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Un cadre basé sur la blockchain pour renforcer la sécurité et la confidentialité dans 
l'intégration de l'ido 

 
Ali Eghmazi 

 
RÉSUMÉ 

 
La propagation rapide de la technologie de l'Internet des Objets (IoT), qui devrait inclure des 
milliards d'appareils à l'avenir, nécessite le développement d'une plateforme sécurisée et 
évolutive pour l'administration et la préservation efficaces des informations et des données. 
Alors que les acteurs s'efforcent de réaliser le plein potentiel d'un tel déploiement à grande 
échelle, il devient évident que les solutions actuelles de sécurité et d'évolutivité pour l'IoT sont 
insuffisantes. 
 
La blockchain a démontré sa capacité à valider, stocker et gérer correctement les données. Elle 
apparaît comme une solution potentielle pour une variété de difficultés liées aux données en 
raison de ses qualités intrinsèques de décentralisation, d'immuabilité et de transparence. Avec 
ses caractéristiques de sécurité naturelles, la technologie blockchain offre des options 
intrigantes pour surmonter ces défis. 
 
Cette thèse tente de répondre aux difficultés actuelles en matière de sécurité des données IoT 
et de confidentialité des utilisateurs. À cette fin, nous proposons une infrastructure basée sur 
la blockchain conçue pour assurer un stockage de données sécurisé tout en améliorant la 
confidentialité des utilisateurs. Nous proposons une architecture à quatre couches dans cette 
thèse pour surmonter les problèmes liés à l'IoT massif. Notre stratégie utilise à la fois un 
stockage de données hors chaîne et en chaîne. Nous utilisons Hyperledger Fabric comme 
plateforme blockchain pour stocker les données de manière sécurisée, ce qui nous permet de 
vérifier l'intégrité des données. De plus, nous intégrons un stockage décentralisé pour améliorer 
la disponibilité des données. 
 
Nous utilisons Apache Kafka pour le streaming de données en temps réel afin de garantir 
l'évolutivité. Nous donnons la priorité au chiffrement des données tout au long du processus 
pour assurer la confidentialité et la sécurité. Nous avons évalué la performance et l'utilisation 
des composants développés en utilisant une large gamme de plateformes, y compris 
Hyperledger Caliper et Explorer, parmi d'autres. Ces plateformes nous ont permis de tester et 
de mesurer minutieusement la résilience et les capacités de notre système sous de nombreux 
scénarios, offrant une évaluation complète de la performance et de la durabilité de la 
plateforme sous diverses conditions opérationnelles.  
 
Cette thèse couvre la mise en œuvre et l'analyse de trois études de cas uniques. La plateforme 
a été testée dans des environnements pratiques pour démontrer sa capacité à répondre aux 
problèmes liés à l'utilisation croissante et à la complexité des appareils IoT. La thèse contribue 
aux efforts visant à rendre l'écosystème IoT plus sûr et plus fiable en utilisant les avantages de 



 VIII 

la blockchain, conduisant finalement à une meilleure confiance des utilisateurs et à une 
acceptation plus large des technologies IoT. 
 
 
Mots-clés: Blockchain, Hyperledger Fabric, Apache Kafka, Internet des objets, Sécurité, 
Confidentialité, Gestion des données 
 



 

A Blockchain-based framework for enhancing security and privacy in IoT integration 
 

Ali Eghmazi  
 

ABSTRACT 

 
The rapid spread of Internet of Things (IoT) technology, which is expected to include billions 
of devices in the future, need the development of a secure and scalable platform for the 
effective administration and preservation of information and data. As stakeholders work to 
realize the full potential of such large-scale deployment, it is becoming evident that present 
security and scalability solutions for IoT are insufficient. 
 
Blockchain has shown its capacity to properly validate, store, and manage data. It appears as a 
possible solution for a variety of data-related difficulties because of its intrinsic qualities of 
decentralization, immutability, and transparency. With its natural security features, blockchain 
technology provides intriguing options to overcome these challenges. 
 
This thesis attempts to address the current difficulties in MIoT data security and user privacy. 
To that aim, we provide a blockchain-based infrastructure designed to assure safe data storage 
while also improving user privacy. We propose a four-layered architecture in this thesis to 
overcome the issues related to Massive IoT. Our strategy makes use of both off-chain and on-
chain data storage. We use Hyperledger Fabric as a blockchain platform to securely store data, 
allowing us to verify data integrity. In addition, we incorporate decentralized storage to 
improve data availability.  
 
We utilize Apache Kafka for real-time data streaming to ensure scalability and low latency. 
We prioritize data encryption throughout the process to ensure privacy and security. We have 
evaluated the performance and utilization of the developed parts using a wide range of 
platforms, including Hyperledger Calliper and Explorer, among others. These platforms have 
allowed us to thoroughly test and measure our system's resilience and capabilities under 
numerous scenarios, offering a full assessment of the platform's performance and durability 
under varied operating conditions. 
 
This thesis covers the implementation and analysis of three unique case studies. The platform 
has been proven in practical environments to demonstrate its capacity to address issues related 
to the rising usage and complexity of IoT devices. The thesis adds to attempts to make the IoT 
ecosystem safer and more dependable by using the benefits of blockchain, eventually leading 
to better user trust and wider acceptance of IoT technologies. 
 
 
Keywords: Blockchain, Hyperledger Fabric, Apache Kafka, Internet of Things, Security, 
Privacy, Data Management 
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INTRODUCTION 
 
Two game-changing breakthroughs have recently changed the digital landscape: the Internet 

of Things (IoT) and blockchain technology. While the Internet of Things has ushered in a new 

era of connectedness and smart interactions, it has also brought with it its own set of obstacles. 

Interestingly, the resilient and transparent nature of blockchain technology has the ability to 

overcome many of these difficulties. These technical wonders, when combined, have 

enormous potential to change businesses and reinvent our digital relationships. However, while 

the quest to smoothly integrate them is full of promise, it is also fraught with complications 

and hurdles.  

 

 The proliferation of IoT is evident in the growth of connected devices, which surged from 

12.5 billion in 2010 to approximately 16.66 billion by 2019. Projections suggest that this 

number could skyrocket to an astounding 75.44 billion by 2025. The Internet of Things (IoT) 

represents a monumental shift in the way our world communicates with the digital universe. 

This convergence consolidates the entire world with a PC-based framework, extending a new 

dimension of communication for users. Rooted in foundational concepts from the 1990s, the 

IoT universe has grown exponentially, with the present era witnessing a marriage between real-

life activities and their virtual counterparts.  

 

Today, with the aid of technologies like Bluetooth, Wi-Fi, GPS, Zig-Bee, and RFID, our 

surroundings are more connected than ever, steering in what many term the ‘smart era’ (Faridul 

Islam Suny et al. 2021) However, this digital utopia is not devoid of challenges. The meteoric 

rise and adoption of IoT have brought forth issues of scalability, the imperative for devices to 

be self-organizing, and challenges related to the sheer volume of data being generated. 

Furthermore, the interpretation and meaningful analysis of this data remain significant hurdles 

(Verma and Prakash 2021). 

 

In a parallel digital renaissance, blockchain technology, first conceptualized in 1991 by Stuart 

Haber and W. Scott Stornetta, emerged as a solution to the longstanding challenge of data 
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tampering, especially in economic transactions (Zambre, Panchal, and Chauhan 2023). It was 

in 2008, with Satoshi Nakamoto’s introduction of Bitcoin, that the true potential of blockchain 

was globally acknowledged. This wasn’t just the advent of a decentralized currency; it was a 

testament to blockchain’s transformative capabilities. Beyond just facilitating financial 

transactions, blockchain promises a transparent, secure, and immutable ledger system, where 

trust is established not by central authorities, but by the very architecture of the technology. 

Each transaction, once recorded, is verifiable by every network participant, and the 

information, structured in blocks, forms an unalterable chain, representing a timeline of 

transactions (Singh and Chauhan 2021). 

 

However, as individual technologies, while IoT and blockchain offer much promise, 

combining them leads us into new and unexplored areas. This convergence is seen by many as 

the next leap in digital innovation, promising an ecosystem where devices not only 

communicate smoothly but do so within a transparent, tamper-proof, and decentralized 

framework. Yet, this ambitious integration is not without its set of challenges. The inner 

complexities of each technology become magnified when combined, necessitating rigorous 

research and innovative solutions to realize their full potential in coupling (Alenizi and Al-

Karawi 2023). The integration of IoT with blockchain faces significant challenges such as 

scalability, data volumes, interoperability, energy consumption, storage, and latency. 

Addressing these challenges is crucial for the effective merger of these transformative 

technologies.(Sadawi, Hassan, and Ndiaye 2021). 

 

With the increasing need to connect IoT devices to the blockchain to ensure heightened 

security, it is imperative to understand and address the complexities and challenges inherent to 

this integration. Thus, the core research question driving this investigation is: How can we 

effectively connect IoT devices to the blockchain to ensure security, and what challenges might 

we encounter in this endeavor? 

 

Research goals 
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The fundamental goal of this research is to investigate and comprehend the difficulties and 

constraints of combining the Internet of Things (IoT) with blockchain technology in order to 

achieve greater security. Given the revolutionary potential of both technologies, the purpose 

of this research is to give insights and approaches for overcoming integration obstacle and 

unlocking their combined potential. 

 

The research will pursue the following aims to attain this operational goal: 

• Definition and Clarification: To completely describe and clarify the problems and 

complexities of integrating IoT devices with blockchain to ensure increase security, 

particularly in light of both domains’ fast progress and expansion. 

 

• Development of a Structured Framework: To express the identified problems and 

complexities inside a structured framework that may guide future IoT and blockchain 

integration initiatives. 

 

 

• Operationalization and Application: To operationalize the specified difficulties and 

complexities, allowing for effective and smooth application in real-world settings using 

the created framework. 

 

 

Structure of thesis  
 
This thesis initiates with an introduction that establishes the backdrop, emphasizing the 

contemporary advancements in the digital domain. Specifically, it highlights the emergence 

and significance of the Internet of Things (IoT) and blockchain technology. Chapter 1, the 

Literature Review, offers a comprehensive background on the Foundation of IoT, 

encompassing its platforms, real-time data streaming technologies, and inherent challenges. 

The chapter then expands into the realm of Blockchain, detailing it’s ats architecture, diverse 

types, and the elaboration of the Hyperledger project. 



 4

 

Shifting gears, Chapter 2 describe the Architecture and Design of the Platform, chronicling its 

multi-layered structure and the components within. Chapter 3 ventures into the Implementation 

of the Platform, meticulously detailing the fusion of essential components such as Apache 

Kafka, Blockchain, and the Database, and elucidating the platfor’'s data flow dynamics. 

Chapter 4 is pivotal, presenting Results and Evaluation and providing insights into various 

performance metrics. The thesis then culminates in Chapter 5, which offers reflections, 

highlights research limitations, and charts out directions for future explorations. This academic 

journey concludes with a synthesis of the primary findings and contributions, accompanied by 

a comprehensive Bibliography.



 

CHAPTER 1 
 
 

LITERATURE REVIEW 

In this chapter, we conduct a thorough literature analysis to examine the past and present status 

of research on two disruptive technologies: the Internet of Things (IoT) and Blockchain. This 

section delves into the technical architecture of IoT as well as the revolutionary ideas of 

Blockchain. This investigation provides us with insights into the difficulties and opportunities 

of both sectors. A precisely constructed four-layered architectural structure develops from this 

immense body of knowledge. This architecture, which incorporates the characteristics of both 

Blockchain and IoT, delivers creative answers to difficulties, bridging previously thought-to-

be large and invincible gaps. 

 

1.1 Historical Evolution and Introduction of IoT 

Kevin Auston introduced the term "internet of thing” (IoT) in 1999, though its inception can 

be traced back to the creation of Arpanet in 1969. The journey of IoT experienced a notable 

development with the introduction of a toaster as the first IoT device in 1990. By 2005, the 

significance of IoT was underscored by the International Telecommunication Union’s (ITU) 

study. The formation of the Internet Protocol for Smart Objects (IPSO) Alliance in 2008 further 

propelled the movement, and today, it boasts over 50 member companies, including major tech 

players. A landmark was achieved in 2010 when the number of IoT devices, totaling 12.5 

billion, surpassed the global human population of 6.8 billion. For a comprehensive visual 

overview of the IoT's evolution, refer to Table 1.1 (M R and Bhowmik 2023). 
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Table 1.1 Complete History of The Evolution of  
IoT From 1969 to 2025 

 Taken from M R and Bhowmik (2023, p. 1) 

 
 

The "Internet of Things" (IoT), sometimes termed the 'Internet of Objects', encompasses 

electrical devices of diverse size and functionalities linked to the Internet. This connection is 

predominantly established via wireless sensors, excluding devices mainly designed for person-

to-person communication like the conventional Internet. A fundamental IoT ecosystem, as 

outlined by  (Miraz and Ali 2018)consists of: 

 

• Sensors: Responsible for gathering and relaying essential data. 

• Computing Node: Housing the central processing unit (CPU), these nodes process the 

data from sensors. 

• Receiver: A transceiver that facilitates the reception of data from either local and 

distant computing nodes or other gadgets. 

• Actuator: An electromechanical system that, based on the Computing Node's decision 

and data from sensors or the Internet, triggers the relevant device for a specific action. 

• Device: Executes the designated task when activated. 
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IoT is a paradigm that leverages network sensors, embedded technologies, artificial 

intelligence, and Radio-frequency identification (RFID) to interconnect various machines, 

facilitating data exchange over the Internet for diverse applications. The swift advancements 

in IoT research have unveiled several challenges, with cyber-attacks being a prominent 

vulnerability, as highlighted by  (Nayancy, Dutta, and Chakraborty 2021). 

 

1.1.1 IoT Architecture, Key concepts, and protocols 

The Internet of Things (IoT) has emerged as a transformative force in the digital era. At its 

core, IoT is defined as a network of Internet-connected objects or devices equipped with 

embedded sensors. These sensors grant the devices the capability to collect, send, or exchange 

data. The essence of IoT lies in its ability to automatically, remotely, and continuously collect 

and share information without any interruptions. Today, the landscape of interconnected 

devices is vast, yet it lacks a standardized network or a clearly defined boundary. The IoT not 

only facilitates a numerous of applications but also addresses a broad spectrum of societal and 

industrial needs. It is anticipated to be a pivotal player in converting ordinary cities into smart 

cities, traditional homes into smart homes, and conventional electrical grids into smart grids. 

Furthermore, the IoT is seen as the backbone of the industrial sector's digitization, enhancing 

production processes and reducing costs (Obaidat et al. 2020; Sadawi et al. 2021). 

 

When it comes to IoT architecture, multiple perspectives exist. The traditional view comprises 

three significant layers: Sensing, Network, and Application. The foundational layer, known as 

the perception or sensor layer, connects physical components to the IoT network, monitoring 

physical changes and transmitting data. The network or transmission layer aggregates this data 

and transfers it to decision-making units. The application layer, on the other hand, serves as 

the interface for end-users, providing essential services based on the data received. Another 

perspective views the IoT architecture as a service-oriented architecture (SOA) with four 

layers: perception, network, service, and application. This architecture emphasizes service 

discovery, quality, trustworthiness management, and service Application Programming 

Interfaces (API) (M R and Bhowmik 2023). A more detailed perspective presents a five-layer 
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architecture, encompassing the business layer, application layer, middle layer, network layer, 

and physical/sensor layer. Each layer has its distinct functions, ranging from data collection to 

business model formulation As Shown in Figure 1.1 (Zhonghua and Goyal 2023). 

 

 

Figure 1.1 Detailed IoT Architecture  
Taken from Zhonghua and Goyal (2023, p. 73) 

 

As described in (Kenaza et al. 2022) each layer with its unique functions and responsibilities 

are: 

• Perception Layer: Often called the Device Layer, it contains various sensors like 

RFID tags and Infrared. Its main function is to detect and collect data, such as 

temperature and motion, and send it to the next layer for secure transmission. 

• Network Layer: Also termed the Transmission Layer, it ensures the secure transfer of 

data from the Perception layer using technologies like RFID, 5G, and Wi-Fi. 

• Middleware Layer: This layer manages the communication between devices offering 

the same service type. It stores, processes, and makes decisions based on the data 

received from the Network Layer. 

• Application Layer: Primarily responsible for global application management, it 

oversees all IoT system applications, from Smart Farming to Smart Healthcare. 
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• Business Layer: This layer oversees the entire IoT system, creating business models, 

charts, and reports from the data. It aids in making informed business decisions and 

strategizing. 

 

Delving into the characteristics of IoT, several features stand out. Firstly, scalability and 

heterogeneity are foundational to IoT. Given that devices come from diverse hardware 

platforms, it is imperative for IoT devices to support this heterogeneity. Another crucial aspect 

is the need for unambiguous naming, addressing, or identification, especially with billions of 

interconnected devices in play. Interoperability, the ability of diverse devices to communicate 

and work cohesively, is essential for device integration within the IoT network. Moreover, IoT 

devices should be equipped to support mobile sensor networks where connectivity might be 

intermittent, ensuring reliable information delivery. Lastly, the dynamic nature of IoT 

necessitates support for the reprogramming of devices. These devices should be self-

configurable, capable of self-discovery, and adept at processing vast amounts of data. IoT uses 

diverse communication protocols to ensure connectivity and application integration. These 

protocols, essential for transmitting sensor data, vary across LANs and WANs in an IoT 

system.(M R and Bhowmik 2023).  

 

Lastly, in association with IoT technologies, advanced technologies are being incorporated into 

the IoT infrastructure. Cloud computing, for instance, offers on-demand access to a shared pool 

of computer resources, including servers, storage, and applications. Sensor-cloud, a 

heterogeneous computing environment, provides a platform for Sensors-as-a-Service (Se-aaS), 

allowing adaptive utilization of physical sensor resources. Another significant technology is 

fog computing, which combines networking, computation, and storage at the network's edge, 

delivering services closer to end-users. This technology is especially beneficial for applications 

that are latency-sensitive and produce vast amounts of data (Zhonghua and Goyal 2023). 
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Table 1.2 Standard Protocols 
Taken from M R and Bhowmik (2023, p. 3) 

 
 

Addressing the previously mentioned protocols, this section introduces various Internet of 

Things (IoT) application and transport layer protocols. These include Message Queue 

Telemetry Transport (MQTT), MQTT for Sensor Networks, Constrained Application Protocol 

(CoAP), Advanced Message Queuing Protocol (AMQP), Data Distribution Service (DDS), 

and Hypertext Transfer Protocol with Representational State Transfer (HTTP REST). These 

protocols are essential in middleware development since the IoT is heavily reliant on the 

internet. For example, the Constrained Application Protocol (CoAP) operates at the application 

layer, while Representational State Transfer (REST) protocol functions over HTTP for data 

communication between the client and server using CoAP. The Message Queue Telemetry 

Transport (MQTT) protocol connects networks and embedded devices to applications and 

middleware. The Advanced Message Queuing Protocol (AMQP) is designed specifically for 

message-oriented IoT scenarios, and the Data Distribution Service (DDS) is crafted for 

continuous Machine-to-Machine (M2M) communications. Table 1.2 provides a deeper 

understanding of the applicability and limitations of each of these IoT protocols (Deohate and 

Rojatkar 2021). 
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1.1.2 IoT platforms 

IoT platforms, central to IoT solutions, serve as a bridge between the physical and digital 

realms. Navigating the vast landscape of platform vendors can be a challenging task, but with 

a meticulous assessment of specific factors, businesses can make informed decisions. It's vital 

to delve into platform specifics, such as its unique features, communication protocols, and its 

current operational status to determine its suitability (Ullah and Smolander 2019). 

Additionally, ensuring the secure and reliable connection of numerous devices is paramount, 

emphasizing the importance of user authentication, data integrity, and the secure transfer of 

data (Astropekakis et al. 2022). 

 

Middleware, as described by (Deohate and Rojatkar 2021), is an indispensable software 

component in the IoT ecosystem, extending a spectrum of services ranging from integration to 

content management. IoT developers, when integrating middleware, must adhere to certain 

installation prerequisites. This installation process varies based on the project's existing 

structure and the anticipated platform needs post-installation. Moreover, understanding a 

middleware's business model, its associated communication protocols, and its current 

viability—whether operational or terminated by its developers—is crucial for its successful 

implementation. 
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Figure 1.2 IoT Platform Architecture  
Taken from Astropekakis et al (2022, p. 304) 

 

1.1.2.1 Types IoT Platform 

AWS IoT, developed by Amazon, centers around its AWS IoT Core, which ensures secure and 

controlled communication between devices and the AWS ecosystem. It offers a range of 

application protocols and prioritizes secure communication On the other hand, Google Cloud 

IoT focuses on securely connecting devices and boasts features that ensure safety against 

threats (Yu and Kim 2019). Furthermore, (Astropekakis et al. 2022) emphasize AWS IoT's 

data management, analytics capabilities, and its foundation on a secure cloud environment. 

Also, for Google cloud IoT highlight its analytics, visualization, and adaptability, emphasizing 

its user-friendly approach. 

 

Samsung's ARTIK is an IoT platform integrating hardware, software, and cloud elements, 

focusing on advanced security measures and connectivity. Thing plug and GiGA IoTMakers 

are both open IoT platforms built on the oneM2M standard, with the former developed by SKT 

and the latter by the telecommunications company KT. Azure IoT, developed by Microsoft, 
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assists in building a plethora of IoT applications, integrating SaaS solutions, PaaS, and the 

intelligent Edge, with a unique security framework (Yu and Kim 2019). Alibaba IoT Cloud, 

Carriots, Cisco Kinetic, IBM Watson IoT, Oracle IoT Cloud, PTC Thingworx, SiteWhere, 

Thinger.io, ThingsBoard, ThingSpeak, Ubidots, and WSO2 are all versatile IoT platforms, 

each with its unique set of features, capabilities, and security measures, providing solutions 

ranging from device connectivity and data analytics to secure communication and AI 

integration (Astropekakis et al. 2022). 

 

After establishing the significance and capacities of various IoT platforms, it is critical to 

acknowledge the role of data in this ecosystem. As IoT devices create massive volumes of data 

on a continual basis, the requirement for effective, fast, and dependable data processing 

becomes critical. Introduce yourself to the world of real-time data streaming technology. These 

solutions not only handle the flood of data from IoT devices, but also ensure that insights are 

generated instantly, allowing for quick decision-making and dynamic reactions in a variety of 

applications. 

 

1.1.3 Introduction on Real-time data streaming 

In the rapidly evolving digital landscape, the paradigm of real-time data streaming 

distinguishes itself from the episodic nature of traditional data processing. Modern IoT devices 

represent this shift, equipped to stream data in real-time, either directly to cloud platforms or 

through IoT gateways (Rahman and Das 2022). As technological advancements continue, a 

unique surge in data transmission across networks has emerged. This growing data ecosystem 

not only underscores the monumental significance of real-time data streaming but also 

introduces challenges. With the intensifying volume and velocity of data, there is an evident 

struggle in processing, storing, and filtering on singular servers, leading to potential delays and 

data loss (Torres and de Oliveira Silva 2023). 

 

This data-centric era has ushered in a plethora of applications, redefining various sectors. From 

enhancing monitoring, management, and operational efficiency to reshaping decision-making 
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in businesses, the range of implications is endless. Personal health monitors, interconnected 

home appliances, medical diagnostic tools, and defect detection in industries are just some 

manifestations of this transformation. Furthermore, intricate applications such as participatory 

live street views for tourism, ultra-realistic sports broadcasts, real-time pedestrian flow 

management in urban landscapes, and monitoring systems for senior citizens highlight the 

depth of its impact. To navigate this intricate data landscape, robust technological frameworks 

are essential. Several platforms, including IBM Infosphere Stream, Amazon AWS IoT, Apache 

Storm and Spark, and Microsoft Stream Insight, have emerged, each specializing in high-speed 

real-time processing of substantial temporal data. Complementing these platforms, 

transmission protocols for IoT data streams like MQTT, CoAP, Web Socket, and 

IPv6LoWPAN emphasis a move towards edge-heavy computing (Banik, Cardenas, and Kim 

2019). 

 

1.1.3.1 Apache Kafka as a real time data streaming 

Apache Kafka, originating from LinkedIn and open-sourced in 2016, is a powerful distributed 

streaming platform known for its scalability and fault-tolerance (Vyas et al. 2022). Built on 

publish-subscribe model, it consists of producers that publish data, brokers that manage it, and 

consumers that process it in real-time. Topics, which categorize data streams, can be divided 

into multiple partitions, enabling concurrent data writing by producers and parallel reading by 

consumers (Peddireddy 2023). 

 

Kafka's architecture emphasizes topic partitioning, reflecting its degree of parallelism. Each 

topic's partitions are distributed among brokers, with provisions for replication across multiple 

replicas for fault tolerance. One replica acts as the leader, handling all data interactions, while 

the others synchronize data as followers. Within consumer groups, each consumer instance 

reads from a unique subset of partitions, maximizing parallel processing (Raptis and Passarella 

2022). 
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Figure 1.3 Apache Kafka High-Level Overview 
Taken from Vyas et al (2022, p. 466) 

 

However, Kafka faces challenges as data volumes grow, necessitating increased partitions to 

prevent bottlenecks. Balancing throughput and latency is crucial to prevent consumer lags or 

data loss. Despite its robustness, understanding Kafka's behavior, especially during drastic data 

volume changes, remains an area of active research (Vyas et al. 2022). 

 
Performance 
 
Apache Kafka, a distributed streaming platform, has been the subject of numerous studies 

examining its functionalities, applications, performance, latency, and reliability. These studies 

have delved into various aspects, from modeling the communication between producers and 

consumers to enhancing Kafka's fault tolerance and data recovery mechanisms. Additionally, 

research has been conducted on Kafka's applications in diverse fields, such as seismic 

waveform data processing and real-time analytics. Performance evaluations have also been 

undertaken to understand Kafka's behavior under different configurations and network 

conditions. Furthermore, the impact of various configuration parameters on Kafka's reliability 

and latency has been tested, with tools introduced to assess its reliability under varying network 

qualities (Raptis and Passarella 2022). (Peddireddy 2023) highlights Kafka's capabilities in 

data processing, real-time reporting, and alerting, emphasizing its scalability, real-time 

processing, fault tolerance, and flexibility. 
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Apache Kafka's performance is gauged using several key parameters. Throughput measures 

the system's capacity to process messages within a set time frame, indicating the efficiency of 

hardware and the data volume transmitted between producers and consumers. Latency 

represents the time duration for a message to travel from a Kafka producer to its consumer, 

encompassing various stages like production, publishing, committing, catching up, and 

extraction. Lastly, CPU and Memory Utilization assess Kafka's resource consumption, 

especially vital given its reliance on the file system for message storage and processing, 

particularly when handling extensive data (Vyas et al. 2022). 

 

Apache Kafka boasts a distributed architecture that offers scalability, accommodating large 

data volumes. It supports real-time processing through Kafka Streams, ensuring up-to-date 

data analysis. Kafka's design prioritizes fault-tolerance, ensuring data availability amidst 

potential failures. Additionally, its flexibility is evident in its ability to integrate with various 

data sources via Kafka Connect. Despite its advantages, Kafka presents challenges. Its 

complexity requires a profound understanding of distributed systems for deployment and 

building. The financial cost associated with setting up Kafka, considering both hardware and 

software, can be significant. Furthermore, Kafka demands continuous maintenance and 

monitoring to maintain system health and optimal performance (Peddireddy 2023). 

 

1.1.3.2 Other Real-Time data streaming technologies 

The table below offers a high-level overview of several leading systems and frameworks in the 

realm of data processing, streaming, and analytics. Each entry succinctly captures the core 

essence and distinctive features of the respective system or framework. Ranging from the real-

time data ingestion prowess of Apache Spark Streaming to the specialized spatiotemporal 

capabilities of JUST, this overview serves as a quick reference to the diverse functionalities 

and strengths of these cutting-edge platforms. Table 1.3 presents a high overview on real-time 

data streaming comparison between technologies. 
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Table 1.3 High Level Overview Comparison 

System/Framework Description Key 

Features/Characteristics 

Contribution 

Apache Spark 

Streaming 

Supports data 

ingestion from 

various sources 

Supports streams to 

HDFS, AWS S3 

(Navaz et al. 

2019) 

Apache Flink Planning 

unbounded and 

restricted data 

sets 

Coordinates with 

Hadoop YARN, Apache 

Mesos, Kubernetes 

Apache Storm Real-time 

computing 

system 

Can process unlimited 

data streams, supports 

any programming 

language 

System/Framework Description Key 

Features/Characteristics 

Contribution 

Apache Druid OLAP software 

provider 

Scales to a million RPM, 

highly available, 

multiple nodes 

(Navaz et al. 

2019) 

Apache Samza Stateful event-

based 

applications 

Runs on YARN, fault-

tolerant, used by Uber, 

Netflix, etc. 

Amazon Kinesis 

Data Streams 

Real-time data 

streaming service 

Captures gigabytes of 

data, supports mobile 

applications 

ST-Hadoop MapReduce 

framework for 

spatiotemporal 

data 

Spatiotemporal data 

types, operations, and 

queries 

(Sasaki 2022) 
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System/Framework Description Key 

Features/Characteristics 

Contribution 

STARK Framework for 

spatiotemporal 

data on Spark 

Integrates 

spatiotemporal data into 

Spark, supports 

DBSCAN 

(Sasaki 2022) 

 

GeoMesa Geospatial 

querying and 

analytics 

Spatiotemporal 

indexing, real-time 

stream processing 

TrajSpark System for big 

trajectory data 

IndexTRDD, global and 

local indexing 

DFT Framework for 

similarity search 

queries over 

trajectory data 

Segment-based 

partitioning, dual indices 

DITA Distributed in-

memory 

trajectory 

analytic system 

Extends Spark SQL, 

supports trajectory 

similarity function 

UlTraMan Unified storage 

and computing 

engine 

Built on Spark, 

integrates Chronicle 

Map 

JUST Spatiotemporal 

data engine 

Uses NoSQL data store, 

GeoMesa indexing, 

Spark execution engine 
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1.1.4 Issues and challenges in IoT 

The Internet of Things (IoT) has emerged as a transformative force, bridging the gap between 

the digital and physical realms. With its promise of interconnected devices that can 

communicate and collaborate, the potential applications of IoT span various sectors, from 

healthcare to transportation (Beltran et al. 2022). However, these networks of devices, while 

offering unprecedented opportunities, also introduces a myriad of challenges. These 

challenges, ranging from technical to ethical, need to be addressed to ensure the broader 

adoption and trust in IoT technologies (Al-athwari and Hossain 2022). 

 

The rapid proliferation of IoT devices has led to concerns about their security, privacy, and 

interoperability. As devices become more integrated into our daily lives, the stakes for ensuring 

their safe and reliable operation have never been higher. Addressing these challenges is not 

just about ensuring the smooth functioning of the devices but also about safeguarding the trust 

and confidence of the users (Rai, Kanday, and Thomas 2020) 

 

1.1.4.1 Challenges on security 

The interconnected nature of IoT devices exposes them to unsecured and unverified parts of 

the internet, posing significant risks to both private and governmental entities, and 

compromising the data being transmitted or shared. Major espionage events have stressed these 

vulnerabilities. Notably, many IoT devices are designed for broad dissemination and can 

autonomously establish connections, making their security landscape unique and complex 

(Beltran et al. 2022). Furthermore, most of these devices are "closed," preventing post-

purchase security installations, and due to their hardware limitations, they often resort to 

lightweight algorithms, which can pose risks to the data stored on these devices (Sathi Reddy, 

Venkatesh, and Kumar 2022). 

 

IoT's vast scale and diversity make it susceptible to a range of threats. Many devices, especially 

those with wireless sensors, are physically exposed, making them attractive targets for hackers. 



 20

This vulnerability is compounded by the fact that many IoT devices have limited computational 

resources. The challenges extend across the IoT architecture, from the physical level, where 

issues like jamming adversaries and insecure initializations arise (Patnaik, Padhy, and Srujan 

Raju 2021), to the logical level, which grapples with vulnerabilities in the application layer. 

The network layer, responsible for reliable data transmission, is particularly vulnerable to DoS 

attacks, while the transport and application layers face threats from insider attacks, 

misconfigurations, and unauthorized access, potentially compromising data storage and 

changeability (Sathi Reddy et al. 2022). 

 

Addressing these security challenges requires a multi-faceted approach. The mobility of IoT, 

evident in applications like healthcare and transportation, necessitates adaptable security 

solutions (Rai et al. 2020). The lack of standardization in IoT security solutions, combined 

with the heterogeneity of data produced by different applications, further complicates matters. 

As the number of devices continues to grow, scalability becomes a pressing concern, and with 

the increasing range of attack sources, security solutions must be continuously updated and 

refined. Additionally, ensuring data confidentiality, integrity, and accessibility across all IoT 

systems is paramount, given the vulnerabilities associated with data storage, sharing, and 

manipulation (Al-athwari and Hossain 2022; Rai et al. 2020). 

 

The summary of major security Issues will be: 

• Interconnected nature leading to exposure on unsecured internet parts.  

• "Closed" nature of many IoT devices preventing post-purchase security installations.  

• Physical exposure of wireless sensors making them vulnerable to hackers. 

• Challenges across IoT architecture, from physical to logical levels. 

• Lack of standardization in IoT security solutions. 

• Scalability concerns due to the rapid growth of IoT devices.  

• Vulnerabilities associated with data storage, sharing, and manipulation. 
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1.1.4.2 Challenges on privacy 

The Internet of Things (IoT) has revolutionized the way devices communicate and operate, but 

with this innovation comes significant concerns about privacy. The utility of IoT is dependent 

upon its ability to respect individual privacy choices, and any concerns in this domain could 

potentially hinder its deployment (Beltran et al. 2022). The omnipresence of IoT devices, 

capable of data selection and distribution almost anywhere, amplifies privacy concerns. This 

is especially true given the ease with which private data can be accessed globally without 

specific protective measures in place. Moreover, the protection and solitude of data in the IoT 

face threats from various digital attacks, risks, and exposures. Issues at the device level, such 

as lack of permission and confirmation, uncertain operating systems, firmware vulnerabilities, 

and weak transport layer encryption, further exacerbate these concerns (Srivastava and Pandey 

2022). 

 

IoT devices inherently collect, store, and communicate sensitive data. This necessitates a 

secure and confidential exchange of data across different networks. The vast connectivity of 

IoT creates numerous communication channels, which malicious attackers can exploit. While 

there are potential security measures for individuals, managing the data privacy of larger 

entities like businesses and organizations is more challenging. These entities must employ 

monitoring tools to safeguard against privacy threats and potential breaches. To bolster 

privacy, extensive research has been conducted, leading to the adoption of encryption 

algorithms. Digital signatures and Blockchain mechanisms have also been explored, though 

the latter may not be suitable for all IoT devices due to its resource-intensive nature (Al-athwari 

and Hossain 2022). 

 

The practical implications of these privacy concerns are evident in scenarios like smart homes. 

Such homes utilize sensors to collect data on various activities, from morning routines to 

children's interactions with smart toys. While not all companies exploit this data, the potential 

for misuse is evident. The sheer volume of data collected can reveal intimate details about 

individuals and their behaviors. Ensuring privacy, therefore, is a shared responsibility between 
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consumers and service providers. Both parties must be transparent about their expectations and 

limitations. Surprisingly, many companies struggle to identify all IoT devices within their 

networks, underscoring the need for robust privacy solutions tailored to IoT applications (Rai 

et al. 2020).  

 

The summary of major privacy concerns will be: 

• Omnipresence of IoT devices leading to amplified privacy concerns. 

• Device-level issues such as lack of permission and weak encryption. 

• Potential misuse of data collected by IoT devices, especially in smart homes. 

• The challenge of managing data privacy for larger entities like businesses. 

• The need for robust encryption and security measures, with some solutions like 

blockchain not being universally suitable. 

 

1.1.4.3 Other challenges and Issues 

The Internet of Things (IoT) presents a multifaceted landscape of opportunities and challenges. 

One of the primary concerns is scalability, the system's ability to expand seamlessly. This is 

complicated by the diverse nature of IoT devices, each with varying storage capacities, data 

types, and bandwidths. Cloud-based IoT solutions exemplify scalable systems, offering the 

flexibility to expand the network as needed. However, the heterogeneity of devices, whether 

due to different communication protocols or data types, leads to issues like interoperability and 

privacy. Interoperability is crucial for the efficient exchange of information among IoT 

systems. Yet, the decentralized nature of these networks makes information exchange 

challenging. Additionally, many IoT devices, such as sensors and RFID tags, are resource-

constrained, making them vulnerable to malicious attacks and limiting their computational 

capabilities (Garg et al. 2022; Srivastava and Pandey 2022). 

 

(Alenizi and Al-Karawi 2023) further delineate challenges in the IoT domain. Smart objects in 

IoT should possess the capability to self-organize, adapting autonomously to their 

environments. The vast data volumes generated by IoT applications demand innovative 
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mechanisms for data storage, processing, and management. Accurate data interpretation is 

vital, requiring services that can draw meaningful conclusions from diverse sensor data. 

Interoperability remains a concern, necessitating common communication standards. Other 

challenges encompass automatic service discovery, software architecture complexity, security 

and privacy concerns, power supply limitations, and the evolution of efficient wireless 

communication standards.  

 

The summary of major Issues and Concerns will be: 

• Scalability concerns in accommodating diverse IoT devices. 

• Heterogeneity and interoperability issues due to diverse communication protocols and 

data types. 

• Resource constraints in IoT devices, making them susceptible to attacks. 

• Need for self-organizing smart objects and efficient data interpretation. 

• Software complexity and the necessity for enhanced wireless communication 

standards. 

• Ensuring security and privacy in IoT transactions and interactions. 

 

The increasing adoption of cloud computing in IoT systems offers enhanced analytical 

capabilities but also raises security and privacy concerns. These challenges make it harder to 

establish a trusted environment, especially when compared to IoT devices with potentially 

flawed security measures. Consequently, the reliability of IoT systems is threatened by these 

security and trust issues. To address these concerns, the importance of verifying unaltered data 

is emphasized. "Blockchain" is introduced as a potential solution to these challenges. To fully 

benefit from blockchain in IoT systems, it's crucial to understand and explore its value (Sadawi 

et al. 2021). 

 
1.2 An overview of Blockchain 

The concept of a blockchain-like protocol originated with Chaum in 1982, and the subsequent 

years witnessed pivotal advancements in the domain. Haber and Stornetta introduced 

cryptographic security in 1991, followed by the integration of Merkle trees in 1993. By 1998, 
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Szabo had conceptualized "bit gold," a pioneer to modern cryptocurrencies. However, the 

landscape truly transformed in 2008 when Nakamoto launched Bitcoin, a peer-to-peer 

electronic cash system, and concurrently introduced the term "blockchain" to describe its 

underlying distributed ledger. Ethereum, proposed by Buterin in 2013, marked another 

significant evolution, focusing on distributed data storage and smart contracts, with its 

enhanced version, Ethereum 2.0, launching between 2020 and 2022 to improve speed, 

scalability, and security (Guo and Yu 2022).  

 

Nakamoto's foundational paper on Bitcoin, while not explicitly naming it a "blockchain," 

outlined the properties of modern blockchains as tamper-evident and tamper-resistant digital 

ledgers (Connors and Sarkar 2023). At its essence, blockchain is a decentralized, transparent, 

and verifiable ledger, with its most renowned application being in crypto-currencies like 

Bitcoin. However, its features of immutability and decentralization have found relevance in 

diverse industries, from healthcare to finance. As the technology acquire more attention, there's 

a growing emphasis on training students and professionals in its complexities, given the rising 

demand for blockchain expertise in the job market (Elliston et al. 2023). 

 

 

Figure 1.4 Comprehensive Blockchain's History 
Taken from Guo and Yu (2022, p. 2) 
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1.2.1 Blockchain’s characteristics 

Based on the insights provided by (Rani and Saxena 2023; Sadawi et al. 2021; Zheng et al. 

n.d.), the following are the key characteristics of blockchain technology: 

1. Decentralization: Blockchain does not rely on a central authority or administrator. 

Instead, it operates through a network of nodes, ensuring that no single entity has 

control over the entire blockchain. This structure contrasts with traditional centralized 

systems where a central agency, such as a bank, validates transactions. In blockchain, 

transactions can occur directly between peers without the need for central 

authentication, reducing costs and potential performance bottlenecks.  

2. Transparency: All nodes in the blockchain network record and distribute data among 

each other. This ensures that data is available to every participant, promoting openness 

and traceability. Every transaction on the blockchain is validated, recorded with a 

timestamp, and can be easily verified and traced by accessing any node in the network. 

3. Autonomy: Changes to the blockchain require the approval of the majority of nodes, 

ensuring that no single node can unilaterally alter the data.  

4. Immutability: Once data is added to the blockchain, it cannot be altered unless 

someone controls more than 51% of the nodes. This feature, combined with the 

Blockchain’s structure of linking blocks using hash algorithms, ensures that blocks 

cannot be modified or erased.  

5. Security: Blockchain systems employ asymmetric cryptography, which includes a 

public key visible to everyone and a private key visible only to the owner. This ensures 

secure transactions and prevents tampering. 

6. Anonymity: Blockchain supports privacy by authenticating transactions without 

revealing sensitive data of the involved parties. Users can interact with the network 

using generated addresses, and they can create multiple addresses to maintain privacy. 

However, perfect privacy preservation is not guaranteed due to certain constraints. 

7. Auditability: Every transaction on the blockchain is time-stamped, allowing users to 

easily verify and trace previous records. In systems like the Bitcoin blockchain, each 
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transaction can be linked back to its predecessors, enhancing data traceability and 

transparency. 

8. Distribution: Each node in the blockchain network holds a copy of the data records, 

which are continuously updated, ensuring data persistence and making tampering 

nearly impossible. 

9. Automation: Blockchain can automatically trigger specific actions through smart 

contracts when predetermined conditions are met. 

10. Traceability: Blockchain maintains a historical record of all data from its inception, 

allowing users to trace back to any original action. 

11. Privacy: While blockchain operations are transparent, participant information remains 

anonymous using private/public keys. 

12. Reliability: Due to its robust features and structure, blockchain has been successfully 

adopted by various organizations, showcasing its reliability. 

 

In summary, blockchain technology offers a myriad of features that make it a revolutionary 

tool in various sectors. Its decentralized nature, combined with transparency, security, and 

traceability, among other features, provides a robust and reliable platform for various 

applications. 

 

1.2.2 Blockchain architecture 

Blockchain is a system structured in three main layers: applications, a decentralized ledger, 

and a peer-to-peer network. At its core, it is a sequence of blocks, each containing transaction 

records like a traditional public ledger. These blocks are cryptographically linked, with each 

block referencing the previous one through a hash value. This architecture ensures a consistent 

and tamper-proof global ledger where transactions are securely recorded and connected 

(Sarmah 2018; Zheng et al. n.d.).  

 

The architecture of the blockchain is primarily divided into three layers: the top layer consists 

of applications, the middle layer is the decentralized ledger, and the lower layer is the Peer-to-
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Peer Network. The application layer, for example, houses software like the Bitcoin wallet, 

which creates and stores keys, allowing users to oversee their transactions. The decentralized 

ledger in the middle layer validates a consistent and tamper-proof global ledger, where 

transactions are grouped into blocks that are cryptographically linked (Sarmah 2018). The 

working of a typical blockchain network involves users interacting with the blockchain using 

their keys, peers verifying the validity of transactions, transactions being mined into time-

stamped blocks, and nodes verifying the proposed block's reference and its valid transactions 

All elements in the blockchain ensure the integrity and chain-like structure of the blockchain 

(Bhushan et al. 2021). 

 

 

Figure 1.5 How Blockchain is Linked  
Taken from Bhushan et al (2021, p. 3) 

 

Blocks in a blockchain are data structures containing transaction records and headers. Key 

components of a block include the hash of the previous block, which links blocks together; a 

timestamp indicating when the block was created; a nonce used for block creation and 

validation; and the Merkle root, which simplifies transaction verification by containing hash 

values of all transactions (Rani and Saxena 2023).   
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Figure 1.6 Blockchain Structure Overview  
Taken from Sarmah (2018, p. 2) 

 

1.2.2.1 Hash function definition 

Hashing in computer science involves converting a character sequence, or key, into a typically 

shorter, fixed-length sequence called the hash value. This process uses a hash function, where 

the key is associated with specific data, aiding in data storage and retrieval. The primary 

advantage of hashing is efficiency; it allows for quicker searches by examining the hash value 

instead of the entire original string. Ideally, a hash function should produce a unique hash result 

for each key, ensuring consistent outputs for the same input and preventing overlap between 

different keys. While various hash functions exist for diverse purposes, each should adhere to 

this principle. However, a hash function suitable for database tasks might not be ideal for error-

checking or cryptography (Sadeghi-Nasab and Rafe 2023).  
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Blockchain technology involves the creation of blocks that are added sequentially using 

cryptographic hash functions. Once a block is added, it cannot be altered without updating all 

subsequent blocks in the chain. This technology, exemplified by Bitcoin, records financial 

transactions in blocks, leading to its description as a distributed registry. Hash functions, 

traditionally, compress large data sets into smaller ones and have various applications, 

including in cryptography for ensuring data integrity and authentication (Belej, Staniec, and 

Więckowski 2020). Another crucial cryptographic method in blockchain is hashing, which 

encrypts data into a fixed-length string known as a hash. The SHA-256 algorithm, developed 

by the NSA in 2001, is a notable cryptographic hash function used widely in blockchain. It 

converts any data length into a fixed 256-bit (32-byte) string, producing a "hash" or "message 

digest" (Rani and Saxena 2023). 

 

Applications of hash functions include (Sadeghi-Nasab and Rafe 2023): 

- File Verification: Ensures message integrity and detects malicious changes using 

algorithms like MD5 and SHA-1. 

- Digital Signature: Uses cryptographic hashes for signing messages, with SHA-256 

being a popular choice. 

- Password Verification: Stores only hash digests for security, using salts for added 

protection and algorithms like MD5 and SHA-2. 

- Proof of Work: Deters network abuses and is key in Bitcoin mining, using algorithms 

like BLAKE2b and SHA-256. 

- File/Data Identifier: Helps in identifying content in systems like Git and for quick 

data lookup in hash tables. 

 

1.2.2.2 Consensus algorithm in Blockchain 

In blockchain technology, achieving consensus among nodes that may not trust each other is 

akin to the Byzantine Generals Problem, where generals must agree on a strategy despite 

potential traitors sending conflicting messages. Given that blockchain networks are 

decentralized without a central authority to ensure consistency across nodes, protocols are 
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essential to maintain ledger uniformity (Zheng et al. n.d.). An indication of blockchain is user 

anonymity, which raises concerns about transaction honesty. To address this, consensus 

algorithms validate transactions by seeking agreement from all nodes. If consensus isn't 

achieved, the transaction is deemed invalid. It is generally believed that most nodes in a 

blockchain aim to maintain system integrity, making consensus algorithms vital for transaction 

validation and storage (Vyas and Deshmukh 2023).  

 

Anonymity, while a sought-after feature, presents trust challenges. To ensure transaction 

legitimacy, every transaction is validated and then added to a block via consensus algorithms. 

These algorithms, central to blockchain transactions, set rules for participants in a 

decentralized system without universal trust. They operate on the principle that controlling 

more of a scarce resource grants greater influence over the blockchain (Guo and Yu 2022). 

 

There are numerous consensus algorithms utilized in the blockchain realm. While many might 

be familiar with a variety of them, we will specifically delve into Proof of Work (PoW) and 

Proof of Stake (PoS) in detail. Apart from these two, some other noteworthy consensus 

algorithms include Delegated Proof of Stake (DPoS), Ripple's Consensus Algorithm, 

Tendermint, Proof of Burn (PoB), Proof of Capacity (PoC), Delegated Byzantine Fault 

Tolerance (DBFT), Directed Acyclic Graph (DAG), SIEVE , Proof of Elapsed Time (PoET), 

Raft, Byzantine Fault Tolerance (BFT), and Practical Byzantine Fault Tolerance (PBFT). 
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Figure 1.7 Consensus Algorithms Classification  
Taken from K and S (2023, p. 3) 

 

Proof of Work (POW) as consensus algorithm 
Proof of Work (PoW) is a consensus mechanism integral to the Bitcoin network, necessitating 

complex computational tasks for authentication. In this system, nodes, termed "miners," 

continuously calculate hash values of a fluctuating block header, aiming for a value that meets 

a predefined target. Once achieved, other nodes validate its accuracy and the subsequent 

transactions in the new block. This process, known as "mining," is time-intensive, prompting 

incentives for miners, often in the form of Bitcoins (Zheng et al. n.d.).The network's open 

nature allows nodes to operate anonymously, yet in coordination, ensuring the Blockchain's 

growth even in the absence of some nodes (Vyas and Deshmukh 2023). 

 

PoW's core involves problem-solving through guessing, specifically determining a nonce value 

that, combined with transaction data, satisfies a hash function's difficulty criteria. Nodes 

expend significant computational resources in this endeavor, with the successful node 

receiving a crypto-currency reward. Central to PoW is the hash function, with Bitcoin adopting 

the SHA-256 cryptographic variant. Both Bitcoin and Ethereum employ PoW as their 

consensus algorithm, but it's criticized for its high energy and time consumption (Guo and Yu 

2022). 
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Proof of Stake (POS) as consensus algorithm 
Proof of Stake (PoS) is an energy-efficient consensus mechanism that contrasts with Proof of 

Work (PoW). Instead of relying on computational power, PoS requires users to demonstrate 

ownership of a certain amount of crypto-currency, with the belief that those holding more 

currency have a vested interest in the network's security. However, selection based solely on 

account balance can lead to centralization, prompting various solutions like Blackcoin's 

randomization method and Peercoin's coin age-based selection. Ethereum, initially using PoW, 

plans to transition to PoS. To merge the advantages of both PoW and PoS, Proof of Activity 

and other variations like Proof of Capacity have been introduced (Zheng et al. n.d.). 

 

PoS addresses the energy and time consumption issues of PoW. In PoS, nodes stake coins to 

be eligible as block creators, receiving transaction fees for valid blocks and facing penalties 

for invalid ones. Ethereum 2.0 marked a notable shift from PoW to PoS (Guo and Yu 2022; 

Vyas and Deshmukh 2023). PoS provides decision-making authority based on stake 

percentage, offering faster transactions and reduced energy use. Delegated Proof of Stake 

(DPoS) allows stakeholders to vote for representative nodes, speeding up transactions but 

risking centralization (Kim and Kim 2023). PoS, introduced by Peercoin, selects validators 

based on coin collateral and specific conditions, such as Coin-Age Based Selection and 

Random Block Selection, ensuring network security and reducing the risk of attacks (K and S 

2023). 
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Figure 1.8 Compare POW and POS  
Taken from Leo and Hattingh (2021, p. 571 ) 

 

1.2.2.3 Smart contract 

Smart contracts are Consider as contract, denoted as C, established by transaction participants 

u1, u2, ..., uk (where k is a positive integer). In the digital realm, this contract is represented as 

IC. When a trusted third-party entity, G, oversees this contract, the outcome of executing C is 

labeled as R. Thus, R can be expressed as R=C(U,G), and equivalently, R=IC(U) where U 

encompasses {u1, u2, ..., uk}. Smart contracts autonomously finalize transactions that, in the 

physical world, would necessitate oversight from a reliable third-party to guarantee their proper 

execution (Wu et al. 2022). 

 

Smart contracts are automated digital agreements on the blockchain, with Ethereum being a 

notable platform using Solidity for their development. Introduced in the 1990s by Nick Szabo, 

they offer transparency by removing intermediaries and are immutable once activated. There 

are two categories: strong (tamper-proof) and weak. They're versatile, used in sectors like 

finance, real estate, and voting, and can operate on various blockchain networks. While they 

offer many advantages, they also face challenges in large-scale deployment. The choice of 

blockchain network for a smart contract depends on its intended application, considering 
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factors like security, transaction speed, and consensus protocol. Blockchain's decentralized and 

unchangeable nature enhances the security of smart contracts. Transaction speed is influenced 

by the contract's security and complexity, while consensus protocols like PoW and PoS 

determine transaction validity, with PoS offering better protection against threats (Alshahrani 

et al. 2023). 

 

Figure 1.9 Evolutionary Phases of a Smart Contract  
Taken from Wu et al (2022, p. 3) 

  

When methods in a smart contract are called, the state updates. This leads to the creation of a 

block or transaction that reflects the state change. Subsequently, this change is recorded in the 

Blockchain, ensuring all miners are notified about the update resulting from the invoked 

method. 

 

Smart contracts, especially on Ethereum, have three main components stored in the Blockchain 

(Pise and Patil 2022) 

1. A balance, public key, and private key address. Users can transfer ether or money to 

this address. 

2. Code specific to the smart contract, which miners initiate and store in the Blockchain. 

3. A state component. 
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Here's an example of a smart contract using the SPESC language (Mao and Chen 2023): 

 

Contract Purchase { 

    Party Seller Address (ID) { 

        Post() 

        Collect() 

    } 

    Party Buyer { 

        Pay() 

        Receive() 

    } 

    // Definition of parties 

    Asset Printer: Address (ID) { 

        Name: "printer" 

        Value: 1000$ 

    } 

    // Definition of Asset 

} 

The seller initiates with post() after an order. 

The buyer pays using pay(). 

After the buyer confirms receipt with receive(), the seller can access funds with collect. 

 

1.2.3  Confidentiality Tiers in Blockchain 

Depending on the required trust level in the network, the appropriate blockchain confidentiality 

is selected. This can be divided into two main categories: 

1) Public: This allows any individual to join as a node in the shared blockchain and 

potentially influence decisions. However, participation might not always yield benefits for 

the users. The ledgers in this setup are not owned by any single entity and are open to all 

members. Blockchain applications employ a decentralized consensus mechanism and store 
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a copy of the ledger on local nodes (Sarmah 2018). This category further splits into (Dehez 

Clementi et al. 2019): 

a) Permissionless: Any node with internet access and a computing device can contribute 

to the ledger and act as a validator, executing the consensus algorithm. All users have 

equal rights and permissions within the network. 

b) Permissioned: While the network is open, only specific nodes have the capability to 

validate, with the rest serving as data repositories. 

 

2) Private: These Blockchains are exclusive, accessible only to a chosen group of individuals 

or entities, with the database being shared solely among these participants(Sarmah 2018). 

This can be further divided into (Dehez Clementi et al. 2019) :  

a) Permissionless: Although the network requires authentication, once inside, all 

participants have equal read and write capabilities, akin to a company's internal 

network. Access is granted by a private organization, but any "verified" node can 

perform any function. 

b) Permissioned: Only a select few nodes can add content, and limited participants have 

access rights. This represents the most stringent blockchain type, where a third-party 

grants access and oversees permissions. 

 

1.2.4 Blockchain based IoT (BIoT) 

The Internet of Things (IoT) has significantly impacted various sectors, with its presence felt 

in areas like healthcare, agriculture, and asset tracking. Currently, over 20 billion IoT devices 

are in use, highlighting its widespread adoption. However, the technology faces challenges, 

especially concerning trust, security, and privacy. Blockchain, known for its decentralized 

nature and features like integrity and authentication, emerges as a potential solution to these 

challenges. It ensures data integrity, prevents potential security breaches, and its decentralized 

approach eliminates single points of failure in IoT systems. Furthermore, blockchain's success 

in the financial sectors underscores its potential in enhancing IoT's security and functionality. 
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Notably, initiatives like the Trusted IoT Alliance in 2016 have been formed to further the 

integration of blockchain into IoT (Aggarwal et al. 2021). 

In the coming decades, both blockchain and IoT are poised to reshape production firms, 

enhancing productivity, fostering innovation, and improving efficiency. As the costs of sensors 

decrease, more manufacturing sectors are expected to adopt IoT. However, the vastness of IoT 

networks brings forth challenges in information security and privacy. While blockchain offers 

solutions, its resource-intensive nature might pose challenges for some IoT devices (Khare et 

al. 2022). 

 

IoT's rapid growth has been impaired by issues like a lack of trust and an over-reliance on 

centralized authorities. This centralization poses risks, especially concerning data control and 

security. Blockchain, with its decentralized and trustless environment, addresses these 

concerns, providing enhanced security and efficiency. The two technologies, while having 

their unique features, can be integrated effectively for better results. The Table 1.4 provides a 

concise comparison of challenges faced by centralized IoT systems and the corresponding 

solutions offered by Blockchain technology (Sharma and Babu Battula 2022). 

 

Table 1.4 Challenges in IoT and Blockchain Solutions  
Adapted from Sharma and Babu Battula (2022, p. 55 ) 

 

Issue in Centralized IoT Blockchain (BC) Solution 

Security BC enhances security using public-key 

infrastructure, ensuring data integrity 

through immutable records and 

cryptographic communication. 

Scalability BC's distributed nature efficiently 

manages the increasing number of IoT 

devices. 
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Issue in Centralized IoT Blockchain (BC) Solution 

Point of Failure BC's decentralized communication 

eliminates central server reliance, 

preventing single points of failure. 

Address Space BC offers a vast address space, surpassing 

even IPv6 by over 4 billion addresses. 

Authentication & Access Control BC provides robust identity management, 

decentralized authentication, and access 

control via smart contracts. 

Data Integrity BC ensures data remains unaltered unless 

verified by the majority of network 

participants. 

Manipulation Vulnerability BC's immutable environment prevents 

data manipulation, ensuring data integrity. 

Ownership & Identity BC offers reliable identity registration and 

ownership tracking, proven effective in 

goods monitoring. 

Traceability BC supports scalability across various 

open-source options and meets the 

demands of a scalable structure. 

Cost & Storage Constraints BC's peer-to-peer architecture negates the 

need for central authorities, reducing costs 

and hardware requirements. 

 

1.2.4.1 Blockchain based IoT Challenges 

Based on (Aggarwal et al. 2021; Garg et al. 2022) the integration of Blockchain with the 

Internet of Things (BIoT) faces several challenges: 

• Scalability: Adding new blocks or transactions to a blockchain introduces delays due 

to validation requirements. As the number of nodes increases, real-time data 
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transmission, especially in applications like the food supply chain, becomes 

challenging. 

• Computational Resources: Different consensus algorithms, such as PoW used by 

Bitcoin, demand varying computational strengths. Even less intensive algorithms than 

PoW still require significant computational resources. 

• Storage Size: Blockchains have full nodes, which store the entire blockchain, and 

lightweight nodes with only block headers. Given the limited storage of many IoT 

devices, accommodating both types of nodes is problematic. 

• Energy Efficiency: Blockchains consume significant power because of mining and 

continuous P2P communication. 

• Security: Ensuring confidentiality, availability, and integrity is crucial for any 

information system, with data integrity being especially vital in the IoT context. 

• Privacy: In IoT environments, maintaining user privacy during transactions is a 

primary concern, addressed by techniques like Zero-knowledge proof. 

 

Figure 1.10 provides a comprehensive overview of the challenges associated with integrating 

Blockchain and IoT. 
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Figure 1.10 Comprehensive BIoT Challenges  
Taken from Alzoubi et al (2022, p. 15) 

 

1.2.5 An overview of Hyperledger project 

In 2015, the Linux Foundation introduced the Hyperledger project, an open source blockchain 

software distinct from Bitcoin and Ethereum. It encompasses eight blockchain frameworks, 

five tools, and four libraries (Guo and Yu 2022). Hyperledger is a collaborative platform 

designed to support cross-industry blockchain developments, involving around 100 industry 

leaders. It's a permissioned blockchain that emphasizes access control, chain code-based smart 

contracts, and adaptable consensus methods, enhancing security and preventing attacks like 

Sybil attacks. Smart contracts in Hyperledger offer rapid execution times, making it suitable 

for IoT applications. Among its various constructions, Hyperledger Fabric is notably popular 

and open source. Studies comparing Ethereum and Hyperledger found that Hyperledger Fabric 

consistently outperforms Ethereum in latency, execution time, and throughput(Sharma and 

Babu Battula 2022). 
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1.2.6 Hyperledger Frameworks 

The Hyperledger approach promotes the reuse of standard components, facilitates swift 

component development, and fosters interoperability across projects. Unlike public ledgers 

like Bitcoin and Ethereum, Hyperledger's business blockchain systems are designed for a 

consortium of organizations. Hyperledger nurtures and advances various business blockchain 

technologies, such as test applications, distributed ledger frameworks, smart contract engines, 

utility libraries, graphical interfaces, and client libraries (Punathumkandi, Meenakshi 

Sundaram, and Prabhavathy 2020). 

 

1.2.6.1 Hyperledger-Fabric  

Hyperledger Fabric, an open-source enterprise solution, is a permissioned distributed ledger 

technology (DLT) designed for business applications. It offers a unique, modular, and 

configurable architecture suitable for various industries, including banking, healthcare, 

cinema, IoT, and supply chain. Fabric's permissioned nature means participants are known to 

each other, fostering a governance model built on mutual trust. It introduces a novel transaction 

design, separating the transaction flow and creating channels for specific member coordination, 

ensuring privacy in competitive scenarios. The ledger in Fabric comprises the world state, 

representing the current state, and the transaction log, detailing the update history. Smart 

contracts in Fabric, termed chaincode, interact primarily with the world state and can be written 

in multiple languages, including Go and Node (Punathumkandi et al. 2020). 

 

(Capocasale, Gotta, and Perboli 2023) highlight Fabric's role in addressing industrial needs 

like identity management, role definition, and data confidentiality. As part of the Hyperledger 

ecosystem, Fabric supports a modular and scalable structure, allowing for private transactions 

or the creation of independent chains. It employs various consensus algorithms, with a BFT 

consensus planned for future releases. Fabric differentiates between two node types: peers, 

responsible for transaction execution and ledger maintenance, and Orderers, tasked with block 

creation. The transaction process in Fabric involves three stages: 
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i) Execute: Transactions are associated with an endorsement policy, defining which 

peers must execute a given transaction. Clients send the transaction to endorsing 

peers, who process it without updating their ledger copy, then return a signed 

message to the client for Orderers. (Xu et al. 2021) refer to this stage as the 

"Simulation Phase." 

ii) Order: Orderers create blocks by organizing the endorsed transactions received. 

Once a block is formed, it's broadcasted to all channel peers. 

iii) Validate: Each peer verifies the correctness of each transaction within the received 

block and updates its ledger copy. Transactions conflicting with a previous 

transaction in the same block are deemed invalid. 

 

 

Figure 1.11 Data flow in Hyperledger Fabric  
Taken from Xu et al (2021, p. 3) 

 

(Palma, Pareschi, and Zappone 2021)  recognize Hyperledger Fabric as a leading project within 

the Hyperledger suite, emphasizing its modularity and adaptability. It is designed as a 

foundation for building applications with a modular setup, allowing components to be 

interchangeable. Fabric's unique consensus approach ensures scalability while maintaining 

privacy. 
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Figure 1.12 Hyperledger Fabric Architecture  
Taken from Punathumkandi et al (2020, p. 90) 

 

In summary, Hyperledger Fabric is a versatile and modular DLT solution tailored for enterprise 

applications, emphasizing privacy, scalability, and adaptability across various industries, with 

a distinct three-step transaction process. 

 

1.2.6.2 Hyperledger project comparison 

The Hyperledger project, hosted by the Linux Foundation, is a collaborative effort to advance 

cross-industry blockchain technologies. It encompasses a suite of frameworks, tools, and 

libraries designed to support the development of blockchain-based distributed ledgers for 

various business applications. Each framework within the Hyperledger umbrella offers distinct 

features, architectures, and capabilities tailored to meet specific industry needs and use cases. 

Based on (Capocasale et al. 2023; Palma et al. 2021; Punathumkandi et al. 2020) , the Table 

1.5 provides a comparative overview of several prominent Hyperledger frameworks, 

highlighting their key technical attributes and functionalities. 
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Table 1.5 Comparison Between Hyperledger Projects 

Hyperledger Project Description Key Features Contribution 

Hyperledger Fabric General-purpose 

blockchain framework 

designed for 

modularity and 

configurability. 

Modular architecture 

that separates the 

transaction flow into 

execute-order-validate. 

(Palma et al., 

2021) 

Hyperledger 

Sawtooth 

Open-source 

framework designed 

for flexibility and 

separation of concerns. 

Abstracts the 

application layer from 

the security layer, 

dynamic & replaceable 

components. 

(Capocasale et 

al., 2023) 

Hyperledger Indy Focuses on 

Decentralized Digital 

Identities (DIDs). 

Provides tools, 

libraries, and reusable 

components for digital 

identities rooted on 

Blockchains or other 

distributed ledgers. 

(Palma et al., 

2021) 

Hyperledger Iroha Designed for 

simplicity and 

integration into 

infrastructure or IoT 

projects. 

Core architecture 

inspired by Fabric. 

Emphasizes user-

friendly interfaces and 

interoperability with 

other Hyperledger 

projects. 

Hyperledger Besu Ethereum client 

designed for both 

public and private use 

cases. 

Java-based and offers 

comprehensive 

permissioning 

schemes. 

(Punathumkandi 

et al., 2020) 
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Hyperledger Project Description Key Features Contribution 

Hyperledger Burrow Provides a 

permissioned smart 

contract interpreter 

built to the 

specification of the 

Ethereum virtual 

machine (EVM). 

Extends work within 

the Hyperledger 

Project by providing a 

deterministic smart 

contract-focused 

blockchain structure. 

(Punathumkandi 

et al., 2020) 

Hyperledger Grid Domain-specific 

platform for building 

supply-chain 

management solutions. 

Provides components 

for developing smart 

contracts and client 

interfaces 

(Palma et al., 

2021) 

 

In summary, while Hyperledger Fabric is a versatile and modular framework suitable for a 

wide range of industry use cases, other Hyperledger projects like Sawtooth, Indy, Iroha, Besu, 

Burrow, and Grid have specific focuses and features that differentiate them from Fabric. Each 

project has its unique strengths and is designed to address particular challenges or industry 

needs. Also, based on (Capocasale et al. 2023), Fabric's growing support, as evidenced by the 

developer activity on GitHub, indicates its increasing popularity and trustworthiness within the 

Blockchain community. 
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Figure 1.13 Blockchain Development Engagement  
Taken from Capocasale et al (2023, p. 6)  

 

1.2.7 Recent Developments on Blockchain and IoT innovation 

In recent years, the convergence of blockchain technology and the Internet of Things (IoT) has 

emerged as a significant area of research and development. This integration aims to address 

some of the key challenges faced by IoT systems, such as data security, privacy, and scalability. 

Blockchain, with its decentralized nature and robust security mechanisms, offers a promising 

solution to these issues. The following section provides an overview of recent developments 

in the integration of blockchain technology within IoT systems, focusing on innovative 

approaches and architectures that have been proposed to enhance the performance and security 

of IoT networks. 

 

In this research paper (Oikonomou et al. 2021), the authors introduce two novel concepts: 

Storing sensor data externally to the blockchain, while retaining only the sensor's identification 

and transaction details within a local blockchain. Implementing "RESET" transactions that 

transfer data from the local blockchain to liberate storage space, while storing the hash in the 

global blockchain (GB) to maintain data integrity. These innovative ideas link local 

blockchains to the Global Blockchain (GB), ensuring data integrity and implementing specific 
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chaincode and policies. Collectively, these strategies enhance scalability and efficiency in 

managing data storage and transactions. 

 

Another study (Maeng, Heo, and Joe 2022), delves into a system configuration comprising a 

root server, Hyperledger Fabric, and various users. It delineates the user registration and 

verification process, designating users as agents and emphasizing the role of distinct certificate 

authorities. The system supports the establishment and administration of multiple groups, with 

regular monitoring and agent alterations to bolster stability and security. 

 

The research article by (Al-Zoubi et al. 2022), presents a pioneering architecture that employs 

blockchain technology to facilitate interaction among IoT devices. This architecture is 

structured into four blocks: Sensors, webservice, ETH blockchain, users, and administrators. 

The system has been proven to function effectively under diverse conditions, demonstrating 

the secure and efficient application of blockchain technology. Nevertheless, it faces challenges 

such as dependency on a private ETH blockchain with limited transaction processing capacity, 

high costs associated with implementation on a public ETH blockchain, and the absence of 

encryption, privacy, and security measures on the device side. 

 

In their paper (Su, Nguyen, and Sekiya 2022), the authors concentrate on the Combination of 

IoT systems with a private blockchain deployed on an ad-hoc IoT network. The preference for 

a private blockchain is justified by its benefits, such as a reduced number of nodes and lower 

power and resource consumption. The research highlights the establishment of an Ethereum-

based private blockchain atop the network, with each IoT device employing the Geth client to 

establish a full blockchain connection with other nodes. The study aims to evaluate the 

performance of the integrated IoT-private blockchain system, particularly focusing on the 

connections between IoT devices and the underlying network. 

 

As detailed in the article by (Dange and Nitnaware 2023), the authors explore the advantages 

of data storage and compare the associated gas prices in ETH. They emphasize the importance 

of pre-processing at the fog layer, which are governed by the administrator's policies. Users 
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can access blockchain, with smart contracts employed for validation purposes. However, some 

limitations are identified, such as the use of the ETH blockchain leading to low transactions 

per second (TPS) and the lack of a specific data structure for managing data. 

 

The integration of blockchain technology into IoT systems has led to the development of 

various innovative solutions aimed at improving data integrity, security, and efficiency. These 

include off-chain data storage strategies, the use of private blockchains for reduced resource 

consumption, and the implementation of new architectures for secure interactivity among IoT 

devices. Despite the promising advancements, challenges such as scalability, transaction 

processing capacity, and the management of data privacy remain. Future research in this 

domain is expected to address these limitations and further refine the integration of blockchain 

technology with IoT systems, paving the way for more secure, efficient, and scalable IoT 

networks. 

 

1.3 Chapter summary 

In the initial section of this chapter, we delved into the architecture of the Internet of Things 

(IoT) and explored various IoT platforms. The advantages of real-time data streaming were 

underscored, and a comparative analysis was provided. Towards the end of this section, we 

examined the prevailing challenges inherent in the IoT infrastructure. 

 

In the subsequent section, we turned our focus to the architecture of Blockchain. A 

comprehensive exploration of blockchain and its associated algorithms was undertaken, 

highlighting the unique attributes that make it a compelling choice. Furthermore, we discussed 

the convergence of blockchain and IoT, often referred to as BIoT, and addressed the potential 

challenges this integration might encounter. Additionally, we introduced one of the most 

renowned types of blockchain. 

 



 

CHAPTER 2 
 
 

Methodology and Design of architecture 

As we delve further into the intricacies of integrating devices with Blockchain, this chapter 

will illuminate the architecture we have meticulously designed. Central to our exploration is 

understanding how each device can be smoothly linked to the blockchain, enabling data 

visualization, and facilitating user access to the platform. 

 

In this chapter, we will: 

1. Explore the multi-layered structure of the architecture, emphasizing the role and 

significance of each layer. 

2. Delve into the types of devices incorporated into this framework and elucidate the 

design principles behind their interconnections. 

3. Analyze the components integral to each layer, offering insight into their functionality 

and contribution to the overall system. 

 

By the chapter's conclusion, readers will be equipped with a comprehensive understanding of 

our architecture's capabilities and the advantages it offers. A summary will encapsulate the key 

benefits of this platform, serving as a succinct reference for the insights gained. 

 

2.1 Proposed architecture  

Within complex systems, the architecture plays a vital role. It defines the interactions and 

operations of individual components, ultimately determining the system's overall performance. 

In the realm of the Blockchain-based Internet of Things (BIoT), comprehending the 

architecture is essential. Similar to a blueprint which provides clarity on a building's structure, 

understanding the architecture illuminates the engineering principles and potential of the BIoT 

system. 
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This chapter delves into the architecture we have developed. It emerges from extensive 

research and numerous design iterations, showcasing our approach to connecting devices to 

the blockchain with an emphasis on real-time data processing and efficient data visualization. 

We will systematically explore each aspect of our design, detailing the rationale behind every 

decision and elucidating how each component contributes to the robustness and innovation of 

our architecture. 

 

Our proposed system is structured around a four-layer architecture, with each layer possessing 

distinct functionality and significance. The layers are as follows: 

1. Device Layer (Physical Layer): This foundational layer encompasses the tangible 

components and devices. 

2. Network Layer: Serving as the communication bridge, this layer ensures connectivity 

between layers. 

3. Middleware Layer: Acting as an intermediary, this layer facilitates data processing 

and manages interactions between the system's components. 

4. Application Layer: This topmost layer provides the user interface and ensures that 

end-users can efficiently interact with the system. 

 

In subsequent sections, we will delve deeper into the details of each layer, elucidating their 

design choices, functionalities, and the roles they play in the overarching architecture. 

 

Table 2.1 Proposed Four-Layered Architecture in Detail 

Layer Examples 

Fourth Layer (Application/End-User) Smart home systems, industrial automation 

tools, telehealth platforms, asset monitoring 

solutions, smart city applications 



51 

Layer Examples 

Third Layer (Middle layer) Data warehousing, analytics processing, data 

transformation, security protocols, device 

management 

Second Layer (Network) Ethernet, Wi-Fi 6, Bluetooth 5, Zigbee 3.0, 

LoRaWAN, Cellular networks (4G LTE, 5G 

NR) 

First Layer (IoT Device/Physical) Infrared sensors, Proximity sensors, Pressure 

sensors, Gas leak sensors, Smart cameras, 

Intelligent lighting systems, connected 

vehicles, Drones, Airplanes  

 

Figure 2.1 presents the details inside each component and how they will communicate within.  

 

 

Figure 2.1 Four-Layered Architecture Components’ 
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2.2 First Layer (physical layer) 

The physical layer, also referred to as the first layer, serves as the primary interface for real-

world data acquisition in our system. Within this layer, devices can be broadly classified into 

two principal categories: 

1. Sensors (or Devices) 

2. Gateways 

 

Each of these categories possesses distinct functionalities and roles: 

Sensors (or Devices): Sensors are specialized components designed for specific data 

acquisition tasks. Depending on their design specifications, they can measure a variety of 

environmental parameters such as humidity, temperature, water presence, door statuses (open 

or closed), light intensity, and physical impacts. The choice of data transmission protocol for 

these sensors is contingent upon their operational requirements and the nature of the data they 

capture. Commonly employed protocols include Bluetooth and Wi-Fi, Zigbee, and Z-Wave, 

among others. 

 

Gateways: Gateways function as intermediaries in the system. Their primary role is to 

aggregate data from the sensors, potentially preprocess it, and then transmit it to the subsequent 

layers in the system's architecture. To ensure efficient and reliable data transmission, gateways 

utilize protocols tailored to the system's data transfer requirements, such as LwM2M and 

MQTT, CoAP, AMQP and cellular networks. 

 

2.2.1 Case studies 

In our previous discussions, we touched upon the types of devices and gateway variations 

available for use in IoT configurations. This vast landscape of choices has empowered 

developers and organizations to craft solutions tailored to specific needs. In this section, we 

will delve into some of the most common pairings of devices and gateways that have proven 

effective in real-world scenarios. These combinations have not only demonstrated their 
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reliability but also their adaptability across various applications. Below, we outline these 

exemplary pairings. 

 

2.2.1.1 Pinnacle 100 and sensors pairing 

Within this section, an in-depth exploration is presented concerning the integration 

methodologies of sensors and gateways in the context of an Internet of Things (IoT) 

configuration. The BL654 model was meticulously selected as the primary sensor due to its 

adeptness in monitoring three critical environmental parameters: humidity, pressure, and 

temperature. It is imperative to acknowledge that, notwithstanding the emphasis on these three 

sensing modalities, the inherent flexibility of IoT infrastructures permits the integration of an 

expansive array of sensors, each tailored to the nuanced requirements of distinct applications. 

Regarding the gateway component, the Pinnacle 100 was chosen predicated on its integral SIM 

card feature, ensuring an unbroken and consistent connectivity continuum. In the quest to 

refine data transmission at the physical stratum, the Bluetooth communication protocol was 

deemed optimal. Such a decision was instrumental in facilitating a streamlined data 

transmission from the BL654 sensors to the Pinnacle 100 gateway. 

 

Furthermore, the study incorporated the lightweight machine-to-machine (LwM2M) protocol 

to effectuate the data relay from the Pinnacle 100 to the ensuing network layer. The system, in 

its entirety, harnesses the capabilities of 4G or 5G networks to establish internet connectivity 

and subsequently relay the data to the designated network layer. 
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Figure 2.2 Left Image Shows Pinnacle 100  
and 

right Image Shows BL6545 Sensor 
 

 

Figure 2.3 Data flow in This Case Study 
 

2.2.1.2 Raspberry pie and sensor pairing 

This section provides high-level overview of integrating the ib-nav sensor, a product of 

LASSENA's research endeavors, with the Raspberry Pi platform. The core focus is on the 
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sensor's unique indoor navigation capabilities predicated on the zero-velocity principle and the 

underlying mechanisms supporting data transfer and visualization. 

 

Originating from the laboratories of LASSENA, the ibNav 6.1 sensor represents a significant 

advancement in indoor navigation technology. Distinct from conventional sensors, the 

Ibnav6.1 operates on the zero-velocity principle, enabling it to navigate indoor spaces devoid 

of external motion cues. This capability addresses the longstanding challenges posed by 

environments with weak or absent GPS signals. 

 

A salient feature of the ibNav 6.1 sensor is its wireless data transmission functionality. Upon 

activation, the device channels its data via a WiFi conduit directly to a designated Raspberry 

Pi module. This mechanism guarantees a robust and consistent data flow, mitigating risks 

associated with data latency or integrity compromise. 

Subsequent to the Raspberry Pi's data acquisition, the interfacing occurs with an advanced 

ground control station. Far from being a mere data receptacle, this station undertakes rigorous 

data processing and visualization tasks. The objective is to furnish users with an accurate and 

comprehensive depiction of the sensor's output, catering to both real-time surveillance and 

retrospective analyses. 

 

To fortify the data communication pipeline, the MQTT (Message Queuing Telemetry 

Transport) protocol was incorporated. Renowned in academic circles for its lightweight nature, 

MQTT emerges as an optimal choice for scenarios with bandwidth constraints. The protocol 

not only ensures the efficient relay of data from the Raspberry Pi to subsequent layers but also 

underpins the system's reliability. 
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Figure 2.4 IbNav Sensor 6.1 
 

 

Figure 2.5 Data Flow in This Case Study 
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2.2.1.3 Automatic Dependent Surveillance-Broadcast (ADS-B) as a device 

In this section, we present a case study that has been a focal point of our research. Initially, we 

will elucidate the concept of ADS-B and subsequently address its known vulnerabilities. 

 

ADS-B is an air traffic management system that allows aircraft to broadcast their location, 

speed, and direction using an onboard GPS receiver. It has two main components: "ADS-B 

OUT" which sends data to ground stations, and "ADS-B IN" which receives data from other 

aircrafts. While it offers advantages like increased protection and airspace optimization (Costin 

and Francillon n.d.), ADS-B is vulnerable to various attacks . These attacks can be categorized 

by intent, such as passive information collection, financial disruption, terrorist threats, and 

state-sponsored cyber attacks. Common attack methods include message injection, 

modification, deletion, jamming, and eavesdropping (Wu, Shang, and Guo 2020). The system's 

vulnerabilities emphasize the need for improved security in air traffic systems. 

 

 
Figure 2.6 Overview of the ADS-B Communication  

Taken from Sciancalepore, Alhazbi, and Di Pietro (2019, p. 3 ) 

 

Building on this understanding, we postulate that beyond conventional devices such as 

standard sensors, mobile phones, and GPS systems, aircraft can also be viewed as devices in 



 58

their own right. A significant insight from our research is the effective utilization of ADS-B as 

a sensor. To facilitate data transfer from ADS-B, we employed the Message Queuing 

Telemetry Transport (MQTT) protocol, channeling the data to a subsequent analytical layer. 

The overarching objective of this case study is to augment the security measures of the existing 

ADS-B system by integrating our novel platform. 

 

 

Figure 2.7 ADS-B Inside an Airplane Works as Sensor 
 

2.3 Second Layer (Network layer) 

Within the ensuing discourse, our primary objective is to elucidate the relationship between 

the physical layer and what is commonly referred to as the third layer. This particular layer can 

be conceptualized as a critical bridge, facilitating communication between the foundational 

physical layer and the more abstract middleware layer. In the realm of data communication, 

this layer shoulders a paramount responsibility. It is entrusted with the task of garnering data, 

be it from expansive gateways or from singular sensor units, and subsequently channeling this 

data upwards to the middle layer stratum. Once in the middle layer, the raw data undergoes 

rigorous analytical procedures and is then earmarked for storage, ensuring its availability for 

future requisition. 

 

It is noteworthy to highlight that, as discussed in preceding sections, this layer is the principal 

domain wherein specific communication protocols, such as MQTT, find their operational 

ground. However, the versatility of this layer is further exemplified by its capability to harness 
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modern telecommunication infrastructures, particularly 4G and 5G networks, for data 

transmission in certain specialized scenarios. 

 

2.3.1 Case Study 

In this subsection, we will present a detailed examination of a case study associated with the 

network layer's implementation. Our research endeavors involved testing multiple protocols to 

determine the most effective means of transferring raw data from various sensors to the middle 

layer. Notably, one such case study centered on the utilization of PicoLTE as a potential 

solution. Beyond this, our team also invested efforts into evaluating other prominent protocols, 

specifically LwM2M and MQTT. Through a comprehensive assessment of these protocols, we 

sought to identify their respective strengths and limitations in the context of data transfer from 

sensors to the middleware infrastructure. 

 

2.3.1.1 Pico LTE as network layer 

Within the second layer, we utilize the Nutaq PicoLTE to facilitate data transfer from Pinnacle 

to the middle layer, capitalizing on the advantages offered by PicoLTE. In this specific use 

case, two PicoLTE devices are employed. 

 

The Nutaq PicoLTE 2nd Generation emerges as a remarkable topic of interest within the field 

of software-defined radio and integrated network research. This system epitomizes the 

integration of real-time Long-Term Evolution evolved NodeB (LTE eNodeB) and Evolved 

Packet Core (EPC) functionalities within a singular framework, all while adhering to the 3GPP 

LTE PHY standards, specifically Rel. 13 and its successors. Notably, its design offers 

compatibility with a diverse range of commercial User Equipment’s (UEs) and is certain to 

accommodate emerging communication paradigms. From a research perspective, its cost-

effectiveness is intriguing, suggesting a potential avenue for institutions operating under 

budgetary constraints. The device's technical attributes, spanning a comprehensive frequency 

range, integrated transceivers, and flexible bandwidths, warrant a detailed exploration. This is 
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further underscored by its provision for both onsite and online training, which can be 

instrumental in facilitating academic research and study (Nutaq Team, n.d.) 

In summary, the Nutaq PicoLTE 2nd Generation offers a rich tapestry of features and 

capabilities, meriting its examination and study within the broader context of LTE network 

research. 

 

 

Figure 2.8 Nutaq PicoLTE with 2 Antennas 
 

2.4 Third Layer (middle layer) 

The middle layer, often referred to as the third layer of the IoT architecture, serves as a 

foundation in the IoT ecosystem. Its role is instrumental in shaping the development and 

deployment of IoT applications. Essentially, it acts as an intermediary interface facilitating 

communication between the Internet and the plethora of 'things' that comprise IoT. 

Key features of this layer include: 

• Security: Ensuring safe data transmission and storage. 

• Scalability: Adapting to the growth in connected devices or data. 

• Privacy: Ensuring user data confidentiality. 

• Transparency: Offering clear insight into data processing. 
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• Integrity: Ensuring that the data remains unaltered and trustworthy. 

 

APIs designed for interactions with this middle layer are grounded in standard application 

protocols. Moreover, API endpoints, crucial for data and service access, ought to be 

discoverable through an open catalog. These endpoints should also be accompanied by linked 

metadata detailing the resources. 

 

In our literature review, we noted the existence of various platforms operating at the middle 

layer level. Nevertheless, we chose to develop our own platform. This decision was driven by 

several advantages: 

• Upgradability: Swift adaptation to emerging technologies. 

• Maintainability: Simplified system maintenance. 

• Cost-efficiency: Reduced expenses. 

• Scalability and Flexibility: The middle layer can easily scale and integrate with 

various components. Easier adaptability to changes. Also, has more compatibility with 

diverse technologies. 

• Cross-platform Compatibility: device communication regardless of underlying 

software. 

• Ease of Maintenance: Efficient monitoring and troubleshooting of IoT device 

performance. 

• Reusability: Middle layer applications are crafted for reuse, aiding in system upgrades 

and cost reductions. 

• Data Security: Enhanced protection against online threats. 

 

The primary focus of this thesis revolves around this layer, emphasizing data security, user 

privacy, and data integrity. 

 

The middle layer shoulders the responsibility of data reception from the network layer. It either 

stores this data, processes it (through filtering, aggregation, inference, etc.), or analyzes it. 

Additionally, this layer is responsible for event management, context detection, and enforcing 
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application policies such as security and privacy rules. It also monitors system operations and 

data-transmission failures while providing necessary access protocols. 

 

Central components of this layer encompass: 

• Communication: Facilitating real-time data streaming. 

• Security: Safeguarding data and devices. 

• Data and Device Management: Handling and organizing data effectively. 

Concurrently, Overseeing device operations and health. 

 

2.4.1 Third layer’s component 

The Communication Middle layer manages interactions between IoT devices, providing data 

exchange protocols and facilitating data translation. The Data Management Middle layer deals 

with data produced by these devices, supplying tools for its collection, storage, processing, and 

allowing data integration from different sources. The Device Management is dedicated to 

handling IoT device functionalities, presenting tools for tasks such as registration, 

provisioning, and firmware updates, and also supporting remote device oversight. Lastly, the 

Security ensures the safety of IoT interactions by delivering authentication, authorization, and 

encryption tools, thus safeguarding communications between devices and applications. 

 

These components can be addressed using three distinct but complementary technologies. Each 

of these technologies may serve multiple purposes, ensuring versatility and comprehensive 

coverage of the required functions. The trio of technologies that have been employed includes: 

• Blockchain: Primarily utilized for ensuring the security and integrity of data, 

Blockchain acts as a tamper-proof ledger. Beyond its security functions, it also plays a 

role in data and device management, ensuring that every transaction or change is 

recorded in a transparent and immutable manner. 

• Real-time Data Streaming: This technology is pillar for communication, especially 

when timely data transmission is essential. It enables the immediate and continuous 
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flow of data, ensuring that information is relayed as it is generated or received, 

minimizing delays and ensuring prompt responses. 

• Database: Serving as the backbone for data management, databases store, organize, 

and retrieve vast amounts of information. They provide structured storage solutions 

that allow for efficient querying and data retrieval, ensuring that data remains 

accessible and organized for various applications. 

 

 

Figure 2.9 Trinity Technologies in this Platform 
 

2.4.1.1 Real-time data streaming component 

In this subsection, we delve into the implementation of real-time data streaming, a critical 

component of our system. This component is tasked with receiving data from the second layer. 

Based on our literature review, which highlighted the benefits of low latency, high scalability, 

and fault tolerance, we have chosen to employ Kafka Apache for our real-time data streaming 

needs. Essentially, Apache Kafka serves as a conduit to relay data from the second layer. 

 

Kafka primarily consists of three core components: 
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1. Kafka Producer: 

• The Kafka Producer is a client that publishes or sends data/messages to the Kafka 

cluster. It retains records awaiting transmission and operates a background I/O 

thread. 

• This producer creates topics with data, where each topic corresponds to a specific 

device. These topics are then dispatched to the Kafka cluster. Multiple producers 

can exist simultaneously. 

• Topics in Kafka categorize messages and are segmented into Partitions. Producer 

applications deposit data into these topics. Each Partition, customizable in its 

quantity, ensures multiple users can access the data concurrently. Within a Kafka 

Cluster, individual servers oversee their respective Partitions. Messages are paired 

with keys that guide them to designated Partitions, ensuring messages with 

matching keys land in the same Partition for synchronized reading. 

 

2. Kafka Cluster: 

• Kafka employs publish-subscribe methodology, necessitating a broker for efficient 

operation. The Kafka cluster, an assembly of these brokers, provides the scalability 

to the platform. 

• Kafka Clusters manage the persistence and replication of message data. If a primary 

cluster fails, backup Kafka Clusters can take over, ensuring uninterrupted service. 

Each server within the cluster controls its Partitions. Messages are assigned keys 

which determine their Partition placement. Messages with identical keys are routed 

to the same Partition, facilitating simultaneous access. 

3. Kafka Consumer: 

• The Kafka Consumer reads or ingests messages from the Kafka cluster. Brokers 

allocate data/messages to the appropriate consumers based on their needs. 

Consequently,  

• Kafka Consumer retrieves topics directly from the Kafka cluster. 
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Figure 2.10 Apache Kafka Architecture in this Platform 
 

2.4.1.2 Blockchain  

The technology under discussion stands as a cornerstone within this section. It is not just 

another component; it serves as a foundational element that underpins the entire system. When 

we delved into the literature review, we noted several distinct advantages of Blockchain 

technology. Among these are security, privacy, integrity, immutability, and transparency. Each 

of these attributes is not merely a 'nice-to-have' but essential features that characterize the very 

essence of blockchain technology. Within this context, emphasizing the security of the middle 

layer becomes paramount. This layer does not just play a supportive role; it is the beating heart 

of the platform, ensuring smooth interaction and communication between different parts. 

 

For this critical component of our system, we've chosen to work with Hyperledger Fabric. This 

is not an arbitrary choice. Hyperledger Fabric stands out as a private, permissioned blockchain, 

which introduces a layer of control and governance often missing in public Blockchains. This 

means that every participant in our network is vetted and approved, creating a trusted 

environment. Unauthorized users are unable to join the network, ensuring that all participants 

are recognized and authenticated by the system's administrator. 

 

Our innovative approach incorporates both on-chain and off-chain strategies. The rationale 

behind this is twofold. Firstly, by using a database to store the bulk of the data, we can ensure 
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speed and efficiency. This database then provides a unique identifier for each data piece, which 

is subsequently stored on the blockchain. This method ensures that while the data is securely 

stored off-chain, its integrity and authenticity can be verified on-chain. Secondly, our system 

leverages the blockchain not just as a static ledger but as a dynamic tool for device 

management. This approach maximizes the potential of blockchain technology beyond mere 

data storage. 

 

To further enhance the system's capabilities, we have introduced two specialized smart 

contracts. The division of responsibilities between these contracts has been meticulously 

planned. The first contract is focused on data storage, ensuring that each piece of data is 

securely and accurately logged. In contrast, the second contract takes on a more managerial 

role, overseeing both our devices and user interactions. This dual-contract system ensures that 

tasks are specialized and efficient. 

 

Within the confines of Hyperledger Fabric, we've also established multiple organizations. 

These are not just abstract entities; they represent real-world stakeholders and entities eager to 

monitor and analyze data from their respective clients. In this architecture, a channel — a 

dedicated private communication pathway — links two or more organizations within the 

Hyperledger Fabric network. Providing each organization with the capability to manage its 

users introduces a level of autonomy and flexibility. As a result, users within these 

organizations can assign devices to themselves, be it large-scale gateways or individualized 

sensors. The nature of the device assignment is inherently flexible, adapting to the unique 

structure and needs of each organization. 
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Figure 2.11 Hyperledger Fabric Structure in Platform 
 

2.4.1.3 Data base component 

In this section, we discuss the components of the database layer, which has  the responsibility 

of data storage. There are generally two types of databases: 

Centralized databases predominantly rely on one main server for controlling services and data, 

making them susceptible to significant disruptions, as exemplified by the 2017 Amazon AWS 

incident. On the other hand, decentralized databases operate on a principle where all nodes 

function in a peer-to-peer capacity, ensuring no single entity dominates, providing higher 

reliability and resilience against potential system-wide failures (Fong, Selvarajah, and Nabi 

2022).  

 

For our purposes, we have chosen a decentralized approach, utilizing the InterPlanetary File 

System (IPFS) as our database. The Interplanetary File System (IPFS) is a ground-breaking 

protocol that aims to revolutionize the web by facilitating peer-to-peer file storage and sharing, 

conflicting the need for centralized servers. When combined with blockchain technology, IPFS 

promises enhanced data security, rapid file retrieval, and consistent data availability across its 

network. This combination offers a robust solution that ensures data remains secure, accessible, 

and readily available, even when certain nodes become compromised (Anthal, Choudhary, and 

Shettiyar 2023). 
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In IPFS, data is initially divided into smaller blocks, with each block being assigned a unique 

Content Identifier (CID) based on its content. When the user requests a piece of data, IPFS 

employs mechanisms like the Kademlia Distributed Hash Table (DHT) and Bitswap to identify 

which peers in the network possess the desired CID. Following the location determination, the 

data transfer is facilitated primarily by Bitswap. There are also alternative transfer avenues 

available, such as HTTP Gateways for applications not native to IPFS and Sneakernet for 

offline scenarios. Once the data is received, IPFS ensures its authenticity and integrity by re-

computing and verifying the CID. Furthermore, the stored data can be accessed either directly 

by IPFS nodes or indirectly via bridges like IPFS-to-HTTP gateways, ensuring versatility in 

data retrieval (IPFS Docs n.d.).  

 

In our architectural design, we begin by generating a file derived from the data we have 

collected. This data is then segmented into discrete units, often referred to as "chunks" or 

"packets." Each of these packets is bundled into a comprehensive block. This block is more 

than just a collection of data packets; it is a detailed record that contains timestamps indicating 

when the block was created. Additionally, it incorporates the preceding Content Identifier 

(CID) from IPFS, establishing a clear lineage of data blocks. Once these blocks are fully 

assembled with all the necessary components, they undergo a processing phase to transform 

them into structured files. These files are then primed for submission to IPFS. it is worth noting 

that for the very first block in this sequence, the CID is initialized to a value of 0, serving as a 

starting reference point for subsequent blocks. 
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Figure 2.12 Data Structure in this Platform a with Chain Formatting 
 

2.5 Forth layer (Application layer) 

In the forthcoming section, we will explore an examination of the fourth and final layer of our 

architectural framework. This layer is responsible for interacting with the third layer. 

Comprised of applications and services constructed atop the middle layer, this layer is the most 

prominent to the end-users. It encompasses smart home applications, connected vehicular 

systems, digital healthcare solutions, and intelligent urban infrastructure. This layer affords 

users access to data aggregated and processed in the preceding layers. Moreover, it facilitates 

the visualization, analysis, and actionable insights derived from the network data. The 

responsibility of application layer is to ensure secure and intuitive user interactions, 

prerequisites for the efficacious deployment of an IoT architecture. 

 

This layer is divided into two distinct sub-layers: 

1. Authentication layer: This sub-layer is tasked with verifying the credentials of users, 

ensuring that only authorized individuals gain access. 

2. User Web Interface layer: This serves as the primary interface through which users 

can interact seamlessly with the platform. 

 

Within this layer, users or administrators possess the capability to authenticate themselves, 

effectuate modifications to their devices, or monitor the operational status of said devices. 
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The design and functionalities inherent to this layer are intrinsically tailored to the specific 

requirements of the client or user. In our endeavor to enhance user experience, we have 

pioneered a web-based user interface allowing users to securely store their cryptographic 

private and public keys. To facilitate connectivity with the blockchain, this layer employs a 

RESTful API. HTTP/S stands as a quintessential example of an application layer protocol, 

witnessing widespread adoption across the digital domain. 

 

2.5.1 Authentication 

In this section, our primary focus is on the process of user authentication, which stands as an 

integral and major aspect of the Application layer. This aspect is instrumental in safeguarding 

the digital identities and access rights of both users and administrative personnel. User 

authentication not only acts as the first line of defense against unauthorized access but also 

maintains the integrity and confidentiality of sensitive information. By precisely review and 

validating user credentials and access requests, it becomes possible to aid the overarching 

security framework, ensuring that only legitimate users can interact with the system. In our 

pursuit of offering robust and secure authentication mechanisms, we have incorporated two 

distinct methodologies tailored to meet user-specific requirements and to address potential 

security challenges. 

 

1. Token-based Authentication: Upon administrative approval, a pair of public and 

private keys is generated for the user, accompanied by a unique sequence of 13 to 17 

random words. Utilizing these words, we create a JSON Web Token (JWT). The 

primary interaction of this JWT is with the Middleware layer, especially the 

blockchain. 

a. JWTs are encrypted tokens facilitating secure data transfer between clients and 

servers, composed of three elements: the Header (detailing encryption), the 

Payload (holding user data and metadata), and the Signature (ensuring 

authenticity). The website JWT.IO provides a tool for decoding and analyzing 
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the structure of JWTs, excluding their private signature (Akanksha and 

Chaturvedi 2022). 

 

 

Figure 2.13 JWT Example 
 

2. Lightweight Directory Access Protocol (LDAP) Authentication: We have adopted 

LDAP for authentication, and beyond its primary function, it serves to store user 

profiles, which will be leveraged in future implementations. Our user base is divided 

into administrators and general users. Administrators possess the privilege to enroll 

new users, while general users primarily engage with the platform in a monitoring 

capacity. 

a. LDAP is a protocol used for querying directory services for years, serving as a 

lightweight version of the X.500 protocol's Directory Assistance Service. Many 

applications, including Microsoft's Active Directory Server, leverage LDAP for 

managing directory services due to its lightweight nature. These services store 

attribute-value pairs for users, applications, and devices. Enterprise applications 

utilize LDAP for authentication across various platforms, including email 

clients, SSH, servers, and workstations (Srinivasa, Pedersen, and 

Vasilomanolakis 2022). 

 

2.5.2 User interface 

In this part, we explore further into the Application layer's second sub-layer, specifically the 

User Interface (UI) element, a critical component that supports user interaction with the 
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platform. This interface links users and the system's core functions, delivering a smooth and 

natural experience. 

 

Our approach to designing this sub-layer resulted in creating unique web interfaces. We used 

ReactJS, a sophisticated JavaScript package, for the front end. Because of its speed, versatility, 

and modular architecture, ReactJS stands out in front-end development, making it a popular 

choice for creating dynamic user interfaces. Its position as one of the premier front-end 

application libraries attests to its powerful capabilities. In the digital age, raw data typically 

has little value without meaningful interpretation. Recognizing this, we have combined many 

libraries to create a data visualization module. This module converts complicated datasets into 

understandable visual representations, allowing users to gain insights and make educated 

decisions based on the visualized data. 

 

2.6 Chapter summary 

Chapter 2 explains the architecture and design of the platform, segregating it into four distinct 

layers to facilitate comprehension. Initially, the chapter introduces the overall architecture, 

setting the stage for a deeper dive into each layer. The First Layer, termed the physical layer, 

is explored with various case studies. It looks into the pairing of Pinnacle 100 and sensors, the 

integration between Raspberry Pi and sensors, and presents the Automatic Dependent 

Surveillance-Broadcast (ADS-B) as a unique device. Following the physical layer, the chapter 

transitions into the Second Layer, which is the network layer. A case study focusing on the use 

of PicoLTE as a network layer is presented, providing insights into its functionalities and 

relevance. 

 

As the narrative progresses, the Third Layer, commonly referred to as the middle layer, is 

elaborated upon. This section dives deep into the essential components of the third layer, 

discussing the role and significance of real-time data streaming through Apache Kafka, the 

incorporation of Blockchain technology, and the structure and utilization of the database. The 

chapter culminates with the Fourth Layer, which is the application layer. This layer is integral 
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for end-user interaction, and the chapter details its authentication mechanisms and the design 

of the user interface. By the end of Chapter 2, readers gain a holistic understanding of the 

platform's layered architecture, its components, and their interrelationships. 





 

CHAPTER 3 
 

Implementation of the platform 

In this chapter, we explore the details of our implementation. The primary emphasis of this 

thesis lies on the middle layer and application layers. We will explore our implementation 

strategies for Apache Kafka, Blockchain, and our database, explaining how they were 

integrated. A thorough examination of our authentication procedures will be provided, 

including the chosen schema for authentication. 

 

Furthermore, we will elucidate our approach to achieving real-time data streaming and provide 

insights into the configuration specifics of the blockchain and authentication processes. Our 

exploration will encompass the Blockchain's Software Development Kit (SDK) and detail the 

coding methodologies employed for the server-side backend. In addition, we will highlight the 

APIs leveraged during the development phase. 

 

A comprehensive list of libraries used in our project will be presented, followed by an 

explanation of our blockchain monitoring strategy. The platforms chosen for this monitoring 

task will also be introduced. 

 

3.1 The Implementation Process 

In the course of our platform's implementation, we employed Docker images for 

containerization. Docker, established in 2013, has emerged as a pivotal platform in the domain 

of DevOps, securing the foremost position in the 2022 StackOverflow survey. The adoption of 

containerization is projected to witness a significant upsurge, with forecasts suggesting that 

85% of organizations will integrate it by 2025, a substantial increase from the 30% recorded 

in 2020. Docker facilitates the deployment of software applications within lightweight virtual 

environments termed as containers. This deployment is orchestrated via a Dockerfile, which 

delineates the execution environment requisite for an application. DockerHub, an accessible 
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repository, provides a platform for developers to disseminate and build upon existing Docker 

images (Rosa, Scalabrino, and Oliveto 2022). 

 

Upon utilizing Docker images, it becomes imperative to designate a specific port, either on a 

local machine or a server, to facilitate access and interaction with the said container. We have 

architected a Node.js server tasked with interlinking these containers to ensure cohesive 

operation. The implementation process was initiated by integrating our real-time data 

streaming mechanism, Apache Kafka. This was subsequently tethered to our primary database, 

IPFS. The data processed via IPFS yields a CID, which is subsequently archived in the 

Blockchain. This intricate implementation is segmented into three distinct stages, each of 

which will be expounded upon, inclusive of specific configurations, in the ensuing sections. 

 

 

Figure 3.1 Steps of Integration in This Platform 
 

3.1.1 Real-time data streaming (KAFKA Apache) implementation 

This section focuses on Apache Kafka's role in real-time data streaming, emphasizing its 

containerized implementation for optimal execution across diverse platforms. 

Utilizing a docker-compose file -- a tool that facilitates the orchestration of multi-container 

Docker applications-- ensures systematic orchestration of Docker applications. Such approach 

ensures uniformity in Kafka's execution across heterogeneous platforms. This file specifies the 

implementation of three containers integral to the Kafka ecosystem: 

 

1. ZooKeeper: Serving as a coordination interface, ZooKeeper is essential for ensuring 

systematic communication between Kafka brokers and consumers. It plays a crucial 

role in managing cluster metadata and maintaining broker leader statuses. 
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2. Broker: Central to Kafka's publish/subscribe (pub/sub) paradigm, the broker is 

responsible for data storage and client request servicing. It is essentially linked with 

ZooKeeper for coordination activities. Proper broker configuration is imperative, with 

the Kafka Apache documentation providing authoritative guidance. 

3. Control Center: This web interface offers an analytical overview of Kafka operations. 

In this study, it is accessible via localhost:9021. 

 

 

Figure 3.2 Apache Kafka Containers 
 

To consider the scalability while the current configuration comprises a single broker within 

one cluster, Kafka's design innately supports scalability. Its architecture allows for the addition 

of brokers and clusters in response to increasing data demands. 

 

Figure 3.3 Apache Kafka User Interface 
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Figure 3.4 Apache Kafka Cluster Settings 
 

3.1.1.1 Kafka integrated with Network (Producer) 

This section provides a scholarly examination of Apache Kafka's "producer" component. 

The Kafka producer interfaces with the MQTT protocol to receive data from a designated 

second layer. In instances where data is transmitted using other protocols, such as LwM2M 

with PicoLTE over 5G or 4G, an intermediary agent is employed. This agent's function is to 

transcode the incoming data protocol to MQTT, ensuring compatibility with the Kafka 

producer. Upon initialization, the producer subscribes to an MQTT topic, priming itself for 

data reception. The ingested data undergoes serialization, being encoded to the "utf-8" format. 

Subsequently, the KafkaProducer command dispatches the serialized data to the Kafka cluster, 

associating it with a specified topic. 

 

In Figure 3.5, three sensors are depicted as connected to a pinnacle. Data from these sensors is 

transferred via the MQTT protocol through an intermediary agent. This data is then received 

by the Kafka producer and subsequently relayed to the Kafka clusters. 
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Figure 3.5 Three Connected Sensors Data Format 
 

3.1.1.2 Apache Kafka Integrated with Data base (Consumer) 

In this section, we delve into the implementation of the consumer component within the 

Apache Kafka framework. Once data or information is dispatched to the Kafka cluster by the 

Kafka producer under a specific topic, it becomes the obligation of the consumer to retrieve 

this data. The primary role of the consumer is to receive this data and subsequently forward it 

to the requisite storage system. For the purposes of this study, we have selected the 

InterPlanetary File System (IPFS) as our decentralized database. 

To facilitate this process, we employed the `KafkaClient` function to subscribe to the Kafka 

cluster, thereby enabling the retrieval of the pertinent data. Furthermore, we have instantiated 

the 'Consumer' from the Kafka library, ensuring that the appropriate topics are selected for data 

integration. 

It is imperative to note that upon retrieval of the raw data from Kafka, there exists a necessity 

to transform this data from its initial buffer format into a more accessible string format. This 

step is crucial to ensure compatibility and integration with subsequent processing stages. 

 

 

Figure 3.6 Receiving Raw Data from Apache Kafka Consumer 
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Figure 3.7 Data after being Processed to String 
 

 

Figure 3.8 Producer (left side) and Consumer (right side) Together 
 

 

Figure 3.9 Three Topics Transferring in Apache Kafka Center 
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Figure 3.10 Detailed Topic with Parameters 
 

3.1.2 Data Base Implementation  

In the forthcoming section, we delineate the complication of our database implementation, 

anchoring our discussion in the choices we've made regarding data storage strategies. 

We have strategically opted for a combined off-chain and on-chain approach for data storage. 

This necessitates the implementation of a database. In our pursuit of preserving the 

decentralization of the platform, it is imperative to employ a decentralized database. 

Upon rigorous evaluation of available options, we have zeroed in on the InterPlanetary File 

System (IPFS) as our decentralized database of choice. IPFS is renowned for its decentralized 

nature, ensuring the autonomy and resilience of our data storage mechanism. 

 

To effectively integrate with the IPFS ecosystem, it is essential to establish a node. This allows 

our platform to interact with the broader IPFS community. The establishment of this node 

entails the installation of the IPFS node software. In our endeavor to connect this node with 

our application, we diligently perused the official IPFS documentation, ensuring best practices 

are adhered to. Initiating the node is achieved by executing the command “daemon ipfs”. Upon 

successful initialization of IPFS, one can verify its operational status. For more intuitive 
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interaction and real-time monitoring of IPFS, there's a dedicated web interface. This interface 

can be accessed at http://127.0.0.1:5001/webui, providing users with a comprehensive 

overview of the IPFS node's activities and status. 

 

Data ingested from the Kafka consumer undergoes a transformation process. Initially, this data 

is segmented into discrete chunks. Leveraging these chunks, we fabricate specific block types, 

as elucidated in prior sections. Post block creation, this data is relayed to IPFS. A consequential 

outcome of this process is the generation of a Content Identifier (CID). This CID plays an 

important role in subsequent platform operations, particularly within our blockchain 

implementation. To provide further clarity, raw data is transmuted into data chunks, as 

expounded in our methodology section. This chunked data is subsequently relayed to IPFS for 

persistent storage. Additionally, metadata, such as the timestamp marking the block's creation, 

is appended to each data block. 

 

 

Figure 3.11 IPFS Web User Interface 
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Figure 3.12 IPFS Status Web Page of Availability 
 

3.1.3 Blockchain Implementations 

In this section, we represent the procedure for deploying our Blockchain. As previously 

discussed in the methodologies section, our choice of blockchain technology is Hyperledger 

Fabric (HLF). This decision was informed by several considerations: foremost, the promising 

performance metrics of HLF; its extensive support within the developer community; and its 

inherent flexibility which enables us to accommodate a broad spectrum of operations. 

 

To operationalize HLF, there are specific prerequisites that need to be addressed during the 

implementation phase. Firstly, certain software components, including Golang, Docker, 

Docker-compose engine, and Node.js, must be installed. Subsequent to these installations, the 

next course of action is to download the binary file for HLF, specifically version 2.x. Although 

version 2.x is recommended, it would be prudent to acquire the latest version to ensure optimal 

functionality. Alongside the binary file, it is essential to download all pertinent Docker images 

associated with HLF. To verify the successful download of these images, one can execute the 

command “docker images”; this provides a comprehensive list of all the Docker images that 

have been secured. 
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Figure 3.13 Hyperledger Fabric Images 
 

Once these preliminary steps are accomplished, the subsequent task is the generation of 

certificate authorities for all the necessary organizations and orderers. This phase culminates 

in the creation of a 'crypto-config' file, which consolidates all the indispensable keys for the 

holistic functioning of HLF. With this file in place, our next responsibility is the configuration 

of our artifacts. This entails defining the plethora of parameters associated with the Blockchain, 

such as the specific consensus algorithm employed and the criteria for the formation of a new 

block. It is worth noting that a genesis block—often referred to as the inaugural block or block 

number 0—will be generated during this phase.  

 

 

Figure 3.14 Containers Created in Hyperledger Fabric 
 

Following the successful conclusion of these preparations, our attention then pivots to the 

configuration of our docker-compose file. This is instrumental in initiating all containers and 

facilitating their seamless interconnection. For the current deployment, we utilize CouchDB as 
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our blockchain database. As a case in point, this deployment encompasses three organizations, 

each equipped with a single peer, and an aggregate of three Orderers. The ensuing phase is 

focused on channel configuration. For the purpose of this demonstration, all organizations have 

been integrated into the channel, and its deployment is now in progress.  

 

Figure 3.15 Chaincode Deployment 
 

Concluding this process, the deployment of our smart contracts takes precedence. As an 

illustrative example, two smart contracts have been conceptualized and will be sequentially 

deployed. 

 

Figure 3.16 Smart Contract Deployment on Each Peers 
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3.1.3.1 Smart contracts 

In the subsequent discourse, an examination of the implemented smart contract structures will 

be presented, elucidating their operational mechanisms and the integral roles they occupy 

within the proposed system. Fundamentally, a smart contract is a digitalized agreement that 

parallels conventional contracts. However, it possesses distinct attributes: it is autonomously 

executable and verifiable. Such contracts facilitate the automatic enforcement of obligations 

and associated actions upon the fulfillment of predefined criteria. This eliminate the 

requirement for intermediate agents, thus cementing trustworthiness amongst engaged entities. 

 

Within the framework of Hyperledger Fabric, a notable Blockchain infrastructure, the decision 

was made to architect our smart contracts utilizing GoLang. This choice is predicated upon 

GoLang's performance metrics and the substantial backing from the Hyperledger community. 

Each contract encompasses various functions, each precisely tailored for an explicit task, thus 

ensuring the contract's efficient performance. 

 

To explain the architectural framework: 

1. User Management Smart Contract: This represents the foundational for 

orchestrating user engagements within the Hyperledger Fabric infrastructure. It not 

only facilitates administrators in the registration of users with efficacy but also grants 

upon them the capacity to designate distinct roles. Such design ensures that users can 

exclusively interface with data and functionalities compatible to their designated role. 

In addition, this contract functions as a repository, preserving a thorough record of 

users, their corresponding entities, and attendant devices. It essentially functions as a 

core for users operations. 

2. Data Management and Verification Smart Contract: In the contemporary digital 

era, data stands as an invaluable asset. Acknowledging its paramount importance, a 

distinct contract has been devised to supervise, authenticate, and determine the 

consistency of the data incorporated into our platform. This contract employs a 

stringent methodology for data validation. Each data fragment is tagged with a CID 
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(Content Identifier), which undergoes a cross-referencing process to validate its 

authenticity and structural integrity. Notably, the CID is architecturally configured to 

establish interconnectedness, culminating in a chain configuration. This interconnected 

structure offers a lucid and graphical delineation of data origin, ensuring transparency 

in tracking the data's provenance and subsequent alterations. 

 

In conclusion, the combinations of these two smart contracts establishes a fortified groundwork 

for the proposed platform, ensuring the streamlined and inviolable administration of users and 

data. 

3.1.3.2 Blockchain Software Development Kit 

In the subsequent section, we shall delve into a detailed analysis of the Hyperledger Fabric 

Software Development Kit (SDK). 

In the context of Hyperledger Fabric, an SDK, or Software Development Kit, is a set of tools 

that allows users to interact with the blockchain system. Users utilize the SDK in pair with the 

Membership Service Provider to operate within the Hyperledger Fabric system. The endorsing 

peer, after simulating a chaincode for a requested user on a specific set of peers, sends back 

permission to an application SDK. The SDK plays a significant role in the process, as the 

ordering service gathers endorsed transactions from it. This ordering service then forms blocks 

based on the sequence of transactions and subsequently distributes them to every peer node in 

the channel (Su Wai, Htoon, and Myint Thein 2020). 
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Figure 3.17 SDK in Hyperledger Fabric  
Taken from Su Wai et al (2020, p. 2) 

 

Utilizing this SDK facilitates interaction with the Hyperledger Fabric (HLF). It provides a 

sophisticated, high-level Application Programming Interface (API) that enables transactions, 

inquiries, and other related operations. For the purposes of user registration, transaction 

invocation, and historical queries, we have employed a JavaScript file. 

 

3.1.3.3 Blockchain Authentication 

In this section, we delve into the mechanisms by which the blockchain facilitates connectivity 

of users and devices to the platform. Within this architectural layer, we have incorporated the 

use of the JSON Web Token (JWT) to authenticate and verify every user and device. This 

token is uniquely designated for each user as well as the devices associated with them. 

 

To ensure secure access, users are required to generate both a public and a private key, based 

on the RSA 1024-bit encryption standard, through a passphrase ranging from 13 to 17 words. 

These keys subsequently aid in the creation of the JWT, which possesses an expiration 

duration. For enhanced security, this token has a relatively short lifespan and needs to be 
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regenerated every few months (depend on the admin’s permission). A concise expiration 

period inherently boosts the security profile of the JWT. Importantly, with this secret 

passphrase, users can regenerate their public and private keys as needed. When required, the 

token can be regenerated using the aforementioned public and private keys.  

 

Here are some examples of secret passphrase and public and private key related to them. 

 

Secret key1: affect direction triangle produce shelter him wonderful acres zipper huge score 

slept made article search lay bit 

Public key:  
-----BEGIN PUBLIC KEY----- 

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDs0GLED4HKFo5s/ID3bT2hJ/9

g 

x3ibjOx0YgOGagx5s2NwrIC0sfRzB4+6Rk5IAGqA3GM2GNG8N4UFg808E834V3E9 

kxQyvNN04eNheECe19ex56yoDOzWfp1upunVIa8A6nxfW8v4v9FBgnrDbMf8AIAI 

JtFUVom/jdU1KbQOuwIDAQAB 

-----END PUBLIC KEY----- 

 

Private Key: 
-----BEGIN RSA PRIVATE KEY----- 

MIICXQIBAAKBgQDs0GLED4HKFo5s/ID3bT2hJ/9gx3ibjOx0YgOGagx5s2NwrIC0 

sfRzB4+6Rk5IAGqA3GM2GNG8N4UFg808E834V3E9kxQyvNN04eNheECe19ex56yo 

DOzWfp1upunVIa8A6nxfW8v4v9FBgnrDbMf8AIAIJtFUVom/jdU1KbQOuwIDAQAB 

AoGBALQXGTT+kfZMRw2szKrdQYP/9d70cszgU6WCMCoVFd2rRVEXbl18A2lC89N1 

yexJnLTYZP5ry3w2QIvcGsS4TuY5jeRDI/Q4uxkMVOYGjCW86NtZjoJ8geaTSnmC 

cWhii9Nr2wzNYTYfmq0238tmHYtubIpEtzqzwky5OxYV0kbZAkEA+3qTd84FTeiQ 

XQ8c80sqVwGePEhgdvwAiWL/P0oUc9dJWcJS+Yn8YPSeZM9K79VSl/XwB+coV4xp 

biyKf1vFlwJBAPESUL75e2ByPyqTRz/tjwshHs77yBoSNRsv4W+26giZXWEuNoWT 

l7NRYFFIHkkoDaNH8ouwTSxLOsTUlRuajH0CQAogWnXVjvMfLUkCBclqOm88enG0 

/GVuKltd6CdVRVOQ1LxPjeXMf6Qr1YD7s+nKbkP+PEclMMOtvMUZ+A2+1UsCQDKh 
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KhwxwVusIuAKNniSp+wqdJH8BzaShFzFXY9c1yIfM6FpV0IOkVmzyYrInrO2mcal 

Iad8y3h2BE26Z+Z4OvECQQDXmOmuc2+NbXY28l+hHcMNBfi/VtBzfDZ2c+qilb+r 

qRbrhRRPeCSQPlpqmJ9CgIQ6y7MQST8taDmM2Inbj+Nd 

-----END RSA PRIVATE KEY----- 

 

Secret key2: 
measure mud gentle combination situation damage somewhere speak author further off solid 

upper therefore whale away design search 

 

Public key: 
-----BEGIN PUBLIC KEY----- 

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCyM/P9jd8ewpixr0U3Mzuscbb

N 

YpzyvunX9W7oB1VboJp9/LogURtzJR+s3fwvmA21FHmDwdYoW5PRFnWlB/TWr74v 

nrzeLmqQW8pasBQVzWMBpC/dNPQNWXTysUWglfhm9XFwXNCok6wORGED9HKn//

8n 

S4RvKdjk6SL/TQnmRQIDAQAB 

-----END PUBLIC KEY----- 

 

Private key: 
-----BEGIN RSA PRIVATE KEY----- 

MIICXQIBAAKBgQCyM/P9jd8ewpixr0U3MzuscbbNYpzyvunX9W7oB1VboJp9/Log 

URtzJR+s3fwvmA21FHmDwdYoW5PRFnWlB/TWr74vnrzeLmqQW8pasBQVzWMBpC/d 

NPQNWXTysUWglfhm9XFwXNCok6wORGED9HKn//8nS4RvKdjk6SL/TQnmRQIDAQ

AB 

AoGBAJpwFgtvUafZ4/VRvb2qJBQ99Lwos3ZY6FZl+TkTafFfzaRUS4ZIZG61BK+P 

LsickXyWgv0iFxSg0QlK2qgsrg2QoO9QzvLUAtt2iCXCjW46A3tFVWcpx68CC7cL 

MfDU9k42dEwCHxDp7WknyBX7CEWFbJQb8gU0MJK20lToonVBAkEA7ei4bnQCKXS9 

a/C9+3IGFksQ7HPOyNBIBVA9RV/wK3vjlgcpDUmzVxEbbwtytTs0f4Gjp8+5o+2f 

Kur+QpTH0QJBAL/A9Sw6E8P+ZQnlFhslUaL+C3E0xchCnXaH2tv+THshktDUXUSr 
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NuBUrNkR15CCPzt7vrWjyJesmWDb+JueCDUCQD0zX7ZyO1gkwtGwpX64j15OwzTA 

edJo2g4b3RcqneLhxOMERog3jF36dZ80R7bdWxzt4Ya6xhuodgiZWP0RvvECQQCl 

21K1NG7QQgRG8L2UMU1RfAeNnaXNN8FXOt8VFfo1Lq78rhMWSDmpA9SV1RbtSZt

D 

6h7koYvplUL9Qobgo2pZAkBz3WoCz0TiwbiYn/xBLtqe2HWxSlMYpfWUR3qaMQyA 

FDMZJyeclR+VPKgOk/a1hYdSg/7sawBPNPyPxYENWvRN 

-----END RSA PRIVATE KEY----- 

 

Token: 
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjEwMTY5MzQwOTIwNywidXNlc

m5hbWUiOiJqaGFpanNjIiwib3JnTmFtZSI6Ik9yZzEiLCJpYXQiOjE2OTM0MDkyMDd9.g

W-_9KXNzEdrlV0q2XNLUp9TuSL3LeqCxE3Uf9MRfhXlRC_c06ol-

7YtIYUDzbnvIitOLULBN4Hq4Pd7EHR5ZpIqYFPDqrs91FPGAOmPxU23-

PqyGwzKQjX4fKxnkWPBGGxMmSpk7PjMvPijVxVJvbKxuJjdezfz7_J2w0RD9Ow 

 

3.2 User Interface (UI) implementation 

In the subsequent discourse, attention will be devoted to the fourth layer, conventionally 

referred to as the application layer. This particular layer assimilates data transferred from its 

predecessor, the third or middle layer. Functionally, the application layer provides a 

quintessential interface, presenting data in a manner favorable to academic and professional 

examination. Users are granted the capability to access their designated accounts, therein 

obtaining the current status of their respective devices, perusing pertinent information, and 

initiating direct engagements with said devices. 

 

The application layer is divided into two distinct sub-layers: 

1. The primary sub-layer is predominantly concerned with the authentication of users, 

necessitating rigorous verification of their credentials. 

2. The secondary sub-layer, in contrast, is primarily oriented towards facilitating 

interaction with the third layer, serving as a conduit for device communication. 
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3.2.1 Authentication in UI 

In the designated sub-layer, we have introduced an authentication mechanism to enhance the 

security of the fourth layer. Specifically, we have employed an authentication process for web 

users, facilitating their ability to securely log into their accounts. 

 

We have adopted the Lightweight Directory Authentication Protocol (LDAP) as our primary 

authentication mechanism. Beyond mere authentication, LDAP also supports the storage of 

customer profiles. Integral to the operation of OpenLDAP is the necessity for a schema tailored 

for authentication. Accordingly, we have designed a schema to manage both users and 

administrative roles, ensuring streamlined management and enhanced security. 

 

The LDAP system we have implemented is divaricate into two main components. The first 

component involves the deployment process, which utilizes a docker-compose file containing 

the OpenLDAP image alongside a web interface, phpLDAPadmin.  

 

The user interface is presented in a graphical format, allowing administrators to manage user 

profiles with ease. Additionally, an Application Programming Interface (API) has been 

developed to bridge the user interface and the LDAP container. This API serves a plethora of 

functions: querying user profiles, verifying passwords, modifying passwords, adding email 

addresses, and more. For backend interactions with OpenLDAP, we have integrated the ldapjs 

library. 

 

 

Figure 3.18 LDAP User Interface 
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Figure 3.19 Schema Created in LDAP 
 

 

Figure 3.20 User Profile in LDAP 
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3.2.2 Web interface 

The second sub-layer within the fourth layer is designated as our web interface. Once users 

authenticate and gain access to their respective accounts, they are endowed with the capability 

to engage with the platform. It is incumbent upon the administrator to incorporate both users 

and devices. For the development of the interface, we employed ReactJS, a renowned 

JavaScript library that emphasizes component-based architecture. 

 

We have designed a dashboard, enabling users to connect and interact within their designated 

space. The registration of these devices is orchestrated through a smart contract, tailored for 

the efficient management of devices and users. Upon successful registration, a unique UUID 

is generated for each device. Within this section, we also emphasize the importance of data 

integrity. We meticulously examine each block to ensure that its hashed data is properly linked 

and chained, safeguarding the consistency and reliability of the entire dataset. Visualization 

techniques have been implemented using an array of libraries, including react-plotly.js. 

 

 

Figure 3.21 Web User Interface Dashboard 
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Figure 3.22 Block of Data Requested by User to be Visualized 
 

 

Figure 3.23 CID's Requested from  
Hyperledger Fabric 
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Figure 3.24 Visualized Data from a Sensor 
3.3 Real-time data visualization 

In this section, we clarify the methodology employed for the implementation of real-time data 

visualization. Utilizing the Hyperledger Fabric (HLF), one can essentially retrieve historical 

data. A notable limitation of Blockchain technology is its non-real-time nature, subject to 

delays contingent on network performance. To mitigate this challenge, we have instituted a 

mechanism that enables the acquisition of real-time data via a websocket. Subsequent to this, 

the data is presented through a developed web-based user interface. 

 

Web Socket, a protocol grounded on remote server-client interactions, was formulated to 

minimize communication overhead. Its security framework mirrors browser-based models. 

Communication initiation hinges on a handshake process between the client and server (Kumar 

N.V. and Kumar P. 2020). During the implementation phase, as data is procured from the 

Kafka consumer, a websocket is established, suspended for a handshake with the end user. 

Upon server validation of the JSON Web Token (JWT) - previously outlined - to authenticate 

the user, the handshake reaches completion. Consequently, users can  view real-time data 

within the user interface. 
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3.4 Data Encryption/Decryption method 

In the following section, we shall discuss encryption methodologies. Encryption is vital for 

ensuring the security and privacy of data, IoT devices, with their limited computational 

capabilities, encounter challenges in implementing robust cryptographic standards like the 

RSA algorithm. However, the selection of an appropriate encryption method for these devices 

underscores the need to safeguard data effectively. This is evidenced by the emphasis on 

optimizing computational load, memory requirements, and energy consumption—all factors 

critical for effective encryption in constrained environments. The ongoing discussions about 

RSA key lengths further highlight the significance of strong encryption in protecting 

information from potential vulnerabilities or unauthorized breaches (Nartey et al. 2021). 

 

Figure 3.25 Energy Consumption for Different Algorithms  
Taken from Nartey et al (2021, p. 14) 

 

Owing to its comparatively lower energy consumption relative to other RSA encryption 

variants, we have selected RSA with a 1024-bit key size. We have implemented end-to-end 
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data encryption to ensure data integrity and confidentiality throughout the transmission 

process. Data can then be decrypted by the end-users utilizing their unique private keys. The 

encryption is executed using the public key, whereas decryption is facilitated using the private 

key. 

 

Example of encrypted data: 

"YS1u2eYzHTO0Moida/mBDmRX/ib5pIFhx1TpUvCn9OVTBoaDTnY4hiFiG0V066LZww

tagRZuAS1tG+bmeJOOMrffx1zK/LwvS77LstCV4+WpAgtctrEnBn8JI/MB9G7PEG2vEyiH

liUt1NPVvLvvo+lv5n/3u5A/sBsE0fCdVkxnKsPiUpxNZr6OPdBsiYKoSe4WzkHBPXHJ2Ja

LCqtIOCh2teDuf/ATQ6GyV//n1rAUlZ7HreWR0Kvxrrm1dvSCi+Hsnzq+zlnCwwud37oNx

Xpcjj9e1yCywWzMxPB0kTOaPyngkNa42AvSQYAvn5pIGruvL3STosyefZ0bvsvO+y9QA

QcA686tLKAhdHSN0hlscuKZDf4acJmGLgDG2ZNOS/57TERw7N/2Fw07l0axE42ZU9z9y

VAyq24MjzKOFu3EV8eCovqSUoTH/7CFj8KNnFBHzs4GfY99i9b4Y95S4Br+BW8vLN0t

R8VSTjC/cb4N2IvpI1huS+nTACM+xDptfpnAwbYg29/ZKlt5sW3fnYycYxISuLvARnnW

mP7y4DrOOu+oatI0ph+PDTJEL5/V5YOldB8OJ+Ef2KZUHhTccMUSkyFaeTLbV6ZScjwg

n8ieqBHDJSxt1f1jmPBFaT+5YOYeGgzPvlIKMUimKB3wy9cj1mYvSWjCTSw9VJSyutpC

8TJLa13EUkGnse+nRtxVCpH5bne/4tI2g70egtyUW+yi1cEbA9vsETgmtM5Wc9aJoMhBai

mF/szFs4pBO/E8YZw7V018PHl2KSc94oXAaAwQZiR3rOqPUd6mUzQkeNSZWPM//y0b

ZJVpYKgkaCY3rBZn4H8qPy0n7jokWHbEpA==" 

 

3.5 Chapter summary 

In this chapter, we discussed the implementation of the third and fourth layers. A 

comprehensive exploration of each step was undertaken to ensure the effective integration of 

essential technologies required for the deployment of the platform. We examined the 

incorporation of real-time data streaming technologies, specifically Apache Kafka, and how it 

has been synergized with the decentralized database, IPFS. Additionally, the method by which 

the database is integrated with the blockchain system, known as Hyperledger Fabric (HLF), 

was elaborated upon. Our discussion further expanded on the deployment of Kafka and IPFS. 
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For the deployment of our HLF, each step was described, highlighting procedures such as 

joining channels, understanding the roles and responsibilities of smart contracts, and the use 

of the SDK. we addressed the SDK utilized and elucidated the procedures to authenticate each 

user. The paramount importance of security was acknowledged, and as such, we traversed the 

topic of end-to-end data encryption. This is critical in fortifying the entire platform. 

Additionally, we outlined methods to verify the integrity of data received from various devices. 

Lastly, an in-depth analysis of the fourth layer's implementation was provided, detailing all 

sub-layers pertinent to authentication and visualization processes. 





 

CHAPTER 4 
 
 

Results and Evaluation 

In this chapter, we shall present a comprehensive report of the research findings obtained from 

evaluations and analyses of the platform. The analyses will be divided into three segments: 

1. In the first section, 

a. Assess the performance of Apache Kafka. 

b. Pay attention to its latency and system resource utilisation. 

2. In the next section:  

a. Examine the performance of Blockchains. 

b. Emphasise transaction rates as well as accompanying latencies. 

3. Analyse system resource utilisation in the third segment. 

a. Examine the use of the central processor unit (CPU) and random-access 

memory (RAM) in particular. 

For assessing the performance of the Hyperledger Fabric (HLF), we employed two primary 

Hyperledger tools: Hyperledger Caliper and Hyperledger Explorer. 

 

4.1 Kafka performance 

In the domain of distributed systems research, an analytical exploration was conducted to 

assess the performance metrics of Apache Kafka, a prominent open-source stream-processing 

software platform. Metrics pertaining to performance and latency were ascertained using the 

Kafka Control Center, an instrumental platform facilitating real-time monitoring capabilities 

of each constituent broker. The computational environment for the assessment comprised a 

MacBook Pro with an M2 Pro chip and 16MB RAM, wherein Kafka was operationalized with 

a solitary broker. Data processing was conducted at a sample rate of 0.01, with the scope of 

topics oscillating between 50 and 1,000, encompassing both creation and subsequent 

processing.  

Upon analysis under multifarious scenarios, latency was discerned in two principal modalities. 

The initial modality pertained to the producers' request latency, which unveiled an obvious 
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correlation between the escalating number of topics and concomitant latency. Pertinently, for 

the 99.9% percentile of the data set, latency exhibited an increment from an initial 5 ms, 

culminating at 40 ms. 

 

 

Figure 4.1 Request Latency in Apache Kafka Producer 
 

Subsequently, consumer-derived latency was scrutinized, revealing values commencing at 500 

ms and terminating proximate to 700 ms.  
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Figure 4.2 Request Latency in Apache Kafka Consumer 
 

 

Figure 4.3 System Pool Usage in Apache Kafka 
 

Expanding the analytical purview, system pool usage was subjected to rigorous examination.  

This analysis was bifurcated into (Confluent Documentation n.d.) : 

1. Network Pool Usage: A metric signifying the mean network pool capacity utilization 

across the entirety of brokers, effectively quantifying the temporal percentage wherein 

network processor threads were operative. 
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2. Request Pool Usage: Serving as an indicator of the median request handler capacity 

employed across all brokers, quantifying the temporal duration when the request 

handler threads were in an operative state. 

 

An emergent trend was the augmentation in system pool usage concomitant with an expansion 

in topic numbers. The findings elucidated an anticipated amplification in the non-idle system 

usage percentage. This scholarly investigation of Apache Kafka highlight its inherent 

scalability and efficacy. However, it also foregrounds the consequential augmentations in 

latency associated with intensified system demands. Forthcoming research endeavors are thus 

recommended to investigate potential optimizations, aiming to attenuate latency repercussions 

while accentuating resource utilization efficiency. 

 

 In our comprehensive evaluation, we observed a failure rate of zero percent. This indicates 

that there were no issues related to data queuing and processing. Further examination of this 

result suggests an optimal efficiency in the system's handling and management of data. This 

absence of data backlog and processing delays is suggestive of a robust and well-optimized 

system infrastructure, which warrants further investigation to understand the underlying 

factors contributing to its commendable performance. To enhance the system's availability, we 

can also consider augmenting the number of brokers. 

 

4.2 Blockchain performance  

In this section, we assessed the performance of the blockchain using our specified settings and 

configurations. The evaluation comprises two distinct segments: 

1. Monitoring conducted via Hyperledger-Explorer. 

2. Analysis performed using Hyperledger Caliper. 

Hyperledger provides a suite of tools designed to optimize and visualize blockchain operations. 

Caliper is one such tool, dedicated to benchmarking Blockchain implementations. Through its 

predefined use cases, it evaluates the performance of several blockchain solutions, including 

Ethereum and multiple Hyperledger systems, producing detailed performance reports. Another 
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significant tool from Hyperledger is the Explorer. Explorer offers a user-centric platform to 

view and interact with blockchain data. Users can view, invoke, and query various Blockchain 

details, and the tool also boasts the flexibility to integrate with diverse authentication platforms, 

enhancing its usability and adaptability (Punathumkandi et al. 2020). 

 

For these tests, our experiments were conducted on a MacBook Pro M2 Pro, detailed with the 

following specifications: 

• CPU: Apple M2 Pro chip (10-core) 

• RAM: 16GB unified memory 

 

4.2.1 Monitoring with Hyperledger-Explorer 

This study aims to investigate the Hyperledger Explorer, focusing specifically on its 

implementation perspective. Hyperledger Explorer is an essential tool that facilitates the 

monitoring and interaction with blockchain infrastructures. A brief overview of the file 

structure pertinent to this tool is presented: 

1. Test-network.json: This file encompasses details concerning the specific network 

underutilization. 

2. Config.json: Within this document, one defines the network organization and 

associated peers. 

3. Docker-compose: Herein lies the definitions for the Hyperledger Explorer containers 

and the corresponding environment configurations. 

 

For successful integration, it is paramount to incorporate the credentials from Hyperledger 

Fabric (HLF) into our respective files, notably the Crypto-config. This integration ensures that 

Hyperledger Explorer establishes an uninterrupted connection with the Blockchain. 

Hyperledger Explorer is a versatile platform, offering users the capability to interact with and 

scrutinize various blockchain operations. It provides access to a plethora of information, 

including but not limited to, details on smart contracts, individual blocks, transaction specifics, 
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and transaction counts. Subsequently, we shall delve into the salient features of Hyperledger 

Explorer. 

 

 

Figure 4.4 Hyperledger Explorer Main Dashboard 
 

 

Figure 4.5 Running Network in Hyperledger Fabric 
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Figure 4.6 Transaction Details on Hyperledger Fabric 
 

 

Figure 4.7 Details of Each Block Created by Hyperledger Fabric 
 

4.2.2 Evaluation with Hyperledger Caliper 

In the following subsection, we employed Hyperledger Caliper to evaluate the performance 

and structure of our Hyperledger Fabric (HLF) implementation. 

 

The architecture of Hyperledger Caliper can be delineated into the subsequent categories: 
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Benchmark Configuration: This governs the specific test scenarios that are run. Within this 

configuration file, we determine the number of transactions (Tx), rate controls, and the quantity 

of workers assigned to execute transactions. Additionally, the transaction duration and rate 

control for inquiries from the blockchain are stipulated herein. Concurrently, the monitoring 

of peers and orderers is conducted. 

 

Network Configuration: This section delineates the specific nature of our blockchain. It 

includes the naming conventions for channels, coupled with detailed information on the 

credentials of the participating organizations. 

 

Workload Configuration: This part pertains to the JavaScript files, detailing the procedures 

for executing transactions and making inquiries to the blockchain. 

In Hyperledger Caliper, the worker plays a pivotal role in benchmarking (Anon n.d.): 

 

Activation: It starts upon receiving a message from the manager to initiate the next round. 

Workload Generation Loop: Primarily, the worker operates within this loop, which involves: 

1. Rate Controller's Delay: The worker waits for the rate controller, which determines 

when to process the next transaction, based on set rates. 

2. Interaction with Workload Module: After approval from the rate controller, the worker 

lets the workload module set up and send the transaction details to the System Under 

Test (SUT). 

3. Progress Reporting: Throughout, the worker updates the manager about its progress. 

 

In essence, the worker in Caliper manages transaction benchmarks based on rate controller 

cues and updates the manager (Choi and Hong 2021). 

Sample Reports: These are generated post-experimentation and provide insights into the 

performance metrics. Here is how the latency and throughput will be calculated in Hyperledger 

caliper  (Choi and Hong 2021). 

Latency: The time difference between when a transaction is sent and when it's committed. 

a. Latency = Confirmation time – Submit time 
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Throughput: Indicates the number of transactions carried out per second. 

b. Throughput = Committed txs / Time ∈ seconds 

 

4.2.2.1 Throughput results 

In our recent series of experiments, we aimed to understand the performance scalability of our 

system. We varied the number of workers involved to see how this might affect the throughput, 

specifically using teams of 2, 5, 10, and 20 workers. Alongside this, we also manipulated the 

transaction counts to study its effect on performance. The tested transaction counts were 1,000; 

2,000; 3,000; 4,000; 5,000; 10,000; and 20,000. 

 

The results from these tests were insightful. When observing the Transaction Per Second (TPS) 

rate, the range started from a minimum of 366.4 TPS. Interestingly, as we increased the 

transaction number to its maximum, the peak throughput also soared to as high as 798.3 TPS. 

This gave us a clear picture of how the system performs under varying loads. 

 

However, it is worth noting that while our system was able to handle higher loads, there was a 

trade-off in terms of reliability. The failure rate, which started at a commendable 0%, increased 

to 10% when the number of workers are increased to 20 as we reached the higher ends of our 

transaction count tests 20000 transactions. This indicates potential areas of improvement in 

our system's resilience and reliability under heavy load conditions. 

 

Additionally, we also conducted a separate "Read an Asset" test. In this test, the throughput 

results showed a similar trend. The TPS ranged from 655.2 at its lowest to 970.5 at its peak. It 

demonstrates the system's consistent performance across different types of operations. 

 

In conclusion, these experiments provided valuable data on how our system performs under 

different conditions. While we are pleased with the scalability in terms of throughput, the next 

steps would involve addressing the reliability concerns highlighted by the increasing failure 

rate at higher transaction counts. 
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Figure 4.8 Transaction Throughput (TPS) in Hyperledger Fabric 
 

 

Figure 4.9 Inquiry performance (TPS) in Hyperledger Fabric 
 

4.2.2.2 Latency results 

The conducted study aimed to understand the influence of varying numbers of workers and 

transaction counts on the latency of a Hyperledger Caliper benchmark. Four sets of workers - 
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2, 5, 10, and 20 - were paired with transaction counts ranging from 1,000 to 20,000. The results 

indicate a clear trend. 

 

Minimum Latency: As we increased the number of workers, there was a notable rise in 

minimum latency. For 2,000 transactions, for example, the latency increased from 1.415 ms (2 

workers) to 1.99 ms (20 workers). Yet, intriguingly, for 10,000 transactions, latency dipped to 

1.705 ms with 2 workers but escalated to 7.935 ms for 20 workers. 

 

Average Latency: A consistent trend was observed here: as both the number of workers and 

transaction counts increased, the average latency consistently went up. With 2,000 

transactions, the latency went from 3.485 ms (2 workers) to 4.715 ms (20 workers). For the 

highest transaction count of 20,000, the latency ranged from 11.625 ms (2 workers) to 15.555 

ms (20 workers). 

 

Maximum Latency: This too followed a consistent growth pattern. At 2,000 transactions, we 

saw an escalation from 4.75 ms (2 workers) to 6.445 ms (20 workers). By 20,000 transactions, 

the latency increased from 16.04 ms (2 workers) to a significant 20.93 ms (20 workers). 

 

In summary, while an increase in workers leads to higher latencies, a rise in transaction counts 

amplifies this effect, particularly evident in the average and maximum latency metrics. 
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Figure 4.10 Maximum Latency for Transactions in Hyperledger Fabric 
 

 

Figure 4.11 Minimum Latency for Transaction in Hyperledger Fabric 
 



113 

 

Figure 4.12 Average Latency for Transaction in Hyperledger Fabric 
 

4.3 System resource utilization  

In the following section, we shall provide an in-depth exploration of the procedures and 

methodologies employed to monitor CPU usage and memory of the platform. To optimize and 

oversee resource consumption, three distinct containers have been utilized. The initial 

container, known as the 'node exporter,' facilitates the measurement of diverse machine 

resources, encompassing memory, disk, and CPU utilization. After this, 'Prometheus' serves as 

our primary data repository. Lastly, 'Grafana', an open-source analytics and monitoring tool 

compatible with various databases, has been incorporated. It should be noted that Prometheus 

is contingent upon the functionality of the node exporter, while Grafana, in turn, relies on 

Prometheus. 

The execution phase will encompass the initiation of all containers. Subsequent to this, we 

shall access Grafana to integrate the data source and establish a dashboard, thereby visualizing 

network consumption in a comprehensive manner. 
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Figure 4.13 RAM Usage of Apache Kafka 
 

 

Figure 4.14 CPU Usage of Apache Kafka 
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Figure 4.15  CPU Usage of Hyperledger Fabric 
 

 

Figure 4.16 RAM Usage of Hyperledger Fabric 
 

4.4 Chapter summary 

In the present chapter, we undertook a rigorous analysis of Hyperledger Fabric in conjunction 

with real-time data streaming. Utilizing the Hyperledger Explorer, we successfully monitored 

the Hyperledger Fabric (HLF) and ascertained the throughput of both Kafka and HLF.  
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Further enhancing our methodology, resource monitoring was implemented utilizing tools 

such as node-exporter, Prometheus, and Grafana, enabling a detailed observation of CPU and 

RAM consumption associated with the aforementioned technologies. Our findings indicate 

that as the data volume escalates, there is a corresponding increase in both latency and resource 

utilization.



 

 

CONCLUSION 

 

In the following chapter, a thorough examination of the platform in question will be 

undertaken. Emphasis will be placed on illustrating the inherent advantages and delineating 

the features that confine its distinctiveness. In the spirit of scholarly rigor, it is important to 

acknowledge the limitations concomitant with the present research and the challenges 

encountered during its empirical implementation. Such recognition not only ensures an 

objective appraisal but also paves the way for future scholarly endeavors. Concluding this 

discourse, a prospective analysis will be offered, contemplating potential advancements and 

innovations. By articulating this prospective trajectory, the intention is to provide a robust 

framework for future explorations and a clear direction for subsequent academic inquiries. 

 

Discussion 
In this section, we elucidate the myriad benefits and advantages conferred by the adoption of 

this architecture. Through this implementation, organizations stand poised to actualize a 

plethora of invaluable outcomes and augment their operational efficiency. 

 

Security: Through multi-faceted security protocols, robust protection is assured. Initial user 

authentication is managed at the primary layer, while an amalgamation of public and private 

keys engenders the creation of a JWT (JSON Web Token), reinforcing the Blockchain's 

security. The Blockchain's intrinsic security mechanisms are especially salient. Furthermore, 

Hyperledger Fabric, a private permissioned blockchain, engenders trust among its user 

community. 

 

Integrity: The Blockchain functions as an indelible ledger, thus guaranteeing data integrity. 

Once an entry is etched into the Blockchain, its immutable nature ensures resistance against 

tampering or alteration. 
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Privacy: Data encryption forms the bedrock of user privacy. Data decryption and access are 

restricted solely to users in possession of the requisite private keys, guaranteeing the sanctity 

and confidentiality of the information. Consequently, sensitive user data remains impervious 

to unauthorized access or exposure. 

 

Access Control: Administrative personnel are endowed with the discretion to harness and 

discern the insights derived from the data. This circumscribed access ensures administrators 

can judiciously utilize analyzed data for decision-making, while concurrently upholding user 

privacy. 

 

Scalability: Hyperledger Fabric, the framework of our choice, is distinguished for its 

impressive scalability, demonstrated by its commendable transaction per second (TPS) rate. 

Moreover, our avant-garde data architecture facilitates adept management of the platform's 

efficiency. There exists a capability to modulate the data block size responsively, aligning with 

fluctuating demands, thus assuring unparalleled scalability. 

 

Data Preservation: Harnessing the innate database functionality offered by Kafka, the 

platform retains data indefatigably. In scenarios where Blockchain latency might surge 

temporarily, data is securely ensconced within Kafka's database until it is transmitted to the 

Blockchain. This guarantees unerring data preservation and reliability. 

 

In summary, in the proposed architecture, organizations are positioned to benefit from a suite 

of enhanced features that amplify operational efficiency. Central to this architecture's prowess 

is the unparalleled security facilitated by multi-layered authentication protocols and the 

inherent protective mechanisms of the Hyperledger Fabric. This framework guarantees data 

integrity through its immutable Blockchain ledger and ensures stringent user privacy via 

encryption, rendering unauthorized access virtually impossible. Furthermore, administrators 

are empowered with selective access, fostering judicious decision-making without 

compromising user privacy. Scalability is a hallmark, with the capacity for dynamic 
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adjustments to meet changing demands, and data preservation is ensured, courtesy of Kafka's 

robust database functionality, ensuring no data loss even in high-latency scenarios. 

 

Research limitation 
To ensure a comprehensive understanding, it's pivotal to acknowledge that every technological 

platform, regardless of its sophistication, inherently possesses certain limitations. While efforts 

have been made to attenuate these constraints, the following elucidates some of the intrinsic 

challenges associated with the platforms under discussion: 

Performance Implications in Hyperledger Fabric: The efficiency of Hyperledger Fabric is 

influenced by a myriad of factors. Among them are the size of the network, its configuration, 

and the intricacy of the chaincode. These elements can potentially constrain its capacity to 

process elevated volumes of transactions. 

 

Cost Implications: Implementing a system that incorporates Hyperledger Fabric as a 

blockchain and Kafka as a real-time data streaming network necessitates substantial 

infrastructure and resources. Such requirements can escalate the overall financial outlay 

associated with the deployment and continuous operation of blockchain applications. 

 

Deployment Complexity: The integration of a comprehensive system involving Hyperledger 

Fabric (HLF), Kafka, and the InterPlanetary File System (IPFS) is not without its intricacies. 

The interoperability mandated by these platforms demands a significant degree of technical 

proficiency, potentially elongating the time and resources needed in the deployment phase. 

Maintenance Considerations: Maintaining the harmonious operation of three distinct 

technological platforms (HLF, Kafka, and IPFS) introduces an elevated maintenance overhead. 

This necessitates the allocation of specialized teams to constantly oversee, diagnose, and 

update each individual component. 

 

Limitations Concerning Multimedia Data: Kafka's design does not inherently cater to image 

or video processing in the manner that specialized multimedia processing utilities do. While 

Kafka is capable of transmitting and archiving diverse data forms, including binary data 
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formats like images and videos, it is contingent on encapsulating them into messages that 

adhere to Kafka's maximum message size constraints. To exploit real-time processing 

capabilities after retrieving data from a Kafka topic, one might contemplate integrating Kafka 

with advanced processing tools such as Apache Flink, Apache Spark. 

 

Future work 
In the subsequent section, we shall provide a comprehensive exploration into potential areas 

of further research, as well as pragmatic enhancements that could be pivotal in optimizing the 

platform under discussion. At the forefront of potential improvements is the integration of a 

multi-layered blockchain framework. Such a structure is not merely an augmentation of 

existing architectures but a transformative approach. The multi-layered framework envisages 

multiple tiers of Hyperledger Fabric (HLF). When interconnected, these tiers serve a dual 

purpose: they are anticipated to significantly enhance the throughput, which refers to the 

capacity to process transactions over time, and concurrently, boost the overall performance 

metrics of the blockchain system. 

 

Moving on, the modified data architecture offers more than just structural changes; it 

introduces a strategic mechanism to enhance system performance. This strategy is rooted in 

the continuous analysis of data volume. As the volume undergoes fluctuations, there arises an 

imperative to adaptively adjust the payload size in the data packets. Simply put, as network 

congestion intensifies, there is a proportional requirement to expand the data packet size, 

ensuring that data transfer remains efficient even during peak loads. 

 

Concluding our array of proposed improvements is the nuanced approach to micro-processing 

management. At its core, this strategy champions a distributed processing paradigm, which 

seamlessly spans from the third layer down to the inaugural first layer. What this entails in 

practical terms is a framework wherein individual IoT devices take on a more proactive role. 

Instead of merely transmitting raw data, these devices would engage in preliminary data 

processing. Once this preprocessing phase is concluded, they would then dispatch the 

condensed and refined data to the third layer. Such an approach holds the promise of 
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significantly reducing network traffic volume, thereby optimizing data flow and overall system 

efficienc



 

 

APPENDIX I 
 
 

Consensus algorithms 

In this section based on (Guo and Yu 2022; K and S 2023; Leo and Hattingh 2021; Vyas and 

Deshmukh 2023; Zheng et al. n.d.) we will explain other examples of consensus algorithm 

which has been developed  

 

• Byzantine Fault Tolerance (BFT) 

o Blockchain is decentralized, posing challenges with inconsistent node 

information. 

o The "Byzantine generals problem" was addressed, leading to the BFT 

algorithm. 

o An updated proof of stake or computational power of proof of work can tackle 

this problem  

• Practical Byzantine Fault Tolerance (PBFT) 

o PBFT addresses the Byzantine generals problem in decentralized systems  

o Hyperledger Fabric uses PBFT, handling up to 1/3 malicious replicas  

o The algorithm involves phases like pre-prepared, prepared, and commit, 

requiring 2/3 node votes  

o Developed by Liskov and Castro, PBFT emphasizes safety in asynchronous 

networks and uses cryptographic methods for message authenticity  

o PBFT ensures consensus if malicious nodes are less than a third of the total  

o PBFT allows for some malicious nodes, ensuring continuous block additions 

and requires 2/3 network nodes to act correctly  

• Delegated Proof of Stake (DPoS) 

o Stakeholders elect delegates for block validation. 

o Operates on representative democracy. 
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o Faster transactions due to fewer validators. 

o Dishonest delegates can be replaced. 

o Underpins Bitshares and was conceived by Dan Larimer for platforms like 

Bitshares, Steem, and EOS 

• Ripple's Consensus Algorithm 

o Nodes divided into servers (for consensus) and clients (for fund transfers). 

o Servers use a Unique Node List (UNL) for querying. 

o Ensures ledger accuracy if faulty nodes in UNL are below 20%  

• Tendermint 

o Byzantine consensus algorithm with a proposer broadcasting blocks. 

o Steps include prevote, precommit, and commit. 

o Validators lock coins and face penalties for dishonesty  

• Proof of Burn (PoB) 

o Miners show proof of burning coins by sending to an unspendable address. 

o Relies on PoW-mined cryptocurrencies  

• Proof of Capacity (PoC) 

o Miners allocate hard drive space for rewards. 

o Burstcoin employs PoC, requiring significant storage  

• Delegated Byzantine Fault Tolerance (DBFT) 

o Introduced by NEO; token holders vote for bookkeepers. 

o Bookkeepers use BFT for consensus. 

o Ensures "Absolute finality" in transactions  

• Directed Acyclic Graph (DAG) 

o Unique consensus data structure. 

o Transactions are vertices added without mining. 

o Uses PoW for spam prevention  

• SIEVE (Hyperledger) 

o Detects/removes non-deterministic requests. 

o Executes operations and compares outputs to remove disparities 

• Proof of Elapsed Time (PoET) 
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o Developed by Intel. 

o Block mining winners determined by random waiting times on trusted 

platforms  

• Raft 

o Alternative to Paxos protocol. 

o Clusters servers into follower, candidate, or leader states. 

o Leaders elected based on term numbers 
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