

A BLOCKCHAIN-BASED FRAMEWORK FOR ENHANCING SECURITY AND
PRIVACY IN IOT INTEGRATION

by

Ali EGHMAZI

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE IN
PARTIAL FULFILLMENT FOR A MASTER’S DEGREE

WITH THESIS IN ELECTRICAL ENGINEERING
 M.A.Sc.

MONTREAL, MARCH 26, 2024

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

 Ali Eghmazi, 2024

This Creative Commons licence allows readers to download this work and share it with others as long as the

author is credited. The content of this work can’t be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Rene Jr.Landry, Thesis Supervisor
Department of Electrical Engineering at École de technologie supérieure

Mrs. Naouel Moha, President of the Board of Examiners
Department of Software Engineering and IT at École de technologie supérieure

Mr. Kim Khoa Nguyen, Member of the jury
Department of Electrical Engineering at École de technologie supérieure

Mr. Guy Chevrette External Evaluator
IMETRIK Global Inc

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND PUBLIC

MARCH 18, 2024

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGMENT

I am profoundly grateful to Professor René Jr Landry for his invaluable guidance, support, and

expertise throughout my master's research at ÉTS. His insightful perspectives and steadfast

encouragement significantly shaped my journey, and his willingness to assist in any aspect of

my work has been truly inspiring. His mentorship not only steered me through this research

but also provided me with a unique opportunity to grow academically under his supervision,

for which I am eternally thankful. My sincere gratitude extends to Mr. Guy Chevrette, whose

profound knowledge and unwavering support have been pivotal in my research journey. His

contributions have enriched my experience and understanding in ways that words cannot fully

express.

I would also like to extend my thanks to Mr. Mohammad Hossein Attae, whose assistance in

implementing case studies, articles, and other aspects of my research has been invaluable. His

collaboration has greatly enhanced the quality and scope of my work. Working and

collaborating with the members of the LASSENA lab has been an enriching experience. Each

member's unique insights and contributions have not only facilitated a dynamic research

environment but also fostered a space for learning and growth, for which I am deeply

appreciative.

I must also express my deepest gratitude to my family - my parents and brother, whose love,

guidance, and unwavering support have been my constant source of strength and motivation.

Their belief in me has been a guiding light in all my pursuits. Lastly, I am immensely grateful

to my friends for their endless support and encouragement, especially during the challenging

moments of my master’s degree. Your solidarity and companionship have made this journey

more memorable. Thank you all for being part of my academic voyage. Love and gratitude to

each one of you!

Un cadre basé sur la blockchain pour renforcer la sécurité et la confidentialité dans
l'intégration de l'ido

Ali Eghmazi

RÉSUMÉ

La propagation rapide de la technologie de l'Internet des Objets (IoT), qui devrait inclure des
milliards d'appareils à l'avenir, nécessite le développement d'une plateforme sécurisée et
évolutive pour l'administration et la préservation efficaces des informations et des données.
Alors que les acteurs s'efforcent de réaliser le plein potentiel d'un tel déploiement à grande
échelle, il devient évident que les solutions actuelles de sécurité et d'évolutivité pour l'IoT sont
insuffisantes.

La blockchain a démontré sa capacité à valider, stocker et gérer correctement les données. Elle
apparaît comme une solution potentielle pour une variété de difficultés liées aux données en
raison de ses qualités intrinsèques de décentralisation, d'immuabilité et de transparence. Avec
ses caractéristiques de sécurité naturelles, la technologie blockchain offre des options
intrigantes pour surmonter ces défis.

Cette thèse tente de répondre aux difficultés actuelles en matière de sécurité des données IoT
et de confidentialité des utilisateurs. À cette fin, nous proposons une infrastructure basée sur
la blockchain conçue pour assurer un stockage de données sécurisé tout en améliorant la
confidentialité des utilisateurs. Nous proposons une architecture à quatre couches dans cette
thèse pour surmonter les problèmes liés à l'IoT massif. Notre stratégie utilise à la fois un
stockage de données hors chaîne et en chaîne. Nous utilisons Hyperledger Fabric comme
plateforme blockchain pour stocker les données de manière sécurisée, ce qui nous permet de
vérifier l'intégrité des données. De plus, nous intégrons un stockage décentralisé pour améliorer
la disponibilité des données.

Nous utilisons Apache Kafka pour le streaming de données en temps réel afin de garantir
l'évolutivité. Nous donnons la priorité au chiffrement des données tout au long du processus
pour assurer la confidentialité et la sécurité. Nous avons évalué la performance et l'utilisation
des composants développés en utilisant une large gamme de plateformes, y compris
Hyperledger Caliper et Explorer, parmi d'autres. Ces plateformes nous ont permis de tester et
de mesurer minutieusement la résilience et les capacités de notre système sous de nombreux
scénarios, offrant une évaluation complète de la performance et de la durabilité de la
plateforme sous diverses conditions opérationnelles.

Cette thèse couvre la mise en œuvre et l'analyse de trois études de cas uniques. La plateforme
a été testée dans des environnements pratiques pour démontrer sa capacité à répondre aux
problèmes liés à l'utilisation croissante et à la complexité des appareils IoT. La thèse contribue
aux efforts visant à rendre l'écosystème IoT plus sûr et plus fiable en utilisant les avantages de

 VIII

la blockchain, conduisant finalement à une meilleure confiance des utilisateurs et à une
acceptation plus large des technologies IoT.

Mots-clés: Blockchain, Hyperledger Fabric, Apache Kafka, Internet des objets, Sécurité,
Confidentialité, Gestion des données

A Blockchain-based framework for enhancing security and privacy in IoT integration

Ali Eghmazi

ABSTRACT

The rapid spread of Internet of Things (IoT) technology, which is expected to include billions
of devices in the future, need the development of a secure and scalable platform for the
effective administration and preservation of information and data. As stakeholders work to
realize the full potential of such large-scale deployment, it is becoming evident that present
security and scalability solutions for IoT are insufficient.

Blockchain has shown its capacity to properly validate, store, and manage data. It appears as a
possible solution for a variety of data-related difficulties because of its intrinsic qualities of
decentralization, immutability, and transparency. With its natural security features, blockchain
technology provides intriguing options to overcome these challenges.

This thesis attempts to address the current difficulties in MIoT data security and user privacy.
To that aim, we provide a blockchain-based infrastructure designed to assure safe data storage
while also improving user privacy. We propose a four-layered architecture in this thesis to
overcome the issues related to Massive IoT. Our strategy makes use of both off-chain and on-
chain data storage. We use Hyperledger Fabric as a blockchain platform to securely store data,
allowing us to verify data integrity. In addition, we incorporate decentralized storage to
improve data availability.

We utilize Apache Kafka for real-time data streaming to ensure scalability and low latency.
We prioritize data encryption throughout the process to ensure privacy and security. We have
evaluated the performance and utilization of the developed parts using a wide range of
platforms, including Hyperledger Calliper and Explorer, among others. These platforms have
allowed us to thoroughly test and measure our system's resilience and capabilities under
numerous scenarios, offering a full assessment of the platform's performance and durability
under varied operating conditions.

This thesis covers the implementation and analysis of three unique case studies. The platform
has been proven in practical environments to demonstrate its capacity to address issues related
to the rising usage and complexity of IoT devices. The thesis adds to attempts to make the IoT
ecosystem safer and more dependable by using the benefits of blockchain, eventually leading
to better user trust and wider acceptance of IoT technologies.

Keywords: Blockchain, Hyperledger Fabric, Apache Kafka, Internet of Things, Security,
Privacy, Data Management

TABLE OF CONTENTS

INTRODUCTION ...1

CHAPTER 1 LITERATURE REVIEW ..5
1.1 Historical Evolution and Introduction of IoT ..5

1.1.1 IoT Architecture, Key concepts, and protocols .. 7
1.1.2 IoT platforms .. 11

1.1.2.1 Types IoT Platform .. 12
1.1.3 Introduction on Real-time data streaming ... 13

1.1.3.1 Apache Kafka as a real time data streaming 14
1.1.3.2 Other Real-Time data streaming technologies 16

1.1.4 Issues and challenges in IoT ... 19
1.1.4.1 Challenges on security ... 19
1.1.4.2 Challenges on privacy .. 21
1.1.4.3 Other challenges and Issues ... 22

1.2 An overview of Blockchain ...23
1.2.1 Blockchain’s characteristics .. 25
1.2.2 Blockchain architecture .. 26

1.2.2.1 Hash function definition .. 28
1.2.2.2 Consensus algorithm in Blockchain ... 29
1.2.2.3 Smart contract .. 33

1.2.3 Confidentiality Tiers in Blockchain .. 35
1.2.4 Blockchain based IoT (BIoT) ... 36

1.2.4.1 Blockchain based IoT Challenges .. 38
1.2.5 An overview of Hyperledger project .. 40
1.2.6 Hyperledger Frameworks .. 41

1.2.6.1 Hyperledger-Fabric .. 41
1.2.6.2 Hyperledger project comparison .. 43

1.2.7 Recent Developments on Blockchain and IoT innovation 46
1.3 Chapter summary ...48

CHAPTER 2 Methodology and Design of architecture ...49
2.1 Proposed architecture ...49
2.2 First Layer (physical layer) ..52

2.2.1 Case studies ... 52
2.2.1.1 Pinnacle 100 and sensors pairing ... 53
2.2.1.2 Raspberry pie and sensor pairing ... 54
2.2.1.3 Automatic Dependent Surveillance-Broadcast (ADS-B) as a

device ... 57

 XII

2.3 Second Layer (Network layer) ...58
2.3.1 Case Study .. 59

2.3.1.1 Pico LTE as network layer ... 59
2.4 Third Layer (middle layer) ...60

2.4.1 Third layer’s component ... 62
2.4.1.1 Real-time data streaming component... 63
2.4.1.2 Blockchain ... 65
2.4.1.3 Data base component ... 67

2.5 Forth layer (Application layer) ..69
2.5.1 Authentication ... 70
2.5.2 User interface .. 71

2.6 Chapter summary ...72

CHAPTER 3 Implementation of the platform ...75
3.1 The Implementation Process ..75

3.1.1 Real-time data streaming (KAFKA Apache) implementation 76
3.1.1.1 Kafka integrated with Network (Producer) 78
3.1.1.2 Apache Kafka Integrated with Data base (Consumer) 79

3.1.2 Data Base Implementation .. 81
3.1.3 Blockchain Implementations .. 83

3.1.3.1 Smart contracts... 86
3.1.3.2 Blockchain Software Development Kit 87
3.1.3.3 Blockchain Authentication... 88

3.2 User Interface (UI) implementation ...91
3.2.1 Authentication in UI ... 92
3.2.2 Web interface .. 94

3.3 Real-time data visualization ...96
3.4 Data Encryption/Decryption method ...97
3.5 Chapter summary ...98

CHAPTER 4 Results and Evaluation ...101
4.1 Kafka performance ...101
4.2 Blockchain performance ..104

4.2.1 Monitoring with Hyperledger-Explorer .. 105
4.2.2 Evaluation with Hyperledger Caliper ... 107

4.2.2.1 Throughput results ... 109
4.2.2.2 Latency results ... 110

4.3 System resource utilization ..113
4.4 Chapter summary ...115

CONCLUSION…. ...117

APPENDIX I………………….……………………………………………………………122

LIST OF BIBLIOGRAPHICAL REFERENCES ..125

LIST OF TABLES
Page

Table 1.1 Complete History of The Evolution of IoT From 1969 to 2025

Taken from M R and Bhowmik (2023, p. 1) ...6

Table 1.2 Standard Protocols Taken from M R and Bhowmik (2023, p. 3)10

Table 1.3 High Level Overview Comparison ..17

Table 1.4 Challenges in IoT and Blockchain Solutions
Adapted from Sharma and Babu Battula (2022, p. 55)37

Table 1.5 Comparison Between Hyperledger Projects ..44

Table 2.1 Proposed Four-Layered Architecture in Detail ..50

 XV

LIST OF FIGURES
Page

Figure 1.1 Detailed IoT Architecture Taken from Zhonghua and Goyal

(2023, p. 73) ...8

Figure 1.2 IoT Platform Architecture Taken from Astropekakis et al
(2022, p. 304) ...12

Figure 1.3 Apache Kafka High-Level Overview Taken from Vyas et al
(2022, p. 466) ...15

Figure 1.4 Comprehensive Blockchain's History Taken from Guo and Yu
(2022, p. 2) ...24

Figure 1.5 How Blockchain is Linked Taken from Bhushan et al
 (2021, p. 3) ..27

Figure 1.6 Blockchain Structure Overview Taken from Sarmah (2018, p. 2)28

Figure 1.7 Consensus Algorithms Classification Taken from K and S
(2023, p. 3) ...31

Figure 1.8 Compare POW and POS Taken from Leo and Hattingh
(2021, p. 571) ..33

Figure 1.9 Evolutionary Phases of a Smart Contract Taken from Wu et al
(2022, p. 3) ...34

Figure 1.10 Comprehensive BIoT Challenges Taken from Alzoubi et al
(2022, p. 15) ...40

Figure 1.11 Data flow in Hyperledger Fabric Taken from Xu et al (2021, p. 3)42

Figure 1.12 Hyperledger Fabric Architecture Taken from Punathumkandi et al
(2020, p. 90) ...43

Figure 1.13 Blockchain Development Engagement Taken from Capocasale et al
(2023, p. 6) ...46

Figure 2.1 Four-Layered Architecture Components’ ..51

Figure 2.2 Left Image Shows Pinnacle 100 and right Image Shows BL6545
Sensor ...54

Figure 2.3 Data flow in This Case Study ..54

 XVI

Figure 2.4 IbNav Sensor 6.1 ..56

Figure 2.5 Data Flow in This Case Study ...56

Figure 2.6 Overview of the ADS-B Communication Taken from Sciancalepore,
Alhazbi, and Di Pietro (2019, p. 3) ...57

Figure 2.7 ADS-B Inside an Airplane Works as Sensor ...58

Figure 2.8 Nutaq PicoLTE with 2 Antennas ...60

Figure 2.9 Trinity Technologies in this Platform ..63

Figure 2.10 Apache Kafka Architecture in this Platform ..65

Figure 2.11 Hyperledger Fabric Structure in Platform ..67

Figure 2.12 Data Structure in this Platform a with Chain Formatting69

Figure 2.13 JWT Example ...71

Figure 3.1 Steps of Integration in This Platform ...76

Figure 3.2 Apache Kafka Containers ..77

Figure 3.3 Apache Kafka User Interface ...77

Figure 3.4 Apache Kafka Cluster Settings ..78

Figure 3.5 Three Connected Sensors Data Format ..79

Figure 3.6 Receiving Raw Data from Apache Kafka Consumer79

Figure 3.7 Data after being Processed to String ..80

Figure 3.8 Producer (left side) and Consumer (right side) Together80

Figure 3.9 Three Topics Transferring in Apache Kafka Center80

Figure 3.10 Detailed Topic with Parameters ...81

Figure 3.11 IPFS Web User Interface ...82

Figure 3.12 IPFS Status Web Page of Availability ...83

Figure 3.13 Hyperledger Fabric Images ..84

Figure 3.14 Containers Created in Hyperledger Fabric ..84

 XVII

Figure 3.15 Chaincode Deployment ..85

Figure 3.16 Smart Contract Deployment on Each Peers ...85

Figure 3.17 SDK in Hyperledger Fabric Taken from Su Wai et al (2020, p. 2)88

Figure 3.18 LDAP User Interface ...92

Figure 3.19 Schema Created in LDAP ..93

Figure 3.20 User Profile in LDAP ...93

Figure 3.21 Web User Interface Dashboard ..94

Figure 3.22 Block of Data Requested by User to be Visualized95

Figure 3.23 CID's Requested from Hyperledger Fabric ...95

Figure 3.24 Visualized Data from a Sensor ..96

Figure 3.25 Energy Consumption for Different Algorithms ...97

Figure 4.1 Request Latency in Apache Kafka Producer ...102

Figure 4.2 Request Latency in Apache Kafka Consumer ...103

Figure 4.3 System Pool Usage in Apache Kafka ..103

Figure 4.4 Hyperledger Explorer Main Dashboard ...106

Figure 4.5 Running Network in Hyperledger Fabric ..106

Figure 4.6 Transaction Details on Hyperledger Fabric ...107

Figure 4.7 Details of Each Block Created by Hyperledger Fabric107

Figure 4.8 Transaction Throughput (TPS) in Hyperledger Fabric110

Figure 4.9 Inquiry performance (TPS) in Hyperledger Fabric110

Figure 4.10 Maximum Latency for Transactions in Hyperledger Fabric112

Figure 4.11 Minimum Latency for Transaction in Hyperledger Fabric112

Figure 4.12 Average Latency for Transaction in Hyperledger Fabric113

Figure 4.13 RAM Usage of Apache Kafka ...114

 XVIII

Figure 4.14 CPU Usage of Apache Kafka ..114

Figure 4.15 CPU Usage of Hyperledger Fabric ..115

Figure 4.16 RAM Usage of Hyperledger Fabric ...115

 XIX

LIST OF ABREVIATIONS AND ACRONYMS

ADS-B Automatic Dependent Surveillance-Broadcast

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

BFT Byzantine Fault Tolerance

CID Content Identifier

CoAP Constrained Application Protocol

DAG Directed Acyclic Graph

DBFT Delegated Byzantine Fault Tolerance

DDS Data Distribution Service

DHT Distributed Hash Table

DPoS Delegated Proof of Stake

EPC Evolved Packet Core

HLF Hyperledger Fabric

IPFS Interplanetary File System

IPSO Internet Protocol for Smart Objects

IoT Internet of Things

ITU International Telecommunication Union

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LTE eNodeB Long-Term Evolution evolved NodeB

M2M Machine-to-Machine

MQTT Message Queue Telemetry Transport

PBFT Practical Byzantine Fault Tolerance

PoB Proof of Burn

PoC Proof of Capacity

PoET Proof of Elapsed Time

PoS Proof of Stake

PoW Proof of Work

REST Representational State Transfer

 XX

RFID Radio-Frequency Identification

SDK Software Development Kit

Se-aaS Sensors-as-a-Service

SOA Service-Oriented Architecture

UEs User Equipment’s

WAN Wide Area Network

WI-FI Wireless Fidelity

INTRODUCTION

Two game-changing breakthroughs have recently changed the digital landscape: the Internet

of Things (IoT) and blockchain technology. While the Internet of Things has ushered in a new

era of connectedness and smart interactions, it has also brought with it its own set of obstacles.

Interestingly, the resilient and transparent nature of blockchain technology has the ability to

overcome many of these difficulties. These technical wonders, when combined, have

enormous potential to change businesses and reinvent our digital relationships. However, while

the quest to smoothly integrate them is full of promise, it is also fraught with complications

and hurdles.

 The proliferation of IoT is evident in the growth of connected devices, which surged from

12.5 billion in 2010 to approximately 16.66 billion by 2019. Projections suggest that this

number could skyrocket to an astounding 75.44 billion by 2025. The Internet of Things (IoT)

represents a monumental shift in the way our world communicates with the digital universe.

This convergence consolidates the entire world with a PC-based framework, extending a new

dimension of communication for users. Rooted in foundational concepts from the 1990s, the

IoT universe has grown exponentially, with the present era witnessing a marriage between real-

life activities and their virtual counterparts.

Today, with the aid of technologies like Bluetooth, Wi-Fi, GPS, Zig-Bee, and RFID, our

surroundings are more connected than ever, steering in what many term the ‘smart era’ (Faridul

Islam Suny et al. 2021) However, this digital utopia is not devoid of challenges. The meteoric

rise and adoption of IoT have brought forth issues of scalability, the imperative for devices to

be self-organizing, and challenges related to the sheer volume of data being generated.

Furthermore, the interpretation and meaningful analysis of this data remain significant hurdles

(Verma and Prakash 2021).

In a parallel digital renaissance, blockchain technology, first conceptualized in 1991 by Stuart

Haber and W. Scott Stornetta, emerged as a solution to the longstanding challenge of data

 2

tampering, especially in economic transactions (Zambre, Panchal, and Chauhan 2023). It was

in 2008, with Satoshi Nakamoto’s introduction of Bitcoin, that the true potential of blockchain

was globally acknowledged. This wasn’t just the advent of a decentralized currency; it was a

testament to blockchain’s transformative capabilities. Beyond just facilitating financial

transactions, blockchain promises a transparent, secure, and immutable ledger system, where

trust is established not by central authorities, but by the very architecture of the technology.

Each transaction, once recorded, is verifiable by every network participant, and the

information, structured in blocks, forms an unalterable chain, representing a timeline of

transactions (Singh and Chauhan 2021).

However, as individual technologies, while IoT and blockchain offer much promise,

combining them leads us into new and unexplored areas. This convergence is seen by many as

the next leap in digital innovation, promising an ecosystem where devices not only

communicate smoothly but do so within a transparent, tamper-proof, and decentralized

framework. Yet, this ambitious integration is not without its set of challenges. The inner

complexities of each technology become magnified when combined, necessitating rigorous

research and innovative solutions to realize their full potential in coupling (Alenizi and Al-

Karawi 2023). The integration of IoT with blockchain faces significant challenges such as

scalability, data volumes, interoperability, energy consumption, storage, and latency.

Addressing these challenges is crucial for the effective merger of these transformative

technologies.(Sadawi, Hassan, and Ndiaye 2021).

With the increasing need to connect IoT devices to the blockchain to ensure heightened

security, it is imperative to understand and address the complexities and challenges inherent to

this integration. Thus, the core research question driving this investigation is: How can we

effectively connect IoT devices to the blockchain to ensure security, and what challenges might

we encounter in this endeavor?

Research goals

 3

The fundamental goal of this research is to investigate and comprehend the difficulties and

constraints of combining the Internet of Things (IoT) with blockchain technology in order to

achieve greater security. Given the revolutionary potential of both technologies, the purpose

of this research is to give insights and approaches for overcoming integration obstacle and

unlocking their combined potential.

The research will pursue the following aims to attain this operational goal:

• Definition and Clarification: To completely describe and clarify the problems and

complexities of integrating IoT devices with blockchain to ensure increase security,

particularly in light of both domains’ fast progress and expansion.

• Development of a Structured Framework: To express the identified problems and

complexities inside a structured framework that may guide future IoT and blockchain

integration initiatives.

• Operationalization and Application: To operationalize the specified difficulties and

complexities, allowing for effective and smooth application in real-world settings using

the created framework.

Structure of thesis

This thesis initiates with an introduction that establishes the backdrop, emphasizing the

contemporary advancements in the digital domain. Specifically, it highlights the emergence

and significance of the Internet of Things (IoT) and blockchain technology. Chapter 1, the

Literature Review, offers a comprehensive background on the Foundation of IoT,

encompassing its platforms, real-time data streaming technologies, and inherent challenges.

The chapter then expands into the realm of Blockchain, detailing it’s ats architecture, diverse

types, and the elaboration of the Hyperledger project.

 4

Shifting gears, Chapter 2 describe the Architecture and Design of the Platform, chronicling its

multi-layered structure and the components within. Chapter 3 ventures into the Implementation

of the Platform, meticulously detailing the fusion of essential components such as Apache

Kafka, Blockchain, and the Database, and elucidating the platfor’'s data flow dynamics.

Chapter 4 is pivotal, presenting Results and Evaluation and providing insights into various

performance metrics. The thesis then culminates in Chapter 5, which offers reflections,

highlights research limitations, and charts out directions for future explorations. This academic

journey concludes with a synthesis of the primary findings and contributions, accompanied by

a comprehensive Bibliography.

CHAPTER 1

LITERATURE REVIEW

In this chapter, we conduct a thorough literature analysis to examine the past and present status

of research on two disruptive technologies: the Internet of Things (IoT) and Blockchain. This

section delves into the technical architecture of IoT as well as the revolutionary ideas of

Blockchain. This investigation provides us with insights into the difficulties and opportunities

of both sectors. A precisely constructed four-layered architectural structure develops from this

immense body of knowledge. This architecture, which incorporates the characteristics of both

Blockchain and IoT, delivers creative answers to difficulties, bridging previously thought-to-

be large and invincible gaps.

1.1 Historical Evolution and Introduction of IoT

Kevin Auston introduced the term "internet of thing” (IoT) in 1999, though its inception can

be traced back to the creation of Arpanet in 1969. The journey of IoT experienced a notable

development with the introduction of a toaster as the first IoT device in 1990. By 2005, the

significance of IoT was underscored by the International Telecommunication Union’s (ITU)

study. The formation of the Internet Protocol for Smart Objects (IPSO) Alliance in 2008 further

propelled the movement, and today, it boasts over 50 member companies, including major tech

players. A landmark was achieved in 2010 when the number of IoT devices, totaling 12.5

billion, surpassed the global human population of 6.8 billion. For a comprehensive visual

overview of the IoT's evolution, refer to Table 1.1 (M R and Bhowmik 2023).

 6

Table 1.1 Complete History of The Evolution of
IoT From 1969 to 2025

 Taken from M R and Bhowmik (2023, p. 1)

The "Internet of Things" (IoT), sometimes termed the 'Internet of Objects', encompasses

electrical devices of diverse size and functionalities linked to the Internet. This connection is

predominantly established via wireless sensors, excluding devices mainly designed for person-

to-person communication like the conventional Internet. A fundamental IoT ecosystem, as

outlined by (Miraz and Ali 2018)consists of:

• Sensors: Responsible for gathering and relaying essential data.

• Computing Node: Housing the central processing unit (CPU), these nodes process the

data from sensors.

• Receiver: A transceiver that facilitates the reception of data from either local and

distant computing nodes or other gadgets.

• Actuator: An electromechanical system that, based on the Computing Node's decision

and data from sensors or the Internet, triggers the relevant device for a specific action.

• Device: Executes the designated task when activated.

7

IoT is a paradigm that leverages network sensors, embedded technologies, artificial

intelligence, and Radio-frequency identification (RFID) to interconnect various machines,

facilitating data exchange over the Internet for diverse applications. The swift advancements

in IoT research have unveiled several challenges, with cyber-attacks being a prominent

vulnerability, as highlighted by (Nayancy, Dutta, and Chakraborty 2021).

1.1.1 IoT Architecture, Key concepts, and protocols

The Internet of Things (IoT) has emerged as a transformative force in the digital era. At its

core, IoT is defined as a network of Internet-connected objects or devices equipped with

embedded sensors. These sensors grant the devices the capability to collect, send, or exchange

data. The essence of IoT lies in its ability to automatically, remotely, and continuously collect

and share information without any interruptions. Today, the landscape of interconnected

devices is vast, yet it lacks a standardized network or a clearly defined boundary. The IoT not

only facilitates a numerous of applications but also addresses a broad spectrum of societal and

industrial needs. It is anticipated to be a pivotal player in converting ordinary cities into smart

cities, traditional homes into smart homes, and conventional electrical grids into smart grids.

Furthermore, the IoT is seen as the backbone of the industrial sector's digitization, enhancing

production processes and reducing costs (Obaidat et al. 2020; Sadawi et al. 2021).

When it comes to IoT architecture, multiple perspectives exist. The traditional view comprises

three significant layers: Sensing, Network, and Application. The foundational layer, known as

the perception or sensor layer, connects physical components to the IoT network, monitoring

physical changes and transmitting data. The network or transmission layer aggregates this data

and transfers it to decision-making units. The application layer, on the other hand, serves as

the interface for end-users, providing essential services based on the data received. Another

perspective views the IoT architecture as a service-oriented architecture (SOA) with four

layers: perception, network, service, and application. This architecture emphasizes service

discovery, quality, trustworthiness management, and service Application Programming

Interfaces (API) (M R and Bhowmik 2023). A more detailed perspective presents a five-layer

 8

architecture, encompassing the business layer, application layer, middle layer, network layer,

and physical/sensor layer. Each layer has its distinct functions, ranging from data collection to

business model formulation As Shown in Figure 1.1 (Zhonghua and Goyal 2023).

Figure 1.1 Detailed IoT Architecture
Taken from Zhonghua and Goyal (2023, p. 73)

As described in (Kenaza et al. 2022) each layer with its unique functions and responsibilities

are:

• Perception Layer: Often called the Device Layer, it contains various sensors like

RFID tags and Infrared. Its main function is to detect and collect data, such as

temperature and motion, and send it to the next layer for secure transmission.

• Network Layer: Also termed the Transmission Layer, it ensures the secure transfer of

data from the Perception layer using technologies like RFID, 5G, and Wi-Fi.

• Middleware Layer: This layer manages the communication between devices offering

the same service type. It stores, processes, and makes decisions based on the data

received from the Network Layer.

• Application Layer: Primarily responsible for global application management, it

oversees all IoT system applications, from Smart Farming to Smart Healthcare.

9

• Business Layer: This layer oversees the entire IoT system, creating business models,

charts, and reports from the data. It aids in making informed business decisions and

strategizing.

Delving into the characteristics of IoT, several features stand out. Firstly, scalability and

heterogeneity are foundational to IoT. Given that devices come from diverse hardware

platforms, it is imperative for IoT devices to support this heterogeneity. Another crucial aspect

is the need for unambiguous naming, addressing, or identification, especially with billions of

interconnected devices in play. Interoperability, the ability of diverse devices to communicate

and work cohesively, is essential for device integration within the IoT network. Moreover, IoT

devices should be equipped to support mobile sensor networks where connectivity might be

intermittent, ensuring reliable information delivery. Lastly, the dynamic nature of IoT

necessitates support for the reprogramming of devices. These devices should be self-

configurable, capable of self-discovery, and adept at processing vast amounts of data. IoT uses

diverse communication protocols to ensure connectivity and application integration. These

protocols, essential for transmitting sensor data, vary across LANs and WANs in an IoT

system.(M R and Bhowmik 2023).

Lastly, in association with IoT technologies, advanced technologies are being incorporated into

the IoT infrastructure. Cloud computing, for instance, offers on-demand access to a shared pool

of computer resources, including servers, storage, and applications. Sensor-cloud, a

heterogeneous computing environment, provides a platform for Sensors-as-a-Service (Se-aaS),

allowing adaptive utilization of physical sensor resources. Another significant technology is

fog computing, which combines networking, computation, and storage at the network's edge,

delivering services closer to end-users. This technology is especially beneficial for applications

that are latency-sensitive and produce vast amounts of data (Zhonghua and Goyal 2023).

 10

Table 1.2 Standard Protocols
Taken from M R and Bhowmik (2023, p. 3)

Addressing the previously mentioned protocols, this section introduces various Internet of

Things (IoT) application and transport layer protocols. These include Message Queue

Telemetry Transport (MQTT), MQTT for Sensor Networks, Constrained Application Protocol

(CoAP), Advanced Message Queuing Protocol (AMQP), Data Distribution Service (DDS),

and Hypertext Transfer Protocol with Representational State Transfer (HTTP REST). These

protocols are essential in middleware development since the IoT is heavily reliant on the

internet. For example, the Constrained Application Protocol (CoAP) operates at the application

layer, while Representational State Transfer (REST) protocol functions over HTTP for data

communication between the client and server using CoAP. The Message Queue Telemetry

Transport (MQTT) protocol connects networks and embedded devices to applications and

middleware. The Advanced Message Queuing Protocol (AMQP) is designed specifically for

message-oriented IoT scenarios, and the Data Distribution Service (DDS) is crafted for

continuous Machine-to-Machine (M2M) communications. Table 1.2 provides a deeper

understanding of the applicability and limitations of each of these IoT protocols (Deohate and

Rojatkar 2021).

11

1.1.2 IoT platforms

IoT platforms, central to IoT solutions, serve as a bridge between the physical and digital

realms. Navigating the vast landscape of platform vendors can be a challenging task, but with

a meticulous assessment of specific factors, businesses can make informed decisions. It's vital

to delve into platform specifics, such as its unique features, communication protocols, and its

current operational status to determine its suitability (Ullah and Smolander 2019).

Additionally, ensuring the secure and reliable connection of numerous devices is paramount,

emphasizing the importance of user authentication, data integrity, and the secure transfer of

data (Astropekakis et al. 2022).

Middleware, as described by (Deohate and Rojatkar 2021), is an indispensable software

component in the IoT ecosystem, extending a spectrum of services ranging from integration to

content management. IoT developers, when integrating middleware, must adhere to certain

installation prerequisites. This installation process varies based on the project's existing

structure and the anticipated platform needs post-installation. Moreover, understanding a

middleware's business model, its associated communication protocols, and its current

viability—whether operational or terminated by its developers—is crucial for its successful

implementation.

 12

Figure 1.2 IoT Platform Architecture
Taken from Astropekakis et al (2022, p. 304)

1.1.2.1 Types IoT Platform

AWS IoT, developed by Amazon, centers around its AWS IoT Core, which ensures secure and

controlled communication between devices and the AWS ecosystem. It offers a range of

application protocols and prioritizes secure communication On the other hand, Google Cloud

IoT focuses on securely connecting devices and boasts features that ensure safety against

threats (Yu and Kim 2019). Furthermore, (Astropekakis et al. 2022) emphasize AWS IoT's

data management, analytics capabilities, and its foundation on a secure cloud environment.

Also, for Google cloud IoT highlight its analytics, visualization, and adaptability, emphasizing

its user-friendly approach.

Samsung's ARTIK is an IoT platform integrating hardware, software, and cloud elements,

focusing on advanced security measures and connectivity. Thing plug and GiGA IoTMakers

are both open IoT platforms built on the oneM2M standard, with the former developed by SKT

and the latter by the telecommunications company KT. Azure IoT, developed by Microsoft,

13

assists in building a plethora of IoT applications, integrating SaaS solutions, PaaS, and the

intelligent Edge, with a unique security framework (Yu and Kim 2019). Alibaba IoT Cloud,

Carriots, Cisco Kinetic, IBM Watson IoT, Oracle IoT Cloud, PTC Thingworx, SiteWhere,

Thinger.io, ThingsBoard, ThingSpeak, Ubidots, and WSO2 are all versatile IoT platforms,

each with its unique set of features, capabilities, and security measures, providing solutions

ranging from device connectivity and data analytics to secure communication and AI

integration (Astropekakis et al. 2022).

After establishing the significance and capacities of various IoT platforms, it is critical to

acknowledge the role of data in this ecosystem. As IoT devices create massive volumes of data

on a continual basis, the requirement for effective, fast, and dependable data processing

becomes critical. Introduce yourself to the world of real-time data streaming technology. These

solutions not only handle the flood of data from IoT devices, but also ensure that insights are

generated instantly, allowing for quick decision-making and dynamic reactions in a variety of

applications.

1.1.3 Introduction on Real-time data streaming

In the rapidly evolving digital landscape, the paradigm of real-time data streaming

distinguishes itself from the episodic nature of traditional data processing. Modern IoT devices

represent this shift, equipped to stream data in real-time, either directly to cloud platforms or

through IoT gateways (Rahman and Das 2022). As technological advancements continue, a

unique surge in data transmission across networks has emerged. This growing data ecosystem

not only underscores the monumental significance of real-time data streaming but also

introduces challenges. With the intensifying volume and velocity of data, there is an evident

struggle in processing, storing, and filtering on singular servers, leading to potential delays and

data loss (Torres and de Oliveira Silva 2023).

This data-centric era has ushered in a plethora of applications, redefining various sectors. From

enhancing monitoring, management, and operational efficiency to reshaping decision-making

 14

in businesses, the range of implications is endless. Personal health monitors, interconnected

home appliances, medical diagnostic tools, and defect detection in industries are just some

manifestations of this transformation. Furthermore, intricate applications such as participatory

live street views for tourism, ultra-realistic sports broadcasts, real-time pedestrian flow

management in urban landscapes, and monitoring systems for senior citizens highlight the

depth of its impact. To navigate this intricate data landscape, robust technological frameworks

are essential. Several platforms, including IBM Infosphere Stream, Amazon AWS IoT, Apache

Storm and Spark, and Microsoft Stream Insight, have emerged, each specializing in high-speed

real-time processing of substantial temporal data. Complementing these platforms,

transmission protocols for IoT data streams like MQTT, CoAP, Web Socket, and

IPv6LoWPAN emphasis a move towards edge-heavy computing (Banik, Cardenas, and Kim

2019).

1.1.3.1 Apache Kafka as a real time data streaming

Apache Kafka, originating from LinkedIn and open-sourced in 2016, is a powerful distributed

streaming platform known for its scalability and fault-tolerance (Vyas et al. 2022). Built on

publish-subscribe model, it consists of producers that publish data, brokers that manage it, and

consumers that process it in real-time. Topics, which categorize data streams, can be divided

into multiple partitions, enabling concurrent data writing by producers and parallel reading by

consumers (Peddireddy 2023).

Kafka's architecture emphasizes topic partitioning, reflecting its degree of parallelism. Each

topic's partitions are distributed among brokers, with provisions for replication across multiple

replicas for fault tolerance. One replica acts as the leader, handling all data interactions, while

the others synchronize data as followers. Within consumer groups, each consumer instance

reads from a unique subset of partitions, maximizing parallel processing (Raptis and Passarella

2022).

15

Figure 1.3 Apache Kafka High-Level Overview
Taken from Vyas et al (2022, p. 466)

However, Kafka faces challenges as data volumes grow, necessitating increased partitions to

prevent bottlenecks. Balancing throughput and latency is crucial to prevent consumer lags or

data loss. Despite its robustness, understanding Kafka's behavior, especially during drastic data

volume changes, remains an area of active research (Vyas et al. 2022).

Performance

Apache Kafka, a distributed streaming platform, has been the subject of numerous studies

examining its functionalities, applications, performance, latency, and reliability. These studies

have delved into various aspects, from modeling the communication between producers and

consumers to enhancing Kafka's fault tolerance and data recovery mechanisms. Additionally,

research has been conducted on Kafka's applications in diverse fields, such as seismic

waveform data processing and real-time analytics. Performance evaluations have also been

undertaken to understand Kafka's behavior under different configurations and network

conditions. Furthermore, the impact of various configuration parameters on Kafka's reliability

and latency has been tested, with tools introduced to assess its reliability under varying network

qualities (Raptis and Passarella 2022). (Peddireddy 2023) highlights Kafka's capabilities in

data processing, real-time reporting, and alerting, emphasizing its scalability, real-time

processing, fault tolerance, and flexibility.

 16

Apache Kafka's performance is gauged using several key parameters. Throughput measures

the system's capacity to process messages within a set time frame, indicating the efficiency of

hardware and the data volume transmitted between producers and consumers. Latency

represents the time duration for a message to travel from a Kafka producer to its consumer,

encompassing various stages like production, publishing, committing, catching up, and

extraction. Lastly, CPU and Memory Utilization assess Kafka's resource consumption,

especially vital given its reliance on the file system for message storage and processing,

particularly when handling extensive data (Vyas et al. 2022).

Apache Kafka boasts a distributed architecture that offers scalability, accommodating large

data volumes. It supports real-time processing through Kafka Streams, ensuring up-to-date

data analysis. Kafka's design prioritizes fault-tolerance, ensuring data availability amidst

potential failures. Additionally, its flexibility is evident in its ability to integrate with various

data sources via Kafka Connect. Despite its advantages, Kafka presents challenges. Its

complexity requires a profound understanding of distributed systems for deployment and

building. The financial cost associated with setting up Kafka, considering both hardware and

software, can be significant. Furthermore, Kafka demands continuous maintenance and

monitoring to maintain system health and optimal performance (Peddireddy 2023).

1.1.3.2 Other Real-Time data streaming technologies

The table below offers a high-level overview of several leading systems and frameworks in the

realm of data processing, streaming, and analytics. Each entry succinctly captures the core

essence and distinctive features of the respective system or framework. Ranging from the real-

time data ingestion prowess of Apache Spark Streaming to the specialized spatiotemporal

capabilities of JUST, this overview serves as a quick reference to the diverse functionalities

and strengths of these cutting-edge platforms. Table 1.3 presents a high overview on real-time

data streaming comparison between technologies.

17

Table 1.3 High Level Overview Comparison

System/Framework Description Key

Features/Characteristics

Contribution

Apache Spark

Streaming

Supports data

ingestion from

various sources

Supports streams to

HDFS, AWS S3

(Navaz et al.

2019)

Apache Flink Planning

unbounded and

restricted data

sets

Coordinates with

Hadoop YARN, Apache

Mesos, Kubernetes

Apache Storm Real-time

computing

system

Can process unlimited

data streams, supports

any programming

language

System/Framework Description Key

Features/Characteristics

Contribution

Apache Druid OLAP software

provider

Scales to a million RPM,

highly available,

multiple nodes

(Navaz et al.

2019)

Apache Samza Stateful event-

based

applications

Runs on YARN, fault-

tolerant, used by Uber,

Netflix, etc.

Amazon Kinesis

Data Streams

Real-time data

streaming service

Captures gigabytes of

data, supports mobile

applications

ST-Hadoop MapReduce

framework for

spatiotemporal

data

Spatiotemporal data

types, operations, and

queries

(Sasaki 2022)

 18

System/Framework Description Key

Features/Characteristics

Contribution

STARK Framework for

spatiotemporal

data on Spark

Integrates

spatiotemporal data into

Spark, supports

DBSCAN

(Sasaki 2022)

GeoMesa Geospatial

querying and

analytics

Spatiotemporal

indexing, real-time

stream processing

TrajSpark System for big

trajectory data

IndexTRDD, global and

local indexing

DFT Framework for

similarity search

queries over

trajectory data

Segment-based

partitioning, dual indices

DITA Distributed in-

memory

trajectory

analytic system

Extends Spark SQL,

supports trajectory

similarity function

UlTraMan Unified storage

and computing

engine

Built on Spark,

integrates Chronicle

Map

JUST Spatiotemporal

data engine

Uses NoSQL data store,

GeoMesa indexing,

Spark execution engine

19

1.1.4 Issues and challenges in IoT

The Internet of Things (IoT) has emerged as a transformative force, bridging the gap between

the digital and physical realms. With its promise of interconnected devices that can

communicate and collaborate, the potential applications of IoT span various sectors, from

healthcare to transportation (Beltran et al. 2022). However, these networks of devices, while

offering unprecedented opportunities, also introduces a myriad of challenges. These

challenges, ranging from technical to ethical, need to be addressed to ensure the broader

adoption and trust in IoT technologies (Al-athwari and Hossain 2022).

The rapid proliferation of IoT devices has led to concerns about their security, privacy, and

interoperability. As devices become more integrated into our daily lives, the stakes for ensuring

their safe and reliable operation have never been higher. Addressing these challenges is not

just about ensuring the smooth functioning of the devices but also about safeguarding the trust

and confidence of the users (Rai, Kanday, and Thomas 2020)

1.1.4.1 Challenges on security

The interconnected nature of IoT devices exposes them to unsecured and unverified parts of

the internet, posing significant risks to both private and governmental entities, and

compromising the data being transmitted or shared. Major espionage events have stressed these

vulnerabilities. Notably, many IoT devices are designed for broad dissemination and can

autonomously establish connections, making their security landscape unique and complex

(Beltran et al. 2022). Furthermore, most of these devices are "closed," preventing post-

purchase security installations, and due to their hardware limitations, they often resort to

lightweight algorithms, which can pose risks to the data stored on these devices (Sathi Reddy,

Venkatesh, and Kumar 2022).

IoT's vast scale and diversity make it susceptible to a range of threats. Many devices, especially

those with wireless sensors, are physically exposed, making them attractive targets for hackers.

 20

This vulnerability is compounded by the fact that many IoT devices have limited computational

resources. The challenges extend across the IoT architecture, from the physical level, where

issues like jamming adversaries and insecure initializations arise (Patnaik, Padhy, and Srujan

Raju 2021), to the logical level, which grapples with vulnerabilities in the application layer.

The network layer, responsible for reliable data transmission, is particularly vulnerable to DoS

attacks, while the transport and application layers face threats from insider attacks,

misconfigurations, and unauthorized access, potentially compromising data storage and

changeability (Sathi Reddy et al. 2022).

Addressing these security challenges requires a multi-faceted approach. The mobility of IoT,

evident in applications like healthcare and transportation, necessitates adaptable security

solutions (Rai et al. 2020). The lack of standardization in IoT security solutions, combined

with the heterogeneity of data produced by different applications, further complicates matters.

As the number of devices continues to grow, scalability becomes a pressing concern, and with

the increasing range of attack sources, security solutions must be continuously updated and

refined. Additionally, ensuring data confidentiality, integrity, and accessibility across all IoT

systems is paramount, given the vulnerabilities associated with data storage, sharing, and

manipulation (Al-athwari and Hossain 2022; Rai et al. 2020).

The summary of major security Issues will be:

• Interconnected nature leading to exposure on unsecured internet parts.

• "Closed" nature of many IoT devices preventing post-purchase security installations.

• Physical exposure of wireless sensors making them vulnerable to hackers.

• Challenges across IoT architecture, from physical to logical levels.

• Lack of standardization in IoT security solutions.

• Scalability concerns due to the rapid growth of IoT devices.

• Vulnerabilities associated with data storage, sharing, and manipulation.

21

1.1.4.2 Challenges on privacy

The Internet of Things (IoT) has revolutionized the way devices communicate and operate, but

with this innovation comes significant concerns about privacy. The utility of IoT is dependent

upon its ability to respect individual privacy choices, and any concerns in this domain could

potentially hinder its deployment (Beltran et al. 2022). The omnipresence of IoT devices,

capable of data selection and distribution almost anywhere, amplifies privacy concerns. This

is especially true given the ease with which private data can be accessed globally without

specific protective measures in place. Moreover, the protection and solitude of data in the IoT

face threats from various digital attacks, risks, and exposures. Issues at the device level, such

as lack of permission and confirmation, uncertain operating systems, firmware vulnerabilities,

and weak transport layer encryption, further exacerbate these concerns (Srivastava and Pandey

2022).

IoT devices inherently collect, store, and communicate sensitive data. This necessitates a

secure and confidential exchange of data across different networks. The vast connectivity of

IoT creates numerous communication channels, which malicious attackers can exploit. While

there are potential security measures for individuals, managing the data privacy of larger

entities like businesses and organizations is more challenging. These entities must employ

monitoring tools to safeguard against privacy threats and potential breaches. To bolster

privacy, extensive research has been conducted, leading to the adoption of encryption

algorithms. Digital signatures and Blockchain mechanisms have also been explored, though

the latter may not be suitable for all IoT devices due to its resource-intensive nature (Al-athwari

and Hossain 2022).

The practical implications of these privacy concerns are evident in scenarios like smart homes.

Such homes utilize sensors to collect data on various activities, from morning routines to

children's interactions with smart toys. While not all companies exploit this data, the potential

for misuse is evident. The sheer volume of data collected can reveal intimate details about

individuals and their behaviors. Ensuring privacy, therefore, is a shared responsibility between

 22

consumers and service providers. Both parties must be transparent about their expectations and

limitations. Surprisingly, many companies struggle to identify all IoT devices within their

networks, underscoring the need for robust privacy solutions tailored to IoT applications (Rai

et al. 2020).

The summary of major privacy concerns will be:

• Omnipresence of IoT devices leading to amplified privacy concerns.

• Device-level issues such as lack of permission and weak encryption.

• Potential misuse of data collected by IoT devices, especially in smart homes.

• The challenge of managing data privacy for larger entities like businesses.

• The need for robust encryption and security measures, with some solutions like

blockchain not being universally suitable.

1.1.4.3 Other challenges and Issues

The Internet of Things (IoT) presents a multifaceted landscape of opportunities and challenges.

One of the primary concerns is scalability, the system's ability to expand seamlessly. This is

complicated by the diverse nature of IoT devices, each with varying storage capacities, data

types, and bandwidths. Cloud-based IoT solutions exemplify scalable systems, offering the

flexibility to expand the network as needed. However, the heterogeneity of devices, whether

due to different communication protocols or data types, leads to issues like interoperability and

privacy. Interoperability is crucial for the efficient exchange of information among IoT

systems. Yet, the decentralized nature of these networks makes information exchange

challenging. Additionally, many IoT devices, such as sensors and RFID tags, are resource-

constrained, making them vulnerable to malicious attacks and limiting their computational

capabilities (Garg et al. 2022; Srivastava and Pandey 2022).

(Alenizi and Al-Karawi 2023) further delineate challenges in the IoT domain. Smart objects in

IoT should possess the capability to self-organize, adapting autonomously to their

environments. The vast data volumes generated by IoT applications demand innovative

23

mechanisms for data storage, processing, and management. Accurate data interpretation is

vital, requiring services that can draw meaningful conclusions from diverse sensor data.

Interoperability remains a concern, necessitating common communication standards. Other

challenges encompass automatic service discovery, software architecture complexity, security

and privacy concerns, power supply limitations, and the evolution of efficient wireless

communication standards.

The summary of major Issues and Concerns will be:

• Scalability concerns in accommodating diverse IoT devices.

• Heterogeneity and interoperability issues due to diverse communication protocols and

data types.

• Resource constraints in IoT devices, making them susceptible to attacks.

• Need for self-organizing smart objects and efficient data interpretation.

• Software complexity and the necessity for enhanced wireless communication

standards.

• Ensuring security and privacy in IoT transactions and interactions.

The increasing adoption of cloud computing in IoT systems offers enhanced analytical

capabilities but also raises security and privacy concerns. These challenges make it harder to

establish a trusted environment, especially when compared to IoT devices with potentially

flawed security measures. Consequently, the reliability of IoT systems is threatened by these

security and trust issues. To address these concerns, the importance of verifying unaltered data

is emphasized. "Blockchain" is introduced as a potential solution to these challenges. To fully

benefit from blockchain in IoT systems, it's crucial to understand and explore its value (Sadawi

et al. 2021).

1.2 An overview of Blockchain

The concept of a blockchain-like protocol originated with Chaum in 1982, and the subsequent

years witnessed pivotal advancements in the domain. Haber and Stornetta introduced

cryptographic security in 1991, followed by the integration of Merkle trees in 1993. By 1998,

 24

Szabo had conceptualized "bit gold," a pioneer to modern cryptocurrencies. However, the

landscape truly transformed in 2008 when Nakamoto launched Bitcoin, a peer-to-peer

electronic cash system, and concurrently introduced the term "blockchain" to describe its

underlying distributed ledger. Ethereum, proposed by Buterin in 2013, marked another

significant evolution, focusing on distributed data storage and smart contracts, with its

enhanced version, Ethereum 2.0, launching between 2020 and 2022 to improve speed,

scalability, and security (Guo and Yu 2022).

Nakamoto's foundational paper on Bitcoin, while not explicitly naming it a "blockchain,"

outlined the properties of modern blockchains as tamper-evident and tamper-resistant digital

ledgers (Connors and Sarkar 2023). At its essence, blockchain is a decentralized, transparent,

and verifiable ledger, with its most renowned application being in crypto-currencies like

Bitcoin. However, its features of immutability and decentralization have found relevance in

diverse industries, from healthcare to finance. As the technology acquire more attention, there's

a growing emphasis on training students and professionals in its complexities, given the rising

demand for blockchain expertise in the job market (Elliston et al. 2023).

Figure 1.4 Comprehensive Blockchain's History
Taken from Guo and Yu (2022, p. 2)

25

1.2.1 Blockchain’s characteristics

Based on the insights provided by (Rani and Saxena 2023; Sadawi et al. 2021; Zheng et al.

n.d.), the following are the key characteristics of blockchain technology:

1. Decentralization: Blockchain does not rely on a central authority or administrator.

Instead, it operates through a network of nodes, ensuring that no single entity has

control over the entire blockchain. This structure contrasts with traditional centralized

systems where a central agency, such as a bank, validates transactions. In blockchain,

transactions can occur directly between peers without the need for central

authentication, reducing costs and potential performance bottlenecks.

2. Transparency: All nodes in the blockchain network record and distribute data among

each other. This ensures that data is available to every participant, promoting openness

and traceability. Every transaction on the blockchain is validated, recorded with a

timestamp, and can be easily verified and traced by accessing any node in the network.

3. Autonomy: Changes to the blockchain require the approval of the majority of nodes,

ensuring that no single node can unilaterally alter the data.

4. Immutability: Once data is added to the blockchain, it cannot be altered unless

someone controls more than 51% of the nodes. This feature, combined with the

Blockchain’s structure of linking blocks using hash algorithms, ensures that blocks

cannot be modified or erased.

5. Security: Blockchain systems employ asymmetric cryptography, which includes a

public key visible to everyone and a private key visible only to the owner. This ensures

secure transactions and prevents tampering.

6. Anonymity: Blockchain supports privacy by authenticating transactions without

revealing sensitive data of the involved parties. Users can interact with the network

using generated addresses, and they can create multiple addresses to maintain privacy.

However, perfect privacy preservation is not guaranteed due to certain constraints.

7. Auditability: Every transaction on the blockchain is time-stamped, allowing users to

easily verify and trace previous records. In systems like the Bitcoin blockchain, each

 26

transaction can be linked back to its predecessors, enhancing data traceability and

transparency.

8. Distribution: Each node in the blockchain network holds a copy of the data records,

which are continuously updated, ensuring data persistence and making tampering

nearly impossible.

9. Automation: Blockchain can automatically trigger specific actions through smart

contracts when predetermined conditions are met.

10. Traceability: Blockchain maintains a historical record of all data from its inception,

allowing users to trace back to any original action.

11. Privacy: While blockchain operations are transparent, participant information remains

anonymous using private/public keys.

12. Reliability: Due to its robust features and structure, blockchain has been successfully

adopted by various organizations, showcasing its reliability.

In summary, blockchain technology offers a myriad of features that make it a revolutionary

tool in various sectors. Its decentralized nature, combined with transparency, security, and

traceability, among other features, provides a robust and reliable platform for various

applications.

1.2.2 Blockchain architecture

Blockchain is a system structured in three main layers: applications, a decentralized ledger,

and a peer-to-peer network. At its core, it is a sequence of blocks, each containing transaction

records like a traditional public ledger. These blocks are cryptographically linked, with each

block referencing the previous one through a hash value. This architecture ensures a consistent

and tamper-proof global ledger where transactions are securely recorded and connected

(Sarmah 2018; Zheng et al. n.d.).

The architecture of the blockchain is primarily divided into three layers: the top layer consists

of applications, the middle layer is the decentralized ledger, and the lower layer is the Peer-to-

27

Peer Network. The application layer, for example, houses software like the Bitcoin wallet,

which creates and stores keys, allowing users to oversee their transactions. The decentralized

ledger in the middle layer validates a consistent and tamper-proof global ledger, where

transactions are grouped into blocks that are cryptographically linked (Sarmah 2018). The

working of a typical blockchain network involves users interacting with the blockchain using

their keys, peers verifying the validity of transactions, transactions being mined into time-

stamped blocks, and nodes verifying the proposed block's reference and its valid transactions

All elements in the blockchain ensure the integrity and chain-like structure of the blockchain

(Bhushan et al. 2021).

Figure 1.5 How Blockchain is Linked
Taken from Bhushan et al (2021, p. 3)

Blocks in a blockchain are data structures containing transaction records and headers. Key

components of a block include the hash of the previous block, which links blocks together; a

timestamp indicating when the block was created; a nonce used for block creation and

validation; and the Merkle root, which simplifies transaction verification by containing hash

values of all transactions (Rani and Saxena 2023).

 28

Figure 1.6 Blockchain Structure Overview
Taken from Sarmah (2018, p. 2)

1.2.2.1 Hash function definition

Hashing in computer science involves converting a character sequence, or key, into a typically

shorter, fixed-length sequence called the hash value. This process uses a hash function, where

the key is associated with specific data, aiding in data storage and retrieval. The primary

advantage of hashing is efficiency; it allows for quicker searches by examining the hash value

instead of the entire original string. Ideally, a hash function should produce a unique hash result

for each key, ensuring consistent outputs for the same input and preventing overlap between

different keys. While various hash functions exist for diverse purposes, each should adhere to

this principle. However, a hash function suitable for database tasks might not be ideal for error-

checking or cryptography (Sadeghi-Nasab and Rafe 2023).

29

Blockchain technology involves the creation of blocks that are added sequentially using

cryptographic hash functions. Once a block is added, it cannot be altered without updating all

subsequent blocks in the chain. This technology, exemplified by Bitcoin, records financial

transactions in blocks, leading to its description as a distributed registry. Hash functions,

traditionally, compress large data sets into smaller ones and have various applications,

including in cryptography for ensuring data integrity and authentication (Belej, Staniec, and

Więckowski 2020). Another crucial cryptographic method in blockchain is hashing, which

encrypts data into a fixed-length string known as a hash. The SHA-256 algorithm, developed

by the NSA in 2001, is a notable cryptographic hash function used widely in blockchain. It

converts any data length into a fixed 256-bit (32-byte) string, producing a "hash" or "message

digest" (Rani and Saxena 2023).

Applications of hash functions include (Sadeghi-Nasab and Rafe 2023):

- File Verification: Ensures message integrity and detects malicious changes using

algorithms like MD5 and SHA-1.

- Digital Signature: Uses cryptographic hashes for signing messages, with SHA-256

being a popular choice.

- Password Verification: Stores only hash digests for security, using salts for added

protection and algorithms like MD5 and SHA-2.

- Proof of Work: Deters network abuses and is key in Bitcoin mining, using algorithms

like BLAKE2b and SHA-256.

- File/Data Identifier: Helps in identifying content in systems like Git and for quick

data lookup in hash tables.

1.2.2.2 Consensus algorithm in Blockchain

In blockchain technology, achieving consensus among nodes that may not trust each other is

akin to the Byzantine Generals Problem, where generals must agree on a strategy despite

potential traitors sending conflicting messages. Given that blockchain networks are

decentralized without a central authority to ensure consistency across nodes, protocols are

 30

essential to maintain ledger uniformity (Zheng et al. n.d.). An indication of blockchain is user

anonymity, which raises concerns about transaction honesty. To address this, consensus

algorithms validate transactions by seeking agreement from all nodes. If consensus isn't

achieved, the transaction is deemed invalid. It is generally believed that most nodes in a

blockchain aim to maintain system integrity, making consensus algorithms vital for transaction

validation and storage (Vyas and Deshmukh 2023).

Anonymity, while a sought-after feature, presents trust challenges. To ensure transaction

legitimacy, every transaction is validated and then added to a block via consensus algorithms.

These algorithms, central to blockchain transactions, set rules for participants in a

decentralized system without universal trust. They operate on the principle that controlling

more of a scarce resource grants greater influence over the blockchain (Guo and Yu 2022).

There are numerous consensus algorithms utilized in the blockchain realm. While many might

be familiar with a variety of them, we will specifically delve into Proof of Work (PoW) and

Proof of Stake (PoS) in detail. Apart from these two, some other noteworthy consensus

algorithms include Delegated Proof of Stake (DPoS), Ripple's Consensus Algorithm,

Tendermint, Proof of Burn (PoB), Proof of Capacity (PoC), Delegated Byzantine Fault

Tolerance (DBFT), Directed Acyclic Graph (DAG), SIEVE , Proof of Elapsed Time (PoET),

Raft, Byzantine Fault Tolerance (BFT), and Practical Byzantine Fault Tolerance (PBFT).

31

Figure 1.7 Consensus Algorithms Classification
Taken from K and S (2023, p. 3)

Proof of Work (POW) as consensus algorithm
Proof of Work (PoW) is a consensus mechanism integral to the Bitcoin network, necessitating

complex computational tasks for authentication. In this system, nodes, termed "miners,"

continuously calculate hash values of a fluctuating block header, aiming for a value that meets

a predefined target. Once achieved, other nodes validate its accuracy and the subsequent

transactions in the new block. This process, known as "mining," is time-intensive, prompting

incentives for miners, often in the form of Bitcoins (Zheng et al. n.d.).The network's open

nature allows nodes to operate anonymously, yet in coordination, ensuring the Blockchain's

growth even in the absence of some nodes (Vyas and Deshmukh 2023).

PoW's core involves problem-solving through guessing, specifically determining a nonce value

that, combined with transaction data, satisfies a hash function's difficulty criteria. Nodes

expend significant computational resources in this endeavor, with the successful node

receiving a crypto-currency reward. Central to PoW is the hash function, with Bitcoin adopting

the SHA-256 cryptographic variant. Both Bitcoin and Ethereum employ PoW as their

consensus algorithm, but it's criticized for its high energy and time consumption (Guo and Yu

2022).

 32

Proof of Stake (POS) as consensus algorithm
Proof of Stake (PoS) is an energy-efficient consensus mechanism that contrasts with Proof of

Work (PoW). Instead of relying on computational power, PoS requires users to demonstrate

ownership of a certain amount of crypto-currency, with the belief that those holding more

currency have a vested interest in the network's security. However, selection based solely on

account balance can lead to centralization, prompting various solutions like Blackcoin's

randomization method and Peercoin's coin age-based selection. Ethereum, initially using PoW,

plans to transition to PoS. To merge the advantages of both PoW and PoS, Proof of Activity

and other variations like Proof of Capacity have been introduced (Zheng et al. n.d.).

PoS addresses the energy and time consumption issues of PoW. In PoS, nodes stake coins to

be eligible as block creators, receiving transaction fees for valid blocks and facing penalties

for invalid ones. Ethereum 2.0 marked a notable shift from PoW to PoS (Guo and Yu 2022;

Vyas and Deshmukh 2023). PoS provides decision-making authority based on stake

percentage, offering faster transactions and reduced energy use. Delegated Proof of Stake

(DPoS) allows stakeholders to vote for representative nodes, speeding up transactions but

risking centralization (Kim and Kim 2023). PoS, introduced by Peercoin, selects validators

based on coin collateral and specific conditions, such as Coin-Age Based Selection and

Random Block Selection, ensuring network security and reducing the risk of attacks (K and S

2023).

33

Figure 1.8 Compare POW and POS
Taken from Leo and Hattingh (2021, p. 571)

1.2.2.3 Smart contract

Smart contracts are Consider as contract, denoted as C, established by transaction participants

u1, u2, ..., uk (where k is a positive integer). In the digital realm, this contract is represented as

IC. When a trusted third-party entity, G, oversees this contract, the outcome of executing C is

labeled as R. Thus, R can be expressed as R=C(U,G), and equivalently, R=IC(U) where U

encompasses {u1, u2, ..., uk}. Smart contracts autonomously finalize transactions that, in the

physical world, would necessitate oversight from a reliable third-party to guarantee their proper

execution (Wu et al. 2022).

Smart contracts are automated digital agreements on the blockchain, with Ethereum being a

notable platform using Solidity for their development. Introduced in the 1990s by Nick Szabo,

they offer transparency by removing intermediaries and are immutable once activated. There

are two categories: strong (tamper-proof) and weak. They're versatile, used in sectors like

finance, real estate, and voting, and can operate on various blockchain networks. While they

offer many advantages, they also face challenges in large-scale deployment. The choice of

blockchain network for a smart contract depends on its intended application, considering

 34

factors like security, transaction speed, and consensus protocol. Blockchain's decentralized and

unchangeable nature enhances the security of smart contracts. Transaction speed is influenced

by the contract's security and complexity, while consensus protocols like PoW and PoS

determine transaction validity, with PoS offering better protection against threats (Alshahrani

et al. 2023).

Figure 1.9 Evolutionary Phases of a Smart Contract
Taken from Wu et al (2022, p. 3)

When methods in a smart contract are called, the state updates. This leads to the creation of a

block or transaction that reflects the state change. Subsequently, this change is recorded in the

Blockchain, ensuring all miners are notified about the update resulting from the invoked

method.

Smart contracts, especially on Ethereum, have three main components stored in the Blockchain

(Pise and Patil 2022)

1. A balance, public key, and private key address. Users can transfer ether or money to

this address.

2. Code specific to the smart contract, which miners initiate and store in the Blockchain.

3. A state component.

35

Here's an example of a smart contract using the SPESC language (Mao and Chen 2023):

Contract Purchase {

 Party Seller Address (ID) {

 Post()

 Collect()

 }

 Party Buyer {

 Pay()

 Receive()

 }

 // Definition of parties

 Asset Printer: Address (ID) {

 Name: "printer"

 Value: 1000$

 }

 // Definition of Asset

}

The seller initiates with post() after an order.

The buyer pays using pay().

After the buyer confirms receipt with receive(), the seller can access funds with collect.

1.2.3 Confidentiality Tiers in Blockchain

Depending on the required trust level in the network, the appropriate blockchain confidentiality

is selected. This can be divided into two main categories:

1) Public: This allows any individual to join as a node in the shared blockchain and

potentially influence decisions. However, participation might not always yield benefits for

the users. The ledgers in this setup are not owned by any single entity and are open to all

members. Blockchain applications employ a decentralized consensus mechanism and store

 36

a copy of the ledger on local nodes (Sarmah 2018). This category further splits into (Dehez

Clementi et al. 2019):

a) Permissionless: Any node with internet access and a computing device can contribute

to the ledger and act as a validator, executing the consensus algorithm. All users have

equal rights and permissions within the network.

b) Permissioned: While the network is open, only specific nodes have the capability to

validate, with the rest serving as data repositories.

2) Private: These Blockchains are exclusive, accessible only to a chosen group of individuals

or entities, with the database being shared solely among these participants(Sarmah 2018).

This can be further divided into (Dehez Clementi et al. 2019) :

a) Permissionless: Although the network requires authentication, once inside, all

participants have equal read and write capabilities, akin to a company's internal

network. Access is granted by a private organization, but any "verified" node can

perform any function.

b) Permissioned: Only a select few nodes can add content, and limited participants have

access rights. This represents the most stringent blockchain type, where a third-party

grants access and oversees permissions.

1.2.4 Blockchain based IoT (BIoT)

The Internet of Things (IoT) has significantly impacted various sectors, with its presence felt

in areas like healthcare, agriculture, and asset tracking. Currently, over 20 billion IoT devices

are in use, highlighting its widespread adoption. However, the technology faces challenges,

especially concerning trust, security, and privacy. Blockchain, known for its decentralized

nature and features like integrity and authentication, emerges as a potential solution to these

challenges. It ensures data integrity, prevents potential security breaches, and its decentralized

approach eliminates single points of failure in IoT systems. Furthermore, blockchain's success

in the financial sectors underscores its potential in enhancing IoT's security and functionality.

37

Notably, initiatives like the Trusted IoT Alliance in 2016 have been formed to further the

integration of blockchain into IoT (Aggarwal et al. 2021).

In the coming decades, both blockchain and IoT are poised to reshape production firms,

enhancing productivity, fostering innovation, and improving efficiency. As the costs of sensors

decrease, more manufacturing sectors are expected to adopt IoT. However, the vastness of IoT

networks brings forth challenges in information security and privacy. While blockchain offers

solutions, its resource-intensive nature might pose challenges for some IoT devices (Khare et

al. 2022).

IoT's rapid growth has been impaired by issues like a lack of trust and an over-reliance on

centralized authorities. This centralization poses risks, especially concerning data control and

security. Blockchain, with its decentralized and trustless environment, addresses these

concerns, providing enhanced security and efficiency. The two technologies, while having

their unique features, can be integrated effectively for better results. The Table 1.4 provides a

concise comparison of challenges faced by centralized IoT systems and the corresponding

solutions offered by Blockchain technology (Sharma and Babu Battula 2022).

Table 1.4 Challenges in IoT and Blockchain Solutions
Adapted from Sharma and Babu Battula (2022, p. 55)

Issue in Centralized IoT Blockchain (BC) Solution

Security BC enhances security using public-key

infrastructure, ensuring data integrity

through immutable records and

cryptographic communication.

Scalability BC's distributed nature efficiently

manages the increasing number of IoT

devices.

 38

Issue in Centralized IoT Blockchain (BC) Solution

Point of Failure BC's decentralized communication

eliminates central server reliance,

preventing single points of failure.

Address Space BC offers a vast address space, surpassing

even IPv6 by over 4 billion addresses.

Authentication & Access Control BC provides robust identity management,

decentralized authentication, and access

control via smart contracts.

Data Integrity BC ensures data remains unaltered unless

verified by the majority of network

participants.

Manipulation Vulnerability BC's immutable environment prevents

data manipulation, ensuring data integrity.

Ownership & Identity BC offers reliable identity registration and

ownership tracking, proven effective in

goods monitoring.

Traceability BC supports scalability across various

open-source options and meets the

demands of a scalable structure.

Cost & Storage Constraints BC's peer-to-peer architecture negates the

need for central authorities, reducing costs

and hardware requirements.

1.2.4.1 Blockchain based IoT Challenges

Based on (Aggarwal et al. 2021; Garg et al. 2022) the integration of Blockchain with the

Internet of Things (BIoT) faces several challenges:

• Scalability: Adding new blocks or transactions to a blockchain introduces delays due

to validation requirements. As the number of nodes increases, real-time data

39

transmission, especially in applications like the food supply chain, becomes

challenging.

• Computational Resources: Different consensus algorithms, such as PoW used by

Bitcoin, demand varying computational strengths. Even less intensive algorithms than

PoW still require significant computational resources.

• Storage Size: Blockchains have full nodes, which store the entire blockchain, and

lightweight nodes with only block headers. Given the limited storage of many IoT

devices, accommodating both types of nodes is problematic.

• Energy Efficiency: Blockchains consume significant power because of mining and

continuous P2P communication.

• Security: Ensuring confidentiality, availability, and integrity is crucial for any

information system, with data integrity being especially vital in the IoT context.

• Privacy: In IoT environments, maintaining user privacy during transactions is a

primary concern, addressed by techniques like Zero-knowledge proof.

Figure 1.10 provides a comprehensive overview of the challenges associated with integrating

Blockchain and IoT.

 40

Figure 1.10 Comprehensive BIoT Challenges
Taken from Alzoubi et al (2022, p. 15)

1.2.5 An overview of Hyperledger project

In 2015, the Linux Foundation introduced the Hyperledger project, an open source blockchain

software distinct from Bitcoin and Ethereum. It encompasses eight blockchain frameworks,

five tools, and four libraries (Guo and Yu 2022). Hyperledger is a collaborative platform

designed to support cross-industry blockchain developments, involving around 100 industry

leaders. It's a permissioned blockchain that emphasizes access control, chain code-based smart

contracts, and adaptable consensus methods, enhancing security and preventing attacks like

Sybil attacks. Smart contracts in Hyperledger offer rapid execution times, making it suitable

for IoT applications. Among its various constructions, Hyperledger Fabric is notably popular

and open source. Studies comparing Ethereum and Hyperledger found that Hyperledger Fabric

consistently outperforms Ethereum in latency, execution time, and throughput(Sharma and

Babu Battula 2022).

41

1.2.6 Hyperledger Frameworks

The Hyperledger approach promotes the reuse of standard components, facilitates swift

component development, and fosters interoperability across projects. Unlike public ledgers

like Bitcoin and Ethereum, Hyperledger's business blockchain systems are designed for a

consortium of organizations. Hyperledger nurtures and advances various business blockchain

technologies, such as test applications, distributed ledger frameworks, smart contract engines,

utility libraries, graphical interfaces, and client libraries (Punathumkandi, Meenakshi

Sundaram, and Prabhavathy 2020).

1.2.6.1 Hyperledger-Fabric

Hyperledger Fabric, an open-source enterprise solution, is a permissioned distributed ledger

technology (DLT) designed for business applications. It offers a unique, modular, and

configurable architecture suitable for various industries, including banking, healthcare,

cinema, IoT, and supply chain. Fabric's permissioned nature means participants are known to

each other, fostering a governance model built on mutual trust. It introduces a novel transaction

design, separating the transaction flow and creating channels for specific member coordination,

ensuring privacy in competitive scenarios. The ledger in Fabric comprises the world state,

representing the current state, and the transaction log, detailing the update history. Smart

contracts in Fabric, termed chaincode, interact primarily with the world state and can be written

in multiple languages, including Go and Node (Punathumkandi et al. 2020).

(Capocasale, Gotta, and Perboli 2023) highlight Fabric's role in addressing industrial needs

like identity management, role definition, and data confidentiality. As part of the Hyperledger

ecosystem, Fabric supports a modular and scalable structure, allowing for private transactions

or the creation of independent chains. It employs various consensus algorithms, with a BFT

consensus planned for future releases. Fabric differentiates between two node types: peers,

responsible for transaction execution and ledger maintenance, and Orderers, tasked with block

creation. The transaction process in Fabric involves three stages:

 42

i) Execute: Transactions are associated with an endorsement policy, defining which

peers must execute a given transaction. Clients send the transaction to endorsing

peers, who process it without updating their ledger copy, then return a signed

message to the client for Orderers. (Xu et al. 2021) refer to this stage as the

"Simulation Phase."

ii) Order: Orderers create blocks by organizing the endorsed transactions received.

Once a block is formed, it's broadcasted to all channel peers.

iii) Validate: Each peer verifies the correctness of each transaction within the received

block and updates its ledger copy. Transactions conflicting with a previous

transaction in the same block are deemed invalid.

Figure 1.11 Data flow in Hyperledger Fabric
Taken from Xu et al (2021, p. 3)

(Palma, Pareschi, and Zappone 2021) recognize Hyperledger Fabric as a leading project within

the Hyperledger suite, emphasizing its modularity and adaptability. It is designed as a

foundation for building applications with a modular setup, allowing components to be

interchangeable. Fabric's unique consensus approach ensures scalability while maintaining

privacy.

43

Figure 1.12 Hyperledger Fabric Architecture
Taken from Punathumkandi et al (2020, p. 90)

In summary, Hyperledger Fabric is a versatile and modular DLT solution tailored for enterprise

applications, emphasizing privacy, scalability, and adaptability across various industries, with

a distinct three-step transaction process.

1.2.6.2 Hyperledger project comparison

The Hyperledger project, hosted by the Linux Foundation, is a collaborative effort to advance

cross-industry blockchain technologies. It encompasses a suite of frameworks, tools, and

libraries designed to support the development of blockchain-based distributed ledgers for

various business applications. Each framework within the Hyperledger umbrella offers distinct

features, architectures, and capabilities tailored to meet specific industry needs and use cases.

Based on (Capocasale et al. 2023; Palma et al. 2021; Punathumkandi et al. 2020) , the Table

1.5 provides a comparative overview of several prominent Hyperledger frameworks,

highlighting their key technical attributes and functionalities.

 44

Table 1.5 Comparison Between Hyperledger Projects

Hyperledger Project Description Key Features Contribution

Hyperledger Fabric General-purpose

blockchain framework

designed for

modularity and

configurability.

Modular architecture

that separates the

transaction flow into

execute-order-validate.

(Palma et al.,

2021)

Hyperledger

Sawtooth

Open-source

framework designed

for flexibility and

separation of concerns.

Abstracts the

application layer from

the security layer,

dynamic & replaceable

components.

(Capocasale et

al., 2023)

Hyperledger Indy Focuses on

Decentralized Digital

Identities (DIDs).

Provides tools,

libraries, and reusable

components for digital

identities rooted on

Blockchains or other

distributed ledgers.

(Palma et al.,

2021)

Hyperledger Iroha Designed for

simplicity and

integration into

infrastructure or IoT

projects.

Core architecture

inspired by Fabric.

Emphasizes user-

friendly interfaces and

interoperability with

other Hyperledger

projects.

Hyperledger Besu Ethereum client

designed for both

public and private use

cases.

Java-based and offers

comprehensive

permissioning

schemes.

(Punathumkandi

et al., 2020)

45

Hyperledger Project Description Key Features Contribution

Hyperledger Burrow Provides a

permissioned smart

contract interpreter

built to the

specification of the

Ethereum virtual

machine (EVM).

Extends work within

the Hyperledger

Project by providing a

deterministic smart

contract-focused

blockchain structure.

(Punathumkandi

et al., 2020)

Hyperledger Grid Domain-specific

platform for building

supply-chain

management solutions.

Provides components

for developing smart

contracts and client

interfaces

(Palma et al.,

2021)

In summary, while Hyperledger Fabric is a versatile and modular framework suitable for a

wide range of industry use cases, other Hyperledger projects like Sawtooth, Indy, Iroha, Besu,

Burrow, and Grid have specific focuses and features that differentiate them from Fabric. Each

project has its unique strengths and is designed to address particular challenges or industry

needs. Also, based on (Capocasale et al. 2023), Fabric's growing support, as evidenced by the

developer activity on GitHub, indicates its increasing popularity and trustworthiness within the

Blockchain community.

 46

Figure 1.13 Blockchain Development Engagement
Taken from Capocasale et al (2023, p. 6)

1.2.7 Recent Developments on Blockchain and IoT innovation

In recent years, the convergence of blockchain technology and the Internet of Things (IoT) has

emerged as a significant area of research and development. This integration aims to address

some of the key challenges faced by IoT systems, such as data security, privacy, and scalability.

Blockchain, with its decentralized nature and robust security mechanisms, offers a promising

solution to these issues. The following section provides an overview of recent developments

in the integration of blockchain technology within IoT systems, focusing on innovative

approaches and architectures that have been proposed to enhance the performance and security

of IoT networks.

In this research paper (Oikonomou et al. 2021), the authors introduce two novel concepts:

Storing sensor data externally to the blockchain, while retaining only the sensor's identification

and transaction details within a local blockchain. Implementing "RESET" transactions that

transfer data from the local blockchain to liberate storage space, while storing the hash in the

global blockchain (GB) to maintain data integrity. These innovative ideas link local

blockchains to the Global Blockchain (GB), ensuring data integrity and implementing specific

47

chaincode and policies. Collectively, these strategies enhance scalability and efficiency in

managing data storage and transactions.

Another study (Maeng, Heo, and Joe 2022), delves into a system configuration comprising a

root server, Hyperledger Fabric, and various users. It delineates the user registration and

verification process, designating users as agents and emphasizing the role of distinct certificate

authorities. The system supports the establishment and administration of multiple groups, with

regular monitoring and agent alterations to bolster stability and security.

The research article by (Al-Zoubi et al. 2022), presents a pioneering architecture that employs

blockchain technology to facilitate interaction among IoT devices. This architecture is

structured into four blocks: Sensors, webservice, ETH blockchain, users, and administrators.

The system has been proven to function effectively under diverse conditions, demonstrating

the secure and efficient application of blockchain technology. Nevertheless, it faces challenges

such as dependency on a private ETH blockchain with limited transaction processing capacity,

high costs associated with implementation on a public ETH blockchain, and the absence of

encryption, privacy, and security measures on the device side.

In their paper (Su, Nguyen, and Sekiya 2022), the authors concentrate on the Combination of

IoT systems with a private blockchain deployed on an ad-hoc IoT network. The preference for

a private blockchain is justified by its benefits, such as a reduced number of nodes and lower

power and resource consumption. The research highlights the establishment of an Ethereum-

based private blockchain atop the network, with each IoT device employing the Geth client to

establish a full blockchain connection with other nodes. The study aims to evaluate the

performance of the integrated IoT-private blockchain system, particularly focusing on the

connections between IoT devices and the underlying network.

As detailed in the article by (Dange and Nitnaware 2023), the authors explore the advantages

of data storage and compare the associated gas prices in ETH. They emphasize the importance

of pre-processing at the fog layer, which are governed by the administrator's policies. Users

 48

can access blockchain, with smart contracts employed for validation purposes. However, some

limitations are identified, such as the use of the ETH blockchain leading to low transactions

per second (TPS) and the lack of a specific data structure for managing data.

The integration of blockchain technology into IoT systems has led to the development of

various innovative solutions aimed at improving data integrity, security, and efficiency. These

include off-chain data storage strategies, the use of private blockchains for reduced resource

consumption, and the implementation of new architectures for secure interactivity among IoT

devices. Despite the promising advancements, challenges such as scalability, transaction

processing capacity, and the management of data privacy remain. Future research in this

domain is expected to address these limitations and further refine the integration of blockchain

technology with IoT systems, paving the way for more secure, efficient, and scalable IoT

networks.

1.3 Chapter summary

In the initial section of this chapter, we delved into the architecture of the Internet of Things

(IoT) and explored various IoT platforms. The advantages of real-time data streaming were

underscored, and a comparative analysis was provided. Towards the end of this section, we

examined the prevailing challenges inherent in the IoT infrastructure.

In the subsequent section, we turned our focus to the architecture of Blockchain. A

comprehensive exploration of blockchain and its associated algorithms was undertaken,

highlighting the unique attributes that make it a compelling choice. Furthermore, we discussed

the convergence of blockchain and IoT, often referred to as BIoT, and addressed the potential

challenges this integration might encounter. Additionally, we introduced one of the most

renowned types of blockchain.

CHAPTER 2

Methodology and Design of architecture

As we delve further into the intricacies of integrating devices with Blockchain, this chapter

will illuminate the architecture we have meticulously designed. Central to our exploration is

understanding how each device can be smoothly linked to the blockchain, enabling data

visualization, and facilitating user access to the platform.

In this chapter, we will:

1. Explore the multi-layered structure of the architecture, emphasizing the role and

significance of each layer.

2. Delve into the types of devices incorporated into this framework and elucidate the

design principles behind their interconnections.

3. Analyze the components integral to each layer, offering insight into their functionality

and contribution to the overall system.

By the chapter's conclusion, readers will be equipped with a comprehensive understanding of

our architecture's capabilities and the advantages it offers. A summary will encapsulate the key

benefits of this platform, serving as a succinct reference for the insights gained.

2.1 Proposed architecture

Within complex systems, the architecture plays a vital role. It defines the interactions and

operations of individual components, ultimately determining the system's overall performance.

In the realm of the Blockchain-based Internet of Things (BIoT), comprehending the

architecture is essential. Similar to a blueprint which provides clarity on a building's structure,

understanding the architecture illuminates the engineering principles and potential of the BIoT

system.

 50

This chapter delves into the architecture we have developed. It emerges from extensive

research and numerous design iterations, showcasing our approach to connecting devices to

the blockchain with an emphasis on real-time data processing and efficient data visualization.

We will systematically explore each aspect of our design, detailing the rationale behind every

decision and elucidating how each component contributes to the robustness and innovation of

our architecture.

Our proposed system is structured around a four-layer architecture, with each layer possessing

distinct functionality and significance. The layers are as follows:

1. Device Layer (Physical Layer): This foundational layer encompasses the tangible

components and devices.

2. Network Layer: Serving as the communication bridge, this layer ensures connectivity

between layers.

3. Middleware Layer: Acting as an intermediary, this layer facilitates data processing

and manages interactions between the system's components.

4. Application Layer: This topmost layer provides the user interface and ensures that

end-users can efficiently interact with the system.

In subsequent sections, we will delve deeper into the details of each layer, elucidating their

design choices, functionalities, and the roles they play in the overarching architecture.

Table 2.1 Proposed Four-Layered Architecture in Detail

Layer Examples

Fourth Layer (Application/End-User) Smart home systems, industrial automation

tools, telehealth platforms, asset monitoring

solutions, smart city applications

51

Layer Examples

Third Layer (Middle layer) Data warehousing, analytics processing, data

transformation, security protocols, device

management

Second Layer (Network) Ethernet, Wi-Fi 6, Bluetooth 5, Zigbee 3.0,

LoRaWAN, Cellular networks (4G LTE, 5G

NR)

First Layer (IoT Device/Physical) Infrared sensors, Proximity sensors, Pressure

sensors, Gas leak sensors, Smart cameras,

Intelligent lighting systems, connected

vehicles, Drones, Airplanes

Figure 2.1 presents the details inside each component and how they will communicate within.

Figure 2.1 Four-Layered Architecture Components’

 52

2.2 First Layer (physical layer)

The physical layer, also referred to as the first layer, serves as the primary interface for real-

world data acquisition in our system. Within this layer, devices can be broadly classified into

two principal categories:

1. Sensors (or Devices)

2. Gateways

Each of these categories possesses distinct functionalities and roles:

Sensors (or Devices): Sensors are specialized components designed for specific data

acquisition tasks. Depending on their design specifications, they can measure a variety of

environmental parameters such as humidity, temperature, water presence, door statuses (open

or closed), light intensity, and physical impacts. The choice of data transmission protocol for

these sensors is contingent upon their operational requirements and the nature of the data they

capture. Commonly employed protocols include Bluetooth and Wi-Fi, Zigbee, and Z-Wave,

among others.

Gateways: Gateways function as intermediaries in the system. Their primary role is to

aggregate data from the sensors, potentially preprocess it, and then transmit it to the subsequent

layers in the system's architecture. To ensure efficient and reliable data transmission, gateways

utilize protocols tailored to the system's data transfer requirements, such as LwM2M and

MQTT, CoAP, AMQP and cellular networks.

2.2.1 Case studies

In our previous discussions, we touched upon the types of devices and gateway variations

available for use in IoT configurations. This vast landscape of choices has empowered

developers and organizations to craft solutions tailored to specific needs. In this section, we

will delve into some of the most common pairings of devices and gateways that have proven

effective in real-world scenarios. These combinations have not only demonstrated their

53

reliability but also their adaptability across various applications. Below, we outline these

exemplary pairings.

2.2.1.1 Pinnacle 100 and sensors pairing

Within this section, an in-depth exploration is presented concerning the integration

methodologies of sensors and gateways in the context of an Internet of Things (IoT)

configuration. The BL654 model was meticulously selected as the primary sensor due to its

adeptness in monitoring three critical environmental parameters: humidity, pressure, and

temperature. It is imperative to acknowledge that, notwithstanding the emphasis on these three

sensing modalities, the inherent flexibility of IoT infrastructures permits the integration of an

expansive array of sensors, each tailored to the nuanced requirements of distinct applications.

Regarding the gateway component, the Pinnacle 100 was chosen predicated on its integral SIM

card feature, ensuring an unbroken and consistent connectivity continuum. In the quest to

refine data transmission at the physical stratum, the Bluetooth communication protocol was

deemed optimal. Such a decision was instrumental in facilitating a streamlined data

transmission from the BL654 sensors to the Pinnacle 100 gateway.

Furthermore, the study incorporated the lightweight machine-to-machine (LwM2M) protocol

to effectuate the data relay from the Pinnacle 100 to the ensuing network layer. The system, in

its entirety, harnesses the capabilities of 4G or 5G networks to establish internet connectivity

and subsequently relay the data to the designated network layer.

 54

Figure 2.2 Left Image Shows Pinnacle 100
and

right Image Shows BL6545 Sensor

Figure 2.3 Data flow in This Case Study

2.2.1.2 Raspberry pie and sensor pairing

This section provides high-level overview of integrating the ib-nav sensor, a product of

LASSENA's research endeavors, with the Raspberry Pi platform. The core focus is on the

55

sensor's unique indoor navigation capabilities predicated on the zero-velocity principle and the

underlying mechanisms supporting data transfer and visualization.

Originating from the laboratories of LASSENA, the ibNav 6.1 sensor represents a significant

advancement in indoor navigation technology. Distinct from conventional sensors, the

Ibnav6.1 operates on the zero-velocity principle, enabling it to navigate indoor spaces devoid

of external motion cues. This capability addresses the longstanding challenges posed by

environments with weak or absent GPS signals.

A salient feature of the ibNav 6.1 sensor is its wireless data transmission functionality. Upon

activation, the device channels its data via a WiFi conduit directly to a designated Raspberry

Pi module. This mechanism guarantees a robust and consistent data flow, mitigating risks

associated with data latency or integrity compromise.

Subsequent to the Raspberry Pi's data acquisition, the interfacing occurs with an advanced

ground control station. Far from being a mere data receptacle, this station undertakes rigorous

data processing and visualization tasks. The objective is to furnish users with an accurate and

comprehensive depiction of the sensor's output, catering to both real-time surveillance and

retrospective analyses.

To fortify the data communication pipeline, the MQTT (Message Queuing Telemetry

Transport) protocol was incorporated. Renowned in academic circles for its lightweight nature,

MQTT emerges as an optimal choice for scenarios with bandwidth constraints. The protocol

not only ensures the efficient relay of data from the Raspberry Pi to subsequent layers but also

underpins the system's reliability.

 56

Figure 2.4 IbNav Sensor 6.1

Figure 2.5 Data Flow in This Case Study

57

2.2.1.3 Automatic Dependent Surveillance-Broadcast (ADS-B) as a device

In this section, we present a case study that has been a focal point of our research. Initially, we

will elucidate the concept of ADS-B and subsequently address its known vulnerabilities.

ADS-B is an air traffic management system that allows aircraft to broadcast their location,

speed, and direction using an onboard GPS receiver. It has two main components: "ADS-B

OUT" which sends data to ground stations, and "ADS-B IN" which receives data from other

aircrafts. While it offers advantages like increased protection and airspace optimization (Costin

and Francillon n.d.), ADS-B is vulnerable to various attacks . These attacks can be categorized

by intent, such as passive information collection, financial disruption, terrorist threats, and

state-sponsored cyber attacks. Common attack methods include message injection,

modification, deletion, jamming, and eavesdropping (Wu, Shang, and Guo 2020). The system's

vulnerabilities emphasize the need for improved security in air traffic systems.

Figure 2.6 Overview of the ADS-B Communication

Taken from Sciancalepore, Alhazbi, and Di Pietro (2019, p. 3)

Building on this understanding, we postulate that beyond conventional devices such as

standard sensors, mobile phones, and GPS systems, aircraft can also be viewed as devices in

 58

their own right. A significant insight from our research is the effective utilization of ADS-B as

a sensor. To facilitate data transfer from ADS-B, we employed the Message Queuing

Telemetry Transport (MQTT) protocol, channeling the data to a subsequent analytical layer.

The overarching objective of this case study is to augment the security measures of the existing

ADS-B system by integrating our novel platform.

Figure 2.7 ADS-B Inside an Airplane Works as Sensor

2.3 Second Layer (Network layer)

Within the ensuing discourse, our primary objective is to elucidate the relationship between

the physical layer and what is commonly referred to as the third layer. This particular layer can

be conceptualized as a critical bridge, facilitating communication between the foundational

physical layer and the more abstract middleware layer. In the realm of data communication,

this layer shoulders a paramount responsibility. It is entrusted with the task of garnering data,

be it from expansive gateways or from singular sensor units, and subsequently channeling this

data upwards to the middle layer stratum. Once in the middle layer, the raw data undergoes

rigorous analytical procedures and is then earmarked for storage, ensuring its availability for

future requisition.

It is noteworthy to highlight that, as discussed in preceding sections, this layer is the principal

domain wherein specific communication protocols, such as MQTT, find their operational

ground. However, the versatility of this layer is further exemplified by its capability to harness

59

modern telecommunication infrastructures, particularly 4G and 5G networks, for data

transmission in certain specialized scenarios.

2.3.1 Case Study

In this subsection, we will present a detailed examination of a case study associated with the

network layer's implementation. Our research endeavors involved testing multiple protocols to

determine the most effective means of transferring raw data from various sensors to the middle

layer. Notably, one such case study centered on the utilization of PicoLTE as a potential

solution. Beyond this, our team also invested efforts into evaluating other prominent protocols,

specifically LwM2M and MQTT. Through a comprehensive assessment of these protocols, we

sought to identify their respective strengths and limitations in the context of data transfer from

sensors to the middleware infrastructure.

2.3.1.1 Pico LTE as network layer

Within the second layer, we utilize the Nutaq PicoLTE to facilitate data transfer from Pinnacle

to the middle layer, capitalizing on the advantages offered by PicoLTE. In this specific use

case, two PicoLTE devices are employed.

The Nutaq PicoLTE 2nd Generation emerges as a remarkable topic of interest within the field

of software-defined radio and integrated network research. This system epitomizes the

integration of real-time Long-Term Evolution evolved NodeB (LTE eNodeB) and Evolved

Packet Core (EPC) functionalities within a singular framework, all while adhering to the 3GPP

LTE PHY standards, specifically Rel. 13 and its successors. Notably, its design offers

compatibility with a diverse range of commercial User Equipment’s (UEs) and is certain to

accommodate emerging communication paradigms. From a research perspective, its cost-

effectiveness is intriguing, suggesting a potential avenue for institutions operating under

budgetary constraints. The device's technical attributes, spanning a comprehensive frequency

range, integrated transceivers, and flexible bandwidths, warrant a detailed exploration. This is

 60

further underscored by its provision for both onsite and online training, which can be

instrumental in facilitating academic research and study (Nutaq Team, n.d.)

In summary, the Nutaq PicoLTE 2nd Generation offers a rich tapestry of features and

capabilities, meriting its examination and study within the broader context of LTE network

research.

Figure 2.8 Nutaq PicoLTE with 2 Antennas

2.4 Third Layer (middle layer)

The middle layer, often referred to as the third layer of the IoT architecture, serves as a

foundation in the IoT ecosystem. Its role is instrumental in shaping the development and

deployment of IoT applications. Essentially, it acts as an intermediary interface facilitating

communication between the Internet and the plethora of 'things' that comprise IoT.

Key features of this layer include:

• Security: Ensuring safe data transmission and storage.

• Scalability: Adapting to the growth in connected devices or data.

• Privacy: Ensuring user data confidentiality.

• Transparency: Offering clear insight into data processing.

61

• Integrity: Ensuring that the data remains unaltered and trustworthy.

APIs designed for interactions with this middle layer are grounded in standard application

protocols. Moreover, API endpoints, crucial for data and service access, ought to be

discoverable through an open catalog. These endpoints should also be accompanied by linked

metadata detailing the resources.

In our literature review, we noted the existence of various platforms operating at the middle

layer level. Nevertheless, we chose to develop our own platform. This decision was driven by

several advantages:

• Upgradability: Swift adaptation to emerging technologies.

• Maintainability: Simplified system maintenance.

• Cost-efficiency: Reduced expenses.

• Scalability and Flexibility: The middle layer can easily scale and integrate with

various components. Easier adaptability to changes. Also, has more compatibility with

diverse technologies.

• Cross-platform Compatibility: device communication regardless of underlying

software.

• Ease of Maintenance: Efficient monitoring and troubleshooting of IoT device

performance.

• Reusability: Middle layer applications are crafted for reuse, aiding in system upgrades

and cost reductions.

• Data Security: Enhanced protection against online threats.

The primary focus of this thesis revolves around this layer, emphasizing data security, user

privacy, and data integrity.

The middle layer shoulders the responsibility of data reception from the network layer. It either

stores this data, processes it (through filtering, aggregation, inference, etc.), or analyzes it.

Additionally, this layer is responsible for event management, context detection, and enforcing

 62

application policies such as security and privacy rules. It also monitors system operations and

data-transmission failures while providing necessary access protocols.

Central components of this layer encompass:

• Communication: Facilitating real-time data streaming.

• Security: Safeguarding data and devices.

• Data and Device Management: Handling and organizing data effectively.

Concurrently, Overseeing device operations and health.

2.4.1 Third layer’s component

The Communication Middle layer manages interactions between IoT devices, providing data

exchange protocols and facilitating data translation. The Data Management Middle layer deals

with data produced by these devices, supplying tools for its collection, storage, processing, and

allowing data integration from different sources. The Device Management is dedicated to

handling IoT device functionalities, presenting tools for tasks such as registration,

provisioning, and firmware updates, and also supporting remote device oversight. Lastly, the

Security ensures the safety of IoT interactions by delivering authentication, authorization, and

encryption tools, thus safeguarding communications between devices and applications.

These components can be addressed using three distinct but complementary technologies. Each

of these technologies may serve multiple purposes, ensuring versatility and comprehensive

coverage of the required functions. The trio of technologies that have been employed includes:

• Blockchain: Primarily utilized for ensuring the security and integrity of data,

Blockchain acts as a tamper-proof ledger. Beyond its security functions, it also plays a

role in data and device management, ensuring that every transaction or change is

recorded in a transparent and immutable manner.

• Real-time Data Streaming: This technology is pillar for communication, especially

when timely data transmission is essential. It enables the immediate and continuous

63

flow of data, ensuring that information is relayed as it is generated or received,

minimizing delays and ensuring prompt responses.

• Database: Serving as the backbone for data management, databases store, organize,

and retrieve vast amounts of information. They provide structured storage solutions

that allow for efficient querying and data retrieval, ensuring that data remains

accessible and organized for various applications.

Figure 2.9 Trinity Technologies in this Platform

2.4.1.1 Real-time data streaming component

In this subsection, we delve into the implementation of real-time data streaming, a critical

component of our system. This component is tasked with receiving data from the second layer.

Based on our literature review, which highlighted the benefits of low latency, high scalability,

and fault tolerance, we have chosen to employ Kafka Apache for our real-time data streaming

needs. Essentially, Apache Kafka serves as a conduit to relay data from the second layer.

Kafka primarily consists of three core components:

 64

1. Kafka Producer:

• The Kafka Producer is a client that publishes or sends data/messages to the Kafka

cluster. It retains records awaiting transmission and operates a background I/O

thread.

• This producer creates topics with data, where each topic corresponds to a specific

device. These topics are then dispatched to the Kafka cluster. Multiple producers

can exist simultaneously.

• Topics in Kafka categorize messages and are segmented into Partitions. Producer

applications deposit data into these topics. Each Partition, customizable in its

quantity, ensures multiple users can access the data concurrently. Within a Kafka

Cluster, individual servers oversee their respective Partitions. Messages are paired

with keys that guide them to designated Partitions, ensuring messages with

matching keys land in the same Partition for synchronized reading.

2. Kafka Cluster:

• Kafka employs publish-subscribe methodology, necessitating a broker for efficient

operation. The Kafka cluster, an assembly of these brokers, provides the scalability

to the platform.

• Kafka Clusters manage the persistence and replication of message data. If a primary

cluster fails, backup Kafka Clusters can take over, ensuring uninterrupted service.

Each server within the cluster controls its Partitions. Messages are assigned keys

which determine their Partition placement. Messages with identical keys are routed

to the same Partition, facilitating simultaneous access.

3. Kafka Consumer:

• The Kafka Consumer reads or ingests messages from the Kafka cluster. Brokers

allocate data/messages to the appropriate consumers based on their needs.

Consequently,

• Kafka Consumer retrieves topics directly from the Kafka cluster.

65

Figure 2.10 Apache Kafka Architecture in this Platform

2.4.1.2 Blockchain

The technology under discussion stands as a cornerstone within this section. It is not just

another component; it serves as a foundational element that underpins the entire system. When

we delved into the literature review, we noted several distinct advantages of Blockchain

technology. Among these are security, privacy, integrity, immutability, and transparency. Each

of these attributes is not merely a 'nice-to-have' but essential features that characterize the very

essence of blockchain technology. Within this context, emphasizing the security of the middle

layer becomes paramount. This layer does not just play a supportive role; it is the beating heart

of the platform, ensuring smooth interaction and communication between different parts.

For this critical component of our system, we've chosen to work with Hyperledger Fabric. This

is not an arbitrary choice. Hyperledger Fabric stands out as a private, permissioned blockchain,

which introduces a layer of control and governance often missing in public Blockchains. This

means that every participant in our network is vetted and approved, creating a trusted

environment. Unauthorized users are unable to join the network, ensuring that all participants

are recognized and authenticated by the system's administrator.

Our innovative approach incorporates both on-chain and off-chain strategies. The rationale

behind this is twofold. Firstly, by using a database to store the bulk of the data, we can ensure

 66

speed and efficiency. This database then provides a unique identifier for each data piece, which

is subsequently stored on the blockchain. This method ensures that while the data is securely

stored off-chain, its integrity and authenticity can be verified on-chain. Secondly, our system

leverages the blockchain not just as a static ledger but as a dynamic tool for device

management. This approach maximizes the potential of blockchain technology beyond mere

data storage.

To further enhance the system's capabilities, we have introduced two specialized smart

contracts. The division of responsibilities between these contracts has been meticulously

planned. The first contract is focused on data storage, ensuring that each piece of data is

securely and accurately logged. In contrast, the second contract takes on a more managerial

role, overseeing both our devices and user interactions. This dual-contract system ensures that

tasks are specialized and efficient.

Within the confines of Hyperledger Fabric, we've also established multiple organizations.

These are not just abstract entities; they represent real-world stakeholders and entities eager to

monitor and analyze data from their respective clients. In this architecture, a channel — a

dedicated private communication pathway — links two or more organizations within the

Hyperledger Fabric network. Providing each organization with the capability to manage its

users introduces a level of autonomy and flexibility. As a result, users within these

organizations can assign devices to themselves, be it large-scale gateways or individualized

sensors. The nature of the device assignment is inherently flexible, adapting to the unique

structure and needs of each organization.

67

Figure 2.11 Hyperledger Fabric Structure in Platform

2.4.1.3 Data base component

In this section, we discuss the components of the database layer, which has the responsibility

of data storage. There are generally two types of databases:

Centralized databases predominantly rely on one main server for controlling services and data,

making them susceptible to significant disruptions, as exemplified by the 2017 Amazon AWS

incident. On the other hand, decentralized databases operate on a principle where all nodes

function in a peer-to-peer capacity, ensuring no single entity dominates, providing higher

reliability and resilience against potential system-wide failures (Fong, Selvarajah, and Nabi

2022).

For our purposes, we have chosen a decentralized approach, utilizing the InterPlanetary File

System (IPFS) as our database. The Interplanetary File System (IPFS) is a ground-breaking

protocol that aims to revolutionize the web by facilitating peer-to-peer file storage and sharing,

conflicting the need for centralized servers. When combined with blockchain technology, IPFS

promises enhanced data security, rapid file retrieval, and consistent data availability across its

network. This combination offers a robust solution that ensures data remains secure, accessible,

and readily available, even when certain nodes become compromised (Anthal, Choudhary, and

Shettiyar 2023).

 68

In IPFS, data is initially divided into smaller blocks, with each block being assigned a unique

Content Identifier (CID) based on its content. When the user requests a piece of data, IPFS

employs mechanisms like the Kademlia Distributed Hash Table (DHT) and Bitswap to identify

which peers in the network possess the desired CID. Following the location determination, the

data transfer is facilitated primarily by Bitswap. There are also alternative transfer avenues

available, such as HTTP Gateways for applications not native to IPFS and Sneakernet for

offline scenarios. Once the data is received, IPFS ensures its authenticity and integrity by re-

computing and verifying the CID. Furthermore, the stored data can be accessed either directly

by IPFS nodes or indirectly via bridges like IPFS-to-HTTP gateways, ensuring versatility in

data retrieval (IPFS Docs n.d.).

In our architectural design, we begin by generating a file derived from the data we have

collected. This data is then segmented into discrete units, often referred to as "chunks" or

"packets." Each of these packets is bundled into a comprehensive block. This block is more

than just a collection of data packets; it is a detailed record that contains timestamps indicating

when the block was created. Additionally, it incorporates the preceding Content Identifier

(CID) from IPFS, establishing a clear lineage of data blocks. Once these blocks are fully

assembled with all the necessary components, they undergo a processing phase to transform

them into structured files. These files are then primed for submission to IPFS. it is worth noting

that for the very first block in this sequence, the CID is initialized to a value of 0, serving as a

starting reference point for subsequent blocks.

69

Figure 2.12 Data Structure in this Platform a with Chain Formatting

2.5 Forth layer (Application layer)

In the forthcoming section, we will explore an examination of the fourth and final layer of our

architectural framework. This layer is responsible for interacting with the third layer.

Comprised of applications and services constructed atop the middle layer, this layer is the most

prominent to the end-users. It encompasses smart home applications, connected vehicular

systems, digital healthcare solutions, and intelligent urban infrastructure. This layer affords

users access to data aggregated and processed in the preceding layers. Moreover, it facilitates

the visualization, analysis, and actionable insights derived from the network data. The

responsibility of application layer is to ensure secure and intuitive user interactions,

prerequisites for the efficacious deployment of an IoT architecture.

This layer is divided into two distinct sub-layers:

1. Authentication layer: This sub-layer is tasked with verifying the credentials of users,

ensuring that only authorized individuals gain access.

2. User Web Interface layer: This serves as the primary interface through which users

can interact seamlessly with the platform.

Within this layer, users or administrators possess the capability to authenticate themselves,

effectuate modifications to their devices, or monitor the operational status of said devices.

 70

The design and functionalities inherent to this layer are intrinsically tailored to the specific

requirements of the client or user. In our endeavor to enhance user experience, we have

pioneered a web-based user interface allowing users to securely store their cryptographic

private and public keys. To facilitate connectivity with the blockchain, this layer employs a

RESTful API. HTTP/S stands as a quintessential example of an application layer protocol,

witnessing widespread adoption across the digital domain.

2.5.1 Authentication

In this section, our primary focus is on the process of user authentication, which stands as an

integral and major aspect of the Application layer. This aspect is instrumental in safeguarding

the digital identities and access rights of both users and administrative personnel. User

authentication not only acts as the first line of defense against unauthorized access but also

maintains the integrity and confidentiality of sensitive information. By precisely review and

validating user credentials and access requests, it becomes possible to aid the overarching

security framework, ensuring that only legitimate users can interact with the system. In our

pursuit of offering robust and secure authentication mechanisms, we have incorporated two

distinct methodologies tailored to meet user-specific requirements and to address potential

security challenges.

1. Token-based Authentication: Upon administrative approval, a pair of public and

private keys is generated for the user, accompanied by a unique sequence of 13 to 17

random words. Utilizing these words, we create a JSON Web Token (JWT). The

primary interaction of this JWT is with the Middleware layer, especially the

blockchain.

a. JWTs are encrypted tokens facilitating secure data transfer between clients and

servers, composed of three elements: the Header (detailing encryption), the

Payload (holding user data and metadata), and the Signature (ensuring

authenticity). The website JWT.IO provides a tool for decoding and analyzing

71

the structure of JWTs, excluding their private signature (Akanksha and

Chaturvedi 2022).

Figure 2.13 JWT Example

2. Lightweight Directory Access Protocol (LDAP) Authentication: We have adopted

LDAP for authentication, and beyond its primary function, it serves to store user

profiles, which will be leveraged in future implementations. Our user base is divided

into administrators and general users. Administrators possess the privilege to enroll

new users, while general users primarily engage with the platform in a monitoring

capacity.

a. LDAP is a protocol used for querying directory services for years, serving as a

lightweight version of the X.500 protocol's Directory Assistance Service. Many

applications, including Microsoft's Active Directory Server, leverage LDAP for

managing directory services due to its lightweight nature. These services store

attribute-value pairs for users, applications, and devices. Enterprise applications

utilize LDAP for authentication across various platforms, including email

clients, SSH, servers, and workstations (Srinivasa, Pedersen, and

Vasilomanolakis 2022).

2.5.2 User interface

In this part, we explore further into the Application layer's second sub-layer, specifically the

User Interface (UI) element, a critical component that supports user interaction with the

 72

platform. This interface links users and the system's core functions, delivering a smooth and

natural experience.

Our approach to designing this sub-layer resulted in creating unique web interfaces. We used

ReactJS, a sophisticated JavaScript package, for the front end. Because of its speed, versatility,

and modular architecture, ReactJS stands out in front-end development, making it a popular

choice for creating dynamic user interfaces. Its position as one of the premier front-end

application libraries attests to its powerful capabilities. In the digital age, raw data typically

has little value without meaningful interpretation. Recognizing this, we have combined many

libraries to create a data visualization module. This module converts complicated datasets into

understandable visual representations, allowing users to gain insights and make educated

decisions based on the visualized data.

2.6 Chapter summary

Chapter 2 explains the architecture and design of the platform, segregating it into four distinct

layers to facilitate comprehension. Initially, the chapter introduces the overall architecture,

setting the stage for a deeper dive into each layer. The First Layer, termed the physical layer,

is explored with various case studies. It looks into the pairing of Pinnacle 100 and sensors, the

integration between Raspberry Pi and sensors, and presents the Automatic Dependent

Surveillance-Broadcast (ADS-B) as a unique device. Following the physical layer, the chapter

transitions into the Second Layer, which is the network layer. A case study focusing on the use

of PicoLTE as a network layer is presented, providing insights into its functionalities and

relevance.

As the narrative progresses, the Third Layer, commonly referred to as the middle layer, is

elaborated upon. This section dives deep into the essential components of the third layer,

discussing the role and significance of real-time data streaming through Apache Kafka, the

incorporation of Blockchain technology, and the structure and utilization of the database. The

chapter culminates with the Fourth Layer, which is the application layer. This layer is integral

73

for end-user interaction, and the chapter details its authentication mechanisms and the design

of the user interface. By the end of Chapter 2, readers gain a holistic understanding of the

platform's layered architecture, its components, and their interrelationships.

CHAPTER 3

Implementation of the platform

In this chapter, we explore the details of our implementation. The primary emphasis of this

thesis lies on the middle layer and application layers. We will explore our implementation

strategies for Apache Kafka, Blockchain, and our database, explaining how they were

integrated. A thorough examination of our authentication procedures will be provided,

including the chosen schema for authentication.

Furthermore, we will elucidate our approach to achieving real-time data streaming and provide

insights into the configuration specifics of the blockchain and authentication processes. Our

exploration will encompass the Blockchain's Software Development Kit (SDK) and detail the

coding methodologies employed for the server-side backend. In addition, we will highlight the

APIs leveraged during the development phase.

A comprehensive list of libraries used in our project will be presented, followed by an

explanation of our blockchain monitoring strategy. The platforms chosen for this monitoring

task will also be introduced.

3.1 The Implementation Process

In the course of our platform's implementation, we employed Docker images for

containerization. Docker, established in 2013, has emerged as a pivotal platform in the domain

of DevOps, securing the foremost position in the 2022 StackOverflow survey. The adoption of

containerization is projected to witness a significant upsurge, with forecasts suggesting that

85% of organizations will integrate it by 2025, a substantial increase from the 30% recorded

in 2020. Docker facilitates the deployment of software applications within lightweight virtual

environments termed as containers. This deployment is orchestrated via a Dockerfile, which

delineates the execution environment requisite for an application. DockerHub, an accessible

 76

repository, provides a platform for developers to disseminate and build upon existing Docker

images (Rosa, Scalabrino, and Oliveto 2022).

Upon utilizing Docker images, it becomes imperative to designate a specific port, either on a

local machine or a server, to facilitate access and interaction with the said container. We have

architected a Node.js server tasked with interlinking these containers to ensure cohesive

operation. The implementation process was initiated by integrating our real-time data

streaming mechanism, Apache Kafka. This was subsequently tethered to our primary database,

IPFS. The data processed via IPFS yields a CID, which is subsequently archived in the

Blockchain. This intricate implementation is segmented into three distinct stages, each of

which will be expounded upon, inclusive of specific configurations, in the ensuing sections.

Figure 3.1 Steps of Integration in This Platform

3.1.1 Real-time data streaming (KAFKA Apache) implementation

This section focuses on Apache Kafka's role in real-time data streaming, emphasizing its

containerized implementation for optimal execution across diverse platforms.

Utilizing a docker-compose file -- a tool that facilitates the orchestration of multi-container

Docker applications-- ensures systematic orchestration of Docker applications. Such approach

ensures uniformity in Kafka's execution across heterogeneous platforms. This file specifies the

implementation of three containers integral to the Kafka ecosystem:

1. ZooKeeper: Serving as a coordination interface, ZooKeeper is essential for ensuring

systematic communication between Kafka brokers and consumers. It plays a crucial

role in managing cluster metadata and maintaining broker leader statuses.

77

2. Broker: Central to Kafka's publish/subscribe (pub/sub) paradigm, the broker is

responsible for data storage and client request servicing. It is essentially linked with

ZooKeeper for coordination activities. Proper broker configuration is imperative, with

the Kafka Apache documentation providing authoritative guidance.

3. Control Center: This web interface offers an analytical overview of Kafka operations.

In this study, it is accessible via localhost:9021.

Figure 3.2 Apache Kafka Containers

To consider the scalability while the current configuration comprises a single broker within

one cluster, Kafka's design innately supports scalability. Its architecture allows for the addition

of brokers and clusters in response to increasing data demands.

Figure 3.3 Apache Kafka User Interface

 78

Figure 3.4 Apache Kafka Cluster Settings

3.1.1.1 Kafka integrated with Network (Producer)

This section provides a scholarly examination of Apache Kafka's "producer" component.

The Kafka producer interfaces with the MQTT protocol to receive data from a designated

second layer. In instances where data is transmitted using other protocols, such as LwM2M

with PicoLTE over 5G or 4G, an intermediary agent is employed. This agent's function is to

transcode the incoming data protocol to MQTT, ensuring compatibility with the Kafka

producer. Upon initialization, the producer subscribes to an MQTT topic, priming itself for

data reception. The ingested data undergoes serialization, being encoded to the "utf-8" format.

Subsequently, the KafkaProducer command dispatches the serialized data to the Kafka cluster,

associating it with a specified topic.

In Figure 3.5, three sensors are depicted as connected to a pinnacle. Data from these sensors is

transferred via the MQTT protocol through an intermediary agent. This data is then received

by the Kafka producer and subsequently relayed to the Kafka clusters.

79

Figure 3.5 Three Connected Sensors Data Format

3.1.1.2 Apache Kafka Integrated with Data base (Consumer)

In this section, we delve into the implementation of the consumer component within the

Apache Kafka framework. Once data or information is dispatched to the Kafka cluster by the

Kafka producer under a specific topic, it becomes the obligation of the consumer to retrieve

this data. The primary role of the consumer is to receive this data and subsequently forward it

to the requisite storage system. For the purposes of this study, we have selected the

InterPlanetary File System (IPFS) as our decentralized database.

To facilitate this process, we employed the `KafkaClient` function to subscribe to the Kafka

cluster, thereby enabling the retrieval of the pertinent data. Furthermore, we have instantiated

the 'Consumer' from the Kafka library, ensuring that the appropriate topics are selected for data

integration.

It is imperative to note that upon retrieval of the raw data from Kafka, there exists a necessity

to transform this data from its initial buffer format into a more accessible string format. This

step is crucial to ensure compatibility and integration with subsequent processing stages.

Figure 3.6 Receiving Raw Data from Apache Kafka Consumer

 80

Figure 3.7 Data after being Processed to String

Figure 3.8 Producer (left side) and Consumer (right side) Together

Figure 3.9 Three Topics Transferring in Apache Kafka Center

81

Figure 3.10 Detailed Topic with Parameters

3.1.2 Data Base Implementation

In the forthcoming section, we delineate the complication of our database implementation,

anchoring our discussion in the choices we've made regarding data storage strategies.

We have strategically opted for a combined off-chain and on-chain approach for data storage.

This necessitates the implementation of a database. In our pursuit of preserving the

decentralization of the platform, it is imperative to employ a decentralized database.

Upon rigorous evaluation of available options, we have zeroed in on the InterPlanetary File

System (IPFS) as our decentralized database of choice. IPFS is renowned for its decentralized

nature, ensuring the autonomy and resilience of our data storage mechanism.

To effectively integrate with the IPFS ecosystem, it is essential to establish a node. This allows

our platform to interact with the broader IPFS community. The establishment of this node

entails the installation of the IPFS node software. In our endeavor to connect this node with

our application, we diligently perused the official IPFS documentation, ensuring best practices

are adhered to. Initiating the node is achieved by executing the command “daemon ipfs”. Upon

successful initialization of IPFS, one can verify its operational status. For more intuitive

 82

interaction and real-time monitoring of IPFS, there's a dedicated web interface. This interface

can be accessed at http://127.0.0.1:5001/webui, providing users with a comprehensive

overview of the IPFS node's activities and status.

Data ingested from the Kafka consumer undergoes a transformation process. Initially, this data

is segmented into discrete chunks. Leveraging these chunks, we fabricate specific block types,

as elucidated in prior sections. Post block creation, this data is relayed to IPFS. A consequential

outcome of this process is the generation of a Content Identifier (CID). This CID plays an

important role in subsequent platform operations, particularly within our blockchain

implementation. To provide further clarity, raw data is transmuted into data chunks, as

expounded in our methodology section. This chunked data is subsequently relayed to IPFS for

persistent storage. Additionally, metadata, such as the timestamp marking the block's creation,

is appended to each data block.

Figure 3.11 IPFS Web User Interface

83

Figure 3.12 IPFS Status Web Page of Availability

3.1.3 Blockchain Implementations

In this section, we represent the procedure for deploying our Blockchain. As previously

discussed in the methodologies section, our choice of blockchain technology is Hyperledger

Fabric (HLF). This decision was informed by several considerations: foremost, the promising

performance metrics of HLF; its extensive support within the developer community; and its

inherent flexibility which enables us to accommodate a broad spectrum of operations.

To operationalize HLF, there are specific prerequisites that need to be addressed during the

implementation phase. Firstly, certain software components, including Golang, Docker,

Docker-compose engine, and Node.js, must be installed. Subsequent to these installations, the

next course of action is to download the binary file for HLF, specifically version 2.x. Although

version 2.x is recommended, it would be prudent to acquire the latest version to ensure optimal

functionality. Alongside the binary file, it is essential to download all pertinent Docker images

associated with HLF. To verify the successful download of these images, one can execute the

command “docker images”; this provides a comprehensive list of all the Docker images that

have been secured.

 84

Figure 3.13 Hyperledger Fabric Images

Once these preliminary steps are accomplished, the subsequent task is the generation of

certificate authorities for all the necessary organizations and orderers. This phase culminates

in the creation of a 'crypto-config' file, which consolidates all the indispensable keys for the

holistic functioning of HLF. With this file in place, our next responsibility is the configuration

of our artifacts. This entails defining the plethora of parameters associated with the Blockchain,

such as the specific consensus algorithm employed and the criteria for the formation of a new

block. It is worth noting that a genesis block—often referred to as the inaugural block or block

number 0—will be generated during this phase.

Figure 3.14 Containers Created in Hyperledger Fabric

Following the successful conclusion of these preparations, our attention then pivots to the

configuration of our docker-compose file. This is instrumental in initiating all containers and

facilitating their seamless interconnection. For the current deployment, we utilize CouchDB as

85

our blockchain database. As a case in point, this deployment encompasses three organizations,

each equipped with a single peer, and an aggregate of three Orderers. The ensuing phase is

focused on channel configuration. For the purpose of this demonstration, all organizations have

been integrated into the channel, and its deployment is now in progress.

Figure 3.15 Chaincode Deployment

Concluding this process, the deployment of our smart contracts takes precedence. As an

illustrative example, two smart contracts have been conceptualized and will be sequentially

deployed.

Figure 3.16 Smart Contract Deployment on Each Peers

 86

3.1.3.1 Smart contracts

In the subsequent discourse, an examination of the implemented smart contract structures will

be presented, elucidating their operational mechanisms and the integral roles they occupy

within the proposed system. Fundamentally, a smart contract is a digitalized agreement that

parallels conventional contracts. However, it possesses distinct attributes: it is autonomously

executable and verifiable. Such contracts facilitate the automatic enforcement of obligations

and associated actions upon the fulfillment of predefined criteria. This eliminate the

requirement for intermediate agents, thus cementing trustworthiness amongst engaged entities.

Within the framework of Hyperledger Fabric, a notable Blockchain infrastructure, the decision

was made to architect our smart contracts utilizing GoLang. This choice is predicated upon

GoLang's performance metrics and the substantial backing from the Hyperledger community.

Each contract encompasses various functions, each precisely tailored for an explicit task, thus

ensuring the contract's efficient performance.

To explain the architectural framework:

1. User Management Smart Contract: This represents the foundational for

orchestrating user engagements within the Hyperledger Fabric infrastructure. It not

only facilitates administrators in the registration of users with efficacy but also grants

upon them the capacity to designate distinct roles. Such design ensures that users can

exclusively interface with data and functionalities compatible to their designated role.

In addition, this contract functions as a repository, preserving a thorough record of

users, their corresponding entities, and attendant devices. It essentially functions as a

core for users operations.

2. Data Management and Verification Smart Contract: In the contemporary digital

era, data stands as an invaluable asset. Acknowledging its paramount importance, a

distinct contract has been devised to supervise, authenticate, and determine the

consistency of the data incorporated into our platform. This contract employs a

stringent methodology for data validation. Each data fragment is tagged with a CID

87

(Content Identifier), which undergoes a cross-referencing process to validate its

authenticity and structural integrity. Notably, the CID is architecturally configured to

establish interconnectedness, culminating in a chain configuration. This interconnected

structure offers a lucid and graphical delineation of data origin, ensuring transparency

in tracking the data's provenance and subsequent alterations.

In conclusion, the combinations of these two smart contracts establishes a fortified groundwork

for the proposed platform, ensuring the streamlined and inviolable administration of users and

data.

3.1.3.2 Blockchain Software Development Kit

In the subsequent section, we shall delve into a detailed analysis of the Hyperledger Fabric

Software Development Kit (SDK).

In the context of Hyperledger Fabric, an SDK, or Software Development Kit, is a set of tools

that allows users to interact with the blockchain system. Users utilize the SDK in pair with the

Membership Service Provider to operate within the Hyperledger Fabric system. The endorsing

peer, after simulating a chaincode for a requested user on a specific set of peers, sends back

permission to an application SDK. The SDK plays a significant role in the process, as the

ordering service gathers endorsed transactions from it. This ordering service then forms blocks

based on the sequence of transactions and subsequently distributes them to every peer node in

the channel (Su Wai, Htoon, and Myint Thein 2020).

 88

Figure 3.17 SDK in Hyperledger Fabric
Taken from Su Wai et al (2020, p. 2)

Utilizing this SDK facilitates interaction with the Hyperledger Fabric (HLF). It provides a

sophisticated, high-level Application Programming Interface (API) that enables transactions,

inquiries, and other related operations. For the purposes of user registration, transaction

invocation, and historical queries, we have employed a JavaScript file.

3.1.3.3 Blockchain Authentication

In this section, we delve into the mechanisms by which the blockchain facilitates connectivity

of users and devices to the platform. Within this architectural layer, we have incorporated the

use of the JSON Web Token (JWT) to authenticate and verify every user and device. This

token is uniquely designated for each user as well as the devices associated with them.

To ensure secure access, users are required to generate both a public and a private key, based

on the RSA 1024-bit encryption standard, through a passphrase ranging from 13 to 17 words.

These keys subsequently aid in the creation of the JWT, which possesses an expiration

duration. For enhanced security, this token has a relatively short lifespan and needs to be

89

regenerated every few months (depend on the admin’s permission). A concise expiration

period inherently boosts the security profile of the JWT. Importantly, with this secret

passphrase, users can regenerate their public and private keys as needed. When required, the

token can be regenerated using the aforementioned public and private keys.

Here are some examples of secret passphrase and public and private key related to them.

Secret key1: affect direction triangle produce shelter him wonderful acres zipper huge score

slept made article search lay bit

Public key:
-----BEGIN PUBLIC KEY-----

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDs0GLED4HKFo5s/ID3bT2hJ/9

g

x3ibjOx0YgOGagx5s2NwrIC0sfRzB4+6Rk5IAGqA3GM2GNG8N4UFg808E834V3E9

kxQyvNN04eNheECe19ex56yoDOzWfp1upunVIa8A6nxfW8v4v9FBgnrDbMf8AIAI

JtFUVom/jdU1KbQOuwIDAQAB

-----END PUBLIC KEY-----

Private Key:
-----BEGIN RSA PRIVATE KEY-----

MIICXQIBAAKBgQDs0GLED4HKFo5s/ID3bT2hJ/9gx3ibjOx0YgOGagx5s2NwrIC0

sfRzB4+6Rk5IAGqA3GM2GNG8N4UFg808E834V3E9kxQyvNN04eNheECe19ex56yo

DOzWfp1upunVIa8A6nxfW8v4v9FBgnrDbMf8AIAIJtFUVom/jdU1KbQOuwIDAQAB

AoGBALQXGTT+kfZMRw2szKrdQYP/9d70cszgU6WCMCoVFd2rRVEXbl18A2lC89N1

yexJnLTYZP5ry3w2QIvcGsS4TuY5jeRDI/Q4uxkMVOYGjCW86NtZjoJ8geaTSnmC

cWhii9Nr2wzNYTYfmq0238tmHYtubIpEtzqzwky5OxYV0kbZAkEA+3qTd84FTeiQ

XQ8c80sqVwGePEhgdvwAiWL/P0oUc9dJWcJS+Yn8YPSeZM9K79VSl/XwB+coV4xp

biyKf1vFlwJBAPESUL75e2ByPyqTRz/tjwshHs77yBoSNRsv4W+26giZXWEuNoWT

l7NRYFFIHkkoDaNH8ouwTSxLOsTUlRuajH0CQAogWnXVjvMfLUkCBclqOm88enG0

/GVuKltd6CdVRVOQ1LxPjeXMf6Qr1YD7s+nKbkP+PEclMMOtvMUZ+A2+1UsCQDKh

 90

KhwxwVusIuAKNniSp+wqdJH8BzaShFzFXY9c1yIfM6FpV0IOkVmzyYrInrO2mcal

Iad8y3h2BE26Z+Z4OvECQQDXmOmuc2+NbXY28l+hHcMNBfi/VtBzfDZ2c+qilb+r

qRbrhRRPeCSQPlpqmJ9CgIQ6y7MQST8taDmM2Inbj+Nd

-----END RSA PRIVATE KEY-----

Secret key2:
measure mud gentle combination situation damage somewhere speak author further off solid

upper therefore whale away design search

Public key:
-----BEGIN PUBLIC KEY-----

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCyM/P9jd8ewpixr0U3Mzuscbb

N

YpzyvunX9W7oB1VboJp9/LogURtzJR+s3fwvmA21FHmDwdYoW5PRFnWlB/TWr74v

nrzeLmqQW8pasBQVzWMBpC/dNPQNWXTysUWglfhm9XFwXNCok6wORGED9HKn//

8n

S4RvKdjk6SL/TQnmRQIDAQAB

-----END PUBLIC KEY-----

Private key:
-----BEGIN RSA PRIVATE KEY-----

MIICXQIBAAKBgQCyM/P9jd8ewpixr0U3MzuscbbNYpzyvunX9W7oB1VboJp9/Log

URtzJR+s3fwvmA21FHmDwdYoW5PRFnWlB/TWr74vnrzeLmqQW8pasBQVzWMBpC/d

NPQNWXTysUWglfhm9XFwXNCok6wORGED9HKn//8nS4RvKdjk6SL/TQnmRQIDAQ

AB

AoGBAJpwFgtvUafZ4/VRvb2qJBQ99Lwos3ZY6FZl+TkTafFfzaRUS4ZIZG61BK+P

LsickXyWgv0iFxSg0QlK2qgsrg2QoO9QzvLUAtt2iCXCjW46A3tFVWcpx68CC7cL

MfDU9k42dEwCHxDp7WknyBX7CEWFbJQb8gU0MJK20lToonVBAkEA7ei4bnQCKXS9

a/C9+3IGFksQ7HPOyNBIBVA9RV/wK3vjlgcpDUmzVxEbbwtytTs0f4Gjp8+5o+2f

Kur+QpTH0QJBAL/A9Sw6E8P+ZQnlFhslUaL+C3E0xchCnXaH2tv+THshktDUXUSr

91

NuBUrNkR15CCPzt7vrWjyJesmWDb+JueCDUCQD0zX7ZyO1gkwtGwpX64j15OwzTA

edJo2g4b3RcqneLhxOMERog3jF36dZ80R7bdWxzt4Ya6xhuodgiZWP0RvvECQQCl

21K1NG7QQgRG8L2UMU1RfAeNnaXNN8FXOt8VFfo1Lq78rhMWSDmpA9SV1RbtSZt

D

6h7koYvplUL9Qobgo2pZAkBz3WoCz0TiwbiYn/xBLtqe2HWxSlMYpfWUR3qaMQyA

FDMZJyeclR+VPKgOk/a1hYdSg/7sawBPNPyPxYENWvRN

-----END RSA PRIVATE KEY-----

Token:
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjEwMTY5MzQwOTIwNywidXNlc

m5hbWUiOiJqaGFpanNjIiwib3JnTmFtZSI6Ik9yZzEiLCJpYXQiOjE2OTM0MDkyMDd9.g

W-_9KXNzEdrlV0q2XNLUp9TuSL3LeqCxE3Uf9MRfhXlRC_c06ol-

7YtIYUDzbnvIitOLULBN4Hq4Pd7EHR5ZpIqYFPDqrs91FPGAOmPxU23-

PqyGwzKQjX4fKxnkWPBGGxMmSpk7PjMvPijVxVJvbKxuJjdezfz7_J2w0RD9Ow

3.2 User Interface (UI) implementation

In the subsequent discourse, attention will be devoted to the fourth layer, conventionally

referred to as the application layer. This particular layer assimilates data transferred from its

predecessor, the third or middle layer. Functionally, the application layer provides a

quintessential interface, presenting data in a manner favorable to academic and professional

examination. Users are granted the capability to access their designated accounts, therein

obtaining the current status of their respective devices, perusing pertinent information, and

initiating direct engagements with said devices.

The application layer is divided into two distinct sub-layers:

1. The primary sub-layer is predominantly concerned with the authentication of users,

necessitating rigorous verification of their credentials.

2. The secondary sub-layer, in contrast, is primarily oriented towards facilitating

interaction with the third layer, serving as a conduit for device communication.

 92

3.2.1 Authentication in UI

In the designated sub-layer, we have introduced an authentication mechanism to enhance the

security of the fourth layer. Specifically, we have employed an authentication process for web

users, facilitating their ability to securely log into their accounts.

We have adopted the Lightweight Directory Authentication Protocol (LDAP) as our primary

authentication mechanism. Beyond mere authentication, LDAP also supports the storage of

customer profiles. Integral to the operation of OpenLDAP is the necessity for a schema tailored

for authentication. Accordingly, we have designed a schema to manage both users and

administrative roles, ensuring streamlined management and enhanced security.

The LDAP system we have implemented is divaricate into two main components. The first

component involves the deployment process, which utilizes a docker-compose file containing

the OpenLDAP image alongside a web interface, phpLDAPadmin.

The user interface is presented in a graphical format, allowing administrators to manage user

profiles with ease. Additionally, an Application Programming Interface (API) has been

developed to bridge the user interface and the LDAP container. This API serves a plethora of

functions: querying user profiles, verifying passwords, modifying passwords, adding email

addresses, and more. For backend interactions with OpenLDAP, we have integrated the ldapjs

library.

Figure 3.18 LDAP User Interface

93

Figure 3.19 Schema Created in LDAP

Figure 3.20 User Profile in LDAP

 94

3.2.2 Web interface

The second sub-layer within the fourth layer is designated as our web interface. Once users

authenticate and gain access to their respective accounts, they are endowed with the capability

to engage with the platform. It is incumbent upon the administrator to incorporate both users

and devices. For the development of the interface, we employed ReactJS, a renowned

JavaScript library that emphasizes component-based architecture.

We have designed a dashboard, enabling users to connect and interact within their designated

space. The registration of these devices is orchestrated through a smart contract, tailored for

the efficient management of devices and users. Upon successful registration, a unique UUID

is generated for each device. Within this section, we also emphasize the importance of data

integrity. We meticulously examine each block to ensure that its hashed data is properly linked

and chained, safeguarding the consistency and reliability of the entire dataset. Visualization

techniques have been implemented using an array of libraries, including react-plotly.js.

Figure 3.21 Web User Interface Dashboard

95

Figure 3.22 Block of Data Requested by User to be Visualized

Figure 3.23 CID's Requested from
Hyperledger Fabric

 96

Figure 3.24 Visualized Data from a Sensor
3.3 Real-time data visualization

In this section, we clarify the methodology employed for the implementation of real-time data

visualization. Utilizing the Hyperledger Fabric (HLF), one can essentially retrieve historical

data. A notable limitation of Blockchain technology is its non-real-time nature, subject to

delays contingent on network performance. To mitigate this challenge, we have instituted a

mechanism that enables the acquisition of real-time data via a websocket. Subsequent to this,

the data is presented through a developed web-based user interface.

Web Socket, a protocol grounded on remote server-client interactions, was formulated to

minimize communication overhead. Its security framework mirrors browser-based models.

Communication initiation hinges on a handshake process between the client and server (Kumar

N.V. and Kumar P. 2020). During the implementation phase, as data is procured from the

Kafka consumer, a websocket is established, suspended for a handshake with the end user.

Upon server validation of the JSON Web Token (JWT) - previously outlined - to authenticate

the user, the handshake reaches completion. Consequently, users can view real-time data

within the user interface.

97

3.4 Data Encryption/Decryption method

In the following section, we shall discuss encryption methodologies. Encryption is vital for

ensuring the security and privacy of data, IoT devices, with their limited computational

capabilities, encounter challenges in implementing robust cryptographic standards like the

RSA algorithm. However, the selection of an appropriate encryption method for these devices

underscores the need to safeguard data effectively. This is evidenced by the emphasis on

optimizing computational load, memory requirements, and energy consumption—all factors

critical for effective encryption in constrained environments. The ongoing discussions about

RSA key lengths further highlight the significance of strong encryption in protecting

information from potential vulnerabilities or unauthorized breaches (Nartey et al. 2021).

Figure 3.25 Energy Consumption for Different Algorithms
Taken from Nartey et al (2021, p. 14)

Owing to its comparatively lower energy consumption relative to other RSA encryption

variants, we have selected RSA with a 1024-bit key size. We have implemented end-to-end

 98

data encryption to ensure data integrity and confidentiality throughout the transmission

process. Data can then be decrypted by the end-users utilizing their unique private keys. The

encryption is executed using the public key, whereas decryption is facilitated using the private

key.

Example of encrypted data:

"YS1u2eYzHTO0Moida/mBDmRX/ib5pIFhx1TpUvCn9OVTBoaDTnY4hiFiG0V066LZww

tagRZuAS1tG+bmeJOOMrffx1zK/LwvS77LstCV4+WpAgtctrEnBn8JI/MB9G7PEG2vEyiH

liUt1NPVvLvvo+lv5n/3u5A/sBsE0fCdVkxnKsPiUpxNZr6OPdBsiYKoSe4WzkHBPXHJ2Ja

LCqtIOCh2teDuf/ATQ6GyV//n1rAUlZ7HreWR0Kvxrrm1dvSCi+Hsnzq+zlnCwwud37oNx

Xpcjj9e1yCywWzMxPB0kTOaPyngkNa42AvSQYAvn5pIGruvL3STosyefZ0bvsvO+y9QA

QcA686tLKAhdHSN0hlscuKZDf4acJmGLgDG2ZNOS/57TERw7N/2Fw07l0axE42ZU9z9y

VAyq24MjzKOFu3EV8eCovqSUoTH/7CFj8KNnFBHzs4GfY99i9b4Y95S4Br+BW8vLN0t

R8VSTjC/cb4N2IvpI1huS+nTACM+xDptfpnAwbYg29/ZKlt5sW3fnYycYxISuLvARnnW

mP7y4DrOOu+oatI0ph+PDTJEL5/V5YOldB8OJ+Ef2KZUHhTccMUSkyFaeTLbV6ZScjwg

n8ieqBHDJSxt1f1jmPBFaT+5YOYeGgzPvlIKMUimKB3wy9cj1mYvSWjCTSw9VJSyutpC

8TJLa13EUkGnse+nRtxVCpH5bne/4tI2g70egtyUW+yi1cEbA9vsETgmtM5Wc9aJoMhBai

mF/szFs4pBO/E8YZw7V018PHl2KSc94oXAaAwQZiR3rOqPUd6mUzQkeNSZWPM//y0b

ZJVpYKgkaCY3rBZn4H8qPy0n7jokWHbEpA=="

3.5 Chapter summary

In this chapter, we discussed the implementation of the third and fourth layers. A

comprehensive exploration of each step was undertaken to ensure the effective integration of

essential technologies required for the deployment of the platform. We examined the

incorporation of real-time data streaming technologies, specifically Apache Kafka, and how it

has been synergized with the decentralized database, IPFS. Additionally, the method by which

the database is integrated with the blockchain system, known as Hyperledger Fabric (HLF),

was elaborated upon. Our discussion further expanded on the deployment of Kafka and IPFS.

99

For the deployment of our HLF, each step was described, highlighting procedures such as

joining channels, understanding the roles and responsibilities of smart contracts, and the use

of the SDK. we addressed the SDK utilized and elucidated the procedures to authenticate each

user. The paramount importance of security was acknowledged, and as such, we traversed the

topic of end-to-end data encryption. This is critical in fortifying the entire platform.

Additionally, we outlined methods to verify the integrity of data received from various devices.

Lastly, an in-depth analysis of the fourth layer's implementation was provided, detailing all

sub-layers pertinent to authentication and visualization processes.

CHAPTER 4

Results and Evaluation

In this chapter, we shall present a comprehensive report of the research findings obtained from

evaluations and analyses of the platform. The analyses will be divided into three segments:

1. In the first section,

a. Assess the performance of Apache Kafka.

b. Pay attention to its latency and system resource utilisation.

2. In the next section:

a. Examine the performance of Blockchains.

b. Emphasise transaction rates as well as accompanying latencies.

3. Analyse system resource utilisation in the third segment.

a. Examine the use of the central processor unit (CPU) and random-access

memory (RAM) in particular.

For assessing the performance of the Hyperledger Fabric (HLF), we employed two primary

Hyperledger tools: Hyperledger Caliper and Hyperledger Explorer.

4.1 Kafka performance

In the domain of distributed systems research, an analytical exploration was conducted to

assess the performance metrics of Apache Kafka, a prominent open-source stream-processing

software platform. Metrics pertaining to performance and latency were ascertained using the

Kafka Control Center, an instrumental platform facilitating real-time monitoring capabilities

of each constituent broker. The computational environment for the assessment comprised a

MacBook Pro with an M2 Pro chip and 16MB RAM, wherein Kafka was operationalized with

a solitary broker. Data processing was conducted at a sample rate of 0.01, with the scope of

topics oscillating between 50 and 1,000, encompassing both creation and subsequent

processing.

Upon analysis under multifarious scenarios, latency was discerned in two principal modalities.

The initial modality pertained to the producers' request latency, which unveiled an obvious

 102

correlation between the escalating number of topics and concomitant latency. Pertinently, for

the 99.9% percentile of the data set, latency exhibited an increment from an initial 5 ms,

culminating at 40 ms.

Figure 4.1 Request Latency in Apache Kafka Producer

Subsequently, consumer-derived latency was scrutinized, revealing values commencing at 500

ms and terminating proximate to 700 ms.

103

Figure 4.2 Request Latency in Apache Kafka Consumer

Figure 4.3 System Pool Usage in Apache Kafka

Expanding the analytical purview, system pool usage was subjected to rigorous examination.

This analysis was bifurcated into (Confluent Documentation n.d.) :

1. Network Pool Usage: A metric signifying the mean network pool capacity utilization

across the entirety of brokers, effectively quantifying the temporal percentage wherein

network processor threads were operative.

 104

2. Request Pool Usage: Serving as an indicator of the median request handler capacity

employed across all brokers, quantifying the temporal duration when the request

handler threads were in an operative state.

An emergent trend was the augmentation in system pool usage concomitant with an expansion

in topic numbers. The findings elucidated an anticipated amplification in the non-idle system

usage percentage. This scholarly investigation of Apache Kafka highlight its inherent

scalability and efficacy. However, it also foregrounds the consequential augmentations in

latency associated with intensified system demands. Forthcoming research endeavors are thus

recommended to investigate potential optimizations, aiming to attenuate latency repercussions

while accentuating resource utilization efficiency.

 In our comprehensive evaluation, we observed a failure rate of zero percent. This indicates

that there were no issues related to data queuing and processing. Further examination of this

result suggests an optimal efficiency in the system's handling and management of data. This

absence of data backlog and processing delays is suggestive of a robust and well-optimized

system infrastructure, which warrants further investigation to understand the underlying

factors contributing to its commendable performance. To enhance the system's availability, we

can also consider augmenting the number of brokers.

4.2 Blockchain performance

In this section, we assessed the performance of the blockchain using our specified settings and

configurations. The evaluation comprises two distinct segments:

1. Monitoring conducted via Hyperledger-Explorer.

2. Analysis performed using Hyperledger Caliper.

Hyperledger provides a suite of tools designed to optimize and visualize blockchain operations.

Caliper is one such tool, dedicated to benchmarking Blockchain implementations. Through its

predefined use cases, it evaluates the performance of several blockchain solutions, including

Ethereum and multiple Hyperledger systems, producing detailed performance reports. Another

105

significant tool from Hyperledger is the Explorer. Explorer offers a user-centric platform to

view and interact with blockchain data. Users can view, invoke, and query various Blockchain

details, and the tool also boasts the flexibility to integrate with diverse authentication platforms,

enhancing its usability and adaptability (Punathumkandi et al. 2020).

For these tests, our experiments were conducted on a MacBook Pro M2 Pro, detailed with the

following specifications:

• CPU: Apple M2 Pro chip (10-core)

• RAM: 16GB unified memory

4.2.1 Monitoring with Hyperledger-Explorer

This study aims to investigate the Hyperledger Explorer, focusing specifically on its

implementation perspective. Hyperledger Explorer is an essential tool that facilitates the

monitoring and interaction with blockchain infrastructures. A brief overview of the file

structure pertinent to this tool is presented:

1. Test-network.json: This file encompasses details concerning the specific network

underutilization.

2. Config.json: Within this document, one defines the network organization and

associated peers.

3. Docker-compose: Herein lies the definitions for the Hyperledger Explorer containers

and the corresponding environment configurations.

For successful integration, it is paramount to incorporate the credentials from Hyperledger

Fabric (HLF) into our respective files, notably the Crypto-config. This integration ensures that

Hyperledger Explorer establishes an uninterrupted connection with the Blockchain.

Hyperledger Explorer is a versatile platform, offering users the capability to interact with and

scrutinize various blockchain operations. It provides access to a plethora of information,

including but not limited to, details on smart contracts, individual blocks, transaction specifics,

 106

and transaction counts. Subsequently, we shall delve into the salient features of Hyperledger

Explorer.

Figure 4.4 Hyperledger Explorer Main Dashboard

Figure 4.5 Running Network in Hyperledger Fabric

107

Figure 4.6 Transaction Details on Hyperledger Fabric

Figure 4.7 Details of Each Block Created by Hyperledger Fabric

4.2.2 Evaluation with Hyperledger Caliper

In the following subsection, we employed Hyperledger Caliper to evaluate the performance

and structure of our Hyperledger Fabric (HLF) implementation.

The architecture of Hyperledger Caliper can be delineated into the subsequent categories:

 108

Benchmark Configuration: This governs the specific test scenarios that are run. Within this

configuration file, we determine the number of transactions (Tx), rate controls, and the quantity

of workers assigned to execute transactions. Additionally, the transaction duration and rate

control for inquiries from the blockchain are stipulated herein. Concurrently, the monitoring

of peers and orderers is conducted.

Network Configuration: This section delineates the specific nature of our blockchain. It

includes the naming conventions for channels, coupled with detailed information on the

credentials of the participating organizations.

Workload Configuration: This part pertains to the JavaScript files, detailing the procedures

for executing transactions and making inquiries to the blockchain.

In Hyperledger Caliper, the worker plays a pivotal role in benchmarking (Anon n.d.):

Activation: It starts upon receiving a message from the manager to initiate the next round.

Workload Generation Loop: Primarily, the worker operates within this loop, which involves:

1. Rate Controller's Delay: The worker waits for the rate controller, which determines

when to process the next transaction, based on set rates.

2. Interaction with Workload Module: After approval from the rate controller, the worker

lets the workload module set up and send the transaction details to the System Under

Test (SUT).

3. Progress Reporting: Throughout, the worker updates the manager about its progress.

In essence, the worker in Caliper manages transaction benchmarks based on rate controller

cues and updates the manager (Choi and Hong 2021).

Sample Reports: These are generated post-experimentation and provide insights into the

performance metrics. Here is how the latency and throughput will be calculated in Hyperledger

caliper (Choi and Hong 2021).

Latency: The time difference between when a transaction is sent and when it's committed.

a. Latency = Confirmation time – Submit time

109

Throughput: Indicates the number of transactions carried out per second.

b. Throughput = Committed txs / Time ∈ seconds

4.2.2.1 Throughput results

In our recent series of experiments, we aimed to understand the performance scalability of our

system. We varied the number of workers involved to see how this might affect the throughput,

specifically using teams of 2, 5, 10, and 20 workers. Alongside this, we also manipulated the

transaction counts to study its effect on performance. The tested transaction counts were 1,000;

2,000; 3,000; 4,000; 5,000; 10,000; and 20,000.

The results from these tests were insightful. When observing the Transaction Per Second (TPS)

rate, the range started from a minimum of 366.4 TPS. Interestingly, as we increased the

transaction number to its maximum, the peak throughput also soared to as high as 798.3 TPS.

This gave us a clear picture of how the system performs under varying loads.

However, it is worth noting that while our system was able to handle higher loads, there was a

trade-off in terms of reliability. The failure rate, which started at a commendable 0%, increased

to 10% when the number of workers are increased to 20 as we reached the higher ends of our

transaction count tests 20000 transactions. This indicates potential areas of improvement in

our system's resilience and reliability under heavy load conditions.

Additionally, we also conducted a separate "Read an Asset" test. In this test, the throughput

results showed a similar trend. The TPS ranged from 655.2 at its lowest to 970.5 at its peak. It

demonstrates the system's consistent performance across different types of operations.

In conclusion, these experiments provided valuable data on how our system performs under

different conditions. While we are pleased with the scalability in terms of throughput, the next

steps would involve addressing the reliability concerns highlighted by the increasing failure

rate at higher transaction counts.

 110

Figure 4.8 Transaction Throughput (TPS) in Hyperledger Fabric

Figure 4.9 Inquiry performance (TPS) in Hyperledger Fabric

4.2.2.2 Latency results

The conducted study aimed to understand the influence of varying numbers of workers and

transaction counts on the latency of a Hyperledger Caliper benchmark. Four sets of workers -

111

2, 5, 10, and 20 - were paired with transaction counts ranging from 1,000 to 20,000. The results

indicate a clear trend.

Minimum Latency: As we increased the number of workers, there was a notable rise in

minimum latency. For 2,000 transactions, for example, the latency increased from 1.415 ms (2

workers) to 1.99 ms (20 workers). Yet, intriguingly, for 10,000 transactions, latency dipped to

1.705 ms with 2 workers but escalated to 7.935 ms for 20 workers.

Average Latency: A consistent trend was observed here: as both the number of workers and

transaction counts increased, the average latency consistently went up. With 2,000

transactions, the latency went from 3.485 ms (2 workers) to 4.715 ms (20 workers). For the

highest transaction count of 20,000, the latency ranged from 11.625 ms (2 workers) to 15.555

ms (20 workers).

Maximum Latency: This too followed a consistent growth pattern. At 2,000 transactions, we

saw an escalation from 4.75 ms (2 workers) to 6.445 ms (20 workers). By 20,000 transactions,

the latency increased from 16.04 ms (2 workers) to a significant 20.93 ms (20 workers).

In summary, while an increase in workers leads to higher latencies, a rise in transaction counts

amplifies this effect, particularly evident in the average and maximum latency metrics.

 112

Figure 4.10 Maximum Latency for Transactions in Hyperledger Fabric

Figure 4.11 Minimum Latency for Transaction in Hyperledger Fabric

113

Figure 4.12 Average Latency for Transaction in Hyperledger Fabric

4.3 System resource utilization

In the following section, we shall provide an in-depth exploration of the procedures and

methodologies employed to monitor CPU usage and memory of the platform. To optimize and

oversee resource consumption, three distinct containers have been utilized. The initial

container, known as the 'node exporter,' facilitates the measurement of diverse machine

resources, encompassing memory, disk, and CPU utilization. After this, 'Prometheus' serves as

our primary data repository. Lastly, 'Grafana', an open-source analytics and monitoring tool

compatible with various databases, has been incorporated. It should be noted that Prometheus

is contingent upon the functionality of the node exporter, while Grafana, in turn, relies on

Prometheus.

The execution phase will encompass the initiation of all containers. Subsequent to this, we

shall access Grafana to integrate the data source and establish a dashboard, thereby visualizing

network consumption in a comprehensive manner.

 114

Figure 4.13 RAM Usage of Apache Kafka

Figure 4.14 CPU Usage of Apache Kafka

115

Figure 4.15 CPU Usage of Hyperledger Fabric

Figure 4.16 RAM Usage of Hyperledger Fabric

4.4 Chapter summary

In the present chapter, we undertook a rigorous analysis of Hyperledger Fabric in conjunction

with real-time data streaming. Utilizing the Hyperledger Explorer, we successfully monitored

the Hyperledger Fabric (HLF) and ascertained the throughput of both Kafka and HLF.

 116

Further enhancing our methodology, resource monitoring was implemented utilizing tools

such as node-exporter, Prometheus, and Grafana, enabling a detailed observation of CPU and

RAM consumption associated with the aforementioned technologies. Our findings indicate

that as the data volume escalates, there is a corresponding increase in both latency and resource

utilization.

CONCLUSION

In the following chapter, a thorough examination of the platform in question will be

undertaken. Emphasis will be placed on illustrating the inherent advantages and delineating

the features that confine its distinctiveness. In the spirit of scholarly rigor, it is important to

acknowledge the limitations concomitant with the present research and the challenges

encountered during its empirical implementation. Such recognition not only ensures an

objective appraisal but also paves the way for future scholarly endeavors. Concluding this

discourse, a prospective analysis will be offered, contemplating potential advancements and

innovations. By articulating this prospective trajectory, the intention is to provide a robust

framework for future explorations and a clear direction for subsequent academic inquiries.

Discussion
In this section, we elucidate the myriad benefits and advantages conferred by the adoption of

this architecture. Through this implementation, organizations stand poised to actualize a

plethora of invaluable outcomes and augment their operational efficiency.

Security: Through multi-faceted security protocols, robust protection is assured. Initial user

authentication is managed at the primary layer, while an amalgamation of public and private

keys engenders the creation of a JWT (JSON Web Token), reinforcing the Blockchain's

security. The Blockchain's intrinsic security mechanisms are especially salient. Furthermore,

Hyperledger Fabric, a private permissioned blockchain, engenders trust among its user

community.

Integrity: The Blockchain functions as an indelible ledger, thus guaranteeing data integrity.

Once an entry is etched into the Blockchain, its immutable nature ensures resistance against

tampering or alteration.

 118

Privacy: Data encryption forms the bedrock of user privacy. Data decryption and access are

restricted solely to users in possession of the requisite private keys, guaranteeing the sanctity

and confidentiality of the information. Consequently, sensitive user data remains impervious

to unauthorized access or exposure.

Access Control: Administrative personnel are endowed with the discretion to harness and

discern the insights derived from the data. This circumscribed access ensures administrators

can judiciously utilize analyzed data for decision-making, while concurrently upholding user

privacy.

Scalability: Hyperledger Fabric, the framework of our choice, is distinguished for its

impressive scalability, demonstrated by its commendable transaction per second (TPS) rate.

Moreover, our avant-garde data architecture facilitates adept management of the platform's

efficiency. There exists a capability to modulate the data block size responsively, aligning with

fluctuating demands, thus assuring unparalleled scalability.

Data Preservation: Harnessing the innate database functionality offered by Kafka, the

platform retains data indefatigably. In scenarios where Blockchain latency might surge

temporarily, data is securely ensconced within Kafka's database until it is transmitted to the

Blockchain. This guarantees unerring data preservation and reliability.

In summary, in the proposed architecture, organizations are positioned to benefit from a suite

of enhanced features that amplify operational efficiency. Central to this architecture's prowess

is the unparalleled security facilitated by multi-layered authentication protocols and the

inherent protective mechanisms of the Hyperledger Fabric. This framework guarantees data

integrity through its immutable Blockchain ledger and ensures stringent user privacy via

encryption, rendering unauthorized access virtually impossible. Furthermore, administrators

are empowered with selective access, fostering judicious decision-making without

compromising user privacy. Scalability is a hallmark, with the capacity for dynamic

119

adjustments to meet changing demands, and data preservation is ensured, courtesy of Kafka's

robust database functionality, ensuring no data loss even in high-latency scenarios.

Research limitation
To ensure a comprehensive understanding, it's pivotal to acknowledge that every technological

platform, regardless of its sophistication, inherently possesses certain limitations. While efforts

have been made to attenuate these constraints, the following elucidates some of the intrinsic

challenges associated with the platforms under discussion:

Performance Implications in Hyperledger Fabric: The efficiency of Hyperledger Fabric is

influenced by a myriad of factors. Among them are the size of the network, its configuration,

and the intricacy of the chaincode. These elements can potentially constrain its capacity to

process elevated volumes of transactions.

Cost Implications: Implementing a system that incorporates Hyperledger Fabric as a

blockchain and Kafka as a real-time data streaming network necessitates substantial

infrastructure and resources. Such requirements can escalate the overall financial outlay

associated with the deployment and continuous operation of blockchain applications.

Deployment Complexity: The integration of a comprehensive system involving Hyperledger

Fabric (HLF), Kafka, and the InterPlanetary File System (IPFS) is not without its intricacies.

The interoperability mandated by these platforms demands a significant degree of technical

proficiency, potentially elongating the time and resources needed in the deployment phase.

Maintenance Considerations: Maintaining the harmonious operation of three distinct

technological platforms (HLF, Kafka, and IPFS) introduces an elevated maintenance overhead.

This necessitates the allocation of specialized teams to constantly oversee, diagnose, and

update each individual component.

Limitations Concerning Multimedia Data: Kafka's design does not inherently cater to image

or video processing in the manner that specialized multimedia processing utilities do. While

Kafka is capable of transmitting and archiving diverse data forms, including binary data

 120

formats like images and videos, it is contingent on encapsulating them into messages that

adhere to Kafka's maximum message size constraints. To exploit real-time processing

capabilities after retrieving data from a Kafka topic, one might contemplate integrating Kafka

with advanced processing tools such as Apache Flink, Apache Spark.

Future work
In the subsequent section, we shall provide a comprehensive exploration into potential areas

of further research, as well as pragmatic enhancements that could be pivotal in optimizing the

platform under discussion. At the forefront of potential improvements is the integration of a

multi-layered blockchain framework. Such a structure is not merely an augmentation of

existing architectures but a transformative approach. The multi-layered framework envisages

multiple tiers of Hyperledger Fabric (HLF). When interconnected, these tiers serve a dual

purpose: they are anticipated to significantly enhance the throughput, which refers to the

capacity to process transactions over time, and concurrently, boost the overall performance

metrics of the blockchain system.

Moving on, the modified data architecture offers more than just structural changes; it

introduces a strategic mechanism to enhance system performance. This strategy is rooted in

the continuous analysis of data volume. As the volume undergoes fluctuations, there arises an

imperative to adaptively adjust the payload size in the data packets. Simply put, as network

congestion intensifies, there is a proportional requirement to expand the data packet size,

ensuring that data transfer remains efficient even during peak loads.

Concluding our array of proposed improvements is the nuanced approach to micro-processing

management. At its core, this strategy champions a distributed processing paradigm, which

seamlessly spans from the third layer down to the inaugural first layer. What this entails in

practical terms is a framework wherein individual IoT devices take on a more proactive role.

Instead of merely transmitting raw data, these devices would engage in preliminary data

processing. Once this preprocessing phase is concluded, they would then dispatch the

condensed and refined data to the third layer. Such an approach holds the promise of

121

significantly reducing network traffic volume, thereby optimizing data flow and overall system

efficienc

APPENDIX I

Consensus algorithms

In this section based on (Guo and Yu 2022; K and S 2023; Leo and Hattingh 2021; Vyas and

Deshmukh 2023; Zheng et al. n.d.) we will explain other examples of consensus algorithm

which has been developed

• Byzantine Fault Tolerance (BFT)

o Blockchain is decentralized, posing challenges with inconsistent node

information.

o The "Byzantine generals problem" was addressed, leading to the BFT

algorithm.

o An updated proof of stake or computational power of proof of work can tackle

this problem

• Practical Byzantine Fault Tolerance (PBFT)

o PBFT addresses the Byzantine generals problem in decentralized systems

o Hyperledger Fabric uses PBFT, handling up to 1/3 malicious replicas

o The algorithm involves phases like pre-prepared, prepared, and commit,

requiring 2/3 node votes

o Developed by Liskov and Castro, PBFT emphasizes safety in asynchronous

networks and uses cryptographic methods for message authenticity

o PBFT ensures consensus if malicious nodes are less than a third of the total

o PBFT allows for some malicious nodes, ensuring continuous block additions

and requires 2/3 network nodes to act correctly

• Delegated Proof of Stake (DPoS)

o Stakeholders elect delegates for block validation.

o Operates on representative democracy.

123

o Faster transactions due to fewer validators.

o Dishonest delegates can be replaced.

o Underpins Bitshares and was conceived by Dan Larimer for platforms like

Bitshares, Steem, and EOS

• Ripple's Consensus Algorithm

o Nodes divided into servers (for consensus) and clients (for fund transfers).

o Servers use a Unique Node List (UNL) for querying.

o Ensures ledger accuracy if faulty nodes in UNL are below 20%

• Tendermint

o Byzantine consensus algorithm with a proposer broadcasting blocks.

o Steps include prevote, precommit, and commit.

o Validators lock coins and face penalties for dishonesty

• Proof of Burn (PoB)

o Miners show proof of burning coins by sending to an unspendable address.

o Relies on PoW-mined cryptocurrencies

• Proof of Capacity (PoC)

o Miners allocate hard drive space for rewards.

o Burstcoin employs PoC, requiring significant storage

• Delegated Byzantine Fault Tolerance (DBFT)

o Introduced by NEO; token holders vote for bookkeepers.

o Bookkeepers use BFT for consensus.

o Ensures "Absolute finality" in transactions

• Directed Acyclic Graph (DAG)

o Unique consensus data structure.

o Transactions are vertices added without mining.

o Uses PoW for spam prevention

• SIEVE (Hyperledger)

o Detects/removes non-deterministic requests.

o Executes operations and compares outputs to remove disparities

• Proof of Elapsed Time (PoET)

 124

o Developed by Intel.

o Block mining winners determined by random waiting times on trusted

platforms

• Raft

o Alternative to Paxos protocol.

o Clusters servers into follower, candidate, or leader states.

o Leaders elected based on term numbers

LIST OF BIBLIOGRAPHICAL REFERENCES

 Aggarwal, Vikash Kumar, Nikhil Sharma, Ila Kaushik, Bharat Bhushan, and Himanshu. 2021.
“Integration of Blockchain and IoT (B-IoT): Architecture, Solutions, & Future
Research Direction.” IOP Conference Series: Materials Science and Engineering
1022(1):012103. doi: 10.1088/1757-899X/1022/1/012103.

Akanksha, and Akshay Chaturvedi. 2022. “Comparison of Different Authentication
Techniques and Steps to Implement Robust JWT Authentication.” Pp. 772–79 in 2022
7th International Conference on Communication and Electronics Systems (ICCES).

Al-athwari, Baseem, and Md. Azam Hossain. 2022. “IoT Architecture: Challenges and Open
Research Issues.” Pp. 408–19 in Proceedings of 2nd International Conference on
Smart Computing and Cyber Security, Lecture Notes in Networks and Systems, edited
by P. K. Pattnaik, M. Sain, and A. A. Al-Absi. Singapore: Springer Nature.

Alenizi, Abdulrahman S., and Khamis A. Al-Karawi. 2023. “Internet of Things (IoT)
Adoption: Challenges and Barriers.” Pp. 217–29 in Proceedings of Seventh
International Congress on Information and Communication Technology, Lecture Notes
in Networks and Systems, edited by X.-S. Yang, S. Sherratt, N. Dey, and A. Joshi.
Singapore: Springer Nature.

Alshahrani, Norah, M. L, B. Zaidan, A. Alamoodi, and Abdu Saif. 2023. “A Review of Smart
Contract Blockchain Based on Multi-Criteria Analysis: Challenges and Motivations.”
Computers, Materials & Continua 75(2):2833–58. doi: 10.32604/cmc.2023.036138.

Al-Zoubi, Abdallah, Tariq Saadeddin, Mamoun Dmour, and Luma Adi. 2022. “An Interactive
IoT-Blockchain System for Big Data Management.” Pp. 71–76 in 2022 4th IEEE
Middle East and North Africa COMMunications Conference (MENACOMM). Amman,
Jordan: IEEE.

Anon. n.d. “Architecture.” Hyperledger Caliper. Retrieved September 12, 2023
(https://hyperledger.github.io/caliper/v0.4.2/architecture/).

Anthal, Jyotsna, Shakir Choudhary, and Ravikumar Shettiyar. 2023. “Decentralizing File
Sharing: The Potential of Blockchain and IPFS.” Pp. 773–77 in 2023 International
Conference on Advancement in Computation & Computer Technologies (InCACCT).

Astropekakis, Konstantinos, Emmanouil Drakakis, Konstantinos Grammatikakis, and Christos
Goumopoulos. 2022. “A Survey of IoT Software Platforms.” Pp. 299–326 in Advances
in Computing, Informatics, Networking and Cybersecurity: A Book Honoring
Professor Mohammad S. Obaidat’s Significant Scientific Contributions, Lecture Notes
in Networks and Systems, edited by P. Nicopolitidis, S. Misra, L. T. Yang, B. Zeigler,
and Z. Ning. Cham: Springer International Publishing.

 126

Banik, Sejuti, Irvin Steve Cardenas, and Jong Hoon Kim. 2019. “IoT Platforms for 5G Network
and Practical Considerations: A Survey.”

Belej, Olexander, Kamil Staniec, and Tadeusz Więckowski. 2020. “The Need to Use a Hash
Function to Build a Crypto Algorithm for Blockchain.” Pp. 51–60 in Theory and
Applications of Dependable Computer Systems, Advances in Intelligent Systems and
Computing, edited by W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J.
Kacprzyk. Cham: Springer International Publishing.

Beltran, Joel Alanya, Pankaj Mudholkar, Megha Mudholkar, Vikas Tripathi, Carlos
Valderrama-Zapata, and Melanie Lourense. 2022. “Security Issues and Challenges in
Internet of Things (IoT) System.” Pp. 57–60 in 2022 5th International Conference on
Contemporary Computing and Informatics (IC3I).

Bhushan, Bharat, Preeti Sinha, K. Martin Sagayam, and Andrew J. 2021. “Untangling
Blockchain Technology: A Survey on State of the Art, Security Threats, Privacy
Services, Applications and Future Research Directions.” Computers & Electrical
Engineering 90:106897. doi: 10.1016/j.compeleceng.2020.106897.

Capocasale, Vittorio, Danilo Gotta, and Guido Perboli. 2023. “Comparative Analysis of
Permissioned Blockchain Frameworks for Industrial Applications.” Blockchain:
Research and Applications 4(1):100113. doi: 10.1016/j.bcra.2022.100113.

Choi, Wonseok, and James Won-Ki Hong. 2021. “Performance Evaluation of Ethereum
Private and Testnet Networks Using Hyperledger Caliper.” Pp. 325–29 in 2021 22nd
Asia-Pacific Network Operations and Management Symposium (APNOMS).

Confluent Documentation, Apache Kafka. n.d. “Brokers in Control Center | Confluent
Documentation.” Retrieved September 7, 2023
(https://docs.confluent.io/platform/current/control-center/brokers.html).

Connors, Collin, and Dilip Sarkar. 2023. “Survey of Prominent Blockchain Development
Platforms.” Journal of Network and Computer Applications 216:103650. doi:
10.1016/j.jnca.2023.103650.

Costin, Andrei, and Aurelien Francillon. n.d. “Ghost in the Air(Traffic): On Insecurity of ADS-
B Protocol and Practical Attacks on ADS-B Devices.” 9.

Dange, Smita, and Prashant Nitnaware. 2023. “Secure Share: Optimal Blokchain Integration
in IoT Systems.” Journal of Computer Information Systems 1–13. doi:
10.1080/08874417.2023.2193943.

Dehez Clementi, Marina, Nicolas Larrieu, Emmanuel Lochin, Mohamed Ali Kaafar, and
Hassan Asghar. 2019. “When Air Traffic Management Meets Blockchain Technology:
A Blockchain-Based Concept for Securing the Sharing of Flight Data.” Pp. 1–10 in

127

2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). San Diego, CA,
USA: IEEE.

Deohate, Ankita, and Dinesh Rojatkar. 2021. “Middleware Challenges and Platform for IoT-
A Survey.” Pp. 463–67 in 2021 5th International Conference on Trends in Electronics
and Informatics (ICOEI).

Elliston, Janei, Hongmei Chi, Shonda Bernadin, and Maryam Taeb. 2023. “Integrating
Blockchain Technology into Cybersecurity Education.” Pp. 1–15 in Proceedings of the
Future Technologies Conference (FTC) 2022, Volume 2, Lecture Notes in Networks
and Systems, edited by K. Arai. Cham: Springer International Publishing.

Faridul Islam Suny, Md., Md. Monjourur Roshed Fahim, Mushfiqur Rahman, Nishat Tasnim
Newaz, and Tajim Md. Niamat Ullah Akhund. 2021. “IoT Past, Present, and Future a
Literary Survey.” Pp. 393–402 in Information and Communication Technology for
Competitive Strategies (ICTCS 2020), Lecture Notes in Networks and Systems, edited
by M. S. Kaiser, J. Xie, and V. S. Rathore. Singapore: Springer Nature.

Fong, Desmond Kong Ze, Vinesha Selvarajah, and M. S. Nabi. 2022. “Secure Server Storage
Based IPFS through Multi-Authentication.” Pp. 1–7 in 2022 International Conference
on Advancements in Smart, Secure and Intelligent Computing (ASSIC).

Garg, Chirag, Deepak Kumar Mishra, Dikshant Raj, and Pawan Singh Mehra. 2022. “A Survey
on Integration of Blockchain and IoT (BIoT): Open Issues, Challenges & Solution.”
Pp. 880–86 in 2022 Third International Conference on Intelligent Computing
Instrumentation and Control Technologies (ICICICT).

Guo, Huaqun, and Xingjie Yu. 2022. “A Survey on Blockchain Technology and Its Security.”
Blockchain: Research and Applications 3(2):100067. doi:
10.1016/j.bcra.2022.100067.

IPFS Docs, How IPFS works. n.d. “How IPFS Works | IPFS Docs.” Retrieved August 23, 2023
(https://docs.ipfs.tech/concepts/how-ipfs-works/#subsystems-overview).

K, Harshini Poojaa, and Ganesh Kumar S. 2023. “Evolution of Consensus Algorithms in
Blockchain Technology.” Pp. 493–98 in 2023 International Conference on Intelligent
Systems for Communication, IoT and Security (ICISCoIS).

Kenaza, Rabah, Ameur Khemane, Hakim Bendjenna, Abdallah Meraoumia, and Lakhdar
Laimeche. 2022. “Internet of Things (IoT): Architecture, Applications, and Security
Challenges.” Pp. 1–5 in 2022 4th International Conference on Pattern Analysis and
Intelligent Systems (PAIS).

Khare, Shanu, Azher Ashraf, Mir Mohammad Yousuf, and Mamoon Rashid. 2022.
“Blockchain: Structure, Uses, and Applications in IoT.” Pp. 131–44 in Blockchain
Security in Cloud Computing, EAI/Springer Innovations in Communication and

 128

Computing, edited by K. M. Baalamurugan, S. R. Kumar, A. Kumar, V. Kumar, and S.
Padmanaban. Cham: Springer International Publishing.

Kim, Heesang, and Dohoon Kim. 2023. “A Taxonomic Hierarchy of Blockchain Consensus
Algorithms: An Evolutionary Phylogeny Approach.” Sensors 23(5):2739. doi:
10.3390/s23052739.

Kumar N.V., Rajeesh, and Mohan Kumar P. 2020. “Survey on State of Art IoT Protocols and
Applications.” Pp. 1–3 in 2020 International Conference on Computational
Intelligence for Smart Power System and Sustainable Energy (CISPSSE).

Leo, J., and M. J. Hattingh. 2021. “Key Characteristics to Create Optimized Blockchain
Consensus Algorithms.” Pp. 567–79 in Responsible AI and Analytics for an Ethical
and Inclusive Digitized Society, Lecture Notes in Computer Science, edited by D.
Dennehy, A. Griva, N. Pouloudi, Y. K. Dwivedi, I. Pappas, and M. Mäntymäki. Cham:
Springer International Publishing.

M R, Prathyusha, and Biswajit Bhowmik. 2023. “IoT Evolution and Recent Advancements.”
Pp. 1725–30 in 2023 9th International Conference on Advanced Computing and
Communication Systems (ICACCS). Vol. 1.

Maeng, Juhyun, Yoonnyoung Heo, and Inwhee Joe. 2022. “Hyperledger Fabric-Based
Lightweight Group Management (H-LGM) for IoT Devices.” IEEE Access 10:56401–
9. doi: 10.1109/ACCESS.2022.3177270.

Mao, Tian, and Junhua Chen. 2023. “Smart Contract in Blockchain.” Pp. 868–75 in
Proceedings of the 2022 International Conference on Bigdata Blockchain and
Economy Management (ICBBEM 2022). Vol. 5, Atlantis Highlights in Intelligent
Systems, edited by D. Qiu, Y. Jiao, and W. Yeoh. Dordrecht: Atlantis Press
International BV.

Miraz, Mahdi H., and Maaruf Ali. 2018. “Blockchain Enabled Enhanced IoT Ecosystem
Security.” Pp. 38–46 in Emerging Technologies in Computing, edited by M. H. Miraz,
P. Excell, A. Ware, S. Soomro, and M. Ali. Cham: Springer International Publishing.

Nartey, Clement, Eric Tutu Tchao, James Dzisi Gadze, Eliel Keelson, Griffith Selorm Klogo,
Benjamin Kommey, and Kwasi Diawuo. 2021. “On Blockchain and IoT Integration
Platforms: Current Implementation Challenges and Future Perspectives.” Wireless
Communications and Mobile Computing 2021:e6672482. doi: 10.1155/2021/6672482.

Nayancy, Sandip Dutta, and Soubhik Chakraborty. 2021. “IoT-Based Secure Communication
to Enhance Blockchain Model.” Pp. 255–64 in Proceedings of the Fourth International
Conference on Microelectronics, Computing and Communication Systems, Lecture
Notes in Electrical Engineering, edited by V. Nath and J. K. Mandal. Singapore:
Springer.

129

Obaidat, Muath A., Suhaib Obeidat, Jennifer Holst, Abdullah Al Hayajneh, and Joseph Brown.
2020. “A Comprehensive and Systematic Survey on the Internet of Things: Security
and Privacy Challenges, Security Frameworks, Enabling Technologies, Threats,
Vulnerabilities and Countermeasures.” Computers 9(2):44. doi:
10.3390/computers9020044.

Oikonomou, Filippos Pelekoudas, Jose Ribeiro, Georgios Mantas, Joaquim Manuel C. S.
Bastos, and Jonathan Rodriguez. 2021. “A Hyperledger Fabric-Based Blockchain
Architecture to Secure IoT-Based Health Monitoring Systems.” Pp. 186–90 in 2021
IEEE International Mediterranean Conference on Communications and Networking
(MeditCom). Athens, Greece: IEEE.

Palma, Stefano Dalla, Remo Pareschi, and Federico Zappone. 2021. “What Is Your Distributed
(Hyper)Ledger?” Pp. 27–33 in 2021 IEEE/ACM 4th International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).

Patnaik, Ranjit, Neelamadhab Padhy, and K. Srujan Raju. 2021. “A Systematic Survey on IoT
Security Issues, Vulnerability and Open Challenges.” Pp. 723–30 in Intelligent System
Design, Advances in Intelligent Systems and Computing, edited by S. C. Satapathy, V.
Bhateja, B. Janakiramaiah, and Y.-W. Chen. Singapore: Springer.

Peddireddy, Kiran. 2023. “Streamlining Enterprise Data Processing, Reporting and Realtime
Alerting Using Apache Kafka.” Pp. 1–4 in 2023 11th International Symposium on
Digital Forensics and Security (ISDFS).

Pise, Rohini, and Sonali Patil. 2022. “A Deep Dive into Blockchain-Based Smart Contract-
Specific Security Vulnerabilities.” Pp. 1–6 in 2022 IEEE International Conference on
Blockchain and Distributed Systems Security (ICBDS).

Punathumkandi, Swathi, Venkatesan Meenakshi Sundaram, and P. Prabhavathy. 2020. “A
Deep Dive into Hyperledger.” Pp. 85–107 in.

Rahman, Muhammad Saifur, and Rohit Kumar Das. 2022. “RTID: On-Demand Real-Time
Data Processing for IoT Network.” Materials Today: Proceedings 62:4721–25. doi:
10.1016/j.matpr.2022.03.168.

Rai, Mritunjay Kumar, Rajeev Kanday, and Reji Thomas. 2020. “Current Issues and
Challenges of Security in IoT Based Applications.” Pp. 578–89 in Advances in
Intelligent Systems and Interactive Applications, Advances in Intelligent Systems and
Computing, edited by F. Xhafa, S. Patnaik, and M. Tavana. Cham: Springer
International Publishing.

Rani, Anjana, and Monika Saxena. 2023. “A Review Survey of the Algorithms Used for the
Blockchain Technology.” Pp. 655–68 in Soft Computing for Problem Solving, Lecture
Notes in Networks and Systems, edited by M. Thakur, S. Agnihotri, B. S. Rajpurohit,
M. Pant, K. Deep, and A. K. Nagar. Singapore: Springer Nature.

 130

Raptis, Theofanis P., and Andrea Passarella. 2022. “On Efficiently Partitioning a Topic in
Apache Kafka.” Pp. 1–8 in 2022 International Conference on Computer, Information
and Telecommunication Systems (CITS).

Rosa, Giovanni, Simone Scalabrino, and Rocco Oliveto. 2022. “Assessing and Improving the
Quality of Docker Artifacts.” Pp. 592–96 in 2022 IEEE International Conference on
Software Maintenance and Evolution (ICSME).

Sadawi, Alia Al, Mohamed S. Hassan, and Malick Ndiaye. 2021. “A Survey on the Integration
of Blockchain With IoT to Enhance Performance and Eliminate Challenges.” IEEE
Access 9:54478–97. doi: 10.1109/ACCESS.2021.3070555.

Sadeghi-Nasab, Alireza, and Vahid Rafe. 2023. “A Comprehensive Review of the Security
Flaws of Hashing Algorithms.” Journal of Computer Virology and Hacking
Techniques 19(2):287–302. doi: 10.1007/s11416-022-00447-w.

Sarmah, Simanta Shekhar. 2018. “Understanding Blockchain Technology.” Computer Science
and Engineering 2018, 8(2): 23-29. doi: 10.5923/j.computer.20180802.02.

Sathi Reddy, Padala, Nukella Venkatesh, and S. Kumar. 2022. “Anatomization: IoT Security
Issues and Its Future Challenges.” in Advances in Transdisciplinary Engineering,
edited by R. M. Singari and P. K. Kankar. IOS Press.

Sharma, Arunima, and Ramesh Babu Battula. 2022. “Challenges and Issues in Blockchain-
Based IoT Services.” Pp. 47–80 in Blockchain based Internet of Things, Lecture Notes
on Data Engineering and Communications Technologies, edited by D. De, S.
Bhattacharyya, and J. J. P. C. Rodrigues. Singapore: Springer.

Singh, Chaitanya, and Deepika Chauhan. 2021. “IoT–Blockchain Integration-Based
Applications Challenges and Opportunities.” Pp. 87–116 in Mobile Radio
Communications and 5G Networks, Lecture Notes in Networks and Systems, edited by
N. Marriwala, C. C. Tripathi, D. Kumar, and S. Jain. Singapore: Springer.

Srinivasa, Shreyas, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2022. “Deceptive
Directories and ‘Vulnerable’ Logs: A Honeypot Study of the LDAP and Log4j Attack
Landscape.” Pp. 442–47 in 2022 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW).

Srivastava, Nipun, and Pallavi Pandey. 2022. “Internet of Things (IoT): Applications, Trends,
Issues and Challenges.” Materials Today: Proceedings 69:587–91. doi:
10.1016/j.matpr.2022.09.490.

Su Wai, Khin Su, Ei Chaw Htoon, and Nwe Nwe Myint Thein. 2020. “Performance Evaluation
of M/D/1 Queuing Model on Hyperledger Fabric.” Pp. 36–41 in 2020 International
Conference on Advanced Information Technologies (ICAIT).

131

Su, Yue, Kien Nguyen, and Hiroo Sekiya. 2022. “Latency Evaluation in Ad-Hoc IoT-
Blockchain Network.” Pp. 124–28 in 2022 5th World Symposium on Communication
Engineering (WSCE). Nagoya, Japan: IEEE.

Torres, Agmar A., and Flávio de Oliveira Silva. 2023. “SANKMO: An Approach for Ingestion,
Processing, Storing, and Sharing IoT Data in Near Real-Time.” Pp. 279–91 in
Advanced Information Networking and Applications, Lecture Notes in Networks and
Systems, edited by L. Barolli. Cham: Springer International Publishing.

Ullah, M., and K. Smolander. 2019. “Highlighting the Key Factors of an IoT Platform.” Pp.
901–6 in 2019 42nd International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO).

Verma, Garima, and Shiva Prakash. 2021. “Emerging Security Threats, Countermeasures,
Issues, and Future Aspects on the Internet of Things (IoT): A Systematic Literature
Review.” Pp. 59–66 in Advances in Interdisciplinary Engineering, Lecture Notes in
Mechanical Engineering, edited by N. Kumar, S. Tibor, R. Sindhwani, J. Lee, and P.
Srivastava. Singapore: Springer.

Vyas, Komal, and Ashwini Deshmukh. 2023. “A Survey Paper on Blockchain Technology and
Consensus Algorithms.” Pp. 1–6 in 2023 11th International Conference on Emerging
Trends in Engineering & Technology - Signal and Information Processing (ICETET -
SIP).

Vyas, Shubham, Rajesh Kumar Tyagi, Charu Jain, and Shashank Sahu. 2022. “Performance
Evaluation of Apache Kafka – A Modern Platform for Real Time Data Streaming.” Pp.
465–70 in 2022 2nd International Conference on Innovative Practices in Technology
and Management (ICIPTM). Vol. 2.

Wu, Canghai, Jie Xiong, Huanliang Xiong, Yingding Zhao, and Wenlong Yi. 2022. “A Review
on Recent Progress of Smart Contract in Blockchain.” IEEE Access 10:50839–63. doi:
10.1109/ACCESS.2022.3174052.

Wu, Zhijun, Tong Shang, and Anxin Guo. 2020. “Security Issues in Automatic Dependent
Surveillance - Broadcast (ADS-B): A Survey.” IEEE Access 8:122147–67. doi:
10.1109/ACCESS.2020.3007182.

Xu, Xiaoqiong, Xiaonan Wang, Zonghang Li, Hongfang Yu, Gang Sun, Sabita Maharjan, and
Yan Zhang. 2021. “Mitigating Conflicting Transactions in Hyperledger Fabric-
Permissioned Blockchain for Delay-Sensitive IoT Applications.” IEEE Internet of
Things Journal 8(13):10596–607. doi: 10.1109/JIOT.2021.3050244.

Yu, Jin-Yong, and Young-Gab Kim. 2019. “Analysis of IoT Platform Security: A Survey.” Pp.
1–5 in 2019 International Conference on Platform Technology and Service (PlatCon).

 132

Zambre, Pranav, Mitali Panchal, and Ankit Chauhan. 2023. “A Future to the Blockchain
Technology and Its Concepts.” Pp. 111–22 in ICT with Intelligent Applications, Smart
Innovation, Systems and Technologies, edited by J. Choudrie, P. Mahalle, T. Perumal,
and A. Joshi. Singapore: Springer Nature.

Zheng, Zibin, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang. n.d.
“Blockchain Challenges and Opportunities: A Survey.”

Zhonghua, Chen, and S. B. Goyal. 2023. “Blockchain-Based Framework to Handle Security
and Privacy for IoT System.” Pp. 71–82 in Proceedings of Third Doctoral Symposium
on Computational Intelligence, Lecture Notes in Networks and Systems, edited by A.
Khanna, D. Gupta, V. Kansal, G. Fortino, and A. E. Hassanien. Singapore: Springer
Nature.

