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DE VOL DES AVIONS: UNE ÉTUDE SUR LE CRJ-700 ET  
LE CESSNA CITATION X 

 
 

Yvan Wilfried TONDJI CHENDJOU 
 

RÉSUMÉ 
 
Dans un contexte où l'industrie Aéronautique est confrontée aux défis de la durabilité 
environnementale et de l’efficacité opérationnelle, la poursuite d’une modélisation 
aérodynamique avancée est essentielle. Cette thèse présente une étude approfondie sur 
l'application des techniques avancées d'apprentissage automatique pour la modélisation 
aérodynamique et de la dynamique de vol des avions, en particulier pour les avions CRJ-700 
et Cessna Citation X. La recherche s'appuie sur l'usage des réseaux de neurones artificiels  
« Artificial Neural Networks (ANN) » et de la régression par vecteurs de support « Support 
Vector Regression (SVR) » pour la modélisation aérodynamique des avions dans divers 
scénarios de vol, y compris pendant la phase critique de décrochage.  
 
Les données essentielles pour cette étude ont été collectées grâce au simulateur de vol virtuel 
pour la recherche et l'ingénierie (VRESIM) du CRJ-700 et du simulateur de vol pour avions 
de recherche (RAFS) du Cessna Citation X. Ces deux simulateurs sont certifiés de niveau D 
par l'Administration fédérale de l'aviation (FAA) et ont été conçus par CAE pour la recherche 
au LARCASE. Une série de manœuvres diversifiées a été réalisées sur ces deux simulateurs 
de vol, permettant d'enregistrer un ensemble de paramètres de vols utilisés pour calculer les 
coefficients aérodynamiques. Cet ensemble de donnés a servi pour l'entraînement et la 
validation des modèles d'intelligence artificielle développés au cours de cette thèse. 
 
La première contribution de cette recherche a mis en évidence l'efficacité des perceptrons 
multicouches « Multilayer Perceptrons (MLP) », une catégorie de ANN, et des SVR dans la 
prédiction de la dynamique longitudinale du CRJ-700 en utilisant des données de vol collectées 
sur le VRESIM. Grâce à l'optimisation bayésienne et la méthode de validation croisée « k-fold 
», la précision et la robustesse des modèles ont été assurés. Ces derniers ont été validés en 
comparant les coefficients aérodynamiques longitudinaux prédits avec des données réelles 
issues du VRESIM. Les modèles développés ont ainsi été capables de prédire les coefficients 
aérodynamiques avec des erreurs relatives moyennes absolues en dessous de 1% pour les 
coefficients de portance et de traînée, et en dessous de 5.74% pour les coefficients de moment 
de tangage. Les paramètres de vol longitudinaux simulés à partir de ces coefficients 
aérodynamiques prédits se sont avérés conformes aux normes de la FAA. 
 
En s'appuyant sur la méthodologie établie pour la dynamique longitudinale, la seconde 
contribution aborde méthodiquement la modélisation de la dynamique latérale du CRJ-700, en 
utilisant les données recueillis du VRESIM. En utilisant les MLP et SVR, l’étude prédit 
méticuleusement les coefficients aérodynamiques latéraux, essentiels pour la manœuvrabilité 
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et la stabilité de l'avion. Ces modèles ont démontré une très bonne précision, en affichant des 
erreurs relatives moyennes absolues inférieures à 5%. Les paramètres de vol latéraux simulés 
à partir de ces coefficients aérodynamiques prédits répondent également à tous les critères de 
tolérance de la FAA. 
 
La troisième contribution a permis d’étendre cette approche à la modélisation du 
comportement en décrochage du CRJ-700. L'utilisation des MLP et des réseaux de neurones 
récurrents « Recurrent Neural Network (RNN) » a été efficace pour modéliser les phénomènes 
complexes du décrochage dynamique, enrichissant de ce fait notre compréhension globale du 
comportement de l'appareil dans ces phases critiques. Les modèles développés en utilisant la 
méthodologie proposée ont été capables de prédire la dynamique de vol du CRJ-700 dans des 
conditions de décrochage statique et dynamique avec des erreurs relatives moyennes 
inférieures à 1% pour les coefficients de portance et de trainée, et de 4.6% pour les coefficients 
de moment de tangage.  
 
La méthodologie a été par la suite appliquée pour modéliser le décrochage dynamique de 
l’avion Cessna Citation X, en utilisant les données provenant du RAFS. Cette application a 
confirmé la flexibilité et l’adaptabilité de notre approche à différents types d’avions. Les 
résultats obtenus ont également montré une très grande précision, mettant en évidence la 
polyvalence et l'efficacité des méthodes d'apprentissage automatique développées pour prédire 
le décrochage des avions. 
 
 
Mots-clés: modélisation, identification, aérodynamique, intelligence artificielle, apprentissage 
automatique, réseau de neurones, régression par les vecteurs de support.



 

MACHINE LEARNING APPROACHES FOR AIRCRAFT STALL AND FLIGHT 
DYNAMICS NEW MODELING: A STUDY ON CRJ-700 AND CESSNA CITATION 

X 
 
 

Yvan Wilfried TONDJI CHENDJOU 
 

ABSTRACT 

 
In a context where the aviation industry faces the imperative challenge of environmental 
sustainability and operational efficiency, the pursuit of advanced aerodynamic modeling is 
essential. This thesis presents an in-depth study on the integration of advanced Machine 
Learning (ML) techniques for aerodynamic and flight dynamics modeling of aircraft, 
specifically focusing on the CRJ-700 and Cessna Citation X aircraft. The research leverages 
Artificial Neural Networks (ANN) and Support Vector Regression (SVR) for the estimation of 
aircraft aerodynamics across different flight scenarios, including the critical stall phase. 
 
Essential data for this study was gathered using the CRJ-700 Virtual Research and Engineering 
Flight Simulator (VRESIM) and the Cessna Citation X Research Aircraft Flight Simulator 
(RAFS). Both simulators are Level D certified by the Federal Aviation Administration (FAA) 
and were designed by CAE for LARCASE research. A range of diversified maneuvers 
performed on these two flight simulators allowed for the recording of a comprehensive set of 
flight parameters data that were used to estimate aerodynamic coefficients, crucial for training 
and validating the artificial intelligence models developed in this thesis. 
 
The first contribution to this research shown the effectiveness of Multilayer Perceptrons 
(MLP), a category of ANN, and SVR in predicting longitudinal aerodynamics of the CRJ-700 
using data collected on the VRESIM. Bayesian Optimization (BO) and the K-fold cross 
validation methods ensured the accuracy and robustness of the models. They were validated 
by comparing the predicted longitudinal aerodynamic coefficients with experimental data 
obtained from the VRESIM. The developed models were able to predict aerodynamic 
coefficients with Mean Absolute Relative Errors (MARE) below 1% for lift and drag 
coefficients and below 5.74% for pitching moment coefficients. The longitudinal flight 
parameters simulated from these predicted aerodynamic coefficients were aligned with FAA 
criteria standards. 
 
Building on the robust methodology established for longitudinal dynamics, the thesis 
methodically addressed the modeling of the CRJ-700's lateral dynamics, using data from the 
VRESIM. Employing MLP and SVR, the study meticulously predicts lateral aerodynamic 
coefficients, essential for the maneuverability and stability of the aircraft. These models 
showed very good accuracy, with MARE below 5%. The lateral flight parameters simulated 
from these predicted aerodynamic coefficients were also conformed with FAA guidelines. 
 
The third contribution extended this approach to modeling the stall behavior of the CRJ-700. 
The innovative use of MLP and Recurrent Neural networks (RNN) was demonstrated in 
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modeling the more complex and transient phenomena of dynamic stall, contributing to a 
comprehensive understanding of aircraft behavior during such critical phases. The models 
developed using the proposed methodology could predict the CRJ-700 flight dynamics in both 
static and dynamic stall conditions, with MARE below 1% for lift and drag coefficients, and 
4.6% for pitching moment coefficients.  
 
The methodology was subsequently applied to model the dynamic stall of the Cessna Citation 
X aircraft, using data from the RAFS. This application confirmed the flexibility and 
adaptability of our approach to different types of aircraft. The results obtained also showed 
very high accuracy, highlighting the versatility and effectiveness of the developed ML methods 
for predicting aircraft stall. 
 
 
Keywords: modeling, identification, aerodynamics, artificial intelligence, machine learning, 
neural network, support vector regression 
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INTRODUCTION 
 
The aviation industry is currently facing significant challenges related to environmental 

sustainability, safety improvements, and operational efficiency. To address these concerns, the 

Federal Aviation Administration (FAA) has developed the United States Aviation Climate 

Action Plan with the goal of achieving net-zero emissions by 2050 (FAA, 2021). This global 

urgency to mitigate climate impacts has also prompted Boeing to invest in sustainable aviation 

fuels and technologies, aiming for carbon neutrality and compatibility of all commercial 

airplanes with sustainable aviation fuels by 2030 (Boeing, 2023).  

 

0.1 Problem Statement and Motivations 

Accurate aerodynamic modeling plays a crucial role in addressing these industry challenges. 

It provides a detailed understanding of airflow patterns around aircraft components, with an 

accurate evaluation of airfoil lift and drag, and simulation of complex internal and external 

geometries for airflow circulation (Abbas, De Vicente & Valero, 2013). This understanding of 

aerodynamics is vital in aircraft design where advancements in flow simulation, facilitated by 

high-performance computing, contribute to enhancing aircraft efficiency (Di Pasquale & 

Savill, 2022) – a key factor in meeting decarbonization goals. Furthermore, the development 

of comprehensive aerodynamic databases through Computational Fluid Dynamics (CFD) or 

wind tunnel testing remains a conventional approach that significantly benefits the conceptual 

design and overall improvement of aircraft performance. Overall, accurate aerodynamic 

modeling plays a pivotal role in addressing the challenges faced by the aviation industry, 

supporting the pursuit of environmental sustainability, safety improvements, and operational 

efficiency. 

 

However, achieving accuracy in aerodynamic modeling presents inherent challenges. The 

dynamic and complex nature of the airflow around aircraft components requires precise 

modeling techniques to ensure reliable predictions. Although there have been advancements 

in aerodynamic modeling, further progress is required, especially in modeling complex 
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phenomena like dynamic stall, which are not extensively covered in existing literature. 

Dynamic stall, characterized by its transient and complex nature, presents considerable 

challenges for accurate modeling using traditional techniques (Abbas et al., 2013; Tam, 1995). 

Furthermore, the growing demand for environmentally sustainable aviation technologies, as 

emphasized by the International Civil Aviation Organization (ICAO), underlines the 

importance of highly accurate aerodynamic models for designing and optimizing next-

generation aircraft systems (ICAO, 2016). 

 

In response to these challenges, Artificial Intelligence (AI) methods could present a promising 

opportunity to enhance aerodynamic modelling accuracy. With the ability to learn from data 

and generate precise models, AI might be capable of capturing complex aerodynamic 

behaviors that traditional methods find challenging to identify. Techniques such as ANN and 

SVR could potentially model complex aerodynamic phenomena accurately while reducing 

computational time. ANNs are recognised for learning and modelling complex dynamics 

through their layered structures, while SVR are known for robust and precise predictions even 

with limited data, potentially making them suitable for capturing nuanced aerodynamic 

behaviours like dynamic stall. The consideration of AI technologies in aerodynamic modelling 

suggests a shift towards data-driven, real-time modelling and prediction, which could be 

crucial for meeting the stringent performance and safety requirements of modern aviation 

systems. 

 

0.2 Global Research Objective  

Given challenges faced by traditional methods in complex aerodynamic modeling, a 

fundamental question emerges: Can AI methods transcend these constraints, thereby offering 

a new approach for more accurate and efficient aerodynamic and flight dynamics modeling? 

Despite the growing enthusiasm for AI, it is crucial to rigorously evaluate its actual potential 

in addressing the specific challenges of aerodynamics. Thus, the main objective of this research 

is to explore the effectiveness of AI-based methodologies, specifically ANN and SVR, in 

accurately modeling aircraft aerodynamic and flight dynamics models, while respecting FAA 
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standards (FAA, 1991; ICAO, 2016). This exploration aims to determine how these 

technologies can potentially surpass conventional approaches by providing more accurate and 

robust modeling of lateral and longitudinal aerodynamics and flight dynamics under various 

operational conditions, including complex phenomena like stall.  

 

More specifically, this objective involves the development of innovative methodologies to 

accurately model and predict lateral and longitudinal aerodynamic coefficients under various 

operating conditions, including stall, for specific aircraft models such as the Bombardier  

CRJ-700 commercial aircraft and the Cessna Citation X business aircraft. While AI typically 

requires substantial experimental data to train effective models, the use of highest-fidelity 

(level D) simulators such as the Virtual Research and Engineering Flight Simulator (VRESIM) 

for the CRJ-700 and the Research Aircraft Flight Simulator (RAFS) for the Cessna Citation X, 

becomes invaluable. They provide a wealth of accurate and simulated flight data for model 

training, validation, and optimization. Level D is the highest level given to the flight dynamics 

of flight simulators by the FAA. Additionally, the research explores both longitudinal and 

lateral aerodynamic aircraft modeling concepts to gain a comprehensive understanding of 

aircraft flight dynamics. 

 

Finally, this research involves a comprehensive comparative analysis and optimization of AI 

techniques, including MLP, RNN, and SVR. The integration of these optimized AI models into 

a simulation platform that replicates flight scenarios and satisfies the FAA tolerance criteria 

(FAA, 1991; ICAO, 2016) represents a significant advancement toward real-time modeling 

and prediction in aerodynamics. 

 

0.3 Thesis Organisation  

The thesis comprises six chapters, each of these chapters addresses distinct aspects of the use 

of AI methodologies in aerodynamic modeling. The organizational structure ensures a coherent 

and comprehensive presentation of the research. 
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CHAPITRE 1 describes the state of art, providing an overview of relevant literature on 

aerodynamic modeling and AI methodologies. It establishes the current state of the field, 

identifies the research gaps, and outlines the specific objectives, approach, and contributions 

of this study. 

 

CHAPITRE 2 to CHAPITRE 5 form the core of the thesis, including three published 

scientific journal articles and one submitted scientific journal article. CHAPITRE 2 explores 

the application of MLP and SVR to model the longitudinal aerodynamics of the Bombardier  

CRJ-700. The research presented in this chapter aims to demonstrate the effectiveness of these 

AI techniques in accurately modeling an aircraft's longitudinal flight dynamics.  

 

Building upon CHAPITRE 2, CHAPITRE 3 extends the research to include the prediction 

of the lateral aerodynamic coefficients of the CRJ-700 using MLP and SVR. This chapter 

expands the scope of aerodynamic modeling and provides further evidence that both MLP and 

SVR can accurately model full flight dynamics (i.e., longitudinal and lateral motions). 

 

CHAPITRE 4 focuses specifically on the stall dynamics modeling of the Bombardier  

CRJ-700, using MLP and RNN for identification purposes. Stall, a critical and dangerous 

phenomenon where the aircraft loses lift, presents significant risks to flight safety, making its 

accurate prediction and understanding essential. This chapter explores the complexity of stall 

dynamics, showcasing the adaptability of AI techniques in modeling complex aerodynamic 

phenomena. 

 

In CHAPITRE 5, attention is given to the Cessna Citation X by employing MLP and RNN to 

identify and validate its longitudinal aerodynamic coefficients under stall conditions. The study 

presented in this chapter is mainly based on the method previously developed for the stall 

dynamics of the CRJ-700, demonstrating the versatility of AI methodologies for different 

aircraft models. 
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Finally, we consolidate the research findings from the 4 journal articles into a general 

discussion and conclusion. Connections are established between the articles, providing a 

conclusive understanding of the research objectives, followed by recommendations for future 

research. 





 

CHAPITRE 1 
 
 

STATE-OF-THE-ART AND RESEARCH CONTRIBUTION 

1.1 Introduction to Aerodynamic Modeling 

Aerodynamic modeling plays a crucial role in the field of aviation, having been through a 

significant evolution over time. Its origins can be traced back to the early aerodynamic 

principles proposed by pioneers such as Aristotle and Archimedes (Anderson, 1997). The 20th 

century saw a major shift in aerodynamics, evolving from a basic applied science to an 

academic field that deeply impacted aircraft design (Kármán, 2004). This period saw the 

emergence of structured methods and innovative strategies leading to significant advancements 

in aerodynamics, materials, and propulsion, contributing to substantial enhancements in 

aircraft performance (Anderson, 2006). 

 

In modern aviation, the importance of aerodynamic modeling is highlighted by its direct impact 

on aircraft performance, environmental sustainability, and cost-effectiveness of operations. 

The effort to design aircraft for optimal performance while reducing its environmental impact 

is a key responsibility of aerodynamic designers (Anderson, 2000). 

 

The quest for precise aerodynamic modeling in aviation is a challenging task, filled with 

complexities that arise from the inherent nature of aerodynamic phenomena (Hiliuta & Botez, 

2007). The objective is to accurately represent aerodynamic forces and moments under a wide 

array of flight conditions. One of the main challenges comes from the complex and nonlinear 

behavior of aerodynamic phenomena, especially under extreme or unstable flight conditions, 

such as dynamic stall. These conditions often result in complex flow structures and interactions 

that are difficult to model accurately using traditional methods (Chernyshev, Lyapunov & 

Wolkov, 2019). 

 

Furthermore, the complex nature of aerodynamic phenomena significantly increases the 

dimensionality of the related data, making modeling a difficult task. The aerodynamic 
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properties of an aircraft are significantly impacted by many variables, such as the aerodynamic 

shape of the wing, the aircraft speed, the angle of attack, air density, surface roughness, and 

the aircraft configuration, among others. Each of these variables adds dimensions to the data, 

which, in turn, amplifies the challenges associated with accurate modeling (Xie, Huang, Song, 

Fu & Lu, 2022).  

  

1.2 Aerodynamic Stall  

The aerodynamic stall is a phenomenon that occurs when an aircraft wing exceeds a “critical 

angle of attack”. This angle varies depending on factors such as the wing airfoil shape, wing 

planform, and aspect ratio. In subsonic conditions, the critical angle of attack (known as stall 

angle of attack) typically ranges from 8 to 20 degrees (Clancy, 1975). 

 

Under normal conditions, lift varies linearly with the angle of attack (for fixed Mach and 

Reynold numbers) for values below the critical (stall) angle. However, at high angles of attack 

beyond the critical angle, the flow over the airfoil separates, resulting in a sudden drop in lift 

due to an adverse pressure gradient on the airfoil surface. This phenomenon is called “static 

stall”. It is important to note that thick airfoils tend to have higher critical stall angles of attack 

compared to thinner airfoils with the same camber (Anderson, 2010). Additionally, symmetric 

airfoils generally have lower critical angles of attack compared to cambered airfoils, but they 

perform better in inverted flight. 

 

At high angles of attack, when an aircraft airfoil is subjected to unsteady (time-varying) 

motions, it experiences more complex aerodynamic phenomena than static stall, which is 

called “dynamic stall”. Unlike static stall, which occurs gradually as the angle of attack 

increases, dynamic stall occurs when the angle of attack undergoes rapid variations. The wing 

can momentarily exceed the critical angle of attack and still generate significant lift, but this 

lift is not sustained and decreases rapidly. Dynamic stall is characterized by various complex 

aerodynamic phenomena, including shear layer instability, laminar-to-turbulent transition, and 

vortex formation. 
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Although significant progress has been made in recent years, dynamic stall remains a 

challenging area of research with various applications in the field of aeronautics. Researchers 

continue to explore and study dynamic stall to improve our understanding of its underlying 

mechanisms and its impact on aircraft performance and safety. Various semi-empirical 

methods developed by ONERA and MIT for the prediction of dynamic stall were studied and 

compared by Botez (1989).  

 

1.3 Traditional Aerodynamic Modeling Techniques 

CFD is a crucial tool for simulating fluid flows around an aircraft. This method uses Navier-

Stokes equations to numerically model the interactions between fluid and aircraft surfaces. For 

example, Koreanschi et al. (2017) developed a global aerodynamic model using CFD, 

showcasing its ability to accurately predict aerodynamic coefficients under various conditions. 

Their research included a numerical simulation of a morphing wing-tip demonstrator 

aerodynamic performance, highlighting the potential of CFD in capturing aerodynamic 

behaviors. In a subsequent study by Gabor, Koreanschi & Botez (2012), CFD was used to 

simulate the aerodynamic characteristics of a morphing wing, equipped with a flexible upper 

surface and a controllable actuated aileron. The technology demonstrator in their study, 

resembling a real aircraft wing tip section, was developed through a complex and 

multidisciplinary design process. The results underscored the effectiveness of CFD in 

simulating intricate aerodynamic features, further emphasizing its importance in aerodynamic 

modeling. 

 

CFD has the capacity to offer detailed insights into flow characteristics around and within 

various aerodynamic bodies. It facilitates the in-depth visualization and analysis of flow 

patterns, pressure distributions, and aerodynamic forces and moments, all of which are crucial 

for effective aerodynamic design and analysis (Mani & Dorgan, 2023). However, despite these 

benefits, CFD also faces several challenges. The most prominent issue is its computational 

time cost and substantial demands on computational resources, that require fine spatial 

resolutions (Drikakis, Kwak & Kiris, 2016). Additionally, accurately representing complex 
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aerodynamic behaviors such as turbulence and dynamic stall is a significant challenge for CFD, 

which often requires advanced turbulence models and fine mesh resolutions, further increasing 

the computational requirements. Furthermore, the inherent assumptions and approximations in 

Navier-Stokes equations, especially in turbulence modeling, may lead to significant 

differences between CFD predictions and actual aerodynamic model results (Rizzi, 2023). 

Consequently, CFD models always need extensive validation against wind tunnel or flight test 

data to ensure reliability. 

 

The panel method is another type of aerodynamic modeling that focuses on dividing the aircraft 

surface into smaller panels. Each panel contributes uniquely to the overall aerodynamic 

characteristics. This technique is known for its computational efficiency, being less demanding 

compared to CFD, making it an effective approach for predicting potential flows around the 

aircraft, particularly during the initial design phases (Katz & Plotkin, 2001). A specific 

application of the panel method can be seen in the aerodynamic analysis of the UAS-S4 Éhecatl 

airfoil, where a two-dimensional linear panel method was used. This method was successfully 

combined with an incompressible boundary layer model and a transition estimation criterion, 

resulting in the optimization of an unmanned aerial system using a flexible skin morphing wing 

(Gabor, Simon, Koreanschi & Botez, 2016). However, a significant limitation of the panel 

method is its inability to accurately capture viscous effects and complex flow behavior such as 

flow separation.  

 

Wind tunnel testing is an experimental technique that involves testing a scaled model of an 

aircraft or its components within a controlled airflow environment to gather aerodynamic 

forces and moments data through various measurement techniques. These techniques include 

Pressure measurements (Piziali, 1994; Tang & Dowell, 1995), Laser Velocimetry (Braza et al., 

2003), Laser Sheet Visualization (Wernert, Geissler, Raffel & Kompenhans, 1996) and Time-

Resolved Particle Image Velocimetry (Hansman & Craig, 1987; Mulleners, Le Pape, Heine & 

Raffel, 2012). Koreanschi, Oliviu & Botez (2015) successfully carried out experimental 

validation of an ATR 42 optimized wing geometry using Price Païdoussis subsonic wind 

tunnel. Similarly, a novel control methodology for a morphing wing demonstrator was 
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developed and tested by Tchatchueng Kammegne et al. (2018) in a subsonic wind tunnel, 

showing the contribution of wind tunnel testing in improving aircraft aerodynamic 

performance by using adaptive wing geometries. The airflow characterization of the wing was 

achieved using pressure sensors embedded in the flexible part of the wing upper surface. 

 

Wind tunnel testing provides a controlled environment that conducts to the collection of 

repeatable and accurate aerodynamic data, playing an important role in verifying and validating 

theoretical and computational models prior to flight testing. Furthermore, wind tunnel testing 

enables the examination of flow patterns across a range of conditions that may be challenging 

to replicate in real-world settings. However, it can be expensive and time-consuming, 

demanding meticulous preparation and calibration. Furthermore, scale effects may introduce 

inaccuracies as the behavior of scaled models may not perfectly represent that of full-sized 

aircraft.  

 

Semi-empirical methods play a critical role in aerodynamic modeling by integrating theoretical 

calculations with experimental results to predict aerodynamics. These methods have been 

considered in initial aircraft design and remain indispensable for preliminary assessments in 

today design practices. One widely adopted semi-empirical approach is the DATCOM, which 

facilitates the initial design and analysis of missile aerodynamics and performance (Rosema, 

Doyle & Blake, 2014). Tondji & Botez (2017) have used DATCOM for semi-empirical 

estimations of mass and center of gravity of the unmanned aerial system UAS-S4 by Hydra 

Technologies. Furthermore, The FDerivatives code, developed within our LARCASE 

laboratory, builds upon the methodology of the DATCOM code while incorporating 

advancements in aerodynamics theories. This code and its methodology have been successfully 

applied to various aircraft, including the UAS-S4 and UAS-S45 of Hydra Technologies 

(Kuitche & Botez, 2019), the military X-31 aircraft (Anton, Botez & Popescu, 2011), and the 

business aircraft Hawker 800 XP (Anton, Botez & Popescu, 2010). 

 

Semi-empirical methods offer a balanced approach by leveraging the advantages of empirical 

data to enhance or correct theoretical models, resulting in more reliable predictions than either 
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approach alone. These methods prove to be particularly advantageous in the early stages of 

design, significantly reducing the time and costs associated with extensive experimental 

testing. However, the reliance on empirical data introduces certain limitations. The accuracy 

of semi-empirical methods is inherently linked to the quality and relevance of the empirical 

data they rely on, which may not always be readily accessible or may be specific to particular 

conditions. Moreover, these methods may have limited flexibility in accurately predicting 

aerodynamic behavior beyond the range of available empirical data, which necessitates 

cautious extrapolation and may restrict their applicability to novel design concepts. 

 

While traditional techniques have made notable contributions, the aviation industry is 

constantly seeking more precise and efficient modeling methods. The limitations inherent in 

these traditional approaches, such as the inability to accurately predict complex flow 

phenomena and the computational costs associated with certain simulations, highlight the need 

for innovative solutions. Consequently, there is a growing interest in exploring the potential of 

AI methods as valuable tools to enhance aerodynamic modeling.  

 

1.4 Application of AI in Aerodynamic Modeling 

The application of AI in the field of aerodynamics represents a significant advancement in 

addressing the limitations of traditional modeling techniques. With the rapid progress in 

computational power and algorithm development, AI has become an important and powerful 

tool for understanding the complex flow patterns and pressure distributions that characterize 

an aircraft aerodynamics. Notably, data-driven models in CFD have emerged, which establish 

relationships between inputs and outputs based on experimental data rather than relying solely 

on explicit physical mechanisms. This AI methodology signifies a fundamental change from 

traditional empirical methods (Wang & Wang, 2021). 

 

Machine Learning (ML) algorithms, such as NN and SVR, leverage large datasets to “learn” 

the underlying physics of aerodynamic flows. This departure from empirical or semi-empirical 

methods allows these ML algorithms to discover relationships through pattern recognition and 
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data inference, effectively handling the non-linearity and complexity inherent in aerodynamic 

systems (Zan, Han, Xu, Liu & Wang, 2022). 

 

The integration of AI into aerodynamic modeling aligns with the industry’s shift towards 

adaptive and resilient design approaches. AI’s capacity to learn from real-time data and adapt 

to new scenarios presents opportunities for dynamic optimization of aircraft performance 

during flight, a paradigm shift from static models derived from wind tunnel tests and CFD 

simulations (Sabater, Stürmer & Bekemeyer, 2022; Zou & Sun, 2021). Nevertheless, applying 

AI methods to the well-known field of aerodynamics presents many challenges. Ensuring the 

reliability and validity of AI-derived models requires rigorous training, validation, and testing 

of experimental aerodynamic phenomena data. The “black box” nature of many AI algorithms 

needs transparency and interpretability to gain trust and acceptance within the aerospace 

community. 

 

1.5 Artificial Neural Network in Aerodynamic Modeling  

The field of ML provides a diverse set of tools for addressing the complexities of 

aerodynamics, while ANN are well known for their abilities to identify patterns in data that 

may be overlooked by traditional methods. ANN, designed to mimic the structure of the human 

brain, can effectively process and interpret large volumes of data, enabling them to make 

predictions based on their received inputs. 

 

Among various types of ANN, MLPs which are feedforward artificial neural networks, have 

played a crucial role in modeling static and dynamic relationships using aerodynamic data. By 

employing multiple layers of interconnected neurons that sequentially process inputs, MLPs 

can approximate complex functions and capture both transitional and steady state of 

aerodynamic phenomena. These types of networks have been successful in estimating 

aerodynamic loads during gust conditions even in the presence of noisy and sparsely 

distributed surface pressure data (Chen et al., 2023). This capability of MLPs to extract 

meaningful patterns from such intricate datasets highlights their robustness and adaptability in 
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dynamic and uncertain flight dynamics environments. The work carried out by Ghazi, Bosne, 

Sammartano & Botez (2017) serves as a precursor to our own research as their study presents 

a methodology for identifying static stall characteristics in the Cessna Citation X using MLPs. 

A Cessna Citation X RAFS developed by CAE Inc., serves as an excellent platform for 

conducting flight tests, and generating a comprehensive aerodynamic coefficients database. 

Building upon their achievements, our research presented in CHAPITRE 5 aims to advance 

aerodynamic modeling techniques even further, exploring their full potential on dynamic stall, 

a more complex phenomenon characterized by its transience and non-linearity.  

 

RNN is another type of ANN that are designed to analyze sequential data, making them well-

suited for capturing temporal relationships and dependencies (Suresh, Omkar, Mani & Guru 

Prakash, 2003). This characteristic gives high advantages in the field of aerodynamics, where 

flow properties often exhibit pronounced dependencies on the sequence of events, as seen in 

transient phenomena, such as dynamic stall. RNNs are excellent in capturing temporal 

dynamics by utilizing their internal memory to process data sequences. They learn and retain 

the sequential context within the flow, enabling a comprehensive understanding of underlying 

aerodynamic behavior. Notable advancements have been made by Mahajan, Kaur, Singh & 

Banerjee (2021) in the estimation of aerodynamic derivatives for an aircraft through the 

utilization of RNNs. Simulated flight data was employed to train RNN model, enabling the 

prediction of desired outputs based on given inputs. This predictive capability holds great 

significance in the dynamic analysis of aircraft, particularly in the assessment of stability and 

control across various flight conditions.  

 

In CHAPITRE 4 and CHAPITRE 5, a comprehensive comparative analysis between MLP and 

RNN has been performed on their longitudinal aerodynamic coefficients modeling in the 

dynamic stall for both the CRJ-700 and Cessna Citation X. Through meticulous examination, 

the respective capabilities and constraints of each architecture in capturing the stall dynamics 

are thoroughly investigated and discussed. 
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1.6 Support Vector Regression in Aerodynamic Modeling 

SVR, a robust ML technique derived from Support Vector Machines (SVM), has found 

widespread applications in modeling complex nonlinear systems. SVR offers a distinct 

approach compared to ANN, both in terms of its operational framework and expected 

outcomes. ANN rely on interconnected nodes in multiple layers, SVR is based on statistical 

learning theory and structural risk minimization. Its objective is to identify a hyperplane that 

optimally fits the data with a key emphasis on maximizing the margin between the closest data 

points, that are known as support vectors (Drucker, Burges, Kaufman, Smola & Vapnik, 1996). 

This methodology not only enhances the prediction robustness in the presence of noisy data, 

but it also mitigates the risk of overfitting, which can be a concern for Neural Networks 

(Brereton & Lloyd, 2010) applications. SVR ability to generalize effectively from limited 

training data is particularly advantageous in aerodynamic modeling where experimental data 

may be scarce and costly to obtain. 

 

A notable application of SVR in the field of aerodynamics is described in the research 

conducted by Bagherzadeh (2020). In this study, a non-parametric system identification 

approach based on SVR was employed to develop a nonlinear aeroelastic model for aircraft. 

This methodology was applied to estimate forces and moments coefficients for the F/A-18 

aircraft, utilizing both simulated and real flight data. The results demonstrated that the SVM-

based approach outperformed ANN in this specific system identification task. 

 

Moreover, the SVR has demonstrated its effectiveness in modeling unsteady aerodynamics at 

high angles of attack, a critical aspect of modern aircraft design that significantly impacts 

stability and control aspects (Wang, Qian & He, 2015). The capability of SVR to handle the 

dynamic characteristics of aerodynamics under such demanding flight conditions makes it an 

invaluable tool for ensuring aircraft safety and optimal performance. 

 

In the field of optimization, SVR has been used as a sequential approximation method in 

conjunction with a hybrid cross-validation strategy (Yang & Zhang, 2013). This approach 
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offers a solution for predicting aerodynamic coefficients, enabling the approximation of 

objective functions and constraints in aerodynamic optimization problems characterized by 

substantial computational complexity. By using the SVR as a sequential approximation 

technique, computational time is reduced without compromising prediction accuracy, thereby 

streamlining the optimization process. 

 

Another approach has been proposed, that integrated SVR with Wavelet Transform and Gray 

Wolf Optimization, yielding a synergistic effect on the prediction capability of SVR. This 

innovative combination optimizes SVR using sophisticated algorithms, resulting in more 

accurate and efficient aerodynamic models (Zhang et al., 2023). The proposed method 

enhanced the overall performance of SVR, improving both the accuracy and efficiency of 

aerodynamic predictions. 

 

In CHAPITRE 2 and CHAPITRE 3 of this thesis, a comprehensive comparative analysis is 

carried out, examining the performance of SVR in comparison to the previously discussed 

MLP models, on their applications in modeling longitudinal and lateral flight dynamics of 

CRJ-700.  

 

In addition to the ANN and SVR discussed above, the application of fuzzy logic presents 

another promising avenue for enhancing the accuracy of aerodynamic modeling. A notable 

example is the work by Hiliuta, Botez & Brenner (2005), who explored the approximation of 

unsteady aerodynamic forces using Fuzzy techniques. Their study focuses on the F/A-18 

aircraft, calculating unsteady aerodynamic forces in the frequency domain using sophisticated 

methods tailored for both subsonic and supersonic regimes. They demonstrate that by 

employing a combination of fuzzy clustering and shape-preserving techniques, it is possible to 

achieve a highly accurate approximation of these forces. This approach is particularly 

beneficial when the data are calculated for a range of unevenly spaced reduced frequencies, a 

common challenge in aerodynamic analysis. Their methodology not only complements the 

existing AI techniques discussed in this review but also underscores the versatility and 

potential of fuzzy logic in handling complex aerodynamic problems. 
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1.7 Research Objectives, Approach, and Contributions  

The main objective of this thesis is to use AI techniques, especially ANN and SVR, to enhance 

the accuracy and predictive capability of flight dynamics and aerodynamics modeling, with a 

specific focus on two distinct aircraft: the Bombardier CRJ-700 and the Cessna Citation X. 

The Bombardier CRJ-700 is a regional jet that can accommodate 63 to 78 passengers, offering 

a maximum speed of Mach 0.85 and a flight range of up to 4,660 km. On the other hand, the 

Cessna Citation X is a high-speed business jet aircraft capable of carrying up to 12 passengers, 

flying at a maximum speed of Mach 0.92, and covering a range of 5,956 km. The use of these 

two aircraft types enables a comparative study of ML methods results. This comparative 

analysis serves to validate the universality of the developed models and expand their 

applicability within the aviation sector. 

 

Conducted within the Laboratory of Applied Research in Active Controls, Avionics, and 

AeroServoElasticity (LARCASE), this PhD thesis builds upon the ongoing efforts of our 

laboratory team to incorporate AI into Aeronautical Engineering research. The selection of the 

Bombardier CRJ-700 and Cessna Citation X was based on the availability of high-fidelity level 

D simulators at the LARCASE, providing an ideal platform for the application and testing of 

our methodologies. According to the Federal Aviation Administration (FAA), level D is the 

highest qualification level given for dynamics and propulsion flight simulator models. 

 

The main objective of this research is divided into three sub-objectives, presented in the 

following sections. 

 

1.7.1 Longitudinal Fight Dynamics Modeling 
 

The first contribution is to model the longitudinal flight dynamics of the CRJ-700 aircraft using 

a comprehensive AI-centric approach, incorporating advanced ML techniques and rigorous 

validation processes. The aim was to identify aerodynamic coefficients and predict short-
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period and phugoid dynamics of the CRJ-700 jet using two types of ML models: MLP and 

SVR.   

 

Realistic flight test data was collected from the Level D CRJ-700 VRESIM, forming a solid 

database for the analysis. This dataset served as input for the training of MLP and SVR models. 

The Bayesian Optimization (BO) was applied to enable efficient parameter selection, and to 

enhance their prediction accuracy. In order to ensure the robustness of the models and avoid 

overfitting, cross-validation techniques were used.  

 

The validation of the models was conducted with meticulous attention to detail through a 

comparison between the predicted longitudinal aerodynamic coefficients and their 

corresponding values from the VRESIM under the same flight conditions. In addition, the 

validation process ensured that the longitudinal flight dynamics parameters calculated from 

model predictions satisfied to the validation criteria established by the FAA (FAA, 1991; 

ICAO, 2016). This respect for FAA standards is crucial as it guarantees that the models meet 

the rigorous requirements necessary for their application in the aviation context. 

 

This first study introduced an innovative approach that is different from traditional 

aerodynamic modeling techniques by leveraging the capabilities of MLP and SVR for system 

identification. In contrast to conventional methods such as CFD, semi-empirical methods or 

wind tunnel tests, the use of MLP and SVR offers a dynamic and adaptable framework to 

capture and represent the non-linear relationships existing within the aerodynamic coefficients 

and flight parameters, for a wide range of flight conditions, within a single prediction model. 

Furthermore, robust validation techniques, such as cross-validation, ensured the reliability and 

generalizability of these models. In addition, in contrast to time-consuming approaches such 

as CFD, AI models offer significantly faster predictions of aerodynamic coefficients, taking 

only fractions of a second. This high speed in prediction capability represents a substantial 

improvement, enabling the integration of accurate aerodynamic models into larger closed-loop 

control systems that required rapid response times. Consequently, the enhanced efficiency in 

aerodynamic modeling achieved through ANN and SVR not only provides accurate 
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predictions, but it also supports real-time applications. This capability is particularly crucial in 

modern aerospace control and simulation systems, where real-time responsiveness is essential.  

 

The results obtained in this study strongly support the main objective of the thesis, 

demonstrating the capability of accurately modeling longitudinal flight dynamics while 

respecting to FAA standards. This achievement not only reinforces the primary goal of the 

thesis, but also paves the way for future investigations into modeling lateral dynamics and 

more complex phenomena, such as stall behavior in the rest of this thesis. The results obtained 

in this study led to the publication of a first article (included in CHAPITRE 2, without 

modification):  

 

Article 1: Tondji, Y., Ghazi, G., & Botez, R. M. (2024). Neural Networks and Support 

Vector Regression for the CRJ-700 Longitudinal Dynamics Modeling. AIAA 

Journal of Aerospace Information Systems, 21 (3), 263-278. 

 DOI: https://doi.org/10.2514/1.I011332 

 

This article was co-authored with both my PhD advisors: Dr. Ruxandra Mihaela Botez who 

supervised the research and provided guidance through regular meetings; Dr. Georges Ghazi, 

also as co-author, who contributed with his technical expertise, offering essential assistance 

throughout the research process.  

 

1.7.2 Lateral Flight Dynamics Modeling  
 

The second contribution of this research focuses on the modeling of the lateral dynamics of 

the Bombardier CRJ-700 aircraft, using an AI-centric methodology similar to that of the first 

sub-objective. The primary goal was to predict the aircraft lateral aerodynamic coefficients, 

which play a crucial role in ensuring aircraft maneuverability and stability during flight. To 

accomplish this goal, experimental flight parameters of the lateral flight dynamics were 

collected using the CRJ-700 VRESIM. This data was then used to train the MLP and SVR 

models. In order to optimize the performance of both models, Bayesian Optimization technique 
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was employed to fine-tune the model hyperparameters. To validate the accuracy of both 

models, a set of predicted lateral flight dynamics parameters was compared to experimental 

data obtained from the VRESIM, by means of FAA tolerance criteria (FAA, 1991; ICAO, 

2016), ensuring that the models met the required standards for aviation applications. 

 

This study introduces an innovative approach by integrating ML techniques into the modeling 

of lateral flight dynamics. Traditionally, aerodynamic studies have focused primarily on 

longitudinal flight dynamics, while lateral dynamics has received relatively less attention, 

probably due to its complexity. This novel application of ML in the domain of lateral flight 

dynamics brings several advantages, as those discussed in the first sub-objective, such as the 

ability to effectively process complex and non-linear data, which is a characteristic of lateral 

flight dynamics behavior, and the rapid prediction of aerodynamic coefficients, which are 

crucial for real-time control systems. Moreover, by extending modeling efforts to lateral flight 

dynamics, the study achieves a complete representation of aircraft dynamics (consisting of 

both longitudinal and lateral flight dynamics models) and consequently advances the PhD 

thesis' main objective. The results obtained from this study led to the writing of a second article 

(included in CHAPITRE 3, unmodified): 

 

Article 2: Tondji, Y., Ghazi, G., & Botez, R. M. Predicting Lateral Dynamics of CRJ700 

Using Multilayer Perceptron and Support Vector Regression. This article was 

submitted in the AIAA Journal of Aerospace Information Systems in November 

2023.  

 

This article was co-authored by Dr. Ruxandra Mihaela Botez, who supervised the research and 

provided guidance through regular meetings. Dr. Georges Ghazi, as co-supervisor, contributed 

with his technical expertise, offering essential assistance throughout the research process. 
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1.7.3 Dynamic Stall Modeling  
 

The third contribution of the thesis focuses on the aerodynamic modeling of more complex 

dynamics than the two preceding sub-objectives, which is the stall. It outlines a novel 

methodology to model the variations of aerodynamic coefficients and predict aircraft 

longitudinal flight dynamics during stall maneuvers, including their hysteresis nonlinear cycle. 

The research was applied to two distinct aircraft, the Bombardier CRJ-700 and the Cessna 

Citation X. Level D flight simulators of both aircraft were used to gather flight data in both 

linear and non-linear stall phases. This methodology uses MLP and RNN models to correlate 

flight data with aerodynamic coefficients, supported by a novel approach for tuning ANN 

parameters. The validation of these models, respecting FAA standards (FAA, 1991; ICAO, 

2016), demonstrated high accuracy in predicting the flight dynamics of the CRJ-700 and 

Cessna Citation X under stall conditions.  

 

The originality of these studies lies in their pioneering methodology of using ANN to model 

aircraft flight dynamics under stall conditions, which is not extensively explored in the current 

state of the art. Few literatures existing on stall phenomena has predominantly focused on the 

static stall, which is characterized by a sudden loss of lift when the angle of attack exceeds its 

critical value. Our research introduces an innovative approach by dynamically modeling stall 

conditions through AI methods. This dynamic aspect considers the aircraft response over time, 

capturing transient behaviors and hysteresis effects. Traditionally, stall modeling has been 

achieved using empirical or physics-based methods, which often have limitations in accurately 

capturing the complex and nonlinear dynamics associated with stall maneuvers. The use of 

ANN introduces a novel and innovative approach to address these challenges. 

 

The focus on studying stall dynamics is particularly important as it addresses a critical gap in 

aerodynamic modeling, especially in the context of general aviation safety. Loss of control 

incidents during stall conditions remains a significant concern in aviation, and developing 

accurate models to understand and predict these dynamics is crucial. This study contributes to 
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the PhD thesis by extending the modeling to dynamic stall, which enables a comprehensive 

understanding of aircraft dynamics during critical flight phases.  

 

This research is presented in two distinct journal articles, where each article specifically 

addresses a distinct type of aircraft. The third article focuses on the Bombardier CRJ-700 

(included in CHAPITRE 4, unmodified), while the fourth article highlights the investigation 

on the Cessna Citation X (included in CHAPITRE 5, unmodified).  

 

Article 3: Tondji, Y., Wade, M., Ghazi, G., & Botez, R. M. (2022). Identification of the 

Bombardier CRJ-700 Stall Dynamics Model Using Neural Networks. AIAA 

Journal of Aerospace Information Systems, 19 (12), 781-798. 

 DOI: https://doi.org/10.2514/1.I011104 

 

Article 4: Tondji, Y., Wade, M., Ghazi, G., & Botez, R. M. (2022). Identification and 

Validation of the Cessna Citation X Longitudinal Aerodynamic Coefficients in 

Stall Conditions using Multi-Layer Perceptrons and Recurrent Neural 

Networks. INCAS BULLETIN, 14 (2), 103-119.  

 DOI:http://dx.doi.org/10.13111/2066-8201.2022.14.2.9 

 

These articles were co-authored by Dr. Ruxandra Mihaela Botez, who supervised the research 

and provided guidance through regular meetings. Dr. Georges Ghazi, also as co-supervisor, 

contributed with his technical expertise, offering essential assistance throughout the research 

process. Mr. Wade Mouhamadou, Master’s Student, was also included as co-author as he 

contributed to the development and testing of the proposed methodology during his internships. 
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Résumé 
 
Cet article présente une nouvelle méthodologie pour identifier les coefficients aérodynamiques 

et prédire les dynamiques de courte période et de phugoïde d'un aéronef en utilisant deux types 

de modèles d'apprentissage supervisé : les réseaux de neurones artificiels « Artificial Neural 

Network (ANN) » et la régression par vecteurs de support « Support Vector Regression (SVR) 

». L'étude a été validée sur le jet régional CRJ-700. Des données de tests de vol simulés ont 

été collectées lors de diverses manœuvres effectuées sur un simulateur de vol virtuel pour la 

recherche CRJ-700 de niveau D (VRESIM) conçu par CAE et Bombardier. Le niveau D est la 

qualification la plus élevée pour les modèles de dynamique de vol et de propulsion donnée par 

la « Federal Aviation Administration (FAA) ». Les modèles ANN et SVR ont été entraînés en 

utilisant les données recueillies à partir du VRESIM pour développer des modèles 

multidimensionnels capables de prédire les coefficients aérodynamiques de l'appareil pour 

toutes les conditions dans l'enveloppe de vol, définies par l'altitude, la vitesse, le poids et la 

position du centre de gravité. Le choix des solveurs et l'optimisation des hyperparamètres sont 

détaillés pour les deux types de modèles. Ces modèles ont été validés en comparant les 

paramètres de vol prédits avec les données expérimentales obtenues à partir du VRESIM de 

niveau D CRJ-700 en considérant les mêmes entrées de pilote. Les résultats ont montré que les 
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deux types de modèles (SVR et ANN) étaient capables de reproduire avec une excellente 

précision le comportement non linéaire des dynamiques de période courte et de phugoïde. 

 

Abstract  
 
This paper presents a new methodology to identify the aerodynamic coefficients, and to predict 

the short period and phugoid dynamics of an aircraft using two types of supervised learning 

models: Artificial Neural Network (ANN), and Support Vector Regression (SVR). The study 

was validated on the CRJ-700 regional jet.  Simulated flight tests data was collected during 

various maneuvers performed on a Level-D CRJ-700 Virtual Research Simulator (VRESIM) 

designed by CAE and Bombardier. Level D is the highest qualification for flight dynamics and 

propulsion models given by the FAA. Both ANN and SVR models were trained using the data 

collected from the VRESIM to develop multidimensional models capable of predicting the 

aerodynamic coefficients of the aircraft for any conditions in the flight envelope, defined by 

altitude, speed, weight, and center of gravity position. The choice of solvers and the 

optimization of hyperparameters are detailed for both types of models. These models were 

validated by comparing predicted flight parameters with experimental data obtained from the 

CRJ-700 Level D VRESIM considering the same pilot inputs. The results showed that both 

types of models (SVR and ANN) were able to reproduce with excellent accuracy the nonlinear 

behavior of the short period and phugoid dynamics.  

 

2.1 Introduction 

Improving the safety, performance, and efficiency of aircraft has always been a major concern 

of airlines and the transportation industry. Novel technologies such as “morphing wings” 

(Koreanschi, Sugar Gabor & Botez, 2016a; Sugar Gabor, Koreanschi, Botez, Mamou & 

Mebarki, 2016), aimed at reducing aircraft fuel consumption, are currently being designed and 

contribute to the industrial objective of developing green aircraft. However, the 

implementation of these technologies requires the development of innovative aircraft control 

and command techniques (Abdolhosseini, Zhang & Rabbath, 2013; Botez, Kammegne & 
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Grigorie, 2015; Moncayo, Perhinschi, Wilburn, Wilburn & Karas, 2012; Shao, Chen & Zhang, 

2019; Tchatchueng Kammegne et al., 2018; Wang & Zhang, 2018) that have interesting 

potentials but require an accurate and detailed modeling of the aircraft aerodynamics.  

 

Furthermore, precise modeling of the longitudinal dynamics of aircraft can have significant 

implications for the aviation industry. It can provide a more accurate representation of system 

dynamics, enabling more effective feedback model of air transportation system change 

(Mozdzanowska, Weibel & Hansman, 2008). This can also simplify approaches to mitigate 

complexity-driven issues in commercial auto flight systems (Vakil & John Hansman, 2002), 

thereby enhancing system reliability and safety. Additionally, precise aircraft dynamic models 

can aid in the analysis of flight data (Li, Das, John Hansman, Palacios & Srivastava, 2015), 

enabling more accurate detection of abnormal operations and providing valuable insights into 

aircraft behavior under various conditions. Today, the most common techniques for 

determining the aerodynamic coefficients of an aircraft can be divided into four categories: 

Computational Fluid Dynamics methods (CFD) (Koreanschi et al., 2016; Tinoco, 1998), semi-

empirical and empirical models (Bierbooms, 1992; Botez, 1989), experimental methods, and 

system identifications techniques (Ghazi et al., 2017; Tondji, Wade, Ghazi & Botez, 2022b).  

 

Empirical codes are generally adapted and used in the context of preliminary design. They are 

helpful for the definition and optimization of a new concept or architecture. These codes are 

based on theoretical models and/or aerodynamic databases obtained from numerical simulation 

results and wind tunnel tests (Botez, 1989). They have the advantage of being applicable to a 

wide range of configurations and allow to obtain results quickly. However, the determination 

of aerodynamic properties from these codes depends on the quality of the database. In general, 

to obtain sufficiently accurate estimates, the aircraft configuration studied must be close to the 

one used to populate the database. 

 

CFD methods are used to predict the three-dimensional structure of flows around a wing under 

a given flight configuration, by numerically solving the fundamental equations of fluid 

dynamics. The modeling of aerodynamic coefficients has seen significant advancements due 
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to the contributions of CFD methods, solidifying their status as a crucial tool within the 

aerospace sector. Ekaterinaris & Platzer (1998) have provided a comprehensive overview of 

the application of CFD methods in the context of dynamic stall. 

 

However, the accuracy of CFD method calculations is usually limited by the assumptions of 

the mathematical equations used by their algorithms, especially the linearization about a steady 

flight condition (defined in terms of altitude, Mach and incidence) using small disturbance 

theory (Nelson, 1998). Therefore, the determination of the coefficients should be performed in 

parametric form for various fixed flight configurations; such simulations to cover the entire 

flight envelope can be very costly in terms of computing time. 

 

Experimental methods based on wind tunnel tests are often used to reproduce flight conditions 

over a wide range of the envelope of an aircraft. The aerodynamic coefficients are modeled 

based on measurement techniques such as wing pressure measurements (Piziali, 1994; Tang & 

Dowell, 1995), laser velocimetry (Braza et al., 2003), Laser Sheet Visualization (Wernert et 

al., 1996) or even Time-Resolved Particle Image Velocimetry (Hansman & Craig, 1987; 

Mulleners et al., 2012). These techniques have the advantage of being able to determine 

aerodynamic coefficients based on “real” fluid measurement. However, they are prohibitively 

expensive and time-consuming (Botez, 2018; Moir & Coton, 1995), depending on the scale of 

the model, and they may not properly account for aeroservoelasticity effects. 

 

An alternative method for predicting aircraft aerodynamic coefficients of an aircraft is by using 

system identification techniques. System identification is the process of identifying, from a 

certain class of systems, a mathematical structure to which the system under test is equivalent, 

using observations of the inputs and outputs (Klein & Morelli, 2006). For example, Perhinschi 

et al. (2002) devised a versatile simulation instrument for the identification of aircraft 

parameters, employing techniques of system identification. This tool was subsequently utilized 

to establish new control strategies. The primary objective of these techniques was to construct 

a mathematical representation of a physical system based on data derived from measurements. 

Essentially, it involved understanding the system dynamics and transcribing them into 
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mathematical formulas. In this scenario, the application of artificial intelligence can prove to 

be highly beneficial.  

 

The most commonly used approaches for system identification are polynomial regression and 

spline functions (Hosder et al., 2001; Reisenthel & Bettencourt, 1999). However, using these 

methods to accurately determine the variation of aerodynamic coefficients from 

multidimensional data can be a very difficult task. Therefore, other approaches must be 

considered. Artificial Intelligence (AI) is a rapidly advancing technology that significantly 

impacts several industries and engineering processes (Fan, Dulikravich & Han, 2005; Ghazi et 

al., 2017; Perhinschi, Wayne, Clark & Lyons, 2007; Tondji et al., 2022b). AI includes several 

system identification techniques suitable for modeling nonlinear multivariable systems from 

data. Among them, Artificial Neural Networks (ANN) and Support Vector Regression (SVR) 

have demonstrated their ability to model complex nonlinear systems. For instance, Peyada & 

Ghosh (2009) used an ANN to estimate the aerodynamic coefficients of a HANSA-3 and an 

ATRAS aircraft using measured flight parameter data, such as speed and acceleration. These 

calculated values were then compared with results derived from the Least Square (LS) and 

Filter Error (FE) methods. Their ANN model gave better approximations than the LS and FE 

methods. Nevertheless, some inherent drawbacks, such as slow training convergence speed, 

usually make ANN difficult in their application to practical problems. Support Vector 

Regression (SVR) is a type of Support Vector Regression (SVM) used in system modeling 

when the problem to be solved is equivalent to a regression problem. SVM was proposed by 

Vapnik (1995) as a new ML tool based on statistical learning theory. Initially, they were 

developed for pattern recognition problems. They have recently been effectively expanded to 

nonlinear system modeling and nonlinear function approximation (Drucker et al., 1996). SVR 

algorithms can be used to design relatively complex non-linear models, as can ANN (Fan et 

al., 2005). In addition, they are mathematically simple to analyse because they correspond to 

a linear method in a high-dimensional feature space that is nonlinearly related to the input 

space. 
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This article discusses two distinct approaches to modeling an aircraft movement, specifically 

employing two forms of artificial intelligence technologies: ANN and SVR. These methods 

were tested on the Bombardier CRJ-700 regional jet using a high-quality flight simulator, the 

Virtual Research Equipment Simulator (VRESIM) for the Bombardier CRJ-700 (see Figure 

2.1). The premise of our experiment was that the flight simulation quality was sufficient for 

our testing purposes and the data obtained could stand comparison with that gathered by 

Bombardier's flight test engineering team. This article is organised as follows: section 2.2 

shows the methodology, including the simulated flight tests, the data processing to estimate 

aerodynamic coefficients from measurable flight parameters, and the SVR and ANN models 

training and hyperparameter optimization. section 2.3 presents the results obtained and their 

comparison with experimental data gathered from the CRJ-700 VRESIM. The article 

concludes with our deductions and future considerations. 

 

 

Figure 2.1 Validating the proposed methodology 
with a Bombardier CRJ-700 Virtual Research 

Equipment Simulator 
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2.2 Methodology 

2.2.1 Simulated Flight Test Procedure 
 

The first step in system identification is to observe the behavior of the system of interest (by 

measuring its outputs) in response to external influences. For this purpose, a series of simulated 

flight tests were performed on the CRJ700 VERSIM under different flight conditions in order 

to analyze the variation of the longitudinal aerodynamic coefficients of the CRJ700 aircraft as 

a function of external inputs, such as flight conditions and pilot commands. It should be noted 

that the simulation data used in this study were generated under ideal conditions, excluding 

factors such as sensor noise or atmospheric turbulence. By adopting this approach, we can 

focus on understanding the fundamental aerodynamic behavior of the aircraft, in the absence 

of intricate effects of external perturbations. 

 

The entire flight envelope of the aircraft was considered. The flight envelope refers to the 

regions in terms of altitude/speed or weight/center of gravity location where the aircraft 

remains stable. For the Bombardier CRJ-700, the center of gravity location varied within an 

interval between the ‘‘Take-off, Landing & Approach lower limit’’ (14 % of the chord) and the 

“Take-off, Landing & Approach upper limit’’ (35 % of the chord), while the aircraft weight 

ranged between the ‘‘Minimum Flight Weight’’ (42,000 𝑙𝑏𝑠) and the ‘‘Maximum Landing 

Weight’’ (67,000 𝑙𝑏𝑠). The indicated airspeed varied from 260 𝑘𝑡𝑠 to 330 𝑘𝑡𝑠, while the 

pressure altitude varied from 5000 𝑓𝑡 to 35,000 𝑓𝑡.  
 

Figure 2.2 and Figure 2.3 show the 49 flight conditions considered in the weight/center of 

gravity flight envelope (Figure 2.2) and the 48 flight conditions considered in the altitude/speed 

flight envelope (Figure 2.3). The combination of these two flight envelopes thus led to a total 

of 2352 flight conditions. 
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Figure 2.2 Pressure altitude versus IAS flight 
envelope of Bombardier CRJ-700 VRESIM  

 

Figure 2.3 Weight versus center of gravity position 
flight envelope of the Bombardier CRJ-700 VRESIM 
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All simulated flight tests were performed automatically using pre-coded scripts. These 

simulated flight tests aimed to highlight the short period and phugoid dynamics of the aircraft. 

Thus, for each set of flight condition, the following procedure was applied.  First, the aircraft 

was trimmed in cruise configuration at the selected flight condition expressed in terms of 

altitude, speed, weight, and center of gravity position. The aircraft was maintained in trim 

conditions for approximately 3 seconds, then an elevator input was applied while the thrust 

remained constant. Finally, the aircraft was left in free oscillations for 260 seconds to allow 

observation of the short period and phugoid modes.  

 

Two types of elevator inputs were used to excite these two longitudinal modes: doublet inputs 

and pulse inputs. The doublet input is a suitable elevator excitation for observing the short 

period, while pulse inputs tend to excite both phugoids and a short period. Having the two 

types of motion was necessary so that the AI models could learn data information about both 

short period and phugoid dynamics. Fifty doublet inputs and fifty pulse inputs of different 

magnitudes and natural frequencies were generated from real pilot commands. For each 

simulated flight test, one type of input was randomly selected from the 100 available generated 

inputs. 

 

During the simulated flight tests, we recorded various critical flight parameters, including 

altitude, Mach number, true airspeed, angular velocities, accelerations, engine thrust, 

and control surface deflections, at a sampling rate of 30 Hz. Figure 2.4 and Figure 2.5 show 

examples of the data recorded from the VRESIM for two simulated flight tests (A and B). 

Figure 2.4 shows a 14-second simulation where the short-period dynamics can be observed, 

while Figure 2.5 shows a 260-second simulation that further highlights the phugoid dynamics.  
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Simulated flight test A: 𝒎 = 𝟓𝟓,𝟏𝟐𝟎 𝒍𝒃 | 𝑿𝒄𝒈 = 𝟏𝟔% | 𝒉 =𝟐𝟎,𝟎𝟎𝟎 𝒇𝒕 | 𝑰𝑨𝑺 = 𝟑𝟐𝟎 𝒌𝒕𝒔 

Simulated flight test B: 𝒎 = 𝟔𝟑,𝟗𝟑𝟎 𝒍𝒃 | 𝑿𝒄𝒈 = 𝟏𝟖% | 𝒉 =𝟐𝟎,𝟎𝟎𝟎 𝒇𝒕 | 𝑰𝑨𝑺 = 𝟑𝟐𝟎 𝒌𝒕𝒔 

Figure 2.4 Short period mode data from 14-sec tests A & B on CRJ-700 VERSIM 
 

  
Simulated flight test A: 𝒎 = 𝟓𝟓,𝟏𝟐𝟎 𝒍𝒃 | 𝑿𝒄𝒈 = 𝟏𝟔% | 𝒉 =𝟐𝟎,𝟎𝟎𝟎 𝒇𝒕 | 𝑰𝑨𝑺 =  𝟑𝟐𝟎 𝒌𝒕𝒔 

Simulated flight test B: 𝒎 = 𝟔𝟑,𝟗𝟑𝟎 𝒍𝒃 | 𝑿𝒄𝒈 = 𝟏𝟖% | 𝒉 =𝟐𝟎,𝟎𝟎𝟎 𝒇𝒕 | 𝑰𝑨𝑺 = 𝟑𝟐𝟎 𝒌𝒕𝒔 

Figure 2.5 Phugoid data from 260-sec tests A & B on CRJ-700 VERSIM 
 

The two simulated flight tests were carried out at an altitude ℎ =  20,000 ft, and at an 

indicated air speed 𝐼𝐴𝑆 =  320 𝑘𝑡𝑠. For simulated flight test A, the aircraft weight was set at  𝑚 =  55,120 lbs and the center of gravity at 𝑥௖௚ = 16%, while for simulated flight test B, the 

aircraft weight was set at 𝑚 =  63,930 lbs, and the center of gravity position at 𝑥௖௚ = 18%. 
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In addition, the elevators were excited with a doublet input in simulated flight test A, and with 

a pulse input in simulated flight test B. The short-period motion is clearly visible on the pitch 

rate 𝑞,  the vertical component of the airspeed  𝑤௕, and the angle of attack 𝛼, and is almost 

imperceptible on the longitudinal component of the airspeed  𝑢௕. This mode is characterized 

by a low-damped oscillation (about 2.5 seconds) appearing instantaneously when excitation 

begins at 3 seconds for simulated flight test B and at 4 seconds for simulated flight test A. In 

contrast, the phugoid is characterized by a change in altitude ℎ, pitch attitude 𝜃 and longitudinal 

speed 𝑢௕ at a nearly constant angle of attack 𝛼 and pitch rate 𝑞. This mode is also characterized 

by a very low-damped, and low-frequency dynamics with a period of about 100 seconds. 

 

2.2.2 Data Processing and Aerodynamic Coefficients Determination 
 

After performing simulated flight tests, the next step was to estimate the longitudinal 

aerodynamic coefficients of the aircraft in the stability axes. These coefficients were mapped 

with their corresponding flight parameters and pilots' inputs to be used for supervised learning 

of the models. They are expressed in the stability axes 𝑅௦ (𝑜, 𝑥௦,𝑦௦, 𝑧௦). These orthogonal axes 

are derived from the body axis reference  𝑅௕ (𝑜, 𝑥௕ ,𝑦௕, 𝑧௕), which is defined so that the 𝑥௕-

axis is aligned with the nose of the aircraft, the 𝑦௕-axis points to the right-wing side, and the 𝑥௕-𝑧௕ is a symmetrical plane. Starting from the body axis reference, the stability axes are 

obtained by rotating the body axes around the 𝑦௕-axis, so that the 𝑥௦-axis is aligned with the 

velocity vector. The three longitudinal aerodynamic coefficients in the stability axes system, 

i.e, 𝐶𝐷௦, 𝐶𝐿௦ and 𝐶𝑚௦ , were obtained based on the following equations (Ghazi et al., 2017) :  

 
 𝐶𝐿௦ =  𝐶𝐿௕ cos(𝛼) −  𝐶𝐷௕ sin  (𝛼) (2.1) 
 𝐶𝐷௦ =  𝐶𝐷௕ cos(𝛼) +  𝐶𝐿௕ sin(𝛼) (2.2) 
 𝐶𝑚௦ =  𝐶𝑚௕ −  𝐶𝐷௕𝑧௖௚ − 𝐶𝐿௕𝑥௖௚ (2.3) 

 

where ൛𝑥௖௚, 𝑧௖௚ൟ are respectively the horizontal and vertical distances from the aircraft center 

of gravity to its aerodynamic center, and 𝐶𝐿௕, 𝐶𝐷௕ and 𝐶𝑚௕ are the lift, drag and pitching 

moment following equations (Ghazi et al., 2017):  
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 𝐶𝐿௕ =  𝑚𝑎௭ − 𝑇௭1/2𝜌𝑉ଶ𝑆௪ (2.4) 

 𝐶𝐷௕ =  𝑚𝑎௫ − 𝑇௫1/2𝜌𝑉ଶ𝑆௪ (2.5) 

 𝐶𝑚௕ =  𝐼௬௬𝑞ሶ − 𝑇௫𝑧௘௡௚ − 𝑇௭𝑥௘௡௚1/2𝜌𝑉ଶ𝑆௪𝑐௪  (2.6) 

 

where 𝜌 is the air density, ሼ𝑇௫ ,𝑇௭ሽ are the components of the engine thrust, 𝐼௬௬ is the aircraft 

moment of inertia about the lateral axis, 𝑆௪ is the wing reference area, 𝑐௪ is the wing mean 

aerodynamic chord, and 𝑎௫ and 𝑎௭ are the aircraft longitudinal and vertical accelerations, 

respectively. 

 

2.2.3 Neural Network and Support Vector Regression models’ implementation 
 

Artificial Neural Networks (ANN) and Support Vector Machines (SVMs) are two different 

types of artificial intelligence models that have proven to be effective in assimilating historical 

data and generating approximate representations of a system without requiring a mathematical 

model or solving its dynamic equations (Fan et al., 2005; Ghazi et al., 2017; Tondji et al., 

2022b). These models have the particularity of being parametric, which means that their 

performance depends significantly on the choice of their parameters.  

 

This section explains how the optimization of the parameters for the ANN and SVM was done 

to develop the longitudinal aerodynamic coefficient models of the CRJ700. 

 

2.2.3.1 Definition of Models’ Inputs and Outputs 

The first step in designing an AI model to solve a multidimensional regression problem is to 

define a data structure, where variables considered as inputs (𝑥) of the model are mapped to 

target variables (𝑜), also called output variables. The data structure is usually composed of 𝑛 

pair of (𝑥௜ , 𝑜௜), where 𝑛 is the number of sampled data pairs in the structure.  
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In the same way as for the dataset, it is necessary to define a structure for the model. A neural 

network model is a Multi Input Multi Output model (MIMO). Therefore, this type of model 

can be directly configured to predict all three aerodynamic coefficients at the same time. 

Equation (2.7) defines a sampled output vector for the designed neural network model. 

 

 𝑜௜ = ൛𝐶𝐿௦෢ ,𝐶𝐷௦෢ ,𝐶𝑚෢ ௦ൟ௜ (2.7) 

 

In contrast, an SVM is a Multi Input Single Output (MISO) model, which means that this type 

of model can only predict one aerodynamic coefficient at a time. Therefore, three different 

SVM models were designed, each model associated with one of the three output variables, i.e., ൛𝐶𝐿௦෢ ൟ, ൛𝐶𝐷௦෢ ൟ, ൛𝐶𝑚෢ ௦ൟ. 
 

The inputs vector is composed evidently of flight parameters that can influence the outputs 

variations. Anderson (2010) performed a dimensional analysis on aerodynamic coefficients 

using Buckingham’s 𝜋 theorem. He showed that for a given aircraft weight and center of 

gravity position, the aerodynamic coefficients of an aircraft in steady flight are functions of the 

of following independent variables: angle of attack 𝛼, Mach number 𝑀, and Reynolds number 𝑅௘. However, since the Reynolds number is not directly measurable in flight, it can be 

approximated according to Equation (2.8).  

 

 𝑅௘ = 𝜌𝑉 𝑐௪𝜇 = 2𝑐௪𝜇 × 𝑄𝑉  (2.8) 

 

where 𝑉  is the true airspeed, 𝑄 is the dynamic pressure, 𝜌 is the air density, 𝜇 is the air dynamic 

viscosity and 𝑐௪ is the mean aerodynamic chord length. In Equation (2.8), the term ଶ௖ఓೢ  remains 

constant across different flight cases because the aircraft chord length does not change. Our 

trial-and-error tests have revealed that the ொ௏೅ ratio significantly influences the model accuracy 

and convergence rate. Furthermore, despite variations in the aircraft weight across different 

flight cases, our analysis through trial and error has led us to conclude that its impact on the 
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prediction of aerodynamic coefficients can be deemed negligible. This could be explained by 

the fact that for business aircraft, weight variations are usually small. 

 

Mccroskey (1981) demonstrated that the pitch rate 𝑞 also greatly influences the variation of 

the aerodynamic coefficients. In addition, the elevator angle deflection 𝛿௘ and the horizontal 

stabilizer angle deflection 𝛿௦ were also considered as inputs, because they are used to control 

the longitudinal motion of the aircraft. Finally, since the model must be defined over the entire 

weight/center of gravity of the flight envelope, the position of the center of gravity must also 

be considered as an input because it significantly influences the aerodynamic pitching moment 

coefficient. Therefore, an input vector sample of the model is defined as follows:  

 

 𝑥௜ = ൜𝛼,𝑀, Q𝑉 , 𝑞, 𝛿௘, 𝛿௦,𝑋௖௚ൠ௜ (2.9) 

 

2.2.3.2 Data management 

This section presents a procedure for selecting suitable data for training AI models (ANN and 

SVM). This approach reduces the amount of data required for the optimal training of our 

models. 

 

In this study, two types of AI models were implemented to model the longitudinal dynamics 

of an aircraft using data obtained from simulated flight tests conducted on a VRESIM 

Bombardier CRJ700. To minimize the number of simulated flight tests required, the model 

should be trained using the minimum amount of data when replicating the methodology with 

actual aircraft flight test data. Figure 2.6 shows the flight conditions on the weight/center of 

gravity position in the flight envelope used for training and testing the model. The training 

dataset was used to optimize the weight and bias of the AI models, while the test dataset was 

utilized to evaluate the model performance based on data that was not considered during 

training. This dataset is primarily used to adjust key parameters of the model, such as the 

learning function, activation function, and number of hidden layers for the ANN or solver 
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algorithm, and the precision and penalty factor for the SVM. Data of the selected points circled 

in red will be further divided into training and testing sets using k-fold cross validation, 

highlighting the distinction between the two datasets. 

 

It was assumed that a well-trained model should be able to interpolate the desired outputs 

between two flight conditions with different center of gravity positions (with the same mass) 

and between two masses if the center of gravity positions were close. Therefore, only 15 of the 

49 configurations in terms of mass/center of gravity position were used for training and testing. 

These configurations were selected as shown in Figure 2.6.  

 

 

Figure 2.6 Weight and center of gravity conditions selected for 
models training and testing 
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As a reminder, for each point selected in Figure 2.6, there are 48 different flight conditions in 

terms of altitude and speed. However, only 24 of them were used for training and testing the 

model. These conditions were selected as shown in Figure 2.7 Therefore, a total of 360 of the 

2352 flight cases available in the database were used to build (train and test) the AI models. In 

other words, only 15.3 % of the database was used to train the models.  

 

The rest of the data (i.e., 84.7 %) was used for validation. The validation set was used to 

demonstrate the accuracy of the trained AI models in predicting the three aerodynamic 

coefficients based on new data that were not used in the training and optimization processes. 

In addition, only short period motion data (the first 14 seconds of each flight case) were used 

for training. It was expected that the AI models would be able to generalize their “knowledge” 

to accurately predict both short-period and phugoid dynamics, although they were only trained 

with data collected from short-period maneuvers. 

 

 

Figure 2.7 Flight conditions selected for training on pressure 
altitude versus IAS flight envelope the Bombardier CRJ-700 

VRESIM 
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To split the data between the training set and the test set, the “k-fold” cross-validation method 

was used. Indeed, during the training phase, an algorithm was used to minimize a predefined 

cost function by varying the unknown parameters of the model in order to achieve the best 

possible performance. In the testing phase, the cost function was evaluated to confirm that the 

model performance during training was representative of its ability to generalize to new data. 

By doing it, we aim to mitigate the risk of overfitting (Yeom, Giacomelli, Fredrikson & Jha, 

2018). It is important to note that while overfitting can occur when the model is trained on a 

dataset that does not capture the full range of conditions, other factors, such as model 

complexity and lack of regularization, can also lead to overfitting. In such cases, the model 

may perform well on the training data, but may fail to predict new (untrained) data. To address 

this issue, the k-fold method divides the 360 flight case data into k subsets, or folds, of 

approximately equal size. Each data point is assigned to a specific fold and remains there for 

the entirety of the process. The ANN or SVR models are trained k times, with a unique subset 

of the k folds serving as the testing dataset in each iteration while the remaining subsets (𝑘 − 1) constitute the training dataset. This ensures that each data point is used once as test data 

and is utilized to train models (𝑘 −  1) times. In practical ML problems, a value of k = 5 is 

commonly used, provided that each training or test fold is sufficiently large to represent the 

entire dataset (Garvin, Daniela, Trevor & Robert, 2013). As the database used in this study was 

sizable, this condition was met. The performance of the trained model was evaluated as the 

average of the performances from each round of training. 

 

2.2.3.3 Artificial Neural Networks 

Designing neural networks models for system identification applications involves several 

processes. The first step is to determine the most appropriate type for the problem of interest. 

Artificial Neural Networks (ANN) have been shown to be effective in dealing with regression 

and function approximation problems, where real-valued parameters, such as aerodynamic 

coefficients, are predicted from a given dataset (Haykin, 1998).   
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The primary building block of ANN is the artificial neuron, which is also referred to as a 

"node" or "perceptron". An artificial neuron has multiple connections from either a set of ANN 

inputs or from neurons in another hidden layer. Figure 2.8 provides a schematic 

representation of an artificial neuron. 

 

 

Figure 2.8 Graphical representation of an artificial neuron 

 

A perceptron is a basic processing unit that computes an output from a given set of inputs, as 

seen in Figure 2.8 To compute the value of the neuron output 𝑜ො, the neuron input signal 𝑥 =ሾ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௡ሿ is multiplied by its corresponding weights 𝑤 = ሾ𝑤ଵ,𝑤ଶ,𝑤ଷ, … ,𝑤௡ሿ, 
summed, and then fed to a “transfer” or “activation” function 𝜑. This activation function 

decides whether the neuron should be activated or not. In the literature, several forms of 

activation functions exist, such as the linear function, the sigmoid function, and the rectified 

linear unit activation function (Linse & Stengel, 1993). The choice of the activation function 

for aerodynamic coefficient prediction is described later in this section. The mathematical 

expression for the output of a neuron is as follows: 
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 𝑜ො = 𝜑(𝑥,𝑤, 𝑏) = 𝜑ቌ෍ 𝑥௜𝑤௜௜ ୀ ௡
௜ ୀ ଵ + 𝑏ቍ 

(2.10) 

 

where 𝑏 is a constant bias that defines the activation threshold of the neuron. 

 

As shown in Figure 2.9, ANN consist of a collection of neurons that are interconnected and 

arranged in layers. The first layer, also called the “input layer”, is designed to receive signals 

from a set of inputs, while the last layer, also called the “output layer”, is determined by the 

number of outputs of the model. An arbitrary number of hidden levels exist between these two 

layers. The number of hidden layers and the number of neurons per layer are key parameters 

for ANN and influence their performance. 

 

x1
x2
x3

x4

ô

.

.

.

.

Input Layer Hidden Layer Output Layer  

Figure 2.9 Illustration of an ANN neural network 
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The predicted output 𝑜ො of the ANN can be calculated using Equation (2.11) (Haykin, 1998): 

 

 𝑜ො = 𝜑௠ ቌ ෍ 𝑤௠,௞௞ ୀ ௡೘
௞ ୀ ଵ × … × 𝜑ଶ ቎ ෍ 𝑤ଶ,௜௜ ୀ ௡మ

௜ ୀ ଵ × 𝜑ଵ ቌ෍𝑥ଵ,௝𝑤ଵ,௝ + 𝑏ଵ,௝௡భ
௝ୀଵ ቍ + 𝑏ଶ,௜቏

+ 𝑏௠,௞ቍ 

(2.11) 

 

In Equation (2.11), 𝑜ො represents the ANN predicted output. The activation function of the final 

layer is 𝜑௠, and 𝑛௠ is the number of neurons in that layer. Similarly, 𝜑ଶ and 𝜑ଵ are the 

activation functions for the second and first hidden layers, respectively, while 𝑛ଶ and 𝑛ଵ 

represent the number of neurons in these layers. The weights 𝑤௠,௞, 𝑤ଶ,௜, 𝑤ଵ,௝ and biases 𝑏௠,௞, 𝑏ଶ,௜, 𝑏ଵ,௝  are the parameters to be learned during the training phase. The choice of the solver 

(i.e., the training function) and of the hyperparameters considerably influences the 

performance of a neural network. These hyperparameters are the “activation function” of the 

neurons, the number of hidden layers, and the number of neurons per hidden layer. 

 

Choice of Solver (Training Function) 

 

The training algorithm is the solver that carries out the ANN learning process. It defines a 

procedure for updating the weights and biases of a network with the goal of finding a 

combination that minimizes the cost function. Given an ANN with fixed hyperparameters, it 

is necessary to identify the solver that provides the highest performance.  

 

MATLAB software features nine gradient-based local optimization techniques that can be used 

for training neural networks. These techniques are listed in Table 2.1. 

 
 

 

 



43 

Table 2.1 Training algorithms considered to train the network 

Algorithm Description 

OSS One-step secant backpropagation 

CGP Conjugate gradient backpropagation with Polak-Ribiére updates 

CGB Conjugate gradient backpropagation with Powell-Beale restarts 

CGF Conjugate gradient backpropagation with Fletcher-Reeves updates 

BFG BFGS1 quasi-Newton backpropagation 

RP Resilient backpropagation 

SCG Scale conjugates gradient method 

LM Levenberg-Marquardt optimization. 

BR Bayesian regularization backpropagation  

 

The network was trained with these nine algorithms, according to the 5-k folds cross validation 

procedure defined in section 2.2.3.2. For this first analysis, the activation function, and the 

structure of the ANN (i.e., the number of hidden layers and neurons) were fixed. The logsig 

activation function was arbitrarily chosen according to (Tondji, Wade, Ghazi & Botez, 2022a), 

where the authors conducted a similar study for modeling the aerodynamic coefficients of the 

Cessna Citation X in a stall condition. The size of two hidden layers and five neurons per 

hidden layer was also arbitrarily chosen. Each training algorithm was then used to determine 

the weights and biases that minimized the training error. The performance evaluation was done 

during the training and test phases. The training and test performances (i.e., the cost function) 

of the ANN model were calculated using the Mean Square Error (MSE). Thus, for a given set 

of 𝑛 data points, the MSE of an ANN was calculated according to Equation (2.12): 

 

 𝑀𝑆𝐸 = 1𝑛  ෍ሾ𝑜ො௜(𝑤) − 𝑜௜ሿଶ௡
௜ୀଵ  

(2.12) 

 
 
1 Broyden-Fletcher-Goldfarb-Shanno 
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where 𝑜௜ is the ith output vector associated with the ith input vector in the dataset, and 𝑜ො௜ is the 

ith output vector predicted by the AI model. 

 

In Figure 2.10, the training and test performance values for each training algorithm are 

presented in blue and orange, respectively. It is evident that the Bayesian Regularization (𝐵𝑅) 

and Levenberg-Marquardt (𝐿𝑀) algorithms resulted in the lowest (and comparable) MSE 

values. This result aligns with expectations, given the well-established proficiency of the 𝐵𝑅 

and 𝐿𝑀 algorithms in managing nonlinear regression problems (MacKay, 1992). It can also be 

observed that the training and test performances obtained were very close for all the training 

functions. For example, the performance obtained on the training set using the 𝐿𝑀 algorithm 

was 𝑀𝑆𝐸 = 3.47 ×  10ିସ, while the performance obtained on the test set using the same 

algorithm was 𝑀𝑆𝐸 = 3.9 ×  10ିସ. This aspect allows to conclude that the model was well 

trained without overfitting. Moreover, as the two performances (training and test) are close, 

and as their variations are correlated, it is possible to consider only one of them for the rest of 

the comparative analyses.  

 

 

Figure 2.10 ANN training and test performances for different training algorithms 
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Choice of ANN Hyper Parameters 

 

After identifying the two most effective solvers (𝐿𝑀 and 𝐵𝑅), a second study was conducted 

to determine the values of the ANN hyperparameters. To do this, the activation function that 

provided the best performance was first identified, and then the size of the network, defined 

by the number of neurons and the number of layers, was determined. 

 

The activation function evaluates whether a neuron should be triggered, based on the relevance 

of each neuron contribution to the model prediction. The influence of various activation 

functions on the network performance was examined by testing a variety of activation 

functions available in the MATLAB software and listed in Table 2.2. For each activation 

function listed in Table 2.2, a neural network model was trained with both the 𝐿𝑀 and 𝐵𝑅 

training algorithms. 

 

Table 2.2 Implemented activation functions: 𝑎 is the neuron activation,  𝑦 is the neuron output 

Activation Function Mathematical Equation 

Log Sigmoid (logsig) 𝑦(𝑎) = 11 + exp (−𝑎) 

Hyperbolic Tangent Sigmoid (tansig) 𝑦(𝑎) = 2(1 + exp(−2 ∗ 𝑎)) − 1 

Elliot Symmetric Sigmoid (elliotsig) 
 

𝑦(𝑎) = 𝑎(1 + |𝑎|) 

Radial basis (radbas) 
 𝑦(𝑎) = exp (−𝑎ଶ) 

Normalized radial basis (radbasn) 

𝑦(𝑎)௜ = exp(−𝑎௜ଶ)∑ exp (−𝑎௜ଶ)௡௝ୀଵ  

where 𝑎 is the input vector to a soft max function 
that consists of 𝑛 elements of 𝑛 classes, and 𝑎௜ is 
the i-th element of the input vector. 
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Activation Function Mathematical Equation 

Soft max (softmax) 

𝑦(𝑎)௜ = exp(𝑎௜)∑ exp (𝑎௝)௡௝ୀଵ  

where 𝑎 is the input vector to a soft max function 
that consists of 𝑛 elements of 𝑛 classes, and 𝑎௜ is 
the i-th element of the input vector. 

Saturating linear (satlin) 𝑦(𝑎) = ൝ 0, if 𝑎 ≤  0        𝑎, if 0 ≤ 𝑎 ≤ 11, if 1 ≤ 𝑎  

Symmetric saturating linear (Satlins) 𝑦(𝑎) = ൝ −1, if 𝑎 ≤  −1           𝑎, if − 1 ≤ 𝑎 ≤ 11, if 1 ≤ 𝑎  

Triangular basis (Tribas) 𝑦(𝑎) =  ൜1 − |𝑎|, if − 1 ≤ 𝑎 ≤ 10, otherwise  

Positive linear (Poslin) 𝑦(𝑎) =  ൜𝑎, if 𝑎 ≥ 00,         if 𝑎 ≤ 0 

 

Figure 2.11 shows the test performance achieved for each activation function when the neural 

network was trained using the 𝐿𝑀 and 𝐵𝑅 algorithms to estimate the longitudinal aerodynamic 

coefficients. It should be noted that the performance obtained with the Tribas and Poslin 

activation functions are not shown in Figure 2.11 for reasons of scale, as their values were 

excessively high compared to those of the other activation functions (the MSE was 0.87 for 

Tribas and 0.91 for Poslin). The best performances were obtained for the sigmoid type of 

activation functions, namely tansig, logsig and elliotsig. Table 2.3 shows the values obtained. 

Any of those three sigmoid functions could be used to correctly learn and predict the 

aerodynamic coefficients of the aircraft, as their corresponding performances are somewhat 

similar. However, it was recommended to select the 𝐿𝑀 training algorithm in association with 

the ‘tansig’ activation function for the neural network training, since this combination provided 

the lowest MSE value. 

 

Table 2.3 Test performances obtained for various activation 
functions [× 10-4] 

 tansig logsig elliotsig 𝐿𝑀 3.58 4.12 5.06 𝐵𝑅 4.11 4.00 3.75 
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Figure 2.11 ANN performance variation for various activation functions 

 

The last step in the neural network design process was to determine the appropriate number 𝑚 

of hidden layers of the network, and the number 𝑛 of neurons per hidden layer required to 

achieve the best performance (i.e., the lowest 𝑀𝑆𝐸). Indeed, an insufficient number of neurons 

or hidden layers can result in the inability of the neural network to correctly identify 

correlations in a complex dataset. In contrast, too many neurons in the hidden layer can lead 

to overfitting problems or unnecessarily long training time. A trade-off must be made between 

too many and too few hidden neurons/layers. 

 

To accomplish this, a similar approach to the one described for the choice of the training 

algorithm and activation function, was adopted. This approach aimed to evaluate the 

performance of several neural network structures (i.e., with different numbers of layers and 

neurons), and to identify the one that gave the best performance within an appropriate training 

time. In reference (Tondji et al., 2022b), a similar study was conducted using neural networks 

to predict longitudinal aerodynamic coefficients of the Cessna Citation X in stall conditions. 

Three different neural networks were used to predict each aerodynamic coefficient. The study 
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showed that a network of 𝑚 = 5 hidden layers and 𝑛 = 9 on each hidden layer was necessary 

for modeling the lift coefficient. The drag coefficient, on the other hand, required a network of 

size (𝑚,𝑛) =  (2, 14). The pitching moment coefficient required an ANN of size  (𝑚,𝑛)  =  (4, 12).  

 

In the current study, we use a single neural network to model the three longitudinal 

aerodynamic coefficients. For this reason, the modeling should require a more complex neural 

structure than that used in (Tondji et al., 2022b). However, we are modeling aerodynamic 

coefficients of an aircraft in stabilized flight conditions, with less complex dynamics than those 

of an aircraft in stall conditions, as was modeled in (Tondji et al., 2022b).  

 

Based on this observation, a minimum of 𝑚௠௜௡  =  1 hidden layers, and a maximum of 𝑚௠௔௫ = 5 hidden layers was set. Similarly, a range between 𝑛௠௜௡  =  3 and 𝑛௠௔௫  =  14 was 

defined for the number of neurons per hidden layer. Therefore, 12ହ = 2.48 × 10ହ different 

structures would be needed to train to find the optimal one. Given this high number, it was 

assumed that all the hidden layers would have the same number of neurons to reduce the 

number of potential structures and, thus, reduce the time required for this optimization. This 

assumption was considered reasonable, as changing the number of neurons from one layer to 

another did not significantly improve the network performance (Heaton, 2008). By making 

this assumption, the number of possible structures drops to 60.  

 

Using the 5-fold cross-validation approach described in section 2.2.3.2, each of the 60 

structures was trained 5 times. The test performance (𝑀𝑆𝐸) obtained for each (𝑚,𝑛) 

combination is shown in Figure 2.12. 
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Figure 2.12 Performances of various ANN structures for their estimation of the 𝐶𝐿௦ of the Bombardier CRJ-700 

 

Results obtained using ANN topologies with 1 to 5 neurons per hidden layer and topologies 

with 1 and 2 hidden layers have been deleted for scaling reasons because their 𝑀𝑆𝐸𝑠 were too 

large compared to the results obtained with the other topologies. Figure 2.12 shows that for all 

three number of layers, the 𝑀𝑆𝐸 value significantly decreases when the number of neurons per 

layer increases, reflecting an improvement in the model performance. For the same number of 

neurons per layer, increasing the number of layers also decrease the model 𝑀𝑆𝐸. We can see 

that structures with 5 layers perform better than those with fewer layers. The 𝑀𝑆𝐸 values of 

5-layer typologies decreased significantly when the number of neurons increased until reaching 

n=11, from where improvement in performance was no longer significant. Thus, the optimal 

ANN structure in this case, with a good trade-off between performance and learning time, is 

the typology (𝑚,𝑛)  =  (5, 11). 

 

2.2.3.4 Support Vector Regression 

Support Vector Regression (SVR) is a powerful ML technique based on statistical 

learning theory that can be used for approximating nonlinear functions and modeling nonlinear 
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systems (Wang et al., 2015). In a MISO nonlinear system modeling problem, the SVR 

approximates the non-linear dynamics of the system using a linear regression formulation in a 

high-dimensional feature space 𝐹. This is achieved by applying a nonlinear transformation 𝜙 (𝑥) from the inputs space 𝑅௠ to the feature space 𝐹, as shown in Equation (2.13). This 

transformation function 𝜙 plays a crucial role in the SVR by mapping input data into a higher-

dimensional feature space, commonly known as a Hilbert space. This mapping is fundamental 

to the SVR effectiveness because it enables linear regression to be conducted within this 

“expanded space”, even when the relationship in the original input space is nonlinear. 

 

 𝑜ො(𝑥) = w்𝜙 (𝑥) + 𝑏 (2.13) 

 

The SVR objective is to minimize the absolute errors between the predicted and actual values, 

unlike ANN regression, which aims to minimize the sum of squared residuals. To accomplish 

this objective, the SVR introduces a margin around the hyperplane of best fit that allows for a 

certain precision 𝜀. For each data point 𝑖, the absolute difference between the actual value 𝑜௜ 
and the predicted value (w்𝜙 (𝑥௜) + 𝑏) should be less than or equal to the allowed error 𝜀 

(Drucker et al., 1996), as stated in Equation (2.14).  

 

 |𝑜௜ − (w்𝜙 (𝑥௜) + 𝑏)| ≤  𝜀,    𝑖 = 1, … ,𝑛   (2.14) 

 

Data points within the margin are predicted correctly, while those outside of the margin are 

considered errors. However, there may be no function that satisfies this constraint for all points (𝑥௜ , 𝑜௜), so that slack variables 𝜉௜ and 𝜉௜∗ are introduced to allow some flexibility in the 

predictions. The slack variables are non-negative and are used to measure the violation of the 

constraint defined in Equation (2.14), allowing for a certain amount of error greater than the ε 

value to be tolerated in the predictions. 

 

The introduction of slack variables in Equation (2.14) leads to the following constraints 

(Drucker et al., 1996):  
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⎩⎨
⎧𝑜௜ − w்𝜙 (𝑥௜) − 𝑏 ≤  𝜀 + 𝜉௜ w்𝜙 (𝑥௜) + 𝑏 − 𝑜௜ ≤  𝜀 + 𝜉௜∗ 𝜉௜ ≥ 0 𝜉௜∗ ≥ 0 ,∀ 𝑖 = 1, … ,𝑛 

(2.15) 

 

The objective function for the SVR is developed based on the problem of minimizing the 

prediction errors while also minimizing the weights. The objective function is given by 

Equation (2.16), also known as the primal formula (Vapnik, 1995): 

 

  𝐽(w) = 12 ‖𝑤‖ଶ + 𝐶෍(𝜉௜ + 𝜉௜∗)௡
௜ୀଵ   (2.16) 

 

The first part of the objective function, ଵଶ ‖𝑤‖ଶ, is the same as the traditional linear regression 

function and is designed to minimize the sum of squared weights to prevent overfitting by 

avoiding large weight values. The second part of the objective function, 𝐶 ∑ (𝜉௜ + 𝜉௜∗)௡௜ୀଵ , is 

specific to the SVR and aims to minimize the total slack variables. The sum of the slack 

variables ∑ (𝜉௜ + 𝜉௜∗)௡௜ୀଵ  gives the total error that is allowed in the predictions. 

The regularization parameter 𝐶 controls the trade-off between minimizing the total slack 

variables and minimizing the weights. 

 

The choice of a solver and the optimization of the SVR hyperparameters are presented below 

only for the prediction of the lift coefficient of the Bombardier CRJ700. The described 

procedure was applied also to model the drag and pitching moment coefficients, and the results 

for all aerodynamic coefficients are presented in section 2.3.  

 

Choice of the SVR Solver  

 

In the SVR context, the optimization problems can be formulated as Quadratic Programming 

(QP) problems. Quadratic Programming involves minimizing a quadratic objective function 

subjected to linear constraints (Boggs & Tolle, 2000). Solving the QP problem is a critical step 
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in training a SVR model. For modeling the lift coefficient (𝐶𝐿ௌ) using a fixed SVR model, we 

tested three different solvers: the Decomposition Method (DM), Sequential Minimal 

Optimization (SMO), and Improved SMO Decomposition Algorithm (ISDA). Each of these 

solvers has its advantages and disadvantages. The hyperparameters were set as follows: Kernel 

function: 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, Gaussian Parameter 𝜎 = 20, penalty factor 𝐶 = 3.09, and a precision  𝜀 = 0.001.  

 

The decomposition method is efficient in handling large-scale problems by decomposing the 

original QP problem into a series of smaller QP subproblems (Chih-Chung Chang, Chih-Wei 

Hsu & Chih-Jen Lin, 2000). However, it may not be suitable for all problems, as it can require 

a significant amount of memory. In our specific case, the decomposition method did not go 

through the entire optimization process because it ran out of memory. Considering our training 

set size of 49,680 seven-dimensional data points, the required memory is at least 36 GB. This 

is a significant increase compared to our available resources, which stand at 32 GB of memory. 

This limitation presents a notable disadvantage of the decomposition method for our specific 

problem. 

 

The SMO solver is an iterative algorithm that solves the QP problem by breaking it into 

smaller subproblems that can be solved analytically (Platt, 1998). It is designed to handle large-

scale problems efficiently. In our case, the SMO solver reached the convergence goal faster 

than DM and ISDA, in only 2.7 × 10଺ iterations. 

 

The ISDA solver is an improvement over the traditional SMO algorithm, as it employs an 

adaptive selection of working set size and search direction (Kecman, Huang & Vogt, 2005). 

This adaptive approach can provide faster convergence in some cases. However, for our 

problem, the ISDA solver has not reached the convergence goal within the maximum allowed 10଼ iterations, which suggests that the ISDA algorithm might not be the most suitable choice 

for this optimization problem. This result indicates that the SMO is the most appropriate choice 

for solving our optimization problem, considering its efficiency and ability to converge within 

the given constraints. 
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SVR Hyperparameter Optimization using Bayesian Optimization 

 

The selection of SVR hyperparameters, including 𝜀, 𝐶, Kernel function and Kernel specific 

parameters, plays a crucial role in determining the performance of the Support Vector 

Regression (SVR) model. These choices have a significant impact on the accuracy and 

robustness of the predictions generated by the model. The Kernel function is responsible for 

transforming the input data into a higher-dimensional space, where the SVR model can more 

effectively capture the underlying relationship between the inputs and the target output. Among 

the commonly used Kernel functions are Gaussian and polynomial Kernels, which have been 

tested and proven effective in modeling a wide range of nonlinear systems (Fan et al., 2005; 

Wang et al., 2015). Gaussian and polynomial Kernels functions expressions are shown 

respectively in Equation (2.17) and Equation (2.18), where 𝜎 is the Gaussian Kernel scale and 𝑞 is the polynomial order of the polynomial Kernel function. 

 

  𝐾൫𝑥௜ , 𝑥௝൯ீ = exp (−ฮ𝑥௜ − 𝑥௝ฮଶ2𝜎ଶ ) 
(2.17) 

  𝐾൫𝑥௜ , 𝑥௝൯௤ = ൫1 + 𝑥௜் 𝑥௝൯௤ (2.18) 

 

The Kernel specific parameters have a significant impact on the shape and complexity of the 

Kernel function, which, in turn, affects the model performance. For instance, if we use a 

polynomial Kernel function, we must set its polynomial degree 𝑞, and capture the complex 

relationships between input variables and the target outputs. However, a higher polynomial 

degree also increases the risk of overfitting. Similarly, if we use Gaussian Kernel function, the 

Gaussian Kernel scale 𝜎 should be set appropriately to control the shape of the Gaussian Kernel 

function in order to avoid overfitting or underfitting.  

 

The regularization parameter 𝐶 is another crucial parameter that controls the trade-off between 

the model complexity and its ability to fit the training data. A highvalue of 𝐶 prioritizes 

minimizing the training error, resulting in a model that fits the training data very closely. 
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However, this could also lead to capturing noise and overfitting. In contrast, a low value of 𝐶 

prioritizes minimizing the model complexity and could result in a model that generalizes well. 

However, if 𝐶 is set too low, the model may not capture the underlying relationship between 

the input variables and the target outputs, resulting in underfitting.  

 

The precision 𝜀 is an user-defined parameter that controls the errors tolerance in the model 

predictions. It defines a margin or "insensitive region" around the true target output, within 

which errors are considered acceptable and do not contribute to the model training error. This 

parameter should be not too small, so that the minimization of the objective function in 

Equation (2.15) can converge to an existing solution. However, it must be not too high for the 

aerodynamic model to satisfy the FAA validation tolerances. For the lift aerodynamic 

coefficient 𝐶𝐿௦ modeling, trial-and-error experiments showed that a precision of 10ିଷ 

provided the best results. 

 

Bayesian Optimization (BO) (Shahriari, Swersky, Wang, Adams & de Freitas, 2016) was used 

to determine the optimal pair of parameters (𝐶,𝜎) or (𝐶, 𝑞). The BO is a powerful and efficient 

method for finding the best parameter values for a model while minimizing the number of 

times in which the objective function needs to be evaluated. This is particularly useful when 

the objective function is expensive to evaluate or lacks an analytical expression, as is the case 

with the SVR objective function. To achieve this evaluation, the BO employs a surrogate 

probabilistic model to approximate the true objective function. This surrogate model is a 

statistical model that estimates the structure of the objective function and quantifies the 

uncertainty in the predictions. It plays a critical role in the BO by efficiently exploring the 

parameter space and identifying its optimal parameters. Indeed, during the optimization 

process, the surrogate model serves as a substitute for the actual objective function, as it is 

cheaper to evaluate and provides valuable insights into the uncertainty of its predictions 

(Pelikan & Goldberg, 1999). 

 

Figure 2.13 and Figure 2.14 illustrate the first and second steps of the BO grid for the pair of 

parameters (𝐶, 𝜎) when the Gaussian Kernel function is used. In the first step, five 
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optimizations were performed using a broad search range of (𝐶, 𝜎) ∈ ሾ10ିଷ 10ଷሿ, ሾ10ିଷ 10ଷሿ. 
These optimizations yielded similar minimum values estimated by the surrogate model 

(Minimum Estimated Objective Function Values), but which were located at different 

evaluation points (𝐶୫୧୬௘௦௧ ,𝜎୫୧୬௘௦௧ ). However, the 𝐶୫୧୬௘௦௧ and 𝜎୫୧୬௘௦௧  values were found to 

be between 10ିଷ and 10. For example, Figure 2.13.(a) displays the objective function model 

plot of the first optimization among the five optimizations. The plot shows all evaluated points 

(in terms of (𝐶, 𝜎)) and their corresponding objective values estimated by the surrogate model 

in “blue” circles. The “red” circle represents the Minimum Estimated Objective Function 

Value called 𝑜𝑏𝑗୫୧୬௘௦௧ =  0.0121 at (𝐶୫୧୬௘௦௧, 𝜎୫୧୬௘௦௧) = (0.58, 6.17). Figure 2.13.(b) shows 

the comparison between the Estimated Objective Function Value and the observed value of the 

actual objective function (Observed Objective Function Value) during the optimization 

process. Both values decreased over iterations and were always close, thus indicating that the 

surrogate probabilistic model approximated well the objective function. In the second step, an 

optimization was performed with a refined search range of (𝐶, 𝜎) ∈ ሾ10ିଷ 10ሿ, ሾ10ିଷ 10ሿ. 
This optimization yielded a better result than the first step optimization, with a Minimum 

Estimated Objective Function Value of 𝑜𝑏𝑗୫୧୬௘௦௧ =  0.0036 at (𝐶୫୧୬௘௦௧, 𝜎୫୧୬௘௦௧) = (1.78, 

3.02). Furthermore, Figure 2.14.b clearly shows that the Minimum Estimated Objective 

Function Value and Minimum Observed Objective Function Value were different, although 

they were close. In fact, the Minimum Observed Objective Function Value was 𝑜𝑏𝑗୫୧୬௢௕௦ = 0.0034 at (𝐶୫୧୬௢௕௦, 𝜎୫୧୬௢௕௦ ) = (2.28, 2.98). Therefore, (𝐶୫୧୬௢௕௦, 𝜎୫୧୬௢௕௦ )  was considered 

the optimal hyperparameters, as they led to a minimum objective function value of 𝑜𝑏𝑗୫୧୬௢௕௦ =  0.0034. 
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(a) (b) 

Figure 2.13 1st step Bayesian Optimization plot for (𝐶, 𝜎) estimation to model 𝐶𝐿ௌ using 
SVR 

 

(a) (b) 

Figure 2.14 2nd step Bayesian Optimization plot for the (𝐶, 𝜎) estimation to model 𝐶𝐿ௌ 
using SVR 
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The same optimization procedure was repeated for parameters (𝐶, 𝑞) when the polynomial 

Kernel function was considered. The BO results are presented in Table 2.4. We can conclude 

that performances achieved with Gaussian Kernel function are better than performances 

obtained with Polynomial Kernel function, as the 𝑜𝑏𝑗୫୧୬௢௕௦ is smaller. Similar studies have 

been conducted to model the drag and pitching moment coefficients. All results are presented 

in section 2.3. 

 

Table 2.4 Optimal hyperparameters obtained via the BO of 
SVR model for the determination of 𝐶𝐿ௌ 

Kernel 
function 

𝑜𝑏𝑗୫୧୬௢௕௦ 𝐶୫୧୬௢௕௦ 𝜎୫୧୬௢௕௦  𝑞୫୧୬௢௕௦ 
Gaussian 0.0034 2.28 2.98 - 

Polynomial 0.0036 0.0407 -  5 
 

2.3 Results  

This section presents the results of the proposed methodology. Two analyses were conducted 

to show the efficiency and accuracy of the ANN and SVR models.  

 

The first analysis was designed to determine how well both AI models predicted the 

aerodynamic coefficients. For this purpose, Bombardier CRJ-700 VRESIM aerodynamic 

coefficients dataset from 1,992 flight cases used for validation were compared to the outputs 

of the ANN and the SVR models, while using Mean Absolute Relative Error (MARE) as the 

metric. For a given set of 𝑛 data points, the 𝑀𝐴𝑅𝐸 was calculated according to Equation (2.19), 

where 𝑜௜ is the ith output vector associated with the ith input vector in the dataset, and 𝑜ො௜ is the 

ith output vector predicted by the model.  

 
 𝑀𝐴𝑅𝐸 = 1𝑛 ൭෍ฬ𝑜ො௜ − 𝑜௜𝑜ො௜ ฬ௡

୧ୀଵ ൱ × 100 
(2.19) 
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However, due to the absence of established criteria in the literature for validating the 

aerodynamic coefficients of an aircraft, a secondary analysis was conducted. The trained ANN 

and SVR models were integrated into a CRJ-700 simulation platform, designed to replicate the 

simulated flight test scenarios conducted with the VRESIM. This validation was performed by 

comparing several flight parameters predicted by the developed platform with those measured 

with the VRESIM, in accordance with the tolerance criteria specified by the FAA in the Manual 

of Criteria for the Qualification of Flight Simulators (FAA, 1991; ICAO, 2016). 

 

2.3.1 Validation of the Aerodynamic Coefficients 
 

Two types of artificial intelligence models have been developed to predict the longitudinal 

aerodynamic coefficients of the Bombardier CRJ700:  ANN and SVR. The ANN model was 

developed to predict the three coefficients 𝐶𝐿ௌ, 𝐶𝐷ௌ, and 𝐶𝑚ௌ, while three distinct SVR 

models (one for each aerodynamic coefficient) were designed. These models were trained with 

360 (15.3 %) flight cases and validated on 1,992 (84.7 %) flight cases. As results, the optimal 

hyper parameters for the ANN were the training function 𝐿𝑀, activation function ‘tansig’, 5 

hidden layers and 11 neurons on each hidden layer. The results obtained were identical to those 

obtained for similar studies of aerodynamic coefficients modeling using ANN (Tondji, Ghazi 

& Botez, 2022; Tondji et al., 2022b), confirming their relevance. The size of the resulting 

network was also acceptable, considering that only one network was used to predict the three 

aerodynamic coefficients. 

 

All three SVM models performed better with the SMO solver and Gaussian Kernel. The values 

of the Regularization parameter 𝐶, the Kernel scale 𝜎 and the precision 𝜀 are given in Table 

2.5. In addition, Kernel scale values were of the same order, given that the research domain 

interval was ሾ10ିଷ 10ଷሿ. This aspect demonstrated the similarities between the aerodynamic 

coefficients data structure and pathway. The precision of each model was chosen depending 

on the order of the aerodynamic coefficients’ values. A precision of 𝜀 =  10ିଷ was chosen for 𝐶𝐿ௌ and 𝐶𝐷ௌ because the values of the coefficients were positive and of the order of 10ିଵ or  10ିଶ. For the pitching moment coefficient 𝐶𝑚ௌ, a more restrictive precision of  𝜀 =  10ିସ was 
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selected because the values of this coefficient could change their signs, meaning that some 

values were too small and close to zero. 

 

 

Figure 2.15 to Figure 2.17 present examples of estimated aerodynamic coefficients plotted with 

respect to the angle of attack, juxtaposed with their corresponding experimental data. The data 

predicted by the ANN (depicted in red) and SVR (shown in black) models closely align with 

the experimental data obtained with the VRESIM (illustrated in blue). 

 

 

Figure 2.15 Predicted coefficients for flight test  
at 𝑚 =  46,300 𝑙𝑏 | 𝑋𝑐𝑔 =  24% | ℎ =  5000 𝑓𝑡 | 𝐼𝐴𝑆 =  310 𝑘𝑡𝑠 

-1.5 -1 -0.5 0 0.5
 [deg]

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
Experimental
ANN
SVR

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
 [deg]

0.0215

0.022

0.0225

0.023

0.0235

0.024

0.0245

0.025

0.0255
Experimental
ANN
SVR

-1.5 -1 -0.5 0 0.5
 [deg]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
Experimental
ANN
SVR

Table 2.5 Optimal hyperparameters 𝜀, 𝜎 and 𝐶 obtained for the SVR 
by use of Gaussian Kernel function and SMO solver 

 Precision 𝜺 Kernel scale 𝝈 Regularization 
parameter 𝑪 𝑪𝑳𝑺 10ିଷ 2.98 2.28 𝑪𝑫𝑺 10ିଷ 2.05 18.98 𝑪𝒎𝑺 10ିସ 3.12 107.71 
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Figure 2.16 Predicted coefficients for flight test  
at 𝑚 =  59,520 𝑙𝑏 | 𝑋𝑐𝑔 =  18% | ℎ =  10,000 𝑓𝑡 | 𝐼𝐴𝑆 =  310 𝑘𝑡𝑠 

 

 

Figure 2.17 Predicted coefficients for flight test  
at 𝑚 =  66,930 𝑙𝑏 | 𝑋𝑐𝑔 =  32% | ℎ =  5000 𝑓𝑡 | 𝐼𝐴𝑆 =  320 𝑘𝑡𝑠 

 

The average errors obtained for all validation flight scenarios are presented in Table 2.6. As 

indicated in this table, the ANN model predicted lift and drag coefficients with an average 

MARE of less than 0.1%, while SVR models predicted them with an average MARE of less 

than 1%. Similarly, the ANN predicted the pitching moment coefficients with an average 

MARE of 0.5%, while SVR did it with an average MARE of 5.74 %. From a general 

perspective, we can conclude that the ANN model was ten times more accurate than the SVR 

models. However, SVR models achieved the precision specified during the learning phase. 

Table 2.6 shows that the average residual error obtained with SVR was equal to 2.4 ×  10ିଷ 

for 𝐶𝐿ௌ, and 0.206 ×  10ିଷ for 𝐶𝐷ௌ which is close to the specified precision of  𝜀 = 10ିଷ. 

Similarly, the average residual error for 𝐶𝑚ௌ was equal to 8 ×  10ିସ, which is on the same 
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order as the specified precision of  𝜀 = 10ିସ. Therefore, we can conclude that both SVR and 

ANN models performed very well. In addition, specifying the desired model performances 

allow us to significantly reduce the model training time. We can also observe that the 

performances obtained in terms of 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝐴𝑅𝐸 for 𝐶𝑚ௌ were approximately ten time 

higher than those obtained for 𝐶𝐿ௌ and 𝐶𝐷ௌ with both ANN and SVR models. This result can 

be explained by the fact that the pitching moment coefficient changes its sign during the flight 

simulation. Consequently, the 𝐶𝑚௦ has relatively low values, around zero, which leads to large 

relative errors (𝑀𝐴𝑅𝐸). However, the results obtained remain very good, as the residual errors 

are very low, even negligible, on the order of 10ିସ.  

 

Table 2.6 Average 𝑀𝐴𝑅𝐸 and Average Residual Error (and the corresponding Standard 
Deviation) obtained for the prediction of 𝐶𝐿௦, 𝐶𝐷௦ and 𝐶𝑚௦ using ANN and SVR 

 Average 𝑴𝑨𝑹𝑬 
[%] 

Standard 
deviation of the 𝑴𝑨𝑹𝑬 

[%] 

Average 
Residual Error 

[× 10-4] 

Standard 
deviation of 

Residuals Error 
[× 10-4] 

 ANN SVR ANN SVR ANN SVR ANN SVR 𝐶𝐿ௌ 0.08 0.82 ± 0.06 ± 1.22 8.27 24 ± 1.67 ± 12 𝐶𝐷ௌ 0.03 0.76 ± 0.02 ± 1.25 0.19 2.06 ± 0.08 ± 3.70 𝐶𝑚ௌ 0.50 5.74 ± 0.42 ± 6.69 4.09 8 ± 1.1 ± 8.04 
 

2.3.2 Flight Dynamics Model Validation 
 

A secondary analysis was conducted to further validate the accuracy of the ANN and SVR in 

modeling the longitudinal dynamics (short period and phugoid motions) of the CRJ700. This 

analysis involved incorporating both models into a simulation platform of the Bombardier 

CRJ-700 that was designed in Matlab/Simulink (see Figure 2.18). The simulation platform was 

then used to replicate the 1,992 validation flight scenarios, and the longitudinal flight 

parameters predicted by the platform were compared with those derived from the CRJ-700 

VRESIM. 
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Figure 2.18 Bombardier CRJ-700 flight dynamics platform.  
 

The FAA has defined criteria to validate the developed models by specifying tolerances for 

short-period and phugoid dynamics. For the short-period dynamics model, the pitch rate must 

be estimated within a tolerance of ± 2°/s, and the normal acceleration within a tolerance of ± 

0.1 g. For the phugoid dynamics model, the oscillation period of the pitch angle should be 

estimated within a tolerance of ± 10 %, and the damping ratio within a tolerance of ± 0.02. 

 

Figure 2.19 to Figure 2.21 show the comparative simulation results for the short-period 

dynamics for three (3) different flight cases. The variables simulated by the ANN model are 

represented in “red” color. The variables simulated by the SVR model are depicted with 

“black” lines. The dotted “blue” lines represent the tolerance limits specified by the FAA, 

which were calculated using the VRESIM experimental data. These results demonstrate that 

for the three flight cases presented in Figure 2.19 to Figure 2.21, pitch rate and vertical 

acceleration values were obtained within the specified tolerances. Indeed, the flight parameters 

calculated by the simulation platform with the two models (i.e., ANN (red) and SVR (black)) 

were almost exactly superimposed on the parameters obtained by the VRESIM, thereby 

fulfilling all the tolerances specified by the FAA. The same type of comparison was performed 

for all the 1,992 flight cases used for model validation, and a success rate of 100 % was 

achieved, meaning that the models were able to predict the short-period flight parameters very 

well within the tolerances and for the entire CRJ700 flight envelope. 
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Figure 2.19 Short period parameters for flight test  
at 𝑚 =  46,300 𝑙𝑏 | 𝑋𝑐𝑔 =  24% | ℎ =  5000 𝑓𝑡 | 𝐼𝐴𝑆 =  310 𝑘𝑡𝑠 

 

 

Figure 2.20 Short period parameters for flight test  
at 𝑚 =  59,520 𝑙𝑏 | 𝑋𝑐𝑔 =  18% | ℎ =  10,000 𝑓𝑡 | 𝐼𝐴𝑆 =  310 𝑘𝑡𝑠 
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Figure 2.21 Short period parameters for flight test  
at 𝑚 =  66,930 𝑙𝑏 | 𝑋𝑐𝑔 =  32% | ℎ =  5000 𝑓𝑡 | 𝐼𝐴𝑆 =  320 𝑘𝑡𝑠 

 

For the phugoid model validation, the pitch angle period and the damping ratio were 

determined by finding the phugoid oscillation peaks, as shown in Figure 2.22 and in Equation 
(2.20). 
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Figure 2.22 Example of pitch angle prediction for a simulated flight 
test at 𝑚 =  59,520 𝑙𝑏 | 𝑋𝑐𝑔 =  18% | ℎ =  10,000 𝑓𝑡 | 𝐼𝐴𝑆 = 310 𝑘𝑡𝑠 

 

Once the peaks were determined, as shown in Figure 2.22,  the period of the pitch angle 𝜃 was 

found by calculating the mean of the time difference between successive peaks. The damping 

ratio was determined by using the following Equation (2.20): 

 

 𝜁 = 1ට1 + ቀ2𝜋𝛿 ቁଶ (2.20) 

 

where 𝛿 is the logarithmic decrement and is defined as the natural logarithmic of the ratio of 

two successive altitude peaks, as given by Equation (2.21),   

 

 𝛿 = 1𝑛 logቆ 𝑝(𝑖)𝑝(𝑖 + 𝑛𝑇)ቇ 
(2.21) 

 

where 𝑝(𝑡) and 𝑝(𝑡 + 𝑛𝑇) are the amplitudes of two peaks separated by n periods of value T. 
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For all validation flight cases, the predicted pitch angles periods and damping ratios were found 

to be within the FAA tolerances. The results of the calculations are given in Table 2.7 for the 

same flight cases presented in Figure 2.19 to Figure 2.21. The relative errors of the period T 

estimations were all less than 10 %, and the absolute residual errors of the damping ratio 

estimations were all less than 0.02. Based on these results, we can conclude that a 100% 

success rate was obtained for both the ANN and the SVR models. 

 

Table 2.7 Error on the prediction of pitch angle period and damping ratio 

 Relative error of the period 𝑻 estimation [%] 
Residual error of the damping 

ratio 𝜻estimation 
 ANN SVR Tolerance 

limit 
ANN SVR Tolerance 

limit 
m = 46,300 lb | Xcg = 
24% | h = 5000 ft | 
IAS = 310 kts 

0 0 ± 10 0.0054 0.0054 ± 0.02 

m = 59,520 lb | Xcg = 
18% | h = 10,000 ft | 
IAS = 310 kts 

0 0 ± 10 −0.0021 −0.0019 ± 0.02 

m = 59,520 lb | Xcg = 
18% | h = 10,000 ft | 
IAS = 310 kts 

0 0.11 ± 10 −0.0052 −0.0052 ± 0.02 

 

2.4 Conclusions 

This study explored the use of Artificial Neural Networks (ANNs) and Support Vector 

Regression (SVRs) models to predict the longitudinal aerodynamic coefficients of the CRJ700 

aircraft. Both models were tested and compared with experimental data obtained from a Level-

D CRJ-700 VRESIM, where Level-D refers to the highest certification level issued by the FAA 

for the flight dynamics and propulsion models. In our approach, the Bayesian optimization was 

used. That is a strategy known for efficiently finding the best model parameters, ensuring that 

our models were finely tuned. Additionally, K-folds cross-validation was employed, providing 

a robust measure of our models performance across different data subsets. The aerodynamic 

coefficients were predicted as functions of several factors such as: flight conditions, which 
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included the center of gravity position variation, Mach number, and the ratio of dynamic 

pressure to the true airspeed; flight parameters, which included the angle of attack and pitch 

rate; additionally, pilot inputs, such as elevator and horizontal stabilizer angle deflections, 

which were also incorporated into the models to enhance their accuracy. 

 

Both ANN and SVR methodologies gave excellent performance across 1,992 simulated 

validation flight tests. They were able to predict the aerodynamic coefficients with average 

mean absolute relative errors smaller than 1% for the lift and drag coefficients, and smaller 

than 5.74 % for the pitching moment coefficient. They achieved a 100% success rate in 

predicting longitudinal flight parameters with an accuracy within the FAA tolerances 

corresponding to the Level-D. This high success rate represents the AI models potential in the 

Aerospace field. It is worth noticing that the learning speed of the SVR model is particularly 

higher compared with that of the ANN model, which could be useful for real-time applications. 

 

This study has demonstrated the potential of ANN and SVR models in predicting aerodynamic 

coefficients in the Aerospace field. Building upon the outcomes of this study, future research 

can focus on modeling complex phenomena, such as aerodynamic stall (Tondji et al., 2022b) 

and ground effect during low-altitude flight phases. Additionally, exploring the application of 

AI techniques to capture the dynamic motion of aircraft across different flight conditions is 

promising. The findings of this research provide a foundation for advancing our understanding 

of aircraft dynamics through the use of advanced AI methodologies. 

 

In conclusion, the application of AI techniques in Aerospace Engineering has given promising 

results. This research paves the way for a future in which flight systems can benefit even more 

from AI integration, making flight operations better and more efficient. 
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Résumé 
 

Dans le domaine en rapide évolution de l'aérodynamique, la prédiction précise des coefficients 

aérodynamiques latéraux est essentielle pour améliorer le contrôle de vol et assurer la sécurité. 

Cette étude utilise des techniques d'apprentissage automatique, spécifiquement les perceptrons 

multicouches « Multilayer Perceptron (MLP) » et la régression par vecteurs de support « 

Support Vector Regression (SVR) », pour prédire les coefficients aérodynamiques latéraux de 

l'avion Bombardier CRJ-700, un jet régional largement utilisé dans l'industrie aéronautique. 

Les données expérimentales pour cette étude ont été collectées en utilisant le simulateur de vol 

virtuel pour la recherche CRJ-700 de niveau D (VRESIM), qui possède la qualification la plus 

élevée pour les modèles de dynamique de vol et de propulsion selon la « Federal Aviation 

Administration » (FAA). Le VRESIM a été conçu par CAE et Bombardier. L'ensemble de 

données comprend une large gamme de conditions de vol et les coefficients aérodynamiques 

latéraux correspondants, servant de fondement à la formation et aux tests des deux modèles 

d'apprentissage automatique. De plus, l'Optimisation Bayésienne (BO) a été utilisée pour 

affiner nos modèles. Les modèles ont été validés en comparant un ensemble de paramètres de 

vol prédits avec des données expérimentales obtenues à partir du VRESIM, basés sur les 

critères de tolérance de la FAA. Cela assure la fiabilité et l'applicabilité des modèles dans des 

scénarios du monde réel. Nous avons obtenu de très bons résultats, démontrant le potentiel du 

MLP et du SVR dans la prédiction précise de la dynamique latérale des aéronefs, offrant une 

voie prometteuse pour l'amélioration des systèmes de contrôle de vol. 
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Abstract 
 

In the rapidly evolving field of aerodynamics, accurate prediction of lateral aerodynamic 

coefficients is essential for enhancing flight control and ensuring safety. This study uses 

machine learning techniques, specifically Multilayer Perceptron (MLP) and Support Vector 

Regression (SVR), to predict the lateral aerodynamic coefficients of the Bombardier CRJ-700 

aircraft, a regional jet widely used in the aviation industry. Experimental data for this study 

were collected using the Level-D CRJ-700 Virtual Research Simulator (VRESIM), which has 

the highest qualification for flight dynamics and propulsion models according to the Federal 

Aviation Administration (FAA). The VRESIM was designed by CAE and Bombardier. The 

dataset comprises a wide range of flight conditions and corresponding lateral aerodynamic 

coefficients, serving as the foundation for training and testing both machine learning models. 

In addition, Bayesian Optimization (BO) was used to fine-tune our models. The models were 

validated by comparing a set of predicted flight parameters with experimental data obtained 

from the VRESIM, based on FAA tolerance criteria (FAA, 1991; ICAO, 2016). This ensured 

the reliability and applicability of the models in real-world scenarios. We obtained very good 

results, demonstrating the potential of both MLP and SVR in accurately predicting aircraft 

lateral dynamics, offering a promising avenue for improving flight control systems. 

 

Introduction  
 

3.1 Introduction 

In recent years, the aerospace industry has greatly benefited from advancements in 

computational power and Artificial Intelligence (AI) techniques. In particular, machine 

learning models such as the Multilayer Perceptron (MLP) and Support Vector Regression 

(SVR) have been widely used to predict various aircraft dynamics characteristics, such as 

engine performance (Andrianantara, Ghazi & Botez, 2021; Zaag & Botez, 2017) and 

longitudinal aerodynamic coefficients (Ghazi et al., 2017; Tondji, Ghazi & Botez, 2023; Tondji 
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et al., 2022a; Tondji et al., 2022b), which are essential for understanding the forces and 

moments acting on an aircraft during maneuvers. Accurate modeling of lateral dynamics plays 

a fundamental role in the design and testing of aircraft, as it allows the comprehensive analysis 

and prediction of aircraft behavior under various flight conditions, paving the way for safer 

and more efficient aircraft designs and controls systems (Abdolhosseini et al., 2013; Botez et 

al., 2015; Moncayo et al., 2012; Shao et al., 2019; Tchatchueng Kammegne et al., 2018; Wang 

& Zhang, 2018). 

 

Traditional methods for determining lateral aerodynamic coefficients can be grouped into three 

main categories: empirical or semi-empirical methods, Computational Fluid Dynamics (CFD), 

and Wind Tunnel Testing. Empirical methods are based on well-established aerodynamic 

theories and use a series of equations derived from experimental data to estimate aerodynamic 

coefficients. Examples include the USAF Stability and Control DATCOM (Data 

Compendium), a renowned semi-empirical method (Blake, 1985). An advancement in 

empirical methods is the FDerivatives code developed at our LARCASE laboratory, which is 

also based on DATCOM code methodology with aerodynamic improvements theories. This 

code and its associated methodology were applied to the UAS-S4 and UAS-S45 from Hydra 

Technologies (Kuitche & Botez, 2019), the military X-31 aircraft (Anton et al., 2011), and the 

business aircraft Hawker 800 XP (Anton et al., 2010). These methods offer simplicity, low 

computational cost, and broad applicability. However, a limitation is their potential lack of 

precision for detailed flight simulation because they depend on idealized assumptions and 

generalized datasets, which may not represent the specific aircraft configuration under study.  

 

CFD methods use Navier-Stokes equations to simulate the fluid flow around an object, 

enabling the determination of aerodynamic coefficients (Anderson, 2010). These methods 

provide a detailed visualization of the aerodynamic phenomena and can accurately predict the 

coefficients for a wide range of flight conditions. For example, Islas-Narvaez et al. investigated 

the use of CFD methods for modeling the lateral aerodynamic coefficients of an aircraft (Islas-

Narvaez, Ituna-Yudonago, Ramos-Velasco, Vega-Navarrete & Garcia-Salazar, 2022). Their 

approach involved using a 3D steady state model based on the equations of mass, momentum, 
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and turbulence to simulate flow around a tail-sitter aircraft. The Spalart Allmaras model was 

chosen to analyze the turbulent behavior of the airflow. The mathematical model was validated 

with experimental data, and the results showed good agreement. The CFD simulations revealed 

that the proposed tail-sitter aircraft had improved lateral aerodynamic performance compared 

to a baseline aircraft. The main improvements were a reduction in the sideslip angle at which 

the aircraft became unstable, and an increase in the maximum sideslip angle that the aircraft 

could maintain. The results also showed that the proposed aircraft had a lower lateral drag 

coefficient than the baseline aircraft. 

 

Unfortunately, CFD requires significant computational resources and technical expertise, 

limiting its usability for large-scale or real-time applications. Moreover, the precision of CFD 

calculations is often constrained by the assumptions inherent in the mathematical equations 

used by their algorithms, especially by the linearization around steady flight conditions. 

 

Wind tunnel testing is a direct experimental approach in which scaled aircraft models are tested 

in a controlled environment (Hansman & Craig, 1987; A. Koreanschi, Sugar Gabor & Botez, 

2016b). This method has been employed to determine the lateral aerodynamic coefficients for 

various types of aircraft. Jones et al., for instance, conducted wind tunnel testing of a tail-sitter 

UAV to obtain its lateral aerodynamic coefficients (Mei, Zhou, Su, Shan & Wang, 2023). The 

UAV was tested in a low-speed and open-jet wind tunnel. Pressure measurements were made 

on the UAV surface using a total pressure probe and a static pressure probe. Flow visualization 

was also performed using “smoke”. The results of the wind tunnel testing were then used to 

calculate the lateral aerodynamic coefficients of the UAV. The coefficients were calculated for 

a range of angles of attack, sideslip angles, and Mach numbers, and the results showed that the 

UAV had good lateral dynamics performance. The UAV was stable in both the longitudinal 

and lateral axes and had a good roll rate. While wind tunnel methods can provide accurate and 

reliable results, they can be time-consuming, costly, and may not fully represent real-world 

flight conditions due to scaling effects and the steady nature of the testing environment. 
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Machine Learning, with its ability to learn complex patterns and make predictions from large 

datasets, offers a promising alternative to traditional methods (Perhinschi et al., 2002; 

Perhinschi et al., 2007). MLP and SVR, as supervised learning models, can be trained on 

historical flight data to accurately predict lateral aerodynamic coefficients. In a previous study, 

we proposed a novel methodology for predicting the longitudinal aerodynamic coefficients of 

an aircraft using Support Vector Regression (SVR) (Tondji et al., 2023). This method exhibited 

remarkable results, with average relative errors of less than 1% for the lift and drag 

aerodynamic coefficients, and an average error of 5.74% for the pitching moment aerodynamic 

coefficients. The methodology presented in this paper is an extension of the aforementioned 

study and focuses on predicting lateral aerodynamic coefficients using Machine learning (MLP 

and SVR).  

 

To apply machine learning models effectively in this field, several challenges need to be 

addressed. Firstly, the complex and non-linear nature of aerodynamic coefficients, which 

varies according to different factors such as airspeed, altitude, and aircraft configuration, 

present a challenging task for machine learning models. Effectively capturing these nuances is 

essential for accurate predictions. Secondly, the performance of the models is strongly 

influenced by their hyperparameters, such as the number of hidden layers in the MLP and the 

kernel function in the SVR. While selecting the right hyperparameters is vital, finding their 

optimal values through this high-dimensional search space can be both time-consuming and 

computationally demanding. 

 

The objective of this study is to optimize the prediction of lateral aerodynamic coefficients of 

the Bombardier CRJ-700 regional jet using MLP and SVR models, thus employing BO for 

hyperparameters tuning. The optimization considered various critical parameters, such as the 

MLP's activation function, its number of hidden layers and neurons per layer, and the SVR's 

kernel function, kernel scale or polynomial order, and its regularization parameter. Data for 

model training and validation was obtained from a Level-D Virtual Research Equipment 

Simulator (VRESIM) for the Bombardier CRJ-700 (see Figure 3.1). 
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Figure 3.1 Validating the proposed methodology with a 
Bombardier CRJ-700 Virtual Research Simulator 

(VRESIM) 
 

Furthermore, the study seeks to integrate these optimized AI models into a CRJ-700 simulation 

platform built in MATLAB - SIMULINK software, replicating flight test scenarios carried out 

using the Virtual Research Environment for Simulation (VRESIM). This integration demands 

careful consideration of multiple components, including aerodynamic models, equations of 

motion, sensors and pilot inputs. The performance of integrated models will be assessed based 

on their ability to predict flight parameters within the tolerance criteria set by the Federal 

Aviation Administration (FAA). In addition to the technical aspects of model integration, our 

study aligns with industry-wide initiatives to modernize the air transportation system through 

the implementation of innovative aviation information systems. For instance, Mozdzanowska 

et al. (2008), discusses the importance of overcoming stakeholder barriers and streamlining 

safety approval for new technologies. These considerations are critical for the successful 

adaptation of our AI models and other such systems into operational use. 

 

The scope of this research includes the design of the optimization process, implementation of 

the optimized models, and their integration into the simulation platform. In addition, the study 

will provide a comprehensive analysis of the results, emphasizing the comparison of model 
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predictions with flight data from the VRESIM and evaluating the model performance in terms 

of the FAA tolerances. 

 

3.2 Methodology  

3.2.1 Data Collection 
 

The envelope considered in this study to perform the flight tests is the four-dimensional space 

in which an aircraft can operate efficiently and safely, defined by its limits of altitude, airspeed, 

weight, and center of gravity location. For this study, the flight envelope was characterized by 

varying the center of gravity locations, rangig from the "Take-off, Landing & Approach lower 

limit" (14% of the chord) to the "Take-off, Landing & Approach upper limit" (35% of the 

chord), aircraft weight ranging from the "Minimum Flight Weight" (42,000 lb) to the 

"Maximum Landing Weight" (67,000 lb), and indicated airspeeds ranging from 260 to 330 

knots, as well as the pressure altitude varying from 5000 to 35,000 ft. This wide range of flight 

conditions provided a comprehensive and robust dataset for training and validating both MLP 

and SVR models. By testing the aircraft performance within this flight envelope, we ensure its 

safe and effective operation in various situations, including takeoff, landing, and high-altitude 

cruising. The flight scenarios considered in the weight/center of gravity flight envelope, and in 

the altitude/speed flight envelope are shown in Figure 3.2(a) and Figure 3.2(b), respectively. 

There were 49 flight conditions considered in the weight/center of gravity flight envelope, and 

48 in the altitude/speed flight envelope, resulting in a total of 2,352 flight conditions. 
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(a) (b) 

Figure 3.2 Weight/Center of gravity location flight envelope (a), and Altitude/Speed flight 
envelope (b) of the Bombardier CRJ-700 VRESIM 

 

Pre-coded scripts were used to automatically perform all flight tests. These flight tests aimed 

to observe the lateral modes (roll, Dutch Roll, and spiral modes) when the aircraft was 

subjected to disturbance. The following procedure was used for each flight condition to induce 

lateral modes. First, the aircraft was trimmed and maintained in a straight and level flight with 

a constant altitude, airspeed, weight, and angle of attack. At predetermined times, symmetric 

impulses were applied to the rudder (at the 5th second) and ailerons (at the 23rd second) to 

stimulate the roll, Dutch Roll and spiral modes and allow the aircraft to oscillate freely until 

the 60th second. During each test, various flight parameters, such as altitude, Mach 

number, true airspeed, angular velocities, accelerations, engine thrust, and control surface 

deflections were recorded at a sampling rate of 30 Hz.  

 

Typical examples of data recorded from the VRESIM for a given flight test are illustrated in 

Figure 3.3. The flight test was carried out at an altitude ℎ =  20,000 ft, with an indicated air 

speed 𝐼𝐴𝑆 =  320 kn. The weight of the aircraft was set at 𝑚 =  55,120 lbs and the center 

of gravity at 𝑥௖௚ = 16%.  
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Figure 3.3 Example of flight parameters recorded for flight tests at 𝑚 =  55,120 𝑙𝑏𝑠 | 𝑥௖௚  =  16% | h =  20,000 𝑓𝑡 | 𝐼𝐴𝑆 =  320 kts  
 

After applying the command on the rudder (Figure 3.3.(a)) at 5 seconds, the aircraft 

experienced oscillations in both yawing and rolling moments, leading to the Dutch Roll mode. 

Figure 3.3.(e) and Figure 3.3.(h) illustrate these oscillations for rolling and yawing motions, 

respectively. As shown in Figure 3.3.(f), these oscillations followed a cyclical pattern and 

decreased in amplitude over time. A command to the ailerons (Figure 3.3.(b) and Figure 

3.3.(c)) was next applied at 23 seconds, resulting in a rapid damped motion observed on the 

roll rate variation (Figure 3.3.(e)), which characterizes the roll mode. 
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3.2.2 Data Pre-Processing  
 

3.2.2.1 Definition of Model’s Inputs and Outputs  

Parameters selection is a critical step in the data preprocessing phase, as it helps to identify the 

most relevant input variables for a model, thereby reducing noise, computational cost, and 

enhancing model performance. The input parameters considered in this study included aircraft 

operating conditions such as weight 𝑚, center of gravity location 𝑥௖௚, altitude ℎ, and Mach 

number 𝑀, as well as lateral flight parameters such as roll and yaw rates 𝑞, 𝑟, roll and yaw 

accelerations  𝑞ሶ   𝑟ሶ , lateral accelerations and moment of inertia 𝑎௬, 𝐼௬௬, sideslip angle 𝛽, roll 

angle 𝜙, and control surface deflections such as aileron deflection 𝛿௔, and rudder deflection 𝛿௥. Some of them are linearly correlated with the aerodynamic coefficients, having an absolute 

value of the Pearson correlation coefficient greater than 0.5. This coefficient measures the 

linear relationship between potential input variables and target outputs (Asuero, Sayago & 

González, 2006), with values ranging from -1 to 1. The correlation matrix (in absolute value) 

of input variables relative to target outputs (𝐶𝑌௦,𝐶𝑙௦ or 𝐶𝑛௦) is shown in Figure 3.4. A value 

of -1 indicates a perfect negative linear correlation, while a value of 1 indicates a perfect 

positive linear correlation. Conversely, a value of 0 indicates no linear correlation. However, 

even if the linear correlation is weak, some variables might exhibit quadratic or higher-order 

correlations with aerodynamic coefficients. The following input vector was considered: 
 

 𝑥 = ൛𝑥௖௚,𝑚, ℎ,𝑀,𝛽,𝜙, 𝑟, 𝑝, 𝑟ሶ , 𝑝ሶ  ,𝑎௬, 𝐼௬௬𝛿௔, 𝛿௥ൟ (3.1) 
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Figure 3.4 Linear correlation of input variables with output  
variables using the Pearson correlation coefficient 

 

The output variables, which comprise rolling and yawing moment coefficients 𝐶𝑙௦ and 𝐶𝑛௦ as 

well as side force coefficient 𝐶𝑌௦, are key parameters that describe an aircraft response to 

lateral inputs or disturbances. The three lateral aerodynamic coefficients in the stability axis 

system were determined from recorded flight parameters using the following equations (Ghazi 

et al., 2017): 

 

 𝐶𝑌௦ =  𝐶𝑌௕ (3.2) 
 𝐶𝑙௦ =  𝐶𝑙௕ cos(𝛼) +  𝐶𝑛௕ sin(𝛼) (3.3) 
 𝐶𝑛௦ =  𝐶𝑛௕ cos(𝛼) − 𝐶𝑙௕sin (𝛼) (3.4) 
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In Equation (3.2) to Equation (3.3), 𝐶𝑌௕, 𝐶𝑙௕ and 𝐶𝑛௕ represent the side force, rolling moment 

and yawing moment coefficients, respectively, expressed in the aircraft body axis system. They 

were computed using the following equations (Ghazi et al., 2017): 

 

 𝐶𝑌௕ =  𝑚𝑎௬ − 𝑇௬1/2𝜌𝑉ଶ𝑆௪ (3.5) 

 𝐶𝑙௕ =  𝐼௫௫𝑝ሶ − 𝐼௫௭𝑟ሶ + 𝑞𝑟(𝐼௭௭ − 𝐼௬௬) − 𝐼௫௭𝑝𝑞1/2𝜌𝑉ଶ𝑆௪𝑏௪  (3.6) 

 𝐶𝑛௕ =  −𝐼௫௭𝑝ሶ + 𝐼௭௭𝑟 + 𝑝𝑞൫𝐼௬௬ − 𝐼௫௫൯ + 𝐼௫௭𝑞𝑟1/2𝜌𝑉ଶ𝑆௪𝑏௪  (3.7) 

 

where 𝜌 denotes the air density, 𝑇௬  represents the lateral component of engine thrust, 𝐼௫௫, 𝐼௬௬ and 𝐼௭௭ denote the aircraft moment of inertia about the longitudinal, lateral, and vertical 

axes, respectively, while 𝐼௫௭ represents the moment of inertia about the xz-plane. Additionally, 𝑆௪ and 𝑏௪ are the wing reference area and span, respectively, while 𝑎௬, 𝑝, 𝑞 and 𝑟 denote the 

aircraft lateral acceleration, roll, pitch, and yaw rates, respectively. 

 

3.2.2.2 Data Normalization 

To ensure the quality and reliability of the data used to train the machine learning models, data 

normalization is an essential preprocessing step. This process involves scaling the parameters 

to a uniform range, typically [0, 1] or [-1, 1], ensuring each parameter has an equivalent impact 

on the model output calculations. This is particularly important given that the input parameters 

in this study have diverse units or scales. Normalizing the data helps preventing parameters 

with larger values from dominating the model and skewing the results. 

 

For this study, we employed Z-score normalization (Al-Faiz, Ibrahim & Hadi, 2019), which 

standardizes the variables by subtracting the mean and then dividing them by the standard 

deviation. This method ensures all variables have a mean value of 0 and a standard deviation 
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of 1. By applying this normalization process to the input data, we were able to effectively 

eliminate any biases that may have resulted from the use of different units or scales.  

 

3.2.3 Data Management  
 

In the context of developing machine learning models, particularly for models such as the 

Multi-Layer Perceptron (MLP) or Support Vector Regression (SVR), the dataset must be 

partitioned into training, testing, and validation sets. This procedure is essential to assess the 

model performance and avoid overfitting. The training set is used to optimize the model 

weights and biases, while the testing set evaluates the model performance using data that was 

not used for training. The testing set is crucial in adjusting the model hyperparameters. Once 

the model is fine-tuned, the validation set is used to provide an unbiased estimate of the model 

performance on new and unseen data. 

 

It should be noted that in this study, AI models were designed to predict lateral aerodynamic 

coefficients based on flight test data obtained from a Level-D CRJ700 VRESIM. If this 

methodology were to be applied using data from aircraft real flight tests, it would be essential 

to train the model with minimal data to reduce the number of flight tests needed. Given that 

reality, a strategy was employed to reduce the amount of data required for effective model 

training. Figure 3.5 illustrates the flight envelope in terms of weight and center of gravity 

position used for training and testing the model. The selected points for training and testing are 

highlighted in red. It was assumed that a well-trained model should consider the interpolation 

between two flight conditions with different center of gravity positions (with the same mass) 

and between two masses if the center of gravity positions were identical. Thus, only 9 of the 

49 available flight conditions were used for training and testing, distributed as shown in Figure 

3.5. 
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Figure 3.5 Flight conditions selected for model training and 
testing on a Weight versus Center of gravity position flight 

envelope of the Bombardier CRJ-700 VRESIM 
 

Each circled point in Figure 3.5 corresponds to 48 distinct altitude and airspeed flight 

conditions. However, only 24 of these conditions were selected for model training and testing, 

as highlighted in red in Figure 3.6. This means that from the 2352 flight cases available in the 

database, only 9 × 24 = 216 were used for model training and testing, representing a 9.2% 

ratio. The remaining 90.8% of the data was allocated for model validation. 
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Figure 3.6 Flight conditions selected for model training and 
testing on the Pressure Altitude versus IAS flight envelope 

flight envelope of the Bombardier CRJ-700 VRESIM 
 

To separate the data into training and test sets, we used the k-fold cross-validation technique 

(Stone, 1974). This approach is widely used for model evaluation and selection in machine 

learning. The K-fold cross-validation helps to provide a more reliable and stable performance 

estimate for a model with unseen data, reducing the potential bias and variance associated with 

a single train-test split. For this purpose, the data from 216 flight cases were randomly divided 

into 𝑘 −groups or folds of approximately equal dimensions. The model was then trained 𝑘 

times, each time using a different fold as the test set and the remaining 𝑘 − 1 folds as the 

training set. Each element in the dataset is designated to a particular fold and remains in that 

fold for the duration of one complete training. This process ensures that each element in the 

dataset is used exactly once as part of the test set and (𝑘 − 1) times in the training set. The 

overall model performance is then evaluated as the mean of the errors resulting from the 𝑘 

training.  
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Following recommendations in (Haykin, 1998) for applying k-fold cross-validation to 

regression model training, 𝑘 =  5 is chosen for the number of folds in the cross-validation 

procedure. This number indicates that the dataset was randomly divided into five groups, with 

each group being used as the test set once, and the other four groups as training sets.  

 

3.2.4 Multi-Layer Perceptron Theory 
 

A MLP is a feedforward artificial neural network consisting of multiple layers of nodes 

(neurons) connected by weighted edges (Haykin, 1998). MLPs are widely used for supervised 

learning tasks, such as regression and classification. The architecture of an MLP typically 

includes an Input layer, one or more Hidden layers, and an Output layer. The Input layer 

contains nodes that represent the input parameters of the dataset, with the number of nodes 

corresponding to the number of input parameters (Haykin, 1998). Hidden layers consist of 

multiple nodes that perform non-linear transformations of the input data. The number of hidden 

layers and the number of nodes in each hidden layer are user-defined hyperparameters that 

affect the complexity and performance of the MLP. The Output layer contains nodes 

representing the predicted output values, where the number of nodes correspond to the number 

of output variables.  

 

Figure 3.7 shows a graphical representation of the MLP, with the Input layer defined by the 

input vector in Equation (3.1) and the Output layer representing the lateral aerodynamic 

coefficients. 
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Figure 3.7 MultiLayer Perceptron for predicting the lateral 
aerodynamic coefficients of the bombardier CRJ-700 

VRESIM from flight parameters  
 

Each hidden neuron in Figure 3.7 receives inputs from the previous layer and applies a 

weighted sum to the inputs, adds a bias term, and then processes the result through an activation 

function (Linse & Stengel, 1993) to produce an output. The output feeds into to the next layer 

in the network. Both weights and bias terms are adjustable parameters in the network, with the 

weight representing the strength of the connections between neurons and the bias allowing the 

neuron to shift its activation function horizontally and improve flexibility in fitting the data. 

The activation function introduces non-linearity into the network and determines the output of 

a neuron based on the weighted sum of its inputs and the bias term. It plays a crucial role in 

enabling neural networks to learn complex and non-linear patterns in the data. 

 

To learn patterns, MLP models adjust the weights of the connections between nodes to 

minimize a loss function, which measures the discrepancy between the predicted outputs of 
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the model and the actual target values. The Mean Squared Error (MSE) is commonly used as 

a loss function for regression problems, as with our MLP. For a given set of 𝑛 data points, the 

MSE of an MLP is calculated according to Equation (3.8): 

 

 𝑀𝑆𝐸 = 1𝑛  ෍ሾ𝑜ො௜(𝑤) − 𝑜௜ሿଶ௡
௜ୀଵ  

 
(3.8) 

 

where 𝑜௜ is the ith output vector associated with the ith input vector in the dataset, and 𝑜ො௜ is the 

ith output vector predicted by the MLP model.  

 

In MLP models, the learning process uses backpropagation, an algorithm that calculates the 

gradients of the loss function with respect to the network weights. After determining the 

gradients, they are used to update the weights of the network through an optimization algorithm 

(a training function). This iterative process is repeated until the loss function reaches a 

minimum value. In this study, the optimization of the MLP hyperparameters was done using 

the Bayesian Optimization (BO) technique and is presented in section 3.2.6.  

 

3.2.5 Support Vector Regression Theory 
 

Support Vector Regression (SVR) is a powerful supervised learning algorithm used for 

regression tasks. It is based on the principles of Support Vector Machines (SVM), which are 

primarily used for classification (Drucker et al., 1996). The main goal of SVR is to find a 

function 𝑓(𝑥) that can accurately predict the output values 𝑜 for a given set of input data points 𝑥, while minimizing the generalization error. 

 

 𝑓(𝑥) = w்𝜙 (𝑥) + 𝑏 (3.9) 
 

In Equation (3.9), the variables w and 𝑏 represent the weights vector and the bias term, 

respectively. The function 𝜙 (𝑥) is known as a mapping function or Kernel function, which 

transforms the input data vector 𝑥 from its original space, where data cannot be separated 
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linearly, into a higher-dimensional feature space where linear separation becomes possible. 

The main objective of Support Vector Regression (SVR) is to locate a hyperplane that best fits 

the training data while maintaining a balance between minimizing the error and achieving the 

largest margin possible. This objective is achieved by introducing a margin of tolerance 𝜀 

around the hyperplane, which allows for a certain degree of error in predictions. Any data point 

(𝑥௜, 𝑜௜)  within this 𝜀-insensitive tube is considered to be correctly predicted, regardless of its 

actual distance from the hyperplane, and it should satisfy the following inequality: 

 

 |𝑜௜ − (w்𝜙 (𝑥௜) + 𝑏)| ≤  𝜀,    𝑖 = 1, … ,𝑛   (3.10) 
 

From an optimization perspective, the SVR aims to minimize the optimization problem given 

by Equation (3.11) (Vapnik, 1995): 

 

  𝐽(w) = 12 ‖𝑤‖ଶ + 𝐶෍(𝜉௜ + 𝜉௜∗)௡
௜ୀଵ  

 
(3.11) 

 

subject to the following constraints:  

 

  ∀ 𝑖 = 1, … ,𝑛 ቐ𝑜௜ − w்𝜙 (𝑥௜) − 𝑏 ≤  𝜀 + 𝜉௜  w்𝜙 (𝑥௜) + 𝑏 − 𝑜௜ ≤  𝜀 + 𝜉௜∗ 𝜉௜ , 𝜉௜∗ ≥ 0  
 

(3.12) 

 

The term ‖𝑤‖ଶ in Equation (3.11) is introduced as a means to find a simpler model with a 

larger margin, which can lead to better generalization performance. The slack variables 𝜉௜ and 𝜉௜∗ allow for some degree of error in the predictions and measure the distance between data 

points that are outside the 𝜀-insensitive tube and the tube margin, representing the prediction 

error. The regularization parameter 𝐶 determines the trade-off between minimizing the margin 

(by reducing ‖𝑤‖ଶ) and minimizing the prediction error (by reducing ∑ (𝜉௜ + 𝜉௜∗)௡௜ୀଵ ). A higher 

value of 𝐶 puts more emphasis on minimizing the prediction error, while a smaller value of 𝐶 

prioritizes finding a larger margin. 
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The optimization problem in Equation (3.11) is solved by transforming the problem into its 

“dual form” and then solving this dual problem using techniques such as Quadratic 

Programming (QP) or Sequential Minimal Optimization (SMO). The loss function used in this 

study is the ε-insensitive loss function, which, for a given set of 𝑛 data points, is defined as 

(Vapnik, 1995):  

 

  𝐿ఌ = ෍max(0,   |𝑜௜ − 𝑓(𝑥௜)| − 𝜀) ௡
௜ୀଵ  

 
(3.13) 

 

In the same way as for the MLP, the optimization of the SVR hyperparameter was done using 

the Bayesian Optimization (BO) technique and is presented in the next section 3.2.6. 

 

3.2.6 Choice of Solver and Hyperparameters Optimization using Bayesian 
Optimization  

 

Bayesian Optimization (BO) is a global optimization technique designed for optimizing 

expensive-to-evaluate objective functions (Shahriari et al., 2016). It is particularly well-suited 

for hyperparameter tuning in machine learning models, such as MLP and SVR. The underlying 

theory of BO is based on probabilistic modeling and decision theory, making it a highly 

effective method for exploring complex search spaces. 

 

The process of BO consists of two main components: a probabilistic surrogate model and an 

acquisition function. The surrogate model is used to model the expensive-to-evaluate objective 

function by capturing the relationship between the input parameters and the objective function 

value. Typically, a Gaussian Process (GP) is used as the surrogate model due to its ability to 

provide a flexible, non-parametric representation of the function and its uncertainty estimates. 

The acquisition function is a key component of Bayesian Optimization, as it determines which 

points in the search space should be explored or exploited next. It balances exploration 

(searching for regions with high uncertainty) and exploitation (focusing on regions with high 

predicted performance). Common acquisition functions include Expected Improvement (EI) 



89 

(Jones, Schonlau & Welch, 1998), Probability of Improvement (PI) (Kushner, 1964), and 

Upper Confidence Bound (UCB) (Srinivas, Krause, Kakade & Seeger, 2009). 

 

The Bayesian Optimization process iteratively updates the surrogate model based on the new 

function evaluations and optimizes the acquisition function to determine the next point to 

evaluate. This procedure is repeated until a stopping criterion is met, such as reaching a 

predefined number of iterations. The K-fold cross validation technique is applied on each 

optimization iteration.  

 

3.2.6.1 Multi-Layer Perceptron Hyperparameters Fine-Tuning  

In this study, the BO was employed for hyperparameter optimization of Multi-Layer 

Perceptrons (MLPs) to efficiently tune the model for better performance. The hyperparameters 

optimized using BO included the activation function, the number of hidden layers, and the 

number of neurons per hidden layer. The training function was also included as an optimization 

variable.  

 

In the case of MLP, the training function is crucial in determining which algorithm to use to 

update weights and biases during the learning process. The choice of training function 

significantly impacts the convergence speed, the overall training time, and the model's ability 

to generalize. In our study, we consider three gradient-based optimization algorithms, listed in 

Table 3.1: TRAINBFG (BFG), TRAINLM (LM), and TRAINBR (BR). 

 

Table 3.1 Training algorithms considered to train the MLP 

Algorithm Description 

TRAINBFG Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton 

TRAINLM Levenberg-Marquardt optimization. 

TRAINBR Bayesian regularization  
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TRAINLM is an efficient and fast algorithm that combines the strengths of gradient descent 

with the Gauss-Newton method, making it particularly suitable for small to medium-sized 

problems (Marquardt, 1963). However, it may require a significant amount of memory. 

TRAINBR, on the other hand, introduces a regularization term to control the complexity of the 

network and prevent overfitting (Dan Foresee & Hagan, 1997). This feature makes it 

particularly useful for problems with limited data or when the model needs to generalize well 

to unseen data. Lastly, TRAINBFG is a memory-efficient optimization algorithm that offers a 

good balance between convergence speed and memory requirements, making it suitable for a 

wide range of regression problems, especially those with a large number of weights and biases 

(Fletcher, 1970). All three training functions have proven their efficiency in similar studies, 

where longitudinal aerodynamic coefficients were estimated using MLPs (Tondji et al., 

2022b).  

 

Tondji et al. (2022b) demonstrated the effectiveness of using the Hyperbolic tangent (tansig), 

Logistic sigmoid (logsig), and Elliot sigmoid (elliotsig) functions for regression problems, 

particularly in aerodynamic coefficients modeling. These three activation functions are 

commonly used in neural networks to introduce non-linearity and enable the learning of 

complex relationships between input and output variables (LeCun, Bottou, Orr & Müller, 

2012). The tansig function provides a smooth transition and good sensitivity around the origin, 

producing outputs in the range of -1 to 1 (Bishop, 2006). The logsig function ensures that the 

output is positive, ranging from 0 to 1 (Graupe, 2013), and the elliotsig function offers a 

computationally efficient alternative to the tansig function, with an output range between -1 

and 1 (Elliott, 1998). All three functions have the advantage of having bounded outputs and 

being differentiable, which can help prevent extreme output values during training. While the 

tansig and logsig functions are based on exponential functions and may require more 

computational resources, the elliotsig function, due to it simpler mathematical structure, 

enables faster computation (Elliott, 1998). The formulas for tansig, logsig and elliotsig 

activation functions are given in Equation (3.14), to Equation (3.16): 
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 𝑦(𝑎) = 2(1 + exp(−2 ∗ 𝑎)) − 1 (3.14) 

 y(a) = 11 + exp (−a) (3.15) 

 𝑦(𝑎) = 𝑎(1 + |𝑎|) (3.16) 

 

The performance of a multilayer perceptron (MLP) is influenced by the number of hidden 

layers 𝑚 and the number of neurons per hidden layer 𝑛. These two factors allow the network 

to capture complex and non-linear relationships between input and output variables (Cybenko, 

1989). However, determining the optimal number of hidden layers and neurons for an MLP 

with 9 inputs and 3 outputs (lateral aerodynamic coefficients) presents a challenge. It is 

generally recommended to start with a small number of hidden layers (e.g., one or two) and 

progressively increase this number to enhance model performance. While increasing the 

number of layers and neurons can improve performance, there is a risk of overfitting, especially 

if the size of the training dataset is small. A study was conducted using neural networks to 

predict longitudinal aerodynamic coefficients of the Cessna Citation X in stall conditions 

(Tondji et al., 2022a). Three different neural networks were used to predict three different 

longitudinal aerodynamic coefficients. The study found that a network with 𝑚 = 5 hidden 

layers and 𝑛 = 9 neurons per layer was enough to model the lift coefficient, while the drag 

coefficient required a network of size (𝑚,𝑛) = (2,14), and the pitching moment coefficient 

required an MLP of size (𝑚,𝑛) = (4,12). 

 

In this study, a single neural network is used to model the three lateral aerodynamic 

coefficients, which should have fewer complex dynamics than longitudinal aircraft coefficients 

in stall conditions. Based on this observation, a range of 𝑚௠௜௡ = 1 to 𝑚௠௔௫ = 6 hidden layers, 

and 𝑛௠௜௡ = 3 𝑡𝑜 𝑛௠௔௫ = 15 neurons per layer was defined to obtain the optimal network 

structure. This resulted in 13଺ =  2.82 × 10଺ possible structures, which is relatively large. For 

the sake of simplicity, it was decided to reduce the number of possible structures to 78 by 

assuming that all hidden layers should have the same number of neurons. This assumption was 
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made because changing the number of neurons from one layer to another did not significantly 

improve network performance (Heaton, 2008). 

 

Regarding the hyperparameter optimization process, the maximum number of training epochs 

for the MLP was limited to 1000 to minimize the optimization time. The objective function 

used for this optimization was the mean squared error (𝑀𝑆𝐸) calculated on the test set. 
 

 

Figure 3.8 Bayesian Optimization convergence plots of an MLP  
 

To demonstrate the effectiveness of the BO process, the convergence plots are presented in 

Figure 3.8. Figure 3.8(a) shows the improvement in both the observed objective function value 

(performance metric) and the estimated objective function value (estimated by the surrogate 
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model) over the iterations. Both values decrease over time and are in close agreement, 

indicating that the probabilistic model accurately approximates the objective function. A close-

up view of Figure 3.8(a) is presented in Figure 3.8(b), and reveals that the minimum observed 

objective of 1.96 ×  10ିହ was achieved at iteration 47, while the minimum estimated 

objective of 2.73 ×  10ିହ was achieved at iteration 49. 

 

The search space for the four variables, namely the number of hidden layers, the number of 

neurons, the training algorithm, and the activation function, are presented in Figure 3.8(c), 

Figure 3.8(d), Figure 3.8(e), and Figure 3.8(f), respectively. It is worth noting that during the 

optimization process, all possible values for these four variables were tested, enabling the 

probabilistic model to gather the necessary data to choose subsequent evaluation points and 

ultimately converge to the best solution.  

 

The minimum observed function value of 1.96 ×  10ିହ was obtained for the optimized 

parameter values: training function = TRAINBR, activation function = logsig, number of hidden 

layers 𝑚 = 4, and number of neurons per hidden layer 𝑛 =  14. 

 

3.2.6.2 Support Vector Regression Hyperparameters Fine Tuning  

The SVM models are designed in MATLAB software as Multi Input Single Output (MISO) 

models, which means that this type of model can only predict one aerodynamic coefficient at 

a time. Therefore, three different SVM models were designed, each model associated with one 

of the three output variables, i.e., ሼ𝐶𝑌௦ሽ, ሼ𝐶𝑙௦ሽ, ሼ𝐶𝑛௦ሽ. The SVR hyperparameter optimization 

is presented in this section only for the side force coefficient ሼ𝐶𝑌௦ሽ. However, the described 

procedure was also applied to the rolling and yawing moment coefficients, and the results are 

presented later in this section.  

 

We first focused on selecting the appropriate solver for the optimization problem. This solver 

plays a critical role in determining the performance and convergence of the SVM model. 

Various solvers, such as the Decomposition Method (Chih-Chung Chang et al., 2000), the 
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Sequential Minimal Optimization (SMO) (Platt, 1998), and the Improved SMO Decomposition 

Algorithm (ISDA) (Kecman et al., 2005) employ different optimization techniques to find the 

optimal solution to the SVM problem, which can significantly impact the model's training time 

and overall accuracy. Previous research, shown in the study conducted by (Tondji et al., 2023), 

trained similar SVR models for determining the longitudinal aerodynamic coefficients of the 

CRJ700 aircraft. They found that the SMO solver demonstrated efficiency and effectiveness 

in achieving optimal results compared to other solvers. Thus, the SMO solver was selected for 

this research to ensure that the SVM model is optimized efficiently and effectively, leading to 

improved performance and accuracy. 
 

The BO was then employed for SVR hyperparameter tunning. The hyperparameters optimized 

using the BO included the regularization parameter 𝐶, the kernel function 𝜙(𝑥), and the kernel-

specific parameters. The precision 𝜀 was set to 10ିଷ for 𝐶𝑌௦, as it was large enough to satisfy 

the FAA validation tolerances.  
 

The choice of kernel function plays a crucial role in the SVR performance, as it determines 

how the input data is transformed in the feature space. Gaussian and polynomial kernels are 

popular choices for the SVR due to their abilities to handle non-linear data (Fan et al., 2005; 

Wang et al., 2015). The equations for Gaussian (also known as Radial Basis Function) and 

polynomial kernels are shown in Equation (3.17) and Equation (3.18), respectively, where 𝜎 

and 𝑞 are the kernel-specific parameters of the Gaussian kernel scale and the polynomial order, 

respectively. 

 

 𝐾൫𝑥௜ , 𝑥௝൯ீ = exp (−ฮ𝑥௜ − 𝑥௝ฮଶ2𝜎ଶ ) 
(3.17) 

 𝐾൫𝑥௜ , 𝑥௝൯௤ = ൫1 + 𝑥௜் 𝑥௝൯௤ (3.18) 

 

The kernel scale 𝜎 plays a crucial role in determining the flexibility of the Gaussian function. 

Specifically, it controls the width of the function, and therefore determines how flexible or 

rigid a model is. If the kernel scale is too small, the model may overfit the data, while a kernel 
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scale that is too large may cause underfitting. Similarly, the polynomial order 𝑞 determines the 

complexity of the model and its ability to handle non-linear data. Increasing the polynomial 

order can improve the model flexibility, but it may also lead to overfitting if the order is too 

high. 
 

We optimized the float values 𝐶 and 𝜎 within default search ranges of 𝐶 ∈ ሾ10ିଷ, 10ଷሿ and 𝜎 ∈ ሾ10ିଷ, 10ଷሿ, respectively, and the integer value 𝑞 within a search range of 𝑞 ∈ ሾ1, 5ሿ. Due 

to the large number of parameters and the wide search range (especially for 𝐶 and 𝜎), we 

repeated the optimization process five times to check whether the results obtained were similar. 

 

Figure 3.9 shows the convergence plot of the first optimization for the 𝐶𝑌௦ SVR model. The 

observed objective function and the estimated objective function values decrease over time, 

and are in close agreement, indicating that the probabilistic model accurately approximates the 

objective function. The polynomial order values of q was evaluated during iterations where the 

polynomial kernel function was used (refer to Figure 3.9(c) and  Figure 3.9(e)), while kernel 

scale values of  𝜎 were tested during iterations where the Gaussian kernel function was used 

(refer to Figure 3.9(c) and Figure 3.9(d)). The plot in Figure 3.9(b) shows that the minimum 

observed objective of 1.13 × 10ିହ was achieved at the 35th iteration.  

 

A summary of the results obtained for the five optimizations in terms of minimum observed 

objectives (𝑜𝑏𝑗୫୧୬௢௕௦) and optimized hyperparameters is presented in Table 3.2.  
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Figure 3.9 Bayesian Optimization convergence plot of the 𝐶𝑌௦ SVR model 
 

As shown in Table 3.2, for the optimization runs, the Gaussian kernel function was chosen, 

indicating its suitability for the 𝐶𝑌௦ SVR model, while the polynomial kernel function and 
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Table 3.2 Optimal hyperparameters obtained for five distinct BOs of the 
 𝐶𝑌௦ SVR model using SMO solver 

 𝒐𝒃𝒋𝐦𝐢𝐧𝒐𝒃𝒔 
[𝟏𝟎ି𝟓] Regularization 

parameter 𝑪𝒎𝒊𝒏 𝒐𝒃𝒔 
Kernel 

function 
Kernel scale  𝝈𝒎𝒊𝒏 𝒐𝒃𝒔 𝟏𝒔𝒕 𝑩𝑶 1.13 3.2175 Gaussian 12.51 𝟐𝒏𝒅 𝑩𝑶 0.31 46.53 Gaussian 5.57 𝟑𝒓𝒅 𝑩𝑶 0.36 7.25 Gaussian 7.01 𝟒𝒕𝒉 𝑩𝑶 0.47 13.66 Gaussian 14.8 𝟓𝒕𝒉 𝑩𝑶 0.43 16.22 Gaussian 10.06 
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order 𝑞 were found to be not applicable in this context. The optimal regularization parameter 

and the kernel scale, 𝐶௠௜௡ ௢௕௦ and 𝜎௠௜௡ ௢௕௦, showed variability across different runs, suggesting 

that the model performance is sensitive to these hyperparameters. However, the values of 𝐶௠௜௡ ௢௕௦ ranged from 0 to 50, and the values of 𝜎௠௜௡ ௢௕௦ ranged from 0 to 20 for all five runs. 

Thus, for a more refined optimization, the search field of 𝐶௠௜௡ ௢௕௦ was narrowed from ሾ10ିଷ, 10ଷ] to [0, 50], and the search field of 𝜎௠௜௡ ௢௕௦ was narrowed from ሾ10ିଷ, 10ଷ] to [0, 

20]. In addition, since the polynomial kernel function was found not to be applicable, the kernel 

function can be fixed to the Gaussian function. The convergence plot obtained from this refined 

search field optimization is shown in Figure 3.10. 
 

  

Figure 3.10 Refined search field for Bayesian Optimization convergence plot of the 𝐶𝑌௦ SVR model  
 

This optimization yielded a better result than the previous five optimizations. Figure 3.10(a) 

displays all the evaluated points (in terms of (𝐶,𝜎)), and their corresponding objective values 

estimated by the surrogate model in blue circles. The red circle in Figure 3.10(a) represents 

the minimum estimated objective 𝑜𝑏𝑗୫୧୬௘௦௧ =  −4 ×  10ିସ found at (𝐶୫୧୬௘௦௧, 𝜎୫୧୬௘௦௧) = 

(0.15, 7.16). While the minimum estimated objective and the minimum observed objective 

were close, they were not identical. Figure 3.10(b) magnifies this difference, with the minimum 

observed objective being 𝑜𝑏𝑗୫୧୬௢௕௦ =  9 ×  10ି଻ at (𝐶୫୧୬௢௕௦, 𝜎୫୧୬௢௕௦ ) = (49.26, 8). 
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Therefore, the hyperparameters (𝐶୫୧୬௢௕௦, 𝜎୫୧୬௢௕௦ ) = (49.26, 8) were deemed optimal, as they 

led to a minimum objective function value of 9 ×  10ି଻. 

 

3.3 Results 

We performed two distinct analyses to evaluate the effectiveness of our AI models in 

predicting aerodynamic coefficients and their performance when integrated into a flight 

simulation platform. For validation purposes, 2,136 flight cases (90.8% of all collected data) 

were used, ensuring an unbiased assessment of the model performance. 

 

The first analysis seeks to determine the accuracy of both MLP and SVR models in predicting 

lateral aerodynamic coefficients by comparing their predicted values with experimental data 

obtained from the CRJ700 VRESIM. To quantify the model performance, we calculated the 

Mean Absolute Relative Error (MARE) for each model using Equation (3.19) where 𝑜௜ 
represents the ith output vector associated with the ith input vector in the dataset, and 𝑜ො௜ 
represents the ith output vector predicted by the model. A lower MARE indicates better model 

performance and higher prediction accuracy.  

 

 𝑀𝐴𝑅𝐸 = 1𝑛 ൭෍ฬ𝑜ො௜ − 𝑜௜𝑜ො௜ ฬ௡
୧ୀଵ ൱ × 100 

 
(3.19) 

 

The second analysis consisted of integrating the trained MLP and SVR models into a CRJ-700 

simulation platform designed to replicate flight test scenarios conducted using the VRESIM. 

Through this analysis, we evaluated how well the AI models performed when integrated into 

a practical application, such as a flight simulator, and assessed their potential for real-world 

use. We compared several flight parameters predicted by the developed platform with those 

measured using the VRESIM for the 2,136 validation flight cases, adhering to the tolerance 

criteria specified by the Federal Aviation Administration (FAA) in the Manual of Criteria for 

the Qualification of Flight Simulators (FAA, 1991; ICAO, 2016). This allowed us to determine 
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the effectiveness and reliability of the integrated AI models in simulating realistic flight 

conditions and scenarios. 

 

3.3.1 Validation of Lateral Aerodynamic Coefficients  
 

The hyperparameter optimization process for the MLP model yielded the following 

parameters: the training function, set to trainbr, the activation function set to logsig, the 

number of hidden layers set to 𝑚 =  4, and the number of neurons per hidden layer set to 𝑛 = 14. Comparing these results to the literature on similar problems, we found that these 

parameters are consistent with successful implementations of MLP models for other complex 

prediction tasks. In particular, previous studies have reported favorable results with the trainb' 

training function and logsig activation function in comparable applications (Tondji et al., 

2022a; Tondji et al., 2022b), further validating our model configuration. 

 

To improve the predictive accuracy of our optimized MLP model, we trained it again using a 

higher number of epochs (5,000) compared to the initial 1,000 epochs used during the 

hyperparameter optimization process. This extended training period aimed to more effectively 

capture the inherent patterns in the training data, thereby improving the model overall 

performance. 

 

Table 3.3 presents the hyperparameter optimization results for SVR models for predicting the 

three lateral aerodynamic coefficients. A precision of 𝜀 =  10ିସ was chosen for the three 

aerodynamic models because some values of the coefficients were of the order of 10ିଶ or 10ିଷ. All three SVR models achieved better performance when they used the Gaussian kernel 

function. The optimized kernel scales for all three models were found to be within the same 

order, despite a wide search range of [10ିଷ, 10ଷ]. This suggests that the data structures and 

complexities of the problems associated with predicting each aerodynamic coefficient are 

somewhat analogous, and the optimized kernel scales reflect this similarity. In addition, the 

optimized regularization parameter 𝐶 for 𝐶𝑌ௌ was higher than for 𝐶𝑙ௌ and 𝐶𝑛௦, suggesting that 

the complexity and sensitivity of the models to overfitting may differ. 
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Figure 3.11 to Figure 3.13 show examples of estimated aerodynamic coefficients plotted with 

respect to the roll angle. The data predicted by the multilayer perceptron (MLP) model 

(represented in red dots) and the support vector regression (SVR) model (shown in black 

crosses) closely align with the experimental data obtained with the VRESIM (illustrated in 

blue). 

 

   

Figure 3.11 Examples of predicted lateral aerodynamic coefficients for a flight test at  
m = 46,300 lb | Xcg = 24% | h = 20,000 ft | IAS = 260 kts 

 

-60 -50 -40 -30 -20 -10 0 10

 [deg]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Experimental
MLP
SVR

-60 -50 -40 -30 -20 -10 0 10

 [deg]

-3

-2

-1

0

1

2

3 10-3 Experimental
MLP
SVR

-60 -50 -40 -30 -20 -10 0 10

 [deg]

-8

-6

-4

-2

0

2

4

6 10-3 Experimental
MLP
SVR

Table 3.3 Optimal hyperparameters 𝜀, 𝜎 and 𝐶 obtained for the SVR 
 using the Gaussian kernel function and SMO solver 

 Precision 𝜺 Kernel scale 𝝈 
Regularization 
parameter 𝑪 𝑪𝒀𝑺 10ିସ 8 49.25 𝑪𝒍𝑺 10ିସ 16.40 5.08 𝑪𝒏𝑺 10ିସ 10.4 1.53 
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Figure 3.12 Examples of predicted lateral aerodynamic coefficients for a flight test at  
m = 55,120 lb | Xcg = 18% | h = 20,000 ft | IAS = 280 kts 

 

   

Figure 3.13 Examples of predicted lateral aerodynamic coefficients for a flight test at  
m = 63,930 lb | Xcg = 30% | h = 30,000 ft | IAS = 280 kts 

 

The average errors obtained for all validation flight scenarios are listed in Table 3.4. In 

addition, Figure 3.14 presents histograms comparing the residual error distribution of both the 
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shows higher accuracy for 𝐶Yௌ, as indicated by a lower average MARE and a narrow error 

distribution centered around zero. However, for 𝐶lௌ and 𝐶nௌ, the SVR model demonstrates a 

greater accuracy with a lower average MARE and a higher degree of prediction consistency, 

with a smaller error distribution compared to the MLP. It is important to note that the 
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the initial expectations and provided predictions with a level of precision higher than the 

defined margin of error (𝜀). 
 

Table 3.4 Average 𝑀𝐴𝑅𝐸 and Average Residual Errors 
obtained for the prediction of 𝐶𝑌௦, 𝐶𝑙௦ and 𝐶𝑛௦ using MLP and SVR 

 Average 𝑴𝑨𝑹𝑬 
[%] 

Average 
Residual 
[× 10-5] 

 MLP SVR MLP SVR 𝐶𝑌ௌ 0.17 0.70 1.84 9.78 𝐶𝑙ௌ 2.74 0.78 4.19 1.42 𝐶𝑛ௌ 4.24 1.12 7.95 2.60 
 

 

Figure 3.14 Comparison of residual error distributions for MLP and SVR in the 
prediction of lateral aerodynamic coefficients 
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3.3.2 Flight Dynamics Model Validation 
 

The MLP and SVR models developed in this work were integrated into a MATLAB-based 

CRJ-700 flight simulation platform. A functional diagram of this platform is shown in Figure 

3.15. Designed to accurately reproduce flight test scenarios, this simulation platform can 

replicate conditions encountered using the VRESIM.  The simulator contains several key 

components. The pilot inputs were used to mimic the specific inputs used in the VRESIM 

scenarios, ensuring consistency between the simulated flight and the reference data. The lateral 

aerodynamic models (shown in green) were obtained using the MLP and SVR trained to 

predict the lateral coefficients, and a SVR model developed and validated in a previous study 

(Tondji et al., 2023) at LARCASE was used to calculate the longitudinal aerodynamic 

coefficients. These AI models (lateral and longitudinal) replace the traditional look-up tables 

often used in flight simulators, and compute the forces and moments based on the current flight 

conditions and aircraft state. The equations of motion describe the physical behavior of the 

aircraft based on the forces and moments calculated by the aerodynamic models. These 

equations govern the aircraft motion and changes in its state over time. The sensors in the 

simulation platform mimic those on an actual aircraft, providing various flight parameters data. 

This sensor data is used to assess the performance of the simulation and to compare it with the 

reference data from VRESIM. Finally, the 3D visualization translates the motion and state of 

the aircraft, calculated by the equations of motion and aerodynamic models, into a graphical 

representation, thereby rendering the flight scenarios in a visual display.  
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Figure 3.15 Bombardier CRJ-700 flight dynamics platform.  
 

To validate the accuracy of the developed MLP and SVR models, a series of flight test 

scenarios were conducted, which replicated those performed with the VRESIM. The simulator-

generated flight parameters were then compared with the corresponding parameters recorded 

by the VRESIM. These comparisons were conducted according to the FAA tolerance, for 

validating the developed models by use of tolerances for Dutch Roll. These criteria specify 

that the roll rate oscillation period should be estimated within a tolerance of ± 10%, while the 

damping ratio should be within a tolerance of ± 0.02. Furthermore, there should be a 

maximum discrepancy of ±1 second in the time between the roll angle peaks. 

 

For illustrative purposes, comparison simulations of roll rate and roll angle are shown in Figure 

3.16 and Figure 3.17, respectively. These simulations correspond to the flight case at 𝑚 = 46,300 𝑙𝑏, 𝑋𝑐𝑔 =  24%, ℎ =  20,000 𝑓𝑡 and 𝐼𝐴𝑆 =  260 𝑘𝑡𝑠. The flight parameters 

obtained by the simulation platform using the MLP and SVR models are denoted in red and 

black, respectively, while the parameters derived from the VRESIM are represented in blue. 

The peak points are marked by dotted circles. The plots reveal oscillations that occur post-

aileron impulse, approximately at 40 seconds. At this time, the damping ratio can be measured 

effectively.  
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Figure 3.16 Example of roll rate prediction for a flight test at  
m = 46,300 lb | Xcg = 24% | h = 20,000 ft | IAS = 260 kts 

 

 

Figure 3.17 Example of roll angle prediction for a flight test at  
m = 46,300 lb | Xcg = 24% | h = 20,000 ft | IAS = 260 kts 

38 40 42 44 46 48 50 52 54 56 58 60
time [sec]

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
MLP peaks
SVR peaks
Experimental peaks

38 40 42 44 46 48 50 52 54 56 58 60
time [sec]

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65
MLP peaks
SVR peaks
Experimental peaks



106 

To determine the roll rate period, we calculated the mean time difference between successive 

peaks for the three signals. The damping ratio of the roll rate was then computed using 

Equation (3.20) (Alexandersson, Mao & Ringsberg, 2021): 

 

 𝜁 = 1ට1 + ቀ2𝜋𝛿 ቁଶ  
(3.20) 

 

where 𝛿 represents the logarithmic decrement. This decrement is defined as the natural 

logarithm of the ratio between two successive altitude peaks, as shown in Equation (3.21) 

(Alexandersson et al., 2021):  
 

 𝛿 = 1𝑛 logቆ 𝑝(𝑖)𝑝(𝑖 + 𝑛𝑇)ቇ 
 

(3.21) 

 

where 𝑝(𝑖) and 𝑝(𝑖 + 𝑛𝑇) denote the amplitudes of two peaks separated by n periods of 

duration 𝑇. The peaks values and the locations of the roll angles were also measured. 

 

After analyzing all validation flight cases, both the MLP and SVR models satisfied the FAA-

specified tolerances for roll rates and roll angles. Examples showing the comparison of FAA 

tolerances between experimental results and AI predictions for roll angle and roll rate are 

provided in Table 3.5 and Table 3.6, respectively. These comparisons correspond to the flight 

cases illustrated in Figure 3.11 to Figure 3.13.  
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Table 3.5 Errors of the prediction of roll rate, damping ratio, and roll angle peaks’ 
location 

 Relative error of the period 𝑻 
estimation 

Residual error of the damping 
ratio 𝜻 estimation 

 MLP 
[%] 

SVR 
[%] 

Tolerance 
limit 
[%] 

MLP 
[× 10-2] 

SVR 
[× 10-2] 

Tolerance 
limit [n/a] 

m = 46,300 lb | Xcg 
= 24% | h = 20,000 ft 
| IAS = 260 kts 

< 0.4 < 0.4 ± 10 0.31 0.17 ± 0.02 

m = 55,120 lb | Xcg 
= 18% | h = 20,000 ft 
| IAS = 280 kts 

< 0.4 < 0.4 ± 10 0.11 0.038 ± 0.02 

m = 63,930 lb | Xcg 
= 26% | h = 25,000 ft 
| IAS = 330 kts 

< 0.4 0.5 ± 10 0.55 0.45 ± 0.02 

 

Table 3.6 Errors of the prediction of roll angle peaks’ location appearing after 40 
seconds 

 1st peak 2nd peak 3rd peak 4th peak  

 MLP 
[sec] 

SVR 
[sec] 

MLP 
[sec] 

SVR 
[sec] 

MLP 
[sec] 

SVR 
[sec] 

MLP 
[sec] 

SVR 
[sec] 

Tolerance 
 limit 
[sec] 

m = 46,300 lb | 
Xcg = 24%  
| h = 20,000 ft | 
IAS = 260 kts 

< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1 

m = 55,120 lb | 
Xcg = 18% |  
h = 20,000 ft |  
IAS = 280 kts 

< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.11 1 

m = 63,930 lb | 
Xcg = 26% |  
h = 25,000 ft |  
IAS = 330 kts 

< 0.1 0.11 < 0.1 < 0.1 < 0.1 < 0.1 0.11 < 0.1 1 

  

As shown in Table 3.5 for the relative error of the period 𝑇 estimation, both the MLP and SVR 

models showed excellent performances. They maintained an error of less than or equal to 0.5%, 

which is significantly lower than the tolerance limit of ±10%. Similarly, for the residual error 

of the damping ratio 𝜁 estimation, both models performed well within the tolerance limit of 
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±0.02. The SVR model performed slightly better than the MLP model in all given cases. 

Regarding the error of the prediction of roll angle peaks' location, both MLP and SVR models 

produced excellent results, with errors of less than 0.12 sec, within the tolerance limit of 1 sec. 

 

3.4 Conclusions 

The main objective of this research was to accurately predict lateral aerodynamic coefficients, 

which are critical for improving flight control and ensuring safety in the aviation industry. 

Specifically, we focused on the Bombardier CRJ-700 aircraft, a widely used regional jet, and 

trained and optimized artificial neural network (Multi-Layer Perceptron, MLP) and Support 

Vector Regression (SVR) models to predict these coefficients. The data for this study was 

collected using the Level-D CRJ-700 (VRESIM) designed by CAE Inc and Bombardier. To 

optimize the performance of these models, we used Bayesian Optimization techniques to 

determine the optimal hyperparameters for both models. For the MLP, we found that the 

optimal training function was trainbr, the activation function was logsig, and the architecture 

consisted of 4 hidden layers with 14 neurons each. For the SVR, the optimization revealed that 

the Gaussian kernel function performed the best with different kernel scale and regularization 

parameters values across the three lateral aerodynamic coefficients. 

 

To evaluate the performance of the models, we compared their predictions against 

experimental data from 2,136 flight cases. The SVR models outperformed the MLP model for 

the prediction of 𝐶𝑙ௌ and 𝐶𝑛ௌ, while the MLP achieved better results than the SVR in predicting 𝐶𝑌ௌ. However, both models demonstrated very good precision overall, with a Mean Absolute 

Relative Error (MARE) below 5%. The residual errors achieved by the SVR models were of 

the order of 10ିହ, indicating a level of accuracy well beyond the initial precision set by the 𝜀 

hyperparameter (10ିସ). Furthermore, all models met 100% of the Federal Aviation 

Administration (FAA) tolerance criteria for all validation flight cases, confirming their 

reliability for practical application. 
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Our study has significant practical implications for the aviation industry, as the enhanced 

accuracy in predicting lateral aerodynamic coefficients using SVR models can directly 

contribute to the development of more efficient, safe, and cost-effective aircraft designs. 

Additionally, incorporating our AI (MLP and SVR) models into flight simulators can create 

highly realistic training environments, potentially improving training outcomes and flight 

safety. Our findings can also help improve the control logic of aircraft autopilot systems, thus 

leading to smoother and more efficient flights. Similarly, proactive risk management 

techniques like the cluster-based anomaly detection method (Li et al., 2015), which utilizes 

data from the flight data recorder to identify operational anomalies, could complement these 

improvements by providing another layer of safety through operational monitoring. 

 

However, it is important to acknowledge the limitations of our study. One primary constraint 

is that the models were trained and tested on a limited dataset, which may not encompass all 

possible flight scenarios and conditions. Future research could involve expanding the scope of 

the training dataset to include more diverse flight conditions and scenarios, as well as 

investigating the use of other advanced machine learning techniques, such as deep learning 

algorithms, for aerodynamic coefficients prediction. By addressing these limitations and 

expanding upon the current work, we believe that future research can continue to drive forward 

the integration of AI techniques in aerodynamics. 
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Résumé 
 

Cet article a pour objectif de présenter une méthodologie innovante destinée à modéliser les 

coefficients aérodynamiques et à prédire la dynamique des aéronefs en conditions de 

décrochage, y compris le cycle d'hystérésis, en utilisant les réseaux de neurones. Les variations 

des coefficients aérodynamiques, essentielles au processus d'identification, ont été déduites à 

partir des données de vol recueillies au cours de diverses manœuvres de décrochage. Par la 

suite, simulateur de vol virtuel pour la recherche CRJ-700 (VRESIM), qualifié de niveau D 

par la « Federal Aviation Administration » (FAA) et conçu par CAE, Inc. et Bombardier, a été 

utilisé pour la collecte de données de vol tant dans les phases de décrochage statique et 

dynamique. Selon la FAA, le niveau D représente le plus haut degré de qualification pour les 

modèles de dynamique de vol et de propulsion. Les perceptrons multicouches « Multilayer 

perceptron (MLP) » et les réseaux de neurone récurrents « Recurrent Neural Networks (RNN) 

» ont été entrainés pour prédire les coefficients aérodynamiques et leur corrélation avec les 

paramètres de vol. Une nouvelle méthodologie pour le l’optimisation des hyperparamètres des 

modèles MLP et RNN, incluant le nombre optimal de couches et de neurones, a été développée. 

Les modèles résultants ont été validés en comparant les données de vol prédites avec les 

données expérimentales obtenues à partir du CRJ-700 VRESIM de niveau D, en prenant en 

compte les mêmes commandes de pilotage. Les modèles élaborés grâce à cette méthodologie 
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ont réussi à prédire la dynamique de vol du CRJ-700 dans les conditions de décrochage statique 

et dynamique avec une précision remarquable, respectant les tolérances établies par la FAA. 

 

Abstract 
 
This paper aims to present a new methodology to model the aerodynamic coefficients and 

predict the aircraft dynamics under stall conditions, including the hysteresis cycle, using neural 

networks. The aerodynamic coefficients variations required for the identification process were 

estimated from flight data collected during different stall maneuvers. Then, a level-D-qualified 

Bombardier CRJ-700 virtual research equipment simulator (VRESIM) developed by CAE, Inc. 

and Bombardier was used to gather flight data in both linear and nonlinear stall phases. 

According to the Federal Aviation Administration (FAA), level D is the highest qualification 

level for flight dynamics and propulsion models. Multilayer perceptron (MLP) and recurrent 

neural networks were trained for the aerodynamic coefficients learning and their correlation 

with flight parameters. A new methodology for tuning the neural network parameters, such as 

the optimal number of layers and neurons, was developed. The resulting models were validated 

by comparing predicted flight data with experimental data obtained from the level D 

Bombardier CRJ-700VRESIMby considering the same pilot inputs. The models developed 

using the proposed methodology were able to predict the CRJ-700 flight dynamics in both 

static and dynamic stall conditions, with very good precision, within the tolerances of the FAA 

(FAA, 1991; ICAO, 2016). 

 

4.1 Introduction 

or reasons of safety and passenger comfort, aircraft are normally designed to fly in conditions 

within a defined envelope in order to avoid dangerous situations, such as stalling. Stall is an 

aerodynamic phenomenon that occurs at high angles of attack and at low speeds, and results 

in a significant suddenly reduction in the lift of the wing (Spentzos et al., 2005). Although it 

represents a certain risk for commercial aircraft, flying at a high angle of attack and in near-

stall conditions has several advantages, such as increasing the aircraft's lift capacity or reducing 
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landing distances. Thus, given the industry's desire to constantly improve the performance and 

safety of aircraft, aerodynamic phenomena such as stall are of great interest. Understanding 

stall allows manufacturers to explore new control strategies (Abdolhosseini et al., 2013; 

Moncayo et al., 2012; Shao et al., 2019; Wang & Zhang, 2018) to extend the operational 

envelope of the next generation of aircraft. It may also help the airline industry in the 

development of new approaches for proactive risk management (Li et al., 2015; Vakil & John 

Hansman, 2002), aiming to identify and mitigate risks prior eventual accidents, or to develop 

feedback models of air transportation system (Mozdzanowska et al., 2008). However, 

modeling the aircraft dynamics in the stall region remains a challenge for engineers and 

researchers (Tinoco, 1998). 

 

When an aircraft reaches stall conditions, it is subjected to multiple complex and nonlinear 

aerodynamic phenomena, such as boundary layer instabilities, vortex instabilities, early 

transition from laminar to turbulent flow and critical flow separation (McCroskey, 1981). The 

stall can be divided into two regions:  static and dynamic. A static stall occurs when the 

aircraft’s angle of attack exceeds a critical value, and the airflow begins to separate from the 

wing. In this case, the aircraft remains controllable despite the loss of lift, and the pilot can 

return to the aircraft stable configuration by reducing its angle of attack. Dynamic stall, on the 

other hand, is more complex, and occurs when the airflow has completely separated from the 

wing. In this case, the pilot may temporarily lose control of the aircraft, which exhibits a 

complex and non-linear behavior. Mathematically, the aerodynamic coefficients of an aircraft 

in stall conditions can be described by two distinct trends: a static trend for static stall, and a 

hysteresis trend for dynamic stall.  

 

Today, the most common techniques for determining the aerodynamic coefficients of an 

aircraft include the use of semi-empirical models (Bierbooms, 1992; Botez, 1989; Fischenberg, 

1995) or Computational Fluid Dynamics (CFD) methods (Spentzos et al., 2005; Tinoco, 1998). 

Semi-empirical methods allow the variation of the coefficients to be modelled as a function of 

the flight conditions by using mathematical equations. These equations are based on theoretical 

models coupled with aerodynamic databases obtained from wind tunnel and flight tests. Botez 
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(1989) presents a comparative study of semi-empirical models for the prediction of dynamic 

stall. Although very practical, these models are too simple to be generalized to all aircraft, or 

to model non-linear phenomena such as those governing aircraft stall.  

 

CFD methods, on the other hand, are more powerful and generalizable methods. They are 

based on the resolution of fluid dynamic equations by numerical calculations. Over the past 

decades, CFD methods have greatly contributed to improve the modeling of unsteady flows, 

to the point of becoming an essential tool for the aerospace industry. A review of CFD methods 

on dynamic stall was presented by Ekaterinaris & Platzer (1998). For example, Spentzos et al. 

(2005) performed numerical simulations of three-dimensional dynamic stall using CFD. The 

full Navier-Stokes equations, coupled with a two-equation turbulence model, were solved, and 

the results were presented for square-shaped wings having a NACA 0012 airfoil. The obtained 

results were validated using experimental data obtained from both the surface pressure 

distribution on the wing and the flow topology. Barakos & Drikakis (2003) also used Navier-

Stokes and turbulence transport equations to computationally investigate subsonic and 

transonic turbulent flows around oscillating and ramping airfoils under dynamic stall 

conditions. They investigated the effects of various parameters, such as Reynolds number, 

Mach number and pitch rate on the stall angle. 

 

CFD methods allow for cost-effective simulations leading to the understanding of critical 

parameters for aerodynamic modeling in stall conditions. They can also provide detailed 

information anywhere in the flow field, which allows the accurate characterization of the 

laminar to turbulent transitions region of the wing under tests. However, their calculation 

accuracy is usually limited by the assumptions of the mathematical equations used by their 

algorithms. Even though numerical simulations allow a first representation of the studied stall 

models, experimental tests must often confirm the obtained results before being considered as 

industrial improvements. 

 

Many researchers have investigated experimental techniques to obtain the aerodynamic 

coefficients of a wing under stall conditions from wind tunnel tests. Piziali (1994), for instance, 
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performed an analysis to evaluate the aerodynamic characteristics of a NACA 0015 finite wing 

with an aspect ratio of 10 for different values of pitch rates and angles of attack, and for a 

Reynolds number of 106. In his study, Piziali (1994) used pressure measurements at various 

spanwise wing locations to visualize the variations of aerodynamic loads on a wing. Tang & 

Dowell (1995) carried out a similar experiment on a NACA 0012 airfoil square wing model 

with an aspect ratio of 1.5. The model oscillated around the pitch axis at several reduced pitch 

rates and angles of attack. They also analyzed pressure fluctuations at three different spanwise 

locations of the wing to characterize the flow. Later, Braza et al. (2003) performed a laser 

velocimetry technique to obtain accurate measurements of flow velocity during dynamic stall. 

Wernert et al. (1996) used a Laser Sheet Visualization (LSV) technique to visualize the flow 

around a NACA 0012 airfoil. The wing oscillated with an amplitude of 10 degrees and a mean 

incidence angle of 15 degrees. The aspect ratio of the wing was 2.8, the Reynolds number was 3.73 × 10ହ, and a reduced frequency of 0.15 was used. Mulleners et al. (2012) and Hansman 

& Craig (1987) investigated flow separation dynamics using a Time-Resolved Particle Image 

Velocimetry (TR-PIV) technique to visualize the velocity field on a steady airfoil. In Mulleners 

et al. (2012), experiments were performed on an OA209 airfoil at a Mach number of 0.16 and 

a Reynolds number of 1.8 × 10଺, while in Hansman & Craig (1987), tests on the NACA 64-

210 and NACA 0012 at Reynolds number of 3.1 × 10ହ were performed.   

 

Wind tunnel experiments have the advantage of dealing with a “real” fluid and can be used to 

reproduce flight conditions over a wide range of the envelope of an aircraft. However, they 

have some disadvantages: they are prohibitively expensive and time-consuming (Botez, 2018; 

Moir & Coton, 1995), depending on the scale of the model, and they may not properly consider 

the effects of aeroservoelasticity. In addition, wind tunnels are limited because the Reynolds 

number that can be reproduced in such an environment is typically restricted to a range of 0.5 × 10଺ to 1 × 10଺, whereas in actual flight conditions it can vary between 20 × 10଺ and 50 × 10଺ (Mulleners et al., 2012).  

 

Another alternative to model aircraft aerodynamic coefficients is to use system identification 

techniques. They combine the advantages of the previously presented methods and overcome 
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their weaknesses. For example, in (Perhinschi et al., 2002), a flexible simulation tool for 

aircraft parameters identification was developed using system identification techniques. The 

developed tool was further used to implement new control strategies. These techniques aim to 

design mathematical model of a physical system from measurement data. In other words, the 

objective is to learn the dynamics of the system and translate it into mathematical equations. 

In this context, the use of artificial intelligence can be very practical.  

 

Artificial Intelligence (AI) is a rapidly advancing technology that could soon have a significant 

impact on several industries and engineering processes. It refers to an artificial design of 

intelligence based on the human model; it can learn from past data and predict natural language 

and information. Technologies based on AI in (Haykin, 1998) are currently being developed 

for flight simulation, and they could solve a wide range of complex problems in the 

aeronautical field (Ben Mosbah, Botez & Dao, 2016; Ben Mosbah, Botez, Medini & Dao, 

2020; Ben Mosbah, Flores Salinas, Botez & Dao, 2013; Boely, Botez & Kouba, 2011; Boely 

& Botez, 2010; De Jesus Mota & Botez, 2011; De Jesus Mota & Botez, 2009; Mosbah, Botez 

& Dao, 2013; Perhinschi et al., 2007). These studies have demonstrated that “past data” can be 

used to build a generalized mathematical model of a system being tested (Al-Shareef, 

Mohamed & Al-Judaibi, 2008). 

 

Machine learning (ML), which is a subset of AI, has already successfully been used for solving 

complex system identification problems. Several system identification methods have already 

been applied to identify aerodynamic coefficients. For example, kriging (Appleby, Liu & Liu, 

2020) and convolutional neural network (Chen, He, Qian & Wang, 2020) methods have been 

used to predict longitudinal aerodynamic coefficients in linear flight regimes through graphical 

image analysis of wing airfoils. However, these visual methods have the disadvantage to 

assume the steadiness of aerodynamic coefficients variation with angle of attack, which is not 

valid in the stall regime. Other ML methods such as Support Vector Machines (Paulete-

Perianez, Andres-Perez & Lozano, 2019), Maximum Likelihood, Extreme Learning Machine 

(ELM) networks (Verma & Peyada, 2020; Hari Om Verma & Peyada, 2020) have also 

demonstrated their effectiveness in the aircraft parameter estimation field, especially for 
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aerodynamic coefficients variations with the angle of attack. However, these methods have 

difficulties in solving optimization problems with a large number of variable dimensions and 

have limited accuracy for solving highly nonlinear engineering problems such as stall 

modeling. To our best knowledge among all these ML techniques, we believe that Neural 

Networks could be the most suitable presented in the literature for stall modeling as they can 

handle multi variables dimension modeling of nonlinear phenomena (Basappa & Jategaonkar, 

1995; Ghazi et al., 2017; Linse & Stengel, 1993; Moin, Khan, Mobeen & Riaz, 2021; Peyada 

& Ghosh, 2009; Punjani & Abbeel, 2015).  

 

Punjani & Abbeel (2015) defined a rectified linear unit Neural Network (NN) model and 

proved its effectiveness for modeling an aerobatic helicopter’s dynamics. A helicopter is a 

complex system combining a rigid body model with aerodynamics, vibrations, engines, etc. 

Consequently, their system identification is a complex issue, especially when unsteady flight 

regimes are considered. The prediction of the vertical acceleration of the helicopter is 

empirically one of the most challenging problems; the NN-developed model improved this 

prediction by 60% over the previous state-of-the-art methods (Punjani & Abbeel, 2015). The 

overall Root Mean Square (RMS) acceleration was improved by 58%. Peyada & Ghosh (2009) 

had a similar challenge of modeling aircraft parameters using Neural Networks (NN). Their 

Feed Forward Neural Network (FFNN) was coupled with Gauss-Newton (GN) optimization. 

It used a black-box approach to estimate the aerodynamic coefficients of an aircraft using 

measured flight variables, such as speeds and accelerations. The algorithm was validated using 

both HANSA-3 aircraft and ATTAS aircraft flight data. The measured values were compared 

with those obtained using the Least Square (LS) and Filter Error (FE) methods. Their FFNN 

gave better approximations than the LS and FE methods. Other researchers, including Linse & 

Stengel (1993), Moin et al. (2021), Basappa & Jategaonkar (1995), Singh & Ghosh (2007) and 

Ghazi et al. (2017) also contributed to the application of neural networks for aircraft 

aerodynamic coefficients identification. 

 

The advantages of neural network methods are their ability to learn through past data and to 

provide function approximations of the tested system, without any representation of a 
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mathematical model or need to solve its equations of motion. In addition, once the model is 

trained with past data, the solutions are computed very quickly (milliseconds in software and 

microseconds in hardware) (Haykin, 1998). However, NNs require access to a significant 

amount of data to be able to train adequately. Numerical models, such as those encoded in 

high-certification level flight simulators, can represent the flight dynamics of an aircraft under 

near-reality flight conditions with excellent accuracy, to the point of being a reference for 

researchers (Ghazi et al., 2017; Hamel, Sassi, Botez & Dartigues, 2013; Zaag & Botez, 2017). 

Aircraft flight simulators present the advantage of enabling the rapid gathering of data that can 

be used to build the large database needed to feed a system identification model.  

 

This paper aims to present a new methodology to model the aerodynamic coefficients and 

identify the dynamics of an aircraft in both static and dynamic stall conditions, using neural 

networks. The methodology was applied on the Bombardier CRJ-700 regional jet. This aircraft 

was selected because a highly qualified flight simulator was available for the study: a Virtual 

Research Equipment Simulator (VRESIM) for the Bombardier CRJ-700 (see Figure 4.1). The 

VRESIM was designed and manufactured by CAE Inc and has a level D qualification for its 

flight dynamics and propulsion model. According to the Federal Aviation Administration 

(FAA), the level D is the highest qualification level for flight simulators. Therefore, it was 

assumed that the VRESIM was accurate enough to be considered as a test aircraft, and that all 

the collected data was similar to the actual data collected by the Bombardier’s flight test 

engineers’ team. 
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Figure 4.1 Bombardier CRJ-700 Virtual 
Research Equipment Simulator (VRESIM) used 
for the validation of the proposed methodology 

 

The rest of the paper is structured as follows: section 4.2 presents the methodology, which 

includes the procedure for acquiring flight data from the flight simulator and the data 

preprocessing needed to estimate the aerodynamic coefficients from measurable flight 

parameters. The method developed to determine the optimal neural network structure, as well 

as the training process are also discussed in this section. Section 4.3 presents the results 

obtained and their comparison with experimental data collected from the CRJ-700 VRESIM. 

Finally, the paper ends with conclusions and remarks regarding future work. 

 

4.2 Methodology 

Modeling a physical system consists of postulating a mathematical model that is supposed to 

reflect the structure of the system, and in determining the parameters defining that model. Such 

a model is very useful, especially when it is impossible or very expensive to create an 

experimental environment to test and analyze the system behavior. Within this context, the 

objective of this section is to present the methodology developed at LARCASE for modeling 

the aerodynamic coefficients of the Bombardier CRJ-700 aircraft in stall conditions using 

neural networks. 
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4.2.1 Flight Test Procedure and Data Gathering 
 

The first step in this methodology was to conduct a series of flight tests and collect a large 

amount of flight data. The objective was to create a database reflecting the variation of the 

aircraft aerodynamic coefficients over a wide range of flight conditions. For this purpose, 

several flight tests were performed with the Bombardier CRJ-700 VRESIM, following the 

procedure described in Figure 4.2.  

 

As illustrated in Figure 4.2, the procedure used in this study involved several steps. The first 

step was to stabilize (or trim) the aircraft at a given flight condition expressed in terms of 

airspeed and altitude. This maneuver was accomplished by engaging the altitude hold mode 

from the autopilot panel to maintain the altitude, while the airspeed was stabilized manually 

by adjusting the throttle position. 

 

 

Figure 4.2 Stall flight test procedure illustration 
 

Once the aircraft was trimmed (step 1), the next step was to stall it. For this purpose, the engine 

thrust was reduced by returning the throttles to the idle position (step 2). This action resulted 

in a gradual reduction of the aircraft airspeed, which was compensated by the autopilot by 

increasing the angle of attack to maintain the altitude. When the aircraft airspeed was relatively 

low, close to stall speed, the autopilot was then disengaged, and the yoke was pulled back 

manually to deflect the elevators (step 3). This second action caused the angle of attack to 

suddenly increase until reaching the stall angle (𝛼ୱ୲ୟ୪୪). During this part of the flight test, the 
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aircraft was maintained in stall conditions as much as possible by controlling the elevators in 

order to observe the dynamic stall, and at least one hysteresis cycle (step 4). Finally, the last 

maneuver was to recover the aircraft. The engine thrust was increased to gain airspeed, and the 

elevators were manually controlled to re-stabilize the aircraft (step 5), and then they returned 

to normal level flight conditions (step 6). 

 

During the flight tests, all the required flight parameters, such as the altitude, Mach number, 

true airspeed, angular velocities, accelerations, engine thrust, and control surface deflections, 

were recorded at a sampling rate of 30 Hz. A typical example of data recorded from the 

VRESIM for a flight test conducted at an altitude of 7500 ft, a Mach number of 0.20, and with 

the slats fully retracted (i.e., 0௢) is shown in Figure 4.3. In this case, the pilot suddenly deflected 

the elevators 𝛿௘ at about 120 seconds (see Figure 4.3.a), which caused the angle of attack 𝛼 to 

immediately increase above the stall angle (see Figure 4.3.f). The lift force then decreased 

significantly, resulting in a change in vertical acceleration 𝑎௭ (see Figure 4.3.h). Similarly, the 

drastic change in longitudinal acceleration 𝑎௫ reflects the increase of the drag force that occurs 

during the stall (see Figure 4.3.g). The combination of these two phenomena led to a decrease 

in the altitude ℎ. 
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Figure 4.3 Example of data recorded for a flight test at 7500 ft, Mach 0.20, and slats 𝛿௦ 
retracted 

 

Starting from the procedure described in Figure 4.2, a total of 39 flight cases (i.e., scenarios) 

were conducted with the Bombardier CRJ-700 VRESIM. These flight cases were determined 

by selecting 13 different altitudes ranging from 5000 to 35,000 ft, with a step of 2500 ft. In 

addition, as slats affect the shape of a wing by locally increasing its camber, which has the 

effect of delaying the stall phenomenon, three slat configurations were considered: 0௢ (i.e., 

fully retracted), 20௢ (i.e., intermediate position), and 45௢ (i.e., fully extended). Table 4.1 to 

Table 4.3 summarize the flight conditions in terms of altitude, Mach number and angle of 

attack, considered for each of the three slat configurations. 
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Table 4.1 Flight test conditions with slats at 0o 

Flight Case 
Number 

Altitude  
[ft] 

Mach Number  
[at stall] 

Angle of attack  
[at stall, in o] 

1 5000 0.21 17.02 
2 7500 0.20 17.01 
3 10,000 0.26 17.00 
4 12,500 0.24 17.01 
5 15,000 0.31 17.03 
6 17,500 0.31 17.02 
7 20,000 0.30 16.84 
8 22,500 0.36 17.10 
9 25,000 0.37 17.00 
10 27,500 0.38 17.00 
11 30,000 0.40 17.01 
12 32,500 0.34 17.00 
13 35,000 0.45 17.12 

 

 

Table 4.2 Flight test conditions with slats at 20o 

Flight Case 
Number 

Altitude  
[ft] 

Mach Number  
[at stall] 

Angle of attack  
[at stall, in o] 

14 5000 0.18 17.62 
15 7500 0.19 17.55 
16 10,000 0.19 17.58 
17 12,500 0.20 17.60 
18 15,000 0.21 17.50 
19 17,500 0.23 17.60 
20 20,000 0.24 17.56 
21 22,500 0.30 17.60 
22 25,000 0.30 17.54 
23 27,500 0.31 17.70 
24 30,000 0.36 17.70 
25 32,500 0.36 17.60 
26 35,000 0.37 17.70 
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Table 4.3 Flight test conditions with slats at 45o 

Flight Case 
Number 

Altitude  
[ft] 

Mach Number  
[at stall] 

Angle of attack  
[at stall, in o] 

27 5000 0.16 17.72 
28 7500 0.17 17.66 
29 10,000 0.19 17.71 
30 12,500 0.19 17.51 
31 15,000 0.21 17.64 
32 17,500 0.22 17.55 
33 20,000 0.23 17.88 
34 22,500 0.23 17.77 
35 25,000 0.28 17.66 
36 27,500 0.28 17.63 
37 30,000 0.29 17.69 
38 32,500 0.29 17.61 
39 35,000 0.31 17.56 

 

4.2.2 Data Processing and Aerodynamic Coefficients’ Determination 
 

Once all the flight tests were completed, the next step was to estimate the aerodynamic 

coefficients of the aircraft, and then to create a database to prepare the neural network training 

process.  

 

Starting from the gathered data, the three aerodynamic coefficients in the stability axes of the 

aircraft, 𝐶𝐷௦, 𝐶𝐿௦ and 𝐶𝑚௦ , were estimated based on the following equations (Ghazi et al., 

2017): 

 

 𝐶𝐿௦ =  𝐶𝐿௕ cos(𝛼) −  𝐶𝐷௕ sin  (𝛼) (4.1) 
 𝐶𝐷௦ =  𝐶𝐷௕ cos(𝛼) +  𝐶𝐿௕ sin(𝛼) (4.2) 
 𝐶𝑚௦ =  𝐶𝑚௕ −  𝐶𝐷௕𝑧௖௚ − 𝐶𝐿௕𝑥௖௚ (4.3) 
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where ൛𝑥௖௚, 𝑧௖௚ൟ are the distances of the aircraft center of gravity relative to its aerodynamic 

center, and  𝐶𝐿௕, 𝐶𝐷௕ and 𝐶𝑚௕ are the lift, drag and pitching moment coefficients, 

respectively, expressed in the aircraft body axis. These coefficients were determined from the 

following equations:  

 

 𝐶𝐿௕ =  𝑚𝑎௭ − 𝑇௭1/2𝜌𝑉ଶ𝑆௪ (4.4) 

 𝐶𝐷௕ =  𝑚𝑎௫ − 𝑇௫1/2𝜌𝑉ଶ𝑆௪ (4.5) 

 𝐶𝑚௕ =  𝐼௬௬𝑞ሶ − 𝑇௫𝑧௘௡௚ − 𝑇௭𝑥௘௡௚1/2𝜌𝑉ଶ𝑆௪𝑐௪  (4.6) 

 

where 𝜌 is the air density, ሼ𝑇௫ ,𝑇௭ሽ are the components of the engine thrust, 𝐼௬௬ is the aircraft 

moment of inertia about the lateral axis, 𝑆௪ is the wing reference area, 𝑐௪ is the mean 

aerodynamic chord of the wing, and 𝑎௫ and 𝑎௭ are the longitudinal and vertical accelerations 

of the aircraft, respectively. 

 

Figure 4.4 to Figure 4.6 show the aerodynamic coefficients estimated from flight test data for 

Bombardier CRJ-700 VRESIM, and for the three slat configurations. Note that for 

confidentiality reasons, the data presented in these figures are normalized to the mean value 

and standard deviation of each data sample. 
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Figure 4.4 Aerodynamic coefficients’ estimation from flight test data  
obtained from the Bombardier CRJ-700 VRESIM (slats at 0°) 

 

 

Figure 4.5 Aerodynamic coefficients’ estimation from flight test data  
obtained from the Bombardier CRJ-700 VRESIM (slats at 20°) 
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Figure 4.6 Aerodynamic coefficients’ estimation from flight test data  
obtained from the Bombardier CRJ-700 VRESIM (slats at 45°) 

 

It is interesting to note the effect of the slats on the lift and drag variations during the stall 

phase. Indeed, when the slats were fully retracted (see Figure 4.4), a very fast reduction in lift 

and an increase in drag could be observed, and the angle of attack could increase up to 80°. 

However, when the slats were extended (see Figure 4.5 and Figure 4.6), the reduction in lift 

was smaller, and the angle of attack did not exceed 45°. This observation highlights the 

importance of taking the slats into account in the model, as they have a great influence on the 

stall. 

 

4.2.3 Neural Network Modeling 
 

There are typically three categories of methods commonly used to identify a model for 

nonlinear systems: block-oriented (Baldelli, Lind & Brenner, 2005), functional time series 

(Yao, Müller & Wang, 2005), and black-box (Ghazi et al., 2017). Neural networks are part of 

the black-box methods. Given their ability to successfully approximate continuous and 

discontinuous functions, neural networks are convenient for identifying complex nonlinear 

systems (Haykin, 1998), such as the one considered in this paper.  
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4.2.3.1 Selection of the Type of Neural Networks 

The design of neural networks for system identification problems involves several steps. The 

first step is to determine the best suited type of network to solve the problem of interest. Indeed, 

there are a very large number of network types, and new types are still being developed. Among 

all the existing types, two have especially proven their effectiveness in various fields of 

application: Multi-Layer Perceptrons (MLPs) and Recurrent Neural Networks (RNNs). MLPs 

are typically used to solve regression and function approximation problems, where real-value 

parameters such as aerodynamic coefficients are predicted from a given data set (Haykin, 

1998). However, in this study, RNNs were also considered, because they have been 

demonstrated to be effective in designing models from time-series data by using information 

from previous state during the learning process (Williams & Zipser, 1989). 

 

The following sections offer a brief description of the architecture of MLPs and RNNs.  

 

Multilayer Perceptron 

 

The fundamental element of a neural network, whatever its type, is the artificial neuron. Figure 

4.7 shows a schematic representation of an artificial neuron, also called a “node” or 

“perceptron”, with multiple inputs from either a set of inputs or from neurons in another hidden 

layer. 
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Figure 4.7 Graphical representation of an artificial neuron 
 

As illustrated in Figure 4.7, a perceptron is a simple processing unit that computes an output 

from a given set of inputs. To compute the value of the neuron's output 𝑜ො, the input signal of 

the neuron 𝑋 = [𝑥ଵ, 𝑥ଶ, … , 𝑥௡] is multiplied by its corresponding weights 𝑊 =[𝑤ଵ,𝑤ଶ, … ,𝑤௡], summed up, and then fed to a “transfer” function or to an “activation” 

function. An activation function is associated with each neuron in a network and determines 

whether the neuron should be activated or not. Several types of activation functions exist in 

the literature, such as the linear function, the sigmoid function, or the rectified linear unit 

activation function (Linse & Stengel, 1993). Mathematically, the output of a perceptron can be 

written as follows: 

 
 𝑜ො = 𝜑(𝑋,𝑊, 𝑏) = 𝜑ቌ෍ 𝑥௜𝑤௜௜ ୀ ௡

௜ ୀ ଵ + 𝑏ቍ 
 

(4.7) 

where 𝜑 is the activation function and 𝑏 is a constant bias that defines the activation threshold 

of the neuron. 

 

MLPs are composed of a set of neurons, connected to each other, and organized in layers, as 

shown in Figure 4.8. The first layer, also called the “input layer”, aims to receive signals from 
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the input data, while the last layer, also called the “output layer”, is defined according to the 

model’s number of outputs. Between these two layers, there is an arbitrary number of hidden 

layers. The number of hidden layers, as well as the number of neurons per layer, are essential 

parameters for MLPs, and in some way, determine their performance. 
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x4

ô
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Figure 4.8 Graphical representation of a MLP Neural Network 
 

The predicted output 𝑜ො of the MLP can be computed according to Equation (4.8) (Tondji et al., 

2022a): 

 

 𝑜ො = 𝜑௠ ቌ ෍ 𝑤௠,௞௞ ୀ ௡೘
௞ ୀ ଵ × … × 𝜑ଶ ቎ ෍ 𝑤ଶ,௜௜ ୀ ௡మ

௜ ୀ ଵ × 𝜑ଵ൫𝑥ଵ,௝𝑤ଵ,௝ + 𝑏ଵ,௝൯ + 𝑏ଶ,௜቏
+ 𝑏௠,௞ቍ 

 

(4.8) 

 

where 𝑋 is the input vector, m is the number of layers of the neural network, 𝜑௜ is the activation 

function of the layer 𝑖, 𝑛௜ is the number of neurons of layer 𝑖, and  𝑊௜,௝ and 𝑏௜,௝ are the weights 

and bias, respectively, of the 𝑗୲୦ neuron of the layer 𝑖. 
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Recurrent Neural Network 

 

As the name suggests, RNNs are a type of neural network that have recurrent interconnections. 

The main objective is to preserve the information of the neurons’ variation with time. The main 

advantage of this type of networks is that they are, in theory, more efficient for processing 

time-series signals, such as voice, semantic analysis of videos or sentences, and others. Thus, 

since the aerodynamic coefficients vary in some way over time, it was assumed that the 

information from previous states might be relevant for approximating present or future states. 

Indeed, Suresh et al. (2003) demonstrated that a RNN was more effective than a MLP for 

learning the behavior of complex dynamic systems, such as the behavior of an aircraft in the 

stall region. In fact, for most dynamic systems, the output can be expressed as function of past 

inputs and outputs. Therefore, based on this observation, it was decided to improve the MLP 

model, as proposed by Elman (1990), by adding output feedback delayed by a time step Δ𝑡 on 

each neuron. In this way, the prediction of the aerodynamic coefficients at a given time 𝑡 
depends on the aircraft’s state at a previous time (𝑡 − Δ𝑡). The Elman Neural Network (ENN) 

is a particular type of RNN, defined as a feed-forward network with additional memory 

neurons (called the “copied layer”) and local feedback. A graphical architecture of the ENN is 

given in Figure 4.9.  
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Figure 4.9 Graphical representation of a Recurrent Neural 
Network 

 

The hidden layer receives its information from both the input and the copied layers during the 

training cycle, which are then combined and analyzed simultaneously. On each hidden layer 

neuron, the activation function is fed back to the copied layers at every time step to provide 

additional input combined with other information. The process is repeated for the successive 

training cycles, such that each time, the copied layer contains the outputs values of the hidden 

layer from the previous training cycle. This recurrence gives the network its dynamic 

properties. For more details on the Elman Neural Network (ENN) algorithm, refer to Elman 

(1990).  
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4.2.3.2 Data Labeling  

 

Many experiments have shown that the airflow around the wing of an aircraft during a stall 

maneuver can be characterized by three main regions (McCroskey, 1981). These three regions 

are highlighted in Figure 4.10 for each aerodynamic coefficient, and with three different colors: 

blue, green and red. 

 

 

Figure 4.10 Dynamic stall sages highlighted on aerodynamic coefficients’ variation with 
respect to the angle of attack for the flight test at 17,500 ft with slats retracted 

 
In the first region (in blue), the boundary layer is attached to the wing. The lift, drag, and 

pitching moments follow approximately the unsteady linear thin airfoil theory trends (Spentzos 

et al., 2005). Then, the reversed flow starts at the rear of the airfoil and moves forward to the 

leading-edge region until the lift coefficient reaches its maximum value. In the second region 

(in green), which represents the static stall, vortices begin to appear near the leading edges and 

gradually move towards the trailing edge as the angle of attack increases. This is the beginning 

of the flow separation. The aircraft remains controllable despite the loss of lift. The third region 

(in red) (the dynamic stall regime), is characterized by a succession of secondary vortices, 
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leading to highly nonlinear pressure fluctuations (McCroskey, 1981) and complete separation 

of the flow.  

 

Due to the highly nonlinear nature of the aerodynamic coefficients in the dynamic stall regime, 

it was found necessary to label the data so that the NN models could understand whether they 

were predicting aerodynamic coefficients inside or outside the dynamic stall region. For this 

reason, all data outside the dynamic stall region were labeled with 1, while all the data inside 

this area were labeled with 2. Mathematically, this notation was equivalent to define a new 

vector of labels 𝐿 = [𝑙ଵ, 𝑙ଶ, … , 𝑙௡], such as: 

 

 𝑙௜ =  ൝ 1  if the data is in dynamic stall region2 otherwise                                                         𝑖 = 1, . . . ,𝑛  (4.9) 

 

4.2.3.3 Definition of the Neural Networks’ Inputs and Outputs 

In this study, three different MLPs and three different RNNs were developed for the prediction 

of the aerodynamic coefficients of the Bombardier CRJ-700 (i.e., one MLP, and one RNN for 

each aerodynamic coefficient). This strategy was used because it was found that single output 

neural networks were more accurate and did not need a complex architecture to learn the 

correlation between the input data and the target values. Similarly, the prediction of 

aerodynamic coefficients does not necessarily require similar neural network structures (same 

number of hidden layers and neurons per hidden layer), as some coefficients are easier (e.g., 𝐶𝐿௦ and 𝐶𝐷௦) to model than others (e.g., 𝐶𝑚௦). 
 

Basically, the aerodynamic coefficients of an aircraft in stall conditions depend on the 

following variables: angle of attack 𝛼, Mach number 𝑀, pitch rate 𝑞, rate of change of the 

angle of attack 𝛼ሶ , true airspeed 𝑉  (McCroskey, 1981), and the surface control deflections, 

such as the elevator angle 𝛿௘, the horizontal stabilizer angle 𝛿ு, and slats angle 𝛿௦. In addition, 

depending on the aircraft configuration, the wing airflow may also be affected by the air 

coming from the engines. Thus, the aerodynamic coefficients may also depend on the engine 
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thrust 𝑇 (or thrust coefficient). Finally, it is worth noting that since the variation of 

aerodynamic coefficients with respect to the input variables is nonlinear, a better correlation 

can usually be found by adding the square or cube of those variables as inputs to the neural 

networks. Based on all these observations and assumptions, the input vector 𝑋 was defined as 

follows: 

 

 𝑋 = ቈ𝛼,𝛼ଶ,𝛼ଷ,𝛼ሶ ,𝑀,𝑀ଶ,𝑀ଷ, 𝑞𝑉 , ൤ 𝑞𝑉 ൨ଶ ,𝑇, 𝛿቉் 
(4.10) 

where 𝛿 represents all control surface deflections (i.e., 𝛿௘, 𝛿ு, and 𝛿௦.).  
 

The output 𝑜ො is one of the three aerodynamic coefficients that needs to be estimated: 

 

 𝑜ො = ൛𝐶𝐿௦෢ ,𝐶𝐷௦෢ ,𝐶𝑚෢ ௦ൟ (4.11) 

where 𝐶𝐿௦෢ , 𝐶𝐷௦෢ , and 𝐶𝑚෢ ௦ are the predicted lift, drag and pitching moment coefficients in the 

stability axis. 

 

4.2.3.4 Data Organization and Model Performance Evaluation 

Out of the 39 flight cases conducted on the Bombardier CRJ-700 VRESIM, 27 were used as 

training and test datasets, while the remaining 12 cases were used for validation purposes. Note 

that the training dataset was used to optimize the neural network weights, while the test dataset 

was used to determine the network performance. In addition, to assess the ability of the 

networks to learn the inherent relationships among the data, a training error was required. In 

this study, the training error, also called training performance, was calculated based on the 

Mean Square Error (𝑀𝑆𝐸), and according to the following equation: 

 

 𝑀𝑆𝐸்ோ (𝑤) = 1𝑛  ෍ൣ𝑜ො௞൫𝑤௜,௝൯ − 𝑜௞൧ଶ௡
௞ୀଵ  

 

(4.12) 

where the subscript 𝑇𝑅 refers to the training set data, 𝑖 is the position of the neuron on the layer 𝑗, 𝑜௞ is the 𝑘୲୦ training data, and 𝑜ො௞ is the 𝑘୲୦ value predicted by the network.  
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As mentioned above, the test dataset was used to evaluate the performance of the model based 

on data that was not considered during training. This dataset is mainly used to adjust the key 

parameters of the model, such as the learning function, the activation function, or the number 

of hidden layers. Thus, for a given set of 𝑛 data points and a given set of values of weights 𝑤௜,௝, the test error (or test performance) was calculated in the same way as for the 𝑀𝑆𝐸்ோ, and 

according to the following equation: 

 

 𝑀𝑆𝐸்ா  (𝑤) = 1𝑛  ෍ൣ𝑜ො௞൫𝑤௜,௝൯ − 𝑜௞൧ଶ௡
௞ୀଵ  

 

(4.13) 

 

Finally, the validation dataset, consisting of 12 flight cases, was used to validate the final 

model. This validation set was used to demonstrate the accuracy of the trained network in 

predicting the aerodynamic coefficients based on new data that has not been used to train or 

optimize the network. For a given set of 𝑛 validation data points, and a given set of values of 

weights 𝑤௜,௝, the validation error (or validation performance) was calculated based on the Mean 

Absolute Relative Error (𝑀𝐴𝑅𝐸), as follows: 

 

 𝑀𝐴𝑅𝐸 = 1𝑛 ൭෍ ฬ𝑜ො௞ − 𝑜௞𝑜ො௞ ฬ௡
௞ୀଵ ൱ × 100 

 

(4.14) 

where 𝑜௞ is the 𝑘௧௛ experimental data used for validation, and 𝑜ො௞ is the 𝑘௧௛ value predicted by 

the network. 

 

When evaluating the model performances, it is important to ensure that the data used to train 

the network is representative enough of the data used to test the network. Otherwise, the 

network might be able to correctly interpolate the trained data but would fail to predict the 

aerodynamic coefficients for a new data set, which was not used for training. Such a problem 

is called “overfitting” (Yeom et al., 2018). To avoid this situation, it was decided to use a k-

fold cross-validation to appropriately split the data from the 27 flight cases into training and 

test sets. The k-fold cross-validation method randomly divides the data into k-groups (or folds) 

of approximately equal sizes. Each element in the data sample is assigned to an individual fold 
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and stays in that fold for the duration of the procedure. The network is then trained 𝑘 times. At 

each iteration, a unique group between the 𝑘௧௛ folds is used as the test dataset. The remaining 

(𝑘 − 1)  folds constitute the training dataset, which means that each element is used as test 

data one time and is used to train the network (𝑘 − 1) times. 

 

Figure 4.11 shows an example of data management for a 4-fold cross-validation procedure. 
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Figure 4.11 Example of data management for a 4-fold cross-validation procedure 
 

The value for k should be chosen such that each train/test fold of data is large enough to be 

statistically representative of the general dataset. For most applied machine learning problems, 

a value of 5 to 10 is recommended (Garvin et al., 2013). Since the database used in this study 

was relatively large, a value of 𝑘 = 10 was chosen. The performance of the trained model was 

computed as the mean of the performances obtained at each iteration. 
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4.2.3.5 Choice of Training Algorithm and Activation Function 

The activation function, combined with the choice of training algorithm, influences the overall 

performances of the network and its training time. Thus, in order to determine the best 

activation function/learning algorithm combination, two analyses were performed. 

The first analysis consisted of evaluating the performance of the network for different training 

functions. For this purpose, nine gradient-based local optimization algorithms were used to 

train the network. These algorithms are listed in Table 4.4. 

 

Table 4.4 Training algorithms considered to train the networks 

Algorithm Description 
OSS One-step secant backpropagation 
CGP Conjugate gradient backpropagation with Polak-Ribiére updates 
CGB Conjugate gradient backpropagation with Powell-Beale restarts 
CGF Conjugate gradient backpropagation with Fletcher-Reeves updates 
BFG BFGS2 quasi-Newton backpropagation 
RP Resilient backpropagation 
SCG Scale conjugates gradient method 
LM Levenberg-Marquardt optimization. 
BR Bayesian regularization backpropagation  

 

Both MLP and RNN networks were trained with these nine training algorithms. For this first 

analysis, the activation function and the structure of the neural network were assumed to be 

the same. Each training algorithm was then used to determine the weights and biases that 

minimized the training error (𝑀𝑆𝐸்ோ). The performance of each neural network was evaluated 

using the test error (𝑀𝑆𝐸்ா). 

 

Figure 4.12 shows the test error 𝑀𝑆𝐸்ா value obtained for each training algorithm. Note that, 

for the sake of clarity, the results are presented in this figure for the MLP network, and for the 

 
 
2 Broyden-Fletcher-Goldfarb-Shanno 
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prediction of the lift coefficient 𝐶𝐿௦ of the Bombardier CRJ- 700. Similar types of results were 

obtained using the RNN and for the other coefficients.  

 

Figure 4.12 Network performance variation for different training algorithms 
 

The results in Figure 4.12 clearly show that both the Bayesian Regularization (𝐵𝑅) and 

Levenberg-Marquardt (𝐿𝑀) and) algorithms provided the lowest 𝑀𝑆𝐸்ா value. This result was 

expected, as both the 𝐵𝑅 and 𝐿𝑀 algorithms are well known for their excellent performances 

in solving nonlinear regression problems. Both algorithms operate using the same procedure, 

except that in the 𝐵𝑅 algorithm, a backpropagation is used to compute the Jacobian of the 

network performance with respect to the weights and bias variables (MacKay, 1992).  

 

Once the two best training algorithms were identified, a second analysis consisted in testing 

several activation functions, and evaluating their impact on the network performance. Based 

on previous results, it was decided to train a unique NN structure model with several activation 

functions, using both the 𝐵𝑅 and 𝐿𝑀 algorithms, as they gave the best and very similar 

performances (𝑀𝑆𝐸்ா = 1.55 × 10ିସ for the 𝐵𝑅, and 𝑀𝑆𝐸்ா = 1.63 × 10ିସ for the 𝐿𝑀). In 

addition, although the 𝐵𝑅 performed relatively better than the 𝐿𝑀, we were wondering if it 

will still be the case when changing the activation function.  
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Following the work of Maca, Pech & Pavlasek (2014), the tested activation function and their 

respective formulas are presented in Table 4.5.  

 

Table 4.5 Implemented activation function: 𝑎 is the neuron’s activation, 𝑦 is the neuron’s 
output 

Activation Function Mathematical Equation 

Log Sigmoid (logsig) 𝑦(𝑎) = 11 + 𝑒𝑥𝑝 (−𝑎) 
Hyperbolic Tangent Sigmoid (tansig) 𝑦(𝑎) = 2(1 + 𝑒𝑥𝑝(−2 ∗ 𝑎)) − 1 
Elliot Symmetric Sigmoid (elliotsig) 
 

𝑦(𝑎) = 𝑎(1 + |𝑎|) 
Radial basis (radbas) 
 𝑦(𝑎) = 𝑒𝑥𝑝 (−𝑎ଶ) 
Normalized radial basis (radbasn) 

𝑦(𝑎)௜ = 𝑒𝑥𝑝(−𝑎௜ଶ)∑ 𝑒𝑥𝑝 (−𝑎௜ଶ)௡௝ୀଵ  
where 𝑎 is the input vector to a soft max function 
that consists of 𝑛 elements of 𝑛 classes, and 𝑎௜ is 
the i-th element of the input vector. 

Soft max (softmax) 

𝑦(𝑎)௜ = 𝑒𝑥𝑝(𝑎௜)∑ 𝑒𝑥𝑝 (𝑎௝)௡௝ୀଵ  
where 𝑎 is the input vector to a soft max function 
that consists of 𝑛 elements of 𝑛 classes, and 𝑎௜ is 
the i-th element of the input vector. 

Saturating linear (satlin) 𝑦(𝑎) = ቐ 0, 𝑖𝑓 𝑎 ≤  0        𝑎, 𝑖𝑓 0 ≤ 𝑎 ≤ 11, 𝑖𝑓 1 ≤ 𝑎  
Symmetric saturating linear (satlins) 𝑦(𝑎) = ቐ −1, 𝑖𝑓 𝑎 ≤  −1           𝑎, 𝑖𝑓 − 1 ≤ 𝑎 ≤ 11, 𝑖𝑓 1 ≤ 𝑎  
Triangular basis (tribas) 𝑦(𝑎) =  ൜1 − |𝑎|, 𝑖𝑓 − 1 ≤ 𝑎 ≤ 10, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
Positive linear (poslin) 𝑦(𝑎) =  ൜𝑎, 𝑖𝑓 𝑎 ≥ 00,         𝑖𝑓 𝑎 ≤ 0 
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Figure 2.11 shows the test error 𝑀𝑆𝐸்ா value obtained for each activation function when MLP 

was trained for predicting the lift coefficient 𝐶𝐿௦ of the Bombardier CRJ-700 with the 𝐿𝑀 and 𝐵𝑅 algorithms. As expected, the performance of each algorithm depends on the activation 

function. As illustrated in Figure 2.11, both algorithms, associated with a 𝑇𝑎𝑛𝑠𝑖𝑔 transfer 

function, gave the best results in terms of their smallest values. Indeed, the 𝑀𝑆𝐸்ா obtained 

for the two combinations (𝐿𝑀,𝑇𝑎𝑛𝑠𝑖𝑔) and (𝐵𝑅,𝑇𝑎𝑛𝑠𝑖𝑔) are 3.18 × 10ିସ and 2.59 × 10ିସ, 

respectively. Thus, any of these two combinations can be used to learn and predict the lift 

coefficient accurately. However, to strictly respect the optimization process, it was decided to 

use the 𝐵𝑅 training algorithm associated with the 𝑇𝑎𝑛𝑠𝑖𝑔 activation function for the 

determination of 𝐶𝐿௦ with MLP, as that combination gave the minimum 𝑀𝑆𝐸்ா value.  

 

 

Figure 4.13 Network performance variation for various activation functions 
 

The procedure presented in this section for determining the optimal training algorithm and 

activation function for the of 𝐶𝐿௦ estimation was repeated for the other two aerodynamic 

coefficients, as well as for the RNN. The resulting training algorithms and activation functions 

for all trained models are presented in section 4.3. 
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4.2.3.6 Neural Network Structure Optimization 

Finally, the last step of the neural network design process was to determine the optimal 

structure that provides the best performance while ensuring a relatively acceptable learning 

time. The “optimal” structure can be defined in terms of the (𝑚,𝑛) combination, where 𝑚 is 

the number of layers of the neural network, and 𝑛 is the number of neurons on each layer 

resulting in the minimum test error 𝑀𝑆𝐸்ா. To do this, a procedure similar to the one presented 

in the previous section was considered. This procedure aimed to test different neural network 

structures, and to determine which one provided the best performance in an appropriate 

learning time.  

 

In Ghazi et al. (2017) and Suresh et al. (2003), similar studies were conducted. However, in 

these studies, the authors considered only the static stall and bounded the number of layers to 

3, and the number of neurons per layer to 10 and 3, respectively. Since the study presented in 

this paper includes the dynamic stall, it was assumed that the network structure would be more 

complex than the ones used in Ghazi et al. (2017) and Suresh et al. (2003), because of the 

highly non-linear nature of the data. Based on this observation, a minimum number of hidden 

layers 𝑚௠௜௡  = 1, and a maximum number of 𝑚௠௔௫  =  5 was assumed. Similarly, the 

minimum number of neurons per layer was set to 𝑛௠௜௡  =  1, and the maximum number was 

set to 𝑛௠௔௫  =  15. This range of parameters leads to 15ହ possible structures, which is clearly 

very large. To reduce the number of possible structures, it was assumed that all hidden layers 

should have the same number of neurons. Such an assumption was considered because it was 

found that varying the number of neurons from one hidden layer to another did not significantly 

improve the network performance. This assumption reduces the number of possible structures 

from 15ହ to 75.  

 

The optimization procedure for determining the optimal network structure is summarized in 

Figure 4.14.  
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Number of hidden layers varies from 
m =1 to m =5

Number of neurons varies from n = 1 
to n = 15

Train each structure with m layers and 
n neurons using 10-folds corss 
validation

Select the combinations (m, n) that 
give the lowest and similar 
performances

Start

Set value for: 
Training function
Activation function
Number of training epochs = 1000
Learning rate = 0.05

Between the selected 
combinations, find the one with the 
minimum number of weights 

Save the combination (m, n) = (a, b) 
that gives the lower test error value 

and the minimum number of 
weights.

 

Figure 4.14 Neural network structure optimization procedure. 
 

The number of hidden layers 𝑚 varies from 1 to 5, and the number of nodes 𝑛 varies from 1 to 

15. Each of the 75 structures is trained 10 times using the 10-fold cross validation procedure 

described in section 4.2.3.4. Figure 4.15 shows the variation of the 𝑀𝑆𝐸்ா for each (𝑚,𝑛) 

combination. These results were obtained for the estimation of the lift coefficient for the 

Bombardier CRJ-700 using MLPs. Note that structures with 1, 2 and 3 neurons have been 

removed for scaling purposes, because their test errors were too high compared to the errors 

obtained with the other structures. Figure 4.15 clearly shows that the 𝑀𝑆𝐸்ா decreases with 

the number of neurons and layers. However, it can be observed that the 𝑀𝑆𝐸்ா  of the networks 

has negligeable variations for structures with more than 𝑚 = 2 layers, and more than 𝑛 = 9 

neurons per layer; except for some cases ((4, 13), (5,9) and (5, 11)) that gives unexpected high 𝑀𝑆𝐸்ா values probably due to overtraining. Figure 4.16 shows the 𝑀𝑆𝐸்ா (on the left axis) 

and the number of weights and biases (on the right axis) obtained for networks with 2 to 5 
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layers, and with 9 to 15 neurons. The x-axis represents the network structure (𝑚,𝑛), from the 

lowest to the highest 𝑀𝑆𝐸்ா value. The lowest performance is obtained for the structure (5, 14), with a 𝑀𝑆𝐸்ா of 1.39 × 10ିହ. However, a similar 𝑀𝑆𝐸்ா of 2.39 × 10ିହ was 

obtained for the structure (3, 15), with a significant reduction of the weights and biases (from 

1079 to 736). A high number of weights and biases means that the network will take more time 

to be trained, as it should update all the weights and biases to find their optimal values that 

minimize the training errors. In addition, a network with a high number of weights and biases 

will require more storage (memory) to be implemented in a real system. Thus, the optimal 

MLP structure in this case, with a good trade-off between performance and learning time, 

turned out to be a 3 hidden-layer structure, with 15 neurons per hidden layer. 

 

 

Figure 4.15 Performances for various MLP structures for the estimation of the 𝐶𝐿௦ of 
the Bombardier CRJ-700 
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 Figure 4.16 Performances and corresponding number of weights and biases for various 
MLP structures for the estimation of the 𝐶𝐿௦ of the Bombardier CRJ-700. 

 

4.3 Results 

This section presents the validation results of the proposed methodology. To demonstrate the 

effectiveness of the two neural networks obtained (i.e., MLP and RNN), two analyses were 

performed. The first analysis consisted in evaluating the accuracy of the neural networks in 

terms of the prediction of aerodynamic coefficients. For this purpose, the outputs of both the 

MLP and the RNN models were compared with experimental aerodynamic coefficients’ data 

obtained from the Bombardier CRJ-700 VRESIM. However, since there are no criteria in the 

literature for the validation of aircraft aerodynamic coefficients, a second analysis was 

performed. This analysis aimed at implementing the trained neural networks models in a 

developed CRJ-700 simulation platform to reproduce several stall scenarios performed with 

the VRESIM. The validation in this case was realized by comparing several flight parameters 

predicted by the developed platform with those measured with the VRESIM. The tolerances 

established to validate these models were based on criteria defined by the Federal Aviation 

Administration (FAA) in the Manual of Criteria for the Qualification of Flight Simulators, 

(FAA, 1991; ICAO, 2016) corresponding to the level D. 
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4.3.1 Validation of the Aerodynamic Coefficients 
 

As explained in section 4.2, out of the 39 flight cases performed on the CRJ700 VRESIM, 27 

(70%) were used to train the neural networks, while the remaining 12 (30%) were used for 

validation purposes. Two models were developed – one based on a MLP structure, and another 

based on a RNN structure – and trained using the procedure described in section 4.2 for the 

determination of lift, drag and pitching moment aerodynamic coefficients. The optimal 

parameters obtained for each of the two models are presented in Table 4.6. 

 

Table 4.6 Optimal parameters obtained for the MLP and RNN 

Parameters MLP RNN 

 𝑪𝑳𝒔 𝑪𝑫𝒔 𝑪𝒎𝒔 𝑪𝑳𝒔 𝑪𝑫𝒔 𝑪𝒎𝒔 
Training algorithm BR LM BR BR LM BR 

Activation function tansig logsig tansig tansig logsig tansig 

Number of hidden 
layers 

3 5 5 3 3 5 

Number of nodes 
per hidden layer  

15 12 13 11 13 11 

Number of epochs 1000 1000 1000 1000 1000 1000 

Test error 𝑴𝑺𝑬𝑻𝑬 2.39× 10ିହ 

4.31× 10ିହ 

6.1× 10ିହ 

2.95× 10ିହ 

6.24× 10ିହ 

5.83× 10ିହ 

 

As shown in Table 4.6, the best performances in terms of 𝑀𝑆𝐸்ா for the estimation of the lift, 

drag and pitching moment coefficients were obtained with the 𝐵𝑅 and 𝐿𝑀 algorithms, 

combined with the tansig and logsig activation functions. Furthermore, it can be noted that the 

RNN model performs as well as the MLP model, but with a less complex structure, as the total 

number of neurons of the hidden layers (𝑚 × 𝑛) are sometimes smaller. Indeed, for the 

prediction of the drag coefficient, for instance, the MLP model requires 𝑚 = 5 hidden layers 

and 𝑛 = 12 neurons per hidden layer to achieve a test error of 𝑀𝑆𝐸்ா = 4.31 × 10ିହ, while 

the RNN model needs a structure of only 𝑚 = 3  hidden layers and 𝑛 = 13  neurons per hidden 
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layer, resulting in a test error of 𝑀𝑆𝐸்ா = 6.24 × 10ିହ. This observation can be explained by 

the fact that the RNNs, by their nature, are structurally designed to consider the dynamic 

behavior of complex systems, such as the variation of aerodynamic coefficients under stall 

conditions. However, the MLP structure is still able to give similar type of results, as the 

dynamics of stall phenomena could be considered by adding the pitch rate 𝑞, as well as the rate 

of change of the angle of attack 𝛼ሶ  , as inputs to the network. Globally, most of all the tested 

errors 𝑀𝑆𝐸்ா  obtained with MLP and RNN models are very small of order of 10ିହ or 10ିସ. 

Therefore, we can globally say that the obtained results in Table 4.6 are excellent. 

 

Figure 4.17 to Figure 4.19 show examples of the estimated aerodynamic coefficients compared 

with their experimental data (plotted with respect to the angle of attack) for three different slat 

angles. From a general perspective, the data predicted by the MLP (in red) and by the RNN (in 

blue) models match the experimental data obtained by VRESIM (in black) quite well, 

especially during the hysteresis cycle. The results revealed that all coefficients were estimated 

with a residual error of less than 10ିଷ. This error is very small and allows to conclude that 

both models were able to successfully predict the aerodynamic coefficients for these three 

flight cases.  
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Figure 4.17 Examples of predicted aerodynamic coefficients for  
a flight test at 22,500 ft with slats at 20 
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Figure 4.18 Examples of predicted aerodynamic coefficients  
for a flight test at 25,000 ft with slats retracted 
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Figure 4.19 Examples of predicted aerodynamic coefficients for  
a flight test at 30,000 ft with slats at 45 
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The analysis presented in the previous three examples was repeated for all the other validation 

flight cases. The results obtained in terms of Mean Absolute Relative Error (𝑀𝐴𝑅𝐸) for each 

aerodynamic coefficient  for the MLP and RNN models are presented in Table 4.7 and Table 

4.8, respectively. 

 

Table 4.7 Mean Absolute Relative Error (𝑀𝐴𝑅𝐸) and Mean Absolute Residual 
obtained between experimental data and predicted values with MLP models 

Flight Case 𝑪𝑳𝒔 𝑪𝑫𝒔 𝑪𝒎𝒔 
Altitude 

[ft] 
Slat 

angle 
[in o] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-4] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-4] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-4] 

7500 0 0.07 5.72 0.19 1.29 1.45 4.70 
15,000 0 0.06 5.22 0.16 1.25 0.73 5.61 
25,000 0 0.09 9.01 0.16 1.76 7.90 7.10 
35,000 0 0.13 8.35 0.21 1.46 6.41 4.14 
15,000 20 0.07 9.40 0.07 1.28 10.93 5.07 
17,500 20 0.05 7.55 0.07 1.05 7.59 6.08 
22,500 20 0.07 10.7 0.07 1.26 1.66 5.82 
32,500 20 0.07 8.57 0.11 1.51 10.34 5.38 
17,500 45 0.06 10.1 0.08 2.59 1.12 8.32 
20,000 45 0.11 12.4 0.08 2.71 1.45 9.46 
30,000 45 0.08 10.3 0.08 2.39 1.55 9.59 
35,000 45 0.06 9.80 0.08 2.34 1.64 9.27 

 

 

 

 

 

 

 

 

 



152 

Table 4.8 Mean Absolute Relative Error (𝑀𝐴𝑅𝐸) and Mean Absolute Residual 
obtained between experimental data and predicted values with RNN models 

Flight Case 𝑪𝑳𝒔 𝑪𝑫𝒔 𝑪𝒎𝒔 
Altitude 

[ft] 
Slat 

angle 
[in o] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-4] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-4] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-4] 

7500 0 0.07 7.47 0.25 1.48 1.51 5.84 
15,000 0 0.12 6.31 0.19 1.29 0.96 6.87 
25,000 0 0.13 10.8 0.14 1.51 4.68 5.14 
35,000 0 0.10 7.60 0.15 1.23 9.54 4.78 
15,000 20 0.08 10.7 0.13 2.13 10.65 1.19 
17,500 20 0.07 9.32 0.11 1.87 6.88 5.55 
22,500 20 0.08 10.9 0.11 2.13 1.94 8.72 
32,500 20 0.06 7.52 0.15 2.07 9.81 6.85 
17,500 45 0.08 11.4 0.10 3.38 2.16 12.3 
20,000 45 0.15 14.8 0.12 3.84 1.65 11.3 
30,000 45 0.07 11.2 0.10 3.16 2.90 12.7 
35,500 45 0.06 10.8 0.10 3.12 2.33 11.4 

 

As respectively shown in Table 4.7 and Table 4.8, both MLP and RNN methodologies can 

globally estimate the lift, drag and pitching moment coefficients for each validation flight case, 

and with similar precision. However, it can be seen that for five flight cases, in each Table 4.7 

and Table 4.8 the 𝑀𝐴𝑅𝐸 for the pitching moment coefficient 𝐶𝑚௦ is higher than > 5%. After 

analyzing the results in detail for these flight cases, it was found that this aspect could be 

explained by the fact that the pitching moment coefficient changes its sign when the aircraft 

stalls (see Figure 4.17, Figure 4.18 and Figure 4.19). Consequently, the 𝐶𝑚௦ has relatively low 

values, around zero, which lead to larger relative errors (𝑀𝐴𝑅𝐸) than 5%. However, even if 

the 𝑀𝐴𝑅𝐸 errors on the 𝐶𝑚௦ seem relatively large (around 10%) for some flight cases, the 

results obtained remain very good as the mean residual errors are very low, even negligible.  

 

Finally, Table 4.9 summarizes the average errors 𝑀𝐴𝑅𝐸 obtained for all validation flight cases. 

As seen on Table 4.9, both MLP and RNN models were able to predict the lift and drag 

coefficients with an average 𝑀𝐴𝑅𝐸 of less than 0.14%. The pitching moment coefficient, on 

the other hand, was predicted with an average 𝑀𝐴𝑅𝐸 of about 4.5%. Nevertheless, as 
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explained above, this percentage remains acceptable because it is due to the fact that the 

pitching moment coefficient can take a very small value, around zero. In terms of residual 

errors, the order of the average residual errors for the 12 validation flight cases is between 10ିଷ and 10ିସfor all three coefficients, which is much lower with respect to the order of the 

experimental data, which is 10ିଵ. This aspect therefore shows that the 𝑀𝐴𝑅𝐸 errors are 

negligible. 

 

Table 4.9 Average 𝑀𝐴𝑅𝐸 and standard deviation of 𝑀𝐴𝑅𝐸  
obtained for the prediction of 𝐶𝐿௦, 𝐶𝐷௦ and 𝐶𝑚௦ using MLP and RNN 

 
Number of 
validation 

cases 

Average 𝑴𝑨𝑹𝑬 
[in %] 

Standard 
deviation of the 𝑴𝑨𝑹𝑬 

[in %] 
Estimation of 𝑪𝑳𝒔 with 

MLP 12 0.08 0.02 

Estimation of 𝑪𝑫𝒔 with 
MLP 12 0.11 0.05 

Estimation of 𝑪𝒎𝒔 with 
MLP 12 4.40 3.92 

Estimation of 𝑪𝑳𝒔 with 
RNN 12 0.09 0.03 

Estimation of  𝑪𝑫𝒔with 
RNN 12 0.14 0.04 

Estimation of 𝑪𝒎𝒔 with 
RNN 12 4.58 3.64 

 

4.3.2 Flight Dynamics Model Validation 
 

To further demonstrate the validity of both models, a second analysis was performed. The 

purpose of this analysis was to verify the accuracy of both models based on the behavior of the 

aircraft. Both the MLP and the RNN models were implemented into a simulation platform of 

the Bombardier CRJ-700, designed in Matlab/Simulink (see Figure 4.20). This simulation 

platform was used to reproduce the 12 validation flight cases and then to compare the flight 

parameters predicted by the platform with those obtained using the CRJ-700 VRESIM.  
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Figure 4.20 Developed Bombardier CRJ-700 flight dynamics platform  
 

The criteria used to validate both models were defined by the FAA, which specifies the 

tolerances for both approaches to stall and static stall phases. The angle of attack and the pitch 

angle should be estimated within a tolerance of ± 2°, and the true airspeed within ± 5 𝑓𝑡/𝑠 

(3 𝑘𝑡𝑠). There were no specified criteria by the FAA for the altitude estimation or any other 

variable prediction in dynamic stall phases. For this reason, we established a reasonable 

tolerance of  ± 39 𝑓𝑡 (12 𝑚) for the altitude estimation. The same criteria were considered to 

evaluate the accuracy of these models in the dynamic stall regime.  

 

Figure 4.21 to Figure 4.23 show the comparison results obtained for three different flight cases. 

As shown in these figures, all the flight parameters values (angle of attack 𝛼, altitude ℎ, pitch 

angle 𝜃 and true airspeed 𝑉௧) are found within their requested tolerances. The aircraft dynamics 

was very well predicted in both static and dynamic stall phases. Indeed, for all flight 

parameters, the outputs of the simulation platform are superposed on the outputs collected from 

the VRESIM, which implies by default that all tolerances are satisfied. Finally, the success rate 

obtained for the validation flight cases is 100%, which means that for all the flight conditions 

tested, the models predicted the flight parameters well within the tolerances. 
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Figure 4.21 Example of predicted flight parameters for a flight test at 25,000 ft  
with slats retracted 
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Figure 4.22 Example of predicted flight parameters for a flight test at 22,500 ft  
with slats at 20° 
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Figure 4.23 Example of predicted flight parameters for a flight test at 33,000 ft  
with slats at 45° 

 

4.4 Conclusions 

This paper presents a methodology to model the longitudinal aerodynamic coefficients and 

predict an aircraft's longitudinal dynamics during a stall recovery maneuver in static and 

dynamic stall conditions. This methodology was successfully applied on the CRJ-700 aircraft. 

The linear and nonlinear variations of lift, drag and pitching moment aerodynamic coefficients 

were estimated along the stall hysteresis curve. A system identification technique was used to 

build a mathematical model of aerodynamic coefficients of the aircraft, capable of predicting 

the coefficients’ values as a function of the flight parameters. To achieve it, a large amount of 



158 

flight data and a powerful tool were needed, such as neural networks, to analyze and learn from 

these flight data.  

 

Flight test data were obtained from the CRJ-700 VRESIM designed and manufactured by CAE 

and Bombardier. The CRJ-700 VRESIM has a level D qualification for its flight dynamics, 

meaning that the data collected with it is similar to the actual data collected during flight tests 

on real aircraft. A total of 39 flight cases were conducted for 13 different altitudes ranging 

from 5000 to 35,000 ft and at 3 different slat configurations (0௢, 20௢ and 45௢). Data from 27 

(70%) flight cases were used to train the following two types of Neural Network models: 

multilayer perceptrons and recurrent neural networks. The MLP model was chosen for its 

ability to solve regression problems for which real data were predicted from input parameters, 

whereas the RNN model was considered for its effectiveness in designing models from 

timeseries data.  

 

The procedure to select the neural network hyperparameters (training algorithms, activation 

function) was detailed. Nine training algorithms and ten different activation functions were 

tested. The results showed that the BR training algorithm, associated with the tansig activation 

function, was the best suited for training the lift and pitching moment coefficient models. In 

contrast, the 𝐿𝑀 training algorithm associated with the logsig activation function was the best 

suited for training the drag coefficient model (section 4.3, Table 4.6). In addition, a new 

algorithm was developed to determine the optimal number of layers and number of neurons to 

achieve a good compromise between small prediction errors and appropriate learning time.  

 

The developed models were validated by comparing the aerodynamic coefficients estimated 

by the models with the experimental data from the CRJ-700 VRESIM for the remaining 12 (30 

%) flight cases that were not used for model training. Both the MLP and RNN models were 

able to predict the aerodynamic coefficients with an average mean absolute relative error 

smaller than 0.1%, 0.15%, and 4.6 % for the lift, drag and pitching moment coefficients, 

respectively. These small errors allowed the conclusion that the developed models performed 

very well.  



159 

Finally, the developed models were then integrated into a simulated platform of a CRJ-700 

airplane developed in MATLAB/Simulink to validate the CRJ-700 flight dynamics. The flight 

parameters (angle of attack 𝛼, altitude ℎ, pitch angle 𝜃 and true airspeed 𝑉௧) predicted by the 

platform were compared with those obtained by the CRJ-700 VRESIM for the 12 validation 

flight cases. The criteria used to validate the models were defined by the FAA, which specifies 

the tolerances for estimating the angle of attack, the pitch angle, the true airspeed, and the 

altitude for approaches to both dynamic stall and static stall phases. The outputs of the 

simulation platform were superposed on the outputs collected from the VRESIM, showing that 

the FAA tolerances were satisfied. All 12 validation flight tests gave excellent results with a 

success rate of 100%. 
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Résumé 
 

L'augmentation du nombre d'accidents dans l'aviation générale due à la perte de contrôle des 

aéronefs nécessite le développement de modèles aérodynamiques d'avions précis. Ces modèles 

doivent indiquer les variations linéaires des coefficients aérodynamiques en vol stabilisé ainsi 

que les variations hautement non linéaires des coefficients aérodynamiques dues aux 

conditions de décrochage et post-décrochage. Cet article présente une méthodologie détaillée 

pour modéliser les coefficients aérodynamiques de portance, de traînée et de moment de 

tangage dans le régime de décrochage, en utilisant les réseaux de neurones « Neural Networks 

(NN) ». Une technique d'identification de système a été utilisée pour développer des modèles 

de coefficients aérodynamiques à partir de données de vol. Ces données ont été recueillies 

grâce à un simulateur de vol pour avions de recherche (RAFS) de niveau D qui a été utilisé 

pour exécuter les manœuvres de décrochage. Des perceptrons multicouches « Multilayer 

Perceptrons (MLP) » et des réseaux de neurone récurrents « Recurrent Neural Networks (RNN) 

» ont été utilisés pour apprendre à partir des données de vol et trouver des corrélations entre 

les coefficients aérodynamiques et les paramètres de vol. Cette méthodologie est employée ici 

pour optimiser les structures de réseaux neuronaux et trouver les hyperparamètres optimaux : 

algorithmes d'entraînement et fonctions d'activation utilisées pour apprendre les données. Les 

modèles aérodynamiques de décrochage développés ont été validés avec succès en comparant 
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les coefficients aérodynamiques de portance, de traînée et de moment de tangage prédits pour 

des entrées de pilote données avec des données expérimentales obtenues à partir du RAFS 

Cessna Citation X pour les mêmes entrées de pilote. 

 

Abstract 
 
The increased number of accidents in general aviation due to loss of aircraft control has 

necessitated the development of accurate aerodynamic airplane models. These models should 

indicate the linear variations of aerodynamic coefficients in steady flight and the highly 

nonlinear variations of the aerodynamic coefficients due to stall and post-stall conditions. This 

paper presents a detailed methodology to model the lift, drag, and pitching moment 

aerodynamic coefficients in the stall regime, using Neural Networks (NN). A system 

identification technique was used to develop aerodynamic coefficients models from flight data. 

These data were gathered from a level-D Research Aircraft Flight Simulator (RAFS) that was 

used to execute the stall maneuvers. Multilayer Perceptrons (MLP) and Recurrent Neural 

Networks (RNN) were used to learn from flight data and find correlations between 

aerodynamic coefficients and flight parameters. This methodology is employed in here to 

optimize neural network structures and find ideal hyperparameters: training algorithms and 

activation functions used to learn the data. The developed stall aerodynamic models were 

successfully validated by comparing the lift, drag, and pitching moment aerodynamic 

coefficients predicted for given pilot inputs with experimental data obtained from the Cessna 

Citation X RAFS for the same pilot inputs. 

 

5.1 Introduction  

The need to improve aircraft safety has been one of the major concerns in the aviation industry 

(Cunningham et al., 2004). Over the last few years, the loss of control in-flight, one of the 

primary causes of flight accidents, has been addressed from different perspectives, one of them 

is using flight simulators to teach pilots how to execute stall recovering maneuvers to 

developing high-fidelity stall models (Ananda & Selig, 2016).  
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A high-fidelity stall model would enable the development of new control strategies (Shao et 

al., 2019), that would extend the operational envelope and capabilities of the next generation 

of aircraft. In fact, flying near-stall conditions could help increase an aircraft's lift capacity, 

reduce landing distances, and enable safe recovery from stall in case of emergency maneuvers. 

 

Today, the most commonly used techniques for modeling aerodynamic coefficients in stall 

conditions can be classified into the following groups: semi-empirical methods (Botez, 1989), 

Computational Fluid Dynamics (CFD) methods (Spentzos et al., 2005), experimental 

techniques (Wernert et al., 1996), and system identification techniques (Tondji et al., 2022). 

Semi-empirical methods are based on approximations established based on experimental data 

obtained from flight or wind tunnel tests. They have the advantage of allowing the rapid 

modeling of a wide range of aerodynamic coefficients variations with angle of attack. 

However, in the case of stall modelling, the use of semi-empirical methods has some 

limitations due to the highly non-linear nature of the stall phenomenon and the quality of the 

existing database, which might not be sufficiently representative of the system under test 

(Albisser, 2015).  

 

CFD methods are based on solving the fundamental equations of fluid dynamics. Codes such 

as Ansys CFX (Phillips & Snyder, 2000) and Ansys Fluent (Koreanschi, Oliviu & Botez, 

2014), for instance, are based on the resolution of the Navier-Stokes equations and represent 

practical tools for aerodynamic modeling. However, the accuracy of CFD methods is limited 

by the assumptions of the mathematical equations used by their algorithms.  

 

Experimental methods based on wind tunnel tests overcome the weaknesses of CFD methods 

by considering a “real” fluid to reproduce flight conditions over a wide range of the envelope 

of an aircraft. Many experimental methods such as pressure measurements (Piziali, 1994), 

Laser Sheet Visualization (LSV) (Wernert et al., 1996), and Time-Resolved Particle Image 

Velocimetry (TR-PIV) techniques (Mulleners et al., 2012) have been used to develop stall 

models by visualizing and characterizing the airflow during wind tunnel experiments. 
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However, the results obtained are highly dependent on the scale of the model, and require 

costly and time-consuming experiments (Botez, 2018).  

 

The system identification methods we have chosen to use in our study aim at designing a 

mathematical model of the aerodynamic coefficients from flight test, under stall conditions. 

System identification techniques combine the advantages of the previously presented methods 

and overcome their weaknesses. They can provide an accurate model based on real flight test 

data learning. These types of methods require a large amount of data and a powerful tool to 

learn the data scheme. At our LARCASE laboratory, we have used neural network techniques 

for the morphing wing tip modeling in the CRIAQ MDO 505 project (Ben Mosbah et al., 

2020), for the wind tunnel calibration (Ben Mosbah et al., 2013), for the modeling of the Bell-

427 helicopter (De Jesus Mota & Botez, 2011), F/A-18 (Boely et al., 2011; Boely & Botez, 

2010) and Cessna Citation X Engine Model (Zaag & Botez, 2017).  

 

The main objective of this paper is to develop a methodology to predict the aerodynamic 

coefficients of the Cessna Citation X aircraft in stall conditions using neural networks. The 

aerodynamic coefficients were estimated from data obtained from flight tests performed on a 

level-D Cessna Citation X Research Aircraft Flight Simulator (RAFS) designed and 

manufactured by CAE Inc. According to the Federal Aviation Administration (FAA), level D 

is the highest qualification level for flight dynamics. Therefore, it was assumed that the RAFS 

was accurate enough to be considered as a test aircraft. All the collected data was similar to 

the actual data that would be collected during a flight test on an actual Cessna Citation X 

Aircraft. 
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a) Cessna Citation X Aircraft b) Research Aircraft Flight Simulator (RAFS) 

Figure 5.1 Cessna Citation X Business Aircraft and its corresponding Level D 
Research Aircraft Flight Simulator (RAFS) 

 

The rest of this article is organized as follows: section 5.2 presents the methodology, including 

the data acquisition procedure from the RAFS and the data preprocessing of flight parameters, 

so that they can be used to compute aerodynamic coefficients. Next, we present the method 

used to select the neural network’s inputs and outputs, and its hyperparameters, including the 

training algorithms and the activation functions. Finally, the numerical results and their 

comparisons with experimental data obtained from the Cessna Citation X RAFS are presented 

in section 5.3.  

 

5.2 Methodology 

This section presents the methodology developed at the LARCASE for modeling the lift, drag, 

and pitching moment aerodynamic coefficients in stall conditions using system identification 

techniques. The identification was made through neural network optimization using Cessna 

Citation X flight simulator data. 
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5.2.1 Flight Test Procedure and Data Gathering 
 

Several flight tests were conducted with the Cessna Citation X Level D flight simulator to 

collect data and prepare these data for the identification process. As shown in Figure 5.2 these 

flight tests were designed to replicate different stall maneuvers, and they included several steps. 

 

 

Figure 5.2 Recovery from stall flight test procedure illustration 

 

First, the aircraft was trimmed for a stable flight at a given altitude and airspeed (1). For this 

purpose, the altitude was maintained using the autopilot's altitude hold mode, while the 

airspeed was stabilized manually by adjusting the throttle position. Then, to stall the aircraft, 

the pilot disengaged the autopilot and pulled back on the control column to deflect the elevators 

while gradually reducing thrust (2). The aircraft's airspeed decreased, and the angle of attack 

increased until the stall occurred. The aircraft was maintained in stall conditions as long as 

possible by controlling the elevators in order to better observe the dynamic stall. Finally, a stall 

recovering procedure was initiated. The engine thrust was increased to gain airspeed, and the 

elevators were manually controlled to re-stabilize the aircraft (3), which returned to normal 

level flight conditions (4).  

 

For each flight test, pilot inputs such as elevator angle deflection 𝛿௘  and slats angle deflection 𝛿௦, and flight parameters such as altitude ℎ, true airspeed 𝑉௧, angle of attack 𝛼 and finally 

aircraft longitudinal and vertical accelerations 𝑎௫ and  𝑎௭ were recorded at a sampling rate of 

25 Hz.  
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Figure 5.3 shows an example of recorded data on the RAFS for a flight case carried out at an 

altitude of 7000 ft, a Mach number of 0.2, and with slats fully retracted (Figure 5.3.g). In this 

example, the aircraft was trimmed with an elevator angle deflection of 𝛿௘ =  −0.6௢ (Figure 

5.3.d), and at a true airspeed 𝑉௧ =  284 𝑓𝑡/𝑠 (Figure 5.3.e). At about 3 s, the autopilot was 

disengaged, the thrust was reduced (Figure 5.3.a) by adjusting the throttle command. Then, the 

elevator was deflected (Figure 5.3.d) to pitch the aircraft up. Consequently, the angle of attack 

immediately increased until reaching its stall value 𝛼௦௧௔௟௟ (Figure 5.3.h) at about 17 s, leading 

to a significant reduction of the lift force and, therefore, a drop in vertical acceleration (Figure 

5.3.f). We can also observe the drastic change in vertical and horizontal accelerations 𝑎௭ and 𝑎௫ (Figure 5.3.f and Figure 5.3.c) at about 17 s, reflecting the significant increase in the drag 

that happens when stall occurs. Finally, these drops in longitudinal accelerations result in a 

significant loss in altitude (Figure 5.3.b). 

 

The procedure described in Figure 5.3 was replicated 33 times with the Cessna Citation X 

RAFS for different flight scenarios by varying initial altitudes and slat configurations. Fifteen 

flight tests were conducted for cases with a slat-in (i.e., retracted) configuration at altitudes 

ranging from 5000 to 50,000 ft, while 18 flight tests were conducted at altitudes ranging from 

15,000 to 50,000 ft for cases with a slat-out (i.e., extended) configuration.  

 

When slats are out, they increase the wing's camber and, therefore, change the wing shape. 

Consequently, slats may have the effect of delaying the stall phenomenon (Anderson, 2010). 
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(e)(d)

(g)

 

Figure 5.3 Example of data recorded for a flight test at 7000 ft, Mach 
0.20, and slats 𝛿௦retracted 

 
5.2.2 Data Processing and Aerodynamic Coefficients’ Determination 
 

The aerodynamic coefficients are not measurable during the flight test. Therefore, once all the 

flight tests were completed, the next step was to process the measurable flight parameters to 

estimate the aerodynamic coefficients of the aircraft and then to create a database to prepare 

for the neural network learning process. The lift, drag and pitching moment aerodynamic 

coefficients, expressed in the stability axis, are given by the following equations (Ghazi et al., 

2017):  
 

 𝐶𝐿௦ =  𝐶𝐿௕ cos(𝛼) −  𝐶𝐷௕ sin  (𝛼) (5.1) 
 𝐶𝐷௦ =  𝐶𝐷௕ cos(𝛼) +  𝐶𝐿௕ sin(𝛼) (5.2) 
 𝐶𝑚௦ =  𝐶𝑚௕ −  𝐶𝐷௕𝑧௖௚ − 𝐶𝐿௕𝑥௖௚ (5.3) 
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where ൛𝑥௖௚, 𝑧௖௚ൟ are the longitudinal and vertical distances, respectively, between the aircraft 

center of gravity and its aerodynamic center. 𝐶𝐿௕, 𝐶𝐷௕ and 𝐶𝑚௕ are the lift, drag and pitching 

moment coefficients, respectively, expressed in the aircraft body axis. The aerodynamic 

coefficients expressed in the body axis are given by the following expressions:  

 

 𝐶𝐿௕ =  𝑚𝑎௭ − 𝑇௭1/2𝜌𝑉ଶ𝑆௪ (5.4) 

 𝐶𝐷௕ =  𝑚𝑎௫ − 𝑇௫1/2𝜌𝑉ଶ𝑆௪ (5.5) 

 𝐶𝑚௕ =  𝐼௬௬𝑞ሶ − 𝑇௫𝑧௘௡௚ − 𝑇௭𝑥௘௡௚1/2𝜌𝑉ଶ𝑆௪𝑐௪  (5.6) 

 

where 𝜌 is the air density, ሼ𝑇௫ ,𝑇௭ሽ are the components of the engine thrust, 𝐼௬௬ is the aircraft 

moment of inertia about the lateral axis, 𝑆௪ is the wing reference area, 𝑐௪ is the mean 

aerodynamic chord of the wing, and 𝑎௫ and 𝑎௭ are the longitudinal and vertical accelerations 

of the aircraft, respectively. 

 

Before neural network training, a good practice is to normalize the data. The objective is to 

ensure that all the neural network’s input and output parameters have the same scale and are 

all centered around zero. Consequently, the difference in data magnitude will not affect the 

training results, as only the correlation between the data will be considered during the training 

process. For this purpose, the input and output parameters (defined in section 5.2.3.1), were 

normalized using the following equation: 

 

 𝐷𝑎𝑡𝑎௞ (௡௢௥௠௔௟௜௭௘ௗ) = 𝐷𝑎𝑡𝑎௞ − 𝜇𝜎  (5.7) 

 

where 𝐷𝑎𝑡𝑎௞ is the 𝑘୲୦ value of the considered training data set, 𝜇 is the mean of the whole 

data set, and 𝜎 is the standard deviation of the data set. Figure 5.4 and Figure 5.5 show the 

normalized aerodynamic coefficients estimated from flight test data for the Cessna Citation X 

RAFS, with slat-in and slat-out configurations, respectively.  
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Figure 5.4 Normalized aerodynamic coefficients’ estimation from flight test data  
obtained from the Cessna Citation X RAFS (slat-in) 

 

 

Figure 5.5 Normalized aerodynamic coefficients’ estimation from flight test data  
obtained from the Cessna Citation X RAFS (slat-out) 
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5.2.3 Neural Network Modeling  
 

5.2.3.1 Choice of Neural Networks Inputs 

The first step in defining the neural networks was the determination of the parameters that 

correlate significantly with the aerodynamic coefficients. These parameters were then used as 

inputs for the neural network models. Based on the Buckingham Pi's theorem (Anderson, 2010) 

applied to the dimensional aerodynamic analysis, the aerodynamic coefficients depend on the 

following variables: the angle attack 𝛼, its derivative 𝛼ሶ , the Mach 𝑀 and Reynolds numbers 𝑅௘. However, as the Reynolds number is not directly measurable in the flight simulator, it has 

been approximated using to Equation (5.8): 
 

 𝑅௘ = 𝜌𝑉 ஺ௌ𝑐𝜇 = 𝑐𝜇 ∗ 𝜌𝑉 ஺ௌ = 2𝑐𝜇 ∗ 𝑄𝑉 ஺ௌ (5.8) 

where 𝜌 is the density of the air and 𝜇  is the dynamic viscosity of air. 

 

Thus, the variables considered as input parameters are the angle of attack 𝛼, its derivative with 

respect to the time 𝛼ሶ , the Mach number 𝑀, the True Air Speed 𝑉 ஺ௌ and the dynamic pressure 𝑄, resulting from Buckingham Pi's theorem analysis. Additional variables, such as the elevator 

angle deflection 𝛿௘, the slat angle deflection 𝛿௦ and the stabilizer angle 𝛿௦௧௔௕ were also 

considered as inputs, because these surfaces are used for longitudinal dynamic control. The 

aircraft center of gravity position ൛𝑥௖௚, 𝑧௖௚ൟ, was considered, as the pitching moment 

aerodynamic coefficient is dependent on it. The pitch rate 𝑞 may also affect the aerodynamic 

coefficients in stall conditions (McCroskey, 1981), and finally the total engine thrust 𝑇 was 

taken into account because the wing airflow may also be affected by the air coming from the 

engines. 
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5.2.3.2 Selection of the Neural Network Type 

Two types of Neural Networks (NNs) were evaluated in this research: the Multilayer 

perceptron (MLP) and the Recurrent neural network (RNN). MLPs have been widely used to 

solve regression and function approximation problems in the literature. Therefore, this type of 

neural network is well suited for predicting aerodynamic coefficients from a given data set 

(Ghazi et al., 2017; Tondji et al., 2022). Nevertheless, RNNs have also been considered in this 

paper as they have been effective in designing models from time series data by using 

information regarding previous states during the network learning process (Tondji et al., 2022; 

Williams & Zipser, 1989). 

 

The fundamental element of a neural network, whatever its type, is the artificial neuron (or 

“perceptron”). Neural networks are composed of neurons organized in layers and linked 

together by synaptic weights. Figure 5.6 presents a typical architecture of a perceptron. 

 

 

Figure 5.6 Architecture of a perceptron 

 

Therefore, as shown in Figure 5.6, operating principle of a neuron is essentially composed of 

two calculation steps. First, the input signal of the neuron 𝑋 = [𝑥ଵ, 𝑥ଶ, … , 𝑥௡] is multiplied by 
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its corresponding weights 𝑊 = [𝑤ଵ,𝑤ଶ, … ,𝑤௡], summed up, and then added to a scalar called 

the bias 𝑏, which is used as a “decision threshold”. Secondly, the resulting value is fed into a 

transfer function called the “activation function”, which is used to determine whether the 

neuron should be activated or not (Haykin, 1998). As a result, the output 𝑜 of a neuron is given 

by the following equation: 

 𝑜 = 𝜑 ൭෍𝑥௜௡
௜ୀଵ 𝑤௜ +  𝑏൱ 

(5.9) 

 

MultiLayer Perceptron  

 

The MLP is one of the simplest forms of neural networks and is composed of several layers of 

perceptrons, called the hidden layers. A representation of a MLP is given in Figure 5.7, where 

each hidden layer is associated with a to vector, and the outputs of the neurons in one layer are 

used as inputs for the next layer. All neurons of the same layer share the same input vector. 

The predicted output 𝑜ො of a MLP can be computed according to Equation (5.10) (Haykin, 

1998): 

 
 𝑜ො = 𝜑௠ ቌ ෍ 𝑤௠,௞௞ ୀ ௡೘

௞ ୀ ଵ × … × 𝜑ଶ ቎ ෍ 𝑤ଶ,௜௜ ୀ ௡మ
௜ ୀ ଵ × 𝜑ଵ൫𝑥ଵ,௝𝑤ଵ,௝ + 𝑏ଵ,௝൯ + 𝑏ଶ,௜቏

+ 𝑏௠,௞ቍ 

 

(5.10) 

 
where 𝑋 is the input vector and 𝑚 is the number of network layers, 𝜑௜ and 𝑛௜ are the activation 

function and the number of neurons, respectively, in the layer 𝑖. 𝑊௜,௝ and 𝑏௜,௝ are the weights 

and bias, respectively, of the 𝑗୲୦ neuron of the layer 𝑖. 
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Figure 5.7 Graphical representation of an MLP Neural Network 
 

Recurrent Neural Networks 

 

As their name suggests, RNNs are networks that have recurrent interconnections. The idea 

behind this architecture is to preserve the neurons’ information over time. RNNs are often used 

for processing time-series signals, such as voice or semantic analysis of videos or sentences. 

They have also demonstrated their ability to learn the behavior of complex dynamic systems, 

such as the behavior of an aircraft at high angles of attack (Tondji et al., 2022). Aerodynamic 

coefficients are in some way presented as a time series signal, where previous states determine 

the behavior of a future state. A neural network model predicting aerodynamic coefficient 

variations over time should consider the dynamic nature of the longitudinal behavior of an 

aircraft. One of the best types of networks that meet this criterion is the Elman Neural Network 

(ENN) proposed by Elman (1990), and which is defined as a feed-forward network with 

additional memory neurons (called the “context layer”) and local feedback. Figure 5.8 shows 

a graphical representation of an Elman Neural Network with one-step delay and a hidden  

layer ℎ.  
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Figure 5.8 Graphical representation of an Elman Neural Network 

 

As shown in Figure 5.8, the hidden layer ℎ receives its information from both the input and the 

context layers during the training cycle, which are then combined and analyzed 

simultaneously. Subsequently, the output of each hidden layer is fed back to the context layers 

at every time step 𝑡 to provide additional input to the same hidden layer at time 𝑡 + 1.  This 

process is repeated for successive training cycles. 

 

Three different MLPs and three different RNNs were developed for the prediction of the 

aerodynamic coefficients of the Cessna Citation X (i.e., one MLP and one RNN for each 

aerodynamic coefficient). This strategy was used because it was found that single output NNs 

were more accurate than multiple outputs NNs and did not need a complex architecture to learn 

the correlation between the input data and the target values. Thus, for each neural network 

model, its output was the coefficient we wanted to predict.  

 
5.2.3.3 Data Management 

Building a neural network model necessitates several phases: the training phase, the test phase, 

and the generalization phase. During the training phase, the neural network weights are updated 

by a training algorithm to find the inherent relationships among the data in the training data 

set. Another data set (called the test data set), that was not used for training, is used to calculate 

the neural network performance. The calculated performance is mainly used to adjust the key 

model parameters, such as the learning function, the activation function, or the number of 
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hidden layers and neurons. For a given set of 𝑛 data points and a given set of values of weights 𝑤௜,௝, the neural network performance is calculated by the Mean Square Error (𝑀𝑆𝐸),  

according to the following equation:  

 
 𝑀𝑆𝐸 (𝑤) = 1𝑛  ෍ൣ𝑜ො௞൫𝑤௜,௝൯ − 𝑜௞൧ଶ௡

௞ୀଵ  
 

(5.11) 

 
Once the hyperparameters of the neural network are optimized and the neural network has been 

trained, the “generalization” process can be started. It consists of using the final trained model 

to predict the aerodynamic coefficients of new flight cases that were not used for training 

(training set) or hyperparameter tuning (test set). The generalization performance is evaluated 

by means of the Mean Absolute Relative Error (𝑀𝐴𝑅𝐸), as follows: 

 𝑀𝐴𝑅𝐸 = 1𝑛 ൭෍ฬ𝑜ො௞ − 𝑜௞𝑜ො௞ ฬ௡
௞ୀଵ ൱ × 100  

(5.12) 

where 𝑜௞ is the 𝑘௧௛ experimental data used for validation, and 𝑜ො௞ is the 𝑘௧௛ value predicted by 

the network.  

 

In this study, from the 33 flight cases conducted with the Cessna Citation X RAFS, only 22 

were used for identification (training and test phases), while the remaining 11 cases were used 

for validation. The training set and tests set were selected from the 22 identification flight cases 

using cross validation method (Stone, 1974).  

 

5.2.3.4 Fine Tuning 

When training neural networks, three parameters are essential: the training algorithm, the 

activation function, and the neural network structure (the number of hidden layers and the 

number of neurons per hidden layer). The procedure for selecting these ideal hyperparameters 

is given in this section below for the determination of the lift coefficient using a MLP. 
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However, the procedure remains the same for determining other coefficients (𝐶𝐷௦ and 𝐶𝑚௦) using both a MLP and a RNN. 

 

Training Algorithm  

 

The first analysis consisted of evaluating the performance of the neural network models using 

several training algorithms. The activation function (tansig), the number of hidden layers (2 

layers), and the number of neurons in the networks (5 neurons per hidden layer) were fixed 

and chosen randomly. Only the training function varied. Table 5.1 presents the list of the tested 

algorithms. 

 

Table 5.1 Training algorithms considered to train the 
network. 

Algorithms Description 

LM Levenberg-Marquardt 
BR Bayesian Regularization 
BFG BFGS3 Quasi-Newton 
RP Resilient Backpropagation 
SCG Scaled Conjugate Gradient 
CGB Conjugate Gradient Powell/Beale Restarts 
CGF Fletcher-Powell Conjugate Gradient 
CGP Polak-Ribiére Conjugate Gradient 
OSS One Step Secant 
GDX Variable Learning Rate Gradient Descent 
GDM Gradient Descent with Momentum 
GD Gradient Descent 

 
Both MLP and RNN networks were trained with the twelve training algorithms presented in 

Table 5.1. During the training, the weights and biases were updated to minimize the network 

performance (𝑀𝑆𝐸). At the end of the training, the performance of each neural network was 

evaluated using the test data. Figure 5.9 shows the performance in terms of MSE minimization 

 
 
3 Broyden-Fletcher-Goldfarb-Shanno 
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obtained for the prediction of the lift coefficient of the Cessna Citation X using the MLP 

training process. The performances of the GDX, GDM, and GD were removed for scaling 

purposes, as their errors were too high compared to that of the results of the other methods.  
 

 

Figure 5.9 MLP performance using different training algorithms for the determination of 𝐶𝐿௦  

 

Figure 5.9 shows that the Bayesian Regularization (BR) and the Levenberg-Marquardt (LM) 

algorithms provided the lowest 𝑀𝑆𝐸. This result was actually expected, as the BR and LM 

algorithms are well known for their excellent performance in solving nonlinear regression 

problems. Both algorithms operate using the same procedure, except that in the BR algorithm, 

a backpropagation is used to compute the Jacobian of the network performance with respect to 

the weight and bias variables. However, even if they gave similar results, the BR performed 

slightly better than the LM, with a 𝑀𝑆𝐸 =  5.61 × 10ିସ for the BR, and a 𝑀𝑆𝐸 = 6.96 × 10ିସ 

for the LM. Based on this analysis, the BR algorithm was considered as the most effective 

training algorithm for the determination of the lift coefficient using the MLP. 

 

Activation Function 

 

Once the training algorithm was identified, different activation functions were tested to find 

the function associated with the BR algorithm that would give the best performance when 
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determining the lift coefficient using the MLP. The list of activation functions available in 

MATLAB, that were tested is presented in Table 5.2.  

 
Table 5.2 Implemented activation function: 𝑎 is the neuron’s activation,  𝑦 is the neuron’s output 

Activation Function Mathematical Equation 

Log Sigmoid (logsig) 𝑦(𝑎) = 11 + exp (−𝑎) 

Hyperbolic Tangent Sigmoid (tansig) 𝑦(𝑎) = 2(1 + exp(−2 ∗ 𝑎)) − 1 

Elliot Symmetric Sigmoid (elliotsig) 

 
𝑦(𝑎) = 𝑎(1 + |𝑎|) 

Radial basis (radbas) 

 
𝑦(𝑎) = exp (−𝑎ଶ) 

Normalized radial basis (radbasn) 

𝑦(𝑎)௜ = exp(−𝑎௜ଶ)∑ exp൫−𝑎௝ଶ൯௡௝ୀଵ  

where 𝑎 is the input vector to a Radbasn function 
that consists of 𝑛 elements of 𝑛 classes, and 𝑎௜ is 
the i-th element of the input vector. 

Soft max (softmax) 

𝑦(𝑎)௜ = exp(𝑎௜)∑ exp (𝑎௝)௡௝ୀଵ  

where 𝑎 is the input vector to a soft max function 
that consists of 𝑛 elements of 𝑛 classes, and 𝑎௜ is 
the i-th element of the input vector. 

Saturating linear (Satlin) 𝑦(𝑎) = ൝ 0, if 𝑎 ≤  0        𝑎, if 0 ≤ 𝑎 ≤ 11, if 1 ≤ 𝑎  

Symmetric saturating linear (Satlins) 𝑦(𝑎) = ൝ −1, if 𝑎 ≤  −1           𝑎, if − 1 ≤ 𝑎 ≤ 11, if 1 ≤ 𝑎  

Triangular basis (Tribas) 𝑦(𝑎) =  ൜1 − |𝑎|, if − 1 ≤ 𝑎 ≤ 10, otherwise  

Positive linear (Poslin) 𝑦(𝑎) =  ൜𝑎, if 𝑎 ≥ 00,         if 𝑎 ≤ 0 
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Figure 5.10 shows the 𝑀𝑆𝐸 error obtained for each activation function when a MLP was 

trained for predicting the lift coefficient of a Cessna Citation X with the BR algorithm. It can 

be clearly seen that the Sigmoid-Type activation functions performed better than others. In 

fact, the Log-Sigmoid, the Hyperbolic-Tangent-Sigmoid, and the Elliot-Symmetric-Sigmoid 

gave lower errors than the other functions, with a 𝑀𝑆𝐸 of the order of 10ିସ. The best 

performance was achieved with Log-Sigmoid function, for a 𝑀𝑆𝐸 of 5.14 × 10ିସ as seen on 

Figure 5.10. 

 

 

Figure 5.10 MLP performance using different activation function for  
the determination 𝐶𝐿௦ using BR algorithm 

 
Neural Network Structure Optimization  

 
The final step in the neural network design process was the selection of the structure that 

provides the minimum 𝑀𝑆𝐸 in an appropriate learning time. The structure of the neural 

network is defined as a combination (𝑚,𝑛), where 𝑚 is the number of hidden layers of the 

network, and 𝑛 is the number of neurons per hidden layer. Similar studies were explored and 

have demonstrated that the aerodynamic coefficients of a Bombardier CRJ700 in dynamic stall 

condition can be identified with a MLP model of a maximum of 5 hidden layers and a 

maximum of 15 neurons per hidden layer (Tondji et al., 2022). Based on this observation, a 

minimum number of hidden layers 𝑚௠௜௡  = 1, and a maximum number of hidden layers 
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𝑚௠௔௫  =  5 was assumed. Similarly, the minimum number of neurons per layer was set to 𝑛௠௜௡  =  1, and the maximum number was set to 𝑛௠௔௫  =  15.  

 

Once the range of these two parameters was defined, the analysis consisted of training several 

structures with hidden layers ranging from 1 to 5 and a number of neurons ranging from 1 to 

15, and then the resulting MSEs were compared. Thus, the number of structures to be trained 

would be equivalent to 15ହ, which is clearly a very large number. To reduce the number of 

possible structures, it was assumed that all hidden layers should have the same number of 

neurons. Such an assumption was considered because it was found that varying the number of 

neurons from one hidden layer to another did not significantly improve the network 

performance. This assumption reduces the number of possible structures from 15ହ to 75. The 

MSEs of different structures trained to predict the lift coefficient of the Cessna Citation X 

airplane are shown in Figure 5.11. 

 

Figure 5.11 shows the 𝑀𝑆𝐸𝑠 obtained for each tested structure. Structures with a different 

number of layers are displayed in different colors. For example, the 𝑀𝑆𝐸 obtained with a 

structure with 𝑚 = 2 layers are displayed in “orange”, while the 𝑀𝑆𝐸 obtained with a 

structure with 𝑚 = 3 layers are displayed in “blue”. Performances obtained for the structure 

with 𝑚 = 1 hidden layer and structures with less than 𝑛 = 7 neurons per hidden layer have 

been removed for scaling purposes as the 𝑀𝑆𝐸 was too high. We can clearly see a convergence 

of the 𝑀𝑆𝐸 value, which decreases and tends to zero when the number of neurons increases. 

The convergence is faster for structures with a higher number of layers. For example, structure 

with 3 layers converge faster than structure with 2 layers). However, it is challenging to 

determine which is the optimal network structure, as there is no significant improvement on 

the network’s performance after 11 neurons for networks with 𝑚 = 2, 𝑚 = 3, 𝑚 = 4, and 𝑚 = 5. Any of these structures could be used to identify the lift coefficient and would give 

satisfactory results. However, as a structure with 𝑚 = 5 hidden layers converges even faster 

than others, a convergence threshold of 𝑀𝑆𝐸 = 1.19ିହ is reached even earlier (before 𝑛 = 11) 

for 𝑛 = 9 neurons. The network structure with (𝑚 = 5,𝑛 = 9) was therefore considered for 

the determination of the lift coefficient 𝐶𝐿௦ of the Cessna Citation X.  
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Figure 5.11 Performances for various MLP structures for the estimation of the 𝐶𝐿௦ of the 
Cessna Citation X 

 

5.3 Results 

This section presents the validation results of the proposed methodology. An evaluation of the 

accuracy of the two types of neural networks (i.e., MLP and RNN) in terms of the prediction 

of aerodynamic coefficients is presented. For this purpose, the outputs of both the MLP and 

the RNN models were compared with experimental aerodynamic coefficients’ data obtained 

from the Cessna Citation X RAFS. 

 

The best performances in terms of 𝑀𝑆𝐸 obtained for the estimation of the three longitudinal 

aerodynamic coefficients (𝐶𝐿௦,𝐶𝐷௦ and 𝐶𝑚௦) were obtained with the BR algorithms, 

combined with the tansig and logsig activation functions. RNN models performed as well as 

MLP models, but with smaller structures, as the total number of neurons of the hidden layers 

(𝑚 × 𝑛) on RNN structures were smaller than with the MLP structures for the identification of 

the same coefficient. For example, the identification of the lift coefficient using an MLP model 

required a structure of 45 (9 × 5) hidden neurons, while an RNN required only 30 (3 × 10) 

hidden neurons. The two models performed similarly (𝑀𝑆𝐸 =  1.2 × 10ିହ for MLP and 
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𝑀𝑆𝐸 =  1.1 × 10ିହ for RNN). This faster convergence of RNN models could be explained 

by the ability of their algorithm to take into account the dynamic behavior of complex systems 

during the identification process.  

 

Table 5.3 Optimal parameters obtained for the MLP and the RNN  
using the BR algorithm 

 𝑪𝑳𝒔 𝑪𝑫𝒔 𝑪𝒎𝒔 
Type of neural 
network 

MLP RNN MLP RNN MLP RNN 

Activation function logsig tansig logsig tansig logsig tansig 
Number of hidden 
layers 

5 3 2 3 4 3 

Number of nodes per 
hidden layer 

9 10 14 6 12 12 𝑴𝑺𝑬 value 1.2× 
10-5 

1.1× 
10-5 

4.5× 
10-6 

5.4× 
10-6 

1.9× 
10-4 

1.0× 
10-5 

 

Once the hyperparameter were fixed and the neural networks trained, the accuracy of each 

model (MLP and RNN) was evaluated using validation cases that were not used for training. 

For this purpose, the outputs of the MLP and RNN models were compared in terms of the 𝑀𝐴𝑅𝐸, with experimental aerodynamic coefficients obtained from the Cessna Citation X 

RAFS. Figure 5.12 and Figure 5.13 show two examples of the results obtained at respectively 

32,500 ft with slats-in and 27,500 ft with slats-out. 

 

In general, the results show good agreement between the experimental data obtained by the 

RAFS (in “blue”), the data predicted by the MLP (in “red”), and the data predicted by the RNN 

(in “yellow”). The results showed that the lift and drag coefficients of the two cases were 

predicted with a Mean Absolute Relative Error (𝑀𝐴𝑅𝐸) smaller than 1%. For the pitching 

moment coefficient, the 𝑀𝐴𝑅𝐸 was smaller than 5 %. These very small errors allow us to 

conclude that both models (RNN and MLP) were able to successfully predict the aerodynamic 

coefficients for these two flight cases presented on Figure 5.12 and Figure 5.13. The 

comparisons presented in these examples were repeated for all the other validation flight cases. 
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Table 5.4 and Table 5.5 presents the 𝑀𝐴𝑅𝐸 and the Mean Absolute Residual errors obtained 

for the prediction of each coefficient with MLP and RNN models respectively. 

 

 

Figure 5.12 Validation of predicted aerodynamic coefficients (with MLP and RNN) for a 
flight test at 32,500 ft with slats-in 

 

 

Figure 5.13 Validation of predicted aerodynamic coefficients (with MLP and RNN) for a 
flight test at 27,500 ft with slats-out 
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Table 5.4 Mean Absolute Relative Error (𝑀𝐴𝑅𝐸) and Mean Absolute Residual error 
obtained between experimental data and values predicted with MLP models 

Flight Case 𝑪𝑳𝒔 𝑪𝑫𝒔 𝑪𝒎𝒔 
Altitude 

[ft] 
Slat 

angle 
 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-3] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-3] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-3] 

7,000 In 0.998 8.40 0.561 0.68 7.689 2.61 
15,000 In 0.325 2.60 0.329 0.60 5.207 1.67 
17,500 Out 0.712 6.06 0.535 0.87 5.253 3.80 
22,500 In 0.807 7.29 0.390 0.69 14.257 5.49 
27,500 Out 0.153 1.52 0.113 0.16 3.011 1.02 
32,500 In 0.149 1.27 0.104 0.09 3.625 0.98 
37,500 Out 0.386 3.31 0.181 0.16 1.421 1.18 
40,000 In 0.540 4.88 0.308 0.63 5.770 2.26 
42,500 Out 0.378 4.12 0.263 0.33 8.065 3.42 
47,500 In 0.284 2..98 0.203 0.33 3.340 1.51 
47,500 Out 0.469 4.79 0.351 0.64 4.529 1.42 

 

Table 5.5 Mean Absolute Relative Error (𝑀𝐴𝑅𝐸) and Mean Absolute Residual error 
obtained between experimental data and values predicted with RNN models 

Flight Case 𝑪𝑳𝒔 𝑪𝑫𝒔 𝑪𝒎𝒔 
Altitude 

[ft] 
Slat 

angle 
 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-3] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-3] 

𝑴𝑨𝑹𝑬 
[in %] 

Mean 
Residual 
[× 10-3] 

7,000 In 0.340 3.00 0.702 0.15 11.203 3.82 
15,000 In 0.351 2.90 0.457 0.86 5.573 1.55 
17,500 Out 0.620 5.85 0.570 0.74 7.482 4.65 
22,500 In 0.686 6.74 0.392 0.57 14.842 4.22 
27,500 Out 0.109 1.09 0.206 0.19 2.921 9.4 
32,500 In 0.168 1.57 0.176 0.16 4.250 8.61 
37,500 Out 0.478 4.70 0.228 0.27 0.933 7.49 
40,000 In 0.413 3.95 0.273 0.41 7.041 1.39 
42,500 Out 0.224 2.38 0.396 0.67 6.593 1.15 
47,500 In 0.248 2.63 0.170 0.26 3.714 9.85 
47,500 Out 0.593 6.42 0.226 0.28 2.318 7.94 
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We can see that both MLP and RNN methodologies can globally estimate the aerodynamic 

coefficients quite well, as the obtained errors are verry small. For all 11 flight cases used for 

validation, the lift and drag coefficients were estimated with a 𝑀𝐴𝑅𝐸 of less than 1 %. For the 

pitching moment, 9 flight cases were estimated with a 𝑀𝐴𝑅𝐸 of less than 10 %, and only 2 

flight cases were estimated with errors between 10% and 15%. The slats position did not affect 

the models’ precision. Aerodynamic coefficients of slat-in and slat-out flight cases were 

estimated with the same range of precision. The higher error in percentage obtained for the 

determination of the pitching moment coefficient could be explained by the fact that for most 

of the flight cases (in both validation and identification cases), the pitching moment changes 

its sign when varying (as shown on Figure 5.12 and Figure 5.13). Consequently, at some flight 

test points, the 𝐶𝑚௦ has relatively low values, around zero, which leads to large relative errors 

(𝑀𝐴𝑅𝐸). Therefore, even if the 𝑀𝐴𝑅𝐸 errors of the 𝐶𝑚௦ seem relatively large (above 10%) 

for some flight cases, the precision of the estimation remains very good, as the residual errors 

are very low, even negligible (of the order of 10ିଷ). 

 

In summary, the lift coefficient was estimated with an average 𝑀𝐴𝑅𝐸 of 0.5% for MLP and 

0.4 % for RNN. For the estimation of the drag coefficient, the average 𝑀𝐴𝑅𝐸 was 0.3% for 

MLP and 0.35 % for RNN. Finally, the MLP performed better than the RNN for the prediction 

of the pitching moment coefficient, with an average 𝑀𝐴𝑅𝐸 of 5.6 % comparatively to 6.1% 

for the RNN. We can also conclude that the RNN models performed similar to the MLP 

models.  

 

5.4 Conclusions 

This paper presents a detailed methodology for the lift, drag, and pitching moment 

aerodynamic coefficients modeling in stall regime using Neural Networks. The linear and 

nonlinear variations of lift and drag aerodynamic coefficients are estimated along the stall 

hysteresis curve. This presented methodology was applied to the Cessna Citation X airplane 

developed by CAE Inc and it gave successful results. A stall recovery procedure was developed 

and executed on the Cessna Citation X RAFS to obtain flight data. A total of 33 flight cases 
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were conducted for different altitudes ranging from 5000 to 50,000 ft and for the “in” and “out” 

slat configurations. The obtained data were then processed to obtain the lift, drag, and pitching 

moment aerodynamic coefficients. Data from 22 (67%) flight cases were used to train the 

following two types of Neural Network models: Multilayer Perceptron (MLP) and Recurrent 

Neural Network (RNN). The procedure to select the Neural Network parameters (training 

algorithms, activation function) was detailed, and the process to optimize the models’ 

structures was also developed. Both the MLP and RNN models predicted the aerodynamic 

coefficients with an average Mean Absolute Relative Error (𝑀𝐴𝑅𝐸) smaller than 0.5% for the 

lift and drag coefficients and smaller than 6.2 % for the pitching moment coefficients. These 

minor errors allowed us to conclude that the developed models performed very well. 

 





 

CONCLUSIONS AND RECOMMANDATIONS 

 

This PhD thesis investigated the application and integration of AI techniques into aerodynamic 

and flight dynamics modeling, with a specific focus on the dynamics of the Bombardier CRJ-

700 and Cessna Citation X aircraft. The main objective was accomplished through three 

distinct aspects. The first aspect concentrated on developing and validating AI models for 

accurate prediction of longitudinal flight dynamics, the second on modeling lateral flight 

dynamics, and the third on simulating complex scenarios related to aircraft stall dynamics.  

 

Summary of Key Findings and Originality 
 

In CHAPITRE 2, a detailed examination of established aerodynamic modeling techniques was 

conducted, and the integration of AI methodologies into this domain. The review covered 

conventional methods, such as CFD, semi-empirical methods and wind tunnel testing, 

explaining their constraints in capturing complex aerodynamic phenomena. It also explored 

the growing influence of AI, particularly MLP and SVR, in enhancing the accuracy of 

predictive flight modeling. 

 

The first sub-objective demonstrated the effectiveness of MLP and SVR in accurately 

predicting the longitudinal aerodynamic coefficients for the CRJ-700 aircraft. The comparison 

of the models developed with CRJ-700 VRESIM data, certified Level D for its flight dynamics 

by the FAA, highlighted the precision of these AI models. Notably, the application of the BO 

and K-folds cross-validation techniques ensured finely tuned models and robust performance 

across various flight conditions. These models were validated for 1,992 flight conditions, with 

mean absolute relative errors below 1% for lift and drag coefficients, and below 5.74% for the 

pitching moment coefficient. Furthermore, these methods achieved a 100% success rate, 

satisfying the FAA Level D tolerances. The impressive learning rate of the SVR model, when 

compared to the ANN, offers a significant advantage in rapid model development. This 

attribute is advantageous in scenarios that need the prompt implementation of predictive 

models. Although the initial setup with SVR can be accelerated, it is important to note that 
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both ANN and SVR models operate with their response times equal to fractions of a second 

once trained. This rapid responsiveness is essential for real-time applications, where fast data 

processing and immediate output generation play their key roles in ensuring efficient and safe 

aerospace operations. 

 

Building on the robust findings from the study of longitudinal dynamics, CHAPITRE 3 then 

shifted its focus on lateral dynamics, a critical aspect of aircraft control and maneuverability. 

This second objective centered on the Bombardier CRJ-700 model, utilizing the same rigorous 

AI methodology developed in CHAPITRE 2 and further refined for the accurate prediction of 

lateral flight dynamics. Data from the Level D CRJ-700 VRESIM provided a solid foundation 

for model training and optimization. To develop AI models for the accurate prediction of lateral 

aerodynamic coefficients, the BO combined with cross-validation techniques was employed 

as a strategic approach in this study. The models were validated using experimental data from 

the CRJ-700 VRESIM under 2,136 different flight conditions. The MLP and SVR models 

achieved impressive precision with their Mean Absolute Relative Errors below 5%, 

demonstrating their predictive power. In addition, the residual errors achieved by the SVR 

models were found to be on the order of 10ିହ, indicating a level of accuracy well beyond the 

initial precision set by the epsilon (𝜀) hyperparameter (10ିସ). All developed models met 100% 

of the FAA tolerance criteria for all validation flight cases, confirming their reliability for 

practical applications. 

 

In CHAPITRE 4, the complex domain of stall dynamics was investigated, aiming to model 

and thus to predict the aircraft longitudinal dynamics under both static and dynamic stall 

conditions. Through a methodical approach, extensive flight data were collected from the 

Level D-certified CRJ-700 VRESIM, including different altitudes and slats configurations. 

These data were used to train MLP and RNN models in order to capture both static and 

dynamic stall non-linearities. 

 

The models went through a rigorous hyperparameters selection process, where various training 

algorithms and activation functions were tested to identify the most effective combinations. 
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This meticulous hyperparameters optimization resulted in exceptional model predictive 

capabilities, as indicated by the Mean Absolute Relative Errors that remained impressively low 

for all aerodynamic coefficients under study. Subsequently, these models were integrated into 

a MATLAB/Simulink simulation platform to simulate the CRJ-700 flight dynamics. 

Validation of the models predictions against experimental VRESIM data for 1,992 different 

flight cases confirmed their accuracy, while all models have met the FAA validation standards 

(tolerances).   

 

In CHAPITRE 5, the CRJ-700 methodology was adapted to the Cessna Citation X aircraft, 

further highlighting the versatility of the approach. Despite the distinct challenges posed by 

the Cessna Citation X, the use of a similar AI methodology (MLP and RNN) led to equally 

promising outcomes. The training of AI models used a comparable portion of the dataset 

collected from the Cessna Citation X RAFS. The subsequent validation process exhibited 

similar success to the process observed with the CRJ-700, thereby confirming the 

methodology's robustness for two different aircraft types. This third objective fundamentally 

validates the thesis’ major contributions to aerodynamic modeling, showcasing AI’s crucial 

role in precisely predicting and simulating aircraft dynamics during stall. 

 

Discussion of Methodological Strengths and Limitations  
 
The research presented in this thesis reflects a series of methodological strengths that 

contribute to the field of aerodynamic modeling. The use of high-fidelity simulation data from 

Level-D certified VRESIM for the CRJ-700 and Cessna Citation X RAFS ensured that the 

models were trained and validated with data that closely mimics real-world conditions. The 

application of BO for hyperparameter tuning and the use of cross-validation techniques 

provided a robust and systematic approach to models’ development, enhancing the accuracy 

and generalizability of the AI models.  

 

However, the methodology developed in this thesis still represents a beginning in AI and 

machine learning in application in aerodynamics and stall. As algorithms improve, more 
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sophisticated and computational power increases, the potential exists for even more accurate 

and comprehensive modeling in reduced computational time. There is an opportunity for future 

research to expand upon the work presented here. 

 

In summary, the methodological approach of this thesis represents a significant step forward 

in the application of AI in flight dynamics modeling and stall. It provides a solid platform for 

future work, which could include the exploration of hybrid models that combine the strengths 

of different AI techniques, the real-time data acquisition for dynamic model updating, and the 

application of adaptive control systems models for enhanced flight safety and efficiency. 

 
Future Research Direction 
 

This PhD thesis paves the way for future studies in a variety of directions. One promising 

avenue involves applying the developed AI methodologies to a broad spectrum of aircraft 

modeling, such as engine performance, control systems, and structural dynamics. Extending 

these techniques to different types of aircraft modeling can provide an integrated view of an 

aircraft operation and behavior. 

 

Further research could also delve into real-time data acquisition and integration of AI models 

into active flight control systems, allowing for dynamic adjustments to flight parameters based 

on environmental and aircraft data. This research could significantly enhance the 

responsiveness of control systems to changing flight dynamics. 

 

Exploring more advanced Machine Learning algorithms beyond the scope of ANN or SVR 

offers a scope for future research. Techniques such as Long Short-Term Memory (LSTM) 

networks, known for their efficacy in processing time-series data, could enhance the modeling 

of dynamic aerodynamic phenomena. Such advancements in AI methodologies could 

significantly enhance our understanding and prediction of various aircraft aerodynamic 

performance in different flight scenarios. 
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Lastly, extending this research to include the modeling of the environmental impact of aircraft, 

such as noise and emissions, can lead to a more sustainable aviation technologies development, 

aligning with the global push towards reducing the environmental footprint of air travel. 

 

In summary, this PhD thesis concludes with the integration of AI into aerodynamic modeling, 

thus representing a substantial advancement in Aerospace Engineering. The successful 

application of advanced ML techniques to complex aerodynamic phenomena not only validates 

the potential of AI in this field but also marks the beginning of a new period where AI-

enhanced models could become an industrial standard. This research serves as a bridge 

between theoretical knowledge and practical applications, promising to influence future 

innovations in aircraft design, safety, and efficiency. The PhD thesis research has been 

challenging but rewarding, showcasing the endless possibilities when technology and human 

innovations converge.  
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