
Meta-learning recommendation system for automating the 
process of selecting the best pool and a dynamic classifier

selection algorithm

by

Hesam JALALIAN

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
IN PARTIAL FULFILLMENT OF A MASTER’S DEGREE

WITH THESIS
M.A.Sc.

MONTREAL, DECEMBER 14, 2023

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Hesam JALALIAN, 2023



This Creative Commons license allows readers to download this work and share it with others as long as the
author is credited. The content of this work cannot be modified in any way or used commercially.



BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Rafael M. O. Cruz, Thesis supervisor
Department of Software Engineering and IT, École de technologie supérieure

Mr. Mohammadhadi Shateri, Chair, Board of Examiners
Department of System Engineering, École de technologie supérieure

Mr Robert Sabourin, External Examiner
Department of System Engineering, École de technologie supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON DECEMBER 1, 2023

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE





ACKNOWLEDGEMENTS

I extend my heartfelt gratitude to Professor Rafael Menelau Oliveira e Cruz for his invaluable

guidance and unwavering support throughout my thesis journey. His profound knowledge,

mentorship, and insightful feedback have significantly shaped the trajectory of my research. I

am also deeply thankful to Professor Robert Sabourin for his constructive insights and scholarly

expertise, which have enriched my work and broadened my understanding of the field.

I am privileged to acknowledge my exceptional colleagues at the LIVIA Lab, whose collaborative

spirit and thought-provoking discussions have been instrumental in refining my research ideas.

Their dedication to advancing knowledge and their camaraderie have truly made my academic

journey a rewarding experience.

My sincerest appreciation goes to my beloved wife, whose unwavering support and understanding

during the challenging phases of immigration and academic pursuit have been my cornerstone.

Her encouragement and sacrifice have been pivotal in enabling me to focus on my studies and

realize my academic aspirations.

Finally, I express my profound gratitude to École de technologie supérieure (ÉTS Montréal) for

providing me with an enriching academic environment and resources that have facilitated my

research endeavors. The commitment of the faculty, staff, and the university’s ethos of fostering

innovation and excellence have been pivotal in shaping my academic growth.

As I conclude this chapter of my academic journey, I am humbled by the contributions and

support of those who have stood by me. Your collective influence has indelibly shaped my

research and personal development, and for that, I am truly grateful.





Système de recommandation de méta-apprentissage pour automatiser le processus de
sélection du meilleur pool et un classificateur dynamique ou un algorithme de sélection

d’ensemble

Hesam JALALIAN

RÉSUMÉ

Les méthodes d’ensemble consistent en des classifieurs individuels entraînés indépendamment,
dont les prédictions sont combinées pour prédire de nouvelles instances. Les recherches
antérieures ont montré qu’un ensemble de classifieurs est souvent plus performant qu’un seul
classifieur. La sélection dynamique (DS) est reconnue comme une approche efficace dans le
domaine des systèmes de classification multiples (MCS). La DS choisit dynamiquement les
classifieurs de base pour chaque nouvel échantillon à classer. Au lieu d’utiliser un ensemble fixe
de classifieurs pour toutes les instances, la DS s’adapte et sélectionne les classifieurs appropriés
en fonction des caractéristiques de chaque échantillon individuel. Cette étude se concentre
sur l’évaluation de différents schémas de génération de pools utilisés en tant qu’entrée pour
les techniques de DS. L’importance de la sélection d’un pool optimal de classifieurs pour les
algorithmes de DS est explorée, en comparant les schémas de génération de pools globaux et
locaux.

L’étude vise à répondre à des questions concernant l’efficacité des méthodes de génération de
pools locaux pour la sélection dynamique, la dépendance à l’égard de la sélection du meilleur
groupe de classifieurs en fonction de la méthode DS utilisée, et la corrélation entre les résultats
de l’ensemble statique et les performances de DS. L’analyse révèle que les schémas de génération
de pools locaux ne donnent pas systématiquement de meilleurs résultats pour la sélection. De
plus, la sélection d’un groupe approprié de classifieurs dépend à la fois de la méthode DS utilisée
et des caractéristiques de l’ensemble de données.

Compte tenu des constatations selon lesquelles il n’existe pas de système de génération de pools
universellement efficace pour l’algorithme DS sur l’ensemble des ensembles de données, un
système d’apprentissage automatisé est proposé. Ce système vise à recommander le schéma
de génération de pool optimal pour les méthodes DS en fonction de l’ensemble de données.
L’algorithme crée un méta-modèle en extrayant des méta-caractéristiques des ensembles de
données et en utilisant une méta-cible représentant les meilleures performances de l’algorithme
DS. Ce méta-modèle fournit des recommandations pour les schémas de génération de pools, les
méthodes DS et les paires d’un pool et Méthode DS appariées pour des ensembles de données
spécifiques.

Une étude expérimentale est menée pour évaluer les performances du système de recommandation
d’apprentissage méta. Les résultats montrent que le système de recommandation d’apprentissage
méta surpasse la sélection de pool fixe, les méthodes DS fixes ou les paires fixes d’un pool
et Méthode DS. En d’autres termes, les résultats expérimentaux montrent que le système
d’apprentissage méta recommande systématiquement la meilleure solution avec la plus grande



VIII

précision prédictive par rapport aux bases. Cette approche novatrice améliore l’efficacité et
l’efficacité de la sélection dynamique de classifieurs dans des tâches de classification complexes.

Mots-clés: sélection dynamique, pool de classificateurs, systèmes de classificateurs multiples,
apprentissage local, recommandation de méta-apprentissage, complexité des données



Meta-learning recommendation system for automating the process of selecting the best
pool and a dynamic classifier selection algorithm

Hesam JALALIAN

ABSTRACT

Multiple Classifier Systems(MCS) have been widely studied as an alternative to improve pattern
recognition applications in recent years. An ensemble of classifiers or an MCS produces a
better recognition performance than a single classifier, according to several empirical studies.
Ensembles consist of classifiers that are individually trained and whose predictions are combined
to predict novel instances. According to previous research, an ensemble of classifiers is often
more accurate than a single classifier. Dynamic Selection (DS) is considered one of the most
effective approaches in the field of Multiple Classifier Systems (MCS). In DS, the choice of
base classifiers is made dynamically for each new sample that needs to be classified. Instead of
using a fixed set of classifiers for all instances, DS adapts and selects the appropriate classifiers
based on the characteristics of each individual sample being classified. For DS methods, a pool
of classifiers is employed for classification. The existing pool of classifiers used in dynamic
selection methods lacks stability, leading to a significant difference between minimum and
maximum classification results when different subsets of the same problem are used for training.
Also, pool generation methods with a global perspective tend to generate redundant classifiers,
making the system computationally expensive. Such methods may not effectively cover certain
regions of the feature space, limiting the performance of dynamic selection methods in selecting
the most competent models for specific instances.

In this study, we present an analysis conducted evaluating multiple pool generation schemes
when they are used as input of DS techniques. The significance of selecting an optimal pool of
classifiers for dynamic selection (DS) algorithms is explored, and global and local perspective
pool generation schemes are compared. Several DS techniques were selected based on their
superior performance based on dynamic selection literature and are evaluated in this study to
address research questions. The following two research questions are of primary importance:
Are local pool generation schemes better than global pools? Does the best pool generation
scheme depend on the DS algorithm and dataset in question? The study reveals that local pool
generation schemes do not consistently achieve better results for dynamic selection. Furthermore,
the selection of an appropriate pool of classifiers depends on both the DS method used and
dataset characteristics.

Since the above-mentioned analysis reveals that there is no pool generation scheme that can be
the best selection for the DS algorithm on all datasets. Therefore, we present a meta-learning
automated system to recommend the best pool generation scheme for DS methods for a given
dataset. In this algorithm, a meta-model is created by extracting meta-features from datasets and
utilizing a meta-target that represents the best DS algorithm’s performance. This meta-model is
used to provide three recommendations: predicting a pool generation scheme, a DS method,
and a pair recommendation of a pool and DS method simultaneous for a given dataset. Another



X

experiment study is conducted to evaluate the performance of the meta-learning recommendation
system, and the results show that the meta-learning recommendation system performs better
than selecting a fixed pool of classifiers, a fixed DS method, or a fixed pair of a pool and DS
method. In other words, according to the experimental results, meta-learning recommended the
best solution with the highest predictive accuracy over the baselines (majority).

The code and data used in this work are available on this project’s GitHub repository: https:
//github.com/hesamjalalian/Pool_generation_scheme

Keywords: dynamic selection, pool of classifiers, multiple classifier systems, local learning,
meta-learning recommendation, data complexity

https://github.com/hesamjalalian/Pool_generation_scheme
https://github.com/hesamjalalian/Pool_generation_scheme


TABLE OF CONTENTS

Page
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
0.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.1.1 Instability of Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.1.2 Redundant Classifiers in Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
0.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
0.4 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 1 BASIC CONCEPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1 Multiple classifier System (MCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Pool generation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Dynamic selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Neighborhood-selection techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Neighborhood-selection space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 Classifier-selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.4 Classifier-selection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Selection of pool generation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Expanding Algorithm recommendation using meta-learning in dynamic

selection contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Meta-learning for recommending algorithms in the ensemble context . . . . . . . . . . . . . . . 32
2.4 Critical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 3 EXPERIMENTAL METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Experimental set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 DS techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER 4 EMPIRICAL ANALYSIS OF POOL GENERATION SCHEMES
AND THEIR IMPACT ON DS ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Global pool generation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.1 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.3 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Local pool generation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 Forest of Local Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Ensembles of Locally Independent Prediction Models . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Summary of pool generation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Comparative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



XII

4.3.1 Comparison of a local and global pool generation schemes . . . . . . . . . . . . . . . . 67
4.3.2 Does selecting the best pool of classifiers, 𝐶, depend on what

dynamic selection is used (RQ2)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Does selecting the best DS method depend on what pool of classi-

fiers, 𝐶, is used (RQ3)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.4 Relationship between static ensemble results and dynamic selection

results (RQ4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

CHAPTER 5 META-LEARNING FRAMEWORK FOR RECOMMENDING
THE POOL GENERATION SCHEME AND DS ALGORITHM .. . . . . . . . 81

5.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Meta-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Meta-features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 Scenario I: meta-learning for recommending the best pool genera-
tion scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Scenario II: meta-learning for recommending the best DS model . . . . . . . . .110
5.4.3 Scenario III: meta-learning for recommending the pool and DS

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
5.5 RQ5: Dependency of selection of a pool generation scheme for DS techniques

based on data characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
5.5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

CONCLUSION AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

APPENDIX I LIST OF META-FEATURES USED IN THE PROPOSED AP-
PROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

APPENDIX II EXPERIMENTAL RESULTS OF CHAPTER?? . . . . . . . . . . . . . . . . . . . . . . . . . . 151

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



LIST OF TABLES

Page

Table 0.1 Summary of the 3 datasets used in the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Table 0.2 Comparison of Mean and Variance of KNORA-E (K) and OLA (O)
Using Bagging as a pool of classifiers with 10 or 100 Base Classifiers,
where the Base Classifiers are Decision Tree (DT) or Perceptron (P) . . . . . . . . . 4

Table 1.1 Categorization of dynamic selection methods according to
neighborhood selection technique, neighborhood selection space,
classifier selection criteria, and classifier selection method. They are
ordered by publication year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 3.1 Complexity metrics used in dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 3.2 Hyperparameters used to build the classification models . . . . . . . . . . . . . . . . . . . . . 44

Table 4.1 Pool generation schemes used in publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 4.2 Summary of the average rank among 288 datasets between a
combination of 7 pools and 7 DS methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 4.3 The correlation between static ensemble results and DS algorithms . . . . . . . . . 79

Table 5.1 The results of meta-learning prediction with different hyperparameters
for scenario I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 5.2 The results of DS methods that used the pool generation scheme
proposed by the meta-learning recommendation system (DS, MLRSP)
compared with the performance of DS methods that used a
predetermined pool generation scheme (DS, PP). Note that (PP)
refers to the predetermined pool generation scheme. And (Wins)
denotes the number of wins out of a total of 288 datasets. (Ave_Wins)
denotes the average number of the datasets with the best performance
among 288 datasets between 7 pools of classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 5.3 Comparison of MLRS-P Performance Against Baseline Methods.
"+" indicates MLRS-P wins, "=" denotes a tie, and "-" signifies a loss . . . . . .102

Table 5.4 The results of meta-learning prediction with different hyper-
parameters while pool generation scheme is fixed. Numbers
correspond to their average performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110



XIV

Table 5.5 The results of MLRS-DS compared with the average performance of
baseline among 288 datasets. Note that (Wins) denotes the number
of wins out of a total of 288 datasets. (Ave_wins) denotes the average
number of the datasets with the best performance among 288 datasets
between 7 pools of classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Table 5.6 Comparison of MLRS-DS Performance Against Baseline Methods.
"+" indicates MLRS-DS wins, "=" denotes a tie, and "-" signifies a loss . . . .118

Table 5.7 The results of meta-learning prediction, MLRS-PDS with different
hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table 5.8 Comparison of MLRS-PDS Performance Against Baseline Methods.
"+" indicates MLRS-PDS wins, "=" denotes a tie, and "-" signifies a
loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Table 5.9 The comparison between the three versions of MLRS and the baselines
among 288 datasets. Two recommended pairs of MLRS are presented
here based on different meta-models in the third recommendation.
(META-DES, MLRS-P) represents the pool recommended by MLRS-
P while META-DES is fixed as the DS method. (MLRS-DS, RF)
represents the DS method recommended by MLRS-DS while RF is
fixed as a pool generation scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136



LIST OF FIGURES

Page

Figure 0.1 The difference between max and min results in 3 datasets. In this
figure, KNORA-E is represented by K, O is used for OLA as DS
techniques, DT for Decision Tree, P for Perceptron, and the number
of the base estimator is 10 or 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 0.2 The Bagging technique with perceptron as the base classifier is used
to generate the pool of classifiers, 𝐶, adapted from Rafael M.O.
Cruz (2015, pp. 1509.00825) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.1 The three possible phases of a Multiple Classifier System (MCS) . . . . . . . . . . . 14

Figure 1.2 The differences between static selection (a), dynamic classifier
selection (b), and dynamic ensemble selection (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.3 Taxonomy of dynamic selection systems adapted of the article.
Threshold-Based (TB), Output-Based (OB), and Probability-
Based(PB) are three strategies as classifier selection methods . . . . . . . . . . . . . . . 17

Figure 1.4 The test sample and its region of competence defined by the samples
A, B, C, D, and E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.1 Distribution of Checkerboard, Spiral, Wave Boundary, Yin Yang
adapted from Núria Macià (2010, pp. 29-45) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.2 Based on the complexity measurement, the problems are projected
onto the first and second principal components: (a) the entire
collection and (b) 300 cherry-picked training data sets adapted from
Núria Macià (2010, pp. 29-45) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.3 The distribution of dataset sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.1 Graphical representation of the Bagging algorithm adapted from
Sergio González (2020, pp. 205-237), illustrating its iterative
process using bootstrap for generating a pool of classifiers . . . . . . . . . . . . . . . . . . 50

Figure 4.2 Graphical representation of the Boosting algorithm adapted from
Sergio González (2020, pp. 205-237), illustrating how boosters learn
from previous errors by enhancing the importance of incorrectly
predicted training instances in future iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



XVI

Figure 4.3 Each time a centroid is picked, the picking distribution is updated.
The bigger the circle, the higher the probability of a sample being
selected. Dataset samples are represented by gray circles, whose
radius is proportional to the picking probability, while black boxes
show centroids adapted from Giuliano Armano (2018, pp. 380-390) . . . . . . . 60

Figure 4.4 These are examples of weighting distributions. The FLT uses
different weight distributions for each RDT, resulting in decreasing
importance of samples as they move away from the centroid. Black
boxes denote centroids, while gray circles denote samples, with the
radius proportional to the weight. To ensure good coverage of the
sample space, centroids should be chosen as far apart as possible
adapted from Giuliano Armano (2018, pp. 380-390) . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.5 The average rank of 7 pools of classifiers for KNORA-E among 288
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.6 The average rank of 7 pools of classifiers for META-DES among
288 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.7 The average rank of 7 pools of classifiers for KNORA-U among 288
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.8 The average rank of 7 pools of classifiers for DES-MI among 288
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.9 The average rank of 7 pools of classifiers for DES-P among 288
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.10 The average rank of 7 pools of classifiers for MLA among 288
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.11 The average rank of 7 pools of classifiers for OLA among 288 datasets . . . . 73

Figure 4.12 The average rank of 7 DS methods using BDT as a pool of classifiers
among 288 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.13 The average rank of 7 DS methods using BP as a pool of classifiers
among 288 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.14 The average rank of 7 DS methods using BSDT as a pool of classifiers
among 288 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.15 The average rank of 7 DS methods using BSP as a pool of classifiers
among 288 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



XVII

Figure 4.16 The average rank of 7 DS methods using RF as a pool of classifiers
among 288 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.17 The average rank of 7 DS methods using FLT as a pool of classifiers
among 288 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.18 The average rank of 7 DS methods using LIT as a pool of classifiers
among 288 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 5.1 Overview of the meta-training process. In the first step, the meta-
features, 𝑚 𝑓 , are extracted from datasets. In step 2, a set of pools
and DS methods are generated for assessment in step 3. Then, based
on the highest accuracy, the meta-target, 𝑦′, is defined (step 4). In
step 5, the meta-dataset, 𝑀𝑇 , is constructed, and then it is used to
train a meta-model, 𝑀𝑚 (Step 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.2 The generalization process for the 3 distinct scenarios. Scenario
I, a pool generation scheme is recommended. Scenario II, a DS
method is recommended. Scenario III, the best pair of (Pool, DS) is
recommended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.3 Pairwise comparison using the Sign Test between the meta-
learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The KNORA-
E was considered as the predefined DS method (PDS). The horizontal
line illustrates the critical values considering a confidence level of
𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 5.4 Pairwise comparison using the Sign Test between the meta-
learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The META-
DES was considered as the predefined DS method (PDS). The
horizontal line illustrates the critical values considering a confidence
level of 𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.5 Pairwise comparison using the Sign Test between the meta-
learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The KNORA-
U was considered as the predefined DS method (PDS). The horizontal
line illustrates the critical values considering a confidence level of
𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 5.6 Pairwise comparison using the Sign Test between the meta-
learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The DES-MI



XVIII

was considered as the predefined DS method (PDS). The horizontal
line illustrates the critical values considering a confidence level of
𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.7 Pairwise comparison using the Sign Test between the meta-
learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The DES-P
was considered as the predefined DS method (PDS). The horizontal
line illustrates the critical values considering a confidence level of
𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.8 Pairwise comparison using the Sign Test between the meta-
learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The MLA was
considered as the predefined DS method (PDS) The horizontal line
illustrates the critical values considering a confidence level of 𝛼 =
0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Figure 5.9 Pairwise comparison using the Sign Test between the meta-
learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The OLA was
considered as the predefined DS method (PDS). The horizontal line
illustrates the critical values considering a confidence level of 𝛼 =
0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.10 The distribution of the recommended pool by MLRS-P while
KNORA-E is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Figure 5.11 The distribution of the recommended pool by MLRS-P while META-
DES is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Figure 5.12 The distribution of the recommended pool by MLRS-P while
KNORA-U is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Figure 5.13 The distribution of the recommended pool by MLRS-P while DES-
MI is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Figure 5.14 The distribution of the recommended pool by MLRS-P while DES-P
is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.15 The distribution of the recommended pool by MLRS-P while OLA
is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Figure 5.16 The distribution of the recommended pool by MLRS-P while MLA
is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109



XIX

Figure 5.17 Pairwise comparison using the Sign Test between the meta-learning
recommendation system for the DS method (Scenario II) and other
DS schemes. The BDT was considered as the predefined pool
method (PP). The horizontal line illustrates the critical values
considering a confidence level of 𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Figure 5.18 Pairwise comparison using the Sign Test between the meta-learning
recommendation system for the DS method (Scenario II) and other
DS schemes. The BP was considered as the predefined pool method
(PP). The horizontal line illustrates the critical values considering a
confidence level of 𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Figure 5.19 Pairwise comparison using the Sign Test between the meta-learning
recommendation system for the DS method (Scenario II) and other
DS schemes. The FLT was considered as the predefined pool method
(PP). The horizontal line illustrates the critical values considering a
confidence level of 𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

Figure 5.20 Pairwise comparison using the Sign Test between the meta-learning
recommendation system for the DS method (Scenario II) and other
DS schemes. The LIT was considered as the predefined pool method
(PP). The horizontal line illustrates the critical values considering a
confidence level of 𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Figure 5.21 Pairwise comparison using the Sign Test between the meta-learning
recommendation system for the DS method (Scenario II) and other
DS schemes. The RF was considered as the predefined pool method
(PP). The horizontal line illustrates the critical values considering a
confidence level of 𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

Figure 5.22 Pairwise comparison using the Sign Test between the meta-learning
recommendation system for the DS method (Scenario II) and other
DS schemes. The BSDT was considered as the predefined pool
method (PP). The horizontal line illustrates the critical values
considering a confidence level of 𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 5.23 Pairwise comparison using the Sign Test between the meta-learning
recommendation system for the DS method (Scenario II) and other
DS schemes. The BSP was considered as the predefined pool method
(PP). The horizontal line illustrates the critical values considering a
confidence level of 𝛼 = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

Figure 5.24 The distribution of the recommended DS method by MLRS-DS
while BDT is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119



XX

Figure 5.25 The distribution of the recommended DS method by MLRS-DS
while BP is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

Figure 5.26 The distribution of the recommended DS method by MLRS-DS
while BSDT is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 5.27 The distribution of the recommended DS method by MLRS-DS
while BSP is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Figure 5.28 The distribution of the recommended DS method by MLRS-DS
while RF is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Figure 5.29 The distribution of the recommended DS method by MLRS-DS
while FLT is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

Figure 5.30 The distribution of the recommended DS method by MLRS-DS
while LIT is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

Figure 5.31 This figure illustrates the number of wins, ties and losses obtained
by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use LIT as the pool generation scheme
is presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level
(𝛼 = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

Figure 5.32 This figure illustrates the number of wins, ties and losses obtained
by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use BP as the pool generation scheme is
presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level
(𝛼 = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

Figure 5.33 This figure illustrates the number of wins, ties and losses obtained
by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use BDT as the pool generation scheme
is presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level
(𝛼 = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

Figure 5.34 This figure illustrates the number of wins, ties and losses obtained by
the MLRS-PDS against the baselines. In this case all pairs possible
configurations that use BSDT as the pool generation scheme is
presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level
(𝛼 = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



XXI

Figure 5.35 This figure illustrates the number of wins, ties and losses obtained
by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use BSP as the pool generation scheme
is presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level
(𝛼 = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

Figure 5.36 This figure illustrates the number of wins, ties and losses obtained
by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use RF as the pool generation scheme is
presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level
(𝛼 = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

Figure 5.37 This figure illustrates the number of wins, ties and losses obtained
by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use FLT as the pool generation scheme
is presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level
(𝛼 = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Figure 5.38 The distribution of the recommended pool by MLRS-PDS . . . . . . . . . . . . . . . . . 137

Figure 5.39 The distribution of the recommended DS method by MLRS-PDS . . . . . . . . .138





LIST OF ALGORITHMS

Page

Algorithm 4.1 Bagging assembles a pool of 𝑀 base classifiers by repeatedly
generating bootstrap samples from the training dataset, 𝑇𝑟 ,
and training individual classifiers using a specified learning
algorithm A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Algorithm 4.2 AdaBoost leverages a pool of classifiers by iteratively updating
base classifiers to improve their performance on a training
dataset, 𝑇𝑟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Algorithm 4.3 Random Forests algorithm trains multiple decision trees. Each
tree learns from a bootstrapped sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Algorithm 4.4 Forest of Local Trees (FLT) training scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Algorithm 4.5 Locally Independent Training (LIT) training scheme . . . . . . . . . . . . . . . . . . . . 64

Algorithm 5.1 Meta-learning recommendation system for DS algorithms in the
training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86





LIST OF ABBREVIATIONS

MCS Multiple Classifier Systems

DSEL Dynamic Selection Dataset

DS Dynamic Selection

DES Dynamic Ensemble Selection

DCS Dynamic Classifier Selection

FLT Forest of Local Trees

LIT Local Independence Training

NS Neighborhood Selection

KNN K-Nearest Neighbor

HF-MCDM Hesitant Fuzzy Multiple Criteria Decision-Making

DES-CS DES competence based on continuous-valued outputs and weighted class

supports

DES-CD DES system with a dynamic threshold of competence and class-dependent

weights in the majority voting procedure

TB Threshold-Based

OB Output-Based

PB Probability-Based

KNOP K-Nearest Output Profile

KNORA-U K-Nearest Oracles-Union

DES-P DES Performance



XXVI

MCB Multiple Classifier Behavior

LCA Local Class Accuracy

LP Local Pool

RoC Region of Competence

ASP Algorithm Selection Problem

ANN Artificial Neural Networks

SVM Support Vector Machines

DT Decision Tree

DWNN Distance Weighted k-Nearest Neighbor

RF Random Forests

SVR Support Vector Regressors

Bagging(DT) Bagging with Decision Tree as a base estimator

Bagging(P) Bagging with Perceptron as a base estimator

Boosting(DT) Boosting with Decision Tree as a base estimator

Boosting(P) Boosting with Perceptron as a base estimator

META-DES Dynamic Ensemble Selection framework using Meta-learning

DES-MI Dynamic ensemble Selection for multi-class imbalanced datasets

DES-P Dynamic Ensemble Selection performance

OLA Overall Local Accuracy

MLA Modified Local Accuracy



XXVII

KNORA-E k-Nearest Oracle-Eliminate

EMO Evolutionary Multi-objective Optimization

SVD Singular Value Decomposition

CD Critical Difference





LIST OF SYMBOLS AND UNITS OF MEASUREMENTS

𝑐𝑖 An individual (base) classifier

𝐶 The pool of classifiers includes of M base classifiers, {𝑐1, . . . , 𝑐𝑀}

𝑁 Number of instances in a dataset

𝑍 Number of datasets used in the meta-learning method

x 𝑗 A test sample and j represents the 𝑗-𝑡ℎ sample

∼x 𝑗 Output profile of the 𝑗-𝑡ℎ sample

y 𝑗 Represents the class label of x 𝑗

𝑀 The size of the pool of classifiers

𝜃 𝑗 Region of competence of the 𝑗-𝑡ℎ instance

x𝑘 An instance belong to the region of competence

𝜇 Corresponding centroid of a Forest Local Trees (FLT) ensemble

𝐶′ An ensemble containing a subset of base classifiers

𝐶∗ A single classifier

𝑇ℎ Represent the threshold value that is used as a criterion for selecting classifiers.

𝑇𝑟 Training dataset

T A set of datasets

𝑇𝑒 Test dataset

𝑉𝑎 Validation dataset

𝐷𝑆𝐸𝐿 Dynamic Selection dataset



XXX

𝐾 Number of samples in the region of competence

𝜔 The weight given to training instances by Boosting methods

𝑒𝑡 The error of the classifier in the AdaBoost method

𝑀 𝑓 Meta-features

𝑀𝑚 Meta-model

L Loss function

A Learning algorithm

𝑇 Dataset

𝐷𝑆 A DS method

𝑓𝑖 𝑖 − 𝑡ℎ meta-feature set

x′ The meta-feature vector extracted from a dataset { 𝑓1, . . . , 𝑓𝑛}

𝑦′ Meta-target

𝑦′
𝑝𝑜𝑜𝑙

Meta-target that represents a pool of classifiers in phase3 in the pair (pool,

DS) recommendation

𝑦′
𝐷𝑆

Meta-target that represents a DS method in phase3 in the pair (pool, DS)

recommendation

𝑀𝑇 Meta-dataset

𝑁 𝑓 The number of features to consider at each split

𝑁𝑇 The number of trees in Random Forests

𝑍 The number of datasets used in meta-learning to extract the meta-features

DS A set of DS methods



XXXI

P A set of pool of classifiers

𝐾 The number of pools of classifiers used in the P

𝑊 The number of DS algorithms used in DS





INTRODUCTION

Whenever we have to make an important decision in our lives, we listen to multiple opinions

in order to reach an effective decision. In automated decision-making applications, the

wide-ranging advantages of consulting "several experts" before making a final decision have

been recognized by researchers(Polikar (2006); Ghosh, Shankar, Bruzzone & Meher (2010);

Sáez, Galar, Luengo & Herrera (2013)). Both in human decision-making and automated

decision-making applications, the idea of merging multiple opinions or predictions has proven to

enhance decision effectiveness. In automated decision-making, this is often accomplished using

Ensembles or committees, also known as Multiple Classifier Systems (MCS) (Kuncheva (2014b);

Polikar (2006)). MCS is a collection of individual component classifiers whose predictions are

combined to achieve improved predictions in supervised classification learning. MCS has been

shown to be an efficient way of improving predictive accuracy (Wang, Fan, Yu & Han (2003)).

The Multiple Classifier System (MCS) comprises three primary stages (Cruz, Sabourin & Cav-

alcanti (2018a)): firstly, the generation phase, where classifiers create a pool of classifiers,

secondly, the Selection phase, where classifiers are selected either statically or dynamically;

and finally, the Aggregation or Fusion phase, where Base experts’ outputs are compiled to give

the final decision. In the Selection phase of MCS, there are two possible approaches: static

selection in which the same set of classifiers is used for each sample, and dynamic selection

(DS) in which certain classifiers are selected from the pool according to where the query sample

is located. The literature on dynamic selection shows that dynamic selection techniques can

be used effectively to solve classification problems that are ill-defined when the training data

is small and not enough for modeling a classifier(Cavalin, Sabourin & Suen (2012); Cruz,

Sabourin, Cavalcanti & Ren (2015c)). This approach changes the ensemble topology on the

fly, selecting only the most competent classifier or ensemble of classifiers for each specific test

instance (Cruz et al. (2018a)). In this case, the competence of the classifiers is estimated based

on a local region of the feature space where the query sample is located.

In the domain of multiple pattern recognition contexts, the usage of dynamic selection (DS)

techniques has garnered significant attention and importance (Ko, Sabourin & Britto Jr (2008)).



2

These techniques extend their reach across diverse classification scenarios, ranging from ad-

dressing imbalanced learning challenges (Xiao, Xie, He & Jiang (2012)) to effectively handling

noisy data distributions (Cruz, Sabourin & Cavalcanti (2018b)). This underscores the role that

DS methods play in enhancing pattern recognition outcomes. Delving deeper, the exploration

of DS methods and their associated challenges gains substantial relevance within the research

community. As highlighted in various studies, DS techniques are increasingly finding application

in One-Class Classification (Krawczyk & Woźniak (2016)), managing concept drift (De Almeida,

Oliveira, Britto & Sabourin (2016)), solving One-Versus-One decomposition problems (Mendial-

dua, Martínez-Otzeta, Rodriguez-Rodriguez, Ruiz-Vazquez & Sierra (2015)), and even tackling

complex real-world issues such as signature verification (Batista, Granger & Sabourin (2012)),

face recognition (Bashbaghi, Granger, Sabourin & Bilodeau (2017)), music classification

(de Almeida et al. (2012)), and credit scoring (Xiao, Xiao & Wang (2016)). These versatile

applications demonstrate the importance of DS methods in addressing a wide spectrum of

classification challenges.

0.1 Problem statement

Dynamic selection techniques aim to enhance classification accuracy by selecting the most

competent classifiers from a pool, tailored to each instance at runtime. However, there is a lack

of specific guidance in the literature on how to select or train a pool of classifiers optimized for

dynamic selection algorithms.

The majority of DS publications use conventional pool generation schemes like Bagging

(Breiman (1996)) and Boosting (Freund & Schapire (1997)). There are 2 main limitations of

these pool generation schemes which are elaborated upon below.

0.1.1 Instability of Bagging

Bootstrap aggregation, often referred to as bagging, is a method proposed by Breiman that

works with various classification and regression techniques. This approach involves drawing



3

multiple bootstrap samples from the available data, applying a prediction method to each of

these samples, and then merging the outcomes. Bagging is based on random subsampling by

training different instances of the same base estimator. When multiple pools using bagging are

generated, each pool contains a different subset of data due to random sampling. Consequently,

the classifiers trained on these different subsets might end up being distinct from each other.

Therefore, the Bagging technique can sometimes generate a set of classifiers that yield highly

diverse results that are Noticeably varied.

To demonstrate the instability of Bagging, we designed an experimental study. We considered

the KNORA-E (Ko et al. (2008)) and OLA (Woods, Kegelmeyer & Bowyer (1997)) techniques

in this experiment since KNORA-E is one of the superior Dynamic Ensemble selection methods

and OLA is one of the superior Dynamic classifier selection techniques based on the article

(Cruz et al. (2018a)). Decision Tree and Perceptron are selected as base classifiers. For the

application of DS methods, each dataset should be divided into three sections. In addition to

the conventional training and test sets, another subset, known as Dynamic Selection Dataset

(DSEL) is included. DSEL constitutes a subset of the dataset where the estimation of the region

of competence is conducted. In this experimental study, the datasets were randomly divided into

50, 25, and 25 respectively for the training set, test set, and the DSEL. For the pool of classifiers

sizes 10 and 100 were selected to analyze the results when generating a small and a large pool of

classifiers. The experiments were repeated 10 times for each dataset by varying the random

seed used to initialize the Bagging algorithm. In order words, all replications considered the

same dataset split to remove the randomness associated with different partitions from the result

instability analysis.

Table 0.1 displays a summary of three datasets used in the experiments including Adult, Heart,

and, Liver collected from the UCI and Statlog machine learning repositories. The table

presents various attributes of the datasets, including their names, the number of instances, the

dimensionality of the data, the number of classes, and their sources.



4

Table 0.1 Summary of the 3 datasets used in the experiments

Database No. of instances Dimensionality No. of classes Source

Adult 48,842 14 2 UCI

Heart 270 13 2 STATLOG

Liver Disorders 345 6 2 UCI

Table 0.2 shows a comparison of mean and variance values for different combinations of dynamic

selection (DS) techniques using Bagging as a pool of classifiers with different sizes of the pool.

Also, different base estimators, including decision tree and perceptron are used for the pool of

classifiers. The values in the table indicate the mean accuracy values followed by the standard

deviation values in parentheses. For example, "K(100)(DT)" represents the KNORA-E technique

with 100 base classifiers of type Decision Tree, and the mean accuracy for this combination is

85.05% with a standard deviation of 0.75%.

Table 0.2 Comparison of Mean and Variance of KNORA-E (K) and OLA
(O) Using Bagging as a pool of classifiers with 10 or 100 Base Classifiers,

where the Base Classifiers are Decision Tree (DT) or Perceptron (P)

Dataset K(100)(DT) K(10)(DT) O(100)(DT) O(10)(DT) K(100)(P) K(10)(P) O(100)(P) O(10)(P)

Adult 85.05(0.75) 83.35(1.99) 79.59(1.84) 80.45(2.51) 82.53(0.95) 82.30(1.53) 84.85(1.26) 85.19(1.75)

Heart 72.78(1.35) 73.37(2.67) 72.79(2.48) 71.90(5.15) 71.61(2.71) 72.20(3.91) 75.87(3.30) 71.17(2.95)

Liver 75.40(3.68) 64.70(3.63) 62.52(5.19) 62.85(4.52) 71.37(2.26) 71.37(2.64) 73.56(2.95) 66.54(4.78)

Figure 0.1 visually depicts the difference between the maximum and minimum results across

three different datasets. The graph highlights the disparity between the highest and lowest

outcomes obtained from the dynamic selection techniques employed in the study. Specifically,

KNORA-E is denoted as K, while OLA is represented by O in the figure. The base classifiers

are indicated by DT for Decision Tree and P for Perceptron. Moreover, the number of base

estimators is varied as either 10 or 100 for different configurations. This visualization provides

a clear understanding of the difference between maximum and minimum results achieved by

employing various dynamic selection methods and base classifiers across the datasets. So as is



5

evident from the figure, there is a wide gap between the maximum and minimum results when

training with different subsets of the same problem. This exploration has shown the importance

of understanding and addressing the potential instability associated with Bagging when they are

used as a pool of classifiers for DS techniques.

Figure 0.1 The difference between max and min results in 3 datasets.
In this figure, KNORA-E is represented by K, O is used for OLA as DS
techniques, DT for Decision Tree, P for Perceptron, and the number of

the base estimator is 10 or 100

0.1.2 Redundant Classifiers in Bagging

Conventional pool generation schemes like Bagging and Boosting tend to generate redundant

classifiers, which make the system computationally expensive (Ruta & Gabrys (2005); Cruz

et al. (2015c); Woloszynski & Kurzynski (2011)). This redundancy not only consumes

additional memory but also increases the computational burden during testing, as more

classifiers lead to more calculations for selection and combination at runtime. A recent article

(Cruz, Sabourin & Cavalcanti (2015a)) reveals that most of the classifiers generated using the

Bagging technique are located within the same region, resulting in redundancy. In the bagging

technique, the bootstraps are randomly taken from the training data, and as such, a highly diverse



6

pool is not guaranteed. To be more precise, while the redundancy may be beneficial for static

ensemble models like Bagging since leads to reducing the effect of noise, such properties are

not desirable for dynamic ensemble models as in dynamic ensemble we need a proper set of

experts that covers the whole feature space.

Figures 0.2 illustrate the pool of classifiers generated by using the Perceptrons as the learning

algorithms considering a pool of 5, 10, 25, 50, 75, and 100 base classifiers. This figure illustrates

that, even with the addition of more classifiers to the pool, the majority of them closely resemble

one classifier that had been generated earlier. Consequently, similar classifiers classify the new

sample in a similar manner, and adding more classifiers does not enhance the pool’s performance.

Such methods present these behaviors because they have a global perspective on feature space

(Cruz et al. (2015a)) and are concerned with minimizing the global error of the system instead

of focusing on local ones. As such DS methods can be limited by the quality of the generated

pool as, if some feature space regions are not well covered, they will suffer in selecting the

most competent models for it. Therefore, naively using a pool generation scheme that does not

take any local information into consideration and was not proposed with a dynamic ensemble

combination in mind may limit DS performance.



7

Figure 0.2 The Bagging technique with perceptron as the base
classifier is used to generate the pool of classifiers, 𝐶, adapted from

Rafael M.O. Cruz (2015, pp. 1509.00825)

We hypothesize that the performance of dynamic selection methods can be improved by providing

the optimized pool of classifiers as input. Since the selection in DS algorithms is based on

local information (i.e., the selection of competent classifiers locally), we hypothesize that

pool generation schemes that explicitly consider local information can be a better alternative

as it is more likely that it will better cover the feature space producing a pool of classifiers

containing several local experts. This study investigated and compared the effects of different

pool generation schemes for DS methods.



8

0.2 Objective

The main objective of this thesis is to develop a framework that optimizes the pool of classifiers

to enhance the performance of dynamic selection techniques. The goal is to recommend an

optimized pool generation scheme for DS methods by leveraging the meta-learning concept

(Krĳthe, Ho & Loog (2012)). This involves considering various pool generation schemes,

including both local and global perspectives, to identify the most suitable pool for DS algorithms.

Specifically, this project aims to address the limitations and challenges in the current research

related to DS techniques. Most existing articles have used conventional pools of classifiers such

as Bagging (Breiman (1996)) or Boosting (Freund & Schapire (1997)) without fully exploring

their impact on DS method performance. In this project, several pool generation schemes,

including both global and local perspectives are compared. The results highlight that the

selection of the most appropriate pool depends on the specific characteristics of the problem and

the DS model used for selection. Suggesting that this part of a DS framework should not be

neglected and a proper scheme for optimizing the pool should be considered.

The proposed approach introduces a novel classifier’s pool recommendation system, which

leverages meta-learning and dataset characteristics. By extracting the meta-features from each

dataset, it becomes feasible to predict the best pool of classifiers. This prediction is based on

the performance and the meta-features extracted from previously seen and evaluated datasets

during the training stage of the meta-learning process. In other words, the system leverages the

performances of models training on past data to predict the best configurations to the new one.

As a result, the expectation is that this framework can achieve higher classification accuracy.

0.3 Contribution

The first contribution of this research is the analysis of global and local perspective pool

generation schemes for DS algorithms. We aim to understand how these different approaches

affect the performance of DS techniques when the generated pool of classifiers is used as input



9

for these methods. Because the local and global pool generation schemes would be used in the

design of a novel method.

Up to this point, the literature has predominantly utilized global perspective pool generation

schemes for DS methods (Ko et al. (2008); Woods et al. (1997); Cruz et al. (2015c)), while

techniques that explicitly leverage local information for pool generation, such as the Forest

of Local Trees (FLT) (Armano & Tamponi (2018)) and Locally independent classifiers (LIT)

(Ross, Pan, Celi & Doshi-Velez (2020)), have not been considered in this context yet. Thus, we

want to first analyze which is more suitable for the DS method among the global perspective

pool generation schemes. Secondly, we hypothesize that since the base classifiers selection

mechanism in DS algorithms is based on local information, local pool generation schemes

have the potential to enhance the performance of DS techniques. It means while global

pool generation schemes should not be ignored, local pool generation schemes should not be

neglected as well. In addition to global pool generation schemes. So we want to know how

much local pool generation scheme would be suitable for DS methods.

In line with this contribution, our research questions are:

• RQ1: Do local pool generation schemes achieve better results when used for dynamic

selection algorithms?

• RQ2: Does selecting the best pool of classifiers, 𝐶, depend on what dynamic selection is

used ?

• RQ3: Does selecting the best DS method depend on what pool of classifiers, 𝐶, is used?

• RQ4: Is there a relationship between static ensemble and dynamic selection results?

• RQ5: Does selecting the best pool of classifiers, 𝐶, for dynamic selection methods depend

on what dataset is used?

The second contribution of this work is the development of a meta-learning recommendation

approach for DS methods. With the application of meta-learning, we extract the meta-features

from a given dataset and predict using the meta-model built during the training step. This meta-

model was built by the meta-features that extracted training datasets and the best performance of



10

the several pools of classifiers used as input of DS algorithms. The approach consists of three

phases. In the first phase, the approach predicts which pool of classifiers is better suited for

DS algorithms. This phase considers the data characteristics and selects the pool that would

provide the best performance. In the second phase, the approach predicts which DS method

is appropriate for a given pool of classifiers based on the characteristics of a given data. This

phase ensures that the DS method selected is the best fit for the specific pool of classifiers. In

the third and final phase, the approach predicts which combination of pool and DS methods is

best suited for a given input data. When classifying a dataset, the recommended pair is used to

automatically select both a DS technique and the pool generation scheme for the DS method.

Overall, this meta-learning recommendation approach provides a novel solution to optimizing

DS methods, taking into consideration the dataset characteristics (i.e., the problem to be solved)

and the DS model or criteria that will be used for selecting and combining the classifier later.

Thus, it contributes to advancing the field as it is the first research work to specifically model

these two properties to optimize the whole system’s performance.

0.4 Structure of this thesis

The structure of this thesis consists of six chapters. Chapter 1 is dedicated to explaining the basic

concepts related to Multiple Classifier Systems (MCS) and Dynamic Selection (DS) methods.

This chapter aims to provide the fundamental concepts required to comprehend the later chapters.

Chapter 2 is a literature review that presents the related works in the field of dynamic selection

and Meta-learning. This chapter provides an overview of the research conducted in the field and

identifies the gaps the current research aims to fill.

Chapter 3 presents the experimental protocol that is used in chapters 4 and 5. This chapter

provides information about the algorithms used, their hyperparameters, the library employed for

the algorithms, and details about the collection of datasets used in this research.

Chapter 4 presents information about different pool generation schemes and is divided into

two categories: global and local perspectives pool generation schemes. This chapter explains



11

the differences between these pool generation schemes. This research employs Bagging (B),

Boosting (BS), and Random Forests (RF) as global perspective pool generation schemes, and

Forest of Local Trees (FLT) and Local Independence Training (LIT) as local perspective pool

generation schemes. This chapter aims to provide a comprehensive understanding of their

differences and their characteristics. In this chapter, we present a comparison of different pools

of classifiers and their performance on dynamic selection methods. This comparison’s results

show that we can not use just one pool generation scheme to generate a pool for DS techniques

for all 288 datasets used. This finding highlights the need for a more sophisticated approach to

optimize the pool of classifiers for dynamic selection algorithms. This leads us to the proposed

meta-learning recommendation approach, which is presented in Chapter 5.

Chapter 5 presents the meta-learning recommendation approach for DS methods and provides

a comparative study of the results. The chapter highlights the performance of the proposed

approach and compares it with other state-of-the-art methods. Also, the meta-learning approach

demonstrates its ability to recommend a pool generation scheme and a DS method, or both fully

automated simultaneously, for a given dataset, leading to improved performance compared to

fixed approaches.

Chapter 5.5.1 is the conclusion that summarizes the main contributions of the research and

provides an overall evaluation of the research findings. This chapter also highlights the limitations

of the research and identifies areas for future research.





CHAPTER 1

BASIC CONCEPTS

In this chapter, we will delve into the fundamental concepts behind Multiple Classifier Systems

(MCS) and Dynamic Selection (DS) techniques. These concepts form the bedrock upon which

our exploration of more advanced methodologies is built. By thoroughly understanding the

principles of MCS and DS, we pave the way for the understanding of this work.

1.1 Multiple classifier System (MCS)

Multiple Classifier Systems (MCS), also called ensemble of classifiers, are based on the

assumption that a combination of multiple experts can be an alternative to increasing classification

accuracy as it can compensate for the limitations of selecting a single model (Dietterich (2000);

Breiman (1996)). Thus, different classifiers are combined to improve the system’s performance.

Since different classifiers may make different errors on different samples, combining them

into an ensemble can lead to more accurate decisions (Ko et al. (2008)). For this reason,

researchers have extensively investigated MCS as a potential approach for improving accuracy

in challenging pattern recognition contexts such as dealing with noisy data (Zhu, Wu & Yang

(2004)), imbalance distributions (Souza, Sabourin, Cavalcanti & Cruz (2023)) as well as handling

changing environments and concept drift (Almeida, Oliveira, Britto Jr & Sabourin (2018); Jiao,

Guo, Gong & Chen (2022)).

According to (Britto Jr, Sabourin & Oliveira (2014)) MCS are composed of three stages, which

are visually represented in figure 1.1. These stages are as follows:

1. Generation: This phase involves creating a pool of classifiers, 𝐶, with the aim of obtaining

a set of accurate and diverse base models.

2. Selection: In this phase, classifiers can be chosen either statically or dynamically. In static

selection, a fixed ensemble model is selected for all instances, whereas in dynamic selection,

the most suitable classifiers are chosen at runtime for each instance.



14

3. Aggregation or Fusion: In the aggregation phase, a combination rule is applied to the

outputs from the selected classifiers, 𝐶′ (Cruz et al. (2018a)).

Figure 1.1 The three possible phases of a Multiple Classifier System
(MCS)

The selection stage, as depicted in Figure 1.2, can be performed either statically or dynamically.

Static selection methods use a criterion estimated using the validation dataset, 𝑉𝑎, to compose

an Ensemble of classifiers, 𝐶′, during the training phase. Then, the same selected ensemble of

classifiers, 𝐶′, predicts all test samples in the generalization phase. Static selection is mainly

based on maximizing the accuracy and diversity of the ensemble and has been accomplished

through a variety of methods, including greedy search (Cvetkovic & Martinović (2020)),

evolutionary algorithms (Gabrys & Ruta (2006)) and heuristic approaches (Cruz, Cavalcanti,

Tsang & Sabourin (2013); Cruz, de Sousa & Cavalcanti (2022)).

On the other hand, dynamic selection techniques work by, given a pool of classifiers, 𝐶, selecting

either a single classifier 𝐶∗ or an ensemble of classifiers, 𝐶′, to classify each unknown example.

When a single classifier 𝐶∗ is selected, the system is called Dynamic Classifier Selection (DCS),

and as such, only its prediction is taken into account for labeling the query sample. When an

ensemble of classifiers 𝐶 ′ is selected from the pool, the outputs of all selected classifiers, 𝐶′,



15

need to be aggregated to give the final decision. This process is often conducted using classifier

combination techniques such as classical Majority Voting (Cruz, Sabourin & Cavalcanti (2015b);

Kittler, Hatef, Duin & Matas (1998)) or weighted voting scheme based on the competence level

estimations computed during the selection scheme (Cruz et al. (2015b)).

Figure 1.2 The differences between static selection (a), dynamic
classifier selection (b), and dynamic ensemble selection (c)

1.2 Pool generation methods

In machine learning, pool generation refers to the process of creating an ensemble or collection

of individual classifiers. There are two main approaches to pool generation: a global perspective

and a local perspective. Global perspective methods consider the performance of individual

algorithms on a global level, which means that the selection process is based on the performance



16

of each base model across the entire feature space. In other words, trying to model the whole

data distribution of a given training set 𝑇𝑟 . In contrast, local perspective methods consider the

performance of each base model on the region of the feature space located around a query

sample, x 𝑗 . The goal of pool generation is to select a diverse set of algorithms that complement

each other’s strengths and weaknesses to produce an accurate and robust ensemble. In chapter 4,

we will dive deeper into the details of pool generation schemes to generate a pool of classifiers

as input of DS algorithms and compare them.

1.3 Dynamic selection

In order to select the competent classifier for the classification of x 𝑗 , dynamic selection (DS)

systems operate dynamically on-the-fly (Cruz et al. (2018a); Cavalin, Sabourin & Suen (2013)).

In DS algorithms, the competence of the classifiers is estimated based on a local region of the

feature space where the query sample, x 𝑗 , is located. Thus, dynamic selection methods are

based on the assumption that each classifier in the pool is a local expert in the particular region

of the feature space.

The DS techniques are categorized according to the taxonomy shown in Figure 1.3. It is

composed of four properties: Neighborhood-selection techniques, Neighborhood-selection

space, Classifier-selection criteria, and Classifier-selection method (Elmi & Eftekhari (2021)).



17

Figure 1.3 Taxonomy of dynamic selection systems adapted of the
article. Threshold-Based (TB), Output-Based (OB), and

Probability-Based(PB) are three strategies as classifier selection methods



18

Table 1.1 categorizes dynamic selection methods according to neighborhood selection technique,

neighborhood selection space, classifier selection criteria, and classifier selection method. These

techniques involve various methods for estimating the competence of individual classifiers and

selecting the best one(s) for a given test instance. In order to define a local region around a query

instance, neighborhood selection techniques are used, like k-nearest neighbors (KNN), Potential

Function, Clustering, Fuzzy Hyperboxes, Recursive Partitioning, and graph-based DS. Also,

Neighborhood-selection spaces refer to the specific areas in which the selection of neighboring

data instances is carried out. This selection can occur in either the feature space or the Decision

space. Classifier-selection criteria are measures used to determine the suitability of individual

classifiers or groups of classifiers within a pool. These criteria can be broadly categorized into

two groups: individual-based and group-based.

Classifier-selection methods are techniques used in dynamic selection to choose the most suitable

classifiers from a pool for a given task. There are three main methods used for classifier selection:

Threshold-Based (TB), Output-Based (OB), and Probability-Based (PB). TB method selects

classifiers whose competence level is above a certain threshold. OB method selects a fixed

number of the best classifiers based on their competitiveness. PB method employs a roulette

wheel approach where classifiers are selected based on their competence levels.



19

Table 1.1 Categorization of dynamic selection methods according to
neighborhood selection technique, neighborhood selection space,

classifier selection criteria, and classifier selection method. They are
ordered by publication year

DS techniques Neighbor selection

technique

Neighbor selec-

tion space

classifier selection

criteria

classifier selection

method

ref year

LCA KNN Feature space Individual-based Output-Based Woods et al. (1997) 1997

OLA KNN Feature space Individual-based Output-Based Woods et al. (1997) 1997

MLA KNN Feature space Individual-based Output-Based Smits (2002) 2002

KNORA-U KNN Feature space Group-based Threshold-Based Ko et al. (2008) 2008

KNORA-E KNN Feature space Individual-based Threshold-Based Ko et al. (2008) 2008

DES-P Potential function Feature space individual-based Threshold-Based Woloszynski, Kurzynski, Podsi-

adlo & Stachowiak (2012)

2012

DES-KL Potential function Feature space Individual-based Threshold-Based Woloszynski et al. (2012) 2012

KNOP KNN Decision space Individual-based Threshold-Based Cavalin et al. (2013) 2013

META-DES KNN Meta-features Individual-based Threshold-Based Cruz et al. (2015c) 2015

MCB KNN Decision space Individual-based Output-Based Sergio, de Lima & Ludermir (2016) 2016

DES-PRC Potential function Decision space Individual-based Threshold-Based Kurzynski, Krysmann, Trajdos & Wol-

czowski (2016)

2016

META-DES.O KNN Meta-features Individual-based Threshold-Based Cruz, Sabourin & Cavalcanti (2017) 2017

DISi KNN Feature space Individual-based Threshold-Based Pereira, Britto, Oliveira & Sabourin

(2018)

2018

DES-MI KNN feature space Individual-based Threshold-Based García, Zhang, Altalhi, Alshom-

rani & Herrera (2018)

2018

FIRE-DES++ KNN Feature space Individual-based Threshold-Based Cruz, Oliveira, Cavalcanti & Sabourin

(2019)

2019

HF-MCDM KNN Feature space Individual-based Threshold-Based Elmi & Eftekhari (2020) 2020

DDES KNN Feature space Individual-based Threshold-Based Choi & Lim (2021) 2021

MLSPB14 KNN Feature space and

Decision space

Individual-based Probability-Based Elmi & Eftekhari (2021) 2021

FH-DES Fuzzy Hyperboxes Feature space Group-based Threshold-Based Davtalab, Cruz & Sabourin (2022, 2024) 2022

1.3.1 Neighborhood-selection techniques

Neighborhood selection (NS) techniques are utilized to define a local region in relation to a

query instance x 𝑗 . Figure 1.4 shows a region of competence, 𝜃 𝑗 , of the query sample at the

center and two samples of different classes. These techniques can be categorized into six distinct

types: K-Nearest Neighbor (KNN), clustering, Potential functions (Woloszynski & Kurzynski

(2011)), Fuzzy Hyperboxes (Davtalab et al. (2022, 2024)), Recursive Partitioning (Souza

et al. (2023)), and Graph-based DS (Li, Wen, Li & Cai (2019); de Araujo Souza, Sabourin,

da Cunha Cavalcanti & e Cruz (2023)). These techniques can identify the neighbors of the input

data in both feature space (F-space) and decision space (D-space) (Elmi & Eftekhari (2021)).



20

Figure 1.4 The test sample and its region of competence
defined by the samples A, B, C, D, and E

The K-nearest neighbors (KNN) algorithm is a popular machine learning algorithm used for

classification and regression tasks. Most of the DS techniques use KNN for neighborhood

selection including LCA (Woods et al. (1997)), OLA (Woods et al. (1997)), MLA (Smits (2002)),

KNORA-E (Ko et al. (2008)), KNORA-U (Ko et al. (2008)), KNOP (Cavalin et al. (2013)),

META-DES (Cruz et al. (2015c)), and more. Another example is the article (Elmi & Eftekhari

(2020)), the authors use the K-nearest neighbor (KNN) algorithm to define a neighborhood

selection space for a given instance. The ensemble members that perform well on the instances

in the neighborhood selection space are selected to make the final prediction for the given

instance. The KNN approach is used to select a subset of instances in the training set that

is closest to the given instance. The outputs of the ensemble members on the instances in

the neighborhood selection space are then evaluated using Hesitant Fuzzy Multiple Criteria



21

Decision-Making (HF-MCDM) to select the most competent ensemble members for the final

prediction (Elmi & Eftekhari (2020)).

Clustering is an unsupervised learning task that involves identifying hidden patterns within

unlabeled input data through the creation of clusters. In simpler terms, it arranges data into

meaningful natural groups based on the similarity between various features, revealing the data’s

underlying structure (Usama et al. (2019)). A clustering algorithm is used in ML, data mining,

network analysis, pattern recognition, and computer vision for a large number of applications.

In the articles (Kuncheva (2000)) and (Soares, Santana, Canuto & de Souto (2006)) the local

region is defined using clustering methods. The ensemble in the article (Soares et al. (2006)) is

created based on the clusters produced by the k-means clustering algorithm. When a testing

pattern is given as input, its distances to the centroids (calculated using Euclidean distance) of

the clusters formed by k-means are determined. The pattern is then assigned to the cluster with

the nearest centroid. The ensemble is built by selecting the most accurate and diverse classifiers

linked to the chosen cluster. The article (Beigy et al. (2009)) uses clustering methods to define

the local region for the proposed DCS technique. In this approach, when encountering a new

test pattern, the system determines which cluster it most closely resembles. After identifying the

nearest cluster, the algorithm selects the classifier that was trained on this particular cluster and

employs it to classify the test pattern.

Potential functions methods (Woloszynski & Kurzynski (2011)) can be used to determine a

local region as a Neighborhood-selection technique. In the potential function method, the whole

dynamic selection dataset is used to compute competence rather than just the neighborhood of

the test sample. Each data point in the dynamic selection dataset is assigned a weight based on

its Euclidean distance to the query instance. This means that data points closer to the query

have a greater influence on estimating the competence of the classifiers (Cruz et al. (2018a)).

Typically, a Gaussian potential function is employed, resulting in data points closer to the query

exerting a stronger influence on the competence estimation of the classifiers. The function is

presented in equation (1.1).



22

𝐾 (𝑥𝑘 , 𝑥 𝑗 ) = exp
(
−𝑑 (𝑥𝑘 , 𝑥 𝑗 )2

)
(1.1)

Several DS techniques have been proposed utilizing the potential function model. These include

Dynamic Ensemble Selection based on Kullback–Leibler divergence (DES-KL) (Woloszynski

et al. (2012)), the technique based on the randomized reference classifier (RRC) (Woloszyn-

ski & Kurzynski (2011)), and the DCS methods based on logarithmic and exponential functions

(Woloszynski & Kurzynski (2009)).

The K-Nearest Neighbors (KNN) algorithm is often used in dynamic ensemble selection (DES)

methods to assess the competence of classifiers in a small region surrounding the query sample.

However, KNN has its limitations. One significant drawback is its sensitivity to the local

distribution of data. This means that if the data points in that local region are unevenly

distributed or skewed, the performance of KNN can be negatively affected. Furthermore,

KNN comes with a high computational cost. It requires the entire dataset to be stored in

memory, and during inference, it involves multiple distance calculations to determine the nearest

neighbors. This computational complexity can become a limitation, especially when dealing

with large-scale datasets. The need to store the entire dataset and perform numerous distance

calculations can result in slower performance and increased memory consumption. Due to

these limitations, researchers have proposed new methods as alternatives to relying solely on

KNN in DES techniques. The paper (Davtalab et al. (2022)) presents a new DES framework

based on fuzzy hyper-boxes called FH-DES. Each hyper-box can represent a group of samples

using only two data points (Min and Max corners). This method is based on calculating the

misclassification samples. This method selects the samples inside of each hyper-box based on

not being misclassified. Despite the KNN-based approaches, the fuzzy hyper-box is not sensitive

to the local data distribution.

The previous works in the field of dynamic selection had limitations concerning the construction

of the test samples’ region of competence. Despite their successes in selecting classifier subsets

and achieving positive outcomes in different domains, these methods did not address how to



23

accurately define and construct the region of competence for test samples. This aspect, crucial

for the effectiveness of dynamic approaches, was largely overlooked. Researchers have proposed

new methods to overcome these limitations. Graph-based dynamic ensemble pruning (GDEP)

(Li et al. (2019)) is a method for neighborhood selection that carefully selects nearby samples,

evaluates the performance of individual classifiers, and forms a subset of effective classifiers for

making predictions. It aims to overcome the sensitivity of classifier selection to the makeup

of the neighborhood and uses graph-based techniques to achieve this. GDEP consists of three

main steps: Construct the Neighborhood, Evaluate Classifier Performance, and Construct the

Neighborhood. In the first step, GDEP starts by creating a group of neighboring samples around

the test sample. These neighbors play a role in the classifier selection process. In the Evaluate

classifier performance, the performance of the individual classifiers is assessed using a must-link

and cannot-link graph structure. This step helps measure how well each classifier performs in

the context of the neighborhood. And in the Form the Selected Classifier Subset step, based

on the evaluation of classifier performance, GDEP selects a subset of classifiers that are most

effective in recognizing the specific facial expression of the test image (Li et al. (2019)).

Conventional ensemble methods encountered limitations in achieving diversity among the

classifiers within the ensemble, which is crucial for enhancing classification performance. While

various approaches attempted to introduce diversity, they often faced challenges in incorporating

local information effectively. Also, the existing approach employed the nearest neighbors

rule and Euclidean distance for defining these local regions, which could be problematic in

high-dimensional spaces due to the curse of dimensionality. To address these limitations, a

novel local ensemble method was proposed in this work. Recursive Partitioning is a technique

used in ensemble learning to enhance the performance of a classification system by creating a

specialized group of classifiers that focus on distinct areas of feature space (Souza et al. (2023)).

In Recursive Partitioning, the feature space is divided into smaller sub-regions through a process

similar to constructing a decision tree. Each sub-region is associated with a set of local classifiers

that are experts in that specific area. These local classifiers are generated based on different node

levels of the decision path that a sample takes in the tree. In the context of the proposed method,



24

(Souza et al. (2023)), decision trees are used to partition the feature space into distinct regions.

The partitions are defined by recursively splitting the data based on certain features and their

values. Each leaf node of a decision tree is associated with a local pool of classifiers. The idea

behind recursive partitioning is to break down a complex problem into simpler sub-problems

that are easier to model or analyze.

1.3.2 Neighborhood-selection space

Neighborhood selection techniques aim to define a local region around a query instance. This

local region contains other instances that are considered "neighbors" of the query instance.

Neighborhood-selection techniques can be applied to the feature space (F-space) or the decision

space (D-space). In F-space, we group together data that share similar features and consider

them as neighbors in a specific area. This means that instances with similar characteristics are

considered neighbors. On the other hand, in D-space, we focus on data that have similar output

profiles (decisions) and consider them as neighbors in a specific area. The output profile of

the instance x = {x1, . . . , x𝑚} is denoted by
∼x = {∼x1, . . . ,

∼x𝑚}, where each
∼x1 is the decision

yielded by the base classifier 𝐶𝑖 for the sample x 𝑗 (Cruz et al. (2015c)). This process is called

transforming the test instance to the output profile. In other words, output profiles refer to the

set of classification outputs generated by a pool of classifiers for a given input. It represents the

decision space (D-space) where each classifier’s output is considered as a dimension.

1.3.3 Classifier-selection criteria

There exist several criteria to measure the competence level of base classifiers for the classifi-

cation. The classifier-selection criteria are divided into two general groups, individual-based

and group-based (Cruz et al. (2018a)). The individual-based measures are where the individual

performance of the base classifier is used to estimate the level of competence in an independent

fashion, i.e., the performance of each base classifier is measured independently of the perfor-

mance of the other base classifier in the pool. Accuracy (Woods et al. (1997)), Probabilistic

(Woloszynski & Kurzynski (2011)), Oracle (Ko et al. (2008)), Behavior (Cavalin et al. (2013)),



25

Ranking (Woods et al. (1997)), Meta-learning (Cruz et al. (2015c)), Data Complexity (Brun,

Britto, Oliveira, Enembreck & Sabourin (2016)) are examples of individual-based classifier

selection criteria.

Group-based measures are composed of criteria that consider the interaction between the

classifiers in the pool (i.e., the competence estimation of a single model affects the selection

of all others). There are three subgroups of it: Diversity (Soares et al. (2006)), Data handling

(Xiao et al. (2012)), and ambiguity (Dos Santos, Sabourin & Maupin (2008)). These techniques

measure the interaction between classifiers, assessing how effectively they collaborate for

the selection, rather than treating each one as a completely independent model. The most

accurate classifier should be selected, and the system has to check the base classifiers are

related to the accurate classifier that was selected in order to add more diversity to the ensemble

of classifiers, 𝐶′. DES-competence based on continuous-valued outputs and weighted class

supports (DES-CS) (Woloszynski & Kurzynski (2011)) and DES system with a dynamic

threshold of competence and class-dependent weights in majority voting procedure (DES-CD)

(Lysiak, Kurzynski & Woloszynski (2011)) are examples of group-based methods.

1.3.4 Classifier-selection method

There are a few strategies to select a classifier after estimating the classifier’s competencies:

Threshold-Based (TB), Output-Based (OB), and Probability-Based(PB).

• In the Threshold-Based (TB) the classifiers whose competence level is greater than the

threshold, 𝑇ℎ, are selected like K-Nearest Output Profile (KNOP) (Cavalin et al. (2013)),

K-Nearest Oracles-Union (KNORA-U) (Ko et al. (2008)), and DES Performance (DES-

P)(Woloszynski et al. (2012)).

• Output-Based (OB) selects the most competent classifier as output. According to the article

(Elmi & Eftekhari (2021)), several DS techniques use the OB method, including Multiple

Classifier Behavior (MCB) (Sergio et al. (2016)), OLA (Woods et al. (1997)), and Local

Class Accuracy (LCA) (Woods et al. (1997)).



26

• Probability-Based (PB) methods assign a probability to each classifier in an ensemble based

on its competence level and use a roulette wheel approach to select the classifiers. The

number of selected classifiers, 𝐶′, is not fixed and may vary depending on the probabilities

assigned. PB methods are a type of dynamic selection technique and can be used in both

dynamic classifier selection (DCS) and dynamic ensemble selection (DES)(Elmi & Eftekhari

(2021)).



CHAPTER 2

RELATED WORK

In this Section, we provide a brief overview of the selection of pool generation schemes as inputs

for DS techniques, as well as the role of meta-learning in algorithm recommendation. We split it

into three categories: 2.1. Selection of pool generation schemes. 2.2. Expanding Algorithm

Recommendation using Meta-Learning in Dynamic Selection Contexts. This section explores

Meta-Learning for Recommending Algorithms in a broader context and its application within

the context of DS algorithms. 2.3. Meta-learning for recommending algorithms in the ensemble

context.

2.1 Selection of pool generation schemes

A crucial factor in enhancing the performance of DS methods is the selection of an appropriate

pool generation scheme to create a pool of classifiers as input for DS algorithms. This is of

paramount importance because, in scenarios where there is no single local expert in the pool or

the quantity of local experts for a given instance is low, the task of selecting an effective ensemble

becomes either impossible or significantly challenging for a DS method. The selection of pool

generation schemes for DS algorithms can be categorized into two main perspectives: global

and local. It is observed that the majority of DS publications tend to employ global perspective

pool generation schemes, while the utilization of local perspective schemes is relatively limited.

An online pool generation method (Souza, Cavalcanti, Cruz & Sabourin (2019)) creates a local

perspective pool of classifiers specifically for test samples in difficult regions of the feature space,

considering the estimated classification difficulty of instances. By using classifiers generated

locally, the DCS techniques can more effectively select the appropriate classifier for instances

prone to misclassification. For query samples surrounded by easy instances, a simple nearest

neighbors rule is employed. The method involves creating a local pool (LP) consisting of

specialized classifiers. Each classifier is selected using a DCS technique from a local sub-pool

that contains at least one competent classifier for each instance in the class overlap regions of the

feature space. If the unknown instance’s Region of Competence (RoC) is located in a difficult



28

region, the LP is dynamically generated using neighboring instances and used to label the query

sample. However, if the query instance is far from the class boundaries, no pool is generated,

and a simple nearest neighbors rule is used to obtain the output label. This work presents a

methodology specifically designed for Dynamic Classifier Selection (DCS) techniques, not

Dynamic Ensemble Selection (DES) which are promising in this field. In addition, the authors

did not explore the utilization of meta-learning in the article.

Souza et al. (Souza, Cavalcanti, Cruz & Sabourin (2017)) introduced a comprehensive overview

of the Oracle model and its relevance in the literature, particularly in relation to DCS techniques.

The study highlighted the challenges faced by DCS techniques in selecting the best classifier

according to the Oracle model, resulting in noticeable differences in accuracy rates. To address

this issue, an ensemble generation method was proposed, ensuring a 100% Oracle accuracy rate

in the training set. This incremental method generated binary classifiers by placing hyperplanes

in the feature space, guaranteeing at least one competent classifier for each training instance. The

method proved to be faster than traditional ensemble approaches and allowed for the automatic

determination of the pool size based on the training data. Experimental results revealed a

significant disparity between the theoretical limit and DCS techniques when pools were generated

without Oracle information. Even with a 100% Oracle accuracy rate, the average accuracy rate

achieved by DCS techniques was approximately 85%, indicating their struggle in selecting the

most competent classifier. This discrepancy suggests that the Oracle model, despite its use in the

literature, may not be the optimal guide for identifying a promising pool for DCS techniques, as

these techniques rely on local data rather than global information provided by the Oracle model.

Monteiro et al. (Monteiro, Britto, Barddal, Oliveira & Sabourin (2021)) proposed a method that

is a classifier pool generation approach guided by diversity estimated from data complexity and

classifier decisions. The process starts by assessing the behavior of complexity measures on

different subsamples of the dataset. Complexity measures that exhibit high variability across

subsamples are selected for further pool adaptation. An evolutionary algorithm is then employed

to optimize diversity in both the complexity space and the decision space. The proposed

method focuses on creating a pool of classifiers by leveraging two types of diversity: complexity



29

diversity and decision diversity. Complexity diversity involves training classifiers on dataset

subsets that represent sub-problems with varying levels of complexity. Decision diversity aims

to generate classifiers that make different types of errors. The authors hypothesize that both

types of diversity can guide the pool generation process as an optimization problem, which

is solved using a multi-objective genetic algorithm. The contribution of this work lies in two

aspects. Firstly, a new method for pool generation is proposed, which trains classifiers on data

subsets with different complexity levels. Secondly, the authors demonstrate the positive impact

of this approach when combined with dynamic selection methods. This method has a global

perspective on problems.

2.2 Expanding Algorithm recommendation using meta-learning in dynamic
selection contexts

In the field of classification, the process of selecting the most suitable classification algorithm

for a specific problem is known as the Algorithm Selection Problem (ASP) (Rice (1976); Khan,

Zhang, Rehman & Ali (2020)). Meta-learning has emerged as a powerful approach to address

ASP, showing significant success in the domain of classification. Conventional approaches for

algorithm selection, such as trial and error or expert knowledge, have limitations. Trial error is

time-consuming and computationally expensive, while theoretical analysis may not cover all

possible algorithms. Relying on domain experts can be costly and biased. To overcome these

drawbacks, there is a growing demand for machine learning systems that automate algorithm

selection. One approach is meta-learning based algorithm recommendation, which learns from the

performance of algorithms on previous tasks. It accumulates knowledge and uses it to recommend

suitable algorithms for specific tasks. This approach has been successful in various domains,

including classification (Zhu, Yang, Ying & Wang (2018)), clustering (Pimentel & De Carvalho

(2019)), regression (Lorena, Maciel, de Miranda, Costa & Prudêncio (2018)), optimization

(Muñoz, Sun, Kirley & Halgamuge (2015)), and dynamic ensemble selection for classification

improvement (Cruz et al. (2015c)). By automating algorithm selection, these systems overcome

limitations and enable non-experts to apply machine learning more independently (Khan et al.

(2020)). Meta-learning is about "learning to learn" (Hutter, Kotthoff & Vanschoren (2019)) and



30

involves using prior knowledge to improve learning systems. It is a broad field with various

dimensions, and one important area is automated algorithm selection. Meta-learning treats

algorithm selection as a typical learning problem, where dataset characteristics (meta-features)

are the independent variables and the target variable is the estimation of algorithm performance.

To handle the large space of problems and algorithms, meta-learning studies select problems of

different complexities and diverse algorithms (Smith-Miles (2009)).

In the paper (Gemp, Theocharous & Ghavamzadeh (2017)), the authors explore state-of-the-art

meta-learning methodologies and identify the limitations and research challenges in addressing

Data preprocessing that is a challenging task in machine learning applications, involving data

cleaning, imputation, and feature normalization, dimensionality reduction, and data balancing.

Meta-learning encodes datasets with informative statistics called meta-features, assuming

that similar datasets in meta-feature space exhibit similar behavior when used with similar

models. Also, in the paper (Zagatti et al. (2021)), the authors propose a meta-learning-based

recommendation system for data preparation. The system suggests five ranked pipelines, catering

to users with different levels of experience. The top-ranked pipeline improves the performance

of an AutoML system and is comparable to a reinforcement-learning-based algorithm but

significantly faster. The method is tested in a real-world application, demonstrating its benefits

and limitations. Overall, this work addresses the need for automating data preparation in AutoML

platforms using meta-learning, showing promising results. Furthermore, the article (Bilalli,

Abelló, Aluja-Banet & Wrembel (2016)), uses meta-learning for automated Data Pre-processing.

The extensive evaluation conducted in this paper demonstrated that applying the recommended

transformations enhances the final result of the algorithms for a wide range of datasets.

In the meta-learning context, it is important the selection of meta-features extracted from

a given dataset. In the past, there have been attempts at meta-feature selection within the

meta-learning framework. (Todorovski, Brazdil & Soares (2000)) made the initial effort

using the zooming-ranking method. In this study, classical feature selection techniques were

employed to identify relevant features. The article (Kalousis & Hilario (2001)) also explored

the problem of meta-feature selection. However, their approach was limited to finding relevant



31

features for pairs of algorithms. This is because their definition of meta-learning focused on

detecting the best classification algorithm in the context of pairs of algorithms. The paper

(Reif, Shafait, Goldstein, Breuel & Dengel (2014)) conducted an empirical evaluation of

various categories of meta-features to determine their suitability for predicting classification

accuracies for standard classifiers. They also applied an automatic feature selection method

to the entire set of meta-features used. However, the details of this feature selection method

were not provided, and the number of datasets used was small. The article (Smith, Mitchell,

Giraud-Carrier & Martinez (2014)) discusses the problem of recommending learning algorithms

and their associated hyperparameters. The authors propose a meta-learning approach that

uses past performance data to recommend the best algorithm and hyperparameters for a given

dataset. They compare their approach to other popular methods such as grid search and random

search and demonstrate its effectiveness in several experiments. The authors conclude that their

method is a promising approach for automating the machine learning process and making it

more accessible to non-experts.

The paper (Garcia, Lorena, de Souto & Ho (2018)) explores the use of complexity measures to

enhance understanding and differentiate the performance of different techniques, considering

factors such as class overlap, data separability, and distribution. The study compares various

regression models’ effectiveness in predicting classifier accuracies for classification problems.

The results show that these models can accurately predict accuracies and identify the best

classifier, outperforming randomly chosen or fixed classifiers. Using data complexity measures,

accurate meta-models are built to predict expected accuracies and select the best classifier among

popular techniques like Artificial Neural Networks (ANN), Support Vector Machines (SVM),

Decision Tree (DT), and K-Nearest neighbors (kNN). Comparisons with baseline recommenders

highlight the superior performance of meta-regressors Distance Weighted k-Nearest Neighbor

(DWNN), Random Forests (RF), and Support Vector Regressors (SVR), with RF utilizing

important complexity measures based on neighborhood information and structure.



32

2.3 Meta-learning for recommending algorithms in the ensemble context

Additionally, meta-learning is employed to recommend algorithms within the context of

ensembles. The article (Pinto, Cerqueira, Soares & Mendes-Moreira (2017)) by using meta-

learning and rank approach to learn from meta-data proposed an automated bagging system. In

this publication, the authors employed a procedure that involved extracting dataset characteristics

and leveraging past performance data. They used meta-learning techniques that take into

account the characteristics of the data. However, the focus was primarily on using bagging as a

global perspective pool generation scheme, without exploring the potential of local perspective

pool generation schemes. Furthermore, the authors did not experiment with applying their

meta-learning system to DS methods.

The size of the pool is important for controlling computational complexity and performance.

Determining the appropriate pool size depends on factors like the choice of base classifiers, the

DS method used, and the problem characteristics. Traditionally, researchers set a pre-specified

pool size due to the computational expense of evaluating different sizes. However, this may limit

the DS method’s performance. The article (Roy, Cruz, Sabourin & Cavalcanti (2016)) proposed

the prediction of the best size of a pool of classifiers for META-DES based on the classification

complexity using the meta-learning method. This method builds a meta-regression model by

extracting complexity measures and the best pool size of datasets. By using the meta-regression

model, the prediction of the pool size for a given data is accessible. In the paper (Roy et al.

(2016)), a meta-regression model that predicts a suitable pool size for DS algorithms based on

the problem’s intrinsic classification complexity is proposed. The prediction process in this

article follows a meta-learning framework, involving training and application phases to obtain

meta-examples and train a meta-regression learner for pool size prediction. In the application

phase, the trained model is used to predict the best pool size for unseen datasets based on their

meta-features.

(Feurer et al. (2015)) proposed a meta-learning approach for automated machine learning by

combining ensemble methods and Bayesian optimization. The meta-learning applied in this



33

method is performed for warm-starting the Bayesian optimization technique. Their approach

involved training meta-models to predict the performance of different learning algorithms on

new datasets and using them to construct ensembles that achieved state-of-the-art performance

on various classification tasks. In the article "Using meta-learning for multi-target regression"

by (Aguiar, Santana, de Carvalho & Junior (2022)), the authors propose a meta-learning method

to build ensembles of regression models for multiple targets. They use meta-features to describe

the datasets and meta-learning algorithms to select the best models to include in the ensemble.

The proposed method is compared to other methods on several datasets, and the results show

that it outperforms these methods. The authors also analyze the importance of the meta-features

in the performance of the method. The article provides insights into the use of meta-learning for

building regression ensembles and highlights the potential of this approach.

The article (Sun, Liu, Chua & Schiele (2019)) presents a meta-transfer learning approach for

few-shot learning, which addresses the challenge of learning from a few examples. The authors

propose a meta-learning framework that transfers knowledge from pre-trained models to new

tasks with few labeled examples. They evaluate their approach on several benchmark datasets

and demonstrate its effectiveness in improving few-shot learning performance. The authors

also compare their approach to state-of-the-art few-shot learning methods and show that it

outperforms them. The results suggest that meta-transfer learning is a promising approach for

few-shot learning tasks. Additionally, the authors show that their meta-transfer learning approach

can be used to improve the performance of ensembles of few-shot learners. They propose a

method for ranking the few-shot learners based on their performance on a validation set and

use the ranked learners to construct an ensemble. The results demonstrate that their approach

outperforms other ensemble methods on several benchmark datasets. The authors conclude

that their meta-transfer learning approach, combined with ensemble learning and ranking, can

significantly improve the performance of few-shot learning systems.



34

2.4 Critical analysis

Previous research works (Souza et al. (2019), Souza et al. (2017)) have introduced local pool

approaches for DCS methods, but these methods lack suggestions for DES methods. Similarly,

the article (Monteiro et al. (2021)) demonstrated the positive impact of DS methods but did not

consider the local perspective. In certain studies, like those discussed in (Zagatti et al. (2021))

and (Bilalli et al. (2016)), a meta-learning approach was employed for data preparation; however,

these works did not delve into the exploration of pool generation scheme recommendations,

particularly within the context of ensemble learning.

On the other hand, in the works of (Reif et al. (2014)), (Smith et al. (2014)), and (Garcia et al.

(2018)), meta-learning concepts were employed to select the best classifiers for static selection.

However, (Roy et al. (2016)) and (Roy et al. (2016)) only focused on predicting the size of

classifier pools, neglecting pool recommendations for DS methods.

While (Feurer et al. (2015)) proposed an ensemble for building an ensemble for classification

and regression, their approach neither applied to DS methods nor provided recommendations

for constructing ensembles. Additionally, (Pinto et al. (2017)) presented a meta-learning

recommendation, but they solely considered a global perspective on pool generation schemes.

As evident from these explanations, there is a notable gap in the literature concerning the use of

meta-learning concepts for recommending suitable pool generation schemes as input for DS

methods.

To the best of our knowledge, no existing work has directly tackled the specific problem we are

addressing in this study, which is the multi-label recommendation for predicting the optimal

pool generation scheme for DS techniques and the suitable DS method for a given data based on

dataset characteristics. In this study, in addition to traditional global perspective pool generation

schemes we employ two local perspective pool generation schemes that have not been explored

before for DS algorithms. We then utilize a meta-learning strategy to predict the optimal pool

generation scheme for DS techniques. Also, it would be able to predict the suitable DS method

for a given data when we are uncertain about the appropriate technique to use. Furthermore,



35

it would be able to predict both the pool generation scheme and DS methods simultaneously.

By combining these novel pool generation schemes and meta-learning, we aim to enhance our

decision-making process and address the challenges of selecting the most suitable approach.





CHAPTER 3

EXPERIMENTAL METHODOLOGY

The goal of this study is to find an optimal pool of classifiers for dynamic selection algorithms.

To reach this goal, an experimental study was conducted to compare 7 pool generation schemes

including Bagging(DT), Bagging(P), Boosting(DT), Boosting(P), Random Forests(RF), Forest

of Local Trees(FLT), and Local Independence Training(LIT) as input for 7 dynamic selection

algorithms that shown superior performance based on literature including k-Nearest Oracle-

Eliminate (KNORA-E) (Ko et al. (2008)), k-Nearest Oracle Union (KNORA-U) (Ko et al.

(2008)), Dynamic Ensemble Selection framework using Meta-learning (META-DES) (Cruz

et al. (2015c)), Dynamic ensemble Selection for multi-class imbalanced datasets (DES-MI)

(García et al. (2018)), Dynamic Ensemble Selection performance (DES-P) (Woloszynski et al.

(2012)), Overall Local Accuracy (OLA) (Woods et al. (1997)), and Modified Local Accuracy

(MLA) (Smits (2002)). These techniques were selected based on their superior performance in

the dynamic selection literature, as indicated by recent surveys and articles (Cruz et al. (2018a);

Hou, Wang, Zhang, Wang & Li (2020)).

In our study, we prepared datasets by following some preprocessing steps. Initially, we used the

StandardScaler also known as Z-score normalization (de Amorim, Cavalcanti & Cruz (2023))

from scikit-learn, to standardize the feature data. Thus, making sure all features have the

same scale. To handle any missing data, we employed the SimpleImputer from scikit-learn,

which replaces missing values in the standardized data with the mean of other values in the

same column. This approach ensures that missing values do not adversely affect the model’s

performance. Additionally, we utilized the LabelEncoder from scikit-learn to convert categorical

labels into a numerical format. This conversion allows the machine learning algorithms to work

more effectively with the target variable.



38

3.1 Datasets

The comparative study uses 288 datasets from the Landscape Contest at ICPR 2010 (Macià, Ho,

Orriols-Puig & Bernadó-Mansilla (2010)). This framework enables evaluation of the robustness

of supervised classification techniques and identifies their limitations. To provide a thorough

understanding of the datasets used in this study and the rationale behind their selection, we begin

by introducing the problem and the methodology proposed by Macia (Macià et al. (2010)).

The competitiveness of classification techniques has been argued over a small set of repetitive

problems over the past two decades. Without control over its characteristics, such as the similarity

of data sets, a common test bed can lead to incomplete conclusions about the quality of learning

algorithms. Problems that provide adequate coverage of the data complexity space would be

necessary to perform studies. For this reason, Macia et al. (Macià et al. (2010)) devised a

contest that uses a collection of problems selected based on their complexity. Therefore, these

datasets offer a well-rounded and comprehensive basis for addressing our research questions.

The idyllic landscape refers to a landscape that covers the characteristic space, all the different

types of problems, and their complexity. This landscape dataset involved two sets of data: S1,

which was Binary labeled and used for training the algorithms, and S2, which was not labeled

and used for testing the algorithms. Also, it consists of artificially generated datasets using an

evolutionary multi-objective optimization approach to fill the data complexity space. In other

words, having datasets with varying degrees of data complexity according to the different data

complexity measures proposed by (Ho & Basu (2002)). By using Evolutionary Multi-objective

Optimization (EMO) (Deb (2012)), instances are selected that satisfy the required complexity,

i.e., minimize the complexity metrics and maximize the complexity metrics (Macià et al. (2010)).

It is helpful to understand how well different learning algorithms perform and compare them

based on complexity. Several complexity metrics were employed in dataset generation proposed

in (Ho & Basu (2000)), including the number of feature dimensions, points, and the maximum

Fisher’s discriminant ratio. A comprehensive table listing all complexity metrics is presented in

table 3.1 for reference.



39

Table 3.1 Complexity metrics used in dataset
generation

Complexity metric

1 Number of Feature Dimensions

2 Number of Points

3 Maximum Fisher’s Discriminant Ratio

4 Volume of the Overlap Region

5 Minimized Error by Linear Programming

6 Percentage of Points on the Boundary

7 The Ratio of Average Intra/Inter-Class NN Distance

8 Error of 1NN Classifier

9 Nonlinearity of 1NN Classifier

10 Error of Linear Classifier by LP

11 Nonlinearity of Linear Classifier by Linear Programming

12 Number of Iterations in SUP K-Means Clustering

In the paper (Macià et al. (2010)), 12 complexity measures from (Ho & Basu (2002)), with the

omission of the maximum Fisher’s discriminant ratio, were used. 80,000 data sets running the

EMO approach over five seeds, including Checkerboard, Spiral, Wave Boundary, Yin Yang, and

Pima are generated. Checkerboard is a classical non-linear problem with heavily interleaved

classes following a checkerboard layout.

Figure 3.1 shows the distribution of Checkerboard, Spiral, Wave boundary, and Tin Yang. Spiral

is a problem with a non-linear class boundary following a spiral layout. A Wave Boundary is a

linearly separable problem defined by a sinusoidal function. Yin Yang is a linear problem with

small disjuncts, and the Pima is Indian Diabetes from the UCI repository.

In this paper, five initial data sets evolved using different objective configurations. Each data set

was optimized using three complexity measures, resulting in eight experiments. This selection



40

of complexity measures led to 8 combinations like 000, 001, ..., and 111. Then Singular Value

Decomposition (SVD) was conducted on all the complexity measures. This process allowed the

construction of a space based on the first two principal components. To make the contest more

manageable, a subset of data sets was chosen. The space was divided into 100 cells, and five

data sets were randomly selected from each cell. The authors conducted a deliberate selection

process by cherry-picking 300 data sets from a larger pool of 500 datasets. These 300 data sets

were utilized in the contest. Figure 3.2 illustrates the distribution of the 300-data set sample

from the generated collection.

Figure 3.1 Distribution of Checkerboard, Spiral, Wave
Boundary, Yin Yang adapted from Núria Macià (2010, pp.

29-45)



41

Figure 3.2 Based on the complexity measurement, the
problems are projected onto the first and second principal

components: (a) the entire collection and (b) 300 cherry-picked
training data sets adapted from Núria Macià (2010, pp. 29-45)

The characteristics of the data sets also depend on external factors like the number of instances,

attributes, or a measure of the balance between the classes. The datasets are partitioned into two

subsets distinguished by their attribute counts: one subset containing datasets with 8 attributes

and the other containing datasets with 20 attributes. These external factors are considered in this

article to generate the datasets by setting certain rules: (1) making sure we have a minimum

number of instances, (2) conserving a specific class balance, (3) ensuring that the calculation of

the complexity measures is feasible, and (4) avoiding having duplicate instances.

In this study, 13 datasets out of the initial set of 301 had to be removed due to a notable challenge

encountered when using Boosting with a perceptron as a base estimator. The AdaBoost algorithm

typically requires a diverse collection of classifiers, but it struggled with these 13 datasets. Most

of the time, only one classifier was generated, resulting in a failure to meet the requirement of

having more than one classifier in the ensemble. This issue arises from the algorithm’s difficulty

in creating a varied set of base classifiers that meet the boosting criteria, which mandate that

each weak model should perform better than random chance. So, the pool of classifiers could

not be created due to the model’s inability to converge. In other words, the model failed to reach

a stable and optimal set of classifiers. This observation highlights the sensitivity of the boosting



42

perceptron ensemble method to the characteristics of individual datasets, potentially indicating

that the data distribution or inherent complexity of these particular 13 datasets may not align

optimally with the algorithm’s assumptions and requirements. The following datasets were

removed from the S1 list: 216, 219, 220, 221, 252, 253, 254, 255, 257, 258, 260, 262, 263.

The datasets share a consistent distribution of instances, with the following characteristics: 58

datasets with 230 to 300 instances, 110 datasets with 301 to 400 instances, 52 datasets with 401

to 500 instances, 67 datasets with 501 to 1000 instances, and one dataset (dataset_301) with

9992 instances. Figure 3.3 shows the distribution of dataset sizes.

Figure 3.3 The distribution of dataset sizes

3.2 Experimental set up

In the experiment, each dataset is randomly divided into three groups, including 50% of the data

used for training, the next 25% for the dynamic selection dataset (DSEL), and the remaining

25% for the data used for training testing. The divisions were performed while maintaining



43

the prior probabilities of each class. The pool of classifiers, 𝑐 , comprises 100 base classifiers.

In this research, 288 datasets are used to compare the performance of global and local pool

generation schemes for dynamic selection methods. The experiments were replicated ten times

for each dataset, and then their mean and standard deviation were extracted.

3.3 DS techniques

Seven dynamic selection algorithms were used in this research using DESlib version 0.3.5 as the

DS library (Cruz, Hafemann, Sabourin & Cavalcanti (2020)). In order to obtain meaningful

results and ensure a diverse set of models, we considered three DCS (Dynamic classifier

selection) and four DES (Dynamic ensemble selection) methods. The following is a compilation

of the names of the methods: Overall Local Accuracy (OLA) (Woods et al. (1997)) and Modified

Local Accuracy (MLA) (Smits (2002)) as DCS and KNORA-E (Ko et al. (2008)), KNORA-U

(Ko et al. (2008)), Meta-learning for dynamic ensemble selection (META-DES) (Cruz et al.

(2015c)), Multiclass Imbalance (DES-MI) (García et al. (2018)), and Dynamic Ensemble

Selection performance (DES-P) (Woloszynski et al. (2012)).

All DS techniques have been built upon the foundation of the K-Nearest Neighbors (KNN)

method. We set K, the size of the region of competence, to 7 for the techniques as per previous

findings in the article (Cruz et al. (2015c)). The number of output profiles used to estimate

the competence of the base classifiers is set to 5 for the META-DES algorithm. Also, in the

META-DES algorithm, the meta-classifier consists of a Multinomial Naive Bayes. “best” is

used to select the base classifier after the competencies are estimated in the OLA and MLA

techniques. This selection means that the DCS methods are all executed with their default

behavior and the classifier with the highest competence estimate is always selected.



44

Table 3.2 Hyperparameters used to build the classification models

Category Name Hyperparameters Library

Base estimator Decision Tree Criterion = Gini, Splitter = Best sklearn: v1.0.2

Base estimator Perceptron Alpha = 0.0001, Max_iter = 1000, tol = 0.001 sklearn: v1.0.2

Static Random Forest n_estimators = 100, criterion = ‘gini’ sklearn: v1.0.2

Static Bagging(DT) n_estimators = 100, base_estimator = DecisionTree sklearn: v1.0.2

static Bagging(P) n_estimators = 100, base_estimator = Perceptron sklearn: v1.0.2

Static AdaBoost(DT) n_estimators = 100, base_estimator = DecisionTree sklearn: v1.0.2

Static AdaBoost(p) n_estimators = 100, base_estimator = Perceptron sklearn: v1.0.2

Static LIT n_estimators = 100, base_estimator = Neural net-

work(Fully connected 256*256)

sklearn:

v1.0.2/TensorFlow

v2.12.0

Static FLT n_estimators = 100, base_estimator = DecisionTree,

maximum number of leaves = 100

sklearn: v1.0.2

DCS OLA Pool_classifiers = [Bagging pool], K = 7, Selection_-

method = Best

deslib: v0.3.5

DCS MLA Pool_classifiers = [Bagging pool], K = 7, Selection_-

method = Best

deslib: v0.3.5

DES KNORAE Pool_classifiers = [Bagging pool], K = 7 deslib: v0.3.5

DES KNORA-U Pool_classifiers = [Bagging pool], K = 7 deslib: v0.3.5

DES META-DES Pool_classifiers = [Multinomial Naive bayes], K = 7 deslib: v0.3.5

DES DES-MI Pool_classifiers = [Bagging pool], K = 7 deslib: v0.3.5

DES DES-P Pool_classifiers = [Bagging pool], K = 7 deslib: v0.3.5

3.4 Learning algorithms

Table 3.2 shows the entire list of base classifiers, static selection methods, and DS methods,

along with their corresponding model hyperparameters. In this research, Decision Tree and

Perceptron were utilized as base estimators using scikit-learn version 1.0.2. For the Decision

Tree, the hyperparameters used were Gini for the criterion and Best for the splitter. As for the

Perceptron, the hyperparameters included an alpha value of 0.0001, a maximum iteration of

1000, and a tolerance of 0.001. The selection of hyperparameters detailed in this table involved



45

a systematic approach that combined domain knowledge with empirical experimentation. This

process included conducting a comprehensive literature review to identify recommended settings

for similar models and problems. The initial settings for hyperparameters were based on

recommendations from publications (Cruz et al. (2015c); Ko et al. (2008)), thereby leveraging

the collective wisdom of prior research.

Three static selection methods were employed in this research: Bagging, Boosting, and Random

Forests (RF). For Bagging and Boosting, the hyperparameters used were the number of estimators,

which was set to 100. The base estimator chosen for the first use of Bagging was Decision Tree,

while for the second use of Bagging, Perceptron was selected as the base estimator. Furthermore,

the hyperparameters used for Random Forest included a base estimator count of 100 and a Gini

criterion.





CHAPTER 4

EMPIRICAL ANALYSIS OF POOL GENERATION SCHEMES AND THEIR IMPACT
ON DS ALGORITHMS

In this chapter, we empirically demonstrate that the success of a DS algorithm is closely tied to

the quality of the input pool of classifiers and the selection of the best pool generation scheme

may change according to the DS method used. Therefore, selecting the optimal pool is important,

as different pools can result in varying performances. We explore the generation schemes for

different pools of classifiers, including global and local perspectives. The Global pool generation

scheme employs techniques that take a broad view of the problem and were initially proposed for

static selection methods such as Bagging. In contrast, the Local pool of classifiers perspective

involves methods with expertise in distinct feature space regions. In this chapter, we compare

both local and global perspectives pool generation schemes for DS techniques including the top

4 DES and 3 DCS methods according to an empirical study (Cruz et al. (2018a)). This selection

enables a meticulous exploration of the influence of pool generation schemes on both DCS

and DES methodologies. In addition, a statistical analysis is presented to answer the research

questions of this study:

• RQ1: Do local pool generation schemes achieve better results when used for dynamic

selection algorithms?

• RQ2: Does selecting the best pool of classifiers, 𝐶, depend on what dynamic selection is

used ?

• RQ3: Does selecting the best DS method depend on what pool of classifiers, 𝐶, is used?

• RQ4: Is there a relationship between static ensemble and dynamic selection results?

4.1 Global pool generation techniques

Pool generation schemes take a global perspective on problems, focusing on generating classifiers

that do not rely on specific regions of the feature space and have a global perspective on datasets

(i.e., it aims to model the whole data distribution). For instance, we can cite techniques such as

Bagging (Breiman (1996)), Boosting (Schapire & Freund (2013)), Random Forests (Breiman



48

(2001)), Heterogeneous ensemble methods which use different base learning algorithms to

directly ensure ensemble diversity (Reid (2007)), Rotation Forest (Kuncheva & Rodríguez

(2007)), Random Subspace (Zhang & Pham (2011)). Most DS research publications employ

pools of classifiers generated using well-known ensemble generation methods, all of which

have a global perspective, as indicated in Table 4.1. This table provides an overview of the

different pool generation schemes used in publications. Remarkably, the utilization of local

pool generation schemes appears to be neglected by the DS literature as no recent techniques

have considered them. In the following sections, global and local perspective pool generation

schemes are explained in detail.

Table 4.1 Pool generation schemes used in publications

Publications Pool of classifiers Pool perspective DS methods

Woods et al. (1997) Heterogeneous classifiers Global LCA

Woods et al. (1997) Heterogeneous classifiers Global OLA

Smits (2002) Bagging Global MLA

Ko et al. (2008) Bagging, Boosting and Random Subspaces Global KNORA-U

Ko et al. (2008) Bagging, Boosting and Random Subspaces Global KNORA-E

Woloszynski et al. (2012) Bagging and Heterogeneous classifiers Global DES-P

Woloszynski et al. (2012) Bagging and Heterogeneous classifiers Global DES-KL

Cavalin et al. (2013) Bagging Global KNOP

Cruz et al. (2015c) Bagging Global META-DES

Kurzynski et al. (2016) Heterogeneous classifiers Global DES-PRC

Sergio et al. (2016) Heterogeneous classifiers Global MCB

Cruz et al. (2017) Bagging Global META-DES.O

Pereira et al. (2018) Bagging Global DISi

García et al. (2018) Random Forests Global DES-MI

Cruz et al. (2019) Bagging Global FIRE-DES++

Islam, Liu, Li, Liu & Kang (2019) Random Forests Global PCC-DES

Elmi & Eftekhari (2020) Bagging Global HF-MCDM

Choi & Lim (2021) Heterogeneous classifiers and Boosting Global DDES

Elmi & Eftekhari (2021) Bagging Global MLSPB14

Choi & Lim (2021) Boosting Global DDES

Davtalab et al. (2022, 2024) Bagging Global FH-DES



49

4.1.1 Bagging

As originally introduced in the paper by (Breiman (1996)), the Bagging technique operates by

training base learners independently. It utilizes data transformations to enhance the diversity of

the model’s predictions, a crucial step in the ensemble learning process. Bagging is a popular

ensemble learning method that combines predictions from multiple models to improve the

accuracy and stability of the final prediction.

Bagging works by selectively choosing a random subset of the training dataset to train each

model within the ensemble (Breiman (1996); Skurichina & Duin (1998); Zhou (2012)). The

core concept underlying bagging is to independently train multiple base learners on distinct

subsets of the training data. Subsequently, their predictions are combined using an aggregation

function. Typically, these base learners are simple models, such as linear Perceptron or Decision

Trees, each trained using different bootstrap taken from the original data distribution.

The primary objective here is to heighten diversity among the base learners, which, in turn,

effectively reduces the variance in the final prediction. This method ensures equal weight is

assigned to each base learner’s prediction. As a result, the final prediction is calculated as the

mean of all these individual predictions. A graphical representation of the bagging algorithm is

shown in Figure 4.1.

Bagging, a pool generation scheme, is formalized in algorithm 4.1. The algorithm takes three

inputs, including training datasets, 𝑇𝑟 , a Learning algorithm, A, and the number of iterations

denoted by 𝑀 . The output is a pool of classifiers, denoted by 𝐶. The first step in the algorithm is

to initialize an empty pool of classifiers, 𝐶. This pool will eventually contain the base classifiers

that are trained during the algorithm. Next, the algorithm enters a loop that will run 𝑀 times. For

each iteration, a bootstrap sample, denoted by, 𝑇𝑟 (𝑖) , is drawn randomly with replacement from

the original training set, 𝑇𝑟 . This means that some samples will be included multiple times in the

bootstrap sample, while others may not be included at all. After the bootstrap sample is obtained,

a base classifier, denoted by 𝐶𝑖, is trained on the bootstrap sample using the specified learning

algorithm, A. The learning algorithm could be any algorithm used to train a classifier, such as a



50

Perceptron or Decision Tree. Weak base classifiers are employed in this study because prior

research in the DS literature illustrates that utilizing weak models as base classifiers improves

their performance (Dos Santos et al. (2008); Cruz, Cavalcanti & Ren (2011)). Earlier research

shows that it is beneficial for these classifiers to show instability, indicating that even a slight

change in the data distribution leads to notable variations in their prediction behavior(Cruz

et al. (2015c)). Once the base classifier is trained, it is added to the pool of classifiers, 𝐶, by

appending it to the list of classifiers already in the pool. This process is repeated for each of the

𝑀 iterations. Finally, the algorithm returns the pool of classifiers, 𝐶, which is composed of 𝑀

base classifiers.

Figure 4.1 Graphical representation of the Bagging
algorithm adapted from Sergio González (2020, pp.

205-237), illustrating its iterative process using bootstrap
for generating a pool of classifiers



51

Algorithm 4.1 Bagging assembles a pool of 𝑀 base classifiers by repeatedly generating

bootstrap samples from the training dataset, 𝑇𝑟 , and training individual classifiers using a

specified learning algorithm A

Input: Training dataset 𝑇𝑟 , a learning algorithm A, iterations 𝑀

Output: A pool of classifiers, 𝐶, composed of 𝑀 base classifiers

1 𝐶 = ∅ pool of classifiers is empty

2 for 𝑖 = 1 to 𝑀 do

3 𝑇𝑟 (𝑖) = bootstrap sample from 𝑇𝑟

4 𝐶𝑖 = train a classifier on 𝑇𝑟 (𝑖) via learning algorithm, [A]

5 𝐶 = 𝐶 ∪ 𝐶𝑖 add 𝐶𝑖 to 𝐶

6 end for

7 Return the trained pool of classifiers 𝐶

4.1.2 Boosting

Boosting applies an iterative strategy for turning a weak model into a stronger one to fix its

weaknesses (Freund & Schapire (1997)). The idea of boosting is to learn several weak classifiers

and combine them using differently weighted versions of the training data, rather than learning

one strong classifier (Kuncheva (2014a)). In this ensemble method, in each iteration, the error

is calculated for every training instance, and a function of this error is utilized to update the

probability that the instance is selected to be part of the next classifier’s training set (González,

García, Del Ser, Rokach & Herrera (2020)). Every instance in the training data is given a

weighting, 𝜔 𝑗 , based on the accuracy of the previous classifiers, allowing the algorithm to focus

its attention on samples that are still incorrectly classified at the end of each iteration (Freund

(2001)). Figure 4.2 illustrates graphically how Boosting algorithms work.



52

Figure 4.2 Graphical representation of the Boosting
algorithm adapted from Sergio González (2020, pp.

205-237), illustrating how boosters learn from previous
errors by enhancing the importance of incorrectly

predicted training instances in future iterations

AdaBoost, short for Adaptive Boosting, is one of the most recognized boosting algorithms, as

introduced by Freund and Schapire in their foundational research (Freund & Schapire (1997)). At

its core, AdaBoost focuses on enhancing the performance of a series of weak learners, typically

decision trees, by iteratively adjusting the weights of training instances based on previous

classification errors. As each weak learner is trained, AdaBoost emphasizes the misclassified

instances from the preceding iteration, guiding the subsequent learner to correct these errors.

Furthermore, during the training phase, the predictions from each weak learner are aggregated



53

with weights that reflect their individual accuracy, as further elucidated by Gonzalez (González

et al. (2020)). Although initially designed with binary classification in mind, its application has

been successfully extended to multiclass classification tasks as well (Hastie, Rosset, Zhu & Zou

(2009)).

The AdaBoost algorithm, outlined in algorithm 4.2, takes in a training sample, 𝑇𝑟 , a learning

algorithm, A, and the number of iterations, 𝑀 , and outputs a pool of classifiers, denoted by 𝐶,

composed of 𝑀 base classifiers. The algorithm starts by initializing an empty pool of classifiers,

𝐶. This algorithm assigns initial instance weights to each training instance, where is set to

1/N, with N being the total number of instances in the training dataset. AdaBoost then enters

a loop that runs for M iterations. In each iteration, a base classifier, denoted by 𝐶𝑖, is trained

on the sampled data using the learning algorithm, A. The algorithm then calculates the error

rate, 𝑒𝑖, of the base classifier and calculates a weight for it, denoted by 𝛼𝑖. Then, the weights of

correctly classified instances are adjusted to reduce their importance in the subsequent iteration,

making them smaller. The normalization step occurs after updating the instance weights. This

step ensures that the sum of all instance weights remains equal to 1, which helps maintain the

overall balance of the weighted dataset. This process ensures that instances that are frequently

misclassified receive higher weights, making them more influential in subsequent iterations.

Finally, the base classifier is added to the pool of classifiers, 𝐶, and the process is repeated for

𝑀 iterations. The pool of classifiers, 𝐶, is then returned as the output of the algorithm.



54

Algorithm 4.2 AdaBoost leverages a pool of classifiers by iteratively updating base classifiers to

improve their performance on a training dataset, 𝑇𝑟

Input: training dataset 𝑇𝑟 , Learning algorithm A, iterations 𝑀

Output: A pool of classifiers, 𝐶, composed of 𝑀 base classifiers

1 𝐶 = ø pool of classifiers, 𝐶, is empty

2 Initializing 𝑀 as an array of the size of classifiers and initializing weights, [𝜔] for each

instance as 1/𝑁

3 for 𝑖 = 1 to 𝑀 do

4 𝐶𝑖 = Fit_classifier(𝑇𝑟 , 𝜔)

5 𝜖𝑡 =

∑
x𝑖 ∈𝐷,𝑇𝑡 (x𝑖 )≠y𝑖 𝜔𝑖∑

x𝑖 𝜔𝑖

6 𝛼𝑡 = log
(

1−𝜀𝑡
𝜀𝑡

)
7 for 𝑥 𝑗 in 𝑇𝑟 do

8 if 𝑇𝑡 (x𝑖) = y𝑖 then

9 𝑤𝑖 = 𝑤𝑖 · 𝜀𝑡
1−𝜀𝑡

10 end if

11 end for

12 Normalize(𝜔)

13 𝐶 = 𝐶 ∪ 𝐶𝑖 add 𝐶𝑖 to 𝐶

14 end for

15 Return the trained pool of classifiers, 𝐶

AdaBoost is a powerful algorithm for boosting the performance of machine learning models.

However, like any other algorithm, it has certain limitations that can impact its performance.

One significant concern is its susceptibility to noisy data, which might lead to overfitting and

consequently diminish the effectiveness of the models (Zhu & Hovy (2007)). This sensitivity

also extends to outliers, which can have a pronounced effect on both the training process and the

ultimate results (Bischl, Mersmann, Trautmann & Weihs (2012)). In terms of computational

demands, AdaBoost can be resource-intensive. This is primarily due to the requirement to train

multiple weak learners, a process that becomes particularly taxing for extensive datasets or



55

intricate models (Chen & Guestrin (2016)). Additionally, AdaBoost might falter when applied

to imbalanced datasets. In cases where the minority class is scarcely represented, there’s a risk

that the algorithm may skew its focus towards the majority class, neglecting the minority class

in the process (Kubat, Matwin et al. (1997)).

Gradient Boosting (Friedman (2002)), eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin

(2016)), LightGBM (Ke et al. (2017)) and CatBoost (Dorogush, Ershov & Gulin (2018)) are

other multi-class Boosting methods. Gradient Boosting is a boosting algorithm that combines

multiple weak learners to create a strong learner. It uses a gradient descent approach to

optimize the loss function, L, and iteratively updates the weights of the training examples

(Friedman (2002)). Extreme Gradient Boosting (XGBoost) is a gradient boosting algorithm

that uses a more regularized model for better generalization and is optimized for parallel

processing. It includes advanced features such as handling missing values, regularization, and

cross-validation (Chen & Guestrin (2016)). LightGBM is a gradient-boosting algorithm that

uses a histogram-based approach to binning and feature parallelization to achieve faster training

and higher efficiency. It includes features such as handling categorical features, outlier detection,

and advanced regularization techniques (Ke et al. (2017)). CatBoost is a gradient boosting

algorithm that handles categorical features and uses a novel algorithm for gradient computation

that reduces overfitting. It includes features such as handling missing values, text features, and

advanced visualization tools for model interpretation (Dorogush et al. (2018)). These techniques

have not been considered for this study because all these boosting techniques primarily train

regression algorithms as base models rather than classification ones. This specific requirement

is driven by the need for a differentiable loss function, which is central to their functioning. The

obstacle in classification arises because classification inherently deals with discrete classes. To

predict distinct categories, using a differentiable loss function presents challenges. For example,

in the case of the classification of images of cats and dogs, there’s no smooth way to differentiate

between these two distinct categories because they are not continuous values. Consequently,

given this fundamental distinction, these boosting techniques are not ideally suited to serve as

pool-generation schemes for DS methods in our context. Their inherent focus on regression



56

limits their applicability to classification tasks, necessitating exploring other methodologies

better aligned with our objectives. in other words, as the base model they generate is a regression

model, it limits the usage of it as a pool generation scheme for classification. Gradient and

XGBoost can be used for classification, but in this scenario, they combine the output of the

regressors to give the final decision. As a pool generation scheme, this would not be applicable

as we require that base models are classifiers and not regressors.

4.1.3 Random Forests

Random Forests is a type of ensemble learning method proposed by Breiman (2001), which

uses a collection of decision trees to make predictions. Each tree in the ensemble is built using a

random subset of the input data and a random set of input features. This injection of randomness

during the construction of the trees ensures that they are different from each other, which helps to

reduce overfitting and improve generalization (Biau (2012)). The final prediction of the Random

Forests is obtained by aggregating the predictions of all the individual trees in the ensemble.

Since the base constituents of the ensemble are tree-structured predictors, and each tree is grown

in accordance with a random parameter, the method is named "Random Forests" (Biau (2012)).

The Random Forests algorithm, outlined in algorithm 4.3, takes as input a training set 𝑇𝑟 , the

number of trees to create 𝑀, and the number of features to consider at each split 𝑁 𝑓 . The

algorithm starts by creating an empty pool of classifiers 𝐶. It then loops 𝑀 times, and for each

iteration, a bootstrap sample 𝑇𝑟 (𝑖) is drawn from the training set 𝑇𝑟 . Then, a decision tree 𝐶𝑖 is

trained on the bootstrap sample using 𝑁 𝑓 randomly selected features at each split. The trained

decision tree 𝐶𝑖 is added to the pool of classifiers 𝐶. Once all the decision trees have been

trained and added to the pool of classifiers, 𝐶, the algorithm returns the trained Random Forests

model 𝐶. During the prediction phase, the model aggregates the predictions of all the decision

trees in the pool using the majority voting for prediction.



57

Algorithm 4.3 Random Forests algorithm trains multiple decision trees. Each tree learns from a

bootstrapped sample

Input: Training set 𝑇𝑟 , Number of trees 𝑀 , Number of features to consider at each split

𝑁 𝑓

Output: Random Forests model

1 𝐶 = ø pool of classifiers, 𝐶, is empty

2 for 𝑖 = 1 to 𝑀 do

3 𝑇𝑟 (𝑖) = bootstrap sample from 𝑇𝑟

4 randomly select features at each split

5 𝐶𝑖 = decision tree trained on 𝑇𝑟 (𝑖)
6 𝐶 = 𝐶 ∪ 𝐶𝑖 add 𝐶𝑖 to 𝐶

7 end for

8 Return the trained Random Forests model, 𝐶

4.2 Local pool generation techniques

The aim of local pool generation schemes is to develop local expertise because committee

members are expected to be more confident in classifying query samples related to their expertise,

which is the classification of the query sample in the area close to that. The local region can be

defined by different methods, such as using the K-Nearest Neighbors technique and clustering,

to find the neighborhood of a query sample. Two algorithms for generating a pool of classifiers,

𝐶, using local information are discussed below.

4.2.1 Forest of Local Trees

A novel algorithm for ensemble classifiers named Forest of Local Trees (FLT) was proposed by

Armano et al. (Armano & Tamponi (2018)), in which classifiers are trained with a focus on

different regions of the feature space. In other words, it aims to create an ensemble of classifiers

that leverage specialized local knowledge. Instead of relying on a single expert, FLT draws



58

inspiration from the concept of a local committee where each member specializes in a subset of

the feature space, representing a distinct local region of expertise. This approach ensures that

committee members are more confident in answering questions related to their respective areas

of expertise (i.e., local region).

In this ensemble, Random Decision Trees (RDT) are employed, similar to the Random Forest

(RF) technique. Within the ensemble, each RDT is built using a bootstrap sample, which is

essentially a random selection of data points with replacement from the original dataset. At each

node during the tree-building process, a random subset of features is considered when making a

split decision. This randomness ensures that different trees within the ensemble do not evaluate

the same features at every node, leading to a diverse set of decision trees. The criterion used for

making these split decisions is the Gini impurity.

Each RDT is associated with a centroid, denoted as, 𝜇. A centroid is the center point or

representative point of a cluster in clustering algorithms. It represents the average or central

location of data points within the cluster, aiding in cluster identification and characterization

(Lee & Antonsson (2000)). The idea behind the centroid mechanism is to distribute the

“expertise” of the forest across the entire dataset. To select centroids, 𝜇, initially, each sample in

the dataset has an equal chance of becoming a centroid, 𝜇. The formula 4.1 shows the same

probability of being picked.

𝑃
(𝜇)
0 =

1
|𝐷 | (4.1)

However, once a new centroid, 𝜇, is chosen, the probability of selecting the remaining samples

is updated. This adjustment increases the likelihood of selecting samples that are far from the

current centroid, 𝜇. The picking distribution is updated after each selection, as illustrated in

Figure 4.3 (Armano & Tamponi (2018)). The update for each sample is calculated using the

equation 4.2.



59

Q(𝜇)
𝑡+1 (𝑥) = p(𝜇)

𝑡 (𝑥) · log (1 + ∥𝑥 − 𝜇𝑡 ∥) (4.2)

A normalization step is applied using the formula 4.3 to ensure that the probabilities meet the

requirements of being valid probabilities (sum to 1).

P(𝜇)
𝑡+1 (𝑥) =

Q(𝜇)
𝑡+1 (𝑥)∑𝐷

|𝑖=1| Q
(𝜇)
𝑡+1 (𝑥𝑖)

(4.3)

Following that, a random decision tree is generated focusing on a centroid, 𝜇, for training.

During the training phase, the importance of a training sample x 𝑗 which belongs to a part of

the local region, is established according to its distance from the centroid, 𝜇. The closer the

sample, the greater its importance. It is noteworthy that random decision trees see the whole

dataset; however, the weights assigned to the samples differ in such a way that samples closer to

the centroid have greater importance in the training phase.

To place a particular attribute appropriately in the decision tree, Gini Index is used for attribute

selection. The Gini impurity index (g) is defined by the equation 4.4.

𝑔(𝑇𝑐) =
∑︁
𝑦∈𝑌

�̂�𝑐 (𝑦) · (1 − �̂�𝑐 (𝑦)) (4.4)

The expression �̂�𝑐 (𝑦) represents the ratio of samples within dataset 𝑇𝑐 that are labeled as 𝑦 to

the total number of samples in dataset 𝑇𝑐. In other words, it calculates the proportion of samples

in 𝑇𝑐 that belong to a particular class 𝑦.

In the proposed modification, the Gini index (𝑔) is updated by including sample weights in the

calculation. The modified �̂�(𝑤)𝑐 (𝑦) is given by the equation 4.5. Here, 𝑤𝑖 represents the weight

associated with each sample.



60

Figure 4.3 Each time a centroid is picked, the picking distribution is updated. The
bigger the circle, the higher the probability of a sample being selected. Dataset samples
are represented by gray circles, whose radius is proportional to the picking probability,
while black boxes show centroids adapted from Giuliano Armano (2018, pp. 380-390)

�̂�(𝑤)𝑐 (𝑦) =
∑|𝑇 (𝑤) |
𝑖=1 𝑤𝑖 · 𝐼 (𝑦𝑖 = 𝑦)∑|𝑇 (𝑤) |

𝑖=1 𝑤𝑖

(4.5)



61

Regarding classification, an RDT’s competence over a given instance depends on the same

weighting schema, which gives more importance to instances close to its centroid, 𝜇 (Ar-

mano & Tamponi (2018)). Figure 4.4 illustrates weighting distributions. Each RDT in the FLT

receives, in fact, a different weight distribution, which gives samples decreasing importance

with their distance from the centroid, 𝜇, over which the RDT has been trained. Dataset samples

are represented by gray circles, whose radius is proportional to the corresponding weight,

while centroids are shown by black boxes (Armano & Tamponi (2018)). The FLT has been

demonstrated to be effective in a wide range of standard classification domains.

The FLT algorithm, outlined in algorithm 4.4, takes as input a training dataset, 𝑇𝑟 , a learning

algorithm, A, and the number of iterations, 𝑀 . The algorithm’s output is a pool of classifiers,

𝐶, composed of 𝑀 base classifiers. At the beginning of the algorithm, the pool of classifiers,

𝐶, is empty. Then, a centroid is randomly chosen from the set of possible centroids for each

iteration. The centroid is used to create a random decision tree (RDT). The picking probabilities

for the centroids are updated based on their distance from the newly added centroid. This helps

ensure that the centroids are well spread across the sample space. The RDT is then trained

on the training dataset, and the resulting classifier is added to the pool of classifiers, 𝐶. This

process is repeated for the desired number of iterations, resulting in a pool of classifiers.



62

Figure 4.4 These are examples of weighting distributions. The FLT uses different
weight distributions for each RDT, resulting in decreasing importance of samples as
they move away from the centroid. Black boxes denote centroids, while gray circles

denote samples, with the radius proportional to the weight. To ensure good coverage of
the sample space, centroids should be chosen as far apart as possible adapted from

Giuliano Armano (2018, pp. 380-390)



63

Algorithm 4.4 Forest of Local Trees (FLT) training scheme

Input: training dataset, 𝑇𝑟 , a Learning algorithm A, iterations 𝑀
Output: A pool of classifiers, 𝐶, composed of, 𝑀 , base classifiers

1 𝐶 = ∅ pool of classifiers, 𝐶, is empty
2 for 𝑖 = 1 to 𝑀 (random decision trees) do
3 ⊲ pick the first centroid, 𝜇, using the same probability of being picked: 𝑃(𝜇)

0 = 1
|𝑇 |

4 ⊲ update picking probabilities by using: 𝑄 (𝜇)
𝑡+1 (𝑥) = 𝑝

(𝜇)
𝑡 (𝑥) · log (1 + ∥𝑥 − 𝜇𝑡 ∥)

5 ⊲ Normalization of the picking probabilities for centroid selection by using:

𝑃
(𝜇)
𝑡+1 (𝑥) =

𝑄
(𝜇)
𝑡+1 (𝑥)∑𝑇

𝑖=1𝑄
(𝜇)
𝑡+1 (𝑥𝑖)

6 ⊲ Using the Gini Index for attribute selection for decision tree;
𝑔(𝑇𝑐) =

∑
𝑦∈𝑌 �̂�𝑐 (𝑦) · (1 − �̂�𝑐 (𝑦))

7 ⊲ Implement a modification to the Gini index by including sample weights;

�̂�(𝑤)𝑐 (𝑦) =
∑|𝑇 (𝑤) |

𝑖=1 𝑤𝑖 ·𝐼 (𝑦𝑖=𝑦)∑|𝑇 (𝑤) |
𝑖=1 𝑤𝑖

8 𝐷 = RDT(𝜇) ⊲ Get 𝜇 as an input and create a new Random decision Tree
9 𝐶 = train the RDT

10 𝐶 = 𝐶 ∪ 𝐶𝑖 add 𝐶𝑖 to 𝐶
11 end for
12 Return the trained pool of classifiers 𝐶 ;

4.2.2 Ensembles of Locally Independent Prediction Models

Ross et al. (2020) presented a novel approach to constructing ensembles using explicit constraints

to ensure the generated models are diverse locally and make independent predictions. The

proposed model is based on the concept of Locally Independent Training (LIT) designed to

train an ensemble of models by forcing “locally independent” decision boundaries among the

generated classifiers. This local independence refers to the model’s ability to make different

decisions based on particular small regions of the data manifold. In other words, for any small

neighborhood around a data point, the ensemble members are encouraged to have independent

error gradients.

This is achieved through the diversity regularization term in the LIT loss function, which

penalizes similarity in the gradients of the loss with respect to the inputs across different



64

Algorithm 4.5 Locally Independent Training (LIT) training scheme

Input: Training dataset 𝑇𝑟 , learning rate 𝜂, diversity hyperparameter 𝜆, number of
classifiers 𝑀 , number of training iterations 𝐼

Output: A pool of classifiers, 𝐶, composed of, 𝑀 , base classifiers
1 Initialize parameters {𝜃𝑚}𝑀𝑚=1 for all linear classifiers in the ensemble

2 for 𝑖 = 1 to 𝐼 do
3 for each x ∈ D do
4 for 𝑚 = 1 to 𝑀 do
5 C
6 end for
7 ompute prediction loss L𝑝𝑟𝑒𝑑 (𝑐𝑚, (x, 𝑦))
8 Compute gradient ∇𝜃𝑚L𝑝𝑟𝑒𝑑 (𝑐𝑚, (x, 𝑦))
9 for 𝑚 = 1 to 𝑀 − 1 do

10 for 𝑛 = 𝑚 + 1 to 𝑀 do
11 Compute gradient cosine similarity:
12 𝑐𝑜𝑠𝑚𝑛 =

∇𝑥L𝑝𝑟𝑒𝑑 (𝑐𝑚,x)·∇𝑥L𝑝𝑟𝑒𝑑 (𝑐𝑛,x)
∥∇𝑥L𝑝𝑟𝑒𝑑 (𝑐𝑚,x)∥∥∇𝑥L𝑝𝑟𝑒𝑑 (𝑐𝑛,x)∥

13 Compute diversity loss L𝑑𝑖𝑣 (𝑐𝑚, 𝑐𝑛, x) = 𝑐𝑜𝑠2𝑚𝑛
14 end for
15 end for
16 Compute total loss for the ensemble:
17 L𝐿𝐼𝑇 =

∑𝑀
𝑚=1 L𝑝𝑟𝑒𝑑 (𝑐𝑚, (x, 𝑦)) + 𝜆

∑𝑀−1
𝑚=1

∑𝑀
𝑛=𝑚+1 L𝑑𝑖𝑣 (𝑐𝑚, 𝑐𝑛, x)

18 Update parameters {𝜃𝑚}𝑀𝑚=1 using gradient descent:
19 𝜃𝑚 = 𝜃𝑚 − 𝜂∇𝜃𝑚L𝐿𝐼𝑇 ,∀𝑚 ∈ {1, ..., 𝑀}
20 end for
21 end for
22 Return 𝐶

models. By doing so, each model in the ensemble is pushed to learn different aspects of the

data neighborhood rather than all models learning the same patterns. Thus, avoiding generating

redundant local classifiers. According to Ross et al. (2020), the LIT method’s emphasis on local

independence is particularly beneficial in complex decision spaces where different regions of

the input space may exhibit different characteristics, such as in problems with complex and

non-linear decision borders.

Algorithm 4.5 formalizes the main steps of the LIT training. The algorithm begins by initializing

the parameters {𝜃𝑚} for each classifier in the ensemble. This step sets up the starting point for



65

the optimization process. The parameters can be initialized randomly or by using any weight

pre-training scheme. Then, the training proceeds iteratively over 𝑇 learning iterations, each

consisting of the following steps:

Prediction loss computation. For each data point (x, 𝑦) in the training dataset 𝑇𝑟 , the prediction

loss L𝑝𝑟𝑒𝑑 is computed for each classifier 𝑐𝑚. In this work, the traditional cross-entropy loss

was considered (Equation 4.6.

L𝑝𝑟𝑒𝑑 (𝑐𝑚, (x, 𝑦)) = − log 𝑝(𝑦 |𝑐𝑚 (x; 𝜃𝑚)) (4.6)

where 𝑝(𝑦 |𝑐𝑚 (x; 𝜃𝑚)) is the predicted probability of the true class 𝑦 given the input x and the

classifier parameters 𝜃𝑚. Then, the gradient of the prediction loss with respect to the classifier

parameters, ∇𝜃𝑚L𝑝𝑟𝑒𝑑 (𝑐𝑚, (x, 𝑦)), is computed for each classifier. This gradient is essential for

updating the model parameters in the direction that minimizes the loss.

Diversity Loss Computation. The diversity loss L𝑑𝑖𝑣 is computed between all pairs of classifiers

in the ensemble and aims to force independent errors among the ensemble members. According

to Ross et al. (2020), given two classifiers 𝑐𝑚 and 𝑐𝑛, this can be achieve by calculating the

cosine similarity of the gradients of the prediction loss with respect to the inputs for each pair of

classifiers 𝑐𝑚 and 𝑐𝑛 (Equation 4.7):

𝑐𝑜𝑠𝑚𝑛 =
∇xL𝑝𝑟𝑒𝑑 (𝑐𝑚, x) · ∇xL𝑝𝑟𝑒𝑑 (𝑐𝑛, x)

∥∇xL𝑝𝑟𝑒𝑑 (𝑐𝑚, x)∥∥∇xL𝑝𝑟𝑒𝑑 (𝑐𝑛, x)∥
(4.7)

The diversity loss for each pair is then given by L𝑑𝑖𝑣 = 𝑐𝑜𝑠
2
𝑚𝑛, which penalizes the similarity in

the decision boundaries of the classifiers. Therefore, promoting local independence.

The total loss for the LIT ensemble learning is then computed by summing the prediction loss

for each classifier and the weighted diversity loss across all pairs of classifiers, with 𝜆 acting as

the regularization hyperparameter (Equation 4.8):



66

L𝐿𝐼𝑇 =

𝑀∑︁
𝑚=1

L𝑝𝑟𝑒𝑑 (𝑐𝑚, (x, 𝑦)) + 𝜆
𝑀−1∑︁
𝑚=1

𝑀∑︁
𝑛=𝑚+1

L𝑑𝑖𝑣 (𝑐𝑚, 𝑐𝑛, x) (4.8)

Finally, the weights of all models in the system are updated with stochastic gradient descent.

After 𝑇 iterations, the trained pool of classifiers 𝐶 is returned. Following the guidelines by

Ross et al. (2020), we setup this technique using 𝜆 = 10−2.3 and considered a total of 𝐼 = 1000

training iterations.

The LIT method’s emphasis on local performance and independence aligns well with the

objectives of dynamic ensemble selection techniques that is, to exploit local information and

experts. By providing a set of diverse and locally competent classifiers, LIT is expected to

provide pool of candidates from which DES methods can work better, thereby potentially

improving the performance of these models.

4.2.3 Summary of pool generation schemes

Bagging is an ensemble learning method that trains multiple base learners independently on

different subsets of the training data. This method helps reduce variance in predictions and

assigns equal weight to each base learner’s output. Boosting, on the other hand, iteratively

improves weak models to create stronger ones. It assigns weights to training instances based

on the accuracy of previous classifiers, focusing on misclassified samples. Random Forests

constructs an ensemble of diverse trees by randomly selecting subsets of data and features for

each tree.

As previously highlighted in the introduction, global pool generation strategies exhibit certain

limitations, notably concerning instability and the propensity to generate redundant classifiers.

These constraints imply that global pool generation schemes may not be the only option as a

pool generation scheme for DS methods, particularly across diverse datasets. Consequently, the

following sections will explore the explanation of local pool generation schemes.



67

As mentioned in this chapter, the Forest of Local Trees and the Ensembles of Locally Independent

Prediction Models have local perspectives on the problems. Pools of classifiers, with a local

perspective have never been explored by the DS literature. We hypothesize that as those

methods are based on local information, they are more suitable as pool generation schemes for

DS algorithms. Therefore, in the next section, the performance of the aforementioned pool

generation schemes is evaluated and compared with the performance of global perspective

ensembles for dynamic selection methods.

4.3 Comparative study

In this section, we initiate a comparative study, building upon the datasets and methodology

established in chapter 3. In the context of our study, the performance of various algorithms

across numerous datasets is evaluated, assessing both local and global pool generation schemes

for the DS algorithm, ultimately providing answers to the research questions.

Additionally, we utilize the Friedman test (Friedman (1937)) in this comparative study for

robustly evaluating and comparing multiple groups. The use of the Friedman test, well-shown in

the literature (Cruz et al. (2018a)) for its ability, aligns perfectly with our comparative analysis

objectives as it effectively compares multiple algorithms across multiple datasets.

4.3.1 Comparison of a local and global pool generation schemes

The aim of this section of the comparative study is to answer the 4 first questions among 5

research questions. The following section outlines the research questions under investigation:

• RQ1: Do local pool generation schemes achieve better results when used for dynamic

selection algorithms?

• RQ2: Does selecting the best pool of classifiers, 𝐶, depend on what dynamic selection is

used ?

• RQ3: Does selecting the best DS method depend on what pool of classifiers, 𝐶, is used?

• RQ4: Is there a correlation between static ensemble and dynamic selection results?



68

In this section, two distinct analyses are carried out. The first analysis is a comprehensive

examination, that encompasses all methods and evaluates the average ranking of each pool within

every DS technique. This comprehensive approach provides a holistic perspective, allowing us

to compare all conceivable combinations of pools and DS algorithms. In contrast, the second

analysis focuses on a fixed DS method and assesses the performance of 7 pools of classifiers,

highlighting the ones that attain the lowest rank and are, therefore, better suited for the specific

DS technique at hand.

In Friedman rank tests (Friedman (1937)), the first rank is assigned to the best performance,

the second best to the next rank, and up to the last rank, respectively. If there was a tie, for

example, when two approaches obtain the same classification performance, their average scores

are summed up and divided by two. The average rank is then obtained, considering all datasets.

The algorithm with the lowest average rank is considered the best-performing one. The Friedman

test offers a significance level denoted by 𝛼. A significance level of 𝛼 = 0.05 indicates that

there is a 5 percent risk of concluding that a difference exists when there is no actual difference.

𝜌-value being smaller than 𝛼 means the differences between some of the medians are statistically

significant (Hollander, Wolfe & Chicken (2013)).

The test was performed considering these hypotheses:

• 𝐻0: There is no significant difference between the results obtained using different techniques.

• 𝐻1: There is a significant difference between the results obtained using different techniques.

Friedman’s test is used here to determine if any pool of classifiers performs significantly better

in a fixed DS method. In this research for each DS technique, the Friedman test was applied to

determine if there is a pool of classifiers that perform better than others. In KNORA-E, the 𝜌-

value is 01 and since this 𝜌-value is lower than 0.05, there is a significant difference between these

7 pools of classifiers including Bagging(DT), bagging(P), Boosting(DT), Boosting(P), Random

Forests, FLT, and LIT. The 𝜌-value up to 4 decimal places for other DS methods, including

KNORA-U, META-DES, DES-MI, DES-P, OLA, and MLA are 0 as well. Bonferonni–Dunn

1 Value extremely low which returned 0 due to the machine precision.



69

post-hoc test was used to calculate the Critical Difference (CD) recommended in (Demšar

(2006)).

Table II-1 provides the average ranking across 288 datasets for various combinations of 7 pool

generation schemes and 7 dynamic selection (DS) methods. Each cell in the table represents

the average rank of a specific pool-DS method combination. For instance, FLT achieved

average ranks of 26.96 (KNORA-E), 21.40 (META-DES), 21.43 (KNORA-U), 27.54 (DES-MI),

22.89 (DES-P), 31.69 (MLA), and 33.82 (OLA). These statistics for LIT are 28.19(KNORA-

E), 21.84(META-DES), 21.73(KNORA-U), 28.76(DES-MI), 22.68(DES-P), 31.84(MLA),

33.35(OLA). The best average ranking belongs to (META-DES, RF) with an average rank of

6.12, while the worst belongs to (DES-MI, BSDT) with an average rank of 47.23.



70

Table 4.2 Summary of the average rank among 288
datasets between a combination of 7 pools and 7 DS

methods

(META-DES, RF) 6.12 (KNORA-E, FLT) 26.96

(KNORA-U, RF) 8.67 (DESP, BSDT) 27.18

(DES-P, RF) 9.50 (MLA, BSDT) 27.43

(META-DES, BDT) 9.56 (DES-MI, FLT) 27.54

(DES-MI, RF) 10.12 (MLA, BP) 27.96

(META-DES, BSDT) 11.53 (KNORA-E, LIT) 28.19

(KNORA-U, BDT) 12.55 (MLA, BSP) 28.32

(DES-P, BDT) 13.07 (DES-MI, LIT) 28.76

(META-DES, BP) 14.64 (KNORA-U, BSP) 30.82

(KNORA-E, RF) 14.92 (OLA, BDT) 30.89

(DES-MI, BDT) 16.08 (MLA, FLT) 31.69

(KNORA-E, BDT) 17.58 (DES-P, BSP) 31.74

(DES-MI, BP) 19.07 (MLA, LIT) 31.84

(KNORA-U, BP) 19.70 (OLA, BSP) 32.02

(DES-P, BP) 19.77 (OLA, BSDT) 32.08

(KNORA-E, BP) 20.32 (MLA, BDT) 32.70

(KNORA-U, BSDT) 20.45 (KNORA-E, BSDT) 33.08

(META-DES, FLT) 21.40 (OLA, LIT) 33.35

(KNORA-U, FLT) 21.43 (OLA, FLT) 33.82

(KNORA-U, LIT) 21.73 (KNORA-E, BSP) 35.57

(META-DES, LIT) 21.84 (OLA, RF) 36.70

(DES-P, LIT) 22.68 (MLA, RF) 38.04

(DESP, FLT) 22.89 (DES-MI, BSP) 46.86

(OLA, BP) 23.61 (DES-MI, BSDT) 47.23

(META-DES, BSP) 26.01



71

Figures 4.5 to 4.11 illustrate the CD diagram with the results of the Bonferonni–Dunn post-hoc

test. Techniques in which the difference in average ranks is lower than the critical difference are

connected by a black bar. This means Techniques are statistically equivalent results according

to the ranking analysis. Based on this analysis, it is evident that RF performs better for DES

techniques, while BP demonstrates superior performance for DCS techniques. Another point

that can be observed for DES methods, including KNORA-E, KNORA-U, META-DES, DES-P,

and DES-MI the first 2 ranks belong to RF and BDT, respectively. It is worth noting that in

all DS methods, LIT and FLT are not among the first 3 ranks. RF was placed in last place

for DCS methods. The LIT and FLT methods both fall within the same range of 4 to 6 as a

pool of classifiers for DS methods. in order to answer RQ1, this analysis shows that local pool

generation schemes struggle to deliver improved results when applied to dynamic selection

algorithms. This statement corresponds to the answer to the initial research question.

Although FLT and LIT were not among the top 3, the benefits of using them cannot be ignored

since there are some datasets that these pool generation schemes offer the best performance in

the first place. So, using both local and global perspectives pool generation schemes would help

us improve DS methods’ performance.

Figure 4.5 The average rank of 7 pools of classifiers for KNORA-E among 288 datasets



72

Figure 4.6 The average rank of 7 pools of classifiers for META-DES among 288
datasets

Figure 4.7 The average rank of 7 pools of classifiers for KNORA-U among 288 datasets

Figure 4.8 The average rank of 7 pools of classifiers for DES-MI among 288 datasets



73

Figure 4.9 The average rank of 7 pools of classifiers for DES-P among 288 datasets

Figure 4.10 The average rank of 7 pools of classifiers for MLA among 288 datasets

Figure 4.11 The average rank of 7 pools of classifiers for OLA among 288 datasets

4.3.2 Does selecting the best pool of classifiers, 𝐶, depend on what dynamic selection is
used (RQ2)?

In this section, in order to answer RQ2, we investigate the relationship between the selection

of a pool of classifiers when a fixed DS method is available. Figures 4.5 to 4.11 illustrate that

all five DES methods, including KNORA-E, META-DES, KNORA-U, DES-MI, and DES-P



74

performed better when they used first RF and then BDT rather than other pool of classifiers.

The two DCS methods, including MLA and OLA performed better when they used BP as a pool

of classifiers rather than others. As demonstrated in the figures, to answer RQ2, the selection of

the optimal pool of classifiers depends on the specific DS method used. Selecting the best pool

of classifiers relies on the specific DS method, which is determined by the best average rank of

each pool provided in the figures.

4.3.3 Does selecting the best DS method depend on what pool of classifiers, 𝐶, is used
(RQ3)?

In this section, we delve into a thorough investigation of the relationship between the selection

of a DS method and the choice of a pool generation scheme. This investigation is motivated by a

fundamental question: When a specific pool of classifiers is desired for various purposes, such

as research or the comparative evaluation of Majority Voting and DS algorithms, how do we

determine which DS method is the best option by using a fixed pool of classifiers? An analysis

within the scope of this comparative study enables us to address RQ3.

Figures 4.12 to 4.18 demonstrate the CD diagram with the results of the Bonferonni–Dunn

post-hoc test. These diagrams compare the performance of different DS algorithms while a pool

of classifiers is fixed across 288 datasets. As a result of this classification, META-DES, and

KNORA-U are the first and second-best suitable DS methods when we have a fixed pool of

classifiers, 𝐶, including pools of classifiers that are generated by using local and global pool

generation schemes. DES-P placed in third place in 6 of 7 fixed pool generation schemes. DES-P

consistently ranked third, among 7 DS methods in all pool generation schemes instead of BP.

Instead of Boosting, In the other 5 pool generation schemes, MLA and OLA that ate both DCS

placed in the last two places, showing the power of DES algorithms.

Based on this analysis, with the aim of addressing RQ3, it appears that the selection of the best

pool of classifiers depends on the choice of the dynamic selection technique. Figures 4.12 to

4.18 provide a ranking for selecting among 7 DS methods when a fixed pool of classifiers is

available.



75

Figure 4.12 The average rank of 7 DS methods using BDT as a pool of classifiers
among 288 datasets

Figure 4.13 The average rank of 7 DS methods using BP as a pool of classifiers among
288 datasets

Figure 4.14 The average rank of 7 DS methods using BSDT as a pool of classifiers
among 288 datasets



76

Figure 4.15 The average rank of 7 DS methods using BSP as a pool of classifiers
among 288 datasets

Figure 4.16 The average rank of 7 DS methods using RF as a pool of classifiers among
288 datasets

Figure 4.17 The average rank of 7 DS methods using FLT as a pool of classifiers
among 288 datasets



77

Figure 4.18 The average rank of 7 DS methods using LIT as a pool of classifiers
among 288 datasets

4.3.4 Relationship between static ensemble results and dynamic selection results
(RQ4)

The aim of this section is to delve into the connection between static selections and DS methods

in the pursuit of superior performance outcomes. More specifically, we address the fourth

research question (RQ4): If a particular dataset is optimally classified by one of the seven

ensemble methods in a static combination, will that same ensemble method excel when its results

form the basis for a majority of DS methods? The significance of RQ4 stems from the potential

implications for optimization processes. If a strong correlation exists between top-performing

pools of classifiers in both static and dynamic settings, the performance of the static combination

could serve as a preliminary indicator. This would facilitate the optimization of classifier pools

without the need for intensive computational resources typically demanded by DS methods

during the optimization phase. The relationship between SS and DS represents to what extent

the performance of the DS methods while using a specific pool follows the performance of SS

on a given data. It represents the frequency that the best pool generation scheme obtain the best

classification performance in both SS and DS settings.

To illustrate how this analysis is conducted, let us consider a practical example. Take Dataset 1,

where the BSDT emerges as the top-performing ensemble out of the seven under consideration.

The question now becomes: does using BSDT as the classifier pool for the OLA method in

Dataset 1 enhance its performance? To answer this, we compared the performance of OLA



78

across seven different pool generation methods. Interestingly, the results indicated that BSP,

when combined with OLA for Dataset 1, surpassed the others. This observation hints that a

straightforward relationship between the performance of SS and DS methods might not always

hold. Such findings shed light on the intricate relationship between SS and DS techniques and

raise the question of whether the best ensemble in a static setting retains its superiority in a

dynamic one.

We meticulously evaluated seven diverse ensembles, specifically BDT, BP, BSDT, BSP, RF,

FLT, and LIT, to explore this relationship. Our aim was to identify the top-performing ensemble

among these seven for each of the 288 datasets. This process allowed us to ascertain the ensemble

that has the best performance across all datasets. Following this, we assessed the performance

of each DS method under various pool generation schemes. By doing so, we identified the

ensemble of classifiers that delivered the best performance when used as a pool of classifiers for

each DS method across the datasets. Now, for every dataset, we have two distinct ensembles.

The first ensemble showcases the optimal SS performance, while the second ensemble represents

the ensemble that yields the best performance when employed as a pool of classifiers for DS

methods. The core of our analysis for this section centers on determining the similarity between

these two ensembles. If the number of similarities among all datasets is high then it indicates a

notable relationship between SS and DS methods. In essence, this relationship signifies that

across the 288 datasets, we can express, in percentage terms, how the ensemble that performs

better than others in static selection for a given dataset also leads to the best performance of a

DS method while it is used as a pool of classifiers.

Table 4.3 provides a concise summary of the analysis conducted between majority voting on the

ensemble and various dynamic selection (DS) methods across 288 datasets. Among the DS

methods assessed, DES-P, KNORA-U, and META-DES exhibited the strongest relationship with

static ensemble results, scoring percentages of 55.90, 54.17, and 48.96, respectively. Conversely,

the performance of DCS methods, MLA and OLA, showed comparatively lower agreement with

static ensemble results.



79

Based on the analysis conducted in this section, the results revealed varying degrees of relationship

between SS and DS methods, with DES-P, KNORA-U, and META-DES exhibiting the strongest

matches. This shows that, for these specific DS methods, when an ensemble is optimal in SS for

a given dataset, it tends to perform well based on the percentage provided between 288 datasets

in table 4.3 when used as a pool of classifiers in DS applications. However, this relationship is

not universal, emphasizing the importance of adopting a case-specific approach when selecting

ensemble methods for DS tasks. The analysis highlights that superior performance in SS does

not guarantee the same level of performance in DS across all scenarios.

Table 4.3 The correlation between
static ensemble results and DS

algorithms

DS method Correlation

KNORA-E 41.67

META-DES 48.96

KNORA-U 54.17

DESMI 47.92

DESP 55.90

MLA 26.74

OLA 22.22

4.3.5 Conclusion

The aim of this chapter was to investigate various pool generation schemes, including both

global and local perspectives, as inputs for DS methods. In the course of this empirical study,



80

we introduced and compared seven distinct pools of classifiers for DS techniques to address the

research questions.

In summary, our study yielded a set of key findings. The analysis illustrates that the selection

of the optimal pool of classifiers is dependent on the specific DS method used. Different DS

methods may have different preferences for pool generation schemes. Furthermore, for a given

DS method, we offer an assessment of the performance of seven pools of classifiers, pinpointing

the top-performing ones tailored to that particular DS technique.

In addition, this research focused on exploring the relationship between the choice of a dynamic

selection (DS) method and the selection of a pool generation scheme. It aimed to answer the

question of which DS method works best with a fixed pool of classifiers. Based on the analysis,

META-DES and KNORA-U emerge as the top two DS methods that harmonize well with a fixed

pool of classifiers, including those generated by both local and global pool generation schemes.

Moreover, another research question addressed is whether the ensemble method that performs

best in static selection remains the top choice when utilized as a pool of classifiers for DS methods.

While our analysis provides a percentage of correlation for the research question, with the

maximum correlation percentage being 55.90%, it emphasizes the need for a specific approach

when selecting ensemble methods for DS applications, which led us to use meta-learning for this

purpose. It also emphasizes that the pool of classifiers performing well in SS may not always

translate to superior DS performance when used as input.

In the upcoming chapter, we propose a meta-learning recommendation system, whose primary

aim is to select the optimal pool of classifiers for DS algorithms. Then, we evaluate the quality

of our meta-learning recommendation algorithm under several recommendation settings.



CHAPTER 5

META-LEARNING FRAMEWORK FOR RECOMMENDING THE POOL
GENERATION SCHEME AND DS ALGORITHM

In Chapter 4, we demonstrated that no pool generation scheme could outperform others for

whole datasets when used as input for DS algorithms based on the Friedman test. In the

previous experimental study in the chapter 4 it has shown that although there is one or two

pool of classifiers that perform better than others like RF, there are still many datasets that DS

algorithms outperform using other pools. to improve the performance and reduce the burden of

finding the optimal solution through a costly optimization scheme, we propose a meta-learning

recommendation system (MLRS) that, based on a dataset characteristic, can work in three

scenarios: 1) predict the best pool generation scheme; 2) predict the best DS method; 3) predict

the pair (DS, Pool). These dataset characteristics are called meta-features since they describe

properties of the data that are predictive for estimating the performance of learning algorithms

trained on them ((Brazdil, Carrier, Soares & Vilalta, 2008)). Hence, this chapter also aims

to answer RQ5: Does selecting the best pool of classifiers, 𝐶, for dynamic selection methods

depend on what dataset is used?

5.1 Basic definitions

Before delving into the details of the proposed meta-learning recommendation system for DS

methods, it is essential to define the basic concepts and mathematical notation used in this study.

A dataset is represented by 𝑇 , where each dataset is a combination of a training set 𝑇𝑟 and a

test set 𝑇𝑒. A set of datasets is symbolized by T = {𝑇1, . . . , 𝑇𝑍 }, where 𝑍 represents the number

of datasets. The meta-feature vector (i.e., dataset characteristics) extracted from a dataset is

denoted by x′ = {(𝑚 𝑓 )1, . . . , (𝑚 𝑓 )𝑛} where each 𝑚 𝑓 represent a meta-features characteristic

extracted from a dataset. The meta-target is indicated by 𝑦′. Finally, the meta-dataset is defined

as 𝑀𝑇 = {(𝑀𝑇)1, . . . , (𝑀𝑇)𝑍 }, where each (𝑀𝑇)𝑖 is represented by the 𝑖-th tuple (x′i, 𝑦
′
𝑖
)

corresponding to the meta-features and meta-target extracted from a dataset 𝑇𝑖.

The meta-learning recommendation system can work in three distinct scenarios:



82

• In the first scenario, MLRS recommends a pool generation scheme. In this scenario, we

assume that the user has already determined a DS method they intend to use, and the

meta-learning recommendation system focuses on selecting the most suitable pool generation

scheme based on this choice. We refer to this model as MLRS-P.

• In the second scenario, MLRS recommends a DS method. Here, we consider that the user

has a predefined pool generation scheme in mind, and the meta-learning recommendation

system guides them toward selecting the DS method that complements their chosen pool.

We refer to this model as MLRS-DS.

• In the third scenario, MLRS recommends a pair of (DS, Pool). In this case, our system

aims for a fully automated approach, where both the pool generation scheme and the DS

method are recommended, allowing for a comprehensive solution. We refer to this model as

MLRS-PDS.

The meta-target of the third recommendation, represented by (𝑦′
𝑝𝑜𝑜𝑙

, 𝑦′
𝐷𝑆

), is a pair of (Pool,

DS). The pool generation scheme in the third recommendation is represented by 𝑦′
𝑝𝑜𝑜𝑙

, and the

DS method is indicated by 𝑦′
𝐷𝑆

. The meta-model is symbolized by 𝑀𝑚.

5.2 Meta-training

The meta-learning stage is a crucial step within the meta-learning framework. During this stage,

the system undergoes training to acquire the ability to make informed recommendations for

new, unseen tasks (i.e., datasets). During the meta-training stage, the objective is to create

a meta-model, 𝑀𝑚, by extracting the characteristics of a set of datasets, T, as meta-features,

and by utilizing a meta-target, 𝑦′, that represents the best performance. Figure 5.1 provides an

illustrative depiction of the meta-training process. The whole process can be divided into six

main steps, as described below:

Step (1) - Meta-features extraction: This process begins with the extraction of meta-features,

x′ = {(𝑚 𝑓 )1, . . . , (𝑚 𝑓 )𝑛} from each dataset under consideration. Hence, the output of this step

is a meta-feature vector, x′, extracted for each dataset in the set of datasets.



83

Step (2) - Generating sets of pools and DS methods: In this step, a set of pools of classifiers,

represented as P = {𝑃1, . . . , 𝑃𝐾}, is generated. These pools are then paired with the set of

DS techniques, denoted as DS = {𝐷𝑆1, . . . , 𝐷𝑆𝑊 }, creating comprehensive combinations for

evaluation. Thus, given that DS and P correspond to all DS techniques and pool generation

schemes considered in the recommendation system, respectively, a total of |DS| × |P| models

are generated during this step.

Step (3) - Assessment of DS Method Performance: In this step, we assess the performance of

DS methods when using the generated pools of classifiers as inputs by calculating its classification

accuracy for the corresponding dataset. During this step, all combinations of pool generation

and methods are evaluated and their corresponding accuracies are obtained to be used in the

next stage while defining the meta-target.

Step (4) - Meta-target determination: In this step, the meta-target should be determined. The

meta-target is defined as the combination that obtains the highest accuracy. The meta-learning

recommendation system allows us to investigate three possible recommendation scenarios:

• Scenario I, MLRS-P: recommend an optimal pool generation scheme. In this meta-learning

scenario, the meta-target 𝑦′ = 𝑦′
𝑝𝑜𝑜𝑙

is the pool generation scheme that obtained the higher

classification performance when used as input for the predefined DS (PDS) method specified

by the user.

• Scenario II, MLRS-DS: involves recommending the best DS method only. Here, the

meta-target 𝑦′ = 𝑦′
𝐷𝑆

is the DS method that exhibited the highest classification performance

according to the predetermined pool generation scheme (PP).

• Scenario III, MLRS-PDS: consists of recommending an optimal pair (Pool, DS) auto-

matically. In this context, the meta-target represents the pair (Pool, DS) that delivered the

best performance in comparison to other pairs across our study. Hence, in this scenario,

the meta-target consists of a tuple 𝑦′ = (𝑦′
𝑝𝑜𝑜𝑙

, 𝑦′
𝐷𝑆

) and can be considered a multi-label

meta-learning problem.



84

Step (5) - Meta-dataset: At the outset of this step, a meta-dataset, 𝑀𝑇 , is constructed by

combining the meta-feature vector, x′, with their corresponding meta-target, 𝑦′ extracted of all

datasets in T.

Step (6) - Meta-model training: The meta-learning recommendation system trains a meta-

model, 𝑀𝑚, using the meta-dataset, 𝑀𝑇 . Thus, the meta-model 𝑀𝑚 is trained to learn the

relationship between the meta-features x′ (i.e., dataset characteristics) and the meta-targets 𝑦′

to propose recommendations while used to suggest recommendations for new datasets. It is

important to mention here that different meta-learning formulations (i.e., different scenarios)

generate a different meta-classifier 𝑀𝑚 and are considered as a distinct meta-problem. These

three scenarios are evaluated in the experimental study of this chapter in order to validate their

impact on the system’s performance.



85

Figure 5.1 Overview of the meta-training process. In the first step, the
meta-features, 𝑚 𝑓 , are extracted from datasets. In step 2, a set of pools
and DS methods are generated for assessment in step 3. Then, based on
the highest accuracy, the meta-target, 𝑦′, is defined (step 4). In step 5,

the meta-dataset, 𝑀𝑇 , is constructed, and then it is used to train a
meta-model, 𝑀𝑚 (Step 6)

The training phase of the meta-learning recommendation system for DS algorithms is outlined

in Algorithm 5.1. The algorithm takes inputs: the set of datasets, T, a set of pool generation

scheme P, and a set of DS algorithms DS. The output of the algorithm is the meta-model,

𝑀𝑚, that learns the relationship between the dataset characteristics and which models are more

likely to obtain higher performance. The algorithm then iterates over each dataset 𝑇𝑖 ∈ T. For

each iteration, the algorithm extracts the meta-features vector, x′
𝑖
, capturing the characteristics

of the training partition of the dataset 𝑇𝑖 denoted by (𝑇𝑟)𝑖. These meta-features are detailed

in Section 5.2.1. Then, the combinations of pool and DS methods are assessed using its test



86

partition denoted by (𝑇𝑒)𝑖. The configuration that obtains the highest performance is used as the

meta-target 𝑦′
𝑖
.

Then, a meta-dataset, 𝑀𝑇 , is constructed using the meta-feature vector, x′
𝑖
and the meta-target,

𝑦′
𝑖
, after iterating over all datasets in the set of dataset T. Subsequently, a meta-model is trained

using the meta-dataset, 𝑀𝑇 . This meta-model, 𝑀𝑚, is used to recommend the best configuration

for a given query dataset Q.

Algorithm 5.1 Meta-learning recommendation system for DS algorithms in the training phase

Input: A set of training datasets, T, a set of DS methods, DS, a set of pools, P

Output: Meta-model, 𝑀𝑚

1 Initialize: 𝑀𝑇 = ∅; /*empty list to store the meta-information */.

2 for each 𝑇𝑖 in T do

3 Extract meta-feature vector, x′𝑖, from the dataset (𝑇𝑟)𝑖 (Section 5.2.1) ;

4 for each 𝐷𝑆 𝑗 ∈ DS do

5 for each 𝑃𝑘 ∈ P do

6 Assess the performance of 𝐷𝑆 𝑗 using 𝑃𝑘 ;

7 end for

8 end for

9 Define the configuration with highest performance as 𝑦′
𝑖
;

10 𝑀𝑇 = 𝑀𝑇 ∪ (x′𝑖,𝑦′𝑖) ;

11 end for

12 Train the meta-model, 𝑀𝑚, on the meta-dataset, 𝑀𝑇 ;

13 Return 𝑀𝑚;

5.2.1 Meta-features

A crucial step in the meta-training stage involves the extraction of meta-features, denoted as 𝑚 𝑓 ,

from a collection of datasets, represented by T. These meta-features, serve as descriptors that



87

characterize each dataset. Within this work, diverse categories of meta-feature groups, each en-

compassing different facets, are considered in order to enhance our recommendation capabilities.

These categories include Statistical, Information-theoretic, Model-based, Relative Landmarking

(Reif et al. (2014); Smith-Miles (2009); Rivolli, Garcia, Soares, Vanschoren & de Carvalho

(2018)), Subsampling Landmarking (Soares, Petrak & Brazdil (2001)), Clustering-based (Pi-

mentel & De Carvalho (2019)), Concept (Rivolli et al. (2018)), itemset (Song, Wang & Wang

(2012)), and complexity (Lorena, Garcia, Lehmann, Souto & Ho (2019)). A comprehensive

review of these meta-features is made available in (Alcobaça et al. (2020)). Below is a brief

description of each category:

• Statistical: There are standard statistical measures to describe the numerical properties of

data distribution (Brazdil et al. (2008)). This category for extracting statistical meta-features

from datasets covers a range of statistical computations, including computing correlations,

covariances, median, minimum, and maximum values, and various other statistical measures

for each attribute.

• Information-theoretic: It encompasses a diverse set of measures used to analyze datasets’

characteristics. They include the assessment of class label and attribute entropy, the

quantification of relationships between variables, the evaluation of signal-to-noise ratios, and

the estimation of effective attributes (Brazdil et al. (2008)).

• Model-based: meta-features that are designed to capture characteristics of machine learning

models, specifically Decision Tree (DT) models, induced from a dataset. These meta-features

encompass specific properties, including depth, shape, and size, which can be indicative of

the complexity and structure of the dataset. (Pavel & Soares (2002)).

• Landmarking: Performance of simple and efficient learning algorithms such as DEcision

trees (DT) and K Nearest neighbors (KNN). The meta-features, 𝑚 𝑓 , collected in this category

include relative and subsampling performances (Reif et al. (2014); Smith-Miles (2009);

Rivolli et al. (2018), soares2001sampling).

• Clustering-based: This meta-feature collects information regarding both correlation and

dissimilarity. The Correlation Measure quantifies the statistical relationships between pairs

of instances in the dataset. The stronger similarity in attribute behaviors among instances



88

results in a higher correlation. The Dissimilarity Measure is based on the Euclidean

distance between instances, representing the distance between data points in the dataset

(Pimentel & De Carvalho (2019)).

• Concept: Estimate the variability of class labels among examples and the example’s density.

(Rivolli et al. (2018)). Methods for extracting meta-features related to the Concept group

from datasets cover computations such as cohesiveness, concept variation, improved concept

variation, and weighted distance between examples of the same classes as well as different

classes. Hence, they are measures to define whether a feature space is highly irregular

(several small groups of samples belonging to the same class) or more uniform in which

large regions of samples share the same class labels.

• Itemset: Compute the correlation between binary attributes (Song et al. (2012)).

• Complexity: Estimate the difficulty in separating the data points into their expected classes

(Lorena et al. (2019)). The extraction of meta-features related to dataset complexity

involves various methods, covering computations such as entropy, imbalance ratio, clustering

coefficient, network density, Fisher’s discriminant ratios, hub scores, and a range of other

complexity measures.

Since it is preferable to use a maximum number of relevant meta-features, to grasp the important

characteristics of the dataset (Rivolli, Garcia, Soares, Vanschoren & de Carvalho (2022)), we

consider the whole set composed of 129 meta-features in this study, including measures coming

from all the above-mentioned groups. All these meta-features were computed using the PyMFE

library (Alcobaça et al. (2020)), version 0.4.2. We believe these are relevant for extracting

good dataset descriptions for the meta-learning process. The list containing all individual

meta-features used, the group it belongs, and a brief description is presented in the Appendix I.

5.3 Generalization

The generalization stage of our meta-learning recommendation system operates within the

framework illustrated in Figure 5.2. This framework enables us to make dataset-specific

recommendations, enhancing the performance of DS algorithms by automating the selection of



89

crucial design steps in deploying a DS solution. To accomplish this, we leverage the meta-model,

��, developed during the training phase to offer recommendations for a given dataset according

to the scenario specified by the user.

The process is initiated by taking a query dataset Q under consideration, from which we extract

its meta-features representation based on its available training set partition to avoid any bias in

our meta-learning prediction. Subsequently, we employ our trained meta-model, ��, to make

predictions and provide the recommendations according to one of the three scenarios in question:

provide the optimized pool generation scheme, a DS method, or both as a pair (Pool, DS).

       Prediction

 Q

    Meta-features 
extraction

Pool recommendation

Scenario 1

     Meta-model

x’

MMm

y’y’
pool

      DS

Tr

       Prediction

 Q

    Meta-features 
extraction

DS recommendation

Scenario 2

     Meta-model

x’

MMm

y’y’
DS

       Pool

Tr

       Prediction

 Q

    Meta-features 
extraction

Pool and DS 
recommendation

Scenario 3

     Meta-model

x’

MMm

Tr

Pool and DS 
recommendation

(y’pool , y’DS) 

Figure 5.2 The generalization process for the 3 distinct scenarios.
Scenario I, a pool generation scheme is recommended. Scenario II, a DS

method is recommended. Scenario III, the best pair of (Pool, DS) is
recommended

Then, the meta-learning recommendation system can produce three recommendations as its

outputs.



90

• Scenario I, MLRS-P: As the first recommendation, the meta-learning recommendation

system suggests a pool generation scheme, 𝐶, where a DS method is fixed. This is useful

when a specific DS method should be used, and an optimized pool generation scheme, 𝐶, is

needed for a given query dataset.

• Scenario II, MLRS-DS: As the second type of recommendation for this study involves

suggesting a DS method with a pre-determined pool generation scheme to use. This approach

is beneficial when a specific pool generation scheme should be used, and the best DS method

is needed for a given query dataset.

• Scenario III, MLRS-PDS: The third type of recommendation proposed, consists in defining

both the pool and DS model, just taking into account the dataset characteristics (i.e., the

meta-features). This consists of a multi-label recommendation problem, to obtain the best

pair of (Pool, DS) for a given query dataset Q. MLRS-PDS works by. first recommending

the pool based on the meta-features. Then, given the selected pool and the meta-features, it

recommends the DS model to obtain the (Pool, DS) in a fully automated fashion to optimize

the performance according to the query dataset Q.

5.4 Experimental study

In this section, the proposed meta-learning recommendation system’s performance is evaluated.

The datasets and experimental setup align with the details outlined in Chapter 3, consisting of the

288 datasets from the ICPR landscape competition (Macià et al. (2010)). For this experiment,

we employed the leave-one-dataset-out (LODO) procedure, where, at each iteration, one dataset

(Q) is left for testing, and the remaining ones are used to construct the meta-dataset 𝑀𝑇 used for

training the meta-models 𝑀𝑚. In other words, for each simulation, 287 datasets were considered

for training the meta-learning framework, while one was considered as the test dataset Q used

to evaluate its generalization performance. For each test dataset, we conduct 10 replications

following the experimental protocol defined in Chapter3.

The main comparison in this experimental study is between the performance of the meta-learning

recommendation system and the performance of DS methods when using either a predetermined



91

set of pools of classifiers (PP) or a predetermined set of DS (PDS), in order to know whether the

proposed framework succeeds in his tasks of providing a suitable recommendation for each task

type. It is important to mention that this is the first research work that tries to recommend the

pool generation scheme and DS algorithm based on dataset characteristics and meta-learning.

As such, there are no other related works in meta-learning for this task to compare to other than

these baseline models.

To further assess the advantages of the proposed meta-learning recommendation framework

and its improvements over existing methods, we utilized a pairwise statistical analysis through

the Sign test as recommended by Demšar (2006). This non-parametric test evaluates the

performance outcomes of the recommended method, designated as the control algorithm, against

a baseline according to the number of wins, ties, and losses this algorithm obtained (i.e., superior

performance, equivalent performance, lower performance). For Scenario I, the baseline in

this context pre-established pool generation scheme across all datasets for DS methods. For

Scenario II, the baseline is a pre-defined DS method using different pool generation schemes.

For Scenario III, the baseline is all possible 49 configurations (7 pool generation schemes × 7

DS algorithms).

The analysis operates on two fundamental hypotheses: the null hypothesis (H0) and the alternative

hypothesis (H1). Rejecting H0 implies that the DS technique in question exhibits a statistically

significant enhancement in performance compared to the baseline method. To apply this test

accurately, it is imperative to calculate the critical value (𝑛𝑐) through the formula presented in

Equation 5.1. This calculation determines the threshold for statistical significance between the

control and compared techniques.

𝑛𝑐 =
𝑛𝑒𝑥𝑝

2
+ 𝑧𝛼

√︂
𝑛𝑒𝑥𝑝

2
(5.1)

where 𝑛𝑒𝑥𝑝 is the total number of experiments, and 𝑧𝛼 is the critical value of the standard normal

distribution for a significance level of 𝛼 = 0.05. In this study, with a total of 288 tests and a



92

significance level of 0.05, the calculated critical value (𝑛𝑐) is 164. Therefore, if the number of

wins is greater than or equal to 164, the null hypothesis that the technique being tested is no

better than the baseline can be rejected with a significance level 𝛼 = 0.05 (i.e., a confidence level

of 95%) (Demšar (2006)).

5.4.1 Scenario I: meta-learning for recommending the best pool generation scheme

As the first recommendation of the research, the meta-learning recommendation system suggests

a pool generation scheme, 𝐶, while a DS method is fixed. This is useful when a specific DS

method should be used, and an optimized pool generation scheme, 𝐶, is needed for a given

dataset, Q.

Three algorithms, including Random Forests (RF), K Nearest Neighbors (KNN), and Sup-

port Vector Machine (SVM), were initially considered as meta-models for the meta-learning

recommendation system. The selection of these specific meta-models, 𝑀𝑚, was determined

based on previous studies (Bilalli, Abelló Gamazo & Aluja Banet (2017); Khan et al. (2020)).

These articles emphasize these options as the best-performing learning algorithms to be used as

meta-learners.

To find which technique is more effective as a meta-model, 𝑀𝑚, in this scenario, multiple runs

were conducted with different hyperparameter configurations. For K Nearest Neighbors, values

of K ranging from 2 to 6 were tested, while for Random Forests, Max Depth values of 2 to

5 were tried. The hyperparameter chosen for the Support Vector Machine was gamma equal

to ’scale’ (i.e., 1/(𝑛_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑋.𝑣𝑎𝑟 ())) and the cost, 𝑐 = 1 (Pedregosa et al. (2011)). The

results of the runs and the corresponding hyperparameters are presented in Table 5.1. Since the

RF with a maximum depth of 5 obtained be overall best results, we used this classifier to build

the meta-model in our system.



93

Table 5.1 The results of meta-learning prediction with different hyperparameters for
scenario I

Algorithm Hyperparameter KNORA-E META-DES KNORA-U DES-MI DES-P MLA OLA

RF Max_depth = 5 78.47 70.83 69.44 78.81 71.87 67.70 62.84

RF Max_depth = 4 70.83 62.15 59.72 73.61 59.72 53.81 54.51

RF Max_depth = 3 60.76 51.38 50.34 63.19 51.38 47.22 49.65

RF Max_depth = 2 52.77 40.62 41.66 52.08 43.40 41.31 48.26

KNN k = 2 65.62 62.50 64.93 70.13 69.09 60.06 62.84

KNN k = 3 59.72 57.63 58.33 63.88 60.06 54.86 56.94

KNN k = 4 61.11 54.51 56.59 61.80 59.37 50.34 58.33

KNN k = 5 58.33 50.34 53.81 59.72 55.55 47.91 55.90

KNN k = 6 55.55 48.26 51.73 59.02 53.47 46.87 52.77

SVM gamma=’scale’, 𝑐 = 1 36.11 31.25 36.11 41.66 37.84 28.47 48.26

Table 5.2 compares the performance of DS methods while they are using a pool generation

scheme recommended by MLRS-P with the average performance of DS methods using a

predetermined pool generation scheme (DS, PP) among 288 datasets. Each row in this table

is named using the fixed DS method. Also, the average number of wins the corresponding

technique obtained is indicated in parentheses. For example, KNORA-E, by using the pool

generation scheme recommended by the MLRS-P, had the best performance in 228 datasets out

of 288 which corresponds to 79.16% of the datasets. In contrast, the average number of wins

of KNORA-E across different combinations, including (KNORA-E, BDT), (KNORA-E, BP),

(KNORA-E, BSDT), (KNORA-E, BSP), (KNORA-E, RF), (KNORA-E, FLT), (KNORA-E,

LIT) was 21.92%, with the average number of wins among these combinations being 43. For

DS methods, the performance of our proposed MLRS-P is significantly higher than the baseline,

as well as the random prediction (which, in this multi-class classification problem, is 1/7). Thus,

we can conclude that the MLRS-P can model the relationship between the meta-features to

predict the best pool generation scheme for a DS method.



94

Table 5.2 The results of DS methods that used the pool generation
scheme proposed by the meta-learning recommendation system

(DS, MLRSP) compared with the performance of DS methods that
used a predetermined pool generation scheme (DS, PP). Note that

(PP) refers to the predetermined pool generation scheme. And
(Wins) denotes the number of wins out of a total of 288 datasets.
(Ave_Wins) denotes the average number of the datasets with the

best performance among 288 datasets between 7 pools of classifiers

Algorithm MLRS-P (Wins) (DS, PP)(Ave_wins)

KNORA-E 79.16(228) 21.92(43)

META-DES 71.87(207) 24.84(44.86)

KNORA-U 70.13(202) 25.04(48.29)

DES-MI 78.12(225) 22.26(42.86)

DES-P 71.52(206) 25.24(45.29)

MLA 66.66(192) 24.65(48.14)

OLA 62.84(181) 20.83(42.71)

The Sign test was conducted to compare the MLRS-P against the baseline. The outcomes

depicted are for wins, losses, and ties shown in figures 5.3 to figure 5.9 for each specific DS

model.



95

Figure 5.3 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The KNORA-E

was considered as the predefined DS method (PDS). The horizontal line
illustrates the critical values considering a confidence level of � = 0.05



96

Figure 5.4 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The META-DES
was considered as the predefined DS method (PDS). The horizontal line
illustrates the critical values considering a confidence level of � = 0.05



97

Figure 5.5 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The KNORA-U

was considered as the predefined DS method (PDS). The horizontal line
illustrates the critical values considering a confidence level of � = 0.05



98

Figure 5.6 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The DES-MI was

considered as the predefined DS method (PDS). The horizontal line
illustrates the critical values considering a confidence level of � = 0.05



99

Figure 5.7 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The DES-P was
considered as the predefined DS method (PDS). The horizontal line

illustrates the critical values considering a confidence level of � = 0.05



100

Figure 5.8 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The MLA was
considered as the predefined DS method (PDS) The horizontal line

illustrates the critical values considering a confidence level of � = 0.05



101

Figure 5.9 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the pool generation scheme
recommendation and other pool generation schemes. The OLA was
considered as the predefined DS method (PDS). The horizontal line

illustrates the critical values considering a confidence level of � = 0.05

These figures demonstrate that pools recommended by MLRS-P generally achieve a significantly

higher number of wins compared to the baselines. In most cases, these wins exceed the critical

value, suggesting that the proposed framework effectively recommends the most suitable pool

generation method. The notable exception occurs with RF as the pool generation scheme, where

a considerable number of ties are observed. This phenomenon can be attributed to RF’s overall

superiority as a pool generation method, as detailed in Chapter 4.

Since the Sign test incorporates half of the number of ties when comparing with the critical value,

solely relying on the win-tie-loss diagram might lead to inconclusive interpretations. Therefore,

we have consolidated the outcomes of all pairwise comparisons using this test in Table 5.3.

This table uses the symbols +, =, and - to indicate whether MLRS-P statistically outperforms,

matches, or underperforms relative to each baseline. It is evident that MLRS-P surpasses all



102

baselines in this statistical test, reinforcing its efficacy in recommending the most suitable pool

generation schemes for any given DS method. These results underline the robustness of the

meta-learning recommendation model, affirming its capability to model the relationship between

problem characteristics and the selection of the appropriate pool.

Table 5.3 Comparison of MLRS-P Performance Against Baseline
Methods. "+" indicates MLRS-P wins, "=" denotes a tie, and "-"

signifies a loss

LIT BP BDT BSDT BSP RF FLT

KNORA-E + + + + + + +

META-DES + + + + + + +

KNORA-U + + + + + + +

DES-MI + + + + + + +

DES-P + + + + + + +

MLA + + + + + + +

OLA + + + + + + +

Moreover, we present the distributions of the recommended pool by MLRS-P while fixing

different dynamic selection methods. Each figure corresponds to a specific fixed dynamic

selection method. Figure 5.10 showcases the distribution when KNORA-E is fixed, while

Figure 5.11 displays the distribution with META-DES fixed. Similarly, Figures 5.12 through

5.16 represent the distributions when KNORA-U, DES-MI, DES-P, OLA, and MLA are fixed,

respectively.



103

Figure 5.10 The distribution of the recommended pool by MLRS-P
while KNORA-E is fixed



104

Figure 5.11 The distribution of the recommended pool by MLRS-P
while META-DES is fixed



105

Figure 5.12 The distribution of the recommended pool by MLRS-P
while KNORA-U is fixed



106

Figure 5.13 The distribution of the recommended pool by MLRS-P
while DES-MI is fixed



107

Figure 5.14 The distribution of the recommended pool by MLRS-P
while DES-P is fixed



108

Figure 5.15 The distribution of the recommended pool by MLRS-P
while OLA is fixed



109

Figure 5.16 The distribution of the recommended pool by MLRS-P
while MLA is fixed

The distributions of the recommended pool by MLRS-P show that the most recommended

pool for different DS methods was not the same. The results indicate that MLRS-P suggests

BDT most of the time for KNORA-E and META-DES both. BP stands as the second most

recommended among 288 datasets for these methods. The most suggested pool generation

scheme was RF for KNORA-U, DES-MI, and DES-P. As a result, since all pools suggested

by MLRS-P for DES are based on DT, this underscores the significance of DT in the process.

Additionally, BP was the most recommended pool for both DCS methods including MLA and

OLA. Thus, we can conclude that our proposed MLRS-P can indeed model the relationship

between the best dataset characteristics and the DS method used in order to recommend the best

pool generation scheme.



110

5.4.2 Scenario II: meta-learning for recommending the best DS model

As the second recommendation of the research, the meta-learning recommendation system

suggests a DS algorithm while a pool generation scheme, 𝐶, is fixed. To find which learning

algorithm is more suitable as the meta-classifier, we evaluate several hyperparameter config-

urations that are more effective as a meta-model, 𝑀𝑚, in this meta-learning recommendation

scenario. The results of these multiple runs are presented in table 5.4.

Based on this analysis we can conclude that the KNN with the k equal to 2 is the best approach

to be used as the meta-classifier for Scenario II (MLRS-DS). This is interesting since it contrasts

with the RF with max-depth 5 found from scenario I, indicating that each meta-learning

recommendation formulation may require different models.

Table 5.4 The results of meta-learning prediction with different hyper-parameters while
pool generation scheme is fixed. Numbers correspond to their average performance

Algorithm Hyperparameters (DS, LIT) (DS, BP) (DS, BDT) (DS, BSDT) (DS, BSP) (DS, RF) (DS, FLT)

RF Max_depth = 5 71.87 63.19 62.50 61.11 63.88 59.37 57.63

RF Max_depth = 4 56.59 52.77 60.76 57.98 57.63 54.86 48.61

RF Max_depth = 3 48.26 45.48 59.37 57.63 54.16 52.43 41.31

RF Max_depth = 2 37.15 39.93 59.02 57.29 50.34 50.69 37.15

KNN K = 2 63.19 60.06 69.79 67.70 63.19 67.01 62.5

KNN K = 3 57.63 51.04 64.93 62.84 53.12 60.06 54.16

KNN K = 4 52.08 50 61.45 62.50 48.95 55.55 50.69

KNN K = 5 48.26 47.22 62.15 60.41 50.69 51.38 48.26

KNN K = 6 47.56 45.83 63.19 60.41 48.26 50.69 47.91

SVM gamma=’scale’, 𝑐 = 1 32.63 34.37 59.37 57.63 34.02 50.34 31.59

Table 5.5 presents a comparison between the performance of MLRS-DS against the baseline,

which is a pre-defined DS method using different pool generation schemes. Each row in the

table corresponds to a fixed pool of generation scheme. Also, the average number of wins is

indicated in parentheses. For instance, the performance of the MLRS-DS was 71.87% among

288 datasets (207 wins in 288 datasets). In contrast, for example, the average performance of



111

DS methods that use LIT, including (KNORA-E, LIT), (META-DES, LIT), (KNORA-U, LIT),

(DES-MI, LIT), (DES-P, LIT), (MLA, LIT), (OLA, LIT) was 21.87%, with the average number

of wins among these combinations being 42.71.

Table 5.5 The results of MLRS-DS compared with the average
performance of baseline among 288 datasets. Note that (Wins) denotes
the number of wins out of a total of 288 datasets. (Ave_wins) denotes

the average number of the datasets with the best performance among 288
datasets between 7 pools of classifiers

pool generation scheme MLRS-DS(Wins) (PDS, P)(Ave_wins)

LIT 71.87(207) 21.87(42.71)

BP 63.19(182) 30.25(66.57)

BDT 62.50(180) 26.98(49.14)

BSDT 61.11(176) 22.17(45.14)

BSP 63.88(184) 20.83(43)

RF 59.37(171) 27.03(52.85)

FLT 57.63(166) 23.90(43.28)

Figures 5.17 to 5.23, presents the win-tie-loss diagrams showing all pairwise comparison

between MLRS-DS and the baselines method. We can observe that in the vast majority of cases,

the MLRS-DS obtains a number of wins that is higher than the critical value (delimited by

the blue line), except for a few cases when considering the stronger DS techniques such as the

META-DES (which are considered the overall best DS), and KNORA-E where a significant

number of ties can be observed. As the sign test also considers the half of the number of ties in

the comparison with the critical value, we summarize the results of all pairwise comparisons in

Table 5.6. In this table, the +, = and - signs illustrates whether the proposed MLRS-DS obtained

statistically better, equivalent or worse results compared to the corresponding baseline.



112

Figure 5.17 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the DS method (Scenario II)
and other DS schemes. The BDT was considered as the predefined pool

method (PP). The horizontal line illustrates the critical values
considering a confidence level of � = 0.05



113

Figure 5.18 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the DS method (Scenario II)
and other DS schemes. The BP was considered as the predefined pool

method (PP). The horizontal line illustrates the critical values
considering a confidence level of � = 0.05



114

Figure 5.19 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the DS method (Scenario II)
and other DS schemes. The FLT was considered as the predefined pool

method (PP). The horizontal line illustrates the critical values
considering a confidence level of � = 0.05



115

Figure 5.20 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the DS method (Scenario II)
and other DS schemes. The LIT was considered as the predefined pool

method (PP). The horizontal line illustrates the critical values
considering a confidence level of � = 0.05



116

Figure 5.21 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the DS method (Scenario II)
and other DS schemes. The RF was considered as the predefined pool

method (PP). The horizontal line illustrates the critical values
considering a confidence level of � = 0.05



117

Figure 5.22 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the DS method (Scenario II)

and other DS schemes. The BSDT was considered as the predefined
pool method (PP). The horizontal line illustrates the critical values

considering a confidence level of � = 0.05



118

Figure 5.23 Pairwise comparison using the Sign Test between the
meta-learning recommendation system for the DS method (Scenario II)
and other DS schemes. The BSP was considered as the predefined pool

method (PP). The horizontal line illustrates the critical values
considering a confidence level of � = 0.05

Table 5.6 Comparison of MLRS-DS Performance Against Baseline Methods. "+"
indicates MLRS-DS wins, "=" denotes a tie, and "-" signifies a loss

KNORA-E META-DES KNORA-U DES-MI DES-P MLA OLA
BDT + = + + + + +
BP + + + + + + +
FLT + + + + + + +
LIT + + + + + + +
RF + + + + + + +
BSDT + = + + + + +
BSP + + + + + + +

These results further confirm that the proposed MLRS-DS statistically outperformed the

majority of the predetermined DS methods (PDS) among 288 datasets, being only deemed

statistically equivalent to the META-DES when the pool generation scheme is generated using



119

the BDT technique. Hence, we can conclude that our MLRS-DS also succeeded in its task of

recommending the most suitable DS method for a given dataset and pool generation scheme.

Moreover, we analyzed the distributions of the recommended DS methods by MLRS-DS while

a pool generation scheme is fixed. Each figure corresponds to a specific fixed pool generation

scheme. Figure 5.24 illustrates the distribution when BDT is fixed, while Figure 5.25 depicts the

distribution with BP fixed. The subsequent figures, 5.26 through 5.30, represent the distributions

when BSDT, BSP, RF, FLT, and LIT are fixed, respectively.

Figure 5.24 The distribution of the recommended DS method by
MLRS-DS while BDT is fixed



120

Figure 5.25 The distribution of the recommended DS method by
MLRS-DS while BP is fixed



121

Figure 5.26 The distribution of the recommended DS method by
MLRS-DS while BSDT is fixed



122

Figure 5.27 The distribution of the recommended DS method by
MLRS-DS while BSP is fixed



123

Figure 5.28 The distribution of the recommended DS method by
MLRS-DS while RF is fixed



124

Figure 5.29 The distribution of the recommended DS method by
MLRS-DS while FLT is fixed



125

Figure 5.30 The distribution of the recommended DS method by
MLRS-DS while LIT is fixed

The distributions of the recommended DS method by MLRS-DS indicate that MLRS-DS

suggests META-DES most of the time while BDT is used. Moreover, META-DES remains the

most recommended DS method when considering BSDT, BSP, and RF. The most suggestion

was DES-MI while BP is used as a pool generation scheme. When FLT is used as a fixed pool

generation scheme, the recommended DS is KNORA-U. Also, DES-P is the most suggestion

while we are using LIT as a pool. However, even if META-DES is the most recommended

for DS methods, we can see a diversity on this prediction, corroborating with the fact that the

proposed MLRS-DS adapts its recommendation according to the dataset characteristics as well

as the fixed pool of classifiers.

5.4.3 Scenario III: meta-learning for recommending the pool and DS algorithm

Scenario III is designed to recommend both the pool and DS method simultaneously and

fully automated, based on the meta-features extracted from the test dataset Q. As mentioned



126

previously, meta-learning performs a chained recommendation where it first recommends the

more suitable pool generation scheme according to the meta-feature and then recommends the

DS method conditional to the first choice.

Similar to the previous scenarios, three algorithms, including Random Forests (RF), K Nearest

Neighbors (KNN), and Support Vector Machine (SVM), were initially considered as meta-

models for the MLRS-PDS. To compare the performance of the proposed MLRS-PDS, the

Jaccard similarity coefficient score is used since it is commonly used in multi-label classification

problems (Rinartha & Suryasa (2017)). It is a widely used metric to evaluate the similarity

between two sets. It measures the intersection over the union of the sets and ranges from 0 to 1.

Higher values indicate greater similarity. We utilized Jaccard similarity values scaled to a range

of 0 to 100. This scaling facilitates a more intuitive interpretation, allowing us to represent the

degree of similarity as a percentage.

The Jaccard similarity index mainly focuses on global ratings. It is the ratio of the proportion of

the cardinality of co-rated items to the cardinality of all items rated by both users. The Jaccard

similarity is calculated using Equation 5.2 where 𝐼𝑢 and 𝐼𝑣 are the sets of items rated by users 𝑢

and 𝑣 respectively.

Jaccard𝑢𝑣 =
|𝐼𝑢 ∩ 𝐼𝑣 |
|𝐼𝑢 ∪ 𝐼𝑣 |

(5.2)

As an example consider two lists of pools, 𝑢 and 𝑣. The list 𝑢 is {𝑅𝐹, 𝐵𝑃, 𝐹𝐿𝑇, 𝐿𝐼𝑇}, and

user 𝑣 rated items {𝑅𝐹, 𝐵𝑃, 𝐵𝑆𝐷𝑇, 𝐵𝑆𝑃}. The Jaccard similarity index between 𝑢 and 𝑣 is

calculated as follows:

Jaccard𝑢𝑣 =
|𝐼𝑢 ∩ 𝐼𝑣 |
|𝐼𝑢 ∪ 𝐼𝑣 |

=
|{𝑅𝐹, 𝐵𝑃}|

|{𝑅𝐹, 𝐵𝑃, 𝐹𝐿𝑇, 𝐿𝐼𝑇, 𝐵𝑆𝐷𝑇, 𝐵𝑆𝑃}| =
2
6
=

1
3

Table 5.7 presents the Jaccard similarity according to the different classifier algorithms used

as meta-learners in this scenario. It can be observed that the KNN with K equal to 2 obtains a



127

higher score when used as the meta-model. Therefore, it was selected as our meta-classifier for

the following analyses.

Table 5.7 The results of meta-learning prediction,
MLRS-PDS with different hyper-parameters

Algorithm Hyperparameters (DS, Pool)

RF Max_depth = 5 60.18

RF Max_depth = 4 50.69

RF Max_depth = 3 46.64

RF Max_depth = 2 40.27

KNN k = 2 64.93

KNN k = 3 52.31

KNN k = 4 49.07

KNN k = 5 43.98

KNN k = 6 42.82

SVM gamma=’scale’, 𝑐 = 1 33.79

A pairwise comparison using the Sign Test for the third phase of the research is conducted to

compare MLRS-PDS against all possible pairs (7 pool generation scheme 𝑡𝑖𝑚𝑒𝑠 7 DS models)

giving a total of 49 possible configurations of predetermined DS method and pool (PDS, PP).

These results are presented in multiple figures (Figures 5.31 to 5.37), each one corresponding to

all possible configurations regarding a particular pool generation method, used as pivot, due to

the number of experiments.



128

Figure 5.31 This figure illustrates the number of wins, ties and losses
obtained by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use LIT as the pool generation scheme is

presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level

(� = 0.05)



129

Figure 5.32 This figure illustrates the number of wins, ties and losses
obtained by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use BP as the pool generation scheme is
presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level

(� = 0.05)



130

Figure 5.33 This figure illustrates the number of wins, ties and losses
obtained by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use BDT as the pool generation scheme is

presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level

(� = 0.05)



131

Figure 5.34 This figure illustrates the number of wins, ties and losses
obtained by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use BSDT as the pool generation scheme is

presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level

(� = 0.05)



132

Figure 5.35 This figure illustrates the number of wins, ties and losses
obtained by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use BSP as the pool generation scheme is

presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level

(� = 0.05)



133

Figure 5.36 This figure illustrates the number of wins, ties and losses
obtained by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use RF as the pool generation scheme is
presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level

(� = 0.05)



134

Figure 5.37 This figure illustrates the number of wins, ties and losses
obtained by the MLRS-PDS against the baselines. In this case all pairs
possible configurations that use FLT as the pool generation scheme is

presented as baseline. The horizontal line marks the critical value
threshold, which is determined based on a 95% confidence level

(� = 0.05)

Through the win-loss-tie diagrams presented in the figures as well as the summary of the Sign

test presented in table 5.8, we can conclude that our fully automated solution, MLRS-PDS

significantly outperforms all possible configurations. The chained recommendation scheme

in MLRS-PDS that initially selects the optimal pool generation scheme (a simpler task than

choosing the best DS, as shown in earlier subsections) and then recommending the most suitable

DS model based on meta-features and the chosen pool, demonstrates robust performance.

Table 5.9 showcases a comprehensive comparison of MLRS-PDS against MLRS-P, MLRS-DS,

and various baselines across 288 datasets. Each row in the table represents a specific (Pool, DS)

pair, with the average number of first-rank results noted in parentheses. Notably, in the case of



135

H]

Table 5.8 Comparison of MLRS-PDS Performance Against Baseline Methods. "+"
indicates MLRS-PDS wins, "=" denotes a tie, and "-" signifies a loss

KNORA-E META-DES KNORA-U DES-MI DES-P MLA OLA
LIT + + + + + + +
BP + + + + + + +
BDT + + + + + + +
BSDT + + + + + + +
BSP + + + + + + +
RF + + + + + + +
FLT + + + + + + +

MLRS-P for this analysis, the selection was based on the fixed META-DES, identified as the

most effective dynamic selection scheme across all datasets. Similarly, for MLRS-DS, the RF

model was chosen as the constant pool generation scheme due to its superior performance in

accruing the highest number of wins among other methods. Additionally, the top 4 (Pool, DS)

algorithm combinations, as identified in our previous analysis in Chapter 4, are included for

reference.



136

Table 5.9 The comparison between the three versions
of MLRS and the baselines among 288 datasets. Two

recommended pairs of MLRS are presented here based
on different meta-models in the third recommendation.

(META-DES, MLRS-P) represents the pool
recommended by MLRS-P while META-DES is fixed
as the DS method. (MLRS-DS, RF) represents the DS
method recommended by MLRS-DS while RF is fixed

as a pool generation scheme.

Algorithm Accuracy (wins)

MLRS-PDS 64.93(187)

MLRS-P with META-DES 10.06(29)

MLRS-DS with RF 27.08(78)

(RF, META-DES) 21.52(62)

(BP, DES-MI) 11.80(34)

(BP, META-DES) 10.06(29)

(BSDT, KNORA-U) 4.51(13)

Several conclusions can be drawn from these analyses. Firstly, when seeking the optimal solution,

it is advantageous to opt for the multi-label formulation (MLRS-PDS) and predict both stages of

the pipeline. The results clearly indicate that in a significant number of instances, either fixing

the best pool (27.08%) or the best DS (10.06%) leads to a sub-optimal outcome, as it limits the

search space to just one decision step. Therefore, to maximize performance, it is essential to

model the entire process through meta-learning.

Secondly, even relying on robust, pre-existing pairs proves to be insufficient. In the best-case

scenario of this analysis (RF, META-DES), achieving the optimal solution occurs in only about
1
5 of the cases. This analysis underscores the potential of meta-learning in this field. This work

demonstrates that meta-learning can be an effective approach for defining machine learning



137

solutions, particularly in complex scenarios like the one at hand, where there is significant

interdependence between the components (in this case, the pool and DS method).

Moreover, we also explore the recommendations provided by MLRS-PDS in order to know

which methods it is recommending. Figure 5.38 showcases the distribution of the recommended

pools suggested by MLRS-PDS. In Figure 5.39, we shift the focus to the distribution of the

recommended DS methods by MLRS-PDS.

Figure 5.38 The distribution of the recommended pool by MLRS-PDS



138

Figure 5.39 The distribution of the recommended DS method by
MLRS-PDS

The distributions of the recommended pool by MLRS-PDS show that the most suggestion was

BP while BDT and BSDT have also been recommended in considerable numbers in the second

and third categories. The most of the time, the DS method recommended by MLRS-PDS is

META-DES which shows the importance of this method. Nevertheless, we can see that there is

a diversity in the recommendations, showing that our model indeed changes its recommendation

based on the dataset characteristics.

5.5 RQ5: Dependency of selection of a pool generation scheme for DS techniques
based on data characteristics

The last research questions from this work, RQ5, examines whether the choice of a pool

generation scheme for DS methods depends on the characteristics of the datasets. The selection

of the optimal pool generation scheme is determined based on the results gathered in tables 5.3

to 5.9 for Scenario I, revealing a dependence on data characteristics. Also table 5.2 reveals that



139

for all DS methods using the pool recommended by MLRS at least double the number of datasets

that perform best. And since MLRS is based on data characteristics by extracting meta-features,

it shows the selection of an optimized pool indeed depends on data characteristics, and also that

we can model this relationship using meta-learning. Nevertheless, the analysis conducted in

this chapter demonstrate that this relationship is more complex than just taking into account the

dataset characteristics, and the choice of the best pool generation scheme or DS algorithm also

depends on each other.

5.5.1 Conclusion

A novel meta-learning framework for DS methods is presented in this chapter. The meta-

learning recommendation system consists of two distinct processes, namely meta-training

and generalization. During the meta-training phase, meta-features are extracted from the

training datasets. Then A meta-model is constructed by using the meta-target, 𝑦′, which is the

optimal performance obtained from a set of classifiers. During the generalization phase, the

meta-features of the test dataset, are extracted, and the meta-model is utilized to recommend the

best configuration.

In this chapter, we propose three different scenarios for the meta-learning reecommendation:

the first, MLRS-P suggest a pool generation scheme while using a fixed DS method. This

type of recommendation is useful when the user already have a particular DS they want to use,

but want to obtain its best possible performance. The second, MLRS-DS the meta-learning

recommendation algorithm suggests the DS method while the pool is fixed. It solves the use

case when a user already have a pool model pre-trained and want to identify which DS technique

would be more likely to obtain the best performance. Lastly we propose MLRS-PDS that

provides the pair (Pool, DS) just by looking at the meta-features. Hence, fully automating the

design decisions.

A total of 288 datasets were used in experiments to evaluate the effectiveness of our proposal

to the baseline methods. The number of times the meta-learning recommendation system



140

predicts the correct recommendation among 288 datasets is more than the number of times a

fixed pool generation scheme performs well. Similar observations were made for the second

and third recommendations. Hence, the experimental analysis indicates that the proposed

meta-learning recommendation system performs better in all three recommendation scenarios,

obtaining statistically significance performance. Furthermore, since this analysis was conducted

considering a diverse set of datasets that was particularly created for filling the whole complexity

space of problems, we believe the proposed approach generalize well to datasets that were not

considered in this work. As such, we believe the proposed MLRS recommendation framework, in

its three versions, is a significant contribution for the dynamic selection community. Furthermore,

the code of MLRS is in the process to be integrated in the next versions of DESlib, to assist

future researchers in this topic.



CONCLUSION AND RECOMMENDATIONS

In this project, we have explored the impact of the local and global pool generation schemes

on the performance of DS algorithms. We have examined the importance of selecting an

appropriate pool of classifiers for DS algorithms and how it can impact their performance. Most

publications used global perspective pool generation schemes, and those techniques have shown

some limitations, such as instability and generating redundant classifiers for global perspectives.

So we considered local pool generation schemes for the DS algorithm as well. Throughout the

process, we conducted an analysis that compared the use of local and global pool generation

schemes for DS algorithms on the same datasets and the same experimental protocols to observe

which pool generation scheme would perform better when used as input of DS algorithms.

In Chapter 4, a comparative study has shown that The local pool generation schemes did not

yield better results compared to the global perspective methods. The results show that no pool

generation scheme outperforms others. Also, the selection of a pool generation scheme may

differ according to the dataset and depends on the specific DS technique employed.

The results obtained in the first analysis indicate that we need to take into account the dataset

characteristics in order to know which pool generation scheme should be used. To reach this goal,

we propose a meta-learning recommendation technique for solving the aforementioned problem

in chapter 5. The results illustrate that by using a meta-learning recommendation system, the

selection of the pool generation scheme depends on data characteristics. We proposed a novel

automated recommendation system by constructing a meta-model using the meta-features and

the meta-target to predict a proper pool generation scheme for DS techniques, the best DS

method, and a pair of recommendations of (DS, Pool) for a given dataset.

We conducted another experimental study to evaluate the performance of the Meta-learning

recommendation system. As the first recommendation of the research, the meta-learning

recommendation system suggests a pool of classifiers while a DS method is fixed. The



142

experimental study shows that the meta-learning recommendation system performs better than

selecting the best pool of classifiers from the study in chapter 4 across 288 datasets. As the

second recommendation of the research, the meta-learning recommendation system suggests

a DS method, while a pool of classifiers is fixed. The experimental study has shown that the

meta-learning recommendation system performs better than selecting a DS technique based on

the study in chapter 4. As the third recommendation, the meta-learning recommendation system

suggests the best pair of (DS, Pool) for a given dataset. The experimental study has shown that

the meta-learning recommendation system performs better than selecting a DS technique and a

pool of classifiers based on the study in chapter 4.

The experimental study conducted over 288 datasets demonstrates that, on average, the meta-

learning recommendation improves over the baseline for DS algorithms. This project contributes

to the field of dynamic ensemble selection by empirically demonstrating the impact of the pool

generation method on the model’s performance and its dependency on the problem characteristics.

In addition, the meta-learning recommendation of the best pool generation and DS algorithm

according to the problem’s characteristics automate the process of finding a suitable dynamic

selection pipeline for classification problems.

While this study has provided valuable insights into automated recommendations for pool

generation schemes and selecting a DS method for a given data, there remain several intriguing

opportunities for future research and enhancements. Here are some future works in this area:

• Creating a novel pool generation scheme taking into account DS models and their competence

estimation in the process.

• Expanding the scope of our analysis to encompass a broader range of classification problems

stands as a promising avenue for future research.

• Contributing Meta-learning recommendation system to the DESlib library.



143

• The evaluation of the developed multi-label meta-learning recommendation system for other

types of tasks. These include regression problems and time-series forecasting.





APPENDIX I

LIST OF META-FEATURES USED IN THE PROPOSED APPROACH

As mentioned earlier, this work considered an extensive and diverse set of meta-features, coming

from different groups in the conception of the meta-learning model. The list describing all

meta-features considered in this work is presented in Tables A.I-1 to A I-4.



146

Table-A I-1 Meta-features present in the meta-dataset

Meta feature Group Description

1 attr_to_inst general Compute the ratio between the number of attributes.

2 cat_to_num general Compute the ratio between the number of categoric and numeric features.

3 freq_class general Compute the relative frequency of each distinct class.

4 inst_to_attr general Compute the ratio between the number of instances and attributes.

5 nr_attr general Compute the total number of attributes.

6 nr_bin general Compute the number of binary attributes.

7 nr_cat general Compute the number of categorical attributes.

8 nr_class general Compute the number of distinct classes.

9 nr_inst general Compute the number of instances (rows) in the dataset.

10 nr_num general Compute the number of numeric features.

11 num_to_cat general Compute the number of numerical and categorical features.

12 precompute_general_class general Precompute distinct classes and its frequencies from y.

13 can_cor Statistical Compute the canonical correlations of data.

14 cor Statistical Compute the absolute value of the correlation of distinct dataset column pairs.

15 cov Statistical Compute the absolute value of the covariance of distinct dataset attribute pairs.

16 eigenvalues Statistical Compute the eigenvalues of covariance matrix from dataset.

17 g_mean Statistical Compute the geometric mean of each attribute.

18 gravity Statistical Compute the distance between minority and majority classes center of mass.

19 h_mean Statistical Compute the harmonic mean of each attribute.

20 iq_rang Statistical Compute the interquartile range (IQR) of each attribute.

21 kurtosis Statistical Compute the kurtosis of each attribute.

22 lh_trace Statistical Compute the Lawley-Hotelling trace.

23 mad Statistical Compute the Median Absolute Deviation (MAD) adjusted by a factor.

24 max Statistical Compute the maximum value from each attribute.

25 mean Statistical Compute the mean value of each attribute.

26 median Statistical Compute the median value from each attribute.

27 min Statistical Compute the minimum value from each attribute.

28 nr_cor_attr Statistical Compute the number of distinct highly correlated pairs of attributes.

29 nr_disc Statistical Compute the number of canonical correlations between each attribute and class.

30 nr_norm Statistical Compute the number of attributes normally distributed based in a given method.

31 nr_outliers Statistical Compute the number of attributes with at least one outlier value.

32 p_trace Statistical Compute the Pillai’s trace.

33 range Statistical Compute the range (max-min) of each attribute.

34 roy_root Statistical Compute the Roy’s largest root.

35 sd Statistical Compute the standard deviation of each attribute.

36 sd_ratio Statistical Compute a statistical test for homogeneity of covariances.

37 skewness Statistical Compute the skewness for each attribute.

38 sparsity Statistical Compute (possibly normalized) sparsity metric for each attribute.

39 t_mean Statistical Compute the trimmed mean of each attribute.

40 var Statistical Compute the variance of each attribute.



147

Table-A I-2 Meta-features present in the meta-dataset

Meta feature Group Description

41 w_lambda Statistical Compute the Wilks’ Lambda value.

42 precompute_can_cors Statistical Precompute canonical correlations and its eigenvalues.

43 precompute_statistical_class Statistical Precompute distinct classes and its abs.

44 precompute_statistical_cor_cov Statistical Precomputes the correlation and covariance matrix of numerical data.

45 attr_conc Information theory Compute concentration coef.

46 attr_ent Information theory Compute Shannon’s entropy for each predictive attribute.

47 class_conc Information theory Compute concentration coefficient between each attribute and class.

48 class_ent Information theory Compute target attribute Shannon’s entropy.

49 eq_num_attr Information theory Compute the number of attributes equivalent for a predictive task.

50 joint_ent Information theory Compute the joint entropy between each attribute and class.

51 mut_inf Information theory Compute the mutual information between each attribute and target.

52 ns_ratio Information theory Compute the noisiness of attributes.

53 precompute_class_freq Information theory Precompute each distinct class (absolute) frequencies.

54 precompute_entropy Information theory Precompute various values related to Shannon’s Entropy.

55 extract_table Model-based Bookkeep some information table from the t_model into an array.

56 leaves Model-based Compute the number of leaf nodes in the DT model.

57 leaves_branch Model-based Compute the size of branches in the DT model.

58 leaves_corrob Model-based Compute the leaves corroboration of the DT model.

59 leaves_homo Model-based Compute the DT model Homogeneity for every leaf node.

60 leaves_per_class Model-based Compute the proportion of leaves per class in DT model.

61 nodes Model-based Compute the number of non-leaf nodes in DT model.

62 nodes_per_attr Model-based Compute the ratio of nodes per number of attributes in DT model.

63 nodes_per_inst Model-based Compute the ratio of non-leaf nodes per number of instances in DT model.

64 nodes_per_level Model-based Compute the ratio of number of nodes per tree level in DT model.

65 nodes_repeated Model-based Compute the number of repeated nodes in DT model.

66 tree_depth Model-based Compute the depth of every node in the DT model.

67 tree_imbalance Model-based Compute the tree imbalance for each leaf node.

68 tree_shape Model-based Compute the tree shape for every leaf node.

69 var_importance Model-based Compute the features importance of the DT model for each attribute.

70 precompute_model_based_class Model-based Precompute the DT Model and some information related to it.

71 best_node Landmarking Performance of the best single decision tree node.

72 elite_nn Landmarking Performance of Elite Nearest Neighbor.

73 linear_discr Landmarking Performance of the Linear Discriminant classifier.

74 naive_bayes Landmarking Performance of the Naive Bayes classifier.

75 one_nn Landmarking Performance of the 1-Nearest Neighbor classifier.

76 random_node Landmarking Performance of the single DT node model induced by a random attribute.

77 worst_node Landmarking Performance of the single DT node model induced by the worst informative attribute.

78 precompute_landmarking_kfolds Landmarking Precompute k-fold cross-validation related values.

79 precompute_landmarking_sample Landmarking Precompute subsampling landmarking subsample indices.

80 group_mtf_by_summary Relative Landmarking Group meta features by its correspondent summary method.



148

Table-A I-3 Meta-features present in the meta-dataset

Meta feature Group Description

81 postprocess_landmarking_relative Relative Landmarking Generate Relative Landmarking from Landmarking metafeatures.

82 ch Clustering Compute the Calinski and Harabasz index.

83 int Clustering Compute the INT index.

84 nre Clustering Compute the normalized relative entropy.

85 pb Clustering Compute the Pearson correlation between class matching and instance distances.

86 sc Clustering Compute the number of clusters with sizes smaller than a given size.

87 sil Clustering Compute the mean silhouette value.

88 vdb Clustering Compute the Davies and Bouldin Index.

89 vdu Clustering Compute the Dunn Index.

90 precompute_class_representatives Clustering Precomputations related to cluster representative instances.

91 precompute_clustering_class Clustering Precompute distinct classes and its frequencies from y.

92 precompute_group_distances Clustering Precompute distance metrics between instances.

93 precompute_nearest_neighbors Clustering Precompute the n_neighbors Nearest Neighbors of every instance.

94 cohesiveness Concept Improved weighted distance that captures how dense or sparse is the example distribution.

95 conceptvar Concept Compute the concept variation that estimates the variability of class labels among examples.

96 impconceptvar Concept Compute the improved concept variation that estimates the variability of class labels among examples.

97 wg_dist Concept Compute the weighted distance and that captures how dense or sparse is the example distribution.

98 precompute_concept_dist Concept Precompute some useful things to support complexity measures.

99 one_itemset Itemset Compute the one itemset meta-feature.

100 two_itemset Itemset Compute the two itemset meta-feature.

101 precompute_binary_matrix Itemset Precompute the binary representation of attributes.

102 c1 Complexity Compute the entropy of class proportions.

103 c2 Complexity Compute the imbalance ratio.

104 cls_coef Complexity Clustering coefficient.

105 density Complexity Average density of the network.

106 f1 Complexity Maximum Fisher’s discriminant ratio.

107 f1v Complexity Directional-vector maximum Fisher’s discriminant ratio.

108 f2 Complexity Volume of the overlapping region.

109 f3 Complexity Compute feature maximum individual efficiency.

110 f4 Complexity Compute the collective feature efficiency.

111 hubs Complexity Hub score.

112 l1 Complexity Sum of error distance by linear programming.

113 l2 Complexity Compute the OVO subsets error rate of a linear classifier.

114 l3 Complexity Non-Linearity of a linear classifier.

115 lsc Complexity Local set average cardinality.

116 n1 Complexity Compute the fraction of borderline points.

117 n2 Complexity Ratio of intra and extra class nearest neighbor distance.

118 n3 Complexity Error rate of the nearest neighbor classifier.

119 n4 Complexity Compute the non-linearity of the k-NN Classifier.

120 t1 Complexity Fraction of hyperspheres covering data.



149

Table-A I-4 Meta-features present in the meta-dataset

Meta feature Group Description

121 t2 Complexity Compute the average number of features per dimension.

122 t3 Complexity Compute the average number of PCA dimensions per point.

123 t4 Complexity Compute the ratio of the PCA dimension to the original dimension.

124 precompute_adjacency_graph Complexity Calculate values associated with the nearest neighboring instances.

125 precompute_complexity Complexity Precompute some useful things to support feature-based measures.

126 precompute_complexity_svm Complexity Init a Support Vector Classifier pipeline (with data standardization.)

127 precompute_nearest_enemy Complexity Precompute instances nearest enemy related values.

128 precompute_norm_dist_mat Complexity Precompute normalized n and pairwise distance among instances.

129 precompute_pca_tx Complexity Precompute PCA to support dimensionality measures.





APPENDIX II

EXPERIMENTAL RESULTS OF CHAPTER4

Table II-1 provides the average ranking across 288 datasets for various combinations of 7 pool

generation schemes and 7 dynamic selection (DS) methods. Each cell in the table represents

the average rank of a specific pool-DS method combination. For instance, FLT achieved

average ranks of 26.96 (KNORA-E), 21.40 (META-DES), 21.43 (KNORA-U), 27.54 (DES-MI),

22.89 (DES-P), 31.69 (MLA), and 33.82 (OLA). These statistics for LIT are 28.19(KNORA-

E), 21.84(META-DES), 21.73(KNORA-U), 28.76(DES-MI), 22.68(DES-P), 31.84(MLA),

33.35(OLA). The best average ranking belongs to (META-DES, RF) with an average rank of

6.12, while the worst belongs to (DES-MI, BSDT) with an average rank of 47.23.



152

Table-A II-1 Summary of the average rank among
288 datasets between a combination of 7 pools and 7

DS methods

(META-DES, RF) 6.12 (KNORA-E, FLT) 26.96

(KNORA-U, RF) 8.67 (DESP, BSDT) 27.18

(DES-P, RF) 9.50 (MLA, BSDT) 27.43

(META-DES, BDT) 9.56 (DES-MI, FLT) 27.54

(DES-MI, RF) 10.12 (MLA, BP) 27.96

(META-DES, BSDT) 11.53 (KNORA-E, LIT) 28.19

(KNORA-U, BDT) 12.55 (MLA, BSP) 28.32

(DES-P, BDT) 13.07 (DES-MI, LIT) 28.76

(META-DES, BP) 14.64 (KNORA-U, BSP) 30.82

(KNORA-E, RF) 14.92 (OLA, BDT) 30.89

(DES-MI, BDT) 16.08 (MLA, FLT) 31.69

(KNORA-E, BDT) 17.58 (DES-P, BSP) 31.74

(DES-MI, BP) 19.07 (MLA, LIT) 31.84

(KNORA-U, BP) 19.70 (OLA, BSP) 32.02

(DES-P, BP) 19.77 (OLA, BSDT) 32.08

(KNORA-E, BP) 20.32 (MLA, BDT) 32.70

(KNORA-U, BSDT) 20.45 (KNORA-E, BSDT) 33.08

(META-DES, FLT) 21.40 (OLA, LIT) 33.35

(KNORA-U, FLT) 21.43 (OLA, FLT) 33.82

(KNORA-U, LIT) 21.73 (KNORA-E, BSP) 35.57

(META-DES, LIT) 21.84 (OLA, RF) 36.70

(DES-P, LIT) 22.68 (MLA, RF) 38.04

(DESP, FLT) 22.89 (DES-MI, BSP) 46.86

(OLA, BP) 23.61 (DES-MI, BSDT) 47.23

(META-DES, BSP) 26.01



153

Table II-2 illustrates the average rank of each pool among 288 datasets including the results

of majority voting. (META-DES, RF) performed better between 56 pairs of (DS, Pool) and

majority voting results. The base classifiers of the top 4 of this ranking are RF which shows the

importance of this method. Furthermore, the top 10 pools of classifiers are composed of DT.

Table-A II-2 Average rank of each pools

RF_METADES 7.343 BP_OLA 27.631
RF_KNORAU 9.993 LIT_MV 28.256
RF_DESP 10.913 BSP_METADES 30.434
RF_MV 11.500 FLT_KNORAE 31.489
BDT_METADES 11.517 BSDT_DESP 31.649
RF_DESMI 12.101 BSDT_MLA 32.156
BSDT_METADES 13.781 FLT_DESMI 32.243
BDT_KNORAU 14.736 BP_MLA 32.663
BDT_DESP 15.222 LIT_KNORAE 32.875
BDT_MV 15.725 BSP_MLA 33.097
BP_METADES 17.104 LIT_DESMI 33.576
RF_KNORAE 17.920 BDT_OLA 35.753
BDT_DESMI 19.072 BSP_KNORAU 35.916
BSDT_MV 20.503 BSP_MV 36.583
BDT_KNORAE 20.979 FLT_MLA 36.958
BP_DESMI 21.916 BSP_OLA 37.079
BP_KNORAU 22.423 BSP_DESP 37.083
BP_DESP 22.687 LIT_MLA 37.152
BP_KNORAE 23.913 BSDT_OLA 37.239
BSDT_KNORAU 24.024 BDT_MLA 37.993
BP_MV 24.184 BSDT_KNORAE 38.031
FLT_METADES 25.246 LIT_OLA 38.607
FLT_KNORAU 25.333 FLT_OLA 39.152
LIT_KNORAU 25.659 BSP_KNORAE 40.743
LIT_METADES 25.809 RF_OLA 42.093
LIT_DESP 26.847 RF_MLA 43.854
FLT_MV 26.902 BSP_DESMI 53.559
FLT_DESP 27.052 BSDT_DESMI 53.836

1. Comparison of a local and global pool of classifiers performance

A major question in this study is whether local pool generation schemes yield better results in

comparison with global pool generation schemes. The answer to this research question would

lead us to use just the global pool of classifiers, just the local pool of classifiers, 𝐶, or the solution



154

would be a combination of those to optimize the performance of DS methods. Table II-3 and ??

shows the average rank of FLT and LIT for different DS methods.

Table-A II-3 Average rank of FLT on 7 DS methods among 288 datasets

FLT_METADES 2.725

FLT_KNORAU 2.826

FLT_DESP 3.101

FLT_KNORAE 4.048

FLT_DESMI 4.190

FLT_MLA 5.093

FLT_OLA 5.569

Table-A II-4 Average rank of LIT on 7 DS methods among 288 datasets

LIT_METADES 2.642

LIT_KNORAU 2.701

LIT_DESP 3.003

LIT_KNORAE 4.246

LIT_DESMI 4.430

LIT_MLA 5.097

LIT_OLA 5.607

Table II-5 shows the numbers of wins (1st rank) for each DS method among 288 datasets. For

example for METADES, 109 times RF reached the 1st rank among other pools of classifiers

among 288 datasets.



155

Table-A II-5 the number of the 1st rank for each DS method and MV among 288 datasets

KNORAE MERADES KNORAU DESMI DESP MLA OLA

LIT 6 5 5 7 5 14 27

BP 89 68 64 87 69 77 139

BDT 101 57 84 75 90 65 64

BSDT 6 60 37 0 34 74 16

BSP 2 8 1 0 2 67 17

RF 87 109 132 121 126 16 12

FLT 10 7 11 10 11 24 24

2. Average rank of the pools for each DS method

Figures II-1a to II-1g show the average rank of each pool generation scheme for each DS method.



156

a) KNORAE

RF_KNORAE 2.059
BDT_KNORAE 2.447
BP_KNORAE 3.034
FLT_KNORAE 4.322
LIT_KNORAE 4.524
BSDT_KNORAE 5.420
BSP_KNORAE 5.927

b) METADES

RF_METADES 2.135
BDT_METADES 2.795
BSDT_METADES 3.281
BP_METADES 3.385
FLT_METADES 5.173
LIT_METADES 5.347
BSP_METADES 5.538

c) KNORAU

RF_KNORAU 1.958
BDT_KNORAU 2.659
BP_KNORAU 3.958
BSDT_KNORAU 4.229
FLT_KNORAU 4.357
LIT_KNORAU 4.517
BSP_KNORAU 5.850

d) DESMI

RF_DESMI 1.798
BDT_DESMI 2.440
BP_DESMI 3.024
FLT_DESMI 3.857
LIT_DESMI 3.982
BSP_DESMI 6.045
BSDT_DESMI 6.708

e) DESP

RF_DESP 1.975
BDT_DESP 2.572
BP_DESP 3.607
LIT_DESP 4.430
FLT_DESP 4.458
BSDT_DESP 4.881
BSP_DESP 5.586

f) MLA

BP_MLA 3.243
BSDT_MLA 3.298
BSP_MLA 3.406
BDT_MLA 3.843
LIT_MLA 4.100
FLT_MLA 4.121
RF_MLA 5.486

g) OLA

BP_OLA 2.586
BDT_OLA 3.684
BSDT_OLA 3.864
LIT_OLA 3.979
BSP_OLA 4.142
FLT_OLA 4.190
RF_OLA 5.236



LIST OF REFERENCES

Aguiar, G. J., Santana, E. J., de Carvalho, A. C. & Junior, S. B. (2022). Using meta-learning for
multi-target regression. Information Sciences, 584, 665–684.

Alcobaça, E., Siqueira, F., Rivolli, A., Garcia, L. P., Oliva, J. T. & De Carvalho, A. C. (2020).
MFE: Towards reproducible meta-feature extraction. The Journal of Machine Learning
Research, 21(1), 4503–4507.

Almeida, P. R., Oliveira, L. S., Britto Jr, A. S. & Sabourin, R. (2018). Adapting dynamic
classifier selection for concept drift. Expert Systems with Applications, 104, 67–85.

Armano, G. & Tamponi, E. (2018). Building forests of local trees. Pattern Recognition, 76,
380–390.

Bashbaghi, S., Granger, E., Sabourin, R. & Bilodeau, G.-A. (2017). Dynamic ensembles of
exemplar-SVMs for still-to-video face recognition. Pattern recognition, 69, 61–81.

Batista, L., Granger, E. & Sabourin, R. (2012). Dynamic selection of generative–discriminative
ensembles for off-line signature verification. Pattern Recognition, 45(4), 1326–1340.

Beigy, H. et al. (2009). Dynamic classifier selection using clustering for spam detection. 2009
IEEE Symposium on Computational Intelligence and Data Mining, pp. 84–88.

Biau, G. (2012). Analysis of a random forests model. The Journal of Machine Learning
Research, 13(1), 1063–1095.

Bilalli, B., Abelló, A., Aluja-Banet, T. & Wrembel, R. (2016). Automated data pre-processing
via meta-learning. Model and Data Engineering: 6th International Conference, MEDI
2016, Almería, Spain, September 21-23, 2016, Proceedings 6, pp. 194–208.

Bilalli, B., Abelló Gamazo, A. & Aluja Banet, T. (2017). On the predictive power of meta-features
in OpenML. International Journal of Applied Mathematics and Computer Science,
27(4), 697–712.

Bischl, B., Mersmann, O., Trautmann, H. & Weihs, C. (2012). Resampling methods for meta-
model validation with recommendations for evolutionary computation. Evolutionary
computation, 20(2), 249–275.

Brazdil, P., Carrier, C. G., Soares, C. & Vilalta, R. (2008). Metalearning: Applications to data
mining. Springer Science & Business Media.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.



158

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Britto Jr, A. S., Sabourin, R. & Oliveira, L. E. (2014). Dynamic selection of classifiers—a
comprehensive review. Pattern recognition, 47(11), 3665–3680.

Brun, A. L., Britto, A. S., Oliveira, L. S., Enembreck, F. & Sabourin, R. (2016). Contribution
of data complexity features on dynamic classifier selection. 2016 International Joint
Conference on Neural Networks (ĲCNN), pp. 4396–4403.

Cavalin, P. R., Sabourin, R. & Suen, C. Y. (2012). LoGID: An adaptive framework combining
local and global incremental learning for dynamic selection of ensembles of HMMs.
Pattern recognition, 45(9), 3544–3556.

Cavalin, P. R., Sabourin, R. & Suen, C. Y. (2013). Dynamic selection approaches for multiple
classifier systems. Neural computing and applications, 22(3), 673–688.

Chen, T. & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pp. 785–794.

Choi, Y.-R. & Lim, D.-J. (2021). DDES: A Distribution-Based Dynamic Ensemble Selection
Framework. IEEE Access, 9, 40743–40754.

Cruz, R. M., Cavalcanti, G. D. & Ren, T. I. (2011). A method for dynamic ensemble selection
based on a filter and an adaptive distance to improve the quality of the regions of
competence. The 2011 International Joint Conference on Neural Networks, pp. 1126–
1133.

Cruz, R. M., Cavalcanti, G. D., Tsang, R. & Sabourin, R. (2013). Feature representation
selection based on classifier projection space and oracle analysis. Expert Systems with
Applications, 40(9), 3813–3827.

Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2015a). A DEEP analysis of the META-
DES framework for dynamic selection of ensemble of classifiers. arXiv preprint
arXiv:1509.00825.

Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2015b). META-DES.H: a dynamic ensemble
selection technique using meta-learning and a dynamic weighting approach. 2015
International Joint Conference on Neural Networks (ĲCNN), pp. 1–8.

Cruz, R. M., Sabourin, R., Cavalcanti, G. D. & Ren, T. I. (2015c). META-DES: A dynamic
ensemble selection framework using meta-learning. Pattern recognition, 48(5), 1925–
1935.



159

Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2017). META-DES. Oracle: Meta-learning and
feature selection for dynamic ensemble selection. Information fusion, 38, 84–103.

Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2018a). Dynamic classifier selection: Recent
advances and perspectives. Information Fusion, 41, 195–216.

Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2018b). Prototype selection for dynamic
classifier and ensemble selection. Neural Computing and Applications, 29, 447–457.

Cruz, R. M., Oliveira, D. V., Cavalcanti, G. D. & Sabourin, R. (2019). FIRE-DES++: Enhanced
online pruning of base classifiers for dynamic ensemble selection. Pattern Recognition,
85, 149–160.

Cruz, R. M., Hafemann, L. G., Sabourin, R. & Cavalcanti, G. D. (2020). DESlib: A Dynamic
ensemble selection library in Python. The Journal of Machine Learning Research, 21(1),
283–287.

Cruz, R. M., de Sousa, W. V. & Cavalcanti, G. D. (2022). Selecting and combining complementary
feature representations and classifiers for hate speech detection. Online Social Networks
and Media, 28, 100194.

Cvetkovic, V. M. & Martinović, J. (2020). Innovative solutions for flood risk management.
International Journal of Disaster Risk Management, 2(2), 71–100.

Davtalab, R., Cruz, R. M. O. & Sabourin, R. (2022). Dynamic Ensemble Selection Using Fuzzy
Hyperboxes.

Davtalab, R., Cruz, R. M. & Sabourin, R. (2024). A scalable dynamic ensemble selection using
fuzzy hyperboxes. Information Fusion, 102, 102036.

De Almeida, P. R. L., Oliveira, L. S., Britto, A. D. S. & Sabourin, R. (2016). Handling concept
drifts using dynamic selection of classifiers. 2016 IEEE 28th international conference
on tools with artificial intelligence (ICTAI), pp. 989–995.

de Almeida, P. R. L., da Silva Júnior, E. J., Celinski, T. M., de Souza Britto, A., de Oliveira,
L. E. S. & Koerich, A. L. (2012). Music genre classification using dynamic selection
of ensemble of classifiers. 2012 IEEE international conference on systems, man, and
cybernetics (SMC), pp. 2700–2705.

de Amorim, L. B., Cavalcanti, G. D. & Cruz, R. M. (2023). The choice of scaling technique
matters for classification performance. Applied Soft Computing, 133, 109924.



160

de Araujo Souza, M., Sabourin, R., da Cunha Cavalcanti, G. D. & e Cruz, R. M. O. (2023).
GNN-DES: A new end-to-end dynamic ensemble selection method based on multi-label
graph neural network. International Workshop on Graph-Based Representations in
Pattern Recognition, pp. 59–69.

Deb, K. (2012). Advances in evolutionary multi-objective optimization. Search Based
Software Engineering: 4th International Symposium, SSBSE 2012, Riva del Garda, Italy,
September 28-30, 2012. Proceedings 4, pp. 1–26.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine learning research, 7, 1–30.

Dietterich, T. G. (2000). Ensemble methods in machine learning. International workshop on
multiple classifier systems, pp. 1–15.

Dorogush, A. V., Ershov, V. & Gulin, A. (2018). CatBoost: gradient boosting with categorical
features support. arXiv preprint arXiv:1810.11363.

Dos Santos, E. M., Sabourin, R. & Maupin, P. (2008). A dynamic overproduce-and-choose
strategy for the selection of classifier ensembles. Pattern recognition, 41(10), 2993–3009.

Elmi, J. & Eftekhari, M. (2020). Dynamic ensemble selection based on hesitant fuzzy multiple
criteria decision making. Soft Computing, 24(16), 12241–12253.

Elmi, J. & Eftekhari, M. (2021). Multi-Layer Selector (MLS): Dynamic selection based on
filtering some competence measures. Applied Soft Computing, 104, 107257.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M. & Hutter, F. (2015). Efficient
and robust automated machine learning. Advances in neural information processing
systems, 28.

Freund, Y. (2001). An adaptive version of the boost by majority algorithm. Machine learning,
43(3), 293–318.

Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of computer and system sciences, 55(1), 119–139.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis,
38(4), 367–378.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the american statistical association, 32(200), 675–701.



161

Gabrys, B. & Ruta, D. (2006). Genetic algorithms in classifier fusion. Applied soft computing,
6(4), 337–347.

Garcia, L. P., Lorena, A. C., de Souto, M. C. & Ho, T. K. (2018). Classifier recommendation using
data complexity measures. 2018 24th International Conference on Pattern Recognition
(ICPR), pp. 874–879.

García, S., Zhang, Z.-L., Altalhi, A., Alshomrani, S. & Herrera, F. (2018). Dynamic ensemble
selection for multi-class imbalanced datasets. Information Sciences, 445, 22–37.

Gemp, I., Theocharous, G. & Ghavamzadeh, M. (2017). Automated data cleansing through
meta-learning. Proceedings of the AAAI Conference on Artificial Intelligence, 31(2),
4760–4761.

Ghosh, A., Shankar, B. U., Bruzzone, L. & Meher, S. K. (2010). Neuro-fuzzy-combiner: An
effective multiple classifier system. International Journal of Knowledge Engineering
and Soft Data Paradigms, 2(2), 107–129.

González, S., García, S., Del Ser, J., Rokach, L. & Herrera, F. (2020). A practical tutorial on
bagging and boosting based ensembles for machine learning: Algorithms, software tools,
performance study, practical perspectives and opportunities. Information Fusion, 64,
205–237.

Hastie, T., Rosset, S., Zhu, J. & Zou, H. (2009). Multi-class adaboost. Statistics and its Interface,
2(3), 349–360.

Ho, T. K. & Basu, M. (2000). Measuring the complexity of classification problems. Proceedings
15th International Conference on Pattern Recognition. ICPR-2000, 2, 43–47.

Ho, T. K. & Basu, M. (2002). Complexity measures of supervised classification problems.
IEEE transactions on pattern analysis and machine intelligence, 24(3), 289–300.

Hollander, M., Wolfe, D. A. & Chicken, E. (2013). Nonparametric statistical methods. John
Wiley & Sons.

Hou, W.-h., Wang, X.-k., Zhang, H.-y., Wang, J.-q. & Li, L. (2020). A novel dynamic ensemble
selection classifier for an imbalanced data set: An application for credit risk assessment.
Knowledge-Based Systems, 208, 106462.

Hutter, F., Kotthoff, L. & Vanschoren, J. (2019). Automated machine learning: methods, systems,
challenges. Springer Nature.



162

Islam, M. Z., Liu, J., Li, J., Liu, L. & Kang, W. (2019). A semantics aware random forest for text
classification. Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pp. 1061–1070.

Jiao, B., Guo, Y., Gong, D. & Chen, Q. (2022). Dynamic ensemble selection for imbalanced
data streams with concept drift. IEEE Transactions on Neural Networks and Learning
Systems.

Kalousis, A. & Hilario, M. (2001). Feature selection for meta-learning. Advances in Knowledge
Discovery and Data Mining: 5th Pacific-Asia Conference, PAKDD 2001 Hong Kong,
China, April 16–18, 2001 Proceedings 5, pp. 222–233.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. & Liu, T.-Y. (2017). Lightgbm:
A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30.

Khan, I., Zhang, X., Rehman, M. & Ali, R. (2020). A literature survey and empirical study of
meta-learning for classifier selection. IEEE Access, 8, 10262–10281.

Kittler, J., Hatef, M., Duin, R. P. & Matas, J. (1998). On combining classifiers. IEEE transactions
on pattern analysis and machine intelligence, 20(3), 226–239.

Ko, A. H., Sabourin, R. & Britto Jr, A. S. (2008). From dynamic classifier selection to dynamic
ensemble selection. Pattern recognition, 41(5), 1718–1731.

Krawczyk, B. & Woźniak, M. (2016). Dynamic classifier selection for one-class classification.
Knowledge-Based Systems, 107, 43–53.

Krĳthe, J. H., Ho, T. K. & Loog, M. (2012). Improving cross-validation based classifier
selection using meta-learning. Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012), pp. 2873–2876.

Kubat, M., Matwin, S. et al. (1997). Addressing the curse of imbalanced training sets: one-sided
selection. Icml, 97(1), 179.

Kuncheva, L. I. (2000). Clustering-and-selection model for classifier combination. KES’2000.
Fourth International Conference on Knowledge-Based Intelligent Engineering Systems
and Allied Technologies. Proceedings (Cat. No. 00TH8516), 1, 185–188.

Kuncheva, L. I. (2014a). Combining pattern classifiers: methods and algorithms.

Kuncheva, L. I. (2014b). Combining pattern classifiers: methods and algorithms. John Wiley &
Sons.



163

Kuncheva, L. I. & Rodríguez, J. J. (2007). An experimental study on rotation forest ensembles.
International workshop on multiple classifier systems, pp. 459–468.

Kurzynski, M., Krysmann, M., Trajdos, P. & Wolczowski, A. (2016). Multiclassifier system
with hybrid learning applied to the control of bioprosthetic hand. Computers in biology
and medicine, 69, 286–297.

Lee, C.-Y. & Antonsson, E. (2000). Dynamic partitional clustering using evolution strategies.
2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON
2000. 2000 IEEE International Conference on Industrial Electronics, Control and
Instrumentation. 21st Century Technologies, 4, 2716–2721.

Li, D., Wen, G., Li, X. & Cai, X. (2019). Graph-based dynamic ensemble pruning for facial
expression recognition. Applied Intelligence, 49, 3188–3206.

Lorena, A. C., Maciel, A. I., de Miranda, P. B., Costa, I. G. & Prudêncio, R. B. (2018). Data
complexity meta-features for regression problems. Machine Learning, 107, 209–246.

Lorena, A. C., Garcia, L. P., Lehmann, J., Souto, M. C. & Ho, T. K. (2019). How complex is
your classification problem? a survey on measuring classification complexity. ACM
Computing Surveys (CSUR), 52(5), 1–34.

Lysiak, R., Kurzynski, M. & Woloszynski, T. (2011). Probabilistic approach to the dynamic
ensemble selection using measures of competence and diversity of base classifiers.
International Conference on Hybrid Artificial Intelligence Systems, pp. 229–236.

Macià, N., Ho, T. K., Orriols-Puig, A. & Bernadó-Mansilla, E. (2010). The landscape contest at
ICPR 2010. International Conference on Pattern Recognition, pp. 29–45.

Mendialdua, I., Martínez-Otzeta, J. M., Rodriguez-Rodriguez, I., Ruiz-Vazquez, T. & Sierra, B.
(2015). Dynamic selection of the best base classifier in one versus one. Knowledge-Based
Systems, 85, 298–306.

Monteiro, M., Britto, A. S., Barddal, J. P., Oliveira, L. S. & Sabourin, R. (2021). Classifier pool
generation based on a two-level diversity approach. 2020 25th International Conference
on Pattern Recognition (ICPR), pp. 2414–2421.

Muñoz, M. A., Sun, Y., Kirley, M. & Halgamuge, S. K. (2015). Algorithm selection for black-box
continuous optimization problems: A survey on methods and challenges. Information
Sciences, 317, 224–245.

Pavel, Y. & Soares, B. C. (2002). Decision tree-based data characterization for meta-learning.
IDDM-2002, 111.



164

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V. et al. (2011). Scikit-learn: Machine learning in
Python. the Journal of machine Learning research, 12, 2825–2830.

Pereira, M., Britto, A., Oliveira, L. & Sabourin, R. (2018). Dynamic ensemble selection
by K-nearest local Oracles with Discrimination Index. 2018 IEEE 30th International
conference on tools with artificial intelligence (ICTAI), pp. 765–771.

Pimentel, B. A. & De Carvalho, A. C. (2019). A new data characterization for selecting
clustering algorithms using meta-learning. Information Sciences, 477, 203–219.

Pinto, F., Cerqueira, V., Soares, C. & Mendes-Moreira, J. (2017). autobagging: Learning to
rank bagging workflows with metalearning. arXiv preprint arXiv:1706.09367.

Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and systems
magazine, 6(3), 21–45.

Reid, S. (2007). A review of heterogeneous ensemble methods. Department of Computer
Science, University of Colorado at Boulder.

Reif, M., Shafait, F., Goldstein, M., Breuel, T. & Dengel, A. (2014). Automatic classifier
selection for non-experts. Pattern Analysis and Applications, 17, 83–96.

Rice, J. R. (1976). The algorithm selection problem. In Advances in computers (vol. 15, pp. 65–
118). Elsevier.

Rinartha, K. & Suryasa, W. (2017). Comparative study for better result on query suggestion
of article searching with MySQL pattern matching and Jaccard similarity. 2017 5th
International Conference on Cyber and IT Service Management (CITSM), pp. 1–4.

Rivolli, A., Garcia, L. P., Soares, C., Vanschoren, J. & de Carvalho, A. C. (2018). Characterizing
classification datasets: a study of meta-features for meta-learning. arXiv preprint
arXiv:1808.10406.

Rivolli, A., Garcia, L. P., Soares, C., Vanschoren, J. & de Carvalho, A. C. (2022). Meta-features
for meta-learning. Knowledge-Based Systems, 240, 108101.

Ross, A., Pan, W., Celi, L. & Doshi-Velez, F. (2020). Ensembles of locally independent
prediction models. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04),
5527–5536.

Roy, A., Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2016). Meta-learning recommendation
of default size of classifier pool for META-DES. Neurocomputing, 216, 351–362.



165

Ruta, D. & Gabrys, B. (2005). Classifier selection for majority voting. Information fusion, 6(1),
63–81.

Sáez, J. A., Galar, M., Luengo, J. & Herrera, F. (2013). Tackling the problem of classification
with noisy data using multiple classifier systems: Analysis of the performance and
robustness. Information Sciences, 247, 1–20.

Schapire, R. E. & Freund, Y. (2013). Boosting: Foundations and algorithms. Kybernetes.

Sergio, A. T., de Lima, T. P. & Ludermir, T. B. (2016). Dynamic selection of forecast combiners.
Neurocomputing, 218, 37–50.

Skurichina, M. & Duin, R. P. (1998). Bagging for linear classifiers. Pattern Recognition, 31(7),
909–930.

Smith, M. R., Mitchell, L., Giraud-Carrier, C. & Martinez, T. (2014). Recommending learning
algorithms and their associated hyperparameters. arXiv preprint arXiv:1407.1890.

Smith-Miles, K. A. (2009). Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys (CSUR), 41(1), 1–25.

Smits, P. C. (2002). Multiple classifier systems for supervised remote sensing image classification
based on dynamic classifier selection. IEEE Transactions on Geoscience and Remote
Sensing, 40(4), 801–813.

Soares, C., Petrak, J. & Brazdil, P. (2001). Sampling-based relative landmarks: Systematically
test-driving algorithms before choosing. Progress in Artificial Intelligence: Knowledge
Extraction, Multi-agent Systems, Logic Programming, and Constraint Solving 10th
Portuguese Conference on Artificial Intelligence, EPIA 2001 Porto, Portugal, December
17–20, 2001 Proceedings 10, pp. 88–95.

Soares, R. G., Santana, A., Canuto, A. M. & de Souto, M. C. P. (2006). Using accuracy and
diversity to select classifiers to build ensembles. The 2006 IEEE International Joint
Conference on Neural Network Proceedings, pp. 1310–1316.

Song, Q., Wang, G. & Wang, C. (2012). Automatic recommendation of classification algorithms
based on data set characteristics. Pattern recognition, 45(7), 2672–2689.

Souza, M. A., Cavalcanti, G. D., Cruz, R. M. & Sabourin, R. (2017). On the characterization
of the oracle for dynamic classifier selection. 2017 International Joint Conference on
Neural Networks (ĲCNN), pp. 332–339.



166

Souza, M. A., Cavalcanti, G. D., Cruz, R. M. & Sabourin, R. (2019). Online local pool
generation for dynamic classifier selection. Pattern Recognition, 85, 132–148.

Souza, M. A., Sabourin, R., Cavalcanti, G. D. & Cruz, R. M. (2023). OLP++: An online local
classifier for high dimensional data. Information Fusion, 90, 120–137.

Sun, Q., Liu, Y., Chua, T.-S. & Schiele, B. (2019). Meta-transfer learning for few-shot learning.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 403–412.

Todorovski, L., Brazdil, P. & Soares, C. (2000). Report on the experiments with feature selection
in meta-level learning.

Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K.-L. A., Elkhatib, Y., Hussain, A. & Al-Fuqaha,
A. (2019). Unsupervised machine learning for networking: Techniques, applications
and research challenges. IEEE access, 7, 65579–65615.

Wang, H., Fan, W., Yu, P. S. & Han, J. (2003). Mining concept-drifting data streams using
ensemble classifiers. Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 226–235.

Woloszynski, T. & Kurzynski, M. (2009). On a new measure of classifier competence applied
to the design of multiclassifier systems. Image Analysis and Processing–ICIAP 2009:
15th International Conference Vietri sul Mare, Italy, September 8-11, 2009 Proceedings
15, pp. 995–1004.

Woloszynski, T. & Kurzynski, M. (2011). A probabilistic model of classifier competence for
dynamic ensemble selection. Pattern Recognition, 44(10-11), 2656–2668.

Woloszynski, T., Kurzynski, M., Podsiadlo, P. & Stachowiak, G. W. (2012). A measure of
competence based on random classification for dynamic ensemble selection. Information
Fusion, 13(3), 207–213.

Woods, K., Kegelmeyer, W. P. & Bowyer, K. (1997). Combination of multiple classifiers
using local accuracy estimates. IEEE transactions on pattern analysis and machine
intelligence, 19(4), 405–410.

Xiao, H., Xiao, Z. & Wang, Y. (2016). Ensemble classification based on supervised clustering
for credit scoring. Applied Soft Computing, 43, 73–86.

Xiao, J., Xie, L., He, C. & Jiang, X. (2012). Dynamic classifier ensemble model for customer
classification with imbalanced class distribution. Expert Systems with Applications,
39(3), 3668–3675.



167

Zagatti, F. R., Silva, L. C., Silva, L. N. D. S., Sette, B. S., de Medeiros Caseli, H., Lucrédio,
D. & Silva, D. F. (2021). MetaPrep: Data preparation pipelines recommendation via
meta-learning. 2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 1197–1202.

Zhang, B. & Pham, T. D. (2011). Phenotype recognition with combined features and random
subspace classifier ensemble. BMC bioinformatics, 12(1), 1–13.

Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms.

Zhu, J. & Hovy, E. (2007). Active learning for word sense disambiguation with methods for
addressing the class imbalance problem. Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pp. 783–790.

Zhu, X., Yang, X., Ying, C. & Wang, G. (2018). A new classification algorithm recommendation
method based on link prediction. Knowledge-Based Systems, 159, 171–185.

Zhu, X., Wu, X. & Yang, Y. (2004). Dynamic classifier selection for effective mining from
noisy data streams. Fourth IEEE International Conference on Data Mining (ICDM’04),
pp. 305–312.


	INTRODUCTION
	Problem statement
	Instability of Bagging
	Redundant Classifiers in Bagging

	Objective
	Contribution
	Structure of this thesis
	Chapter 1 Basic concepts 
	Multiple classifier System (MCS)
	Pool generation methods
	Dynamic selection
	Neighborhood-selection techniques
	Neighborhood-selection space
	Classifier-selection criteria
	Classifier-selection method


	Chapter 2 Related work 
	Selection of pool generation schemes
	Expanding Algorithm recommendation using meta-learning in dynamic selection contexts
	Meta-learning for recommending algorithms in the ensemble context
	Critical analysis

	Chapter 3 Experimental methodology 
	Datasets
	Experimental set up
	DS techniques
	Learning algorithms

	Chapter 4 Empirical Analysis of Pool Generation Schemes and Their Impact on DS Algorithms 
	Global pool generation techniques
	Bagging
	Boosting
	Random Forests

	Local pool generation techniques
	Forest of Local Trees
	Ensembles of Locally Independent Prediction Models
	Summary of pool generation schemes

	Comparative study
	Comparison of a local and global pool generation schemes
	Does selecting the best pool of classifiers,  C , depend on what dynamic selection is used (RQ2)?
	Does selecting the best DS method depend on what pool of classifiers,  C , is used (RQ3)?
	Relationship between static ensemble results and dynamic selection results (RQ4)
	Conclusion


	Chapter 5 Meta-learning framework for recommending the pool generation scheme and DS algorithm 
	Basic definitions
	Meta-training
	Meta-features

	Generalization
	Experimental study
	Scenario I: meta-learning for recommending the best pool generation scheme
	Scenario II: meta-learning for recommending the best DS model
	Scenario III: meta-learning for recommending the pool and DS algorithm

	RQ5: Dependency of selection of a pool generation scheme for DS techniques based on data characteristics
	Conclusion


	CONCLUSION AND RECOMMENDATIONS
	Appendix I List of meta-features used in the proposed approach 
	Appendix II Experimental results of chapter4 
	LIST OF REFERENCES



