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RÉSUMÉ 
 
Les nouveau-nés communiquent leurs besoins et leurs malaises en pleurant. Au fil des années, 
les chercheurs ont découvert que ses pleurs donnent beaucoup d’informations sur la santé, les 
besoins et l’état émotionnel du nouveau-né. 
 
Cependant, ces informations ne sont pas évidentes pour l'oreille humaine et il existe un besoin 
pour le développement de systèmes précis capables de percevoir les informations transmises 
par le signal de ces pleurs. Le fait que les pleurs des nouveau-nés ne soient pas compris entraîne 
de nombreuses complications car ils ne peuvent pas informer les soignants sur leurs besoins. 
C'est peut-être l'une des raisons des taux élevés de mortalité néonatale dans le monde. En fait, 
les nouveau-nés courent les risques les plus élevés parmi tous les groupes d'âge des jeunes 
adolescents. Par conséquent, le développement et l'introduction d'un outil automatisé 
susceptible de traduire les informations sous-jacentes à différents niveaux du signal des pleurs 
pourrait être bénéfiques pour sauver des milliers de vies.  
 
Le signal des pleurs a été identifié comme ayant des caractéristiques particulières qui 
pourraient être altérées en présence d'une pathologie ou sous l'impression d'un état émotionnel 
tel que la peur. Les différences entre les modèles de signaux de pleurs sains et pathologiques 
ont favorisé l'émergence de systèmes de diagnostic des pleurs du nouveau-né (NCDS) qui 
aident au diagnostic et distinguent les pathologies uniquement sur la base des signaux de pleurs 
du nouveau-né. Plus tard, on a découvert que les pleurs au stade néonatal sont simplement dus 
à des rythmes biologiques intrinsèques et indépendants et à une maturation sensorimotrice, ce 
qui signifie que le nouveau-né n'a aucun contrôle sur la génération des pleurs. Cette découverte 
a conduit à la reconnaissance des signaux de pleurs comme de puissants biomarqueurs dans 
l'identification des nouveau-nés pathologiques. 
 
Cette thèse visait à proposer un NCDS complet qui bénéficierait de méthodes et d'algorithmes 
simples mais efficaces pour produire une performance souhaitable. Cet objectif a été atteint à 
partir de deux perspectives : premièrement, la septicémie en tant que principale cause de décès 
néonatal a été ciblée, ce qui est sans précédent dans les conceptions NCDS; et deuxièmement, 
le NCDS a été amélioré à toutes les étapes de sa conception grâce à l'utilisation appropriée de 
nouvelles fonctionnalités, classificateurs, méthodes de fusion et d'optimisation. 
 
L'étape d'extraction des caractéristiques a été améliorée avec la combinaison appropriée de 
caractéristiques vocales et musicales qui représentaient différents niveaux d'information. Ces 
caractéristiques comprenaient des caractéristiques de bas niveau du centroïde spectral et du 
pic, des caractéristiques de niveau moyen de MFCC, GFCC et BFCC, et enfin, des 
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caractéristiques de haut niveau du rapport harmonique (harmonic ratio) et des caractéristiques 
delta et d'accélération pour le cepstral. 
 
Par la suite, l'espace des caractéristiques composé de diverses combinaisons de ces 
caractéristiques a été réduit pour éviter la redondance et la haute dimensionnalité avec une 
entropie floue (fuzzy) et des méthodes d'analyse des composants de voisinage (neighborhood 
component analysis) de la sélection des caractéristiques. Afin de consolider différents 
ensembles de fonctionnalités dans un espace de fonctionnalités uniforme, l'analyse de 
corrélation canonique (canonical correlation analysis) a été utilisée comme méthode de fusion 
au niveau des fonctionnalités. 
 
La prochaine étape du NCDS comprend la classification et le réglage fin des classificateurs 
pour chacune des expériences. Dans cette étude, nous avons utilisé les schémas de 
classification la machine à vecteurs de support, le K plus proches voisins (K-nearest 
neighborhood), le perceptron multicouche (multilayer perceptron) et les réseaux de longue 
mémoire à court terme pour classer les signaux de pleurs en fonction de leurs classes 
correspondantes. Chacun de ces classificateurs a été réglé avec différentes méthodes 
d'optimisation d'hyperparamètres telles que la recherche aléatoire, la recherche de grille (grid 
search) et Bayesian pour s'adapter à chaque expérience. 
 
La dernière étape de notre NCDS proposé introduit la méthode de fusion de modèles de 
décision (decision template fusion) pour fusionner les décisions prises par différents 
classificateurs qui ont été formés par diverses caractéristiques, ce qui permet l'utilisation de 
caractéristiques de différentes modalités et origines sans avoir besoin de mesures 
supplémentaires pour les combiner. Les performances du NCDS proposé ont été évaluées à 
l'aide de différentes mesures d'évaluation telles que la précision, l'aire sous la courbe ROC 
(AUC-ROC), la précision, le rappel et la F-mesure. 
 
L'objectif principal de cette étude était le développement d'un NCDS complet tout en gardant 
la pathologie inexplorée de la septicémie comme point focal. En conséquence, en plus de 
différencier les nouveau-nés septiques des nouveaux-nés sains, le NCDS a été conçu pour 
distinguer pour la première fois deux pathologies étroitement liées. Succédant aux réalisations 
précédentes, le NCDS a franchi une étape pour détecter les nouveau-nés septiques parmis un 
ensemble de 32 autres pathologies. Enfin, une conception complète non intrusive et non 
sophistiquée a été réalisée qui peut être utilisée comme système d'alerte pour signaler les 
nouveau-nés à risque plus élevé d'être diagnostiqué avec un groupe de pathologies critiques 
telles que la septicémie. 
 
Mots-clés: Système de diagnostic des pleurs du nouveau-né, Fusion, Modèle de décision, 
Analyse cepstrale, Crête, Coefficients cepstraux de fréquence d'écorce, Coefficients cepstraux 
de fréquence gammatone, Centroïde spectral, Crête spectrale, Rapport harmonique, Mémoire 
longue à court terme, Perceptron multicouche, Optimisation des hyperparamètres, Corrélation 
canonique Analyse, analyse des composants de voisinage, déformation du spectre 
psychoacoustique, fusion de décision, sélection de caractéristiques, réseaux de neurones, cri 
expiratoire et inspiratoire 
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ABSTRACT 

 
Newborns communicate their needs and discomforts through crying. Throughout the years, 
researchers discovered that the cry emanates opulent information about the newborn’s health, 
needs, and emotional state. However, this information is not evident to the human ear and there 
is an inevitable need for the development of precise systems capable of perceiving the 
information embodied in the cry signal. The abstruseness of the cry signal reveals the newborns 
to many complications since they cannot divulge their needs to their caregivers. This may be 
one of the reasons behind the high newborn mortality rates worldwide. In fact, the newborns 
face the highest risks among all the young adolescent age groups. Therefore, the development 
and introduction of an automated tool that is susceptible of translating the underlying 
information in different levels of the cry signal could be beneficial to saving thousands of lives.  
 
The cry signal was discerned to hold peculiar characteristics that could be altered in the 
presence of a pathology or under the impression of an emotional state such as fear. The 
differences across the patterns of healthy and pathologic cry signals promoted the emerge of 
Newborn Cry Diagnostic Systems (NCDS) that facilitate diagnosis and distinguishing the 
pathologies only based on the cry signals of the newborns. Later on, it was discovered that the 
cries during the neonatal phase are merely due to intrinsic and independent biological rhythms 
and sensorimotor maturation, which means that the neonate has no control over the cry 
generation. This discovery led to recognition of the cry signals as powerful biomarkers in 
identifying pathologic newborns.  
 
This thesis aimed to propose a comprehensive NCDS that would benefit from simple yet 
effective methods and algorithms to yield a desirable performance. This objective was realized 
from two perspectives: firstly, sepsis as a leading newborn mortality root was targeted which 
is unprecedented in NCDS designs; and secondly, the NCDS was improved across all stages 
of its design by the proper utilization of novel features, classifiers, fusion, and optimization 
methods.  
 
The feature extraction stage was improved with the apropos combination of speech-based and 
music-based features that represented different levels of information. These features included 
low-level features of spectral centroid and crest, mid-level features of MFCC, GFCC, and 
BFCC, and finally, high-level features of harmonic ratio and entropy for the cepstral analysis.  
Subsequently, the feature space consisting of various combinations of these features was 
pruned against redundancy and high dimensionality with fuzzy entropy and neighborhood 
component analysis methods of feature selection. In order to consolidate different feature sets 
into one uniform feature space, the canonical correlation analysis was employed as a fusion 
method at feature level.  



 X 

 
The next stage of the NCDS comprises classification and fine-tuning the classifiers for each of 
the experiments. In this study, we employed support vector machine, K-nearest neighborhood, 
multilayer perceptron, and long short-term memory classification schemes to classify the cry 
signals based on their corresponding classes. Each of these classifiers were tuned with different 
hyperparameter optimization methods such as random search, grid search, and Bayesian to fit 
each experiment. 
 
The final stage of our proposed NCDS introduces the decision template fusion method for the 
fusion of decisions made by different classifiers that were trained by diverse features that 
capacitates the employment of features from different modalities and origins without the need 
for any extra measures to combine them. The performance of the proposed NCDS was assessed 
through different evaluation measures such as accuracy, area under curve of receiver operator 
characteristic (AUC-ROC), precision, recall and F-score. 
 
The main target of this study was the development of a comprehensive NCDS while revolving 
around the unexplored pathology of sepsis as a focal point. Accordingly, in addition to 
identifying septic newborns from the healthy, the NCDS was designed to distinguish between 
two closely entangled pathologies for the first time. Succeeding the former accomplishments, 
the NCDS was taken one step former to detect septic newborns from an ensemble of 32 other 
pathologies. Finally, a comprehensive non-intrusive and unsophisticated design was attained 
that can be used as an alert system in marking the newborns encountering a higher risk of being 
diagnosed with a critical pathology group such as sepsis. 
 
 
 
Keywords: Newborn Cry Diagnostic System, Fusion, Decision Template, Cepstral Analysis, 
Crest, Bark-frequency Cepstral Coefficients, Gammatone-frequency Cepstral Coefficients, 
Spectral Centroid, Spectral Crest, Harmonic Ratio, Long Short-term Memory, Multilayer 
Perceptron, Hyperparameter Optimization, Canonical Correlation Analysis, Neighborhood 
Component Analysis, Psychoacoustic spectrum warping, Decision Fusion, Feature Selection, 
Neural Networks, Expiratory and Inspiratory Cry 
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INTRODUCTION 
 
0.1 Research Context 

The reports provided by United Nations Children’s Fund (Unicef, 2022) and World Health 

Organization (WHO) (World Health Organization, 2021) bear poignant statistics regarding the 

children and more specifically, newborn mortality rates. UNICEF states that in 2021 the 

number of under 5 years old children that did not survive due to preventable causes and 

infectious diseases amounted to 5 million. Moreover, sub-Saharan Africa and southern Asia 

had the highest mortality rates compared to all the other regions of the world.  

 

The reports from years 2019 to 2022 all show that the neonatal period (the first 28 days of life) 

is associated with the highest risk of mortality in children under 5 years old with 2.4 million 

deaths in 2020. It has been reported that 33% of all youth (under 25 years old) deaths occurs 

within the neonatal period of life which by far has the largest share of all other periods of life. 

This is drastic news given that there is no means for the neonates to elucidate they are suffering 

as they are only able to generate cries for different discomforts they encounter. Both the WHO 

and UNICEF mark infectious diseases such as sepsis, respiratory distress syndrome (RDS), 

and meningitis to be the mainspring of newborn mortality, causing more than 550000 deaths 

annually (World Health Organzation, 2014). The rate of possible serious bacterial infections 

(PSBI) in newborns aged less than two months old (0-59 days old) is 6.9 million in low- and 

middle-income countries (Unicef, 2020b). Moreover, the focal challenge in low-resource 

environments is lack of access to diagnostics laboratories and quality care during the first 

month of life (World Health Organization, 2021).  

 

Newborns impart their needs and emotional state through crying. Crying can stem from 

physical or emotional exigencies or discomfort such as hunger, wet diaper, and sleepiness. 

However, unlike speech -even with very limited vocabulary and incorrect pronunciations like 

toddlers-, a cry is not perspicuous to the caregivers of the newborn. This alone is enough reason 

for the newborns to be prone to dangers and health risks. Throughout the history, parents and 
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caregivers have tried to link certain types of cries to specific needs; or attribute the health status 

to various cry characteristics. Although it has been shown that even well-trained medical 

experts can achieve an accuracy of only 33% depending on the auditory capabilities to 

discriminate between different cries (Mukhopadhyay et al., 2013), the idea of considering 

newborn cries as a biomarker opened the door to many future studies and in-depth analysis of 

the cries. 

 

The newborn cries have been studied for an extensive variety of purposes that include detecting 

the cry in surveillance systems and Newborn Intensive Care Units (NICUs) (Kim, Kim, Hong, 

& Kim, 2013; Torres, Battaglino, & Lepauloux, 2017), segmenting and decomposition of the 

cry signal into its episodes, e.g., expiration, inspiration, hiccups, and silence (Abou-Abbas, 

Alaie, & Tadj, 2015; Aucouturier, Nonaka, Katahira, & Okanoya, 2011), evaluating the 

emotional state of the newborn, identifying the reason that initiated the cry, e.g., pain, hunger, 

wet diaper, or cold (Bano & RaviKumar, 2015; Cohen, Ruinskiy, Zickfeld, IJzerman, & 

Lavner, 2020; Parga et al., 2020), studying the effect of physical or environmental factors on 

the cry nature (Bellieni, Sisto, Cordelli, & Buonocore, 2004; Maitre et al., 2017; Mijović et al., 

2010) (Wasz-Hockert, Valanne, Vuorenkoski, Michelsson, & Sovijarvi, 1963) (Mampe, 

Friederici, Christophe, & Wermke, 2009), and finally, diagnosis of pathologies based on the 

cry signal (Ji, Mudiyanselage, Gao, & Pan, 2021). The focus of the presented study is the 

diagnostic aspect of the newborn cry signals.  

 

It was not until the late 1800s that researchers recognized the cry signals conveyed more 

information than simply being a sign of newborn’s discomfort and could be in fact a marker in 

distinguishing the morbid newborns (Bell, 1878; Skeptis, 1995). Copious studies support the 

fact that the healthy newborns’ cry signals are disparate from morbid newborns. The 

researchers observed that the spectrograms of the pathologic cry recordings had certain 

irregularities and attributes that eminently differed from the patterns associated with normal 

healthy cries (Hirschberg, 1980; Vuorenkoski, Lind, Wasz-Hockert, & Partanen, 1971). For 

instance, chromosomal abnormalities lead to a monotonous, low-pitched, longer-lasting cries 

(Lind, Vuorenkoski, Rosberg, Partanen, & Wasz‐Höckert, 1970); and prematurity correlates 
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with high-pitched cries (Wasz-Hockert et al., 1963). The spectrograms alone were inefficient 

in capturing all the abnormalities and characteristics that would differ across pathologic cries, 

and thus, the automatic Newborn Cry Diagnostic Systems (NCDS) were established. During 

the last decades, the development of the NCDS designs has been influenced by the expansion 

of both Machine Learning (ML) and Deep Learning (DL) methods; however, contrasted to 

other audio recognition applications such as speech and music, NCDS still has a high potential 

for enhancement and exploring.  

 

0.2 Statement of Research Problem 

As it was mentioned earlier, the main obstacle in overcoming the newborn mortality is the 

inadequacy of diagnostic facilities, which necessitated the development of non-invasive, cost-

efficient, versatile diagnostic systems like NCDS. The timely diagnosis is of essence for many 

pathologies, especially the PSBIs, since in this case the treatment could be initiated even 

without confirmatory clinical results. Moreover, the procedure associated with the clinical 

diagnosis is extensive, intrusive, and even exorbitant in some cases and regions which further 

highlights that the development of an automated diagnostic system is imperative.  

 

Conversely, recent advances in both machine learning and deep learning applications and 

methods have highlighted the potential to achieve highly accurate designs, with discrimination 

power approaching 100% in some cases. The NCDS architectures hold great potential for 

improvement when compared to other audio recognition applications, such as speech 

recognition. In this domain, many features, classifiers, strategies, and optimization and fusion 

methods remain unexplored, despite being well-known in the domains of speech or music-

based applications. While the cry signal shares interchangeable attributes with both music and 

speech signals, it differs in nature. Therefore, combining methods that have proven successful 

in either domain is of interest to the NCDS design. Existing literature has only focused on 

either the speech-like aspect of the cry signal or solely explored it from the musical aspect. For 

instance, the Mel-frequency Cepstral Coefficients (MFCC) feature set, derived from speech 

processing applications, is the most common in cry analysis studies. The features explored in 
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the NCDS designs belong to six main categories: cepstral, frequency, time, time-frequency, 

prosodic, and image (Ji et al., 2021). Each of these domains provides information on the cry 

signal from a different perspective. Among these domains, the cepstral domain has gained the 

highest attention owing to the success of MFCCs. However, a deduction from examining other 

publications suggests that cepstral analysis is highly correlated with the good performance of 

the NCDS. Features like Linear Prediction Cepstral Coefficients (LPCCs) (Liu et al., 2018), 

Linear Frequency Cepstral Coefficients (LFCCs) (Jagtap et al., 2016; Patil et al., 2022), Bark 

Frequency Cepstral Coefficients (BFCCs) (Liu et al., 2019; Maghfira, Basaruddin, & 

Krisnadhi, 2020; Sriraam & Pradeep, 2019), and Gammatone Cepstral Coefficients (GTCCs) 

(Satar et al., 2022) all achieved fair discriminative performances in NCDS designs. Feature 

fusion approaches are mostly limited to concatenation, even in very recent studies (Zhang, 

Ting, & Choo, 2018; Ji, Jiao, Chen, & Pan, 2022).  

 

Conversely, features from the prosodic domain, such as formants, intensity, rhythm 

(Matikolaie et al., 2022), unvoiced regions’ detection (Abou-Abbas, Tadj, & Fersaie, 2017), 

and duration, have shown desirable results in the NCDS designs when implemented alone or 

combined with features from the same domain. The main challenge is that there are none or 

very few research works that combine different feature domains to form a single feature space. 

Besides, the implementation of the apt feature fusion techniques is seldom seen in NCDS. Not 

only in NCDS but in many other audio recognition applications, the role of fusion in different 

levels of the design is not considered. Fusion opens the door to utilizing features and classifiers 

from different modalities, each capable of effectively capturing a certain aspect of the cry 

signal. More specifically, fusion at decision level which is crucial for employing features and 

classifiers from diverse modalities and their different combinations. There is also meager 

information about hyperparameter tuning algorithms and their use in NCDS despite their 

beneficial impacts on many audio processing systems. 

 

Finally, certain pathologies have not been studied or well addressed with the NCDS and the 

characteristics of the cry signals that are marked with that pathology stay undiscovered. Among 

these pathologies, there is meagre literature existing about sepsis in spite of this pathology 
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being among the mortality roots in neonates and common. However, pathologies like asphyxia 

own high amounts of research across the world. 

 

In this research, different stages of the NCDS were developed with novel methods and tools. 

The main focus was to take the NCDS to a comprehensive level where it would be improved 

from different aspects to address sepsis. This goal was achieved by the means of employing 

and introducing novel features, feature selection methods, fusion methods, employing 

classifiers from different natures, and optimizing these classifiers to be well-suited to the 

problem at hand.  

 

0.3 Research Objectives 

The main objective in this study was to design an inclusive NCDS with the help of machine 

learning techniques to identify pathologic newborns based on only their cry signal recordings. 

 

Furthermore, this study addresses sepsis in an inclusive manner; trying to diagnose septic 

newborns from healthy, distinguishing between sepsis and a closely entangled pathology group 

(RDS), identifying sepsis amidst an ensemble of more than thirty other pathologies, and finally 

distinguishing between a collective of pathologies -including sepsis- and the healthy. The 

novelty of this work is not limited to proposing new features or the introduction of methods 

that were novel to the NCDS; but also, the distinguishing between two pathologies as well as 

identifying one pathology amongst a group of other pathologies were explored for the first 

time.  

 

As discussed before, one of the base conditions concerning the NCDS design is keeping the 

design simplistic and unsophisticated; thus, the employment of the methods that would aid 

pruning the feature space in terms of dimensionality and redundancy, as well as tuning the 

classifier hyperparameters are inevitable. There is no prior research in the field of NCDS 

design that would assess the role of different hyperparameter optimization (HPO) methods on 
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the performance comparatively; hence, performing a comparison between the HPO methods 

would be beneficial to the advancement of NCDS.  

 

Principally, the framework can be enhanced in certain steps which constitute the goal of this 

study: 

 

- Devise novel features from diverse levels and modalities, including short-term and 

long-term, music-derived and speech-derived, and their combinations. 

 

-  Find and introduce suitable feature selection and fusion criteria to combine features 

from aforementioned modalities.  

 

- Employ and compare different machine learning and deep learning schemes for the 

classification of the cry signals depending on the goal of the NCDS. 

 

- Assess the role of HPO in tuning the classification algorithms and compare them based 

on instructive evaluation measures such as Matthew’s Correlation Coefficient (MCC).  

 

- Bring the classifier fusion methods to light that would ensure simplistic fusion of 

different classifiers effectively, such as decision template fusion (DTF).  

 

- Analysis of the differences across different classes of newborns (healthy versus 

pathologic or healthy versus septic, etc.) by the introduced features.  

 

- Design a comprehensive NCDS that assesses a pathology from different aspects: 

healthy vs. septic, septic vs. Respiratory Distress Syndrome (RDS), septic vs. non-

septic (ensemble of pathologies), and healthy vs. pathologic.  
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0.4 Methodology 

To this point, the necessity, the novelties, and the goals of this study were explicated; however, 

the means to achieving these goals, is what constructs this work. It was mentioned that certain 

acoustic cues in the cry signal of an ailing newborn makes it distinguishable from the healthy 

newborn cry. Nevertheless, not all these acoustic cues are detectable with simple methods such 

as spectrograms and thresholding, which calls for attentive extraction of relevant features 

capable of succinctly encapsulating the characteristics of each group. Besides, the auspicious 

feature extraction leads to the simplification of the ensuing stages, e.g., the classification.   

 

Analogous to other audio recognition systems, the NCDS framework incorporates three main 

elements: 1. Preprocessing, 2. feature extraction, fusion, and selection, and 3. Classification 

and classifier tuning. All these elements should be designed based on the available data, and 

the specifications of the dataset. Therefore, the cry database will be introduced prior to the 

discussion of the next steps. 

 

In the preprocessing step, we ensured consistency with previous research in our lab by applying 

a Hamming window of 10 ms length with a 30% overlap to the system. Additionally, we 

utilized both EXP and INSV segments of the cry signal. For the feature space formation step, 

the primary focus of this study, we consistently incorporated features from speech processing 

and musical applications. Novel features, including Gammatone Frequency Cepstral 

Coefficients (GFCCs), Bark Spectral Centroid, Spectral Centroid Cepstral Coefficients (BSC 

and SCCC), spectral crest, Spectral Entropy Spectral Centroid (SENCC), as well as BFCC and 

harmonic ratio, were extracted and evaluated. To create a robust and efficient feature space, 

complementing statistical methods for dimensionality reduction, we employed fuzzy entropy 

and nearest neighborhood feature selection approaches to reduce redundancy and dimensions. 

Additionally, the fusion at the feature level was significantly enhanced through the use of 

canonical correlation analysis.  
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In the classification step, we employed Bayesian, random, and grid search hyperparameter 

optimization methods to enhance classifier functionality, extensively comparing them in terms 

of computational costs and performance details. Different machine learning and deep learning 

classification schemes, such as SVM, KNN, MLP, and LSTM, were utilized within our NCDS 

architectures. Finally, the decision template method was employed for decision-level fusion, 

representing a significant contribution.  

 

0.5 Cry Database and its Demographics 

Data acquisition and the establishment of the database are both the basis and the primary 

challenge in designing pathological research. There were several considerations that made this 

database stand out from the rest. To design a comprehensive system, the cry signals were 

collected from a diversity of races and origins. The data collection took place in two distant 

locations of the world, Lebanon, and Canada, and enabled us to include participants from 

Algeria, Canada, Haiti, Portugal, Syria, Turkey, Bangladesh and other countries from Arabic, 

Quebecois, African, Caucasian, Latino and other races. This unique diversity of participants 

ensures that the system would not be limited to or biased by certain acoustical characteristics 

due to mother tongue. Besides, the collection of the data was not restricted to a predefined 

ideal condition; the recordings were gathered in the maternity rooms, NICUs, and postnatal 

wards in the presence of noises like staff chatter, medical equipment beeps, and whining and 

crying of other newborns, which makes the database practical for solving the problems 

discussed earlier. The recording of the cry signals was made possible by the means of a 

common digital handheld voice recorder that was placed in the 10-to-30-cm locus of the 

newborn’s head. The recorder was a 2-channel Olympus with a 44.1 kHz sampling frequency 

and 16-bits resolution which is accessible and affordable even for the low-income settings. 

There were no conditions regarding the reason of crying and the cry signals were initiated due 

to different reasons such as hunger, temperature reading, reflux, discomfort, fear, intravenous 

injection, pain, weighting, ophthalmic exams, nebulizer, wet diaper, and shower. The 

participants were selected from both genders, male and female. They weighed from 520 g to 

5.2 Kg and were full-term below 53 days of age. Furthermore, the Appearance, Pulse, Grimace, 
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Activity and Respiration (APGAR) scores were recorded for all the participants. Most 

importantly, the newborns in this study were healthy or either diagnosed with one of the 

following 32 pathologies: ankyloglossia, apnea, asphyxiation, aspiration, bronchiolitis, 

bronchopulmonary dysplasia, choanal atresia, cleft palate and lip, complex cardio, cyanosis, 

down syndrome, duodenal atresia, dyspnea, fever, gastroschisis, grunting, hyperbilirubinemia, 

hypoglycemia, hypothermia, intrauterine growth retardation, kidney failure, meconium 

aspiration syndrome, meningitis, myelomeningocele, respiratory distress syndrome, retraction, 

seizure, sepsis, tachypnea, thrombosis in vena cava, vomit. 

 

The cry recordings have varying durations ranging from one to four minutes with an average 

of one and a half minutes. There are one or more recordings (up to five recordings per newborn) 

from each newborn. A total of 1115 recordings from 410 newborns were included in this study 

where the healthy newborns have more than 73% share of the entire dataset with 300 

participants and 785 recordings.  

 

It was mentioned that the cry recordings include unwanted information and noise; this includes 

the environmental noise and unwanted information from the newborn such as hiccups, silence, 

and grunting. Moreover, as can be deduced from the statistical analysis of the database, the 

number of newborns diagnosed with different pathologies is far less than the healthy newborns. 

This is not unexpected based on several points: 1. The occurrence and the observation of a 

certain pathology in the prespecified duration of data acquisition phase is unpredictable. 2. 

Meeting the ethical and the technical criteria for the addition of the recordings from each 

participant is onerous. 3. The correct labeling and documentation corresponding to each cry 

recording requires the efforts of many individuals such as nurses, medical experts, and teams 

of researchers. All being said, it is indispensable to make use of every recording in full 

measure; therefore, all the cry signals were segmented into multiple episodes based on the 

natural respiratory activities such as hiccups, expiratory cry, and inspiratory cry. The cry 

episodes were manually annotated using WaveSurfer software. A full list of these segments 

and their labels is given in Table 0.1. 
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Table 0.1 Segments of cry signal 
 

 

 

0.6 Proposed Framework 

The foremost stage of the NCDS design is to exploit and select the pertinent features for the 

recognition of an unhealthy newborn and then delineate the following stages accordingly. 

Unit Definition 

EXP Voiced expiratory segment during a period of cry. 

EXPN Unvoiced expiratory segment during a period of cry. 

INS Unvoiced inspiratory segment during a period of cry. 

INSV Voiced inspiratory segment during a period of cry. 

EXP2 Voiced expiratory segment during a period of pseudo-cry. 

INS2 Voiced inspiratory segment during a period of pseudo-cry. 

PSEUDOCRY 
Any sound generated by the newborn that is not a cry, such 

as whimpering. 

Speech Sound of the nurse or parents talking. 

Background 
A low noise characterized by a low-power silence affected 

with little noise. 

Noisy cry 
Any sound heard with a cry (BIP, water, diaper changing, 

etc.). 

Noisy pseudo-cry Any sound heard with a pseudo-cry. 

Noise 

Sound originated from the surrounding environment such as 

the microphone movement, the diaper movement, door 

squeak, staff chatter, background noise, or speech with 

BIPs. 

BIP Sound of the medical equipment surrounding the newborn. 
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Therefore, in this research the features that were unexplored in NCDS architecture and the 

features that were new to the audio analysis applications were introduced and extracted. The 

NCDS takes the cry signals and assigns them to their corresponding classes of unhealthy and 

healthy. As already stated, the NCDS designs have some common elements regardless of the 

purpose, namely pre-processing, feature extraction, and classification. In the pre-processing 

step the signals are segmented based on the respiratory activities and the expiratory and 

inspiratory episodes are selected as the inputs of the NCDS which are marked as EXP and 

INSV in Table 1. These segments are then windowed, undergo filter banks, and are pre-

emphasized corresponding to the features that will be extracted in the following steps. For 

example, in order to extract the Mel-frequency Cepstral Coefficients (MFCCs) the signal is 

windowed, pre-emphasized by a high pass filter, then transformed via the Discrete Fourier 

Transform (DFT), passed through a triangular filter bank, and then scaled on the Mel-

frequency mapping to extract the MFCCs, while for the spectral features such as Spectral 

Centroid (SC) it might be only required to window the signal and transform it. The details for 

the preprocessing of each feature set are explained prior to detailing the features in chapters 2, 

3, 4, and 5.  

 

Following the pre-processing stage, the features on different levels of information and 

originating from various modalities are extracted and then the most suitable ones are selected. 

A wide range of features were introduced and extracted in this research that will be only shortly 

mentioned here and then elucidated at the following chapters 2 to 5. The Cepstral analysis was 

the protagonist in this study owing to the fact that it facilitates the isolation of the constituents 

in voice generation such as glottal pulse and the vocal tract impulse response and thus, attested 

success in the field of speech analysis (Oppenheim, Schafer, & Stockham, 1968). Firstly, the 

MFCC features were extracted as a baseline to ensure comparability of the presented work 

with the existing literature in chapters 2 and 3. Then, in chapter 3, it was shown that the 

Gammatone-frequency Cepstral Coefficients (GFCCs) are superior to the MFCCs and hence, 

the GFCCs were implemented in the next two chapters, 4 and 5. The Bark-frequency Cepstral 

Coefficients (BFCCs) were also explored to represent deeper analysis and comparison between 

the psychoacoustic mappings of the spectrum. Spectral Entropy Cepstral Coefficients 
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(SENCC) were employed to show the level of complexity in the cries of septic newborns as 

opposed to the healthy newborns. This study adopts the psychoacoustic mappings of the 

spectrum to the proposed features to further befit it to the nature of the cry which resulted in 

developing new acoustic features. The SC is convenient to the study of musical applications 

for determining the brightness of a sound and it was rendered in chapters 2 and 5 as the basis 

of two feature sets, SC Cepstral Coefficients (SCCC) and the Bark-SC (BSC). Another feature 

that was also inspired by the musical applications is Equivalent Rectangular Bandwidth-based 

Spectral Crest (ERBS Crest) that is mainstream in clinical audiology settings and in audio 

fingerprinting but new to the NCDS designs. Finally, the Harmonic Ratio (HR) feature set was 

studied to further emphasize the primary musical aspect of the cry signal; harmonicity, and to 

interpret how the cry signals of the healthy newborns are more harmonic compared to the cry 

signals of the unhealthy. The feature extraction is always accompanied by two concepts: the 

feature selection to ensure the simplicity of design and preventing the system from having 

high-dimensional and/or redundant features; and the combination of the features in order to 

form an efficient feature space and represent different aspects of the input desirably. For the 

feature selection, two methods of Fuzzy Entropy feature selection (FE Selection) and 

Neighborhood Component Analysis (NCA) were investigated which will be narrated in 

chapters 2 and 5, respectively. As for the feature combination, this work benefits from simple 

concatenation of the mentioned feature sets in different parts of this study. Additionally, a 

fusion technique at feature level is expounded from multiple aspects in chapter 3 through the 

Canonical Correlation Analysis (CCA) of the GFCC and MFCC feature sets.  

 

The last component of the NCDS is the classification scheme. Several classifiers from ML, 

DL, and Neural Network (NN) domains were adopted. Support Vector Machines (SVMs) were 

used as the baseline in all of the presented studies owing to their high performance and 

prevalence. K-Nearest Neighborhood (KNN), Multilayer Perceptron (MLP), and Long Short-

term Memory (LSTM) classifiers are employed here as well. Many different classifiers have 

been introduced and utilized in different tasks in the literature; however, the discussion around 

the fine-tuning of the classifiers and the effects of Hyperparameters (HP) on the performance 

in a comparative and inclusive manner is infrequent. Therefore, this study employs three 
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different techniques of random search, grid search and Bayesian to amend the performance of 

the NCDS in consonance with each of the defined tasks. The final contribution of this study is 

a subset of the classification stage, fusion at the decision level which combines the outcomes 

of different classifiers trained on diverse features in order to yield the final decision. The DTF 

method was implemented as the fusion algorithm owing to its robustness to overtraining and 

preferable performance with fewer data. At last, the NCDS was assessed through a set of 

evaluation measures such as accuracy, F-score, MCC, specificity, and precision to better 

demonstrate different aspects of the design.  

 

0.7 Thesis Composition 

The presented manuscript is a thesis by articles which constitutes three publications and one 

submitted article for publication in the scientific journals. The first article assessed the 

identification of septic neonates from the healthy based on an entropy-based framework and 

addressed sepsis as a single pathology group to find out whether and how the septic cry signals 

differ from the healthy cry patterns and answered these questions by the illustration of 

differences for each of the feature sets.  

 

After conducting the first fragment of the research, we realized not only the investigation of 

the septic newborn cries suffers from a paucity, but also, there was no prior research that 

compared different pathologies to each other. Therefore, in the second article, sepsis was 

dissected against RDS which could be very perplexing as a consequence of the similar 

attributes and entanglement of the duo. It is noteworthy to mention that though not as equitably 

severe, the RDS itself sustains a similar research gap to sepsis in mature newborns. The success 

in the separation of the septic from healthy and RDS from sepsis diagnosed newborns led us 

to inspect two novel ideas: 1. A design that would benefit from deep learning methods with 

higher number of samples to investigate the possibility of discerning healthy newborns from 

any pathologic newborns since the MLP method was successful, and 2. A framework that 

would be capable of a pinpointing a single pathology from a collection of other pathologies; 

which formed the foundation for the next two articles. 
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The third article is devoted to the study of healthy versus pathologic newborns in order to 

propose a non-intrusive and low-cost alert system to inform the guardians of the newborn and 

the medical specialists to take all the necessary measures not to overlook the newborn as being 

healthy. From the technical point of view, this article administers a comprehensive comparison 

between the GFCC and MFCC feature sets as well as comparing three different methods of 

HPO for two classifiers in the ML and DL domains, SVM and LSTM in terms of a set of 

different evaluation measures, run-times and methodology. Moreover, it appraises the role of 

fusion at feature level in the NCDS design by demonstrating how it would affect and 

homogenize the feature space and consequently, the performance of the NCDS. 

 

Finally, the fourth article peruses the distinction between sepsis and an assemblage of other 

pathologies by the means of studying different novel feature sets and the DTF to fuse them. 

Moreover, the NCA feature selection is employed to show how the extreme downsize of the 

feature set would result in the functioning of the NCDS. 

 

The thesis is composed in six chapters. The first chapter presents a chronicle of NCDS 

development and the tools that were utilized up to date to improve its performance as well as 

discussing the cry generation in the newborns, the development of the newborn vocal tract, 

and the findings about the cry signals associated with different pathologies in newborns. The 

next chapters two to five, cover the articles mentioned below: 

 

• Khalilzad, Z., Kheddache, Y., & Tadj, C. (2022). An entropy-based architecture for 

detection of sepsis in newborn cry diagnostic systems. Entropy, 24(9), 1194.  

 

The above-mentioned article forms the second chapter which was published in the journal of 

Entropy in August 2022. The novelty of this study is several-fold: 1. The introduction of a 

framework that revolves around the information content of the cry signal via study of the SEN 

and FE selection. 2. HPO of the KNN classifier by choosing different distance measures. 3. 

Checking for redundant features in the feature space. 4. Combination of a music-derived 
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feature set with the Cepstral analysis in SCCC feature set. This framework had the task of 

identifying septic newborns from the healthy with two different datasets of INSV and EXP.  

 

• Khalilzad, Z., Hasasneh, A., & Tadj, C. (2022). Newborn cry-based diagnostic system 

to distinguish between sepsis and respiratory distress syndrome using combined 

acoustic features. Diagnostics, 12(11), 2802. 

  

The third chapter represents the next piece of our research, published as an article in the journal 

of Diagnostics in November 2022. For the first time in the history of NCDS designs, two 

pathology groups were separated based on a combination of the short-term and long-term 

features. Moreover, the HR feature set was shown to have strong discriminative power in 

despite of its low dimensions which suggested further investigation of the harmonic and 

musical components in the cry signals. The MLP and SVM classification schemes were 

employed to rate the performance of the individual feature sets as opposed to the combined 

feature set.  

 

• Khalilzad, Z., & Tadj, C. (2023). Using CCA-fused cepstral features in a deep learning-

based cry diagnostic system for detecting an ensemble of pathologies in newborns. 

Diagnostics, 13(5), 879.  

 

Chapter four is dedicated to gauge the performance of the GFCC feature set compared to the 

MFCC feature set, the impact of different HPO methods, and the potency of the CCA-fusion. 

Moreover, it is among the first studies to introduce a fusion algorithm at feature-level. The 

research is structured in a way that advancing through multiple experiments, illustrates the 

ramification of each of the contributions. Therefore, firstly, the performance of each feature 

set is evaluated from various aspects: 1. With separate datasets of INSV and EXP, 2. With two 

different classifiers (LSTM and SVM), 3. With multiple evaluation measures, 4. From the run-

time’s perspective, and 5. With three different HPO methods for each of the classifiers. Then, 

the role of the CCA-fusion is assessed based on all the aforementioned criteria with the addition 

of discussing the new feature vector size as well as comparing it to the simple concatenation 
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of features. Furthermore, the HPO methods are contrasted in terms of evaluation measures and 

the run-times. Finally, two more experiments were conducted that exhaustively go through the 

effect of HPO to validate the achievements of the prior experiments since the results were 

surprisingly good and to further confirm the patterns that were concluded from the previous 

observations in earlier steps. Notably, this study introduced a comprehensive NCDS that can 

be employed as a non-intrusive alert for the medical experts and the newborn caregivers not to 

disregard the newborn when there are no apparent symptoms in the first check-ups.  

 

• Khalilzad, Z., & Tadj, C. (2023) Use of psychoacoustic spectrum warping and decision 

template fusion in newborn cry diagnostic systems. JASA. 

 

The final piece of the current research is unveiled in the fifth chapter organized as an article 

that was submitted to the journal of the acoustical society of America (JASA) in Jun 2023. In 

this study two disparate frameworks were propounded that explore how the cries of newborns 

suffering from sepsis could be discriminated from other pathology groups in order to establish 

a system that solely focuses on sepsis as a leading mortality cause in newborns worldwide.  

Both experiments profit from novel features of BSC, ERBS Crest, GFCC, and BFCC that are 

all manipulated by the psychoacoustic warping of the spectrum to better represent the 

biological nature of the cry signals. The first framework employs DTF method for the first 

time in NCDS designs and the second framework extraordinarily curtails the feature space 

dimensions while preserving acceptable performance to that of the high dimensional feature 

vectors and maintains the essence of each feature set by the means of NCA feature selection 

scheme.  

 

Lastly, chapter six is devoted to the contribution of our research and recommendations and 

ideas for future researchers who wish work on this topic.  

 

 

 

 



 

CHAPTER 1 
 

LITERATURE REVIEW 

 

1.1 Psychoacoustic Model of the Cry in Newborns 

Crying is the outcome of intricate interdependence and harmony between distinctive muscles 

and organs. Crying can be originated by external or internal factors such as adjusting the 

homeostasis via releasing the strains or excessive energy (Brazelton, 1962), a result of the CNS 

development (Emde, Gaensbauer, & Harmon, 1976), and the sensorimotor maturation 

(Ainsworth, 1963; Konner, 1972; Zeifman, 2001). One of the best models for the cry 

description is the physioacoustic model described by Golub et al. (Golub & Corwin, 1985) 

which describes the production of the cry signals and comprises two main elements: A 

physiological aspect which represents the way the respiratory, laryngeal and supralaryngeal 

compartments are arranged and are controlled; and an acoustical aspect that describes the 

sound generation process in the larynx and the airways above the larynx (Laitman, 1977). 

Moreover, this model ascribes the cry generation to four main subsystems:  

 

1. Subglottal or Respiratory system: produces the required pressure in the subglottic area in 

order to propel the vocal folds.  

 

2. The sound source positioned at the larynx that is divided into two types of sources 

functioning individually or concurrently: 

 

a) Turbulence noise source as a result of the air turbulence from the post-closure gap left 

in the vocal folds.  

 

b) Periodic source that is originated from the reverberations of the vocal folds. 
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3. The nasal and vocal tracts residing above larynx that act as an acoustic filter which is 

characterized by several physiological factors such as the shape and the length of vocal 

and nasal tracts as well as the nasal coupling degree.  

 

4. The radiation effect attributed by the sound filtering along the distance of the microphone 

from newborn’s mouth.  

 

After introducing the subsystems that affect the cry generation, it should be discussed how they 

are controlled by the newborn’s Central Nervous Systems (CNS). There are three levels of 

CNS processing, namely upper, middle, and lower processors. These processors each control 

and respond to a certain type of stimuli. During the neonacy, the upper processor is only 

capable of the unconscious control in response to the auditory, visual, and extrinsic or intrinsic 

proprioception like full bladder, hunger, or pain. The middle processor oversees the breathing, 

swallowing, bowel activities, coughing, and crying. Therefore, the cry is generated in 

newborns due to simpler causes than later infancy where the cries are no longer reflexlike but 

rather volitional. As a response to the stimuli, the upper and middle processors communicate 

with the lower processors regarding the control of the pertinent muscles and limbs. Having 

different levels of control each responsible for a separate group of muscles in cry generation, 

suggests that they are administered autonomously (Lester & Boukydis, 1985). Therefore, the 

acoustical anomalies could be assigned to certain physiological or anatomical peculiarities 

depending on the ability to discern the cries caused by subglottal, glottal, or supraglottal defect. 

Figure 1.1 shows a summary of the cry production details discussed so far.  
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Figure 1.1 Cry production model 

Taken from Lederman (2002) 
 
 
1.2 Development of Vocal Tract and Acoustic Features in Children 

There is no doubt that an infant’s vocal tract is different from an adult’s vocal tract (Nicollas 

et al., 2005). Hence, it is assumed that each fragment of the vocal tract may be subject to a 

change that is unlike the others, and that these changes may not occur simultaneously. 

Consequently, the developmental trajectory is not expected to be uniform (Prescott, 1975). 

The fact that infants cannot breathe through their mouth even when their nose is blocked, 

reveals that their airways is unlike an adult’s airways. The upper airways in a newborn is 

controlled by the neural system. The airway in newborns is sealed from the nose to the lungs. 

This is because of the positioning of the larynx, which is similar to other animals, located near 
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the base of the skull. The larynx can be moved upward by the infant into the nasopharynx 

(Mugitani & Hiroya, 2012).  

 

 
Figure 1.2 Vocal tract comparison between newborns and adults 

Taken from Mugitani & Hiroya (2012) 
 
 
As shown in the Figure 1.2 the epiglottis and the soft palate of an infant are placed adjacently 

and are capable of forming a double seal. The trajectory of the air passes through nose, then to 

the larynx and trachea and finally into the lungs, meanwhile the liquids flow from small larynx 

into the esophagus (Kent & Murray, 1982).  

 
 
1.3 Acoustical Characteristics of Cry 

The cry signal is segmented and analyzed based on the respiratory activities of the newborn 

which includes an expiratory phase, an inspiratory phase, and silence. The expiratory phase of 

the cry is often up to five times longer than the inspiratory phase of the cry; however, both 

segments have shown to convey significant information about the newborn’s health and 

emotions. The inspiratory cries are subject to the maturity of the phonatory and respiratory 

systems and would eventually be replaced by the expiratory cries as the newborn matures, 
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which further marks the importance of these cry episodes in the study of the neonate cry signals 

(Buder, Chorna, Oller, & Robinson, 2008).  

 

The expiratory phase of the cry can be categorized into three groups: phonation or basic, 

Hyperphonation or shift and dysphonation or turbulence (Feng, 2020). These cry types are the 

outcomes of different vibrations of vocal folds and can be expressed as follows (Lester & 

Zeskind, 1982). 

 

- Phonation: full vibration of the vocal folds with a fundamental frequency range of 250-

700 Hz. This is a result of simple periodic oscillations and resonators acting as 

amplifiers.  

 

- Hyperphonation: denotes the “falsetto” like vibration of the vocal folds in which only 

a few of the vocal ligament are occupied and occurs at an F0 of 1000-2000 Hz. 

Hyperphonation is the outcome of restricted performances of larynx and/or resonating 

cavities (Zeskind & Lester, 1981).  

 

- Dysphonation: involves both periodic and aperiodic sound sources and occurs when 

turbulence noise is produced at larynx; this noise is modulated by vocal fold vibrations. 

Dysphonic cry may happen due to alterations of oscillations in glottis alongside 

supraglottic excitation (Lester & Boukydis, 1992).  

 

On the other hand, it would be beneficial to expound the physiological aspect of each cry 

episode to better understand them.  

 

- Inspiration: inspiration happens when the diaphragm and intercostals push the pleural 

space to expand. Therefore, since the product of volume and pressure is constant, the 

pressure will decrease. Generally, in an ACR problem, any sound made by the infant 

during an inhalation phase is labeled as inspiration and its fundamental frequency is 

usually between 367Hz and 1040Hz (Grau et al. 1997). This type of cry is rare among 
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the healthy class of the infants (Wasz-Hockert, 1968). The inspiration is believed to 

contain information leading to pain and distress cries (Aucouturier et al., 2011).   

 

- Expiration: the power needed for the driving the expiratory phase of a cry is stored 

during inspiration. Expiration can be described as a gradual decrease in the volume of 

the lungs. Usually cries occur during this respiratory phase, so this segment contains 

the main information.  

 

- Pause: silent segments in a cry that could take place after either an expiratory or 

inspiratory phase (Abou-Abbas, Tadj, Gargour, & Montazeri, 2017). 

 

The factors that affect the newborn cry are ample. These factors could be physiological, 

anatomical, environmental, and even psychological. In this section, the effect of each of these 

factors on the newborn cries will be addressed. However, it should be noted that in order for 

the proposed NCDS to be comprehensive, the following factors should not impose a restraint 

on choosing the participants; meaning that all the available cry samples should be considered 

for the development of the NCDS so that it is not limited to certain demographic attributes. 

Healthy newborns have a F0 (fundamental frequency) of 250 to 700 Hz, with a decreasing or 

increasing-decreasing melody shape with super imposed harmonics and average duration of 1-

1.5s. As for premature infants, the more premature, the higher the F0 is. The cries of babies 

diagnosed with a pathological condition are persistent with little punctuation, reflecting high 

irritability and poor physiological stability (Corwin, Lester, & Golub, 1996). 

 

The cry signal could be influenced by the health, ambient language, maturity, and prenatal 

substance exposure. The language spoken in the presence of an infant, influences its vocal 

development as soon as the 28th week of fetus’ life. Besides, newborns can follow the salient 

F0 variation pattern of their mother tongue as well as ascending or descending F0 contours 

(Wermke et al., 2016). Therefore, the ambient language affects infant crying and the cry pattern 

could vary among neonates from different nations (Mampe et al., 2009). The cries of premature 

newborns were reported to have higher pitch and lower duration (Thodén, Järvenpää, & 
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Michelsson, 1985). Although one might suppose that this is a result of lower weight of the 

newborn, it was (Michelsson, Raes, Thodén, & Wasz-Hockert, 1982) observed that there is no 

meaningful correlation between the weight and the cry characteristics and the gestational age 

is the only determinant here to the extent that once the premature newborns reached the 

appropriate age for birth, a meaningful decline in the pitch would take place and the cries 

would lengthen. Moreover, it was reported that prenatal exposure to harmful substances like 

tobacco and alcohol would cause the cry signal to include dysphonation and hyperphonation 

as well as other attributes such as being shorter and faint (Blinick, Tavolga, & Antopol, 1971). 

Lastly, the cry patterns are majorly altered based on the health status of the newborn; 

pathologies each have a distinctive effect on the newborn cry signal as would be discussed in 

the following sections (LaGasse, Neal, & Lester, 2005).  

 
 
1.3.1 Pathological Cry Attributes  

As previously mentioned, there are some attributes in a cry signal associated with pathology 

that are different from a healthy cry and can rarely be observed in a healthy infant. Thus, 

abundant efforts were made to study and detect these features, both in medical and engineering 

fields. The medical studies date back to 19th century that address these pathologies through 

visual investigation of cry spectrograms and/or training of pediatricians. The acoustic 

characteristics of the cry may vary due to different factors such as air pressure, tension, length, 

thickness and shape of vocal cords and resonators (Golub, 1979). In this chapter, some of the 

expected features associated with each disease will be addressed shortly. Figure 1.3 presents 

the spectrograms of the cry signals for three different pathologies as opposed to a healthy cry.  
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Figure 1.3 Spectrograms of newborn cry signals for pathology groups of sepsis, down 

syndrome, respiratory distress syndrome in contrast to the healthy 
 

The spectrographic analysis of the cry signal has been delineated with certain characteristics 

that was observed in the spectrograms. These attributes help better explain the patterns of 

pathological and healthy cry signals. A complete list of these characteristics is given below: 

 

• Fundamental Frequency:  A single frequency that appears on the spectrograph of the 

signal as a horizontal line during the phonation. Frequency is shown as the height of 

this horizontal line. The lowest line in the series of parallel lines appeared on a 

spectrogram is the fundamental frequency.  
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• Harmonics: the consecutive higher lines or components of the fundamental frequency 

are called the harmonics. 

 

• Maximum/Minimum pitch: The highest and the lowest voiced points marked in the 

fundamental frequency curve are maximum and minimum pitches of the cry signal, 

respectively.  

 

• Shift: This term marks a rapid upward or downward occurrence in the fundamental 

frequency. Shift may be located at the initial point of the phonation phase. It may also 

be present in the middle or terminal points of the phonation course. The location of 

shift occurrence is significant in some of the diagnostic purposes.  

 

• Glide: When the shift exceeds 500 Hz it is called a glide. 

 

• Continuity: determines the cry in terms of being voiced. A cry signal can be entirely or 

partially voiced or completely unvoiced. 

 

• Glottal roll or vocal fry: in glottal roll, the fundamental frequency and its harmonics 

are present but somewhat difficult to measure since their frequency range is low. Cries 

often end with a low intensity sound and a fall in pitch. The glottal roll sometimes is 

successive to a vibrato.  

 

• Biphonation: An observation of other types of pitch or different kind of melody from 

fundamental frequency at the same instant is called biphonation. Here we can see 

presence of another melody type simultaneously as the fundamental frequency. 

 

• Vibrato: A series of variations with the form of a wave that are observed in some 

pathologies, are called the vibrato. 
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• Melody Type: during the course of a phonation, the cry spectrograph has some gradual 

changes that are marked as the melody type. The melodies are falling, rising, falling-

rising, rising-falling, flat, etc. 

 

• Glottal plosive: a short turbulence of the air that is caused by the fast closing and 

opening of the vocal cords is called the glottal plosive. It has been also defined as the 

sudden pressure release at the vocal cords that results in an expiratory sound which is 

rather impulsive.  

 

• Phonation: a phonation is generated whenever the vocal cords vibrate at the 350 to 700 

Hz of the fundamental frequency and is considered as the basic oscillation mode for 

the glottis. Well defined harmonics with the same distance mark a phonation on a 

spectrograph. 

 

• Hyperphonation: a hyperphonation is an abrupt modification of the basic cry. It 

happens when the fundamental frequency increases to the 1000 to 200 Hz range.  

 

• Dysphonation: this term in fact denotes a disorder that affects several organs, namely: 

affecting the respiratory, cervical, costal, and abdominal muscles [12]. To determine 

the severity of a dysphonation, the amount of present turbulent noise is computed. It 

may also be characterized by the deviation of parameters like timbre, intensity, and 

pitch from the normal. This disorder is the result of malfunction in a fraction of 

expiratory phase of respiratory tract. Irregular and nonequidistant harmonics that 

happen due to inability of respiration control, suggest a dysphonic cry. A dysphonic 

cry also increases the variability of the fundamental frequency and hyperphonation. 

Therefore, observing any of these attributes suggests that respiratory system may be 

suffering from poor control. The percentage of dysphonation in a cry is more 

discriminative than simply observing its presence.   
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• Double harmonic break: this happens when consecutive series of double harmonics are 

like fundamental frequency in the melody type but have lower intensities. 

 

• Noise concentrations: either for voiced or unvoiced cry signals, an audible energy peak 

is present at 2000-2300 Hz. 

 

• Furcation: during a phonation phase the fundamental frequency curve may be split into 

weaker frequencies in the initial, middle or at the end point of the phonation in an 

unusual way. This is called furcation (Kheddache & Tadj, 2013a; Lester & Boukydis, 

1985; Lewis, 2007). 

 

Based on the aforementioned attributes, the cry signals corresponding to each pathology can 

be expounded and understood. As can be seen from Figure 3, the healthy infant cries follow 

an obvious pattern, and each expiratory cry episode has similar duration to the next and 

previous episodes and is followed by a short inspiratory episode. However, the cry signals for 

the down syndrome, sepsis, and RDS each demonstrate diverse characteristics. Different 

generation of researchers have reported distinctive cry attributes for each pathology that is 

worth mentioning here.  

 

- Prematurity and Intrauterine Growth Retardation 
 

In this case, the gestational age is more significant to the determination of cry attributes than 

the birth weight. Cries of a preterm infant is shorter and has a higher F0 –the fundamental 

frequency is higher in more preterm infants-; also, the glide is seen more frequently in this type 

of cry (Wasz-Hockert et al., 1963). The maximum pitch has the same behavior of fundamental 

frequency and biphonation was observed in a small fraction of preterm infants (Michelsson et 

al., 1982).  
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- Prenatal Asphyxia 
 

Infants diagnosed with asphyxia have obvious abnormal cries. The cries marked as asphyxiated 

mostly exhibit higher F0 as well as higher minimum and maximum pitches. Moreover, 

biphonation and glide occurrence is more frequent.  

 

Asphyxia could be divided into two main groups: Peripheral asphyxia also known as 

respiratory distress and central asphyxia which has neurological symptoms. The studies by 

Michelsson show that the cry in central asphyxia is more abnormal than peripheral asphyxia 

(Michelsson, Sirvio, & Wasz-Hockert, 1977).  

 

Through spectrographic analysis, increased amounts of hyperphonation and dysphonation have 

been observed and reported (Kheddache & Tadj, 2013c). 

 

- Intracranial Infections/ Diseases of Central Nervous System 
 

The cry of a neonate diagnosed with bacterial meningitis is short and high-pitched. 

Additionally, this type of cry is associated with glides and biphonation as well as abnormal 

melody shape (Michelsson, SirviöM. A, & Wasz‐Höckert, 1977).   

 

- Diseases of Peripheral Phonatory Organs 
 

The features that follow a cleft palate include nasality, vibrato, tonal pit, and irregularity in 

fundamental frequency. Glide occurred in 10% of cries (Massengill Jr, 1969). Biphonation has 

not been observed. However, some other studies report against this and no difference between 

normal and pathologic infants has been observed. 

 

As for ankyloglossia (sometimes referred to as lingual frenulum), no cry characteristics were 

found in medical papers, the spectrographic analysis of cry signal mentions increased F0 

irregularity, hyperphonation and dysphonation (Kupietzky & Botzer, 2005). 
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- Chromosomal Disorders 
 

Chromosomal disorders may cause cries that are monotonous and low-pitched. These disorders 

include Down’s syndrome, Edward’s syndrome and x-chromosomal abnormalities. The cry 

latency in these neonates is longer as well as the duration of the cry. Lower F0 and flat melody 

type has been reported, along with nasality. No biphonation has been reported in chromosomal 

abnormalities (Lind et al., 1970).  

 

- Metabolic Disorders (Neonatal Hyperbilirubinemia) 
 

This pathology is also called jaundice. Both the minimum and maximum pitches of F0 soar 

highly. Biphonation has been observed in almost half of the neonates in Wasz-Hockert’s 

observations. Furcation has also been found. Furcation is believed to be the most often among 

the infants diagnosed with hyperbilirubinemia. However, these two mainly happen in infants 

with neurological abnormalities. (Corwin & Golub, 1984) state that cry changes indicate 

unstable glottal functions which could be a sign of later neural toxicity caused by bilirubin. 

 

- Endocrine Disturbances 
 

Hypothyroidism could result in low-pitched cries, lower number of shifts and a frequent 

observance of glottal roll at the end of phonations. The cries marked with hypothyroidism have 

been marked as hoarse (Vuorenkoski, Vuorenkoski, & Anttolainen, 1973).  

 

Despite the fact that the cry signals associated with a number of pathologies have been 

distinguished and characterized based on the spectrographic analysis, it would not be effective 

nor accurate to only rely on the inspection of cry spectrograms for larger number of patients or 

for making a prognostic decision. Therefore, the automated computer-based analysis systems 

were established as early as 1982 (Lounsbury & Bates, 1982). Even though NCDS’ have seen 

many extensive improvements throughout the time, they are not as developed as the other audio 

recognition systems, especially compared to the speech recognition or music-related 
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applications. Moreover, the distribution of the studied pathologies is not homogenous, which 

means some pathologies (e.g., asphyxia) received a lot of attention from researchers from all 

around the world while others -though prevalent and perilous- remain unexplored. There is an 

ineluctable need for a comprehensive NCDS that studies unexplored diseases and improves all 

the incorporated components. The following section conducts a review of the tools and 

methods that exist in the literature concerning NCDS designs.  

 
 

1.4 Newborn Cry Diagnostic System (NCDS) 

The NCDS’ was developed in order to function as a non-intrusive tool to aid the diagnosis of 

different pathologies. All the NCDS share the same principal elements: 1. Preprocessing, 2. 

Feature extraction and selection, and 3. Classification. The preprocessing step encompasses all 

the required actions to filter, segment, clear, window, and emphasize the signal to prepare for 

the feature exploitation. The ultimate objective of a NCDS system is to discriminate between 

healthy and pathologic infant which cannot be achieved without the use of apt features. These 

features originate from different sources and modalities such as time domain, frequency 

domain, time-frequency domain, Cepstrum domain, and image domain. Following the 

extraction of the features, suitable algorithms for their combination, fusion, reduction, and 

selection is utilized to form an enhanced feature space. Finally, these features are fed to 

classifiers with diverse learning approaches such as SVM, KNN, LSTM, and others that are 

tuned and improved via HPO methods. The details regarding each component of the NCDS 

are determined based on the task it will serve. The succeeding sections review the methods and 

tools that researchers have implemented in the NCDS architectures so far. Figure 1.4 shows an 

outline of the NCDS and its components.  
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Figure 1.4 A general block diagram of the NCDS design 

 
 
1.4.1 Feature Extraction 

Extracting the indicative and apropos acoustic features that fittingly exhibit the characteristics 

of the cry signal is pivotal in developing the NCDS. In this section, we have tried to list the 

features that were deliberated by former researchers to the best of our ability. The features 

could be categorized based on different aspects: 1. Domain (frequency, time, etc.), 2. 

Qualitative or quantitative, 3. Short-term or long-term, and 4. Pathology association. In order 

to present the features with more details, we selected a combination of the domain-oriented 

and pathology association categorizations of the features. Table III-1 in appendix shows a list 

of different features studied in the history of the NCDS designs based on their categories and 

implementations. As seen in the table, the NCDS designs utilize a limited number of acoustic 

features, presenting significant potential for improvement. More specifically, spectral features 

that attribute the differences in the shape and the energy concentration of the cry signals, are 

absent in the literature. One interesting fact in the presented table was the recent attention that 

the image domain features such as spectrogram image (Zayed, Hasasneh, & Tadj, 2023 and 

Tusty; Basaruddin, & Krisnadhi, 2020) have received. This may be due to the fact that low 

number of samples and feature space dimensions had been imposing limits on the 

implementation of neural network-based classifiers and image domain features which are of 

acceptable dimensionality may overcome this challenge. 

 

After discussing the features existing in the literature and their association with the pathologies, 

it would be fit to present the features introduced and employed for this study. Tantamount to 
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the existing literature, this study employs features from different domains such as frequency, 

cepstral, prosodic, and time-frequency. The cry of the newborn is a dynamic and non-stationary 

signal; therefore, in order to obtain an apt representation of the signal, it is desirable to 

investigate features from different levels of information both individually and integrated. The 

MFCC, GFCC, and BFCC feature sets all conduct the short-term analysis of the cry signal; 

even so, their delta and delta-delta components overcome the challenge of stagnation to some 

extent by providing an epitome of the signal’s temporal dynamics (Young et al., 2002). 

 

On the other hand, spectral or long-term analysis of the cry signal not only provides profitable 

information about the signal’s shape and statistical structure, but also, capacitates the 

comparison of the signal without the need to extract more features. For example, the 

interquartile range of the SC not only explains the shape and the mass of the spectrum, but also 

provides information about its dispersion without the need to further extend the feature space.  

 

Among the short-term features, MFCCs are perhaps the most popular features in all audio 

recognition applications while being effective in many cases. MFCCs are forged from passing 

the windowed and Mel-mapped FFT of the cry signal through triangular filter banks followed 

by a Discrete Cosine Transform (DCT). Thenceforth, as a common practice (Amaro-Camargo 

& Reyes-García, 2007; Matikolaie & Tadj, 2020; Messaoud & Tadj, 2011) the average of the 

coefficients across the duration of the signal is taken to form a thirteen-element feature vector 

of MFCCs for each input signal. Prior to the averaging, the MFCCs embody information from 

only one frame of the signal; thus, in order to grasp an understanding of the fluctuations across 

consecutive windows of the signal, the first and second derivatives of the MFCC feature set -

called delta and delta-delta, respectively- are also calculated and added to the feature vector 

after the computation of the average across all signal frames,  yielding a thirty-nine-element 

feature space. 

 

The use of psychoacoustics measures further intertwines the biological and source filter aspects 

of the cry signal presentation and thus, the use of GFCC and BFCC is also considered in this 

study. As it was prefaced in Table III-1, each of these feature sets have been formerly utilized 
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for some tasks and proven successful; nevertheless, the propriety of pathology association as 

well as feature space assembling with the right combination of long-term and short-term 

features still has a high exploration capacity. GFCCs -as already stated- are a refinement of the 

MFCC feature set that were motivated from the biological study of the auditory system. It was 

shown that GFCCs have more robustness and efficiency (Matikolaie & Tadj, 2020) and their 

performance in non-speech applications has been highly desirable (Valero & Alias, 2012). The 

extraction of the GFCC and BFCC feature sets has a similar procedure to the MFCC feature 

set except that the frequency warping of the spectrum is accomplished in correspondence to 

the cochleagram or the Bark mappings.  

 

Although the BFCCs were also reported to outperform MFCCs; it has also been observed that 

their combination with other Cepstral features such as GFCCs can form a powerful descriptor 

in audio recognition tasks (Liu, Li, Wu, & Zhou, 2019). 

 

 
Figure 1.5 Spectral Centroids of newborn cry signals for pathology groups of sepsis, down 

syndrome, respiratory distress syndrome in contrast to the healthy 
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The long-term and spectral features in this study were also combined with the psychoacoustic 

warping of the spectrum as well as statistical measures and Cepstral analysis. The SC is 

mainstream to the musical timbre analysis to describe the “brightness” of a sound and has been 

used in diagnostic applications and in the detection of developmental disorders in newborns 

(Oren, Matzliach, Cohen, & Friedman, 2016). 

 

Figure 1.5 shows how the SC feature varies across newborn cry signals according to different 

pathologies which depicts its potential for being used as a biomarker in identifying pathologies 

based on the cry signal. In this study, two different approaches were taken towards the analysis 

of the signal with the SC feature set, one is using the statistical measures of mean, median, H-

speed, and standard deviation to form a four-element feature vector, and the other approach is 

to combine it with the cepstral analysis to extract 5 coefficients.  

 

 
Figure 1.6 Spectral Entropies of newborn cry signals for pathology groups of sepsis, down 

syndrome, respiratory distress syndrome in contrast to the healthy. The vertical line denotes 
the average of spectral entropy across the length of each signal 
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The study of entropy is thought-provoking for the NCDS designs; entropy is closely associated 

with the information content of the signal and its complexity. It was shown that the entropy of 

the pathologic cry signals is generally lower than the healthy newborns cry signals, which 

translates to nonuniform distribution of the energy across the spectrum of the pathologic cries. 

This fact has been shown in Figure 1.6 where the SEN of the signal is displayed alongside its 

mean value across the spectrum for different pathologies in contrast to the healthy newborns. 

Furthermore, the average entropies of all the pathologies have a meaningful distance from the 

average entropy of the healthy newborns. 

 

The HR feature set is the best representative to show the musical aspect of the cry signal. As 

can be deduced from Figure 1.7, the HR patterns vary significantly across different pathologies 

and as opposed to the healthy cry. For example, taking a brief look at Figure 1.7 shows that 

the HR in healthy newborns does not cross the horizontal axis which means that the healthy 

cries contain a consistent harmonic pattern, whereas the cry of an infant with down syndrome 

has a lot of zeros which translates to the absence of harmonicity in many frames of the cry 

signal. Furthermore, the cry of a septic newborn has near-flat patterns across long frames of 

time that means it would be monotonous for a majority of time. These findings align with the 

descriptions of the medical experts that précised the cry attributes (Weiss, Pomerantz, Torrey, 

& Kaplan, 2019). Finally, the crest feature set is convenient and effective to the study of audio 

fingerprinting (Ramalingam & Krishnan, 2005) and has been employed in medical tasks such 

as epileptic seizure diagnosis (Dash & Kolekar, 2020) which marks it as an interesting feature 

set to study the cry signals. The HR and ERBS Crest feature sets follow the same statistical 

approach, and each contain four elements.  
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Figure 1.7 Harmonic Ratio of newborn cry signals for pathology groups of sepsis, down 

syndrome, respiratory distress syndrome in contrast to the healthy 
 

So far, we discussed the features, their use, the methodology to extract them, and illustrated 

how they would enable the distinction between different pathology groups. There is one final 

point to the feature manipulation step which is feature selection and/or fusion. Feature selection 

comprises forming a minimal subset of the feature space that best represents the original signal 

and achieves the best classification performance with the features that convey the highest 

information. Besides, feature selection algorithms contribute to the removal of the redundant 

and noise-influenced features. As an example, The Fisher’s ratio is a widely used method for 

the feature selection. It selects the features by the computation of variance. Among other 

approaches, Orthogonal Least Square (OLS) and Binary Particle Swarm Optimization has been 

employed by (Zabidi, Mansor, Lee, Yassin, & Sahak, 2011) for the infant cries. The cross-

validation is used for Forward Feature Selection Method (FSM) (Okada, Fukuta, & 

Nagashima, 2011). This study explores two novel feature selection methods of NCA and FE 

Selection. Both of these methods were chosen due to their simplicity and the fact that they 
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would not put on further computational cost on the proposed NCDS design. The FE selection 

method is based on the fact that the entropy has an inverse relationship to the information 

content and that fuzziness would describe the degree of the membership of each element in the 

feature space (Khushaba, Al-Jumaily, & Al-Ani, 2007). The NCA method, however, considers 

the nearest neighbor classification of the feature space while trying to adjust the weights for 

the classification of these features with respect to a selected reference point and then reports 

these weights to show the contribution of each element in the feature space (Yang, Wang, & 

Zuo, 2012).  

 

The features used in the design of the NCDS are extracted from multiple natures and origins, 

e.g., short-term and long-term features. However, adding these features to a single feature set 

without the proper implementation of fusion techniques can even result in performance 

reduction. Feature fusion can be considered in four different stages of the NCDS, that consist 

of: 1. Data/sensor level, 2. Feature level, 3. Matching score level and, 4. Decision level (Telgad, 

Deshmukh, & Siddiqui, 2014). In this study, two novel algorithms for feature and decision 

levels of fusion were introduced and implemented.  

 

The basis of feature fusion consists of merging the features extracted from different sources 

into a single feature set by the application of germane feature normalization, conversion, and 

pruning strategies. As it was stated, the foremost profit of feature-level fusion is to omit 

redundant features which can be carried out by investigating the correlations between features 

and in return, being able to introduce a succinct subset including the predominant features that 

can enhance classification accuracy (Kim, Hyun, Chung, & Kwak, 2019). In the current study, 

the CCA-fusion method was implemented for the purpose of fusion at feature level where 

features are projected to find the maximum correlation of canonical variates by the utilization 

of Lagrange multipliers, and, to remove redundant information.  
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1.4.2 Classification 

The conceptual boundary between feature extraction and classification is somewhat arbitrary: 

an ideal feature extractor would yield a representation that makes the job of the classifier 

trivial; conversely, an omnipotent classifier would not need the help of a sophisticated feature 

extractor. The distinction is forced upon us for practical, rather than theoretical reasons. 

Generally speaking, the task of feature extraction is much more problem and domain dependent 

than is the classification, and thus requires knowledge of the domain to build apt boundaries 

for the discrimination of data (Duda, Hart, & Stork, 2001). Many different families of 

classifiers have been studied for the NCDS architectures so far and we tried to list them in 

Table-A II-1. It can be deduced that a fair variety of classification approaches from different 

families have been used with the NCDS designs. However, there are some that are less 

frequently employed such as LSTM approach. Moreover, there is not enough information 

about tuning the classifiers based on the application at hand for the NCDS designs. Among 

these methods, DFFNN gained the highest distinctive performance (Lahmiri, Tadj, Gargour, 

et al., 2022). Other deep learning and machine learning approaches such as CNN (Lahmiri, 

Tadj, Gargour, & Bekiros, 2023), and SLGAN (Zhang, Ting, & Choo) also had an state-of-

the-art performance. However, there were conventional classification approaches such a 

random forest (Pusuluri, Kachhi, & Patil, 2022) that could gain a similar performance when 

fine-tuned, which further highlights the role of adjusting the classifier being more significant 

than the classifier type. 

The SVM classifier is the most convenient classifier often used as a baseline in the NCDS with 

a variety of kernels such as linear, cubic, and Gaussian. Therefore, we followed the same 

pattern as other researchers and the SVM classifier is used in all the parts of this study. 

Moreover, KNN, LSTM, and MLP classifiers were also employed across different constituents 

of the presented research. Interestingly, despite the profitable contributions of the HPO 

methods in exalting the performance of a majority of classifiers, the discussion and the 

implementation of HPO in NCDS-related applications is minute and thus, as a supplementary 

endeavor, this research gap was addressed so that all of the mentioned classifiers in this study 
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benefit from one or more HPO methods. Furthermore, three HPO methods of random search, 

grid search, and Bayesian were compared in detail.  

 

Ultimately, the paramount objective for a NCDS design is to attain preeminent results in 

identifying the pathologic newborns. In this regard, a diversity of classifiers and HPs were 

introduced and implemented. However, with the increment in data, feature space 

dimensionality, classes, and the complexities associated with drawing class boundaries, a 

solitary classifier would struggle to achieve the desirable performance. Therefore, a variety of 

methods were developed for combining the classifiers and fusing their decisions that were 

made based on training divergent feature sets. Not only the DF methods help enhance the 

system performance, but also, the final decision would be unbiased (Mangai, Samanta, Das, & 

Chowdhury, 2010). In summary, the employment of a fusion framework has several principal 

reasons: 

 

1. Lower or distributed computational load in comparison to a single classifier and having 

a faster system as a result. 

 

2. Solitary classifiers would not function proportionately if the feature space consisted of 

features from disparate modalities.  

 

3. The generalization ability of the system is improved with the use of DF techniques, 

especially when the data is limited.  

 

4. In some cases, the DF technique prevents overfitting. 

 

 In this study, the DTF method was selected for having three outstanding properties (Kuncheva, 

Bezdek, & Duin, 2001) : 

 

1. the DTF method is among the few existing class-indifferent methods of fusion. 
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2. DTF is one of the simplest DF methods.  

 

3. Does not form any presumptions (for example, about mutual independence of the 

features used for training each of the classifiers) in order to combine the classifiers.  

 

DTF combines the decisions of different classifiers through conducting a comparison between 

the outputs with a characteristic template of each of the classes. It should be noted that unlike 

other DF methods that would solely consider the support of a given class to form a decision, 

DTF employs all the outputs from all the classifiers to form a final support for each of the 

classes. The DTF method was employed for a wide range of applications with the exclusion of 

NCDS.  

 

1.5 Summary 

This chapter expounds the motivation behind the development of a comprehensive NCDS as 

well as the improvements in each of its components for this research. The presented 

information in previous sections further highlighted the discriminative potential of the newborn 

cry signals as a powerful biomarker for diagnostic purposes. Moreover, the background on the 

designs, tasks, pathology analysis, architectures, and methods employed with existing NCDS 

literature was explicated to clarify the research gap. Finally, we discussed how each of the 

methods selected for different stages of the NCDS design in this study would benefit the system 

and the reason behind their selection.  

 

In summary, our design would focus on achieving several objectives listed below. Through 

realization of these points, we aim to propose a comprehensive NCDS that enhances different 

aspects of each of the NCDS components: 

 

1. A comprehensive design that can detect septic newborns from the RDS-diagnosed 

newborns, among other pathology groups, and amid the healthy. 
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2. A simplistic yet effective tool that would identify pathologic newborns in a generalized and 

comprehensive manner, regardless of the pathology group, and serve as an early alert for the 

caregivers of the newborn.  

 

3. Introducing fusion at different levels to the NCDS design, more specifically, the CCA-fusion 

at feature level and DTF at decision level and evaluating their impact on the NCDS 

performance. 

 

4. Assessing the potential of inspiratory cries compared to the expiratory cries in the 

identification of pathologies. 

 

5. A detailed evaluation of how HPO affects the performance of the NCDS in terms of run-

times, different metrics, and methods. 

 

6. Outline the patterns associated with pathologic cries, especially septic cries, as opposed to 

the healthy newborn cries, or other pathologies. 
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2.1 Abstract 

The acoustic characteristics of cries are an exhibition of an infant’s health condition and these 

characteristics have been acknowledged as indicators for various pathologies. This study 

focused on the detection of infants suffering from sepsis by developing a simplified design 

using acoustic features and conventional classifiers. The features for the proposed framework 

were Mel-frequency Cepstral Coefficients (MFCC), Spectral Entropy Cepstral Coefficients 

(SENCC) and Spectral Centroid Cepstral Coefficients (SCCC), which were classified through 

K-nearest Neighborhood (KNN) and Support Vector Machine (SVM) classification methods. 

The performance of the different combinations of the feature sets was also evaluated based on 

several measures such as accuracy, F1-score and Matthews Correlation Coefficient (MCC). 

Bayesian Hyperparameter Optimization (BHPO) was employed to tailor the classifiers 

uniquely to fit each experiment. The proposed methodology was tested on two datasets of 

expiratory cries (EXP) and voiced inspiratory cries (INSV). The highest accuracy and F-score 

were 89.99% and 89.70%, respectively. This framework also implemented a novel feature 

selection method based on Fuzzy Entropy (FE) as a final experiment. By employing FE, the 

number of features was reduced by more than 40%, whereas the evaluation measures were not 

hindered for the EXP dataset and were even enhanced for the INSV dataset. Therefore, it was 
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deduced through these experiments that an entropy-based framework is successful for 

identifying sepsis in neonates and has the advantage of achieving high performance with 

conventional machine learning (ML) approaches, which makes it a reliable means for the early 

diagnosis of sepsis in deprived areas of the world. 

 

Keywords: newborn cry diagnostic system; Spectral Entropy; sepsis; fuzzy entropy; Bayesian 

Hyperparameter Optimization 

 
 
2.2 Introduction 

Studies conducted by the United Nations Children’s Fund (UNICEF) report that 7000 

newborns die every day from mostly treatable causes, which amounts to 2.6 million neonates 

per year. Although neonates constitute the most vulnerable group, they are also the most 

difficult to interact with; in-depth examinations and medications are intricate and seldom 

prescribed. The main challenge in working with neonates is that their only means of 

communication is crying. According to UNICEF reports, newborn mortality is mainly 

attributable to infectious pathologies such as sepsis and meningitis. These two pathologic 

conditions together comprise a 15% share of all neonate death causes, especially in middle and 

lower-income countries (Unicef, 2020a). 

 

Crying is the result of cooperation between numerous organs in the body, such as the 

respiratory system, central and peripheral nervous system, and a variety of muscles and limbs. 

If any organs fail to function properly, a cry different from a healthy one is expected (Fort & 

Manfredi, 1998). As early as the 20th century, it was observed that the cry of neonates 

diagnosed with certain pathologies was different from healthy neonates (Michelsson, SirviÖ, 

et al., 1977). This led to further investigation of cries and the use of sound spectrographic 

analysis. The results claimed that the cry signal conveys a significant amount of information 

about a newborn’s health. The researchers developed a more accurate system since the 

spectrographs could not capture all the abnormalities and disorders in a cry signal; therefore, 

the automatic newborn cry diagnostic systems (NCDSs) were designed and proposed (Abou-
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Abbas, Tadj, & Fersaie, 2017; Farsaie Alaie & Tadj, 2012; Kheddache & Tadj, 2013a, 2013c; 

Matikolaie & Tadj, 2020; Messaoud & Tadj, 2011). 

 

NCDS architectures are designed to serve different purposes. These purposes include detecting 

the reason for crying in healthy infants (Bano & RaviKumar, 2015; Parga et al., 2020), such 

as pain, hunger, etc., segmenting the crying episodes into expiration and inspiration (Abou-

Abbas et al., 2015), detection of the cry from the surrounding environment (Torres et al., 2017) 

and diagnosis of pathologies (Orlandi, Manfredi, Bocchi, & Scattoni, 2012; Satar, Cengizler, 

Hamitoglu, & Ozdemir, 2022; Zabidi, Mansor, Khuan, Yassin, & Sahak, 2009). The design 

proposed in this study focuses on the last category of NCDSs where the goal is to discriminate 

between healthy and septic infants (Kheddache & Tadj, 2019). Similar to other audio analysis 

systems, the NCDS consists of three main stages: pre-processing, feature extraction and 

classification, as seen in Figure 2.1. 

 

 
Figure 2.1 The block diagram of the NCDS 

 

Mel-frequency Cepstral Coefficients (MFCC) are one of the most common features in the 

analysis of audio signals. They have been employed in the detection of many health conditions, 

such as cleft palate (Massengill Jr, 1969), asphyxia (Wahid, Saad, & Hariharan, 2016; Zabidi, 

Mansor, & Lee, 2017), respiratory distress syndrome (Matikolaie & Tadj, 2020) and hearing 
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impairment (Jam & Sadjedi, 2009), and have demonstrated efficient performance. Other 

feature sets, including fundamental and resonant frequencies (Kheddache & Tadj, 2015), 

Linear Prediction Coding (LPC) (Liu et al., 2019) and prosodic features (Matikolaie, 

Kheddache, & Tadj, 2022), have been explored in the feature extraction step of other NCDS 

designs. Various entropy feature sets were utilized in order to identify deaf neonates from the 

healthy group (Jam & Sadjedi, 2009), for detection of asphyxia in newborns (Hariharan, 

Saraswathy, Sindhu, Khairunizam, & Yaacob, 2012) and for automated detection of the cry 

(Vaishnavi & Dhanaselvam, 2019). It has been reported that approximate entropy has different 

levels across healthy and pathologic newborns (Lahmiri, Tadj, Gargour, & Bekiros, 2021). We 

extracted Spectral Entropy Cepstral Coefficients (SENCC) and Spectral Centroid Cepstral 

Coefficients (SCCC) and combined them. The combination of these features provides more 

analysis for the study of septic cry signals. Finally, the feature sets are fed to a classifier and 

the predicted class labels are the output of the NCDS. 

 

Spectral Centroid (SC) has been studied in order to find the reason for crying (Chang, Chang, 

Kathiravan, Lin, & Chen, 2017; Osmani, Hamidi, & Chibani, 2017) and to detect infants with 

developmental disorders (Oren et al., 2016). This feature has shown promising results in 

musical applications for studying timbre (Lakatos, 2000) and medical studies such as detecting 

Alzheimer’s disease based on Electroencephalogram (EEG) signals (Kulkarni & Bairagi, 

2017). To the best of our knowledge, cepstral analysis of this feature set has not been explored 

in NCDS designs so far. For a long time, crying has been treated similarly to the speech signal, 

and the features that showed potential in speech recognition tasks have been employed in cry 

research. This study aims to introduce the features that have been prevalent in the study of 

music to cry-based applications since the cry signal has harmonic components and rhythm 

(Kheddache & Tadj, 2015; Matikolaie et al., 2022). In the next step of NCDSs, many different 

classification approaches have been explored. Support Vector Machine (SVM) (Alaie, Abou-

Abbas, & Tadj, 2016; Chang, Hsiao, & Chen, 2015), Probabilistic Neural Network (PNN) 

(Matikolaie et al., 2022), Forest (Rosales-Pérez et al., 2015), Decision Trees (Osmani et al., 

2017), K-nearest Neighborhood (KNN) (Fuhr, Reetz, & Wegener, 2015), and discriminant 

analysis are some of the algorithms implemented in this field (Matikolaie & Tadj, 2022). 
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Hyperparameter Optimization (HPO) was introduced in the 1990s (King, Feng, & Sutherland, 

1995; Michie, Spiegelhalter, & Taylor, 1994) when several studies reported that adjusting 

various hyperparameters led to better results across different datasets (Kohavi & John, 1995). 

HPO is employed to enhance the performance of the default settings provided by conventional 

machine learning (ML) architectures (Mantovani, Horváth, Cerri, Vanschoren, & de Carvalho, 

2016; Olson, Cava, Mustahsan, Varik, & Moore, 2018). Moreover, Fuzzy Entropy (FE) has 

been studied previously for many applications in the biomedical field, such as medical database 

classification (Jaganathan & Kuppuchamy, 2013), and also tested on the Parkinson’s database 

for feature selection purposes, which was able to achieve an accuracy of 98.28% (Luukka, 

2011).  

 

The contribution in this study has several aspects: first, the identification of septic newborns 

using their cry signals is of great significance, which has considerable potential and has been 

rarely looked at so far. To the best of our knowledge, even though sepsis is taking the lives of 

many newborns every day, there is only one other very recent study dedicated to this pathology. 

The second contribution is our approach in the design of an NCDS with different feature sets, 

their combination, and unique HPO for each feature set and classifiers, in order to identify 

septic newborns. Lastly, we employed a feature selection method based on Fuzzy Entropy (FE 

Selection) in order to select the features with the highest information content and to reduce the 

feature space dimensionality (Lee, Chen, Chen, & Jou, 2001; Lohrmann, Luukka, Jablonska-

Sabuka, & Kauranne, 2018); to the best of the authors’ knowledge, this method has not been 

explored in research associated with NCDS so far. There are many other entropy-based 

features and methods present in the literature. FE selection was chosen for this study due to its 

simplicity and the fact that it does not burden the system with complex computational costs 

(Khushaba et al., 2007). Moreover, Lee et al. (Lee et al., 2001) stated that their FE-based 

feature selection method enhanced the classification rate by discarding the features that were 

detrimental and affected by noise. The term sepsis refers to an infection that enters the 

bloodstream. Medical studies suggest that major infections, including sepsis, are associated 

with tenacious crying, and therefore, for a neonate with persistent crying, the predominant 
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manifestation of sepsis should be seriously considered (Ruiz-Contreras, Urquía, & Bastero, 

1999). Expedient diagnosis is of utmost importance for this pathology and medical staff should 

be alert to the risk factors of sepsis in neonates (Singh & Gray, 2018). It should be mentioned 

that there are other effective approaches to the study of sepsis in newborns, which range from 

studying heart rate monitoring to biosensing and electrochemical detection (Balayan, Chauhan, 

Chandra, Kuchhal, & Jain, 2020; Moorman et al., 2011). However, we proposed this study as 

an early and simple alert for diagnosing sepsis without the need for any clinical equipment, or 

even contact with the newborn, which would be complementary in adding information 

regarding sepsis. The areas that suffer the most from septic mortality have a lack of 

pediatricians and are categorized among low-income countries. Thus, a method that is simple 

and has efficient performance is preferred to one benefiting from complicated architecture and 

high computational requirements. 

 

This article aims to provide an automated approach for identifying septic neonates through the 

development of a Newborn Cry Diagnostic System (NCDS). Furthermore, our goal is to assess 

the performance of the existing methods in the fields of ML and speech analysis in order to 

provide a simple tool for early diagnosis of sepsis in infants. It is noteworthy that there are a 

very limited number of studies dedicated to the automatic identification of septic newborns so 

far, and we will address them in the following sections. Therefore, there is a lacuna in the 

studies regarding the automatic analysis of sepsis in neonates. The methodology section 

explains the data acquisition process, participants and NCDS stages with a detailed description 

of the features and classifiers. Next, we expound the NCDS evaluation methods and the results 

in terms of the evaluation metrics are presented. We will then discuss the achieved results and 

compare them to the work of other researchers. The final section is dedicated to the conclusion. 
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2.3 Methodology 

2.3.1 Cry Dataset and Recording Procedure 

The database used for this study was created in collaboration and cooperation with Al-Raee 

and Al-Sahel hospitals in Lebanon and Saint Justine Hospital in Montreal, Canada. Most of 

the infants chosen for this study were neonates by the definition of UNICEF, which means 

they were less than four weeks old. The large number of cases and the diversity of race and 

pathologies make this database exceptional from all the other databases. The signals were 

recorded in the hospital environment; they were recorded in different conditions and times, 

such as after birth, when infants were placed in intensive care units, in the maternity room 

(either public or private), etc. 

 

The crying reasons were not the same for all the infants; for example, cries may be due to wet 

diapers, hunger, fear, etc. These reasons were determined according to the conditions causing 

the cry with the help of medical staff and the infant’s guardians. They were also based on the 

various tests performed after birth (Abou-Abbas, Tadj, Gargour, et al., 2017). The dataset 

acquisition and the selection of the neonates that participated in this study were not limited to 

a specific cry stimulus, making our study a comprehensive one. 

 

The recorder utilized for this database was an Olympus hand-held digital two-channel device. 

It had a sampling frequency of 44.1 kHz and 16 bit resolution. The recorder was placed 10 to 

30 cm from the newborn’s mouth. There was no well-defined procedure during the acquisition 

of the cry sounds. Therefore, during the data collection process, unwanted information and 

noises, such as staff chatter, medical instrument beeps, the cry of the other newborns, and other 

environmental noises and sounds, were also recorded. Hence, we consider our database a real 

corpus recorded in an actual clinical environment. Table 2.1 is a description of the cry database 

used in this study. 
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Table 2.1 Description of the cry database 
 

 Septic Healthy 

Gender 11 Males and 6 Females 55 Females and 53 Males 

Weight 3.03 ± 0.40 kg 3.50 ± 0.55 kg 

APGAR Score 8 to 10, measured 2–3 times 9–10, measured 2–3 times 

Babies’ Ages 1 to 53 days old 

Prematurity Full term 

Gestational Age 38 ± 1 week 

Origin Canada, Haiti, Portugal, Syria, Lebanon, Algeria, Palestine, Bangladesh, 
Turkey 

Race Caucasian, Arabic, Asian, Latino, African, Native Hawaiian, Quebec 

Reason for 
Crying Birth cry, hunger, dirty diaper, discomfort, needs to sleep, cold, pain 

 
 
The pathology group selected for this study was sepsis. Our database includes 108 full-term 

healthy neonates and 17 neonates that were marked as having sepsis by the medical staff 

through in-depth examinations. There are 53 cry signals recorded from the septic neonates in 

total, which means each newborn has more than one recording in the database. In order to 

obtain a balanced study, the same number of samples were chosen from the full-term healthy 

neonates’ group. The healthy samples were selected completely randomly and without any pre-

specified conditions in order to maintain the proposed NCDS free of any bias towards race, 

reason for crying and origin. In order to have a balanced study, we randomly selected an equal 

number of samples from both groups. As shown in Table 2.2, the control group consisted of 

randomly chosen samples from the whole healthy dataset of 108 healthy newborns to match 

the number of samples from the septic group. We wanted our NCDS to include newborns from 

all races, genders and any cry stimuli. The only remaining difference in the two datasets is the 

number of males and females. However, it has been shown that the length of vocal cords is the 
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factor that determines the fundamental frequency of newborn cries as well as other 

characteristics, and this is similar across male and female neonates and does not have any 

meaningful impact on the cry (Reby, Levréro, Gustafsson, & Mathevon, 2016). The average 

lengths of expiratory and inspiratory cries were 0.72 and 0.21 s, respectively. We set a 

condition to only select the samples with a length of more than two consecutive windows (17 

ms = two 10 ms windows with 30% overlap) in order to achieve a reliable analysis of the 

dataset. 

 

Table 2.2 Specifications of EXP and INSV datasets for healthy and pathologic cry signals 
 

 No. of 
Healthy 

No. of 
Septic 

No. of Train 
Samples 

No. of Test 
Samples 

Available 
Time (s) 

EXP 1132 1132 1585 679 1773.66 

INSV 461 461 646 276 442.27 

 

 

2.3.2 Dataset Preprocessing 

Neonates have no significant control over their cries and therefore can only have a few of the 

respiratory maneuvers present in adults. Lester et al. (Lester & Boukydis, 1985) reported that 

the cry pattern of newborns often shows an expiration phase that is five times longer than the 

inspiration, which was confirmed by the durations of signals for the expiration and voiced 

inspiration in our dataset. 

 

The process of segmenting and labeling the cry signals was manual and rather perceptive, and 

consequently a time-consuming one as well. The usual method was to detect the start and end 

of a cry unit by visual and auditory investigation of the spectrogram of the cry signal (Abou-

Abbas et al., 2015). 
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Our team of researchers annotated the labels corresponding to various segments of cry signals 

for this study using WaveSurfer software, as in Figure 2.2. The recordings of our corpus have 

been manually annotated to mark the start and endpoints of each vocalization. A newborn cry 

can comprise typical cry sounds, glottal sounds, hiccups, short pause segments between cries 

and faint cries (Abou-Abbas, Tadj, & Fersaie, 2017). The inspiration is believed to contain 

information pointing to pain and distress cries (Aucouturier et al., 2011). 

 

 
Figure 2.2 Labels annotated using WaveSurfer software for a cry signal 

 

The power needed for driving the expiratory phase of a cry is stored during inspiration. 

Usually, cries occur during this respiratory phase, so this segment contains the main 

information (Abou-Abbas, Tadj, & Fersaie, 2017). Additionally, voiced inspiration has proven 

to be significant in the study of pathologic neonates (Abou-Abbas, Tadj, Gargour, et al., 2017). 

Therefore, INSV and EXP units are used separately for this study in order to discriminate 

between healthy and pathologic cries. 

 
 
2.3.3 Feature Extraction 

In the process of generating a cry sound, the impulses produced by the glottis pass through the 

vocal tract, which acts as a filter. In other words, the vocal tract filters the glottal impulses so 

as to produce the desired sounds (Wasz-Hockert, Lind, Partanen, Valanne, & Vuorenkoski, 

1968). The Cepstrum is a homomorphic transformation that allows for the discrimination of 

the source and filter (Huang, Acero, Hon, & Foreword By-Reddy, 2001); therefore, cepstral 

analysis was employed here. Furthermore, the cry signal is non-stationary and dynamic. Hence, 

an entropy-based feature vector that can capture the presence of complexity in the cry signal 

is indispensable in the study of newborn pathology diagnosis (Brent, 2010). Our dataset was 
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recorded in real-world conditions; therefore, the presence of noise was inevitable. In other 

biological signals, the noise is treated differently based on the purpose and applications (Porta, 

De Maria, Bari, Marchi, & Faes, 2016). In this regard, as suggested by the previous researchers 

in our lab (Alaie et al., 2016), we addressed this issue by studying both INSV and EXP datasets 

in order to be able to have a more reliable representation of the results. Alaie et al. (Alaie et 

al., 2016) mentioned that EXP cries are more reliable in terms of estimating the true value. 

Furthermore, the acquisition of the cry signals was done in the same conditions for both healthy 

and septic newborns, and all the steps for the analysis of both groups were similar. The 

biological signals are associated with nonstationarities. Maganin et al. (Magagnin et al., 2011) 

reported that these nonstationarities may have detrimental effects on the results. In order to 

overcome the difficulties in processing and the classification of the nonstationary cry signal, it 

is standard practice to employ filter banks and a sliding window of short length (10 ms) (Young 

et al., 2002). The windowing of the nonstationary signal has been introduced as a solution for 

achieving a locally stationary signal (Cohen, 1995). In this study, the Hamming window and 

Mel-filter banks were utilized before extracting the features. Each of the introduced feature 

sets was tested both individually and combined with other features. In the next step, these 

feature sets were fed to the KNN and SVM classifiers, and the hyperparameters for each of 

them was optimized using the BHPO method. 

 
 
2.3.3.1 Mel-Frequency Cepstral Coefficients (MFCC) 

Prior to the extraction of MFCC features, the cry signal needs to be pre-emphasized, which 

means that the signal is filtered by H(z) = 1 − a𝑧  as the transfer function of the signal. This 

filtering allocates higher gains to higher frequencies. In this study, the value of a was selected 

equal to 0.97 based on previous researchers’ work (Alaie et al., 2016). Extracting MFCCs 

consists of four main steps, which are described here (Vaishnavi & Dhanaselvam, 2019): 

 

1- Applying a windowing criterion to the signal: The window was applied to enhance the 

harmonics, smooth the edges and decrease the edge effect of applying a Discrete 
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Fourier Transform (DFT) to the signal. Here, the Hamming window with a frame size 

of 10 ms and 30 percent overlap between consecutive frames was selected. 

 

2- Implementing the DFT: In order to obtain the magnitude spectrum of each window, the 

DFT is applied to the cry signal. In this study, overlapping triangular filters were 

employed; the number of filters used varied in general between 13 and 24. The MFCC 

features were computed from 13 filter banks. 

 

3- Computing the logarithm of magnitude and scaling the frequencies on a Mel scale: The 

magnitude spectrum was multiplied by every triangular Mel weighting filter to 

calculate the Mel spectrum. The Mel spectrum should be represented on a log scale to 

be prepared for the next step. Equation 2.1 gives the Mel scale of frequency 𝑓. 

 

 𝑀(𝑓) = 1125 𝑙𝑛(1 + 𝑓/700)   (2.1) 

 
4- Taking the inverse Discrete Cosine Transform (iDCT) of the signal: As mentioned 

before, the energy levels of adjacent bands tend to be correlated due to the smooth form 

of the vocal tract. Therefore, the transformed Mel-frequency coefficients must undergo 

an iDCT that results in separable cepstral coefficients. The first few MFCC coefficients 

might be sufficient for a robust representation of the system (Benesty, Sondhi, & 

Huang, 2007). Therefore, the first 13 coefficients were extracted in this study. 

 

MFCCs often only contain the information from one window; hence, these cepstral coefficients 

are considered static features. In order to gain information on the temporal dynamics, cepstral 

coefficients’ first and second derivatives should be calculated, which are known as delta and 

delta-delta coefficients, Equation 2.2. 

 

 ∆ =  ∑ ( )∑    (2.2) 
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where ∆  is a delta coefficient from discrete-time n computed in interval of the static 

coefficients 𝑐  to 𝑐  ; the value of Θ is usually set to 2 (Young et al., 2002). The delta-

delta coefficients are calculated with delta coefficients in a similar manner. The dynamic 

features help us capture the spectral changes in the cry signal. Finally, the dynamic MFCC 

features are added to the feature vector, and together they form the MFCC feature set with a 

total of 39 features. 

 
 
2.3.3.2 Spectral Entropy Cepstral Coefficients (SENCC) 

Spectral Entropy (SEN) evaluates the signal’s energy distribution uniformity. This measure is 

an indicator of the complexity of the signal. It can also be employed to capture the peakiness 

in a signal. Figure 2.3 illustrates the SEN of multiple episodes of expiration cry for a healthy 

infant as opposed to an infant diagnosed with sepsis. The entropy levels for a septic cry are 

lower, which was also deduced in previous works (Misra, Ikbal, Bourlard, & Hermansky, 

2004). 

 

 
Figure 2.3 Spectral entropy for 20 EXP utterances from one healthy neonate and 20 EXP 

utterances from one septic neonate 
 
In order to compute the SEN, the spectrum is written in terms of a Probability Mass Function 

(PMF)-like function, Equation 2.3. 
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 𝑥  =  ∑       for i = 1 to N    (2.3) 

 

Here, (the uppercase) 𝑋 , appearing in the nominator and denominator, is the energy of ith 

frequency component of the spectrum. The PMF of the spectrum is represented by (the 

lowercase) x = (x1,…,xN), and the number of points in the spectrum is specified by N. The 

entropy of each frame was computed from Equation 2.4 (Toh, Togneri, & Nordholm, 2005). 

 

 H = -∑ xi .  log2xi
N
i=1   (2.4) 

 

In order to detect the position of peakiness or flatness present in the spectrum, a process similar 

to the extraction of the MFCCs was employed. The fast Fourier Transform (FFT) of each frame 

was calculated. Following the calculation of the FFT, the achieved spectrum was mapped to 

the Mel-scale in order to mimic the signal based on the human sound perception model. Then, 

the SEN was computed from the Mel-spectrum. Finally, DCT was applied to decorrelate 

between the coefficients and further improve the results, and 13 SENCC coefficients were 

obtained. 

 
 
2.3.3.3 Spectral Centroid Cepstral Coefficients (SCCC) 

SC is a measure of the shape of the spectrum of the signal and the position of the mass of the 

spectrum. The mean value of SC was shown to be a discriminative feature (Kulkarni & Bairagi, 

2018) that indicates where the major energy of the signal is concentrated. SC is expected to be 

higher for the “brighter sounds” and has been widely employed in the study of timbre for music 

applications (Brent, 2010). It is also a discriminative feature in the measurement of tone in 

audio signals (Almeida, Schubert, Smith, & Wolfe, 2017). Figure 2.4 presents how the cries 

of the neonates suffering from sepsis are associated with lower tone, as is listed as one of the 

red-flag listings associated with neonatal sepsis (Weiss et al., 2019). 
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Figure 2.4 Spectral centroid for 15 EXP utterances from one healthy neonate and 15 EXP 

utterances from one septic neonate 
 

SC denotes the center of the signal’s gravity and is computed by taking the weighted mean of 

the frequency bins. The SC value, Ci of the i-th window, is computed using Equation 2.5. 

 

 Ci= ∑   kXi(k)
WfL
k=1∑   Xi(k)
WfL
k=1

  
(2.5) 

 

where 𝑥 (𝑛) are the i-th window samples, and 𝑋 (𝑘) are the DFT coefficients. The SC cepstral 

coefficients’ extraction procedure is similar to what was described for MFCC and SENCC, 

except that for the SCCC feature vector, the first five coefficients were extracted. 

 
 
2.3.4 Feature Reduction 

The first and most crucial aspect of post-processing is to reduce the dimensionality of the 

feature vectors to decrease the storage and computational costs. Feature reduction includes all 

the techniques that aim to make a compact feature set out of the original sets while trying to 

keep as much information as possible. Camargo et al. (Amaro-Camargo & Reyes-García, 

2007) suggested a simple and rapid method that reduces data through statistical operations 

such as minimum, maximum, average and standard deviation. Messaoud et al. (Messaoud & 

Tadj, 2011) also proposed an arithmetic method by averaging MFCCs over a time axis. 

Matikolaie et al. (Matikolaie & Tadj, 2020) further investigated the use of statistical methods 
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in the compression of the MFCC feature set and reported that this method was effective in 

terms of computational costs and classification accuracy. In order to reduce the dimensionality 

of the MFCC feature set, the statistical approach was employed, and the mean value of each 

MFCC coefficient over the time axis of each signal was calculated. 
 
 

2.3.5 Fuzzy Entropy Based Feature Selection 

As explained in the previous sections, entropy is associated with the uncertainty of a given 

variable. Here, we aim to focus on the concept of fuzzy entropy, which calculates entropy 

through a fuzzy c-means clustering algorithm. This method is called Fuzzy Entropy Selection 

of the features (FE Selection). In general, fuzziness refers to a possibilistic point of view, while 

the aforementioned entropy measure focuses on randomness and has a probabilistic 

perspective. This method was chosen because it is very fast and imposes a negligible 

computational cost on the system (Khushaba et al., 2007). 

 

Trivedi et al. (Trivedi & Bezdek, 1986) introduced a Fuzzy c-Partition model that computed 

the membership of each feature dimension and its corresponding FE. Suppose a finite set where 

Y = {𝑦 , 𝑦 , …, 𝑦 }, a set of real 𝑐 ×  𝑛 matrices denoted by 𝑉 , and 𝑐 is an integer so that 2 ≤ 𝑐 < 𝑛. The fuzzy c-partition space, 𝑀 , for Y is given by Equation 2.6. 

 

 
𝑀 =  𝑈 ∈ 𝑉 | 𝑢 ∈ [0, 1],∀𝑖, 𝑘;∑ 𝑢  = 1,∀𝑘;  0 < ∑ 𝑢  <𝑛,∀𝑖   

(2.6) 

 

This means that membership values of 𝑦  in the 𝑐 subsets could be obtained from the 𝑗th 

column of matrix U, which is from 𝑐 ×  𝑛 dimensions. The grade of membership of 𝑦  in the 

ith fuzzy subset of Y is represented by 𝑢  =  𝑢 (𝑦 ). Therefore, the membership of each 

pattern 𝑦  in all subsets is calculated and then normalized. Instead of applying this algorithm 

to each pattern, it is applied to each feature similar to previous studies (Khushaba et al., 2007). 

The FE is calculated based on the matching degree, 𝐷 , described by Equation 2.7, where 𝑢  
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is the membership of the feature 𝑦   in each of our two classes, denoted by c for each class and 

C for the set of the two classes (Lee et al., 2001). 

 

 𝐷 =  ∑  ( )∈∑  ( )∈    (2.7) 

 

The FE of the elements of each of these classes is achieved through Equation 2.8. 

 

 𝐹𝐸 =  −𝐷 𝑙𝑜𝑔𝐷    (2.8) 

 

 

Finally, the overall FE is given by Equation 2.9: 

 

 𝐹𝐸 =  ∑ 𝐹𝐸 = 𝐹𝐸 + 𝐹𝐸     (2.9) 

 

The main interpretation of the FE is very similar to the SEN which was described before; 

higher entropy translates to lower information content. We based our feature selection on the 

fact that smaller FE values contribute more to the recognition of septic infants. Thus, we first 

calculated the average FE value across the features and set this value as a threshold for our 

feature selection. In the next step, we imposed a condition where only the features with FE 

values lower than the overall average FE should be selected and formed a new feature set to 

be fed into the classifier. This condition secures the selection of features with minimum overlap 

and also will likely result in a lower misclassification possibility, which will be evaluated by 

the Matthews Correlation Coefficient (MCC) measure. 
 
 

2.3.6 Classification  

The performance of the feature sets was tested by the two classification methods of KNN and 

SVM in order to discriminate between the healthy and septic neonates. Each EXP or INSV cry 

episode was treated as a sample and the classifier assigned a label of healthy or septic to it. 
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Both classification methods benefit from five-fold cross-validation in order to avoid over-

fitting and ensure credibility. The models were tuned with the BHPO method in order to 

enhance the performance of each model. 

 
 
2.3.6.1 K-nearest Neighborhood (KNN) 

This method is an efficient yet simple method of classifying data. As the name of this method 

suggests, the features with similar values belong to the same class. The KNN classifiers often 

use Euclidean distance for the measurement of the distance between data points. This classifier 

has three bases for classification: sets of labeled data, a distance measure and, finally, the 

number of neighbors, which is denoted by K. In other words, KNN classifies a given sample 

based on the majority vote of the neighborhood and the distance (Latifpour, Mosleh, & 

Kheyrandish, 2015; Wu, Kumar, Quinlan, et al., 2008). The number of neighbours was 

automatically tuned with the BHPO method in the first step, which in all of the given 

experiments returned K = 1 as the best choice. The other hyperparameter selected for tuning is 

the type of distance used with each feature set. The distance measures included in this 

optimization include Minkowski, Chebyshev, Euclidean, standard Euclidean, cosine, Jaccard, 

Manhattan and Hamming. 

 
 
2.3.6.2 Support Vector Machine (SVM) 

SVM has a broad application in the classification of audio signals. An SVM differentiates 

between two cases by implementing a hyperplane. SVM is inspired by the statistical learning 

theory and the Vapnik–Chervonenkis (VC) dimension. The optimal hyperplane is constructed 

when the distance between the hyperplane and data is considerable. The linear data can be 

classified by simply constructing a straight hyperplane, while the nonlinear data should be 

made linearly separable for the purpose of classification. It means that the data must pass 

through a transformation into high-dimensional space, which is known as the kernel function 

(Sahak, Mansor, Lee, Zabidi, & Yassin, 2013). The gaussian kernel is used in this study. The 
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hyperparameters selected for HPO were kernel scale and box constraint. The BHPO was used 

for the tuning of the mentioned hyperparameters of the SVM model as well. 

 
 
2.3.6.3 Bayesian Hyperparameter Optimization (BHPO) 

In order to maintain the classification errors at a minimum while achieving high performance 

in a ML problem, HPO methods are used. A majority of ML designs include hyperparameters. 

With recent advances in the field of automated ML, various methods such as random search, 

grid search and Bayesian optimization have been introduced that no longer require human 

efforts for tuning these hyperparameters. More importantly, the hyperparameters are tailored 

to meet the requirements of each specific task and the results are reproducible. The basis of 

HPO is finding the optimal value for the hyperparameters in a finite set of predefined values, 

in order to minimize or maximize an objective function (e.g., model performance). The 

common challenge with these grid search and random search methods is the high number (~90 

iterations) of function evaluations needed to obtain minimal error, which in turn is not cost-

effective and may cause curse of dimensionality (Feurer & Hutter, 2019). BHPO is also an 

iterative method in which the acquisition function and the probabilistic surrogate model are the 

vital elements. The model is constantly updated based on the objective function evaluation, 

which is expressed as Equation 2.10 (Ashwini & Vincent, 2022): 

 

 𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∈ 𝑓(𝑥)   (2.10) 

 

The methodology in summary is deduction of the information on the model in each iteration 

based on new hyperparameters and the resulting model performance. When the number of 

determined iterations ends, the global optimal hyperparameter configuration is reported. In 

order to establish the local optimal hyperparameter, the acquisition function employs the 

predictive information of each possible hyperparameter configuration. BHPO requires far 

fewer iterations when compared to the other two methods and all the experiments in this study 

were performed with only 30 iterations. 
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2.4 Evaluation and Results 

The features introduced in this study were extracted and fed to the classifiers with the purpose 

of distinguishing between healthy and septic neonates. In order to compare their abilities to 

reach that goal, several experiments were conducted which were comprised of different feature 

sets, implementing the features individually or combined, and two classification methods with 

a wide range of parameters. Finally, the models were tuned to obtain the best performance. In 

this framework, the following feature sets were used: 

 

• MFCC; 

• SENCC; 

• SCCC; 

• MFCC + SENCC; 

• SENCC + SCCC; 

• MFCC + SCCC; 

• MFCC + SENCC + SCCC. 

 

Five-fold cross-validation was carried out after feeding each feature set to the classifier. This 

means that one fold of data was treated as the test data in each iteration of the training process, 

and the other four were the training folds. This process was repeated until all the folds had 

been used as the test fold. This process was repeated for both EXP and INSV datasets. 

 
 
2.4.1 Evaluation Criteria 

There are different approaches to evaluating a system’s performance. One of the main 

measures for that purpose is accuracy. Accuracy is the ratio of correct decisions to the total 

number of cases, Equation 2.11. 

 

 Acc = TP+TN
TP+TN+FN+FP

   (2.11) 
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where N stands for negative and P stands for positive, and T and F stand for true and false. 

However, when the task is diagnosing a pathology, it is of utmost importance that the system 

does not miss a pathologic case. A confusion matrix is defined for the binary classification task 

where the problem is the discrimination between healthy and pathologic cries, as shown in 

Figure 2.5. In this study, the positive label stands for septic infants and the negative label stands 

for healthy (not septic). 
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Figure 2.5 The confusion matrix for a binary classification 

 

The True Positive Rate (TPR) is referred to as sensitivity, hit rate or recall. In the concept of 

his study, recall is also an important measure as it demonstrates how many true septic cases 

have been captured by the NCDS. Hence, recall owes its importance to the fact that a false 

healthy detection is not desirable, Equation 2.12 (Parikh, Mathai, Parikh, Sekhar, & Thomas, 

2008). 

 

 TPR =     (2.12) 

 

The Positive Predictive Value (PPV) is another measure and is also referred to as precision. In 

this framework, precision is the probability that a septic case is predicted as septic, Equation 

2.13. 
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 PPV =     (2.13) 

 

The next evaluation measure is called the F1-score, which shows the balance between precision 

and recall and is a good measure of the system’s performance. Mathematically, the F1-score is 

the harmonic mean of precision and recall, Equation 2.14. 

 

 F1 =  .  ( ) = 2.  .    (2.14) 

 

Finally, the MCC considers all the information in a contingency matrix. The value of this 

measure belongs to the [−1, +1] interval where 0 denotes a random distribution, −1 shows 

complete misclassification and +1 corresponds to perfect classification (Chicco & Jurman, 

2020). The MCC is computed using Equation 2.15: 

 

 MCC =   × ×( )( )( )( )   (2.15) 

 

The MCC measure is highly informative for binary classification tasks in general (Vihinen, 

2012). Since we have a healthy versus septic classification problem in this study, implementing 

the MCC is considered beneficial and proper. 

 
 
2.4.2 Results 

The results of different experiments conducted in this study are given in Table 2.3 to Table 

2.10. As previously mentioned, we analyzed the performance of feature sets for two separate 

datasets of EXP and INSV. Moreover, KNN and SVM were employed as the classifiers in this 

study. The feature sets were used both individually and jointly. They were concatenated so that 

we could compare the performance of larger feature sets as opposed to the individual feature 

sets. It is noteworthy that our findings regarding the behavior of feature sets were consistent 

with medical findings and other researchers’ work, as discussed in Sections 2.3.3.2 and 2.3.3.3. 

Regarding the evaluation criteria discussed in the previous section, the higher the value of each 
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measure, the better the performance of our NCDS. The results presented in this section are all 

in the form of average and standard deviation of five-fold cross validation values. For all the 

measures, the values represent percentages except for the MCC measure, which is unitless and 

belongs to the [−1, 1] range. 

 

Table 2.3 Evaluation metrics for the MFCC feature set 
 

MFCC 
EXP INSV 

SVM KNN SVM KNN 

Accuracy (%) 88.07 ± 0.98 81.97 ± 0.70 89.06 ± 1.80 85.36 ± 0.49 

Recall (%) 85.71 ± 1.91 91.67 ± 1.83 91.85 ± 2.96 92.74 ± 0.33 

Precision (%) 90.38 ± 0.74 72.48 ± 1.93 86.38 ± 1.05 78.30 ± 0.81 

Specificity (%) 89.72 ± 0.72 76.56 ± 1.01 86.58 ± 1.16 80.36 ± 0.61 

F-score (%) 87.66 ± 1.13 83.42 ± 0.67 89.13 ± 1.90 86.11 ± 0.42 

MCC 0.76 ± 0.02 0.65 ± 0.01 0.78 ± 0.04 0.72 ± 0.01 

Distance/Kernel Scale 1.7864 Cosine 5.8165 Cosine 
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Table 2.4 Evaluation metrics for the SENCC feature set 
 

SENCC 
EXP INSV 

SVM KNN SVM KNN 

Accuracy (%) 71.55 ± 0.70 72.02 ± 0.82 69.20 ± 0.85 65.00 ± 1.71 

Recall (%) 42.50 ± 1.42 44.88 ± 1.85 37.04 ± 1.74 58.81 ± 3.13 

Precision (%) 100.00 ± 0.00 98.60 ± 0.24 100.00 ± 0.00 70.92 ± 2.01 

Specificity (%) 100.00 ± 0.00 96.93 ± 0.43 100.00 ± 0.00 65.95 ± 1.82 

F-score (%) 59.64 ± 1.40 61.33 ± 1.68 54.04 ± 1.84 62.15 ± 2.29 

MCC 0.52 ± 0.01 0.52 ± 0.01 0.48 ± 0.01 0.30 ± 0.03 

Distance/Kernel Scale 0.0116 Cosine 0.1063 Chebyshev 

 

Table 2.5 Evaluation metrics for the SCCC feature set 
 

SCCC 
EXP INSV 

SVM KNN SVM KNN 

Accuracy (%) 71.46 ± 0.67 72.02 ± 0.77 69.06 ± 0.83 68.12 ± 0.87 

Recall (%) 42.32 ± 1.35 45.60 ± 1.73 36.74 ± 1.71 37.33 ± 1.93 

Precision (%) 100 ± 0.00 97.90 ± 0.24 100.00 ± 0.00 96.03 ± 0.81 

Specificity (%) 100 ± 0.00 95.52 ± 0.39 100.00 ± 0.00 90.04 ± 1.72 

F-score (%) 59.46 ± 1.33 61.71 ± 1.55 53.72 ± 1.82 52.75 ± 1.91 

MCC 0.52 ± 0.01 0.51 ± 0.01 0.48 ± 0.01 0.41 ± 0.02 

Distance/Kernel Scale 0.0089 Jaccard 0.0129 Hamming 
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Table 2.6 Evaluation metrics for the combination of SCCC and SENCC feature set 
 

SCCC + SENCC 
EXP INSV 

SVM KNN SVM KNN 

Accuracy (%) 71.55 ± 0.70 72.52 ± 0.89 69.06 ± 0.83 65.72 ± 1.24 

Recall (%) 42.50 ± 1.42 47.80 ± 2.13 36.74 ± 1.71 58.52 ± 2.10 

Precision (%) 100.00 ± 0.00 96.73 ± 0.38 100.00 ± 0.00 72.62 ± 2.28 

Specificity (%) 100.00 ± 0.00 93.50 ± 0.48 100.00 ± 0.00 67.21 ± 1.68 

F-score (%) 59.64 ± 1.40 63.23 ± 1.79 53.72 ± 1.82 62.54 ± 1.47 

MCC 0.52 ± 0.01 0.51 ± 0.01 0.48 ± 0.01 0.31 ± 0.03 

Distance/Kernel Scale 0.0951 Jaccard 0.0764 Cosine 

 

Table 2.7 Evaluation metrics for the combination of SCCC and MFCC feature set 
 

MFCC + SCCC 
EXP INSV 

SVM KNN SVM KNN 

Accuracy (%) 81.50 ± 1.46 82.44 ± 0.65 88.41 ± 1.77 87.25 ± 0.94 

Recall (%) 83.69 ± 2.40 89.05 ± 1.42 89.19 ± 3.25 92.74 ± 1.61 

Precision (%) 79.36 ± 1.53 75.98 ± 0.98 87.66 ± 1.47 81.99 ± 2.28 

Specificity (%) 79.89 ± 1.31 78.41 ± 0.62 87.38 ± 1.39 83.17 ± 1.62 

F-score (%) 81.74 ± 1.57 83.39 ± 0.69 88.25 ± 1.92 87.68 ± 0.84 

MCC 0.63 ± 0.03 0.66 ± 0.01 0.77 ± 0.04 0.75 ± 0.02 

Distance/Kernel Scale 6.5705 
Standard 

Euclidean 
2.5893 Manhattan 
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Table 2.8 Evaluation metrics for the combination of SENCC and SENCC feature set 
 

MFCC + SENCC 
EXP INSV 

SVM KNN SVM KNN 

Accuracy (%) 89.99 ± 0.71 86.83 ± 0.44 88.19 ± 1.42 84.57 ± 0.75 

Recall (%) 88.15 ± 1.75 91.07 ± 0.87 88.89 ± 3.31 90.07 ± 0.66 

Precision (%) 91.78 ± 0.75 82.68 ± 1.56 87.52 ± 1.19 79.29 ± 0.92 

Specificity (%) 91.31 ± 0.65 83.76 ± 1.10 87.22 ± 0.94 80.64 ± 0.79 

F-score (%) 89.70 ± 0.83 87.26 ± 0.31 88.02 ± 1.61 85.10 ± 0.70 

MCC 0.80 ± 0.01 0.74 ± 0.01 0.76 ± 0.03 0.70 ± 0.01 

Distance/Kernel Scale 2.1612 Minkowski 4.5656 Correlation 

 

 

Table 2.9 Evaluation metrics for the combination of all feature sets 
 

All Features 
EXP INSV 

SVM KNN SVM KNN 

Accuracy (%) 85.71 ± 1.17 82.77 ± 0.29 89.42 ± 1.01 85.87 ± 0.92 

Recall (%) 78.75 ± 3.34 85.03 ± 1.54 91.41 ± 1.62 94.22 ± 0.97 

Precision (%) 92.54 ± 1.26 80.29 ± 1.51 87.52 ± 1.63 77.87 ± 1.36 

Specificity (%) 91.21 ± 1.04 80.93 ± 0.93 87.54 ± 1.42 80.31 ± 1.02 

F-score (%) 84.48 ± 1.62 83.05 ± 0.38 89.42 ± 1.00 86.71 ± 0.84 

MCC 0.72 ± 0.02 0.66 ± 0.01 0.79 ± 0.02 0.73 ± 0.02 

Distance/Kernel Scale 2.3092 Euclidean 3.8005 Cosine 
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Table 2.10 Evaluation metrics after applying FE Selection to the best feature sets of previous 
experiments 

 

FE Selection 
EXP: MFCC + SENCC INSV: All Features Combined 

All FE Selection All FE Selection 

Accuracy (%) 89.99 ± 0.71 88.51 ± 0.77 89.42 ± 1.01 91.81 ± 0.75 

Recall (%) 88.15 ± 1.75 89.11 ± 1.32 91.41 ± 1.62 93.23 ± 0.44 

Precision (%) 91.78 ± 0.75 87.93 ± 0.84 87.52 ± 1.63 90.66 ± 1.18 

Specificity (%) 91.31 ± 0.65 87.86 ± 0.76 87.54 ± 1.42 89.07 ± 1.25 

F-score (%) 89.70 ± 0.83 88.47 ± 0.81 89.42 ± 1.00 91.10 ± 0.77 

MCC 0.80 ± 0.01 0.77 ± 0.02 0.79 ± 0.02 0.84 ± 0.01 

Number of Features 52 27 57 35 

 
 
Table 2.3 presents the results for the evaluation of the MFCC feature set for EXP and INSV 

datasets. Furthermore, the MFCC feature set was evaluated with the use of the HPO method. 

We used BHPO for both classifiers, as mentioned in the previous sections. Finally, the 

performance of this feature set was tested with the KNN and SVM classifiers. The HPO led to 

consistent enhancement of accuracy and F-score measures across both datasets for the MFCC 

feature set. The SVM classifier had better performance in the evaluation of the MFCC feature 

set in both datasets in terms of all the evaluation measures except for recall, where the KNN 

classifier showed better performance. The best results achieved by this feature set are 

highlighted. 

 

Overall, the highest achieved F-score and accuracy for the EXP dataset were 88.07% and 

87.66%, respectively. In this regard, the performance of the NCDS with the INSV dataset was 

superior to the EXP dataset; the highest overall results obtained for this dataset in terms of F-

score and accuracy were 89.06% and 89.13%, respectively. 

 

As can be seen in Table 2.4 and Table 2.5, the performance of our NCDS with the SENCC and 

the SCCC feature sets were similar; both feature sets achieved 72.02% accuracy measures 



 70

(with different standard deviations). Furthermore, the SENCC and the SCCC feature sets 

obtained 61.33% and 61.71%, respectively, for F-score with the KNN classifier for the EXP 

dataset. Also, both datasets and feature sets obtained 100% precision and specificity with the 

SVM classifier. In the evaluation of the INSV dataset, KNN had better performance in terms 

of accuracy and F-score. The best F-score for the SENCC dataset was achieved with the KNN 

classifier for the INSV dataset, which was equal to 62.15%. Regarding the SCCC feature set, 

the highest F-score was 61.71% for the EXP dataset using the KNN classification method. 

 

In the next step, the framework of feature combination was investigated. We examined all 

possible combinations of these feature sets that were made possible through their 

concatenation. The results of these combinations are presented in  

 

Table 2.6 to Table 2.9. It can be observed that using the SVM classification method, the 

combination of SENCC and SCCC was dominated by the SENCC feature set for the EXP 

dataset and by SCCC for the INSV method since, despite the difference in their kernel scales, 

there was not a change in the evaluation measures. The overall best accuracy and F-score for 

the combination of SCCC and SENCC belonged to the KNN classification of the EXP dataset 

with 72.52% and 63.23%, respectively. 

 

The addition of the SCCC feature set to the MFCC feature set with the SVM classifier achieved 

the results of 88.41% and 88.25% for accuracy and F-score measures with the INSV dataset, 

as seen in Table 2.7. Furthermore, using the KNN classifier with the EXP dataset resulted in 

better performance in terms of accuracy and F-score, with 82.44% and 83.39%, respectively. 

 

As can be interpreted from Table 2.8, the best performance in terms of accuracy and F-score 

measures for the EXP dataset across all the experiments was achieved by the combination of 

the MFCC and SENCC feature sets. The highest accuracy and F-score among all the 

experiments on the EXP were 89.99% and 89.70%, respectively. Regarding the EXP dataset, 

the accuracy and F-score measures were enhanced by 1.92% and 2.04%, respectively, 
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compared to the MFCC feature set, which had the highest accuracy and F-score among the 

individual datasets. 

 

Finally, the combination of all the individual feature sets with the SVM classification resulted 

in the highest accuracy and F-score across all the experiments for the INSV dataset, with 

89.42% for both measures, as seen in Table 2.9. The combination of all individual feature sets 

enhanced these two measures by 0.36% and 3.31%, respectively, compared to the MFCC 

feature set, which achieved the best results among the individual feature sets. 

 

As our final experiment, we computed the FE measure for the best two experiments discussed 

above and selected the most compatible features in each presented feature set. These two 

experiments included the combination of the MFCC and SENCC features for the EXP dataset 

and the combination of all features for the INSV dataset, both classified using the SVM 

method. Table 2.10 represents the results of applying the FE selection method to these two 

experiments. 

 

 
Figure 2.6 Best F-score and accuracy measures for the SVM classifier in each feature set 

 

According to the evaluation measures studied here, the FE selection method was highly 

successful. Implementing fewer features resulted in a negligible decrease in the evaluation 

measures for the EXP dataset. As for the INSV dataset, the FE selection led to enhancement 

of all the evaluation measures, which marked the highest accuracy and F-score measures across 

all the experiments with 91.81% and 91.10%, respectively. Figure 2.6 summarizes the results 



 72

of the experiments in terms of F-score and accuracy measures for the SVM classifier that 

yielded the best results for a clearer comparison.  

 
 
2.5 Discussion 

This study further explored sepsis in newborns by the means of studying their cry signal 

through developing an NCDS design. Even though sepsis is associated with high mortality 

rates in newborns, only one recent work in our lab has studied the cries of septic infants in 

parallel to the study presented here. The previous study in our lab did not discuss the 

performance of the system in terms of the accuracy measure (Matikolaie & Tadj, 2022). In this 

study, accuracy as well as several other evaluation measures were included to help better study 

the performance of NCDSs for diagnosing septic newborns. Our goal was to build upon the 

previous work and also design a simple model that could achieve improved or comparable 

performance. Moreover, it is worth highlighting this research’s novelty in terms of analyzing 

the infant cry from the perspective of musical machine-learning applications. Most of the 

works addressing infant cries have treated the cry signal as a pre-speech audio. We believed 

that the harmonic nature of the infant cry, as well as the natural differences in the voice 

generation organs of infants and adults, had the potential to be analyzed with the features and 

methods that have shown promising results in the field of musical signal processing. There is 

meager information on the behaviour of pathologic cries based on analysis of the SC, and this 

work is the only study that combines SC with cepstral analysis in the study of pathologic 

newborn cries. 

 

Nowadays, many audio recognition system designs benefit from state-of-the-art deep learning 

and ML methods. However, the main challenge in studying pathology-related applications is 

the acquisition of relevant data. The occurrence of a specific pathology in any given time 

interval in newborns is not predictable and meeting the ethical and technical requirements to 

include cry samples in a database calls for extreme measures. Therefore, this study explored 

different approaches to make the best use of the available data. The limitations of the data 

impose many challenges in NCDS design. Inspired by (Matikolaie & Tadj, 2022), we also 
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addressed this issue by segmenting each cry signal into multiple expiratory and inspiratory 

episodes in order to treat each segment as a sample. Despite our efforts to make the analysis in 

this study unbiased towards race, origin and other factors, it should be noted that the system 

might still suffer from a low generalization power since it was designed based on a limited 

number of participants. Therefore, future research should be devoted to further investigate this 

matter. Moreover, the data dimensionality imposed more challenges in the process of feature 

extraction. It is common practice in NCDS studies to use statistical measures with extracted 

features to reduce computational costs (Matikolaie & Tadj, 2020; Messaoud & Tadj, 2011). 

The statistical method was chosen to ensure that our results are comparable to the previous 

studies. Furthermore, extra attention should be paid to the details in the design of conventional 

models because limited data may lead to overfitting of the classifiers. We addressed this 

challenge by using BHPO for both the SVM and KNN classification methods. As can be 

interpreted from Table 6, the accuracy of the NCDS was enhanced up to 89.42% for the INSV 

dataset. Also, we believed that the characteristics that were reported in the medical studies 

conducted on septic cries could be better analyzed through cepstral analysis of the SC and the 

SEN features, which was confirmed by our findings. Through the implementation of these 

features, the presented work was made capable of obtaining F-scores of 89.70% for the EXP 

dataset and 89.42% for the INSV dataset, which were both superior to the previous study 

(Matikolaie & Tadj, 2022). Therefore, we were able to show that even a single episode (as 

opposed to the All Episode voting scheme) analysis of the cry signal could achieve reassuring 

performance with careful selection of the parameters. 

 

As mentioned, the performance of the system was tested with the two different classification 

approaches of SVM and KNN, and SVM showed superiority in a majority of experiments. The 

recall measure was an exception to this conclusion, where KNN showed better performance. 

The presented study also showed that elevating the number of features in a pattern recognition 

problem does not always enhance the system’s performance. The predictive performance of 

the system depends on many different factors. 
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As was mentioned previously, the high discriminative power of inspiratory cries in the study 

of pathologic newborns has been neglected in many works. However, the high values of the 

evaluation measures achieved for this dataset show the potential for further investigation of 

inspiratory cries, which was consistent with previous studies in our lab. 

As discussed in Section 3, the entropy levels differ across healthy and septic infants, which is 

also reported by other researchers where healthy newborn cries were distinguished from 

pathologic cries (Lahmiri, Tadj, Gargour, et al., 2021). The same explanation applies to the SC 

of the infant cries, which marks these feature sets as potential biomarkers for further study of 

septic newborns. The SENCC measure alone could achieve 72% accuracy with the SVM 

classifier; it yields the highest performance in this study when combined with the MFCC 

feature sets. 

 

Figure 2.7 shows the elapsed time for extracting each of our feature sets for EXP and INSV 

datasets. The elapsed times are rational in terms of the duration of datasets and the number of 

coefficients in each feature set. Nevertheless, it was validated that extracting the SENCC and 

SCCC features does not aggravate the system’s complexity in terms of computational costs, 

and they have similar performance and run-times. 

 

 
Figure 2.7 The elapsed time for the extraction of features 
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It has been reported that the aggregation of multiple classifiers, with the intention of having 

the classifiers compensate for the errors of each other, does not yield good results and only 

burdens the system with more complexity and computational cost (Matikolaie & Tadj, 2022). 

In order to overcome this issue, we utilized BHPO with only 30 iterations, which is a low-cost 

and fast method. We were able to outperform the mentioned model in terms of F-score by 

between 3–6% for both datasets. 

 

None of the conducted experiments showed misclassification in terms of the MCC measure 

since they all had positive values. Moreover, all the combined feature sets for the EXP dataset 

yielded MCC values higher than 0.50. MCC values consider all elements from a confusion 

matrix; thus, their high value means prediction had satisfactory performance in terms of TP, 

TN, FN and FP. The same explanation applies to the INSV dataset, except for the feature set 

formed by the combination of the SENCC and SCCC features. 

 

As a final contribution, we further explored the use of entropy-based measures in the 

framework of diagnosing pathologies in infants based on their cry signals. By calculating the 

FE of the combined feature sets, we were able to remove redundant features, and also identified 

which features yielded better information in the feature set. After calculating the average FE 

across all measures, we set a threshold for the selection of the features and removed all the 

features with a higher FE value than the average. As a result, the system’s accuracy for the 

EXP dataset was not notably hindered by removing more than 40% of the features, and it was 

even enhanced in terms of the recall measure. Moreover, all of the evaluation measures were 

enhanced for the INSV dataset, which shows the reliability of this feature selection method in 

selecting the most prominent features. Figure 2.8 shows the difference in the evaluation 

measures for the best experiments in each dataset, after removing nearly 50% of the features 

based on their FE. 
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Figure 2.8 The comparison of results before and after applying the FE Selection method 

 

The results from these experiments also highlighted the fact that incrementing the number of 

features may not always lead to higher accuracy or enhanced performance of the system. 

Furthermore, it is noteworthy that understanding the information content of the feature space 

and selection of the most compatible features accordingly improves the performance of the 

system, as seen through the INSV dataset experiments where using FE selection enhanced the 

system’s performance by an average of 2%. 

 

As discussed before, high recall values show the ability of the NCDS in the successful detection 

of septic cases. The MFCC feature set had the best performance in terms of recall among all 

the individual feature sets with 92.74% for the INSV dataset. The overall highest recall was 

obtained by combining all feature sets for the INSV dataset with 94.22%. 

 

The implementation of the FE was a successful experiment in addition to all other presented 

experiments on the septic newborn cry signals. Our main achievement through the study of FE 

was to reduce the feature space by more than 40% while keeping the same performance; 

however, the improvement from the FE alone was limited. This experiment was simply carried 

out to evaluate if the system could benefit from further simplification and to eliminate the 

features corrupted by noise. We tried to develop each stage of the proposed NCDS in a way 

that was not explored well enough or not investigated in the field of NCDS designs. This 

included the analysis of septic newborn cries in NCDSs for only the second time ever, 

introducing the use of cepstral coefficients of entropy and centroid to NCDS design, the ways 
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we manipulated these features in order to study the newborn cries, the use of FE for feature 

selection, and employing BHPO for both the SVM and KNN methods, all of which, to the best 

of our knowledge, was unprecedented in NCDSs. We acknowledge that the study presented 

here cannot cover all aspects of the study of septic newborn cries and may be improved upon 

in many ways. There is an unceasing need for more studies in this field. The authors suggest 

exploring more classification schemes such as naïve Bayesian, Ensemble classifier, etc., and 

fusing their outcomes to form a more precise decision. There are more in-depth ideas for 

investigation that can assess the effect of the inevitable noise in the biological signals, as well 

as exploring other entropy-based measures, which could not be explored in the scope of this 

study. 

 
 
2.6 Conclusion 

In the presented study, sepsis was targeted as one of the leading mortality causes of neonates 

worldwide. The main goal was to develop a simple NCDS which is capable of detecting septic 

infants without the need for in-depth and invasive clinical tests. The recording of the cries does 

not need any complicated equipment, it can be done with a commercial handheld recorder, and 

it does not require any special conditions (our database was recorded in maternity rooms, 

NICUs, etc.). It does not even necessitate touching the newborn. We believed it was worth 

exploring how the cries of septic newborns would be different from those of healthy newborns 

as a complementary method to other means present in the literature. The novelty of our 

proposed work is in taking common tools in audio, music and speech processing, combining 

them, and tuning them in such a way that the final design is still simple but is able to achieve 

high performance in comparison to the other similar methods that are computationally 

expensive. The proposed NCDS could be employed as an early alarm for medical staff to detect 

possible pathologic neonates as soon as possible. Within this framework, entropy was utilized 

in various stages of the architecture, and yet it avoided complicated designs as well as any need 

for high-end technologies. We studied the infant cries with a musical perspective by employing 

SEN and SC features and their combination with cepstral analysis. These feature sets were 

classified using KNN and SVM classifiers that were tuned specifically for each of the feature 
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sets and datasets by the BHPO methods. We also introduced a FE feature selection framework 

for the first time in the study of pathologic infant cry signals. By using this method, we further 

simplified our NCDS design and removed nearly half of the redundant, low-impact and noise-

affected features. The performance of our design was evaluated using two separate datasets of 

expiratory cries (EXP) and inspiratory cries (INSV) with various evaluation measures such as 

accuracy, F-score and MCC. The achieved results showed promising potential in every step of 

the study. Each stage of the design further improved the system’s performance, at least in terms 

of one of the evaluation metrics. The best results in terms of accuracy and F-score measures 

were achieved by combining all the introduced features after FE selection for the INSV dataset 

with the SVM classifier, and these were 91.10% and 91.81%, respectively. These results also 

highlight the importance of INSV cries as potential biomarkers, which has been neglected in 

many infant cry studies. Finally, we concluded that the framework presented here has 

promising potential in studying and diagnosing sepsis in newborns all around the world as a 

non-invasive means, especially in areas that are facing challenges with a lack of experts and 

specialists. 
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3.1 Abstract 

Crying is the only means of communication for a newborn baby with its surrounding 

environment, but it also provides significant information about the newborn’s health, emotions, 

and needs. The cries of newborn babies have long been known as a biomarker for the diagnosis 

of pathologies. However, to the best of our knowledge, exploring the discrimination of two 

pathology groups by means of cry signals is unprecedented. Therefore, this study aimed to 

identify septic newborns with Neonatal Respiratory Distress Syndrome (RDS) by employing 

the Machine Learning (ML) methods of Multilayer Perceptron (MLP) and Support Vector 

Machine (SVM). Furthermore, the cry signal was analyzed from the following two different 

perspectives: 1) the musical perspective by studying the spectral feature set of Harmonic Ratio 

(HR), and 2) the speech processing perspective using the short-term feature set of Gammatone 

Frequency Cepstral Coefficients (GFCCs). In order to assess the role of employing features 

from both short-term and spectral modalities in distinguishing the two pathology groups, they 

were fused in one feature set named the combined features. The hyperparameters (HPs) of the 
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implemented ML approaches were fine-tuned to fit each experiment. Finally, by normalizing 

and fusing the features originating from the two modalities, the overall performance of the 

proposed design was improved across all evaluation measures, achieving accuracies of 92.49% 

and 95.3% by the MLP and SVM classifiers, respectively. The MLP classifier was 

outperformed in terms of all evaluation measures presented in this study, except for the Area 

Under Curve of Receiver Operator Characteristics (AUC-ROC), which signifies the ability of 

the proposed design in class separation. The achieved results highlighted the role of combining 

features from different levels and modalities for a more powerful analysis of the cry signals, 

as well as including a neural network (NN)-based classifier. Consequently, attaining a 95.3% 

accuracy for the separation of two entangled pathology groups of RDS and sepsis elucidated 

the promising potential for further studies with larger datasets and more pathology groups. 

 

Keywords: Cepstral Features; Sepsis; RDS; SVM; MLP 

 
 
3.2 Introduction 

According to the World Health Organization (WHO), millions of children die every year 

globally. It was also indicated that the majority of deaths among children occur under the age 

of one month; for example, in 2020, 2.4 million children died globally in the first month of 

their lives, adding up to 47% of all child deaths being under-five mortality, which was 40% in 

1990 (World Health Organization, 2021). This shows that the neonatal mortality rate is 

increasing globally. The WHO also presented the main pathological causes that may lead to 

neonatal death, where 75% of neonatal deaths usually occurred during the first week of life. 

Some of these pathological causes included Neonatal Respiratory Distress Syndrome (RDS) 

and sepsis. 

 

The reason behind the RDS is unknown; however, it is often associated with surfactant 

deficiencies (Edwards, Kotecha, & Kotecha, 2013). From 2016 to 2020, RDS was among 

Canada’s leading causes of post-partum mortality, and nearly 100 newborns lost their lives due 

to this pathology during the mentioned years (Canada Statistic, 2022). Typically, the clinical 
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diagnosis of RDS is carried out via a series of tests which include recording echocardiography, 

collecting blood samples, measuring the oxygen levels in the bloodstream through pulse 

oximetry, and chest and lung radiography (Warley & Gairdner, 1962). RDS is, thus, identified 

by breathing difficulty in a newborn and red or blue color of the face and lips and should be 

diagnosed at an early stage since it could lead to many developmental difficulties such as vision 

or hearing impairment, learning challenges, and mobility problems. However, it is worth 

mentioning that there is no determined test for diagnosing RDS or ruling out the possibility.  

 

On the other hand, sepsis was among the top 10 pathological causes that led to the mortality 

of infants in Canada between 2016 and 2020; it took the lives of more than 185 newborns ( 

Canada Statistic, 2022). In a general sense, sepsis is an infection that entails the blood and it 

may lead to, or be associated with, several other pathological conditions such as hypothermia, 

hypotension, or even RDS (Canada Statistic, 2022; Wynn & Wong, 2010). Neonatal sepsis is 

clinically diagnosed based on having at least two of the following symptoms: high or low heart 

rates, feeding problems, lethargy, fever, hypotonia, convulsion, hemodynamic abnormalities, 

and apnoea that lasts for more than 20s (Mayo Clinic, 2022). Therefore, the present clinical 

tests for diagnosing sepsis take time and have a moderate risk of producing false negative and 

false positive results. Consequently, it is of great significance to promptly identify this 

pathology in the newborn to start the treatment procedure before the onset of symptoms.  

 

It can thus be seen that both pathologies require intrusive and in-depth clinical tests to be 

diagnosed accurately, and they are associated with high mortality and morbidity rates for 

newborns. Furthermore, it has been shown that sepsis and RDS are closely associated and 

entangled (Wynn & Wong, 2010), and sepsis is one of the main causes of RDS (Mayo Clinic, 

2022). Therefore, studying and analyzing these two infant pathologies by the means of a 

simple, automated, and non-invasive tool, such as a newborn cry-based diagnostic system 

(NCDS), is preeminent and essential. This system can serve as a tool for early recognition and 

accurate diagnosis of these infants’ pathologies, which greatly contributes to acquiring the 

necessary treatment for the infant before the onset of symptoms and, thus, preserving the 

infant’s life. In addition to that, the distinction between these two pathologic groups (sepsis 
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versus RDS) will be lucrative in demonstrating that the concept of distinguishing neonates with 

certain pathologies from other pathological infants is an auspicious goal.  

 

Typically, infants communicate with those around them through crying; it is a combination of 

vocalization, coughing, choking, and interruption, which includes a diversity of prosodic and 

acoustic features at different levels (Ji et al., 2021). Recently, the analysis and understanding 

of infant crying signals have been receiving growing attention from researchers and data 

scientists, with the aim of diagnosing the infant’s pathology in its early stages. In this respect, 

it has been shown that infant cries provide important acoustic parameters or characteristics that 

should be taken into consideration, studied, and analyzed while monitoring the first days of an 

infant’s life (Ji et al., 2021; Kheddache & Tadj, 2019). Furthermore, the cry signals of 

unhealthy infants usually contain unique features or characteristics that differ from healthy 

ones (Ji et al., 2021). Consequently, pathological cry signal analysis and classification can be 

used as a valuable tool for predicting and recognizing neonatal diseases before the onset of the 

symptoms.  

 

By using the cry signals, various audio feature categories can be computed and generated, 

including cepstral, prosodic, and spectrograms, that have been widely used and applied to 

different research related to music, speech, and environmental sounds. These categories have 

separately been used for the identification of pathologies in newborns, and few attempts 

studied the combination of these features for the same purpose. In this research work, we aim 

to combine two feature categories, namely the cepstral domain and the prosodic domain, and 

then employ the combined features for training the classifiers. The ultimate goal of this 

research is thus to investigate the capacity of machine learning methods to discriminate 

between the septic and RDS cries, by using the combined feature set of the prosodic and 

cepstral domains. The characterization of different pathological patterns using the audio 

features would enable the development of an early and accurate diagnostic system that 

aggregates various audio feature categories to assist the early identification of abnormal 

acoustic behavior and link it to the early signs of a specific infant pathology. To the best of our 

knowledge, the question of utilizing different audio domains with a hyper-tuned machine 
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learning model to classify infant RDS cries from infant septic cries has not been considered 

yet.  

 

The presented study was proposed to address three main challenges in the field of pathological 

cry analysis. Firstly, despite the wide range of valuable research proving that the newborns 

diagnosed with a pathology cry differently than healthy newborns, there is no study where the 

cry signals of two pathology groups are compared to the best of authors’ knowledge. Secondly, 

there is an inadequate number of studies that target sepsis and RDS; more specifically, the 

studies that target cries associated with RDS as a single pathology group (as opposed to being 

a part of an entire “pathologic” group) are scarce and the few existing studies never obtained 

an accuracy of more than 75%. Third, low-income countries suffer the most from infant 

mortality rates, which is due to their lack of adequate monitoring equipment, low number of 

pediatricians, and lack of resources. Child mortality risks in low-income countries are 16 times 

higher than high-income countries (Unicef, 2019), which calls for designing non-complex, fast 

and efficient tools for early diagnosis. 

 

This study is the first to answer the question of pathologic versus pathologic that aimed to take 

the existing methods and algorithms and design a simplistic, yet efficient system, that requires 

only the everyday commercial tools. Our design benefits from a unique dataset owing to 

multiple factors. Firstly, no well-defined procedure or specific conditions were imposed during 

data collection phase; the data were collected in maternity rooms, Neonatal Intensive Care 

Units (NICUs), etc., where noise of medical equipment and staff and newborn’s guardians’ 

chatter was also present. Second, the recording was carried out by a simple handheld recorder, 

which can be found even in deprived areas of the world where the newborn mortality rates are 

at its highest. Third of all, data collection does not necessitate even as much as simply touching 

the newborn which makes our design a truly non-invasive method.  

 

Despite the ever-growing use of computationally expensive tools, and also the perspective 

where crying is thought of as a pre-speech signal, we employed conventional tools from 

different fields such as musical applications, non-speech audio analysis and processing. We 
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fused and optimized them so that the final design remains simplistic yet achieves the 

compatible performance of the state-of-the-art methods. The combination of the prosodic 

domain and cepstral domain features, which could lead to a new feature set that takes advantage 

of each domain and thus improves the linear separation between the two pathologies, is 

considered here by combining GFCCs and HR feature sets for the first time in the study of 

diagnostic analysis of the cry signal. 

 

The rest of the paper is organized as follows. The related work on infant pathologies 

classification techniques is discussed in Section 3.3, while Section 3.4 describes the proposed 

methodology, including a description of the dataset and participants, features extraction, and 

modeling, followed by a description of the different machine learning methods that have been 

tuned and applied to this classification problem. Section 3.5 presents and discusses the obtained 

results. Finally, Section 3.6 presents conclusions and outlines future work. 

 
 
3.3 Related Work 

In the early years of pathological infant cry signal analysis and classification, numerous 

artificial intelligence (AI) and machine learning (ML) techniques were proposed and 

developed. Researchers can find many research works on infant pathological cry analysis and 

classification in (Ji et al., 2021; Saraswathy, Hariharan, Yaacob, & Khairunizam, 2012). One 

can see that researchers continue to apply new machine learning methods to classify infant cry 

signals into normal and pathological records; for example, see the recent works in (Alaie et al., 

2016; Patil, Patil, & Kachhi, 2022). However, some of the current research works include 

identifying pathologies such as hypo-acoustic (Hariharan, Sindhu, & Yaacob, 2012), asphyxia 

(Badreldine, Elbeheiry, Haroon, ElShehaby, & Marzook, 2018; Ji, Xiao, Basodi, & Pan, 2019; 

Zabidi, Yassin, et al., 2017), hypothyroidism (Zabidi, Khuan, Mansor, Yassin, & Sahak, 

2010b), septic (Khalilzad, Kheddache, & Tadj, 2022; Matikolaie & Tadj, 2022), RDS 

(Matikolaie & Tadj, 2020), and autism spectrum disorder (ASD) (Wu, Zhang, Wu, Wu, & Niu, 

2019); additionally the authors in (Hariharan et al., 2018; Kheddache & Tadj, 2019; Lahmiri, 

Tadj, Gargour, et al., 2021; Matikolaie et al., 2022) have investigated different infant 
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pathologies. In particular, the asphyxiated infant crying signals have been identified using 

different ML methods, including a deep feedforward neural network (DFNN) model (Ji et al., 

2019), a support vector machine (SVM) model (Badreldine et al., 2018), and a convolutional 

neural network (CNN) approach (Zabidi, Yassin, et al., 2017), and achieved accuracy rates of 

96.74%, 98.5%, and 92.8%, respectively. In addition, hypothyroidism has been studied in 

(Zabidi et al., 2010b) using a Multilayer Perceptron (MLP) classifier, and achieved a 

classification accuracy of 88.12%. Two groups of authors investigated sepsis in newborns 

recently; the authors in (Khalilzad, Kheddache, et al., 2022; Matikolaie & Tadj, 2022) have 

developed a machine learning-based CDS for identifying septic newborns and reached an 

accuracy of 83.9% using majority voting, while the authors in (Khalilzad, Kheddache, et al., 

2022) attained 89.99% using entropy-based features. Furthermore, ASD in (Wu et al., 2019) 

and RDS in (Matikolaie & Tadj, 2020) have been identified based on a SVM and reached 

accuracies of 96% and 73.8%, respectively. 

 

Normal and hypo-acoustic infant cry signal classification has also been proposed in 

(Muthusamy Hariharan et al., 2012) using general regression Neural Networks (NNs) and 

reached 99% accuracy. Therefore, most of the existing NCDS models have mainly focused on 

investigating one pathology individually versus healthy cases. The authors in (Alaie et al., 

2016; Hariharan et al., 2018; Kheddache & Tadj, 2019; Lahmiri, Tadj, Gargour, et al., 2021; 

Matikolaie et al., 2022) have proposed to classify different pathological types of infant cry 

signals, namely: normal, deaf, asphyxia, hungry, pain, jaundice, and premature from the 

healthy group. Moreover, their proposed model is based on a combination of wavelet packet-

based features and an Improved Binary Dragonfly Optimization-based feature selection 

method, and they conducted several classification experiments of two-class and multi-class of 

crying signals and achieved promising results.  

 

As mentioned before, different audio feature categories can be extracted from infant cry signals 

using the following domains: cepstral domain, prosodic domain, time domain, image domain, 

and wavelet domain (Ji et al., 2021). Each domain represents different aspects of the infant’s 

cry signal and they each present specific information and characteristics. Compared to the time 
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domain features, which are more sensitive to the background noise, the cepstral domain 

features have been shown to be more robust in modelling characteristics and covering 

variations within infant crying signals (Ji et al., 2021). These frequency-domain features can 

be computed using different mathematical tools, including Mel-frequency cepstral coefficients 

(MFCCs), Linear Prediction Cepstral Coefficients (LPCCs), Bark Frequency Cepstral 

Coefficients (BFCCs), Gammatone Frequency Cepstral Coefficients (GFCCs), and Linear 

Frequency Cepstral Coefficients (LFCCs). Indeed, cepstral features have been widely used in 

the field of speech processing and recognition, and the most frequently used ones to identify 

infant pathologies are MFCCs, LPCCs, and LFCCs, which have shown better performance 

compared to time domain features. In particular, MFCCs are the most used and tested features 

to identify infant pathologies; for example, asphyxia in (Badreldine et al., 2018) and (Zabidi, 

Yassin, et al., 2017), and hypothyroidism in (Zabidi et al., 2010b), and achieved promising 

accuracies as presented above. Liu et al. also used MFCCs along with LPCCs and BFCCs and 

based on a NNs model to identify infant cry reasons and the results showed that BFCCs 

produced the best classification rate of 76.5% (Liu, Li, & Kuo, 2018). Furthermore, the authors 

in (MV Varsharani Bhagatpatil & VM Sardar, 2014; Jagtap, Kadbe, & Arotale, 2016), showed 

that LFCC performed better than MFCC in distinguishing high-frequency audio signals such 

as female voice and infant crying signals. On the other hand, GFCCs have been shown to be 

powerful descriptors in non-speech recognition tasks, such as emotion recognition (Jiang, Jia, 

& Shao, 2020; Liu, 2018), understanding the reason behind the crying of infants (Kulkarni, 

Umarani, Diwan, Korde, & Rege, 2021), and automatic speech recognition (Tamazin, Gouda, 

& Khedr, 2019). There is one recent study where authors employed Gammatone Cepstral 

Coefficients (GTCCs) that are based on the time-representation of the signal for identifying 

infants suffering from Hypoxic Ischemic Encephalopathy (HIE) based on their cry signal 

(Satar et al., 2022). It is noteworthy to highlight that our study employs the frequency-

representation by extracting GFCCs since they have proved successful in audio recognition 

tasks (Shao, Jin, Wang, & Srinivasan, 2009). 

 

Prosodic domain features, which include high-level information such as formants, intensity, 

duration, harmonicity, and unvoiced regions, also contribute in improving the discriminative 
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ability between the crying signals and thus identifying the type of the infant cry signal; an 

example of this is the identification of asphyxia in (Ji et al., 2019). It has been shown that 

attaching these features together with frequency domain features contributes to extracting both 

physiological and physical information from acoustic signals (Ji et al., 2021). Furthermore, 

image domain features, such as the spectrogram which is a time-frequency image 

representation of an audio signal and includes both acoustic and prosodic information, can be 

used to distinguish between healthy and unhealthy infant cries. It has been widely shown that 

feeding spectrograms into machine learning algorithms also plays an important role in 

enhancing the classification of different infant crying signals (Chang & Tsai, 2019; Felipe et 

al., 2019; Ji, Basodi, Xiao, & Pan, 2020; Le, Kabir, Ji, Basodi, & Pan, 2019). It is, therefore, 

obvious that each domain contributes to the classification of infant crying signals, and thus the 

mechanism of generating a combined feature set that takes advantage of different domains 

deserves to be considered and investigated. 

 

Several relevant recent research works have already shown promising enhancement with 

combined features to the problem of infant cry signals analysis (Huckvale, 2018; Ji et al., 2020; 

Ji et al., 2019; Ting, Choo, & Kamar, 2022). More specifically, Ji et al. showed that combining 

MFCC features with weighted prosodic features contributed in improving the classification 

rates of the asphyxiated infant cry signals using a deep learning approach (Ji et al., 2019). In 

addition, a combined NNs model that combines summative and temporal features was 

proposed for infant cry classification and outperformed the independently-trained temporal and 

summative networks (Huckvale, 2018). In addition to that, the authors in (Ji et al., 2020) have 

shown that using hybrid features of the prosodic, spectrogram, and waveform classified by a 

CNN model produces better infant sound classification rates for the two different datasets. 

Moreover, a more recent study has investigated the use of hybrid features of MFCC, Spectral 

Contrast, Chromagram, Mel-scaled Spectrogram, and Tonnetz based on CNN and DFNN 

learning models (Ting et al., 2022). The results have shown that deep learning models 

performed better with hybrid features compared to the use of single feature of MFCC. It was 

shown that combining DCNN with RBF-SVM was capable of achieving up to 88.89% 

accuracy in classifying infant cries based on the reason of crying (Vincent, Srinivasan, & 
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Chang, 2021). Incorporating deep learning networks and combining them has shown the 

potential for state-of-the-art performance. For example, Khatun et al. (Khatun et al., 2022) 

proposed a DCNN-LSTM classifier with self-attention model, which was capable of attaining 

an accuracy of 99.93% for human activity recognition purposes. In another study for 

classifying MRI brain tumor, authors implemented CNN with PCA in the feature extraction 

step and fed these features to different machine learning classification algorithms, which 

yielded a remarkable 99.76% accuracy (Aurna, Yousuf, Taher, Azad, & Moni, 2022). 

 

To summarize, most of the existing models focus on analyzing infant cry signals to identify 

one pathology by using different machine learning techniques. To the best of our knowledge, 

no studies have addressed classifying RDS cries from sepsis cries using machine learning 

methods. Moreover, we noticed a lack of studies that give attention to the question of 

combining cepstral domain features and prosodic domain features to be used in classifying 

different infant pathologies. Therefore, finding the optimal combination of cepstral and 

prosodic domains, followed by a fine-tuned machine learning algorithm, remains an open 

question and needs further research investigations. Therefore, this paper proposes to use 

different machine learning techniques that use a combined feature set of cepstral and prosodic. 

The main contributions of this research work can, thus, be summarized as follows: 

 

• Different machine learning techniques were used to classify RDS cries from sepsis 

cries. In this regard, all used ML techniques were fine-tuned to give the best 

classification rates. Our fundamental goal is to prove the concept that a NCDS can be 

built, starting with these two pathologies that are most common in newborns.  

 

• It is the first demonstration that GFCC features, and HR descriptors can be combined 

and used to support the diagnosis of pathologies in newborns. In this regard, we show 

that combining the two feature sets played an important role in improving the 

classification results. 
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• An accuracy of 95.3% with 0.95, 0.95, and 0.95 precision, recall, and F-score, 

respectively, were obtained using a fine-tuned SVM to distinguish between RDS and 

sepsis cries. 

 
 
3.4 Materials and Methods 

 À It is well known that extracting the most significant efficient features from given data plays 

an important role in simplifying subsequent tasks, such as the classification process, and thus 

leads to more accurate results. In this proposed work, we propose a combined feature set 

specifically for the classification of infant pathological cries. As shown in Figure 3.1, the 

workflow of the proposed model involves four main stages, which can be summarized as 

follows: (1) signal preprocessing and segmentation, (2) features extraction, selection, and 

modelling (3) machine learning model, and, finally, (4) pathological cry classification.  

 

 
Figure 3.1 The workflow of the proposed model for different infant pathological 

classification and using the crying signals 
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3.4.1 Dataset Description 

The samples included in this study were acquired as a result of collaboration between Saint-

Justine children’s hospital in Montreal, Canada and the Al-Raee and Al-Sahel hospitals in 

Lebanon. As explained in our previous works (Matikolaie et al., 2022), the cries in our dataset 

were collected from the newborns regardless of their race, gender, weight, or cry stimulus 

(pain, hunger, etc.). These cries have been collected with a common digital 2-channel Olympus 

handheld recorder with a 16-bit resolution and 44,100 Hz sampling frequency placed in the 

10-to-30-cm vicinity of the newborn’s mouth. The cries were recorded in the hospital 

environment including maternity rooms and NICUs with no well-defined procedure and in the 

presence of noise. The health status of the newborn was determined based on several screening 

tests performed after birth and the cry signals were labeled as healthy or with the diagnosed 

pathology group based on medical reports accordingly. The gestational age, race, reason of 

crying, babies age, weight, and APGAR score were all noted. These considerations make our 

dataset a real and comprehensive one that can study newborns and propose a real-world 

solution in designing newborn cry diagnostic systems. The age of the babies in this study 

ranged from 1 to 53 days old, since it is not until the end of the second month of life (53 days 

to be precise) when newborns gain control of the vocalizations they produce (Boukydis & 

Lester, 2012). Prior to this age, any vocalization is controlled by independent biological 

rhythms and thus it could be an indicator of newborn’s health. Moreover, the restructuring of 

the supralaryngeal vocal tract takes place around 3 months of age (Boukydis & Lester, 2012). 

Therefore, this study excluded the newborns with a postnatal age more than 53 days. 

 

It is well known that a majority of pathological studies encounter the same main obstacle, 

which is data acquisition. This challenge is attributable to several factors: 1) the 

unpredictability of whether a newborn with the targeted pathology groups will be observed 

during the data collection period, 2) acquiring the ethical and technical approvals to incorporate 

a cry sample in the database is a timely and difficult process which may result in losing some 

of the samples and 3) obtaining the newborns’ guardians’ consent to record their newborn’s 

cry and then add it to the database is quite challenging. 
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Given all these obstacles, we tried to segment each recording to multiple expiration segments 

in order to overcome the data limitation challenge and better study the characteristics of 

pathological newborn cries. There was a total of 53 recordings from 17 newborns for sepsis, 

and 102 recording from 33 newborns for the RDS pathology groups. These recordings had an 

average of 90 s including silence, hiccups, inspiration cries, expiration cries, and background 

noise. The original newborn cries were recorded with different durations ranging from 1 to 4 

min with an average of 90 s, obtaining up to 5 recordings per newborn, which was inadequate 

for classification purposes. As explained in data preprocessing section, multiple EXP segments 

were extracted from each recording, which were later treated as an individual sample; these 

formed the 2264 samples mentioned in Table 1 with an average length of 0.71 s for sepsis and 

0.74 s for RDS. 

 

In this study, the expiratory cries of newborns diagnosed with sepsis and RDS were included 

with 17 and 33 newborns in each group, respectively. In order to have a well-balanced and 

homogenous study, we selected the same number of samples from each pathology group, Table 

3.1. 

 

Finally, it is noteworthy to mention that despite the fact that RDS is mainly attributable to 

prematurity, term newborns are often misdiagnosed or not considered for RDS. Although the 

occurrence of RDS in term newborns is exiguous compared to the preterm newborns, several 

studies show that a notable number of term-born neonatal hospital admissions are still due to 

RDS every year (Qandalji, 2010; Qian, 2010), accounting to a total of around 8%. Another 

study showed that 43% of term-born respiratory failures are due to RDS, which is a serious 

alert to not rule out RDS in term neonates (Clark, 2005). 
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Table 3.1 The dataset description 
 

 Septic RDS 

Gender 11 Males and 6 Females 10 Females and 23 Males 

Average sample length 71 milliseconds 74 milliseconds 

Babies Ages 1 to 53 days old 

Prematurity Term 

Gestational age 38 ± 1 week 

Number of samples 2264 (1132 each) 

Origin 
Canada, Haiti, Portugal, Syria, Lebanon, Algeria, Palestine, 

Bangladesh, Turkey 

Race 
Caucasian, Arabic, Asian, Latino, African, Native Hawaiian, 

Quebec 

Reason of crying Birth cry, hunger, dirty diaper, discomfort, needs to sleep, cold, pain 

 

 

3.4.2 Dataset Preprocessing 

The cries of infants in our dataset have been processed by our previous colleagues in order to 

remove silence, filter, and segment each recording. Each recording was segmented and 

assigned with multiple labels. For example, the expiratory cries were marked as EXP, or the 

phonation during inspiration was labeled INSV, which represents a voiced inspiratory cry 

segment. These labels were attached by the means of WaveSurfer software. In the present 

study, we used the EXP segments of each cry recording and treated each segment as a sample. 

As has already been stated, one of the main challenges in any biomedical research is the 

limitation of data, especially in a problem such as this study, where the chances of observing 

a newborn suffering from a certain pathology are not predictable. Therefore, by segmenting 

each cry signal, we solved this challenge to a fair extent.  
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3.4.3 Features Extraction and Modelling 

As mentioned before, the main focus of this study is the extraction and the study of feature sets 

that are capable of representing the differences in newborn cries associated with two entangled 

groups of pathologies, RDS and sepsis. The cry signal is non-stationary and dynamic, which 

calls for the study of both short-term and spectral features. Furthermore, it has been shown that 

although MFCCs are the most commonly used features owing to their high performance 

(Matikolaie & Tadj, 2020), GFCCs outperform them in terms of less computational costs and 

better performance (Valero & Alias, 2012). Thus, we studied GFCC features as short-term 

representations of the cry signal, as well as the harmonic factors that capture the spectral 

behaviour of resonance frequencies in newborn cries. We studied these features individually 

and then fused them to test the performance of the NCDS, considering both short-term and 

spectral features. The following sections expound on the procedure needed for the acquisition 

of these features. 

 

Gammatone Frequency Cepstral Coefficients (GFCCs) are considered an alteration of the 

MFCC feature inspired by the biological model of the auditory system. GFCCs employ the 

equivalent rectangular bandwidth (ERB) bands instead of triangular bands and mimic the 

cochlear spectral structure in mapping the frequencies (Valero & Alias, 2012). The 

spectrogram representation of Gammatone-Frequency is called cochleagram. A cochleagram 

is expected to have fair performance with pathologic newborn cry signals since the lower 

frequencies can be studied with a far better resolution. This study combines the benefits of 

cochleagrams with Cepstral analysis. This is because, during the generation of a cry, the glottal 

impulses travel across the vocal tract, which then has a filtering effect on them (Wasz-Hockert, 

1968). The Cepstrum facilitates distinguishing the source and the filter (Huang et al., 2001), 

which is desirable for identifying the region of the malfunctioning body organ. GFCCs have 

also shown promising potential in non-speech classification tasks such as emotion recognition 

(Shao et al., 2009). Regarding the computational costs associated with the extraction of GFCC 

features, it was shown that by cascading n 1st-order Gammatone (GT) filters, the nth-order GT 

filter could be well approximated. In order to attain GFCCs, the cry signal is first windowed 
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into overlapping Hamming filters of 10 ms with 3 ms overlap length, since the performance of 

the feature extraction step is enhanced, and the non-stationarity of the signal could be neglected 

in such short frames. Next, in order to pre-emphasize the valuable signal frequencies, the signal 

passes the GT filters after a fast Fourier Transform (FFT) is applied. The final steps of 

extracting the GFCCs constitute employing the log function and then the DCT to decorrelate 

the compressed outputs of the previous steps. For a given frame k, the GFCCs can be computed 

through Equation 3.1: 

 

 GFCCk= 2
N
∑ GF[k] cos iπ

2N
 (2c+1)N

n=1          1≤k≤M,     
(3.1) 

 

where GF[k] denotes the loudness-compressed response of the Gammatone Filters (GF), and 

the number of filters is given by N. 

 

Harmonic Ratio (HR) has been implemented as a powerful descriptor feature in many 

applications related to audio classification since it provides high accuracy (Heise, Miller, 

Wallace, & Galen, 2020). The newborn cry has the potential to be studied in terms of its 

musical aspects in addition to being treated as a pre-speech phenomenon owing to its harmonic 

components and rhythm and the differences in sound generator organs between newborns and 

adults (Kheddache & Tadj, 2015; Matikolaie et al., 2022). By definition, a sound is considered 

harmonic when a series of frequencies derived from the fundamental frequency as its multiples 

(called resonance frequencies) are observed in the sound (Chen, Gunduz, & Ozsu, 2006). 

Several researchers have revealed the presence of harmonics in the cry signals of newborns, 

and the study carried out by Kheddache et al. (Kheddache & Tadj, 2015) précised the harmonic 

behaviour (the behaviour of resonance frequencies) in pathologic cries, which showed different 

distributions and patterns among healthy and pathologic cries and among groups of 

pathologies. More specifically, they concluded that this behaviour depends on the pathology 

group. Based on these observations, this study evaluates the performance of HR as a potential 

biomarker for distinguishing between two pathologic groups of cries. HR determines the 

proportion of the energy of the harmonic segments of the cry signal to the total energy of the 
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cry signal, and four statistical measures of mean, median, interquartile range, and standard 

deviation were computed based on HR in order to better represent the distribution of this 

feature across the spectrum of the signal (Chen et al., 2006).  

 

Finally, it is worthwhile to discuss why we chose to fuse HR and GFCC feature sets in this 

study. We aimed to propose a simple yet effective design that considered both the short-term 

and spectral behavior of the cry signal. For this purpose, the HR was chosen because it could 

demonstrate the abnormalities in the cry signal with low computational costs and low feature 

dimensions, and in addition was shown to demonstrate a meaningful difference between infants 

diagnosed with RDS compared to other pathology groups. The GFCC feature set was also used 

as a more robust alternative to the MFCCs that are the most prevalent in the field of audio 

processing applications. It was shown in (Khalilzad, Kheddache, et al., 2022; Matikolaie & 

Tadj, 2022) that the combination of short-term and spectral features provide better 

classification performance for the study of RDS and sepsis. Furthermore, feature fusion was 

shown to enhance the performance of the diagnostic system designs for depression data (He & 

Cao, 2018) and artifact rejection in neuroimaging data (Hasasneh, Kampel, Sripad, Shah, & 

Dammers, 2018) by playing a significant role in enhancing the linear separability through 

constructing the apropos feature set. Thus, forming a feature vector that merges spectral and 

short-term and maintains simplicity, robustness, and low dimensionality, is advantageous and 

interesting to be explored. The feature sets were fused by the means of simple concatenation, 

and then normalized using a standard normalization. By implementing a fused feature set, we 

can expect a robust newborn pathology classification performance benefitting from a simpler 

classification process. Moreover, it would improve the linear separability of various pathology 

groups within the feature space. The individual feature sets of HR and GFCC were also 

normalized before being fed into the classifiers. 

 

3.4.4 Machine Learning Classification and Tuning 

In this study two classification methods were used, namely SVM and MLP, and both of them 

were chosen based on their common properties, which are simplicity and cost-effectiveness. 
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The SVM classifier is one of the prevailing algorithms when it comes to the infant cry 

applications, hence it is often employed as a baseline in many studies to highlight the role of 

other stages of the design, e.g., how successful the features are and to provide comparability 

to the classifiers and works of other researchers (Badreldine et al., 2018; R. Sahak, W. Mansor, 

Y. Lee, A. Yassin, & A. Zabidi, 2010a; R. Sahak, W. Mansor, Y. Lee, A. M. Yassin, & A. Zabidi, 

2010b). This is because the data in biomedical studies are often very limited and one of the 

main strengths of the SVM is the ability to efficiently construct complex decision boundaries 

from limited samples (Onu et al., 2017). Moreover, SVM is suitable for a portable and low-

cost model design. The MLP classifier has a similar performance to the SVM, the samples are 

classified by constructing a complex decision boundary. MLP was successfully applied to 

several studies regarding asphyxia, which also involves the respiratory system (Ali, Mansor, 

Lee, & Zabidi, 2012; Zabidi, Khuan, Mansor, Yassin, & Sahak, 2010a; Zabidi et al., 2011). 

Hence, it would be beneficial to investigate MLP in the diagnosis of RDS as well. Moreover, 

MLP is amongst the simplest NN classifiers. The application of MLP is lucrative to assessing 

the potential of more advanced NNs with more data in the future. 

 
 
3.4.4.1 Support Vector Machine (SVM) 

SVMs are among the most recognized classification methods implemented for the study of 

audio signals. Both linear and nonlinear classifications can be performed via SVMs, which are 

categorized as high precision supervised learning algorithms. The classification procedure of 

SVM consists of constructing a hyperplane that forms the farthest distance between the data 

points of different classes. For the case where the data points are not linearly separable, kernel 

functions are implemented. In this study, a Radial Basis Function (RBF) kernel was chosen, 

which presumes the neighboring points belong to a similar group and calculates the Euclidean 

distance between two given points in the feature space (Badreldine et al., 2018). 
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3.4.4.2 Multilayer Perceptron (MLP) 

The general algorithm of a MLP consists of four steps: feeding the pattern to the network, 

feeding forward across the following layers, updating weights through a backpropagation 

method, and finally optimizing using an optimization function (Murtagh, 1991). MLP 

constructs a linear decision boundary for classification, and similar to SVM, a hyperplane is 

constructed so that the decision boundary has the minimum distance from misclassified points 

(James, Witten, Hastie, & Tibshirani, 2021). The Root Mean Square Propagation (RMSprop) 

was used as the optimization function that helps minimize this distance by tuning the 

backpropagation weights (Hinton, Srivastava, & Swersky, 2012). In order to evaluate the 

feasibility of employing neural networks for discriminating among groups of pathologies, a 7-

layer MLP classifier was designed and proposed. Figure 3.2 shows the system design with the 

MLP classifier. With the use of HPO methods, the MLP was configured and tuned for each 

experiment. The input layer had the same number of neurons as the input feature vector (4, 13, 

and 17 neurons for HR, GFCC, and fused feature sets, respectively). Next, a 128 node fully 

connected layer was followed by a normalization layer and a hyperbolic tangent activation 

function. The activation function decided whether the neuron would fire. Next, another fully 

connected layer consisting of two nodes that corresponded to the number of output classes 

(Septic vs. RDS) was included. Finally, a sigmoid layer was used to convert the raw outputs 

of the previous layers into meaningful class probabilities between the range of [0, 1], and these 

probabilities were then fed to the classification layer where the decided label was produced. 

Training iterated with a learning rate of 0.001 through 120 epochs, and then validated by 15% 

of all the data, with 30% of the data randomly split for testing, and 55% of the data used for 

training.  
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Figure 3.2 Block diagram for NCDS with MLP classifier 

 
 
3.4.4.3 Hyper-parameter Fine-tuning and Evaluation Measures 

Attaining desirable classification performance, as well as low error rates, is the goal and the 

main challenge of all classification problems; hence, the fine-tuning methods of HPs were 

introduced to serve this purpose. 

 

Each experiment requires its own HP tuning since the feature matrix dimensions vary so that 

the classifier is tailored to fit the task. Furthermore, the HP fine-tuning methods replace human 

interference in determining classifier HP configuration, which includes random search, grid 

search, and Bayesian HPO approaches. In this study, the grid search method was used to fine-

tune the classifiers’ HPs, where it selected an optimum value for HPs from a limited set (Feurer 

& Hutter, 2019). The HPs selected for SVM fine-tuning were the 𝛾 and C, whereas the initial 

learn rate, L2 regularization, and the number of epochs were tuned for MLP.  

 

In order to assess the ability of the proposed design in discriminating between the two groups 

of pathologies, several evaluation measures should be considered. Generally, the accuracy 

measure is the most prevalent measure in all systems, which is equal to the ratio of correct 
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predictions to all the observations. The accuracy owes its prevalence to simplicity in 

calculation and understanding, but it is not informative in terms of class assessment and missed 

cases; therefore, other measures were introduced and studied. Table 3.2 presents a number of 

these measures used in this study (Khalilzad, Kheddache, et al., 2022).  

 

Table 3.2 The evaluation measures and their formula 
 

Evaluation Measure Formula 

Accuracy TP + TN
TP + FP + FN + TN ×100 

Sensitivity TP 
TP + FN ×100 

Precision TP 
TP + FP ×100 

F-score 2TP 
2TP + FP + FN ×100 

 

 

3.5 Results and Discussion 

 This study targets the distinction between two entangled groups of pathologies in newborns 

for the first time in NCDS designs to the best of our knowledge. The aim of this study was to 

develop an early alert for the detection of sepsis and RDS, which are among the top newborn 

mortality causes around the world. Assessing the potential of analyzing acoustic features of 

the cry signal as a biomarker, through simple and accessible tools, was the priority of the 

proposed NCDS. Our dataset was recorded through a handheld recorder in the presence of 

noise with no prespecified conditions in maternity rooms and NICUs. Furthermore, newborns 

from different races, origins, genders, and various reasons of crying participated in our study 

which makes it comprehensive. Moreover, this study combined features that were conventional 

in musical applications of HR with the biologically inspired features used in speech-processing 

applications, and GFCCs that belonged to two levels of short-term and spectral. Additionally, 
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with the help of HP fine-tuning, the classifiers were tailored to fit each of the presented 

experiments. 

 

Various audio recognition, speech, and music processing systems benefit from sophisticated 

and complex deep-learning models, whereas in biomedical applications, the use of these 

designs depend on data availability. Data acquisition and collection are among the most 

significant challenges in biomedical research; when it comes to observing certain pathological 

groups, the probability is not deterministic in any given period of time. There is no way of 

knowing whether the newborns admitted to a hospital on a certain date would be diagnosed 

with the pathology groups subject to research. Nevertheless, obtaining the ethical and technical 

requirements to include data from any participant adds to the challenge of data acquisition. 

Therefore, this study benefits from SVM as a desirable and successful approach in NCDS 

designs and explores the use of a MLP neural network in order to assess the further potential 

for using other NN models in future works. 

 

As mentioned in previous sections, the NCDS was designed and analyzed with the EXP 

dataset. The MLP and SVM classification approaches were used to identify septic newborns 

from RDS, and the feature sets were employed individually and also after their fusion. In order 

to fuse the features a simple concatenation followed by standard normalization was performed, 

so that the performance of the feature set implementing both modalities (short-term and 

spectral) would be compared to the individual feature sets. Furthermore, the classifiers were 

fine-tuned using the grid search hyperparameter (HP) optimization. In this case, 𝛾 and C were 

tuned for the SVM classifier, while the HPs of L2 regularization, initial learn rate, and number 

of Epochs were optimized for the MLP. In order to fully investigate the potential of HP fine-

tuning, the range for each HP was determined for the optimization process, Table 3.3. 

Elaborating the reasons behind choosing which HPs were tuned in this study would be of 

essence. 
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Table 3.3 The pre-defined ranges for HP fine-tuning 
 

Classifier Parameter Selected Range Value Type 

MLP 

Initial learning rate [0.0001, 1] Logarithmic 

L2 Regularization [0.0001, 0.001] Continuous 

Number of Epochs [50, 200] Integer 

SVM 
𝛾 

[0.1, 0.25, 0.26, 0.3, 

0.5] 
Categorical 

C [0.5, 1, 2, 4, 5] Categorical 

 
 
Initial Learning Rate is the most significant HP to tune in neural networks. Following each 

iteration of estimating the error yielded after updating the weights, the learning rate determines 

how much of an adjustment the model requires.  

 

Selecting the optimal learning rate is a trade-off between computational time and finding the 

optimal solution. Larger learning rates lead to the faster convergence of the model to the 

suboptimal solution, whereas a small learning rate calls for a higher number of epochs. 

Therefore, we should tune the number of epochs as well (Goodfellow, Bengio, & Courville, 

2016).  

 

Number of Epochs determines the number of changes in the weights of the network; increasing 

and decreasing the number of epochs may lead to the underfitting and overfitting of the model. 

Therefore, while tuning other HPs of the network, it is important to select the optimal number 

of epochs correspondingly. The optimal selection of the number of the epochs allows for the 

termination of the training process before the elevation of the validation error (Liu, Starzyk, & 

Zhu, 2008).  

 

L2 Regularization: In order to prevent machine learning techniques from encountering 

overfitting, regularization methods were introduced (Nusrat & Jang, 2018) so that by adding a 

penalty factor to the large weights, the complexity of the overall design was reduced. L2 
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regularization is amongst the most prevalent methods of regularization. The value of 

regularization HP should be selected in such a way that both overfitting (associated with small 

regularization value) and underfitting (associated with large regularization value) are 

prevented (Han, Gondro, Reid, & Steibel, 2021).  

 

As for the SVM classifier, both 𝛾 and C should be tuned. A higher value of the C would 

prioritize decreasing the support vectors count due to the fact that they each add to the 

optimization costs, while lower values of C lead to a higher support vector count and thus, 

larger margins. The 𝛾 HP determines the simplicity of a SVM model; higher values correspond 

to a curvier decision plane, which closely follows the data, whereas a small 𝛾 means a simpler 

model with flatter decision plane. 𝛾 in fact signifies the speed of lowering the domination of 

each point as the distance grows (Wainer & Fonseca, 2021). 

 

We conducted three experiments to evaluate the system performance, the role of fused features, 

and the role of each feature set. Table 3.4 Table 3.6 present the results of the evaluation of the 

proposed design based on these experiments. 

 

The results for the evaluation of the HR feature set are presented in Table 3.4. The HR feature 

set proved to be a successful feature in the analysis of the cry signal, since with only 4 elements, 

the NCDS could yield a 71.03% accuracy. However, the MLP classifier did not converge for 

the HR feature set. This result was unsurprising since this feature set has a low dimensionality 

of only 4 elements. Therefore, increasing the number of features could solve this challenge, as 

presented in Table 3.6.  

 

Moreover, this feature set could also obtain fair performance in terms of recall and precision. 

The recall measure is of great significance in exploring the pathologies, since it demonstrates 

the share of true septic (or RDS) cases among all the samples. Precision shows the probability 

that NCDS will predict a septic (or RDS) case correctly. These two measures owe their 

importance to the fact that true diagnosis and timely treatment of the pathology have a 

considerable effect on the survival chances of the newborn.  
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Table 3.4 The results for the evaluation of the HR feature set 
 

Feature Set Classifier Accuracy Precision Recall F1-Score 

HR 
SVM 71.03% 0.71 0.71 0.71 

MLP N/A N/A N/A N/A 

 
 
The GFCC feature set remarkably attained a high performance as an individual feature set with 

both classification methods, Table 3.5. Increasing the number of features resulted in the 

convergence of the MLP classifier as expected; however, the SVM outperformed MLP across 

all evaluation measures. It can also be seen that the performance of the NCDS with GFCC 

feature set was superior to the HR feature set by more than 10% in accuracy. Figure 3.3 

Heatmap for the SVM classifier using the HR feature set depicts a more detailed look at the 

results of identifying the septic and RDS cases via HR feature set through presenting the 

heatmap for the SVM classifier. 

 

 
Figure 3.3 Heatmap for the SVM classifier using the HR feature set 
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Table 3.5 The results for the evaluation of the GFCC feature set 
 

Feature Set Classifier Accuracy Precision Recall F1-Score 

GFCC 
SVM 92.94% 0.93 0.93 0.93 

MLP 88.51% 0.88 0.89 0.89 

 
 
In the final experiment, we fused the previous features to assess the performance of NCDS in 

discriminating between RDS and septic newborns, Table 3.6. The addition of the HR features 

resulted in an enhancement of more than 2% across all the evaluation measures for both 

classifiers compared to the GFCC feature set. These results are promising due to two main 

points: 1) improving the performance where the results are already at more than 90% would 

be difficult, and our design gained more than 2% enhancement. 2) this enhancement is 

consistent across all the evaluation measures investigated. Similar to the GFCC feature set, the 

SVM transcended the MLP throughout the evaluation measures.  

 

Similar to the HR feature set, the detailed heatmaps for the GFCC and combined feature sets 

using each of the classifiers are presented in Figure 3.4 - Figure 3.5 , respectively. These 

heatmaps show how the data are distributed across the classes and provide a deeper look into 

the predictions made by the NCDS.  

 

 
Figure 3.4 Heatmaps for the SVM and MLP classifiers using the GFCC feature set 
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Figure 3.5 Heatmaps for the SVM and MLP classifiers using the combined feature set 

 

Table 3.6 The results for the evaluation of the combined feature set 
 

Feature Set Classifier Accuracy Precision Recall F1-Score 

GFCC + HR 
SVM 95.29% 0.95 0.95 0.95 

MLP 92.49% 0.92 0.92 0.92 

 
 
Finally, comparison of the Area Under Curve (AUC) of the Receiver Operator Characteristic 

(ROC) for the experiments in this study would help further assess the performance of different 

architectures. Figure 3.6 shows the ROC curves for the SVM classifier. The ROC curve shows 

the true positive rate (TPR) on the vertical axis and the false positive rate (FPR) on the 

horizontal axis. FPR is also an important measure, since it represents the probability of a false 

alert. The area under curve (AUCs) of ROCs is an indicator of model performance which will 

be discussed later in this section. 

 

As can be seen through all evaluation measures, the fused feature set achieved the highest 

results with both classifiers. The study of the AUC is salient in terms of statistical analysis, 

since it demonstrates the probability of ranking any positive sample is higher than any negative 

sample, the same as Wilcoxon test of ranks (Hanley & McNeil, 1982) in order to compare the 

classifiers; the ROC curves are summarized in a single scalar, the AUC. The AUC is always 
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between 0 and 1 since it is defined as a share of the area of the unit square (Fawcett, 2006). 

Any practical and acceptable classifier should have an AUC of more than 0.5 since the random 

guessing is equal to the diagonal line in the ROC curve that crosses (0, 0) and (1, 1); the closer 

values of AUC to 1 translate to better performance of the classifier. In other words, the AUC 

signifies the ability of the system in distinguishing between the two classes which is the main 

goal of this study (Bradley, 1997).  

 

Two main goals were introduced for this study: 1.) finding the optimal feature set and study 

the effect of combining spectral and cepstral features. 2) finding the best classification 

algorithm that fits our problem/challenge. 

 

 
Figure 3.6 AUC-ROC for the SVM classifier using each feature set 

 

Through comparing the AUCs resulting from analyzing the introduced feature sets in this study 

with the SVM classifier, the role of feature fusion in studying the pathologic infant cries 

became clear. It is shown that implementation and combination of different modalities can 

enhance the performance of the system, thus achieving the first goal. Concerning the second 

goal, it was shown that the MLP classifier was outperformed in terms of evaluation measures 
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for all feature sets; therefore, as a final discussion point, we compared the AUC-ROC of the 

best feature sets of the SVM and MLP classifiers. Figure 3.7 illustrates the ROC curve for the 

MLP classifier; as can be seen from Figure 3.6 and Figure 3.7, the MLP showed better 

performance in terms of the AUC measure. This is an interesting result since it suggests two 

points: 1) the study of the ROC curve is essential for analyzing the binary classification 

problems since the evaluation measures might not describe all the aspects. 2) the MLP 

classifier shows great potential in studying the pathological infant cry signals since it has better 

performance in the separation of the two classes and should be considered for future studies. 

Finally, it can be seen that the superiority of the combined feature set is consistent across both 

classifiers as the MLP classifier also has a 0.17 increase in the AUC by implementing a 

combination of the features. 

 

 
Figure 3.7 AUC-ROC for the MLP classifier using the GFCC and combined feature sets 

 

There are few studies analyzing newborn cry signals to diagnose sepsis. Recently, two groups 

of researchers studied sepsis based on processing the newborn cry signals; however, they both 
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focus on detecting septic newborns from the healthy group, whereas this study aims to target 

distinguishing between two pathological groups for the first time. The study presented by 

Matikolaie et al. (Matikolaie & Tadj, 2022) investigated the role of prosodical characterization 

of the cry signal in detecting sepsis which accomplished 86% as their best F-score. 

Furthermore, Khalilzad et al. (Khalilzad, Kheddache, et al., 2022) explored the potential of a 

NCDS in diagnosing sepsis by incorporating entropy-based features and fuzzy entropy feature 

selection, which attained 89.70% as their best F-score for the expiration cry segments. We 

believed that with sepsis being one of the globally leading post-partum mortality causes, there 

is a need for more in-depth studies that probe other perspectives of this pathology. Hence, this 

study could be complementary to the previous studies to give another means and modality of 

studying sepsis by comparing it to another cognate pathology.  

 

The respiratory distress syndrome (RDS) suffers from a similar research gap; the existing 

literature on processing RDS cries is scarce. There are few studies target studying RDS as a 

single pathology group; Matikolaie et al. (Matikolaie & Tadj, 2020) proposed a NCDS to detect 

newborns suffering from RDS from the healthy and obtained 73.80% accuracy. Chittora et al. 

(Chittora & Patil, 2016) presented a spectrographic comparison of the RDS cries, where a 

double harmonic break was presented, suggesting that resonant study of the cry signal would 

be helpful in analyzing the RDS cries. Moreover, Lederman et al. (Lederman et al., 2002) 

classified the preterm infants suffering from RDS from healthy preterm infants and achieved a 

63% accuracy using hidden Markov models. Finally, Alaie et al. (Alaie et al., 2016) obtained 

69.59% accuracy by GMMs using the boosting mixture learning method for the detection of 

infants diagnosed with RDS; in another experiment, they formed a subset of pathological 

newborns suffering from multiple pathologies such as RDS, heart problems, blood abnormality 

and neurological disorders as a single pathological group to be detected from healthy newborns 

and gained an accuracy of 85.21%. As mentioned above, all discussed research focused on the 

identification of RDS/Sepsis from healthy; however, to the best of our knowledge there is no 

prior work on distinguishing between two (or more) pathology groups. Nevertheless, despite 

the entangled nature of the two pathologies studied here, our design was able to outperform all 

of the previous studied on sepsis and RDS cry signals by achieving 95.3% for accuracy. Similar 
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to any other study in this field, this study also faced multiple challenges. Although we 

attempted to study the cry signals regardless of race, origin, and other factors such as cry 

stimuli, the designed NCDS has room to be further developed with more data. Furthermore, 

employing explainable AI, such as LIME, might help to better analyze the contribution of 

different features to the final result; thus, it will be considered in our future works.  

 

This study had several achievements; it provided a proof for the concept of distinguishing 

between different pathology groups based on only cry signals, as well as further highlighting 

the benefit of combining features from different levels. Furthermore, by using proper feature 

manipulation, normalization, and HP fine-tuning, our machine learning design was able to 

achieve results similar to the more complex and resource expensive methods in the literature 

by attaining an accuracy and F-score of up to 95%. The high values of recall demonstrate the 

success of our design in detection of the true pathology group.  

 
 
3.6 Conclusion and Future Work  

This paper aimed to investigate RDS and sepsis as two of the pathologies associated with high 

mortality rates of neonates across the world through machine learning-based methods. These 

two pathology groups require in-depth and extensive clinical tests to be diagnosed, which calls 

for the development of a non-invasive tool such as the one suggested in this study. The novelty 

of the proposed design lies in removing the need for any extreme data collection or analysis 

tools by employing a commercial handheld recorder for data acquisition with no well-defined 

conditions, as well as using conventional machine learning techniques and combining them in 

such a way that the performance of the system is comparable to the highly complex and recent 

methods. This study proposed an early alert for detecting and discriminating two entangled 

groups of pathologies for the caregivers of the newborn and the medical staff in deprived areas 

of the world suffering from high newborn mortality rates.  

 

The classifiers in this study were tuned for each experiment and all the feature sets were 

normalized before being fed to the classifiers. The cry signals were studied from a musical 
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perspective through the HR feature set and from a speech processing aspect by means of the 

GFCC feature sets. Moreover, these features were from two different levels that also 

investigated the short-term and the spectral behaviour of the cries. The combination of these 

two feature sets improved the overall performance of the system, and the final accuracy and F-

score were as high as 95%. 

 

In this research work, we have noticed that training deep learning approaches requires a large 

size of diverse samples of infant pathologies. Therefore, increasing the number of samples is 

desirable for introducing deep learning models. Instead of using GFCC features modality only, 

we have also seen that combining HR features and GFCC features has positively contributed 

to improving the classification rates by 2.35% and 2.21% using SVM and MLP, respectively. 

Nonetheless, integrating other features from other domains that improve the linear separation 

ability will be further investigated in our future works. As mentioned before, it has been shown 

that extracting spectrogram features includes important information or characteristics in 

classifying infant crying signals (Chang & Tsai, 2019; Felipe et al., 2019; Ji et al., 2020; Le et 

al., 2019). Combining spectrogram features along with the prosodic and cepstral features will 

be one of our future works. Whether the features will be fused prior to training or within the 

learning process is also an open question.  

 

Our next work will be based on proposing a multimodal fused model for the diagnosis of 

different infant pathologies leading to an accurate NCDS. This will include increasing the 

dataset by introducing new pathology types, extracting more robust features from different 

domains, fusing them with appropriate ratios, and then generating a new combined feature set 

that improves the discrimination ability. The feature analysis will be based on more 

sophisticated techniques, such as deep learning approaches. Therefore, studying and finding 

novel deep learning architectures, such as CNN and DFNN, with the use of combined features 

will also be considered. 
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4.1 Abstract 

Crying is one of the means of communication for a newborn. Newborn cry signals convey 

precious information about the newborn’s health condition and their emotions. In this study, 

cry signals of healthy and pathologic newborns were analyzed for the purpose of developing 

an automatic, non-invasive, and comprehensive Newborn Cry Diagnostic System (NCDS) that 

identifies pathologic newborns from healthy infants. For this purpose, Mel-frequency Cepstral 

Coefficients (MFCC) and Gammatone Frequency Cepstral Coefficients (GFCC) were 

extracted as features. These feature sets were also combined and fused through Canonical 

Correlation Analysis (CCA), which provides a novel manipulation of the features that have not 

yet been explored in the literature on NCDS designs, to the best of our knowledge. All the 

mentioned feature sets were fed to the Support Vector Machine (SVM) and Long Short-term 

Memory (LSTM). Furthermore, two Hyperparameter optimization methods, Bayesian and grid 

search, were examined to enhance the system’s performance. The performance of our proposed 

NCDS was evaluated with two different datasets of inspiratory and expiratory cries. The CCA 

fusion feature set using the LSTM classifier accomplished the best F-score in the study, with 

99.86% for the inspiratory cry dataset. The best F-score regarding the expiratory cry dataset, 
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99.44%, belonged to the GFCC feature set employing the LSTM classifier. These experiments 

suggest the high potential and value of using the newborn cry signals in the detection of 

pathologies. The framework proposed in this study can be implemented as an early diagnostic 

tool for clinical studies and help in the identification of pathologic newborns. 

 

Keywords: Newborn cry; Gammatone Frequency Cepstral Coefficients; Support Vector 

Machine; Long Short-term Memory; Hyperparameter optimization; Feature fusion 

 
 
4.2 Introduction 

In 2019, 6700 neonatal deaths occurred every day, and around 75% of these deaths occurred 

within the first 7 days after birth; this highlights the significance of expeditious diagnosis 

during the first few days of any neonate’s life. Several pathologies associated with a neonate’s 

mortality require invasive clinical tests and a high vigilance. Unfortunately, the regions that 

suffer the most from high newborn mortality rates are those deficient in the number of skilled 

health professionals. The World Health Organization (WHO) states that two-thirds of newborn 

deaths could be prevented if diagnosis and treatments took place before the second week of an 

infant’s life. Furthermore, in most cases of pathological studies, if the treatment is initiated 

expeditiously, the infant may completely heal if given the right treatments (World Health 

Organization, 2014). 

 

As early as the 19th century, the cry of neonates was recognized as a cue in identifying 

morbidity (Bell, 1878). The acoustic characteristics of a cry may vary due to various factors 

such as air pressure, tension, length, thickness, and shape of the vocal cords and resonators 

(Agrawal, 1990). Experienced parents and caregivers may distinguish types of cries only by 

listening; however, even trained nurses could only reach an accuracy of around 33% by relying 

on their auditory system (Mukhopadhyay et al., 2013). Healthy newborns have a fundamental 

frequency of 400–600 Hz, with an average of 450 Hz (Sulpizio et al., 2019); they also show a 

decreasing or increasing–decreasing melody shape with super imposed harmonics, and an 

average duration of 1–1.5 s (Robb & Goberman, 1997). The cries of babies suffering from a 
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specific pathology are associated with low punctuation; they reflect high irritability and the 

physiological persistency is low (Corwin et al., 1996). Some of the features and attributes in 

infant cry signals can seldom be observed in healthy infants, though are commonly seen in 

pathologic ones (Michelsson et al., 1982). For example, hypothyroidism could result in low-

pitched cries, a lower number of shifts, and a frequent observance of the glottal roll at the end 

of phonation. Cries marked with hypothyroidism have been marked as hoarse (Vuorenkoski et 

al., 1973). This acoustic structure has enabled us to develop a Newborn Cry Diagnostic System 

(NCDS) and take a deeper look into the health status of neonates. 

 

The study of newborn cry signals unveiled that they bear abundant helpful information about 

the neonate’s health conditions. Extensive research in this area has demanded an automatic 

approach and accurate analysis of the cry spectrographs; hence, newborn cry analysis systems 

were designed to overcome this challenge (Abou-Abbas, Tadj, & Fersaie, 2017; Farsaie Alaie 

& Tadj, 2012; Kheddache & Tadj, 2013a, 2013c; Matikolaie & Tadj, 2020; Messaoud & Tadj, 

2011). The study of newborn cry signals has multiple goals. 

 

There are many interesting publications in the literature that analyze cry signals from aspects 

other than those used in this study. These studies range from the identification of the reason 

for crying, e.g., hunger, pain or boredom (Bano & RaviKumar, 2015; Cohen et al., 2020; Parga 

et al., 2020); emotion detection (Kulkarni et al., 2021); detecting the cry in Neonatal Intensive 

Care Units (NICUs) and in surveillance systems (Kim et al., 2013; Torres et al., 2017); 

segmenting the cry signal into its episodes (Abou-Abbas et al., 2015; Aucouturier et al., 2011); 

diagnosis of specific pathologies (Khalilzad, Kheddache, et al., 2022) or general identification 

of a pathologic infant (Kheddache & Tadj, 2019; Orlandi, Garcia, Bandini, Donzelli, & 

Manfredi, 2016; Rosales-Pérez et al., 2015; Zabidi et al., 2010a), as well as studying how each 

factor would affect the cry characteristics. Some of these works have explored the roles of pain 

intensity (Bellieni et al., 2004; Maitre et al., 2017; Mijović et al., 2010), gender (Reby et al., 

2016), gestational age (Wasz-Hockert et al., 1963), and other similar factors in cry signals. 

This study focuses on a different type of application, which is diagnosing pathologies in 

newborns based on their cry signal. What this study tried to achieve was to exploit features 
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that could reflect the alterations in the cry signal only as a result of being unhealthy and 

independent of other factors. We expected these features (and their fusion) to represent 

attributes in the cry signals that were not obvious in simple observations of spectrograms, and 

also were not affected by changes in etiological factors across newborns and the emotional 

state of the newborns. 

 

Every NCDS comprises three principal stages: pre-processing, feature extraction, and 

classification. In the pre-processing stage, the cry signal is pre-emphasized and framed; the 

pauses and silences are removed, filtered, and segmented to be ready for feature extraction. 

Following pre-processing is the feature extraction step. The features that are capable of 

discriminating the healthy cry signals from the pathologic ones are exploited in this stage. 

These features pass through dimensionality reduction techniques and are then fed as inputs into 

the classifier in the last stage of the NCDS. Finally, the class labels, which were predicted by 

the classifier, constitute the result. 

 

The prominent features in the analysis of newborn cry signals include the Mel-frequency 

Cepstral Coefficients (MFCC), owing to their good performance in the diagnostic studies of 

cries. MFCCs are often employed as the baseline in many experiments concerning the neonate 

cry. The MFCC features aid the detection of multiple diseases, such as hypothyroidism, 

asphyxia (Wahid et al., 2016; Zabidi, Mansor, et al., 2017), hyperbilirubinemia (Kheddache & 

Tadj, 2019), respiratory distress syndrome (Matikolaie & Tadj, 2020), sepsis (Khalilzad, 

Kheddache, et al., 2022; Matikolaie & Tadj, 2022), and cleft palate (Massengill Jr, 1969). 

 

Gammatone Frequency features (GFCC) have been employed for the purpose of emotion 

recognition in the study of newborn cry signals (Kulkarni et al., 2021), where they have 

outperformed MFCCs. GFCCs have a wide range of applications in acoustic scene 

classification problems, the recognition of emotions in adult speech (Garg & Bahl, 2014), and 

speaker identification (Admuthe & Patil). GFCCs were also employed in recent research 

identifying septic newborns from those diagnosed with RDS based on their cry, which proved 

to be successful (Khalilzad, Hasasneh, & Tadj, 2022). Among the machine learning 
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architectures used in infant cry analysis, Support Vector Machines (SVM) is one of the most 

prevalent approaches. A diversity of features such as temporal, prosodic, and cepstral have 

functioned successfully with SVMs (Badreldine et al., 2018; Sahak et al., 2010a; Sahak et al., 

2010b). Onu et al. (Onu et al., 2017) concluded that SVMs have a practical design for limited 

samples and data with high dimensionality, and are the most suitable for the study of 

asphyxiated neonates. Another classification approach employed in this work was the Long 

Short-term Memory (LSTM) neural network. LSTMs have been successfully paired with 

MFCC, GFCC, and their fusions; they showed promising performance in emotion and gender 

recognition applications (Kumaran, Radha Rammohan, Nagarajan, & Prathik, 2021; Verma, 

Agrawal, Singh, & Ansari, 2022). However, their application has been limited in NCDS 

designs thus far (Lahmiri, Tadj, Gargour, & Bekiros, 2022). LSTMs are one of the best choices 

when it comes to sequential data, such as audio signals. Nevertheless, like any other deep 

learning framework, LSTMs encounter the challenge of fine-tuning hyperparameters (HP) 

(Diaz, Fokoue-Nkoutche, Nannicini, & Samulowitz, 2017; Reimers & Gurevych, 2017). HP 

tuning can enhance the performance of a Neural Network (NN) from medium to state-of-the-

art. Although many researchers emphasized the vital role of Hyperparameter Optimization 

(HPO) in NN architectures, only a few works have been published that suggest which and how 

many HPs should be optimized (Bergstra & Bengio, 2012; Gorgolis, Hatzilygeroudis, Istenes, 

& Gyenne, 2019; Nakisa, Rastgoo, Rakotonirainy, Maire, & Chandran, 2018). 

 

This study aimed to develop a comprehensive NCDS to distinguish between healthy and 

morbid infants as an early alert to medical staff and the guardians of the newborn. In order to 

obtain a comprehensive NCDS, the cry signals were analyzed regardless of cry stimulus, 

region, and gender. The proposed NCDS utilized both expiratory and inspiratory cry data sets. 

In this regard, the priority of this work was to study the role of acoustic features of the GFCC 

and MFCC in assessing the acoustic structure of the cry signals. Additionally, the GFCC and 

MFCC feature sets were combined by means of conventional and fusion methods. To the best 

of the authors’ knowledge, this is the first time that the Canonical Convolution Analysis (CCA) 

fusion of the employed feature sets has been introduced to the assessment of pathologic 

newborn cries. Furthermore, the discussed challenges are addressed for both classification 
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methods through two HPO schemes, where both classifiers have been fine-tuned using the grid 

search and Bayesian Hyperparameter Optimization (BHPO) methods. The proposed 

frameworks were evaluated by several measures and the results for each one expounded and 

compared extensively. 

 

This study was proposed to address multiple the challenges and shortcomings of previous 

studies, as represented in Table-A III-1. A majority of the NCDS designs focus on studying a 

certain pathology group, whereas the aim of our work is to design a comprehensive alert system 

to notify the guardians of the newborn and the health professionals that the infant should 

undergo more screening tests, as there is a high potential it might be diagnosed with one or 

more pathologies from the ensemble of pathologies. Furthermore, the highest infant mortality 

rates are unfortunately associated with lower-income countries, where the proper screening 

equipment is inadequate and not available to many newborns (Unicef, 2014). This calls for the 

design of a non-complex, efficient NCDS that can perform early diagnosis so that the newborns 

are examined for an ensemble of pathologies and it can be determined if they are at risk of 

being unhealthy. As can be seen from Table-A III-1, the studies of newborn cries, undertaken 

for the purpose of differentiating between healthy and pathological infants, were either 

performed with a less inclusive set of pathologies or included less details on how HPO would 

assess enhancing the NCDS design. 

 

There are an ever-growing number of designs that trade complexity for performance; however, 

this study proposes that employing proper feature fusion and HPO techniques could improve 

an NCDS from a moderate to a highly desirable state, where all the evaluation measures are 

relatively high and presented. The former studies present fewer measures for the evaluation; 

as an example, there are a very limited number of studies that have investigated the MCC 

measure. Table-A 3.a-1 also shows that the use of HPO and fusion methods in the study of 

pathological newborn cry signals is inadequate. As an example, most of the presented studies 

employed the SVM classifier. However, the resulting values are far lower than those presented 

in this study (the same explanation applies to the LSTM classifier, where the results are around 

10% lower without the use of HPO methods). The aim of this study is to highlight the effects 
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and importance of HPO and fusion methods in all NCDS designs, by explaining run-times and 

comparing the results before and after fusion and employing HPO. The role of feature fusion 

and HP tuning could be crucial and shed light on many further applications that employ various 

modalities for developing a comprehensive system; thus, we tried to provide a detail-oriented 

study of how each step of the NCDS design contributed to enhancing or decrementing the final 

results, which distinguishes our study from other research in the field of cry-based diagnostic 

systems. 

 
 
4.3 Methods and Participants 

4.3.1 Cry Dataset and Participants 

The first challenge in sketching a pathological study is the acquisition and collection of data. 

It is important to note that the priority is obtaining the consent of newborns’ guardians to record 

the cry signal and then achieving their consent to include that cry signal in the database. 

Furthermore, obtaining the ethical approvals to add samples to a database is an arduous and 

toilsome process that might even lead to losing some of the acquired data. 

 

The collection of data was accomplished by collaboration between Al-Sahel and Al-Raee 

hospitals in Lebanon and Saint Justine Hospital of Montreal, QC, Canada. All the signals have 

been recorded in NICUs or maternity rooms (public and private) in the hospital environment. 

The cry of the newborns in our dataset was initiated due to multiple reasons such as hunger, 

fear, and wet diapers (Abou-Abbas, Tadj, Gargour, et al., 2017). The reason for crying was 

resolved with the help of medical staff and newborn’s caregivers regarding the conditions 

resulting the cry. 

 

Cry recordings ranged from 1 to 4 min including silence, hiccups, inspiration cries, expiration 

cries, and background noise. They were collected using a digital 2-channel Olympus handheld 

recorder with a 16-bit resolution and 44,100 Hz sampling frequency. The recorder was placed 

in the 10-to-30 cm vicinage of the newborn’s mouth with no special consideration in the 
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acquisition process. The mean recording length is 90 s and there were up to 5 recordings from 

each newborn. Therefore, unwanted information such as chatter in the surrounding space, 

noises, instrument beeps, and cries of other newborns accompanied the signals, which makes 

our dataset a real corpus capable of solving the challenge of comprehensiveness. Moreover, 

the newborns included in our dataset represent different races, origins, genders, and weights. 

A summary of this dataset is represented in Table 4.1. 

 

Table 4.1 Description of dataset and participants 
 

Demographic Factors Specification 

Gender Female and Male 

Babies’ Ages 1 to 53 days old 

Weight 0.98 to 5.2 Kg 

Origin 
Canada, Haiti, Portugal, Syria, Lebanon, Algeria, Palestine, 

Bangladesh, Turkey. 

Race 
Caucasian, Arabic, Asian, Latino, African, Native Hawaiian, 

Quebec. 

Cry Stimulus 
Discomfort, lack of sleep, wet diaper, pain, fear, colic, reflux, birth 

cry, hunger. 

Healthy/Pathology 
Group 

Healthy, dyspnea, fever, gastroschisis, grunting, 

hyperbilirubinemia, hypoglycemia, hypothermia, intrauterine 

growth retardation, jaundice, kidney failure, meconium aspiration 

syndrome, meningitis, myelomeningocele, respiratory distress 

syndrome, retraction, seizure, sepsis, tachypnea, thrombosis in 

vena cava, vomit. 

 

Newborns do not have any control over their vocalization before 3 months of age (more 

accurately, 53 days) (Boukydis & Lester, 2012). The genesis of vocalizations in advance of 

this age is merely affected by biological rhythms. Moreover, it was shown that the mean of 

fundamental frequency undergoes no increasing or decreasing trend during the first 53 days of 
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life (Lind & Wermke, 2002). Besides this, the supralaryngeal VC is reconfigured towards a 

human vocal tract after the 3 months of age (Boukydis & Lester, 2012). Therefore, newborns 

over 53 days old were not included in the current study. 

 
 
4.3.2 Pre-Processing 

Corwin et al. (Khalilzad, Hasasneh, et al., 2022) described the four types of acoustic units that 

constitute a cry signal as expiratory phonation, expiratory hyperphonation, expiratory 

dysphonation, and inspiratory phonation. During the phonation, the vibrations of the 

newborn’s vocal folds generate sound, which is also referred to as voicing. The inspiratory 

cries are the “gasping” inhalation after the onset of crying that has enough power to cause 

vibrations in the vocal folds. Since the INSV episodes of the cry represent the laryngeal 

straitening of the ingressive air current, these cries have the potential to be a biomarker for 

diagnosis purposes (Fisichelli, Karelitz, Fisichelli, & Cooper, 1974). The power needed for 

driving the expiratory phase of a cry is stored during the inspiratory phase. Expiration can be 

interpreted as a moderate decrement in the volume of the lungs (Aucouturier et al., 2011). 

Usually cries occur during this respiratory phase, so this segment is considered to contain the 

main information, while the inspiratory cries remain the less explored and cognizant type of 

the cry event by researchers. Although it has been reported that the restraint of the upper airway 

may lead to sudden infant death syndrome and apnea, and the inspiratory cry is believed to 

contain information leading to pain and distress (Aucouturier et al., 2011), this type of cry has 

been often neglected in the study of NCDS (Grau, Robb, & Cacace, 1995). Concisely, analysis 

of both expiratory and inspiratory cries is indispensable regarding the design of a 

comprehensive NCDS, and in this study, both expiratory and inspiratory phonation were 

included. 

 
The cry samples in our dataset were labeled by a group of researchers. An example of the 

assigned cry signal units is depicted in Figure 4.1. Different segments of the cry signal have 

been margined, and matching labels have been attached via WaveSurfer, presented in our 

previous works (Abou-Abbas, Tadj, Gargour, et al., 2017; Matikolaie & Tadj, 2020). 
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Figure 4.1 An example of a labeled cry signal via WaveSurfer. The X axis represents time, 

and the Y axis represents amplitude  
 
Table 4.2 represents the number of samples in each dataset as well as the number of samples 

separated for the test and training. In total, 68 newborns with one of the mentioned pathologies 

were included in the unhealthy subsection of the data, and 300 healthy newborns participated 

in this study. Each of these participants yielded a different number of samples in the dataset. 

An equal number of samples from the healthy group were selected to ensure a balanced 

analysis. 

 

Table 4.2 Number of samples in each dataset for training and test 
 

 
No. of 

Healthy 
No. of 

Pathologic 
No. of Train 

Samples 
No. of Test 

Samples 

EXP 3005 3005 4207 1803 

INSV 3620 3620 5068 2172 

 

 

4.3.3 Feature Extraction 

The extraction of appropriate acoustic features capable of pertinent signal representation plays 

a vital role in any audio classification problem. As discussed above, for the effectuation of a 

cry, glottal impulses proceed through the filtering carried out by the vocal tract (Wasz-Hockert 
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et al., 1968). With the aim of distinguishing between the source and filter of a cry, cepstral 

analysis employed, which enables a homomorphic transformation (Huang et al., 2001). 

MFCCs were derived from the Mel Filter Banks, whereas GFCCs were obtained from the 

Gammatone Filter Banks, which are a representation of inner and external middle ear 

physiological transitions (Zhao & Wang, 2013). In other words, although the two approaches 

are based on from the human sound perception model, the GFCCs are coordinated to 

comprehend the physical alterations more effectively than the MFCCs, and better delineate the 

auditory system (Katsiamis, Drakakis, & Lyon, 2007). Both Gammatone and Mel-frequency 

representations of the cry signal were mapped into the cepstrum space for the feature extraction 

step. Figure 4.2 illustrates our framework; the proposed steps for the acquisition of each of 

these features are described in the following sections. 

 

 
Figure 4.2 Framework of the proposed NCDS 

 
 

4.3.3.1 Mel-Frequency Cepstral Coefficients 

The calculation of MFCCs follows several steps. First, the preprocessed cry signal is pre-

emphasized and divided into frames of 10 ms with a 30% overlap using the hamming window. 

The Fast Fourier Transform (FFT) then converts these frames to obtain the signal’s spectrum. 

In the next step, the spectrum is transformed to the Mel-frequency scale, which is a 

representation of perceived pitch. For this purpose, a filter bank consisting of 13 triangular 

Mel-spaced filters is employed. As a consequence of the vocal tract’s uniformity, the adjoining 

bands in the filter bank are inclined towards having correlated energy levels. Hence, a Discrete 
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Cosine Transform (DCT) is imposed to decorrelate them and yield Mel-frequency Cepstral 

Coefficients. The Mel-scale of the frequency 𝑓 can be approximated as Equation 4.1. 

 

 𝑀(𝑓) = 1125 ln(1 + 𝑓/700)     (4.1) 

 

It was shown that the first thirteen coefficients could efficiently track the variations in the shape 

of the vocal tract during the generation of a sound by humans (Kumaran et al., 2021). A similar 

procedure as in the previous works (Alaie et al., 2016; Matikolaie & Tadj, 2020) was followed 

and the average statistical measure was used. The MFCCs hold information from one 

individual frame, and are therefore described as static features. In order to attain information 

on the fluctuations of the cry signal across multiple frames, the first and second derivatives of 

MFCCs are computed. Equation 4.2 gives the first derivative of the MFCCs for T consecutive 

frames (set equal to 2 in this study): 

 

 ∆𝑐 (𝑛) = ∑ ( )∑ | |    (4.2) 

 

Here, the mth feature for the nth frame is represented by cm(n), and ki denotes the ith weight. 

Calculating the first-order derivative of the delta coefficients yields the delta-delta coefficients. 

The total number of features in the MFCC feature set equals 39, including 13 MFCCs, 13 

deltas, and 13 delta-deltas (Rabiner, 1993). 

 
 
4.3.3.2 Gammatone Frequency Cepstral Coefficients 

Gammatone Frequency Cepstral Coefficients are a variant of MFCCs based on the biological 

response of the human auditory system. These features are extracted from the Gammatone 

filters with equivalent rectangular bandwidth (ERB) bands. Valero et al. (Valero & Alias, 

2012) reported that the GFCC successfully performed non-speech audio classification tasks. It 

was also reported that the computation of the GFCCs was cost-efficient and has greater noise 

robustness compared to the MFCCs (Matikolaie & Tadj, 2020). The procedure for obtaining 
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the GFCCs is similar to the MFCC. The non-stationary cry signal was windowed into frames 

of 10 ms with 30% overlap. The hamming window was applied for this purpose. The 

Gammatone filter banks were then applied to the FFT of the cry signals, which was done in 

order to amplify the perceptually meaningful sound signal frequencies. Next, the output of the 

last step was mapped into the logarithmic space. Finally, the Discrete Cosine Transform (DCT) 

was applied to decorrelate the filters’ outputs and better mimic human loudness perception. 

The m coefficients from N Gammatone filters were then calculated via Equation 4.3. 

 

 𝐺𝐹𝐶𝐶 =  ∑ 𝑙𝑜𝑔(𝑋 ) 𝑐𝑜𝑠 𝑚 −           1 ≤ 𝑚 ≤ 𝑀      
(4.3) 

 

where 𝑋  represents the corresponding energy of the nth band. Finally, the GFCC delta and 

delta-delta coefficients were derived, and the feature set comprised 39 coefficients matching 

the MFCC feature vector (Valero & Alias, 2012). 

 
 
4.3.4 Features Fusion 

By means of feature fusion, multiple feature sets are consolidated to create a single feature 

vector more robust than the individual feature vectors. Feature fusion can be undertaken in 

four different stages of the NCDS: 1) the data/sensor level; 2) the feature level; 3;) the matching 

score level, and 4) the decision level (Telgad et al., 2014). 

 

In feature-level fusion, appropriate feature normalization, transformation, and reduction are 

employed in order to merge the features extracted from different sources into one feature set. 

The main benefit of feature-level fusion is the detection of correlated feature values generated 

by multiple algorithms, making it possible to introduce a new compressed set of salient features 

that can enhance classification accuracy. Therefore, CCA fusion at the feature level was 

utilized as the feature fusion strategy in this study (Kim et al., 2019). 
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4.3.4.1 Canonical Convolution Analysis (CCA) 

Canonical convolution analysis handles the mutual statistical association between two feature 

sets by constructing a correlation criterion function. Subsequently, the canonical correlation 

regarding the criterion chosen in the last step was exploited, and discriminant vectors were 

forged so that the surplus information could be suppressed (Sun, Zeng, Liu, Heng, & Xia, 

2005). 

 

Suppose we take two feature sets 𝑋 and 𝑌 of 𝑝 × 𝑛  and 𝑞 × 𝑛 dimensions, respectively. In 

other words, for each nth sample of the dataset, 𝑝 + 𝑞  features were extracted. In order to 

obtain information about all the relations across the feature sets, the overall covariance matrix, 𝑆, can be written as Equation 4.4: 

 
 

 𝑆 =  𝑐𝑜𝑣(𝑥) 𝑐𝑜𝑣(𝑥, 𝑦)𝑐𝑜𝑣(𝑦, 𝑥) 𝑐𝑜𝑣(𝑦) =  𝑆 𝑆𝑆 𝑆         (4.4) 

 

Apprehending the associations among the two sets of features may become challenging when 

they do not follow a steady pattern. CCA solves this challenge by finding the linear 

combinations, 𝑋⋇ =  𝑊 𝑋 and 𝑌⋇ = 𝑊 𝑌, and attaining the maximum pair-wise correlations, 

which is facilitated via Lagrange multipliers. The pair-wise correlation is defined as Equation 

4.5. 

 

 𝑐𝑜𝑟𝑟 (𝑋⋇,𝑌⋇) =  ( ⋇, ⋇)( ⋇)  .   ( ⋇)        (4.5) 

 

Finally, feature-level fusion is achieved by the concatenation of the transformed feature sets as 

in Equation 4.6: 

 

 𝑍 =  ⋇⋇ =   = 𝑊 00 𝑊           
(4.6) 
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Z represents the Canonical Correlation Discriminant Features (CCDFs) (Haghighat, Abdel-

Mottaleb, & Alhalabi, 2016). The GFCC and MFCC feature sets’ fusion results, constituting 

39 features each, yielded a feature vector with 60 features representing the cry signals. In this 

study, the performance of the fused features was compared to the individual feature sets, as 

well as their concatenation. 

 
 
4.3.5 Classification 

Classification assigns class labels to the given data points. The evaluation of the extracted 

feature sets was performed by classification. Two different classifiers were implemented in the 

current study. The first classification method was SVM, which is conventional in NCDS 

research. Moreover, the LSTM neural network was also employed. These classifiers and the 

HPO methods associated with each one are introduced in the following sections. 

 
 
4.3.5.1 Support Vector Machine (SVM) 

SVMs are prevalent in the analysis of audio signals. SVM is known as a supervised ML 

classification method that draws a hyperplane to maximize the marginal distance between the 

classes of data. The support vectors represent boundary feature points and form the basis for 

classification. A kernel function handles the nonlinearity of the data (Sahak et al., 2013). A 

Gaussian Kernel was implemented, which assumes that similar feature points were located in 

close vicinity and considers the Euclidean distance between x and xi. In this study, the box 

constraint and kernel scale were tuned as the HPs of the SVM model. 

 
 
4.3.5.2 Hyperparameter Optimization (HPO) 

In any classification problem, the goal is to achieve high performance while keeping the errors 

to a minimum; therefore, HPO methods have been introduced. The several approaches to the 

HPO of an ML classifier include grid search, random search, and BHPO, which have omitted 

the need for human intervention to tune the classifier’s HPs. The significance of the HPO is 
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that each configuration is designed to fit its corresponding task. The main function of any given 

HPO method is to attain an optimum value for each HP from a set of finite values that 

minimizes the loss or maximizes the objective function. However, there are always downsides 

to each method, such as the high computational costs associated with the NN HPO and the 

probability of facing the curse of dimensionality (Feurer & Hutter, 2019). 

 

The acquisition function and probabilistic surrogate model are the basis of the BHPO. The 

acquisition function enables a BHPO model to be updated in correspondence to it iteratively, 

defined as Equation 4.7 (Ashwini & Vincent, 2022): 

 
 

 𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∈ 𝑓(𝑥)          (4.7) 

 

In every iteration, the model is updated based on new HPs and the corresponding model 

performance. Once the predefined number of iterations is reached, the best observed HPs are 

announced, as are the optimal observed values for the objective function. As will be seen in 

the following sections, BHPO often achieves better results than the other two HPO methods 

introduced. 

 

4.3.5.3 Long Short-Term Memory (LSTM) 

Recurrent Neural Networks (RNNs) have been shown to be propitious in the analysis of both 

single data points and sequential data, such as acoustic inputs. A feedback loop connects the 

input of RNN to its output, allowing them to model the dependencies in time series. Long 

Short-Term Memory (LSTM) networks are a type of RNNs with memory cells capable of 

learning, keeping, and forgetting data. By means of this memory cell, LSTMs function well 

with both short-term and long-term features (Gimeno, Viñals, Ortega, Miguel, & Lleida, 2020). 

Since the generation of the cry signal is intrinsically dynamic, RNNs may prove functional in 

their acoustic modeling. However, the challenge arises from the complexity of the training and 

tuning of hyperparameters of these networks. In order to overcome this challenge, the HPO 

methods were implemented to find and choose the optimal HPs. As mentioned above, Bayesian 
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optimization requires fewer iterations than the grid search method to achieve the optimal values 

for the HPs in neural networks. The general task of HP acquisition by the BHPO is depicted in 

Figure 4.3. 

 
 

 
Figure 4.3 General Bayesian hyperparameter optimization process 

 

The range of each hyperparameter was pre-determined in order to exploit the full potential of 

the HPO methods, as is shown in Table 4.3. 

 

Table 4.3 Predefined ranges for the hyperparameter optimization of the LSTM 
 

Parameter Selected Range 

Initial learning rate [0.001, 1] (logarithmic steps) 

Number of hidden units [2, 39] 

Number of Epochs [100, 500] 

Depth [1, 3] 

 
 
The activation function for this LSTM configuration is the hyperbolic tangent function (tanh). 

The hyperparameters included in this set of experiments were initial learning rate, number of 

hidden units, maximum epochs, and the depth of the LSTM architecture. Increasing the depth 

of the network was accompanied by higher computational costs, and all the best results were 

achieved when using only one layer. The loss and root mean squared errors were calculated 

for each run of the optimization process. The optimization was performed in 30 evaluations 
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for each set of features, and the parameters that maximized the overall accuracy were chosen 

for each configuration. 

 
 
4.4 Evaluation 

This study aimed to differentiate pathologic infants from healthy infants and employed the 

GFCC and MFCC features with the LSTM and SVM classifiers. A wide range of pathologies 

were included in these experiments in order to achieve a comprehensive NCDS, which is able 

to act as an early alert given the lack of medical experts and access to expensive and extensive 

laboratory experiments. Different experiments were conducted with the proposed feature 

vectors, their combination, and their CCA fusion. Following the feature extraction step is 

classification. There are two approaches to validating the classifier’s performance after 

training: holdout and cross-validation. The data were split into 70% training and 30% unseen 

testing data for both classifiers. For the SVM classifier, a 5-fold cross-validation was 

conducted on the training data, whereas for the LSTM classification, a holdout validation 

approach was chosen with 20% of the training data with a frequency of once every 10 

iterations, because of the different natures of the classifiers. For the k-fold cross-validation, the 

data were split into k partitions, k−1 folds of which were used for training and one fold for 

testing in each iteration. This procedure was repeated up to the point at which each of the k 

folds was marked as the test fold. Finally, the results of grid search and BHPO for each 

architecture were compared. 

 

The discriminatory performance of an NCDS in a binary problem can be represented by a 

contingency matrix, as shown in Table 4.4. The task of the NCDS in our paper was to detect 

the pathological neonates amid the healthy. In order to appraise how well the system performed 

its role, the evaluation measures were introduced and computed. Practically, the most 

convenient evaluation measure is the accuracy, which is equivalent to the proportion of 

correctly predicted samples over all the observations. The accuracy measure benefits from both 

calculation and apprehension simplicity; however, the lack of informativeness as well as the 
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fewer concessions towards the minority calls for the implementation of more evaluation 

measures (Hossin & Sulaiman, 2015). 

 
Table 4.4 Contingency matrix for the evaluation of NCDS 

 
 True class 

Pr
ed

ic
te

d 
cl

as
s 

 Pathologic Healthy Measures 

Pa
th

ol
og

ic
 

True Positive False Positive 
Precision 𝑇𝑃𝐹𝑃 + 𝑇𝑃 

H
ea

lth
y 

False Negative True Negative 
Negative Predictive Value 𝑇𝑁𝐹𝑁 + 𝑇𝑁 

M
ea

su
re

s Recall 𝑇𝑃𝑇𝑃 + 𝐹𝑁 

Specificity 𝑇𝑁𝐹𝑃 + 𝑇𝑁 

Accuracy 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 

 

One solution is to evaluate the NCDS performance without considering the true negative case, 

which will introduce a measure named precision. Precision, or Positive Predictive Value 

(PPV), is the ratio of true pathologic cases among the samples predicted as healthy. Another 

measure is recall, or sensitivity, which refers to the probability of recognizing a truly 

pathologic case by NCDS. The F-score and Matthews’ Correlation Coefficient (MCC) were 

reported to be more instructive in binary classification problems. F-score is a function of both 

recall and precision, and indicates the inclusive performance of the system and is equal to the 

harmonic mean of precision and recall (Flach & Kull, 2015). The specificity measure denotes 

the true negative rate, and it indicates the true healthy samples correctly identified by the NCDS 

(Zhu, Zeng, & Wang, 2010). 

 

The MCC is a highly informative evaluation measure when used in problems such as NCDS 

designs, since it accounts for all the information in a contingency matrix. The MCC, Equation 

4.8, gives a value in the range of [−1, +1], where the misclassified performance results in 

negative values, and the higher values in the positive range signify better performance in terms 
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of classification (Chicco & Jurman, 2020; Vihinen, 2012). In this study, a high acceptance 

value of +0.50 was set to evaluate the classification. 

 
 

 𝑀𝐶𝐶 =   × ×( )( )( )( )          (4.8) 

 

4.5 Results 

This section presents the results of evaluating different architectures with multiple measures 

in Tables 4.5 – 4.12. Regarding the evaluation measures introduced, higher values for each 

measure translate into the better performance of the system. In this study, four sets of 

experiments were conducted: 1. Evaluate the NCDS performance with default/random search 

hyperparameter configuration of the classifiers. 2. Evaluate the NCDS performance with grid 

search HPO. 3. Evaluate the NCDS performance with BHPO. 4. Compare the performance of 

the system with different iterations of HPO for each method, ranging from 30 iterations to 100 

iterations for SVM and different numbers of neurons for the LSTM. 

 

Each of the feature vectors were evaluated with the SVM classifiers, which are shown in Tables 

4.5–4.8. In this step, the evaluation of system performance was undertaken by three different 

settings of the classifier: 1. Default settings. 2. Grid search optimization. 3. BHPO. The same 

procedure was repeated for the LSTM classifier, and 30 iterations of each HPO method were 

performed. 

 

First, the results related to using the SVM classifier as a baseline to compare the results of the 

next steps are discussed. Table 4.5 represents the results for the MFCC feature set for the INSV 

and EXP datasets. The use of HPO similarly increased the evaluation measures across both 

datasets. Moreover, BHPO achieved a very similar or better performance except for in the 

recall measure. The highest accuracy and F-score for the EXP dataset were 87.37% and 

86.64%, respectively; both were obtained through BHPO. This experiment yielded a better 

performance with the INSV dataset, and yielded 89.05% for the accuracy measure, which was 
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again achieved through BHPO. However, grid search had a slight superiority in terms of the 

F-score, and achieved 89.24%. 
 

Table 4.5 Results of evaluating the MFCC feature set classification with SVM 
 

 MFCC Accuracy Recall Specificity Precision F-Score MCC 

EXP 

Random Search 72.16 62.93 81.26 76.80 69.17 0.45 

Grid Search 86.34 88.09 84.63 84.97 86.49 0.73 

Bayesian 87.37 82.55 92.11 91.17 86.64 0.75 

INSV 

Default 79.38 78.36 80.45 80.73 79.53 0.59 

Grid Search 88.90 90.09 87.65 88.40 89.24 0.78 

Bayesian 89.05 88.72 89.40 89.74 89.23 0.78 

 

Table 4.6 presents the results of evaluating the GFCC feature set with the SVM classifier. By 

briefly looking at Tables 5 and 6, it can be seen that the MFCC feature set outperformed the 

GFCC feature set across both datasets. Similar to all the other feature sets, the best results in 

terms of F-score and accuracy in relation to the EXP dataset for the GFCC feature set were 

achieved through BHPO. In a general sense, the combination of the GFCC with the SVM 

yielded better results with the INSV dataset compared to the EXP dataset. The GFCC features’ 

highest accuracy and F-score were 85.51% and 85.88%, respectively; both were achieved with 

BHPO and INSV dataset. 

Table 4.6 Results of evaluating the GFCC feature set classification with SVM 
 

 GFCC Accuracy Recall Specificity Precision F-Score MCC 

EXP 

Random Search 67.42 57.59 77.11 71.27 63.70 0.35 

Grid Search 83.75 86.06 81.48 82.08 84.02 0.74 

Bayesian 84.49 86.39 82.62 83.05 84.69 0.69 

INSV 

Random Search 76.57 73.53 79.74 79.14 76.23 0.53 

Grid Search 85.26 86.23 84.24 85.12 85.67 0.71 

Bayesian 85.51 86.25 84.73 85.52 85.88 0.71 
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In the next step, the GFCC and MFCC feature sets were combined to evaluate the NCDS 

performance under these conditions. As for the EXP dataset, the concatenated feature set could 

increase the accuracy and F-score measures by 1% and 1.7%, respectively, compared to the 

best results of the last two feature sets. The highest results for the EXP dataset were 88.41% 

and 88.30% for accuracy and F-score, respectively. The performance of the NCDS with this 

configuration for the INSV dataset was very similar to that for the MFCC feature set used 

individually, and there was a slight improvement in the evaluation measures (Table 4.7). 
 

Table 4.7 Results of evaluating the concatenation feature set classification with SVM 
 

 Concatenation Accuracy Recall Specificity Precision F-Score MCC 

EXP 

Random Search 75.49 68.58 82.29 79.25 73.53 0.51 

Grid Search 87.85 87.93 87.78 87.64 87.78 0.76 

Bayesian 88.41 88.13 88.68 88.47 88.30 0.77 

INSV 

Random Search 81.06 81.03 81.09 81.75 81.38 0.62 

Grid Search 88.59 88.40 88.79 89.19 88.79 0.77 

Bayesian 89.07 89.57 88.55 89.10 89.33 0.78 

 
 
As a final experiment with the SVM classifier, the GFCC and MFCC feature sets—each 

containing 39 elements—were fused, and the feature vector was reduced to 60 elements, which 

was a more than 25% reduction in the size of the feature space. Since the size of the feature 

space was reduced, it might be expected that we see a rather small drop or a similar 

performance across the evaluation measures with this experiment compared to with the EXP 

dataset. However, as can be seen from Table 4.8, not only were the overall best results in terms 

of accuracy and F-score maintained, but they were also increased by about 1%. The results for 

the INSV dataset show the new highest accuracy and F-score across all the experiments with 
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the SVM classifier, with 89.96% and 90.27%, respectively. For the EXP dataset, compared to 

the best results in terms of accuracy and F-score in previous experiments, the fusion of the 

features decreased the performance of the NCDS by 0.7% and 0.35%, respectively. 
 

Table 4.8 Results of evaluating the CCA fusion feature set classification with SVM 
 

 CCA Fusion Accuracy Recall Specificity Precision F-Score MCC 

EXP 

Random Search 81.43 81.59 81.28 81.11 81.35 0.63 

Grid Search 85.31 87.20 83.46 83.86 85.49 0.71 

Bayesian 87.71 90.35 85.11 85.68 87.95 0.76 

INSV 

Random Search 88.09 88.43 87.74 88.29 88.36 0.76 

Grid Search 88.28 89.14 87.38 88.07 88.60 0.77 

Bayesian 89.96 91.14 88.74 89.43 90.27 0.80 

 
 
After evaluating different aspects of the NCDS with the SVM classifier, the study proceeded 

to design an LSTM configuration to differentiate pathologic newborns from the healthy group. 

The same procedure of the experiments as with the SVM classifier was followed, and the 

system was evaluated with each feature configuration separately. The performances of all 

feature sets were improved considerably by using the LSTM classification method. The MFCC 

feature set achieved the highest accuracy and F-score of 99.03% and 99.05%, respectively, 

with the LSTM classifier for the INSV dataset, which is a nearly 10% improvement compared 

to the SVM method. As can be seen from Table 4.9Table 4.10, the performance of the GFCC 

feature set was slightly better than the MFCC feature set with the LSTM classifier for the EXP 

dataset, and vice versa for the INSV dataset. Both HPO methods worked marvellously with 

the LSTM classifier; however, they were not efficient in terms of run-time, which will be 

compared in the Discussion section. 
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Table 4.9 Results of evaluating the MFCC feature set classification with LSTM 
 

 MFCC Accuracy Recall Specificity Precision F-Score MCC 

EXP 

Random Search 76.59 95.98 57.49 69.00 80.28 0.58 

Grid Search 97.78 95.53 100.00 100.00 97.71 0.96 

Bayesian 99.33 98.66 100.00 100.00 99.33 0.99 

INSV 

Random Search 95.17 96.58 93.69 94.12 95.33 0.90 

Grid Search 96.09 92.34 100.00 100.00 96.02 0.92 

Bayesian 99.03 98.56 99.53 99.55 99.05 0.98 

 
 
The best accuracy and F-score achieved by the GFCC feature set were 99.45% and 99.44%, 

respectively, whereas the MFCC obtained 99.33% for both measures. The mentioned results 

were accomplished for the EXP dataset. It is noteworthy to mention that both feature sets 

attained 100.00% for specificity and precision measures. Moreover, the MCC measure has 

acquired a high value for the BHPO with EXP dataset for both feature sets, which indicates 

close to perfect classification quality (Table 4.10). 

 

Table 4.10 Results of evaluating the GFCC feature set classification with SVM 
 

 GFCC Accuracy Recall Specificity Precision F-Score MCC 

EXP 

Random Search 84.53 75.20 93.72 92.19 82.83 0.70 

Grid Search 96.56 93.07 100.00 100.00 96.41 0.93 

Bayesian 99.45 98.88 100.00 100.00 99.44 0.99 

INSV 

Random Search 96.09 92.34 100.00 100.00 96.02 0.92 

Grid Search 97.88 97.66 98.12 98.19 97.92 0.96 

Bayesian 97.51 95.14 100.00 100.00 97.51 0.95 
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Even though the state-of-the-art performance of both individual feature sets through HPO 

methods leaves little room for improvement, it is still beneficial to study the behavior of the 

system by the combination of the two feature vectors to assess their efficacy compared to the 

SVM classifier. As can be deduced from Table 4.11, the performance of the NCDS was 

degraded by simply concatenating the feature sets, which may translate to lower uniformity of 

the feature space. The highest accuracy and F-score achieved with this experiment belonged 

to the INSV dataset, which reached 98.99% and 99.00%, respectively. 

 

Table 4.11 Results of evaluating the concatenation feature set classification with SVM 
 

 Concatenation Accuracy Recall Specificity Precision F-Score MCC 

EXP 

Random Search 89.24 97.54 81.06 83.54 90.00 0.80 

Grid Search 96.23 92.40 100.00 100.00 96.05 0.93 

Bayesian 98.34 96.76 99.89 99.88 98.30 0.97 

INSV 

Random Search 98.48 97.21 99.81 99.81 98.49 0.97 

Grid Search 98.85 97.75 100.00 100.00 98.86 0.98 

Bayesian 98.99 98.11 99.91 99.91 99.00 0.98 

 
 
Table 4.12 constitutes the results of the next experiment with the LSTM classifier. The 

system’s performance was better than the concatenation framework since the CCA fusion 

removes the redundant features and helps improve the uniformity of feature space. This 

experiment showed the best performance in assessing the INSV dataset among all the previous 

experiments for all of the evaluation measures, specifically reaching 99.86% for both F-score 

and accuracy and 1.00 for the MCC measure. As for the EXP dataset, the GFCC feature set 

outperformed both combinational feature sets in terms of all evaluation measures. 
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Table 4.12 Results of evaluating the CCA fusion feature set classification with SVM 
 

 CCA Fusion Accuracy Recall Specificity Precision F-Score MCC 

EXP 

Random Search 96.73 93.74 99.67 99.64 96.60 0.94 

Grid Search 97.34 97.65 97.03 97.00 97.33 0.95 

Bayesian 99.00 98.55 99.45 99.44 98.99 0.98 

INSV 

Random Search 96.09 92.61 99.72 99.71 96.03 0.92 

Grid Search 98.16 97.57 98.78 98.81 98.19 0.96 

Bayesian 99.86 99.73 100.00 100.00 99.86 1.00 

 
 
In the previous section, the evaluation results regarding each feature set and classifier 

combination were extensively discussed; now, the discussion is undertaken from the 

perspective of the computational cost. For this matter, the run-time was selected as an indicator. 

It should be noted that in the case of the joint feature sets, namely, concatenation and CCA 

fusion, the given run-times include the process of concatenation and fusion, and not only the 

time corresponding to the HPO process. The elapsed times for the extraction of the GFCC and 

MFCC feature sets were 558.31 and 836.16 s, respectively, which suggests the GFCC feature 

set requires lower computational costs; other researchers have also mentioned the same results 

(Valero & Alias, 2012). Figure 4.4 compares the run-times of the grid search HPO and BHPO 

methods for different iterations of each one when applied to the SVM classifier. 
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Figure 4.4 Elapsed time (seconds) regarding the different iterations of hyperparameter 

optimization methods for the SVM classifier 
 

The comparison between run-times regarding each feature set firstly confirms that the CCA 

fusion method results in a more homogenous feature space, and reduces run-times until they 

are lower than the run-time for the individual feature sets, which is consistent in both HPO 

methods. As can be seen, BHPO resulted in the higher performance of the system and required 

longer run-times. In order to better illustrate this comparison, Figure 4.5 presents the average 

run-times of the two HPO methods for each NCDS configuration for a more detailed 

evaluation. 

 

 
Figure 4.5 Average run-times for evaluating different iterations of hyperparameter 

optimization for the SVM classifier 
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Figure 4.6 shows the elapsed times (in seconds) for the grid search and BHPO methods for the 

LSTM classifier. Since the process of HPO for the NNs is highly time-consuming compared 

to the machine learning models, only 30 iterations of HPO were performed for this experiment. 

The results show that CCA fusion requires the shortest run-time out of all other feature sets for 

the grid search HPO, similar to the SVM HPO methods; the run-times regarding the grid search 

method were lower than for BHPO. It should be noted that the number of trials for both 

methods was limited to 30; BHPO can achieve satisfactory results with this number of 

iterations, whereas grid search often requires a much greater number of trials. In summary, the 

proposed NCDS in this study accomplished desirable results across all the experiments in terms 

of performance and computational costs, and the longest elapsed time was less than 1700 s 

simultaneously. 

 

 
Figure 4.6 Comparing run-times for the two HPO methods of LSTM for different 

experiments 
 
 
4.6 Discussion 

The design of the NCDS is a challenging problem for every researcher aiming to study 

newborn cry characteristics, regardless of the purpose the NCDS aims to serve. This challenge 
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is even more significant regarding the sensitive subject of detecting pathologic newborns. The 

NCDS designs are not developed enough compared to the other acoustic scene recognition 

systems or speech analysis applications; there is still a need for further studies in this field, 

which is mainly due to the fact that datasets are very limited in terms of the number of samples. 

This is due to certain limitations, such as the fact that the chances of having a newborn 

diagnosed with a specific pathology in any given duration of conducting a clinical study are 

not predictable. Therefore, there may not be sufficient samples from each given pathology 

group; ensuring the ethical and technical standards required to collect and use the cry samples 

in a database calls for extreme measures. In this regard, by segmenting each cry recording into 

multiple expiratory and inspiratory episodes, two datasets of EXP and INSV were formed. As 

mentioned above, the areas of the world that suffer the most from infant mortality are less 

developed and lack a sufficient number of expert physicians. Thus, it is vital to keep the design 

as simple as possible so that expensive hardware would not be required to achieve high 

performance. 

 

One other aspect of the proposed study is that by employing MFCC and GFCC features, the 

cry signal is investigated both from the speech processing and non-speech audio processing 

perspectives. As was previously discussed, MFCCs have proved to be powerful discriminators, 

especially in speech processing tasks, while GFCCs have shown even better performance and 

robustness in non-speech audio applications. For the first time in newborn cry analysis a CCA 

fusion at the feature level was performed in order to make the feature space homogenized and 

omit redundant information. By looking at the results of run-times in the previous section, it 

can be seen that CCA fusion homogenized the feature space in a way that the fused feature 

vectors required less time for optimization, even when compared to the single feature vector 

of GFCC. This shows that although the fused vector had 60 elements, it was still optimized 

faster than a 39-element feature vector, even with the time required for fusion included. This 

is rather an interesting finding that shows potential for many further applications with the 

inclusion of features from various modalities in this field. Not only were the HPO run-times 

reduced, but also, the results were improved by reducing the number of features by about one 

fourth. 
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Since the challenge is to detect a pathologic newborn and alert the newborn caregivers and 

medical experts, it is worth tolerating higher run-times in order to obtain a more accurate 

diagnosis and benefit from the HPO methods. The other important factor here is that the NCDS 

cannot afford to misdiagnose a pathologic newborn as a healthy one, so the focus should be on 

achieving a high hit rate (recall) and F-score measure, which are the indicators of a low miss 

rate. This study proposed two different designs with respect to the runtime and performance 

trade-off. Firstly, using the SVM classification method, a simplistic design was proposed, 

which requires minimal run-time and could work with commercial hardware. It was shown 

that by implementing the HPO methods, a similar performance to the complex state-of-the-art 

designs with up to 90% F-score for the SVM could be achieved. Moreover, our LSTM design, 

which only has a one-layer depth, was able to achieve better F-scores than similar or more 

complex works in the literature using the proper HPO, with improvements of 99.86% and 

99.45% for INSV and EXP datasets, respectively. This study also offers an extensive 

evaluation of the HPO factors and methods in addition to the primary goal, achieving high 

diagnostic power. Additionally, the powerful discriminatory role of inspiratory cries, which 

are neglected in most NCDS studies, is highlighted here, as is the success of our design with 

the EXP dataset, which worked even better with this dataset. 

 

Finally, the high number of pathology groups included in this study makes it a comprehensive 

framework capable of a more reliable diagnosis, since the medical staff could suggest that the 

newborn does not suffer from the given list of pathologies. Figure 4.7 gives a visual summary 

of the best results achieved by each experiment in terms of F-score and accuracy. These results 

imply the similar performances of the NCDS in terms of both F-score and accuracy measures, 

which indicates that discussing the F-score measure alone would be sufficient. 
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Figure 4.7 Summary of the best results achieved with the conducted experiments in terms of 

accuracy and F-score measures 
 

In order to evaluate the results from another perspective and further explore the potential of 

both HPO methods and CCA fusion, another experiment was designed wherein the 

performance of the NCDS could be investigated with different HPO iterations of 30 to 100 

(rising by steps of 10) on the EXP dataset. The average of all evaluations (eight experiments) 

across all measures is reported in Table 4.13. As can be inferred from the results, both HPO 

methods enhanced the system performance in terms of accuracy, recall, F-score and MCC 

measures. Several patterns were observed when conducting these experiments. Firstly, the 

performance of the BHPO method was superior to that of the grid search method across all the 

measures, except for the recall measure. Even though the recall measure represented an 

exception to the mentioned pattern, the highest recall was achieved through the BHPO method 

with the fusion of features, which was 90.25%. Secondly, the best performance in terms of 

accuracy, MCC, and F-score was achieved using the CCA fusion framework. Finally, it can be 

deduced that although CCA fusion slenderized feature space, the performance of the NCDS 

was not considerably aggravated, and was even increased in terms of the F-score measure. 
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Table 4.13 Results for the average of the evaluation measure for different iterations of 
hyperparameter optimization ranging from 30 iterations to 100 iterations 

 
  Accuracy Recall Specificity Precision F-Score MCC 

GFCC 
Bayesian 84.50 85.09 83.91 83.91 84.49 0.69 

Grid Search 83.75 86.06 81.48 82.08 84.02 0.68 

MFCC 
Bayesian 86.86 83.43 90.24 89.89 87.77 0.74 

Grid Search 86.34 88.09 84.63 84.97 86.49 0.73 

Concatenation 
Bayesian 88.18 87.90 88.46 88.25 88.07 0.76 

Grid Search 87.67 87.95 87.38 87.31 87.62 0.75 

Fusion 
Bayesian 87.92 90.25 85.63 86.10 88.12 0.76 

Grid Search 85.41 87.08 83.76 84.10 85.56 0.71 

 
 
As was previously discussed in the Results section, the evaluation measures showed 

exceptional performance with the LSTM classifier. Therefore, to better demonstrate the power 

of LSTM in the NCDS design and validate the surprisingly high performance of the system, a 

final experiment was mapped out. In this experiment, the LSTM classifier was manually tuned 

for only one HP: the number of hidden neurons. For each feature set, the number of hidden 

neurons was changed from 2 neurons to half the size of each feature vector, e.g., 30 neurons 

for the fusion feature set with 60 elements for each sample. Table 4.14 presents the average of 

each evaluation measure used in the successful attempts with manual search methods for each 

feature set. Therefore, if the only parameter being tuned is the number of hidden neurons, the 

system’s performance undergoes a bearable decline in exchange for lowering the 

computational costs. Moreover, as can be seen from the results, the best evaluation measures 

belonged to the CCA-fused feature set (except for the recall measure), which are 96.62% and 

96.58% for accuracy and F-score, respectively. Therefore, by manually tuning only one HP, 

the system was capable of achieving up to a 96.58% average F-score, which translates to the 

high classification power of the LSTM classifier compared to the SVM, and the potential for 

an even better performance if other HPs are tuned as well. 
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Table 4.14 The averages of evaluation measures for the manual tuning of the hidden neurons 
for the LSTM classifier with each feature 

 
 Accuracy Recall Specificity Precision F-Score MCC 

MFCC 89.02 94.23 83.89 89.16 90.54 0.80 

GFCC 89.79 88.00 91.56 94.05 90.01 0.81 

GFCC + MFCC 95.33 95.95  94.72 95.79 95.59 0.91 

CCA Fusion 96.62 95.89 97.34 97.34 96.58 0.93 

 
 
So far, the experiments in this study have been discussed and compared in terms of 

performance, classification power, and run-times. There are various tools and frameworks for 

the study of audio signals, which have resulted in many different applications and publications. 

Among these frameworks, many different machine learning and deep learning methods have 

been explored. It is worthwhile to compare the performance of the proposed NCDS with other 

similar works or architectures that analyze either newborn cry signals or other audio signals. 

In a recent study (Jin, Wang, & Zhan, 2022), environment sounds were classified through 

different models including SVM, LightGBM, XGBoost (XGB) nd CatBoost classification 

frameworks, employing time and frequency domain features and their combination. They were 

able to get 87.3% as their highest accuracy measure when using the LightGBM framework, 

and through the alteration of the gain factor, whereas their baseline classifiers yielded 66.7% 

for KNN, 67.5% for SVM, 72.7% for baseline Random Forest (RF), and 81.5% for their joint 

feature set with RF classifier. In another study (Bansal, Upali, & Sharma, 2022), speech signals 

were employed to diagnose Parkinson’s with the use of RF, Decision Tree (DT), KNN, XGB, 

and Naïve Bayes (NBC) classifiers. The results show that the classifiers’ performances ranked 

as follows: XGB achieved 96.61% for the accuracy measure, and KNN, RF, DT and NBC 

achieved accuracies of 94.91%, 88.13%, 86.44%, and 67.79%, respectively. The study of 

Singhal et al. (Singhal, Srivatsan, & Panda, 2022) classified music genres with Logistic 

Regression (LR), KNN, SVM, XGB, and RF classifiers. They also explored the effect of HPO 

on the RF classifier only, where the results were enhanced about 13% for accuracy and reached 

98.8%. However, they did not discuss the HPO methods and trends. The highest result was 

achieved when using both RF and XGB classifiers—99.6% for both frameworks. The study of 



 144

Kim et al. (Kim, Oh, & Heo, 2021) explored a very similar framework to the one presented in 

this study for the analysis of beehive sounds through MFCCs, a Mel spectrogram and constant-

Q transform features, with RF, XGB, CNN, and SVM classifiers. The highest accuracy was 

achieved through the combination of MFCC features with the XGB classifier, reaching 

87.36%. Their VGG-13 classification showed very promising results, with 96% for the F-score 

measure. Lahmiri et al. (Lahmiri, Tadj, Gargour, et al., 2022) designed an NCDS for the 

purpose of detecting pathologic newborns with cepstrum features and multiple NN classifiers. 

By implementing LSTM classification, they were able to achieve an accuracy of 83.89% and 

80.18% for the EXP and INSV datasets, respectively. Another work worth mentioning in this 

field is that by Matikolaei et al. (Matikolaie et al., 2022), wherein the proposed NCDS served 

the same purpose as in our study. The authors combined the MFCC with the auditory-inspired 

amplitude modulation features, and fed them into an SVM classifier; they attained 80.50% for 

the accuracy measure. Kumaran et al. (Kumaran et al., 2021) focused on the recognition of 

emotions; they combined the GFCC with the MFCC feature sets and employed C-RNN 

classification. They used a different architecture of LSTM than in our study, with the addition 

of a convolutional network, and the highest F-score yielded by their design was 79%. In 

another emotion recognition study, the MFCC features were employed with a combined CNN-

LSTM architecture, and the highest accuracy of 87.4% was reported with the use of HPO 

methods, wherein they tuned learning rate and batch size (Verma et al., 2022). Given the results 

of the mentioned studies, our NCDS designs proved to be successful and introduced novelty 

to the study of newborn cries with the purpose of detecting pathologic infants. Our study 

proposed a simplistic design using the SVM classifier that benefits from BHPO; we showed it 

could achieve results similar to (and even better than) the state-of-the-art of NCDS employing 

NNs, which in the literature reached 90.27% for the F-score measure. Our second framework 

of LSTM classification with BHPO obtained up to 99.86% for the F-score measure, which is 

remarkable in the study of pathologic newborn cry signals. However, our system was 

outperformed by a design that implements DFFNN, since it was able to achieve 100% for both 

datasets of EXP and INSV (Lahmiri, Tadj, & Gargour, 2021). 
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In the design of the LSTM, the main concern was to prevent the model from becoming 

complex, and it employed only one hidden layer with a low number of hidden units. Both these 

achievements owe their success to the CCA fusion of the GFCC and MFCC feature sets, which 

not only enhances the overall performance, but also lowers the run-time by homogenizing the 

feature space and marks out the optimal feature set. 

 

In summary, the presented results of this study suggest that a fusion of MFCC and GFCC 

features fed to deep and machine learning classifiers attains a higher performance compared to 

previous studies on detecting pathologic newborns. This framework is proposed as a non-

invasive tool for aiding the expeditious detection of pathologic infants. There is still a vast 

ocean of unexplored ideas and architectures to be implemented in the study of pathological 

newborn cry signals, which is beyond the scope of this study. In future works, exploring more 

deep learning and machine learning designs such as DCNNs, and further exploring fusion 

techniques, especially at the decision level, such as the matching score method, would be of 

interest. Furthermore, studying more acoustic features and combining them with different 

classifiers would be worthwhile in order to highlight the efficacy of existing research on 

pathologic newborn cry signals. 

 
 
4.7 Conclusion 

The cry of infants has been recognized as a biomarker in the detection of pathologies for the 

purpose of early diagnosis. The presented study aimed to propose a comprehensive NCDS that 

distinguishes between healthy and pathologic cries regardless of the reason for crying, race, 

and gender. Our proposed system outlines the feature of the GFCC and its delta coefficients, 

which efficiently capture the dynamic nature of the cry signal and its periodic pattern. 

Moreover, the feature set used in this study includes the MFCC, which is well-known for its 

strong performance in many acoustic applications. These features were fed individually and 

fused into the LSTM and SVM classifiers, which belong to two different families of classifiers. 

In the next step, an extensive study of HPO methods for grid searching and BHPO for both 

classifiers was performed in order to improve the performance of NCDS. The LSTM was able 
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to achieve a very high performance metric of 99.86% when applied to inspiratory cry signals 

in terms of both accuracy and F-score, owing to its capability to learn from sequential data. 

Furthermore, LSTM outperformed the optimized SVM when applied to both the studied 

datasets. All of the results obtained by the two proposed classifiers show potential for use in 

the investigation of pathologic infant cries. 

 

This study contributed to the development of NCDS with the aim of designing a first alert for 

medical experts; it showed that healthy and pathologic infants have different cry patterns, 

which can be used as biomarkers. Regarding the results of this study, the proposed framework 

can be used as a non-invasive diagnostic tool without the need for high-end hardware and 

technologies. 
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5.1 Abstract 

Dealing with newborns’ health and needs is a highly delicate matter since they cannot express 

their needs through words, and crying does not reflect their exact condition or demand. 

However, during the last decades, the researchers found the cry signals to be rich in information 

about the health conditions, emotions, and the needs of the baby. Although the newborn cries 

have been used and studied for many applications and purposes, there is no prior research on 

distinguishing a certain pathology among other pathologies so far. In this study, an 

unsophisticated framework is proposed for the study of septic newborns amid a collective of 

other pathologies with the use of Decision Template (DT) fusion technique. Moreover, the cry 

signal was analyzed with both music inspired and speech processing inspired features. 

Furthermore, a Neighborhood Component Analysis (NCA) feature selection technique was 

employed with two goals: 1. Exploring how the elements of each feature set contributed to 

classification outcome, and 2. Investigating to what extent the feature space could be 

compacted and how will the outcome be affected. The attained results showed the success of 

both experiments introduced in this study with 88.66% for the DT fusion technique and a 

consistent enhancement in comparison to all feature sets in terms of accuracy and 86.22% for 
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the NCA feature selection method by drastically downsizing the feature space from 86 

elements to only 6 elements. The achieved results showed great potential for identifying a 

certain pathology from other pathologies that may have similar effects on the cry patterns as 

well as proving the success of the proposed framework. 

 

Keywords: Acoustic Features, Decision Templates, Decision Fusion, Sepsis, Newborn Cry 

Diagnostic System, Neighborhood Component Analysis 

 
 
5.2 Introduction 

Thanks to the advances in both engineering and medical research, it is now known that 

pathologic newborns cry diversely than healthy newborns and the cry characteristics could 

differ across different pathologies (Alaie et al., 2016). These observations sparked the idea for 

the design of various Newborn Cry Diagnostic Systems (NCDS). So far, NCDS architectures 

served the purpose of diagnosing newborns with a certain pathology from the healthy 

(Massengill Jr, 1969; Matikolaie & Tadj, 2020, 2022), detected the healthy newborns from a 

collective of pathologies (Alaie et al., 2016; Lahmiri, Tadj, & Gargour, 2021; Lahmiri, Tadj, 

Gargour, et al., 2022; Matikolaie et al., 2022) , and very recently, differentiated between two 

pathology groups (Khalilzad, Hasasneh, et al., 2022). In this study, the NCDS was taken one 

step further to detect a certain group of pathologies amidst an ensemble of other pathologies.  

 

NCDS’ benefit from a vast range of tools that help enhance their final diagnostic performance 

by improving different stages of the NCDS design. A NCDS design entails three main 

components which are namely preprocessing, feature extraction and manipulation, and finally 

classification that is vital to all the audio classification applications.  

 

Crying is a manifestation of the newborn’s health since it is the product of an extensive number 

of organs working together in harmony and malfunction in any of these organs would be 

reflected in the generated cry signal (Fort & Manfredi, 1998). The early studies showed that 

spectrograms of the healthy newborns followed consistent patterns whereas the spectrograms 
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of the newborns diagnosed with pathologies would have certain acoustic attributes that makes 

them distinguishable (Michelsson, SirviÖ, et al., 1977). In this regard, many NCDS designs 

focused on the extraction and selection of the features that would effectively capture and 

represent these attributes. In the feature extraction step of NCDS, a wide range of features from 

time, frequency, and time-frequency domains were employed, which include but are not 

limited to Mel frequency Cepstral Coefficients (MFCCs), Gammatone-frequency Cepstral 

Coefficients (GFCCs), Linear Predictive Coding (LPC), F0 contour, auditory amplitude 

modulation, resonance frequency, prosodic features such as rhythm and tilt, entropy-based 

features e.g., spectral and approximate entropy,  and features inspired by analysis of music 

such as harmonic ratio, Spectral Centroid (SC), and spectral flux. 

 

 Among these features, Mel-frequency based features, more specifically, MFCCs, are the most 

prevalent and often used as a baseline in many designs to ensure comparability with the works 

of other researchers. The reason behind the success and prevalence of MFCCs is because of 

their good discriminative performance (Khalilzad & Tadj, 2023); however, the role of Cepstral 

analysis is often not emphasized enough. Cepstral analysis facilitates the discrimination 

between the source and the filtering in audio analysis tasks since it is a homomorphic 

transformation. In speech analysis the basic study of the speech components includes the 

segregation of how each components affects the final outcome, which translates to declaring 

the functions of vocal tract impulse response, glottal pulse, and the vocal cord timing. In the 

study of cry signal analysis for different applications, Cepstral analysis was proven highly 

successful for the mentioned reasons. MFCCs were used to detect asphyxia (Wahid et al., 2016; 

Zabidi, Mansor, et al., 2017), hearing impairment (Jam & Sadjedi, 2009), sepsis (Khalilzad, 

Kheddache, et al., 2022; Matikolaie & Tadj, 2022) cleft palate (Massengill Jr, 1969), 

respiratory distress syndrome (Matikolaie & Tadj, 2020), and hypothyroidism (Zabidi et al., 

2009). There are also a number of studies that focus on separating the healthy infants from a 

collective of pathologies where MFCCs have served successfully as well (Alaie et al., 2016). 

Another cepstral feature set that has recently gained attention are the GFCCs, owing to their 

better noise robustness, cost-efficiency, and better discriminative performance (Khalilzad & 

Tadj, 2023; Valero & Alias, 2012). GFCCs were utilized for speaker identification (Admuthe 
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& Patil, 2015), emotion recognition based on both newborn cry signals and adult speech (Garg 

& Bahl, 2014; Kumaran et al., 2021), and finally detection/discrimination of pathologies based 

on newborn cry signals (Khalilzad & Tadj, 2023). Inspired by this pattern for combining the 

psychoacoustic frequency warping with cepstral analysis, the idea of using another scale 

named Bark along with the Gammatone was worth exploring. Bark-frequency Cepstral 

Coefficients (BFCCs) were employed to identify the reason of crying in newborns (Liu et al., 

2019; Maghfira, Basaruddin, & Krisnadhi, 2020; Sriraam & Pradeep, 2019), detection of high-

risk prematurity in newborns (Tejaswini, Sriraam, & Pradeep, 2020), enhanced emotion 

detection from speech signal (Lalitha, Tripathi, & Gupta, 2019), and automatic speech 

recognition (Kamińska, Sapiński, & Anbarjafari, 2017) and other audio analysis applications. 

SC is derived from the study of timbre in musical application and tone measurement in audio 

signals and utilized for the detection of Alzheimer’s from Electroencephalogram (EEG) 

(Kulkarni & Bairagi, 2017), and in NCDS applications to detect pathologies (Khalilzad, 

Kheddache, et al., 2022), developmental disorders (Oren et al., 2016) and understanding the 

reason of crying (Osmani et al., 2017). Spectral crest is often utilized in feature sets along other 

spectral features in several studies, with the purpose of visualizing music emotion (Kim, Van 

Ho, & Lim, 2017), detection of hunger from stomach sounds (Maria & Jeyaseelan, 2021), 

epileptic seizure detection (Dash & Kolekar, 2020), and audio fingerprinting (Ramalingam & 

Krishnan, 2005).  

 

The next step of the NCDS design, is the classification where similar to feature extraction step, 

has been developed with many different methods and classifiers. Support Vector Machine 

(SVM) (Vincent et al., 2021), Multilayer Perceptron (MLP) (Khalilzad, Hasasneh, et al., 2022), 

K-nearest Neighborhood (KNN) (Khalilzad, Kheddache, et al., 2022), Random Forest (RF) 

(Chang, Bhattacharya, Raj Vincent, Lakshmanna, & Srinivasan, 2021), Decision Trees 

(Matikolaie & Tadj, 2022), Probabilistic Neural Network (PNN) (Matikolaie et al., 2022), 

Deep Feedforward Neural network (DFFNN), Convolutional Neural Networks (CNN) 

(Lahmiri, Tadj, Gargour, et al., 2022), Long Short-term Memory (LSTM) (Khalilzad & Tadj, 

2023), and many other classification approaches are amidst the employed means in NCDS 

design. Although some of these studies compared the results of the mentioned classifiers, very 
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few focused on combining the outcome of the classifiers to form a final decision, and to the 

best of the authors’ knowledge, there is no prior study in the field of NCDS designs that fulfills 

this purpose. Decision Fusion (DF) has a wide range of applications in healthcare (Niemeijer, 

Abramoff, & Van Ginneken, 2009; Terveen & Hill, 2001), signal processing (Li, Porter, 

Santorelli, Popović, & Coates, 2017), image analysis (Velikova, Lucas, Samulski, & 

Karssemeijer, 2012), biological system activities (Synnergren, Olsson, & Gamalielsson, 2009), 

disease monitoring (Fung, Chen, & Chen, 2017), drug-target interactions (Peng, Liao, Zhu, Li, 

& Li, 2015) and many more. DF is lucrative for its role in enhancing different data sources 

combination and non-uniform data (Fontana, Farooq, & Sazonov, 2014), enhanced decision 

making (O’Regan & Marnane, 2013), better performance (Acharya, Rajasekar, Shender, 

Hrebien, & Kam, 2016), and finally, diminution of noise, cost, information drop, and 

ambiguity (Bossé & Solaiman, 2016; Lelandais, Ruan, Denœux, Vera, & Gardin, 2014; Zhong 

& Xiao, 2017). There are multiple approaches for combining the outcome of different 

classifiers and feature sets, among them Decision Template (DT) was selected for this study 

since it proved to have better performance in experimental studies, especially on lower sample 

sizes. It was shown that DF by the employment of DTs is independent of uncertain surmise 

and more immune to overtraining (Kuncheva et al., 2001).  

 

The contribution of this study can be seen from three main aspects: 1. Distinguishing a certain 

group of pathology from a conglomeration of other pathologies which are closely related is 

unprecedented in the study of NCDS. Here, we distinguished sepsis from 31 other pathology 

groups such as Respiratory Distress Syndrome (RDS), meningitis, etc., 2. Extracting the crest 

and SC from Bark and Equivalent Rectangular Bandwidth (ERB) spectrum and combining 

them with cepstral analysis is novel in NCDS designs, and 3. Employment of DT in NCDS to 

combine the result of a Neural Network (NN) classifier, and SVM and KNN which are all 

trained on different features, is novel in the decision-making stage of NCDS designs. 

 

The importance of newborn sepsis is several-fold; it was amidst the top 10 mortality causes of 

newborns worldwide that accounted for around 3 million deaths in under-five years old 

children (World Health Organization, 2021). The diagnosis of sepsis is complex and based on 
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studying different medical cues: feeding difficulty, fever, convulsion, hemodynamic 

aberrations, apnoea lasting longer than 20 seconds, and lethargy (Mayo Clinic, 2022; Wynn & 

Wong, 2010). The study and monitoring of these cues requires time and medical equipment; 

however, time is the most crucial element in treating sepsis to the extent that once a newborn 

is suspected of sepsis, antibiotic treatment could be started even without validatory results 

(Ruiz-contreras, Urquia, & Bastero, 1999). Furthermore, availability of the medical monitoring 

and test equipment is not evenly distributed throughout the world and sadly, the areas that 

suffer from higher newborn mortality rates are struggling with lack of sufficient professionals 

and equipment (World Health Organization, 2021). Therefore, the design of a diagnostic 

system that is non-intrusive and non-complex while being time-efficient and not requiring high 

computational power or state-of-the-art hardware is of high importance. This study presents a 

NCDS that while delivering acceptable performance, maintains simplicity and non-

invasiveness.  

 

This study is composed in four main sections: an introduction is presented where the problem 

is highlighted and a short review of literature presents the novelty of the proposed study, the 

next section expounds the dataset and the proposed methodology including description of 

features, classifiers, fusion technique, feature selection model, and evaluation measures. After 

that, the discussion section provides the results of the experiments and compares and discusses 

these results. Finally, the last section is dedicated to the conclusion. 

 
 
5.3 Data and Methodology 

5.3.1 Dataset Description 

Before presenting the details of dataset, it should be highlighted that the most challenging 

factor in developing the NCDS is data collection and then taking the measures to gain the 

ethical approvals regarding that data. Even after meeting all the requirements, the occurrence 

of any pathology could not be anticipated in any time span which means, for example, over a 

two-year data collection phase one might or might not encounter a newborn diagnosed with 
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meningitis. Therefore, any acquired data is priceless and should be considered for in-depth 

analysis.  

 

The dataset in this study was collected from newborns with various origins, races, gestational 

ages (less than 3 months old), cry stimuli, weights, genders, and pathologies. This was made 

possible with the collaboration of Saint Justine hospital of Montreal, Canada and Al-Raee and 

Al-Sahel hospitals located in Lebanon. The cry signals were recorded in the presence of noise 

in both public and private maternity rooms and NICUs in the hospital environment with no 

predefined conditions. These signals have different lengths from 1 to 4 minutes with an average 

of 90 seconds including both useful and unwanted information like staff chatter, equipment 

beeps and crying from other newborns. The equipment used for data collection was a digital 

2-channel handheld recorder with 44.1 kHz sampling frequency and 16-bit resolution. The 

recorder was positioned 10 to 30 centimeters away from the newborn’s mouth for the recording 

process. Up to 5 recordings were collected from each participant. A detailed overview of the 

database is represented in Table 5.1. 

 

The reason behind putting a limit on the age of newborns is due to the fact that a cry utterance 

below 53 days of age is only effectuated due to biological rhythms and the newborn has no 

control over it (Lester & Boukydis, 1985). This may be related to the development of the vocal 

tract which takes place after 3 months of age when the supralaryngeal reconfiguration occurs, 

and therefore, no specific incrementing or decrementing pattern was observed in the average 

fundamental frequency of the cry signals (Fisichelli et al., 1974; Lind & Wermke, 2002). 
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Table 5.1 An overview of the database Participants 
 

Gender Female and Male 

Babies Ages Less than 53 days old 

Weight 0.98 to 5.2 Kg 

Origin 
Canada, Haiti, Portugal, Syria, Lebanon, Algeria, Palestine, 

Bangladesh, Turkey. 

Race Caucasian, Arabic, Asian, Latino, African, Native Hawaiian, Quebec. 

Cry stimulus 
Discomfort, sleepiness, wet diaper, pain, fear, colic, reflux, birth cry, 

hunger. 

Pathology Group 

Ankyloglossia, apnea, asphyxiation, aspiration, bronchiolitis, choanal 

atresia, cleft palate and lip, complex cardio, cyanosis, down 

syndrome, duodenal atresia, dyspnea, fever, gastroschisis, grunting, 

hyperbilirubinemia, hypoglycemia, hypothermia, intrauterine growth 

retardation, kidney failure, meconium aspiration syndrome, 

meningitis, myelomeningocele, respiratory distress syndrome, 

retraction, seizure, sepsis, tachypnea, thrombosis in vena cava, vomit. 

 
 
5.3.2 Pre-processing 

In the previous section, it was mentioned that there is no guarantee that a newborn diagnosed 

with a certain pathology group would be observed over a prespecified time span. Therefore, 

upon acquiring data from a certain pathology group, it is desirable to make deeper use of the 

data by any possible means. The cry signals in our dataset were segmented based on the 

physiological differences of the acoustic activities during a cry utterance and different labels 

were assigned to each segment. The two main acoustic activities for example are EXP which 

refers to an expiratory cry and INSV which refers to a voiced inspiratory cry unit. These labels 

for the bounded segments were appointed by the means of WaveSurfer (version 1.8.8, 

Stockholm, Sweden) software by the group of researchers in our lab. Furthermore, the outlier 
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samples and those with a length of less than 17 ms (equal to the length of two overlapping 

windows of 10 ms with a 30% overlap) were omitted. This condition was applied to ensure 

having a reliable analysis of the dataset. 

 

The number of samples in each group of our study is presented in Table 5.2, it should be noted 

that the numbers in Table 5.2 denote the values before selecting an equal number of samples 

in order to have an approximately balanced dataset. In total, 2264 samples (1132 from each 

class) were selected which formed a training dataset with 1585 (789 septic and 796 healthy) 

samples and a test dataset with 679 (343 septic and 336 healthy) samples. 

 

Table 5.2 Specifications of the dataset 
 

 
No. of 

participants 

Available 

time (s) 

Average duration 

of samples (s) 

No. of samples 

selected 

Septic 17 1773.66 0.71 1132 

Other 

pathologies 
110 10712.28 0.52 1132 

 
 
 
5.3.3 Feature Extraction 

Feature extraction has the highest significance in the design of a NCDS framework as it can 

change the course of following steps and affect the final decision. Moreover, the nature of a 

cry signal is dynamic, non-stationary, and disparate from both speech and music to some 

extent, while including noise. Therefore, the extraction of features that can represent the cry 

signal both from the spectral and short-term perspective and originate from the domains of 

speech processing and music analysis would be of the essence. Moreover, as it was 

aforementioned, since the cry signal is emanated in the nature of speech generation, employing 

the cepstral analysis would be inevitable. Consequently, this study combines psychoacoustic-

based warping of the spectrum with cepstral analysis for the short-term analysis of the signal 
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and studies the dynamic nature of the signal through delta and delta-delta coefficients of the 

Bark and Gammatone scales. Additionally, in order to capture the spectral properties of the cry 

signal and explore it from the musical perspective, SC and crest features were extracted.  

 

The bark and Equivalent Rectangular Bandwidth (ERB) or Gammatone scales were developed 

as psychoacoustic-based spectral measures. The Bark scale for frequency f is given by 

Equation 5.1 and Equation 5.2, respectively: 

 

 𝐵𝑎𝑟𝑘(𝑓)  =  6 𝑙𝑛  +  [(𝑓 600⁄ ) + 1] .             (5.1) 

 

 𝐸𝑅𝐵(𝑓) =  21.4 log(0.00437𝑓 + 1)           (5.2) 

 

The ERB scale was chosen since it assists the study of lower frequencies with higher resolution. 

Besides, it was shown in several studies that ERB scaling resulted in better performance of 

non-speech classification problems, which is accompanied by more robustness and lower 

computational costs when compared to the triangular bands that are conventionally employed 

in MFCC feature extraction (Gulzar, Singh, & Sharma, 2014; Smith & Abel, 1999). In order 

to attain GFCCs, the cry signal is first windowed into overlapping Hamming filters of 10 ms 

with 3 ms overlap length; since the performance of feature extraction step is enhanced and that 

the non-stationarity of the signal could be neglected in such short frames. Then, in order to 

pre-emphasize the valuable signal frequencies, the signal passes the GT filters after a fast 

Fourier Transform (FFT) was applied. The final steps of extracting the GFCCs constitute 

employing the log function and then the DCT to decorrelate the compressed outputs of the 

previous steps. For a given frame 𝑘, the GFCCs can be computed through Equation 5.3: 

 

 𝐺𝐹𝐶𝐶  = ∑ 𝐺𝐹[𝑘] 𝑐𝑜𝑠 (2𝑐 + 1) ,   1 ≤ 𝑘 ≤ 𝑀             
(5.3) 

 

where GF[k] denotes the loudness-compressed response of the Gammatone Filters (GF), and 

the number of filters is given by N (Valero & Alias, 2012). 
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The width of the critical bands of the human auditory system equals 1 bark and hence, a more 

direct correlation with the spectral information processing of the human auditory system is 

achieved when the spectral energy is warped over the Bark scale (Smith & Abel, 1999). The 

process of extracting BFCCs is identical to GFCC feature set with only the Bark scale being 

the difference. Similar to GFCCs, the BFCC feature set constitutes of 39 elements.  

 

SC is an indicator of how the signal’s spectrum looks and where the majority of its mass lies. 

The average of SC is shown to be a powerful discriminator in audio signals, especially in the 

field of musical applications (Kulkarni, 2018). In order to calculate the SC of a given window 

i, we should take the weighted average of the frequency bins as shown in Equation 5.4: 

 

 BSC = ∑   ( ) | ( )|H/2
k=1∑   | ( )|H/2

k=0
            (5.4) 

 

 Where|𝐴(𝑘)| is the amplitude at the corresponding bin 𝑘, H is the number of points in the 

Fourier transform, and f(k) is the frequency at the 𝑘th bin (Brent, 2010). Note that the 

frequencies have been mapped to the Bark scale prior to the computation of the SC, therefore, 

we name this feature set Bark Spectral Centroid or BSC. 

 

Finally, we extracted the ERB-based Spectral Crest (ERBS Crest) which points out the level 

of peakiness in the spectrum of the signal. A higher value of crest signifies the presence of 

more peaks in the signal. It is calculated as the peak amplitude in each window divided by its 

RMS value as written in Equation 5.5: 

 

 𝑐𝑟𝑒𝑠𝑡 =   ( ∈[ , ])∑               (5.5) 

 

The spectral value at a given bin is shown by 𝑦  whereas 𝑓  and 𝑓  mark the edges of the 

corresponding window (Hosseinzadeh & Krishnan, 2007; Peeters, 2004). 
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5.3.4 Classification 

In this step, all the feature sets were fed to the three distinguished classifiers so that their 

performances would be tested and, also the best classifier + feature sets would be selected for 

the fusion step. All the classifiers benefitted from validation. SVM and KNN were validated 

using 5-fold cross-validation and the MLP network was validated iteratively during the 

learning process. The validation secures the classifiers against over-fitting and increases their 

reliability. Finally, all of the classifiers were optimized using random search.  

 
 
5.3.4.1 Multilayer Perceptron (MLP)  

A MLP classifier has four main components; firstly, the extracted features are fed to the input 

of the network, and then they are conveyed forward across the layers. A backpropagation 

method is employed in order to update the weights of the network and an optimization function 

assists the tuning of the weights’ update (Murtagh, 1991). The decision in a MLP network is 

made based on having the minimum distance from the decision boundary hyperplane (James, 

Witten, Hastie, & Tibshirani, 2013). In this study, Root Mean Square Propagation (RMSprop) 

optimization function updates the backpropagation weights by the means of minimizing the 

distance to the decision boundary hyperplane (Hinton et al., 2012). In order to further improve 

this classifier, random search hyperparameter optimization was employed. The number of 

input layer neurons was set according to the feature vectors’ sizes. The hidden layer consisted 

of 128 fully connected neurons which is accompanied by a normalization layer. In order to 

specify whether the neurons would fire during the process of learning, a hyperbolic tangent 

activation function was added to the layers. The output layer was made of a fully connected 

layer with two nodes that represent the two classes of septic versus other pathologies, and a 

sigmoid function that is in charge of translating the raw outputs of all the layers into class 

probabilities. Finally, the classification layer generates the final decision of class labels based 

on the class probabilities. Other details regarding the learning process are the learning rate of 

0.001 along 120 epochs, validation data which included a 15% random share of all data. 30% 
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of the data was randomly selected for testing and separated from the dataset and finally, 55% 

of the data was randomly chosen for training.  

 
 
5.3.4.2 Support Vector Machine (SVM) 

As mentioned before, SVMs are one of the most well-known classifiers and have a wide range 

of applications, especially in the analysis of the audio signals. SVMs are precise, versatile and 

capable of dealing with linear and non-linear data. In order to classify data points, SVM 

attempts to build a hyperplane that is able to separate the data points of the two classes as far 

as possible and if the data is not divisible linearly, the Radial Basis Function (RBF) kernel 

which computes the Euclidean distance is chosen (Winters-Hilt, Yelundur, McChesney, & 

Landry, 2006). 

 

5.3.4.3 K-Nearest Neighborhood (KNN) 

KNNs are known for their simplicity and effectiveness. As the name suggests, the basis of 

classifying the data points is measuring the distance from the neighbors where each point 

would be placed in the same class as its neighbors with the lowest distance. There are three 

elements in a KNN: the distance measure (which can be Minkowski, standard Euclidean, 

Euclidean, Jaccard, Hamming, cosine, Chebyshev, and Manhattan); the number of neighboring 

data points K; and sets of labeled data for training and testing (Wu, Kumar, Ross Quinlan, et 

al., 2008).  

 

5.3.5 Fusion Using Decision Templates 

Suppose that in a classification problem with l classifiers 𝐶 =  {𝐶 ,𝐶 , … ,𝐶 }, 𝑋 = [𝑥 , 𝑥 , … , 𝑥 ]  denotes the n-dimensional input feature vector, which corresponds to the m 

class labels 𝑊 =  {𝑤 ,𝑤 , … ,𝑤 }. Each ith classifier will produce an output where 𝐶 (𝑋)  = 𝑐 , (𝑋), 𝑐 , (𝑋), . . ., 𝑐 , (𝑋) . Here, 𝑐 , (𝑋) represents the posterior probability that the ith 

classifier suggests that X belongs to the class 𝜔 . 
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In order to fuse the outputs of the classifiers, a 𝑙 ×  𝑚 Decision Profile (DP) is constructed as 

shown in Equation 5.6: 

 

 𝐷𝑃(𝑋)  =  𝑐 , (𝑋) ⋯ 𝑐 , (𝑋)⋮ ⋱ ⋮𝑐 , (𝑋) ⋯ 𝑐 , (𝑋)             
(5.6) 

 

Each column j shows the possibility that a collective of l classifiers declare that X corresponds 

to the class label 𝜔 . Finally, the result of fusion would be in the form of a vector of length m 

as shown in Equation 5.7: 

 

 𝐶(𝑋) = [𝑑 (𝑋),𝑑 (𝑋), … ,𝑑 (𝑋)]             (5.7) 

 

For 𝑑 (𝑋) denotes the possibility that the result of fusion declares the input X to belong to class 𝜔  The final decision is made based on a certain rule of fusion such as min, max, median, 

product, and sum operating each corresponding column of the DP matrix to yield the Decision 

Templates (DT). Here, the min rule was chosen which is given in Equation 5.8: 

 

 𝑑 (𝑋)  = 𝑚𝑖𝑛  : 𝑐 , (𝑋) , 𝑗 = 1,2, . . . ,𝑚.            (5.8) 

 

Thereafter, the DTs are calculated as shown in Equation 5.9, where 𝑧  denotes the samples that 

are from class 𝜔  in the training set Z, and the number of 𝑧  is given by 𝑁 . 

 

 𝑑 (𝑋)  = 𝑚𝑖𝑛  : 𝑐 , (𝑋) , 𝑗 = 1,2, . . . ,𝑚.            (5.9) 

 

The input’s labels are decided based on a similarity measure between the DP and different 

DTs. In this study, the Euclidean distance was selected as the similarity measure. Equation 

5.10 shows the calculation for determining the output labels based for a given sample P.  
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 𝑑 (𝑋) = ∑ ∑ 𝑐 , (𝑃)  −  𝑑𝑡 (𝑘, 𝑗)             (5.10) 

 𝑑𝑡 (𝑘, 𝑗) stands for the element marking the intersection of the column j and row k (Kuncheva 

et al., 2001; Mi, Wang, & Qi, 2016). Figure 5.1 shows the design of our NCDS employing the 

DT fusion technique.  

 

 
Figure 5.1 Design of the NCDS employing DT fusion 

 
 
5.3.6 Neighborhood Component Analysis Feature Selection 

As a final experiment, the Neighborhood Component Analysis (NCA) was implemented to 

determine which elements of the feature sets contributed the most to the final classification 

results. NCA is non-parametric and aims to enhance the accuracy of the classification to its 

peak performance. The general performance of the NCA can be explained as a KNN classifier 

where K=1 and neighbours are chosen randomly so that there is a probability for each point in 

the feature space to be chosen as the reference point. The goal is to learn a classifier that 

predicts the true label y of x based on the features fed to the input by selecting a random point, 

Ref(x) from the training set as the reference point and deciding the label of the point x based 

on this reference point Ref(x). 

 

The chance of any given point 𝑥  to be picked as the reference point is evaluated based on a 

weighted distance function, 𝑑 , which is given by Equation 5.11: 
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 𝑑 (𝑥 , 𝑥 )  =  ∑ 𝑤  𝑥  − 𝑥             (5.11) 

 

where 𝑤  denotes the weight for the 𝑟th feature and p denotes the feature dimension of 𝑥 . In 

order for the nearest neighbor classifier to perform desirably, one suitable way is to maximize 

its leave-one-out accuracy. This would not be practical since the selection of the nearest 

neighbor as the reference point in the leave-one-out accuracy would result in a non-

differentiable function. Therefore, the approximation where the reference point is in the form 

of a probability distribution would be effective. Equation 5.12 presents the probability 𝑝  that 

a given point  𝑥  gets  𝑥  as the reference point.  

 
 

 𝑝 = ,∑ ( , )  ,   𝑖𝑓 𝑖 ≠ 𝑗0 ,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
(5.12) 

 

where 𝜅 is a kernel function 𝜅(𝑧)  =  𝑒𝑥𝑝 −  that affects the probability of any given point 

being selected as the reference point through the kernel width 𝜎 which is determined by an 

input. In other words, if 𝜎 ⟶ ∞ all the points in the training set have equal probability to be 

chosen as the reference point; and, if the 𝜎 ⟶ 0 only the nearest neighbor has the chance of 

being the reference point. Hence, the probability of the correct classification of the query point 𝑥  is given by Equation 5.13: 

 

 

 𝑝 = ∑ 𝑝 𝑦             (5.13a) 

 

where, 

 

 𝑦  = 1,               𝑦  = 𝑦  0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            (5.13b) 
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Now the leave-one-out classifier’s accuracy can be approximated by Equation 5.14: 

 

 F(w) =  ∑ 𝑝  =   ∑ ∑ 𝑝 𝑦             (5.14) 

 

In order to prevent the classifier from overfitting, a positive-valued regularization term 𝜆 is 

added to the object function that can affect the influence of the weights and will be tuned via 

cross-validation. The objective function can now be written as Equation 5.15. 

 

 𝐹(𝑤)  =  ∑ ∑ 𝑝 𝑦  − 𝜆∑ 𝑤             (5.15) 

  

The  term is ignored since it does not affect the solution vector. Finally, in order to maximize 

the objective function, its derivative with respect to the feature weights is taken as shown in 

Equation 5.16: 

 

 

 

( ) = ∑ ∑ 𝑦 𝑝 ∑ 𝑝 |𝑥 − 𝑥 |  −  𝑥 − 𝑥 𝑤 −2𝜆𝑤           =  2 ∑ (𝑝 ∑ 𝑝 |𝑥 − 𝑥 |  −  ∑ 𝑝 𝑦 𝑥 − 𝑥 )  − 𝜆 𝑤                 = 2 ∑ (𝑝 ∑ 𝑝 𝑥 − 𝑥  −  ∑ 𝑝 𝑦 𝑥 − 𝑥 )  −  𝜆 𝑤          

(5.16) 

 

The above equation is the basis of the NCA features selection (Yang et al., 2012). In this study, 

in each of the feature sets, the features that accounted for more than 80% of the final 

classification results were extracted from the set. Then, these features were concatenated in a 

single vector and fed to the classifier to determine the role of NCA. 
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5.3.7 Evaluation Measures  

The framework of this study was designed and developed with the goal of identifying septic 

infants from a collective of several other pathologies for the first time. The features and 

classifiers are used from diverse natures and origins, and in order to compare their performance 

several evaluation measures are introduced in this study. The first measure that is used in any 

binary classification problem is accuracy due to its simplicity of calculation and being 

straightforward. Accuracy is computed from the ratio of correct predictions over all the 

samples. However, this measure is not illuminating enough to cover all aspects of system 

performance and more measures are needed to study other aspects of the problem (Hossin & 

Sulaiman, 2015). Therefore, two other measures, namely precision and specificity were studied 

alongside accuracy. Specificity shows the rate of true negative cases which translates of to the 

number of the cases that were correctly marked as non-septic, and precision or Positive 

Predictive Value (PPV) denotes the proportion of true septic samples which were marked as 

non-septic by the NCDS (Zhu et al., 2010). F-score measure is highly instructive as it 

summarizes these measures into one single value from calculating the harmonic mean of PPV 

and True Positive Rate (TPR) (Flach & Kull, 2015).  

 

These measures evaluate the performance of the system from the problem-solving perspective; 

however, the system can also be assessed with regards to its classification performance. 

Therefore, one final evaluation measure is added to our evaluation criteria which is Matthews’ 

Correlation Coefficient (MCC). MCC helps elucidate all the information from a contingency 

matrix (true negative or TN, true positive or TP, False Negative or FN, and False Positive or 

FP) as they are all taken into account for the calculation of MCC, Equation 5.17. The value of 

MCC can be anything in the range of [-1, +1] where the negative value represents a 

misclassification, zero signifies random classification and the higher positive values translate 

into better classification performance (Chicco & Jurman, 2020; Vihinen, 2012).  

 

 𝐹(𝑤)  =  ∑ ∑ 𝑝 𝑦  − 𝜆∑ 𝑤             (5.17) 
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5.4 Results and Discussion 

The NCDS in this study was designed and developed with the purpose of identifying the septic 

newborns among an ensemble of other pathologies for the first time in NCDS designs. The 

features employed for the NCDS were ERBS Crest, BSC, GFCC, and finally, BFCC. These 

features were fed to three classifiers namely SVM, KNN, and MLP. As it was discussed before, 

in this section, the result of classifying each feature set with different classifiers will be 

presented firstly, Table 5.3 to Table 5.6. In order to fuse the results of different features fed to 

various classifiers, the set of feature + classifier that resulted in the highest accuracy measure 

was selected to form the DPs and DTs. These sets are highlighted in each of the Tables below. 

As for the feature sets of BSC and ERBS Crest, the low dimensionality of the feature vectors 

prevented the MLP classifier from converging which was expected and MLP was more suitable 

for BFCC and GFCC features sets that had a larger size (Khalilzad, Hasasneh, et al., 2022). 

 
 
Table 5.3 Results for the classification of the BFCC feature set with KNN, SVM, and MLP 

classifiers 
 

Classifier Accuracy Specificity Precision F1-Score MCC 

KNN 67.01 72.01 68.42 65.00 0.34 

SVM 70.99 70.26 70.26 70.99 0.42 

MLP 83.51 87.46 86.13 82.66 0.67 

 

Table 5.4 Results for the classification of the GFCC feature set with KNN, SVM, and MLP 
classifiers 

 
Classifier Accuracy Specificity Precision F1-Score MCC 

KNN 84.09 88.63 87.25 83.18 0.68 

SVM 76.14 76.97 76.20 75.75 0.52 

MLP 82.92 84.55 83.74 82.48 0.66 
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Table 5.5 Results for the classification of the BSC feature set with KNN and SVM classifiers 

 
Classifier Accuracy Specificity Precision F1-Score MCC 

KNN 63.18 40.48 85.42 73.12 0.29 

SVM 53.61 63.69 43.73 52.58 0.08 

 
 

Table 5.6 Results for the classification of the ERBS Crest feature set with KNN and SVM 
classifiers 

 
Classifier Accuracy Specificity Precision F1-Score MCC 

KNN 61.56 86.30 72.19 48.32 0.26 

SVM 77.91 56.27 69.14 81.75 0.62 

 
 
The results for the classification of data with BFCC feature set is given in Table 5.3. The BFCC 

feature set showed great potential with the highest accuracy of 83.51% and an MCC of 0.67 

with the MLP classifier. By taking a look at Table 5.4, it can be seen that the combination of 

GFCC + MLP was outperformed by the BFCC feature set with the same classifier. Moreover, 

Table 5.3 shows that all of the classifiers had positive values for MCC and hence, the 

classification was performed successfully. The SVM and KNN classifiers were less efficient 

in terms of all evaluation criteria. Therefore, the set of BFCC + MLP was chosen for the DT 

and DP calculations of the next experiment. Table 5.4  presents the results for the GFCC feature 

set. The best evaluation measures were achieved through the combination of the GFCC and 

KNN classifier with 84.09% for the accuracy and 0.68 for the MCC measure. It is also worth 

mentioning that this set remarkably achieved the highest values across all the experiments from 

the first part. Another point worth highlighting is that not only GFCC has the overall best 

performance among feature + classifier combinations, but also, it has shown interestingly 

higher performance with simpler classifiers (SVM and KNN) compared to all of the other 
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combinations in this study. This could signify higher efficiency of the GFCC compared to other 

feature sets. 

 

The results of evaluating the NCDS with the BSC and ERBS Crest feature sets are given in 

Table 5.5  and Table 5.6, respectively. It should be highlighted that even though both feature 

sets had lower performances compared to the GFCC and BFCC feature sets, they only have 

low dimensions of four elements which proves their favourable outcomes. The ERBS Crest 

feature set had better performance than the BSC feature set overall; however, each of these 

feature sets responded better to different classifiers. The highest results achieved for the BSC 

feature set was via KNN classifier with 63.18% and 0.29 for the MCC which was the 

combination selected for the next step. The SVM + ERBS Crest had the highest values across 

evaluation measures of accuracy and MCC with 77.91% and 0.62, respectively.  

 

In order to fuse the outputs of the highlighted feature + classifier sets, the corresponding 

posterior probabilities of training and test datasets, as well as the training labels were recorded 

to form the DPs and DTs. The result of the DT technique for fusion is presented in Table 5.7 

along with the best feature + classifier sets for a clearer interpretation. 

 

Table 5.7 Results for the DT fusion technique showing the best feature + classifier sets 
selected 

 

Classifier 
Feature 

Set 
Accuracy Specificity Precision F1-Score MCC 

SVM 
ERBS 

Crest 
77.91 56.27 69.14 81.75 0.62 

MLP BFCC 83.51 87.46 86.13 82.66 0.67 

KNN BSC 63.18 85.42 73.12 52.11 0.29 

KNN GFCC 84.09 88.63 87.25 83.18 0.68 

 Fusion 88.66 88.34 88.20 88.59 0.77 
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Figure 5.2 and Figure 5.3 illustrate a comparison of how each feature set and its corresponding 

evaluation measures were impacted by the fusion. As it can be interpreted from Table 5.7, 

Figure 5.2, and Figure 5.3, the result of the fusion framework enhanced the results in all cases 

with an average of 11.49% for accuracy and 13.67% for the F-score. There is only one 

exception to this conclusion where the specificity measure for GFCC + KNN set was higher 

by 0.29%, which is negligible. Even the best results of the first step of these experiments had 

a 4.57% and 0.09 enhancement in the accuracy and MCC, respectively, with the DF method. 

The DF method imposes negligible computational cost on the system and is very fast since its 

calculations only take less than a second. The above results prove the high potential of this 

method for the design of multimodal NCDS as presented in this study where both spectral and 

short-term features were extracted and employed from musical and speech processing origins. 

Moreover, as it was mentioned before, the enhancement is consistent across different 

evaluation measures.  

 

 
Figure 5.2 Evaluation measures for the best feature + classifier sets and the DT fusion 

framework 
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Figure 5.3 Comparison of the evaluation measures of the selected feature + classifier sets to 

the DT fusion technique 
 

Another experiment was carried out to study the role of feature selection and to evaluate to 

what extent the feature space could be compacted. Each feature set was analyzed with the NCA 

method and the features that had the highest contribution to the final classification results were 

selected. Figure 5.4 shows the feature indices that were selected in each feature set.  

 

 
Figure 5.4 NCA feature selection for each feature set, showing which indices were selected 

to form the final feature vector 
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The NCA revealed some details worth explaining here. The study of both BFCC and GFCC 

showed that the most significant information in these feature sets belongs to the first 13 

coefficients and not their deltas, this was shown in another study on a similar subject 

(Khalilzad, Hasasneh, et al., 2022), where only 13 GFCC coefficients resulted in around 93% 

accuracy of classification. Furthermore, the BSC and ERBS Crest feature sets both had their 

3rd elements selected. The 3rd element in both feature sets belonged to the H-speed or 

interquartile range. It can be deduced that this statistical measure has high potential in 

representing and summarizing spectral data for the infant cries. As for the BSC feature set, the 

4th element was also selected which denotes the median statistical measure.  

 

In order to evaluate the system performance with these feature sets, the selected elements from 

each vector were all concatenated in a single vector and fed to the classifiers of this study. 

Once more, due to the low dimensionality of the feature vector, the MLP classifier did not 

converge. The result of the classification of the NCA-selected feature vector with SVM and 

KNN classifiers is presented in Table 5.8.  

 

Table 5.8 Results for the NCA feature selection method with KNN and SVM classifiers 
 

Classifier Accuracy Specificity Precision F1-Score MCC 

KNN 86.22 92.19 90.94 85.18 0.73 

SVM 78.20 62.10 70.98 81.12 0.60 

 
 
Although the results are lower than DF method, they still represent a high potential and the 

success of the NCA. In comparison to the GFCC feature set, the accuracy was enhanced by 

2.13% and the MCC by 0.05. The enhancement suggests several points: firstly, the use of NCA 

will not have a detrimental effect on the final performance of the NCA. Moreover, it has shown 

that combination of the features from the domains of speech and music would improve the 

NCDS. Finally, the NCA feature set has only six elements and could obtain an accuracy of 
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more than 86% which is exceptional. Figure 5.5 shows a comparison between the results of 

the two frameworks represented in this study, DF and NCA feature selection. As can be seen 

from the graphs, not only the results of the two frameworks are compatible, but also the results 

for specificity and precision measures shows better performance with the NCA feature 

selection method. It can be discussed that the feature selection leads to a more uniform structure 

of the feature space, extracting the essence of what each feature set represented and combining 

these elements together formed a more powerful indicator in terms of these two measures.  

 

 
Figure 5.5 Comparison of the evaluation measure for fusion framework and the NCA feature 

selection method 
 

This study served three purposes: 1. Assessing the role of decision-level fusion in NCDS 

designs for the first time, 2. Assessing the role of NCA feature selection in forming a highly 

compacted feature set while keeping acceptable performance which is novel in NCDS designs, 

and 3. Distinguishing a certain pathology (sepsis) amid a collective of other pathologies that is 

unprecedented in cry analysis studies.  

 

In addition to the fact that many pathologies remain unexplored or not well-studied in the field 

of cry diagnostic applications, the NCDS itself has a great potential for further development 
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compared to other audio recognition applications. One of the main areas that could play a part 

in this development is investigating whether a fusion of different modalities would contribute 

to the enhancement of the final decision made by the NCDS, which was the purpose of this 

study. This framework opens the door for employing features and classifiers from various 

modalities without the need for complicated designs and advanced technology. The importance 

of keeping the design simple arises from the fact that unfortunately, the regions that are 

reported as having higher newborn mortality rates suffer from lack of adequate medical 

equipment and professionals and are listed among low-income and middle-income areas. 

Therefore, if the NCDS can candidate the newborns with higher risk of suffering from certain 

pathologies, especially sepsis, and rule out the others, the existing equipment and experts can 

tend to the newborns marked with higher risk.  

 

Although sepsis is closely entangled with newborn mortality rates (World Health Organization, 

2021), the number of newborn cry studies targeting sepsis is scant. In order to address this 

research gap, the researchers in our lab made efforts to study sepsis from different perspectives. 

Matikolaie et al. (Matikolaie & Tadj, 2022) utilized prosodic features to distinguish between 

healthy and septic infants and attained 86% for the best F-score. Khalilzad et al. (Khalilzad, 

Kheddache, et al., 2022) introduced an entropy-based framework by extracting the spectral 

entropy cepstral coefficients and then having a fuzzy entropy as the feature selection means 

for the identification of septic infants from the healthy group, obtaining 88.51% for the 

accuracy regarding the expiratory cries. In another study, Khalilzad et al. (Khalilzad, Hasasneh, 

et al., 2022) differentiated between RDS and septic cries through the combination of music-

derived features of Harmonic Ratio (HR) and GFCC features that yielded 95.29% for the 

accuracy.   

 

Up to this point, the NCDS performance was compared regarding its performance with 

different features and classifiers, before and after applying the DF method and NCA feature 

selection. Also, the studies that scrutinized sepsis via cry signals were compared in terms of 

the methods, their purposes, and their performance with the accuracy or F-Score measures. 

This framework could also be compared to the existing literature in terms of the methods 
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employed here and in other NCDS designs. Table 5.9 presents a short comparison of the 

proposed framework with other similar works in the literature.  

 

Table 5.9 Comparison of different works employing fusion and feature selection techniques 
 

Study Goal Features 
Fusion/Featur

e selection 

Machine/
Deep 

Learning 
Methods 

Best 
Outcome 

Dar et al. 

(Dar, 

Srivastava, & 

Lone, 2022) 

Detecting 

pulmonary 

abnormalities 

from the 

respiration 

sound 

BFCC, 

SC, and 

spectral 

flux 

Simple 

concatenation 

of features. 

Hierarchic

al 

Attention 

Network, 

CNN, RF 

92.4% 

accuracy by 

HAN. 

Ebrahimpour 

et al. 

(Ebrahimpou

r & Hamedi, 

2009) 

Recognition of 

hand-written 

digits in Persian 

and English. 

Characteri

stic Loci. 

DT Fusion and 

PCA. 

MLP, 

decision 

tree, RBF. 

Accuracy: 

97.99%. 

Fernandes et 

al. 

(Fernandes & 

Apolinário Jr, 

2020) 

Identifying 

underwater 

targets based on 

acoustical 

recordings from 

a hydrophone. 

GTCC, 

LPC, and 

MFCC 

NCA KNN. 
Accuracy: 

83.3%. 
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Study Goal Features 
Fusion/Featur

e selection 

Machine/
Deep 

Learning 
Methods 

Best 
Outcome 

Li et al. (Li et 

al., 2017) 

Detecting breast 

cancer via 

microwave 

breast screening. 

PCA 

scores. 

DT fusion, 

Concatenation, 

PCA. 

SVM. 
Average 

error: 0.01. 

Khalilzad et 

al. 

(Khalilzad, 

Kheddache, 

et al., 2022) 

Detecting septic 

newborns from 

healthy 

newborns via 

their cry signals. 

MFCC, 

spectral 

entropy 

cepstral 

coefficient

s, SC 

cepstral 

coefficient

s. 

Fuzzy entropy 

feature 

selection. 

SVM, 

KNN. 

Accuracy: 

91.81%. 

 

Khalilzad et 

al. (Khalilzad 

& Tadj, 

2023) 

Detecting 

pathologic 

newborns based 

on their cry 

signal. 

MFCC, 

GFCC. 

Canonical 

Correlation 

Analysis-based 

feature fusion 

LSTM, 

SVM. 

Accuracy: 

99.86%. 

 

This Study 

Detecting septic 

newborns 

among other 

pathologic 

newborns 

ERBS 

Crest, 

BSC, 

GFCC, 

BFCC. 

NCA feature 

selection, DT 

fusion, 

concatenation. 

SVM, 

KNN, 

MLP. 

Accuracy: 

88.66% 
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As can be interpreted through all the aforementioned studies, each of the tools that was 

implemented in the proposed framework, has shown great performance with different 

applications. The results of our framework also suggest the promising potential of studying DT 

fusion and NCA feature selection methods for further studies in NCDS development. In future, 

it would be great to explore the role of features from different modalities, and more classifiers 

with the proposed framework here. Moreover, it would be fruitful to investigate how fusion at 

each level would affect the outcome of the system.  

 
 
5.5 Conclusion 

The cry signal is a powerful biomarker for studying the physical health and needs of a newborn. 

This study aimed to introduce a simple yet effective framework that was capable of capturing 

different aspects of the septic cry in comparison to a variety of other pathologies. The study of 

cry signals was performed independent of newborns’ race, gender, weight, and the reason of 

their crying. The cry signal is different from both speech and music yet shares so many 

common attributes with both. Via implementing features from different modalities and 

properties, both aspects of the cry were studied and each of the four introduced feature sets of 

BSC, ERBS Crest, GFCC, and BFCC showed desirable performance individually. Then, 

through the DT fusion technique these feature sets were fused and the outcome surpassed the 

results of all the individual feature sets by an average of 11.49% for the accuracy measure, 

reaching up to 88.66% which marks a notable increment and potential.  

 

In order to achieve a more simplistic design and take a deeper look into each of the introduced 

feature sets, the NCA feature selection method was employed where each of the feature sets 

were analyzed and the indices that contributed the most to the final result were chosen. Next, 

all of the selected indices were concatenated to form a single feature vector that achieved 

86.22% for the accuracy measure.  

 

This study aimed to design an unsophisticated NCDS that served as an alert system to the 

medical experts for prioritizing the newborns with higher risk of being diagnosed with the fatal 
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pathology of sepsis. The proposed framework showed that septic newborns could be 

effectively distinguished among a collective of other pathologies only based on their cries. 

Therefore, this framework could be employed as a non-invasive tool for diagnosis of sepsis 

and other pathologies. 

 



 

CONCLUSION 

 

This thesis proposed a comprehensive and non-intrusive NCDS that highlights the cry signals 

as a biomarker in the diagnosis of the pathologies that would otherwise require invasive tests 

and precise -and exorbitant- medical equipment, or pathologies and complications subject to 

the prompt detection and treatment. Sepsis is one of the leading post-partum pathologies 

contributing to the mortality rates worldwide and inevitably, is the focal point in this study. 

The proposed NCDS here attempts to comprehensively address sepsis by studying the cry 

signals of septic newborns thoroughly as opposed to three different groups of newborns: 1. 

Healthy newborns, 2. Newborns suffering from RDS, and 3. A collective of newborns 

diagnosed with other pathology groups. Furthermore, to advance the NCDS and proffer it as 

an assistant to the medical experts and guardians of the newborns, the NCDS was designed to 

distinguish the healthy newborns from an assemblage of pathologies -including sepsis-. Sadly, 

the geographic distribution of the mortality rate is proportionate to the national income of the 

countries around the world, which means that low- and middle-income regions suffer from the 

highest newborn mortality rates. As a matter of course, this translates to lower number of 

pediatricians and medical equipment and, ergo, lower chances of post-partum screening and 

care for the newborns in these regions. However, if there would be a simple and swift method 

to rank the newborns as being high-risk or mark them as potentially suffering from a specific 

pathology, the existing apparatus could be employed for validation followed by all the 

necessary procedures to minister the treatment of the newborn. NCDS would conclusively 

fulfill this task since it benefits from accessible low-cost equipment for the collection of data, 

as well as the compatibility to be launched on ordinary computers. The proposed NCDS 

possesses several specifications that makes it stand out from the existing designs: 

 

1. Since the cry signals were acquired with no predefined conditions and in the presence 

of noise, the NCDS design is practical and trained on the real-world conditions. 
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2. The participants are from a diversity of races, origins, and languages and all of these 

participants were equally treated and were randomly selected to form our training and 

testing databases.  

 

3. Despite the fact that the cry signals could be classified based on newborn’s emotional 

state, they were not limited to any specific cry stimulus for the purpose of pathology 

recognition in this study and thus, any cry could be employed for the diagnostic 

purposes.  

 

4. The physical attributes of the newborns, e.g., weight, gender, etc., was not considered 

as a restricting factor and both male and female newborns with any weight were 

included in this study.  

 

From the developmental point of view, this thesis strived to perform extensive amelioration of 

various stages in NCDS architecture. Two different segments of the cry signals based on the 

respiratory activities of the newborn were exploited to form datasets of INSV and EXP which 

refer to voiced activity during inspiration and expiration, respectively. It was shown that the 

INSV cry dataset conveys valuable information about the newborn’s health. Starting with the 

feature extraction step, several novel features such as SENCC, SCCC, BSC, HR, and GFCC 

were explored that each contributed to extending our knowledge of the pathologic newborn 

cry patterns and comportment. Based on our observations during different studies and 

experiments, several points were deduced based on the feature extraction step: 

 

1. Although the MFCC feature set is the most convenient for the audio recognition tasks, 

it can be replaced with GFCC feature set owing to the lower computational cost and 

run-time, higher robustness, and better performance. 
 

2. The use of arithmetic and statistical measures such as mean, standard deviation, and H-

spread can effectively reduce the feature space dimensionality and provide compact yet 

informative feature sets that represent the spectrum. 
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3. Increasing the feature space dimensions does not always lead to better performance of 

the NCDS; therefore, the propitious avail of apt selection and fusion methods is 

indispensable in the NCDS architectures. 
 

4. The cepstral analysis proved beneficial in the study of the pathologic cry signals, even 

inn differentiating between two pathology groups.  
 

5. The addition of the spectral and music-derived features to the cepstral analysis led to 

performance improvement in a majority of experiments. 
 

6. The SENCC feature set effectively represented the information content of the 

pathologic cry signals and its combination with different feature sets was advantageous 

which is interesting given its simplicity.  
 
Accordingly, the next step of the NCDS development was feature selection and fusion which 

was enriched with the investigation of NCA and FE selection and CCA-fusion methods for the 

first time in NCDS designs. More especially, the number of NCDS-related studies exploring 

fusion at feature-level is rudimentary in spite of being essential for further development of 

NCDS. Through the experiments in this thesis, we deduced that not only the feature selection 

methods employed here did not have a counterproductive effect, but also, they led to an 

increment despite considerable reduction of the feature space dimensions. Furthermore, it was 

demonstrated through different evaluation measures that the use of CCA-fusion method 

homogenized the feature space so that in addition to the augmented performance of NCDS, the 

run-times for the HPO of the classifiers was markedly decreased to the extent that it was lower 

than or comparable to the run-times of HPO for the individual feature sets.  

 

In the next step of the NCDS, a heterogeneous collective of classifiers was employed 

corresponding to each of the experiments. The classifiers used in this study include SVM, 

KNN, MLP, and LSTM. The experiments were conducive to the superiority of DL method of 
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LSTM across all the experiments; nevertheless, few factors should be pointed out in this 

regard. The DL methods hinge on the availability of sufficient data for training and testing 

purposes, which in biomedical applications, tends to be the main challenge and limits the 

implementation of state-of-the-art classification approaches. Besides, the congruous 

employment of the HPO methods with low-dimensional data (e.g., single pathology 

investigation) is crucial and can increase the performance of simple ML methods to be 

compatible with more sophisticated DL methods. Although the performance of the DL 

methods is notably preeminent compared to ML models, the HPO of the DL classifier studied 

here required higher run-times and deliberate selection of HPs. The simplest and the swiftest 

classification method taking the HPO run-time into account was the KNN classifier which in 

some cases outperformed both SVM and MLP. Furthermore, among the HPO methods, BHPO 

yielded the best results substantially.  

 

The final contribution of this thesis revolves around the fusion at decision level, which 

facilitates merging the outputs of disparate classifiers that were trained on distinct feature sets 

by the means of uncomplicated calculations. In this study, the DTF method was selected owing 

to its simplicity, robustness, and compatibility with limited data. The accomplishment of the 

DTF opens the door for lots of diverse feature sets and classifiers.  

 

At last, the foremost question that any NCDS endeavors to answer is that whether the morbid 

newborns cry differently than the healthy and how these pathologies affect the cry signal, and 

this thesis was no exception. Henceforth, we mention our findings regarding the cry patterns 

of the studied pathologies.  

 

The septic newborn cries are associated with lower spectral entropy, long durations, 

monotonous or with notably reduced tonality, and inconsistent ratio of the expiration-

inspiration episodes during a cry utterance. Regarding the RDS-related cry signals, it was 

observed that they are weaker, shorter than most cry signals -even among other pathologies-, 

having increased dysphonation, and significantly deeper. This is interesting since the RDS is 

majorly seen in preterm newborns, and prematurity is correlated with high-pitched cries, hence, 
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the mature RDS-diagnosed newborns may have higher chances of being disregarded because 

of their low-pitched cries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

RECOMMENDATIONS  
 
In this section we provide some recommendations for further improvements regarding the 

NCDS architectures.  

 

In the current study, the focal point was formation of the apropos acoustic feature space that 

combined features from diverse applications such as speech recognition and music 

classification. Moreover, the features were extracted from different levels of information: high-

level such as harmonic ratio, mid-level such as MFCCs and its deltas, and low-level such as 

energy or spectral centroid. As a consequence, the combination and fusion of these features 

led to higher performance of the NCDS. Besides, the overall best results among all experiments 

were attained through the implementation of the LSTM classifier. 

 

The NCDS can always benefit from new features such as exploring the wavelet-based and 

chroma-based features, and more importantly, the Maxima Dispersion Quotient (MDQ) feature 

that was introduced recently to enable the voice quality comparisons. We recommend the 

MDQ feature set since the Cepstral analysis led to suitable results across all experiments and 

MDQ works in a similar manner by filtering the glottal innervation signal by a wavelet 

function. Moreover, in order to extract the MDQs, the glottal closure instants are calculated 

which might be useful in the detection of pathologies like RDS or asphyxia. 

 

The employment of merged classifiers such as graph convolutional NN would be interesting 

in the development of the NCDS.  

 

It was shown that the most important point in this study was the use of proper feature or 

decision fusion algorithms. In this regard, given that the fusion of different classifiers yielded 

exceptional improvement, we recommend exploring the Feature Fusion Learning (FFL) 

method in the future. This method trains a classifier efficiently by using a fusion module that 

can employ and mix feature maps generated by parallel neural networks.  
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The main idea is to divide the principal NN into parallel sub-networks and train them. In the 

next step, by using a fusion module the feature maps are mixed in order to achieve a meaningful 

map of features. FFL is versatile and can be implemented in any architecture of networks. 

 

In FFL, a diversity of sub-networks contribute to an ensemble classifier and this ensemble 

classifier distills its knowledge to the fused classifier with the purpose of training it. This 

procedure is called Ensemble Knowledge Distillation (EKD). Its loss is modeled as the KL-

divergence between softened distributions of the ensemble and the fused classifier. The inputs 

to the fusion module are the last layer of sub-networks’ concatenated feature maps. The fused 

classifier trains each sub-network by distillation of its knowledge in the fusion module, which 

is called Fusion Knowledge Distillation (FKD). Sub-networks and the fusion module in the 

FFL are trained simultaneously in order to produce a final decision.  

 

Finally, two levels of fusion were studied here; we suggest conducting a comparative study 

that investigates the role of fusion at different levels such as feature level, matching score level, 

and decision level and different methods for each level.  

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX I 
 

LITERATURE REVIEW OF FEATURES AND THEIR PATHOLOGY 
ASSOCIATION 

 
Table-A I-1 Literature review of features and their pathology association 

 
Feature 
Domains 

Feature Sets 
Implementation/Associated 

Pathologies 
Studies 

Cepstral 
Domain 

MFCC 

RDS, Pathology Ensemble 

vs. Healthy, Asphyxia, Cleft 

palate, Hyperbilirubinemia, 

Hearing Impairment, 

Hypothyroidism, Reason of 

crying. 

(Jam & Sadjedi, 2009; 

Kheddache & Tadj, 2019; 

Massengill Jr, 1969; 

Matikolaie et al., 2022; 

Matikolaie & Tadj, 2020; 

Wahid et al., 2016; Zabidi et 

al., 2009; Zabidi, Mansor, et 

al., 2017) 

BFCC 
Reason of crying, High-risk 

Prematurity. 

(Liu et al., 2019; Maghfira et 

al., 2020; Sriraam & 

Pradeep, 2019; Tejaswini et 

al., 2020) 

GTCC 
Hypoxic Ischemic 

Encephalopathy (HIE). 
(Khalilzad & Tadj, 2023) 
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Feature 
Domains 

Feature Sets 
Implementation/Associated 

Pathologies 
Studies 

Cepstral 
Domain 

Perceptual 

Linear 

Prediction 

Cepstral 

Coefficients 

(PLPCC) 

Pathology Ensemble vs. 

Healthy. 
(Chittora & Patil, 2018) 

Linear 

Prediction 

Cepstral 

Coefficients 

(LPCCs) 

Reason of crying. (Liu et al., 2018) 

Linear 

Frequency 

Cepstral 

Coefficients 

(LFCCs) 

Reason of crying, Pathology 

Ensemble vs. Healthy. 

(MV Varsharani Bhagatpatil 

& V Sardar, 2014; Jagtap et 

al., 2016; Patil et al., 2022) 

Chroma-

related 

features 

Reason of crying, Asphyxia. 
(Felipe et al., 2019; Ting et 

al., 2022) 

Constant-Q 

Cepstral 

Coefficients 

Pathology Ensemble vs. 

Healthy 
(Patil et al., 2022) 
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Feature 
Domains 

Feature Sets 
Implementation/Associated 

Pathologies 
Studies 

Prosodic 
Domain 

Rhythm 
RDS, sepsis, Pathology 

Ensemble vs. Healthy. 

(Matikolaie et al., 2022; 

Matikolaie & Tadj, 2020, 

2022) 
Tilt 

Intensity 

Harmonic 

Factor 

Reason of crying, Pathology 

Ensemble vs. Healthy. 

(Bano & RaviKumar, 2015; 

Kheddache & Tadj, 2015) 

Unvoiced 

regions 

Pathology Ensemble vs. 

Healthy. 
(Chittora & Patil, 2015b) 

Time 
Domain 

Zero-

Crossing Rate 

(ZCR) 

Reason of crying, Pathology 

Ensemble vs. Healthy. 

(Abou-Abbas, Tadj, & 

Fersaie, 2017; Kuo, 2010) 

Amplitude-

based 

features 

Reason of crying, Pathology 

Ensemble vs. Healthy. 
(Bano & RaviKumar, 2015) 

Linear 

Predictive 

Coding 

(LPC) 

Reason of crying. 
(Liu et al., 2019; Rosales-

Pérez et al., 2015) 

Duration 
Reason of crying, Pathology 

Ensemble vs. Healthy 

(Kheddache & Tadj, 2015; 

Osmani et al., 2017) 

Auditory-

inspired 

Amplitude 

Modulation 

(AAM) 

Pathology Ensemble vs. 

Healthy 
(Matikolaie et al., 2022) 

Energy-based 

features 
Reason of crying. 

(Bano & RaviKumar, 2015; 

Rosita & Junaedi, 2016) 
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Feature 
Domains 

Feature Sets 
Implementation/Associated 

Pathologies 
Studies 

Frequency 
Domain 

Bispectrum 

Preterm Infants, URTI, 

Epilepsy, Diarrhea, 

Hydrocephalus, 

Hypocalcium, Congenital 

Heart Disease, Jaundice, 

Bronchitis, Thalassemia 

(Chittora & Patil, 2015a) 

Frequency 
Domain 

Fundamental 

frequency-

based 

features 

Pathology Ensemble vs. 

Healthy 

(Kheddache & Tadj, 2013a, 

2013b, 2015, 2019) 

Resonance 

frequencies 

Pathology Ensemble vs. 

Healthy 
(Kheddache & Tadj, 2015) 

Mel-

frequency 

Entropy 

Coefficients 

Hearing Impairment vs. 

Healthy 
(Jam & Sadjedi, 2009) 

Spectral 

shape 

features 
Pathology Ensemble vs. 

Healthy 

(Kheddache & Tadj, 2013a, 

2013b, 2019) Spectrogram-

derived 

features 
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Feature 
Domains 

Feature Sets 
Implementation/Associated 

Pathologies 
Studies 

Image 
Domain 

Waveform 

Image 

Cry detection, Jaundice, 

Prematurity. 

(Hariharan et al., 2018; 

Moharir, Sachin, Nagaraj, 

Samiksha, & Rao, 2017; 

Zhang, Zou, & Liu, 2018) 

Face Image Asphyxia vs. Healthy. (Cha & Bae, 2022) 

Spectrogram 

Image 
Reason of crying. 

(Bănică, Cucu, Buzo, 

Burileanu, & Burileanu, 

2016; Franti, Ispas, & 

Dascalu, 2018; Tusty, 

Basaruddin, & Krisnadhi, 

2020) 

Time-
Frequency 

Domain 

Wavelet 

Packet 

Transform 

Asphyxia vs. Healthy. 
(Hariharan, Yaacob, & 

Awang, 2011) 

Mel-

frequency 

Discrete 

Wavelet 

Coefficients 

(MFDWC) 

Hearing Impairment vs. 

Healthy 

(Mansouri Jam & Sadjedi, 

2013) 

STFT-based 

Features 

Hearing Impairment vs. 

Healthy 

(Muthusamy Hariharan et al., 

2012) 

Fast Fourier 

Transform 

(FFT)-based 

Features 

Cry detection. 
(Abou-Abbas, Tadj, Gargour, 

et al., 2017) 
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APPENDIX II 
 

LITERATURE REVIEW OF CLASSIFICATION METHODS 
 

Table-A II-1 Literature review of classification methods 
 

Infant Cry Classification Algorithms Studies 

Neural Networks 

MLP (Alaie, Abou-Abbas, & Tadj, 2016) 

LSTM 
(Huckvale, 2018; Lahmiri, Tadj, Gargour, 

et al., 2022) 

Convolutional 
(Lahmiri, Tadj, Gargour, & Bekiros, 

2023) 

Deep Feet-Forward (Lahmiri, Tadj, Gargour, et al., 2022) 

Recurrent (Sharma & Malhotra, 2020) 

Probabilistic (Matikolaie et al., 2022) 

Reservior Network (Ntalampiras, 2015) 

General Regression 
(Saraswathy, Hariharan, Vijean, Yaacob, 

& Khairunizam, 2012) 

Capsule Network (Sabour, Frosst, & Hinton, 2017) 

Convolutional Recurrent (Maghfira et al., 2020) 

Random Forest 

Bagging Trees (Tuduce, Cucu, & Burileanu, 2018) 

Boosted Trees XGBoost (Chang et al., 2021) 

Decision Trees 

Quest 

(Fuhr et al., 2015) 

C&R 

CHAID 

J48 

C0.5 
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Infant Cry Classification Algorithms Studies 

Logistic Regression 
(Lavner, Cohen, Ruinskiy, & IJzerman, 

2016; Orlandi et al., 2016) 

K-Nearest Neighborhood (Fuhr et al., 2015) 

Linear Discriminant Analysis 

(Martinez-Cañete, Cano-Ortiz, 

Lombardía-Legrá, Rodríguez-Fernández, 

& Veranes-Vicet, 2018) 

Naive Bayes (Tuduce et al., 2018) 

Fuzzy 

Neuro-Fuzzy Network 
(Santiago-Sánchez, Reyes-García, & 

Gómez-Gil, 2009) 

Fuzzy KNN 

(Rosales-Pérez et al., 2015) Fuzzy Decision Forest 

Fuzzy Relational NN 

Gaussian Mixture 

Models (GMM) 
GMM-UBM (Alaie et al., 2016) 

SVM (Alaie et al., 2016; Chang et al., 2015) 



 

APPENDIX III 
 

REVIEW OF SELECTED NCDS DESIGNS 
 

Table-A- III-1 A comparative overview of selected NCDS designs for pathological newborn 
cry diagnostics 

 

Studies Pathologies 
Evaluation 
Measures 

HPO 
Feature 
Fusion 

Machine/Deep 
Learning Methods 

Outcome 

Matikolaie et 

al. 

(Matikolaie et 

al., 2022; 

Matikolaie & 

Tadj, 2020, 

2022) 

RDS vs. 

healthy, 

septic vs. 

healthy, 

collection of 

pathologies vs. 

healthy. 

Recall, 

precision, F-

score, 

accuracy. 

--- Concatenation 

PNN, SVM, DT, 

Discriminant 

Analysis. 

F-score 

Sepsis: 86%. 

Multi-

Pathology: 

80%. 

RDS: 

68.40% 

Lahmiri et al. 

(Lahmiri, 

Tadj, & 

Gargour, 

2021, 2022; 

Lahmiri, 

Tadj, 

Gargour, et 

al., 2022) 

Central 

nervous system 

complications, 

chromosomal 

abnormalities, 

congenital 

cardiac 

anomalies, 

blood 

disorders. 

Accuracy, 

recall, 

specificity. 

--- Concatenation 
CNN, LSTM, DFNN, 

SVM, NBC. 

Accuracy: 

CNN: 

95.28%, 

DFFNN: 

100%, 

LSTM: 

83.89%. 

Pusuluri et al. 

(Pusuluri, 

Kachhi, & 

Patil, 2022) 

Asphyxia and 

deaf vs. 

healthy. 

Accuracy, 

false positive 

count 

Grid search -- SVM, KNN, RF. 
Accuracy: 

98.48%. 
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Studies Pathologies 
Evaluation 
Measures 

HPO 
Feature 
Fusion 

Machine/Deep 
Learning Methods 

Outcome 

Kheddache et 

al. 

(Kheddache 

& Tadj, 2019) 

Hyperbilirubin

emia, vena 

cava 

thrombosis, 

meningitis, 

peritonitis, 

asphyxia, 

lingual frenum, 

IUGR-

microcephaly, 

tetralogy of 

fallot, 

gastroschisis, 

IUGR-

asphyxia, RDS. 

Accuracy. --- Concatenation PNN. 
Accuracy: 

88.71%. 

Farsaie et al. 

(Alaie et al., 

2016) 

Central 

nervous system 

complications, 

chromosomal 

abnormalities, 

congenital 

cardiac 

anomalies, 

blood 

disorders. 

Average 

accuracy, 

recall, 

specificity, 

equal error 

rate, 

classification 

error rate. 

-- -- SVM, PNN, MLP. 

Accuracy: 

MLP: 

91.68%. 

PNN: 

89.93%. 

SVM: 

89.85%. 
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Studies Pathologies 
Evaluation 
Measures 

HPO 
Feature 
Fusion 

Machine/Deep 
Learning Methods 

Outcome 

Onu et al. 

(Onu, 

Lebensold, 

Hamilton, & 

Precup, 2019) 

Prenatal 

asphyxia vs. 

healthy. 

Recall, 

specificity, 

unweighted 

average recall. 

Random 

search. 
-- ResNet, SVM. 

Specificity: 

88.9% 
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