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Étude et Mise en Œuvre d’une Imagerie Ultrasonore 3D Rapide par la Méthode de
Focalisation Totale Compressive Utilisant des Approches Parcimonieuses en 2D

Lucas PEREIRA PIEDADE

RÉSUMÉ

Cette thèse explore l’accent croissant mis sur l’imagerie tridimensionnelle dans le contrôle

non destructif par ultrasons (CND), mettant l’accent sur l’importance du contrôle ultrasonore

par sondes multiéléments (PAUT) et le potentiel émergent de la méthode de focalisation totale

(TFM) pour l’imagerie à haute résolution. Lors de l’application de cette méthode dans un

contexte d’imagerie en 2D à l’aide de sondes linéaires, des limites apparaissent concernant

l’identification des défauts, notamment dans des scénarios avec des orientations aléatoires telles

que des fissures, exigeant la nécessité de solutions d’imagerie en 3D. L’étude aborde les défis

associés à l’utilisation de l’imagerie volumétrique dans le CND, se concentrant principalement

sur les sondes matricielles dans le cadre de la TFM, dans le but de développer des stratégies

novatrices d’acquisition ultrasonore et de traitement des données pour améliorer la productivité

de la TFM en 3D. Le projet comporte deux aspects clés. Tout d’abord, le projet examine la

complexité associée à la gestion d’un grand nombre d’éléments dans les sondes matricielles

ultrasonores, explorant des techniques de réduction des éléments, notamment des stratégies de

sélection d’éléments telles que les approches parcimonieux. Ensuite, la recherche se concentre

sur des méthodologies visant à réduire le volume substantiel de données générées, en examinant

des techniques innovantes de compression de données, telles que les approches d’échantillonnage

compressif (CS). L’intégration de ces stratégies vise à ouvrir la voie au développement de scanners

ultrasonores légers et à poser les bases théoriques de leur réalisation pratique. Premièrement,

cette étude a introduit une méthode de conception de réseaux parcimonieux appliquée aux

sondes linéaires et l’a comparée à la FMC et à l’imagerie par ondes planes (PWI). Ensuite,

cette méthodologie de réseaux parcimonieux a été adaptée et étendue aux sondes matricielles

pour optimiser l’efficacité de l’acquisition de données tout en équilibrant la qualité d’imagerie

en 3D. Enfin, la méthode de réseaux parcimonieux a été combinée à un cadre CS efficace

pour correspondre à l’augmentation des taux d’acquisition de données avec des réductions

simultanées des volumes de données. Des essais expérimentaux sur des échantillons contenant

des défauts artificiels ont été réalisés pour évaluer l’approche proposée. Les résultats de ce projet

incluent trois réalisations significatives : (1) le TFM parcimonieux proposé a réduit de plus de

90% les séquence de tir tout en fournissant une grande précision, et ses performances étaient

supérieures à celles de la PWI ; (2) une technique de réseau parcimonieux optimisé pour les

sondes matricielles a permis une accélération de 9,8 fois de la TFM en 3D, préservant la qualité

de l’image et les capacités de dimensionnement des défauts ; et (3) l’utilisation de CS et des

réseaux parcimonieux a permis la récupération du signal ultrasonore à des taux d’échantillonnage

inférieurs à la limite de Nyquist et une imagerie TFM plus rapide, indiquant une réduction

potentielle de la complexité matérielle des dispositifs à ultrasons pour les applications de CND.
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Study and Implementation of Fast Compressive 3-D Total Focusing Method Ultrasonic
Imaging Using 2-D Sparse Arrays

Lucas PEREIRA PIEDADE

ABSTRACT

This thesis explores the increasing focus on three-dimensional imaging in ultrasonic nonde-

structive testing (NDT), emphasizing the significance of phased array ultrasonic testing (PAUT)

and the emerging potential of the total focusing method (TFM) for high-resolution imaging.

When applying this method to a 2-D imaging context using linear array probes, limitations arise

concerning the identification of defects, particularly in scenarios with random orientations such

as cracks, demanding the necessity for 3-D imaging solutions. The study addresses the challenges

associated with the use of volumetric imaging in NDT, primarily focusing on matrix phased

arrays within the TFM framework, aiming to develop innovative ultrasonic acquisition and data

processing strategies to enhance 3-D TFM productivity. The project’s scope involves two key

facets. Firstly, the project examines the complexity associated with managing a high number of

elements in ultrasonic matrix phased arrays, exploring element reduction techniques, notably

element selection strategies like sparse arrays. Secondly, the research focuses on methodologies

to reduce the substantial data volume generated, investigating innovative data compression

techniques, such as compressive sensing (CS) approaches. The integration of these strategies is

intended to pave the way for the development of lightweight ultrasonic scanners and to lay the

theoretical foundation for their practical realization. Initially, this study introduced a method

for designing sparse array layouts applied to linear phased arrays and compared it to the FMC

and plane wave imaging (PWI). Then, this sparse array methodology was adapted and extended

to matrix phased arrays to optimize data acquisition efficiency while balancing 3-D imaging

quality. Finally, the sparse array methodology was combined with an efficient CS framework

to match increased data acquisition rates with reductions in the data volumes at the same time.

Experimental trials involving samples containing artificial flaws were performed to evaluate

the proposed approach. As a result of this project, three significant outcomes were realized:

(1) the proposed sparse-TFM reduced firing events by more than 90% while providing high

accuracy, and its performance was superior to PWI; (2) an optimized sparse array technique for

matrix probes achieved a 9.8-fold acceleration in 3-D TFM, preserving image quality and defect

sizing capabilities; and (3) utilizing CS and sparse arrays enabled ultrasonic signal recovery at

sampling rates below the Nyquist limit and faster TFM imaging, indicating a potential reduction

of the hardware complexity in ultrasound devices for NDT applications.

Keywords: Ultrasonic matrix phased array, sparse array, compressive sensing (CS), total

focusing method (TFM), volumetric imaging
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INTRODUCTION

Nondestructive testing (NDT) using ultrasonic methods has long been instrumental in the

detection and characterization of flaws within engineering structures. The ability to assess the

integrity of materials without causing any damage is an interesting tool in ensuring the safety and

reliability of various industrial components, ranging from pipelines to aerospace structures. In

this field, ultrasonic NDT plays an important role in identifying and evaluating defects, ensuring

structural stability, and mitigating potential risks associated with material failures.

Over the past few decades, phased array ultrasonic testing (PAUT) has emerged as a prominant

technique in NDT due to its unparalleled advantages over traditional ultrasonic testing (UT) such

as reliability and flexible inspection capabilities. Multi-element probes, unlike conventional

ultrasonic probes with a single active element, consist of an array of elements that can be

controlled independently. This feature enables directing the incident ultrasonic field in a particular

direction or measuring the reflected field simultaneously at multiple points. Consequently,

associated imaging algorithms, digital signal processing, and control units have also been subject

to extensive development and research. In particular, the total focusing method (TFM) algorithm

has recently been gaining popularity due to its capacity to produce high-resolution images of the

inspected medium. When applied to linear phased array probes, TFM generates 2-D images

by synthetically focusing the array on every pixel, being a powerful tool regarding detecting

and sizing flaws. Nonetheless, in some situations, the identification of defects is limited e.g.

the random orientation of cracks. In this case, a 3-D image would be desirable to enable better

insonification and identification of defects.

To generate volumetric images, a matrix phased array transducer also known as a 2-D phased

array can be used. The arrangement of elements in a 2-D array enables the steering of the

ultrasonic beam throughout space but also increases the number of piezoelectric elements to

square power compared to linear probes. For instance, the equivalent in 2-D of a 1-D probe with



2

32 elements contains 1024 elements. Despite the immense potential and advantages offered

by matrix phased arrays in ultrasonic imaging, their widespread adoption in industrial NDT

applications remains constrained compared to their linear array counterparts. This limited

utilization primarily arises from significant technical challenges, notably the complexities

associated with connecting and driving the high number of elements, as well as the substantial

hardware demands required for handling the vast amount of generated data essential for 3-D

imaging.

This study addresses the growing interest in three-dimensional ultrasonic imaging within the NDT

field, particularly concerning the challenges associated with matrix phased arrays in the TFM

framework. Evident Industrial, previously known as Olympus NDT Canada, is the industrial

collaborator in this project. The company specializes in designing inspection equipment as well

as their integration into industrial settings. Volumetric imaging in real-time is an interesting and

attractive modality of ultrasound inspection, as it provides more realistic representations of the

defects within short inspection times. Today, this fast processing is restricted to the usage of

high-end instruments, and thus, for various applications, the expense of high-end equipment is

often not justifiable. In the coming years, advancements are anticipated to overcome volumetric

imaging limitations in heavy hardware scanners, leading to increased availability at reduced

costs. Presently, high-channel-count ultrasonic scanners are limited to fewer research facilities,

and the transition toward more cost-efficient systems is still pending. Other research streams

are focusing on the development of lighter hardware scanners that can deliver comparable

performance to complex systems with fewer array elements. Therefore, the objective of this

research focuses on the development of new ultrasonic acquisition and data processing strategies,

based on the TFM method, applied to ultrasonic matrix phased arrays. The aim is to enhance

3-D TFM productivity and to enable the routine use of 2-D arrays.
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This research project can, therefore, be divided into two major parts. The first one is related to the

complexity associated with managing a high number of elements within ultrasonic matrix phased

arrays. This segment of the research project concentrates on addressing this challenge through

the exploration of element number reduction techniques. The primary objective is to determine

feasible tradeoffs between the probe’s active element count during transmission and its acoustic

performance concerning a full array configuration. An efficient and cost-effective avenue to

tackle this challenge involves the utilization of element selection strategies, prominently among

them being the application of sparse arrays. Sparse arrays offer a promising solution not only

to reduce acquisition times but also to mitigate the volume of data necessitated by 3-D TFM

processing. These arrays strategically employ a subset of active elements within the overall array,

thereby optimizing the balance between imaging quality and data acquisition efficiency. The

second part is regarding the management of the huge volume of data generated during ultrasonic

inspections, particularly from denser probes, which poses a significant industrial challenge.

Transmitting, storing, and processing data from numerous inspections becomes increasingly

arduous, demanding more sophisticated strategies to alleviate the data burden on inspection

systems. This segment of the research project centers on investigating methodologies aimed at

reducing the size of generated data required for volumetric imaging. Efforts are directed toward

exploring innovative data compression techniques. In this context, emerging methods such as

compressive sensing (CS) have gained considerable attention due to their potential efficiency in

data compression. Unlike conventional compression methods found in contemporary devices, CS

presents a promising alternative by exploiting the intrinsic sparsity of ultrasonic signals, allowing

for efficient data reconstruction from significantly reduced datasets. Hence, the combination of

these strategies should enable the development of lightweight scanners or, at the very least, offer

the theoretical groundwork for their practical realization.

Therefore, the work conducted in this thesis was aimed to address these issues. The first chapter

will offer a comprehensive review of the literature on the topic. The subsequent three chapters
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will cover the published and submitted articles. Lastly, conclusions are drawn in the final chapter,

supplemented by an appendix housing supplementary results for reference.



CHAPTER 1

LITERATURE REVIEW

This chapter presents the literature review of general ultrasonic science to gather several concepts

related to ultrasonic testing, ultrasonic phased arrays, advanced imaging, and the integration

of sparse arrays with compressive sensing (CS) for ultrasound inspection. It aims to provide

essential concepts for understanding the research topic and present the current state of research

on the subject.

1.1 Ultrasound inspection: from conventional to multi-element transducers

To understand the implications of using denser probes, this section provides a concise explanation

of the operation of conventional and multi-element transducers. Additionally, it introduces the

fundamental principles of ultrasound wave generation and propagation pertinent to this project.

1.1.1 Ultrasonic testing (UT) principles and physics

Ultrasonic science is a specific branch of acoustics that studies the energy-matter interactions,

effects of propagation, and the applications of ultrasonic waves. This particular sound wave is a

mechanical vibratory wave (stress wave) that propagates only through the matter (solid, liquid,

and gases) with frequencies above the human hearing range (typically above 20 kHz), and that

can be found applied in almost every field of engineering, medicine, and sciences in general

(Ensminger & Bond, 2011). Nondestructive testing (NDT) groups together are often applied for

the detection and characterization of defects in engineering components.

Ultrasonic testing (UT) belongs to the group of NDT techniques and is a method based on

the propagation of ultrasonic waves. UT became a widespread technique for medical and

industrial applications mainly because it represents an economic and safer approach (non-

hazardous to operator and vicinity) regarding the assessment of the internal conditions of objects

when compared to methods like radiography, which require more than one type of protection

(Halmshaw, 1997). In industrial applications, UT has been used to detect all kinds of flaws
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that materials like metals, ceramics, plastics, and composites might have, as well as to analyze

the material properties and to measure thickness. During a UT inspection, ultrasonic waves

are induced in an elastic medium (test piece) by using an ultrasonic transducer (probe) and

propagate through the specimen under analysis (Olympus, 2004). When propagating through the

medium and interacting with heterogeneities, some energy of the propagating wave is reflected.

In this case, the back wall of the specimen will also reflect the wave. The so-called echoes

(back-propagated waves) are then used to indicate which component from the test piece caused

the reflection. These ultrasonic waves are typically generated by a piezoelectric material inside

the probe excited by an electrical voltage. The opposite effect also exists for this material,

converting ultrasound into electrical signals. The frequency range of ultrasonic waves is usually

0.1 MHz to 50 MHz but for most industrial applications this range is limited to between 0.5

MHZ and 15 MHz (Olympus, 2004). Applying an electric voltage makes the piezoelectric

crystals change in shape and size, oscillating at the same frequency as they were excited and

thus producing ultrasonic waves. Figure 1.1 depicts an example of a classic UT inspection of a

solid sample containing a flaw. The probe generates a traveling wave, which is then captured as

it interacts with a spherical reflector. The same probe is shown receiving the scattered waves

from the reflector, demonstrating the dual role of the transducer in both wave generation and

reception to subsequent data interpretation using a time amplitude representation.

Figure 1.1 Schematic representation of a UT inspection and resulting time

amplitude diagram (A-scan)

Adapted from Schmerr Jr (2014, p. 2)
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For a classical UT measurement, monocrystal probes are usually used to generate and receive

the mechanical pulses (Olympus, 2004). The echoes from the features converted into electrical

signals are plotted in a graph of amplitude as a function of time known as A-scan (Figure 1.1).

As the information about the intensity and arrival delay of the wave is contained in the diagram,

it is possible to estimate the position of each feature based on the sound velocity of the test

material and the known equation of motion from physics i.e. distance equals to velocity times the

time interval. Therefore, this technique can be used not only for the detection of discontinuities

contained in a part but also to estimate its position.

The physics related to ultrasonic testing involves mechanical wave propagation and the associated

phenomena. By definition, a mechanical wave is a disturbance that travels through a medium,

causing an oscillatory movement of particles that compose it. The oscillatory movement

produces a wave that propagates at a certain propagation velocity. The particles can be picturized

as elements connected through elastic springs, so their motion is influenced by the nearest

neighboring motion (Ensminger & Bond, 2011). Thus, its velocity is dependent on the elastic

properties of the medium as well as the nature of the excitation. The elastic waves that propagate

through solids are known as bulk waves, the wave type that is the key focus of this work.

These waves are divided into two types: longitudinal waves or pressure waves, and shear

waves, also called transverse waves. The longitudinal and shear waves can be distinguished by

their displacement direction. Longitudinal wave displacements are parallel to the propagation

direction whereas shear wave displacements are perpendicular to the propagation direction.

Furthermore, shear waves only propagate in solid bodies (Cheeke, 2012). Each wave has its

wave propagation velocity: 𝑉𝐿 for longitudinal waves and 𝑉𝑠 for shear waves. The respective

equations are the following for a homogeneous and isotropic solid (Cheeke, 2012):

𝑉𝐿 =

[
𝐸 (1 − 𝑣)

𝜌(1 + 𝑣) (1 − 2𝑣)

]1/2
, (1.1)

𝑉𝑠 =

[
𝐸

2𝜌(1 + 𝑣)

]1/2
(1.2)
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where 𝐸 is the Young’s modulus, 𝜌, and 𝑣 are the density and the Poisson ratio of the medium,

respectively.

Ultrasound can be considered in many aspects analogous to electromagnetic waves or even light

by the fact that it follows the general wave equation and wave motion (Ensminger & Bond, 2011).

Regarding the light analogy, ultrasound can be reflected at surfaces, refracted when changing the

medium, and diffracted around different obstructions, surfaces, or edges (Ensminger & Bond,

2011). When an ultrasound wave hits a boundary between two different materials, part of the

incident energy will be reflected, and at the same time, the rest is transmitted into the material.

In this case, Snell-Descartes law applies to the refraction at oblique wave incidence:

sin 𝜃𝑖
𝑉𝑖

=
sin 𝜃𝑟𝑙
𝑉𝑟𝑙

=
sin 𝜃𝑟𝑠
𝑉𝑟𝑠

(1.3)

where 𝜃𝑖 is the incident angle, 𝜃𝑟𝑙 , and 𝜃𝑟𝑠 are the refraction angles of longitudinal wave and

shear wave, respectively with their respective velocities 𝑉𝑖, 𝑉𝑟𝑙 , and 𝑉𝑟𝑠. Figure 1.2 shows the

interactions of the incident mechanical wave in a solid interface using a probe coupled to a

wedge in an angle beam assembly. A mode conversion occurs at a boundary, denoted by the

axis dashed line, resulting in refracted shear and longitudinal waves within the test piece. The

figure includes the incident and refracted angles, accompanied by the corresponding shear and

longitudinal wave displacements.

The property of acoustic impedance (𝑍) also governs the mechanism of wave reflection. This

physical property describes the opposition that the ultrasound energy encounters as it passes

through different mediums (Cheeke, 2012). Therefore, the propagation of an ultrasound wave

from one medium to another relies on the difference in acoustic impedance between them.

The acoustic impedance is then defined as the product of the medium density (𝜌) and wave

propagation velocity (𝑉):

𝑍 = 𝜌𝑉. (1.4)
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Figure 1.2 Interactions of the incident mechanical

wave in a solid interface using a wedge

Adapted from Olympus (2004, p. 126)

Thus, it is possible to quantify the amount of energy reflected and transmitted from the acoustic

impedance of the two materials. A piece of more detailed information on this subject can be

found in the literature of Cheeke (2012). The interactions at the boundary of two mediums and

the refraction of ultrasound waves into longitudinal and transverse modes are crucial for defect

detection and ultrasound imaging. This will be explained further in the following sections.

1.1.2 Phased array ultrasonic testing (PAUT)

In the last 30 years, the development of electronics resulted in an expansion of ultrasonic

phased array systems in both medical ultrasound and NDT fields (Ensminger & Bond, 2011).

Unlike the conventional single-element ultrasonic transducer described in section 1.1.1, the

ultrasonic phased array probes consist of a single transducer containing several small individual

elements that can be independently pulsed. This represents two benefits of the phased array

ultrasonic testing (PAUT) over the traditional UT: (1) flexibility, as it becomes possible to make
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a range of different inspections from a single location, and (2) easier interpretation of the results

(Drinkwater & Wilcox, 2006; Felice & Fan, 2018). Phased array transducers contain 16 up to

256 elements, as 256 usually represents the maximum number of elements that can be connected

and simultaneously driven by NDT transmit–receiver instruments (Drinkwater & Wilcox,

2006). However, certain transducers exhibit a notably higher element count, such as the 1024-

element matrix array transducer (32 x 32). Operating such arrays may necessitate techniques

like multiplexing, synchronization of multiple acquisition systems to accommodate the 1024

channels, or the use of expensive high-channel-count systems. The ability to modify the beam

parameters via software such as angle and focal spot size increases the possibility of detecting

randomly oriented defects like cracks, which single-element probes might miss when not

perfectly aligned (Olympus, 2004). As a result, this technology allows for the reduction of errors

and operator’s dependence, increasing the reliability and quality of the inspection.

The term “phased array” comes from the multiple piezoelectric elements placed in an array

pattern that can be phased in time to generate ultrasonic waves, scanning the medium. It is

possible to perform a variety of inspections by controlling each element and thus generate

different types and patterns of the ultrasonic wave. The ability to steer and focus at different

depths and directions is one of the main features of ultrasonic phased arrays. Figure 1.3 illustrates

the phased beam generation as well as the delays applied to steer the generated sound beam. To

generate the phased beam with constructive interference, the acquisition unit sends a trigger

signal to the phased array unit, which converts the signal into a high-voltage pulse with the

defined delay law (Olympus, 2004). Then, each element of the array that received only one

pulse becomes a point source and sends a cylindrical wave into the medium. The cylindrical

waves are combined and form a wavefront upon interaction with a flaw is reflected. The echoes

received into the phased array unit are time-shifted according to the focal law. After, they are

summed and form a single signal that is sent to the acquisition unit. By changing the time delays,

the phased array is able to steer the beam in different directions without any movement of the

transducer.
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Figure 1.3 Beam forming and time delays of an ultrasonic phased array

Adapted from Olympus (2004, p. 11)

Different types of ultrasonic transducers can be used in industrial applications: one-dimensional

(1-D), two-dimensional (2-D), or annular (Drinkwater & Wilcox, 2006). The 1-D linear

array probe is by far the most common in the industry, mainly because its manufacturing is

economically advantageous (Schmerr Jr, 2014). The elements of this probe have a rectangular

shape and are placed next to each other along the x-direction in Figure 1.4. In the case of Figure

1.4, the elements are distributed along the x-direction with the length 𝑙𝑥 smaller than the length

𝑙𝑦 in the y-direction (passive aperture).

The elements are equally spaced in the x-direction with a specific gap length (𝑔𝑥) also named

kerf. The pitch (𝑠𝑥) is the distance between the beginning of elements, which is given by the
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Figure 1.4 The elements and parameters of a linear array

sum of gap length 𝑔𝑥 and element width 𝑙𝑥 , and is an important parameter of the probe. In

order to synthesize a wave field free of unwanted grating lobes, the element width 𝑙𝑥 must be

less than half a wavelength (𝜆) (Schmerr Jr, 2014). Furthermore, it is also recommended as a

design rule to have a pitch smaller than 67% of lambda (Olympus, 2004). The total active probe

length is named the active aperture and plays an important role in the beam-diffracted pattern

and the beam width. Using ultrasonic phased array technology, it is possible to steer the beam

in a region beyond the area below the probe (active aperture), and this capacity relies on these

design parameters.

1.1.3 Matrix phased array (2-D array)

A matrix phased array or 2-D phased array has the potential to image in three dimensions.

The ability of steering and focusing in 3 dimensions increases the set of angles and extends

the coverage to a volumetric area, all this from a single probe position of the part inspected.

This is an advantageous feature as real defects of engineering structures are three-dimensional,

having an arbitrary shape and orientation. Defects like cracks and inclusions are examples of

these types of flaws that, in some cases, may have a limited assessment using linear arrays.

Regarding the measurement of discontinuities within a medium, a full 3-D image represents a

better possibility of assessing the specific medical or engineering issue. Even though the matrix

array has greater notoriety in the medical field, this technology is not yet widespread in NDT

industrial applications (Drinkwater & Wilcox, 2006).
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The first 2-D images were obtained using a single-element probe that was moved manually or by

mechanical means. The 3-D image generation first happened in the same way but with the linear

1-D probe. To generate the 3-D ultrasonic images (3-D US) using a linear probe, experiments

using position-tracked (Hughes et al., 1996; Levine et al., 1989) or motorized devices that applied

rotations (Downey, Nicolle, Levin & Fenster, 1996; Nikolov, Jensen, Dufait & Schoisswohl,

2002) and translations (Dabrowski, Dunmore-Buyze, Cardinal & Fenster, 2001) or tilt of the

probe (Gilja et al., 1995) were done to inspect the entire volume. But in fact, the introduction

of 1.25 D, 1.5D, and 1.75 D arrays enabled the development of the 2-D probes (Fernandez

et al., 2003; Wildes et al., 1997). This represented a significant advance over the linear 1-D

probe, considering some limitations related to this process and that moving the probe is a

time-consuming procedure. Mono-element and one-dimensional ultrasonic phased array probes

lack the focusing and steering abilities in different dimensions, which increases the probability

of not detecting randomly oriented flaws. For measurements where the orientation of those flaws

cannot be previously predicted, it is necessary to conduct a wider set of acquisitions at different

orientations to avoid losing information (McKee et al., 2019), which is impractical in reality.

On the other hand, matrix array probes differ from conventional linear probes as they extend in

the elevation direction, creating a 2-D pattern of elements. Thanks to this feature, it is possible to

focus and steer the beam in many ways, as the time delays can vary in both the x- and y-directions

(Schmerr Jr, 2014). As a result, the entire volume is better inspected, providing a detailed

view without moving the probe. Another consequence of this extension is the rising number

of elements to the square power when compared to the linear probe, which also increases its

sensitivity and the already cited focusing and steering capability. For instance, the equivalent

in 2-D of a 1-D probe containing 32 elements would have 1024 elements. Figure 1.5 depicts

examples of the linear and the 2-D matrix, showing the difference between the piezoelectric

elements.

In a square matrix array probe, all the elements are lined up on a uniform grid, spaced out at

the same distance (pitch) in both x- and y-directions. Like the linear phased array, the matrix

probe design must follow the same pitch designing rules mentioned in section 1.1.2 to avoid the



14

Figure 1.5 Typical ultrasonic phased array probes

Adapted from Olympus (2004, p. 103)

presence of grating lobes. These lobes are the spatial aliasing effect that causes some sidelobes

to become considerably larger in amplitude, approaching the level of the main lobe where most

of the ultrasonic energy is concentrated. Features like sidelobe levels (SLL), and grating lobe

levels (GLL), along with the main lobe width (MLW) are linked to the 2-D image quality and

must be considered to generate a satisfactory image in terms of resolution and contrast (Roux

et al., 2017). Figure 1.6 portrays an example of a two-dimensional array with elements of lengths

𝑙𝑥 and 𝑙𝑦. The typical grid for 2-D arrays is either rectangular or square, where 𝑙𝑥 and 𝑙𝑦 will be

the same in the latter case. The square element matrix probe in this case can be considered a

clear extension of the linear probe, and as a consequence, is easier to model.

Figure 1.6 Parameters of a matrix array composed of square elements

Owing to the matrix array probe features, three-dimensional beam scanning and focusing can be

done, which opens new possibilities towards NDT inspections. The potential to focus the beam

at different depths in spherical, elliptical, or linear patterns as well as the capability to steer

the ultrasonic beam in more than one plane can be accounted as the main advantages of this
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technology (Olympus, 2004). Although 2-D array probes offer significant inspection potential,

their adoption in industrial NDT applications has been limited compared to linear probes. This

is primarily due to the complexity of managing a large number of elements and challenges

in manufacturing denser probes. In the context of volumetric imaging and acquisition, there

are additional limitations that prevent the broader adoption of this technology, which will be

addressed in more detail. Various imaging techniques and data acquisitions have been suggested

for industrial applications using ultrasonic phased arrays in the literature. The most pertinent for

this study will be discussed in the following sections.

1.2 Scanning and advanced imaging methods

The expansion and development of ultrasonic phased array systems that enable both transmission

and reception from all elements also led to the advancement of different acquisition strategies

and imaging algorithms. In this section, the full matrix capture (FMC) acquisition and the

total focusing method (TFM) are introduced and extended to the context of ultrasonic three-

dimensional imaging. The operation of 3-D US TFM will be the research focus of this study.

This literature review will also explore potential alternatives to make this approach practical for

NDT industrial applications and to promote the broader use of volumetric imaging employing

ultrasonic matrix phased array transducers.

1.2.1 Full matrix capture (FMC)

Multichannel acquisition methods are gaining popularity for their ability to enable high-

resolution imaging by processing signals from ultrasonic phased array probes. Notably, FMC is

becoming widely used due to its versatility, as it consists of collecting all the transmitter-receiver

combinations. FMC measurement is made by transmitting sequentially one element at a time

and recording all elements from the array. The first element fires the wave inside the part

and the backpropagated wave is received by all elements, followed by the firing of the second

element, and so on. Therefore, an array containing 𝑁 elements realizes 𝑁 emissions with

𝑁 reception channels in each event, generating an 𝑁 × 𝑁 matrix of A-scans (FMC matrix).
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Although the FMC store and process a huge amount of data, the advantage of acquiring all the

information that any other method might obtain is the counterbalance of this technique. For

a better understanding, Figure 1.7 illustrates the FMC sequence for a linear array containing

𝑁 elements. The active elements in transmission and reception are colored while deactivated

elements are shown in white.

Figure 1.7 Full matrix capture representation

After its introduction by Holmes, Drinkwater & Wilcox (2005), the FMC method gained

widespread acceptance, and currently, most commercial ultrasonic array controllers offer support

for FMC acquisition. Following FMC acquisition, it is possible to insert delays synthetically

to the acquired A-scan data in post-processing. This capability allows for the application of

different post-processing techniques to create subsurface images of engineering components,

including the implementation of linear time delays for plane wave imaging (PWI) (Le Jeune,

Robert, Lopez Villaverde & Prada, 2016), or creating virtual sources by introducing delays

to sub-apertures of the array (Hoyle, Sutcliffe, Charlton & Rees, 2018). Nonetheless, these

techniques are variations of one notorious and commonly used delay-and-sum (DAS) algorithm,

known as the total focusing method (TFM).

1.2.2 Total focusing method (TFM)

TFM imaging consists of applying delay functions to signals from an ultrasonic phased array

to enable focusing on a specific region, enhancing local sensitivity and thereby increasing

flaw detectability (Holmes et al., 2005). This delay-and-sum algorithm receives the name of

“total focusing” by synthetically focusing the array on each image pixel in the x-z plane. It

is considered the gold standard in array imaging by generating the highest possible imaging



17

resolution from the interior regions of the part under inspection based on FMC information (Fan,

Caleap, Pan & Drinkwater, 2014). TFM is today beginning to be diversely used in industrial

applications (Lane, Dunhill, Drinkwater & Wilcox, 2010; Li, Pain, Wilcox & Drinkwater, 2013;

Russell, Long, Duxbury & Cawley, 2012). The combination of FMC-TFM is also currently

found available in most commercial ultrasound systems. Figure 1.8 depicts the TFM algorithm

operation applied to a linear array containing 𝑁 elements.

Figure 1.8 TFM imaging procedure using a linear transducer,

where the travel times to an image point 𝑃 are computed for

different combinations of 𝑒 and 𝑟
Adapted from Schmerr Jr (2014, p. 244)

First, the technique divides the region of interest (ROI) into a grid of pixels. Then, it calculates

the distances between the emitting element (𝑒) to a given pixel (𝑃), and from the same pixel to

a receiving element (𝑟) to later compute the time of flight (TOF) using the wave propagation

velocity. Thus, the image intensity 𝐼 (𝑥, 𝑧) is given by a summation of each pixel intensity

obtained by the time-domain amplitude of the signal at the computed TOF (Sutcliffe, Weston,

Dutton, Charlton & Donne, 2012):
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𝐼 (𝑥, 𝑧) =
����� 𝑁∑
𝑒=1

𝑁∑
𝑟=1

𝐻 (𝑆𝑒𝑟 (𝑇𝑂𝐹 (𝑥, 𝑧)))
����� (1.5)

where 𝐻 is the Hilbert transform and 𝑆𝑒𝑟 denotes the time-amplitude signal from the correspond-

ing emitting-receiving pair. By positioning the elements along one dimension (𝑥−direction), the

linear phased array can only steer in the x-z plane, therefore producing 2-D images from a single

probe position. Hence, the result is a fully focused high-resolution 2-D image. Holmes et al.

(2005) successfully applied the TFM approach for NDT applications in post-processing after a

full matrix capture. The authors measured an aluminum block containing electrical discharge

machining (EDM) notches as defects using the FMC-TFM strategy, and their results showed that

the performance in signal-to-noise ratio (SNR) was better than the plane and focused B-scans.

The SNR measures the ratio of the power of a signal to the power of background noise, and

therefore a greater SNR indicates more signal than noise.

Matrix phased arrays can perform 3-D imaging thanks to their 2-D element arrangement, and

therefore, it is possible to implement the concept of collecting and processing the FMC to

generate accurate 3-D images using the TFM algorithm. The 3-D TFM precisely produces a

volumetric image without stacking or stretching the two-dimensional planes. The region of

interest now extends to an additional plane and is converted into a 3-D grid of pixels named

volume of interest (VOI) instead of “region of interest”, as described for 2-D TFM. Figure 1.9

shows the 3-D TFM imaging process for a square matrix array of 𝑁𝑀 elements.

Likewise 2-D TFM imaging algorithm, the distances between the centroid of 𝑒 to a given pixel

𝑃 located in a cubic grid, and from the same pixel to the centroid of 𝑟 are computed, then

obtaining the TOF according to the wave propagation velocity in the medium. The image

intensity 𝐼 (𝑥, 𝑦, 𝑧) of a 2-D array that contains 𝑁𝑀 elements is given by:

𝐼 (𝑥, 𝑦, 𝑧) =
�����𝑁𝑀∑
𝑒=1

𝑁𝑀∑
𝑟=1

𝐻 (𝑆𝑒𝑟 (𝑇𝑂𝐹 (𝑥, 𝑦, 𝑧)))
����� . (1.6)
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Figure 1.9 3-D TFM imaging process using a square matrix

array

Adapted from Schmerr Jr (2014, p. 245)

The result of the FMC-TFM applied to a matrix phased array can be seen in Figure 1.10. The

three-dimensional view of the defects inside the part as well as the 2-D planes can be plotted,

showing the potential of this technology regarding sizing randomly oriented flaws. Information

about the length, depth, and orientation are displayed in the images, all this is accomplished by

inspecting from a single point location.

In this case, one can see that using TFM for volumetric imaging requires significantly more

computational power than its 2-D counterpart, as indicated by comparing Eqs.1.6 and 1.5. This

is due to the larger amount of data involved in 3-D imaging, as matrix arrays have many more

elements compared to linear arrays (𝑁𝑀 >> 𝑁). For instance, a denser matrix probe with 1024

elements (32 x 32 array) would produce a 1024 x 1024 matrix of A-scans. This is equivalent to

the square of the number of A-scans collected by a 1-D probe with 32 elements using FMC.
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Figure 1.10 Reconstructed image of a defect: (a) 3-D TFM and (b) XZ and

YZ planes

Adapted from McKee et al. (2019, p. 6)

Also, the number of focal points in a 3-D image is much higher than in a 2-D image, which

slows down the image formation process as well.

1.3 Concept and design of sparse arrays

Despite all the benefits and potential of ultrasonic matrix phased arrays, the broad use of this

technology in industrial NDT applications has not been accomplished yet, especially when

compared to the linear array (Drinkwater & Wilcox, 2006). The main reasons for this very little

take-up stem from the following problems: (1) managing and driving a high number of elements

is a technical challenge; (2) 3-D imaging requires a high hardware complexity to handle the large

amount of generated data. In this way, different strategies have been suggested to overcome these

limitations. It is expected that within the next years heavy hardware scanners that overcome

these limitations will become more widespread and significantly cheaper. So far, large channel

count ultrasonic scanners are restricted to a few research centers, to cite the systems in Denmark

(Jensen et al., 2013), France (Petrusca et al., 2018), and from Provost et al. (2015). On the other

hand, future directions are pointing to the implementation of lighter hardware scanners that

could perform similarly to complex systems but using a reduced number of elements (Roux et al.,
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2018). Approaches to designing and driving 2-D phased arrays are being explored, especially the

ones that consider element number reduction, such as the sparse array (Austeng & Holm, 2002).

This technique selects a reduced set of elements inside the matrix probe, allowing it to preserve

fewer active elements without losing too much performance. In addition, the productivity of the

3-D TFM could be increased by using this method. One can notice that adopting this imaging

algorithm using denser probes overloads both the TFM acquisition and computation time. This

is a consequence of the time interval from consecutive firings events of the FMC acquisition

combined with the time-consuming TFM computation related to the vast amount of FMC data

generated, which limits its use in real-time measurements without high-end devices. Therefore,

using a lower number of firing events would improve acquisition speed and reduce the data to

be processed. Working with a sparse array corresponds to using a sparsely populated array in

transmission, in which reception can be done whether in all elements or just using a couple of

them (Bannouf, Robert, Casula & Prada, 2013; Moreau, Drinkwater & Wilcox, 2009).

Finding the ideal sparse configuration can be based on two well-established paths identified

in previous works (Austeng & Holm, 2002; Roux et al., 2017), even though none of them

can be considered definitive: deterministic and non-deterministic approaches. Most of these

approaches are based on narrowband array beam pattern (BP) simulations to reduce the

computational load, as computing a realistic BP is a time-consuming and resource-heavy

operation. Examples of deterministic approaches are regular and radially periodic arrays

(Austeng & Holm, 2002; Brunke & Lockwood, 1997), and conformational arrays (Ramadas,

Jackson, Dziewierz, O’Leary & Gachagan, 2014). The latest works are dealing with different

spiral array configurations (Martínez-Graullera et al., 2010; Ramalli, Boni, Savoia & Tortoli,

2015; Yoon & Song, 2020). When using the deterministic approach, knowing the layout

geometry in advance allows a quick definition of the sparse array without greater computational

work, and to perform simulation tests right after. However, depending on the approach used, the

design flexibility is limited in this case, and its performance dependency on the set elements in

transmission and reception is also an obstacle (Roux et al., 2017). Figure 1.11 shows examples of

regular, radially, and spiral periodic array layouts. The black dots represent the active elements.
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Figure 1.11 Periodic array layouts (a) regular, (b) radially

used by Austeng & Holm (2002), and (c) spiral proposed by

Martínez-Graullera et al. (2010)

Adapted from Austeng & Holm (2002, p. 1077) and

Martínez-Graullera et al. (2010, p. 281)

The non-deterministic random sparse array approach usually uses a predefined number of array

configurations, where each one is obtained by randomly selecting the reduced desired number

of active elements from the array. In this case, the configuration with the best performance is

selected e.g. lowest side lobe level. Still, the reliability of the best configuration is limited by

the fact that each random sparse array is independently made from the previously evaluated

configuration and the narrow number of explorations (Roux et al., 2017). On the other hand, non-

deterministic approaches based on stochastic optimization consider these previously evaluated

configurations and iteratively explore the best configuration. For cases like this, the simulated

annealing (SA) algorithm has shown to be a better option over other stochastic approaches

such as genetic algorithms (GA), which require more time and computation robustness, in

addition to premature convergence in some cases (Adler, 1993; Hwang & He, 2006). Stochastic

optimization, when compared to the “classical” non-deterministic random approach, has the

advantage of controlling the process time duration (finite-time convergence property) and the

convergence property to the global minimum (Roux et al., 2018). Trucco (1999) was the first

to apply SA to large 2-D sparse arrays, and since then this algorithm has been refined (Diarra,

Liebgott, Tortoli & Cachard, 2011; Diarra, Liebgott, Robini, Tortoli & Cachard, 2012; Roux

et al., 2017).



23

The latest studies regarding volumetric imaging using sparse arrays were performed using a

wideband array BP, which provides a more realistic analysis but requires increased computational

resources (Sciallero & Trucco, 2015; Roux et al., 2016). Typically, stochastic optimization

methods are used to create wideband sparse arrays, with the SA algorithm being a popular

choice for this purpose. In the work of Roux et al. (2018), 3-D US images were compared using

three distinct array configurations. From a reduced number of 256 elements out of the reference

array containing 1024, the authors design the best 2-D sparse array configuration based on

wideband signals using the SA algorithm, comparing the echocardiography phantom images

with the full reference array and a random layout of 256 elements. According to the results, the

random selection performed better than the other scenarios in terms of lateral resolution using

diverging waves. At the same time, the optimal layout based on SA presented a contrast-to-noise

ratio (CNR) around just 4 dB worse than the full reference array, and 0.6 dB better than the

random. For future directions, the authors suggest reducing the number of active elements down

to 7% of the reference array. Figure 1.12 illustrates the 2-D phased array layouts used, and their

respective 3-D phantom image slices containing the CNR values.

Recently, Sciallero & Trucco (2021) introduced a novel approach that involves optimizing a

wideband 2-D sparse array alongside multiline reception. Their method is based on the beam

patterns computed for various signal fractional bandwidths that are optimized through the

SA algorithm. This approach led to improved volume rate imaging capabilities, however, the

proposed method was only tested using phantom image simulations.

Stochastic optimization algorithms such as SA have been effectively applied to design diverse

sparse arrays in narrow and wideband conditions, but their use can be complex and not easy to

implement in practice. The SA method mirrors the annealing process in metals, and therefore

using this algorithm involves frequent and continual movements at different temperatures.

Thus, configuring the temperature and cooling schedule becomes complex, potentially causing

improper movements and impacting the final solution. Additionally, precisely designing the

communication mechanism for determining the probabilities for possible moves to generate a

candidate solution, is crucial for the SA’s performance. Because of that, recent works are also
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Figure 1.12 2-D phased array selected layouts: the reference array

(ref1024), the random array (rand256), and the optimized array (opti256)

and phantom image slices

Adapted from Roux et al. (2018, p. 5)

exploring alternatives other than refining the SA algorithm, for instance using other algorithms

such as particle swarm optimization (Zhang, Bai, Zheng & Zhou, 2020). Moreover, due to the

substantial computational resources and convergence issues associated with optimized sparse

design methods, utilizing simplified search algorithms and exploring deterministic methods

providing suboptimal array designs emerge as potential alternatives (Ramalli, Boni, Roux,

Liebgott & Tortoli, 2022).
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1.4 Overview of compressive sensing (CS)

The advance of ultrasonic array probes with an increasing number of elements over traditional

testing with a monolithic probe has led to significant progress in NDT. On the other hand, this

tendency to use transducers with high element count also leads to a significant increase in data

collection and processing. Even reducing the number of elements, there is still a large amount

of data generated that requires subsequent sampling and digital conversion, which leads to a

considerable amount of data processing in real-time. These computational demands stem from

the principles outlined in the Nyquist-Shannon theorem, which dictate that the sampling rate

(SR) must be at least twice the maximum frequency present in the signal to prevent aliasing. The

phenomenon of aliasing refers to distortions or misrepresentations of a signal that occurs when

it is improperly sampled or digitized. Therefore, standard analog-to-digital converter (ADC)

in the area of data conversion usually works with signals uniformly sampled at or above the

Nyquist rate in some situations (Candes & Wakin, 2008). These signals are deemed compressible

when represented in a transform basis like Fourier, indicating that a majority of coefficients

are insignificant for reconstructing the original signal and can be discarded. In simpler terms,

traditional compression methods operate on obtaining complete high-dimensional measurements

to later discard (compress) most coefficients and inverse-transform the relevant ones to generate

a faithful representation of the acquired signal (Achim, Buxton, Tzagkarakis & Tsakalides,

2010). Despite the significant success of transform domain compression in practical applications,

this process is inefficient because most of the output from the ADC conversion is discarded.

Extending this to a matrix array probe that might contain thousands of elements, and thus

generate a huge amount of data, would be even more ineffective. Therefore, finding an effective

compression method that can be successfully performed using denser arrays would be of great

interest.

The recent advent of compressive sensing (CS) completely changed the traditional compression

paradigm (Donoho, 2006; Candes & Wakin, 2008). According to the CS theory, it is possible to

recover signals from fewer random measurements when compared to traditional methods that

use high-dimensional uniform sampling. In this case, instead of having sampling followed by
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compression, the CS proposes just acquiring the relevant signal information. In other words,

CS uses a simple and efficient approach to measure the useful information embedded in sparse

signals. Hence, this approach is interesting for PAUT, especially for matrix phased arrays in

the context of 3-D TFM acquisition and processing. The concept of compressive sensing is

straightforward to express mathematically, but determining the sparsest vector solution that

matches the random measurements is still considered a non-polynomial (NP) hard problem.

It was only in the last 18 years that advances in applied mathematics and statistics have led

to the development of efficient algorithms to solve the CS undetermined inverse problem in

identifying with high probability the corresponding sparse vector (Candes & Tao, 2005, 2006;

Tropp & Gilbert, 2007).

The CS theory asserts that it is possible to recover the information under two conditions: sparsity

and incoherence. Sparsity is related to the signal, which requires to be sparse in some domain

(e.g., Fourier, discrete cosine transform (DCT), wavelet, etc.), and incoherence is related to the

sensing modality (Candes & Wakin, 2008). Considering a signal 𝑥, which can be visualized as a

column vector 𝑁 × 1 containing elements 𝑥 [𝑛], with 𝑛 = 1, 2, ..., 𝑁 , it is possible to represent

this signal in terms of an orthogonal basis of 𝑁 × 1 vectors
{
𝜓𝑁
𝑖=1

}
. Then, taking the 𝑁 × 𝑁

basis matrix Ψ containing vectors {𝜓𝑖} as columns, with 𝑖 = 1, 2, ..., 𝑁 , the signal 𝑥 is written as

a linear combination (Baraniuk, 2007):

𝑥 =
𝑁∑
𝑖=1

𝑠𝑖𝜓𝑖 or 𝑥 = Ψ𝑠 (1.7)

where 𝑠 is the column vector 𝑁 × 1 of weighting coefficients also named as the sparse vector

if the vector presents a sufficient level of sparsity in a transform base. In this case, 𝑥 in the

time domain and 𝑠 in the Ψ domain are equivalent representations. It was shown by Candes,

Romberg & Tao (2006) and Donoho (2006) that is possible to recover a signal that is sparse on

one transform basis Ψ from a second measurement basis, Φ, which is incoherent with Ψ. In

this case, the signal 𝑥 is said to be 𝐾−sparse in a proper basis Ψ only if a small number 𝐾 of

coefficients are non-zero. Thus, the CS mathematical model is:
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𝑦 = Φ𝑥 (1.8)

where 𝑦 is the 𝑀 × 1 compressive measurement vector, measured using the 𝑀 × 𝑁 matrix Φ

containing random variables, with 𝑀 � 𝑁 representing a drastic subsampling (Achim et al.,

2010). Then, Eq.1.8 can be rewritten as:

𝑦 = Φ𝑥 = ΦΨ𝑠 = Θ𝑠 (1.9)

where Θ is a matrix 𝑀 × 𝑁 , and where the matrix Ψ is fixed as it doesn’t depend on 𝑥. The

matrix Θ and the vector 𝑦 are known components, and thus, the solution consists of finding 𝑠,

which can finally be inverse-transformed to obtain 𝑥 using Eq.1.7. To better illustrate the process,

Figure 1.13 depicts a CS measurement process using a measurement matrix Φ composed of

Gaussian random distributed numbers, and with Ψ represented by a discrete cosine transform

matrix and a sparse vector 𝑠 with 𝐾 = 4.

Figure 1.13 Compressive sensing measurement process using the Gaussian

random measurement matrix and DCT

Considering the promising advancements in digital signal processing offered by a successful

subsampling recovery, there has been a rapid increase in the adoption of CS across engineering and

applied sciences in recent decades. However, it’s important to note that signal recovery through

CS is not entirely guaranteed in all cases, as most natural signals are never exactly sparse, but

instead, CS recovery is achievable with high probability under certain conditions. Consequently,
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numerous academic papers have explored the theoretical feasibility of implementing CS in a

variety of fields (Bao, Li, Sun, Yu & Ou, 2013; Brunelli & Caione, 2015; Kruizinga et al., 2017;

Zhang et al., 2022). The forthcoming efforts are directed toward practically implementing CS

on acquisition devices, which is currently an obstacle and is at the development stage (Yoo et al.,

2012; Candès & Becker, 2013; Silva et al., 2020; Park, Zhao, Park, Sun & Chae, 2021).

In NDT, the CS approach can be found applied to ultrasonic guided waves (Perelli, Di Ianni,

Marzani, De Marchi & Masetti, 2013; Perelli, De Marchi, Flamigni, Marzani & Masetti, 2015),

but so far just a few works have been conducted on PAUT (Bai et al., 2018b; Pérez, Kirchhof,

Krieg & Römer, 2020; Xu et al., 2023). The current state-of-the-art of CS in NDT suggests

that achieving experimental signal recovery at sub-Nyquist rates has not yet been accomplished.

Despite achieving interesting results of CS applied to PAUT using linear arrays in simulations,

the works from Bai, Chen, Jia & Zeng (2017), Bai et al. (2018b), and Xu et al. (2023) were not

able to successfully implement the recovery of experimental data at the sub-Nyquist rate as they

did in a simulation environment. In other recent work, Xu, Wang, Yao & Li (2021) also proposed

a method for recovering FMC data from a 5-MHz linear phased array that was sampled at 62.5

MHz employing a CS framework. Satisfactory recovery accuracy was, however, only possible

when applying just 60% of compression rate (CR), which is not sufficient to overcome the Nyquist

limitation in this case. The poor success of these works in the sparse recovery of experimental

FMC data acquired at a sub-Nyquist SR may be attributed to the use of inappropriate transform

bases in the reconstruction framework or the neglect of incoherence in the sampling scheme.

The challenge of implementing CS mainly relies on designing an efficient measurement matrix

Φ in a proper transform basis Ψ, so that the information of any 𝐾−sparse signal does not pass

by distortions or losses due to the dimensionality reduction depicted in Figure 1.13. This aspect

hasn’t been addressed in the existing NDT literature utilizing CS. Ultrasonic signals are typically

not inherently sparse, as they often contain a wide range of frequencies, reflections, and other

characteristics (front and back walls, mode-converted waves, noise, etc.), leading to a dense

representation due to the rich information carried within the signal. Therefore, relying solely

on signal sparsity cannot ensure a successful CS recovery. Moreover, there is a noticeable gap



29

in research addressing the time-consuming nature of recovering the entire FMC dataset from

denser probes. In this case, the combination of CS and sparse array approaches is advantageous,

as it can significantly enhance the data acquisition and simultaneously reduce the generated data

size. The reduction of the collected A-scans achieved using sparse array configurations can

increase the CS recovery time. At the same time, when properly designed, sparse arrays can

maintain sufficient TFM accuracy. Therefore, this reinforces the need for further investigation of

combining sparse array techniques and CS on the use of 3-D TFM ultrasonic imaging using

matrix phased arrays.

1.5 Outlining research objectives and article presentation

This literature review chapter presented the recent advancements in ultrasonic inspection and

imaging techniques, highlighting the evolution from monolithic to denser array transducers and

the transition of research-exclusive methods like FMC-TFM to commercial viability. It also

discussed the potential of 2-D array probes for improved inspections through a three-dimensional

view and enhanced resolution, particularly evident in their application within the TFM framework.

Despite their potential, the adoption of these high-count element probes encounters obstacles in

the field of NDT. This research project’s scope intends to overcome the existing limitations of

ultrasonic matrix phased arrays, aiming to bridge the gaps preventing the widespread industrial

adoption of volumetric imaging. After recognizing the sparse array technique and compressive

sensing as the most promising alternatives, this project investigates the combination of these

techniques to improve TFM productivity. The main objective of this study is the development of

an innovative CS strategy applied to ultrasonic sparse arrays for lightweight and faster 3-D TFM

imaging. To achieve this, the following specific objectives are:

• To obtain the minimum number of active elements that effectively perform as the full reference

array through innovative sparse array designs.

• To develop an efficient compressive sensing (CS) framework capable of recovering FMC

ultrasonic signals using sampling rates under the Nyquist theorem limit.
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• To analyze the efficiency of CS combined with the sparse array concept in the generation of

TFM ultrasonic images.

Three articles addressing the objectives are presented in the course of this thesis. The first

article, presented in Chapter 2, introduces a simplified and straightforward approach to designing

the optimal sparse array layout of linear ultrasonic transducers based on array BP simulations,

without using complex stochastic optimization algorithms. This approach aimed to enhance

TFM productivity by minimizing the number of firing events necessary to replicate full array

performance, addressing limitations associated with real-time measurements. The method

was compared with the full array (FMC) and PWI, an emerging acquisition strategy aimed at

improving frame rate while keeping high image quality. Additionally, this study introduced a

periodic sparse array design as an alternative method for sparse-TFM imaging.

The second article, presented in Chapter 3, refines and adapts the method from the first article

to design 2-D sparse arrays. The method was then based on pulse-echo 3-D point spread

function (PSF) simulations, where an intermediate step was introduced that included removing

symmetrical arrangements and adding more spatial limitations to decrease the computational

load of this analysis. Based on the observed trend in optimal layouts with varying firing events,

the study also demonstrated the feasibility of creating suboptimal 2-D sparse arrays without

undergoing any exploration process, which is attractive for designing other sparse 2-D probes

that can feature high-count elements (e.g., ranging from 256 to 1024).

Finally, the third article in Chapter 4 combined compressive sensing and sparse array approaches.

An efficient CS framework based on sparsity and incoherence concepts was proposed for an

optimal CS matrix selection and to enable FMC signal recovery at the sub-Nyquist rate. Then,

the signal recovery was performed according to a sparse array arrangement designed to act

as the full array obtained from the previous studies. The method was tested on experimental

data, estimating signal recovery accuracy, and evaluating how data reduction affected image

quality and defect sizing. TFM image formation and CS reconstruction times were also assessed,

comparing CS-FMC and sparse CS datasets.
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2.1 Abstract

High-quality images can be achieved via the total focusing method (TFM), an imaging algorithm

used in ultrasonic nondestructive testing (NDT), which post-processes data from full matrix

captures (FMC). However, real-time TFM is resource-heavy and only feasible with high-end

instruments, which limits its wider use in industrial applications. In this work, a sparse array

approach was investigated to increase TFM productivity by reducing the number of transmission

events. Therefore, a comparison was made between two sparse layouts and plane wave imaging

(PWI) in terms of contrast-to-noise ratio (CNR) and the array performance indicator (API). The

aim was to find a trade-off between image quality and the number of firing events required. The

comparison showed that the sparse array outperforms PWI when more than 3 firing events are

used. Results indicate that the proposed sparse-TFM can in fact increase TFM productivity

without compromising the CNR and API levels.

2.2 Introduction

In the last decades, phased array ultrasonic testing (PAUT) became a widely used technique

in the nondestructive testing (NDT) of materials and structures, owing to its benefits over

traditional ultrasonic testing (UT), such as flexibility and reliability (Felice & Fan, 2018). Unlike

conventional single element ultrasonic transducers, ultrasonic phased array probes comprise

several small individual piezoelectric elements that can be independently pulsed. This allows to
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perform several types of inspection by controlling each element, and thus insonifying parts using

various patterns. Consequently, this technology has also led to different imaging algorithms for

defect characterization and data interpretation. The advent of data acquisition systems allowing

the transmission and reception of all elements resulted in a data acquisition scheme called the full

matrix capture (FMC). In FMC, a pulse is transmitted sequentially to one element at a time, and

received signals are recorded by all elements of the array. Therefore, a linear probe containing

𝑁 elements will make 𝑁 emissions with 𝑁 receptions in each event, generating a complete

𝑁 × 𝑁 matrix of data. The FMC concept was introduced by Holmes et al. (2005), along with

the total focusing method (TFM) algorithm. This imaging algorithm synthetically focuses the

array on each pixel from the grid of subsurface regions through the post-processing of FMC,

therefore generating superior image resolution relative to conventional PAUT imaging methods

(Fan et al., 2014). Today, TFM is beginning to be used in different industrial segments (Lane

et al., 2010; Russell et al., 2012; Li et al., 2013; Mansur Rodrigues Filho & Bélanger, 2021).

However, real-time processing of FMC-TFM can be limited for some industrial applications,

such as railroad rail flaw detection (Clark, 2004), which require high-speed detection. This

limitation is due to two major factors: the first is the time required to acquire the FMC; there is a

time interval between the FMC firing events that leads to slow data collection. The second is

the amount of data to be post-processed, which makes TFM imaging computation significantly

time-consuming. There are also other applications for which the cost of the high-end equipment

required to perform FMC-TFM is simply not justifiable.

Alternatively, sparse array techniques provide an effective solution to some of these shortcomings

(Austeng & Holm, 2002; Moreau et al., 2009). When using this approach, a few elements from

the array are selected in transmission while all or just some are used in reception, reducing the

acquisition time and the amount of data to be processed. Even though sparse array methods have

been extensively studied in the medical field since the 1990s (Lockwood, Li, O’Donnell & Foster,

1996; Lockwood, Talman & Brunke, 1998), and were later introduced in NDT (Moreau et al.,

2009), sparse array design is still very dynamic as a research focus. The search for the best

sparse array configuration can be carried out using different approaches. For instance, the
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standard random sparse method (Moreau et al., 2009; Davidsen, Jensen & Smith, 1994) uses a

predefined number of configurations that are randomly generated from a portion of the full array.

Then, the best configuration is chosen in terms of the beam pattern (BP) features, such as the

sidelobe level (SLL) and the grating lobe level (GLL). However, all the possible configurations

are not explored in this method. Other random approaches based on stochastic optimization,

including simulated annealing (SA) (Roux et al., 2018; Trucco, 1999) and genetic algorithm

(GA) (Austeng, Holm, Weber, Aakvaag & Iranpour, 1997), are usually preferred when the

optimal configuration is explored on a small scale. These random optimization algorithms

present interesting features such as finite time exploration and a convergence property to the

global minimum, using previously evaluated configurations instead of suggesting a pure random

solution (Diarra et al., 2016; Roux et al., 2017). Nonetheless, the GA requires more time and

computation robustness than the SA for larger optimization schemes, and presents premature

convergence in some cases (Adler, 1993; Hwang & He, 2006). Moreover, when using the SA,

a precise design of the communication mechanism, which provides the probabilities of the

possible moves needed to generate a candidate solution, might be critical to the performance

of this approach. Recent research papers have applied GA in dual-layer media (Hu, Du, Xu,

Jeong & Wang, 2017), and have also used particle swarm optimization (Zhang et al., 2020).

Hu et al. (2017) achieved an error of 5.1% over TFM when using 8 firings with their sparse

approach, whereas Zhang et al. (2020) optimized a sparse layout of around 80% of the full array,

obtaining a small gain in image quality in simulations.

In this paper, the sparse array technique using the minimum number of transmission events

is investigated as an alternative to increase TFM productivity. In a context where a limited

number of transmission events is used, the narrow number of possible combinations makes the

computation of the BP and the exploration of the entire set of array layouts viable. This opens

the possibility to design the best layout adopting a simplified and straightforward approach

without using complex stochastic optimization algorithms such as SA and GA. The SA algorithm

emulates the annealing process of metals, adopting frequent and constant movements concerning

the varying temperature. Therefore, setting the temperature and the cooling schedule is quite
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complex as could lead to inappropriate movements and affect the final solution. The GA on the

other hand, is an evolutionary algorithm that often requires a precise design of the objective

function and fails to manage large populations of possible solutions, making it also complex to

handle. The proposed method is assessed experimentally, and a comparative study is done with

another technique known as plane wave imaging (PWI), which also generates image using a

restricted amount of data. The comparison is made by testing the same number of transmission

events. The images generated are quantitatively analyzed to find a trade-off between image

quality and the number of firing events.

2.3 Materials and methods

2.3.1 Experiments

Experiments were carried out using an Olympus linear ultrasonic phased array 5L64 (5 MHz

center frequency, 0.60 mm pitch, and 64 elements) connected to a Verasonics Vantage-64 LE.

The probe was placed in contact with an aluminum block, with ultrasonic speed measured at

6354 m/s, containing five 1 mm side drill holes (SDH) drilled at different depths. Measurements

were performed for two different orientations of the block, vertical and horizontal, to verify

the capacity of the sparse array technique to resolve SDH distributed axially and laterally.

Henceforth in the present work, the vertical and horizontal positions of the block will be named

VPO and HPO, respectively. The FMC acquisition was done for each position at a sampling rate

of 62.5 MHz, and the experimental data was imported to the MATLAB environment to generate

images using the TFM algorithm. Fig. 2.1 shows a schematic of the block along with the region

of interest of each position. The imaging area measured 140 × 40 mm for VPO and 70 × 70 mm

for HPO, with a square pixel resolution of 0.10 mm.

2.3.1.1 Total focusing method (TFM)

In the FMC acquisition scheme, each piezoelectric element from an array containing 𝑁 elements

is excited sequentially, while all the elements receive the back-propagated waves. The received



35

a) Schematic of the aluminum block

b) Vertical position (VPO)

c) Horizontal position (HPO)

Figure 2.1 (a) Schematic of the aluminum block and measurement

positions (b and c)

signals are then stored down to the 𝑁𝑡ℎ element (𝑆11(𝑡) , 𝑆12(𝑡) , · · · , 𝑆1𝑁 (𝑡) , 𝑆21(𝑡) , 𝑆22(𝑡) , · · · ,
𝑆2𝑁 (𝑡) · · · 𝑆𝑁𝑁 (𝑡)) obtaining the complete set of data. After the acquisition using the FMC, the

data can be post-processed in the MATLAB environment. The TFM imaging algorithm can then

be employed to generate the images. In this technique, a region of interest is first discretized in a

grid of pixels, and then the signals 𝑆𝑛𝑚 at every point are coherently summed according to the

following equation:

𝐼 (𝑥, 𝑦) =
�����𝐻

(
𝑁∑
𝑛=1

𝑁∑
𝑚=1

𝑆𝑛𝑚 (𝑡𝑛𝑚)
)����� (2.1)
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where 𝐼 (𝑥, 𝑧) is the image intensity, 𝐻 is the Hilbert transform, and 𝑡𝑛𝑚 is the time-of-flight

(TOF) of the ultrasonic wave propagation from the emitter (𝑒) to the pixel 𝑃 location, and back

to the receiver (𝑟). The TFM is schematized in Fig. 2.2 using the 𝑂𝑋𝑍 coordinate system.

The origin 𝑂 is the center of the array, with the 𝑋-axis oriented to the right, and the 𝑍-axis

perpendicular to the array. The array elements are distributed in the 𝑋-direction.

Figure 2.2 Schematic of the FMC-TFM

The path taken by the ultrasonic wave is the path traveled with the least time, following Fermat’s

principle, and can be found with simple geometric relationships. Thus, 𝑡𝑛𝑚 is calculated using

the speed of sound of the inspected medium. Eq. 2.1 can therefore be rewritten as follows:

𝐼 (𝑥, 𝑦) =

�������𝐻 
���
𝑁∑
𝑛=1

𝑁∑
𝑚=1

𝑆𝑛𝑚

���
√(

𝑥𝑝 − 𝑥𝑛
)2 + 𝑧2

𝑝 +
√(

𝑥𝑝 − 𝑥𝑚
)2 + 𝑧2

𝑝

𝑣𝐿

����
����
������� (2.2)

where 𝑥𝑛 and 𝑥𝑚 are the position in the x-direction of the 𝑛𝑡ℎ emitter (𝑒) and the 𝑚𝑡ℎ receiver (𝑟),

respectively, (𝑥𝑝, 𝑧𝑝) is the location of pixel 𝑃, and 𝑣𝐿 is the longitudinal sound velocity of the

medium. Despite the benefits of high resolution achieved by the TFM algorithm, one can see

that TFM demands a considerable number of calculations. However, using a sparsely populated

array in transmission would improve TFM speed as well as reduce the amount of collected data.

Hence, sparse array techniques have the potential to increase TFM productivity. In this study,
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the sparse array is synthetically assembled using the FMC. According to the desired number of

active elements (𝑁𝑒) in transmission (e. g., 5 out of 64 elements), a sparse matrix of data is

selected, with all elements in reception. In this case, the 𝑁 × 𝑁 FMC matrix is turned into an

𝑁𝑒 × 𝑁 matrix. For the calculation of TFM, only the FMC columns corresponding to 𝑁𝑒 are

used in Eq. 2.2. Therefore, in this paper, a sparse-TFM corresponds to an image generated with

a subset of the FMC.

2.3.1.2 Design of sparse array

The proposed design procedure consists in comparing the two-way radiation pattern (also known

as the array beam pattern (BP)) of the sparse array against the one from the FMC. The beam

pattern expresses the array angular impulse response, and therefore represents the imaging

capabilities of the system (Moreau et al., 2009). Thus, the sparse array layout can be designed

based on the characteristics of the BP, as the contrast relies on sidelobes, and the main lobe

resolves the lateral resolution. Taking Eq. 2.1 and expressing it in the frequency domain

(Bannouf et al., 2013), it follows that:

𝐼 (𝑥, 𝑦) =
∑
𝜔

∑
𝑛𝑚

𝑆𝑛𝑚 (𝜔) 𝑒 𝑗 𝑘 (𝐷𝑒 (𝑛)+𝐷𝑟 (𝑚) ) (2.3)

where 𝑆𝑛𝑚 (𝜔) is the frequency spectrum of array signals, and 𝐷𝑒(𝑛) and 𝐷𝑟 (𝑚) are the distances

between the emitter and receiver to the point 𝑃, respectively. From Fig. 2.2, using the law of

cosines (Schmerr Jr, 2014), we have:

𝐷𝑒(𝑛) =
√
𝑟2
𝑜 + (𝑥𝑛)2 − 2𝑥𝑛𝑟𝑜 sin 𝜃. (2.4)

Considering that the defects are in the far-field of the array i.e., 𝑥𝑛/𝑟𝑜 � 1 and 𝑥𝑚/𝑟𝑜 � 1, and

expanding Eq. 2.4 to only the first order as (Schmerr Jr, 2014):
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𝐷𝑒(𝑛) = 𝑟𝑜 − 𝑥𝑛 sin 𝜃 (2.5)

and

𝐷𝑟 (𝑚) = 𝑟𝑜 − 𝑥𝑚 sin 𝜃 (2.6)

In this case, 𝑥𝑛 = −−−→𝑟𝑒(𝑛) = 𝑛𝑝 and 𝑥𝑚 = −−−→𝑟𝑟 (𝑚) = 𝑚𝑝, with 𝑝 corresponding to the pitch. Thus,

adopting this approximation, Eq. 2.3 can be written as:

𝐼 (𝑥, 𝑦) =
∑
𝜔

∑
𝑛𝑚

𝑒 𝑗 𝑘2𝑟𝑜𝑆𝑛𝑚 (𝜔) 𝑒− 𝑗 𝑘𝑛𝑝 sin 𝜃𝑒− 𝑗 𝑘𝑚𝑝 sin 𝜃 . (2.7)

In Eq. 2.7, the two latter terms are related to the angular resolution aspect, whereas the others are

related to the radial resolution. Hence, considering the emission and reception events separately,

the beam pattern (BP) of the array is found:

𝐵𝑃 =
𝑁∑
𝑛=1

𝑤𝑒
𝑛 (𝜔) 𝑒− 𝑗 𝑘𝑛𝑝 sin 𝜃

𝑁∑
𝑚=1

𝑤𝑟
𝑚 (𝜔) 𝑒− 𝑗 𝑘𝑚𝑝 sin 𝜃 (2.8)

where 𝑤𝑒
𝑛 and 𝑤𝑟

𝑚 are the weighting functions in emission and reception, respectively. The

proposed exploration algorithm was thus executed in the MATLAB environment. After the

trials, the best layout was used experimentally. The algorithm works as follows: first, all the

possible combinations from a given reduced sparse array set (e.g., 3 out of 64 elements in

transmission) are computed and stored. For that, an equation that computes the number of

possible combinations or the so-called binomial coefficient is initially used, given by:

𝐶𝑖, 𝑗 =

(
𝑖

𝑗

)
=

𝑖!

𝑗!(𝑖 − 𝑗)! . (2.9)

Eq. 2.9 provides the number of combinations without repetition of 𝑖 units taken 𝑗 at a time, where

a matrix 𝐶𝑖, 𝑗 with 𝑗 columns and 𝑖 rows, containing the subsets, is formed inside MATLAB.
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Then, the layouts are applied in transmission with the full array in reception, and the BP is

obtained using Eq. 2.8. In this case, no weighting functions are applied either in transmission or

reception, where the values of 𝑤𝑒
𝑛 and 𝑤𝑟

𝑚 are set to 1. The configuration of the active elements

should provide the desired imaging feature, such as the contrast or resolution. Those image

quality parameters rely on the main lobe width, the levels of the sidelobes, and grating lobes

from the BP. Hence, the main lobe width (MLW) at half-maximum (−6 dB) and the sidelobe

level (SLL) are used as criteria for selecting the best sparse layout. The MLW corresponds to

the distance between two points (𝑥2 − 𝑥1) at half maximum (−6 dB). On the other hand, the SLL

is measured by a peak search method and corresponds to the highest peak value after the main

lobe. Fig. 2.3 illustrates how the MLW, and SLL are set.

Figure 2.3 Rectangular radiation plot of a theoretical ultrasonic phased

array showing the MLW and SLL measurement

These two features are computed, passing through two thresholds 𝑇1 and 𝑇2. The first one (𝑇1)

refers to the MLW acceptance threshold and the other (𝑇2) is related to the SLL, both being based

on the BP of the full array. For this algorithm, 𝑇1 was set to be 1.15 times the reference array

MLW. 𝑇2 was chosen to be the maximum sidelobe level allowed and was equal to the reference

array SLL plus 6 dB. 𝑇1 and 𝑇2 were set arbitrarily so as to maintain an acceptable lateral

resolution and artifacts in the image. If the solution is accepted, the result is stored, and the

algorithm continues to run. Otherwise, the solution is not considered, and the algorithm selects
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the next layout. When all combinations are explored, the algorithm ends, and the best layout is

selected according to the narrowest MLW and the lowest SLL, or in this case, the solution that is

closest to the full array in these terms. Fig. 2.4 presents the schematized algorithm workflow:

Figure 2.4 Proposed algorithm to find the best sparse array layout

2.3.1.3 Plane wave imaging (PWI) and comparative study

Another data acquisition strategy derived from medical ultrasound, named PWI, was recently

proposed in NDT to improve TFM productivity (Le Jeune et al., 2016). In this method, all

the elements are activated in transmission, creating a coherent planar wavefront according to a

delay law defined by the angle 𝛽 relative to the propagation axis. The backpropagated wave

is then received by all the elements. Different from the FMC acquisition, in which an 𝑁 × 𝑁

matrix of data is collected, PWI leads to a 𝑃𝑎 × 𝑁 matrix of data, where 𝑃𝑎 is the number

of angles used in transmission, while 𝑁 is the number of receiving elements. It has already

been demonstrated that a low number of transmission events can be used while maintaining a

satisfactory image resolution (Tiran et al., 2015; Montaldo, Tanter, Bercoff, Benech & Fink,

2009). A comparative study was therefore performed between the proposed sparse array and

PWI. The number of active elements in transmission was chosen to be 1, 3, 5, and 7 for VPO,

and 3, 5, and 7 for HPO, leading to a sparse-FMC matrix of 𝑁𝑒 × 𝑁 . Likewise, for PWI, the

number of angles 𝑃𝑎 was set equal to Ne to compare the images generated from the same size

data set. In addition to these two approaches, another sparse strategy using equally distributed

elements was assessed. In the equally distributed layout, the edge elements were not used in

transmission (Diarra, Robini, Tortoli, Cachard & Liebgott, 2013). In this case, the first and
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the last 5 elements of the array were not considered (i.e., elements 1 to 5, and 59 to 64 for a

linear probe containing 64 elements), while the others were placed in a periodic arrangement

according to 𝑁𝑒. The study was therefore done using the FMC-TFM as the benchmark, and

compared the PWI method with the best sparse array layout following the method described in

section 2.3.1.2 and the regular periodic sparse array with edge elements deactivation. For better

identification, the sparse array technique using the minimum transmission events is named MTE,

and the term EQS is used for the equally spaced approach with edge elements deactivation. The

aim is to find a trade-off between image quality and the number of firing events. To generate

plane waves with the same number of firings used for the sparse array, the angle step is changed

while maintaining the same sweep angle. For example, a sweep angle of −30◦ − 30◦ with an

angle step of 30◦ results in 3 firing events. This means that the PWI angles consist of −30◦,

0◦, and 30◦. Likewise, the −30◦ − 30◦ range with a 15◦ step is used for 5 firing events, and so

on. In order to maintain a symmetrical pattern, only odd numbers were chosen in transmission

events. Considering that plane waves are spatially restricted by the probe aperture, the sweeping

angle must be defined to guarantee that most image reconstruction points are insonified by the

incident wave. The area defined by the sweep angle is known as the effective area (Le Jeune

et al., 2016). Fig. 2.5 schematizes the concepts of effective area and PWI sweep angle.

The region of interest (ROI) is different when changing the block position (see Fig. 2.1), and

therefore, the sweep angle was adapted to cover all the defects within the area. In this case, the

angle range was set to −3◦ − 3◦ for VPO, and −30◦ − 30◦ for HPO to cover the ROI. Because the

position of SDH 2 and 4 are outside the probe aperture for HPO (see Fig. 2.5), a single plane

wave is not sufficient to generate the image of all the three defects simultaneously. Hence, for

this case, only 3, 5, and 7 emission events were considered.

2.3.2 Metrics for image evaluation

Two metrics were selected for image evaluation: the contrast-tonoise ratio (CNR) and the array

performance indicator (API). As mentioned in section 2.3.1.2, the sidelobe level might degrade

the image contrast. The presence of high sidelobes results in strong image artifacts that can lead
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Figure 2.5 Sweep angles used for PWI according to block position and their

respective effective area

to a misinterpretation of results. The CNR metric was therefore used to measure the amplitude

of the reflection relative to the background noise. Each defect was evaluated separately, dividing

the image into equal sub-image rectangles of 30× 40 mm in VPO and 23× 34 mm for HPO. For

the CNR measurement, the image area was divided into signal and noise pixels portions. The

pixels with intensities ranging the maximum and down to −6 dB below the maximum intensity

(𝐼𝑚𝑎𝑥 − 6𝑑𝐵 ≤ 𝐼−6𝑑𝐵 ≤ 𝐼𝑚𝑎𝑥) were set as the signal (𝐼−6𝑑𝐵), where these pixels represent the

reflector area in the image (𝐴−6𝑑𝐵). The remaining pixels in the area are considered as noise

(𝐼𝑛𝑜𝑖𝑠𝑒). For each defect in the sub-image rectangle, the root mean square of 𝐼−6𝑑𝐵 divided by the

root mean square of Inoise displayed on a decibel scale yields the CNR value. Therefore, the

CNR is given by Eq. 2.10:
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𝐶𝑁𝑅 = 20 log10
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���� . (2.10)

One way to quantitatively verify the performance of the TFM imaging in terms of its ability to

image a reflector is by using the array performance indicator (API). Essentially, the API is used

to measure the area of the image target (Fan et al., 2014). The API metric considers changes in

the defect size on the images relative to the wavelength of a given material. To compute the API,

Eq. 2.11 is used:

𝐴𝑃𝐼 =
(𝐴−6𝑑𝐵)
𝜆2
𝐴𝑙

(2.11)

where 𝐴−6𝑑𝐵 is the area and 𝜆2
𝐴𝑙 is the square of the wavelength of aluminum. The area 𝐴−6𝑑𝐵 is

calculated by taking all the pixels with intensities ranging from the maximum down to −6 dB

below the maximum intensity (𝐼𝑚𝑎𝑥 − 6𝑑𝐵 ≤ 𝐼−6𝑑𝐵 ≤ 𝐼𝑚𝑎𝑥) and multiplying them by the image

resolution of 0.10 × 0.10 mm. Thus, for each defect, this ratio is calculated.

2.4 Results and discussion

The BP of the reference array was computed according to Eq. 2.8, and the value of MLW at

half-maximum, and the SLL were extracted before starting the trials. The design was done

while approximating the MLW and SLL of the sparse layouts to those from the reference array.

The trials using the given 𝑁𝑒 were done for all possible combinations. Table 2.1 presents all

the numerical results of the design algorithm for the 𝑁𝑒 values used, along with the best sparse

layout solution.

As 𝑁𝑒 increases, the BP features of the best sparse layout get closer to the full array (see Table

1). After the 3-emission event, a sidelobe suppression presented by the best layout can be noted.

Despite the considerable number of combinations explored for 𝑁𝑒 = 7 , no greater improvement
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Table 2.1 Numerical results of the proposed optimization algorithm and

best sparse layout for each 𝑁𝑒 value

Number of active
elements (𝑁𝑒)

Number of
combinations

Best sparse
layout MLW (◦) SLL (dB)

3 41,664 [16 37 52] 1.85 -21.85

5 7,624,512 [12 20 34 42 56] 1.81 -26.64

7 621,216,192 [7 18 23 34 39 50 55] 1.79 -26.97

FMC - - 1.68 -26.51

in MLW and SLL was observed as compared to 𝑁𝑒 = 5. The beam patterns of the FMC and the

best sparse layout with 𝑁𝑒 = 5 are plotted in Fig. 2.6:

a) b)

Figure 2.6 Beam pattern diagram: (a) 64-element array (FMC) and (b) best

sparse layout (𝑁𝑒 = 5)

It can be seen in the BP diagram of the 64-element full array (Fig. 2.6 (a)) that substantial

sidelobes are neighboring the main lobe. The SLL and the MLW at half-maximum for this

case are −26.51 dB and 1.68◦, respectively. For the sparse array layout design with 𝑁𝑒 = 5, the

MLW is 1.81◦ and SLL is −26.64 dB, with an MLW slightly widened when compared to the

full reference array, and SLL decreased by around 0.1 dB (Fig. 2.6 (b)). In this case, the number

of active elements from the array in transmission was reduced by 92.2%, which can significantly

improve the TFM efficiency. The FMC-TFM images for the defined positions, VPO and HPO,

used as a benchmark in this study, are displayed in Fig. 2.7.
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a) b)

Figure 2.7 Experimental FMC-TFM defect image reconstruction: (a) VPO

and (b) HPO

From VPO (Fig. 2.7 (a)), one can see that the amplitude of the defects starts to decrease due to

attenuation (SDH 2 to 5). Among all three defects in Fig. 2.7 (b), SDH 3 presents the highest

amplitude, being under the probe’s aperture and receiving most of the ultrasonic energy, while

SDH 4 presents a higher amplitude than SDH 2. The difference in this case can be attributed to

the variation of energy transmitted in those areas. The back wall and the probe position are also

visible in Fig. 2.7 (b). The results of the comparative study begin with VPO. The 𝑁𝑒 was set

at 1, 3, 5, and 7 for the MTE and EQS, and using −3◦ − 3◦ as the angle range for PWI with a

step variable to achieve the same number of firings. The images were generated through the

TFM algorithm and compared in terms of CNR and API. For better visualization, the metrics

are plotted against the SDH index. Fig. 2.8 shows the ultrasonic images obtained, while Figs.

2.9 and 2.10 display the results of CNR and API for the SDHs of VPO, respectively.

Because of attenuation, the CNR graph presents a descending behavior (Fig. 2.9). The

results show that for the single emission event, PWI presents a better CNR as compared to the
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a)

b)

c)

Figure 2.8 Experimental ultrasonic images of VPO

according to emission events: (a) MTE, (b) EQS, and (c) PWI
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a)

b)

c)

d)

Figure 2.9 CNR curves for VPO comparing FMC, EQS, PWI and MTE for

emission events equal to: (a) 𝑁𝑒 = 1, (b) 𝑁𝑒 = 3, (c) 𝑁𝑒 = 5 and (d) 𝑁𝑒 = 7

single-element excitation from the other sparse approaches. This is a result of the difference in

power that a single cylindrical wave sends inside the part in relation to the plane wave emission,

which is composed of all the elements triggering according to the delay law to generate the

plane wavefront. Consequently, PWI shows a CNR value 0.9 dB greater than EQS for SDH 5

in the 3-emission event. The difference was reduced to 0.17 dB for SDH 5 in the 5-emission

event. The same behavior can be observed for the MTE, but the difference in CNR is smaller

in this case. For the 3-emission event, the CNR of PWI for SDH 5 is 0.3 dB higher, and for

the 5-emission event, showed the same CNR. However, as 𝑁𝑒 increases, both EQS and MTE

start to present CNR values close to the FMC, with MTE having the best performance. The
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a)

b)

c)

d)

Figure 2.10 API curves for VPO comparing FMC, EQS, PWI and MTE for

emission events equal to: (a) 𝑁𝑒 = 1, (b) 𝑁𝑒 = 3, (c) 𝑁𝑒 = 5 and (d) 𝑁𝑒 = 7

same behavior cannot be observed in relation to the API (Fig. 2.10). In this case, the MTE

showed a better performance for all scenarios, with exception of the single emission, where it

presented similar values as PWI, up to SDH 4 (see Fig. 2.10 (a)). Small API values indicate

a small change in the reflector image size relative to the wavelength. The API quantifies the

imaging resolution of the array, and therefore, a small API indicates a better resolution. For the

HPO analysis, 𝑁𝑒 was set to 3, 5, and 7 for the MTE, EQS, and using the angles for PWI going

from −30◦ to 30◦ to cover the entire ROI. The ultrasonic images obtained can be seen in Fig.

2.11. Unlike with the VPO, for the HPO, the sparse approach performed better than PWI for all

scenarios (Figs. 2.12 and 2.13).
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a)

b)

c)

Figure 2.11 Experimental ultrasonic images of HPO according to emission

events: (a) MTE, (b) EQS, and (c) PWI

The MTE on this occasion also yielded a performance closer to FMC. The graphs present a

triangular shape, with the center defect showing a higher amplitude, and therefore, a higher CNR.

The SDH 4 also has a higher CNR as compared to SDH 2, due to the difference in ultrasonic

energy transmitted in their respective location. Also, the resolution of SDH 3 is greater than that

of the other two SDHs analyzed, presenting the smallest API value. The defects in HPO are

located at a maximum depth of 29 mm, and thus are in perfect agreement with VPO results. For

VPO, the defects closer to the surface presented better CNR and API performances (see Figs.

2.9 and 2.10). In that case, both the CNR and API are better for all cases over 3 firing events,

when comparing the sparse approaches with PWI.



50

a)

b)

c)

Figure 2.12 CNR curves HPO comparing FMC, EQS, PWI and MTE for

emission events equal to: (a) 𝑁𝑒 = 3, (b) 𝑁𝑒 = 5 and (c) 𝑁𝑒 = 7

Following the comparison, it can be seen that the proposed sparse- TFM approach (MTE) yields

an overall better performance than the PWI. The SLL of PWI is high and its main lobe width is

considerably wider, as reported in previous work (Guo, Wang, Wu & Yu, 2018). Furthermore,

non-uniform piezo elements happen to introduce more noise than expected if the plane wavefront

is not the ideal or the elements are not transmitting at the same amplitude. Thus, the difference

shown in this study could be also explained with the non-uniformity of the piezo elements inside

the probe. According to the results presented for VPO and HPO, increasing 𝑁𝑒 brings the MTE

performance closer to that of the FMC-TFM in terms of both CNR and API, but significantly

fewer data. This can be attributed to the fact that the FMC presents some redundancy in data
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a)

b)

c)

Figure 2.13 API curves HPO comparing FMC, EQS, PWI and MTE for

emission events equal to: (a) 𝑁𝑒 = 3, (b) 𝑁𝑒 = 5 and (c) 𝑁𝑒 = 7

(Karaman, Wygant, Oralkan & Khuri−Yakub, 2009). The small difference between the results

of the sparse approaches can be explained by verifying the MLW and SLL from their BP. Table

2.2 contains the EQS MLW and SLL results.

Table 2.2 EQS (periodic sparse layout) results of MLW and SLL

for each 𝑁𝑒 value

Number of active
elements (𝑁𝑒)

Periodic sparse
layout MLW (◦) SLL (dB)

3 [18 36 54] 1.86 -20.80

5 [11 22 33 44 55] 1.82 -25.57

7 [8 16 24 32 40 48 56] 1.80 -26.78
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For instance, the periodic sparse layout of 5 emission-events presents almost the same MLW

as MTE (see Table 2.1), and an SLL around 1 dB higher. This is reflected in the imaging

performance, as it makes the API and CNR results to be very close. In some cases, there is a

difference of only 0.1 dB in CNR, but nevertheless, MTE overcomes the periodic layout in all

scenarios.

In order to analyze the acceleration of the ultrasonic imaging process when using fewer emissions,

the computation times of the methods used were measured and compared. The time required

for the FMC-TFM imaging is used as the standard for each block position. Then, a variation

is calculated to estimate the time reduction. The computation time variation (Δ𝑡) of the three

acquisition methods used concerning the number of emissions and block position is found listed

in Table 2.3.

Table 2.3 Variations of the computation time of MTE, EQS,

and PWI compared to FMC according to the number of

emissions used for each block position

Computation time variation Δ𝑡 (%)

Number of emissions VPO HPO
MTE EQS PWI MTE EQS PWI

1 91 90 94 - - -

3 88 88 88 91 91 90

5 85 83 83 89 89 86

7 82 81 77 87 87 81

As shown in Table 2.3, reducing the number of emissions to 7 or fewer leads to an average

reduction of 86% of the imaging time compared to the FMC. This means that the MTE with

5 emission events would take only 1.51 s to image the same ROI of an FMC-TFM with 10 s

of computation time (85% of reduction, see Table 2.3). The Δ𝑡 values of MTE for both block

orientations showed a higher percentage reduction compared to EQS and PWI, except for the

single emission event of VPO. The Δ𝑡 of EQS, however, presented the same variation in some

cases or only a small difference of 1 or 2% against the MTE. Nevertheless, the MTE granted a

faster imaging process compared to the others.
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The percentage variance (Δ%) between MTE and the FMC can be used as a tool to find a

compromise between image quality and the number of firings. To calculate Δ%, the following

equation is applied:

Δ% =
𝑃𝑀𝑇𝐸 − 𝑃𝐹𝑀𝐶

𝑃𝐹𝑀𝐶
(2.12)

where 𝑃𝑀𝑇𝐸 and 𝑃𝐹𝑀𝐶 are the values of API or CNR parameters from MTE and FMC,

respectively. Thus, Δ% is computed for all SDHs analyzed herein. For the sake of brevity, only

the percentage variance of SDH 3 for both VPO and HPO are displayed in Figs. 2.14 and 2.15.

It can be seen that the difference between the percentual values going beyond the 5-emission

event was not bigger. For VPO, the difference was around 2% for CNR and 1% for API (Fig.

2.14 (a) and (b)). The HPO presented a difference of 0.3% for CNR, and 3% for API (Fig. 2.15

(a) and (b). Also, the amount of data to be processed, as well as the number of combinations to

be explored using the MTE approach for 7 emissions must be considered. Therefore, 𝑁𝑒 = 5 can

be said to represent a better trade-off over the other scenarios. In this case, it allows working

with reduced data (just 7.8% of the FMC) while maintaining a satisfactory performance.

a) b)

Figure 2.14 Percentual variance between FMC and MTE for VPO in terms

of (a) CNR and (b) API
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a) b)

Figure 2.15 Percentual variance between FMC and MTE for HPO in terms

of (a) CNR and (b) API

Another quantitative evaluation is done regarding the position and size accuracy of the SDHs for

the proposed sparse approach in contrast to the FMC, and the actual block inspected. Each SDH

was evaluated separately and according to the block orientation (VPO and HPO). Assuming that

the SDH behaves like a perfect rounded reflector, the echoes reflecting on the top of the SDH

corresponds to the maximum intensity pixel on the images and therefore were used for positioning

estimation. When sizing, the direction parallel to the ultrasonic beam is not considered as it

relates the dimension of the defect to the pulse width instead of its size (Felice & Fan, 2018).

Thus, only the perpendicular direction was used for flaw sizing with the 6 dB drop method. Fig.

2.16 (a) and (b) shows the transverse distribution of the SDH 3 in VPO for FMC and MTE

images, respectively. The pixel interval is 0.01 mm.

A percentage variance was also computed in this case, comparing MTE with the FMC image

and the actual block measurements. Table 2.4 contains the percentage variance values for VPO

and Table 2.5 present the ones for HPO. The suffixes x, z, and s represent the defect position in

the x-axis, the defect position in the z-axis, and the size, respectively.

Despite the considerable reduction of emission events, there was no significant variance in flaw

position (see Δ𝑥 and Δ𝑧 values in Tables 2.4 and 2.5). The values compared to FMC did not
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a) b)

Figure 2.16 Percentual variance between FMC and MTE for HPO in terms

of (a) CNR and (b) API

Table 2.4 Percentage variance of MTE with respect to FMC

and the block for each SDH of VPO

Values of Δ (Δ𝑥, Δ𝑧 and Δ𝑠) for VPO
MTE/FMC MTE/Actual Block

SDH number Δ𝑥 (%) Δ𝑧 (%) Δ𝑠 (%) Δ𝑥 (%) Δ𝑧 (%) Δ𝑠 (%)
2 1 0 7 1 5 71

3 1 0 0 1 3 119

4 0 0 5 0 1 211

5 0 0 4 1 1 268

Table 2.5 Percentage variance of MTE with respect to FMC

and the block for each SDH of HPO

Values of Δ (Δ𝑥, Δ𝑧 and Δ𝑠) for HPO
MTE/FMC MTE/Actual Block

SDH number Δ𝑥 (%) Δ𝑧 (%) Δ𝑠 (%) Δ𝑥 (%) Δ𝑧 (%) Δ𝑠 (%)
2 0 0 14 5 5 147

3 0 1 8 1 4 25

4 0 0 17 2 5 160
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exceed 1% and were not greater than 5% for the actual block in both orientations. For sizing, the

actual diameter of the defect (1 mm) was used as standard, and the diameter of the image flaw

was estimated using the 6 dB drop method. Therefore, when Δ𝑠 is equal to 71% as the case of

SDH 2 in VPO, means that the size of the flaw is 1.58 mm in the image. As expected, the effects

of the ultrasonic wave spreading are causing the image defect to stretch, degrading the lateral

resolution. This is more apparent with increasing depth. Therefore, Δ𝑠 starts to increase (see

Table 2.4). This effect can be observed even for FMC-TFM. However, the variation for the MTE

approach was not significant. In comparison with the FMC, the sizing variation was within 7%

for VPO. On the other hand, the SDH 3 in the HPO showed smaller size variation about SDH 2

and 3 by being under the probe’s aperture. The same effect was observed for HPO comparing

SDH 2, 3, and 4 with the actual block.

Figs. 2.17 and 2.18 display the results for MTE and EQS with 𝑁𝑒 = 5 for visual comparison. The

sparse configuration of the elements from the probe is also shown in a schematic (Fig. 2.17 (a)

and 2.18 (a)). It can be seen that a marginal gain is achieved by using the optimal layout (MTE),

as compared to the equally spaced sparse array for both VPO and HPO. The EQS, however,

does not require running the algorithm to provide similar results (around 9% of the MTE for

VPO, and 4% for HPO). Moreover, the MTE layout appears similar to that of the EQS, with a

random change of ± 1 or 2 elements. Therefore, breaking the symmetry of the EQS layout leads

to marginal gains.

2.5 Conclusion

This work presented a simplified approach to design the optimal sparse layout of an array in the

context of reduced transmission events. A comparative study between two different sparse array

layouts and PWI was done in terms of CNR and API. The proposed method for designing the best

sparse array from section 2.3.1.2 (MTE) presented an overall better performance as compared to

PWI and the periodic sparse array for axial and lateral defects. This was explained by comparing

the beam pattern features of PWI, and by the non-uniformity of the plane wavefront that the

probe might generate in the case of the PWI. The outperformance of the MTE in comparison
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to the sparse periodic arrangement (EQS) was due to a difference of 1 dB in SLL. Based on

the percentage variance, it was found that the MTE approach using 𝑁𝑒 = 5 (92.2% reduction in

firing events) represents a good trade-off over the other emission events. In this case, the images

produced are comparable to those of the FMC-TFM in terms of CNR and API but obtained using

just 7.8% of FMC data. On the other hand, an equally spaced layout with 5 firings produced

results within 9% of the optimal layout without requiring computations. Therefore, the method

presented herein has been demonstrated to be an effective way to improve TFM productivity and

can be extended to industrial applications of ultrasonic phased arrays.

a)

b)

c)

Figure 2.17 EQS experimental results: (a) Equally spaced elements with edge

element deactivation layout, and EQS image with 𝑁𝑒 = 5 for (b) VPO and (c) HPO
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a)

b)

c)

Figure 2.18 Best sparse array experimental results: (a) MTE approach element

layout, and MTE image with 𝑁𝑒 = 5 for (b) VPO and (c) HPO
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3.1 Abstract

Three-dimensional ultrasonic imaging using a matrix phased array is of increasing interest in

the nondestructive testing (NDT) field due to its capacity to provide volumetric information of

the inspected medium. However, industrial adoption of this technology is limited compared to

linear arrays due to challenges such as substantial data collection and the complexity caused

by the numerous piezoelectric elements. Full matrix captures (FMC) become prohibitive and

implementing the volumetric total focusing method (TFM) imaging necessitates increased

calculations, rendering real-time applications impractical without high-end instruments. This

paper presents the minimum firing event method as an efficient way to design 2-D sparse arrays

under wideband conditions for fast 3-D TFM. This approach aims to operate with a limited

number of firing events while maintaining image quality and high volume rates. The process

involves establishing a simplified algorithm for designing wideband 2-D sparse arrays. Different

configurations with varying active elements in transmission are tested to find the optimized

sparse array pattern. In the end, the optimal sparse layout balances acoustic performance and

firing events. The proposed method was tested experimentally using samples containing artificial

flaws with an 11 × 11 matrix array centered at 3 MHz. The images were then compared in

terms of contrast-to-noise ratio (CNR) and the measured defect sizes. It was shown that the

2-D sparse array approach was able to improve 3-D TFM productivity by 9.8 times without

a significant loss of image quality or defect size accuracy, offering a promising solution for

practical implementation in industrial NDT applications.



60

3.2 Introduction

The advent of ultrasonic matrix phased arrays (2-D arrays) capable of providing volumetric

information of the inspected medium has opened new possibilities for nondestructive testing

(NDT) inspections. A volumetric image represents a better possibility to assess actual defects of

engineering structures, especially those with arbitrary shapes and orientations (Felice & Fan,

2018). Despite the clear imaging potential, there has been minimal industrial adoption of 2-D

arrays in NDT applications in contrast with conventional one-dimensional (1-D) linear probes

and associated 2-D imaging methods (Drinkwater & Wilcox, 2006). Imaging operations using

linear arrays frequently utilize full matrix captures (FMC) in conjunction with delay-and-sum

(DAS) imaging algorithms, such as the total focusing method (TFM) (Holmes et al., 2005).

This approach is commonly chosen due to its superior image quality for defect assessment,

as noted in (Fan et al., 2014; Zhang, Drinkwater & Wilcox, 2013), and is readily accessible

on various commercial phased array controllers. Furthermore, real-time processing of this

operation with linear arrays is also feasible (Lewandowski, Walczak, Witek, Rozbicki & Steifer,

2018; Sutcliffe et al., 2012). On the other hand, matrix phased array transducers are usually

denser, as the piezoelectric elements follow a 2-D pattern. This leads to a high number of

channels and therefore a considerable amount of collected data. The utilization of FMC becomes

impractical due to the associated time constraints, and implementing volumetric TFM imaging

becomes extremely heavy. The number of focal points in the volume of interest (VOI), and the

large amount of data to be processed are currently obstacles to faster 3-D TFM imaging. This

restricts real-time usage to high-end instruments. Hence, addressing these challenges is vital for

enhancing the widespread use of three-dimensional ultrasonic imaging using 2-D arrays.

To tackle these limitations, sparse array techniques can be implemented (Austeng & Holm, 2002;

Moreau et al., 2009). The sparse array approach consists of using only a few active elements in

transmission, while the entire array is used in reception. Therefore, the sparsity of the 2-D array

contributes to reducing data collection and processing times. There are also other acquisition

strategies, such as plane wave imaging (PWI) (Le Jeune et al., 2016), that have been suggested

as an alternative to improve efficiency. PWI offers the potential to enhance frame rates by
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reducing the required number of firings. However, utilizing PWI demands compounding several

plane waves to achieve resolutions comparable to those of TFM images (Couture, Fink & Tanter,

2012; Montaldo et al., 2009), consequently decreasing frame rates. More recently, Marmonier

et al.(Marmonier, Robert, Laurent & Prada, 2022) implemented TFM in the Fourier domain

for real-time 3-D imaging, named k-TFM, and were able to achieve a frame rate 4 times higher

compared to time-domain TFM. Nevertheless, sparse arrays still represent a relatively cheap and

efficient approach for fast 3-D imaging, and their design remains an actively evolving research

area.

Most sparse array approaches are based on optimization using stochastic algorithms under

narrowband conditions (Trucco, 1999; Austeng & Holm, 2002; Diarra et al., 2013; Hu et al.,

2017). In this condition, the array beam pattern (BP) can be approximated to a narrowband BP

in the far field, where the elements are reduced to point sources transmitting monochromatic

waves at the transducer central frequency. Then, stochastic optimization methods such as genetic

algorithms (GA) (Austeng et al., 1997; Hu et al., 2017) or simulated annealing (SA) (Trucco,

1999; Roux et al., 2018) are used in the search for the optimal sparse layout. The design is

chosen based on BP characteristics for imaging, i.e., reduced side lobe levels (SLL) and a

narrow main lobe width (MLW). Alternatively, wideband signals can provide a more realistic

analysis but at a higher computational cost. Because of that, this approach is scarcely reported

in the ultrasound literature (Roux et al., 2017; Sciallero & Trucco, 2021), and notably, this

avenue remains unexplored in NDT research. In (Roux et al., 2017), Roux et al. introduced

a wideband sparse array optimization process using SA combined with multi-depth energy

functions and were able to reduce 75% of the active elements. Additionally, Sciallero and Trucco

(Sciallero & Trucco, 2021) recently proposed a method involving wideband 2-D sparse array

optimization along with multiline reception, achieving enhanced volume rate imaging. Even

though stochastic optimization algorithms were successfully implemented for both narrow and

wideband conditions, using such algorithms is complex due to the challenge of appropriately

setting parameters and designing precise objective functions.
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This study introduces an original 2-D sparse array method with the objective of enhancing

the productivity of 3-D TFM by minimizing firing events. The proposed approach termed the

“minimum firing event method”, was initially presented by the authors in (Piedade, Painchaud-

April, Le Duff & Bélanger, 2022) for designing sparse linear arrays using narrowband BP. This

design approach involved exhaustive exploration of all possible array combinations, computed

from a predefined minimum number of active elements. In this paper, we expand and refine

this method to effectively design 2-D sparse arrays using wideband simulation. Various

numbers of active elements are tested, with configurations corresponding to less than 5% of

the complete array. Still, the exploration of the entire combination set becomes a large-scale

problem for the case of 2-D arrays, and thus, managing the amount of candidate solutions incurs

significant computation time and memory requirements. To mitigate this, an intermediary step

was implemented, involving the elimination of symmetrical layouts and the incorporation of

additional spatial constraints to further reduce combinations without affecting the final solution.

This modification aims to reduce the computation load and make this approach viable for

wideband analysis. By reducing the number of available combinations, the exploration time was

managed effectively, eliminating the need for sophisticated optimization algorithms and enabling

the utilization of a streamlined approach. The optimal array layout represents the best acoustic

performance with the full array as a reference. An experimental evaluation was conducted on

the suggested method, quantitatively comparing the TFM image quality from the sparse array

approach and FMC, as well as their corresponding image formation times. The influence of the

sparsification on defect sizing was also assessed.

The paper is organized as follows. Section 3.3 provides a comprehensive overview of the

materials and methods used, including the experimental setups, the fundamentals of the 3-D

TFM imaging algorithm, the adopted 2-D sparse array approach, and the evaluation metrics

used. Section 3.4 contains the presentation of the experimental findings and a corresponding

discussion. Concluding remarks are provided in Section 3.5.
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3.3 Materials and methods

3.3.1 Experimental setups

Experiments were conducted using two distinct experimental setups to evaluate the proposed

sparse array method. The first setup consisted of side-drilled holes (SDHs) positioned at varying

depths within an aluminum block. In contrast, the second setup involved a low-carbon steel

part with several electrical discharge machined (EDM) notches. It should be noted that these

setups were designed with a high level of generality, enabling the findings from this study to be

extrapolated to encompass other materials and types of flaws. Measurements were executed using

an EVIDENT ultrasonic matrix phased array probe 3M11X11-I (manufactured by EVIDENT

Industrial, State College, PA, USA). This probe comprises an array of 11 × 11 square elements

operating at a central frequency of 3 MHz, arranged with a pitch of 1 mm along both the x-

and y-directions. In the first setup, this matrix probe was positioned in direct contact with the

top face of the aluminum block. Fig. 3.1 illustrates the inspection setup, the delineation of

the VOI, and the block’s dimensions. The longitudinal sound velocity measured in the block

was 6354 m/s. For the second setup, a 19.05-mm-thick plate specimen made of low-carbon

steel was used, featuring EDM notches with a width of 0.3 mm. These notches were positioned

at various angles, either centered within the plate or as a surface-breaking profile at its back

wall (Fig. 3.2). This article exclusively presents the results related to notches B1 (90°) and C3

(70°). The measurements were performed using the same matrix array probe utilized in the

first setup, mounted on a rexolite wedge (EVIDENT SA32-N55S). The probe was placed on

the side of each notch, simulating a weld bevel scanning orientation. The measured values of

longitudinal and shear sound velocity in this plate were 5953 m/s and 3243 m/s, respectively. In

both experimental configurations, the matrix probe was interfaced with a Verasonics Vantage-64

LE acquisition system, and an FMC acquisition was executed for each case with a sampling rate

of 62.5 MHz. Subsequently, the acquired data were subjected to post-processing in MATLAB

using the DAS method to generate volumetric TFM images, with a cubic pixel grid of 0.10 mm.
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Figure 3.1 Experimental Setup 1: 3M11X11-I ultrasonic matrix

probe placed in contact and the VOI used encompassing SDHs 1 to

3. Dimensions of the block are provided in the schematic

3.3.2 3-D Total focusing method (TFM)

FMC data collection using ultrasonic phased array transducers consists of individual elements

sequentially transmitting while the full aperture receives. Post-processing this resulting data

with the 3-D TFM imaging algorithm enables the creation of high-resolution 3-D images. This

is achieved by considering individual time-of-flight (TOF) delays for each array element at every

point within the VOI and coherently summing the delayed signals. Therefore, the resulting

volumetric image intensity 𝐼 (𝑥, 𝑦, 𝑧) can be computed as follows:

𝐼 (𝑥, 𝑦, 𝑧) =
�����𝑁𝑀∑
𝑇=1

𝑁𝑀∑
𝑅=1

𝐻 (𝑆𝑇𝑅 (𝑡𝑇𝑅 (𝑥, 𝑦, 𝑧)))
����� (3.1)

where 𝑁𝑀 represents the total count of matrix array elements, 𝑡𝑇𝑅 is the TOF, corresponding to

the time it takes for the ultrasonic wave to travel from the transmitter (𝑇) to the desired voxel
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Figure 3.2 Experimental Setup 2: 3M11X11-I ultrasonic matrix probe mounted

on a wedge. Schematics for the notch profiles are shown. The experimental setup

and the notches considered in this study (B1 and C3) are presented in the pictures

point (𝑃) and then to return to the receiver (𝑅), 𝑆𝑇𝑅 denotes the time-amplitude signal from the

matched transmitter-receiver pair, and 𝐻 stands for the Hilbert transform. In the case of imaging

a single medium, determining 𝑡𝑇𝑅 is a straightforward procedure using elementary trigonometric

principles and the medium longitudinal sound velocity, according to:

𝐼 (𝑥, 𝑦, 𝑧) =
�����𝑁𝑀∑
𝑇=1

𝑁𝑀∑
𝑅=1

𝐻

(
𝑆𝑇𝑅

( ‖𝐸𝑇 − 𝑃‖ + ‖𝐸𝑅 − 𝑃‖
𝑐2

))����� (3.2)

where 𝑐2 is the longitudinal sound velocity of the medium and ‖·‖ represents the Euclidian

norm. An example ray’s path within a single medium is depicted in Fig. 3.3, traveling from

the transmitting element (𝐸𝑇 ) to the image voxel point (𝑃) and then to the receiving element

(𝐸𝑅). This path comprises two distinct routes, each representing a section of the ray’s trajectory
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between two points. In this process, only 𝑐2 is necessary to compute the TOF, and the points 𝐸𝑇 ,

𝑃, and 𝐸𝑅 represent position vectors in this computation.
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Figure 3.3 Illustration of the 3-D TFM imaging procedure for a

ray path in a single medium. The ultrasonic wave travels between

the points 𝐸𝑇 , 𝑃, and 𝐸𝑅, which are position vectors in the image

according to the 𝑋𝑌𝑍 coordinate system
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Figure 3.4 3-D TFM in dual media showing a ray path

correspondent to the minimum TOF between 𝐸𝑇 , 𝑃, and 𝐸𝑅 and

the respective surface-crossing points
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While TFM provides exceptional imaging capabilities, using this algorithm for volumetric

imaging comes at the cost of increased computational requirements, as can be seen in Eq. 3.2.

3-D imaging involves a larger amount of data compared to 2-D imaging, as the element count of

matrix arrays is usually much greater than in linear arrays, 𝑁𝐿 (𝑁𝑀 >> 𝑁𝐿). The number of

focal points present in the 3-D image volume is also notably higher than in its 2-D counterpart,

often exceeding it by 2 degrees of magnitude. Moreover, attempting a direct extension of

FMC to matrix arrays is not realistic due to the excessive number of required firing events, and

consequently low volume rate. In situations involving dual media inspections (McKee, Bevan,

Wilcox & Malkin, 2020; Cosarinsky, Cruza, Muñoz & Camacho, 2023), such as immersion and

phased array wedge testing, the need for extra ultrasound paths and the increased complexity of

TOF calculations further restrict the practical application of volumetric TFM. Fig. 3.4 shows a

matrix phased array inspection in dual media. The probe is inclined at an angle, 𝜃, relative to

the x-axis, with the first column of the array raised to a certain height, ℎ1, resembling setup

2 with a wedge. To simplify visualization, the schematic omits the wedge, assuming uniform

properties above the dashed line. In this case, the computation of TOF is more complicated, and

the solution consists of applying Fermat’s principle, which identifies the two surface-crossing

points that result in the lowest TOF between the pair of elements and each point in the image.

This path is shown in Fig. 3.4 and now the ultrasonic wave velocity in the first medium, 𝑐1, must

also be considered. Hence, the TOF computation is expressed as:

𝑡𝑇𝑅 (𝑥, 𝑦, 𝑧) = ‖𝐸𝑇 − 𝐹𝑇 ‖ + ‖𝐹𝑅 − 𝐸𝑅‖
𝑐1

+ ‖𝐹𝑇 − 𝑃‖ + ‖𝑃 − 𝐹𝑅‖
𝑐2

(3.3)

where 𝐹𝑇 and 𝐹𝑅 are the surface-crossing point locations in transmission and reception,

respectively. One can see that, in this context, the application of volumetric TFM imaging is

further complicated and also time-consuming.

A potential solution involves the use of sparse array techniques, aiming to reduce the firing event

count while maintaining similar imaging performance to the full array. In this work, FMC data

was collected and post-processed to create synthetic sparse array data. The choice of sparse
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active firing elements (𝑁𝑆), e.g., 4 out of 121 elements with all elements used in reception, leads

to the selection of a sparse data matrix, which corresponds to a subset of the original FMC. This

subset employs the 𝑁𝑆 × 𝑁𝑀 dataset instead of the 𝑁𝑀 × 𝑁𝑀 FMC matrix, therefore resulting in

faster data collection and postprocessing. A detailed explanation of the procedure for designing

a 2-D sparse array is provided in the next section.

3.3.3 2-D sparse array designing method

To obtain the ideal 2-D sparse array configuration, the minimum firing event method based

on pulse-echo 3-D point spread function (PSF) simulations is proposed. This two-way PSF

characterizes how the array responds to a point reflector, essentially indicating the array’s

imaging capabilities (Drinkwater & Wilcox, 2006; Mansur Rodrigues Filho & Bélanger, 2021;

Li & Chi, 2018), and was therefore the approach chosen as an assessment tool in sparse array

design. The PSF calculation was carried out using time-domain signals, modeling the ultrasonic

matrix phased array from section 3.3.1 placed in direct contact for simplification. For every

combination of 𝐸𝑇 and 𝐸𝑅 in the ultrasonic array, the response of the signal induced by an

internal point reflector can be predicted. This point was positioned at the array’s center and

lies in the middle of a 20 mm cubic VOI placed 30 mm deep under the probe. Then, a 5-cycle

Hann windowed toneburst centered at 3 MHz, representing the ultrasonic signal, 𝑠𝑇𝑅 (𝑡), is

delayed by the TOFs computed as described in section 3.3.2. The PSF formulation is done in the

frequency domain, and therefore, the frequency spectrum, �̂�𝑇𝑅 (𝜔), from the ultrasonic signal is

then obtained using the Fourier transform. Subsequently, to address the energy loss due to both

beam spreading and attenuation, �̂�𝑇𝑅 (𝜔) undergoes multiplication by the geometric attenuation

and element directivity coefficients as follows (Schmerr Jr, 2014):

𝑆𝑇𝑅 (𝜔) = �̂�𝑇𝑅 (𝜔) · 𝐴𝑇 · 𝐷𝑇 · 𝐴𝑅 · 𝐷𝑅 (3.4)

where 𝑆𝑇𝑅 (𝜔) is the estimated spectrum, 𝐴𝑇 and 𝐴𝑅 denote the geometric attenuation, and 𝐷𝑇

and 𝐷𝑅 are the element directivities, where the subscripts 𝑇 and 𝑅 refer to the transmit and
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receive elements, respectively. Considering the reciprocity of the transmitting and receiving

processes, only one “leg” is required to be computed in this process. Therefore, the attenuation

coefficient, 𝐴𝑖, can be estimated by:

𝐴𝑖 =
1

‖𝐸𝑖 − 𝑃‖ . (3.5)

The element directivity is:

𝐷𝑖 = sinc

(
𝜋𝑎 sin 𝜃𝑖 cos 𝜙𝑖

𝜆

)
sinc

(
𝜋𝑎 sin 𝜃𝑖 sin 𝜙𝑖

𝜆

)
(3.6)

where 𝜆 is the wavelength of the ultrasonic wave in the medium, 𝑎 is the width of the square

piezo element, and 𝜃 and 𝜙 are the elevation and azimuth angles respectively. In both Eq. 3.5

and 3.6, the subscript 𝑖 represents the transmitting or the receiving process. Following this initial

processing, the subsequent step involves applying the complex Hilbert transform to 𝑆𝑇𝑅 (𝜔)
obtaining the resulting time-domain signal, denoted as 𝐻𝑇𝑅 (𝑡), as indicated in ref. (Holmes

et al., 2005). Hence, after completing this procedure for all the transmitter-receiver pairs, a

synthetic 𝑁𝑀 × 𝑁𝑀 FMC matrix is created. This FMC matrix is then used to obtain a 3-D TFM

image, or in this case, the PSF of the imaging system:

𝑃𝑆𝐹 (𝑥, 𝑦, 𝑧) =
�����𝑁𝑀∑
𝑇=1

𝑁𝑀∑
𝑅=1

𝐻𝑇𝑅

( ‖𝐸𝑇 − 𝑃‖ + ‖𝐸𝑅 − 𝑃‖
𝑐2

)����� . (3.7)

The 3-D PSF analysis consists of selecting the maximum voxel intensity, from which the 2-D

image slices of the XZ and YZ planes are used to extract SLL and MLW values using peak search

methods. The proposed 3-D PSF analysis was thus executed in the MATLAB environment, and

the complete simulation procedure is displayed in the schematic of Fig. 3.5.

The use of the minimum firing event method implies finding the least number of sparse elements

and their configuration that can replicate the performance of the complete array. In this case,



70

Figure 3.5 3-D PSF simulation schematic

the solution consists of approximating the MLW and SLL levels to the ones from the full array,

exploring all potential combinations within a specified reduced sparse array set, such as using 5

out of 64 linear array elements in transmission. However, applying this method to wideband

2-D arrays is not feasible due to the massive iterations required and the significant time it takes

to compute the pulse-echo 3-D PSF for all scenarios. To overcome this, a refinement stage

prior to the search is introduced, aiming to drastically reduce the available combinations while

maintaining the solution’s integrity. Therefore, the suggested approach involves a two-step

algorithm: the first step is a reduction of the number of combinations to be explored, while

the second step executes the actual search. The suggested improvement step works as follows:

initially, the number of potential combinations is computed inside MATLAB using the binomial

coefficient, according to:

𝑛𝐶𝑘 =

(
𝑛

𝑘

)
=

𝑛!

𝑘!(𝑛 − 𝑘)! (3.8)

where 𝑛𝐶𝑘 is the binomial coefficient “𝑛 choose 𝑘” that returns a matrix containing the possible

choices of 𝑛 array units taken 𝑘 at a time. This resulting matrix consists of 𝑘 columns and

𝑚!/𝑘!(𝑚 − 𝑘)! rows, with 𝑚 representing the length of vector 𝑛. After, the combinatorial set

is subject to three different refinement layers. The first one consists of deactivating the array

edge elements in transmission. This technique has proven to be a simple and effective way of



71

directly reducing the number of elements by approximately 30-35% (Diarra et al., 2013; Piedade,

Painchaud-April, Le Duff & Bélanger, 2023). Given that this reduction alone is insufficient, the

method must be complemented. Therefore, for layer 2, symmetry in the 2-D sparse layouts was

imposed. Symmetries can significantly reduce the number of potential configurations in 2-D

layouts, as multiple patterns under certain symmetry operations generate equivalent PSF and

thus represent repetitions in the search. For instance, a pattern that is symmetric under reflection

across the vertical axis of the grid can be transformed into another pattern that is symmetric under

reflection across the horizontal axis. In this case, the two patterns are considered equivalent, and

only one counts as a unique pattern. To account for symmetrical layouts, group theory based on

Burnside’s lemma can be applied (Rotman, 1995):

𝑁pattern =
1

|𝐺 |
∑
𝑔∈𝐺

|𝑋𝑔 | (3.9)

where 𝐺 represents the symmetry operations applied in a set of combinations, 𝑋 . For each

symmetry operation element 𝑔 ∈ 𝐺, 𝑋𝑔 denotes the set of elements of 𝑋 that remain invariant

under 𝑔 (i.e., 𝑋𝑔 = 𝑥 ∈ 𝑋 | 𝑔 · 𝑥 = 𝑥), and therefore the number of distinct patterns, 𝑁pattern,

can be computed. Hence, the first step is to determine the size of group 𝐺, which was set in this

work to account for the horizontal and vertical reflections, main and secondary diagonals, 90,

180, and 270-degree rotations, and the identity element. The size of group 𝐺 was therefore 8.

Lastly, the symmetric layouts can be removed from the combinatorial set, preserving only the

unique patterns. In layer 3, a minimum separation between elements was enforced, ensuring that

they cannot occupy the same row, column, or diagonal. This measure is taken to prevent the PSF

solution from favoring a specific direction and to prevent image distortions. Finally, a reduced

set of combinations can be obtained. Fig. 3.6 displays a flowchart outlining the suggested initial

refinement step, which is aimed at enabling wideband analysis through the incorporation of

three refinement layers.

With the drastic reduction of available combinations, the exploration process in step 2 becomes

more efficient, allowing the use of an exhaustive search for the optimal 2-D sparse layout. This
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algorithm is shown in Fig. 3.7. The first row corresponds to the PSF procedure: definition of all

input parameters, TOF computation, and FMC estimation. Then, a firing event was selected

with the full array in reception, obtaining the volumetric PSF translated from the TFM algorithm

using Eq. 3.7. From the resulting 2-D image slices in the XZ and YZ planes, main lobe width

(MLW) at −6 dB and side lobe level (SLL) features were extracted. These two features are

subject to three selection criteria (𝐶1, 𝐶2, and 𝐶3). 𝐶1 requires the MLW to be the same in both

directions, as it is crucial for imaging, given that the targets can be located anywhere. 𝐶2 and 𝐶3

were arbitrarily set at 1.15 times the FMC MLW and the SLL from FMC plus 9 dB, respectively.

This is to uphold an acceptable lateral resolution and minimize artifacts in the image. If the

solution met these criteria, the layout was stored, and the algorithm continued. If not, the

solution was disregarded, and the algorithm proceeded to the next layout from the reduced set

of combinations calculated in the initial step. Once the reduced set was fully explored, the

algorithm concluded. The best layout was determined based on its proximity to the full array’s

acoustic performance regarding MLW and SLL. The pre-computation of TOFs for the PSF,

along with the manageable number of combinations, allows for an efficient execution of this

process. The proposed exploration algorithm is implemented in MATLAB, with 𝑁𝑠 varying

from 2 to 6 in the sparse evaluation. Ultimately, the optimal sparse layout is a compromise

between image quality parameters and the number of firing events.

3.3.4 Metrics for imaging and sizing performance

The chosen metric for the quantitative assessment of TFM image quality was the contrast-to-noise

ratio (CNR). This parameter was computed on the XZ slice images from setups 1 and 2. In

the case of setup 1, where multiple defects were present, specific image subsets containing

each defect were chosen for assessment. These subsets were standardized to 20 × 30 mm.

This process did not apply to setup 2, where the entire image slice was evaluated. The pixels

exhibiting a −6-dB drop were identified as the defect portion, while the remaining pixels were

considered background noise. As a result, the CNR can be calculated as follows:
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Figure 3.6 Refinement algorithm (step 1): incorporation of three distinct

layers to significantly reduce the numerous potential combinations

Figure 3.7 Minimum firing events algorithm flowchart (step 2) for

determining optimal 2-D sparse array layouts. Prior calculation of TOFs

coupled with the reasonable number of combinations enables effective

execution of this process in wideband conditions

𝐶𝑁𝑅 = 20 log10

( ��𝜇𝑑𝑓 (−6 𝑑𝐵) − �̃�𝑏𝑔

��
𝜎𝑏𝑔

)
. (3.10)
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Here, 𝜇𝑑𝑓 (−6 𝑑𝐵) represents the mean value of pixels with a−6-dB drop, which indicates the defect.

�̃�𝑏𝑔 stands for the median of the background, calculated from the entire window excluding the

−6-dB drop pixels. 𝜎𝑏𝑔 denotes the standard deviation of the background.

Defect size accuracy was also examined, comparing each image defect from FMC with the ones

generated using the sparse array method. Therefore, sizing was performed using the −6-dB

drop method (Felice & Fan, 2018), measuring the transverse defect distribution at the maximum

intensity pixel location. The maximum intensity in the images represents the reflections from

the top of the hole for SDH and the incident face of the notch for crack-like flaws. For notch C3,

trigonometry was used, while for notch B1, the longitudinal distribution up to −6 dB represented

its size.

3.4 Results and discussion

In pursuit of a 2-D sparse array design under wideband conditions, a preliminary improvement

step was introduced in this study. Before the search, this step strategically reduced the available

combinations by incorporating symmetry and other spatial constraints. Table 1 contains the

results from this procedure. It can be seen that the proposed refinement algorithm significantly

reduced the number of combinations, especially for 𝑁𝑠 greater than 3. The reduction was

substantial, going from millions or billions of layouts to just a few thousand. In the case of

𝑁𝑠=6, the spatial constraints introduced in layer 3 explain the lower number of combinations

after refinement compared to other scenarios, as fewer available positions within the array can

accommodate the layouts after imposing this restriction. The required time to perform the search

can thus be better controlled by setting the number of iterations in advance, therefore allowing

the replacement of complex stochastic algorithms for the simplified algorithm used in step 2.

The exploration time in this case was improved by approximately 98% on average.

After the trials using the minimum firing events algorithm, the best 2-D sparse layouts for

each 𝑁𝑠 were determined. The reduced candidate solutions, free of repetitions and ineffective

layout options, were derived from all possible combinations. Consequently, the sparse solutions
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Table 3.1 Numerical results of the proposed refinement algorithm

(step 1) for all 𝑁𝑠 values

Sparse active firing
elements (𝑁𝑠)

Total number of
combinations

Combinations after
refinement Reduction (%)

2 7,260 276 96.2

3 287,980 3,087 98.9

4 8,495,410 13,437 99.8

5 198,792,594 17,009 99.9

6 3,843,323,484 4,929 99.9

identified here are notably robust and closely approximate the full array, surpassing all candidate

possibilities. To find the better trade-off among all 𝑁𝑠 analyzed, the imaging parameters from the

best solutions are compared. In Fig. 3.8, MLW and SLL results from those layouts are depicted,

with MLW expressed in terms of wavelength. It is evident that with an increase in firing events,

the MLW and SLL values become progressively closer to those of the FMC. Odd and even

layouts exhibit similar performance, and the difference between them decreases with more firing

events. The bar graphs demonstrate that after 𝑁𝑠=5, the values tend to be stabilized around the

FMC. Testing for 7,8 or 9 firing events was not feasible due to substantial memory requirements

for storing all possible combinations. Moreover, the results trend suggests that transitioning

from 6 to 7 firing events may not yield a substantial difference, and the computation of a large

number of combinations would be necessary. Considering the analyzed scenarios, 𝑁𝑠=6 offers

the best trade-off. Therefore, this array configuration was selected as the optimal 2-D sparse

layout to be used, henceforth referred to as Opt6 in this manuscript. Further exploration using

alternative optimization methods could extend the investigation beyond 𝑁𝑠=6.

The array configurations that were implemented in this study are shown in Fig. 3.9. The FMC is

the full 121× 121 reference array, while Opt6 signifies the achieved optimal 2-D sparse array for

6 firing events. It can be seen that the Opt6 sparse layout exhibits a stair-stepped pattern caused

by the spatial restrictions in place (preventing elements from sharing the same row, column, and

diagonals). This layout represents a notable 95% reduction in the number of active elements

used for transmission. Such a sparse array reflects positively on reducing data and processing

times in volumetric imaging.
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Figure 3.8 3-D PSF results regarding (a) MLW and (b) SLL from the best

sparse layouts relative to the firings events used. The arrow points to the

solution that was chosen as optimal by its proximity with FMC

Figure 3.9 Illustration of the array layouts used, with active elements in red

and deactivated elements in white: reference array (FMC) and optimal array

for 𝑁𝑠=6 (Opt6)

The images generated using the 3-D TFM algorithm for FMC and Opt6 from experimental setup

1 are shown in Fig. 3.10 along with corresponding CNR results. The acquisition was carried out

from a single probe position, resulting in image indications representing reflections from the

top of the SDHs. This can be observed in the 3-D FMC image shown as an isosurface in Fig.

3.10(a), plotted at -26 dB for a better overview. SDHs 1 to 3 are visible, with the amplitude
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of the defects decreasing with varying depth due to attenuation. Also, it can be seen that the

spreading of the ultrasonic wave is causing the apparent length of the defect in the image to

increase with increasing depth as a consequence of the relatively narrow apertures of the probe.

The image slices plotted from the XZ and YZ planes correspond to the ones from the middle of

the VOI. The YZ view appears more elongated compared to the XZ view, as it captures the length

direction of the SDH, while XZ represents the cross-sectional aspect of the defect. Fig. 3.10(b)

was generated using the same VOI and the sparse data from Opt6 to be compared with FMC. One

can see that despite a significant reduction of data and firing events, Opt6 provides image quality

results close to those of FMC. Due to the redundancy of data in the FMC (Karaman et al., 2009),

an appropriate selection of sparse elements, like the layouts employed in this study, can yield

comparable TFM results with significantly fewer firing events. The CNR variation was more

pronounced for low-amplitude reflectors, such as SDH 3. Employing a sparse configuration

leads to fewer signals contributing to each point in the image. This effect is particularly notable

for weaker indications approaching the noise level, resulting in a higher CNR variation as seen

in Fig. 3.10. On the other hand, the CNR variation for SDH 1 and 2 was minimal.

Similar behavior can be noticed for setup 2 volumetric imaging results. Figs. 3.11 and 3.12

display TFM images from setup 2. The 3-D images are displayed as an isosurface at -26 dB

along with corresponding 2-D slices. The chosen ray paths correspond to the transversal mode

due to the wedge configuration, enabling shear wave insonification in the VOI. Hence, half skip

(TT-T) and full skip (TT-TT) modes were utilized for notch B1 and C3, respectively, with this

selection based on their heightened sensitivity to specular reflections using such wave paths.

The proposed 2-D sparse array when used with a wedge for dual media, also demonstrated its

effectiveness. In both cases, Opt6 closely resembled the reference image (FMC). The CNR

presented a similar trend to setup 1, with minimal variation for the high-amplitude indications.

Sparse array images exhibited some artifacts, but these did not impact the interpretation of the

results or notch detection.

To assess the acceleration in ultrasonic volumetric imaging using the proposed 2-D sparse

array method, the computation times of FMC and Opt6 were measured and a variation was
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Figure 3.10 Experimental ultrasonic 3-D TFM images and corresponding

2-D image slices of setup 1: (a) FMC and (b) optimal sparse layout using 6

firing events (Opt6). CNR results for each SDH are also given

calculated to estimate the reduction in computational time. Table 3.2 contains the computation

time reduction from the analyzed setups. The incorporation of sparse arrays led to a remarkable

90% reduction in volumetric imaging time. This outcome, coupled with the image quality

results, indicates that the optimal sparse layout produced a volumetric TFM image comparable

to that generated through FMC, but in significantly less time. For example, Opt6 accomplished
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a) b)

Figure 3.11 Experimental ultrasonic 3-D TFM images and corresponding

2-D image slices of notch B1 (setup 2): (a) FMC and (b) Opt6. Images were

generated using TT-T wave paths

a) b)

Figure 3.12 Experimental ultrasonic 3-D TFM images and corresponding

2-D image slices of notch C3 (setup 2): (a) FMC and (b) Opt6. Images were

obtained through TT-TT mode
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the imaging of an equivalent VOI in just 4.5 seconds, whereas an FMC would take roughly 44

seconds. This implies a volumetric imaging processing that is 9.8 times faster in practice using

this technique.

Table 3.2 Computational time reduction (Δ%)

for volumetric ultrasonic imaging using sparse

array approach compared to FMC regarding

each setup used

Setup 1 Setup 2
SDH Notch B1 Notch C3

Opt6 90 89 89

While the minimum firing events method demonstrated significant success in fast 3-D TFM

imaging, it encounters limitations when applied to denser probes. Specifically, this study used

a 121-element matrix probe, which allowed the computation of the complete combinatorial

set of sparse layouts, to further reduction and subsequent wideband analysis. However, other

commercial 2-D probes can feature element counts ranging from 256 to 1024, demanding

substantial memory resources to store the matrix of candidate solutions. Nevertheless, a more

efficient approach can be derived based on the observed trend in optimal layouts with varying 𝑁𝑠,

eliminating the need for exhaustive searches. Fig. 3.13 illustrates the observed pattern of results,

depicting the best layouts for varying 𝑁𝑠 and how the elements deviate from an equidistant

arrangement with edge deactivation.

The optimal layouts demonstrate a minor random adjustment of 1 to 2 columns or rows from

an evenly spaced distribution (movements of none or 3 rows/columns are rare). Therefore,

deactivating edge elements, evenly distributing the active elements based on 𝑁𝑠, and introducing

random position shifts adhering to the spatial constraints of layer 3 can potentially yield a

suboptimal 2-D sparse configuration. Here, “suboptimal” implies a neighboring solution to the

optimal layout with a slight variation in MLW and SLL. In this way, the procedure of designing

a 2-D sparse layout is facilitated, without undergoing any exploration. Fig. 3.14 shows the

application of this approach using the same probe as in this study and 𝑁𝑠=6.
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Figure 3.13 Layouts of the optimization results and their respective

equidistant array considering 𝑁𝑠. The optimal solutions are closely related to

the equidistant layouts, differing by just a random change of columns and

rows

Figure 3.14 Suboptimal sparse array design illustration for 6 firing events.

Random placement of elements from an equidistant layout may achieve

roughly the same acoustic performance as the optimal choice
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Starting from an equidistant layout, a suboptimal sparse configuration, referred to as SubOpt6,

is achieved, and its PSF characteristics are assessed. While the MLW values found remain

unchanged, the SLL is higher by approximately 3 dB in this particular solution. SubOpt6 was

then used in the volumetric imaging of setups 1 and 2, and its CNR was evaluated for comparison.

These results are comprised in Table 3.3. It can be seen that the use of the optimal layout

(Opt6) results in a marginal gain compared to SubOpt6 for both setups (see Figs. 3.10-3.12 for

comparison). SubOpt6 represents a neighboring solution to the optimum, with nearly identical

acoustic performance. This translates to a minor CNR difference, sometimes as low as 0.1 dB.

The difference in SLL between the sparse layouts likely contributes to this variation. Notably,

SubOpt6 offers similar results without the need to run the algorithm, representing a viable and

practical alternative for designing sparser 2-D probes.

Table 3.3 CNR results measured from the 3-D

TFM images obtained using the proposed

suboptimal sparse array and Opt6

Defect SubOpt6 CNR (dB) Opt6 CNR (dB)

SDH
1 19.1 19.2

2 16.4 16.5

3 12.3 12.9

Notch
B1 22.1 22.3

C3 19.3 19.8

Defect sizing relied on comparing FMC and sparse array results, with the defect image size

estimated using the −6-dB drop method. Table 3.4 shows the sizing variations (Δ𝑠) of each

defect analyzed, except SDH 3, for which this measurement was not possible. For the SDH

case, Opt6 and SubOpt6 presented similar variations in size compared to FMC. On the other

hand, smaller variations between them were observed for the notches, with SubOpt6 having

a maximum variation of 8% compared to 5% for Opt6. Most importantly, both sparse array

designs are within a maximum variation of 8% of the FMC, showing high accuracy in defect

sizing based on the full array measurements using the proposed sparse arrangements.
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Table 3.4 Results of defect size and computed

variations using FMC and the sparse layouts

Defect FMC Opt6 SubOpt6
Size Size Δ𝑠 (%) Size Δ𝑠 (%)

SDH
1 5.48 5.78 5 5.76 5

2 10.86 11.07 2 11.12 2

3 - - - - -

Notch
B1 6.00 6.30 5 6.50 8

C3 5.35 5.44 2 5.63 5

3.5 Conclusions

This study introduced an alternative to improve 3-D TFM imaging productivity by implementing

the minimum firing event method for designing 2-D sparse arrays. To allow efficient processing

of 3-D PSFs of arbitrary 2-D ultrasound arrays using this method, a refinement stage was

proposed. This step reduced the computational load of the wideband analysis by lowering the

available combinations by more than 96% without affecting the final sparse solution, eliminating

redundancies and ineffective layouts. The analysis revealed that a 2-D sparse array pattern

comprising 6 active transmitting elements is the minimum number of firing events required

to replicate the performance of the complete array. It generated images comparable in quality

to those obtained from the FMC, as evidenced by similar CNR, and most notably, this sparse

layout allowed for a 9.8-fold acceleration in volumetric image processing. Moreover, the study

demonstrated the feasibility of creating suboptimal 2-D sparse arrays without undergoing the

exploration process, therefore offering notable practical value for sparsely designing other 2-D

probes.
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4.1 Abstract

Phased array ultrasonic testing (PAUT) based on full matrix capture (FMC) has recently been

gaining popularity in the scientific and nondestructive testing communities. FMC is a versatile

acquisition method that collects all the transmitter–receiver combinations from a given array.

Furthermore, when postprocessing FMC data using the total focusing method (TFM), high-

resolution images are achieved for defect characterization. Today, the combination of FMC

and TFM is becoming more widely available in commercial ultrasonic phased array controllers.

However, executing the FMC-TFM method is data-intensive, as the amount of data collected and

processed is proportional to the square of the number of elements of the probe. This shortcoming

may be overcome using a sparsely populated array in transmission followed by an efficient

compression using compressive sensing (CS) approaches. The method can therefore lead to a

massive reduction of data and hardware requirements and ultimately accelerate TFM imaging.

In the present work, a CS methodology was applied to experimental data measured from samples

containing artificial flaws. The results demonstrated that the proposed CS method allowed a

reduction of up to 80% in the volume of data while achieving adequate FMC data recovery.

Such results indicate the possibility of recovering experimental FMC signals using sampling

rates under the Nyquist theorem limit. The TFM images obtained from the FMC, CS-FMC,

and sparse CS approaches were compared in terms of contrast-tonoise ratio (CNR). It was seen

that the CS-FMC combination produced images comparable to those acquitted using the FMC.
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Implementation of sparse arrays improved CS reconstruction times by up to 11 folds and reduced

the firing events by approximately 90%. Moreover, image formation was accelerated by 6.6

times at the cost of only minor image quality degradation relative to the FMC.

4.2 Introduction

Phased array ultrasonic testing (PAUT) is a commonly used method in nondestructive testing

(NDT). The adoption of the technology has recently been on the upswing because it is a

reliable, operator-safe, and flexible inspection method (Wilcox, Holmes & Drinkwater, 2007;

Bai, Velichko & Drinkwater, 2015). Multi-channel acquisition techniques allow high-resolution

imaging by processing signals collected with an ultrasonic phased array probe. In particular, full

matrix capture (FMC) data acquisition is becoming increasingly popular among the scientific

and NDT communities due to its versatility. FMC data contains rich information about the

inspected medium and consists in sequentially collecting the echoes from individual elemental

firings with all array elements. This data acquired during FMC can then be post-processed for

flaw characterization via the total focusing method (TFM), which was reported to have notable

image quality relative to current PAUT imaging methods (Fan et al., 2014; Zhang et al., 2013).

Years after the introduction of the FMC method (Holmes et al., 2005), it became widely used,

and now most commercial ultrasonic array controllers support FMC-TFM capabilities. While

FMC-TFM is a robust tool for a range of NDT applications, there are certain shortcomings

associated with the method. For an ultrasonic array containing 𝑁𝑒 elements, FMC needs 𝑁𝑒

firing events, which leads to slow data acquisition due to the time interval between consecutive

firings, and results in a 𝑁2
𝑒 size matrix of data. Moreover, this large amount of data must be

transmitted and stored, hence the need for more complex systems and memory space. Other

sources of acquisition speed reduction are the system architecture used and additional ultrasound

paths required to perform the inspection. Today, high-end devices can handle the data processing

and acquisition time burdens associated with the FMC-TFM operation. However, that is not the

case for some applications, where the cost-effectiveness of such equipment remains prohibitive.
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Therefore, a reduction of the generated data size is desirable for data-heavy acquisition schemes

such as the FMC.

The sampling procedure in many fields traditionally follows the Nyquist-Shannon theorem,

which states that the sampling rate must be twice the maximum frequency present in the signal

as the minimum requirement to avoid aliasing. In practice, sampling rates 4 to 10 times higher

than the Nyquist-Shannon requirement may be used to ensure that no unwanted aliasing occurs

as well as to facilitate the reconstruction filter design. These high-dimensional signals are

considered Compressible when expressed in a transform base such as Fourier, which means that

most coefficients are irrelevant for reconstructing the original signal and can be removed. This

compression paradigm is hard-coded in nearly all modern devices. A simplified version of the

conventional transform domain compression can be described as follows: (1) acquisition of 𝑁

signal samples, (2) computation of the transform coefficients (e.g., Fourier or wavelet), and (3)

quantization and encoding, selecting only the 𝐾 � 𝑁 most significant coefficients (Achim et al.,

2010), where 𝐾 is the total number of nonzero coefficients and 𝑁 the length of the vector. It

can be seen that this is not an efficient procedure, as most of the analog-to-digital conversion

(ADC) output is discarded. For an NDT inspection based on an FMC acquisition, in which the

signals collected scale with 𝑁2
𝑒 , this procedure becomes even more inefficient. The 𝑁2

𝑒 data

from FMC is usually oversampled, resulting in a huge volume of data collected by the system

front-end that ends up being thrown away at the compression stage. Consequently, more efficient

data compression methods should be explored to improve the acquisition speed and relieve the

pressure on the system front-end.

Compressed sensing (CS) is a relatively new sampling scheme that has been demonstrated to be

a viable approach to reducing the data volumes (Candes et al., 2006; Donoho, 2006). CS theory

offers the possibility of signal recovery from fewer measurements when compared to the Nyquist

sampling limit. Unlike conventional compression methods, CS proposes to acquire only the

relevant signal information. Because of this, CS has attracted attention in many research fields.

It is of research interest in structural health monitoring (SHM) applications such as the sparse

recovery of wireless sensor signals (Bao et al., 2013; Brunelli & Caione, 2015). In medical
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ultrasound, CS has been extensively used to recover full datasets from a reduced number of

measurements (Lorintiu, Liebgott, Alessandrini, Bernard & Friboulet, 2015; Schretter et al.,

2018; Ramkumar & Thittai, 2020a,b). For instance, Liu, He & Luo (2017) recovered the entire

array dataset from just a few plane waves (PW) using CS in the wavelet domain, reaching a high

acquisition frame rate. More recently, CS was applied to the in-phase/quadrature (IQ) domain

by Zhang et al. (2022). In this work, the method attained a reconstruction time 3 times faster

than radio frequency (RF) data and similar image quality compared with RF data. In ultrasound

imaging, CS has also been used to generate 3D images with only one sensor (Kruizinga et al.,

2017). This suggests that a reduction of elements, combined with CS, can be exploited to reduce

the hardware complexity in ultrasound devices. On the other hand, the use of CS in NDT is not

as broad-based as in medical ultrasound. The CS approach has been applied to ultrasonic guided

waves (Perelli et al., 2013, 2015) and in a few other preliminary explorations using ultrasonic

phased arrays (Bai, Chen, Jia & Zeng, 2018a; Pérez et al., 2020). Due to the nature of the

ultrasonic signals, CS implementation is still a challenge and sometimes leads to inadequate

under-sampled recoveries. Bai et al. (2017) applied CS to PAUT with signal recovery based

on greedy algorithms. The authors demonstrated the possibility of overcoming the Nyquist

limitation in simulation. The same approach, however, could not recover experimental data at

the sub-Nyquist rate. In (Xu et al., 2023), the authors suggested recovering FMC data from a 5

MHz linear phased array sampled at 62.5 MHz using a CS framework. However, a sufficient

recovery accuracy was achieved using only a 60% compression rate (missing data), which is far

above the Nyquist-Shannon criterion. Current works in NDT (Pérez et al., 2020; Bai et al., 2017;

Xu et al., 2023) are not able to increase the compression ratio by more than 60% either because

the transform basis is not appropriate for the reconstruction framework or because incoherence

is not considered in the sampling scheme. In addition, there is a lack of information about defect

size and position after applying CS recovery. Even when a sub-Nyquist rate recovery is achieved,

the CS reconstruction procedure must be repeated for all A-scans, making the recovery of the

entire FMC dataset time-consuming.
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In this paper, a CS scheme applied to sparse ultrasonic arrays is proposed as a lighter and faster

way to perform TFM imaging. Sparse array techniques (Austeng & Holm, 2002; Moreau et al.,

2009) are able to increase TFM productivity by using fewer active elements of the probe in

transmission. In addition, sparse arrays can also provide a faster CS recovery. The method is

therefore capable of significantly reducing the data size and hardware complexity, and ultimately

accelerates TFM imaging. To that end, an efficient CS framework enabling signal recovery at

the sub-Nyquist rate is suggested, and further applied to a sparse array arrangement designed to

act as the complete array. Research to date in NDT has not yet explored this possibility, and

therefore a CS strategy based on sparsity and incoherence concepts was proposed for an optimal

CS matrix selection and, consequently, improved signal recovery, which allowed increasing the

compression rate to 80%. Then, a sparse array pattern designed beforehand and independent of

the compression strategy is applied. Different from other CS approaches (Ramkumar & Thittai,

2020a; Pérez et al., 2020), the sparse array design is not incorporated into the sampling strategy

but is rather performed separately through a simplified approach without using optimization

algorithms and conditioned to the array impulse response. In this way, CS reconstruction is

exclusively aimed at signal reconstruction for reduced sampling rates while imaging performance

is not compromised. Therefore, the purpose of CS is to reduce the data volumes, while the

sparse array concept is used to reduce the data acquisition and data processing times. Previous

work (Piedade et al., 2022) demonstrated the feasibility of designing an efficient sparse array

that performs similarly to the full array, but using only a few firing events. In that method, less

than 90% of the elements are active in transmission. In this article, this sparse array method

is extended to the context of CS recovery of ultrasonic signals and to investigate adopting the

CS framework for TFM imaging. Additionally, a sparse array design that, different from our

previous approach (Piedade et al., 2022), does not require any algorithm execution or intensive

search is presented. Instead, it is suggested an equally spaced pattern with corner element

deactivation as a sub-optimal configuration, also capable of operating with less than 90% of the

array active in transmission. The reduction of the acquisition time and the collected A-scans

achieved using such a sparse configuration can boost the CS recovery speed while keeping
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the TFM accuracy relatively high. This is particularly attractive for applications that required

real-time imaging.

The aim of this paper is to combine CS and sparse approaches to dramatically increase the data

acquisition rate while reducing the data size. The proposed sparse CS approach was tested on

experimental data and the signal recovery accuracy estimated. The TFM images generated from

the CS-FMC and sparse CS datasets were quantitatively compared with the fully sampled FMC

to assess the impact of data reduction on image quality. The CS reconstruction impact on defect

sizing and position was also evaluated.

This article is organized as follows. Section 4.3 summarizes the fundamentals of CS. In Section

4.4, the materials and methods are presented, detailing the experimental setups, and describing

the TFM imaging algorithm, and the sparse array layouts adopted. Furthermore, the proposed

CS sampling scheme and the evaluation metrics are outlined. The experimental results and

discussion are presented in Section 4.5 and Section 4.6, respectively. Finally, in Section 4.7,

conclusions are drawn.

4.3 CS theory

According to CS theory, it is possible to recover a high-dimensional signal from measurements

made at a sub-Nyquist sampling rate (Candes et al., 2006; Donoho, 2006). To achieve this,

CS exploits the signal sparsity on a generic transform basis. Considering an 𝑁-dimensional

real-valued signal 𝑥 ∈ R𝑁 free of noise interference, which can be written as a sparse vector

𝑠 ∈ R𝑁 on a transform basis 𝚿 ∈ R𝑁×𝑁 :

𝑥 = 𝚿𝑠. (4.1)

The vector 𝑠 is said to be 𝐾-sparse in 𝚿 because it contains predominantly zero elements, and

precisely 𝐾 nonzero entries. The CS procedure consists of recovering the 𝐾-sparse vector 𝑠 in
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Eq. 4.1 from a reduced number of random measurements, 𝑀 . The measurements are done as

follows:

𝑦 = 𝚽𝑥 (4.2)

where 𝚽 ∈ R𝑀×𝑁 is the measurement matrix and 𝑦 ∈ R𝑀 is the measured signal sampled

using 𝚽, with the vector 𝑦 containing a dramatic subsampling 𝑀 � 𝑁 compared to 𝑥. Thus,

combining Eq. 4.1 and 4.2 leads to:

𝑦 = 𝚽𝚿𝑠 = 𝚯𝑠 (4.3)

where 𝚯 is the 𝑀 × 𝑁 sensing matrix. For successful signal recovery from measurements

𝑀 � 𝑁 , 𝚽 must be incoherent with regards to 𝚿, which means the rows of 𝚽 need to be

orthogonal to the columns of 𝚿. The incoherence can be measured by:

𝜇(𝚽,𝚿) =
√
𝑁 max

1≤𝑘, 𝑗≤𝑁

��〈𝜑𝑘, 𝜓 𝑗

〉�� (4.4)

where 𝜑𝑘 is the 𝑘𝑡ℎ row of the measurement matrix, 𝚽, and 𝜓𝑗 is the 𝑗 𝑡ℎ column of the transform

matrix, 𝚿 (Donoho & Huo, 2001). The CS reconstruction consists in solving the convex

optimization problem:

𝑠 = min
𝑠

‖s‖1 subject to ‖𝑦 −𝚯𝑠‖2 ≤ 𝜀. (4.5)

Eq. 4.5 is solved by finding the sparsest vector 𝑠 consistent with the measurements 𝑦 (Can-

dès & Romberg, 2005), where 𝜀 is the tolerated error, ‖ · ‖1 and ‖ · ‖2 denote the ℓ1 and ℓ2 norms,

respectively. Afterwards, 𝑠 can be inverse-transformed using Eq. 4.1 to obtain the signal 𝑥.
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4.4 Materials and methods

4.4.1 Experimental setup

Experiments were carried out using two different setups: (1) the probe placed in direct contact

and (2) the probe mounted on a wedge, which corresponds to a double-layer medium inspection.

The first configuration features side-drilled holes (SDH) situated at different depths in an

aluminum block, while the second one presents a low-carbon steel plate containing angled

electrical discharged machined (EDM) notches. The conclusions of this work can however

be extended to other materials and applied to different flaws. In both setups, the probe was

connected to a Vantage-64 LE acquisition system. FMC acquisition was performed for each

scenario at a sampling rate (SR) of 62.5 MHz and the data was post-processed in MATLAB

using the delay-and-sum (DAS) method to obtain the TFM images. A square pixel resolution of

0.10 mm was used to generate the images.

4.4.1.1 SDH Inspection

For the first setup, a 5L64-I1 Olympus linear ultrasonic phased array probe was positioned in

contact with an aluminum block containing side-drilled holes (SDH) at different depths. This

probe features 64 piezoelectric elements operating at a center frequency of 5 MHz and with an

elementary pitch of 0.6 mm. The SDH were made within the block at five different depths and

shifted 1 mm laterally with respect to the previous SDH. The block dimensions were 160 mm ×
62 mm × 50 mm. Two full matrix capture (FMC) datasets were collected, corresponding to

different block orientations: vertical and horizontal, herein named VBP (vertical block position)

and HBP (horizontal block position), respectively. This was done to evaluate the proposed

approach’s performance on defects placed in the axial and lateral directions relative to the probe.

Fig. 4.1 (a) shows the block inspection and its dimensions, along with the region of interest

(ROI) for each orientation.
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4.4.1.2 Angled Notch Inspection

For the second setup, a low-carbon steel plate, 19.05 mm thick, containing four surface-breaking

electrical discharged machined (EDM) notches of 0.3 mm width was used. The notches were

machined in the bottom of the plate at angles ranging from 60−90◦ (see Fig. 4.1(b)). These

artificial flaws resemble the defects that might arise in welds. Measurements were performed

using the 7.5L60-PWZ1 Olympus linear ultrasonic phased array probe (7.5 MHz center frequency,

1.0 mm pitch, and 60 elements) mounted on a wedge (Olympus SPWZ1-N55S). Only the results

for notches B1 (90◦) and B3 (70◦) are presented in this paper. The probe was placed on the

right-hand side of the notch, much the same as an actual weld bevel scanning position. The FMC

acquisition was performed for each notch. Table 4.1 displays all the experimental parameters

used in each configuration.

Figure 4.1 Experimental setups used. First setup: (a) 5L64-I1 ultrasonic probe in

contact, block orientations and regions of interest. Second setup: (b) 7.5L60-PWZ1

ultrasonic probe mounted on a wedge and detailed views of the surface-breaking

EDM notches in the low-carbon steel plate. Only results for notches B1 and B3 are

presented in this paper
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Table 4.1 Experimental parameters

Parameters Setup 1 (SDH Inspection) Setup 2 (Angled Notch Inspection)
Transducer
Center frequency 5 MHz 7.5 MHz

Element count 64 60

Bandwidth (-6dB) 83% 75%

Pitch 0.6 mm 1.0 mm

Wedge
Model - SPWZ1-N55S

Angle - 55º
Material - Rexolite

Sample
Material Aluminum Low-carbon steel

Longitudinal sound velocity 6354 m/s 5953 m/s

Shear sound velocity 3113 m/s 3243 m/s

4.4.2 Total focusing method and sparse array

Delay functions applied to signals from ultrasonic phased array allow to focus on a specific

location, which improves local sensitivity and consequently increases the probability of detection.

When a defined region is segmented into a grid of pixels, it is possible to synthetically focus on

every point, creating a fully focused image. This is the founding principle of the TFM technique,

which involves reconstructing an image based on FMC. According to the TFM imaging algorithm

principle, focusing is performed on every point of the ROI and the signals 𝑆𝑖 𝑗 from all 𝑁𝑒 array

elements are summed. Then, the image intensity 𝐼 (𝑥, 𝑧) at any pixel point can then be obtained

by:

𝐼 (𝑥, 𝑧) =
������𝐻 
��

𝑁𝑒∑
𝑖=1

𝑁𝑒∑
𝑗=1

𝑆𝑖 𝑗
(
𝑡𝑖 𝑗 (𝑥, 𝑧)

)���
������ (4.6)

where 𝐻 represents the Hilbert transform, and 𝑡𝑖 𝑗 corresponds to the propagation time of the

ultrasonic wave from the transmitting element (𝑇) to the target pixel 𝑃, and back to the receiving

element (𝑅). Consider the 𝑥𝑂𝑧 coordinate system in Fig. 4.2(a), where a generic probe is

centered at the origin 𝑂 and placed in contact with a block as in the first experimental setup. The

array elements are positioned in the X-axis orientation, and the Z-axis is perpendicular to them.
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The propagation distance 𝑑𝑇𝑖,𝑅 𝑗 considered is the one that travels with the least time according

to Fermat’s principle and is determined through simple geometric relationships. Therefore, the

propagation time 𝑡𝑖 𝑗 , also known as the time-of-flight (TOF), can be computed by dividing this

distance by the longitudinal sound velocity of the measured medium, 𝑐2:

𝐼 (𝑥, 𝑧) =

�������𝐻 
���
𝑁𝑒∑
𝑖=1

𝑁𝑒∑
𝑗=1

𝑆𝑖 𝑗

���
√
(𝑥 − 𝑥𝑖)2 + 𝑧2 +

√
(𝑥 − 𝑥 𝑗 )2 + 𝑧2

𝑐2

����
����
������� (4.7)

where 𝑥𝑖 and 𝑥 𝑗 are the position of the 𝑖𝑡ℎ transmitter (𝑇) and the 𝑗 𝑡ℎ receiver (𝑅) in the

x-orientation, respectively.

Expectedly, the TFM imaging procedure can be extended to inspections using a wedge, such

as the second setup case. The model is considered equivalent to a double-layer medium

measurement. The 𝑥𝑂𝑧 coordinate system is kept positioned at the interface, but the array

elements are inclined at an angle 𝜃 with respect to the x-direction and elevated at different

heights ℎ𝑛 (with 𝑛 = 1, 2, 3, . . . , 𝑁𝑒) by the wedge, as seen in Fig. 4.2(b). For an incident point

𝑒𝑖 on the interface corresponding to the ray of the 𝑖𝑡ℎ transmitter element, the incident angle is

𝜃𝑖, and the refracted angle is 𝜃𝑒. The incident point position 𝑒𝑖 (𝑥𝑖𝑡 , 0) of the 𝑖𝑡ℎ transmitter and

the 𝑗 𝑡ℎ receiver 𝑒 𝑗 (𝑥 𝑗𝑟 , 0) can be found by combining Fermat’s principle and Snell’s law. Thus,

the TOF for the TFM image intensity using Eq. 4.6 is now computed as follows:

𝑡𝑖 𝑗 (𝑥, 𝑧) =

√
(𝑥𝑖 − 𝑥𝑖𝑡)2 + (−ℎ𝑖)2 +

√
(𝑥 𝑗 − 𝑥 𝑗𝑟)2 + (−ℎ 𝑗 )2

𝑐1
+√

(𝑥 − 𝑥𝑖𝑡)2 + (𝑧)2 +
√
(𝑥 − 𝑥 𝑗𝑟)2 + (𝑧)2

𝑐2

(4.8)

where 𝑐1 is the longitudinal sound velocity in the wedge, and 𝑥𝑖𝑡 and 𝑥 𝑗𝑟 are the position in the

x-direction of the transmitter and the receiver incident point at the interface, respectively.
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a)

b)

Figure 4.2 TFM imaging schematic: (a) contact and (b)

wedge

It can be seen that adopting the FMC-TFM method increases the acquisition and computation

time, as the amount of data acquired in the FMC and processed by the TFM is directly related

to the number of probe elements. On the other hand, the sparse array technique is a practical

alternative for this case (Austeng & Holm, 2002; Moreau et al., 2009). From a given number

of active elements 𝑁𝑎𝑐𝑡𝑣 selected for the sparse layout, other elements are deactivated in

transmission, while the entire array is used in reception. The result is a subset of the full array

that contains a reduced amount of data as the FMC (i.e., 𝑁𝑎𝑐𝑡𝑣 × 𝑁𝑒 dataset is used instead of the

𝑁𝑒 × 𝑁𝑒 matrix), and that is collected and post-processed more rapidly. In (Piedade et al., 2022),

the authors demonstrated the viability of using a sparse array layout using only 5 elements in
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transmission. By exploring all array combinations, an optimal sparse layout was obtained using

this method. In addition, a sparse equally spaced layout with corner element deactivation was

able to achieve roughly the results from the optimal sparse configuration without requiring the

exploration process. This was an important observation as the time needed to explore the entire

set of combinations may represent an obstacle for other ultrasonic probe sparse designs. The

minimum firing events method was therefore chosen as the sparse array approach used in this

work. For the first setup, the optimal sparse design from Piedade et al. (2022) with 𝑁𝑎𝑐𝑡𝑣 = 5

was used, as the measurements of this setup were done with the same ultrasonic probe (5L64-I1

ultrasonic array). The optimal sparse layout corresponds to elements [12 20 34 42 56] active in

transmission. Meanwhile, the sparse design adopted for the second setup was equally spaced,

with the edge elements deactivated, and so the exploration process was not required. 𝑁𝑎𝑐𝑡𝑣 = 5

was also used for this scenario. In this design, the elements from both array edges are discarded

in transmission (e.g., elements 1 to 5, and 55 to 60, when considering probe 7.5L60-PWZ1)

and the remaining elements are placed in a periodic distribution according to 𝑁𝑎𝑐𝑡𝑣 . The sparse

layout used in this case was [10 20 30 40 50].

4.4.3 CS framework

For a successful signal recovery, the CS premises of sparsity and incoherence must be fulfilled.

In other words, high sparsity and incoherence are needed for a high probability of ℓ1 norm

minimization in Eq. 4.5 to converge to the sparsest vector, 𝑠. Therefore, selecting the optimal

matrices 𝚽 and 𝚿 is of critical importance. In this study, a CS strategy based on the selection of

optimal transform and measurement matrices to reconstruct the FMC is proposed. The optimal

transform basis was chosen between the discrete cosine transform (DCT) and the discrete wavelet

transform (DWT). For that, the sparseness of the A-scans (𝑥) with respect to each transform was

estimated (Hoyer, 2004):

𝑆𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =

√
𝑁−‖𝑋 ‖1

‖𝑋 ‖2√
𝑁 − 1

(4.9)
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Here, 𝑁 is the length of the transformed signal 𝑋 , ‖ · ‖1 and ‖ · ‖1 are the ℓ1 and ℓ2 norms,

respectively. The vector is sparse when the computed value is 1, whereas a dense vector (all

elements are non-zero) is equal to 0. Four wavelet families were used for DWT: Daubechies

(db2–6), Coiflets (coif1–5), Symlets (sym2–10), and Biorthogonal (bior2.2–2.8, 4.4, 5.5, 6.8).

Each wavelet was considered at different decomposition levels, ranging from 2 to 6. It is

important to highlight that the sparsity of the signal and the sparse layout of the probe elements

are two distinct subjects in this work and are therefore not related. After selecting the best

matrix 𝚿, the incoherence with 𝚽 must be measured using Eq. 4.4. The 𝜇 value ranges between

1 and
√
𝑁 depending on the matrix used. Measurement matrices with random Gaussian and

Bernoulli distributions, as well as the partial Hadamard matrix, were chosen to be tested. These

sampling matrices are known to be incoherent with most transform bases (Candes & Tao, 2006;

Liu & Luo, 2018). The partial Hadamard matrix is designed randomly, selecting 𝑀 lines from

the 𝑁 × 𝑁 Hadamard matrix.

Once the optimal 𝚿 and 𝚽 matrices were selected, the CS reconstruction procedure could

begin. A routine was created in MATLAB to reconstruct the FMC dataset. The FMC acquired

from setups 1 and 2 were given as input to the CS framework. The routine was composed

of the optimal matrices and the solver (Candès & Romberg, 2005). According to the desired

compression rate (CR), the vector 𝑦 containing fewer measurements 𝑀 is obtained using 4.2.

The CR is calculated by:

CR =

(
1 − 𝑀

𝑁

)
× 100 (4.10)

where 𝑀 is the length of the vector 𝑦, and 𝑁 is the length of the original signal 𝑥. The CS-FMC

and sparse CS methods use the fully sampled datasets from setups 1 and 2 as input. Then, each

A-scan passes through downsampling using Eq. 4.3 and is recovered after solving Eq. 4.5. The

reconstructed signals are sequentially placed in a new matrix. This procedure is repeated for

all the A-scans in the case of CS-FMC 𝑁𝑒 × 𝑁𝑒. On the other hand, for the sparse CS method,

only the A-scans from the corresponding number of active elements (𝑁𝑎𝑐𝑡𝑣 × 𝑁𝑒) are recovered,
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which results in faster CS recovery. The CS-FMC and the sparse CS data matrices are later used

to generate the TFM images.

4.4.4 Performance metrics

The percent residual difference (PRD) between the reference and the recovered signals is the

metric used to determine the CS recovery efficiency (Perelli et al., 2015; Bai et al., 2017),

according to:

PRD =

√√∑𝑁
𝑛=1(𝑥𝑛 − 𝑥𝑛)2∑𝑁

𝑛=1(𝑥𝑛)2
× 100 (4.11)

where 𝑥 is the original signal, 𝑥 is the recovered signal using CS, and 𝑁 is the length of both

signals. Thus, higher PRD values indicate poor reconstruction quality.

The image contrast was the metric used to assess the TFM image quality through the contrast-

to-noise-ratio (CNR). Due to the presence of multiple defects in the images from setup 1,

individual subsets of the ROI containing each defect were selected for evaluation. Equal subsets

of 30 mm × 40 mm were used for VBP and 35 mm × 23 mm for HBP. This procedure did not

apply to setup 2, and thus the entire ROI was considered in this case. The −6 dB drop pixels

corresponded to the defect portion in the image, while the remaining pixels were defined as the

noise in the background. The CNR is therefore given by:

CNR = 20 log10

( |𝜇df(−6dB) − 𝑚bg |
𝜎bg

)
(4.12)

where 𝜇df(−6dB) is the mean of −6 dB drop pixels, which corresponds to the defect, 𝑚bg is the

median of the background (entire window excluding −6 dB drop pixels), and 𝜎bg is the standard

deviation of the background.

The defect size and position accuracy were also investigated. Each image defect was individually

compared to the actual defects in the samples. To estimate the position of the defects, the
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maximum intensity pixel was considered. For the SDH, the maximum intensity corresponds to

the reflections from the top of the hole, whereas for the crack-like flaws, it corresponds to the

incident face of the notch. The −6 dB drop technique was the sizing method used (Felice & Fan,

2018). This procedure is done by measuring the transverse distribution of the defects in the

images at the maximum intensity pixel location. For notch B3, simple trigonometry is required

for sizing in the transverse distribution, whereas for notch B1, the longitudinal distribution

ranging from the maximum and up to −6 dB corresponds to its size (notch face length).

4.5 Results

4.5.1 CS signal recovery

The compression performance of two different sparse bases was compared in the initial series of

analyses. Signal sparsity in a generic transform basis is an a priori condition for a successful CS

signal recovery. The sparser the representation of the original signal, the greater the recovery

accuracy of its under-sampled version. The sampling frequency according to the Nyquist-

Shannon theorem should be higher than twice the maximum frequency component present in

the signal [i.e., 2 × (center frequency + bandwidth/2)]. Notably, the frequency contents of the

signal will rely on the bandwidth of both the instrumentation and the probe used. Following

this theorem, the minimum sampling for setup 1 is 14.15 MHz, and 20.62 MHz for setup 2 (see

Table 4.1). However, the collected experimental signals were oversampled according to the

Vantage-64 LE configuration (62.5 MHz of sampling frequency).

Fig. 4.3(a) shows an experimental A-scan from setup 1 sampled at 62.5 MHz, which corresponds

to 4.4 times the minimum required by Nyquist, considering the probe’s central frequency and

bandwidth (14.15 MHz). Information on the front and back walls and the SDHs is also shown.

The CS procedure consists of removing some parts of the original signal using Eq. 4.2, and thus

a compression rate of 80% was applied to keep the number of samples under the Nyquist limit.

Fig. 4.3(b) and Fig. 4.3(c) show the reconstructed A-scan and the corresponding PRD values

using the DCT and the four-level sym8 DWT, respectively. A typical random Gaussian matrix
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was adopted for the subsampling. The signal reconstruction is clearly more efficient when using

the DWT, as it can provide a sparser representation of the ultrasonic signals compared to the

DCT. In this case, the sparseness was measured as 0.55 for DCT and 0.69 for DWT. A similar

CR was applied to the signals of setup 2, and the same reconstruction accuracy trends were

observed.

Figure 4.3 (a) Original experimental A-scan from setup

1 and the recovery results of the (b) DCT and (c) DWT.

The number of samples used corresponds to a sampling

rate (SR) of 12.5 MHz according to the CR applied

To further demonstrate the reconstruction efficiency of the DWT over the DCT, the complete

dataset from the 35𝑡ℎ transmitting element is presented in Fig. 4.4. The images are composed of

A-scans stacked side by side in the vertical position, the responses from defects, front wall, and
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back wall are all marked. Fig. 4.4(a) is the reference image and it contains the fully sampled

data, while Fig. 4.4(b) and Fig. 4.4(c) show the results for the reconstructed data using DCT and

DWT, respectively. Similar to the A-scan results presented in Fig. 34.3, it is observed that the

level of reconstruction error is higher for DCT than DWT. It is not possible to infer the responses

from SDH 3 to 5 and the remaining indications are compromised by the poor reconstruction

quality. On the other hand, the DWT in Fig. 4.4(c) presents a closer representation of the fully

sampled data, with only SDH 4 and 5 showing an amplitude reduction compared to Fig. 4.4(a).

a)

b)

c)

Figure 4.4 Image plots from the complete dataset of the 35𝑡ℎ element: (a) fully

sampled dataset from setup 1 and the recovered results using the (b) DCT and (c)

DWT. High levels of reconstruction errors are observed using the DCT

In total, 30 wavelets were analyzed at several decomposition levels. For the sake of brevity,

Fig. 4.5(a) plots only three of the sparseness measurement results. The figure shows that the

six-level decomposition of coif5 has the highest sparsity value (0.71). The remaining wavelet
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families used in this study presented sparsity values over 0.59 after the first decomposition. To

further illustrate the effect of sparsity on signal reconstruction efficiency, the optimal and an

inferior wavelet were compared. Fig. 4.5(b) displays the reconstruction result using the wavelet

providing the higher sparseness value, while Fig. 4.5(c) shows the reconstruction using the

wavelet with the lower sparseness value, represented by the sym2 second decomposition level.

The original and the reconstructed signals are superimposed in both figures to highlight the

differences between them. More reconstruction errors can be observed in Fig. 4.5(c) than in Fig.

4.5(b) due to the difference in signal sparsity provided by the transform basis.

Another important concept of CS theory is incoherence, and therefore to achieve optimal signal

reconstruction, selecting the optimal measurement matrix, 𝚽, is also required to be used in

Eq. 4.2. Three measurement matrices were examined with respect to the previously chosen

optimal sparse basis, 𝚿. The incoherence, 𝜇, measured using the Gaussian matrix was 5.1, while

the Bernoulli and partial Hadamard matrices were 6.1 and 11.5, respectively. The maximum

incoherence is measured when 𝜇 is equal to 1, and thus the Gaussian matrix is the most adequate

for the CS strategy. Therefore, it was found that the optimal reconstruction was the DWT, using

a random Gaussian measurement matrix and the ℓ1 norm minimization for signal recovery. In

view of these results, the proposed CS strategy was implemented in a MATLAB routine and

was applied to the FMC ultrasonic A-scan signals.

4.5.2 SDH inspection results

Fig. 4.6 presents the TFM ultrasonic images of VBP. The images were generated using the TFM

algorithm for the fully FMC, CS-FMC, and sparse CS data matrix. The SDHs from 2 to 5 and

the back wall are displayed in the images. All the TFM images were preferably displayed using

the linear scale from 0 to 1 instead of the decibel (dB) scale, so that features that impact image

quality such as background noise and artifacts are visible for all cases without requiring dynamic

range adjustments. In Figs. 4.6(a–c), a decrease in the image indicators’ amplitude is observed

as a result of the attenuation. Compared to the reference FMC image, a loss in amplitude is seen

for the deeper defects of CS-FMC [SDH 4 and 5 in Fig. 4.6(a) and Fig. 4.6(b)]. However, Fig.
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a)

b)

c)

Figure 4.5 (a) Sparseness results of the ultrasonic

signals using three wavelet families varying the

decomposition level. The CS recovery using (b) the

optimal wavelet, and (c) the sym2 second level of

decomposition. Some reconstruction errors are evident

when using the inferior wavelet compared to the optimal

4.6(b) shows a reduction in the level of artifacts surrounding the SDH. Fig. 4.6(c) on the other

hand exhibits more background noise. Still, it is possible to locate and size the defects in the

image.

Fig. 4.7 displays the ultrasonic images obtained for HPB. The defects, probe position and back

wall are shown. Most of the ultrasonic energy is received by defects placed under the aperture of
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Figure 4.6 Experimental ultrasonic TFM images of

VBP generated from (a) FMC, (b) CS-FMC and (c) sparse

CS datasets. The same ROI and pixel resolution were

used for each plot

the probe, and therefore, SDH 3 exhibits the highest amplitude as compared to SDH 2 and 4,

for all cases. The images followed a behavior similar to VBP, with the CS-FMC in Fig. 4.7(b)

presenting reduced artifacts around the SDH and background noise as compared to the reference

Fig. 4.7(a), while the sparse CS [Fig. 4.7(c)] shows comparable results in terms of the full array,

despite a small loss in image quality.

The CNR plots relative to the SDH number for the inspected block positions are shown in Fig.

4.8. In Fig. 4.8(a), the CNR curves fall downwards due to attenuation in VBP, with SDH 2

presenting the highest CNR value and decreasing until SDH 5. On the other hand, Fig. 4.8(b)

displays three-cornered curve trends. SDH 3 is placed under the aperture of the probe and

thus presents the highest CNR, while SDH 2 and 4 are on the left and right ends of the curves,
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Figure 4.7 Experimental ultrasonic TFM images of HPB using the same

ROI and pixel resolution from (a) FMC, (b) CS-FMC and (c) sparse CS

datasets. The probe position, back wall, and defects can be seen in the

images. Artifact reduction is noticed in CS-FMC, whereas a sparse CS can

produce comparable results as the full array, with fewer firing events and data

respectively. There is a slight difference between SDH 2 and SDH 4 CNR values in Fig. 4.8(b),

accounting for the distinct amounts of transmitted ultrasonic energy to their positions. It can

be seen that CS-FMC provides an image quality similar to the FMC for both block positions.

The CS-FMC image quality is indeed better considering the high amplitude image reflectors

(see Figs. 4.6 and 4.7), while the lower amplitude defects present a performance close to that of

the FMC. Despite the substantial reduction of data and firing events, only a small reduction in

image quality was observed for the sparse CS images, with a more pronounced difference seen

in the lower amplitude defects (SDH 4 and 5 in VBP; SDH 2 and 4 in HBP).

Tables 4.2 and 4.2 provide the flaw sizing and position accuracy results with respect to the actual

block for VBP and HBP, respectively. A percent difference was computed for each SDH relative

to their actual position and size. The notations 𝛿𝑥 and 𝛿𝑧 indicate the percentage difference

in the x- and z-axes, respectively, and 𝛿𝑠 is size accuracy. The flaw size was measured only

in the x-dimension, as the z-dimension is a function of pulse width instead of the flaw size

(Felice & Fan, 2018). From both tables, it can be seen that the CS reconstruction did not cause

significant variations in the defect position. A variation of 6% was the highest value measured,

and for some of the SDHs, no or small variations were observed. The ultrasonic beam spread
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Figure 4.8 CNR plots of (a) VBP and (b)

HBP measured from the images shown in

Fig. 4.5 and 4.6

has a significant effect on image sharpness, and therefore, 𝛿𝑠 scales with increasing defect depth

(see Table 4.2). This effect is reduced in HBP, as the maximum flaw depth is around 35 mm,

and hence a smaller variation occurred. Higher variations were observed for defects outside the

probe’s aperture in this case.

Table 4.2 Variation of defect position and size

of VBP regarding the actual test sample

CS-FMC/Actual Sparse CS/Actual
SDH number 𝛿𝑥(%) 𝛿𝑧(%) 𝛿𝑠(%) 𝛿𝑥(%) 𝛿𝑧(%) 𝛿𝑠(%)

2 0 6 61 1 5 70

3 0 2 113 1 2 118

4 0 2 194 0 1 213

5 1 1 251 1 1 307

Table 4.3 Variation of defect position and size

of HBP regarding the actual test sample

CS-FMC/Actual Sparse CS/Actual
SDH number 𝛿𝑥(%) 𝛿𝑧(%) 𝛿𝑠(%) 𝛿𝑥(%) 𝛿𝑧(%) 𝛿𝑠(%)

2 5 5 76 5 5 86

3 1 4 18 1 4 27

4 2 5 78 2 6 77
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4.5.3 Angled notch inspection results

Several ultrasonic ray paths, such as direct, half-skip, and full skip, were considered in imaging

setup 2. Only the TT-T and TT-TT modes were selected as they were more sensitive to specular

reflections considering the adopted flaw angles, and consequently, provided more information

about the notches. Fig. 4.9 shows the TFM images of setup 2. For notch B1 in Fig. 4.9(a), just

the TT-T mode was used, and only the TT-TT mode for notch B3 [Fig. 4.9(b)]. These ray paths

correspond to the transversal mode half-skip, TT-T (forward, reflection, and backward), and

full-skip, TT-TT (forward, forward reflection, backward reflection, and backward). A reduction

in the background noise as well as in the magnitude of the artifacts in CS-FMC can be seen

for notch B1. A similar behavior is seen for notch B3, where the CS-FMC image showed less

background noise relative to the FMC. Furthermore, the sparse CS image of notch B1 is almost a

faithful representation of the reference image. Some artifacts can be seen in the sparse CS image

of Fig. 4.9(b), which did not influence the interpretation of the results and notch detection. The

notch from the sparse CS image remained visible as did the notches in the FMC and CS-FMC

images. It can also be seen that the CS reconstruction is efficient regardless of the flaw angle.

Fig. 4.10 presents the CNR results for setup 2. Fig. 4.10(a) displays the results for notch B1 and

Fig. 4.10(b) for notch B3. It can be seen that the CS-FMC presents a superior image quality

as compared to the FMC. In this case, the size of the collected FMC dataset was considerably

reduced, and at the same time, the CNR improved. Further data reduction was achieved with the

sparse CS images, and the performance in terms of CNR was within 8% of the FMC results.

Table 4.4 shows the results for sizing and position difference of the notches. The compressed

reconstruction also did not affect the defect size and its position in the double-layer medium

inspection. Notch B1 showed a maximum of 2% variation in position and a 5% difference

in size. For notch B3, the face length of the defect corresponds to its size and was computed

using simple trigonometry. In this case, the position results are within 5% of the actual sample,

whereas for the size they are 6%.
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Figure 4.9 TFM images obtained using FMC, CS-FMC, and sparse CS

experimental datasets of setup 2 for the notches (a) B1 and (b) B3.

Improvements in image quality are noted when comparing FMC and

CS-FMC. The sparse CS images are a close representation of FMC despite

the drastic reduction in firing events in the latter

Figure 4.10 CNR bar graphs of notch (a)

B1 and (b) B3 measured from the images

shown in Fig. 9 regarding each acquisition

method used
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Table 4.4 Variation of notch position and size

with respect to the actual test sample

CS-FMC/Actual Sparse CS/Actual
SDH number 𝛿𝑥(%) 𝛿𝑧(%) 𝛿𝑠(%) 𝛿𝑥(%) 𝛿𝑧(%) 𝛿𝑠(%)

B1 2 2 0 2 1 5

B3 1 5 4 1 6 6

4.5.4 Computational time

The temporal aspect is essential for fast TFM imaging. It was shown that the CS-FMC

approach could reduce the data volumes by 80%. However, CS-FMC operation demands long

reconstruction times, which represents an obstacle to rapid image processing, and therefore,

implementation of sparse arrays was suggested. To examine CS reconstruction time reduction,

the computational times from CS-FMC and sparse CS methods were measured and the respective

variations were computed. The image formation times from FMC and sparse CS methods were

also measured to estimate the TFM imaging acceleration. For the sake of brevity, only the

reconstruction times for HBP are presented in Fig. 4.11. In this case, CS reconstruction was

performed using the FMC matrix of dimensions 2048 × 64 × 64 (A-scan length, number of

transmitted channels, number of received channels). Fig. 4.11 shows that it takes about 1,384s

to complete the CS reconstruction for CS-FMC and 109s for sparse CS, thus a reduction of 92%.

Also, a reduction of 89% is observed for TFM imaging time using sparse CS. One can see that

the total time of CS-FMC is higher than FMC due to the longer CS reconstruction time. On the

other hand, sparse CS total time result is close to FMC. For the remaining setup configurations,

a percentage variation is presented. Table 4.5 shows the computation time reduction 𝛿𝑡% of CS

reconstruction using the sparse CS method relative to CS-FMC and sparse CS TFM imaging time

reduction relative to FMC for all setups. It can be seen that the implementation of sparse arrays

reduced the CS reconstruction time by up to 92%. Because the CS reconstruction procedure is

sequentially repeated for all A-scans, the total computation time is linearly dependent on the

number of reconstructed signals. Therefore, the time reduction is also proportional to the number

of deactivated elements in transmission, which corresponds to 92% in setup 1 and 91% in setup

2 considering 𝑁𝑎𝑐𝑡𝑣 = 5 and total element count (see Table 4.1). These results are illustrated by
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the example provided in Fig. 4.11 for HBP. Furthermore, the sparse CS TFM imaging is 85%

faster on average than FMC. This indicates, for example, that the sparse CS approach would

only require 3s to image the same ROI of an FMC with 20s of computation time (TFM imaging

6.6 times faster in practice). It should be noted that the CS framework alone grants faster data

processing, and consequently, faster ultrasonic imaging thanks to the lower sampling frequency

used in the recovery (12.5 MHz). This may also contribute to accelerating TFM imaging and

would be combined with the time reductions from Table 4.5 to further decrease imaging time.

Figure 4.11 Total reconstruction time of

CS-FMC and sparse CS approaches compared

to FMC for HBP, setup 1

Table 4.5 Computational time reduction 𝛿𝑡 (%)
of sparse CS data reconstruction compared to

CS-FMC, and sparse CS TFM imaging

compared to FMC. Reductions are displayed for

each setup used

Setup 1 (SDH
Inspection)

Setup 2 (Angled
Notch Inspection)

VBP HBP B1 B3
Sparse CS reconstr. 92 92 91 91

Sparse CS imaging 85 89 83 84
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4.6 Discussion

Regarding signal reconstruction, the proposed CS approach was able to accurately recover the

FMC ultrasonic signals from under-sampled measurements. An average PRD was computed

for each reconstructed FMC dataset of setups 1 and 2, and a global average error from the four

reconstructed datasets was estimated. The global average error calculated was 11.2%, which

is an acceptable result considering the applied CR of 80%. Such a drastic reduction of points

inevitably leads to reconstruction errors. This is represented by the artifacts present in the

reconstructed signal in Fig. 4.5(c). At first glance, these artifacts could be interpreted as random

noise. In reality, the artifacts are not noise, but rather, a result of random under-sampling. The

under-sampling leads to energy leakage from the nonzero coefficients that end up within the

recovered signal coefficients, which were originally zero elements (Lustig, Donoho & Pauly,

2007). Some authors have suggested the possibility of computing this leakage to mitigate

such errors (Donoho, Tsaig, Drori & Starck, 2012). However, with the implementation of

the optimal CS matrices as suggested in this work, the reconstruction errors were minimized,

as shown in Figs. 4.3, 4.4, and 4.5, achieving a satisfactory reconstruction even though a

5-fold under-sampling was applied. It should be noted that the CS method was not used in

the experimental sampling process. In this work, high-dimensional data was post-processed to

demonstrate the feasibility of using CS to reconstruct FMC ultrasonic signals at the sub-Nyquist

rate for later implementation in an actual acquisition system. It is known that the data processed

by the scanners are uniformly sampled, and thus not suitable for CS reconstructions, which

ultimately requires random sampling for successful signal recovery. The findings of this work

can therefore be extended to the design of an actual hardware architecture acquisition device,

where the CS would be involved in the sampling procedure as demonstrated.

By analyzing the TFM images from the setups used, it can be seen that the CS-FMC images

often showed an image quality that was better than or similar to that with the fully sampled

FMC. This is a result of the wavelet transform implementation. Because the DWT allows the

localization of data components at multiple scales, the relevant information of the signal can be

preserved while the noise is reduced. This result can be seen in the CS-TFM images in Figs. 4.6,
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4.7, and 4.9, where the level of background noise or the amplitude of the artifacts was reduced.

Consequently, the CNR was increased in these cases. Most low-amplitude defects still present

a slight reduction in CNR. As mentioned before, under-sampling leads to the appearance of

artifacts in the recovered signal. Lower amplitude indications in the signal such as the ones from

SDH 4 and 5 in VBP may fall closer to this “noise level” when reconstructed, resulting in a

lower CNR. These findings represent one of the limitations of the proposed method and can be

generalized to other deep, weak reflecting targets and flaws found outside the probe aperture.

Regardless of the presence of such errors and small losses, no significant variation in flaw size

and position was seen for both setups, demonstrating the viability of the proposed compressed

reconstruction. This is an important result in terms of FMC data size reduction as well as signal

processing efficiency.

The CS-FMC achieved high image quality with a reduced generated data size, but at the expense

of longer CS reconstruction times. The CS-FMC computation time is linearly proportional to

the number of reconstructed A-scans, as the CS reconstruction is performed sequentially for all

signals. The sparse array approach was therefore suggested to overcome this issue, in addition

to further reducing the data size and TFM imaging time. The CS reconstruction computation

time saw an overall reduction of 90% using the minimum firing events sparse design, as the

number of A-scans collected and processed fell drastically with 𝑁𝑎𝑐𝑡𝑣 = 5. Some losses were

expected using such a small number of transmissions, due to the reduction of frames used to

generate the TFM image. Sparse CS results showed image quality within 8% of the FMC for

setup 2, while for setup 1, the maximum variation was 15% when considering the low amplitude

defects. On the other hand, results comparable to CS-FMC were seen for the flaw position and

sizing (see Tables 4.2–4.4). The sparse CS performance can be considered close to that of FMC

with a small reduction in CNR. This is thanks to the fact that the data contained in FMC is

redundant (Karaman et al., 2009), and therefore, a proper selection of the sparse elements, such

as the layouts used herein, can achieve similar TFM results but with way less data (Piedade

et al., 2022). In sparse CS imaging, the number of firing events dropped to 92% on average,
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considering both setups, which allowed practical TFM image processing 6.6 times faster than

with FMC.

Current commercial ultrasonic scanners are typically set to sampling frequencies between 4 to

10 times the probe central frequency, as in the case of the Verasonics Vantage system. In this

proof of concept, the results of the proposed CS framework indicate that using sampling rates

under the Nyquist theorem limit is possible. This corresponds to a theoretical data processing

that is 5 times faster, considering the SR used for CS reconstructions (12.5 MHz) and the one

corresponding to the actual system. When applied to sparse arrays, such a compressed method

was shown to be viable for reducing the TFM computation cost and allows to mitigate the

hardware complexity of conventional ultrasound systems.

4.7 Conclusion

In this work, we have presented a compressed sensing framework applied to ultrasonic sparse

arrays for lightweight and faster TFM imaging. Based on sparseness and incoherence measure-

ments, a DWT featuring six-level of decomposition of the coif5 wavelet and the Gaussian random

were selected as the optimal matrices for signal reconstruction. The proposed CS strategy can

recover experimental FMC A-scans with fewer points than required by the Nyquist sampling

theorem. These results point to theoretical data processing 5 times faster than with existing

acquisition systems, and an 80% reduction in the volume of FMC data to be stored and transmitted.

In addition, the adopted sparse array design resulted in an eleven-fold CS reconstruction time

improvement and TFM imaging that was 6.6 times faster, with only a minor drop in image

quality. These results can potentially lead to the practical implementation of low-processing

power hardware in NDT applications. Moreover, this method can be extended to the design of a

simple hardware architecture acquisition device. For future work, parallel computation using a

graphics processing unit (GPU) can be applied to optimize the CS reconstruction time, as the

signals are independently processed.



CONCLUSION AND RECOMMENDATIONS

The research undertaken in this thesis comprises a multifaceted investigation aimed at enhancing

the productivity and efficiency of ultrasonic TFM imaging using sparse array designs and

advanced data compression techniques. In particular, this work tackled the constraints related to

employing ultrasonic matrix phased arrays in 3-D TFM, aiming to broaden the technology’s

application in NDT industrial sectors. The production of three distinct manuscripts contributes

significantly to the advancement of this subject in NDT, particularly regarding reducing

transmission events, optimizing sparse array layouts, and employing compressive sensing for

faster TFM imaging. For that, experimental trials were carried out on different types of samples

containing artificial flaws, such as SDH and EDM notches, to evaluate the performance of the

proposed approach.

An initial study presented a novel approach to designing optimal sparse array layouts, introducing

the minimum transmission event (MTE) method. Comparative studies between two types of

sparse array configurations and PWI revealed the superiority of the MTE approach, achieving

improved CNR and API for axial and lateral defects. The findings demonstrated that using just

7.8% of FMC data, the MTE approach produced comparable images to FMC, demonstrating

a remarkable 92.2% reduction in firing events. Alternatively, an equally spaced arrangement

with edge elements deactivation yielded results comparable to the optimal layout, maintaining a

difference within 9% without necessitating computations. These results highlight the efficacy

of this method in significantly enhancing TFM productivity, offering promising prospects for

industrial applications of ultrasonic phased arrays.

The subsequent work introduced advancements in accelerating 3-D TFM imaging by optimizing

wideband 2-D sparse arrays through an adaptation of the MTE approach, now referred to as the

minimum firing event method. A refinement stage was proposed to reduce the computational

load of this analysis by more than 96% without compromising sparse array performance. Results
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revealed that a 2-D sparse array pattern with only 6 active transmitting elements replicated

the imaging and sizing performance of a complete array, offering a 9.8-fold acceleration in

volumetric TFM processing. Furthermore, the study showed the practical value of creating

suboptimal sparse arrays without extensive exploration, thereby streamlining the design process

for 2-D probes.

Lastly, a compressive sensing framework applied to ultrasonic sparse arrays, focusing on

lightweight and faster TFM imaging was explored. The proposed strategy exhibited the potential

to recover experimental FMC data with fewer sampling points than the Nyquist sampling theorem

necessitates, leading to an 80% reduction in data volume. The adopted sparse array design from

the previous studies resulted in significant improvements, achieving an 11-fold reduction in CS

reconstruction time and accelerating TFM imaging by 6.6 times while maintaining acceptable

image quality. These findings pave the way for the practical implementation of low-processing

power hardware in NDT applications.

In summation, the collective contributions of these manuscripts advance the frontiers of ultrasonic

NDT by introducing innovative sparse array designs, efficient data compression techniques, and

streamlined methodologies, significantly improving TFM imaging productivity. The outcomes

of this research have substantial implications for industrial applications, offering promising

avenues for faster, more efficient, and practical implementation of volumetric ultrasonic imaging

in the evaluation and detection of flaws across various industries.

Future research should focus on key aspects to complement this work and to advance this research

field, addressing some of the following observed limitations. Firstly, exploring and implementing

other algorithms to expand the optimal sparse layout search beyond the capabilities of the

minimum firing event method holds promise to further improve image quality relative to FMC

while maintaining rapid inspection capabilities. Furthermore, practical implementation and

enhancement of CS in real-world scenarios present a significant avenue for future investigation.
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Integrating sparse CS frameworks with GPU-optimized parallel computation to enhance CS

reconstruction time is a prospect to facilitate faster processing of voluminous data acquired

during ultrasonic inspections based on 2-D transducers. Lastly, efforts should also concentrate

on mitigating reconstruction errors observed in the sparse CS method, particularly in scenarios

involving deep, weak reflecting targets in the recovered FMC datasets that subsequently produced

image artifacts.





APPENDIX I

SPARSE COMPRESSIVE SENSING APPLIED TO 3-D TFM IMAGING

1. CS-based 2-D sparse methodology and findings: A summary

Considering that the CS methodology presented in Chapter 4 can be applied to the recovery of

any A-scan collected with an array, we utilized this technique with 2-D array FMC data. The

dataset employed was identical to the one collected in Chapter 3, obtained using the matrix

phased array in contact with an aluminum sample containing SDHs at various depths. The CS

procedure consists of removing some parts of the original signal acquired using the FMC method.

In this case, only the signals corresponding to the FMC and optimal 2-D sparse array design

were taken into consideration for comparison. To ensure that the number of sampling points

remained below the Nyquist limit, a compression ratio of 85% was utilized. This compression

was executed using random Bernoulli distributions of 1s and 0s, which reflects a possible CS

hardware implementation scenario involving binary representation. A successful recovery was

achieved using just 4 levels of decomposition with the coif5 discrete wavelet transform, which

was determined as the optimal transform basis in our previous work from Chapter 4.

Subsequently, the signals were decompressed using the inverse wavelet transform and the TFM

algorithm was applied. The figures corresponding to this analysis are displayed in the next

section along with a table showing the CNR variation for each analyzed SDH relative to FMC.

The findings about image formation time remained the same as those in Chapter 4: the 2-D

sparse array approach achieved approximately a 95% reduction in firing events and imaging is

9.8 times faster than the FMC. However, for the 3-D case, the sparse CS imaging was performed

with 85% data compression (less than required by the Nyquist sampling theorem for this case). It

is worth noting that in this instance, CS reconstruction using the Opt6 layout was approximately

20.2 times faster. Also, a minor penalty in image quality was observed for low-amplitude

reflectors.

1.1 Figures and table in appendix
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a)

b)

Figure-A I-1 Experimental ultrasonic 3-D TFM images and corresponding

2-D image slices: (a) FMC and (b) CS Opt6
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Table-A I-1 CNR variation Δ(%) results from the CS Opt6 compared to FMC

CNR Δ(%)
SDH XZ YZ
1 1 1

2 5 6

3 14 16
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