(𝑠
′, 𝑎′] (1.5)

The Bellman optimality equation states that, for any state-action pair (𝑠, 𝑎) at time 𝑡, the expected

return from starting in state 𝑠, choosing action 𝑎 and following the optimal policy, is going to

be the expected reward we get from taking action 𝑎 in state 𝑠, which is 𝑟𝑡+1 plus the maximum

expected discounted return that can be achieved from any possible next state-action pair (𝑠′, 𝑎′).

Since the agent is following an optimal policy, the following state 𝑠′ will be the state from which

the best possible next action 𝑎′ can be taken at time 𝑡 + 1.

Solving an RL problem basically means finding the Optimal Policy. There exist different ways

of searching through an environment’s states to estimate the expected return. When the model is

known ahead, obtaining the optimal value function becomes a planning problem that can be
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solved by Dynamic Programming (DP). This technique performs bootstrapping, updating the

value functions based on other currently estimated values, after a single time step. In many

problems, prior knowledge of the environment’s model is not available. In this case, sampling

methods can be instead used, in which one estimates the state values from the experience

generated by the agent-environment interaction. A frequently employed approach is Monte

Carlo (MC), wherein learning involves updating the value function by utilizing the average

sample returns obtained upon concluding an episode. Another common method is Temporal

Difference (TD), which combines the advantages of both MC and DP. It learns directly from

real experience without requiring the model of the environment like MC and DP. It bootstraps

without waiting to reach the end of an episode to get the final outcome. (Li, 2022; Winder, 2020;

Sutton & Barto, 2018; Rezagholizadeh, 2022).

This thesis focuses on model-free off-policy RL methods. Subsequently, we will introduce two

algorithms employed in this study, namely SLA and QL.

1.3.2 Stochastic Learning Automata

An automaton represents a machine or control system engineered to autonomously execute a

pre-established sequence of operations or react to encoded instructions. Learning is characterized

as any enduring modification in behavior stemming from previous experiences. Therefore,

a learning system should inherently possess the capability to enhance its behavior over time,

gradually progressing toward a predetermined objective. The term stochastic emphasizes the

flexible nature of the automaton, this latter does not adhere to predefined rules; instead, it adjusts

according to environmental shifts. This adaptive mechanism is a product of its learning process.

The stochastic automaton embarks on problem-solving without any prior knowledge of the

optimal action. Initially, it assigns equal probabilities to all the actions, it randomly selects one

action, observes the corresponding environmental response, updates action probabilities based

on this feedback, and repeats this process. When a stochastic automaton operates in this way to

enhance its performance, it can be termed a learning automaton. (Unsal, Kachroo & Bay, 1999;

Stoica, Popa & Pah, 2008)
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In summary, SLA is one of the RL tools. It is an adaptive, online decision-making unit that

improves its performance by learning how to choose the optimal action from a finite set of allowed

actions through repeated interactions with a random environment (Rasouli, Razavi & Faragardi,

2020)

1.3.3 Q-Learning

QL is a fundamental algorithm in the realm of RL. It is a classic model-free off-policy TD RL

method. In this case, the learned action-value function 𝑄 directly approximates the optimal

action-value function 𝑄∗, independent of the policy being followed (Sutton & Barto, 2018). As

shown in Figure 1.4, QL is a Lookup-Table-based approach, it uses a 𝑄-table of State-Action

Values (𝑄-values). This 𝑄-table has a row for each state and a column for each action and it

maps state and action pairs to a 𝑄-value. The algorithm begins by initializing all the values

to zero and, as the agent interacts with the environment and receives feedback in the form

of rewards, the algorithm progressively refines these 𝑄-values through iterative updates. QL

performs TD updates to state-action pairs as follows

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) −𝑄(𝑠𝑡 , 𝑎𝑡)] (1.6)

where, 𝛼 is the learning rate, (0 < 𝛼 < 1). It balances the weight of what has already been

learned (existing information) with the weight of the new observation (new information) during

the update process. The core idea behind this update is to find the TD between the predicted

𝑄-value (𝑟𝑡 + 𝛾 max𝑎 𝑄(𝑠(𝑡+1) , 𝑎)) and its current value (𝑄(𝑠𝑡 , 𝑎𝑡)). The algorithm terminates

when either a specified number of iterations have been reached or all 𝑄-values have converged.

At this stage, the algorithm outputs the optimal policy, which suggests the best action to take in

each state.

Although QL has played a pivotal role in addressing diverse RL problems it faces significant

limitations. In a situation characterized by extensive state spaces the algorithm may converge
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Figure 1.4 Basic QL steps

slowly or fail to converge altogether in complex environments. This calls for more sophisticated

approaches that can handle such challenges effectively.

1.4 Deep Reinforcement Learning

As discussed above, simple RL lacked scalability and was limited to fairly low-dimensional

problems. The rise of deep learning in recent years has provided new tools to overcome these

problems, leading to the creation of the exciting field of DRL. The usage of Deep Neural Network

(DNN) as function approximator to learn 𝑄-values gives the agent the ability to learn from

complex environments and allows to scale to previously intractable decision-making situations

where the state space and action space are high-dimensional (Sadiki et al., 2023).

1.4.1 Deep Q-Network

DQN is a combination of the model-free, off-policy QL with DNN. As shown in Figure 1.5, the

architecture of a DQN comprises DNN that replaces the 𝑄-table and serves as the foundation for

approximating the 𝑄-function. This DNN is designed to take in the state space as input and

output 𝑄-values for each possible action.

The DNN architecture used by DQN comprises an input layer, hidden layers, and an output

layer. The input layer is responsible for receiving external data (state space), while the output

layer generates the final outcome. Each hidden layer only connects to its adjacent two layers.
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Figure 1.5 Basic DQN steps

Increasing the number of hidden layers enhances the network’s capacity for approximating

complex functions (Li, 2022).

1.4.2 DQN key components

In this section, we will delve into the key components that make DQN such a successful algorithm.

These components include Experience Replay (ER), Target Networks, and the Epsilon-Greedy

exploration strategy.

1. Experience Replay: The agent’s experiences are stored in a database D called replay buffer.

In each training step, the algorithm selects samples from the buffer D and feeds them to the

network for the training. The 𝑄-values obtained will be used to obtain new experiences, and

these experiences will be then stored in the memory pool D. This allows to use old data

to train the model, making training more sample-efficient. Also, the correlation between

consecutive observations is broken by taking a random subset when training.

2. Fixed Target Q-network: The second mechanism is to create a target network which is a

clone of the Q-network but has a different weight. This target network is updated frequently

but slowly compared to the primary Q-network. This will reduce the correlations between

the target and estimated 𝑄-values, thereby stabilizing the algorithm.

These two mechanisms help to improve sample efficiency and stability of training (Winder,

2020).
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3. Epsilon-Greedy exploration strategy (𝜖-greedy): The 𝜖-greedy algorithm is both the most

popular and the simplest method for balancing the trade-off between "exploration" and

"exploitation" phases. 𝜖 is a hyperparameter between 0 and 1, a small 𝜖 value means the

agent mostly exploits its current knowledge, while a larger value implies a greater emphasis

on exploration. t. The value of 𝜖 once chosen remains constant for the behavior policy.

(Sewak, 2019)

• Greedy action (probability of 1 − 𝜖): the agent selects the action that has the highest

estimated 𝑄-value according to the Q-network. This is the exploitation part of the

strategy, where the agent chooses the best-known action.

• Random action (probability of 𝜖): the agent selects a random action. This is the

exploration part of the strategy, where the agent takes a random action to learn more

about the environment.

4. Loss function: To approximate the 𝑄-values, DQN uses DNN with weights 𝜃. For every

iteration, these weights get updated to converge towards the optimal 𝑄-values. The Q-

network can be trained by minimizing a sequence of loss functions 𝐿𝑖 (𝜃𝑖), where the loss

function at time step 𝑡 is defined as

𝐿𝑡 (𝜃𝑡) = E[𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′; 𝜃𝑡−1) −𝑄(𝑠𝑡 , 𝑎𝑡 ; 𝜃𝑡))
2] (1.7)

This means, given a transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), the weights 𝜃 of the Q-network are updated

to minimize the squared error loss between the current predicted 𝑄-value 𝑄(𝑠𝑡 , 𝑎𝑡) and the

target 𝑄-value of (𝑟𝑡 + 𝛾 max𝑎′ 𝑄(𝑠(𝑡+1) , 𝑎′)

In our work, first the SLA is used to solve the offloading decision problem and then we propose

a QL approach to balance the offloaded workload at the edge infrastructure. Later, to overcome

the curse of dimensionality, we propose a DQN method to solve the same problem.
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1.5 Related Work

The computational offloading problem falls into the knapsack resource allocation category, which

is known to be NP-hard. This difficulty arises because computation offloading, involving binary

offloading or partitioning an application for offloading, often leads to an integer programming

formulation. Additionally, the allocation of resources, such as bandwidth and computing

resources, among mobile users adds further complexity to the problem. Consequently, it is

notably challenging to solve it. (Saeik et al., 2021; Zhao, Geng & Jin, 2023)

To mitigate this complexity and attain optimal or nearly optimal results in a feasible time frame,

approximate solutions based on ML, Game Theory, and heuristics have been proposed in the

literature.

1.5.1 Heuristic-based solutions

In (Yang, Zhang, Li, Guo & Ji, 2018), the authors studied the problem of computation offloading

for MEC in 5G systems. Specifically, this study aimed to enhance the energy efficiency of

entities offloading tasks in the system. The problem was formulated as an optimization problem,

seeking to minimize energy consumption while meeting delay requirements. In the formulation

model, both task transmission and task computation at the MEC server were considered and to

solve the problem, the authors proposed using an artificial fish swarm algorithm (AFSA). This

heuristic algorithm provides global convergence, obtaining the global optimization solution for

the problem under consideration (Maray & Shuja, 2022).

(Tran & Pompili, 2019) proposed a Joint Task Offloading and Resource Allocation (JTORA)

strategy to maximize the task offloading gains, measured by a weighted sum of reductions in task

completion time and energy consumption. The authors considered a multi-cell MEC system,

where each Base Station (BS) is equipped with a MEC server providing offloading services to

the end mobile users. The underlying optimization problem was formulated as a Mixed-Integer

Non-linear Program (MINLP), which is very difficult to solve. To tackle the complexity, they

decomposed the original problem into a resource allocation and a task offloading subproblem.
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They addressed the resource allocation using convex and quasi-convex optimization techniques,

and propose a novel heuristic algorithm for the task offloading that achieves a suboptimal solution

in polynomial time.

(Zhang, Zhang, Zhang, Shen & Wang, 2021) considered a MEC system consisting of multiple

users, a MEC server and a cloud center and examined the problem of joint service caching,

computation offloading, transmission and computing resource allocation. Their objective was to

minimize the overall computation cost and delay cost of the system and the interdependence

between service caching decisions and computation offloading decisions added to the complexity

of the problem. To address this challenge, they transform the problem into a Quadratically

Constrained Quadratic Programming (QCQP). They heuristically recovered the feasible binary

decisions and proposed a scalable and efficient approximate algorithm based on the power-

ful, computationally efficient Semi-Definite Relaxation (SDR) approach with the alternating

optimization method.

(Yin, Chen & Zhang, 2022) addressed the task offloading problem in a scenario involving

multi-user devices and multi-core edge servers, with the aim of minimizing the total energy

consumption under the deadline constraint. Since this problem is known to be NP-hard, the

authors proposed two greedy heuristics, namely GH1 and GH2, to tackle it. The two heuristics

start from initial task sequences generated using the well-known Long Task First (LTF) and

Short Task First (STF) rules, respectively. These initial task sequences are then allocated to

one of MEC servers’ cores and the power for data transfer through the antenna is determined

using a Task Allocation Strategy (TAS). The results demonstrated that the proposed heuristics

significantly outperformed the RoundRobin approach. Furthermore, it was observed that GH1

performed better than GH2, indicating the superiority of the LTF rule over the STF for the

considered problem.
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1.5.2 Game theory-based solutions

Using game theory and from the perspective of Device-to-Device (D2D) communication, the

mutual D2D cooperation problem among users with heterogeneous demands was investigated

in a MEC environment by (Fang, Wu, Chen & Liu, 2022). Users with different demands

can share their idle local resources in order to minimize their processing delay. The authors

proposed the heterogeneous demands-based matching game to model the complex cooperation

problem. Different from the traditional matching game, they extended it to the innovative

multiple-round matching game including D2D matching and edge matching. They then proposed

the Multi-Round Cooperation Matching (MRCM) algorithm to find the desired solution.

The work in (Yan et al., 2019) integrates task offloading decisions and resource allocation within

the MEC system. The authors conceptualized a strategic game where critical elements such

as offloading decisions, CPU capacity adjustments, transmission power control, and network

interference management for mobile users are treated as integral components. Each mobile user

adopts a best response strategy to maximize their utility rather than prioritizing the overall system

utility. Their study establishes that the proposed game is an exact potential game, affirming the

existence of a Nash equilibrium (NE).

1.5.3 ML-based solutions

ML-based approaches are widely acknowledged for their effectiveness in optimization, surpassing

traditional optimization schemes (Maray & Shuja, 2022). Authors in (Li, Gao, Lv & Lu, 2018),

consider a MEC-enabled cellular system, allowing multiple mobile users to offload their

computational tasks via wireless channels to one MEC server. They propose a two-fold

optimization approach, utilizing a single-stage QL and a DQN-based scheme. Their approach

aims to jointly optimize the offloading decisions and computational resource allocation, with the

primary objective of minimizing the combined delay and energy consumption. However, it’s

important to note that the authors restrict their investigation to a simplified scenario consisting

of a single cell with only one MEC server, to which all users offload their tasks.
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(Chen, Gu & Li, 2022) conducted a study on dynamic task offloading for Internet of Things

(IoT) devices by integrating the resources of MEC and the cloud. They considered multi-user

and multi-server scenario. Their research aimed to achieve two conflicting task offloading goals,

maximizing the number of completed tasks (if the processing delay exceeds the tolerable delay

the task is perceived as an unfinished task), and minimizing power consumption. To balance

these goals within the constraints of available resources, the authors formulated a detailed task

offloading problem and then transformed it to a Markov Decision Process (MDP)-based dynamic

task offloading problem. To address this problem, they designed a dynamic RL-based task

offloading algorithm.

To further retain low energy consumption and end-to-end delays, it has become necessary to

cooperate multiple edge sites instead of operating independently. Thus, intra-infrastructure load

balancing after task offloading is being proposed.

Load balancing is closely tied to the overall performance of parallel and distributed computing

systems. While problems related to communication and computation have been extensively

explored in data center environments, there is a notable scarcity of studies addressing these

issues in IoT edge scenarios (Liu et al., 2022).

1.5.4 Load balancing after task offloading solutions

Recently, many works in the pertinent literature started exploring the cooperation between the

different edge sites. (Wan, Li, Xue, Lin & Xu, 2020) proposed an edge computation offloading

method for the Internet of Vehicles (IoV) under the architecture of 5G networks named COV.

The purpose of their work is to solve a multi-objective optimization problem, which aims to

reduce offloading delay and enhance offloading cost while achieving the load balance across

edge nodes. The appropriate destination edge nodes are selected using the Strength Pareto

Evolutionary Algorithm 2 (SPEA2). Then, the most balanced strategies of COV at different

vehicle scales are selected out by adopting the Technique for Order of Preference by Similarity

to an Ideal Solution (TOPSIS) and Multi-Criteria Decision-Making (MCDM).
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In (Avgeris et al., 2022), as a subsequent stage to the device-to-edge task offloading, the authors

propose a second phase to better balance the previous resource management decisions, where

any extra workload requests from one site are redistributed to a nearby or even further away sites.

The excess workload is handled in such a way that prevents sites from becoming operational

for a number of requests below the threshold of their overall capacity, which will guarantee

enhanced energy efficiency. They introduced a Markov Random Field (MRF) based mechanism

for the distribution of the excess workload between the different edge sites. This technique

allows simple distributed decision-making and is shown to achieve energy optimization at the

infrastructure while respecting QoS requirements.

(Chen et al., 2021b) proposed an RL-empowered feedback control method to solve the problem

of cooperative load balancing (RF-CLB) in multi-edge industrial IoT environments. First, each

edge independently schedules tasks and performs load balancing between adjacent edges based

on the local information using QL and Support Vector Regression (SVR) algorithms. Next,

they developed a new mechanism of feedback control to find the objective load-balancing plan

between adjacent edges.

(Yuan & Zhou, 2021) present a profit-maximizing collaborative computation offloading and

resource allocation algorithm in a three-layer system architecture consisting of multiple MDs,

multiple MEC servers and a cloud data center layers. The proposed algorithm jointly optimizes

the computation offloading between the cloud data center and edge computing layers while also

specifying resource allocation within the cloud layer. The system profit is maximized, while the

response time and energy consumption limits of tasks are strictly met. Their approach considers

the varying processing capacities of heterogeneous nodes within the edge computing layer and

addresses the load balance requirements of all nodes, ensuring an equitable distribution of tasks

among them. A single-objective constrained optimization problem is formulated for each time

slot, and it is solved using a proposed Simulated annealing-based Migrating Birds Optimization

(SMBO) algorithm.
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The authors in (Xu et al., 2022) investigated the partial offloading of multiple MDs by proposing a

Two-Stage Game Theory Algorithm (TSGTA). They divided a two-stage game theoretic scheme

to reach the goal of optimal offloading on a cooperative user device-edge-cloud environment.

The existence of a Nash equilibrium is proven, that minimize energy consumption under delay

constraints. The authors first obtain the edge-terminal optimal offloading decision that ignores

cloud resources after that they take the offloaded MDs as gamers and seek optimal offloading

decisions between the cloud and the edge for all terminal devices opting to offload. Ultimately,

the aim is to achieve optimal offloading across the three components: cloud, edge, and terminal.

A similar three-tier cooperative computational offloading scheme is proposed in (Kuang, Ma,

Li & Deng, 2021) as well, where the authors have considered vertical cooperation among UE

devices, MEC server nodes, and cloud server nodes, and the horizontal computation cooperation

between edge nodes. This time utilizing a joint iterative algorithm based on the Lagrangian dual

decomposition to minimize latency under energy consumption constraints.

In this work, through a novel RL mechanism, we investigate energy consumption and processing

delay minimization during computational offloading in a cooperative MEC environment.

Considering a MEC infrastructure consisting of multi-users multi-interconnected edge servers,

we propose a two-stage solution. First, an iterative RL-based mechanism based on SLA

is introduced to enable distributed and autonomous offloading decision-making (MD-to-ES

offloading). Next, we integrate an ES-to-ES cooperative offloading mechanism aiming to balance

the workload in the edge infrastructure. At this level, first, we designed a QL algorithm but as

the number of ESs and MDs became larger, training the algorithm was almost impossible. In

order to solve this problem, we used DRL and an offline-trained DQL was proposed to achieve

the load-balancing goal.





CHAPTER 2

SYSTEM MODEL & ALGORITHM DESIGN

This chapter starts by presenting the system model along with the mathematical formulation of

the MEC computation offloading problem. Next, the concepts of RL in computational offloading

are introduced for the decision and load-balancing mechanisms and three RL-based strategies

are proposed. The SLA is used in the first stage to solve the offloading decision problem, then,

the QL and DQN algorithms to balance the offloaded workload at the edge.

2.1 System Model

We consider a MEC infrastructure of multiple interconnected nodes (“multi-edge-site") as

S = {1, 2, ..., 𝑆} comprising small data centers each connected to a wireless AP to provide

offloading services for the resource-constrained MDs of its coverage area, where MDs are able

to offload computationally intensive tasks to reduce their energy consumption. Each ES 𝑠 ∈ S

has available computational resources 𝐹𝑠 and bandwidth 𝑊𝑠 given by the vector {𝐹𝑠, 𝑊𝑠}.

The set of MDs covered by each ES 𝑠 is denoted as N𝑠 = {1, 2, ..., 𝑁𝑠} and are considered to

be quasi-static for the examined offloading period, thus no MD mobility between different ESs

is taken into account. Each MD 𝑛𝑠 ∈ N𝑠 is characterized by the vector { 𝑓𝑛𝑠 , 𝑝𝑛𝑠 } denoting its

computing capabilities and uplink transmission power respectively. An MD has one application

task for execution which can either be processed locally (“on-device execution") or offloaded at

the ES of coverage (“remote execution"), and to maintain simplicity, we assume a one-to-one

relationship between a device and its task for a single offloading period, and henceforth, these

terms will be used interchangeably.

Depending on the type of application executed by 𝑛𝑠, each task is defined by the vector

{𝑑𝑛𝑠 , 𝑐𝑛𝑠 , 𝜏𝑛𝑠 , 𝑒𝑛𝑠 }, where 𝑑𝑛𝑠 specifies the amount of input data to be processed, 𝑐𝑛𝑠 represents

the workload, i.e., the total number of required CPU cycles, 𝜏𝑛𝑠 represents the maximum

acceptable end-to-end delay and 𝑒𝑛𝑠 stands for the maximum tolerable energy consumption for

the task.
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2.1.1 Computation Models

A task 𝑛𝑠 can be executed either locally on the MD or via computation offloading on an ES.

We introduce the binary variable 𝑎𝑛𝑠 ∈ {0, 1} which corresponds to the execution mode for

task 𝑛𝑠; we have 𝑎𝑛𝑠 = 0 for on-device execution and 𝑎𝑛𝑠 = 1 for offloading to the attached ES.

Consequently, we define an offloading decision vector

A𝑠 = {𝑎1, 𝑎2, ..., 𝑎𝑁𝑠 }

to account for all the MD devices connected to ES 𝑠.

2.1.1.1 Local Execution

For 𝑎𝑛𝑠 = 0, the task 𝑛𝑠 will be processed locally on the MD. Let 𝑓𝑛𝑠 denote the computing

capabilities (i.e., CPU cycles per second) of MD 𝑛𝑠, the on-device execution time and its

corresponding energy consumption are calculated as follows

𝑡𝑙𝑐
𝑛𝑠 = 𝑐𝑛𝑠/ 𝑓𝑛𝑠 (2.1)

𝐸𝑙𝑐
𝑛𝑠 = 𝜅𝑐𝑛𝑠

where 𝜅 is the consumed energy per CPU cycle in joules. Following (Jiang, Zhou, Li, Liu & Xu,

2020) and (Li et al., 2018), we set 𝜅 = 10−27( 𝑓𝑛𝑠 )
2.

Unlike other IoT devices, MDs have other processes running in the background that can consume

significant power. In order to avoid the critical state of the battery, its level 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑙𝑒𝑣𝑒𝑙
𝑛𝑠 has

been set between 30% and 100%. We assume that the phone battery with full charge might

have about 10000 joules, when energy is consumed, the battery gauge decreases to 𝑥 percent, as

calculated in the following equation. Hence, the remaining battery of MD 𝑛𝑠 when executing

locally is given by
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𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑙𝑐
𝑛𝑠 = 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑙𝑒𝑣𝑒𝑙

𝑛𝑠 −
𝐸𝑙𝑐

𝑛𝑠 × 100

𝐸𝑚𝑎𝑥
(2.2)

where 𝐸𝑚𝑎𝑥 is the maximum energy of the battery. We define a cost function as the weighted

sum of the execution time and energy consumption. We denote 𝛽1 and 𝛽2 as their weights,

respectively, and it satisfies 𝛽1 + 𝛽2 = 1, 0 ≤ 𝛽1 ≤ 1 and 0 ≤ 𝛽2 ≤ 1. The weights specify the

MD 𝑛𝑠 preference on delay and energy consumption. Then, the total cost of local computing

can be calculated as:

𝐶𝑙𝑐
𝑛𝑠 = 𝛽1𝑡𝑙𝑐

𝑛𝑠 + 𝛽2𝐸𝑙𝑐
𝑛𝑠 (2.3)

2.1.1.2 Remote Execution

For 𝑎𝑛𝑠 = 1, the task 𝑛𝑠 will be offloaded to the attached ES 𝑠. In this case, its end-to-end

delay, denoted by 𝑡
𝑜 𝑓
𝑛𝑠 , comprises two parts: i) the uplink transmission time, 𝑡𝑡𝑟

𝑛𝑠 and ii) the

execution time at the MEC server, 𝑡𝑒𝑥
𝑛𝑠 . Since the task output is usually much smaller than the

size of input data, and the downlink rate from ES to MD is very high in practice, we neglect the

transmission time and energy consumption for delivering the computed results (Avgeris et al.,

2022). Additionally, we assume that the wireless bandwidth of ES 𝑠, 𝑊𝑠, is equally allocated to

the MDs that choose to offload to it. Then, with 𝑟
𝑜 𝑓
𝑠 being the number of offloaded tasks to 𝑠,

the bandwidth assigned to MD 𝑛𝑠 to upload its task input data to 𝑠 is:

𝑤𝑛𝑠 = 𝑊𝑠/𝑟
𝑜 𝑓
𝑠 (2.4)

and based on that, the transmission time can be calculated by:

𝑡𝑡𝑟
𝑛𝑠 = 𝑑𝑛𝑠/𝑤𝑛𝑠 (2.5)

The corresponding energy consumption for MD 𝑛 during the transmission is then:

𝐸
𝑜 𝑓
𝑛𝑠 = 𝑝𝑛𝑠 𝑡

𝑡𝑟
𝑛𝑠 (2.6)
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Regarding the offloading processing part, given again that the available resources of ES 𝑠, 𝐹𝑠,

are equally allocated to the MDs that offload to it, the computing resources that site 𝑠 allocates

to task 𝑛𝑠 can be calculated as:

𝐹𝑠/𝑟
𝑜 𝑓
𝑠

and subsequently, the computation execution time is given by:

𝑡𝑒𝑥
𝑛𝑠 = (𝑐𝑛𝑠𝑟

𝑜 𝑓
𝑠 )/𝐹𝑠 (2.7)

According to the above, the total end-to-end delay experienced by MD 𝑛𝑠 in the case of remote

execution becomes:

𝑡
𝑜 𝑓
𝑛𝑠 = 𝑡𝑡𝑟

𝑛𝑠 + 𝑡𝑒𝑥
𝑛𝑠 (2.8)

Next, we introduce the binary variable 𝑘𝑠′
𝑛𝑠 ∈ {0, 1} to signify the transferring of the offloaded

task 𝑛𝑠 from ES 𝑠 to 𝑠′ (𝑘𝑠′
𝑛𝑠 = 1), with 𝑠 ≠ 𝑠′ ∈ S, as well as the transferring decision vector.

𝐾𝑛𝑠 = {𝑘
1
𝑛𝑠 , 𝑘2

𝑛𝑠 , ..., 𝑘𝑆
𝑛𝑠 },∀𝑛𝑠 ∈ N𝑠

This allows for formulating the transferring decision matrix for the tasks of each ES 𝑠 as:

K𝑠 = {𝐾1, 𝐾2, ..., 𝐾𝑁𝑠 }
𝑆×𝑁𝑠 ,∀𝑠 ∈ S

Before formulating the problem, we have to redefine the remote execution delay calculation 2.8

to take into consideration the additional delay introduced by ES-to-ES task transferring. First,

let us replace 𝑟
𝑜 𝑓
𝑠 in 2.4 with

N𝑠∑
𝑛𝑠=1

𝑎𝑛𝑠

and
N𝑠∑

𝑛𝑠=1

𝑎𝑛𝑠 +

S∑
𝑠=1

N𝑠′∑
𝑛𝑠′=1

𝑘𝑠
𝑛𝑠′

for 𝑤𝑛𝑠 calculation in 2.5 and 2.7, respectively.
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Assuming that the propagation delay for the ES-to-ES communication, 𝑡
𝑝𝑟
𝑛𝑠,𝑠′ is proportional to

the distance (number of hops) between the edge sites 𝑠 and 𝑠′, the remote execution delay 2.8

becomes:

𝑡
𝑜 𝑓
𝑛𝑠 = 𝑡𝑡𝑟

𝑛𝑠 +

𝑠′≠𝑠∑
𝑠′∈𝑆

[(1 − 𝑘𝑠′

𝑛𝑠 )𝑡
𝑒𝑥
𝑛𝑠 + 𝑘𝑠′

𝑛𝑠 (𝑡
𝑝𝑟
𝑛𝑠,𝑠′ + 𝑡𝑒𝑥

𝑛𝑠′
)] (2.9)

Same as (2.2), the remaining battery of MD 𝑛𝑠 when offloading is given as:

𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑜 𝑓
𝑛𝑠 = 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑙𝑒𝑣𝑒𝑙

𝑛𝑠 −
𝐸

𝑜 𝑓
𝑛𝑠 × 100

𝐸𝑚𝑎𝑥
(2.10)

The total cost of MD 𝑛𝑠 through task offloading is given by:

𝐶
𝑜 𝑓
𝑛𝑠 = 𝛽1𝑡

𝑜 𝑓
𝑛𝑠 + 𝛽2𝐸

𝑜 𝑓
𝑛𝑠 (2.11)

Based on (2.3) and (2.11), the weighted sum cost of all MDs in terms of completion time and

energy consumption can be expressed as

𝐶𝑎𝑙𝑙 =
N𝑠∑

𝑛𝑠=1

(1 − 𝑎𝑛𝑠 )𝐶
𝑙𝑐
𝑛𝑠 + 𝑎𝑛𝑠𝐶

𝑜 𝑓
𝑛𝑠 (2.12)

For the convenience of understanding, the mathematical notations used in this thesis are summa-

rized in Table 2.1.
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Table 2.1 List of Notations

Symbol Definition

S The set of the interconnected ESs

N𝑠 The set of MDs covered by each ES 𝑠

𝐹𝑠 The available computational resources

𝑊𝑠 The available wireless bandwidth of ES 𝑠

𝑓𝑛𝑠 The computing capabilities of MD 𝑛𝑠 ∈ N𝑠, i.e., CPU cycles per second

𝑝𝑛𝑠 The uplink transmission power of MD 𝑛𝑠 ∈ N𝑠

𝑑𝑛𝑠 The amount of input data to be processed

𝑐𝑛𝑠 The workload, i.e., the total number of CPU cycles required

𝜏𝑛𝑠 The maximum tolerable end-to-end delay for the task

𝑒𝑛𝑠 The maximum tolerable energy consumption for the task

𝑡𝑙𝑐
𝑛𝑠 The local execution time

𝐸𝑙𝑐
𝑛𝑠 The local energy consumption for the MD

𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑙𝑒𝑣𝑒𝑙
𝑛𝑠 The mobile battery level

𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑙𝑐
𝑛𝑠 The remaining mobile battery when executing task locally

𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑜 𝑓
𝑛𝑠 The remaining mobile battery when offloading

𝐸𝑚𝑎𝑥 The maximum energy of the mobile battery

𝑡
𝑜 𝑓
𝑛𝑠 The total end-to-end delay when offloading

𝐸
𝑜 𝑓
𝑛𝑠 The energy consumption for MD 𝑛 when offloading

𝑡𝑡𝑟
𝑛𝑠 The uplink transmission time

𝑡𝑒𝑥
𝑛𝑠 The execution time at the MEC server

𝑡
𝑝𝑟
𝑛𝑠,𝑠′ The propagation delay for the ES-to-ES communication

𝑟
𝑜 𝑓
𝑠 The number of offloaded tasks to 𝑠

𝑤𝑛𝑠 The bandwidth assigned to MD 𝑛𝑠 to upload its task input data to 𝑠

𝜅 The consumed energy per CPU cycle in joules

𝑝𝑠
𝑛 The uplink transmission power of MD 𝑛
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Symbol Definition

𝑎𝑛𝑠 Binary variable representing the execution mode for task 𝑛𝑠

𝑘𝑠′
𝑛𝑠 Binary variable to signify the transferring of the offloaded task 𝑛𝑠 from ES

𝑠 to 𝑠′

A𝑠 The offloading decision vector for all the MD devices connected to ES 𝑠

𝐾𝑛𝑠 The transferring decision vector

K𝑠 The transferring decision matrix for the tasks of each ES 𝑠

𝐶𝑙𝑐
𝑛𝑠 The total cost of local computing

𝐶
𝑜 𝑓
𝑛𝑠 The total cost of remote computing

𝐶𝑎𝑙𝑙 The weighted sum cost of all MDs in terms of completion time and energy

consumption

𝑝𝑛𝑠 ,𝑎𝑛𝑠
Probability that an agent 𝑛𝑠 select action 𝑎𝑛𝑠

𝑅(𝑖)𝑛𝑠 Reward of each MD 𝑛𝑠 in the 𝑖-th iteration

𝛽1, 𝛽2 Weights selected based on the device configuration and the application

needs

𝑍1, 𝑍2 Gain coefficients which help bring the respective terms of reward equation

2.1.2 Problem Formulation and Analysis

Edge computing resources are limited to micro data centers typically consisting of only a few

servers (Avgeris et al., 2022). As a result, it is not uncommon for an ES to become overloaded

when handling offloaded requests. To address this challenge and maintain a high level of QoS

for MDs, an effective approach is to balance the offloaded workload by transferring tasks from

overloaded ESs to underloaded ones for execution. In our work, we explore two task-offloading

opportunities:
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1. MD-to-ES, this refers to the typical computational task offloading between the user device

and the edge site.

2. ES-to-ES, this concerns the cooperation between different sites within the infrastructure,

aimed at enhancing the effectiveness of the first phase (MD-to-ES).

We formulate the joint task offloading problem for MEC infrastructures as an optimization

problem. Our objective is to minimize the weighted sum cost in terms of the completion time

and the energy consumption for all the MDs. Under the constraint of maximum tolerable delay

and energy consumption, the problem can be formulated as follows:

min
A𝑠,K𝑠

∑
𝑠∈S

∑
𝑛𝑠∈N𝑠

[(1 − 𝑎𝑛𝑠 ) (𝛽1𝑡𝑙𝑐
𝑛𝑠 + 𝛽2𝐸𝑙𝑐

𝑛𝑠 ) (2.13a)

+ 𝑎𝑛𝑠 (𝛽1𝑡
𝑜 𝑓
𝑛𝑠 + 𝛽2𝐸

𝑜 𝑓
𝑛𝑠 )]

s.t. 𝑎𝑛𝑠 ∈ {0, 1},∀𝑛𝑠 ∈ N𝑠,∀𝑠 ∈ S, (2.13b)

𝑘𝑠′

𝑛𝑠 ∈ {0, 1},∀𝑛𝑠 ∈ N𝑠,∀𝑠, 𝑠′ ∈ S, (2.13c)∑𝑠′≠𝑠

𝑠′∈𝑆
𝑘𝑠′

𝑛𝑠 ≤ 1,∀𝑛𝑠 ∈ N𝑠,∀𝑠 ∈ S, (2.13d)

(1 − 𝑎𝑛𝑠 )𝑡
𝑙𝑐
𝑛𝑠 + 𝑎𝑛𝑠 𝑡

𝑜 𝑓
𝑛𝑠 ≤ 𝜏𝑛𝑠 ,∀𝑛𝑠 ∈ N𝑠, (2.13e)

(1 − 𝑎𝑛𝑠 )𝐸
𝑙𝑐
𝑛𝑠 + 𝑎𝑛𝑠𝐸

𝑜 𝑓
𝑛𝑠 ≤ 𝑒𝑛𝑠 ,∀𝑛𝑠 ∈ N𝑠, (2.13f)

where the weights 𝛽1, 𝛽2 ≥ 0, 𝛽1 + 𝛽2 = 1, are selected based on the device configuration and

the application needs. Constraint (2.13b) represents the computation offloading decision, while

(2.13c) the task transferring between sites. Constraint (2.13d) ensures that a task is transferred

to at most one server, while (2.13e) guarantees that the task completion time should not exceed

the maximum tolerable delay 𝜏𝑛𝑠 , either when executed locally or remotely. Finally, constraint

(2.13f) ensures that the task energy threshold is respected, with 𝑒𝑛𝑠 being the maximum tolerable

energy consumption. Since task offloading decision set A𝑠 is composed of binary variables,

both the feasible set and the objective function of Problem (2.13) are not convex, making it

challenging to solve the problem. Fortunately, as demonstrated in the literature (Li et al., 2018)
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this kind of NP-hard problem can be easily solved effectively by applying RL methods rather

than conventional optimization methods. (Avgeris et al., 2023)

2.2 Energy-Aware Computational Offloading Mechanism

Leveraging the power of RL, a two-stage computational offloading mechanism is proposed to

simultaneously minimize the delay and energy consumption at the MD layer while achieving

load balancing at the distributed edge infrastructure. In the first stage, the offloading decision

problem is solved using a decentralized approach based on SLA. For the second stage, we initially

propose a value-iteration-based RL approach utilizing QL, to balance the offloaded workload at

the edge and minimize the processing delay for the offloaded tasks. Later, to overcome the curse

of dimensionality, we propose a DQN method that combines deep learning and RL to solve the

same problem. These two stages are combined into a multi-round cooperative computational

offloading mechanism which iteratively optimizes the offloading and transferring decisions until

converging to a stable solution.

2.2.1 First Stage: MD-to-ES Task Offloading

We assume that each MD 𝑛𝑠 ∈ 𝑁𝑠 acts as an agent where each offloading decision 𝑎𝑛𝑠 ∈ {0, 1}

corresponds to the SLA action. Then, each agent’s chosen action in iteration 𝑖 is based on

a probability distribution 𝑝𝑛𝑠 ,𝑎𝑛𝑠
∈ P({0, 1}) kept over the action-set and in each iteration;

𝑝𝑛𝑠 ,𝑎𝑛𝑠
(𝑖) is the probability that an agent 𝑛𝑠 select action 𝑎𝑛𝑠 in iteration 𝑖, and P({0, 1}) is the

set of probability distributions over the available action set. Initially, all action probabilities

would be equal and hence the action is randomly chosen and the probabilities are updated in

every iteration. Based on the problem formulation in (2.13a), we define the reward of each MD

𝑛𝑠 in the 𝑖-th iteration as:

𝑅(𝑖)𝑛𝑠 = 𝛽1 · (1−
1

1 + 𝑒−𝑍1 [(1−𝑎
(𝑖)
𝑛𝑠 )𝑡

𝑙𝑐
𝑛𝑠+𝑎

(𝑖)
𝑛𝑠 𝑡

𝑜 𝑓
𝑛𝑠 −𝜏𝑛𝑠 ]

)+𝛽2 · (1−
1

1 + 𝑒−𝑍2 [(1−𝑎
(𝑖)
𝑛𝑠 )𝐸

𝑙𝑐
𝑛𝑠+𝑎

(𝑖)
𝑛𝑠 𝐸

𝑜 𝑓
𝑛𝑠 −𝑒𝑛𝑠 ]

), ∈ [0, 1],

(2.14)
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where 𝑍1, 𝑍2 ∈ R
+ are gain coefficients which help bring the respective terms of Eq. (2.14) close

to 1 when the total delay is less than 𝜏𝑛𝑠 and the energy consumption less than 𝑒𝑛𝑠 , and close to

0 otherwise. In this way, we embody constraints (2.13e) and (2.13f) into the reward function.

The update rule of the SLA is based on the idea that if an action is selected by the agent 𝑛𝑠 in

iteration 𝑖, and the reward value 𝑅(𝑖)𝑛𝑠 received is high, then the probability of choosing this action

in the next iteration of the learning procedure increases, with regards to the magnitude of the

perceived reward.

The commonly used update rule in the research literature is the linear reward-inaction (LRI)

defined as follows:

𝑝 (𝑖+1)𝑛𝑠 ,𝑎𝑛𝑠
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑝 (𝑖)𝑛𝑠 ,𝑎𝑛𝑠
+ 𝑏 · 𝑅(𝑖)𝑛𝑠 · (1 − 𝑝 (𝑖)𝑛𝑠 ,𝑎𝑛𝑠

), when 𝑎 (𝑖+1)𝑛𝑠 = 𝑎 (𝑖)𝑛𝑠

𝑝 (𝑖)𝑛𝑠 ,𝑎𝑛𝑠
− 𝑏 · 𝑅(𝑖)𝑛𝑠 · 𝑝

(𝑖)
𝑛𝑠 ,𝑎𝑛𝑠

, otherwise

(2.15)

The learning rate parameter, 0 < 𝑏 < 1, controls the convergence of this stage. The system

converges to a stable solution when at least one state probability is close to 1, for each 𝑛𝑠.

Algorithm 2.1 explains the procedure of SLA-based decision-making.

Algorithm 2.1 Learning Automata Offloading Algorithm

1 Initialize the action probabilities.

2 Select an action randomly.

3 Compute the total completion time, remaining battery, and the reward using equations

2.1, 2.2, 2.9, 2.10 and 2.14.

4 Update the action probabilities.

5 if probability of any action ≈ 1 then
6 The chosen action is the optimal one.

7 else
8 Select the action with the highest probability. Go to step 3.

9 end if
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2.2.2 Second Stage: ES-to-ES Transferring

As the offloading decisions of the first stage are made in a distributed fashion, chances are that an

ES might become overloaded with tasks, which can potentially hinder the processing times. In

this direction, exploring a cooperative solution among the ESs, in the form of task transferring,

is vital to satisfy the QoS of the users. This step is performed right before calculating the

reward 𝑅(𝑖)𝑛𝑠 in Eq. (2.14) and specifically produces the remote execution delay 𝑡
𝑜 𝑓
𝑛𝑠 .To solve

this problem, we first employ a QL-based algorithm (Algorithm 2.2), and subsequently, we

implement a DQN-based algorithm (Algorithm 2.3), incorporating the following elements:

• State: we define as state a vector that contains the available computational capacity in each

ES, after considering the MDs’ offloading decisions 𝑎𝑛𝑠 of the first stage;

𝜎 = {𝐹𝑠 −

𝑁𝑠∑
𝑛𝑠=1

𝑎𝑛𝑠𝑐𝑛𝑠 |𝑠 ∈ S}
1×𝑆

A state is terminal if it contains only zeros or negative values.

• Action: as an action we use the task transferring decision matrix introduced in Section 2.1,

allowing, however, only one task transferring in the infrastructure per action;

𝛼 = {K𝑠 |𝑠 ∈ S,
∑

𝑠∈𝑆

∑
𝑛𝑠∈N𝑠

∑𝑠′≠𝑠

𝑠′∈𝑆
𝑘𝑠′

𝑛𝑠 ≤ 1}𝑆×(𝑆×𝑁𝑠)

• Reward: as we opt for driving our edge infrastructure towards a balanced workload

distribution, the first term of the reward in this stage is the difference between the current (𝜎)

and the next (𝜎′) state’s sum of positive values, i.e., sites where the offloaded workload is

greater than the available capacity. The second term penalizes the transferring of tasks to

remote ESs, an action which increases the additional propagation delay:

R𝜎,𝜎′,𝛼 = 𝛿1(

𝜎𝑠>0∑
𝑠∈S

𝜎𝑠 −

𝜎′𝑠>0∑
𝑠∈S

𝜎′𝑠) + 𝛿2(
∑
𝑠∈𝑆

∑
𝑛𝑠∈N𝑠

𝑠′≠𝑠∑
𝑠′∈𝑆

𝛼𝑛𝑠 ,𝑠′𝑡
𝑝𝑟
𝑛𝑠 ,𝑠′
)−2, (2.16)

where 𝛿1, 𝛿2 ∈ R
+, are properly selected weights that balance the contribution of the two

terms in the reward.
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2.2.2.1 QL-based Task Transferring Training

We first try to achieve load balancing at the edge layer using a QL approach. Algorithm 2.2 is

executed only once and offline, it produces the matrix 𝑄(𝜎, 𝛼) which contains the expectation

of the long-term reward (calculated through the Bellman equation for TD learning, line 7) for

each infrastructure state and transferring decision, after being trained on numerous state-action

pairs; 𝜁 is the learning rate that satisfies 0 < 𝜁 < 1, while 0 < 𝛾 < 1 is the discount factor, used

to model the uncertainty in the future actions.

Algorithm 2.2 QL-based Task Transferring Training

1 Initialize with zeros: 𝑄(𝜎, 𝛼).
2 for each episode do
3 Choose a random infrastructure state 𝜎.

4 while current state is not terminal do
5 Select a task transferring action 𝛼.

6 Execute 𝛼, produce 𝜎′ and collect R𝜎,𝜎′,𝛼.

7 𝑄(𝜎, 𝛼) ← 𝑄(𝜎, 𝛼) + 𝜁 (R𝜎,𝜎′,𝛼 + 𝛾 𝑚𝑎𝑥𝛼′ 𝑄(𝜎′, 𝛼′) −𝑄(𝜎, 𝛼))
8 𝜎 ← 𝜎′

9 end while
10 end for

As the number of ESs and MDs becomes larger, training Algorithm 2.2 on a sufficient number

of episodes becomes a tedious and bulky task, as the possible infrastructure states grow

exponentially in size. To overcome this, we propose the use of a DNN to estimate 𝑄(𝜎, 𝛼),

which constitutes the basic idea behind DQN and is briefly presented in Algorithm 2.3 in the

following subsection.

2.2.2.2 DQN-based Task Transferring Training

DQN is a popular and foundational RL algorithm that combines the principles of QL and DNNs

to approximate and learn the optimal action-value function in RL problems. We make use of

experience replay to improve the sample efficiency and stability of training, while we adopt

the 𝜖-greedy policy for the task transferring action selection since it gives us a better balance
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between exploration and exploitation. To update the weights of the 𝑄 network, we use the

Stochastic Gradient Descent (SGD) algorithm.

Stochastic Gradient Descent: Gradient descent is a form of gradient-based learning in which

the Neural Network (NN) learns by stepping toward a local minimum. SGD is an extension of

the gradient descent algorithm, it begins by calculating the gradient of the loss function with

respect to the model’s parameters. The gradient essentially tells us how the loss would change

if we made small adjustments to each parameter. SGD is computationally efficient as it only

makes use of a single sample selected randomly from the dataset to perform gradient descent.

During each iteration with a mini-batch, SGD adjusts the model’s parameters to reduce the loss

by subtracting a fraction of the gradient called the learning rate from the current parameter

values. The learning rate controls the size of the steps taken during each update. This process is

repeated for several rounds called epochs, wherein all the mini-batches are processed, allowing

the model to progressively refine its parameters. (Li, 2022; Omland, 2022)

Algorithm Description: We start by randomly initializing the Q-network 𝑄 and the target

network �̂�. Additionally, we initialize an ER memory D to store past experiences. During the

sampling phase, the exploration-exploitation trade-off is adjusted using an exploration rate 𝜖 ,

which is gradually decreased favoring exploitation of the best-known actions using an 𝜖-decay

strategy (line 4). A task transferring action 𝛼 is chosen using an 𝜖-greedy policy and the

transition (𝜎, 𝜎′, 𝛼,R, 𝑑𝑜𝑛𝑒) is stored in the ER memory D.

Upon accumulating a sufficient number of experiences, we transition to the learning phase. We

sample a minibatch of 𝑀 transitions from the ER memory. For each transition, in the minibatch,

If the agent reaches the final state, we use the immediate reward as the target value. Otherwise,

we determine the target value by considering both the immediate reward and the expected future

value of the next state based on the best available actions (lines 11-18).

We quantify the training progress by measuring the loss L as the Mean Squared Error (MSE)

between the 𝑄-values predicted by the Q-network and the target values (line 19). The Q-network

parameters are updated using SGD to enhance training. Additionally, for every C step, we
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Algorithm 2.3 DQN-based Task Transferring Training

1 Initialize network 𝑄 and target network �̂� randomly.

2 Initialize experience replay memory D.

3 while not converged do
// Sampling Phase

4 𝜖 ← set new epsilon with 𝜖-decay.

5 Select a task transferring 𝛼 using 𝜖-greedy policy.

6 Execute 𝛼, produce 𝜎′ and collect R𝜎,𝜎′,𝛼.

7 𝑑𝑜𝑛𝑒 ←
∑𝜎𝑠>0

𝑠∈S
𝜎𝑠 == 0

8 Store transition (𝜎, 𝜎′, 𝛼,R, 𝑑𝑜𝑛𝑒) in D.

9 if enough experiences in D then
// Learning Phase

10 Sample minibatch of 𝑀 transitions from D.

11 for each (𝜎𝑚, 𝜎′𝑚, 𝛼𝑚,R𝑚, 𝑑𝑜𝑛𝑒𝑚) ∈ 𝑀 do
12 if 𝑑𝑜𝑛𝑒𝑚 then
13 𝑦𝑚 ← R𝑚

14 end if
15 else
16 𝑦𝑚 ← R𝑚 + 𝛾𝑚𝑎𝑥𝛼′�̂�(𝜎

′
𝑚, 𝛼′)

17 end if
18 end for
19 Loss L = 1

𝑀

∑𝑀−1
𝑚=0 (𝑄(𝜎𝑚, 𝛼𝑚) − 𝑦𝑚)

2

20 Update 𝑄 using SGD by minimizing L.

21 Every C steps, copy weights from 𝑄 to �̂�.

22 end if
23 end while

synchronize the Q-network and the target network by copying weights from 𝑄 to �̂�, promoting

stability in training (line 21).
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2.2.3 Two Stage Cooperative MEC Computational Offloading

Figure 2.1 Two-stage Cooperative MEC Computational

Offloading

To sum up, the proposed cooperative MEC offloading mechanism operates in two steps per

iteration, as illustrated in Figure 2.1 and Algorithm 2.4. Each MD of every ES temporarily

selects whether to offload their current task or execute it locally, based on the probabilities of the

SLA algorithm (Section 2.2.1), and a load balancing is performed between the ESs to improve

the response time of the offloaded tasks, based on an offline-trained NN (Section 2.2.2). The

outcomes of this decision are fed back to the first stage to update the rewards and probabilities

for the next iteration until convergence to a stable solution that satisfies the delay and energy

consumption constraints is achieved.
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Algorithm 2.4 Two-stage Cooperative MEC Computational Offloading

// Offline

1 Train the 𝑄 network using Algorithm 2.3.

// First Stage (Online)

2 Initialize the offloading decision probabilities.

3 𝑖 ← 0

4 while not converged do

5 for each ES 𝑠 ∈ S and MD 𝑛𝑠 ∈ N𝑠 do

6 Select offloading action 𝑎 (𝑖)𝑛𝑠 based on 𝑝 (𝑖)𝑛𝑠 ,𝑎𝑛𝑠
.

7 end for

// Second Stage (Online)

8 Calculate infrastructure state 𝜎.

9 while ∑𝜎𝑠<0

𝑠∈S
𝜎𝑠 < 0 do

10 Select transferring action 𝛼 with the highest 𝑄 value. Execute 𝛼 and produce 𝜎′.

11 𝜎 ← 𝜎′

12 end while

13 for each ES 𝑠 ∈ S and MD 𝑛𝑠 ∈ N𝑠 do

14 Calculate reward 𝑅(𝑖)𝑛𝑠 using Eq. (2.14).

15 Update decision probabilities 𝑝 (𝑖)𝑛𝑠 ,𝑎𝑛𝑠
.

16 end for

17 𝑖 ← 𝑖 + 1

18 end while

This chapter presented our solution, a two-stage cooperative RL-based scheme for energy-aware

computational offloading at the edge of the network. In the first stage, distributed and autonomous

task offloading decision-making in the MDs is enabled, based on SLA. The second stage devises

a QL approach to allow for task transferring between the edge sites and alleviate potential
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overloading phenomena. In the next chapter, we will compare our solution with a well-known

similar work in the literature and present the numerical results.





CHAPTER 3

PERFORMANCE EVALUATION

This chapter presents the performance evaluation of our proposed framework. We start by

comparing the training time between the DQN and the plain QL algorithms used for the second

stage of our solution. Next, we examine the online convergence behavior of our algorithm.

Finally, we perform a comparative evaluation against a well-known work from the literature, Li

et al. (Li et al., 2018), and two baseline algorithms, one where all the tasks are executed on the

MD (“On-device”) and one where all the requests are offloaded (“Remote”).

3.1 Benchmark solution

In this part, we will briefly explain the work of (Li et al., 2018) which is similar to our work.

The authors designed two RL-based solutions for a multi-user MEC computation offloading

system with the objective of minimizing the sum cost, which is a combination of delay and

energy consumption for all user equipment in the system.

They started by introducing a QL-based approach. Furthermore, the authors introduce a

pre-classification step before the learning process to manage the potentially explosive growth of

the action space as the number of User Equipment (UE) increases. For each UE, the system

checks if in the case of local computing the local execution delay is less or equal to the maximum

tolerable delay of the task. If this constraint cannot be satisfied locally, the UE is classified as

an “offloading UE" for the current decision period and the constraint ensures that the allocated

resource for each UE is sufficient to meet the computation and communication requirements of

the user without violating the latency constraints. This approach helps manage the complexity of

the RL problem, especially when dealing with a large number of UEs in the system. It reduces

the possible value of the offloading decision vector and computational resource allocation to

limit the action space of the RL agent.

However, even by applying this pre-classification, the authors recognized that the number of

possible actions can become unwieldy as the number of users increases, making it challenging to
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compute and store action values (Q-values). To address this issue, they introduced the utilization

of DQN which relies on DNN to estimate the Q-values, offering a more efficient way to manage

the complexities associated with a large action space.

3.2 Evaluation parameters

The two algorithms training were performed on a MacBook Air with a 16-core Neural Engine

M2 chip and 16GB of RAM. We examined a MEC infrastructure composed of 2 − 25 ESs, each

connected to a varying number of 5−10 MDs. The available resources of each ES range between

{8𝐺𝐻𝑧, 48𝑀𝑏𝑝𝑠} and {10𝐺𝐻𝑧, 50𝑀𝑏𝑝𝑠}, while the MDs possess capabilities ranging from

{1𝐺𝐻𝑧, 498𝑚𝑊} and {2𝐺𝐻𝑧, 502𝑚𝑊}. Each MD executes a single application with the

following attributes: {1000𝑘𝑏𝑖𝑡𝑠, 2000𝑀𝑐𝑦𝑐𝑙𝑒𝑠, 1080𝑚𝑠, 4𝐽}. The energy consumption per

CPU cycle is set to 𝜅 = 10−27( 𝑓𝑛𝑠 )
2 following (Li et al., 2018).

In the first stage of the algorithm, we strive for a balanced reward between energy consumption

and delay (Eq. (2.14)) achieved by setting the parameters 𝛽1 and 𝛽2 = 0.5 to 0.5, and 𝑍1 and 𝑍2

to 1. The learning parameter is assigned a value of 𝑏 = 0.6 and we assume that convergence is

achieved when one action probability for every MD is ≥ 0.9.

Moving on to the second stage, we establish reward weights 𝛿1 as 0.0005 and 𝛿2 as 50 to balance

the contribution of the load balancing and propagation delay minimization factors. The learning

rate is set to 𝜁 = 0.1 and the discount factor to 𝛾 = 0.9. We employ a neural network consisting

of 2 hidden layers, each with 700 and 600 neurons, respectively. The experience replay memory

size is set to 105 and the minibatch size 𝑀 = 256. The target network’s weights, denoted as

�̂� are updated every 4 steps. We assess the training convergence by monitoring the average

improvement in the reward (Eq. (2.16)) over the last 100 episodes, concluding that convergence

has been reached when this improvement is less than 1%.
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3.3 Numerical Results

3.3.1 Training time comparison

As seen below in Fig. 3.1, the QL algorithm training duration grows exponentially with the

number of ESs, which makes it an unrealistic alternative when this number is greater than 5

(equivalent to more than 7 days of real-time training). On the other hand, DQN provides a far

more tractable training process, with its duration showcasing a linear behavior to the number

of ESs. Although the training is performed only once and offline, scalability is still important

for applying our framework to larger infrastructures, which makes DQN a far more preferable

choice.

Figure 3.1 Training time
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3.3.2 Online convergence behavior

Fig. 3.2 illustrates the average collected reward (Eq. (2.14)), for various infrastructure settings

over 25 iterations, for 100 experiment repeats. We observe that when fixing the average number

of MDs per site, increasing the number of ESs tends to yield a higher average reward for each

MD, as more computational resources become available in the infrastructure. On the other hand,

when fixing the number of ESs, increasing the number of average MDs per ES naturally results

in lower rewards, as the competition for the available computational resources becomes stiffer.

In any case, convergence to a stable solution is reached after 25 iterations which translates to less

than 1𝑠𝑒𝑐 of execution time, making our framework effectively a real-time decision-making tool.

Figure 3.2 Convergence Behavior
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3.3.3 Comparative evaluation

In this scenario, 25 ESs were considered, each one having an average of 7 MDs connected to it,

which made some ESs overloaded when fully offloading. That is why we can see in Fig. 3.3

that the Remote’s average achieved delay is the highest. We observe that our proposed solution

manages to overcome this issue by transferring requests from the overloaded to the underloaded

ESs. On the other hand, the algorithm in (Li et al., 2018) selects the on-device execution for

some MDs connected to the overloaded ESs, resulting in a slightly higher average delay.

Figure 3.3 Benchmarking: Delay

Regarding energy consumption, as we can see in Fig. 3.4, the On-device execution performs

the worst, as expected, and the proposed solution being as energy efficient for the MDs as the
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Remote algorithm. The algorithm in (Li et al., 2018) again scores slightly worse in this metric,

as instead of transferring some tasks to underloaded sites, it selects the on-device execution. All

in all, the presence of the load balancing mechanism in our framework, makes it capable of

exploring the execution alternatives in the infrastructure, for MDs connected to overloaded ESs,

achieving a better delay and energy consumption compared to typical on-device and/or remote

execution solutions.

Figure 3.4 Benchmarking: Energy
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3.4 Result discussion

Through rigorous experimentation, we showed that the proposed framework outperforms the

baseline solutions including one where all tasks are executed on the MDs and another where

all requests are offloaded to a remote server, and a well-known similar work in the literature

in terms of both delay and energy efficiency. Our investigation into training time comparisons

between the DQN and plain QL algorithms has illuminated the critical role of scalability in

decision-making processes within MEC infrastructures. As we navigate the complexities of

decision-making in the context of MEC infrastructures, it becomes evident that the number of

possible states and actions can increase exponentially with the expansion of ESs and MDs. This

leads to what is often termed the "curse of dimensionality," a scenario where the computational

requirements for implementing QL become exceedingly burdensome.

The linear and tractable nature of DQN training process, even when dealing with an increasing

number of ESs, positions it as a compelling choice for real-world implementation. Moreover,

our examination of online convergence behavior has underscored the remarkable efficiency

of our algorithm. It rapidly converges to stable solutions, this solidifies its position as an

indispensable real-time decision-making tool for managing computational resources in dynamic

MEC environments.

The comparative evaluation against a well-established similar work and baseline algorithms has

emphasized the pragmatic efficacy of our proposed solution. Significant enhancements were

observed when it came to reducing both end-to-end delay and energy consumption in contrast

to typical on-device and remote execution solutions. Conversely, the algorithm of the prior

literature work prioritizes on-device execution for specific MDs connected to overloaded ESs

over task redistribution to the underloaded ones resulting in a slightly higher average delay and

energy consumption.





CONCLUSION AND RECOMMENDATIONS

This thesis has addressed the critical challenge of task-offloading decision-making in MEC

environments adopting the RL and DRL-based techniques. In the context of our work, our

focus extends to a multi-user, multi-site MEC infrastructure with the core aim to simultaneously

diminish both the end-to-end delay of applications and the energy usage of MDs while they

perform computationally demanding tasks. Together, these two metrics form the sum cost of the

entire system and support the fundamental user experience. Orchestrating these objectives to

ensure a seamless fusion of performance optimization, user satisfaction, and energy efficiency is

challenging.

To address this challenge, we introduced a novel two-stage cooperative, RL-based mechanism,

designed to address the critical challenges of energy-aware computational offloading at the

network edge. In the first stage of our approach, MDs autonomously make distributed task-

offloading decisions using an iterative RL-based mechanism where each MD functions as SLA.

In each iteration of this process, individual MDs autonomously determine whether to offload their

tasks to the attached ES or execute the tasks locally. This stage enabled intelligent, on-device

decision-making for offloading, aiming to optimize its energy consumption.

The second stage of our framework ensures efficient and dynamic task allocation across the

edge infrastructure. We integrated an ES-to-ES cooperative offloading mechanism aiming to

balance the workload across the infrastructure by proactively transferring tasks from overloaded

ESs to underloaded ones. To this end, we first implemented a QL mechanism, but when the

number of ESs and MDs increased, training QL with a substantial number of episodes became a

laborious and cumbersome process, due to the exponential expansion in the number of potential

infrastructure states. To overcome this, an offline-trained DQN was employed at the end of each

iteration in the first stage. The updated processing delays are subsequently fed back to the MDs,

enabling them to reconsider their offloading decisions.



52

The culmination of our work is the merging of these two stages into a multi-round collaborative

computational offloading mechanism. This mechanism iteratively enhances the decisions made

by both the MDs and the ESs, leading to the stable convergence of the optimization problem.

The collective actions of MDs and ESs are coordinated to achieve the most favorable trade-off

between processing delay and energy consumption.

As discussed in the section 3.4, our research has yielded compelling results showcasing that the

proposed framework outperformed both the baseline solutions a well-known prior work in the

field. Noteworthy improvements in terms of reducing end-to-end delay and energy consumption

were observed. Our findings reveal that the incorporation of the load balancing mechanism in

our framework empowers it to explore various execution alternatives within the infrastructure for

MDs linked to overloaded ESs, ultimately achieving superior outcomes in terms of both delay

and energy consumption. This accomplishment validates the effectiveness of our two-stage

cooperative RL-based approach in tackling the crucial challenges related to computational

offloading.

However, despite our significant outcomes, a notable limitation of our work lies in the static

nature of our current framework. We must acknowledge that our approach failed to consider

the dynamic aspects associated with users’ movements within the network, a vital aspect of

real-world scenarios where mobile users are in constant motion. This can significantly impact

the MEC environment’s state and resource allocation requirements. To enhance the effectiveness

of our framework, it would be beneficial to integrate users’ mobility patterns into our decision-

making process. Additionally, we must address the challenge of increased dimensionality in

the state space. In future work, we aim to mitigate these limitations by incorporating user

mobility patterns into our decision-making process. Additionally, we intend to delve into the

exploration of alternative learning techniques capable of handling the expanding complexities

of state spaces, ensuring that our solutions remain adaptable and practical in dynamic MEC
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environments. By doing so, our objective is to enhance the adaptability of our approach to

the dynamic and practical nature of edge computing scenarios. Furthermore, we intend to

delve into the exploration of alternative learning techniques capable of managing the expanding

complexities of state spaces in these continuously evolving environments. These efforts will

ensure that our research stays at the cutting edge of addressing the evolving demands related to

energy-conscious computational offloading at the network’s edge

In summary, our work delivers a threefold contribution by introducing an innovative two-stage

RL-based mechanism for computational offloading in a cooperative MEC environment. Through

this work, we not only tackle the challenges of multi-site MEC infrastructures, but we also

address the issue of workload balancing through cooperative offloading from one ES to another.

The amalgamation of these stages forms a holistic approach that optimizes decision-making and

converges towards stable solutions, as underscored by the promising results obtained through

simulation studies. In the future, our ongoing endeavors will be geared towards further enhancing

the flexibility and efficiency of our approach.

The work described in this thesis has been published in the following paper:

Publications

The main content of this thesis was published in the 2023 IEEE 24th International Conference

on High-Performance Switching and Routing (HPSR):
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A Two-Stage Cooperative Reinforcement Learning Scheme for Energy-Aware Computational

Offloading. In : 2023 IEEE 24th International Conference on High Performance Switching and

Routing (HPSR). IEEE, 2023. p. 179-184. https://doi.org/10.1109/HPSR57248.2023.10147932
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