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OPTIMIZATION OF FLIGHT CONTROL PARAMETERS OF AN AIRCRAFT 
USING GENETIC ALGORITHMS 

Sixto Ernesto Garcfa Aguilar 

ABSTRACT 

Genetic Algorithms (GAs) are stochastic search techniques that mimic evolutionary pro­
cesses in nature such as natural selection and natural genetics. They have shown to be 
very useful for applications in optimization, engineering and learning, among other fields. 
In control engineering, GAs have been applied mainly in problems involving functions 
difficult to characterize mathematically or known to present difficulties to more conven­
tional numerical optimizers, as weil as problems involving non-numeric and mixed-type 
variables. In addition, they exhibit a large degree of parallelism, making it possible to 
effectively exploit the computing power made available through parallel processing. 

Despite active research for more than three decades, and success in solving difficult prob­
lems, GAs are still not considered as an essential global optimization method for sorne 
practical engineering problems. While testing GAs by using mathematical functions has a 
great theoretical value, especially to understand GAs behavior, these tests do not operate 
under the same factors as reallife problems do. Among th ose factors it is worth to mention 
two possible situations or scenarios: one is when a problem must be solved quickly on not 
too many instances and there are not enough resources (time, money, and/or knowledge); 
and the other is when the objective function is not "known" and one can only "sample" 
it. The first scenario is realistic in engineering design problems where GAs must have 
a relatively short execution time in achieving a global optimum and a high enough effec­
tiveness (closeness to the true global optimum) to avoid several iterations of the algorithm. 
The second scenario is also true in the design of technical systems that generally require 
extensive simulations and where input-output behavior cannat be explicitly computed, in 
which case sampling becomes necessary. 

F1ight control design presents these two types of scenarios and, during the last ten years, 
such problems as structure-specified H 00 controllers design, dynamic output feedback 
with eigenstructure assignment, gain scheduled controllers design, command augmen­
tation system design, and other applications have been targeted using genetic methods. 
Although this research produced very interesting results, none so far has focused on re­
ducing the execution time and increasing the effectiveness of GAs. 

The efficiency and effectiveness of Genetic Algorithms are highly determined by the de­
gree of exploitation and exploration throughout the execution. Several strategies have 
been developed for controlling the exploitation/exploration relationship for avoiding the 
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premature convergence problem. While significant body of expertise and knowledge have 
been produced through severa! years of empirical studies, no research has reported the use 
of Bayes Network (BN) for adapting the control parameters of GAs in order to induce a 
suitable exploitation/exploration value. 

The present dissertation fiiis the gap by proposing a model based on Bayes Network for 
controiiing the adaptation of the probability of crossover and the probability of mutation 
of a Real-Coded GA. The advantage of BNs is that knowledge, Iike summaries of factual 
or empirical information, obtained from an expert or even by Iearning, are interpreted as 
conditional probability expressions. It is important to highlight that our interest, which is 
motivated by the requirements of real applications, is the behavior of GAs within reason­
able time bound and not the Iimit behavior. Related genetic algorithm issues, such as the 
ability to main tain diverse solutions along the optimization process, are also considered in 
conjunction with new mutation and selection operators. 

The application of the new approach to eight different realistic cases along the flight con­
trol envelope of a commercial aircraft, and to severa! mathematical test functions demon­
strates the effectiveness of GAs in solving f!ight-control design problems in a single run. 
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L'OPTIMISATION DES PARAMÈTRES DE CONTRÔLE D'UN AVION EN 
UTILISANT DES ALGORITMES GÉNÉTIQUES 

Sixto Ernesto Garda Aguilar 

SOMMAIRE 

Problématique 

La conception d'un avion commercial est non seulement un processus complexe mais 
également très long, qui exige l'intégration de plusieurs technologies. Les ingénieurs 
doivent formuler des solutions optimales pour développer des produits satisfaisant de 
rigoureuses caractéristiques. Ils portent une responsabilité lourde car leurs idées, leurs 
connaissance et leurs habilités ont des impacts significatifs sur la performance de l'avion, 
comme son coût et son entretien, ainsi que son opération rapide et robuste. 

Parmi les différentes phases du processus de conception, l'une des plus importantes est 
celle où les ingénieurs de conception d'avion doivent fournir la structure du système de 
commande électrique de vol-par-fil (fly-by-wire). Contrairement aux systèmes conven­
tionnels de commande de vol où le pilote déplace l'avion en utilisant des mécanismes 
mécaniques ou hydromécaniques, le vol électrique comporte des entrées électriques et 
électroniques de la cabine de pilotage vers les gouvernes. En utilisant un système de co­
mande de vol électrique, les ordres des pilotes sont augmentés par des entrées addition­
nelles à partir des ordinateurs de commande de vol, lui permettant de pousser l'avion 
aux limites de 1' enveloppe de vol et recevoir une réponse commandée et sécuritaire. En 
d'autres termes, un système de vol électrique est construit pour interpréter l'intention du 
pilote et pour la traduire en action, où le processus de traduction prendra en considération 
des facteurs de l'entourage. Ceci prévoit une commande plus sensible et plus précise de 
l'avion, qui permet une conception aérodynamique plus efficace ayant pour résultat la 
drague réduite, la brûlure améliorée de carburant et charge de travail réduite pour le pilote. 

La plupart des circuits de commande de vol se composent des déclencheurs, de dispo­
sitifs de senseurs ainsi que des gains des contrôleurs. Les valeurs pour l'ensemble des 
gains du contrôleur doivent être choisit afin d'assurer la performance optimale de l'avion 
sur toute l'enveloppe de vol, s'accordant aux conditions définies par des organismes de 
gouvernement comme l'Administration fédérale d'aviation des Etats-Unis et l'Autorité 
d'aviation civile du Royaume Uni. D'une façon générale. le design industriel d'un circuit 
de commande de vol inclut les activités suivantes: a) dériver les composantes d'un modèle 
dynamique non linéaire pour l'avion; et b) analyser la structure hypothétique du modèle 
et de son comportement dynamique en employant la simulation non linéaire. La dernière 
activité non seulement inclut l'exécution du modèle de simulation pour plusieurs points 
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des opérations de 1' enveloppe de vol, mais également des tâches d'optimisation pour trou­
ver des valeurs optimales pour les gains de contrôleur pour chaque point d'opération. Les 
points d'opération de l'enveloppe de vol sont des conditions de vol appropriées selon la 
vitesse, centre de gravité, poids, pression et altitude qui sont capturées à partir de vraies 
situations pour être utilisées dans le modèle de simulation. 

Le type de méthodes d'optimisation et l'exactitude de l'optimisation des modèles utilisés 
sont très critiques pour rendre plus efficace et efficiente la tâche de trouver un ensemble 
optimal de gains de contrôleur. Tandis que les techniques basées sur le calcul sont lo­
cales dans leur portée et dépendent de l'existence de l'une ou l'autre des dérivées ou un 
certain arrangement d'évaluation de fonctions, les algorithmes énumératifs de recherche 
manquent d'efficacité quand augmente la dimensionnalité du problème. Les concepteurs 
que utilisent des méthodes d'optimisation classiques choisissent normalement un premier 
point de départ pour 1' algorithme. Si ce premier point est assez proche de la solution opti­
male, alors la technique convergera vers elle. Dans le cas contraire, le point initial doit être 
modifié selon une stratégie utilisée par le concepteur. Ainsi, trouver une bonne solution est 
très itérative et compte sur l'expérience du concepteur avec le processus d'optimisation, ce 
qui rapporte rarement un optimum global. Par conséquent, il est nécessaire de chercher un 
algorithme d'optimisation robuste et global pour résoudre le problème et pour améliorer 
le processus de conception. 

Cadre Conceptuel 

Nous avons choisi les algorithmes génétiques (GAs) pour résoudre ce problème. Les GAs 
ont subi un grand développement au cours des dernières années, ont été reconnus comme 
une méthode fiable d'optimisation, et ont montré une efficacité remarquable en résolvant 
des problèmes non linéaires avec des nombres élevés de variables. On les classe comme un 
sous-ensemble d'un groupe de procédures heuristiques connues sous le nom de méthodes 
de Calcul Évolutionnaire (EC) qui inclut également les Stratégies d'Évolution (ES), la Pro­
grammation Génétiques (PG) et la Programmation Évo1utionnaire (PE). Les méthodes de 
calcul évolutionnaire sont des algorithmes stochastiques dont ses méthodes de recherche 
modélisent deux importants phénomènes de la nature : transmission génétique et le prin­
cipe de Darwin pour la survie. 

Plusieurs conditions rendent les GAs appropriés pour trouver les gains optimaux du contrô­
leur d'un modèle non linéaire, comme celui utilisé pour la conception d'un système de 
commande de vol d'un avion jet d'affaires. Parmi ces conditions, nous avons que: 1) la 
fonction de coût n'a pas besoin d'être une fonction explicite; elle est possible d'être définie 
à partir d'une des sorties d'un modèle de simulation; 2) nous n'avons pas besoin de condi­
tions initiales; 3) on peut trouver une solution globale optimale ou très proche de celle-ci, 
même si la fonction de coût est fortement non linéaire, multi variable et multimodale. 
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Afin d'exécuter efficacement la recherche d'un optimum sur les espaces de solutions pau­
vrement définis, les GAs classique utilisent la technique des chromosomes de Bolland. Il 
s'agit d'une méthode de codification de l'espace de solution utilisant de brèves chaînes de 
caractères binaires, 1 et 0, agencés de manière à former un chromosome unique. Cepen­
dant, il est possible d'utiliser aussi de chaînes de caractères réels comme dans le cas des 
algorithmes génétiques de codage réel (RGAs). Chaque chaîne représente (ou en quelque 
sorte permet d'étiqueter) une solution potentielle du problème d'optimisation, solution 
qui est préalablement évaluée en rapport à la fonction objective à optimiser. Afin d'iden­
tifier d'autres solutions à évaluer, de nouvelles chaînes de caractères sont produites après 
l'application des opérateurs génétiques, soit la recombinaison et la mutation, à celles exis­
tantes. Ces opérateurs, lorsque combinés à un processus de sélection naturelle, permettent 
l'utilisation efficace d'information d'hyperplan du problème pour guider la recherche. 
Chaque fois qu'une nouvelle chaîne est produite, les GAs font l'échantillonnage de l'es­
pace de solutions possibles. Après une série de prélèvements guidés, l'algorithme devient 
centré de plus en plus dans les points près de la solution globale supposée. 

Le succès de ces algorithmes est fondé sur l'équilibre entre l'exploitation des meilleures 
chaînes trouvées et l'exploration du reste de l'espace de recherche. L'un des buts les plus 
importants à ce stade est de ne pas rejeter de bonnes régions où un véritable optimal global 
peut exister. Cependant, les GAs comptent sur beaucoup de paramètres, et 1' utilisation des 
arrangements faibles peuvent empêcher d'atteindre un équilibre correct entre l'exploita­
tion et 1' exploration. Ceci peut dégrader sévèrement la performance du GA en provoquant 
une possible convergence prématurée, et ainsi forcer le concepteur à faire exécuter le GA 
plusieurs fois. De plus, la conception de systèmes techniques, telles que les systèmes de vol 
électrique pour les avions d'affaires, exigent des simulations étendues où le comportement 
d'entrée-sortie du système ne peut pas être explicitement calculé, et où le prélèvement est 
nécessaire. Contraire à l'optimisation des fonctions mathématiques utilisant les GAs, où 
le temps d'évaluation de la fonction objective est juste une fraction de millisecondes, la 
simulation des problèmes réels peut exiger de 1' ordinateur beaucoup de temps d'exécution 
juste pour évaluer la fonction objective. 

Par conséquent. le but à accomplir dans cette recherche est d'améliorer la performance 
des algorithmes génétiques afin de les rendre plus efficients et efficaces pour l'optimisa­
tion des gains du contrôleur d'un système de vol électrique des avions commerciaux. Par 
efficacité, nous voulons dire que quelque soit la solution produite par notre GA amélioré, 
nous devrions tomber très près du vrai optimum global (petit écart type) indépendamment 
de combien de fois le GA est invoqué. Quant à l'efficience, nous voulons dire que notre 
GA amélioré devrait résoudre le problème dans le moindre de temps (petit temps de CPU) 
que le GA classique, sans affecter son efficacité. 
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Méthodologie 

La méthodologie appliquée dans cette recherche a pennis l'étude de différentes archi­
tectures de GA pour arriver à une configuration de base, celle qui a été modifiée par 
chacune de nos contributions. Il est important de souligner que la flexibilité est essen­
tielle dans la conception des GAs, et seulement dans quelques occasions les résultats as­
sortissent des hypothèses préconçues. Plusieurs GAs améliorés sont fréquemment cités 
dans la littérature, avec la motivation d'être une nouveauté. Cependant, dans plusieurs 
cas, les GAs précédemment présentés sont plus simples et ont une exécution identique ou 
meilleure. 

La recherche dans le domaine des GAs a été dominée par deux types opposés d'approches, 
soit l'expérimentation ad-hoc et la recherche d'un modèle exact pour le GA. Trouver un 
modèle exact pour les GAs est devenu une tâche plus complexe et plus difficile analytique­
ment que les GAs eux-mêmes, et seulement dans très peu d'occasions a-t-on pu développer 
des conceptions améliorées pour les GAs. La difficulté réside dans le fait que ce sont des 
systèmes complexes, et donc par conséquent indétenninés. Une meilleure approche est 
de combiner l'intuition et l'expérience quant au système à résoudre, l'analyse globale et 
comparative des résultats, et l'expérimentation systématique de diverses architectures. 

Cette méthodologie nous a pennis de répondre à six questions reliées à l'analyse, la 
conception et le test de notre GA, soit : 1) quel langage de programmation nous devrions 
utiliser; 2) si nous devrions utiliser des logiciels pours les GAs déjà conçus, ou plutôt le 
faire par nous même; 3) dans quelle partie de l'architecture du GA nous devrions concen­
trer nos efforts pour faire des nouvelles contributions théoriques et empiriques ; 4) quels 
types de tests nous devrions appliquer à nos nouvelles conceptions et pour comparer les 
résultats avec d'autres travaux de recherche dans la littérature; 5) quel type d'index peut 
nous permettre d'évaluer la perfonnance de nos GAs; et 6) quels cas de l'enveloppe de 
vol de 1' avion à 1 'étude nous devrions utiliser pour tester nos GAs. 

Trois principes fondamentaux nous on guidé durant cette recherche pour en assurer la 
qualité. Premièrement, il fallait que toute amélioration au GA reste simple en tennes de 
conception et d'exécution. Il est déjà difficile d'analyser un système aussi complexe qu'un 
algorithme génétique, il serait donc peu valable d'augmenter le coût de la complexité du 
système pour ne mener qu'à de faibles améliorations. En second lieu, il nous importait 
d'effectuer une solide analyse du système, et ce par une application intelligente des heu­
ristiques, de la connaissance et de l'expertise que nous avons obtenues des concepteurs du 
système. Troisièmement, nous avons tenu à mener une expérimentation détaillée et soi­
gneuse pour examiner plusieurs nouvelles méthodes, plutôt que de nous fier simplement 
aux méthodes antérieures de résolution des GAs. 

Les spécifications du système à résoudre, les données de base sur les enveloppes de vol, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

V li 

ainsi que les ressources pour soutenir cette étude ont été fournies par Bombardier. 

Contributions 

Afin de viser la première partie de nos objectifs, soit 1' efficience du processus de recherche 
de solution, un nouvel opérateur de mutation a été mis en application. Nous avons réussi à 
combiner les caractéristiques de deux opérateurs de mutation, uniforme et non uniforme, 
au sein d'un nouvel opérateur de type périodique. Ce nouvel opérateur nos a permis d'ob­
tenir des contrôleurs qui produisent le plus petit coût minimal pour les huit cas du système 
à l'étude, avec des moyennes et écarts types plus petits et plus stables que ceux obtenus 
avec les opérateurs uniformes et non uniformes en utilisant un maximum de deux cents 
générations. Cependant, l'utilisation d'une technique déterministe pour le contrôle de pa­
ramètres dans la conception de l'opérateur périodique de mutation ne nous a pas sauvé du 
processus de 1' accord manuel, mais il a amélioré l'efficacité de notre GA dans le problème 
de conception de la loi de commande d'avion. 

Quant à l'efficacité à résoudre un problème réel d'optimisation, nous avons pris en compte 
qu'elle dépend de l'exactitude du modèle employé pour mettre en application la fonction 
objective. Tandis que le modèle sans contrainte fourni par Bombardier inclut les critères 
de qualité de manipulation qui doivent être satisfaits selon des conditions des régulateurs, 
il n'y a pas de manière directe de contrôler la forme de sa réponse à l'échelon. Ainsi, 
nous avons proposé un nouveau modèle avec contraintes et nous avons fait la conception 
d'un nouvel opérateur de sélection detournement stochastique pour augmenter l'efficacité 
d'un algorithme génétique du codage réel (RGA) appliqué aux problèmes d'optimisation 
avec contraintes. Pour la conception de 1 'opérateur de sélection de tournement stochas­
tique contraint, on a appliqué une méthode qui peut manipuler la proportion d'individus 
faisables et non faisables sans négliger le comportement dynamique du GA. Les gains des 
contrôleurs obtenus avec le nouveau modèle et le nouvel opérateur ont été capables de 
produire de meilleures réponses à l'échelon que le modèle sans contraintes en satisfaisant 
en même temps les critères de qualité de manipulation du système. De plus, les moyennes 
et les écarts types obtenus ont été plus stables et dans quelques cas plus petits que ceux 
produits par des autres méthodes évolutives. Ce nouveau modèle contribue au concepteur 
avec une manière flexible de contrôler les caractéristiques de la réponse du système. 

Bien que le temps de calcul ne soit pas significatif dans le cas d'une optimisation des fonc­
tions numériques, il est très important quand nous employions la simulation des problèmes 
réels dans plusieurs domaines parce que ceci a pu impliquer beaucoup de temps d'exécution 
juste pour évaluer la fonction objective. Ainsi, il est donc crucial de savoir quand arrêter le 
processus d'optimisation d'un GA ou détecter quand le processus d'optimisation exécuté 
par un GA est plus utile. 

En combinant notre modèle avec l'utilisation d'un index pour mesurer la diversité des in-
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dividus d'une population d'un algorithme génétique ainsi qu'un réseau de Bayes (BN), 
nous avons réussi à inclure notre connaissance et expertise partielles du système afin de 
détecter la convergence et pour arrêter le processus d'optimisation. L'applicadon d'un in­
dex, comme l'index de la diversité modifié de Simpson (mD), qui est souvent employé 
pour mesurer la biodiversité d'un habitat en écologie a permis de mesurer la dissimili­
tude des gènes dans une population pendant le processus d'optimisation d'un algorithme 
génétique de codage réel (RGA) qui emploient des opérateurs de mutation avec des poli­
tiques décroissantes de mutation. 

Il nous fut également nécessaire de créer un nouveau processus pour l'application de cet 
index dans le contexte des RGAs. Ce processus a prouvé l'existence d'un ensemble de 
classes des chromosomes autour du meilleur individu avec certaines caractéristiques où 
leur diversité devient critique pour détecter la convergence. Les résultats ont démontré 
que quand l'index modifié de Simpson était au-dessous d'une certaine valeur KmD puis 
la probabilité que la convergence s'est produite était très haute. Le réseau de Bayes, nous 
a permis de matérialiser une nouvelle méthode de détection de convergence et un nouvel 
algorithme génétique adaptatif probabiliste en utilisant l'information obtenue à partir du 
nouveau processus et de notre propre expertise. Les résultats démontrent clairement que 
nous avons réussi à diminuer de 25% le temps d'exécution original et à améliorer l'effica­
cité des RGAs. Tandis que nous considérions que l'adaptation de l'opérateur de mutation 
non uniforme n'est pas meilleure que nous puissions faire en utilisant mD et nos BN, 
cet opérateur nous montre sans difficulté la manière d'améliorer l'opérateur de mutation 
existant. 

Recherches Futures 

Cependant, plus de travail reste à faire et nous suggérons un certain nombre de suites 
potentielles du travail décrit dans cette thèse. 

Entre autres, il sera très important de savoir si l'index modifié de Simpson peut être ap­
pliqué à différentes architectures de RGAs. Par différentes architectures, nous avons l'in­
tention de nous référer à différents types d'opérateur de croisement et de mutation. 

Un autre travail qui reste à effectuer est de voir si l'index employant un ensemble différent 
de classes peut laisser savoir avec plus de précision le comportement du RGA à différentes 
étapes autres que la dernière. 

Il serait aussi très intéressant et utile de trouver un modèle mathématique qui relie la 
variable epsilon avec la précision des résultats finaux. De cette façon on pourrait peut-être 
savoir et commander la précision de n'importe quelle solution du RGA. 

En suivant les directives de la méthodologie utilisée dans cette recherche, il est important 
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de voir la possibilité de faire une extension de l'utilisation de l'index modifié de Simp­
son et le réseau de Bayes pour contrôler le comportement dynamique de 1' opérateur de 
croisement. 

Une autre prolongation de cette recherche devrait être l'utilisation du réseau de Bayes 
et un index de diversité semblable à celui employé dans cette recherche, pour améliorer 
l'exécution du RGA cherchant à résoudre des problèmes d'optimisation avec contraintes. 
Un bon candidat pourrait être le rapport des individus faisables et non faisables de chaque 
génération dans toute la duré du processus d'optimisation. 

Enfin, bien que cette recherche a montré l'utilisation du réseau de Bayes et un index de 
diversité à RGA, il reste explorer leur utilisation dans des GAs où le codage est différent, 
tel que binaire et nombre entier. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The design of a commercial transport aircraft is not only a complex but also a time­

consuming process requiring the integration of many engineering technologies. Designers 

work very hard in finding optimal or good solutions and developing products within strin­

gent specifications. They carry a heavy responsibility since their ideas, knowledge and 

skills have significant impact on the performance of the aircraft, such as low-cost imple­

mentation and maintenance, fast execution, and robust operation. 

Among the different phases of the design process, there is one where aircraft design engi­

neers have to provide the structure of the fly-by-wire control system. Contrary to conven­

tional flight control systems, where the pilot moves the aircraft through either mechanical 

or hydro-mechanicallinkages from the cockpit to the control surfaces, fly-by-wire features 

electrical/electronic inputs from the cockpit to the control surfaces (Daily, 2005). By us­

inga fly-by-wire system, the pilots' commands are augmented by additional inputs from 

flight control computers, enabling him to push the plane to the limits of the flight envel ope 

and receive a safe and controlled response. In other words, a fly-by-wire system is built 

to interpret the pilot's intention and translate it into action, where the translation process 

will take environmental factors into account first. This provides for a more responsive and 

precise control of the aircraft, which allows a more efficient aerodynamic design resulting 

in reduced drag, improved fuel bum and reduced weight and pilot workload. 

Most flight control systems consist of actuators, sensor deviees as weil as a set of controller 

gains. The values for the set of controller gains must be selected in order to ens ure optimal 

performance of the aircraft over its full flight envelope, according to the requirements 

specified by govemment organizations such as the Federal Aviation Administration in the 
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United States and the Civil Aviation Authority in the United Kingdom. Generally, the 

industrial design of a flight control system includes the following activities: a) derive a 

non-linear dynamic model for the aircraft; and b) analyze the hypothesis of the model 

and its dynamic behavior by using non-linear simulation. The last activity does not only 

include the implementation of the simulation model for several points of operations along 

the flight envelope, but also the optimization process for finding optimal values for the 

controller gains for each operation point. The operation points of the flight envelope are 

suitable flight conditions of speed, center of gravity, weight, pressure and altitude that are 

captured from real situations to be used in the simulation model. 

The type of optimization methods and the accuracy of optimization models used are very 

critical for the efficiency and effectiveness of finding an optimal set of controller gains. 

While calculus-based techniques are local in scope and depend on the existence of ei­

ther derivatives or sorne function evaluation scheme (Krishnakumar and Goldberg, 1992), 

enumerative search algorithms lack efficiency when the dimensionality of the problem in­

creases. Designers using classical optimization methods normally select an initial point 

of departure for the algorithm. If this initial point is close enough to an optimal solution, 

then the technique will converge to it. If not, the initial point has to be modified according 

to sorne strategy used by the designer. Thus, finding a good solution is very iterative and 

relies on the experience of the designer with the process, which rarely yield a global opti­

mum. Therefore, it is necessary to look for a robust and global optimization algorithm to 

solve the problem and to improve the design process. 

We have chosen genetic algorithms (GAs) for solving this problem. They have expe­

rienced a great development in the past few years, have been recognized as a reliable 

optimization method, and have shown a remarkable efficiency in solving non-linear prob­

lems with high numbers of variables (Gen and Cheng, 1997, 2000). GAs are a subset of 

a group of heuristic procedures known as Evolutionary Computation (EC) methods which 

also includes Evolution Strategies (ES), Genetic Programming (GP) and Evolutionary 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

3 

Programming (EP). The methods of evolutionary computation are stochastic algorithms 

whose search methods model two important natural phenomena: genetic inheritance and 

Darwinian strife for survival (Michalewicz et al., 1996). 

Among the conditions that make GAs suitable for finding optimal controller gains of a 

non-linear modellike the one used for the design of a ftight control system of a business 

jet aircraft, there are: 

1. the cost function does not need to be an explicit function; it is possible to implement 

one from the outputs of a simulation model; 

2. GAs do not need initial conditions; 

3. GAs are able to fi nd a global optimal or near optimal results even if the cost function 

is highly non-linear, multi-variable and multi-modal. 

GAs perform efficient searches on high dimensional and complex solution spaces by mod­

ifying intelligently a population of string from generation to generation. Each string rep­

resents a potential solution of the optimization problem, and is valued with respect to the 

objective to optimize. New strings are produced by applying the genetic-based operators, 

recombination and mutation, to existing ones; and combining these operators with natural 

selection results in the efficient use of hyperplane information found in the problem to 

guide the search. Each ti me that a new pool of strings is generated, GAs sample the space. 

After a series of guided samplings, the algorithm is centered more and more in points next 

to the supposed global solution. The success of these algorithms is grounded on the bal­

ance between the exploitation of the best strings found and the exploration of the rest of 

the search space, with the aim of not discarding good regions where a true global optimal 

may exist. However, GAs are subject to many parameters, and the use of poor settings 

may not allow to reach a correct balance between exploitation and exploration; and the 

GA performance shall be degraded severely provoking a possible premature convergence, 
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forcing to do severa! runs. Besides, the real design of technical systems like the design of 

fl.y-by-wire for business jet aircraft requires extensive simulations where its input-output 

behavior cannet be explicitly computed, and sampling is necessary. Contrary to the opti­

mization of mathematical functions using GAs where the time for evaluation functions is 

just a fraction of milliseconds, the simulation of real problems could involve a lot of CPU 

ti me of execution just for evaluating the objective function. 

1.2 Research Objectives 

The overriding goal to accomplish in this research is to improve the performance of Ge­

netic Algorithms in order to be applied effectively and efficiently to the optimization of 

controller gains of a fl.y-by-wire system for business jet aircraft. Thus, there exist different 

possible ways to reach this objective, one by working on the architecture of GAs, another 

by changing the unconstrained optimization model of the aircraft that has been provided 

by Bombardier, and a third one by doing both. While the first one is the principal object 

of this thesis, this research has been extended by proposing a constrained global optimiza­

tion model for the same practical problem. Having a constrained optimization model gives 

the possibility to test the extensions of the contributions to constrained real engineering 

problems. 

This work is part of the goals of the group of research of École de Technologie Supérieure 

in collaboration with Bombardier. 

1.3 Contributions 

To the best knowledge of the author, the following are the main theoretical contributions 

of this thesis: 

• The development of a new mutation operator named Periodic Mutation (Chapter 6). 

This operator has been able to generate a small and stable average cost and standard 
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deviation for each case of the ftight envel ope of our practical problem. 

• The derivation of a new selection method based on a stochastic tournament scheme 

adapted to constrained optimization problems (Chapter 7). This new selection scheme 

used in a base GA architecture to solve a constrained optimization model of the busi­

ness jet aircraft problem has shown to be capable ofproducing controller gains with 

a better step response than those produced by the unconstrained model. 

• The introduction of a new procedure to measure diversity in a GA, among the indi­

viduals of its population, by using the modified Simpson 's index that cornes from the 

field of ecolo gy (Chapter 8). This new procedure for the application of the modified 

Simpson's index to GAs has shown to be capable ofreducing 25% of the execution 

ti me of the original base GA without degenerating the quality of the results. 

• The implementation of a Probabilistic Adaptive Genetic Algorithm (PAGA) based 

on Bayes Networks (Chapter 8). This algorithm incorporates a probabilistic method 

to detect convergence to stop the optimization process, as weil as a probabilistic 

adaptation of a nonuniform mutation operator. 

As well, we made sorne key practical contributions to the application of GAs: 

• a constrained optimization model for the computation of controller gains by using a 

corn bi nation of Handling Qualities Criteria and features of the step response, 

• a toolbox of GAs that works with Matlab and ready to use in different optimization 

problems. 

1.4 Outline of the Thesis 

This thesis is organized as follows. Before getting into the literature review of this re­

search, it has been considered very important to introduce first the reader with sorne no­

tions about the nature of Genetic Algorithms, their basis and the state of the art of their 
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implementation as weil as a brief description of another type of Evolutionary Algorithms 

denominated Evolutionary Strategy in Chapter two. 

Chapter three presents a literature review in the areas of the applications of Evolutionary 

Algorithms to flight control system design, the application of GAs to constrained nonlinear 

optimization problems, and the techniques used for implementing adaptive GAs. 

Chapter four describes with more detail the architecture of the fly-by-wire system that is 

part of our practical problem, the mathematical mode! used to find the set of controller 

gains, the different design requirements that the flight control systems must satisfy, and 

the way the cost function, used in the optimization process, is implemented. Ail this infor­

mation partially serves for the implementation of the simulation model initially provided 

by Bombardier in the frame of collaboration with ETS. 

Chapter five provides details of the methodology used along all the research. It also de­

scribes how using information from the literature review and using a set of unconstrained 

mathematical functions for testing we arrive to a base architecture of a GA. Then, we show 

the results of testing the base GA with the simulation mode! of the business jet aircraft and 

let everything ready for its study and the proposai of new improvements in the following 

chapters. 

Chapter six presents our new operator, periodic mutation. The design of this operator aims 

to reduce the number of function evaluations (reduce time of execution) and to reduce 

the mean and standard deviation in such a way that indistinctly of the case of the flight 

envelope of the simulation model we can increase the likelihood that our GA gets a result 

very close to the global optimal in the first run. We explain how our proposed scheme 

works and give next the results of severa! tests and their analysis. 

Chapter seven exp lains a new constrained stochastic tournament selection operator and the 

principles used for its implementation. To validate the performance of this new operator, 
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the results of an experimental study are described and analyzed. The GA using this new 

selection operator is applied to a set ofbenchmark functions and to a proposed constrained 

optimization model for finding the controller gains of a business jet aircraft to show the 

success of its application. In this new model, the fitness function is defined in terms of 

the standard performance measures of the step response of the system; and the constraints 

are expressed in terrns of the handling qualities criteria. Finally, we test the new approach 

and compare its results with those obtained by applying the evolution strategy algorithm 

proposed by Runarsson and Yao (2000), which was available on Internet, to the simulation 

model of the aircraft. 

Chapter eight shows how using a probabilistic approach embedded in a Bayes Network 

it is possible to introduce the expert knowledge and to adapt the principal parameters of 

a GA for improving its performance. This chapter describes first several performance 

measures that can be used for setting up the evidence nodes in the BN. After proving 

that those indices are not useful, we present a new way of measuring diversity among the 

population of a GAby using the modified Simpson's index, an index that is often used to 

quantify the bio-diversity of a habitat in ecology. A new method for termination of the 

optimization process based on the modified Simpson's index is completely detailed, and 

the results of its successful application are also explained. Finally, the description for the 

implementation of a new adaptive nonuniform mutation operator and its inclusion in a GA 

named Probabilistic Adaptive Genetic Algorithm (PAGA) are also explained. 

In the last chapters, conclusions and recommendation for future work are drawn. 
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CHAPTER2 

BACKGROUND ON GENETIC ALGORITHMS 

This chapter presents a review of the concepts, principles, and structure of Genetic Algo­

rithms. It also look at another key Evolutionary Computation algorithm, Evolution Strate­

gies, which are also used in optimization. The objective of this chapter is to introduce the 

reader with sorne knowledge about GAs in order to understand the terminology as weil as 

the development of the following chapters. 

GAs are a subset of a group of heuristic procedures known as Evolutionary Computa­

tion (EC) methods which also includes Evolution Strategies (ES), developed by Rechen­

berg and by Schwefel (Schwefel, 1995a); Genetic Programming (GP), developed by Koza 

(Koza, 1992); and Evolutionary Programming (EP), developed by Fogel et al. ( 1966). 

Genetic algorithms (GAs) were proposed by Bolland (Bolland, 1992) in the early 1970s 

to mimic the evolutionary processes found in nature. The fundamental notion behind this 

process is that the individuals best suited to adapt to a changing environment are essential 

for the survival of each species. Bowever, their survival capacity is deterrnined by various 

features which are unique to each individual and depend on the individual's genetic con­

tent (Srinivas and Patnaik, 1994b). In other words, the evolution's driving force in nature 

is the joint action of natural selection and the recombination of genetic material that occurs 

during reproduction. 

Following these notions, Bolland's genetic algorithms (GAs) manipulate a population of 

encoded representations of potential solutions by applying three types of operators: two 

for reproduction and one for selection. The reproduction operators generally used are 

crossover and mutation operators. Figure 1 shows the classical structure of a genetic 

algorithm. 

Traditionally, genetic algorithms with binary encoding, referred to here as the Simple Ge-
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t +-- 0; 
initialize population( t); 
evalua te population( t); 
t = 1; 

while (not termination condition) 
{ 

} 

select population(t) from population(t-1); 
apply crossover to structures in population( t); 
apply mutation to structures in population(t); 
evaluate population(t); 
t +-- t + 1; 

Figure 1 Structure of a Genetic Algorithm 

9 

netic Algorithm (SGA), have been used because they are easy to implement and maximize 

the number of schemata processed (Goldberg, 1989; Bolland, 1992). However, there are a 

great number of practical problems that have been successfully solved by using a floating­

point representation (Gen and Cheng, 1997), referred to, in this thesis, as the Real-Valued 

Genetic Algorithm (RGA). 

In general, the following are the principal components that are part of the algorithm of 

Figure 1: 

a. A mechanism to encode the potential solutions 

b. A strategy to generate the initial population of potential solutions 

c. The control parameters 

d. The genetic or reproduction operators (crossover and mutation) 

e. A fitness function for evaluation 

f. A selection mechanism 
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The following sections give a short description of these components and describe the ba­

sics of genetic algorithms (GA) to understand their wealmesses and strengths. The first 

section describes a Simple GA (SGA) and the later sections introduce the Real-Valued 

GA (RGA) and genetic operators sui table for RGA. The interplay of the different param­

eters as weil as selection methods is emphasized. 

2.1 Simple Genetic Algorithm 

An SGA uses binary encoding mechanism for representing the potential solutions of the 

problem. For encoding real-valued continuous variables, an SGA maps each variable to 

an integer defined in a specified range, and the integer is encoded using a fixed number of 

binary bits. Then, the binary codes of ali the variables for one solution are concatenated 

in one string named chromosome. 

2.1.1 Encoding mechanism 

To present a simple encoding mechanism consider, for example, a function f ( x1, x2) 

where x 1 and x2 are two continuous variables defined in the intervals [-2.0, 12.1] and 

[4.1, 5.8] respectively. Suppose that both variables should be encoded with an accuracy of 

four decimal digits. First, it is necessary to map each variable to an integer as follows: 

For x1 : 

(12.1- ( -2.0)). 10.[ = 141,000 

(5.8- 4.1). 104 =li, 000 

Then, each integer is encoded in a fixed number of binary bits as shown below: 

For x 1 : 
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Il 

log10 (141: 000 + 1) ml > ___.;;~-'---------.....:... 
- log10 2 

m 1 ~ 17.10535 

Therefore, the number of bits is m 1 = 18. 

For x2: 

m2 ~ 14.0533 

Then, the number of bits is m 2 = 15. 

In summary, the two steps presented above can be implemented through the following 

expression: 

where ai and bi are the lower and upper borders of the real interval for each xi variable 

and k represents the number of decimal digits of precision. 

Finally, in our example, one chromosome of 33 bits is constructed by concatenating the 

string of 18 bits for x1 and 15 bits for x2 as it is shown in Figure 2. The corresponding 

binary value of each variable is known as its genotype, and its corresponding real value is 

named "phenotype". 
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Lt:ng.th of chromosomt: 

( 33bits )o 
"J OXXXHOIOIIOOXX:OO IOIIIIIIOOXX:Ol 

+--- 18bits~ +---15 bits~ 

Lcn)..!th or SL:)..!riH.:nl l'or :\.1 

Figure 2 Encoding mechanism 

12 

A drawback of encoding with binary strings is the presence of Hamming cliffs. This is 

related with the large hamming distances between the binary codes of adjacent integers 

(Srinivas and Patnaik, 1994b ). For example, suppose that our GA needs to improve the 

code of 14 to 15. In a binary encode, 01110 and 01111 would be the representations of 

14 and 15, respectively, and would have a Hamming distance of 1. Both mutation and 

crossover operators will surely not have problems to lead to the improved value. However. 

suppose now that we need to improve the code of 15 to 16, in this case, 10000 would be 

the representation of 16, and the hamming distance would be 5. Now, a Hamming cliff 

will be present and the operators mentioned before cannot overcome it easily. 

2.1.2 Strategy for generating the initial population 

Generally, the initial population is chosen at random, but it can also be chosen heuristi­

cally. When using heuristics it is possible to have initial populations that contain a few 

structures that may be far superior to the rest of the population, and the GA may quickly 

converge to a local optimum. Perturbations of the output of a greedy algorithm, weighted 

random initializations, and initialization by perturbing the results of a human solution to 

the given problem are among the techniques that can be mentioned. The population can 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

13 

also be initialized by choosing elements with maximal Hamming distance from each other 

using Halton sequences, among other approaches (Kocis and Whiten, 1997). 

2.1.3 Crossover Operator 

The crossover operator allows the exchange of genetic material among chromosomes. Af­

ter choosing a pair of strings, the algorithm invokes crossover only if a randomly generated 

number in the range 0 to 1 is less than Pc• the crossover rate (Srinivas and Patnaik, 1994b ). 

In a large population, Pc gives the fraction of strings actually crossed. 

2.1.3.1 Single-point crossover 

For an L bit string, this operator selects a crossover point, c, between the first and the 

last bit and creates an offspring by concatenating the first c bits from one parent with the 

remaining bits from the second parent and vice-versa (Figure 3) . 

.,..1111---- L 
c .. . 

VJ=[10000101010 !0!00111011] V~[ll001001011 01000001111] 

-- ----
--- -... 

V1=[10000101010 010000011 Il] V~[IIOOIOOIOII 10100111011 J 

Figure 3 One-point crossover 
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2.1.3.2 Two-point crossover 

In this strategy, two loci on both individuals are chosen at random; then, if the first 

crossover point occurred before the second, the bits in between these points are swapped 

(Figure 4). Otherwise, the bits from those points to their respective ends are swapped 

(Figure 5). 

V1=[10000101010 101001 11011] V:z=:[11001001011 010000 01111] 

V 1=[10000101010 010000 11011] V:z::[11001001011 101001 01111] 

Figure 4 Swapping segments inside the two-points of crossover 

V1=[10000101010 101001 11011] 

······· ······ ······ ····· .... 

V1=[11001001011 101001 01111] 

V:z::[110010010 Il 010000 01111] 

.. ..... . 
····· ······· 

••••• À ··~ 
V :z=[ 1 0000 1 0 1 0 1 0 01 0000 1 1 0 Il] 

Figure 5 Swapping segments outside the two-points of crossover 
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Since crossover requires two parent strings its power depends on the differences between 

those parents; then, as the population converges, its power diminishes (Rana, 1999). 

2.1.3.3 Multi-point crossover 

It is an extension of two-point crossover where each string is treated as a ring of bits and is 

divided by k crossover points into k segments. One set of alternate segments is exchanged 

between the pair of strings to be crossed. Spears and Jong (1991) present an analysis of 

the multi-point crossover. 

2.1.3.4 Uniform crossover 

Using this scheme, strings of bits rather than segments are exchanged. While traditionally, 

single-point and two-point have been defined in terms of cross points or places between 

loci where a chromosome can be split, both operators including uniform crossover can be 

expressed using a crossover mask (Rana, 1999; Syswerda, 1989). 

By applying a crossover mask, the parity of each bit in the mask decides which parent will 

provide a bit to the corresponding position in a child. The mask-based crossover operations 

are the sarne for each of the three different crossover operators and the differences lie in 

the characteristic patterns (Figure 6). 

Figure 6 shows that for either single-point or two-point crossover the 1-bits in the masks 

are contiguous. whereas for uniforrn crossover, the 1-bits are not. ln fact, each position 

in the rnask for uniform crossover is a 1-bit or O-bit with a uniforrn probability of 0.5. 

Figure 7 presents an example of using a uniforrn crossover mask with two parents and 

producing two children. For the first child, the O-bit in the mask rneans that is the first 

parent who provides the gene at the corresponding position and the 1-bit rneans that is 

the second parent who provides its corresponding gene. Conversely, for the second child 

the O-bit in the mask leads to the second parent who provides the corresponding gene and 
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viceversa. 

Child 1: 

Single-point: 111111 0000 

Two-point: 0011111 ûOO 

1100000111 

Uniform: 0101101101 

Figure 6 Exarnples of crossover masks 

Parent 1 : 1 011 011 00 

Parent 2: 0111 00011 

Mask: 01 0101 001 

111100101 Child 2: 001101 01 0 

Figure 7 Uniform crossover operator 

2.1.3.5 Positional and distributional biases 

16 

The advantages and drawbacks of crossover operators for genetic search are govemed by 

the relationship between the positional and distributional biases, and the search problem 
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itself (Rana, 1999). The first bias, positional one, refers to the frequency that bits that 

are far apart on an individual will be separated by crossover than bits that are close to­

gether (Wu and Garibay, 2002). As an example, suppose that the parent chromosomes 

are 01110 and 10001, under one-point crossover it is possible to produce offsprings like 

00001 or 10000 but never 00000 because the values at both the first and the last bit can 

never be exchanged concurrent! y. The distributional bias refers to the number of bits that 

are swapped under a specifie crossover operator (Rana, 1999). By using positional and 

distributional biases definitions, it is possible to assert that while single-point crossover 

exhibits the maximum positional bias and the least distributional bias, uniform crossover 

has maximal distributional bias and minimal positional bias. 

Empirical studies suggest a high degree of interrelation between the type of crossover im­

plementation and the population size of the set of potential solutions. In the case of small 

populations, uniform crossover is more suitable because of its disruptiveness; it helps 

to sustain a highly explorative search, to overcome the limited information capacity of 

smaller populations and the tendency for more homogeneity (De Jong and Spears, 1990). 

However, for large populations, their inherent diversity diminishes the need for exploration 

and therefore a less disruptive operator like two-point crossover is the best choice. 

2.1.4 Mutation 

This genetic operator ensures a more thorough coverage of the search space by stochas­

tically changing the value of a particular locus on an individual (Figure 8). It prevents a 

very early convergence of the population on local maximum or minimum by forcing an 

individual into a previously unexplored area of the problem space. From a nature point of 

view, mutation plays the role of regenerating lost genetic material produced by crossover 

and selection operators. 

For many problems, this operator is not generally considered as important as crossover 
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V1=[1000010101010 1 00111011] ---•• V1=[1000010101010 0 00111011] 

Figure 8 Mutation operator 

and selection in the GA philosophy (DeJong, 1975; Goldberg, 1989), and a low mutation 

rate (::::: 1/population_size) is often used. However, there seems to be a growing body 

of practical problems where mutation plays a significant role (Beer and Gallagher, 1992; 

Juric, 1994; Fogel and Atmar, 1990; Schaffer and al., 1989). 

2.1.5 Fitness fonction 

The objective function, the function to be optimized, provides the way to evaluate each 

chromosome; however, its range of values is not the sarne from problem to problem. Then, 

to maintain uniformity over different problem domains, the fitness function is usually 

normalized to the range of 0 to 1. This normalized value of the objective function is really 

the fitness of the string which the selection mechanism works with. 

2.1.6 Selection 

Selection mimics the survival-of-the-fittest mechanism found in nature (Srinivas and Pat­

naik, 1994b ), where fitter solutions survive wh ile weaker ones perish. In other words, this 

operator determines the actual number of o:ffspring each individual will receive based on 
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its relative performance (Baker, 1987). 

According to Baker (1987) the selection phase is composed of two parts (Baker, 1987): 

1) determination of the individuals' expected values; and 2) conversion of the expected 

values to discrete numbers of offspring. An individual's expected value is a real number 

fd f indicating the average number of offspring that individual should receive. This means 

that an individual with an expected value of 2.5 should average two and half offspring. For 

sorne objective functions the computation of the expected value is not feasible because 

of negative values; therefore, a mapping of the objective values to a positive domain is 

necessary. In any case, the algorithm used to convert the individual expected values to 

integer numbers of offspring is known as a sampling algorithm. According to Baker ( 1987) 

a very good sampling algorithm should satisfy the following conditions: 

1. Zero Bias. This means that the absolute difference between an individual's actual 

sampling probability and his expected value must be zero. 

2. Minimum Spread. If f('i) is the actual number of offspring individual i receives 

in a given generation, then the "spread" is defined as the range of possible values 

of f(i). Thus, smallest possible spread which theoretically permits zero bias is the 

"Minimum Spread". 

3. Not to increase the overall time complexity of the genetic algorithm. 

In his work, he asserts that the "Stochastic Universal Sampling" algorithm (SUS) (see 

Figure 9), which is analogous to a spinning wheel with N equally spaced pointers and a 

complexity of O(n), is an optimal sequential sampling algorithm. Its use enables GAs to 

assign offspring according to the theoretical specifications. 

There are many different selection methods, and the best known (and used in developing 

GAs) are described below. In the most general sense of the term, selection is an operator 

that selects (according to sorne criteria) J.1 parents from À individuals. 
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1. Compute the fitness average of the population 

N f· 
faverage = L ~: 

i=l 

2. Compute the expected value of offspring 

E.- fi 
1-

faverage 

3. Choose position of first marker: mark= rand(); 

4. Initialize accumulator of expected value of offspring: sum = 0: 

5. Initialize counter of individuals: i = 0; 

6. Repeat while i < N 

(a) Increment accumula tor: sum = sum + Ei; 

(b) vVhile mark < sum 

i. Select the individual i 

ii. Increment marker: mark = mark+ 1; 

( c) Increment co un ter: i = i + 1; 

Figure 9 Stochastic Universal Sampling Algorithm 

2.1.6.1 Proportional Selection (or Roulette Wheel) 

20 

This method assigns a probability of being chosen proportional to its fitness. The main 

disadvantage of this method is that when the population settles down and individuals have 

similar fitness, the selection pressure decreases and then it does not work any better than 

random selection. Also, negative fitness values tend to confuse the selection process. 

While the conventional roulette wheel selection has difficulties in keeping graduai nar­

rowing of the population, referred by Goldberg (1989) as the phenomenon of premature 
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convergence, scaling of the fitness relaxes these problems; however, it requires adjustment 

of the selection pressure by ti me consuming trial-and-error (Ki ta and Yamamura, 1999). 

When the selective pressure is high, the search focuses on the top individuals in the pop­

ulation and the genetic diversity is lost (too early convergence); on the contrary, if the 

selective pressure is low the exploration increases and more genotypes are involved in the 

search lowering the speed of convergence to an optimal (Baker, 1985; Whitley, 1989). 

2.1.6.2 Ranking Method 

This approach was proposed by Baker ( 1985) to overcome the above mentioned weakness. 

First, the method sorts the individuals in the population according to their fitness, and 

then, it applies a linear normalization method to compute the adaptation values for each 

individual of the population as it is shown in Figure 1 O. Each individual in the mnk 

receives a value between min and max following the expression: 

where 

and 

!adaptation (rank) =a:· rank+ /3, 

(max-min). 
a:= N- 1 , ,8=min 

(ma..x- min) 
N-1 

max= 17ma.x; min = (2.0 - 17min) 

17ma.x + 17min = 2; 1 ::=:; 17ma.x ::=:; 2 

(2.1) 

Renee, the number of offsprings from a given individual is sol ely a function of its rank. 
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fadaptation 

max 

min 

N 
Rank 

Figure 10 Linear norrnalization method 

2.1.6.3 Geometrie Ranking Method 

The geometrie ranking scheme sorts the individuals of the population by their fitness, and 

then, computes the adaptation values for each individual of the population by using the 

following geometrie norrnalization expression (Michalewicz, 1996): 

r ( k) (1 )rank-1 J adaptation ran = c . q - q (2.2) 

where q is the geometrie factor, and 

1 
c = -----,------:-

1- (1 _ qyank 
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2.1.6.4 Tournament selection 

In this selection method, k individuals (with replacement or without replacement) are 

randomly picked from the population (k-tournament) at a time, and the one with the 

best fitness is selected. The larger the tournament size, the higher the selection pressure. 

Mathematical analysis of tournament selection with three schemes presented before can 

be found in (Goldberg and Deb, 1991). 

2.1.6.5 Truncation selection 

ln truncation selection the candidate solutions are ordered by fitness, and sorne proportion, 

p, (e.g. p=1/2, 1/3, etc.), of the fittest individuals are se1ected and reproduced 1/p times. 

Truncation selection is less sophisticated than many other selection methods, and it is 

commonly used in Breeder Genetic Algorithm (BGA) and in evolutionary strategies. 

2.2 Real-Valued Genetic Algorithms 

As the influence of Evolutionary Strategies (ES) (Beyer and Schwefel, 2002) has grown 

stronger in the field of optimization, the use of real encoding has been also incorporated 

in Genetic Algorithrns for real function optimization problems. 

The use of real-valued GAs for real function optimization not only simplifies the prob­

lem of coding phenotypes in genotypes, and decoding genotypes in phenotypes, allowing 

GA's operators to work directly in the same domain without any mathernatical transfor­

mation (Michalewicz, 1996), but also favars the use of multiple possible implementations 

of crossover and mutation operators. In the following the operators used by RGA are 

described. 
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2.2.1 Crossover operator 

Real-parameter crossover operators can be able to produce exploration or exploitation at 

different degrees by handling the current diversity of the population. Either they gen­

erate additional diversity, exploration, or use the current diversity to create better ele­

ments, exploitation, or something in between. Let us consider x = { x1 , x2 , ... , Xn} and 

y = {y1, y2 , •.. , Yn} be two elements of a populationp, where x.i and Yi can have values 

in the interval [ai, bi]. Let us also say th at z = { z1, z2 , ..• , Zn} is an offspring of x and y 

after a crossover operation. Now, if we set up Oi = min{ Xi, Yi} and /3i = max{ xi, Yi} 

then the action interval [ai, bi] of these i's variables can be divided into three intervals: 

[ai, o1], [ai, .Bi], and [.Bi. bi]· Thus, the value of a variable z1 will be bind to one of those 

regions. Moreover, a crossover operation can produce a fourth region [a~, /3.;] with a~ :S ai 

and ,BI ~ .Bi where zi can fall down. Herrera et al. (2003) name the region inside [oi, ,3i] 

as exploitation zone; both regions outside the same interval as exploration zones; and the 

region inside [a~, .B:J as a relaxed exploitation zone which combines the characteristics of 

the other three (see Figure 11). Below we describe sorne crossover operators and present 

their geometrie interpretation. 

Relaxed Exploitation 

Exploration Exploitation Exploration 

1 1 1 1 1 
f3i 

Figure 1 1 Action intervals for crossover operators 
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2.2.1.1 Discrete recombination (DR) 

Each zi is randomly selected from the set {xi, Yi}- This corresponds to a standard uniform 

crossover in the binary case. Geometrically it is represented in Figure 12. The probability 

of choosing xi or Yi could also be specified, biasing the choice more towards one of the 

parents. 

0 

@ 0 

li Parent 

Q Offspring 

Figure 12 Geometrie Interpretation of DR 

2.2.1.2 Blend Crossover (BLX- a) 

This operator was proposed by Eshelman and Schaffer ( 1992). It creates offsprings ran­

domly within a hyper-rectangular defined by the two parents. Consider the case when 

the problem has only two variables, and suppose that the first parent has the position 

(xr, x2), and the second parent (yr, y2) as it is shown in Figure 13. Let us call the interval 

Ii = Yi - Xi and 0 < ai < 1 a random number; then each variable Zï of a new offspring 

can be generated by randomly choosing a point within the interval 
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1!!1 Parent 

Ü Offspring 

Figure 13 Geometrie Interpretation ofBlend Crossover-a: (BLX- a:) 

2.2.1.3 Linear recombination (LR) 

26 

This operator is similar to BLX -a: but the value of O:i is the same for ali the genes i. 

Thus, one of the offspring z(l) eould be given by: 

z(l) =x+ a:(y -x) (2.3) 

and the other by: 

z<2
) =y- a:(y- x) (2.4) 

where a:> 0 

The parameters a:' s could be fixed or ehosen randomly. If a: < 1 then the operator is also 

known as Arithmetic Recombination. The geometrie interpretation of this operator using 

two variables is presented in Figure 14. 
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1!!1 Parent 

Ü Offspring 

Figure 14 Geometrie Interpretation ofLinear Crossover 

2.2.1.4 Fuzzy recombination (FR) 

ln this case (Voigt et al., 1995), the value Zi is given by a bimodal distribution: 

with triangular probability distribution '1/J(r) having the modal values Xi and Yi with: 

x· - dly·- x·l < r < x· - dly·- x·l 1 t. 1, __ 1, t 1 

for xi ~Yi and d 2 ~- Geometrically, it is represented in Figure 15. 

2.2.1.5 SBX 

27 

Similar to fuzzy recombination is simulated binary crossover, or SBX (Deb and Agrawal, 

1995), where the children zY) and zfl are computed using the algorithm of Figure 16. Ge­

ometrically, the probability distribution, which follows a shape sirnilar to the one presented 
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Figure 15 Geometrie Interpretation of Fuzzy Crossover 

in Figure 17, assures that when the parent values are far from each other it is possible to 

generate children th at are far away from them; whereas, if the parent values are close from 

each other then distant children solutions are not likely (Deb and Agrawal, 1999). 

1. Generate a random number 'U E U(O: 1); 

2. Compute 

= {(2'U)'l!l 1 

/3q ( 1 ry+l) 
2(1-u) 

Here 1] is sorne parameter. 

if 'U :5 0.5 

othenvise. 
(1) 

3. Compute children zjU+1) and zf·t+1
) from parents x~t) and Y?) using 

the equations 

(2) 

(3) 

If the variables are not within bounded demains (i.e. xf ~ xi ~ xf 
and yf ~ y1 ~ yf), the probability distributions need to be adjusted. 

Figure 16 SBX algorithm 
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a. 
1 

2.2.2 Mutation 

x. 
1 

Figure 17 Shape of SBX's probability distribution 
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b· 1 

A mutation operator similar to the common mutation for the binary case where only one 

or two positions are flipped may be implemented. To do it, it is necessary to have closed 

intervals for the domain of each variable and to defi ne a complementary operation in terms 

of these intervals. However, in practice we found this very ineffective. Hence, more 

interesting mutation types have been used: 

2.2.2.1 Uniform Random mutation 

Once a variable is selected for mutation, choose a uniform random value within its range 

and assign this value to the variable. Thus, every value is possible. 

2.2.2.2 Non-Uniform mutation 

Janikow and Michalewicz ( 1991) experimented with a simple deterministic control scheme 

which they called nonuniform mutation. In this approach, one variable xk is selected ran­

domly, and its value is set to a random number following the expressions (2.5) and (2.6) 
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xt+l = { x~+ ~(t, T(k) - xk) if r < 0.5, 
k x~- ~(t,xk -l(k)) if r > 0.5, 

where 

T represents a uniforrn random numberbetween (0, 1), 

t is the current generation, 

T is the maximum number of generations, 

b is a shape parameter, and 

r(k), l(k) are the upper and lowerborders of xk. 

30 

(2.5) 

(2.6) 

The idea behind this type of mutation is the following: at the beginning of the search, 

large jumps are necessary to explore the solution space; but as the search progresses, 

small jumps are more desirable for finetuning. Figure 18 displays the value of~ for three 

selected times illustrating the behavior of the operator. 

2.2.2.3 Gauss mutation 

This type of mutation is similar to the previous one with the only difference that the mu­

tation step ~i follows a Gauss distribution)\( ( 0, a) as it is described by: 

1 ( [x[ ) 
P(x) = ~ e -z;:r 

(27ïa) 2 
(2.7) 

where n is the number of dimensions. 

The a parameter does not only control the ratio of height to width but also corresponds to 

the variance of the distribution. As it can be seen in Figure 19, this distribution has a fini te 

range and it is much likely to generate smaller mutation steps than large mutation steps. 
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2.2.2.4 Cauchy mutation 

This type of mutation follows a Cauchy distribution as the one illustrated in Figure 20 and 

described by: 

(2.8) 

where Nn is a normalization constant, and n is the number of dimensions. 

While Gauss distribution decays exponentially, the Cauchy distribution decays like ;'2 for 

large x. Contrary to the Gauss distribution the parameter CT controls the ratio of height to 

width, but it does not correspond to its variance which is infinite (Kappler, 1996). As we 

can observe in Figure 20 this mutation operator can be capable of larger jumps than the 

Gaussian mutation operator. 

~~~----0~.8~--~0~.6--~-0~.4~--~0.~2--~0--~0.~2--~0~.4~~0.~6---0~.8~~ 
x 

Figure 20 ID Cauchy distribution (CT= 0.30) 
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2.2.3 Selection 

An RGA can use the same ki nd of selection operators as the ones described for SGA. This 

is possible because this operator works only on the phenotypes and not on the genotypes. 

This operator plays an important role not only in GAs but also in the other evolutionary 

algorithms. While other genetic operators produce new points in the search space by using 

indirected ways, selection determines the direction of the search. 

There is no clear taxon orny to classify the selection schemes; however, Back and Hoffmeis­

ter ( 1991) present different criteria to be followed th at can be applied not only to the selec­

tion schemes in GAs but also in Evolution Strategy algorithms (ESs). Using these criteria, 

selection operators can be: 

a. Dynamic or Static. A selection scheme is generaily calied dynamic if and only if 

there is not an individual ai such as for ali t 2:: 0 its selection probability ps(aD =ci, 

where the Ci are constants. However, a selection scheme is called static if and only 

if for ali ai and for ail t 2:: 0 its selection probability Ps (aD = ci, where the ci are 

constants. This means that in the former case the selection probabilities depend on 

the actual fitness-values and hence they change from generation to generation. But 

in the latter case, these probabilities depend on the rank of the fitness-values which 

results in fixed values for ali generations. 

b. Extinctive or preservative. While the preservative selection scheme garantees, ail 

the time, a non-zero selection probability for each individual, in an extinctive selec­

tion scheme sorne individuals are definitely not allowed to create any offspring, this 

means that they have zero selection probabilities. 

c. Left or right extinctive. These two types are directly linked to the extinctive se­

lection. If the worst performing individuals have zero reproduction rates then it 

is referred to as right extinctive selection. On the contrary, if the best performing 
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individuals are prevented from reproduction then a left extinctive selection takes 

place. This last scheme is very rare in practice but its effect is to avoid premature 

convergence due to super-individuals. 

d. Elitist or pure. While in an elitist selection scheme sorne or ail the parents are 

allowed to undergo selection with their offspring (Jang, 1975), the pure scheme 

enforces a life ti me of just one generation for each individual regardless of its fitness. 

e. Generational or steady-state. In the generational selection scheme the set of par­

ents is fixed until À offspring are produced and then the new set of offspring replace 

the last generation. In the case of steady-state selection an offspring immediately 

replaces a parent if it performs better, generating the possibility that the set of par­

ents may change for every reproduction step (Whitley, 1989). 

While the proportional selection scheme can be characterized as a dynamic and preser­

vative selection, linear ranking, geometrie ranking and tournament selection schemes are 

static and preservative. Only truncation selection is extinctive. The last two criteria can be 

implemented in any of the selection schemes. 

2.3 Macroscopic view of the search process of GAs 

A few studies (Ki ta and Y am amura, 1999; Kita, 2001) suggested the ideas th at GAs should 

be designed to maintain the diversity of the population and to inherit good characteristics 

from parents. During the search process of the GAs, an initial population is randomly 

chosen. Then, operators that use random numbers like selection, crossover and mutation 

operators are applied repetitively to the population transforming its probability distribution 

function (pdj) like a very natural evolution process. While selection operation narrows the 

pdf by selecting and duplicating individuals having higher fitness, the crossover operation 

generates children and transforms the pdf by corn bining the information of parents. If the 

crossover still narrows the pdf of the population then the search would be focused on a 

smaller region than the one specified by the selection. On the other hand, if the crossover 
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enlarge too rouch the pdf, it would work on regions that have been already eut out by 

the selection. Th us, the crossover operator should preserve the pdf of the population to 

exploit the current region. To this process it has to be added that the mutation operation 

also enlarges the pdf by giving a perturbation to each individual. 

Following this reasoning, Kita and Yamamura (1999) propose an hypothesis, named func­

tional specialization hypothesis, for the selection and crossover operators: 

"In the GA, selection operation should be designed so as to gradually narrow 
the pdf of the population, and the crossover operation should be designed so 
as to preserve the pdf while keeping its abi1ity of yielding novel solutions in 
finite population case." 

Based on empirical findings and the functional specialization hypothesis ((Kita and Yama­

mura, 1999; Ki ta, 2001 )), the au thors elaborated the following guidelines for the design of 

crossover operators for RGAs: 

Guideline 1. The crossover operator should preserve the statistics of the population 

such as mean vector and the variance-covariance matrix. It should be 

noted that preservation of the covariance is important to achieve good 

performance in optimization of non-separable functions. 

Guideline 2. Crossover operators should generate offspring having as rouch diversity 

as possible under constraint of Guideline 1. 

Guideline 3. Guideline 1 is useful when the selection operator works ideally. However, 

it may fail to suggest a good region to be searched by the population. To 

make the search robust, children should be distributed more widely than 

in Guideline 1. It should be noted that the Guideline 1 gives a reference 

point, and there exists a trade-off between efficiency and robustness in 

adopting this guideline. 
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Bey er and Deb (200 1) postulate two properties th at the crossover should have for success­

ful applications in RGAs: 

a. The crossover operator must produce a children population that has the same mean 

as that in the parent population; 

b. The variance of the resulting children population may be larger than that of the 

parent population. 

As we can observe these two properties are in line with the Guidelines proposed by Kita 

and Yamamura ( 1999). In fact, Herrera et al. (2003) highlight that Guideline 1 supports the 

importance of considering the exploration and relaxed exploitation intervals for designing 

crossover operators for RGAs (Figure 11). 

2.4 Other Evolutionary Computation Algorithms 

Many different types of evolutionary algorithms exist; however, genetic algorithms and 

evolution strategies are two of the most basic forms of evolutionary algorithms. While 

genetic algorithms used binary coding at the beginning and recombination is emphasized 

over mutation, evolution strategies have used more direct representations (Back et al., 

1991) since its beginnings and mutation is emphasized over recombination. Although both 

genetic algorithms and evolution strategies have been used for optimization, GAs have 

long been viewed as multipurpose tools with applications in search, optimization, design, 

and machine leaming (Bolland, 1992; Goldberg, 1989) and most of the work in evolution 

strategies has focused on optimization (Back, 1996; Schwefel, 1981, 1995b ). During the 

last decade, these two fields have influenced each others and many new algorithms have 

freely borrowed ideas from both traditions (Whitley, 2001). 

Evolution Strategies (ESs) were introduced by Rechenberg at Berlin in the 1960's and 

further developed by Schwefel (Back et al., 1991 ). ESs were applied first to experimental 

optimization problems with more or less continuously changeable parameters only. The 
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applications dealt with hydrodynamical problems like shape optimization of a bended pipe 

and of a flashing nozzle, or with control problems like the optimization of a PID regulator 

within a highly nonlinear system. The algorithm used in these applications was a simple 

mutation-selection scheme called two membered ES. It was based upon a "population" 

consisting of one parent individual (a real-valued vector), and one descendant, created by 

means of adding normally distributed random numbers. The better of both individuals 

then served as the ancestor of the following iteration/generation. 

In ESs, each individual is represented as a pair of real-valued vectors (xi, T!i), where xi is 

a vector of object variables, T/i is a vector of its strategy parameters, and i E {1. .... p}. 

The general form for real-valued parameter optimization problems is (p,j p-+;).) - ES 

where ). > f.-L ;::: p ;::: 1. (p/ p-+; >.) means that p parents generate ). offsprings through 

recombination (p ;::: 2) and mutation at each generation. p is the number of parents to 

form one new offspring using recombination. The case where p > 2 is known as multi­

parent recombination. If"," is used instead of"+" then the best f.L children become the 

next generation of parents. On the contrary, if"+" is used then the best p individuals of 

both: parents and children become the next generation of parents. This means that the À 

children together with the p parents are sorted by their fitness value and then only the first 

f.-L individuals are selected. 
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CHAPTER3 

PROBLEM DESCRIPTION 

Before describing the methodology used along this research, it is highly important to know 

with more detail the application problem with which we will test our new GAs. So, this 

chapter explains the type of problem we are dealing with. We start by describing the 

architecture of the flight control system architecture of an aircraft. Then, we present the 

definitions for the handling qualities criteria to be satisfied by the flight control system. 

And finally, we explain the way a cost function is derived using the handling qualities, and 

the optimization approach used in conjunction with GAs to solve our problem. 

3.1 Architecture of the Flight Control System 

We are interested in the design of a longitudinal controller capable of tracking pitch-rate 

commands with predicted Level 1 (Mclean, 1990) handling qualities and desired time 

domain response behaviors. In other words, the closed-Ioop response, from pilot pitch rate 

commands to resulting pitch rate, must follow the reference model response as close1y as 

possible. 

Figure 21 corresponds to the architecture of a longitudinal flight control system presented 

that we will use in our problem (Zhu et aL 2000). In this model, the aircraft block rep­

resents the characteristics of aircraft system provided by Bombardier. The control system 

is composed of a stability augmentation loop and a proportional-integral (Pl) plus feed­

forward control augmentation loop where only the controller gains Kff, Ki, Kp, Kn::' and 

Kfb are adjustable. The output of the system, q, represents the pitch rate of the aircraft 

and nz is the normal acceleration. 

The design of stability augmentation system of the longitudinal flight control system is 

performed using the classical approach by first dividing the flight envelope into a num-
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Figure 21 Architecture of longitudinal flight control system 

ber of sub-domains based on sorne characteristics like Mach number, altitude, center of 

gravity, weight and others. Then, for each operation point or sub-domain, the model is 

linearized for its study and simulation. For simulation purposes of the longitudinal flight 

control system, the aircraft can be represented by the state equation 3.1: 

x= Ax+Bu (3.1) 

with 

x~[i], [ x. 
Xw 0 

-gCOS'(o l 
Zu Zw Uo -g sm '"Yo 

A~ A~. Afw AÏ J\;Ie ' q 

0 1 0 

and 
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when the aircraft is being controlled only by means of elevator deflection. 6E. In ether 

words when, 

The states variables u, w, q and e denote forward speed, vertical velocity, pitch rate and 

pitch attitude respectively, and Xu, Xw, Zw Zw, .!',:fu. 1Üw, represent the stability deriva­

tives. 

3.2 Handling Quality Requirements 

According to Harper Jr. and Cooper (1986), handling qualities are 

''those qualities or characteristics of an aircraft that govem the ease and pre­
cision with which a pilotis able to perform the tasks required in support of an 
aircraft role" 

By addressing handling qualities, ftight control system designers are able to identify the 

requirements and the constraints needed for the definition of the objectives of flight control 

system and evaluation of the design results. While a handling quality study is concemed 

with the pilot and aircraft interface, a flight control system design is related with how 

to correct the characteristics of aircraft though a control system such that the specifica­

tion of handling qualities can be satisfied when the pilot "interfaces" the aircraft (Etkin, 

1959). The following sections exp lain each one of the handling qualities criteria used in 

our model. 

3.2.1 Bandwidth Criterion and Phase Delay 

The definition ofbandwidth for flying qualities is different from that used in most general­

purpose control texts (Hodgkinson, 1999). Using the frequency response of attitude to 

pilot's control input (Figure 22), the bandwidth parameter is defined as the smaller of two 
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frequencies, the phase-limited bandwidth WBWPH or the gain-Iimited bandwidth WBWG· 

The fi.rst one is the frequency where the phase margin is 45°; and the second one is given 

by the frequency at which the gain margin is 6dB relative to the gain when the phase is 

180°. From a pilot's point of view, aircraft with high bandwidth frequencies tend to have 

crisp, rapid, and well-damped response, while aircraft with low bandwidth frequencies 

tend to wallow and have sluggish responses. 

The phase delay, Figure 22, is related to the slope of the phase between the crossover 

frequency and 2w180. It is defi.ned as: 

~~2WJSO 
T - -----=c:..:.....-

p - 57.3 x 2w1so 

0 ..................... . 

Gain( dB) 

-20 

-100~:::-: ... ,.... --...;.;;;.;...= --+ 45" -----
Phase(deg) -200 

-300 . . 't 
p 

~<I> 

57.3 X 2(J)1 XO 

Frequency (rad/sec) 

Figure 22 Definition of Bandwidth and Phase Delay. 

(3.2) 
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3.2.2 Flight Path Delay 

This criterion states that the ftight path delay, as defined in Figure 23, should be small; 

preferably below 1 second. The ftight path delay as function of the response parameters 

is: 

(3.3) 

where (spis the short period mode damping ratio, and Wsp is the undamped frequency. 

e.y,q 

e 

q 

Drb/ q_,.__. 
2 4 6 

r(sec) 

Figure 23 Pitch response criterion. 

3.2.3 Dropback Criterion 

The dropback criterion is a measure of the mid-frequency response to attitude changes. 

Excessive dropback results in pilot complaints of abruptness and lack of precision in pitch 
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control - complaints corn mon also to aircraft with excessive values of pitch attitude band­

width. 

The criterion of Gibson dropback requires a step pitch manipulator input, be , be applied 

until a steady state pitch rate, qss , is reached. The measure of dropback is shown in 

Figure 23. Since the path time delay, t1 , is given by equation (3.3), the relationship for 

dropback can be derived as: 

Drb _ ~ 2(sp ---lq __ _ 

qss Ulsp 
(3.4) 

where qss is the steady state pitch rate, and 1/Tq defines the flat region of the attitude-tc­

stick bode plot. Moreover, Terminal ftight phase Gibson dropback criterion boundaries is 

defined by: 

Drb 
-0.25 <- < 0.5(sec) 

qss 

3.2.4 CAP Criterion 

The Control Anticipation Parameter, or CAP for short, was first used in the United States 

military handling qualities specifications. It connects the short period natural frequency 

and the normal acceleration due to a change in angle of attack, in the following way: 

(3.5) 

where n=o is the normal acceleration per unit angle of attack. 

The magnitude of CAP gives an indication of the change in steady-state normal accelera­

tion from the aircraft's initial pitching acceleration. This is essential because of the time 

lag between the pilot's input and the final steady-state normal acceleration. For a linear 

aircraft model, this parameter can be calculated using the following formula: 
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where V is the true air speed and g is the acceleration due to gravity. 
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(3.6) 

The handling quality criteria considered in this work are pitch attitude bandwidth w s11·, 

phase delay T P' short period mode damping ratio ( sp, and Gibson dropback DB. The 

boundaries of these criteria are defined by MIL-STD-1797 A (Government, 1990) and they 

are summarized in Table I. 

Table I 

Handling Qualities (HQs) and Performance Specifications 

HQs & Performances Must Achieve Ideal 

Attitude Bandwidth wsw > 1.5( radj sec) > 1.75 

Phase Delay Tp < 0.2(sec) < 0.14 

Short Period Mode Damping Ratio (sp 0.35 < (sp < 1.35 0.75 < (sp 

Long Period Mode Damping Ratio (ph 0.05 <(ph 0.1 <(ph 

Gibson Dropback DB -0.2 < DB!q,, < 0.5(sec) 0.0 < DB!q_.s < 0.3(sec) 

3.3 Optimization Models of the Problem 

A general formulation for an optimization problem can be expressed as: 

min{f(x)lxz ~x~ xu; h(x) = 0; g(x):::; 0} 
xE Rn 

where 

Rn : n-dimensional Euclidean space; 

f: objective function; 

x: vector of n design variables; 

g: vector of p inequality constraints; 

(3.7) 
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h: vector of q equality constraints; and 

Xz, xu: lower and upper bounds of design variables (side conditions). 

The design variables and the constraints expressions define the feasible space of the solu­

tions of the problem (equation 3.8). 

(3.8) 

This general formulation can be modified in such a way that when there exists no con­

straints we have an unconstrained optimization problem; otherwise, we have a constrained 

optimization problem. The formulation of an optimization problem also changes depend­

ing on whether there is only one objective function f(x), which can be expressed as scalar 

optimization; or there are several objectives that must be considered simultaneously, which 

can be modelled as a multiple objective optimization problem and the formulation of equa­

tion (3.7) changes to: 

mRin{F(x)Jxz ~x~ xu; h(x) = 0: g(x) ~ 0} 
xE n 

(3.9) 

where 

F(x) = (f1(x), h(x), 

is now a vector of k objective functions. 

Although we have a problem with a vector of multiple objectives, it can be solved by 

means of a substitute scalar optimization problem. A technique frequently used is to 

express the vector of multiple objectives as a positive! y weighted convex sum of the ob­

jectives, that is: 

k 

min L a:di(x), 0 ~ a:i < oo. 
x en 

i=l 

(3.1 0) 
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A variation of this technique is the Mean/Deviation formulation which reads: 

min (> .. P + ŒF), 
x en 

where 

k k - 1""' F = k~fi(x), ŒF = L (fi(x)- P) 2
, 

i=l i=1 

and ..\ is a positive constant. 

3.3.1 Unconstrained Optimization Model 

46 

(3.11) 

In our first attempt to mode] the fly-by-wire problem, we have expressed the flight control 

system design as an unconstrained optimization one, where the objective function is a 

linear combination of functions associated with each one of the handling qualities criteria 

with constant weights equal to one: 

n 

fcost = Lfi 
i=l 

(3.12) 

fi is a function associated with the handling quality i. The corresponding value of fi is 

obtained each time that we use the simulation model for evaluating the behavior of the 

system for a set of controller gains. 

Currently we are using the evaluation functions included in the simulation mode] of a 

business jet aircraft provided by Bombardier Aerospace. In this model, each handling 

qualities criteria has been expressed as a sigmoid evaluation function. This type of smooth 

function gives a value of 0 when a performance cri teri on of a given design takes the ideal 

value, while tends to 1, when the performance moves away from the ideal value. 

The example shown below illustrates the use of sigmoid function for one of the handling 

qualities: 
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Dropback: the evaluation function for the dropback is 

!DB= 1- sech (AIDE- O.lJB) (3.13) 

where A and B are constants provided by the design engineer. The corresponding 

graph is shown in Figure 24. 

Figure 24 Evaluation Function of Dropback 

The cost function implemented in this way is highly nonlinear; to observe to a certain 

degree the complexity of the function 3-dimensional graphies are shown in Figures 25 and 

26. To construct these graphies we used the controller gains K 11 and Ki as variables and 

the others Kprob, Knz and Ktb were fixed. 

In Figures 25 and 26, we can apprecia te the nonlinearities of the cost function along the 

gains Ki and Kff while the others gains are constants. lt is also possible to observe 

the nonlinearities along the other gains when the two figures are compared and we have 

changed the values of Kprob and Knz· 
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Figure 26 Cost function with (Kprob, Kn:;, KJb) = (0.03, 2.94, 0.00) 
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CHAPTER4 

LITERATURE REVIEW 

The objective of this chapter is twofold: first, it outlines the major research activities 

that have been presented for the research community in the areas of the application of 

Evolutionary Algorithms to Aircraft Control System Design; and, second, it presents a 

simplified review of the principal theoretical and experimental work relevant to different 

techniques that the GA community has been using to solve mathematical problems with 

constraints, as weil as, to implement Adaptive GAs. This chapter is ordered in three major 

sections. While there exists a significant literature about the use of EAs in Aerospace 

System design in general, section 4.1 only reports those works that are only related with 

the application of EAs to ftight control system design. Section 4.2 of this chapter does 

a review of the different methods that has been using to solve mathematical problems 

with constraints. It concentrates in describing two types of techniques: based on penalty 

functions, and based on feasibility criteria. Finally, Section 4.3 describes the application 

of different adaptive techniques to control the parameters of GAs. 

4.1 Applications of EAs to Aircraft Control System Design 

During the last twelve years, Evolutionary Computation methods have been applied to 

different types of Aircraft Control System Design problems. Here, without claiming to be 

an exhaustive review of the domain. we present a short description of the key contributions 

on ftight control design reported from 1992 to 2003. The emphasis in this description is 

on the kind of GAs architecture that has been used, and what kind of fitness function has 

been used in order to show the relevance and importance of the contributions of our work. 

In Porter (1993), a GA is applied to the design of multivariable flight-control systems 

using eigenstructure for a fighter aircraft meeting the performance requirements of MIL­

F-8785C. The objective function is defined as a measure of eigenstructure error of the 
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form: 

n n 

é = LÀilcria)- O"id)l + Lf.Lillv}a)- v}d)ll (4.1) 
i=l j=l 

where Ài and f.Li are real non-negative weighting parameters, 1-1 is the modulus of a num­

ber, 11-11 is an appropriate vector norm, the sets of crja) and crjdl are the actual and desired 

eigenvalues, and the sets of vja) and vjd) are the actual and desired eigenvectors respec­

tively. Porter (1993) reports the results for only one flight condition. 

In Porter and Hicks (1994a,b, 1995a,b), the authors apply GAs to tune digital PID con­

trollers of a model-following flight-control system for a fighter aircraft under diverse con­

siderations, like open-loop, using different performance measures for GAs. They present 

results for three flight conditions using two different objective functions: the first func­

tion is implemented by computing the minimum difference between non-asymptotically 

optimal and asymptotically optimal desired eigenvalues locations, and the second one con­

siders the minimum maximum generalized closed-loop tracking error (Porter and Hicks, 

1994b). 

Chen and Cheng (1998) app1y a genetic approach to the design of a structure-specified con­

troller to achieve H 00 optimal control purpose for a MIMO super-maneuverable FIS/HARY 

fighter aircraft system. The controller parameters ei are coded as binary strings. The au­

thors use a cost function E(e) 

E(e) = supa(w) (4.2) 
'Vw 

to simultaneously minimize the robust stability performance and the disturbance attenua­

tion performance proposed in (Kwakernaak, 1985; Francis, 1987; Stoorvogel, 1992) and 
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included in the function a(w). Then, the cost function is scaled and transformed in the 

fitness function: 

F(e) = kE(e) + h (4.3) 

where, using linear scaling, 

(4.4) 

(4.5) 

Ew and Eb are the largest and smallest values of the cost function evaluated in the gen­

eration, and Fw and Fb are the corresponding fitness values. As it can be observed from 

the value of k, the minimization problem is transformed in a maximization problem when 

F(e) is used. 

Sweriduk et al. (1998) use genetic algorithm in the design of Hoc controllers for the lon­

gitudinal and lateral-directional channels of a high-performance aircraft by selecting the 

weighting functions. Their fitness criterion is determined by comparing the closed-loop 

response with a Level 1 flying qualities model, which are defined with reference to the 

ratings of 1, 2 and 3 of the Cooper-Harper scale (Harper Jr. and Cooper, 1986). The 

weighting functions depend on free parameters: 

K(n) = ui · u1 (4.6) 

where 

ui = L ... , 9, 10°, w- 1, 10-2 , 10-3 , 10-4 , 101, 102; (i = L ... , 16). 
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They are coded as alphanumeric strings instead of binary strings of fixed length. Thus, 

their GA works with 256 discrete values for each free parameter. 

Crawford et al. (1999) use genetic search techniques to target four aerospace control de­

sign problems, including homing missile guidance law synthesis, spacecraft reorientation, 

and control and guidance of an A-4D aircraft. The authors report a very interesting ap­

proach where several hand-derived control laws based on standard methods plus several 

nonsensical controllaws are encoded. 

Aranda et al. (2000) report the design of a controller for the Research Civil Aircraft Model 

(RCAM) benchmark problem by using an evolutionary algorithm. They model the prob­

lem as the optimization of multiple objectives like closed-loop stability, ride quality cri­

teria, control activity criteria and robustness criteria. The components of the controller 

matrices are encoded using ftoating point. To evaluate the individuals of a population they 

use a Pareto-based ranking approach (Fonseca and Fleming, 1998) in combination with a 

toumament selection method. 

Table II summarizes the type of operators reported. The columns X over, AI utation and 

Selection show the type of crossover, mutation and selection operator respectively; and 

Enc indicates the type of encoding mechanism implemented. 

Table III summarizes the parameters' values used in each of the works reported before. 

The column "Type" refers to the kind of scheme used to produce the next generation and 

has two possible values: Gis for a generational scheme, and SS is for steady state. N is 

the number of chromosomes in the generation; Pc and Pm are the probability of crossover 

and mutation respectively; and finally, Gen is the maximum number of generations that 

the algorithm produces before to stop. 

As we can observe, sorne authors did not present information about the type of crossover, 

mutation and selection operator they used, neither there is analysis about the relationship 
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Table II 

Summary of type of operators and encoding mechanism 

Ref. XoYer Mutation 1 Selection 1 Enc 1 

Porter (1993) NR NR NR 

Porter and Hicks ( 1994a), 
Porter and Hicks ( 1994b ), 

NR NR NR 
Porter and Hicks ( 1995a), 
Porter and Hicks ( 1995b) 

Sweriduk et al. ( 1998) NR NU Randorn 

Chen and Cheng ( 1998) One-point Uniforrn Proportional 

Crawford et al. ( 1999) 
1 

NR NR NR 

Aranda et al. (2000) 
Simple, Arithrnetic, NonUniforrn, Tou marnent 

Heuristic, and Multiple Randorn 

N R =not reported; B = binary; F = jloating point; .4. = alphanumeric.; 
NU = it was not used. 

Table III 

Su rn mary of parameters' values 

Ref. 1 Type 1 N 1 Pc 1 Pm Gen 

Porter (1993) G 40 0.6 0.001 200 

Porter and Hicks (1994a), 
Porter and Hicks ( 1994b ), G 50 0.6 0.002 150 
Porter and Hicks (1995a), 
Porter and Hicks (1995b) 

(Sweriduk et al., 1998) ss 500 NR NU 1000 

(Chen and Cheng, 1998) G 100 0.9 0.2 200 

(Crawford et al., 1999) G 500 NR NR 5000 

(Aranda et al., 2000) G NR NR NR 1000 

N R = Not reported; NU = it was not used; G = gene rational; S S = steady state. 

B 

B 

A 

B 

B 

F 
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among the GA's parameters, its performance, and the tirne of execution. Moreover, none 

of them used or defined the fitness function by directly computing the handling qualities 

criteria. While the definition of the fitness function by using the handling qualities cri­

teria was originally incorporated in the simulation model provided by Bombardier, the 

experiments and the results produced by this research using this approach are already a 

contribution to the research community. 

Despite the promising results obtained in the application of GAs to system control de­

sign for aircraft none of them mentions or elaborates any aspect related to reducing the 

execution time and increasing the effectiveness of GAs. In fact, Sweriduk et al. (1998) 

highlighted the need of doing a more exhaustive analysis of the effects of genetic param­

eters in flight-control problems, and that the fitness should be defined by directly comput­

ing handling qualities metrics, similar to the NASN Army code CONDUIT. Furthermore, 

Krishnakumar et al. ( 1995) suggested the possibility of using GA with adaptive character­

istics to find the way of improving GAs' performance. 

4.2 Constrained Nonlinear Global Optimization using GAs 

Using an unconstrained nonlinear global optimization model is not the only way of work­

ing with GAs in order to find the best controller gains of a flight control system for a 

business jet. It is also possible to use a constrained nonlinear optimization model and 

apply GAs. Several techniques have been proposed by the GA community to solve math­

ematical problems with constraints. In this section, we do a simplified review and analysis 

of those more representatives. The present study is not complete in the sense that the 

search of documentation has not been exhaustive and the experimentations of every arti­

cle have not been repeated; however, the results that we present serve as a reference to 

highlight the importance of our contributions. 

A general definition for a nonlinear optimization problem can be formulated as finding 
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(4.7) 

(4.8) 

(4.9) 

(4.1 0) 

While equation 4.1 0, which is an n-dimensional space bounded by the parametric con­

straints, defines the search space S, together with equations 4.8 and 4.9 it defines com­

pletely the feasible region :F to which x must appertain to solve the problem. 

While solving a constrained optimization problem seems a less difficult task than solving 

an unconstrained optimization problem because we search over the set :F, which is a subset 

of S, the reality is totally different. Now, our genetic algorithm should address the issue of 

handling a search space S that consists of two disjoint subsets of feasible and unfeasible 

subspaces, :F and U. As it can be observed in Figure 27, it is not always possible to 

make any assumptions about theses subspaces; they may not be convex and they may not 

be connected. During the searching process GAs algorithm must search for a feasible 

optimum and they have to be able to deal with various feasible and unfeasible individuals. 

One common approach that the GA community has been using to deal with constrained 

optimization problems is to add a term to penalize the fitness of an individual i when 

constraints violations exist. The introduction of this penalty term enables us to transform 

the general constrained optimization problem into an unconstrained one like: 
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search space S 

unfeasible search space U 

Figure 27 A search space and its feasible and unfeasible parts 

·tb(x) = j(x) + penalty(x) (4.11) 

The penalty term extends the domain of the objective function which may transforrn a 

smooth search landscape into a rugged one and it may influence the relative fitness of 

individuals in a population. This penalty terrn does not only represent a penalty for an 

unfeasible individual i, but also a cost for repairing such an individual (i.e. the cost for 

making it feasible ). 

Designing a penalty function is not an easy task and much of the difficulty arises wh en 

the optimal solution lies on the boundary ofthe feasible region. Richardson et al. (1989) 

suggest the following guidelines to derive good techniques to build penalty functions: 

1. Penalties which are functions of the distance from feasibility are better perforrners 

than those which are only functions of the number ofviolated constraints. 
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2. For a problem having few constraints, and few fully feasible solutions, penalties 

which are solely functions of the number of violated constraints are not likely to 

produce any solutions 

3. Good penalty functions can be constructed from two quantities: the maximum com­

pletion cost and the expected completion cost. The completion cost is the cost of 

making feasible an unfeasible solution. 

4. Penalties should be close to the expected completion cost, but should not frequently 

fall below it. The more accurate the penalty, the better will be the solution found. 

When a penalty often underestimates the completion cast, then the search may fail 

to find a solution. 

While these guidelines can be useful for designing, they are difficult to follow in many as­

pects, especially because the maximum completion cost and the expected completion cost 

may not be known before the optimization. Generally the penalty function is composed 

by a sequence of penalty coefficients Ri defined by the user and a function rjJ, which is a 

measure of ali the constraints violations produced by the unfeasible individual and can be 

greater or equal to zero. 

(4.12) 

Most of the methods using penalty functions use the following quadratic loss function 

(Fiacco and McCorrnick, 1968) to express the constraint violation measures: 

(4.13) 

where q is the number of inequality constraints and m - q is the number of equality 

constraints. 
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Defining the correct values for Ri turns out to be a difficult optimization problem itself. 

If Ri is too small, an unfeasible solution may not be penalized enough, leading to under­

penalization (Runarsson and Yao, 2000), and it may be evolved by a GA. On the con­

trary, if Ri is too large then unfeasible solutions will not be able to evolve, leading to 

over-penalization, and the exploration of unfeasible regions even in the early stages of 

evolution will be discouraged. Any feasible solution found could be a local minimum. 

Over-penalization is particularly ineffective for problems where feasible regions in the 

whole search space are disjoint; it may be difficult for a GA to move from one feasible 

region to another unless they are very close to each other. 

In the case of a GA with a ranking selection scheme, under-penalization helps the objec­

tive function to lead the search process, while over-penalization makes the penalty func­

tion drive the search process among the unfeasible individuals. According to Runarsson 

and Yao (2000), to have a balance between preserving feasible individuals and rejecting 

unfeasible ones, the Ri values should be within a certain range between a minimum crit­

ical penalty Rj and a maximum cri ti cal penalty coefficient Ri. This ki nd of balance can 

make the search progress to be based on a combination of objective and penalty func­

tions. The only problem is that those critical values are not easy to determine and they are 

different for every stage of the evolution. 

Homaifar et al. (1994) use constants values for Rij in the following formula to evaluate 

both feasible and unfeasible individuals of the population: 

m 

1/;(x) = f(x) + L Ricb](x) (4.14) 
j=l 

where ~i (i = 1, 2, ... , l,j = 1, 2, ... , m) is a penalty coefficient for the i-th level of 

violation and the j-th constraint. 
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There are two main concems about this method: first, the high number of parameters, 

m( l + 1) to be set by the user, and finally, experiments indicate that the quality of solutions 

heavily depends on the values of these parameters (Michalewicz, 1996). 

J oines and Houck (1994) propose a technique in which penalties change over ti me (dy­

namic). Each individual is evaluated at generation t using: 

rn 

?j;(x) = f(x) + (C ·tt L jd>j(x)j13 (4.15) 
j=l 

where C, a:, and ;3 are constants defined by the user. This method starts by assigning a low 

penalty value in order to find a good region that may contain both feasible and unfeasible 

individuals. Toward the end of the search, the penalty becomes high in order to locate a 

good feasible individual. 

The problems with this approach are twofold: first, the users have to deal with the setting 

of three more variables and, second, again the quality of the solutions is very sensitive 

to these parameters. This ki nd of technique would work weil for problems for which the 

unconstrained global optimum is close to the constrained global optimum, but it is unlikely 

to work weil for problems for which the constrained global optimum is far away from the 

unconstrained one (Michalewicz, 1995; Coello, 1999). 

Michalewicz and Attia ( 1994) present a method based on the idea of simulated annealing 

(Kirkpatrick et al., 1983). They first require that constraints be divided into four groups: 

linear equalities, linear inequalities, nonlinear equalities and nonlinear inequalities. Then 

a set of active constraints A, which includes ail nonlinear equalities together with ali 

violated nonlinear inequalities, has to be created at each generation. The individuals are 

evolved using: 
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(4.16) 

where 1 is the cooling schedule. As the temperature 1 is decreased over time the penalty 

increases. The process stops when a pre-defined final "freezing" temperature Tf is reached. 

The main drawback of this approach is its extreme sensitivity to the values of its param­

eters, and the difficulty to select them, especially the cooling scheme. There are other 

inconveniences for the users such as they must provide an initial feasible point to the 

algorithm. 

In Bean and Hadj-Alouane (1992), the authors describe a method that uses a feedback 

from the search in order to adapt the value of penalties. The individuals in each generation 

are evaluated by: 

m 

7P(x) = J(x) + .\(t) 2:: oJ(x) (4.17) 
j=l 

where À ( t) is updated every generation t using: 

{ 
i

1 
.\(t): if the best individual in the last k generation was always feasible 

.\(t + 1) = ,82.\(t), if the best individual in the last k generation was never feasible 

.\( t), otherwise 
(4.18) 

where /31, ;32 > 1, !31 > !32, ;31 # /32, and k is a generation gap. 

In this approach the penalty component .\(t + 1) for generation t + 1 is decreased or 

increased when ail the best individuals in the last k generations were feasible or unfeasible, 

otherwise the penalty does not change. Again the problem with this approach is the setting 

of the three parameters k, ;31 and ;32 in order to penalize fairly a solution. 
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While using penalty factors has been the dassic technique for solving constraint opti­

mization problems with GAs, diverse approaches based on feasibility criteria have been 

reported during the last seven years. These methods are of great interest for our work be­

cause they follow the heuristics guidelines proposed in Richardson et al. ( 1989) and, most 

important, while they use penalties, they do not need to deal with the tuning of a penalty 

factor. 

The evolutionary algorithm CONGA (COnstraint based Numeric Genetic Algorithm) pro­

posed by Hinterding and Michalewicz ( 1998), has sorne interesting characteristics. First, 

either crossover or mutation, but not both, are applied to generate new individuals. Sec­

ond, two selection functions are used to select an individual, one function for selecting 

an individual for mutation or the first parent for crossover, and another given a selected 

parent for finding the mate for crossover. Both functions use toumament selection with a 

toumament size of 2. The rules for winning the tournament in the first function are: 

• if both individuals are feasible, the individual with the better value of the objective 

function wins~ 

• if only one individual is feasible, it wins~ 

• if both individuals are unfeasible, then the individual with the smaller number of 

violated constraints v (0 ~ v ~ m) wins. If equal, then select the individual with 

the sma11er constraint violation measure C(x) if they satisfy the same constraint 

mask c; otherwise, use random choice: 

where 

m 

C(x) = L[gj(x)F (4.19) 
j=l 

and 
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is a binary vector where bit j is set if and only if the /h constraint is satisfied. 

The second function, which chooses a mate for a parent, selects between two potential 

mates, which are both unfeasible and satisfy an equal number of constraints, the one that 

has the least number of satisfied constraints in common with the already chosen parent. 

This function aims to find the best "complement" for the parent already selected by satis­

fying the constraints that the latter does not satisfy, in a hope that after the crossover their 

children will satisfy more constraints than their parents. 

The last interesting characteristic of this algorithm is that it uses self-adaptation for evolv­

ing the "spread parameter" for the Cauchy distribution of the mutation operator. It is 

important to highlight that this extra gene in the chromosome is allowed to self-adapt only 

for feasible individuals. 

Hamida and Schoenauer (2000)'s approach can be viewed as intermediate between the 

method based on feasibility and the segregational methods. It uses a selection/seduction 

mechanism that is applied when the proportion of feasible individuals ït in the population 

at generation t is less than ïtarget. a user defined proportion. This mechanism consists in 

selecting the mate of feasible individuals to be unfeasible; otherwise, the mate is chosen 

from the whole population. 

Hamida and Petrowski (2000) tackle the problem constraints by using a linear ranking 

selection method similar to the one proposed in (Baker, 1985). In this approach, the 

feasible individuals are ranked depending on their objective function. So, a ranked list 

of n:F feasible individuals is obtained: 
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where F 1 represents the best individual of the population. 

The unfeasible individuals are also ranked but only depending on the constraint measure 

function: 

q 

C(x) = 1- II ci(x) (4.20) 
j=l 

with 

( ) 
{ 

l+g
1

(x): if gj(x) ~ 0, Vj = 1, 2: ···: m 
C· X = 1 • 

1 1, otherwise 
(4.21) 

In this way a ranked list .Cu of nu unfeasible individuals is obtained: 

where U1 represents the best individual with the minimal C(Uj ). 

Using both lists, a global ranking of all the individuals: 

in the population is obtained. With this linked lists, then the fitness f of each individual is 

deduced from the ranking of each one in .Cp using: 

(4.22) 

In Deb (2000), the author presents an interesting approach where each individual of the 

population is evaluated using: 
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(4.23) 

where fworst is the objective function value of the worst feasible solution in the popula­

tion, and <Pi (x) refers only to inequality constraints. In the case th at there are no feasible 

solutions in the population, then fworst becomes zero. 

Besides the expression 4.23, Deb uses a binary tournament selection combined with the 

following rules to compare two individuals: 

1. A feasible solution is always preferred over an unfeasible one. 

2. Between two feasible solutions, the one having better objective function is preferred. 

3. Between two unfeasible solutions, the one having smaller constraint violation mea­

sure is preferred. 

ln his method, Deb also uses a real-coded GA with simulated binary crossover (SBX) (Deb 

and Agrawal, 1995), a parameter-based mutation (Deb and Goyal, 1996), and normalized 

constraints to avoid any sort of bias toward any of them. 

Coello (1999) observes that Deb's technique seems to have problems to maintain diversity 

in the population because he uses niching methods (Deb and Goldberg, 1989) and higher 

mutation rates. 

Coello and Mezura-Montes (2002) use the same rules as Deb's approach but the tourna­

ment selection procedure is a little different. They use a parameter S, called selection 

ratio, which indicates the minimum proportion of individuals that will be selected using 

the ru les. The remainder, ( 1 - S) ratio of individuals, will be selected using a purely prob­

abilistic strategy, that is, each candidate will have a probability of half of being selected. 
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They do not use niching technique as Deb does to keep diversity, because in their case it 

is the parameter S that maintains the diversity in their approach. 

Tables IV and V summarize the characteristics of the architecture and parameter values 

used in the implementation of GA for each publication. I have added Michalewicz ( 1995); 

Koziel and Michalewicz ( 1999) just because they reported the best values obtained until 

1999, using different approaches. In the case of Michalewicz (1995), he tested severa! im­

plementations GA methods using penalty function, and in Koziel and Michalewicz (1999) 

they used GA and Homomorphous Mappings. 

Table IV 

Summary of GA architectures used in each publication. 

Constraint 
Selection Crossover .Mutation 

Au thors Handling 
Scheme Opera tor Opera tor 

Coding 

.Method 

Different 
Michalewicz penalty Nonlinear Arithmetical Gaussian RCG 

(1995) functions Ranking and Heuristic mutation 
methods 

Koziel and 
Homomorphous 

Proportion al 
!-point 

Michalewicz Selection (no flip mutation BCG 

(1999) 
Mappings 

elitism) 
crossover 

Hinterding and Richardson 
Tou marnent Six point Cauchy 

Michalewicz et al. (1989) BCG 
(1998) guidelines 

Selection binary mutation 

Hamidaand Adaptive Constraint- Gaussian 
Schoenauer Segregational Driven Mate Arithmetical (self-adaptive RCG 

(2000) (sorne elitism) selection a) 

Hamidaand 
Variation of 

Linear Logarithmic 
(Richardson BLX-0.5 RCG 

Petrowski (2000) 
ct al., 1989) 

Ranking mutation 

Deb and 
Variation of 

Parameter-
Agrawal ( 1 999), 

(Richardson Toumament Simulated 
based RCG 

Deb (2000) 
et al., 1 989) + Selection Binary 

mutation 
Niche 

Coello and Variation of Dominance-
Two-point Uniform 

Mezura-Montes (Richardson Based BCG 
(2002) et al., 1989) Toumaments 

crossover mutation 
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Table V 

Summary of the parameter values used in each publication 

Au thors 
Population 

Pc Pm 
Numberof Numberof 

Size Generations Trials 

Michalewicz 
70 0.08 0.08 5000 10 

(1995) 

Koziel and 
Micha!ewicz 70 0.9 0.00005-0.005 5000 20 

(1999) 

Hinterding and NA (140000 
Michalewicz 100 0.5 0.5 function 20 

(1998) evaluations) 

Hamidaand 
Schoenau er 100 0.9 0.9 5000 31 

(2000) 
1 

Hamidaand 
70 0.9 0.4 :::; 5000 30 

Petrowski (2000) 

Deb and Agrawal 
(1999), Deb lOn 0.9 0.1-1 4000 50 

(2000) 

Coello and 
Mezura-Montes 200 0.6 0.03 400 NA 

(2002) 

From both tables, we observe that the last four articles report GAs using sorne elitist 

criterion, and apparently the most complex architecture was the one implemented by Deb 

which uses niching, with SBX and parameter based mutation operators. 

While most of the publications reported using between 4000 and 5000 generations for test­

ing, there are no standards in the number of trials and the size of the population. It is only 

in the work of Ham ida and Schoenauer (2000) where the el even functions of Table XXIX 

(see Appendix 2) were used, and only Deb presented a result using a real practical de­

sign problem as Table VI shows. It is important to highlight that as new methods have 

been proposed, more new parameters have also been added and necessary to be tuned, 

increasing the complexity of GAs. Among ali the different schemes reviewed here. only 

the methods proposed by Hamida and Schoenauer (2000) and Coello and Mezura-Montes 
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(2002) try to control the proportion of unfeasible versus feasible individuals. 

Table VI 

Testing functions used and parameters to be tuned for each case 

Analysis Au thors Test Fonctions 
Real Design Parameters to 

Problems betuned 

Michalewicz 
Severa! 

1 go1, 90i· 9og, None depending on 
(1995) g1D· 913 the method 

Koziel and 
2 Michalewicz 901- g11 None r, v 

(1999) 

Hinterding and 
go1. 9oï, gog, 3 Michalewicz None -

(1998) g10, 913 

Hamida and 
4 Schoenauer 901 -911 None fact, /target 

(2000) 

Hamida and g01· 902· 904· 
5 Petrowski go6, 90i· 908· None nm 

(2000) gog, 910 

Deb and go1· go4, 9oï. Welded Bearn 6 Agrawal ( 1999), gog, gw, g13· nc,nm 
Deb (2000) g14· 915 

Design 

Coello and 
7 Mezura-Montes 902· 904, gu, None s 

(2002) g12 

The qualitative analysis presented above has exposed sorne important ideas that will be 

considered for the development of our new approach in Chapter 7. In first place, we are 

able to eliminate the hard task of tuning the penalties factors by just working with a fea­

sibility criterion instead of a penalty function method. Despite that feasibility strategies 

tend to discard unfeasible solutions once they have found a feasible region, this drawback 

did not keep them from getting better results than using penalty factor (see Table VI). 
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Another important observation is that the effectiveness of a GA was generally increased 

when the algorithm tried to retain a good proportion of feasible and unfeasible individu­

ais in order to produce a reasonable exploration of unfeasible regions. This may be very 

effective when feasible regions in the whole search space are disjoint and far from each 

other (Runarsson and Yao, 2000). Thus a possible path to tackle effective! y an optimiza­

tion problem using GAs is by devising a computational method capable of compute such 

a good proportion without neglecting the dynamic behavior of GAs and the application of 

a feasibility criterion. 

4.3 Adaptive Operator Techniques in GAs 

The efficiency and effectiveness of Genetic Algorithms are highly determined by the de­

gree of exploitation and exploration kept throughout the run. When the exploitation is 

much higher than exploration the algorithm converge very rapidly and the solution is gen­

erally a local optimal. On the contrary, when exploration is rouch higher than exploita­

tion the algorithm converge very slowly and a lot of CPU time is necessary to reach a 

global optimal solution. Several techniques have been proposed to control the exploita­

tion/exploration relationship (EER) in order to avoid the premature convergence (Her­

rera and Lozano, 1996; Arabas et al., 1994; Baker, 1985; Booker, 1987; Bramlette, 1991; 

Davis, 1989; Fogarty, 1989; Rolland, 1992; Julstrom, 1995; Smith, 1993; Srinivas and 

Patnaik, 1994a). Most of these works acknowledge the significant effect that GA control 

parameters have over its performance. 

There are two general forms of setting up parameter values: parameter tuning and param­

eter control (Eiben et al., 1999). The first one is time consuming, even when parameters 

are tuned one by one. In general, the selected parameter values are not necessarily opti­

mal since parameters often interact in a complex way. Additionally, GA optimization is 

in effect a dynamic adaptive process where at different stages of the evolutionary process 

different optimal values of parameters might be necessary. For the second one, parameter 
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control, different aspects of the evolutionary algorithms have been taken into considera­

tion to classify them as it is indicated in (Angeline, 1995; Hinterding et al., 1997; Smith 

and Fogarty, 1997; Eiben et al., 1999). Here, we will use the taxonomy presented by Eiben 

et al. (1999) for its simp1icity and generality. 

The taxonomy presented in Eiben et al. (1999) (see Figure 28) classifies the methods for 

changing the value of a parameter into one of three categories: deterministic, adaptive and 

self-adaptive. 

Parameter setting 

before the run during the run 

Parameter tuning Parameter control 

1 .... 
Deterministic Adaptive Self-adaptive 

Figure 28 Global taxonomy of parameter setting in EAs 

A method for changing the value of a parameter is deterministic when the value is altered 

by sorne deterministic rule. In the case that the algorithm uses sorne form of feedback 

from the search to establish the direction and/or magnitude of the change of the value, 

the technique is adaptive. Finally, if the parameters to be adapted are encoded into the 

chromosomes and undergo mutation and recombination then a self-adaptive technique is 

being applied. 

In (Davis, 1989), we can find one of the first efforts for adapting sorne GA's parameters. 

The author adapts a global set of operator probabilities based on the performance of the 

operators in the last generations (adaptation window lV). The performance of operators is 

measured by the quality of the individuals they produce. Very recently created individuals 
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are rewarded if their fitness is the best among ali other individuals in the population. The 

size of this reward is determined by the amount of the improvement. Furthermore, a 

certain percentage of the reward P is recursively passed on to the individual's ancestors 

(to a certain maximum depth AI). This reward strategy is motivated by the fact that a 

series of suboptimal solutions is often necessary in order to reach a better solution, and 

that corresponding operators should th us be rewarded. With certain intervals I, the rewards 

are used to update the probability setting. For each operator i: 

, _ (l S) S rewardi P·- - p· -l.. 1 7 
' totalReward 

(4.24) 

where p~ is the new probability for operator i and S is the Shift factor. which determines 

the degree of influence that the current update should have on the total probability setting 

This algorithm requires a great deal of bookkeeping to sustain pointers only to living 

individuals. Since the ancestral information is stored in the individuals, information is lost 

when individuals die. 

Rochenber's approach use feedback information on how well the search is going to adapt 

the parameter control values (Thierens, 2002). He uses a rule to keep the ratio of successful 

mutations to ali mutations close to ~. The step size of mutation is increased wh en the ratio 

is larQ:er than L and it is decreased when the ratio is less than L 
~ v v 

The approach presented in Julstrom (1995) is very similar to the one in (Davis, 1989). 

Here, the author uses a tree for each individual to specify which operators were used to 

create its ancestors. Another difference is that rewards are assigned to individuals that 

exceed the median individual instead of the best ones. Besides, when converting operator 

rewards to a new probability setting, the author uses a greedy variant of the update rule 

used by Davis (1989) (corresponding to S= 100% ). For each operator i: 
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, rewardi 
Pi = -to_t_a-=-zR=--ew_a_r_d (4.25) 

where p~ is the new probability for operator i. 

In (Whitley, 1989), the authors use Hamming distance between the two parents during re­

production to measure genetic diversity. The more similar the two parents, the more likely 

that the mutation operator would be applied to bits in the offspring created by crossover. 

Wilson's approach (Herrera and Lozano, 1996) uses the entropy over the population to 

adjust crossover probability. When entropy is falling then Pc is adjusted up slightly, ether­

wise, is adjusted down. 

In (Li et al., 1992), the authors use two diversity functions for describing GA behavior and 

controlling the Pc and Pm parameters. The function BC measures the diversity between 

chromosomes in the population and control the changes in Pc; the other function BA 

measures the diversity between the alleles in all the chromosomes and control the changes 

in Pm· They divided the whole optimization process in three stages: initiation, search and 

refinement. They consider that each stage should have different degree of exploitation and 

exploration. So, for each stage BC and BA has different maximum and minimum critical 

limits. 

In (Srinivas and Patnaik, 1994b), the authors adapt the probabilities of crossover and mu­

tation CPc and Pm). Besides, each chromosome has its own Pc and Pm· Both parameters are 

computed by using: 

{ 
kl(fmax- J')/(fmax- J), J'~ J 

Pc= k J'< -J 3, 
(4.26) 

and 
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(4.27) 

where f is the chromosome's fitness, ]best is the population maximum fitness, 7 is the 

mean fitness, and kb k2, k3 and k4 are constants ~ 1.0. This algorithm increases Pc and 

Pm when the population tends to get stuck at a local optimum and decreases them when 

the population is scattered in the solution space. 

Herrera and Lozano ( 1996) use fuzzy logic-based tools for controlling GAs by incorpo­

rating human expertise and knowledge. The main idea here is performance measures of 

the GA are sent to a fuzzy logic controller (FLC) which computes new control parame­

ters values that will be used by GA in the next generation. The authors use two diversity 

measures GD and PD as inputs. The first one is a genotypic diversity measure based on 

Euclidean distances of the chromosomes in the population from the best one. The other is 

a phenotypic diversity measure based on the fitness. 

Munteanu et al. ( 1998) propose an adaptive method for choosing the mutation and crossover 

rates. They use the maximum desired or expecteà value of fitness Fmax and the stan­

dard deviation of fitness in population .stdi (!) to compute the probability of mutation and 

crossover in each generation by using: 

p(i+l) = { p(i) + C log ( Fmax e-stdi(f)) . \fi 
m m 1 F~L, . (4.28) 

(4.29) 

where pr;J and p~i) are the probability of mutation and crossover in generation i respec­

tively, F~~x is the best fitness up to generation i, and C1 > 1 and C2 > Fmax are constants 
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which values depend on the specifie problem. 

Gong et al. (2002) use the relation between diversity of evolution population and evolution 

times to control the number of crossover and mutation operations points. To compute the 

diversity of evolution population, they compute the following function: 

F(t) = 1- H(t) 
L 

(4.30) 

where H(t) is the hamming distance among the individuals genes, t is a variable of the 

current generation, and L is the length of individual coding. This population diversity 

function F(t) is decreased by a factor p(t) defined as: 

-t2 
p(t) =exp( 2a2) (4.31) 

where a = T /3 and T is the maximum number of generations for the optimization process. 

The authors set up a group of decision intervals for the value of F(t)p(t) in order to set 

the number of crossover and mutation operation points. 

Table VII summarizes sorne characteristics of the adaptive techniques reported above. The 

second column (Oper.) refers to the operator or parameter that the technique has tried to 

control. We can see that all articles but one have tried to control the mutation probability. 

However, the last publications report that the adaptive techniques have targeted not only 

the mutation but also the crossover probability. The column "Measures" indicates the type 

of information obtained from the optimization process of the GA that the technique has 

used in order to do the adaptation. Here, it is clear to see that there is not a standard 

measurement method. The column "Strategy" summarizes the way the adaptive technique 

changes the probability values. The column "Param." shows us how sorne methods use 

more parameters which means that the complexity has increased. In fact, as the number of 

parameters is increased, it is more difficult to know which set of parameters is optimal to 
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work and whether it will work efficiently with other type of problems. A very interesting 

idea is presented in the column "Observation" which cornes from Li et al. (1992). The au­

thors realizes that there are different stages along the optimization process where diversity 

is different from one stage to another. 

The analysis presented above uncovers sorne interesting ideas that are used in Chapters 7 

and 8. For the design of any adaptive technique, we should consider that the optimization 

process of GA goes through different stages which suggest different strategies for adapting 

Pm and Pc· It seems that it is easier to control or to adapt Pm than Pc· It is also important 

to highlight that besides that there is not a standard way to measure diversity neither there 

is an analysis of how the existing indexes work with different types of mutation operators 

or crossover operators. Neither there is a report of using Bayes Network for controlling Pc 

and pm. 
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Table VII 

Summary of Adaptive Techniques 

Au thor Op er. Measure Strategy Param. Enc. Observation 

Thierens 
Ratio of Change step Keep the 

(2002) 
Mutation successful size of None B ratio arround 

(Rechenberg's 
mutation mutation 1 

approach) 5 

Davis (1989) Severals 
Quality of 

Reward 
W,P,S,I, 

B 
Pass reward 

individuals M to ancestors 

Julstrom Quality of 
"\IF, 

Pass reward 
( 1995) 

Severals 
individuals 

Reward DECA.Y, -
I,DEPTH to ancestors 

Herrera and 
Lozano ( 1 996) 

Crossover Entropy Change Pc None B 
(Wilson's 

-

approach) 

Whitley 
Mutation 

Hamming Cali 
None B 

(1989) distance mutation 
-

Decision 

Mutation 
Two ru les Assume three 

Li et al. (1992) and 
diversity according to 

BC,BA. B 
stages for the 

Crossover 
functions: values of optimization 

BC and BA. BCand process 
BA 

Srinivas and Mutation 
Each 

Patnaik and Fitness 
Compute kl. k2. k3. B 

individual 

(1994b) Crossover 
Pm and pc k4 has its own 

Pc and pm 

Two 
Fuzzy 

Herrera and 
Mutation 

diversity 
Logic 

Lozano (1996) 
and 

functions: 
Controllers None R -

Crossover compute the 

1 

GD and PD 
new values 

Munteanu 
Mutation 

Statistic Compute 
et al. ( 1998) 

and 
information Pm and pc 

c1.o2 B -
Crossover 

Gong et al. 
Mutation 

Hamming Rules for 
(2002) 

and 
distance intervals 

F(t), p(t) B -
Crossover 
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CHAPTER5 

METHODOLOGY AND GA 

This chapter presents, first, the methodology that has been applied along ali our research. 

We then explain the study of different architectures of GA in order to arrive to one basic 

configuration, the one that will be modified in the next chapters. 

5.1 Methodology 

It is important to emphasize that for the design of GAs, flexibility is essential, and only 

in sorne occasions results do match preconceived hypotheses. New and improved GAs 

are frequently published, with the driving motivation of being novelty; however, in many 

cases, previously introduced GAs are simpler, and have identical or better performance. 

Research in the GAs domain has been dominated by two opposite types of approaches, ad 

hoc experimentation and looking for a precise mathematical modeling of GAs. Finding 

exact models of GAs has resulted in a more complex and analytical unwieldy task than 

the GAs themselves, and only in very few occasions has resulted in improved designs for 

GAs. Much ofthe difficulty lies in the fact that GAs are complex systems, and successfully 

modifying the design of a complex system is an involved, multifaceted undertaking. What 

is often needed is an approach that combines intuition, coarse analysis, and thoughtful 

experimentation. 

The methodology used along ali our research aims to answer the following issues related 

with the analysis, design and testing of our GA: 

1. Should we use C language, C++ language or matlab script language for coding? 

2. Should we start working on a non-commercial application of GAs or should we 

program our own GAs? 

3. Where on the GA architecture should we work in order to improve its performance? 
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4. What kind of testing should we do to initially test our implementation of GAs and 

to compare the results of our proposed solutions with ether works from ether re­

searchers? 

5. What kind of measurement indexes should we use to evaluate the performance of 

our GAs for all the tests including the business jet problem? 

6. Which cases from the flight envelope of the business jet problem should we use as 

testing problems? 

First, several reasons supported our decision to use Matlab script language in implement­

ing our GAs. Among these, it was key that Matlab has become a de-facto standard in 

Computer Aided Control System Design (CACSD), and when we started our research the 

simulation mode! of Bombardier had been previously translated from Xmatrix to Matlab 

by the team of ETS-Bombardier project. It also provides a wide range of toolboxes, no­

tably the Control System, Neural Network, and Optimization Toolboxes, and the Simulink 

non-linear simulation package along with extensive visualization and analysis tools. Mat­

lab has an open and extensible architecture allowing individual users to develop further 

routines for their own applications. These qualities provide a uniform and familiar envi­

ronment on which to build genetic and evolutionary algorithm tools. In addition, Matlab 

script language presents several advantages over the ether choices; fas ter for writing a pro­

totype, easier for maintenance and testing, easier to integrate with the simulation mode! of 

Bombardier, and also includes a way to generate C or C++ code from Matlab functions. 

We tried at the beginning (Garda et al., 200 l) to use C language to implement our GA and 

to interface it with the simulation model; we experienced sorne difficulties due to the inter­

action of Matlab script with a different language. In our case, the benefits (fast execution) 

gained from using C or C++ language is worthless because the time of execution of the 

simulation mode! is in fact our bottleneck. and not the performance of the implemented 

code of the GA. 
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Second, we chose to develop our own GA software despite the existence of non-commercial 

applications. The advantage of this approach was the ftexibility of adding new methods 

following our line of investigation. Besides, as we found in the literature review, there 

is not a standard architecture of GA to solve any type of problem. However, we have 

used one non-commercial implementation of GA and another of Evolution Strategies for 

general comparison, specially when new methods proposed in this thesis have been im­

plemented. 

To decide the kind of strategy to follow in order to improve the performance of GAs, 

Pham and Karaboga (2000) remind us that in genetic algorithms, factors like the encod­

ing method, the scheme to generate the initial population, the evaluation function, and the 

genetic operators are problem dependent, while a fifth factor, setting up GA control pa­

rameters, tends to be much less problem dependent, allowing much more scope for generic 

work in order to control the degree of exploitation and exploration of the algorithm and 

by this means to improve its performance. Therefore, we decided to fix the three first fac­

tors and to work on the fourth and fifth factors. Though working on the genetic operators 

is problem dependent, there exist multiple possibilities of implementations by fixing the 

encoding mechanism to real values, so we kept our strategy flexible enough to reach our 

goals. 

For the testing stage, we followed a two step testing process which includes. first, to solve 

two sets of mathematical functions commonly used in the genetic algorithm literature 

(Michalewicz, 1996), one for unconstrained global optimization (see Appendix 1) and 

another for constrained global optimization (see Appendix 2), and second, to solve a set 

of cases from the business jet's ftight envel ope. 

The literature contains a variety of criteria for evaluating heuristic methods like GAs. Ac­

cording to Barr et al. ( 1995), in a well-rounded study of performance measures, three 

dimensions are important: solution quality, computational effort, and robustness. To mea-
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sure the quality of the solutions in our experiments we recorded the speed and rate of 

convergence to the optimal solution, as well as the percent of deviation from the best op­

timal. For the computational effort, the number of generations required to find and report 

the solution, the number of function evaluations and the total run time were the measure 

indexes selected. We addressed the robustness of our proposed improvements in GAs by 

testing and measuring the variability of their performance in a set of mathematical test 

problems as well as in a sampling set of cases of practical application. 

While the ftight control envelope of Bombardier's problem includes 160 points of op­

erations, we exclusively analyzed the application of GAs in a set that was also used in 

(Boukhari, 2002). However the best results for the 160 points are presented in Appendix 5. 

The development of our software followed an iterative approach of analysis, design, cod­

ing, and testing. The following sections present previous work done in order to arrive to a 

basic architecture before any new improvements. 

5.2 Getting the best architecture for departure 

Before proceeding with any ki nd of improvement or important changes, we needed to start 

with a simple architecture of GAs. We analyzed each component of GA architecture and 

selected its part by using the GA literature available, or, also by repeated testing. 

5.2.1 Encoding Mechanism 

Several studies support the use of ftoating-point representation in real parameter problems 

instead of the binary one. Goldberg (1990) gives the following reasons: 

a. no need of transformation between genotype and phenotype because of one-gene­

one-variable correspondence~ 

b. avoidance of Ham ming cliffs; 
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c. fewer generations to population conformity. 

Results from Janikow and Michalewicz (1991) also indicate that GAs using fl.oating point 

representation are faster than binary GAs, more consistent from run to run, and provides 

higher precision (especially with large demains). They also added that the performance 

of using fl.oating-point encoding can be enhanced by special operators to achieve high 

accuracy. For Davis (1989), real coding allows domain knowledge associated with real­

world domain to be easily integrated into the RGAs for the case of problems with non­

trivial restrictions. 

5.2.2 Reproduction operators 

Although crossover and mutation are the reproduction operators used most frequently in 

GAs, crossover has always been regarded as the primary search operator because it ex­

ploits the available information from the population about the search space (Herrera et al., 

2003). The main research effort on RGAs has been spent on developing efficient crossover 

operators, and as a result many different instances have been proposed (see (Herrera et al., 

1998) for more detail). 

Herrera et al. (2003) proposed a taxonomy that groups the models for this operator in dif­

ferent categories according to the features associated with the offspring generation mech­

anism applied on the genes of the parents (Figure 29). 

TYPES OF CROSSOVER 

Discrete Aggregation-based N eighborhood-based Hybrid 

Figure 29 Taxonomy of crossover operator for RGAs 
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There are four groups in this classification: the first one is the discrete crossover operators 

(DCOs) that includes th ose that are presented for binary coding and are directly applicable 

to real coding. They generate a corner of the hypercube defined by the component of the 

two parents. 

The second one is the aggregation-based crossover operators (ABCOs) that includes those 

operators that use an aggregation function that numerically combine the value of the genes 

of the parents to generate the value of the genes of the offspring in the exploitation interval 

or in the exploration interval. An example of this group is the arithmetical crossover. 

The third group named neighborhood-based crossover operators (NBCOs) includes cross­

avers that apply probability distributions to the intervals defined by neighborhoods asso­

ciated with the genes of the parents in order to determine the genes of the offspring. In 

general this type of operators generates genes in relaxed exploitation intervals. Exam­

ples of NBCOs are BLX - a: and SBX, which are based on unifonn and exponential 

probability distributions, respectively. 

The last group is called hybrid crossover operator (HCOs) and it includes those operators 

that apply offspring generation mechanism from different categories. In this way, these 

operators obtain different levels of exploitation and exploration along the search process. 

According to the empirical results of Herrera et al. (2003), the best crossovers are the 

NBCOs that build the offspring through relaxed exploitation intervals. Among them we 

have selected the simplest one in implementation, BLX - a:, for our initial GA architec­

ture. This operator has been reported to perfonn very well with a: = 0.5 (Deb, 2003, page 

9). ln a previous work of Herrera et al. (1998), they show that as a grows and the relaxed 

exploitation zones spread over exploration zones the diversity levels increase too allowing 

good zones to be reached. Their results also show that at a: = 0.5 it is possible to induce 

an efficient exploration and exploitation relationship. 
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For selecting the mutation operator we used the empirical analysis done by (Janikow and 

Michalewicz, 1991; Michalewicz, 1996; Herrera et al., 1998) where they compare the 

nonuniform mutation operator against ethers. The nonuniform operator presents good 

results specially as the search process advances where the operator starts to reduce the 

genes generation interval in smaller zones around the gene to be mutated and start to 

produce a local tuning on the solutions. The zones close to the best found solution are 

visited, which may be considered good enough for believing that the optimal solution is 

close to them. 

5.2.3 Selection operator 

During the evolution process of the genetic search, two important issues are strongly re­

lated: population diversity and selective pressure. The main problem here is the inverse 

relation between these two factors (Whitley, 1989). Hard selection concentrates on the 

exploitation of information gained so far and produces a high convergence speed. On 

the ether hand, soft selection tries to keep genotypic diversity and does more explorative 

search, leading to good convergence reliability but Iow convergence speed. 

Severa! methods have been suggested to quantify the effect of the selection pressure that 

selection operators exert on the population. Th us, Goldberg and Deb (1991) defi ne the 

takeover time, which is the number of generations that the selection algorithm takes to 

reproduce a single representative of the optimal solution to occupy the entire population. 

Using this term short takeover times are synonym of high selection pressures. Another 

way to quantify the selection pressure is using the definition of selection intensity, a con­

cept original from the field of quantitative genetics (Thierens, 1997, see page 153) and 

introduced into the evolutionary computation domain by Muhlenbein and Schlierkamp­

Voosen (1993). Selection intensity is defined as the increase of the mean fitness of the 

population after selection normalized by the standard deviation. A high selection intensity 

corresponds to high selection pressure. While takeover time or selection intensity may 
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quantify in sorne way the effect of the selection pressure they may not be sufficiently com­

plete representations; therefore, more sophisticated models of selection that consider the 

cumulative of the fitness distribution have been suggested by Rogers and Prügel-Bennett 

( 1997); Blickle and Thiele ( 1996); Cantu-Paz (2002). 

Table VIII 

Studies on Selection Methods 

Reference Type of Study Criteria 
Selection 

Conclusion 
Methods 

(Goldberg Growth ratios, 
Pro porri onate, Linear Ranking 

Only consider the Ranking, and Binary 
and Deb, 

effect of selection 
takeover ti me and 

Tournament, Tournament 
1991) time complexity 

Genitor Selection 

Theoretical and 
Fitness 

Tournament, 
(Blickle and 

experiment with 
distribution. 

Truncation, Tournament 
Thiele, 1995) selection 

Onemax function 
intensity 

Ranking 

Solution quality 
Proportional, 

(Zhang and 
Real-life problem and convergence 

Ranking. Ranking, 
Kim, 2000) Tournament, Tournament 

ti me 
Genitor 

Linear Ranking, 

Theoretical and 
Exponential 

(Cantu-Paz, 
experiment with 

Fitness Ranking, 
Boltzmann 

2002) distribution Boltzmann, 
Onemax function 

Truncation, 
Tournament 

Although sorne studies like the ones shown in Table VIII have compared the selection 

methods most frequently used in genetic algorithms, and have arrived to sorne important 

conclusions, Camu-Paz (2002) emphasizes that there is no single best selection method. 

Thus, it is quite possible that a selection method that works weil in combination with 

certain operators on a particular problem may have a poor performance in a different 

setting. So we decided to try the linear ranking and binary tournament selection that are 

reported with the best performance in Table VIII and test them in our problem with the 

rest of settings. 
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We also decided to use the elitist scheme by replacing al ways the worst individual of the 

next generation with the optimal one currently available. This assures us that the optimal 

solution once found is never lost unless even better solution is created. 

5.3 Tests 

The goal of these tests was to select a base configuration of GA which could be easily 

modified in order to improve its performance and to be applied effectively and efficiently 

to the optimization of controller gains of a fly-by-wire system. So far, we have explained 

how mutation and crossover operators were chosen for our architecture, but we have not 

yet identified our selection operator. To do so, we did two types of experiments: the first 

one with the set of mathematical functions and the second one with the practical cases. 

Besides the linear ranking selection and tournament selection schemes, we also tested a 

geometrie selection scheme (Michalewicz, 1996). The reason was that there were few 

studies about this scheme and we found in a sampling test that it performed better than the 

linear ranking. Table IX shows the three GAs'configurations tested. 

Table IX 

Test configurations of GAs 

Name Crossover Mutation Selection 
RGA-1 

Nonuniform 
Linear Ranking (1Jmax = 1.1) 

RGA-2 BLX -0.5 
(b = 5) 

Geometrie (q = 0.08) 
RGA-3 Binary Toumament 

We selected as the basic configuration of GAs the one that in most of the test functions 

and business jet's cases obtained the smallest standard deviation and mean, and the closest 

one to the true optimal. 
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5.3.1 Using set of fonctions 

In this section, we tested the three candidates with numerical optimization problems and 

ali the experiments were executed on a test suite that contains functions with various char­

acteristics. We characterized the objective functions along a number of features, such 

as their separability (if the function can be separated in a subset of smaller functions), 

modality (amount of number of minimums or maximums that the function has), and the 

regularity or irregularity of the arrangement of their local optimal as it has been done in 

(Michalewicz, 1996). 

Table X 

Features of test suite 

f. 
1 Separability Modality Regularity 

1 Y es u NA 

2 No u NA 
"' No MM Y es .) 

4 No MM No 

5 No MM Y es 

6 Y es u NA 

7 No MM Y es 

8 No MM No 

9 No MM Y es 

10 No FM NA 

11 No u NA 

12 No FM NA 

13 No FM NA 
14 Y es MM Y es 

U: Unimodal, 1\1J\Il: Many minimums, A1F: Few minimums, 
NA: Not applicable 

As it is possible to observe in Table X, there are four unimodal functions (j1, f2, f 6 

and f 11). Generally, unimodal functions are not the most challenging test problems for 

global optimization algorithms and there exist efficient algorithms already designed to 
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solve them. However, their inclusion in the set is to use them to get an idea of the con­

vergence rate of the new changes that we propose in the next chapters. There are also ten 

multimodal functions, seven of them (]3, f4, Jo, fï, f 8 , fg and fv.) have a number of local 

minima that increases exponentially with the function dimensions, while the other three 

Cf1o, !r2 and j13) have only a few local minima. The use of multimodal functions is to fi nd 

if whether an algorithm can have a better mean and standard deviation, as weil as better 

solution in a shorter time. 

Although there may exist sorne relations among the behavior of the reproduction opera­

tors and the selection scheme, we decided to use the same value of parameters for ali three 

configurations. This means that we were trying to find the best of the three configurations 

given the same set of parameters, crossover and mutation operators. Table XI summa­

rizes the dimensions of each test function, the population size for the GA as weil as the 

maximum number of generations for the stop criteria, the probability of crossover and the 

probability of mutation. 

We ran 50 iterations for each function and we recorded the minimum cost, the maximum 

cost, the mean cost and the standard deviation of the 50 iterations in Table XXX to Ta­

ble XXXV of Appendix 3. 

To visualize in a better way which of the three configurations was the most convenient to 

choose, Figures 30, 31, and 32 report the position that was assigned to each algorithm as 

a result of getting the best values. In the case when two or ail of them got the same value 

they were also granted the same position. The ad van tage of this approach is that it is easy 

to observe which one presented the best results. 

Figure 30 shows clearly that RGA-2 was able to obtain the best optimal values for the 

whole set of functions. However, Figures 31 and 32 say that the RGA-3 got the smallest 

mean and standard deviation most of the ti me, and it was good enough in returning optimal 

results. 
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Tahle XI 

Parameter settings of GAs 

fi 
Numberof Population Numberof 
Variables Size Generations Pc 

1 20 40 2000 
2 5 40 5000 
3 40 5000 
4 20 5000 
5 10 40 5000 
6 20 2000 
7 40 5000 0.95 
8 

5 
40 5000 

9 20 2000 
10 20 2000 
11 2 20 2000 
12 20 2000 
13 20 2000 
14 20 40 5000 
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Figure 30 Position according to the results of optimal cost 
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Figure 32 Position according to the results of standard deviation of cost 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

89 

The two-dirnension fonctions ]!0- f13, as well as f 6 and h were very easy to be solved by 

ali three configurations; and among the unimodal functions the only difficult one was f2 

where its global optimum is inside a long, narrow, parabolic shaped fiat valley. From these 

findings we were able to discard the linear ranking configuration RGA-1. Then, since the 

aim of this thesis is to apply GAs to real problems using few evaluation fonctions (short 

time ), we decided to reduce the maximum number of generations of execution by half 

of the current value during three occasions. As the number of generations was reduced 

we also increased Pm by 0.05 of its current value in order to facilitate the exploration of 

RGA-2 and RGA-3. 

-4.54 

-4.56 

-4.58 

-4.6 

c 
-4.62 

"" 
-4.64 

-4.66 

-4.68 

-4.7 

0··· 
:• 

0.125 

Gcner».tion ratio 

Figure 33 Mean cost using fonction fg 

~- RGA-31 
~·· RGA-2 

8oth configurations presented significant changes in their mean and standard deviation 

when they tried to optimize fonctions f2, !3, f 4 , f 8 , f 9 and fi 4 (see Appendix 3). Though 

there were significant changes, in sorne cases RGA-2 outperfonned RGA-3 (see Fig­

ures 35 and 36) and in others it was the contrary (see Figures 33 and 34), it was not 

possible to discriminate which one was the best wh en the number of maximum genera­

tions was reduced. However, it was clear that RGA-3 became slightly better than RGA-2 
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when the interval of generations for the optimization process was large enough . 
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5.3.2 Using practical ftight cases 

91 

The test suite functions allowed us to eliminate the RGA-1 choice, so now in this section 

we used the flight cases available tous to evaluate the perfonnance ofRGA-2 and RGA-

3. The parameters for both configurations were a population size of 20 individuals or 

chromosomes, a Pm = 0.20 and a Pc = 0.95. 

Although the differences in the average cost between RGA-2 and RGA-3 (Figure 37) was 

very small for ali eight cases, RGA-3 was able to perform better in seven of them. The 

standard deviation of the results in the simulations showed us that RGA-3 achieved values 

of standard deviation less than 0.005 for seven ofthe eight cases while RGA-2 was able 

of similar perfonnance for only five cases. Therefore, RGA-3 is selected as the base 

algorithm to be used along the next chapters. 
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CHAPTER6 

PERIODIC MUTATION OPERATOR 

As mentioned in Pham and Karaboga (2000), setting up GA control parameters tends to be 

rouch less problem dependent, allowing more scope for generic work in order to control 

the degree of exploitation and exploration of the algorithms and by this means to improve 

its performance. We have to keep in mind that our goals are to reduce the number of 

function evaluations (reduce ti me of execution) and to reduce the standard deviation of the 

cost function in such a way that indistinct} y of the business jet's case we can increase the 

likelihood that our GA gets a result very close to the global optimal in the first run. 

Even though the control of one or few parameters related to a single operator of GA is 

not difficult, there has not been any report of the application of parameter control tech­

niques in GAs applied to aircraft controller design problem. This chapter presents a new 

mutation operator that tackles the second and third of our goals. To implement our new 

operator we decide to use a deterministic control scheme on Pm (mutation probability) and 

in order to understand the way this new operator works we briefly examine the strengths 

and weakness of uniform and nonuniform mutation operators (Michalewicz, 1996). Then, 

we explain how our proposed scheme works and give next the results of severa} tests and 

their analysis. 

6.1 Uniform Mutation Operator 

The uniform mutation operator is similar to the classical version ofbinary encoding, where 

each element xk of a chromosome x= (x1: x 2 , ···: Xk, ... , Xn) has exactly equal chance of 

being mutated and the result x~ is a random value from its corresponding domaink. While 

having a constant uniforrn mutation probability allows GAs to explore the search space, 

this scheme do es not have a high impact in the degree of exploitation do ne most of the ti me 

by the crossover operator; therefore, it is very likely to expect, in short periods of execution 
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(small number of generations), a very low effectiveness (high standard deviation) of the 

GA. This means that we should run several times the algorithm to make sure that we have 

a good optimal solution. 

6.2 Nonuniform Mutation Operator 

Schemes similar to th ose used in (Hesser and Manner, 1991 ), (Janikow and Michalewicz, 

1991) and (Back and Schütz, 1996) where the probability distribution of mutation is not 

uniform and decreases over ti me favoring the exploitation of local solutions at 1ater stages, 

increase the effectiveness (lower standard deviation) of GA specially for long periods of 

execution (large number of generations). In other words, we should run the GA once but 

using a large number of generations and get a very good solution. 

6.3 Periodic Control Scheme 

To implement our new operator, we decided to use a deterministic control scheme on Pm 

(probability of mutation). The idea behind our proposed scheme is to use a strategy be­

tween the two schemes described above in order to meet the conditions of our practical 

application. Thus, our new operator should follow a scheme that decreases its value of 

probability over time in order to favor the work of the crossover operator; however, be­

cause the time of execution is short then it is necessary to have the possibility of doing a 

last stage of exploration during the last generations to diminish the probability of miss­

ing a better global optimal, and this may be possible by slowly increasing Pm· Although 

there exist many schemes that cou1d follow the suggestions described above we chose a 

simple one like a sinus function with a period greater than the maximum number of gen­

erations, that start on the first high top, it does not have negative values and it has to be 

less than or equal to one; the last two conditions mean that we have to add one and di vide 

by two. Moreover, our new operator should have a uniform distribution for the mutation 

probability, to facilitate the exploration. 
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For the implementation of the proposed operator, we modified the relation presented ini­

tially by Janikow and Michalewicz (1991). In their approach, one variable k is selected 

randomly, and its value is set to a random number following the expression (6.1 ): 

xt+l = { x~+ .6.(t~ u(k) - xk) if r < 0.5~ 
k x~ - .6. ( t, x k - l ( k) ) if r > 0. 5, 

where 

r represents a uniform random number between (0~ 1), 

t is the current generation, 

T is the maximum number of generations, 

b is a shape parameter, and 

u(k), l(k) are the upper and lower borders of x k. 

(6.1) 

(6.2) 

For the periodic mutation operator, we propose to use the following expression instead: 

where 

and 

yr ( (27i(t +a))) .6.(t, y)= 
2 1 +sin Tp 

5 
T, = -T 

p 4 

Tp 
a=- -12.5 

4 

(6.3) 

(6.4) 

(6.5) 

Both expressions, (6.2) and (6.3), use high mutation values at the beginning of the search, 

allowing the operator to explore different regions of the search space during sorne genera-
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ti ons, and reduce later the degree of exploration (degree of mutation) to facilitate the work 

of the crossover operator in the exploitation of the regions around the best individuals. 

While the method suggested in (Janikow and Michalewicz, 1991) does not allow further 

increment of the mutation rate, the expression proposed in this research permits a second 

and final exploration of new regions (Figure 39). 
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Figure 39 Periodic variation of mutation 

6.4 Tests 

Again we divided our tests in two groups, one with the set of mathematical functions and 

the ether with the practical fl.ight cases. Although, the tests were performed with the who le 

set, here, we only present the results obtained using the most relevant of them, !3, f 4 and 

fr4, which were also the hardest for optimization in chapter 3. With the mathematical 

functions, we perfonned two types of sub-tests: in the first one, we used two different sets 

of probability values for Pm and Pc, and, in the second one, we used two different selection 

strategies. The objective of these two kind of tests was to observe the behavior of the 

periodic mutation operator with those changes. 
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Thus, besides the two configurations RGA-2 and RGA-3 used in chapter 3 we tested two 

new ones, RGA-4 and RGA-5 (Table XII). 

Table XII 

Test configurations of GAs 

Name Crossover Mutation Selection 
RGA-2 Nonuniform Geometrie (q = 0.08) 
RGA-3 

BLX -0.5 
(b = 5) Binary Tournament 

RGA-4 
Periodic 

Geometrie (q = 0.08) 
RGA-5 Binary Tournament 

6.4.1 Using set of functions 

For the optimization of mathematical functions we used RGA-3, RGA-4 and RGA-5 con­

figurations. We measured the average cost and the standard deviation of the results pro­

duced by 50 runs of each configuration using different number of generations as stop crite­

ria. We started using 100 generations and then we incremented by 50 unti1 we reached 550 

generations. The objective with this variation of stop criteria was to observe the perfor­

mance of the configurations as the number of function evaluations was increased. Ali the 

tests were initially performed in a PC with a pentium III 733MHz, and 0.5 Gb of RAM. 

Wh ile similar results were obtained by tes ting the mathematical functions with 5, 10 and 

20 variables, we present only the results for 5 variables because our practical application 

used the same number of independent variables. 

We performed two kinds of tests, in the first one we fixed the selection scheme to tour­

nament selection and we compared the performance of using nonuniform versus periodic 

mutation (RGA-3 and RGA-5). In the second one, we only used our new operator and 

observed how its behavior was affected by using two different selection schemes (RGA-4 

and RGA-5). 
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6.4.1.1 Nonuniform versus Periodic Mutation 

We compared the perfonnance of RGA-3 and RGA-5 using two different sets of {pc, Pm} 

such as {0.32, 0.11} and {0.95,0.05}. The first group was used in Garcfa et al. (2003), 

while the second group of probability values were the best for nonunifonn mutation to 

operate in the long run. By using two sets of probability values, we tried to contrast the 

behavior of both operators. In our report, the GA using the first set was identified by 

appending an L to the name of the configuration (e.g. RGA-3L). 

For the function ]3, Figures 40 and 41 show that both versions of RGA-5 (blue and red 

stars in the graphies) obtained better average and standard deviation results than the ver­

sions ofRGA-3 (blue squares and red circles respectively). By using the periodic mutation 

operator, GAs were able to get average values lower than 0.5 after 300 generations and 

with a more stable descending ratio as the number of generations was increased. More­

over, we can see that for this function the difference of average cost and standard deviation 

due to different sets of probability values is meaningless. 

For the function f.t. Figures 42 and 43 show that both versions of RGA-5 (blue and red 

stars in the graphies) obtained better average and standard deviation results than the ver­

sions using nonunifonn mutation (blue squares and red circles respectively). However, for 

this function using low values of probability of mutation and crossover allowed RGA-5L 

to have the best perfonnance with a steady descending ratio as the number of generations 

is increased not only for the average cost but also for the standard deviation. 

For the function fr 4 , again the GAs with the periodic mutation operator (Figures 44 and 

45) show the best perfonnance indistinctly of the number of generations and the set of the 

probability values. As it happened with function h the effect of the probability sets is 

meaningless specially after 200 generations. 
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In general for these three functions the average cost and the standard deviation produced 

by the periodic mutation were always smaller than those produced by the Michalewicz's 

operator. And, as the number of generations was increased those values started to converge 

to sirnilar values. 

6.4.1.2 Different selection scheme 

For the function fs, Figures 46 and 47 show that both ofRGA-4 and RGA-5 have sirnilar 

behavior with a slightly better performance from RGA-5, which was capable of getting 

very low values of average cost and standard deviation. 
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Figure 46 Average Cost for function h using different selection scheme 

As it was reported in section 6.4.1.1, function f 4 was more difficult than h and f 14 for 

optimization. In Figures 48 and 49, it is possible to observe how both algorithms alternate 

in having the minimal average cost as the number of generations increase. Clearly, there 

was not an absolute winner. 
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Figure 49 Standard Deviation for function f4 using different selection scheme 
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For the function fi4 , Figures 50 and 51 show that RGA-4 and RGA-5 have similar per­

formance indistinctly of the number of generations and the set of probability values. As 

it happened with the Rastrigin function, the effect of the probability set is meaningless 

specially after 200 generations. 

For these three functions there is no clear evidence that one of the two selection schemes 

used here has a strong influence in the performance of the periodic mutation operator. 

6.4.2 Controller gains optimization 

In Garcia et al. (2003, 2006) we used values of Pc = 0.32 and Pm = 0.11 for the business 

jet's cases because of convenience rather than they were the best. By using those val­

ues the expected number of function evaluations performed by the GA was approximately 

1740 and we were able to achieve a running time of 18 minutes for each simulation, sat­

isfying in this way a previous limit of 20 minutes that we had set because we were using 
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a PC pentium III, 733Mhz. However, we report here the results obtained by running our 

simulations in a PC pentium N, 2.4GHz, with lGbytes of RAM, and using Pc = 0.95 

and Pm = 0.20, which were better for our application and provided us with an average 

execution tirne of 12 minutes. It is important to highlight that independently of the prob­

ability set that we used, periodic mutation was al ways able to outperform the nonuniform 

mutation. 

CD 0.02 
C> e 
CD 
> 
< 0.015 

0.01 

0.005 

.... 

0,~----72----~3------4~----~5----~6~----~7----~8 

Number of Generations 

Figure 52 Average costs using a maximum of200 generations 

We also used as a benchmark an evolution strategy algorithm (p, + >.) - ES, which is 

generally used in floating point optimization. This ES used a recombination operator, 

with f-L = 10, >. = 70, maximum number of generations equal 57 and expected rate of 

convergence equal one. 

Figures 52 and 53 show that the new mutation operator outperformed the other methods 

in most of the eight cases. These confirm that the new approach is more effective than 

the nonuniform mutation operator by having a mean and standard deviation of the cost 

function lower and stable for the who le set of cases, except RGA-4 that in case 8 suffered 

a distortion. 
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While using a deterministic parameter control technique on the mutation operator did not 

save us from the process of manual tuning, it did improve the effectiveness of our GA in 

the aircraft control design problem. In particular, in the combination of our new operator 

with the toumament selection scheme, it always generated a small and stable average cost 

and standard deviation for the eight cases. 
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CHAPTER7 

CONSTRAINED STOCHASTIC TOURNAMENT SELECTION SCHEME 

Section 4.2 brought to our attention three important ideas that led us to the implementation 

of the Constrained Stochastic Toumament Selection scheme discussed in this chapter: 

a. methods using a feasibility criterion presented better results than using penalty fac­

tor, 

b. the effectiveness of a GA was generally increased when the algorithm tried to pro­

duce a certain proportion of feasible and unfeasible individuals, 

c. to control the proportion of feasible versus unfeasible individuals, sorne articles 

reported excellent results when the selection scheme was modified. 

Finding a good proportion of feasible and unfeasible individuals is, in fact, a very difficult 

task because of the dynamic behavior of GAs . Suppose that we have a population with 

N individuals and k unfeasible individuals in the population at generation t. ln addition, 

suppose that we are using a toumament selection with a replacement scheme following the 

criteria of Deb (2000) for generating the next population t + 1. Then, it is possible, based 

on the feasibility characteristic of each element, to have three different types of pair for the 

toumament. Each type has different probabilities of occurrence depending on the value 

of k (see Figure 54), and each one of them produces different winners due to different 

criterion of decision as shown in Table XIII. 

Generally, feasible solutions are not known previously when the genetic algorithm starts 

to solve the problem; hence, the initial population is frequently populated of unfeasible 

individuals. As the population evolves, the reproduction operators find feasible elements 

and the proportion of feasible and unfeasible elements changes. While new solutions are 

only discovered by the action of crossover and mutation operators, the value of k for the 
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next generation can be affected by the selection operator. However, when ali the elements 

of the population are unfeasible, as they generally are at the beginning of the process, it 

is not possible for the selection scheme to control k. In fact, a selection scheme becomes 

important in controlling the parameter k only when the number of unfeasible solutions is 

greater than a target value initially set. 

A further anal y sis of Figure 54 and Table XIII tells us th at two out of the three types al ways 

generate feasible solutions and the same proportion of types are driven by the constraint 

violation measure. Suppose now, that we want to find the value of k such as the probability 

of unfeasible winner solutions were equal to the probability of feasible winner solutions, 

then, by solving Equation 7.1: 

we determine that: 

k2 (N- kf 2(N- k)k 
1\ .. ) = IV .. ) + i\ ·? N- - N-

v'2.N 
k=--

2 

(7.1) 

(7.2) 

Another way to find the same result is by remembering that ali three probabilities sum 1. 

and we can satisfy the condition by determining the value of k when: 

(7.3) 

Notice that, once k < '1N, the probability of having more feasible solutions as winners 

step up and the process may become more involved in exploring specifie feasible regions, 

while sorne others may become ignored, especially in cases where we find a great num­

ber of disjoints feasible regions or those disjoints sectors are far from each other. Thus, 

this kind of method behaves like an over-penalization technique by preserving feasible 

individuals and rejecting unfeasible ones. 
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To soften the effect of over-penalization we can try to achieve a balance between preserv­

ing feasible individuals and rejecting unfeasible ones, as mentioned in Gen and Cheng 

(1997). So, we can indirectly affect k by applying a balancing approach that is explained 

with detail in the next section. 

7.1 Constrained Stochastic Tournament Selection 

The probability of occurrence of pairs of type 1 and 2, which generate feasible elements 

as winners, is higher than the third type when k ::; '(} N. In the case of the toumament of 

a feasible-unfeasible pair, the winner is al ways a feasible individual because it is the con­

straint violation measure that drives its selection. So, we can try to balance the dominance 

of the constraint violation measure by letting, in sorne cases, the objective function decide 

who will be the winner, as used in Runarsson and Yao (2000) in the context of the Evolu­

tion Strategies algorithms for ranking the population with a bubble-sort-like procedure. 

The proposed selection scheme, which we will name Constrained Stochastic Toumament 

(CST), consists in choosing the individuals for the next generation by following a stochas­

tic toumament criteria of feasibility. This criteria of feasibility is constrained by two fac­

tors: k that we already know and ?1 that regulates the balance of the dominance of the 

objective function and penalty function, as defined in Runarsson and Yao (2000). Basi­

cally. the method can be described by the algorithm of Figure 55. 

The CST selection uses a similar strategy as the one used in Deb (2000) when k 2: ~N; 

however, once k < ~N then the parameter P1 starts to control the balance of the domi­

nance of the objective function and penalty function. 

Now, lets define: 

v0,N 
Pk= Prob(k < ---) 

2 
(7.4) 
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Repeat 
Select randomly two individuals c1 and c2 ; 

if both individuals are feasible then 

else 
Select the one with the smaller fitness value: 

if kt is less than ~N then 
Generate a random number r; 
if r is less than Pt then 

else 

Select the one with the smaller fitness value; 
el se 

Select the one with the smaller constraint violation; 
endif 

if only one of the individual is feasible then 
Select it 

el se 
Select the one with the smaller constraint violation; 

endif 
endif 

endif 
until (N individuals have been chosen) 

Figure 55 Constraint Stochastic Tournament Algorithm 
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as the probability of k becomes Jess than ~111 at any time or at any generation; Pi} the 

probability of occurrence of pair of type i as were defined in Table XIII; P1w the probabil­

ity of the individual winning according to the objective function and P6 w the probability 

of the individual winning according to the penalty function, as defined in (Runarsson and 

Yao, 2000). 

Then, the probability that a feasible individual win in a tournament of a feasible-unfeasible 

pair, Pwin. is equal to the product of the original probability for type 2 (see Table XIII) 

times the probability ofbeing in the region where k;::: ~111 (Equation 7.5). 
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(7.5) 

Or, equal to two terms. Both terms have a common factor th at consists in the product of the 

original probability for type 2, times the probability of being in the region where k < v;N. 
The first term is also affected by the probability of the individual winning according to the 

objective function times the probability of comparing the pair using the objective function. 

The second term is multiplied by the probability of the individual winning according to the 

penalty function times the probability of comparing the pair using the constraint violation 

measure (Equation 7 .6): 

After sorne simplifications and considering that for a feasible individual Pç)'u: = 1, Equa­

tion 7.6 becomes: 

(7.7) 

Since we are only interested in reducing slightly the number of feasible individuals as 

winners when k < '1N just to avoid a drastic drop-off of unfeasible elements in the next 

generation, then we have to control the third term in Equation 7.7. While it is not possible 

to manipulate P1w, we can doit with P1. When we have extreme values of P1w = 0 and 

P1w = 1, Equation 7.7 reduces to Equations 7.8 and 7.9 respectively: 

(7.8) 

and, 

(7.9) 
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Thus, both Equations 7.7 and 7.8 show that when the probability of a feasible individual 

winning according to the objective function is low, then ?1 controls the drop-off of fea­

sible winners, and, therefore, its value should be low enough to do the job correctly in 

our algorithm. Thus, ?1 acts as a constraint of the reduction of feasible elements in our 

selection scheme. 

7.2 Experimental Study 

To validate our approach, we have conducted two kinds of experimental studies. In the first 

one, we compare the search performance of our method on commonly used benchmark 

functions as those presented in Appendix 2 against the results reported in other articles. 

The second test uses a constrained model of Bombardier for optimization. As it was 

explained in the first chapter, the interest of our research is not GA in the long run or its 

asymptotic behavior, but GA in the short run and with real engineering problems. Due to 

the impossibility of having results from other researchers using our simulation model, we 

decided to apply to our problem the evolution strategy algorithm proposed by Runarsson 

and Yao (2000), which was available on Internet, and compare its results with the one 

produced by our GA 

7.2.1 Benchmark Functions 

The objective of this study is to show how GA perform in the long term comparing to 

other algorithms proposed by other researchers. Although the articles did not use the same 

parameter values and conditions for testing, we decided to do it for our experiment. By 

same conditions, we mean, for example, to set up the same number of generations and the 

same population size for the whole set of functions, which can be viewed as performing 

the same number of evaluation functions. 

The parameter values of the GA used for this test were set up to 40 individuals for the 
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population size, a Pc = 0.90, a Pm = 0.05, ab factor equal to 5 for the nonuniform mutation 

as it was suggested in (Michalewicz, 1996), an elitism criteria, a maximum number of 

5000 generations and a number of 50 trials in order to get sorne useful statistics. We 

named this implementation using our new technique Constraint Stochastic Toumament 

Genetic Algorithm (CST-GA), 

To set a convenient value for P1, we started trying a value equal to Pm· and then we used 

other values. Finally, the first one was the one that generated the best results. 

Table XIV presents the results for eleven test functions reported in the seven articles ana­

lyzed in chapter five and the optimal values. Only Kocis and Whiten (1997) and Hamida 

and Schoenauer (2000) reported the results for the who le set of eleven functions. 

Table XIV 

Results reported in seven articles for eleven test functions 

1 Func. 1 Al A2 A3 AS A6 A7 Optimal 

1 -15 -14.7864 -15 -15 -15 -15 - -15 

2+ 0.79953 0.800781 0.80248 0.787933 0.803619 

s+ - 0.9997 1 1 

4 -30664.5 - -30665.6 -30665.5 -30665.537 -30659.997 -30665.539 

5 - - 4707.52 - 5126.498 

6 -6952.1 - -6961.81 -6961.81 - -6961.814 

7 24.69 24.62 24.31 24.36 24.338 24.37248 - 24.306 

s+ 0.095825 - 0.095825 0.095825 - 0.095825 

9 680.642 680.91 680.65 680.63 680.63 680.634 680.63 

10 7377.976 7147.9 7083.21 7095.15 7066.36 7060.221 7049.331 

11 0.75 0.75 0.749001 0.75 

As can be seen from Table XV, our algorithm, using the constrained stochastic toumament 

selection method, performed very weil for most test functions as compared with the best 

results produced by the seven articles. Thus, the new method is capable of retuming an 

optimal very close to the true optimal, except for function number 10 which was also 
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di ffi cult for the other methods as we can observe in Table XIV. 

Table XV 

Comparative results of the new method 

1 Function 1 Optimal CST-GA A1-A7 

1 -15 -15.00000 -15 

2+ 0.8033553 0.80359 0.80248 

3+ 1 1 1 

4 -30665.5 -30665.53217 -30665.6 

5 5126.4981 5126.61403 4707.52 

6 -6961.81 -6961.80966 -6961.81 

7 24.306 24.35632 24.31 

s+ 0.095825 0.09583 0.095825 

9 680.63 680.63253 680.63 

10 7049.331 7064.00621 7060.221 

11 0.75 0.74992 0.75 

7.2.2 Practical Flight Control Design Problem 

Another way to madel a practical flight control design problem is by using standard per­

formance measures that are usually defined in terms of the step response of the system 

as part of the fitness function and the handling qualities criteria as part of the constraint 

functions. 

The fitness function we have considered are the peak time Tp, that partially measures 

the swiftness of the response; the percent overshoot PO, and the settling time Ts that 

measures the similarity with which the actual response matches the step input. Finally, we 

have added a fourth criteria which measures the case of underdamped systems for which 

the second peak should not overpass certain band, which we denote as Ymin· 
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fitness = fpo + frP + frs + fYmin (7.10) 

To consider the same influence of each feature in the value of the fitness we have used 

sigmoid functions to norma1ize their values, as is shown below and in Figures 56, 57, 58, 

and 59: 

(7 .11) 

(7.12) 

(7.13) 

( 
( ( a;Ymjn ))) -1 fymin = 1 + e - maxym:n X3 (7.14) 

where 

maxPO = 0.40; maxTp = 2.-5; 

maxTs = 3.5; maxYmin = 0.03 

To show the benefits of using our new selection method we implemented two GAs with 

the same Blend-Xover operator and Pc = 0.95, the same periodic mutation operator and 

Pm = 0.05, but with a different selection strategy. CST-GA used our approach and SFC­

GA used the feasibility criteria implemented in (Deb, 2000). 

We also used a third algorithm, named Stochastic Ranking Evolution Strategy (SR-ES), 

that was reported in (Runarsson and Yao, 2000), and has produced excellent results in 

the optimization of the mathematical functions. For this algorithm, instead of the original 

values, we used 11 = 10, À = 70 and a maximum number of 50 generations, because we 

were limited for a maximum of 4000 evaluation functions that our GAs used. 
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The comparison of our approach with the SFC-GA shows the impact on the reduction of 

the standard deviation of the optimal values produced. The comparison with the SR-ES 

allows us to see an application of the balancing strategy in GA different from the one used 

in the SR-ES. We collected the results of 50 iterations of each one of seven cases: 24, 44, 

64, 84,104, 124 and 144. Each iteration took 14 minutes torun in a PC pentium IV of 

2.4GHz and lGbytes ofRAM. 

Cl earl y our GA did find the smallest cost in two ofthe seven cases, and it was not so distant 

in the other cases as it was SFC-GA in case 84 (see Figure 60). However, the behavior 

of its standard deviation and average cost were better and more stable than the two other 

algorithms (see Figures 61 and 62). 

0.169 

0.168 

0.167 

0.166 

- 0.165 
"' 0 
u 

0.164 -;; 
CD 

IJl 0.163 

0.162 

0.161 

0.16 

....... ES-SR 
..... SFC-GA 

• -+- · CST-GA 

Casenumber 

Figure 60 Best Cost using CST-GA 

The step response for each one of the seven cases, shown in Figures 63, 64, and 65, 

presents the convenience and usefulness of the new model for the Bombardier's problem. 

Besides the fact that the handling qualities criteria have been satisfied, this model con­

tributes to the designer with a flexible way of controlling the characteristics of the step 

response of the system. 
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When we compare the step response results obtained by using the original model of Bom­

bardier versus those given by our proposed model, it is possible to see more clearly the 

convenience of the constrained model. In five out of seven cases, the step response of 

our model had a smaller overshoot, and a smaller settling time (see continue line from 

Figure 66 to Figure 72) in six out of seven. 
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CHAPTER8 

BAYESIAN ADAPTIVE GENETIC ALGORITHM 

The efficiency and effectiveness of Genetic Algorithms are highly determined by the de­

gree of exploitation and exploration kept throughout the run. In Section 4.3, we presented 

a general classification of methods for changing the value of parameters of GAs. On the 

path of adaptive parameter settings of this taxonomy (Figure 28), severa! techniques have 

been proposed to control the exploitation/exploration relationship (EER) in order to avoid 

the premature convergence. 

Despite the availability of a significant body of expertise and knowledge as a result of 

severa! years of empirical studies, and to the best of the authors knowledge, there is no 

any study in the literature that reports the use of Bayesian Network (BNs) for adapting 

GA parameters in order to induce a suitable EER. So, in the present chapter, we present 

a model for controlling the adaptation of parameters setting of a Real-Valued GA based 

on a Bayesian Network approach. We first introduce however the mode! of an adaptive 

GA based on Bayesian Network. This is followed by an overview of the different diversity 

measures that have been proposed for the GA community. Then, the definition of the mod­

ified Simpson's Diversity Index and our approach in order to apply the index to numerical 

optimization problems using RGAs are described. A new method for termination of the 

optimization process based on the modified Simpson 's index is completely detailed, and 

the results of its successful application are also explained. Finally, the description for the 

implementation of a new adaptive nonuniform mutation operator and its inclusion in a GA 

named Probabilistic Adaptive Genetic Algorithm (PAGA) are explained. 

8.1 Adaptive GAs based on Bayesian Network 

Over a number of years, a great body of human expertise and knowledge on GAs has been 

developed as a result of many empirical studies. Though most of this information is gen-
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erally uncertain, vague, incomplete, or ill-structured, it is possible to use sorne techniques 

capable of working with this type of knowledge like, for example, fuzzy logic controllers 

(Am one et al., 1994; Herrera et al., 1994; Lee, 1990; Xu et al., 1994; Herrera and Lozano, 

1996). 

Whi1e fuzzy logic controllers deal with uncertainty contained in the vague descriptions of 

the experts knowledge, Bayesian Networks (BNs) deal with the association of real num­

bers with the uncertainty in the members of a set of mutually exclusive and exhaustive 

alternatives (Neapolitan, 1990). Although techniques like fuzzy logic controllers use nu­

merical representations of uncertainty, they disregard probability calcul us, computing the 

uncertainty of any formula as a function of the uncertainties of its sub-formulas (Pearl, 

1988); moreover, their rules can be interpreted as summaries of past decisions. In the case 

of Bayesian Networks, rules are interpreted as conditional probabilities expressions and 

they represent summaries of factual or empirical information. Besides, as Pearl ( 1988) 

asserts, intensional systems, like BNs, have no problem handling bi-directed inferences 

and correlated evidence. 

Although BNs seems more suitable to handle the knowledge obtained from the stochastic 

behavior of GAs, difficulty in setting up conditional probabilities and the high demand on 

computation have been probably the reasons wh y BNs have not been applied for adapting 

GA parameters. 

8.1.1 Description of the Bayesian Network 

Bayesian or Belief Networks are directed acyclic graphs (DAG) of nodes, each represent­

ing a random variable with a fini te domain. The directed arcs signify the existence of direct 

causal influences between the nodes, and the strengths of these influences are quantified 

by conditional probabilities (Pearl, 1988) (see Figure 73). 

One of the advantages of using BNs is that an arc from one node A to a node B can express 
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P(A) 

P(CIA) 

P(DIB,C) 

Figure 73 Bayesian Network examp1e 

the idea of "A causes B" (Figure 73). Moreover, according to Pearl (1995): 

"the human intemally structures his or her causal knowledge in his or her 
own persona! Bayesian network, and that he or she perforrns inference using 
that knowledge in the same way as Pearl's message-passing algorithm (Pearl, 
1988)." 
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Hence, by using causal relationships we can try to formai ize and model our partial reason­

ing and knowledge about RGA behavior in a Bayesian network. 

Another advantage of BNs is that using causal relationships may allow us to maximize 

the representation of conditional independence and construct a more compact and simple 

model (Korb and Nicholson, 2004 ). For example, the joint probability over the random 

variables of Figure 73 can be computed via the chain rule as: 

P(A, B, C, D) = P(A)P(BIA)P(CIB, A)P(DjC, B, A) (8.1) 
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However, by using the conditional independence expressed by the arcs of the graph struc­

ture, the final expression for the joint probability becomes: 

P(A, B, C, D) = P(A)P(B\A)P(CIA)P(D\C, B) (8.2) 

Thus, the resulting expression is more compact and easier to compute than the original 

expression of the joint probability. 

8.1.2 Application of the BN for Controlling GAs 

In the case of Adaptive Genetic Algorithms (AGAs). adaptive mechanisms generally re­

spond to measurements of the algorithm's progress to adjust its parameters during its ex­

ecution. Thus, the main idea of the proposed approach is to use any combination of GA 

performance measures and/or current parameter values to set up sorne evidences on a 

Bayesian Network and use inference to determine the actions to be taken in order to adapt 

the GA control parameters as is illustrated in Figure 74. 

Adaptive Genetic Algorithms using Bayes Network 

Pertormance measures 

GA control parameters Genetic Optimization 
BN Task Algorithm 

GA control parameter; 

Figure 74 Structure of a Probabilistic Adaptive GA based on Bayes Networks 

One of those performance measures could be diversity measures. As we have been us­

ing mutation operators with decreasing mutation policies, the diversity of each generation 

decreases as the number of generations increases. As long as dissimilarity exists in sorne 
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level, crossover operators can be capable of doing the exploitation and a little exploration 

of the search space, provided that convergence has not been reached. So, having a met­

rie of dissimilarity becomes very important in order to evaluate the effectiveness of the 

crossover operator as the number of mutations at each iteration decreases, and to detect 

the convergence of the algorithm. Moreover, the GA can decide to stop its optimization 

process if it is not longer useful because of lack of diversity and saving cpu ti me. It is also 

important to consider that as mutation rate decreases, if the dissimilarity among the genes 

decreases then to bring forth population diversity for further exploration of the search 

space becomes harder and harder. Thus, the following section presents a small overview 

of different diversity measures that have been presented for different researchers. 

8.2 Diversity Measures 

The explotationlexploration relationship of GAs is strongly related with the diversity of 

every generation. GA community reports several diversity measures (Bedau et al., 1995; 

Herrera and Lozano, 1996) that describe the state of the population, and can be classified 

in two types: genot;.pic diversity measures (GDMs) and phenotypic diversity measures 

(PDMs). Whilst GDMs try to describe the variation or lack of similarity between the ge­

netic material held in the population, e.g., alleles, chromosomes, etc, PD Ms are concerned 

about the fitness of the chromosomes (Herrera and Lozano, 1996). 

8.2.1 Genotypic Diversity Measures 

Among the different approaches for GDMs found in the literature, those based on Eu­

clidean Distance, and Dispersion Statistical Measures have been applied to Real-Coded 

GA. 

Herrera and Lozano (1996) propose one measure based on the Euclidean distances of the 

chromosomes in the population from the best one and is denoted as ED: 
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where 

ED = d- dmin 
dmax- dmin 

and P is the population composed by real-coded chromosomes. 

(8.3) 

The interval of the values of ED is [0, 1] and when ED is low, most chromosomes in the 

population are concentrated around the best chromosome and therefore convergence is 

achieved. On the contrary, if ED is high most chromosomes are not biased toward the 

current best element. 

In Herrera et al. (1994), the authors present a diversity measures for real coding based on 

dispersion statistical rneasures. They are based on the variance average of the chromo-

sames: 

(8.4) 

and the average variances alleles: 

'"'N '"'L ( -)') 
41, 4. = L....-j=l L....-i=l sij - sj -

" ~. L · N (8.5) 

where 

(8.6) 
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(8.7) 

(8.8) 

and 

N : size of population; 

L : length of chomosome; 

sij : gene with position j in the chromosome i. 

These diversity measures, VAC and AVA, are indifferent to mutual exchange of two chro­

mosomes in a population; and when ali the chromosomes in a population are almost iden­

tical they take low values. 

8.2.2 Phenotypic Diversity Measures 

In the case of PDMs, they are generally defined by combining measures like: average 

fitness (Ï), the best fitness Ubesd and the worst fitness (J worst) as in (Lee and Takagi, 

1993; Srinivas and Patnaik, 1994a). In Lee and Takagi ( 1993), two performance measures 

are proposed: 

(8.9) 

and 

1 PDAJ.) = --
- fworst 

(8.1 0) 

The range of both measures is [0, 1], and when they are near 1 it means convergence has 

been reached, whereas a value near 0 means that the population is highly diverse. 
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\Ve can summarize sorne characteristics of the diversity measures presented in this section 

as: 

1. l'AC and A VA use the middle point of the population as a reference point for their 

computation, and they use an average operation to get that middle point. 

2. PD l'vh and PD l\12, use the mean of the objective function as a reference point of 

their computation, 

3. E D uses the genes of the best chromosome as a point of reference and the Euclidean 

distance for its computation. 

AU these indexes were tested with different problems and the results were totally different 

or useless for getting sorne clue in order to use them in a Bayes Network. Several factors 

like the function to be optimized; the number of generations that we let the algorithm to 

run; the type of mutation operator and severa! values of Pc and Pm were studied during the 

simulations. Figures 75 to 83 are sorne of the results that illustrate our remarks. 

ED did not give any clue about convergence or diversity (see Figures 75 to 79). In sorne 

cases, PD J\!1 and PD Ah gave sorne information about convergence (Figures 80 and 81) 

but not about diversity. And, in other cases, they provided a low peak showing the lack 

of diversity and the arrivai of convergence as in Figures 82 and 83. VAC and AVA were 

completely useless when we applied them to our GAs and we decided not to show them 

he re. 

After all these results, we made up our mind to propose the application of an index from 

ecolo gy called Simpson 's Diversity Index. But for its application to optimization problems 

it was necessary to implement an innovated procedure. The following section deals with 

this new index that was presented in (Garcfa et al., 2005). 
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Figure 78 ED behavior using h and periodic mutation 
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Figure 83 PD M2 behavior using fs and 500 generations 

8.3 Modified Simpson's Diversity Index (mD) 

This new index is inspired by Simpson's Diversity Index, which is a measure of diversity, 

and it is often used to quantify the bio-diversity of a habitat in ecology. lt takes into 

account the number of species present, as well as the abundance of each species. 

There are different ways to quantify biological diversity; one of th ose is to consider two 

factors like richness and evenness. While, richness measures the number of different kinds 

of organisms present in a particular area (e.g. the number of different species present), 

evenness compares the similarity of the population size of each of the species present. 

Richness counts the number of species per sample, and the more species are present in a 

sample, the ri cher the sample is. lts measure does not depend on the number of individuals 

of each species. lt assigns as much weight to those species with very few individuals as 

those with many. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

141 

Even ness gives an idea of the relative abundance of the different species that makes up the 

richness of an area. For a better understanding of these two terms, suppose we have two 

different sampled fields of wildflowers. In Table XVI, we can see the distribution of the 

individuals for each species and for each sample. 

Table XVI 

Sampled fields of wildflowers 

Number of individuals 

Flower Species Samplel Sample2 

Daisy 300 20 

Dandelion 335 49 

Buttercup 365 931 

Total 1000 1000 

Both samples have 3 species, so they have the same rich ness. Although both samples have 

the same total number of individuals (1 000), the first sample has more evenness than the 

second because the total number of individuals in the sample is quite evenly distributed 

between the three species. In the second sample, there are few daisies and dandelions 

present and most of the individuals are buttercups. Therefore, we can consider sample 1 

more diverse than sample2. 

Simpson's Diversity Index (D) is a measure of diversity which takes into account both 

richness and evenness. Generally there are three closely related definitions for D. One 

way is that D measures the probability that two individuals randomly selected from a 

sample, with replacement, will belong to the same species (or sorne category other than 

species). 

(8.11) 
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where 

ni = the total number of organisms of a particular species i; 

S the set of different species; and 

N = the total number of organisms of ali species 
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With this index, 0 represents infinite diversity and 1, no diversity. That is, the bigger the 

value of D, the lower the diversity. For our purpose, it is rouch better to subtract from 1, so 

the greater the value, the greater the sample diversity. and it is still in the range of 0 and 1: 

mD= 1- D (8.12) 

8.3.1 How to apply mD 

To apply the modified Simpson 's Diversity Index (mD), we need to have sorne categories 

or classes. The question is, how to do a categorization among chromosomes of each 

generation that could be useful to compute mD. The following anal y sis will help us to 

figure it out. 

Until now, we have used Real-Coded GAs with non-uniform or periodic mutation oper­

ators in combination of a blend crossover operator and a toumament selection method. 

Both mutation operators have a mechanism for decreasing the mutation interval, and both 

have also a very interesting behavior. First, as the interval gets smaller than the one used 

in previous generation, the GA is still able to find new optimal individuals but this action 

stops several generations before to reach [\'. And, second. in the case of periodic muta­

tion, when the mutation interval is increased shortly along the final stage of the searching, 

sometimes for small values of jumps the GA still produced optimal individuals and sorne­

times not. Thus, we can say intuitively that the GA is converging sorne generations before 

reaching N, and for small values of mutation at the final stage there is sorne degree of 

dissimilarity among the genes of chromosomes that allows the crossover operator to mate 

individuals and to further the exploitation of the search space and yield a better best-so-far 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

143 

performance (Huang, 2002). In other words, we can expect that even when chromosomes 

are very close to each other, specially to the best one, finding a new optimal is feasible as 

long as sorne degree of dissimilarity among their genes exist. 

We may interpret these observations and propose two hypotheses as follows: 

Hypothesis A There exists a group of classes of chromosomes around the best individual 

with sorne characteristics that their diversity becomes cri ti cal for the convergence of 

a RGA using a decreasing policy of mutation step; 

Hypothesis B When the diversity ofthis group of classes of chromosomes becomes lower 

than sorne value KmD then the likelihood that convergence happens is maximum. 

To proof these two hypotheses, we propose to measure the diversity of the classes of 

chromosomes that are formed in a very small sector around the current best optimal indi­

vidual. To produce speciation or categorization we propose, first, to divide this region in 

five classes depending on the absolute value of the distance between every gene of each 

chromosome and its respective gene of the best fit individual in the population: 

(8.13) 

where dij is the distance between gene j of chromosome 'Ï, sij' and gene j of the best 

chromosome, Sbestj. 

We set up a limit of distance for each class. Let us say the limits are those presented 

in Table XVII. Then, we count the number of locations at which corresponding genes 

are inside each interval, and, let us say also, that we are only interested in having classes 

where the number of similar genes is greater or equal to 60%. Renee, each class will be 

composed by those chromosomes with 60% or more genes that are similar and they are 

inside the intervals defined in Table XVII. 
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Table XVII 

Classes intervals 

1 Class 1 Interval 

dij ~ é 

2 é < dij ~ 5é 

3 5é < dij ~ 1 Oé 

4 10E < dii ~ 50E 

5 50€ < dij ~ 100€ 

8.3.2 Experiments 

We tested our implementation to get the modified Simpson's Diversity Index with two 

configurations of GAs: one with non-uniform mutation and the other with a periodic mu­

tation. Both GAs have in common a blend crossover operator, a tournament selection 

scheme and a population size of 40 individuals. We used a value of E" = 0.00001 similar 

to the accuracy that we want for our results. 

Every time that we used mD with a GA using non-uniform mutation, we were able to 

geta value of 0 (KmD) when the GA reached the convergence. More interesting was the 

fact that for each function optimization when the difference between two or more optimal 

individuals started to be less than 0.00001, mD was always zero, which by coïncidence 

was the li mit of the first class. It seems that the li mit of this class may allow to tune the 

precision of the optimization (see Figures 84, 85 and 86). So, we supported hypothesis A 

and hypothesis B empirically by using non-uniform mutation. 

Using periodic mutation was different but still very useful. As we can observe in Fig­

ures 87 to 90, when mD started to get values approximately lower than 0.20 (KmD) then 

the convergence of the optimization started to be reached. So. hypotheses A and B are 

also supported with these tests for periodic mutation. 
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Wh ether a GA decides to continue or stop its search depends on the termination criteria we 

implement. Among the reasons thatjustifies the importance ofhaving a good termination 

criteria are to reduce processor cost and to find a solution in the shortest time possible. 

These two reasons become critical in the context of real scenarios where the resources are 

limited and the goal is to generate the best possible solution given a fixed amount oftime. 

The most common termination criteria used in practice can include (Hulin, 1997): 

1. Cost bound: A termination method that stops the evolution when a solution with 

quality at least as good as a user-specified threshold is found. 

2. Time bound: A criterion to stop the process after a user-specified max number of 

evolutions have been run. 

3. lmprovement probability bound: A termination method to stop the optimization 

process after no improvement had been found after sorne threshold number of gen-
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erations. 

4. Convergence bound: This criterion stops the search process after the population 

seems to have converged. The detection of convergence can be done by using sorne 

metrics such as the standard deviation of the fitness of the population, or by measur­

ing the diversity in the genomes based on sharing functions (Goldberg, 1989). 

5. Loss of minimization: This criterion was proposed by Hulin (1997), and it termi­

nates the GA run when the cost of additional computation exceeds the expected gain 

(i.e., when the marginal utility of continuing the run is expected to be negative). 

Intuitive! y, a good termination criterion stops an optimization algorithm run when a signif­

icant improvement can not be expected according to the observed performance behavior of 

the current run. Surprisingly, relatively little work has been done in the area of determin­

ing good termination criteria (Fukunaga, 1998). In the context of our practical problem, 

it could mean that we can stop the optimization process at sorne point when any future 

improvement can not be significant to alter the physical response of our fly-by-wire sys­

tem. So, we try, first, to implement a convergence bound criteria in our RGA by using a 

Bayesian network and applying the modified Simpson's diversity index. 

8.4.1 Constructing a Bayesian network for detecting convergence 

To formalize and to mode! our partial reasoning and knowledge about what we know of the 

behavior of out RGA using a BN, we must consider the following issues: ( 1) its domain 

variables and values; (2) its structural part that encodes the causal relations among the 

domain variables in the form of an acyclic, directed graph (DAG); and (3) a numerical 

part that consists on the conditional probability tables for the domain variables or nodes. 
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8.4.1.1 Domain variables and their values 

According to (Kocis and Whiten, 1997), we need to determine which are the most impor­

tant variables or nodes for our detecting convergence method among four types of nodes: 

• target or query nodes which consist of those variables whose values an end-user 

wants to know about, 

• evidence or observation nodes that could be observed and would be useful in in­

ferring the state of another variable. In other words, these nodes play the role of 

sources of information about the domain, 

• context variables that can be determined by considering sensing conditions and 

background causal conditions, and 

• controllable variables which are those whose values can be set by intervention in 

the domain environment. 

By following the classification described above, we identify three important variables or 

nodes for our detecting method. First, because we are interested in knowing whether 

an RGA has converged or not, our target variable will be named Convergence. For our 

application, Convergence is a discrete node that can only have two possible states, it does 

not matter if the RGA seems to converge to a local optimum or global optimum. Second, 

we know that the diversity of the RGA population can give sorne kind of information about 

the convergence of the algorithm; therefore, our second variable is Diversity (context 

variable). For Diversity, there are four possible ordered states for describing the degree 

of heterogeneity of the population: very poor, poor, moderate, and good. However, we 

need a method that measures diversity by using the modified Simpson's diversity index; 

thus, we will implement a method for testing diversity and the result of this method will 

be the evidence variable called Test of Diversity. This last variable has also four possible 
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Table XVIII 

Set of Discrete Values 

1 State 1 Label 1 

Convergence ( C ) 1: No Cl 

2: Yes C2 

1: Very Poor Dl 

Diversity ( D ) 2: Poor D2 

3: Moderate D3 

4: Good D4 

1: Levell Tl 

Test of Diversity ( T ) 2: Level2 T2 

3: Level3 T3 

4: Level4 T4 

ordered states: level 1, level 2, level 3 and level 4. Table XVIII summarizes the discrete 

values assigned to each one of the three variables th at are part of the BN. 

To test the diversity of the population we use a window of seven values of modified Simp­

son's index, mDi-6 ~ mDi-5 ~ ... ~mDi (see Figure 91 ), where i is the number of the cur­

rent generation. The window is shifted along the execution of the optimization process 

and handled like a FIFO structure. In the case of non-uniform mutation operator, when 

diversity reduces we can have groups of zero values of mD, thus, we define four distinct 

levels depending on the number of zeros that we get in the FIFO structure (Table XIX). 

8.4.1.2 Graph Structure 

To decide the structure of the network, we focus on the relationships between variables. 

Many types of qualitative relationships can help to determine the most appropriate struc­

ture for our convergence detecting problem. Among them, and very important, are the 

causal relationships. 
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mDi-6 
mDi-5 
mDi-4 
mDi-3 
mDi-2 
mDi-1 

cmTent generation -. mDi 

Figure 91 FIFO structure for "Test of Diversity" 

Table XIX 

Levels for Test of Diversity 

Symbol 1 Level 1 Number of Zeros 1 

1: Level 1 5, 6, or 7 

1i 
2: Leve12 3 or4 

3: Level3 1 or 2 

4: Level4 0 

To find the causal relationships in our BN, we proceed to ask direct questions about causes 

(see Table XX). Th us, the Convergence of the optimization process could happen if the 

Diversity is reduced to very poor levels, so, Diversity influences Convergence. We can 

measure Diversity by implementing a Test of Diversity that can approximately detect 

the levels of Diversity. These causal relationships can be modeled by using a Bayesian 

network like the one shown in Figure 92. 

By using the BN shown in Figure 92, it is possible to do bottom-up and top-down rea­

sonings. This means that knowing the result of the test of diversity can help us to do a 

diagnostic (bottom-up reasoning) of the state of diversity in the population of the GA. 

Furthennore, when the state of diversity is obtained then we can do a causal (top-down) 

reasoning of the convergence state of the GA. 
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Table :XX 

Finding Causal Relationships 

Question Answer Modeling 

What can cause 
Diversity 

arc from Diversity to 
Convergence? Convergence 

What can affect the results 
Diversity 

arc from Diversity to 
of the Test of Diversity? Test of Diversity 

Figure 92 A BN structure for detecting convergence 
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8.4.1.3 Probabilities 

Once we have a Bayesian network that expresses the relationship among our stochastic 

variables, it is important to assign them a numerical parameter signifying the degree of 

our belief accorded to them under our partial expertise and knowledge. 

Table XXI describes the prior probability of Diversity (Prob( Div er s'ity) ). The values 

assigned to each state reftects our belief of their presence during the optimization process. 

As we can observe we expect that diversity in moderate and high levels will be present 

most of the ti me during the search process of our RGA. 

Table XXI 

Prob( Div er s'ity) 

Level 1 Probability 1 

Very Poor 0.05 

Poor 0.10 

Moderate 0.40 

Good 0.45 

Table XXII shows our beliefs that a specifie lev el of Test of Diversity could happen given 

sorne value of Diversity (Prob(TestO f DiversityjDiversity)). We expect that most of 

the time Level 2 represents a poor diversity, Level 3 represents a moderate diversity, 

and Level 4 represents a good diversity; however, it is possible to have sorne different 

situations for the same level like those shown in Figure 93. As we can observe, both 

examples have two zeroes, but the other values of example (a) are smaller than those of 

example (b ), in fact they are very small. So, it is possible to interpret that wh ile example (a) 

should be classified as a sample ofLevel3, it looks like more a Level2 sample because the 

other values are very close to zero. That is why we assigned a 0.95 conditional probability 

and not one. 
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Table XXII 

Prob(Test\Diversity) 

Diversity 

Very Poor Poor Modera te Good 

Levell 1 0.05 0 0 

Level2 0 0.95 0.05 0 

Level3 0 0 0.95 0.05 

Level4 0 0 0 0.95 

0 0 
0.05 0.71 
0.05 0.65 
0.08 0.68 
0.08 0.68 

0 0 
0.05 current generation ___,. current generation --+ 0.74 

(a) (b) 

Figure 93 Examples of Windows for Level 3 

The values in Table XXIII represent our beliefs that Convergence is or is not possible 

given sorne ki nd of degree of Diversity. 

Table XXIII 

?rob( Con vergence\ D'iv er sity) 

Diversity 

Very Poor [ Poor [ Moderate j Good 
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8.4.2 RGA with a dynamic termination point 

Now, based on the BN that we have described above, we can implement the algorithm 

of Figure 94 to in fer the probability th at the RGA converge ( C = "Y es") given th at a 

level of diversity (Te) is measured by the test of diversity (Prob(C ='~Y es" ITe)). First, 

the computation for the variable Te requires information determined by its parent D. This 

method can be considered a message passing algorithm, in which each node passes to its 

child a message needed to compute the child's probabilities (Neapolitan, 2004). Theo, 

we can use upward propagation of messages to compute the conditional probabilities of 

D given Te. Finally, we proceed to compute P( C = "Y es" ITe) using the downward 

propagation algorithm. 

1. Compute the prior probability of the leve! of evidence of the test P(Te) 

4 

P(Tc) == LP(TciDj)P(Dj): 
j=l 

2. Compute the conditional probability of the diversity given the leve! of 
evidence of the test P(DiiTe) 

for ali j = L ... , 4: 

3. Compute the conditional probability of the convergence given the leve! 
of evidence of the test P( C == ., Y es" ITe) 

4 

P(C = "Yes"'ITc) = LP(C = "'Yes"IDj)P(DjiTc): 
j=l 

Figure 94 Algorithm of inference to fi nd P( C = "Y es" ITe) 

Thus, we can modify the structure of our RGA (see Figure 95) to include the possibility 

of finishing the optimization process once the algorithm seems to converge to sorne value. 

Whatever value of P( C = "Y es~·ITc) we obtain, we compare it with a generated random 

number r, to see if we stop the optimization process or not. 
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t- 0; 
initialize population(t); 
evaluate population(t): 
t = 1: 

repeat 
{ 

} 

select population( t) from population( t-1): 
apply Blend crossover to structures in population( t); 
apply Nonuniform mutation to structures in population(t); 
evaluate population(t); 
Determine Te 
Compute Prob(C = "Yes"ITe) 
Generate a random number r 
t-t+ 1: 

until (r < Prob( C = "Y es" ITe) ) 

Figure 95 RGA with a dynamic terrnination point 

8.4.3 Experiments 

157 

Generally for solving our practical ftight control design problem, each iteration of our 

original RGA have taken 10 minutes. So, in this section, we modify our original RGA 

(Figure 95) to test the new approach of finishing the optimization process. Sorne results 

that correspond to cases 24, 64, 104, 124 and 144 of the ftight envelope are presented 

here for analysis. For running ali our experiments, we used a Pentium IV of 3.2GHz; 1 

Gigabyte of RAM, a hard disk of 80 Gigabytes, a Windows XP operating system, and we 

perforrned 40 iterations for each case. 

Figures 96 to 100, are the step responses of the our ftight control system simulation. Each 

figure shows the step response obtained at the end of the optimization process (blue dash­

dot line), and the step response that we would have obtained if the optimization process 

have been stopped using our new terrnination method (green dotted line). While the step 

responses obtained at generation 157 (fl5ï) and 200 (J200 ) respectively for case 124, and 

generations 131 (j131 ) and 200 (j200 ) for case 24, are so similar that we do not notice any 

difference between them, the other three cases have small differences, but they are still 
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Table XXIV summarizes the results obtained for each of the cases that we tested. It is 

possible to observe that in the worst average case we need around 152 generations to have 

a good step response from our simulation madel. This means that we can have good results 

at seven and half minutes of optimization process instead of 10 minutes, a saving of two 

and half minutes. 

Table XXIV 

Statistics of termination points using non uniform mutation 

1 Case Average Std. Dev. 1 

24 142 6.3 

44 143 6.7 

64 139 12 

84 139 Il 

104 137 21 

124 152 9.7 

144 143 18 
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8.5 Detecting stages of optimization 

Li et al. ( 1992) suggest that the optimization process of a GA involves three stages named: 

initiation, search and refinement. In the initial stage, diversity measures depend on the ini­

tial conditions of the GA, so the diversity measure's behavior is unpredictable and control 

parameters should be kept constant. The search stage, should guarantee a broad search 

and efficient exploitation; therefore. control parameters have to be designed to vary ade­

quately. Finally, in the last stage, refinement, control parameter values should be balanced 

in a way that we increase the exploitation and the search is forced in local regions. 

If we observe the envelope of the nonuniform mutation, we can notice that this mutation 

operator follows very close the suggestion of Li et al. ( 1992). However, one can argue that 

because of the dynamic behavior of the optimization process it is possible that there were 

more than three stages, specially where there is a transition between the first and second 

stage, and between the second and third stage. Therefore, besides knowing in which stage 

the GA is, it is also very important to know when each stage begins and when it ends, or 

in other words, where each transition happens. 

To detect these transitions we propose to use our new Bayes Network to detect the conver­

gence of the optimization process at different levels of E, which is the accuracy factor of 

the first class in Table XVII. The idea behind this heuristic is that when we use a nonuni­

form mutation operator, we observe that the RGA gets close to the global optimum region 

or in the worst case to a local optimum region at different levels of precision. By setting 

up different values forE, we can define different set of levels for the computation of mD. 

Then, when our BN detects convergence it will be the moment where another stage will 

take place and we will have to change the value of E in order to go for another stage. 

For our design's purposes we will considera set of four values forE such as we can detect 

four stages instead of three: initiation, search, medium search and refinement. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

162 

8.5.1 Adaptive Nonuniform Mutation Operator 

Once we have a new method for determining different stages of the optimization process 

we can try to adapt the envelope of the nonuniform mutation operator. The idea here is 

twofold: first, nonuniform mutation has a very weil defined envelope, but this envelope is 

very related with three clear stages of the optimization process, in other words, it follows 

very strictly the suggestion of Li et al. ( 1992); and second, the results of Chapter 6 showed 

that in general periodic mutation operator had better performance than nonuniform mu­

tation operator when both were applied to the problem of Bombardier, so, the adaptation 

of the nonuniform mutation operator could improve its performance versus the periodic 

mutation. 

Basically, the value of the mutation probability of the nonuniform mutation changes ac­

cording to the ratio of the current generation t over the total number of generations to be 

ran T. AsTis constant during the who le process, we will adapt the value of t, which will 

be named tadaptive· Generally, tadaptive will be constant, but it will change to be equal to 

the current t if there is a change to another stage of optimization process, and/or if there 

has not been new optimal values during the last five generations. The intuition behind the 

second criteria is that if tadaptive is constant for sorne generations and there is not more 

new optimization values then it is likely that it has become ineffective. The value of five 

was chosen after several tests with mathematical functions. It was found that there was not 

big difference of performance comparing with 10 and 15. However, the performance of 

the algorithm degraded significatively when we used values greater than 15. Besides, we 

considered that five was a better choice keeping in mi nd that we only have 200 generations 

to the whole optimization. 

Figure 101 shows the new method for implementing the adaptive nonuniform mutation, 

and Figure 102 includes the new method for adapting the nonuniform mutation operator 

and for stopping the optimization process to the base architecture of GA, and we named 
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this new structure a Probabilistic Adaptive Genetic Algorithm. 

function [flag. tadaptztoe• é] = Adaptive(flag, t, tadaptire• é. ?rob( C =··Y es" !Te)) 

Generate a random number r: 

if r < ?rob( C = ··Y es" ITe) then 
if é < 0.0001 then 

tadaptit•e = t: 

é = é * 0.1: 
else 

flag = false: 
end 

end 

Figure 101 Adaptive Nonuniform Mutation Algorithm 

t- 0; 
initialize population(t): 
evaluate population(t): 
t = 1: 
é = 0.1: 
flag = true: 
tadaptive = t; 

repeat 
{ 

} 

Select population(t) from population(t-1); 
apply Blend crossover to structures in population(t): 
apply Nonuniform mutation using tadaptive to structures in population(t): 
Evaluate population(t); 
Determine Te 
Compute Prob(C = "Yes''ITc) 
[flag, tadaptive. c] = Adaptive(Jlag. t. tadaptive. c, Prob(C = ··ves''ITe)) 
if there have not been optimization during the la:;t five generations then 

tadaptive = t: 
end 
t-t+ 1: 

until (Jlag is false) 

Figure 102 Probabilistic Adaptive Genetic Algorithm 

163 
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8.5.2 Experiments 

Sorne results that correspond to cases 24, 64, 104, 124 and 144 of the ftight envelope 

are presented here for analysis. For running all our experiments, we used a Pentium IV 

of 3.2GHz; 1 Gigabyte of RAM, a hard disk of 80 Gigabytes, a Wmdows XP operating 

system, and we performed 40 iterations for each case. 

In Figure 103, we can observe how diversity changes along the generation number and de­

pending on the value of c. Table XXV shows the generation number where the transitions 

from one stage to another happened. It is important to highlight that our method is very 

efficient in detecting the regions of transitions. 

0.8 -0.1 0.01 0.001 0.11001 

0.7 

~ 
~ 0.6 

~ 0.5 ~r 2:' 
jjj 
<; 0.4 ~~ > 
ë 

0.3 

0.2 

0.1 1 l 
0o~----~-~~-------1~oo_u----~1~~---L~BL~2o~o------~~ 

Generation 

Figure 103 Variation of Diversity along generations 

Table XXVI shows sorne statistics about the termination point where the RGA stopped 

the optirnization process. We can clearly conclude that this method saves us 25% of the 

runtime of the algorithm. 
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Table XXV 

Change of~ 

\ Generation c\ 
0.1 

40 0.01 

110 0.001 

144 0.0001 

Table XXVI 

Statistics about tennination point of GA 

Case Average Std. Dev. Minimum Maximum 1 

24 137 9.0 121 153 

44 141 10.0 125 156 

64 140 4.9 133 150 

84 144 10.0 128 160 

104 147 8.2 136 160 

124 150 7.2 136 164 

144 149 8.9 135 162 

Table XXVII and XXVIII demonstrate that the difference of the results obtained by using 

our tennination method (xf, F) are close in tenns of distance and cost to the results that 

were produced by letting the algorithm run 200 generations (xf00 ' j2°0). 

Figures 104 to 108, are our simulation model. Each figure shows the step response ob­

tained at the end of the optimization process (blue dash-dot line), and the step response 

that we would have obtained if the optimization process have been stopped using our new 

termination method (red dotted line). Except for the case 64 where both responses show 

little differences. the responses for ali the ether cases are so similar that we do not notice 

any difference between them. If we compare these results with those obtained using the 
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original nonuniform mutation operator, we verify that these are better. 

Table XXVII 

Statistics of the differences for the best results 

1 Index L:- ( "' ·JOOf v x~- x-:- -
1=1 t 1. 

r _ 12oo 

Average 0.01492 0.00009 

Standard Deviation 0.01335 0.00007 

Minimum 0.00287 0.00002 

Maximum 0.03901 0.00018 

Table XXVIII 

Statistics of the difference for ali the results 

1 Index L:'?_ x~- x-:- -- ( "' ·JOOf 
7.-l 1 1 

g _ jpoo j 

Average 0.01663 0.00016 

Standard Deviation 0.01172 0.00013 

Minimum 0.00134 0.00001 

Maximum 0.05358 0.00070 

Figures 1 04 to 1 08, are our simulation model. Each figure shows the step response ob­

tained at the end of the optimization process (blue dash-dot line), and the step response 

that we would have obtained if the optimization process have been stopped using our new 

termination method (red dotted line). Except for the case 64 where both responses show 

little differences, the responses for ali the ether cases are so similar that we do not notice 

any difference between them. If we compare these results with those obtained using the 

original nonuniform mutation operator, we verify that these are better. 

Although the differences in the performance among the nonuniform mutation, periodic 

mutation and adaptive nonuniform mutation operators are not so remarkable, Figures 109 
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and 110 show that by including our Bayes Network in the original nonuniform mutation 

in order to control Pm we were able to improve its performance and compete with the pe­

riodic mutation operator. 
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Figure 110 Standard Deviation using Adaptive Nonuniform Mutation 

The controller gain values for all 160 cases of Bombardier by using the stopping point as 

well as by using 200 generations are registered in Appendices 4 and 5 respectively. 
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CONCLUSION 

The overriding goal to accomplish in this research was to seek the improvement of the 

performance of Genetic Algorithms in order to be applied effectively and efficiently to 

the optimization of controller gains of a fly-by-wire system. By effectively, we mean 

that any solution produced by our improved GA should fall very close to the real global 

optimum (small standard deviation) independently of how often the GA is invoked. And, 

by effi.ciently, we mean that our improved GA should resolve the problem in a shorter ti me 

(small cpu time) than the classical GA without affecting its effectiveness. 

In order to target the first part of our goal, a new mutation operator was irnplernented. 

We succeeded in combining the characteristics of two mutation operators. uniform and 

nonuniform, in a new one, periodic, and to get controllers that generate the smallest min­

imal cost for the eight cases, with a more stable and smaller mean and standard deviation 

than the uniform and nonuniform mutation operators using a maximum of two hundred 

generations. However, using a deterministic parameter control technique on the design of 

the periodic mutation operator did not save us from the process of manual tuning, but it 

did improve the effectiveness of our GA in the aircraft control design problern. 

The effectiveness in solving a real optimization problem also depends on the accuracy 

of the model used to implement the objective function. While the unconstrained model 

provided by Bombardier includes the handling quality criteria that have to be satisfied ac­

cording to requirements of regulators, it does not have a direct way of controlling its step 

response. Thus, our proposed constrained mode] and the implementation of the new con­

strained stochastic tournament selection operator increased the effectiveness of a RGA by 

generating better step responses than the unconstrained model and satisfying at the same 

time the handling quality criteria of the system. Besides satisfying the handling qualities 

criteria, this model contributes to the designer with a flexible way of controlling the char-
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acteristics of the step response of the system. For the implementation of the constrained 

stochastic toumament selection, the key idea was to implement a method that can han­

die the proportion of feasible and unfeasible individuals without neglecting the dynamic 

behavior of GAs. 

Though computation time is not significant in the case of an optimization of numerical 

functions, it is very important when we use simulation of real engineering problems to 

evaluate the objective function. Trying to measure the dissimilarity of the genes in a pop­

ulation during the optimization process of Real-Coded GAs that use mutation operators 

with decreasing mutation policies, showed that there exists a set of classes of chromo­

somes around the best individual with sorne characteristics that their diversity becomes 

critical for detecting convergence. The results also showed that when the modified Simp­

son 's index was below sorne value KmD then the likelihood that convergence happened 

was very high. Thus, by combining the use of mD together with a Bayes Network, we 

were able to introduce our partial knowledge and expertise to detect convergence and to 

stop the optimization process, saving sorne computation time, and reaching the second 

part of our research goal, improved efficiency. 

The use of mD and the Bayes Network was key for the implementation of the new Prob­

abilistic Adaptive Genetic Algorithm. While we considered that adapting the nonuniform 

mutation operator is not the best that we can do using mD and our BN, it shows without 

difficulties the way to improve sorne already existing mutation operator. However, more 

work remains to be made. 

Three were the key ideas that lead this research, first, keep simple any improvement to 

the RGA. It is already difficult to analyze a complex system like a Genetic Algorithm. 

Second, do a thoughtful analysis and application of heuristics, and partial knowledge and 

expertise that we have or we get. And, third, do a careful experimentation to test the new 

methods. 
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RECOMMENDATIONS 

In this final chapter we suggest a number of potential continuations of the work described 

in this dissertation. 

It will be very important to know if the modified Simpson 's index can be applied to dif­

ferent architectures of RCGAs. By different architectures, we intend to refer to different 

types of crossover and mutation operators. Another work that remains to be done is to see 

if the index using a different set of classes can permit to know with more precision the 

behavior of the RCGAs at different stages others than the last one. 

It will be very interesting and useful to find a mathematical model that relates, e with the 

precision of the final results. The idea is that with an exact or very close model it will be 

possible to know orto control the precision of any solution of the RGA. 

By following the guidelines of the methodology used in this research, it is important to 

see the possibility of extending the use of the mo di fied Simpson 's index and the Bayes 

network for controlling the dynamic behavior of the crossover operator. 

Another extension of this research should be the use of Bayes Network and a diversity 

index similar to the one used in this research, to improve the performance of RGA for 

solving constrained optimization problems. A good candidate to be a variable of the BN 

should be the ratio of feasible and unfeasible individuals of the generation along the opti­

mization process. 

While this research has shown the use of Bayes Network and a diversity index to RGA, it 

remains to try their use with GAs of different encoding such as binary and integer. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX 1 
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De J ong function 1 

De Jong's function 1 is a simple function. It is continuo, convex and unimodal. Its defini­

tion is: 

n 

JI(x) =:Lx~ (8.14) 
i=l 

where -5.12 :s; xi :s; 5.12, and its global minimum is at xi = 0 for i = 1 · · · n and j 1 = O. 

Rosenbrock valley (De Jong's function 2) 

Rosenbrock's valley is a classic optimization problem, also known as Banana function. 

The global optimum is inside a long, narrow, parabolic shaped flat valley. To find the 

valley is trivial, however convergence to the global optimum is difficult and hence this 

problem has been repeatedly used in assess the performance of optimization algorithms. 

Its function definition is: 

n-l 

h(x) = L 100(xi+l- x~?+ (1- x1f (8.15) 
i=l 

where -2.048 :s; x; :s; 2.048, and its global minimum is at xi = 1 for i = 1 · · · n with 

h(x) =O. 

First Rastrigin function 

Rastrigin's function is based on function 1 with the addition of eosine modulation to pro­

duce many local minima. Thus, the test function is highly multimodal. However, the 

location of the minima are regularly distributed. Its function definition is: 
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n 

h(x) =lOn+ LXT -lOcos(2JTx1) (8.16) 
i=l 

where -5.12 ~ Xi < 5.12, and its global minimum is at Xi = 0 for i = 1· · · n with 

h(x) =O. 

Schwefel function 

Schwefel function is deceptive in that the global minimum is geometrically distant, over 

the parameter space, from the next best local minima. Therefore, the search algorithms 

are potentially prone to convergence in the wrong direction. Its function definition is: 

n 

j4(x) = L -x1sin(vTxJ) (8.17) 

i=l 

where -500 ~ Xi ~ 500, and its global minimum is at xi = 420.9687 for i = 1 · · · n with 

j4(x) = -418.9829n. 

Griewangk function 

Minimize: 

n •) 

fo(x) = L 4~~0 - II cos( x~)+ 1 
i=l vz 

(8.18) 

where -600 < Xi < 600, and its global minimum is at Xi - 0 for i - 1 · · · n with 

fo(x) =O. 

Sum of different power function 

Minimize: 
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(8.19) 

where -1 :S Xi :S 1, and its global minimum is at Xi = 0 for i = 1 · · · n with f 6 (x) = O. 

Ackley path function 

Minimize: 

b IL. x; 2 L cos(cx;) 

h(x) = -ae- v n - e Tl +a+ e (8.20) 

where a = 20, b = 0.2, c = 27ï, -32.768 :S xi :S 32.768. The function has a global 

minimum value of 0 at xi = 0 for i = 1. · · · n. 

Michalewicz function 

Minimize: 

(8.21) 

where 0 :S x1 :S 7ï. The function has several global minimum values of -4.687 at different 

locations. 

Langermann function 

Minimize: 

rn 

fg(x) = L cie-~cos(d7ï) (8.22) 
i=l 
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where 

n 

d = I)xi- ai)2 
(8.23) 

i=l 

( 0.806 0.517 1.5 0.908 0.965 0.669 0.524 0.902 ... ) 0.531 0.876 0.462 0.491 0.463 0.714 0.352 0.869 ... 
c = 0.813 0.811 0.828 0.964 0.789 0.360 0.369 0.992 

0.332 0.817 0.632 0.883 0.608 0.326 

9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020 
9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374 
8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982 
2.196 0.415 5.649 6.979 9 .. 510 9.166 6.304 6.054 9.377 1.426 
8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567 
7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.409 8.208 
1.256 3.605 8.623 6.905 0.584 8.133 6.071 6.888 4.187 5.448 
8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762 
0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637 
7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247 
0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016 
2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789 
8.327 3.897 2.017 9 .. 570 9.825 1.150 1.395 3.88.5 6.354 0.109 
2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564 
4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670 a= 
8.304 7 . .559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826 
8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591 
4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740 
2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675 
6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.4.57 2.2.58 
0.652 2.343 1.370 0.821 1.310 1.06:3 0.689 8.819 8.8:33 9.070 
5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234 
3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027 
8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064 
1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224 
0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644 
0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229 
4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506 
9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732 
4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500 
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0 ~ Xi ~ 10 and its global minimum f 9 (x) = -1.4 for m = 5. 

Branin RCOS function 

Minimize: 

where -5 ~ x 1 ~ 10 and 0 ~ x2 ~ 15. The function has a global minimum value 

of fro = 0.397887 at three different points: (x1 , x2 ) = ( -11, 12.275), (11, 2.275), and 

(9.42478, 2.475). 

Easom function 

Minimize: 

(8.25) 

where -100 ~Xi~ 100 and its global minimum is at xi= 7ï for i = 1, 2 with fn(x) = 

-1. 

Goldstein-Price function 

Minimize: 

!r2(x) =[1 + (x1 + Xz + 1)2(19- 14xl + 3xî- 14x2 

+ 6x1x2 + 3x~)][30 + (2x1 - 3x2f(18 

- 32xl + 12xî + 48x2- 36xlx2 + 27xz.2)] 

(8.26) 
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where -2:::; Xi:::; 2 and its global minimum is at (0, -1) with f 12 (x) = 3. 

Six-hump camel back fonction 

Minimize: 

(8.27) 

where -3 :::; x1 :::; 3 and -2 :::; x2 :::; 2. The function has a global minimum value of 

-1.0316 at two different point: (xl. x2) = (-0.0898, 0.7126), (0.0898, -0.7126). 

Second Rastrigin function 

Minimize: 

1 ~( 4 •) ) h4(x) =?+~xi- 16xj + 5xi (8.28) 
- i=l 

where -10:::; Xi :::; 10 and its global minimum is at xi = 0 for i = 1· · · n with f 14 (x) = 

o. 
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The GA community has used several nonlinear constrained optimization problems for 

testing different implementations of GAs. Michalewicz (1995) suggested sorne impor­

tant characteristics to be considered for the selection process of a suitable set of difficult 

problems for nonlinear constrained optimization: 

a. the type of the objective function, 

b. the number of variables, 

c. the number of constraints, 

d. the types of constraints, 

e. the number of active constraints at the optimum, 

f. the ratio p between the sizes of the feasible search space and the whole search space 

1.r n SI/ISI. 

By following the guidel ines above mentioned, Michalewicz ( 1996) and Koziel and Michalewicz 

(1999) proposed a set of eleven functions (see below), which were used in the experi­

ments reported by the articles analyzed in this work. This set included linear, quadratic, 

cubic, polynomial and nonlinear objective functions with various numbers of variables, 

and different types (linear inequalities, nonlinear equations and inequalities) and numbers 

of constraints. 

Table XXIX summarizes the characteristics of these test cases, such as the nu rn ber of vari­

ables (n), the type of function (j), the relative size of the feasible region in the search 

space given by a ratio (p), the number of constraints in each category (linear inequalities 

LI, nonlinear equations NE and inequalities N !), and the number N AC of active con­

straints at the optimum. Koziel and Michalewicz (1999) describe that the ratio p = 1 1~/ was 

determined experimentally by generating 1,000,000 random points from Sand checking 

whether they belong to .r. 
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Table XXIX 

Summary of eleven test functions 

Type of 
fi Optimiza- n Type off p(%) LI NE NI NAC 

ti on 

1 Minimize 13 quadratic 0.0111 9 0 0 6 

2 Maximize 20 nonlinear 99.8474 0 0 2 1 

.... Maxim ize 10 polynomial 0.002 0 1 0 1 _, 

4 Minimize 5 quadratic 52.1230 0 0 6 2 

5 Minimize 4 cu bic 0.0000 2 .... 0 ... _, _, 

6 Minimize 2 cu bic 0.0066 0 0 2 2 

7 Minimize 10 quadratic 0.0003 ... 0 5 6 _, 

8 Maxim ize 2 nonlinear 0.8560 0 0 0 0 

9 Minimize 7 polynomial 0.5121 0 0 4 2 

10 Minimize 8 linear 0.0010 3 0 
... ... _, _, 

11 Minimize 2 quadratic 0.0000 0 1 0 1 

The functions of this appendix were taken direct! y from (Runarsson and Yao, 2000). 

gOl 

Minimize: 

f(x) = 5L4xi -5:L4xf- Ll3xi (8.29) 
i=l i=l i=5 

subject to: 

9I(x) = 2xl + 2x2 + xw + xn - 10 ~ 0; 

92(x) = 2xl + 2x3 + xw + X12- 10 ~ 0; 
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95(x) = -8x2 + Xn ::; 0; 

9s(x) = -2x6- Xï + x11 ::; 0; 

9g(x) = -2xs- Xg + x12 ::; 0; 

where the bounds are 0 ::; Xi ::; 1 ('i = 1, 0 0 0, 9), 0 ::; xi ::; 100 (i = 10, 11, 12) and 

0 ::; x 13 ::; 1. The global minimum is at x* = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where six 

constraints are active (91, 92, 93, 9ï, 9s and 99) and f(x*) = -15° 

g02 

Maximize: 

J"'"'n o ·) 

L..i=1 'lXj 

(8030) 

subject to: 

91 (x) = oo75 - rr~::1 Xi ::; o: 
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92(x) = 2:::~= 1 Xi- 7.5n::; 0; 

where n = 20 and 0 ~ Xi ~ 10 (i = 1, ... , n). The global maximum is unknown, 

the best that has been found is f(x*) = 0.803619, constraint g1 is close to being active 

Cg1 = -10-8). 

g03 

Maximize: 

n 

J(x) = ( Vn)n II Xi; 

i=1 

subject to: 

where n = 10 and 0 ~ Xi ~ 1 (i = L ... , n). The global minimum is at xj 

(i = 1, ... , n) where f(x*) = L 

g04 

Minimize: 

(8.31) 

1 -vn 

f(x) = 5.3578547x~ + 0.835689lx1x5 + 37.29:3239x1 - 40792.141: (8.32) 

subject to: 
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g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 - 0.0022053x3x5 - 92 ~ 0; 

g2(x) = -85.334407- 0.0056858x2xs- 0.0006262x1x4 + 0.0022053x3x5 ~ 0; 

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x~- 110 ~ 0; 

g4 (x) = -80.51249- 0.0071317x2x5- 0.0029955x1x2 - 0.0021813x~ + 90 ~ 0; 

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4- 25 ~ 0: 

g6 (x) = -9.300961- 0.0047026x3x5 - 0.0012547x1x3 - 0.0019085x3x4 + 20 ~ 0: 

where 78 ~ x1 ~ 102, :33 ~ x 2 ~ 45, and 27 ~ Xi ~ 45 ('i = 3, 4, 5). The opti­

mum solution is x* = (78, 33,29.995256025682,45, 36.775812905788) where f(x"') = 
-30665.539. Two constraints are active (g1 and g6). 

gOS 

Minimize: 

( 
. 3 0.000002 3 

j x)= 3x1 + 0.000001x1 + 2x2 + 
3 

x 2: (8.33) 

subject to: 

h3 (x) = 1000sin( -x3 - 0.25) + 1000sin( -x4 - 0.25) + 894.8- x1 = 0; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

187 

h4 (x) = 1000sin(x3- 0.25) + 1000sin(x3 - x4 - 0.25) + 894.8- x2 = 0; 

h5(x) = 1000sin(x4- 0.25) + 1000sin(x4- X3- 0.25) + 1294.8 = 0; 

where 0 ::; x 1 ::; 1200, 0 ::; x2 ::; 1200, -0.55 ::; X3 ::; 0.55 and -0.55 ::; x4 ::; 0.55. 

The best known solution is x"' = (679.9453, 1026.067,0.1188764, -0.3962336) where 

f(x"') = 5126.4981 (Koziel and Michalewicz, 1999). 

g06 

Minimize: 

(8.34) 

subject to: 

where 13 ::; x 1 ::; 100, and 0 ::; x2 ::; 100. The optimum solution is x· = (14.095, 0.84296) 

where j(x*) = -6961.81388. Both constraints are active. 

g07 

Minimize: 
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f(x) = xî +x~+ x1x2- 14xl - l6x2 + (x3- 10)2 + 4(x4 - 5f 

+ (x5 - 3)2 + 2(x6- 1)2 + 5x~ + 7(xs- llf + 2(x9 - lOf (8.35) 

+ (x10- 7)2 + 45; 

subject to: 

9I(x) = -105 + 4x1 + Sx2- 3xï + 9xs:::; 0; 

93(x) = -8x1 + 2x2 + 5xg- 2x10 - 12 :::; 0; 

94 (x) = 3(x1 - 2) 2 + 4(x2- 3)2 + 2x~- 7x4 - 120:::; 0: 

95(x) = 5xî + 8x2 + (x3- 6)2- 2x4 - 40:::; 0; 

9;(x) = 0.5(x1 - 8)2 + 2(x2- 4)2 + 3x~- x6 - 30:::; 0: 

9s(x) = -3x1 + 6x2 + 12(xg- 8)2
- 7x10 :::; 0: 

where -10 :::; x1 :::; 10 ('i = 1, ... , 10). The optimum solution is x* = (2.171996, 

2.363683, 8.773926,.5.095984, 0.9906.548, 1.4:30574, 1.321644, 9.828726,8.280092, 8.375927) 

where f(x*) = 24.3062091. Six constraints are active (91, 92, 9:h g4, 95 and 96). 

g08 

Maximize: 
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f(x) = sin
3
(2:x 1)sin(2JTx2 ); 

x1(xl +x2) 

189 

(8.36) 

where 0 ::; x 1 ::; 10, and 0 ::; x 2 ::; 10. The optimum is located at x* = (1.2279713, 

4.2453733) where f(x") = 0.095825. The solution lies within the feasible region. 

g09 

Minimize: 

(8.37) 

subject to: 

9l(x) = -127 + 2xf + 3x~ + X3 + 4x~ + 5x5 ::; 0: 

93(x) = -196 + 23x1 +x§+ 6x~- 8x;::; 0; 

where -10::; xi::; 10 (i = 1, ... , 7). The optimum solution is x*= (2.330499, 1.951:372, 
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-0.4775414, 4.365726, -0.6244870, 1.038131, 1594227) where f(x*) = 680.6300573. 

Two constraints are active (g1, and 94 ). 

glO 

Minimize: 

f(x) = x1 + x2 + x3; (8.38) 

subject to: 

g1(x) = -1 + 0.0025(x4 + x6)::; 0; 

93(x) = -1 + 0.01(xs- xs) ::; 0; 

94(x) = -x1x6 + 833.33252x4 + 100x1- 83333.333::; 0; 

96(x) = -x3xs + 1250000 + X3X5- 2500xs::; 0; 

where 100 ::; x1 ::; 10000, 1000 ::; Xi ::; 10000 (i = 2, 3) and 10 ::; Xi ::; 1000 

(i = 4, ... , 8). The optimum solution is x* = (579.3167, 13.59.943, 5110.071, 182.0174, 

295.5985, 217.9799, 286.4162, 395.5979) where f(x•) = 7049.3307. Three constraints 

are active (g1, 92 and 93). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

191 

gll 

Minimize: 

j (X) = xî + ( X2 - 1 f (8.39) 

subject to: 

where -1 ~ x 1 ~ 1 and -1 ~ x 2 ~ 1. The optimum solution is x"'= (±1/v'2, 1/2) 

where f(x*) = 0.75.// 

g12 

Maxim ize: 

subject to: 

g(x) =(xl- pf + (x2- qf + (x3- rf- 0.0625 ~ 0; 

where 0 ~xi~ 10 (i = 1. 2, 3) andp, q, r = 1, 2, ... , 9. The feasible region of the search 

space consists of 93 disjointed spheres. A point ( x 1, x2, x3 ) is feasible if and only if there 

exist p, q, r such that the above inequality holds. The optimum is located at x* = (5, 5, 5) 

where f(x*) = 1. The solution lies within the feasible region. 
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g13 

Minimize: 

(8.41) 

subject to: 

( ) 
•) •) •) •) •) 

h1 X = Xi + X2 + X3 + X4 + X5 - 10 = 0; 

where -2.3 :'5 xi :'5 2.3 (i = L 2) and -3.2 :'5 x1 :'5 3.2 (i = 3, 4, 5). The opti­

mum solution is x*= ( -1.717143, 1.595709, 1.827247, -0.7636413, -0.763645) where 

f(x*) = 0.0539498. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX3 

STATISTIC RESULTS TO GET THE BASIC CONFIGURATION 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

194 

Table XXX 

Optimal Cost 

Optimal Il RGA-1 RGA-2 RGA-3 

1 0 0.00017 0.00000 0.00000 
2 0 0.00104 0.00085 0.06777 
3 0 1.98992 0.00000 0.00000 
4 -4189.82887 -4189.82887 -4189.82887 
5 0 0.13057 0.00000 0.00000 
6 0 0.00000 0.00000 0.00000 
7 0 0.00000 0.00000 0.00000 
8 -1.5 -1.50000 -1.50000 -1.50000 
9 -4.69 -4.68766 -4.68766 -4.69303 
10 0.39789 0.39789 0.39789 0.39789 
Il -1 -1.00000 -1.00000 -1.00000 
12 3 3.00000 3.00000 3.00000 
13 -1.0316 -1.03163 -1.03163 -1.03163 
14 -1566.14663 -1546.29472 -1566.14663 -1566.14663 

Table XXXI 

Mean Cost 

RGA-1 RGA-2 RGA-3 

1 0.04468 0.00000 0.00000 
2 0.05540 0.11849 0.12229 
3 5.57241 0.00000 0.34824 
4 -3858.20154 -4148.37546 -4183.90696 

5 0.29637 0.01968 0.00591 
6 0.00000 0.00000 0.00000 
7 0.00005 0.00000 0.00000 
8 -1.44364 -1.17077 -1.38445 
9 -4.63886 -4.68557 -4.69303 
10 0.39789 0.39789 0.39789 
1 1 -1.00000 -1.00000 -1.00000 
12 3.00000 3.00000 3.00000 
13 -1.03163 -1.03163 -1.03163 
14 -1490.90428 -1566.14663 -1561.90561 
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Table XXXII 

Standard Deviation of Cost 

RGA-1 RGA-2 RGA-3 

1 0.06368 0.00000 0.00000 

2 0.02882 0.05032 0.01995 

3 2.15077 0.00000 0.58418 

4 194.42427 69.54023 26.48362 

5 0.10992 0.01679 0.00703 

6 0.00000 0.00000 0.00000 

7 0.00011 0.00000 0.00000 

8 0.17369 0.35078 0.23737 

9 0.06615 0.00934 0.00000 

10 0.00000 0.00000 0.00000 

11 0.00000 0.00000 0.00000 

12 0.00000 0.00000 0.00000 

13 0.00000 0.00000 0.00000 

14 51.74960 0.00000 13.83590 

Table XXXIII 

Statistics results for RGA- 1 

minimum maximum (J 

1 0.00017 0.25784 0.04468 0.06368 

2 0.00104 0.09703 0.05540 0.02882 

3 1.98992 8.95463 5.57241 2.15077 

4 -4189.82887 -3479.19887 -3858.20154 194.42427 

5 0.13057 0.48720 0.29637 0.10992 

6 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00043 0.00005 0.00011 

8 -1.50000 -0.90800 -1.44364 0.17369 

9 -4.68766 -4.49589 -4.63886 0.06615 

10 0.39789 0.39789 0.39789 0.00000 

11 -1.00000 -1.00000 -1.00000 0.00000 

12 3.00000 3.00000 3.00000 0.00000 

13 -1.03163 -1.03163 -1.03163 0.00000 

14 -1546.29472 -1383.76682 -1490.90428 51.74960 
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Table XXXIV 

Statistics results for RG A - 2 

1 fi 1 minimum maximum 

1 0.00000 0.00000 0.00000 0.00000 

2 0.00085 0.17654 0.11849 0.05032 

3 0.00000 0.00000 0.00000 0.00000 

4 -4189.82887 -3952.95220 -4148.37546 69.54023 

5 0.00000 0.06642 0.01968 0.01679 

6 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 

8 -1.50000 -0.51319 -1.17077 0.35078 

9 -4.68766 -4.64590 -4.68557 0.00934 

10 0.39789 0.39789 0.39789 0.00000 

11 -1.00000 -1.00000 -1.00000 0.00000 

12 3.00000 3.00000 3.00000 0.00000 

13 -1.03163 -1.03163 -1.03163 0.00000 

14 -1566. 14663 -1566.14663 -1566. 14663 0.00000 
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Table XXXV 

Statistics results for RGA- 3 

1 fi 1 minimum 1 maximum 1 (J 

1 0.00000 0.00000 0.00000 0.00000 

2 0.06777 0.14689 0.12229 0.01995 

3 0.00000 1.98992 0.34824 0.58418 

4 -4189.82887 -4071.39054 -4183.90696 26.48362 

5 0.00000 0.02214 0.00591 0.00703 

6 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 

8 -1.50000 -0.90800 -1.38445 0.23737 

9 -4.69303 -4.69303 -4.69303 0.00000 

10 0.39789 0.39789 0.39789 0.00000 

11 -1.00000 -1.00000 -1.00000 0.00000 

12 3.00000 3.00000 3.00000 0.00000 

13 -1.03163 -1.03163 -1.03163 0.00000 

14 -1566.14663 -1509.59975 -1561.90561 13.83590 
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Tab1eXXXVI 

Statistics results for RG A - 4 

1 fi 1 minimum 1 maximum 1 (J 

1 0.00000 0.00000 0.00000 0.00000 

2 0.03086 0.14989 0.10834 0.02764 
..., 

0.26942 7.30488 1.93401 1.71585 .) 

4 -4189.82887 -4189.82887 -4189.82887 0.00000 

5 0.00000 0.02219 0.00690 0.00821 

6 0.00000 0.00000 0.00000 0.00000 

7 0.00006 0.00017 0.00012 0.00003 

8 -1.50000 -0.90800 -1.41279 0.21307 

9 -4.68766 -4.68766 -4.68766 0.00000 

10 0.39789 0.39789 0.39789 0.00000 

11 -1.00000 -1.00000 -1.00000 0.00000 

12 3.00000 3.00000 3.00000 0.00000 

13 -1.03163 -1.03163 -1.03163 0.00000 

14 -1566.14663 -1424.77943 -1547.13518 34.41952 
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Table XXXVII 

Gain values for cases 1 ... 25 

1 Case Cost kl k2 k3 k4 k5 Stopping Point 1 

1 0.00395 1.16690 0.67065 0.18406 1.22360 0.04095 147 

2 0.00425 0.50862 0.61050 0.00000 3.02430 0.00003 134 

3 0.00700 0.37934 0.54472 0.00023 2.14380 0.00024 138 

4 0.01020 0.40716 0.42909 0.00007 1.08500 0.00000 138 

5 0.00287 0.84112 0.37716 0.00004 3.00190 0.00009 137 

6 0.00453 0.71799 0.24812 0.00000 2.15160 0.00000 147 

7 0.00788 0.37163 0.49190 0.00048 1.96460 0.00020 142 

8 0.01112 0.42779 0.38216 0.00003 1.15670 0.00000 127 

9 0.00305 0.81081 0.43237 0.00000 3.35830 0.00000 159 

10 0.00821 0.40869 0.43853 0.00002 2.13640 0.00002 147 

11 0.01041 0.47477 0.29977 0.00115 1.28800 0.00009 136 

12 0.03113 0.67257 0.46846 0.00003 1.29450 0.00008 146 

13 0.00372 0.75721 0.51234 0.02510 3.36240 0.00000 151 

14 0.00706 0.51450 0.51828 0.00141 2.75680 0.06126 149 

15 0.00839 0.48903 0.44828 0.00000 2.20190 0.00024 132 

16 0.01863 0.74223 0.73188 0.00015 1.80460 0.00007 139 

17 0.00340 1.48060 0.39293 0.02742 2.18460 0.05928 158 

18 0.00314 1.02710 0.20000 0.00000 2.38610 0.00044 142 

19 0.00845 0.81158 0.50669 0.00000 3.17370 0.00003 150 

20 0.01648 0.79322 0.63230 0.00000 3.93430 0.00000 152 

21 0.00685 0.65536 0.80092 0.43307 0.30742 0.00005 155 

22 0.00403 0.44122 0.53107 0.02861 1.46820 0.00000 147 

23 0.00498 0.30301 0.54909 0.00377 1.25430 0.00004 151 

24 0.00468 0.27786 0.33402 0.00002 0.64274 0.00000 137 

25 0.00321 0.70245 0.36880 0.05224 0.95793 0.00009 137 
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Table XXXVIII 

Gain values for cases 26 ... 60 

1 Case Cost kl k2 k3 k4 kS Stop Point 1 

26 0.00462 0.48591 0.22485 0.00887 1.24880 0.04895 165 
27 0.00501 0.30051 0.43393 0.01289 1.00550 0.00000 147 
28 0.00479 0.28184 0.25100 0.00000 0.63076 0.00000 142 
29 0.00306 0.75490 0.29035 0.04579 0.99829 0.00019 145 
30 0.00484 0.34268 0.23048 0.01358 0.97217 0.00059 143 
31 0.00449 0.30514 0.21716 0.00000 0.64181 0.00000 137 
"') .,_ 0.01703 0.50735 0.33290 0.00014 0.88697 0.00028 143 
33 0.00394 0.69957 0.31348 0.12116 0.79354 0.00000 162 
34 0.00740 0.54386 0.32595 0.00000 0.60684 0.18532 153 
35 0.00471 0.39307 0.31680 0.01224 0.81536 0.00544 151 
36 0.00735 0.42313 0.36657 0.00013 1.11030 0.00056 161 
37 0.00501 0.89858 0.47003 0.21696 0.46417 0.00039 150 
38 0.00471 0.60060 0.34468 0.13318 0.86582 0.00829 144 
39 0.00515 0.51940 0.26595 0.02853 1.73990 0.00022 154 
40 0.00830 0.58873 0.46045 0.00000 2.51220 0.00000 144 
41 0.00449 1.20640 0.78644 0.33018 2.18670 0.00113 151 
42 0.00369 0.62985 0.48251 0.00000 3.40890 0.00003 154 
43 0.00678 0.40391 0.46373 0.00000 2.81400 0.00003 148 
44 0.01059 0.40045 0.34141 0.00000 1.60590 0.00007 138 
45 0.00287 0.94015 0.45850 0.01050 3.35220 0.00003 147 
46 0.00439 0.64383 0.49853 0.00001 3.35150 0.00002 138 
47 0.00792 0.39039 0.45887 0.00000 2.68980 0.00002 153 
48 0.01120 0.45290 0.32188 0.00000 1.60480 0.00009 142 
49 0.00259 1.13210 0.39480 0.00024 3.10870 0.00022 150 
50 0.00802 0.43784 0.43145 0.00000 2.64520 0.00016 146 
51 0.01226 0.46516 0.48999 0.00000 1.88470 0.00000 149 
52 0.03386 0.71907 0.47836 0.00000 1.89900 0.00000 141 
53 0.00305 1.19810 0.35676 0.01642 2.82050 0.02883 163 
54 0.00410 0.72577 0.34406 0.00278 3.13150 0.00224 154 
55 0.01175 0.50482 0.60415 0.00005 3.76270 0.00010 151 
56 0.01907 0.80664 0.62268 0.00000 3.77830 0.00004 159 
57 0.00389 1.57730 0.54008 0.08509 2.97720 0.07754 154 
58 0.00317 1.09360 0.33555 0.00961 3.32710 0.00000 157 
59 0.00851 0.94154 0.45098 0.00004 4.76880 0.00154 138 
60 0.01659 1.15960 0.52073 0.00004 4.33380 0.00000 154 
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Table XXXIX 

Gain values for cases 61 ... 95 

\ Case Cost kl k2 k3 k4 kS Stop Point \ 

61 0.01047 0.57232 0.98545 0.58373 0.00390 0.00021 143 

62 0.00426 0.44749 0.39799 0.07998 1.35590 0.00000 151 

63 0.00450 0.35744 0.37687 0.00668 I.I3670 0.02146 147 

64 0.00396 0.33215 0.20000 0.00000 0.54086 0.00122 145 

65 0.00411 0.69507 0.39806 0.16025 0.37878 0.00000 141 

66 0.00398 0.44852 0.41915 0.04395 1.39470 0.00002 160 

67 0.00434 0.33635 0.20425 0.02122 0.98254 0.00001 130 

68 0.00417 0.30154 0.25272 0.00000 0.62107 0.00059 156 

69 0.00401 0.74883 0.33747 0.15100 0.59495 0.00031 160 

70 0.00496 0.35699 0.20080 0.02861 0.78939 0.02695 155 

71 0.00378 0.32605 0.28970 0.00000 0.59175 0.00465 146 

72 0.01459 0.42105 0.49671 0.00000 1.13650 0.00000 138 

73 0.00518 0.66912 0.36834 0.23883 0.29079 0.00000 143 

74 0.00819 0.48718 0.32329 0.09354 0.43705 0.14781 164 

75 0.00603 0.44499 0.42416 0.00495 1.36630 0.04947 142 

76 0.00909 0.51821 0.48021 0.00001 2.23560 0.00008 152 

77 0.00715 0.76869 0.59595 0.36779 0.10306 0.00005 140 

78 0.00502 0.74139 0.34778 0.22617 0.13609 0.01405 155 

79 0.00664 0.57730 0.33115 0.03456 2.04080 0.05294 145 

80 0.00841 1.01190 0.20062 0.02627 2.61040 0.00913 156 

81 0.00493 1.30860 1.25260 0.24172 5.58470 0.00000 147 

82 0.00385 1.21910 0.53671 0.00004 2.68390 0.00001 144 

83 0.00854 0.40798 0.59620 0.00071 4.00390 0.00000 139 

84 0.01192 0.51392 0.41943 0.00022 2.03700 0.00000 139 

85 0.00290 1.14310 0.53527 0.00700 3.93820 0.00027 150 

86 0.00448 0.83078 0.51500 0.00010 4.32400 0.00000 147 

87 0.00946 0.51434 0.52249 0.00011 3.30840 0.00003 137 

88 0.01479 0.47585 0.46388 0.00000 2.41040 0.00034 147 

89 0.00280 1.28970 0.49337 0.00000 3.95560 0.00010 143 

90 0.00752 0.66584 0.34025 0.00000 2.91080 0.00195 149 

91 0.01413 0.63022 0.42359 0.00002 2.22040 0.00003 157 

92 0.02766 0.74295 0.48701 0.00000 2.08520 0.00000 151 

93 0.00319 1.67690 0.53391 0.01472 3.60840 0.05264 151 

94 0.00385 1.16100 0.28789 0.00103 3.72800 0.00000 170 

95 0.01527 0.73641 0.84009 0.00000 4.83210 0.00000 143 
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Table XL 

Gain values for cases 96, ... 130 

1 Case Cost kl k2 k3 k4 k5 Stop Point 1 

96 0.01985 0.80218 0.72078 0.00004 4.64520 0.00010 143 

97 0.00409 1.99420 0.85972 0.08457 4.89980 0.08705 159 
98 0.00284 1.69500 0.40240 0.00004 4.16330 0.00055 152 
99 0.00921 1.34100 0.47450 0.00007 6.66650 0.00000 155 

100 0.00878 1.83250 0.50133 0.00000 6.84910 0.00001 173 
101 0.00945 0.73953 0.98797 0.46841 0.15694 0.00003 161 
102 0.00331 0.60126 0.34468 0.00086 1.21360 0.04966 141 
103 0.00497 0.32776 0.39828 0.02470 1.61990 0.00008 144 
104 0.00446 0.27692 0.27010 0.00006 0.88763 0.00049 I"''J _,_ 
105 0.00447 0.68022 0.45548 0.19569 0.23126 0.00000 146 
106 0.00339 0.59800 0.29723 0.04988 1.32100 0.00033 149 
107 0.00540 0.30388 0.34237 0.03891 1.26970 0.00252 129 
108 0.00458 0.29436 0.24632 0.00000 0.88179 0.00000 145 
109 0.00400 0.99713 0.43284 0.02993 0.36610 0.13999 153 
110 0.00601 0.33513 0.29060 0.03798 1.11960 0.03028 153 
Ill 0.00532 0.33466 0.28909 0.00002 1.19630 0.00000 127 
112 0.00890 0.37020 0.25003 0.00017 0.90674 0.00037 138 
113 0.00511 0.92100 0.45401 0.08504 0.19507 0.14256 147 
114 0.00693 0.80693 0.20000 0.00193 0.02562 0.23441 133 
115 0.00581 0.43769 0.36732 0.01475 1.87670 0.01085 166 
116 0.00789 0.48615 0.42067 0.00000 2.20890 0.00000 136 
117 0.00643 0.92181 0.55092 0.35672 0.08402 0.00031 162 
118 0.00464 0.84960 0.32272 0.19243 0.50372 0.00000 157 
1 19 0.00782 0.58739 0.40954 0.02411 3.66460 0.00005 154 
120 0.00692 0.77744 0.20000 0.00000 2.44040 0.02883 159 
121 0.01989 0.14310 1.15650 0.92718 0.00000 0.00000 137 
122 0.00549 0.33051 0.26376 0.18035 0.35026 0.00007 149 
123 0.00435 0.31168 0.34388 0.02046 0.21218 0.03255 131 
124 0.00459 0.20163 0.20000 0.06369 0.16162 0.00000 146 
125 0.00699 0.40695 0.53648 0.29546 0.00647 0.00014 143 
126 0.00441 0.37631 0.20439 0.12988 0.17836 0.00137 130 
127 0.00532 0.25593 0.32206 0.06763 0.11568 0.02315 144 
128 0.00407 0.22705 0.23105 0.04234 0.02833 0.01238 156 
129 0.00675 0.42948 0.46069 0.26922 0.06518 0.00507 156 
130 0.00665 0.25208 0.36691 0.09268 0.09781 0.03270 150 
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Table XLI 

Gain values for cases 131 ... 160 

/ Case Cost kl k2 k3 k4 kS Stop Point / 

131 0.00788 0.14918 0.35629 0.15218 0.12320 0.00005 125 

132 0.00498 0.33256 0.25889 0.00002 0.39431 0.00154 142 

133 0.01614 0.20136 0.53329 0.45460 0.00002 0.00000 140 
134 0.01326 0.13470 0.40785 0.37296 0.00000 0.00056 102 

135 0.00996 0.14810 0.33989 0.27763 0.00015 0.00020 137 
136 0.00595 0.31047 0.35083 0.08691 0.20460 0.00789 162 

137 0.04328 0.09165 0.87959 0.67982 0.00008 0.00054 118 

138 0.02233 0.06962 0.69460 0.52200 0.00000 0.00003 143 

139 0.00724 0.42430 0.20000 0.16579 0.17551 0.07868 157 

140 0.00617 0.44269 0.31318 0.05507 1.31890 0.03329 161 
141 0.02706 0.09605 1.43700 0.98085 0.00088 0.00000 124 

142 0.00625 0.33561 0.42126 0.21584 0.28207 0.00012 152 

143 0.00517 0.28809 0.35509 0.06820 0.38037 0.02217 146 
144 0.00381 0.24388 0.25857 0.02832 0.10124 0.01817 155 
145 0.01288 0.31047 0.78100 0.34609 0.02071 0.00029 134 

146 0.00506 0.40371 0.33567 0.14163 0.08817 0.02094 153 
147 0.00619 0.23442 0.32727 0.11789 0.25873 0.00744 l"'" :J-

148 0.00449 0.22881 0.26511 0.04924 0.05400 0.00625 157 
149 0.01167 0.34858 0.66451 0.33238 0.00206 0.00001 153 

150 0.00641 0.28343 0.20036 0.12812 0.10979 0.03433 162 

151 0.00567 0.19412 0.25273 0.12762 0.00909 0.00362 144 

152 0.00502 0.33866 0.20061 0.00000 0.53146 0.00000 145 

153 0.03507 0.08191 0.77311 0.56418 0.00007 0.00000 143 
154 0.02306 0.03051 0.60306 0.47491 0.00000 0.00000 113 
155 0.00676 0.37290 0.20000 0.11840 0.12130 0.07884 154 

156 0.00613 0.33167 0.35633 0.05668 0.35995 0.02909 149 

157 0.13039 0.19496 1.51800 0.75794 0.00000 0.14435 140 
158 0.03192 0.10791 0.71323 0.54558 0.00000 0.00000 143 

159 0.00729 0.60515 0.20000 0.08037 0.10203 0.18374 152 
160 0.00590 0.54531 0.31447 0.02575 2.01580 0.03020 158 
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Table XLII 

Gain values for cases 1 ... 25 

\ Case Cost kl k2 k3 k4 k5 

1 0.00394 1.16730 0.66986 0.18414 1.21410 0.04033 

2 0.00423 0.51516 0.61383 0.00000 2.99190 0.00000 

3 0.00697 0.38098 0.54435 0.00000 2.14590 0.00000 
4 0.01012 0.41769 0.42568 0.00000 1.05760 0.00003 

5 0.00285 0.84126 0.29605 0.00000 2.98920 0.00000 

6 0.00451 0.71726 0.23012 0.00000 2.14920 0.00000 

7 0.00778 0.37462 0.48420 0.00000 1.96940 0.00000 

8 0.01104 0.42842 0.37297 0.00000 l.l4870 0.00000 

9 0.00304 0.81347 0.42349 0.00000 3.35480 0.00001 

lü 0.00820 0.41238 0.43804 0.00000 2.13120 0.00000 

Il 0.01026 0.47692 0.29049 0.00000 1.28180 0.00000 
12 0.03104 0.67752 0.46473 0.00000 1.29360 0.00000 

13 0.00370 0.76213 0.50498 0.02402 3.35420 0.00000 
14 0.00705 0.51334 0.51769 0.00015 2.76000 0.06014 

15 0.00831 0.49632 0.42727 0.00000 2.17810 0.00000 

16 0.01843 0.75665 0.72359 0.00002 1.77810 0.00001 
17 0.00340 1.48090 0.39265 0.02798 2.18440 0.05735 
18 0.00312 1.02910 0.20001 0.00000 2.38430 0.00000 

19 0.00841 0.81499 0.50675 0.00000 3.16120 0.00000 

20 0.01633 0.79974 0.61630 0.00000 3.92380 0.00004 

21 0.00684 0.65639 0.80924 0.43161 0.30310 0.00000 

22 0.00400 0.44354 0.53078 0.02738 1.46420 0.00010 

23 0.00489 0.30575 0.53819 0.00195 1.24730 0.00000 

24 0.00465 0.27803 0.32144 0.00000 0.63937 0.00000 

25 0.00319 0.70600 0.37266 0.05224 0.94394 0.00000 
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Table XLIII 

Gain values for cases 26 ... 60 

j Case Cost kl k2 k3 k4 k5 
26 0.00461 0.48588 0.22592 0.00891 1.24750 0.04896 
27 0.00497 0.30165 0.42885 0.01164 1.00450 0.00003 
28 0.00475 0.28706 0.24743 0.00001 0.61884 0.00000 
29 0.00306 0.75551 0.29075 0.04558 0.99646 0.00008 
30 0.00482 0.34440 0.23130 0.01436 0.97126 0.00007 
31 0.00439 0.30763 0.20001 0.00000 0.63414 0.00000 
... , _,_ 0.01691 0.51234 0.33529 0.00000 0.87749 0.00000 
33 0.00392 0.69967 0.31096 0.11916 0.78868 0.00001 
34 0.00713 0.54434 0.30218 0.00000 0.60518 0.18017 
35 0.00467 0.39311 0.31998 0.01486 0.81508 0.00389 
36 0.00730 0.42389 0.36071 0.00000 1.10850 0.00021 
37 0.00499 0.89982 0.45404 0.22050 0.46103 0.00002 
38 0.00461 0.60687 0.34420 0.13629 0.84833 0.00320 
39 0.00510 0.51797 0.25327 0.02395 1.74130 0.00001 
40 0.00825 0.59257 0.44543 0.00000 2.50730 0.00000 
41 0.00448 1.20850 0.78574 0.33022 2.17940 0.00000 
42 0.00368 0.63393 0.47375 0.00000 3.39190 0.00000 
43 0.00678 0.40442 0.46103 0.00000 2.81280 0.00000 
44 0.01050 0.40413 0.32283 0.00000 1.59570 0.00000 
45 0.00285 0.94511 0.45956 0.00994 3.33050 0.00001 
46 0.00438 0.64514 0.49911 0.00000 3.35540 0.00000 
47 0.00790 0.39352 0.44988 0.00001 2.67840 0.00000 
48 0.01109 0.45672 0.30890 0.00000 1.59260 0.00000 
49 0.00259 1.13380 0.37654 0.00000 3.09960 0.00013 
50 0.00799 0.43855 0.44731 0.00000 2.64260 0.00000 
51 0.01207 0.47137 0.47559 0.00006 1.86920 0.00001 
52 0.03337 0.72508 0.45038 0.00000 1.87550 0.00000 
53 0.00303 1.19730 0.35958 0.01622 2.81860 0.02868 
54 0.00410 0.72620 0.34344 0.00273 3.13050 0.00223 
55 0.01174 0.50645 0.60066 0.00000 3.76010 0.00000 
56 0.01902 0.80733 0.61837 0.00000 3.77130 0.00000 
57 0.00388 1.57910 0.53240 0.08767 2.97180 0.07385 
58 0.00316 1.09380 0.33968 0.00859 3.32460 0.00001 
59 0.00848 0.94392 0.44799 0.00003 4.76520 0.00119 
60 0.01646 1.16780 0.50435 0.00000 4.32760 0.00000 
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Table XLIV 

Gain values for cases 61 ... 95 

1 Case Cost kl k2 k3 k4 k5 

61 0.01045 0.57257 0.98927 0.58442 0.00007 0.00000 

62 0.00423 0.44899 0.39781 0.07947 1.34790 0.00000 

63 0.00412 0.36151 0.38029 0.00511 1.13190 0.01875 

64 0.00393 0.33084 0.20000 0.00002 0.54118 0.00094 

65 0.00410 0.69809 0.39999 0.15932 0.36835 0.00000 

66 0.00396 0.45017 0.41695 0.04241 1.39240 0.00000 

67 0.00427 0.33852 0.20000 0.01840 0.98260 0.00001 

68 0.00414 0.30112 0.24974 0.00000 0.62128 0.00006 

69 0.00399 0.75042 0.33851 0.15030 0.59063 0.00000 

70 0.00495 0.35720 0.20011 0.02945 0.78849 0.02641 

71 0.00376 0.32714 0.28766 0.00000 0.59211 0.00422 

72 0.01451 0.42917 0.49555 0.00000 1.12360 0.00000 

73 0.00517 0.67045 0.36744 0.23777 0.28896 0.00000 

74 0.00807 0.48654 0.30684 0.08593 0.43422 0.14766 

75 0.00580 0.44599 0.41474 0.00010 1.36650 0.04221 

76 0.00901 0.52167 0.46396 0.00000 2.22650 0.00001 

77 0.00712 0.77257 0.58906 0.36774 0.09878 0.00002 

78 0.00501 0.74079 0.34246 0.22595 0.13534 0.01389 

79 0.00661 0.58004 0.32782 0.03390 2.03490 0.05503 

80 0.00832 1.01010 0.20001 0.02345 2.61580 0.00943 

81 0.00493 1.31170 1.25280 0.23887 5.57110 0.00002 

82 0.00383 1.22070 0.52412 0.00000 2.67380 0.00000 

83 0.00849 0.40900 0.58863 0.00000 3.99670 0.00000 

84 0.01183 0.51963 0.41647 0.00000 2.01960 0.00000 

85 0.00288 1.14460 0.52268 0.00429 3.93360 0.00000 

86 0.00445 0.83400 0.49280 0.00000 4.31680 0.00000 

87 0.00944 0.51669 0.52886 0.00000 3.30690 0.00000 

88 0.01457 0.47789 0.41573 0.00000 2.40210 0.00000 

89 0.00280 1.28930 0.49034 0.00001 3.95670 0.00000 

90 0.00739 0.66767 0.32910 0.00000 2.90490 0.00000 

91 0.01409 0.63349 0.41919 0.00000 2.21980 0.00000 

92 0.02760 0.74675 0.48036 0.00000 2.08630 0.00000 

93 0.00315 1.67820 0.52267 0.01223 3.60150 0.05245 

94 0.00382 1.16340 0.27670 0.00000 3.72110 0.00002 

95 0.01517 0.74338 0.84305 0.00002 4.83410 0.00000 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

209 

Table XLV 

Gain values for cases 96 ... 130 

1 Case Cost kl k2 k3 k4 kS 

96 0.01955 0.81 lOI 0.69730 0.00000 4.62850 0.00000 

97 0.00407 1.99120 0.85639 0.08301 4.90790 0.08689 

98 0.00282 1.69620 0.37963 0.00000 4.15460 0.00000 

99 0.00915 1.33910 0.46441 0.00000 6.66550 0.00000 

100 0.00877 1.83470 0.49701 0.00000 6.84610 0.00000 

101 0.00944 0.74023 0.98661 0.46793 0.15557 0.00000 

102 0.00325 0.60435 0.29673 0.00015 1.19560 0.04809 

103 0.00490 0.33200 0.39714 0.02359 1.61300 0.00002 

104 0.00432 0.28312 0.25322 0.00000 0.87202 0.00000 

105 0.00447 0.68104 0.45569 0.19548 0.23238 0.00000 

106 0.00337 0.59833 0.29601 0.04949 1.32400 0.00001 

107 0.00528 0.30495 0.33353 0.04057 1.27030 0.00000 

108 0.00446 0.29777 0.20209 0.00000 0.87306 0.00000 

109 0.00397 0.99793 0.42138 0.02834 0.35894 0.13943 

110 0.00597 0.33648 0.28735 0.03815 1.11420 0.03030 
111 0.00528 0.33822 0.28731 0.00000 1.18930 0.00000 

112 0.00879 0.36914 0.24045 0.00000 0.90347 0.00000 

1 13 0.00509 0.92764 0.45050 0.08384 0.16894 0.14451 

114 0.00691 0.80567 0.20000 0.00146 0.03216 0.23414 

1 15 0.00580 0.43863 0.36721 0.01495 1.87640 0.01075 

116 0.00783 0.49030 0.40577 0.00000 2.20160 0.00001 

117 0.00642 0.92270 0.56531 0.35447 0.07798 0.00030 

1 18 0.00464 0.85077 0.32160 0.19170 0.50214 0.00001 

119 0.00774 0.59205 0.40658 0.02199 3.65310 0.00063 

120 0.00690 0.77595 0.20000 0.00000 2.44290 0.02641 

121 0.01989 0.14314 1.16110 0.92550 0.00000 0.00000 

122 0.00542 0.33255 0.25618 0.18073 0.33963 0.00000 

123 0.00430 0.31006 0.34728 0.02496 0.21579 0.02682 

124 0.00458 0.20351 0.20063 0.06418 0.15893 0.00001 

125 0.00698 0.40851 0.54266 0.29375 0.00252 0.00000 

126 0.00437 0.37670 0.20001 0.12611 0.17538 0.00000 

127 0.00529 0.25831 0.32206 0.06762 0.11463 0.02267 

128 0.00403 0.22630 0.23188 0.04286 0.02678 0.01154 

129 0.00670 0.43313 0.46153 0.26707 0.06257 0.00413 

130 0.00663 0.25141 0.36740 0.09330 0.09887 0.03127 
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Table XLVI 

Gain values for cases 131 ... 160 

1 Case Cost kl k2 k3 k4 k5 
131 0.00708 0.15884 0.32439 0.14247 0.09862 0.00000 
l"'? _,_ 0.00485 0.33381 0.23241 0.00001 0.38671 0.00000 
133 O.v!614 0.20115 0.53172 0.45437 0.00000 0.00000 
134 0.01323 0.13726 0.40705 0.37267 0.00000 0.00057 
135 0.00991 0.14793 0.33703 0.27481 0.00000 0.00000 
136 0.00590 0.31089 0.34899 0.08636 0.20062 0.00623 
137 0.04327 0.09245 0.88000 0.68009 0.00001 0.00000 
138 0.02233 0.06901 0.69661 0.52327 0.00000 0.00000 
139 0.00724 0.42411 0.20000 0.16728 0.17595 0.07849 
140 0.00611 0.44308 0.30521 0.05512 1.31980 0.03082 
141 0.02705 0.09654 1.43640 0.98050 0.00000 0.00000 
142 0.00612 0.33568 0.37283 0.21410 0.26897 0.00001 
143 0.00516 0.28815 0.35861 0.07107 0.37984 0.02250 
144 0.00365 0.24320 0.24215 0.02679 0.10032 0.01418 
145 0.01241 0.28765 0.73692 0.36330 0.03794 0.00045 
146 0.00505 0.40393 0.33298 0.14167 0.08755 0.02073 
147 0.00617 0.23524 0.32486 0.11820 0.25908 0.00735 
148 0.00445 0.22864 0.26463 0.05130 0.05411 0.00734 
149 0.01163 0.34696 0.65008 0.33117 0.00165 0.00000 
150 0.00641 0.28279 0.20000 0.12783 0.11147 0.03376 
151 0.00561 0.19501 0.25029 0.12524 0.00753 0.00295 
152 0.00501 0.34348 0.20000 0.00000 0.52177 0.00000 
153 0.03507 0.08183 0.77392 0.56457 0.00000 0.00000 
154 0.02305 0.02912 0.59660 0.47650 0.00000 0.00000 
155 0.00675 0.37254 0.20000 0.11670 0.12259 0.07918 
156 0.00607 0.33508 0.36290 0.06076 0.35876 0.02880 
157 0.13037 0.19427 1.51520 0.75973 0.00000 0.14157 
158 0.03192 0.10876 0.71356 0.54638 0.00000 0.00000 
159 0.00729 0.60597 0.20001 0.07924 0.10123 0.18439 
160 0.00589 0.54612 0.31409 0.02328 2.01390 0.03146 
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