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Décomposition autonome et interprétable d’images multispectrales de documents par
apprentissage contraint

Kilian DECLERCQ

RESUME

Les archives numérisées recourent de plus en plus a I’imagerie multispectrale (MS) pour révéler
des contenus faibles (encres délavées, palimpsestes, annotations, etc.) et séparer le texte du
fond. Or, la décomposition spectrale reste difficile : les approches classiques (e.g., PCA, GMM
ou NMF avec rang fixe) exigent des réglages ad hoc, des pré/post-traitements lourds et se
généralisent mal a la diversité des supports, des encres et des conditions d’acquisition spectrales.

Pour répondre a ces défis, dans un premier temps, nous introduisons un cadre d’apprentissage
bout en bout pour la décomposition multispectrale qui combine un auto-encodeur convolutionnel,
couplé a une téte de démélange contrainte (non-négativité, interprétabilité, orthogonalité),
enrichie de priors de mise en page (bloc d’attention), afin de préserver la structure des glyphes
tout en modélisant le contexte spectro-spatial. Cette approche hybride integre les principes de la
NMF dans une architecture d’auto-encodeur, exploitant ainsi les avantages complémentaires des
deux approches. Dans un deuxiéme temps, face au probléme ouvert qu’est le choix manuel du
rang, nous proposons un mécanisme pour sa sélection automatique via un élagage (pruning)
guidé par longueur de description minimale (MDL), appris conjointement. Les composantes
peu informatives sont alors progressivement supprimées pour minimiser simultanément 1’erreur
de reconstruction et la complexité du modele. Enfin, dans un troisieme temps, nous montrons
que ce cadre, nommé PRISM, s’applique aux différentes configurations d’images MS, que ce
soit pour les cas sur-déterminés (i.e., plus de bandes que de sources) ou sous-déterminés (i.e.,
moins de bandes, e.g. RVB), et se généralise au-dela des documents multispectraux.

Evalué sur MSBin et MStex, deux ensembles de documents variés (e. g., lettres, formulaires,
manuscrits) de différentes périodes et états, PRISM améliore de maniere constante la séparation
encre/fond de +29.5 points F-score contre la binarisation de Howe et dépasse ACE v2 de +1.32
points (état-de-1"art). De plus, pour décomposition d’images MS non-supervisée, PRISM reste
jusqu’a 7.4x plus rapide que VBONME, la meilleure approche NMF concurrente. Des tests sur
des scenes hyperspectrales de référence, Jasper Ridge et Urban, ainsi que sur des images RVB,
confirment une bonne transférabilité au-dela du domaine documentaire. Des études d’ablation
valident I’apport du pruning MDL et des différents priors. Ces résultats indiquent qu’associer
contraintes physiques et contexte spatial permet des décompositions interprétables et adaptatives,
utiles pour la transcription et la restauration. Le code, les poids et les hyperparametres de PRISM
sont disponibles sur Github et accompagnent le mémoire, dont les contributions ont été intégrées
dans une publication acceptée au workshop VisionDocs de la conférence ICCV 2025.

Mots-clés: Factorisation matricielle non-négative, apprentissage automatique interprétable,
élagage de réseaux neuronaux, imagerie multispectrale et hyperspectrale, apprentissage non
supervisé, documents historiques.






Autonomous and interpretable decomposition of multispectral document images through
constrained learning

Kilian DECLERCQ

ABSTRACT

Digitized archives are increasingly using multispectral (MS) imaging to reveal weak content
(faded inks, palimpsests, annotations, etc.) and separate text from background. However, spectral
decomposition remains difficult : conventional approaches (e.g., fixed-rank NMF, PCA or GMM)
require ad hoc settings, cumbersome pre/post-processing and generalize poorly to the diversity
of substrates, inks and spectral acquisition conditions.

To address these challenges, we first introduce an end-to-end learning framework for multispectral
decomposition that combines a convolutional auto-encoder, coupled with a constrained unmixing
head (non-negativity, interpretability, orthogonality), enriched with layout priors (attention block),
to preserve glyph structure while modeling the spectro-spatial context. This hybrid approach
integrates NMF principles into an auto-encoder architecture, exploiting the complementary
advantages of both approaches. Secondly, in response to the open problem of manual rank
selection, we propose a mechanism for its automatic selection via pruning guided by minimum
description length (MDL), learned jointly. Uninformative components are then progressively
removed to simultaneously minimize reconstruction error and model complexity. Finally, in
a third step, we show that this framework, named PRISM, holds for different MS image
configurations, for both overdetermined (i.e., more bands than sources) and underdetermined
(i.e., fewer bands, e.g. RGB) cases, and generalizes beyond multispectral documents.

Evaluated on MSBin and MStex, two varied document datasets (e.g., letters, forms, manuscripts)
from different periods and states, PRISM consistently improves ink/background separation by
+29.5 F-score points against Howe’s binarization and outperforms ACE v2 by +1.32 points
(state-of-the-art). Furthermore, for unsupervised MS image decomposition, PRISM remains up to
7.4x faster than VBONME, the best competing NMF approach. Tests on reference hyperspectral
scenes, Jasper Ridge and Urban, as well as on RGB images, confirm good transferability beyond
the documentary domain. Ablation studies validate the contribution of the MDL pruning and
the various priors. These results show that combining physical constraints and spatial context
enables interpretable and adaptive decompositions, useful for transcription and restoration.
PRISM code, weights and hyperparameters are available on Github and accompany this thesis,
whose contributions have been integrated into an ICCV 2025 VisionDocs workshop publication.

Keywords: Nonnegative Matrix Factorization, interpretable machine learning, neural net-
work pruning, Multispectral and Hyperspectral imaging, unsupervised representation learning,
historical documents.
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INTRODUCTION

0.1 Contexte et motivation

La lumiere pourrait-elle ressusciter des connaissances réduites en cendres? Des rouleaux
carbonisés par I’éruption du Vésuve aux équations d’Archimede effacées sous des textes
religieux, la pensée humaine s’est souvent trouvée prisonniere de supports devenus illisibles. Les
progres en imagerie multibandes transforment aujourd’hui ce rapport aux documents historiques,
concrétisant cette intuition du grec Anaxagore : « Le visible ouvre nos regards sur I’invisible ».
L’ analyse des documents historiques joue un rdle crucial dans la préservation et la compréhension
de notre héritage culturel. Cependant, sa nature complexe présente des défis uniques pour les
techniques traditionnelles d’analyse d’images. Avec le temps, le papier se dégrade, les encres
s’estompent et de multiples couches de texte ou d’annotations peuvent se superposer, créant un
mélange complexe de matériaux, aussi appelés sources. Les méthodes d’imagerie traditionnelles
peinent souvent a les déméler, limitant notre capacité a interpréter et a préserver intégralement
ces documents. L'imagerie multispectrale (MS) s’est alors imposée comme un outil puissant

pour cette tache, capturant des informations au-dela du spectre électromagnétique visible.

En capturant des informations sur une plus large gamme du spectre électromagnétique, notamment
dans I’ultraviolet et I’infrarouge, elle révele des empreintes spectrales uniques a chaque matériau ;
reflétant leur facon spécifique d’absorber, de réfléchir ou d’émettre la lumiere a différentes
longueurs d’onde, permettant ainsi de révéler du texte caché, de distinguer différentes encres
et de fournir des informations sur la composition et I’histoire du document. Un exemple
notable de son utilisation et de son efficacité est le Palimpseste illustré sur la Figure 0.1. Une
analyse multispectrale de ce livre a permis de révéler sept traités du célebre mathématicien grec
Archimede, dont deux uniques et originaux, qui avaient été grattés et recouverts par des textes

religieux au Xlle siecle (Easton, Knox & Christens-Barry, 2003).



Figure 0.1 Application de I’imagerie multispectrale au Palimpseste d’Archimede.
Les images en niveaux de gris dévoilent le texte original, tandis que les images
Rouge-Vert-Bleu (RVB) montrent le document tel qu’observé a 1’ceil nu. Images
tirées de The Archimedes Palimpsest (Toth, 2004)

L’imagerie MS a aussi plus récemment €té utilisée dans le cadre du challenge Vesuvius, une
compétition internationale lancée en 2023. Son but étant de déchiffrer les papyrus carbonisés
d’Herculanum, une bibliotheque antique ensevelie par I’éruption du Vésuve en 79 apr. J.-C. Ces
rouleaux, trop fragiles pour étre déroulés physiquement, sont étudiés grace a des scans 3D et
I’intelligence artificielle. L’intérét majeur réside dans la possibilité unique de révéler des textes
antiques perdus depuis pres de 2000 ans. Cela pourrait potentiellement enrichir le corpus actuel
d’informations textuelles de I’Antiquité européenne dans une proportion significative, estimée a

environ 20 %, selon la quantité recouvrable des manuscrits encore présents.

Ainsi, ’approche MS se révele particulierement prometteuse pour 1’étude et la récupération
d’informations textuelles enfouies dans les documents anciens, 1a ou les méthodes classiques
basées sur I'imagerie RVB atteignent leurs limites. Cela est bien illustré par la difficulté a

distinguer les écritures superposées sur la Figure 0.2, et ce méme pour un ceil humain averti.
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Figure 0.2 Exemple de dégradation du texte sur des documents
historiques. En noir et blanc est représenté le texte extrait manuellement

Cependant, bien que capable de capturer une richesse de données spectrales, cette méme
abondance souléve un défi majeur en termes de traitement et d’interprétation. En effet, ces
images multibandes de haute dimension, tant en résolution spatiale qu’en nombre de canaux,
offrent une mine d’informations dont une grande partie peut s’avérer redondante ou non
pertinente pour I’analyse et le déchiffrement. Le défi consiste alors a réduire efficacement
cette dimensionnalité tout en préservant un contenu interprétable, c.-a-d. compréhensible et
pertinent, et ce, parfois sans connaissance préalable de la nature de 1’information recherchée.
Aussi, contrairement aux caméras RVB omniprésentes, 1’acquisition d’images multispectrales
demeure une activité tres spécialisée, limitant considérablement la disponibilité d’images
annotées. Cette rareté de données étiquetées représente un défi majeur pour I’entrainement de
modeles d’apprentissage automatique, ou la quantité et la qualité des données sont des facteurs

déterminants pour la performance, demandant le développement de modeles non-supervisés.



0.2 Problématique et questions de recherche

Un cadre particulierement intéressant pour relever les défis évoqués précédemment est offert
par la séparation aveugle des sources (SAS). Le probleme de la SAS peut étre défini comme
le probleme d’estimation de sources a partir d’un mélange donné sans connaitre ni la fonction
de mélange, ni les sources latentes, ni-méme leur nombre. Dans le contexte des documents
historiques, il est raisonnable d’admettre que I’image finale résulte de 1’addition de différentes
couches visuelles, chacune venant se superposer a la précédente : 1’arriere-plan, le support (e.g.,
le papier ou le parchemin), les textes originaux, les annotations ajoutées, ainsi que les diverses
dégradations liées au vieillissement. Par définition, le cadre de la SAS est non supervisé : il
repose uniquement sur les données observées, sans nécessiter de connaissances préalables ou
d’annotations. Cette propriété en fait donc une approche adaptée aux documents historiques.
Différentes variantes de factorisation matricielle non négative (NMF) ont déja démontré
son efficacité, permettant d’exploiter les propriétés spectrales des images multispectrales de

documents (Rahiche, Bakhta & Cheriet, 2019; Rahiche & Cheriet, 2021, 2022).

Cependant, les sources observées interagissent souvent de maniere subtile et présentent des
signatures spectrales parfois proches, compliquant leur séparation pour les méthodes classique
de SAS. Cette difficulté est amplifiée par la grande variabilité des images MS, qui peuvent avoir
des caractéristiques variables selon les conditions d’acquisition et les données observées. Cela
inclut le nombre de bandes, les longueurs d’ondes utilisées, ou encore 1’état de dégradation
des images. De plus, ces méthodes traitent souvent chaque pixel indépendamment, ce qui pose
probléme avec les images de tailles croissantes. L’approche a développer devra donc étre robuste
en terme de colt de calcul, capable d’intégrer la structure spatiale des documents et de s’adapter
a la grande variabilité des configurations rencontrées dans les images multispectrales. Le défi est
d’atteindre cette adaptabilité tout en conservant la nature non supervisée de 1’approche et en

garantissant I’interprétabilité des composantes extraites.



La problématique de recherche devient : Comment développer un modele robuste capable
de capturer les interactions complexes entre des sources superposées, afin de réaliser une

décomposition non supervisée et interprétable des images multibandes de documents ?

Pour répondre a cette problématique, ce mémoire s’articulera autour de trois questions de
recherche qui abordent chacune un défi spécifique de la décomposition non supervisée d’images

multispectrales :

QRI1. Comment surmonter les limites des approches existantes face aux sources complexes, afin de
proposer une décomposition interprétable des images multispectrales de document ?

QR2. Comment éliminer la nécessité de spécifier manuellement le nombre de sources a extraire
pour réaliser une décomposition réellement non supervisée ?

QR3. Comment s’assurer de la robustesse du modele face a la variabilité des configurations

d’images multibandes (e.g., nombre de bandes variable, cas sur/sous-déterminés) ?

Ces trois questions ciblent donc les limites méthodologiques de 1’état de 1’art, ou les approches
classiques requierent des réglages ad hoc qui limitent a la fois leur automatisation et leur
généralisation face a la diversité des données multispectrales rencontrées dans I’analyse de
documents historiques. Pour cadrer cette recherche, le terrain d’étude considéré reste celui des
documents anciens, qui cristallise I’ensemble de ces défis. La question de la généralisation sera
toutefois examinée empiriquement a travers 1 applicabilité du modele a d’autres types d’images

multibandes (e.g., HS ou RVB) de domaine présentant des défis similaires.

0.3 Objectifs et organisation du mémoire

Pour relever ce défi majeur, cette thése s’articulera autour de ces trois axes de recherche

principaux, afin de développer une solution robuste et novatrice :



SO1.

SO2.

SO3.

Explorer la synergie entre la Factorisation Matricielle Non-négative (NMF) et les
Auto-encodeurs (AE) pour une décomposition améliorée. Bien que la NMF soit une
technique non-supervisée éprouvée pour la séparation aveugle de sources (SAS), elle montre
ses limites face a des sources complexes et fortement enchevétrées. Parallelement, 1’ utilisation
d’architectures d’auto-encodeurs pour I’interprétabilité des cartes de caractéristiques est un
domaine de recherche actif et prometteur. Nous chercherons donc a conceptualiser la NMF
traditionnelle au sein d’une architecture d’auto-encodeur, combinant ainsi les forces des
deux approches pour obtenir une décomposition plus fine et sémantiquement riche. L’ étude
portera également sur I’intégration de techniques de régularisation, telles que 1’orthogonalité,
au sein de ce cadre hybride afin d’améliorer la parcimonie des matrices et la distinction
des composantes extraites, éléments cruciaux pour I’analyse de documents dégradés ou la
variabilité spectrale et le chevauchement des sources sont courants.

Développer un mécanismes de sélection automatique du rang pour une décomposition
véritablement non supervisée. Un obstacle significatif des méthodes de décomposition
existantes, y compris la NMF et de nombreux modeles d’AE, est la nécessité de spécifier
manuellement le parametre de rang (c.-a-d., le nombre de sources ou de composantes a
extraire). Cette contrainte limite fortement 1’autonomie et 1’applicabilité des modeles, en
particulier pour les documents historiques ou le nombre exact d’encres, de pigments ou de
couches de dégradation est inconnu a priori. Cette partie de la recherche se concentrera sur
la conception et I’évaluation d’une stratégie permettant au modele de déterminer de maniere
autonome le nombre optimal de sources pertinentes directement a partir des données, en
s’inspirant par exemple de principes issus de la théorie de I’'information comme la Longueur
de Description Minimale (MDL) ou de techniques d’élagage (ou pruning) interprétables.
Etendre la généralisation du modele 2 différents types d’images multibandes, qu’elles
présentent des caractéristiques spectrales et spatiales distinctes. Cela inclut le cas sur-

déterminé, ou le nombre de bandes excede celui des matériaux a séparer, notamment avec



les images hyperspectrales (HS) (i.e., images MS avec plus de 12 canaux, voir Fig. 0.3)
et, a terme, le cas sous-déterminé, avec les images RVB standard, ou potentiellement
plus de matériaux doivent €tre séparés que de bandes disponibles pour les discriminer. La
complexité de la composition matérielle de nombreux documents historiques peut entrainer
des problemes de sous-détermination, ol le nombre de sources distinctes exceéde le nombre de
bandes spectrales disponibles. Résoudre ce défi est non seulement crucial pour les images MS
mais ouvrirait également la voie a I’application du modele a des images RVB naturelles, voire
a des images monocanales. De plus, la robustesse du modele face a des variations dans les
données d’entrée (e.g., nombre de bandes, longueurs d’onde spécifiques, résolution spatiale)
est essentielle, étant donné la diversité des capteurs d’imagerie MS et HS. Cette partie visera
donc a évaluer et a améliorer la capacité du modele a s’adapter a ces différents types de
données, en testant notamment sa performance sur des jeux de données de télédétection HS

et en envisageant des adaptations pour 1’analyse d’images naturelles RVB.

12 bandes
162 bandes

844 x 924 pixels 307 x 307 pixels

Figure 0.3 Comparaison entre une image multispectrale de document (gauche) et une
image satellite hyperspectrale (droite). L image MS provient de la base de données
MSBin, tandis que I’image HS est extraite de la base de données Urban (voir section
4.2.1 et 4.3.3). Les couleurs sont utilisées uniquement a des fins de visualisation
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Figure 0.4 Structure du mémoire et axes de recherche

En abordant méthodiquement ces trois sous-objectifs, I’ambition de cette these est de proposer un
modele de décomposition d’images multibandes de document qui soit non seulement performant
mais aussi complet, non supervisé, et dont les résultats soient directement interprétables, offrant
ainsi un outil précieux pour la valorisation du patrimoine documentaire et pour potentiellement
d’autres domaines d’application confrontés a des problématiques similaires de mélange de
sources. Apres un premier chapitre introductif et de revue de littérature globale, ce mémoire

explorera les trois sous-problématiques identifiées en trois chapitres distincts correspondants.



CHAPITRE 1

REVUE DE LA LITTERATURE

Ce chapitre établit le cadre théorique et les bases scientifiques essentielles a la compréhension
de la problématique de cette these et de I’approche proposée. L’ analyse de documents historiques
par imagerie multibande vise a résoudre un probleme de démélange spectral. L’objectif est de
décomposer une image observée, ol les signatures spectrales de multiples matériaux comme les

encres et le support sont mélangées dans chaque pixel, en ses composantes pures.

Pour un rappel sur les principes physiques de 1’acquisition d’images et le concept de signature

spectrale, le lecteur est invité a consulter ’Annexe 1.

1.1 Analyse des documents historiques par imagerie multibande

L’imagerie multispectrale (MS), développée initialement pour la télédétection, s’est imposée
comme une technique essentielle pour 1’analyse non-invasive des documents historiques. Un
avantage majeur de cette méthode pour le patrimoine culturel est qu’elle ne nécessite pas de
prélevement d’échantillons sur I’objet, préservant ainsi I’intégrité des documents tout en révélant
des informations invisibles. Depuis les travaux pionniers du frere Kogel (1920) utilisant la
lumiere ultraviolette pour la lecture de palimpsestes, I’imagerie MS a permis d’étudier des
documents emblématiques tels que les manuscrits de la mer Morte (Shor et al., 2014), le
palimpseste d’Archimede (Toth, 2004) ou les lettres de David Livingstone (Knox, Easton Jr,

Christens-Barry & Boydston, 2011), permettant de détecter des textes indiscernables a 1’ceil nu.

1.1.1 Fonctionnement d’une caméra multispectrale

La caméra multispectrale fonctionne selon le méme principe fondamental que 1’appareil photo
conventionnel, avec une différence majeure dans la sélectivité spectrale. Alors que le filtre
de Bayer d’un appareil photo RVB utilise trois types de filtres colorés a large bande passante
(voir Figure 1-2); la caméra MS emploie entre 4 et 20 filtres passe-bande étroits (10 - 40

nm) qui ne transmettent que des longueurs d’onde spécifiques. Chaque filtre agit comme une
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fenétre spectrale précise, la valeur enregistrée suivant la relation décrite par I’équation A 1-1.
L’acquisition nécessite des conditions tres controlées : une chambre noire élimine toute lumicre
ambiante non désirée, tandis qu’un systeéme d’illumination calibré fournit un éclairage uniforme
sur toute la gamme spectrale d’intérét. L’illumination UV est particulierement critique, les
documents historiques n’émettent pas naturellement ces rayonnements. Une source externe est
donc indispensable pour exciter la fluorescence des matériaux et mesurer leur réflectance dans
cette région, selon les principes d’interaction lumiére-matiere (voir Figure 1.1 et Equation A
I-2). Cette source doit étre stable spectralement et spatialement pour garantir des mesures

reproductibles et représentatives de la réflectance du document pour chaque longueur d’onde A.
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Figure 1.1 Acquisition MS de documents patrimoniaux illustrant la variabilité
spectrale des matériaux. Chaque pixel enregistre une signature de réflectance distincte
en fonction de la longueur d’onde. Chaque filtre passe-bande étroit permet d’isoler une

bande spectrale spécifique. Visualisation tirée de Joo Kim et al. (2011)

1.1.2 Mélange de sources : encres, supports, dégradations et annotations

Les documents historiques présentent une complexité visuelle élevée liée a la diversité des
matériaux et aux altérations accumulées. Les supports (papier, parchemin, papyrus), issus

de procédés artisanaux, sont hétérogenes : la structure des fibres végétales ou animales varie
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localement, influencant densité et couleur. Les encres, principalement ferro-galliques, se déclinent
en plus de 250 recettes recensées en Europe (Duh, Krsti¢, Desnica & Fazini¢, 2018), modifiées
selon les régions et époques par 1’ajout d’additifs variés. Cette diversité chimique produit une
large palette spectrale, parfois au sein d’'un méme manuscrit. La dégradation des encres et
supports accentue cette complexité : écaillage, perte de couches, corrosion avec halos bruns,
infiltrations dans le support, fragilisation et effritement du papier (Melo et al., 2022). L’humidité
favorise les moisissures et 1’effacement partiel, I’infestation d’insectes crée des perforations, et
les dépots de poussiere ou taches de cire masquent le texte. Enfin, les corrections, annotations
marginales et ajouts ultérieurs sont fréquemment observées pour les manuscrits les plus agés.
Les parchemins anciens, coliteux a produire en leur temps, étaient souvent effacés et réparés afin
de réutiliser le support, créant ce que 1’on appelle des palimpsestes. Il est courant que ce genre
de document puisse présenter jusqu’a trois couches de texte superposées, chacune écrite avec
une encre différente a des époques distinctes, ajoutant leurs signatures optiques au texte original
et aux dégradations. Des exemples notables comme le palimpseste syriaque de Galien (Easton,
Knox, Christens-Barry & Boydston, 2018) illustrent ces défis, tandis que certaines situations
extrémes, comme les manuscrits carbonisés d’Herculanum, mentionnés dans I’introduction, sont

completement inaccessibles a I'imagerie RVB (Parker et al., 2019).

Tous ces éléments se combinent pour former un «mélange» ou chaque pixel de I’'image observée
contient I’information spectrale de multiples sources superposées. Cette superposition rend
souvent le texte totalement illisible a ’ceil nu ou par imagerie RVB conventionnelle. Les
recherches récentes sur les palimpsestes démontrent que I’imagerie spectrale appliquée a
ces manuscrits pose de nombreux défis mais promet également de produire beaucoup de
résultats (Rossi, Zoleo, Bertoncello, Meneghetti & Deiana, 2021; Mazzocato, Cimino & Daffara,
2024). Limagerie MS s’avere alors particulierement efficace pour restaurer I’information
perdue (Ledo et al., 2024). Elle permet d’examiner chaque page des documents comme une
superposition de couches qui donnent des réponses différentes en fonction des bandes, révélant

ainsi leur nature complexe matérielle et historique.
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1.1.3 Variabilité spectrale et similarité entre composants

L’imagerie MS des manuscrits souffre cependant d’une variabilité spectrale importante, lié
a la fois aux documents observés mais aussi a 1’absence de standardisation des caméras
utilisées (Jones, Dufty, Gibson & Terras, 2020). D’une part, les signatures d’un méme
matériau peuvent varier selon les conditions d’acquisition (illumination, sensibilité des capteurs,
température) (Hedjam & Cheriet, 2013; Hollaus, Diem, Fiel, Kleber & Sablatnig, 2015a) et
selon les systémes (caméras monochromes, LEDs, logiciels), qui possedent chacun leur profil
spectral propre. D’autre part, les objets similaires en couleur peuvent avoir des réflectances
spectrales différentes, rendant complexe 1’interprétation automatique des données spectrales.
Cette variabilité dépend des objets en eux-mémes ainsi que des processus de dégradation qui
modifient leurs propriétés optiques de maniere non uniforme. Deux encres ferro-galliques, bien
que chimiquement similaires, peuvent présenter des signatures spectrales significativement
différentes en fonction de nombreux parametres. La concentration en fer, le type de tanins utilisés
(p. ex., noix de galle, écorce de chéne, sumac, etc.), les additifs (p. ex., gomme arabique, sulfate
de cuivre, etc.) et méme les conditions de préparation peuvent influencer la réponse spectrale de
I’encre (Teixeira, Nabais, de Freitas, Lopes & Melo, 2021). Aussi, une méme encre sur un méme
matériel peut présenter une signature différente selon son état de dégradation aux différents
endroits de I’'image. Elle peut présenter des teintes visible allant du noir au brun pale, ou méme
des teintes verdatres dues a la corrosion. Ce vieillissement introduit une dimension temporelle
dans la variabilité spectrale, pouvant étre utile lorsque exploitée par certaines méthodes de

datation (Rahiche, Hedjam, Al-maadeed & Cheriet, 2020; Ursescu, Malutan & Ciovica, 2009).

En revanche, la conséquence de cette haute variabilité est qu’il n’existe pas de méthode
universelle pour I’analyse des images MS de documents historiques. La plupart des systeémes de
compréhension des documents sont basés sur I’application de techniques de reconnaissance de
formes pour les images RVB conventionnelles, qui peuvent avoir du mal face a la complexité
des données MS. Les approches doivent étre adaptées a chaque manuscrit selon son support, ses
encres, ses dégradations et son histoire de conservation (Tonazzini et al., 2019), les algorithmes

devant tenir compte des propriétés physiques spécifiques des matériaux.
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1.2 Séparation Aveugle des Sources pour la décomposition d’images multibandes

Face a cette complexité, les méthodes traditionnelles de segmentation et de classification
atteignent leurs limites. Lorsque peu de bandes spectrales sont disponibles, il est difficile de
trouver une stratégie de segmentation efficace pour estimer correctement les différentes classes ou
objets des documents historiques. La nature méme du probléme ; séparer des signaux mélangés
sans connaissance préalable ni des sources originales ni du processus de mélange, oriente
naturellement vers les techniques de Séparation Aveugle des Sources (SAS). Le cadre théorique
offert par la SAS, cherche a résoudre un probleme de séparation de signaux ou les sources
originales ainsi que leur méthode de combinaison sont inconnues, en se basant uniquement sur
les signaux mélangés accessibles (Cardoso, 1998). Dans le contexte des documents historiques,
chaque pixel de I'image MS peut étre considéré comme un mélange de plusieurs sources :
premier plan (texte, encre), arriere-plan (parchemin, support), informations de dégradation et
potentielles couches d’écriture superposées. Les recherches récentes démontrent 1’efficacité de

cette approche pour traiter les documents multibandes (Rahiche et al., 2019).

Le caractere «aveugle» des techniques de SAS est un atout majeur lorsqu’il s’agit d’analyser
des documents historiques. En effet, I’information a priori disponible sur la composition exacte
des matériaux utilisés ou sur I’étendue et la nature des dégradations est souvent partielle,
voire totalement absente avant une analyse approfondie. Les méthodes qui reposeraient sur des
bibliotheques spectrales de référence pour chaque matériau pourraient se heurter aux difficultés
liées a la variabilité discutées plus tot. La SAS, en revanche, exploite principalement des
hypotheses statistiques sur les propriétés des sources (p. ex., leur indépendance statistique ou
leur non-négativité) pour les estimer directement a partir des données observées (Naik, Wang
et al., 2014). Cette capacité a laisser parler les données rend la SAS particulierement adaptée a
I’exploration et a la découverte de la composition matérielle des documents anciens, ou la part
d’inconnu est souvent importante (Giacometti et al., 2017). Par conséquent, la SAS ouvre la voie
a une caractérisation matérielle non invasive plus objective et détaillée, ce qui est essentiel non
seulement pour la lecture et la compréhension des textes, mais aussi pour les problématiques de

conservation, d’authentification et de datation des documents.
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1.2.1 Principes fondamentaux et modele mathématique

Au cceur de la Séparation Aveugle des Sources se trouve le probleme de la récupération d’un
ensemble de signaux sources originaux, notés s(¢) = [s(¢), s2(¢),...,s-()]7, a partir d’un
ensemble d’observations mélangées, notées y(t) = [y (1), y2(¢), ..., ym(2)]T (Cardoso, 1998).
Dans le contexte spécifique des images multibandes de documents historiques, ’indice ¢ peut
étre assimilé a un index représentant la position spatiale d’un pixel, r est le nombre de sources
que I’on cherche a identifier, et m est le nombre de bandes spectrales acquises. Ainsi, chaque
composante y;(z) du vecteur d’observation y(¢) représente 1’intensité (ou la réflectance) du pixel

t dans la i-eéme bande spectrale.

Le modele le plus couramment utilisé pour décrire la relation entre les sources et les observations
en SAS est le modele de mélange linéaire (Linear Mixture Model, LMM). Ce mode¢le postule
que chaque signal observé y; () est une combinaison linéaire des signaux sources, affectée par

un bruit additif. Mathématiquement, cela s’exprime sous forme vectorielle comme :

y(7) = Ea(t) + n(¢) (1.1)

N

ou :

* y(t) € R™ est le vecteur des m observations au pixel ¢ (spectre du pixel 7);

* a(r) € R” est le vecteur des r abondances au pixel 7. Dans le contexte de 1’imagerie
multispectrale, ces abondances représentent les proportions de chaque matériau pur présent
au pixel 7;

e E € R™ estla matrice de mélange, supposée inconnue en SAS. Ses colonnes contiennent les
signatures spectrales des r sources pures, et ses coeflicients ¢;; représentent la contribution
de la j-eme source dans la i-eme bande spectrale ;

* n(z) € R™ est un vecteur de bruit additif, généralement supposé de moyenne nulle et

statistiquement indépendant des sources.
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Dans la pratique de I’'imagerie multispectrale, on travaille souvent avec la factorisation matricielle
globale :
Y ~ EA (1.2)

o Y € R™" est la matrice des données observées (chaque colonne étant le spectre d’un
pixel), E € R™" contient les signatures spectrales des sources pures, et A € R"™" contient les

abondances correspondantes pour les n pixels de I’image.

Pour que ce probleme ; qui sera admis comme sur-déterminé dans le cadre des images MS (i.e.,
plus de bandes disponibles que de matériaux observés), admette une solution unique, certaines

hypotheses fondamentales peuvent étre formulées concernant les signaux sources :

1. Indépendance statistique mutuelle des signaux sources : Les composantes s;(¢) du
vecteur source s(7) sont supposées €tre statistiquement indépendantes les unes des autres.
C’est I’hypothese la plus cruciale et distinctive de nombreuses méthodes de SAS, notamment
I’Analyse en Composantes Indépendantes (ACI). Elle signifie que la connaissance de la
valeur d’une source ne fournit aucune information sur la valeur des autres sources.

2. Non-gaussianité des sources (pour ’ACI) : Au plus une des sources s;(f) peut avoir une
distribution de probabilité gaussienne. En effet, si plusieurs sources sont gaussiennes et
indépendantes, le théoreme central limite implique que leur mélange linéaire tend également
vers une distribution gaussienne, et la matrice de mélange ne peut alors €tre identifiée de
maniére unique au-dela d’une simple décorrélation.

3. Nombre de sources : Le nombre de sources r est généralement supposé inférieur ou égal

au nombre d’observations m (r < m) pour le modele de base.

Il est important de noter que la SAS souffre de certaines indéterminations fondamentales :

* Amplitude des sources : Il est impossible de déterminer de maniere unique I’amplitude des
sources estimées. Si a() est une solution, alors Da(7) est aussi une solution, ot D est une

matrice diagonale inversible, et la matrice de mélange devient ED!.
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* Ordre des sources : Lordre dans lequel les sources sont estimées est arbitraire. Si P est
une matrice de permutation, alors Pa(¢) est aussi une solution valide, avec une matrice de
mélange EP~!.

* Polarité des sources : Le signe des sources peut étre inversé, absorbé par la matrice de

mélange.

Dans le contexte de I’analyse d’images multibandes de documents, ces indéterminations sont
souvent acceptables. L’échelle absolue des signatures spectrales est moins importante que leur
forme relative, et ’ordre des matériaux identifiés n’affecte pas leur caractérisation. La forme
des spectres et leur distribution spatiale relative (cartes d’abondance) sont les informations

primordiales recherchées.

1.2.2 Techniques algébriques traditionnelles associées a la SAS et au regroupement

Le modele de mélange linéaire y(¢) = Ea(z) + n(z) est une simplification de la réalité physique
complexe des interactions lumiere-matiere au sein d’un document historique. Des phénomenes
tels que la diffusion multiple de 1a lumiere dans les couches d’encre ou de pigment, les interactions
chimiques entre I’encre et le support, ou la pénétration de I’encre dans les fibres du papier
peuvent introduire des non-linéarités. Néanmoins, pour de nombreuses applications en imagerie
multispectrale de documents, ol I’objectif principal est de discriminer différents matériaux,
d’améliorer la lisibilité d’un texte effacé ou de cartographier des dégradations, le modele linéaire
fournit une approximation souvent suffisante et mathématiquement traitable. Avant d’aborder
la Factorisation Matricielle Non-négative (NMF), il est utile d’évoquer plusieurs méthodes
classiques souvent employées pour le traitement des images MS de documents. Certaines, comme
I’Analyse en Composantes Principales (ACP) et I’Analyse en Composantes Indépendantes (ACI),
sont directement associées a la SAS (Yu, Hu & Xu, 2013). D’autres, comme k-moyennes et GMM,

relevent du regroupement non supervisé et sont plus souvent utilisées pour la segmentation.
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L’Analyse en Composantes Principales (ACP) est souvent employée en imagerie MS
de documents pour la réduction de dimensionnalité, le débruitage et I’amélioration du
contraste (Rodarmel & Shan, 2002; Kaarna, Zemcik, Kalviainen & Parkkinen, 2002). Des
études de cas spécifiques ont démontré son utilité pour révéler des détails cachés dans des
ceuvres d’art et manuscrits anciens (Knox et al., 2011; Ledo et al., 2024; Lépez-Baldomero,
Buzzelli, Moronta-Montero, Martinez-Domingo & Valero, 2025). Cependant, ’ACP n’est pas
une véritable technique de séparation de sources : elle se limite a une décorrélation statistique
et ses composantes correspondent rarement aux spectres physiques des matériaux (Tonazzini

et al., 2019; Jones et al., 2020).

L’Analyse en Composantes Indépendantes (ACI) représente une évolution conceptuelle
en cherchant I’indépendance statistique des composantes (Choi, Cichocki, Park & Lee,
2005; Hyvarinen, 1999). Elle a montré son potentiel pour la séparation des couches dans
les palimpsestes et I’amélioration de la lisibilité des textes effacés (Davies & Zawacki,
2019; Salerno, Tonazzini & Bedini, 2007; Tonazzini, Bedini & Salerno, 2004). Néanmoins,
I’hypothese d’indépendance est souvent compromise, avec par exemple des mécanismes
de dégradation qui affectent simultanément plusieurs composants, ou la dépendance
statistique inhérentes a la décomposition des données MS en cartes d’abondances !. De
plus, les composantes indépendantes estimées peuvent contenir des valeurs négatives, ce
qui est physiquement incohérent pour des grandeurs comme la réflectance spectrale ou
les concentrations de matériaux. Cette limitation fondamentale compromet I’interprétation

directe des résultats comme des spectres de matériaux purs ou des cartes d’abondance.

Les K-moyennes, méthodes de regroupement, permettent une segmentation rapide des
régions spectralement distinctes (MacQueen, 1967). Des variantes adaptées aux documents
ont étés développées comme les K-moyennes sphériques utilisant la dissimilarité cosinus
(Hornik, Feinerer, Kober & Buchta, 2012) et SKKHM intégrant I’information spatiale (Li,

Mitianoudis & Stathaki, 2007). Cependant, ces variantes conservent le méme inconvénient

' La somme des fractions d’abondance étant constante, celles-ci présentent forcément une dépendance

statistique (Nascimento & Dias, 2005).
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que les K-moyennes standard : les centroides résultants sont des moyennes mathématiques et

ne garantissent pas la correspondance avec des signatures spectrales pures.

* Le Modéele de Mélange Gaussien (GMM) offre une segmentation probabiliste plus
flexible pour le regroupement non supervisé (Reynolds et al., 2009). L’idée fondamentale
est de supposer que les données observées proviennent d’un mélange de K distributions
de probabilité Gaussiennes multidimensionnelles. Le GMM a été appliqué aux images
multispectrales de documents, comme le montrent les travaux de Hollaus, Diem & Sablatnig
(2018). Bien que son application soit prometteuse, ces travaux soulignent une limitation
importante : la sensibilité des GMM aux variations des données brutes. La méthode nécessite
un pré-traitement crucial et met en évidence le manque d’informations spatiales nécessaire

pour obtenir une segmentation plus robuste.

En résumé, ces méthodes ont permis des avancées notables en imagerie MS de documents, mais
elles partagent un défaut majeur : I’absence de contrainte de non-négativité, qui limite leur
interprétation physique. Cette faiblesse motive 1’adoption d’approches alternatives comme la
Factorisation Matricielle Non-négative, qui intégre naturellement cette contrainte et fournit

une interprétation directe en termes de spectres de matériaux et de cartes d’abondance.

1.2.3 La Factorisation Matricielle Non-négative (NMF) pour la séparation aveugle de
sources

La Factorisation Matricielle Non-négative (NMF) a connu un essor considérable au sein de
diverses communautés scientifiques, de 1’analyse informatique au décodage génétique (Gillis,
2020). Initialement développée par Paatero & Tapper (1994), elle fut popularisée par Lee et Seung
a travers une série d’articles a la fin des années 90 (Lee & Seung, 1999, 2000). La NMF repose
sur une observation fondamentale : dans la nature, la plupart des structures complexes résultent
de I’addition de sous-structures ou de composants plus simples. Que ce soit en architecture
(batiments comme une somme de matériaux), en chimie (molécules comme une combinaison

d’atomes) ou en imagerie (pixels comme une somme d’ondes électromagnétiques), ce principe



19

additif prévaut. La NMF postule qu’en décomposant une structure complexe en une somme
de «briques» constitutives non-négatives, on peut obtenir une représentation plus interprétable.
En effet, notamment dans le contexte des images de documents, des composantes négatives
manquent de sens physique, que ce soit pour I’intensité de réflectance ou indiquer la présence
d’objets. Cette présence est signifiée par un nombre positif, I’absence par zéro (Ngoc-Diep, 2008).
L’ adéquation particuliere de cette méthode pour 1’étude des documents historiques multibandes

justifie un examen détaillé de ses principes, de ses avantages, de ses applications spécifiques.

1.2.3.1 Formulation Mathématique

La NMF vise a factoriser une matrice de données Y en deux matrices de rang inférieur, U et V,

dont tous les éléments sont non-négatifs  :

Y ~ UV (1.3)

Dans le contexte de I’imagerie multibande de documents historiques, Y est une matrice R2*", ot
b est le nombre de bandes spectrales et n le nombre de pixels (apres réorganisation de I’image
2D en une structure 1D de pixels). La NMF cherche a estimer U de dimension R2*" et V de
dimension R, avec r (le rang) représentant le nombre de sources recherchées. Typiquement, r
est choisi de maniere a ce que r < min(m, n), ce qui implique que la NMF réalise également
une réduction de dimensionnalité. Cette factorisation obtenue constitue une approximation, la
résolution exacte du probleme ayant été prouvée NP-difficile par Vavasis (2010), c’est-a-dire
qu’il n’existe aucun d’algorithme déterministe capable de garantir une solution optimale en
temps polynomial par rapport a la taille des données, d’ou la nécessité de relaxer le probleme.
Un développement mathématique de la NMF, avec son algorithme, les fonctions de cofit utilisées

ainsi que les méthodes d’optimisation associées, est proposé€ en Annexe II.

2 Les notations peuvent varier selon les publications mais restent équivalentes : Y ~ UV?, Y ~ MA,
Y ~AX,V~ WH, A ~ XY,
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1.2.3.2 Interprétation des facteurs dans I’analyse d’images MS de documents

L’un des principaux avantages de la NMF pour I’analyse des documents historiques multibandes

réside dans I’interprétabilité physique des matrices de factorisation Uet V :

« Matrice des composantes (Endmembers en anglais) : Les 7 colonnes de la matrice U € R?*"
peuvent étre interprétées comme les signatures spectrales des r composantes pures présentes
dans I'image. Chaque colonne u; constitue un vecteur de b valeurs non-négatives représentant
la réflectance du j-€éme matériau pur (p. ex., encre spécifique, support, ou dégradation etc.).

* Matrice d’abondance : Les n colonnes de la matrice V € R"™” contiennent les coefficients
d’abondance correspondants a chaque source pour chacun des n pixels. La j-éme ligne de V,
notée VJT., peut étre réorganisée spatialement pour former une carte d’abondance illustrant la
distribution spatiale du j-€me matériau a travers I’'image. Chaque coefficient v;; indique la

proportion (contribution) de la j-eme signature spectrale au spectre observé du i-eme pixel.

Ces éléments sont illustrés sur la Figure 1.2, qui schématise la décomposition d’une image
MS synthétique en ses signatures spectrales pures et ses cartes d’abondance correspondantes.
Bien que la NMF soit fondamentalement une méthode de séparation de sources non-supervisée,
son application aux documents historiques nécessite une approche semi-supervisée, avec
une interprétation guidée par I’expertise. L'identification des colonnes de U comme matériaux
spécifiques requiert généralement une comparaison avec des spectres de référence (si disponibles),
une analyse contextuelle des cartes d’abondance, ou une validation par des techniques analytiques
complémentaires. Des variantes de la NMF permettent alors d’intégrer explicitement des
connaissances a priori dans le processus de factorisation, grace a I’implémentation de différentes

contraintes, améliorant la décomposition en fonction des besoins.

1.2.3.3 Contraintes et variantes de la NMF

Dans le contexte du démélange spectral, deux contraintes fondamentales sont généralement

appliquées aux cartes d’abondance : la contrainte de non-négativité (Abundance Non-negativity
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Figure 1.2 Illustration schématique de la décomposition par NMF d’une image
multispectrale synthétique. L’ image originale est constituée de trois matériaux (encre
violette, encre bleue et support) réagissant de maniere unique aux différentes longueurs
d’onde. La factorisation permet d’extraire les signatures spectrales pures U et les cartes
d’abondance spatiales correspondantes V, représentés sous leur forme matricielle. Les
données présentées sont enticrement simulées a des fins de visualisation, les couleurs

étant utilisées uniquement pour faciliter I’interprétation visuelle

Constraint - ANC), ainsi que la contrainte de somme a I'unité (Abundance Sum-to-one
Constraint - ASC), imposant que Y;; V;; = 1 pour chaque pixel j (i.e., somme a 100%). Ce cadre
général de NMF contrainte permet alors d’intégrer des connaissances a priori (p. ex., colonnes
de U partiellement fixées lorsque des signatures spectrales sont connues), en gardant une
interprétation cohérente des abondances comme contributions relatives des matériaux. Au-dela
de ces contraintes de base, diverses variantes de la NMF ont été développées pour répondre a
différents besoins spécifiques (voir Cichocki, Zdunek, Phan & Amari (2009) ou Wang & Zhang

(2012) pour une revue développée). Parmi les principales variantes développées, on peut citer :

* NMF Parcimonieuse (Sparse NMF) : Impose des contraintes de parcimonie (p. ex.,

régularisation Lo, L1, L1/, oulog-norme) sur les matrices de facteurs U et/ou V favorisant des
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représentations localisées et basées sur les parties, améliorant potentiellement I’ interprétabilité
et la robustesse au bruit (Peharz & Pernkopf, 2012; Le Roux, Weninger & Hershey, 2015).

*  NMF Orthogonale (ONMF) : Impose des contraintes d’orthogonalité sur les matrices de
facteurs, telles que UTU = I (colonnes de U orthogonales) et/ou VVT = I (lignes de V
orthogonales). Cette orthogonalité garantit que les composantes extraites sont maximalement
indépendantes et non-redondantes, ce qui améliore 1’identification de matériaux distincts.
Dans le contexte des documents historiques, I’ONMEF est prouvée efficace pour séparer
des pigments aux signatures spectrales proches mais chimiquement différents (Choi, 2008;
Yoo & Choi, 2010a; Rahiche & Cheriet, 2020).

* NMF Lisse (Smooth NMF) : Impose des contraintes de régularité spatiale sur les cartes
d’abondance V, particulierement utile pour les matériaux variant de maniere graduelle. Cette
approche améliore la cohérence spatiale et réduit I’impact du bruit (Salehani & Gazor, 2017).

* NMF Régularisée par Graphe (GNMF) : Incorpore la structure géométrique locale des
données via un terme de régularisation basé sur un graphe de similarité, préservant les
relations de voisinage dans I’espace de faible dimension défini par U ou V (Yi et al., 2019;
Rahiche & Cheriet, 2020; Rhodes, Jiang & Jiang, 2025).

e Tri-NMF : Décompose la matrice de données Y en trois facteurs, souvent non négatifs, par
exemple Y = USVT. Dans ce cadre, S peut étre une matrice centrale de taille variable, et des
contraintes supplémentaires (comme 1’orthogonalité sur U et V, ou la parcimonie) peuvent
étre imposées. Cette formulation peut offrir plus de flexibilité et est utilisée pour relaxer

probleme d’optimisation (Ding, Li, Peng & Park, 2006; Ding, Li & Jordan, 2008).

1.2.3.4 Applications de la NMF pour I’analyse des documents

La NMF est une technique non supervisé employée pour 1’analyse d’images de documents,
notamment avec des données MS ou HS (Pauca, Piper & Plemmons, 2006; Soukup & Bajla,
2008; Rahiche et al., 2019). L' utilisation de contraintes assure que les caractéristiques extraites

sont additives et physiquement interprétables, ce qui est fondamental pour les données d’imagerie
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dont les valeurs sont intrinsequement non négatives (Magkanas, Bagén, Sistach & Garcia, 2021).

Les applications principales de la NMF dans I’analyse de documents historiques incluent :

Analyse et discrimination d’encres et pigments : La NMF permet d’identifier et de
discriminer les signatures spectrales de divers matériaux d’écriture, tels que les encres et les
pigments, méme lorsque ceux-ci sont visuellement indiscernables (Lépez-Baldomero et al.,
2023; Lyu et al., 2020). Cette capacité est cruciale pour 1’authentification de documents,
I’étude des techniques artistiques et potentiellement la datation (Magkanas et al., 2021).
Pour les données MS/HS, des variantes orthogonales (ONMF) sont souvent employées pour
améliorer la distinction des composantes spectrales extraites (Rahiche et al., 2019, 2020).
Détection de falsifications : La technique est appliquée a la détection de falsifications, comme
I’identification d’ajouts d’encre. La NMF peut révéler des composantes distinctes présentant
des incohérences spectrales indiquant ainsi des altérations. Des modeles spécifiques, tels que
la NMF orthogonale régularisée par graphe, ont été proposés pour la détection de discordance
d’encres dans les images MS de documents (Rahiche & Cheriet, 2020).

Restauration et analyse de documents : Dans le domaine de la restauration et de 1’analyse,
la NMF contribue a la séparation virtuelle des couches d’une image permettant la suppression
de I’effet de transparence parasite du texte verso (Merrikh-Bayat, Babaie-Zadeh & Jutten,
2010) ou la récupération de textes effacés ou superposés (Wang & Zhang, 2011; Phon-
Amnuaisuk, 2013). Elle est également utilisée pour I’identification de pigments dans les
manuscrits enluminés et les ceuvres d’art, aidant a caractériser les matériaux et les techniques
de création (Magkanas et al., 2021; Lyu et al., 2020).

Extraction de contenu et modélisation thématique : En plus de son application dans
I’analyse d’images, la NMF est avant tout une technique reconnue pour la modélisation
thématique et I’analyse sémantique latente de contenu textuel (Kulkarni, Madurwar, Narlawar,
Pandya & Gawande, 2023). Dans ces applications, la matrice U peut représenter des themes
(ensembles de mots) et V leur distribution ou prévalence au sein d’un corpus de documents.
Segmentation et binarisation : La NMF est employée pour la segmentation d’images de
documents, permettant de séparer le texte du fond, les illustrations ou différentes régions

matérielles (Mazack, 2009). Des cadres spécifiques, comme MSdB-NMF (MultiSpectral
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Document image Binarization via NMF) (Salehani, Arabnejad, Rahiche, Bakhta & Cheriet,
2020) ou des approches basées sur I’ONMEF, ont été développés pour la binarisation et la

décomposition de documents multispectraux (Rahiche et al., 2019).

Cependant, 1’efficacité de la NMF est conditionnée par la résolution de plusieurs défis
méthodologiques. Le probleme d’optimisation en NMF, non convexe, peut converger vers
des minima locaux, et la solution obtenue est sensible aux valeurs initiales des matrices U et
V (Magkanas et al., 2021). De plus, la NMF standard repose sur I’hypothése d’un mélange
linéaire additif des composantes spectrales. Cependant, les interactions lumiere-matiere dans
les documents, telles que celles impliquant des couches d’encre épaisses ou des phénomenes
de diffusion multiple, peuvent introduire des non-linéarités significatives. Ces effets peuvent
invalider le modele linéaire, un probléme parfois désigné comme le «probleme du mélange
linéaire» (Lopez-Baldomero et al., 2025). Aussi, la signature spectrale d’un méme matériau
(encre, pigment) peut varier au sein d’un document en raison de facteurs tels que les différences
de concentration, I’état de dégradation, ou les interactions avec le support. Cette variabilité
peut conduire a des erreurs de modélisation ou a I’identification erronée de multiples sources
pour un seul matériau. Les données MS sont d’ailleurs souvent affectées par le bruit, ce qui
peut fausser les composantes extraites par la NMF. Un autre défi est le passage a 1’échelle;
avec des images MS volumineuses, présentant une haute résolution spatiale et spectrale, des
contraintes augmentant la complexité algorithmique et le besoin de détermination du nombre de
composantes, 1’automatisation de la décomposition par NMF devient particulicrement critique,
certaines méthodes demandant le réglage de parametres pour chaque image analysée (Rahiche
etal.,2019; Rahiche & Cheriet, 2022). Par ailleurs, I’absence de criteres objectifs universels pour
évaluer la qualité d’une décomposition complique 1’établissement de protocoles standardisés
pour le traitement en masse de collections documentaires. Ces limitations, partagées a divers
degrés par I’ensemble des méthodes algébriques traditionnelles (voir Tableau 1.1 pour une

synthése comparative), soulignent la nécessité d’explorer des approches alternatives.
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Synthese comparative des méthodes algébriques traditionnelles pour I’ analyse

de documents historiques multibandes

Application aux images
MS de documents

variance, décorrélation

Réduction de dimension,
amélioration de contraste,

pendance statistique

Séparation de couches,
discrimination d’encres

basés sur la proximité

Segmentation rapide en
régions spectralement

distributions Gaussiennes

Segmentation probabiliste

Caractéristique ACP ACI K-moyennes GMM NMF
R R I, Regrouper les données en  Modéliser les données comme  Factorisation en matrices
e Maximisation de la Maximisation de I’indé- - B P
Objectif Principal K groupes distincts, un mélange de K non-négatives,

reconstruction additive

Démélange spectral

P L "douce" encres, support, dégradations
pré-traitement distinctes ( ) ( » SUpp! g )

Statistiques Utilisées

Hypotheéses a priori

Second ordre
(covariance)

Ordres supérieurs
(cumulants)

Non-gaussiennes,

Aucune L L
indépendance statistique

Simple, rapide, Meilleure décomposition

Distance (Euclidienne,
Cosinus), Moyenne

K prédéfini,
clusters sphériques

Probabilités, EM,
Moyenne et Covariance

Données suivent un mélange
de K Gaussiennes

Basé sur la fonction de cotit

Données Non-négatives,
K sources distinctes

Interprétation physique directe,

Avantages bien établic que 'ACP Simple, rapide Assignation flexible adaptée aux images MS
L. Ne sépare pas les sources, Hypothése d’indépendance forte, ~Sensible a I’initialisation, Sensible aux variations, Sensible a I’initialisation,
Inconvénients . Lot N P . . S A4f: S d&fing
interprétation difficile non-négativité non garantie optimums locaux K a définir K a définir
Contexte spatial X X (SKKHM) X X
fomtivie v
Non-négativité X X X X (pour E et A)
PR, Limitée Modérée Limitée Limitée Elevée
Interprétabilité L S . N . .
Physique (combinaisons linéaires, (plus proche des sources, (centroides = moyennes (parametres Gaussiens donc (signatures spectrales et

valeurs négatives) valeurs négatives) pas de spectres purs garantis) pas de spectres purs garantis)  abondances non-négatives)

Les méthodes d’apprentissage profond émergent alors comme une voie prometteuse, offrant
la capacité d’apprendre automatiquement des représentations non-linéaires complexes et de
s’adapter aux spécificités de donnée hautement variables (Squires, 2019; Yu et al., 2024).

1.3 Apprentissage profond pour ’extraction de composantes et I’analyse d’images

L’apprentissage profond (Deep Learning, DL) représente une branche de I’intelligence
artificielle (IA) qui a transformé de nombreux domaines, notamment celui de I’analyse d’images.
Sa capacité a modéliser des abstractions de haut niveau dans les données en utilisant des
architectures composées de multiples couches de traitement non linéaire en fait un outil puissant

pour I’extraction de composantes complexes.
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Cette section introductive vise a définir I’apprentissage profond, a le situer par rapport a

I’apprentissage automatique classique, et a introduire certains des concepts fondamentaux.

1.3.1 Définition et positionnement par rapport aux méthodes algébriques
traditionnelles

L’ apprentissage profond est une branche de I’apprentissage automatique (Machine Learning,
ML) qui repose sur I’entrainement de réseaux de neurones artificiels a partir de grandes
quantités de données. Contrairement aux méthodes algébriques traditionnelles, les méthodes
d’apprentissage profond apprennent des représentations de données complexes de maniere
adaptative, sans hypotheses fortes sur la structure sous-jacente. Les modeles d’apprentissage
profond, sont congus pour apprendre des caractéristiques complexes de maniere hiérarchique et
autonome, directement a partir des données brutes. Leur structure algorithmique en couches
permet un traitement progressif de I’information, ol chaque couche affine les résultats de la
précédente, facilitant I’identification de motifs complexes souvent sans étiquetage préalable
exhaustif. Dans le contexte de I’analyse d’images, cette approche se distingue par I’extraction
automatique des caractéristiques. Contrairement aux méthodes traditionnelles qui exigent une
sélection manuelle des caractéristiques pertinentes (couleur, contours, texture) par un expert,
I’apprentissage profond adopte un concept d’apprentissage de bout en bout. L”algorithme
identifie automatiquement les caractéristiques les plus saillantes pour chaque classe en analysant
des exemples, rendant cette approche particulierement adaptée a la gestion d’une grande
variabilité des objets et des conditions d’acquisition. Il est important de noter que les modeles
d’apprentissage profond sont généralement plus complexes et de plus grande taille que leurs
homologues classiques. Ils requierent par conséquent des volumes de données plus importants
pour I’entrainement et une puissance de calcul considérable, les unités de traitement graphique

(GPU) étant souvent privilégi€es pour leur capacité a effectuer des calculs paralléles massifs.
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1.3.2 Réseaux de Perceptron Multicouche (MLP) : La base

Le Perceptron Multicouche (Multilayer Perceptron - MLP) est I'une des architectures

fondamentales des réseaux de neurones profonds. Un MLP est structuré en plusieurs couches de

neurones interconnectés :

1. La couche d’entrée recoit les données initiales. Chaque neurone de cette couche correspond
a une caractéristique d’entrée (p. ex., valeurs d’un pixel si une image est aplatie en vecteur).

2. Les couches cachées se situent entre la couche d’entrée et la couche de sortie. Elles
effectuent des transformations successives sur les données. Dans un MLP, chaque neurone
d’une couche est typiquement connecté a tous les neurones de la couche précédente (on
parle de couches «entierement connectées» ou fully connected) et transmet sa sortie a la
couche suivante. Le nombre de couches cachées et le nombre de neurones dans chaque
couche sont des hyperparametres importants du modele, définis lors de sa conception.

3. La couche de sortie produit la prédiction finale du réseau. Le nombre de neurones dans cette
couche dépend de la nature de la tache : par exemple, un seul neurone peut €tre utilisé pour
une classification binaire (avec une fonction d’activation sigmoide), tandis que plusieurs

neurones (avec softmax) sont nécessaires pour une classification multi-classes.

Mathématiquement, la propagation avant dans un MLP peut étre décrite par les équations

suivantes. Pour une couche [ avec n) neurones, la sortie est calculée comme :

z) = whall=h) 4 p (1.4)

al) = f(z1) (1.5)

ot WO e Rrxn"™ gt 12 matrice des poids de la couche [, b e R™ est le vecteur
de biais, a’~! est la sortie de la couche précédente, et f(-) est la fonction d’activation (p.
ex., ReLU, sigmoide, tanh, etc.). L'entralnement du réseau s’effectue par rétropropagation
des gradients, qui minimise une fonction de coflit £ en ajustant les parametres. La nature
«entierement connectée» des MLP, bien que simple a conceptualiser, est a la fois une force et sa

faiblesse majeure. Elle offre la capacité de modéliser des interactions complexes si le réseau est
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suffisamment profond, mais elle conduit aussi a une explosion du nombre de parametres, en
particulier pour les entrées de haute dimension comme les images. Ce choix architectural est a
I’origine de ses limitations dans les tiches de vision. En effet, si chaque neurone d’une couche est
connecté a ceux de la suivante, le nombre de poids est le produit du nombre de neurones dans ces
couches adjacentes. Pour une image de taille modeste (p. ex., 224x224 pixels soit 50176 valeurs
d’entrée), la premiere couche cachée, méme si comportant un nombre raisonnable de neurones,
aura un nombre massif de poids a apprendre, entrainant des colits de calcul et des besoins en
mémoire €élevés. La structure du MLP est donc mal adaptée aux données d’image brutes de haute
dimension. De plus, avec 1’aplatissement en vecteurs unidimensionnels, la structure spatiale des

images est perdue, poussant vers le développement d’architectures spécialisées comme les CNN.

1.3.3 Réseaux de neurones convolutifs (CNN) : Le contexte spatial

Les Réseaux de neurones convolutifs (CNN) exploitent la structure spatiale des images grace a
la convolution, qui constitue I’opération mathématique centrale de leur architecture. Pour des
images multibandes, cette opération s’étend sur tous les canaux. Mathématiquement, pour une

RHXWXC

image d’entrée X € et un ensemble de filtres (ou kernel) K € RF#>*fw 1opération de

convolution 2D discrete est définie par :

<'1

-1 Fg-1
(X*Kk)i,j 1+mj+nc Ky];nc bk (16)

c

~
S

Il
o
Il
(=}

m=0 n
ou C est le nombre de canaux d’entrée, b est le terme de biais, et ot k € {1, ..., N f} est I'indice
du filtre produisant N s cartes de caractéristiques en sortie et ou (i, j) représente la position dans
ces cartes. La taille de ces cartes dépend de deux hyperparametres :

* Le Stride s : le pas entre chaque déplacement du filtre.

* Le Padding p : le nombre de valeurs ajoutées autour de I’image pour le calcul des bordures.

La dimension de I’image de sortie, dépendante de s et p, est alors calculée comme :

Houl = (17)

s N

H+2p-F W+2p — F;
i/ H|+1 s Wout:{ P W|+1



29

Une autre composante importante associ€¢ aux CNN sont les couches de pooling, qui réduisent
la dimensionnalité spatiale et contribuent a I’invariance translationnelle (Ng et al., 2014). Le
partage de poids permet de réduire drastiquement le nombre de parametres, en utilisant les
mémes valeurs de filtre pour toute I’image. Contrairement a un MLP ou chaque connexion
a un poids unique, un CNN avec Ny filtres de taille F X F sur C canaux d’entrée n’a que
Ny x (F X F x C + 1) parametres, indépendamment de la taille de I’image d’entrée. Cette
propriété permet aux CNN de traiter des images de différentes tailles avec le méme modele.
Aussi, I’invariance translationnelle, obtenue par la nature glissante de la convolution, permet de
reconnaitre les objets indépendamment de leur position exacte dans I’image. L’ architecture CNN
construit une hiérarchie de caractéristiques : les premieres couches détectent des éléments
simples (p. ex., contours, textures), grace a des champs récepteurs locaux de petite taille. Les
couches intermédiaires assemblent ces éléments en formes plus complexes avec des champs
récepteurs plus larges, et les couches profondes reconnaissent des objets entiers ou des concepts
abstraits. Cette progression peut étre formalisée par la croissance du champ récepteur effectif :
-1
RE, =RF_ +(K; - 1) x ﬂ S; (1.8)
i=1

ou RF; est le champ récepteur a la couche /, K; la taille du noyau et S; le stride de la couche i.
La Figure 1.3 illustre un CNN simple suivi de couches de MLP pour une tache de classification
de chiffres manuscrits. Cette approche hiérarchique s’inspire du systeme visuel biologique
et a prouvé son efficacité pour diverses taches de vision, en €tant a la base d’architectures
compétitives plus complexes comme les modeles LeNet, AlexNet, VGG, GoogLeNet ou encore
le ResNet (Bhatt e al. (2021) propose une revue complete de 1’évolution de ces architectures).
Hollaus, Brenner & Sablatnig (2019) propose d’utiliser un ResNet supervisé pour la binarisation

d’images de documents, les résultats confirmant I’efficacité des modeles CNN pour cette tache.

1.34 Auto-encodeurs : Apprentissage non-supervisé de représentations

Les Auto-encodeurs (AE) constituent une famille d’architectures de réseaux de neurones

principalement utilisée pour 1’apprentissage non supervisé de représentations de données. A
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Image
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+ Stride = 2
RelU RelU

Figure 1.3 Exemple d’application d’un CNN pour la tache de
classification de chiffres manuscrits. Figure tirée de Patel (2019)

I’instar de la NMF, leur objectif est d’apprendre des représentations vectorielles (ou embeddings)
compactes des données, souvent dans un espace de dimensionnalité réduite, sans supervision.
Le principe de base d’un autoencodeur s’articule autour de deux composantes principales :

1. L’encodeur a pour rdle de transformer les données d’entrée en une représentation de plus
faible dimensionnalité. L’encodeur apprend a extraire les informations les plus saillantes et
pertinentes de I’entrée pour former cette représentation, aussi appelée espace latent.

2. Le décodeur prend ensuite cette représentation latente en entrée et tente de reconstruire les

données d’origine aussi fidelement que possible.

L’ensemble du réseau est entrainé en minimisant une fonction de reconstruction, qui mesure la
différence entre les données d’entrée originales et les données reconstruites par le décodeur. Le
goulot d’étranglement contraint la représentation latente a avoir une dimensionnalité inférieure
a celle de I’entrée, forcant le réseau a apprendre une représentation compressée qui capture

I’essence des données, plutot que de simplement apprendre une fonction identité.

Les Auto-encodeurs Convolutifs (CAE) adaptent I’ architecture des auto-encodeurs en intégrant
des couches convolutives. L'encodeur d’un CAE agit comme un CNN classique, extrayant une

hiérarchie de caractéristiques spatiales de I’image d’entrée. Le décodeur effectue 1I’opération
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inverse pour reconstruire I’image a partir de la représentation latente. Cette architecture est
particulierement adaptée pour les images de document car elle préserve I’information spatiale et

apprend des filtres qui capturent des motifs locaux (Calvo-Zaragoza & Gallego, 2019).

Les Auto-encodeurs Variationnels (VAE) sont une extension des auto-encodeurs qui appartiennent
a la catégorie des modeles génératifs. De maniere analogue a la NMF qui possede une variante
basée sur la divergence KL, les auto-encodeurs ont leur extension probabiliste sous la forme des
VAE. Leur particularité est de représenter explicitement I’espace latent comme une distribution
de probabilité N (u,oI), permettant la génération de données synthéthiques réalistes. La
Figure 1.4 illustre une piste d’application de VAE pour la SAS, visant a distinguer des textes
superposés. Bien que prometteuse, cette approche présente des limitations notables, puisque
le modele ne fonctionne que sur des images monobandes de faible résolution et que son

entralnement requiert un vaste corpus de données déja séparées (Neri, Badeau & Depalle, 2021).
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Figure 1.4 Exemple d’application d’un Autoencodeur Variationnel (VAE) pour la
tache de séparation de chiffres manuscrits. Réimplémentation de Neri ef al. (2021)

1.3.5 Transformers en vision (ViT) : Le contexte global

Initialement congus pour le traitement automatique du langage naturel (Natural Langage

Processing - NLP), les Transformers ont récemment révolutionné la vision par ordinateur apres
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leur introduction par Vaswani et al. (2017). Le coeur des modeles Transformer est le mécanisme
d’auto-attention. Ce mécanisme permet au modele de pondérer I’importance de différentes
parties de la séquence d’entrée les unes par rapport aux autres, afin de calculer une représentation
de chaque élément de la séquence qui tienne compte du contexte global. Contrairement aux
CNN qui construisent un contexte global progressivement, les transformers ont la capacité de
capturer des relations et dépendances de longue portée entre tous les éléments des les premieres
couches du réseau. Chaque élément peut «regarder» tous les autres afin de trouver les plus
pertinents pour sa propre représentation. Cependant, 1’attention posséde une haute complexité
computationnelle, quadratique par rapport a la longueur de la séquence d’entrée. Pour adapter
cette architecture aux images, le Vision Transformer (ViT) divise alors I’image en patchs de
taille fixe, evitant ainsi de traiter chaque pixels. Les ViT ont prouvé leur capacité a extraire
une compréhension sémantique des images a partir de grands ensembles de données, apportant
les meilleurs performance en segmentation d’images. Contrairement aux CNN qui extraient
des relations locales, les ViT parviennent a regrouper des objets par leur sens ou contexte,
permettant une meilleure compréhension globale d’une sceéne. Des variantes comme le Swin
Transformer adaptent le mécanisme d’attention pour améliorer I’efficacité computationnelle,
permettant de traiter des images plus grandes tout en conservant une compréhension sémantique
globale. Cependant, le découpage en patchs inhérent aux ViT sacrifie la résolution spatiale
fine, les rendant moins adaptés pour 1’analyse de documents haute résolution nécessitant une
segmentation précise au pixel pres. Cela explique 1’échec des methodes de fondations pour la

segmentation et I’extraction de texte manuscrit (voir Figure 1.5).

1.3.6 Applications pratiques aux images de documents

Les architectures d’apprentissage profond trouvent des applications spécifiques dans I’analyse
de documents. Les CNN excellent dans la détection et la reconnaissance de texte (OCR), la
segmentation de mise en page, et I’extraction de tableaux. Les AE sont utilisés pour le débruitage
de documents anciens ou de mauvaise qualité, la compression de documents, I’extraction de

caractéristiques ou la séparation de textes superposés (voir Figure 1.4). Les ViT avec leur capacité
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(b)

Figure 1.5 Exemple d’application de deux ViT reconnus, pour la tiche de
segmentation automatique d’une image de texte, avec (a) Dinov2 (Oquab
et al., 2024) et (b) Segment Anything Model (SAM) (Kirillov et al., 2023)

a capturer le contexte global, montrent des performances prometteuses pour la compréhension
de la structure de documents et 1’analyse de leur contenu, comme démontré sur la tiche de

DocVQA (Mathew, Karatzas & Jawahar, 2021) mais restent limités pour une segmentation fine.

1.3.7 Apprentissage supervisé contre non-supervisé

La distinction entre apprentissage supervisé et non-supervisé constitue alors un choix fondamental
dans la conception de modeles pour 1’analyse d’images. Le premier, qui s’appuie sur des paires
entrée-sortie annotées, permet d’obtenir des performances remarquables lorsque les données
étiquetées sont abondantes et représentatives. Dans le contexte de 1’analyse documentaire,
cette approche excelle pour des tiches bien définies comme la segmentation s€émantique ou la
classification de régions. Cependant, la création d’annotations précises pour les images MS
représente un défi majeur : elle requiert une expertise spécialisée, s’avere chronophage et coliteuse,
et peut introduire des biais liés a I’ interprétation subjective des experts. A 1’inverse, 1’apprentissage
non-supervisé, comme utilisé par les auto-encodeurs, explore la structure intrinseque des données
pour automatiquement découvrir des motifs latents et des décompositions naturelles, le rendant

particulierement adapté aux contextes ou celles-ci sont rares ou inexistantes.
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14 Identification des lacunes et justification d’une approche hybride

La revue des méthodes existantes révele un paysage contrasté oli chaque approche présente des

forces et limitations complémentaires :

Les méthodes algébriques traditionnelles, notamment la NMF, ont démontré leur efficacité pour
la décomposition non supervisée d’images MS. Leur principal atout réside dans I’interprétabilité
directe des composantes extraites, chaque facteur pouvant étre associé€ a un matériau ou une
caractéristique physique spécifique, essentielle pour 1’analyse de documents patrimoniaux.
Cependant, elles souffrent de limitations face a la complexité des données réelles : nécessité de
définir le rang de factorisation a priori, difficulté a capturer les relations spatiales complexes, et

capacité limitée a modéliser des phénomenes non linéaires.

A I’inverse, les modeles d’apprentissage profond, notamment les auto-encodeurs convolutifs
(CAE), excellent dans I’extraction automatique de caractéristiques complexes et la modélisation
de relations non linéaires. Leur capacité a apprendre des représentations hiérarchiques directement
a partir des données leur confere une puissance de modélisation supérieure. Néanmoins, cette
puissance s’accompagne d’un manque d’interprétabilité : les représentations latentes apprises

sont souvent opaques et difficiles a relier aux propriétés physiques des matériaux analysés.

Face a ces constats, une approche hybride combinant I’interprétabilité de la factorisation
matricielle avec la puissance d’extraction des réseaux de neurones émerge comme une solution
naturelle. En intégrant les contraintes de non-négativité garantes d’interprétabilité physique
avec les capacités de modélisation non linéaire et spatiale des CAE, il devient possible de
concevoir un modele préservant la transparence des résultats tout en bénéficiant de la richesse
représentationnelle de 1’apprentissage profond. Cette synergie permettrait de répondre aux
exigences spécifiques de 1’analyse non supervisée de documents MS : résultats interprétables
pour les experts, robustesse aux données bruitées, et fonctionnement avec des ensembles de
données limités. L'originalité de cette direction réside dans la fusion de deux paradigmes

traditionnellement distincts, ouvrant la voie au développement présenté dans le chapitre suivant.



CHAPITRE 2

APPROCHE HYBRIDE AUTOENCODEUR-FACTORISATION NMF

L’une des révolutions apportées par I’apprentissage profond est sa capacité a apprendre une
hiérarchie de caractéristiques. Plutot que d’analyser les données sur un seul niveau, un modele
profond extrait des concepts de complexité croissante a travers ses différentes couches. Les
premieres couches apprennent des caractéristiques simples et locales (des contours, des textures,
des gradients de couleur), tandis que les couches suivantes les combinent pour former des motifs
plus complexes (des parties d’objets), jusqu’a la reconnaissance d’objets entiers dans les couches
finales. Cette approche hiérarchique est directement inspirée du fonctionnement du cortex
visuel humain et permet de modéliser des relations non-linéaires et complexes, bien au-dela

des capacités d’un modele plat comme la NMF classique.

Face a ce constat, 1I’idée de rendre la NMF multicouche a émergé suivant deux paradigmes a

distinguer, tout deux pourtant désignés sous le terme «NMF profonde» :

1. La NMF profonde par factorisation en cascade : Cette premiere approche est une
extension directe du modele NMF en une structure multi-couches. La matrice obtenue a une
couche k sert de matrice d’entrée pour la factorisation a la couche & + 1, instaurant ainsi une
décomposition en cascade. Le principe repose sur une factorisation hiérarchique ou chaque
niveau de décomposition affine les représentations du niveau précédent, dans le but d’obtenir
une hiérarchie de facteurs ou les parties sont combinées pour former des touts. La matrice
décomposée peut étre la matrice d’abondance, comme Y ~ E|E,...E A ou A;_| =~ E/A;;
la matrice des signatures spectrales, comme Y ~ E;A...A2A| o0 E;_; = E;A;; ou les deux.
Toutefois, bien que hiérarchique, ce modele demeure fondamentalement une technique
de factorisation matricielle. Il nécessite un entrainement en deux phases, d’abord un pré-
entrailnement de chaque de factorisation, suivi d’une étape de «fine-tuning» apportant une
cohérence globale. Il n’integre pas nativement de mécanismes pour 1’apprentissage de
dépendances spatiales et est dépourvu de la flexibilité architecturale des réseaux de neurones

modernes, ce qui le rend moins optimal pour le traitement direct de données d’images.
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2. L’intégration de contraintes de type NMF au sein d’architectures neuronales profondes :
Cette seconde approche, plus flexible, consiste a s’appuyer sur des architectures neuronales
connexes de I’état de 1’art, telles que les auto-encodeurs, et d’y intégrer les principes de
la NMF non comme un bloc architectural, mais comme un ensemble de contraintes de
régularisation. L'objectif n’est donc pas d’empiler des modules de factorisation, mais de
contraindre un réseau puissant a reproduire des représentations interprétables similaires a la
NME. Cette contrainte se matérialise souvent par I’imposition de la non-négativité sur les
poids du modele, sur les cartes d’activation ou sur les fonctions d’activation de I’espace
latent. Le modele est alors optimisé de bout en bout (end-to-end) par rétropropagation des
gradients en respectant ces contraintes. Cette méthodologie présente des avantages clés :
elle permet d’exploiter les opérateurs convolutifs pour prendre en compte les dépendances
spatiales et offre la flexibilité d’intégrer ces contraintes dans des architectures modernes

robustes et éprouvées, bénéficiant de leur meilleure capacité de généralisation.

Une revue détaillée des différents types de NMF profondes est proposé par Chen, Zeng & Pan
(2022). Face a notre problématique ; la décomposition d’images multi-bandes de documents
historiques, le second paradigme s’avere le plus pertinent. En effet, cette tache requiert un modele
capable de généraliser et de s’adapter a la grande variabilité inhérente a ces données. Notre
objectif est de capitaliser sur la puissance et la flexibilité des réseaux de neurones convolutifs,

tout en leur injectant I’interprétabilité physique de la NMF au moyen de contraintes ciblées.

2.1 Fondements et synergies entre NMF et réseaux de neurones

Les mathématiques de 1’auto-encodeur, lorsque certaines contraintes sont imposées, ont des
caractéristiques similaires a celles de la NMF. En considérant une matrice d’entrée Y € R?*"
avec b dimensions et n pixels, un auto-encodeur peut traiter un point de données y; € R”*! en
cherchant a reconstruire §; € R?*!. Si I’on définit un nombre de neurones r dans I’espace latent
comme r < b, le modele est forcé d’apprendre une représentation simplifiée de la donnée. Il se

sert de celle-ci pour reconstruire une prédiction en sortie, permettant ainsi d’évaluer sa qualité.
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Le nombre de poids appris par une couche de neurones connectés est défini comme le produit
du nombre de neurones dans la couche précédente par le nombre dans la couche suivante. Pour
le décodeur, il s’agit donc du produit du nombre de neurones dans 1’espace latent, r, par le
nombre neurones dans la couche de sorties, 5. On peut alors noter ces poids comme une matrice
Wg € R™", de taille similaire a la matrice des composantes M € R™? dans la NMF. D’une
maniere similaire, la matrice de poids reliant I’entrée a la couche cachée est W, € R™b ou r
est le nombre de neurones dans la couche cachée. Nous pouvons alors exprimer la sortie de
la couche cachée h; = o.(W.,y;), ol o, est une fonction non-linéaire qui opere élément par

élément et ; € R™!. La Figure 2.1 illustre un modele simple de type auto-encodeur.

N
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A (r x ‘])

lVl(r><b)

Figure 2.1 La NMF vue comme un réseau neuronal

Il est alors possible de traiter tous les pixels d’une image par ce réseau de neurones pour obtenir
n vecteurs h;. On peut alors construire H” € R™"_ de taille similaire aux cartes d’abondances
A € R™. La couche finale produit alors la sortie Y = oy (W4H). Si la fonction d’activation
o4 est I'identité, et que W, et H sont tous deux non-négatifs, nous avons un auto-encodeur qui
peut étre interprété comme effectuant une NMF. Pour qu’un auto-encodeur de base effectue une
NMF standard, les contraintes suivantes doivent étre respectées (Squires, 2019) :

* La fonction d’activation o, doit produire une sortie non-négative.

e La fonction d’activation o; doit étre 1’identité.

* Les poids de W, doivent étre non-négatifs.

* Le nombre d’unités cachées dans la couche latente doit étre le méme que le rang désiré.
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Contrairement a la NMF classique ou I'optimisation est formulée a partir de la mesure de
reconstruction ; soit la divergence Kullback-Leibler, soit I’erreur quadratique moyenne, cette
formulation permet I’utilisation de différentes fonctions de cofit et I’utilisation d’optimiseur

robuste pour les réseaux de neurones, comme Adam (Kingma & Ba, 2017).

2.2 Etat de I’art des approches combinant NMF et réseaux de neurones

La fusion de la NMF avec des architectures d’apprentissage profond spécifiques a donné
naissance a une nouvelle génération de modeles hybrides, capitalisant sur les forces respectives
de chaque approche. Les réseaux de neurones convolutifs (CNN), récurrents (RNN) et les
mécanismes d’attention ont été intégrés de maniere innovante pour aborder des problemes
complexes dans divers domaines. Cependant les progres rapides et itératifs des architectures
neuronales de type auto-encodeurs, notamment appliqués au domaine du démélange HS, ont
créé une scission entre la NMF classique et ces architectures semblables a des NMF «profondes».

La Figure 2.2 illustre cette scission entre des papiers appartenant a ces deux communautés.

AE pour demélange HS

Travaux ultérieurs
NMF & NMF profonde (citations)

il
g (Guan, &,
Paatero "2012Cicnocki
\1994) 12008’

@ -
Trigeorais
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cid
200"

: Références demélange HS : Références NMF
(> 3000 citations ) (> 3000 citations )

Figure 2.2 Visualisation de la scission entre la recherche sur le démélange HS et sur la
NMF. Chaque noeud représente un papier tandis que chaque lien représente une citation.
Les travaux des deux communautés aboutissent au développement de modele AE
non-négatifs bien qu’ayant eu un développement distinct avec peu d’interactions.
Visualisation réalisée a I’aide de I’outil ResearchRabbit
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Cette scission a engendré une redondance de certains développements, créant deux «communautés»
de recherches avec peu de lien entre elles, mais qui ont abouti toutes les deux au développement
de modeles de type AE non-négatifs. C’est notamment le cas des travaux de Ngoc-Diep (2008)
et de Squires (2019) pour la NMF; ou des travaux de Palsson, Sveinsson & Ulfarsson (2022)
pour le démélange HS. Ce dernier papier propose notamment une critique comparative de
différents modeles AE développés pour le démélange HS et note que ces modeles HS performent
implicitement une NMF, sans toutefois faire de rapprochement entre les deux communautés. La
suite de cet état-de-1"art présentera donc différents modeles NMF hybrides, ainsi que différents

modeles AE non-négatifs, qui seront comparés et catégorisés de maniere interchangeable.

Le traitement des données multispectrales peut étre réalisé selon plusieurs stratégies, qui se
distinguent principalement par la maniere dont elles exploitent I’information spatiale et spectrale
contenue dans le cube de données. Trois grandes familles d’approches se dégagent, comme

illustré a la Figure 2.3, traitant les images par pixels, par bandes ou directement comme un cube.

Approche L] L] ] = ] ]

@ par pixel ! ] ! . . 1 9 1 . Entrée 1D

Approche =~
® par bande ! ! ! ! ! . Entrée 2D
crr T % BT T e
par cube o

Figure 2.3 Schématisation de trois approches pour le traitement d’un cube MS :
(a) approche traitant chaque pixel comme un vecteur spectral, (b) approche traitant
chaque bande spectrale distinctement, et (c) approche traitant une image ou des
patchs de I’'image directement comme un cube spatio-spectral
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2.2.1 L’approche par pixel

C’est I’approche la plus classique et la plus intuitive. Elle considere chaque pixel de maniere
isolée et I’analyse repose uniquement sur son vecteur spectral, qui représente I’ intensité lumineuse
a travers les différentes bandes. Chaque pixel est ainsi traité comme une signature indépendante,
ignorant toute information sur son contexte spatial (ses pixels voisins). Les auto-encodeurs
utilisés dans ce cadre sont typiquement des MLP, dont I’origine remonte aux travaux fondateurs
de Rumelhart, Hinton, Williams et al. (1985) et Bourlard & Kamp (1988). L’idée est de forcer le

réseau a apprendre une représentation compressée de la signature spectrale d’un pixel.

Dans le contexte du démélange HS, cette représentation latente est congue pour correspondre
aux abondances des matériaux purs. Les premieres applications de réseaux de neurones pour le
démélange par pixel, comme celles de Licciardi & Del Frate (2011), utilisaient des auto-encodeurs
non linéaires pour la réduction de dimensionnalité. Plus récemment, des modeles d’apprentissage
profond ont été proposés. Par exemple, Palsson, Sigurdsson, Sveinsson & Ulfarsson (2018) ont
développé un autoencodeur profond ot le décodeur est contraint pour représenter le modele de
mélange linéaire, et dont les poids correspondent aux endmembers. De mé€me, les travaux de Su
et al. (2019) proposent un réseau d’auto-encodeurs profonds (DAEN) en deux étapes : des auto-
encodeurs empilés pour initialiser les signatures spectrales, suivis d’un autoencodeur variationnel
(VAE) pour estimer simultanément les signatures et les abondances, tout en garantissant les

contraintes de non-négativité (ANC) et de somme a I’unité (ASC).

L’avantage de cette approche est sa simplicité et son colit de calcul relativement faible. Cependant,
son incapacité a exploiter la corrélation spatiale la rend sensible au bruit et moins performante

dans les scenes a forte variabilité spatiale.

2.2.2 L’approche par bande

Cette méthode traite les données en considérant chaque bande spectrale comme une image 2D
indépendante. Le traitement est donc appliqué sur chaque «canal», ce qui permet d’utiliser

des algorithmes de traitement d’images 2D traditionnels. Une stratégie proposée par Zhou,
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Hang, Liu & Yuan (2019) pour la classification, consiste a traiter les canaux spectraux
comme une séquence temporelle a I’aide d’un réseau LSTM (Long Short-Term Memory)
pour modéliser les dépendances spectrales, ajoutant une dimension spatiale aux encodeurs par
pixels. Dans le domaine de la binarisation de documents, Calvo-Zaragoza & Gallego (2019)
utilise un autoencodeur convolutif 2D pour transformer une image en une carte de probabilité

d’appartenance au premier plan ou a I’arriere-plan.

[’ avantage principal de cette approche est de pouvoir capitaliser sur des architectures 2D tres
matures et performantes. Cependant, en traitant chaque bande séparément ou séquentiellement,
elle risque de ne pas capturer efficacement les corrélations subtiles et complexes qui existent

entre les différentes bandes spectrales, qui sont pourtant au cceur de 1’analyse multibande.

2.2.3 L’approche par cube

Plus récente et souvent plus performante, cette approche exploite simultanément les informations
spatiale et spectrale. Elle analyse directement des sous-volumes 3D (appelés patchs) extraits du
cube de données. Cette stratégie permet de prendre en compte a la fois la signature spectrale

d’un pixel et les caractéristiques spatiales de son voisinage.

Cette approche est la plus naturelle pour les auto-encodeurs convolutifs. Ces modeles utilisent
des filtres de convolution capables d’apprendre des caractéristiques directement depuis le cube
de données, capturant ainsi les dépendances locales a la fois dans le domaine spatial et spectral.
L’évolution des travaux de Palsson, Ulfarsson & Sveinsson (2021) est assez emblématiques
de cette catégorie. Ils proposent un autoencodeur convolutif spécifiquement congu pour le
démélange hyperspectral. Le réseau apprend a extraire les signatures spectrales et les cartes
d’abondances en analysant des patchs 3D, ce qui le rend beaucoup plus robuste au bruit et
améliore significativement la qualité du démélange par rapport aux approches pixel par pixel.
Le modele encode un patch 3D en une série de cartes d’abondances 2D, qu’il décode pour
reconstruire le patch original. L’article de syntheése de Palsson ef al. (2022) analyse et compare

d’ailleurs plusieurs de ces modeles, soulignant la supériorité des approches spectro-spatiales.
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Cette méthode offre le meilleur compromis en exploitant toute la richesse de 1’information
disponible, tout en gardant un coft de calcul bas grace a I'utilisation de CNN. En revanche, un
de ses points faible réside dans la limitation du champ récepteur effectif du CNN. En effet, pour
que les cartes d’abondances conservent la méme résolution spatiale que 1’image d’entrée, ces

réseaux €vitent les couches de pooling, ce qui restreint leur analyse a un contexte purement local.

2.24 Analyse de I’état de I’art et perspectives

L’analyse des trois grandes familles d’approches, résumée dans le Tab. 2.1, met en évidence la
supériorité des méthodes par cube pour le traitement de données MS. En exploitant a la fois
I’information spatiale et spectrale, ces modeles, notamment basés sur des AE convolutifs, offrent

les performances les plus robustes, comme souligné par la synthése de Palsson et al. (2022).

Tableau 2.1 Tableau comparatif de différentes approches hybrides
factorisation—autoencodeur

Méthode Approche Spectral Spatial Non-local Contraintes Coiit Rang
Licciardi et al. (2011) Pixel + - - / MSE -
Liu et al. (2017) Bande + + - / Cross-entropy -
Flenner et al. (2017) Cube - + - ANC ACC -
Palsson et al. (2018) Pixel + - - ANC.’ AS.C SAD -
Parcimonie
Palsson et al. (2019) Pixel + + - ASC, ANC SAD -
. . MSE, RAE
Squires (2019) Pixel + - - ANC NRAE
Su et al. (2019) Pixel + - - ASC, ANC MSE -
Mei et al. (2019) Cube + + - / MSE -
Debain (2020) Bande - + - ANC B divergence -
Palsson et al. (2021) Cube + + - ASC, ANC SAD, MSE -
Zhao et al. (2022) Cube + + - ASC, ANC MSE -
Li et al. (2023) Cube + + - ASC, ANC SAD -
Cross-entropy
Alfaro-Meija (2023) Cube + + - ASC, ANC  Cross-entropy -
Su et al. (2023) Cube + + + ASC, Lsnc SAD -
Uniformité
Zheng et al. (2024) Cube + - - ASC, ANC SAD, Log SAD -
Su et al. (2024) Cube + + - AN.C’ ASC SAD -
Uniformité
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Cependant, une limitation majeure de ces modeles réside dans leur champ récepteur effectif limité,
souvent restreint par I’absence de couches de pooling, nécessaires pour préserver la résolution
spatiale des cartes d’abondance. Cette contrainte devient particuliecrement problématique pour
des données qui, comme les images MS de documents, possedent une dimension spatiale
importante, significativement plus grande que celle des images HS typiques (voir Fig. 0.3).
Une perspective de recherche essentielle est donc de développer des architectures capables
d’étendre ce champ récepteur pour capturer des dépendances a plus longue portée, sans pour
autant sacrifier la résolution spatiale, par exemple via I’intégration de mécanismes d’attention.
L’ approche convolutive conserve un avantage fondamental : sa capacité a traiter des images de
taille variable, y compris trés grandes, sans augmenter le nombre de parametres du modele,
garantissant ainsi un colt de calcul maitrisé. Cette scalabilit€é marque une rupture avec les
approches NMF classiques, dont la complexité dépend souvent directement de la taille des
données d’entrée. Le traitement de I’image dans son entiereté permet un suivi visuel des cartes
d’abondances durant I’entrainement, a la différence des approches par pixels ot I’image complete

n’est disponible qu’a la toute fin du processus, apres que chaque pixel unique soit traité.

Enfin une observation clef dans cet état-de-1’art, notamment formulée par Squires (2019),
est que la factorisation NMF, dans ces architectures, s’opere seulement au sein de 1’espace
latent et du décodeur. L'encodeur, quant a lui, n’est pas soumis aux mémes contraintes de
non-négativité et peut étre concu de maniere aussi complexe que nécessaire. Il peut ainsi profiter
de tous les bénéfices des architectures profondes modernes, telles que I’ utilisation de couches
de normalisation et de fonctions d’activation non linéaires. Ce mode de fonctionnement méne
naturellement a des architectures d’auto-encodeurs asymétriques, ou un encodeur profond et
puissant extrait les caractéristiques, tandis qu’un décodeur plus simple et interprétable assure la

reconstruction. Un exemple de ce type est schématisé sur la Figure 2.4.

23 Description du modele hybride proposé

L architecture du modele NMF de type autoencodeur proposé se base donc sur une structure

encodeur-décodeur asymétrique dotée d’une couche d’attention congue pour estimer des
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Figure 2.4 Schéma d’un autoencodeur asymétrique : le décodeur est contraint a
une opération NMF, laissant I’encodeur (boite noire) non contraint et modulable

caractéristiques non-locales durant I’entrainement. ’encodeur extrait une représentation riche
en caractéristiques du cube MS d’entrée, Y € RPWXb i b x w est la taille spatiale et b
est le nombre de bandes spectrales. Il géneére les cartes d’abondance A € R™*" ou chaque
bande représente les proportions relatives des signatures spectrales présents dans chaque pixel.
Le décodeur reconstruit ensuite I’image d’entrée a partir de ces abondances, en apprenant
les signatures spectrales M € R™? comme les poids d’une convolution. Un apercu de cette

architecture hybride 1égere est illustré dans la Figure 2.5, traitant I’exemple d’'un document MS.

A AU
g Signatures Spectrales A
F s A ¢
i

Bloc ( ASC & ANC
~ =——b Conv2D —b . =$ Conv2D =——p Conv2D —> Decoder
d'Attention

Josen
iy

o | e |
Image MS N Image MS
d'entrée ... Cartes d’Abondances Reconstruite

A

Figure 2.5 Schéma de I’architecture hybride. En bleu des convolutions dites
«depthwise», en vert des convolutions dites «pointwise»
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2.3.1 Encodeur

L’encodeur se compose de quatre couches séquentielles congues pour traiter I’ensemble des
bandes MS simultanément. Contrairement aux approches existantes Palsson et al. (2021) qui
adoptent une stratégie basée sur des patchs, notre encodeur opere sur I’image entiere, extrayant
des relations utiles entre 1’ensemble des pixels. Il commence par une couche de convolution 2D
employant des noyaux de tailles 3 X 3. Les cartes de caractéristiques résultantes sont acheminées
vers un bloc d’attention, qui affine la représentation des caractéristiques en mettant I’accent sur
les régions les plus informatives (voir Section 2.3.1.1). L’encodeur se termine par une seconde
couche 2D, similaire a la premiere, possédant ¢ = 4 X b noyaux, suivie d’une convolution
ponctuelle (i.e., convolution avec un noyau 1 X 1 agissant dans la profondeur), créant un motif
d’expansion-compression qui capture les dépendances spatiales et inter-canaux. La convolution
ponctuelle permet de réduire la dimensionnalité en terme de profondeur (i.e., la dimension

spectrale), afin de produire les r cartes d’abondances.

2.3.1.1 Bloc d’Attention Non-local

Le cceur du bloc d’attention proposé est adapté du bloc Large Kernel Attention (LKA) (Guo, Lu,
Liu, Cheng & Hu, 2023), qui est congu pour améliorer la représentation des caractéristiques en
capturant les relations locales et globales entre les pixels des images MS. Le module commence
par traiter la carte de caractéristiques d’entrée via une couche de convolution 2D standard
«DW-Conv» avec un noyau de taille 5x5 pour extraire les caractéristiques spatiales locales.
Celui-ci est suivi d’une convolution dilatée «DW-D-Conv» avec un noyau de 7x7 et un stride
de 3, qui étend le champ récepteur sans augmenter le nombre de parametres (voir Eq. 1.8),
capturant un contexte plus large en traitant chaque canal indépendamment. Une convolution
ponctuelle combine ensuite les caractéristiques de tous les canaux, affinant la représentation
spectrale. La carte de caractéristiques résultante est multipliée élément par élément avec la carte
de caractéristiques d’entrée originale, agissant comme un mécanisme d’attention, mettant en
évidence les régions informatives tout en supprimant les caractéristiques moins pertinentes.

Enfin, une convolution ponctuelle, avec le méme nombre de canaux de sortie que d’entrée, affine
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davantage les caractéristiques pour produire la sortie finale. Ce bloc d’attention est illustré sur la

Figure 2.6.

] BXNXH*XW
+
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BN + ELU

1x1 - Conv

Ceur LKA X —

Ixl,d=1 I
1x1- Conv

7X7,d=3 I
DW-D-Conv

5x5,d=1 I
DW-Conv

BN + ELU

1x1 - Conv

BXNXHXW

Figure 2.6 Visualisation du bloc d’attention LKA

2.3.2 Decodeur

2.3.2.1 Signatures spectrales comme poids de convolution contrainte

Contrairement aux modeles utilisant des structures encodeur-décodeur symétriques comme Alayrac,
Carreira & Zisserman (2019), notre architecture integre un décodeur 1éger et non négatif qui
préserve I’interprétabilité de ses composantes apprises. Ce décodeur reconstruit les b bandes
spectrales d’entrée a partir des r cartes d’abondance A en utilisant une convolution ponctuelle
avec des poids contraint non négatifs et non biaisée. Ces poids non négatifs de taille r X b

constituent la matrice des signatures spectral apprise M.
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2.3.2.2 La factorisation tripartite (NMF a 3 facteurs) : flexibilité et potentiel

A la maniere de Ding et al. (2008) pour la NMF ou de Su et al. (2023) pour le démélange HS,
notre architecture inteégre une matrice d’interaction S. Le role de cette matrice est d’émuler
une tri-factorisation NMF comme Y ~ MSA. Pour cela, les r cartes d’abondance produites par
I’encodeur sont d’abord modulées par cette S, qui est une matrice non négative de taille » X r
initialisée comme la matrice identité (i.e., I,.). L’introduction de cette matrice poursuit un double

objectif :

1. Modéliser la variabilité spectrale : Elle permet de capturer des interactions complexes
et non linéaires entre les différentes composantes. Cela est crucial pour adresser des
phénomenes comme la variabilité de la signature spectrale d’'un méme matériau en fonction
de son état (p. ex., son niveau d’humidité ou son état de dégradation).

2. Relacher les contraintes d’optimisation : La matrice S découple 1’échelle des signatures
spectrales M de celle des cartes d’abondance A. Ce découplage est essentiel dans des cas ou
I’intensité physique d’un signal ne correspond pas a sa proportion relative. Par exemple, dans
un document, le texte a souvent une réflectance bien plus faible que celle du papier. Sans la
matrice S, la contrainte de somme a 1’unité forcerait la carte d’abondance du texte a étre
treés activée. En pondérant cette abondance, S permet au décodeur d’estimer correctement la
signature spectrale du texte par rétropropagation, sans que les poids de cette signature ne

soient artificiellement tirés vers zéro.

La conception asymétrique optimisée du décodeur réduit considérablement les exigences de
calcul et le nombre total de parametres ; par exemple, les parametres totaux du décodeur totalisent
seulement r(r + b) parametres pour une image quelque soit sa résolution spatiale. Enfin, les
deux matrices S et M sont toutes deux contraintes a €tre non négatives et sont mises a jour par

rétropropagation.
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233 Ajout de contraintes (non-négativité, somme a I’unité, orthogonalité)

Pour assurer le respect des contraintes physiques des abondances, plusieurs approches peuvent
étre envisagées au niveau du décodeur, telles que 1’utilisation de fonctions d’activation comme
ReL U, la valeur absolue, ou encore la fonction Softmax (Palsson et al., 2021). Parmi celles-ci, la
fonction Softmax se distingue comme la solution la plus adaptée. En effet, elle est différentiable
et garantit de maniere élégante le respect a la fois de la contrainte de non-négativité (ANC) ainsi
que celle de la somme a I'unité (ASC). Nous utilisons une fonction Softmax dotée d’un parametre
de température 7, ce qui offre une flexibilité supplémentaire pour controler la distribution des
coefficients d’abondance. L’ équation s’écrit comme suit pour chaque pixel i et chaque abondance

k parmi r cartes, ol a; est le logit d’entrée :

exp(ai/T)
=1 exp(ar/T)

Softmax(a;) = (2.1)

L ajustement de I’hyperparametre T permet de moduler la dispersion des cartes d’abondance. Une
température élevée conduit a des abondances plus douces et réparties, adaptées au démélange de
spectres oll les matériaux sont intrinséquement mélangés. A I’inverse, une température faible
pousse les probabilités vers des distributions quasi-binaires, ce qui est particulierement pertinent

pour des tiches comme la segmentation de documents textuels qui requierent des pixels purs.

Enfin, pour améliorer la séparabilité des matériaux extraits, une contrainte d’orthogonalité
est imposée sur la matrice des abondances A. Cette contrainte a démontré son efficacité pour
accentuer la distinction entre les différentes composantes, notamment dans le contexte de
I’analyse de documents (Rahiche et al., 2019; Rahiche & Cheriet, 2022). La régularisation par

I’orthogonalité est formulée comme suit :

Lorin = ||AAT — 1|3 (2.2)
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ou || - ||; désigne la norme L, I, est la matrice identité de taille X r, et r est le nombre de cartes
d’abondances r. Cette pénalité minimise la corrélation linéaire entre les cartes d’abondances

estimées, décourageant ainsi la représentation d’'un méme matériau sur plusieurs composantes.

234 Fonction de coiit globale

Contrairement a la factorisation en matrices non-négatives (NMF) classique, ou I’optimisation
est généralement contrainte a une mesure de reconstruction spécifique, notre approche basée
sur un réseau de neurones offre une plus grande flexibilité. La fonction de coft totale, que le
modele cherche a minimiser, est une combinaison linéaire de trois termes principaux. Chacun
de ces termes vise un objectif spécifique, permettant d’équilibrer la qualité de la reconstruction
spatiale, la fidélité spectrale et la décorrélation des composantes extraites. La fonction de colit

globale L7, est définie comme suit :

Lrotal = Lsap + WLuse + AorinLorths (2.3)

ol Ay et A, sont des hyperparametres de pénalisation ajustés empiriquement (voir la

section 2.4.4 pour les valeurs détaillées).

Le premier terme, I’erreur quadratique moyenne (Mean Square Error, MSE), évalue la qualité
de la reconstruction pixel par pixel. Il mesure la différence entre I’image multispectrale d’entrée

Y et I’image reconstruite Y :

b

i Dy = Yin)?, (2.4)

j=1 I=1

1
hwb

1

h
Luyse =
-1

ol &, w, b sont les dimensions (hauteur, largeur, nombre de bandes) de I’image.

Pour compléter la MSE, nous utilisons la distance angulaire spectrale (Spectral Angle Distance,
SAD), qui est équivalente a la similarité cosinus. L’avantage principal de cette métrique est son
insensibilité aux variations d’illumination, car elle se concentre sur la forme de la signature

spectrale plutot que sur son intensité absolue. Suivant I’approche de Palsson et al. (2022), ce
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terme mesure la similarité spectrale entre le vecteur spectral d’un pixel d’entrée et celui du pixel

de sortie correspondant :

(i, Yi)

Lsap(Yi;,Yij) = acos .
DGR aAl

(2.5)

ou Y;; et Y;; sontrespectivement les vecteurs spectraux d’entrée et de sortie pour le pixel a la

position (i, j).

Enfin, pour garantir I’indépendance des cartes d’abondance extraites, nous intégrons le terme
de régularisation par 1’orthogonalité L, tel que défini dans I’équation (2.2). Comme dit
précédemment, cette contrainte pénalise la corrélation liné€aire entre les différentes cartes
d’abondance, favorisant ainsi une décomposition ou chaque composante est distincte et représente

un élément unique.

Cette fonction de colit multi-termes permet ainsi une optimisation équilibrée qui prend en compte
différent facteurs :

*  Luyse force le modele a reconstruire I’intensité exacte de chaque pixel.

*  Lgap force le modele a préserver la fidélité spectrale (la nature du matériau).

e  L,n pousse le modele a chercher une indépendance spatiale des différentes composantes.

2.3.5 Stratégie d’apprentissage et d’optimisation

Une force majeure de I’architecture proposée, par rapport aux approches algorithmiques
traditionnelles, est sa capacité a tirer parti d’optimiseurs avancés issus de 1’apprentissage
profond. En conséquence, I’optimisation du modele est réalisée a 1’aide de 1’optimiseur
Adam (Kingma & Ba, 2017), une méthode de descente de gradient stochastique particulierement
efficace pour I’entrainement des réseaux de neurones. Adam se distingue en calculant des taux
d’apprentissage adaptatifs pour chaque parametre, en se basant sur des estimations des moments

du premier et du second ordre des gradients. Cette approche flexible est bien adaptée a notre

fonction de colit composite, permettant un ajustement robuste et efficace des poids du réseau.
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La procédure d’entrainement est, elle, régulée par un mécanisme d’arrét anticipé (early
stopping) afin de prévenir le surapprentissage et de conserver le modele le plus performant.
Plus spécifiquement, I’entrainement est configuré pour un maximum de nombre d’époques.
L’arrét anticipé est déclenché si aucune amélioration de la fonction de cofit n’est observée apres
une période d’époques consécutives, ou patience. Cela signifie que le modele ne parvient plus
a trouver une représentation des abondances plus orthogonale tout en conservant une bonne
reconstruction du cube d’origine. Ce plateau dans I’optimisation est conceptuellement similaire
aux criteres de convergence qui gouvernent I’arrét des algorithmes itératifs de la NMF classique,

lorsque les mises a jour n’apportent plus de gain significatif ou qu’une tolérance seuil est atteinte.

24 Validation de I’architecture hybride

Afin de valider les bénéfices de 1’architecture neuronale hybride proposée, une série d’ablations
et d’expériences ont ét€ menées pour la comparer a différentes implémentations de la NMF.
Cette section s’articule autour de quatre axes principaux : le temps de calcul, la qualité de la

décomposition, 1I’apport du contexte spatial et I’influence de I’orthogonalité et de la température.

24.1 Temps de calcul

Afin d’évaluer I’efficacité de notre approche, nous avons mesuré son temps d’exécution sur
des cubes de données de taille croissante et I’avons comparé a plusieurs variantes de la NMF.
Les méthodes de référence incluent : EM-ONMEF (Pompili, Gillis, Absil & Glineur, 2014),
ONMF (Yoo & Choi, 2010b), et ONPMF (Pompili et al., 2014), trois NMF orthogonales
concues pour le clustering, psNMF (Hinrich & Mgrup, 2018), un modele de NMF probabiliste
parcimonieux, MA-ONMF (Rahiche et al., 2019), un modele NMF imposant 1’orthogonalité par
optimisation riemannienne sur variété de Stiefel ; et VBONMF (Rahiche & Cheriet, 2022), une
approche bayésienne avec contrainte d’orthogonalité, intégrant la détermination automatique de
la pertinence (ARD). Enfin nous avons aussi comparé a une NMF classique par mises a jour
multiplicatives, avec I’implémentation optimisée proposée par la librairie Scikit-learn (Pedregosa

et al., 2011), servant de référence pour une NMF sans contrainte.
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Notre méthode
105 { —@— NMF basique
EM-ONMF
psNMF
VBONMF

Temps (secondes)

8x50x80 8x65x200 8x200x280 8x375x523 8x1627x523 8x3069x1202
Taille du cube

Figure 2.7 Comparaison de I’évolution du temps de calcul pour 100 itérations en
fonction de la taille du cube de données pour plusieurs algorithmes de NMF de 1’ état
de I’art et notre méthode. L’ axe du temps suit une échelle logarithmique

La Figure 2.7 illustre les résultats de cette analyse comparative. Les méthodes ont été évaluées sur
100 itérations, et ont été lancées dix fois pour chaque volume afin de garantir la reproductibilité
des résultats. Les résultats représentés en pointillés correspondent aux valeurs extrapolées,
obtenues par interpolation log-log, afin d’estimer les gains de temps pour des volumes de
données plus importants. On observe que les variantes de la NMF intégrant des contraintes,
qu’elles soient orthogonales comme EM-ONMEF, parcimonieuses comme psNMF ou bayésiennes
comme VBONME, présentent des temps de calcul significativement plus élevés que la NMF
basique, avec une croissance souvent supérieure a linéaire. Pour le plus grand cube de données,
de dimensions 8 x 3069 x 1202, notre méthode ne requiert que 37 secondes. En comparaison, la
NMF orthogonale EM-ONMF est la moins performante, requérant environ 99788s estimées,
soit pres de 28h. Ces résultats soulignent 1’avantage computationnel significatif de la méthode
proposée, la rendant particulierement adaptée au traitement de données MS/HS volumineuses

ou la rapidité d’exécution est un critere essentiel.

Une régression par loi de puissance a permis d’estimer la complexité empirique de chaque
méthode en fonction du volume de données. EM-ONMEF présente une croissance clairement sur-

linéaire, avec O(n'*?). Les méthodes psNMF, VBONMF et MAONMEF suivent une croissance
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proche de la linéarité, avec des exposants respectifs de (n%-9%),(n%7) et (n!-%%). La NMF basique
affiche aussi une croissance linéaire, O (n'%?), mais reste néanmoins nettement plus rapide pour

chaque volume étudié, avec un temps de calcule de 43s pour le plus grand cube.

En comparaison, notre méthode présente une croissance nettement plus lente, O (n°-3%) < O(\/n).
Cette complexité sous-linéaire s’explique par I’'implémentation optimisée des CNN, qui exploite
efficacement 1’accélération GPU pour garder des temps de calculs faibles, tout en permettant
I’intégration de contraintes similaires a celles des méthodes plus coliteuses. Le parallélisme du
GPU est moins bien exploité sur les petites données, avec un cofit légerement plus élevé pour le
plus petit cube, de ’ordre de 1.85s. Ces colits fixes sont néanmoins largement amortis sur les
gros volumes, ol notre méthode devient alors particulicrement rapide et extensible. L approche
proposée constitue ainsi un compromis optimal entre expressivité, intégration de contraintes
et performance de calcul, la rendant particulierement adaptée a I’analyse de grands volumes
de données des images MS (p. ex., le cube moyen pour le jeu de donnée MStex de document

historique est de I’ordre de 8 x 1627 x 523).

24.2 Qualité de la décomposition

Afin d’évaluer la pertinence de notre approche, nous avons mené une étude qualitative sur
la qualité de la décomposition obtenue. L’objectif est de vérifier visuellement la capacité des
différentes méthodes de factorisation de matrices non-négatives (NMF) a séparer distinctement
les différents matériaux constituant une image de document ancien. Une décomposition de haute
qualité doit isoler chaque composant, tel que le texte, 1’arriere-plan ou le support papier, dans
une matrice d’abondance distincte, sans chevauchement ni résidu d’information provenant des
autres composantes. Cette analyse visuelle permet de juger de I’efficacité des contraintes de
régularisation, notamment I’orthogonalité, reconnue pour éliminer la redondance et produire

une séparation physiquement interprétable.

La Figure 2.8 présente une comparaison visuelle des résultats de décomposition de différentes

méthodes présentées précédemment. L’ analyse met en évidence des différences significatives
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(a) Texte principal (b) Arriére-plan (c) Second composant (d) Support papier

Proposée MA-ONMF ONPMF EM-ONMF  psNMF

Figure 2.8 Comparaison qualitative de la décomposition obtenue par différentes
méthodes NMF sur une image de document ancien. Chaque ligne représente une
méthode et chaque colonne une composante extraite

dans la qualité de la séparation. La méthode NMF de base produit une décomposition plus simple
ou les composantes sont fortement mélangées. C’est aussi le cas pour la méthode probabiliste
psNMF ainsi que pour la méthode ONME. A I’exception de cette derniere, on peut observer que
I’introduction de contraintes d’orthogonalité améliore sensiblement la discrimination entre les
différents matériaux. Les trois méthodes, ONPMF, EM-ONMEF et surtout MA-ONMF, permettent

une interprétation directe des composantes extraites, malgré certaines régions incertaines.

La méthode proposée suit aussi cette observation, en fournissant une décomposition nette et
interprétable. Elle parvient a isoler chaque matériau dans une composante distincte, ou le texte
est clairement extrait, le papier rendu homogene, et I’arriere plan décomposé en deux composants
clairs et distincts. Cette performance est le fruit de la synergie entre la régularisation orthogonale
et I'utilisation de la fonction softmax avec température, qui force le modele a effectuer un
«choix franc» lors de 1’assignation des pixels. La décomposition résultante est physiquement

interptétable. Cette méthode est notamment la seule a séparer clairement le texte du tapis de
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découpe visible en arriere plan (i.e., composants (b) et (c)). A I'inverse de toutes les méthodes
NMF présentées, 1I’approche hybride est la seule a prendre en compte les relations spatiales entre
les pixels afin de produire les cartes d’abondances. Ce contexte spatial permet d’apporter une

cohérence locale entre les zones identifiée, son apport est donc détaillé dans la section suivante.

243 Apport du contexte spatial

Afin de quantifier rigoureusement 1’impact du module d’attention a grand noyau (LKA) sur la
portée spatiale de notre encodeur convolutionnel, un protocole expérimental a été mis en place
pour comparer un modele de référence a une variante intégrant un bloc LKA. Dans un premier
temps, le champ récepteur théorique (TRF) peut étre déterminé en appliquant I’équation (1.8).
Pour le modele de référence, la succession des couches convolutionnelles aboutit a un TRF de
5% 5, tandis que pour le modele expérimental, 1’insertion du bloc LKA , qui contient notamment

une convolution dilatée avec un noyau effectif de taille 19 (K=7,D=3), étend le TRF a 27 x 27.

Le champ récepteur effectif (ERF) est ensuite mesuré empiriquement en moyennant sur 150
échantillons la norme L1 du gradient du neurone de sortie central rétropropagé jusqu’a I’entrée.
Pour garantir une initialisation fonctionnelle des poids, les deux architectures ont été pré-
entrainées sur une tache d’auto-reconstruction. Une cartographie comparative des topologies de

I’ERF est alors obtenue pour les deux configurations : avec ou sans bloc d’attention LKA.

Baseline
(ERF:~5x5)

10 | -e- Baseline - Kernel=s

Avec LKA
(ERF : ~ 27 x27) P i Expansion: 4.3%

Influence normalisée

Position du pixel

Figure 2.9 Visualisation comparative des champs récepteurs effectifs pour le modele
sans LKA (gauche) et avec LKA (centre). Le graphique (droite) illustre une coupe
permettant du champ réceptif, permettant de mieux quantifier cette augmentation
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La Figure 2.9 montre des différences tres nettes entre les deux modeles. Le modele de contrdle
sans LKA a un champ récepteur effectif trés concentré, ce qui correspond bien a son petit
champ théorique de 5 x 5 et confirme qu’il est limité & un contexte local. A I’inverse, I’ajout du
module LKA agrandit fortement I’ERF pour atteindre 27 x 27 pixels, en accord avec le calcul
théorique. Le graphique de coupe confirme cette observation : le modele de base présente un
pic tres étroit, tandis que le modele LKA affiche une courbe beaucoup plus étalée, montrant
que les pixels lointains peuvent influer sur la sortie du modele. Ces résultats expérimentaux
illustrent I’expansion spatiale prédite par les calculs théoriques, agrandissant le champ récepteur
d’un facteur 4.3 permettant d’agréger I’information contextuelle sur une plus grande échelle,
et donc une meilleur compréhension globale de I’image. Cette analyse de I’ERF s’appuie sur
un pré-entrainement sur du bruit aléatoire afin d’éviter tout biais. Elle n’évalue pas ce que le

modele apprend, mais illustre plutdt sa capacité a chercher de 1’information spatiale.

Figure 2.10 Illustration de I’importance du contexte sur une image du dataset
Mstex : un patch de 5 x 5 (gauche) ne montre qu’une texture ambigué, tandis que
le patch de 27 x 27 (droite) révele la structure du caractere textuel entier

Pour démontrer plus concretement 1I’impact d’un champ réceptif plus étendu, la Figure 2.10
compare deux extraits d’une méme image de la base de donnée Mstex. A gauche, la taille du

patch correspond au champ récepteur du modele de base, qui ne capture qu’un fragment de
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texture non identifiable. L’information est trop locale pour étre interprétée. A droite, la taille
du patch, qui représente la portée du modele avec LKA, révele la lettre M dans son intégralité.
Cette comparaison simple illustre 1’avantage du module LKA. Ce dernier permet au réseau une
fenétre suffisamment grande pour accéder a un contexte sémantique pertinent permettant de
reconnaitre des caracteres textuels. Le modele est alors libre d’identifier les relations qui lui

sembles pertinentes afin de segmenter I’image proposée.

Image d’entrée

Texte

Eléments
secondaires

(a) 243 (b) Z80 (c) 802 (d) 292

Figure 2.11 Visualisation de cartes d’attention en sortie du bloc d’attention
LKA pour différentes images de documents. La premiere rangée montre les
images d’entrée, tandis que les rangées suivantes illustrent certaines
caractéristiques sur lesquelles le modele porte son attention

La Figure 2.11 illustre concrétement cette capacité d’attention appliquée aux images de document.
La premiere rangée expose les images d’entrée, tandis que les suivantes montrent plusieurs
cartes d’attention mettant en valeur certaines caractéristiques clefs lors de I’apprentissage du
modele. On observe que pour la catégorie « Texte », I’attention se concentre précisément sur

les caracteres manuscrits. Pour la classe « Papier », le modele isole le support du document, et
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enfin, pour les « Eléments secondaires », il parvient a identifier des objets distincts comme les

tampons d’archive, les encres secondaires ou encore 1’ arriere-plan.

Cette visualisation démontre que le modele n’utilise pas seulement son large champ réceptif
pour voir plus loin, mais qu’il apprend également a utiliser le contexte pour mieux discriminer
les différents éléments spécifiques. Cette compétence est essentielle pour une segmentation

sémantique précise.

244 Influence de ’orthogonalité et de la température

Les hyperparametres de régularisation jouent un role déterminant dans la qualité de la
décomposition spectrale obtenue par notre méthode. Deux parametres clés contrdlent le
comportement du modele : la température softmax 7y, rymax, qui régit la netteté des cartes
d’abondances, et le coeflicient de régularisation orthogonale A,,;,, qui impose 1’indépendance
spatiale entre les composantes extraites. Pour analyser leur influence respective et leurs
interactions, nous avons conduit une étude ablative sur le document manuscrit historique

présenté précédemment.

() Tsottmax = 0.5 & Aoty = 0.05 (b) Tootmax = 1.5 & Aorn = 0.05 (0) Tsoftmax = 1.5 & Aorn = 0.001 (d) Tootmax = 0.5 & Aorn = 0.001
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Figure 2.12  Influence des parametres de tempé€rature Ty, fymax €t d’orthogonalité A,y
sur la décomposition. Une température élevée combinée a une faible régularisation
orthogonale produit des cartes d’abondances a forte entropie, tandis qu’une température
basse avec une forte pénalité orthogonale favorise une séparation nette des composantes

La Figure 2.12 présente les résultats de décomposition pour quatre configurations représentatives,
obtenues en croisant deux valeurs de température (Ty, fimax € {0.5, 1.5}) avec deux niveaux de

pénalité orthogonale (4, € {0.001,0.05}). Cette grille expérimentale permet d’observer le
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comportement du modele, avec des décompositions pouvant étre plus diffuses ou extrémement

segmentées en fonction du choix des parametres.

Chaque configuration produit quatre cartes d’abondances correspondant a des composantes
physiques différentes. Bien que la décomposition (d) soit plus redondante, en ayant deux
composants représentant le papier et ne séparant pas 1’arriere plan en deux composantes, elle
arrive a identifier le texte, visible par transparence, écrit a ’arriere du papier. Il est alors
intéressant de noter que le choix de ces parametres peut €tre adapté en fonction des besoins.
Dans le cadre de notre étude, des composantes distinctes et directement interprétables sont
préférées afin d’obtenir des segmentations nettes des images multispectrales. Les parametres

seront donc fixés suivant le scénario (a) avec Ty frmax = 0.5 €t Ay = 5 X 1072

2.5 Limites du modéele et problématique du rang

Malgré ses avantages significatifs en terme de temps de calcul et de qualité de décomposition,
notre approche partage une limite fondamentale avec la NMF classique et les différentes
méthodes d’apprentissage machine (voir Tab. 2.1) : la nécessité de fixer manuellement le rang
r, soit le nombre de sources a extraire. Ce prérequis est le principal obstacle a une automatisation
complete du modele, et surtout, a son application a des données réelles ou le nombre de matériaux
est inconnu a priori. Le choix du rang est pourtant une tiche critique, une mauvaise estimation
conduit inévitablement a une sous-représentation (rang trop faible) ou a une sur-segmentation
des sources (rang trop élevé), compromettant la fiabilité de la décomposition. Pour adresser cette
problématique et permettre une analyse de données entierement autonome, le chapitre suivant

introduit un mécanisme d’estimation automatique du rang.






CHAPITRE 3

MECANISME DE SELECTION AUTOMATIQUE DU RANG

La détermination du rang, soit le nombre optimal de composantes latentes dans un modele, est
une étape fondamentale et souvent complexe dans de nombreuses méthodes d’apprentissage
automatique et de traitement du signal, tel que la NMF. Que ce soit pour déterminer le nombre de
sujets dans un corpus de textes, le nombre de sources dans une scene observée, ou la complexité
intrinseque d’un réseau de neurones, le choix du rang r a un impact direct sur la capacité du
modele a généraliser, son interprétabilité et sa performance. Un rang sous-estimé peut conduire
a un modele trop simple, incapable de capturer la richesse des données (sous-apprentissage),
tandis qu’un rang sur-estimé peut entrainer un sur-apprentissage, ou le modele s’ajuste au
bruit et perd son pouvoir de généralisation, tout en augmentant inutilement le cofit de calcul.
L’importance d’une sélection de rang autonome, c.-a-d. d’'une méthode capable de déduire le
rang optimal directement a partir des données sans supervision manuelle, est donc évidente. Ce
chapitre explore d’abord les approches classiques pour cette tache avant de présenter une méthode

dynamique combinant I’élagage et le principe de la Longueur de Description Minimale.

3.1 Revue des méthodes existantes pour la détermination rang, soit le nombre de
composantes

La question de la sélection du modele, et plus particulierement du choix de sa dimensionnalité,
est un probleme classique toujours non résolu. Les approches pour y répondre se divisent
principalement en deux grandes familles. La premicre, celle des méthodes de sélection a
posteriori, requiert d’entrainer plusieurs modeles avec diftérents rangs pour ensuite choisir
le meilleur en appliquant un critére externe. A I’'opposé, la seconde famille regroupe les
méthodes de sélection en ligne (ou online), qui visent a déterminer le rang optimal au sein d’un
unique processus d’apprentissage, généralement en partant d’un modele sur-paramétré dont la

complexité est ajustée dynamiquement durant I’entrainement.
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3.1.1 Méthodes de sélection du rang a posteriori

3.1.1.1 Criteres statistiques basés sur la théorie de I’information

Ces méthodes formulent la sélection du rang comme un probléme d’optimisation cherchant a
équilibrer la fidélité du modele aux données et sa complexité. L’idée centrale est de pénaliser les

modeles plus complexes pour éviter le sur-apprentissage.

Le Critere d’Information d’Akaike (AIC) est I’'un des plus connus (Akaike, 1974). 1l est défini
par :

AIC =2k —21In(L) (3.1

ol k est le nombre de parameétres du modele (directement 1ié au rang ) et L est la vraisemblance
maximale du modele. Dans un cadre général, I’AIC est un outil tres apprécié dont 1’avantage
majeur est sa capacité a sélectionner le modele offrant la meilleure performance prédictive, une
qualité qui devient optimale avec de grands volumes de données. Cependant, sa pénalité pour la
complexité d’un modele est relativement faible, ce qui crée une tendance naturelle a favoriser
des modeles plus complexes. Ce défaut est particulierement handicapant lorsqu’il existe plus
d’un bon modele candidat, I’AIC étant alors reconnu comme ni efficace ni convergent pour

identifier la structure la plus simple (Zhang, Yang & Ding, 2023).

Pour remédier a cela, le Critere d’information d’Akaike corrigé (AICc) a été développé. L'AICc
introduit un terme correctif d’ordre deux qui renforce la pénalisation de la complexité du modele,
en particulier lorsque le nombre d’observations est faible par rapport au nombre de parametres.

La formule de ’AICc est la suivante :

2k (k +1)

AICc = AIC + ——=
¢ +n—k—1

(3.2)

Ce terme correctif supplémentaire est d’autant plus important que n est petit. Lorsque la taille

de I’échantillon n devient grande, le terme de correction tend vers zéro et I’AICc converge
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vers I’AIC. Une regle empirique largement adoptée suggere d’utiliser I’AICc chaque fois que le

rapport entre la taille de I’échantillon et le nombre de parametres, n/k, est inférieur a 40.

Le Critere d’Information Bayésien (BIC), ou critere de Schwarz, propose une pénalité plus
forte pour la complexité du modele, surtout pour les grands ensembles de données (Schwarz,
1978) :

BIC = kIn(n) —21In(L) (3.3)

ou n est le nombre d’échantillons de données. De maniere générale, le critere BIC est plus
parcimonieux que ’AIC car il pénalise plus séverement la complexité des modeles, ce qui limite

la tendance au surajustement souvent associée a ’AIC.

Le principe de la Longueur de Description Minimale (MDL), introduit par Rissanen (1978),
est une autre approche puissante issue de la théorie de I’information. Il postule que le meilleur
modele est celui qui permet la compression la plus courte des données. La longueur de description
totale est la somme de la longueur du code pour décrire le modele lui-méme, L(H), et la longueur
du code pour décrire les données étant donné le modele, L(D|H). Le BIC est souvent considéré
comme une approximation du MDL. Des travaux récents continuent d’explorer des variantes
du MDL, par exemple en utilisant la Vraisemblance Maximale Normalisée (NML) pour des

factorisations non-négatives (Ito, Oeda & Yamanishi, 2016).

Cependant, les approches basées sur le MDL nécessitent généralement une sélection du rang
a posteriori, apres avoir exécuté plusieurs factorisations NMF avec différents rangs (Squires,
Priigel-Bennett & Niranjan, 2017). Ce processus implique de comparer la longueur totale de
description pour chaque rang candidat afin de choisir celui qui la minimise. Bien que rigoureux,
il peut étre coliteux en temps de calcul, car il ne permet pas une estimation directe du rang au

cours de ’optimisation elle-méme.
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3.1.1.2 Méthodes basées sur la stabilité des solutions et I’erreur de reconstruction

Une approche plus heuristique mais tres intuitive consiste a examiner la courbe de I’erreur de
reconstruction en fonction du rang. En théorie, cette courbe devrait présenter un «coude» (ou
"elbow" en anglais) au niveau du rang optimal, apres lequel 1’ ajout de nouvelles composantes
n’apporte qu’ un gain marginal (voir Fig. 3.1). Cependant, le coude est souvent ambigu et difficile
a identifier de maniere automatique avec des données réelles, pouvant rendre cette méthode tres
subjective. L'erreur de reconstruction seule n’est alors pas suffisante pour juger de I’optimalité
d’une décomposition, comme illustrée sur la Figure 3.1, ou les rangs supérieurs continuent

d’améliorer cette derniere malgré un rang optimal synthétique fixé a trois composants.

—8— Erreur de reconstruction
— = Rang optimal

Erreur de reconstruction
= [ N N w w
o (5] o w o w

o
[

o
<)

Rang (r)

Figure 3.1 Méthode du coude pour la sélection du rang pour une NMF sur
des données synthétiques. L’erreur de reconstruction diminue rapidement
jusqu’au coude, puis se stabilise. Le rang optimal correspond au point
d’inflexion ou I’amélioration devient négligeable avec 1’ajout de composantes,
permettant d’équilibrer la reconstruction et la complexité du modele

Pour surmonter cette subjectivité, des méthodes basées sur la stabilité ont été développées.
L’idée fondamentale est qu'un modele avec le rang correct devrait produire des solutions
stables si les données d’entrée sont légerement perturbées. L’approche de Stability Selection
Meinshausen & Biihlmann (2010), formalise cette idée en entrainant le modele sur de nombreux

sous-échantillons des données et en ne retenant que les composantes (ou variables) qui
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apparaissent de maniere stable a travers les différentes exécutions. Cette approche suggere un
rang en analysant la variabilité des solutions obtenues a partir de différentes initialisations
aléatoires, postulant que le rang optimal correspond a une région de plus grande stabilité des
solutions. En revanche, cette méthode nécessite le lancement de plusieurs itérations d’un méme

modele pour différents rangs, demandant des cofits de calculs importants.
3.1.2 Méthodes de sélection du rang en ligne

3.1.2.1 Inférence bayésienne et Détermination Automatique de la Pertinence (ARD)

L’ approche bayésienne formule la sélection du rang comme un probléeme d’inférence statistique,
unifiant I’estimation des parametres et le choix de la complexité du modele. La Détermination
Automatique de la Pertinence (ARD) est un cadre particulierement puissant a cet égard,
notamment mis en ceuvre dans les modeles de NMF variationnels (p. ex., VBONMF par
Rahiche & Cheriet (2022)). Le principe fondamental de ’ARD consiste a placer un a priori
hiérarchique sur les parametres du modele. Typiquement, chaque composante latente k (par
exemple, la colonne my de la matrice de dictionnaire) est gouvernée par un hyperparametre de
précision A; (ou Ax =1/ 0'13) . On assigne un a priori gaussien de moyenne nulle aux poids de la

composante, et un a priori Gamma I" sur son parametre de précision
p(m| ) = N (my [0, 2;'T) (3.4)

p(Ax) = I'(Ak|ao, bo) (3.5)

Durant I’apprentissage par inférence variationnelle, le modele optimise les distributions de
ces hyperparametres. Si une composante k est jugée superflue pour expliquer les données, la
valeur attendue de sa précision E[A;] sera poussée vers I’infini. En conséquence, la distribution
a posteriori de my se concentre massivement a zéro, ce qui équivaut a une suppression de la
composante associée. Le rang effectif du modele est alors simplement le nombre de composantes

dont la pertinence reste finie.
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Cette méthode, initialisée avec un nombre de composant initial 7;,;; élevé, détermine ainsi le rang
optimal de maniere automatique. Cependant, sa mise en ceuvre présente des défis, notamment
pour la sensibilité du choix des hyperparametres de 1’a priori I" (i.e., ag, bo) et un cofit de calcul

qui, bien qu’amélioré par des algorithmes d’inférence rapides, peut rester élevé (voir Fig. 2.7).

3.1.2.2 Approches d’élagage dans les réseaux de neurones et leur pertinence

’élagage (ou pruning) dans les réseaux de neurones profonds est un ensemble de techniques
visant a réduire la taille du modele en supprimant des poids, des neurones ou des filtres
redondants, afin de diminuer le cofit de calcul et d’améliorer la généralisation. Ces techniques
sont particulierement pertinentes pour notre discussion car elles offrent un mécanisme pour

ajuster dynamiquement la complexité du modele.

On distingue principalement deux types d’élagage (Cheng, Zhang & Shi, 2024) :

» L’élagage non structuré, qui supprime des poids individuels dans les matrices de poids. Cela
crée des matrices creuses mais ne réduit pas directement la «largeur» ou la «profondeur».

* L’élagage structuré, qui supprime des groupes entiers de poids, comme des canaux de

convolution, des couches des blocs de neurones.

A partir d’un réseau sur-paramétré, 1’élagage réduit le nombre de parametres progressivement,
en se basant sur des critére de pertinence ou de redondance pour sélectionner les poids, ou filtres
dans les CNNS, a supprimer. L’élagage est alors majoritairement appliqué apres 1’entrainement
(post-training), mais plusieurs méthodes récentes s’intéressent a des application dites «online»,
c.-a-d. pendant I’entrainement (Elkerdawy, Elhoushi, Zhang & Ray, 2022). En revanche, bien que
ces méthodes en ligne effectuent une réduction de la complexité du modele, elles sont dépourvues
d’un objectif explicite interprétable visant a déterminer un rang optimal. Le processus s’arréte
généralement lorsqu’un taux de compression prédéfini est atteint (Park, Kim, Kim, Choi & Lee,
2023; Anagnostidis et al., 2023). Méme si certains criteres de sélection ciblent la redondance
pour ne garder que les éléments les plus importants (He, Wu, Liang & Lam, 2021), les méthodes

d’élagage n’ont pas directement été congu pour directement estimer un rang de décomposition.
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Toutefois, un parallele peut €tre fait entre I’élagage dans un réseau de neurone pour une réduction
de dimensionnalité et la sélection d’un rang pour la NMF. Comme vu avec la similarité avec les
auto-encodeurs présentée au Chapitre 2, la suppression d’un canal ou de neurones dans I’espace

latent revient a réduire la dimensionnalité et donc a une modification du rang.

e I

(a) Original Model.

l

L

(b) Pruned Model.

(c) Fine-tuned Model.

Figure 3.2 Exemple schématique du processus d’élagage (pruning) de filtres
dans un modele CNN, tiré de Shao er al. (2021). (a) Modg¢le initial avec tous
les filtres actifs. (b) Modele élagué ou certains filtres redondants ou peu utiles
sont supprimés. (¢) Modele réajusté (fine-tuning) pour compenser la perte
induite par I’élagage. Appliqué aux filtres produisant les cartes d’abondances
d’un modele, 1’élagage correspond a une réduction du rang effective

3.1.2.3 Réseaux de neurones avec sélection du nombre de composantes

Les architectures récentes basées sur des transformeurs visuels (ViT) ont profondément transformé
la segmentation d’images, mais la question de la sélection automatique du rang reste largement

ouverte. Des modeles comme Mask2Former (Cheng, Misra, Schwing, Kirillov & Girdhar,
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2022), atteignent des performances de pointe pour la segmentation d’images, mais reposent
sur un apprentissage supervisé et un nombre de classes fixé prédéfini. DINOv2 (Oquab et al.,
2024) propose un pré-entrainement non-supervisé a grande échelle de ViT, produisant des
représentations visuelles robustes réutilisables pour diverses taches. Cependant, 1’application
a la segmentation nécessite 1’ajout de modules dédiées, eux-méme entrainés sur des données

annotées, empéchant une estimation directe du nombre de classes.

Kirillov et al. (2023) introduisent SAM, proposant une segmentation « universelle ». Un ViT
génere des masques de segmentation en réponse a des indications visuelles (points, boites).
Une segmentation automatique est alors proposée en générant des nombreux points quadrillant
I’image, chacun produisant un masque. Ces masques candidats sont alors fusionnés selon des
scores de qualité et via une suppression non maximale (NMS) basée sur leur superposition. Ainsi,
bien que le nombre de composants varie automatiquement, cette sélection repose uniquement
sur des criteres locaux de redondance, sans prise en compte d’une structure sémantique globale.
Pour des images de texte, SAM peut produire un masque par lettre. Chacun de ces masques est
jugé valide individuellement, mais n’ayant aucun chevauchement, le modele ne les regroupe pas

en un seul composant qui pourrait correspondre a un mot ou une ligne de texte (voir Fig. 3.3).
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(a) Image RGB (b) Segmentanon Automatique (SAM)

Figure 3.3 Exemple de segmentation automatique d’une image de
documents historique par SAM. Le ViT segmente chaque lettre de maniere
automatique, mais ne réussit pas a les identifier comme un méme composant

Dans le domaine médical, MS-Former (Karimijafarbigloo, Azad, Kazerouni & Merhof, 2024)
se distingue comme 1’unique approche a combiner segmentation non supervisée et ajustement
dynamique du rang. Il s’appuie sur une régularisation auto-supervisée (cohérence intra/inter-

classe et entropie croisée) pour estimer le nombre de segments sans supervision humaine.
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Toutefois, il reste spécialisé sur des images médicales et n’a pas été validé sur d’autres domaines
comme les images de documents. L’ utilisation des patchs pour la segmentation de documents

manuscrits peut étre sous-optimal, comme observé sur la Figure 1.5

3.2 Sélection dynamique du rang basée sur I’élagage et le principe MDL

En nous inspirant des approches d’élagage et d’identification du rang, nous proposons une
méthode qui détermine le rang optimal non pas en testant une série de rangs discrets, mais en

adaptant le modele lui-méme de maniere dynamique.

3.2.1 Principe : De la surcomplétude a I’optimalité

Au lieu de chercher a deviner le bon rang a priori, notre stratégie part d’un état initial délibérément
sur-complet, c’est-a-dire avec plus de cartes d’abondance (r;;,;;) que d’objets potentiellement
présents dans les données. Cette sur-complétude initiale permet au réseau de capturer un
ensemble exhaustif de toutes les composantes possibles, comme cela a été fait dans des travaux

antérieurs (Karimijafarbigloo et al., 2024; Rahiche & Cheriet, 2022).

A partir de ces r;,; cartes d’abondance de départ, une stratégie d’entrainement itérative est
employée. Le but est de progressivement combiner les cartes d’abondances les plus redondantes,
jusqu’a obtenir un rang optimal. A la différence de SAM, la combinaison des composantes se
produit durant I’entrainement. En intégrant un principe d’élagage au modele hybride présenté
précédemment, il est alors possible de réduire le rang, tout en gardant des composantes

interprétables ayant un sens sémantique.

Deux composantes majeures au fonctionnement de cet algorithme sont alors nécessaires : (1) Un
critére de similarité permettant d’identifier les composantes a supprimer, et (2) un critére de

sélection pour le rang optimal.
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3.2.2 Développement d’un critere de similarité inter-composantes

Pour identifier la carte la moins informative, un score de similarité par paire est calculé entre
toutes les cartes non élaguées afin d’identifier la paire la plus similaire. De cette paire, la carte
ayant la plus petite norme de Frobenius (i.e., la carte représentant la plus petite proportion
de I’'image) est ajoutée a I’ensemble des cartes élaguées. Pour chaque carte de cet ensemble,
les poids de la convolution ponctuelle qui la produisent sont masqués. De méme, les poids
correspondants du décodeur, qui représentent la signature spectrale associé€e sont aussi désactivés.
Cela permet de sélectionner la carte la moins informative. Le modele est forcé de réorganiser ses
poids pour combiner cette carte d’abondance avec les cartes restantes. Le modele transfert les
connaissances apprises vers les cartes d’abondances les plus proches ressemblantes, produisant

une nouvelle décomposition.

Pour évaluer de maniere exhaustive la relation entre nos cartes, nous avons développé un score
de similarité qui inteégre deux aspects cruciaux : la similarité spatiale et la similarité spectrale.
Si une approche purement spatiale, telle que la suppression non-maximale (NMS), permet
d’identifier des composants similaires dans les cartes d’abondance, cela n’est pas suffisant
comme discuté a la section 3.1.2.3. C’est pourquoi une composante de similarité spectrale est
ajoutée. Celle-ci est essentielle pour pénaliser les éléments similaires situés a des localisations

spatiales différentes.

3.2.2.1 Prise en compte de la similarité spatiale

Notre mesure de similarité spatiale s’inspire de la corrélation croisée normalisée, qui évalue la

ressemblance entre deux cartes d’abondance A; et A;. Sa formulation de base est la suivante :

Seonli, ) = AT (3.6)
o IAANIA; N '
ou (-,-) est le produit scalaire de Frobenius et || - || est la norme de Frobenius. Cependant,

en raison de la contrainte d’orthogonalité ajoutée, les cartes d’abondances générées ont peu

de zones de chevauchement. Lors des premieres itérations du modele, le modele est forcé de
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fragmenter des mémes éléments en plusieurs parties. Une simple corrélation ne peut alors pas
identifier la ressemblance entre ces cartes d’abondances. Pour contrer cet effet de fragmentation
d’objets, nous appliquons d’abord une opération de lissage spatial a I’aide d’un noyau gaussien,

obtenant A; et A, avant de mesurer une possible corrélation.

Un autre manque de la corrélation simple peut étre observé lorsqu’un objet similaire est divisé en
deux parties égales. Ainsi, un petit objet a I’intérieur d’un plus grand était souvent plus pénalisé
qu'un méme objet divisé en deux parties égales et séparées (p. ex., le texte et le papier sont plus
corrélés que le méme support papier divisé en deux zones). Dans ce cas, seulement une fine
zone de contact est mesurée par la corrélation, résultant en 1’identification de deux matériaux
distincts. Pour mieux gérer cet effet, la différence absolue des activations totales entre les deux

cartes est utilisée comme facteur pénalisant.

1
(A —A;, 1) +€

(3.7

ou (-, -) est le produit scalaire de Frobenius, | - | est la valeur absolue et € est une constante évitant
une division par zéro. Ce terme amplifie la similarité des paires de cartes ayant des distributions
d’abondance tres proches en termes de magnitudes et inversement. Deux éléments représentant
une grande proportion de I’image, et ce méme avec une faible corrélation spatiale, sont alors

plus pénalisés que deux éléments corrélés mais ayant une grande différence d’activation.

3.2.2.2 Prise en compte de la similarité spectrale

En plus de la similarité spatiale, il est impératif de considérer la ressemblance spectrale des
matériaux eux-mémes, représentés par leurs signatures spectrales. Pour ce faire, nous utilisons
I’angle spectral, une mesure qui évalue la similarité de forme entre deux signatures spectrales,
indépendamment des variations d’illumination. Cette mesure standard, connue sous le nom
de Distance Angulaire Spectrale (SAD), est une mesure de distance. Or, pour I'intégrer de

maniere cohérente a notre score de similarité spatiale, nous devons la convertir en une mesure
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de similarité (ou une valeur élevée indique une forte ressemblance). Nous utilisons donc 1’angle

complémentaire de la distance angulaire (SAD’) :

(3.8)

E.E;
SAD'(E;, E) = g - arccos( \Ei, Ej) )

|1 [ [

ou E; et E; sont les i-¢me et j-¢me colonnes de la matrice des signatures spectrales E. Cette
transformation assure qu’une similarité spectrale élevée se traduit par une valeur de SAD’ élevée,

rendant cette mesure directement additive a la composante de similarité spatiale.
La formule finale de similarité, capturant a la fois la similarité spatiale et spectrale entre les

matériaux, est alors exprimée comme suit :

1 (A, Aj)
(A = Ay, | + € [|A Al

Sij = + Asap' Lsap' (Ei, E;), (3.9

ou A; et A; sont les cartes d’abondance lissées, E; et E; sont les signatures correspondantes,
(-,-) est le produit scalaire, et Ag4p- est un parametre équilibrant la similarité spectrale et

spatiale.

3.23 Guidage par le principe de la Longueur de Description Minimale (MDL)

Une fois le critere de similarité S; ; établi, combiné avec I’€lagage, il permet une suppression
itérative de la composante la plus redondante. La paire obtenant le score le plus élevé est identifiée
comme la plus redondante. De cette paire, la composante ayant la plus faible norme, représentant
donc la plus petite fraction de I’image, est désignée pour étre élaguée. Cela permet d’adapter le
rang de maniere dynamique durant I’entrainement. Cependant, une question demeure : comment

identifier le rang de décomposition optimal ?

Pour cela, notre approche s’appuie sur le principe de la Longueur de Description Minimale
(MDL), un cadre théorique robuste pour la sélection de modeles (Squires et al., 2017; Rissanen,

1978). Le principe MDL postule que le meilleur modele est celui qui permet la description la
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plus concise des données. L'objectif est donc de minimiser la somme de deux termes :
n}{in {L(H)+L(D | H)}, (3.10)

ou L(D | H) est la qualité de description des données D étant donné le modele H, et L(H)

représente longueur de description du modele lui-méme (i.e., sa complexité).

Dans le contexte de notre modele de type hybride proposé, cette formulation trouve une analogie

directe :

* La fidélité des données L(D | H) correspond a notre fonction objective utilisée, Lsap +
M Lyse, qui mesure ’erreur de reconstruction a partir du modele H.

* La complexité du modele L(H) est capturée par le coiit de description des facteurs {A,S,E}.
Ce dernier est influencé a la fois par la structure et la taille des facteurs. Cela est représenté
par le rang, qui diminue a chaque étape d’élagage et réduit la taille du modele, ainsi que par

la contrainte d’orthogonalité, 1, L, qui réduit la complexité structurelle.

La fonction de cofit globale Lypy, que notre algorithme cherche a minimiser, est donc définie
comme suit :
Lvor = (Lsap + 1Lmse) +  (AortnLorth + A7) (3.1D)

Fidélité aux données L(D|H) Complexité du modele L(H)

En suivant ce principe, il est possible de calculer le colit MDL total a chaque itération du mod¢le.
Au début de I’entrainement, le rang est haut, les composantes ne sont pas orthogonales et le
modele peine a reconstruire les données. Le colit MDL associé est donc naturellement plus
élevé. Au fil de I’entrainement, le modele apprend a mieux représenter les données, réduisant
donc L(D | H). La contrainte d’orthogonalité ainsi que 1’élagage progressif réduisent alors la
complexité du modele L(H), faisant ainsi chuter le coit total MDL. Ce cofit atteint alors un
minimum lorsque le modele atteint un équilibre optimal entre simplicité et fidélité. Lorsque
I’élagage se poursuit au-dela de ce point, le modele devient trop simple pour représenter les
données, et I’erreur de reconstruction L(D | H) augmente. Cela entraine une remontée du coft

MDL total. Ce minimum empirique observé sur la courbe du colit MDL sert alors de critére de
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sélection objectif. Le rang correspondant a ce point est considéré comme le rang optimal, car il
représente le compromis idéal entre la compression du modele et la préservation de 1’information

contenue dans les données.

3.24 Algorithme d’élagage progressif des composantes redondantes

L’ algorithme alterne entre deux phases : une phase d’entrainement du modele jusqu’a un critére

d’arrét précoce, et une phase d’élagage qui supprime la carte jugée la moins informative.

Algorithme 3.1 : Algorithme de la méthode d’élagage progressif proposée (PRISM)
Input : Image MS a décomposer Y;
Rang initial r;,;; et nombre de composantes minimum 7, ;
Hyperparametres A1, Ao, A, Asap’ et kernel de lissage K ;
Output : Cartes d’abondances optimales A, Signatures spectrales optimales Eqp, Rang optimal r
1 Initialisation du modele PRISM avec r;,;; composantes (toutes actives);
2 active_map_indices « {1,2, ..., inir};
3 best_overall_mdl_cost < oo, best_model_config < null, et best_rank «— r;,;;;
4 for k from ripi; down to rp,i, do
5 Entrainement du modele PRISM jusqu’au critere d’early stopping;
6 Soit trained_modely le modele apres convergence;
7 A, Ei, Sk, Y « trained_model (Y);
8 Lrecon — Lsap (Y, Y) + 1 Lyse(Y,Y) // Erreur de reconstruction L(D|H)
9 Lgruet «— A2 Lorin(Ay) // Complexité structurelle de L(H)
10 Lrank_penalty < A3 - k // Terme de pénalité de rang de L(H)
1 current_mdl_cost <= Lrecon + Lstruct + Lrank_penalty’
12 if current_mdl_cost < best_overall_mdl_cost then
13 best_overall mdl cost « current_mdl_cost;
14 best_model_config « trained_modely;
15 best_rank « k;
16 if kK > r,i, then
17 Soit Agcrive le set des cartes d’abondances correspondants aux active_map_indices dans Ag;
18 Soit E,¢sive le set des signatures spectrales correspondants aux active_map_indices dans Ey;
19 for each map A, in Agcrive do
20 ‘ A — K* A, ;// Convolution spatiale (lissage)
21 for each pair of distinct maps (A;, Aj) (and corresponding E;, E; from Eq¢qive) do
22 Calcul de la similarité S;; a partir de A;, A;, E;, E; (en utilisant 'Eq. 3.9);
23 (i*, j*) « indices de la paire la plus similaire;
24 map_to_prune «— arg min,, ¢ ;+ -y [[Aml|r;
25 Supprimer map_to_prune du set active_map_indices;
26 Elagage des poids produisant les cartes inactives dans la convolution pré-abondances;
27 Elagage des signatures spectrales associées;
28 Charger le modele PRISM avec la configuration et les parametres de best_model_config;
29 Agpi, Eope < Optimal_Model(Y);
30 r < best_rank;
31 return Ay, Eopr, 7
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A chaque étape d’élagage, le modele est contraint de s’adapter en fusionnant, déplacant ou
supprimant des éléments, distillant ainsi efficacement ses connaissances dans une représentation
plus compacte. Cette stratégie offre I’avantage significatif de fournir une interprétabilité sur la

focalisation du modele et de permettre un contrdle sur son processus de décision.

Le colit MDL permet alors de trouver un équilibre entre la qualité de la reconstruction et la

complexité du modele. Cet équilibre représente le rang optimal estimé de la décomposition.

3.2.5 Intégration dans I’architecture hybride proposée

L’ architecture complete du modele, appelé PRISM, est présentée a la Figure 3.4. L’architecture
integre tous les composants décrits précédemment. Cette architecture hybride de NMF profonde
établit un pont entre 1’apprentissage profond non supervisé et les contraintes physiques des
modeles NMF. Elle permet a la fois la performance computationnelle, I’interprétabilité physique

des résultats et une sélection adaptative du rang.
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Figure 3.4 Schéma de I’architecture hybride avec sélection adaptative du rang.
En vert est illustré 1’élagage progressif des composantes. Au fil des itérations, les
poids de la convolution pré-abondance sont élagués, résultant en la suppression
des carte d’abondance redondantes associées

L’implémentation du modele a I’aide de la librairie PyTorch permet la création de cette

architecture, tout en permettant une optimisation des différents modules par rétro-propagation.
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Afin d’obtenir un élagage non-structuré des poids, c’est-a-dire sans utiliser des ratios aléatoires
de suppressions, le module torch.nn.utils.prune.custom_from_mask est utilisé. Les
masques de pruning sont spécifiquement congus pour supprimer les poids neuronaux responsables
de la génération des cartes d’abondances sélectionnées lors de la procédure d’élagage progressif.
L’implémentation conjointe de contraintes de paramétrisation et d’élagage personnalisé par
masque pour des couches de convolution étant non-standard, nous renvoyons le lecteur intéressé

par les détails techniques vers les tutoriels et la documentation officielle de Pytorch 3 4.

L'utilisation du principe MDL pour la sélection automatique du rang constitue une contribution
majeure de notre approche. La Figure 3.5 illustre I’évolution du cotit MDL en fonction du

rang pour une image du jeu de données MStex (voir section 4.1). A chaque itération, la carte
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Figure 3.5 Visualisation de I’élagage progressif sur une image de document. Apres
chaque itération, une carte est élaguée et le modele s’entraine a adapter la décomposition

d’abondance la moins pertinente est supprimée par élagage des poids correspondants. Afin
de respecter la contrainte ASC, le modele est contraint de réorganiser ses connexions durant

I’entrainement, ce qui se manifeste par une augmentation transitoire du coit MDL suivie d’une

3 Paramétrisation des modules PyTorch : https://docs.pytorch.org/tutorials/intermediate/parametrizations.
html

4 Tutoriel d’élagage et re-paramétrisation : https://docs.pytorch.org/tutorials/intermediate/pruning_
tutorial.html

5 Documentation custom_from_mask : https://docs.pytorch.org/docs/stable/generated/torch.nn.utils.
prune.custom_from_mask.html
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convergence vers une valeur inférieure. Au-dela d’un certain rang, la capacité du modele devient
insuffisante pour maintenir simultanément une reconstruction fidele des données et la distinction
entre les composantes. Cette dégradation se traduit par une augmentation du cotit MDL, signalant

que le compromis entre complexité du modele et qualité de reconstruction n’est plus optimal.

33 Validation de la sélection dynamique du rang

Cette section présente une analyse approfondie des différentes composantes de notre approche
de sélection dynamique du rang. Nous évaluons I’'impact de chaque module sur les performances

du systeme a travers une série d’études d’ablation et d’analyses paramétriques.

3.3.1 Ablation des composantes du critere de similarité

Afin d’évaluer la contribution de chaque terme dans notre mesure de similarité, nous conduisons
une étude d’ablation systématique sur des paires de cartes d’abondances extraites de données
réelles. La Figure 3.6 présente trois scénarios représentatifs : (a) cartes d’abondances représentant
du texte avec I’effet de fragmentation, (b) cartes d’abondances présentant une composante de

papier fragmentée en deux parties égales, et (c) cartes d’abondances de texte et de papier.

Pour chaque scénario, nous évaluons I’'impact progressif de 1’ajout des différentes composantes

du critere de similarité :

* Corrélation seule (ligne 1) : Utilisation du coefficient simple de corrélation entre les cartes
d’abondances

* Corrélation et différence d’activation (ligne 2) : Ajout du terme mesurant les différences
d’intensité d’activation

* Configuration compléte (ligne 3) : Intégration du lissage spatial des cartes d’abondances

via le noyau de convolution K

Les résultats quantitatifs démontrent 1’importance cruciale de chaque composante. Avec la
corrélation seule, les trois scénarios obtiennent des scores de similarité tres faibles (0.04%, 4.5%

et 0.05% respectivement), ne permettant pas de distinguer les paires similaires des dissimilaires.
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Figure 3.6 Etude d’ablation des composantes du critére de similarité sur trois paires
de cartes d’abondances représentatives. (a) Paire de cartes hautement similaires issues
du méme matériau avec variations effet de fragmentation. (b) Paire de cartes hautement
similaires mais partageant seulement une fine région de contact. (c) Paire de cartes
dissimilaires correspondant a des matériaux distincts. Les pourcentages indiquent le
score de similarité calculé pour chaque configuration

[’ajout du terme de différence d’activation améliore significativement la discrimination. Pour
les scénarios (a) et (b), les scores augmentent a 0.46% et 50.8%, tandis que pour le scénario
(c), représentant deux matériaux distincts, le score diminue de 0.05% a 0.017%o, confirmant
sa dissimilarité. En revanche, le scénario (a) reste tout de méme sous-évalué avec seulement

0.46%, bien que représentant le méme texte fragmenté.

L’intégration finale du lissage spatial complete efficacement le critere. Les scénarios (a) et (b)
atteignent des scores de 31.9% et 76.5% respectivement, permettant leur identification correcte
comme paires similaires. Le scénario (c) maintient un score négligeable (0.09%o), confirmant la

robustesse du critere pour identifier les véritables dissimilarités.

Au-dela de ces composantes spatiales, le critere integre également une composante de similarité
spectrale. Cette composante est essentielle pour 1’identification et le regroupement de cartes
d’abondances correspondant au méme matériau mais n’ayant aucun chevauchement spatial, un

phénomene observé précédemment pour la méthode SAM avec suppression NMS (voir Fig. 3.3).
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3.3.2 Apport du coiit MDL pour la sélection du rang

Comme illustré dans la Figure 3.7, I’utilisation de la fonction de perte seule, sans régularisation
MDL, conduit a un modele sur-complet. Dans ce cas, les meilleurs résultats se concentrent autour
de rangs sous-optimaux de 4, 5 et 6. Qualitativement, ces solutions de rang élevé produisent
des composantes avec des matériaux textuels fragmentés, indiquant une décomposition moins

interprétable du point de vue physique.

(a) Bestrank =5

(a) Loss Function only —— Mean run (colored by Rank)

Individual Runs

L)
Global min: 0.0386
Rank: 5

(b) Total MDL cost

0.20-

0.15-

Rank12 Rank11 Rank10 Rank9 Rank8 Rank7 Rank6 Rank5 Rank4 Rank3 Rank2 Rank1

N

L
Global min: 0.0575
Rank: 3

0.05+

Figure 3.7 Ablation sur la sélection du rang avec et sans le coit MDL. La courbe
du haut représente 1’évolution de la fonction de perte seule, montrant une
préférence pour des rangs plus élevés. La courbe du bas integre le coit MDL
complet, révélant un minimum global au rang 3 et une sélection plus claire

L’incorporation du colit MDL total améliore non seulement les propriétés de convergence, mais
guide également le modele vers une solution plus robuste. Le colit MDL identifie correctement
une plage stable et acceptable de solutions autour des rangs 2, 3 et 4, avec un minimum global
clair au rang 3. Cette observation confirme que le colit MDL est crucial pour prévenir le
sur-apprentissage du modele et pour déterminer correctement le nombre réel de composantes
latentes dans les données. Sans le terme L(D | H), le modele tend a favoriser des décompositions

complexes qui maximisent la fidélité de reconstruction au détriment de I’interprétabilité.
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3.33 Influence du rang initial et sélection du rang minimal

Contrairement aux approches traditionnelles ou le rang sélectionné influence directement la
décomposition finale, le choix du rang initial r;,;; dans notre méthode n’a qu’un impact limité sur
la solution finale. Nos expériences révelent que ce parametre influence principalement le temps
de calcul total, avec une relation linéaire entre le nombre d’itérations d’élagage (7inir — 7 final)
et le temps d’exécution. La qualité de la décomposition finale reste généralement invariante,
I’ algorithme combinant de maniere hiérarchique les différentes composantes selon leur pertinence.
Dans les rares cas ou une composante importante serait supprimée prématurément, I’adoption
d’une stratégie de sélection basée sur plusieurs exécutions (typiquement 10) permet de garantir

la convergence vers le rang optimal, indépendamment de 1’initialisation.

035

= Rang 8 (r_init=8)

== Rang 12 (r_init=12)
0.30 === Rang 16 (r_init=16)
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Figure 3.8 Evolution du cofit MDL en fonction du rang pour différentes
initialisations. Les courbes correspondent a des rangs initiaux de 8, 12, 16 et 20,
montrant la convergence vers un minimum commun aux rang 4 pour une méme image

La Figure 3.8 illustre cette robustesse en présentant les trajectoires du colit MDL pour différentes
valeurs de r;,;; € {8, 12, 16, 20}. Toutes les courbes convergent vers le méme minimum global,
confirmant que le processus d’élagage guidé par le critere MDL identifie de maniere fiable les
composantes les moins pertinentes, indépendamment du point de départ. La seule contrainte
pratique est que r;,;; doit étre supérieur ou égal au nombre réel de composantes dans les données.
Dans nos expériences, nous fixons r;,;; = 12, correspondant au nombre de bandes spectrales du

jeu de données MSBin, assurant ainsi une initialisation suffisamment riche pour tous les scénarios



81

testés, tout en gardant un temps d’exécution plus bas. Comme le montre la Figure 3.9, ce choix
représente un bon compromis entre capacité de représentation et efficacité computationnelle.
Le temps d’exécution croit linéairement avec le rang initial, passant d’environ 1 minutes pour

Tinit = 8 a plus de 3 minutes pour rjy,;; = 20.
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Figure 3.9 Temps d’exécution de I’algorithme en fonction du rang
initial. Les points montrent les temps mesurés pour les rangs 8, 12, 16 et
20, avec une relation linéaire claire (ligne pointillée)

Le rang minimal r,,;, est lui fixé a 2, représentant la configuration minimale physiquement
significative pour le démélange spectral : une composante pour le matériau d’intérét (typiquement
le texte) et une pour I’arriere-plan. Une valeur de 1 conduirait a une solution triviale (i.e.,
une image uniforme) violant les hypothéses fondamentales d’un mélange linéaire. Cette
configuration minimale permet a 1’algorithme d’explorer des solutions avec peu de composantes,
tout en maintenant I’ interprétabilité physique des résultats. Cela permet d’optimiser 1’efficacité

computationnelle en supprimant la derniere itération superflue.
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34 Discussion des avantages et des défis de la sélection dynamique du rang

La sélection dynamique du rang présente plusieurs avantages significatifs par rapport aux
approches traditionnelles a rang fixe. Premierement, elle élimine le besoin de validation croisée
exhaustive pour déterminer le nombre optimal de composantes, réduisant ainsi considérablement
le coiit computationnel. Deuxiemement, I’intégration du critere MDL fournit une justification

théorique solide pour le compromis entre complexité du modele et qualité de reconstruction.

Cependant, plusieurs défis demeurent. Les différents hyperparametres du critere MDL nécessitent
un réglage, bien que nos expériences, présentées au chapitre suivant, suggerent que des valeurs
par défaut robustes puissent €tre établies. Une limitation importante de notre approche réside
dans la conception du critere de similarité, initialement optimisé pour des données textuelles
ou la redondance spatiale est clairement définie. Pour des données hyperspectrales de nature
différente, ce critere pourrait potentiellement éliminer des composantes spectralement proches

mais physiquement distinctes et importantes pour I’ interprétation.

Cette observation suggere que I’approche est optimalement déployée dans un contexte semi-
supervisé, ou I’expert peut valider les décisions d’élagage. En effet, I’analyse des décompositions
sur-completes avant élagage offre un éclairage pertinent sur la structure des données, révélant
comment le modéele identifie et sépare initialement les différentes régions de I’image. Cette
capacité d’exploration s’avere particulierement pertinente pour des scénes complexes (voir
Section 4.3.3), ou la visualisation de 1’évolution du rang permet de comprendre les relations
hiérarchiques entre composantes. Le chapitre suivant présente une évaluation exhaustive de notre
approche sur divers jeux de données, démontrant sa capacité de généralisation tout en illustrant

ces considérations pratiques pour différents types de scénes multispectrales et hyperspectrales.



CHAPITRE 4

EXPERIMENTATIONS ET GENERALISATION DES APPLICATIONS DU MODELE

Ce chapitre évalue la capacité de généralisation de 1’approche proposée, dénommée PRISM, a
travers trois objectifs expérimentaux : (1) valider la robustesse sur des images multibandes
de documents avec diverses configurations spectrales, (2) positionner PRISM par rapport
aux auto-encodeurs de démélange HS sur des données de télédétection, et (3) s’attaquer a
I’extension au cas sous-déterminé, avec des images RVB de documents et des représentations

profondes d’images naturelles traitées comme données HS.

4.1 Résultats sur la base d’image MS de documents MStex

Le premier jeu de données que nous utilisons dans le cadre de cette étude est une combinaison
des collections appelées MStex 1 et 2. Ces collections, fournies par Bibliothéque et Archives
nationales du Québec (BAnQ) et digitalisés par Hedjam & Cheriet (2013), regroupent deux
ensembles distincts de dix cubes MS de manuscrits historiques couvrant une période s’étendant
du XVIIe au XXe siecle. Chaque cube est composé de 8 bandes spectrales, capturées dans une
plage allant de 340 nm a 1100 nm, comme présentées dans le Tab. 4.1. Les acquisitions ont
été réalisées a I’aide d’une caméra Chroma KAF 6303E (Kodak) offrant une résolution de 6
mégapixels. Les données acquises présentent alors une large résolution spatiale de 3072 x 2048
pixels par bande spectrale, chaque pixel couvrant une zone de 9 x 9 pym. Chaque document a

ensuite été segmenté en zones d’intérét, générant des images de résolutions spatiales variables.

Tableau 4.1 Détail des bandes spectrales utilisées pour la collection MStex

Bande Fi1s F2s F3s F4s F5s Fé6s F7s F8s
Longueur d’onde (nm) 340 500 600 700 800 900 1000 1100
Filtre de lumiere UV Bleu Vert Rouge IR1 IR2 IR3 1IR4

Il est a noter que I’image z58 du premier jeu de données n’a pas été retenue dans notre analyse

en raison de dégradations importantes observées sur I’une de ses bandes spectrales.

6 Ces collections ont été introduites dans le cadre du concours MSTex (Hedjam, Nafchi, Moghaddam,
Kalacska & Cheriet, 2015). Données disponibles en ligne : https://tc11.cvc.uab.es/datasets/SMADI 1
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La vérité terrain (ground-truth) associée a ces images classifie alors les pixels en deux catégories :
texte ou non-texte. La qualité de décomposition peut alors seulement étre évaluée par la qualité
du texte extrait, en partant du principe que si la décomposition est bonne, alors le texte extrait
devrait I’étre aussi. En effet, une décomposition optimale des composantes spectrales doit
conduire a une séparation efficace entre les différents matériaux constitutifs du document (encre,
papier, agents de dégradation, etc.). Si cette séparation est réalisée de maniere satisfaisante,
I’extraction et la lisibilité du texte s’en trouvent nécessairement améliorées. Par conséquent, les
métriques de qualité textuelle agissent comme un indicateur direct et fiable de la performance
globale du processus de décomposition. Cette approche présente 1’avantage de fournir une
évaluation objective et quantifiable, ou une amélioration des scores de qualité textuelle traduit

directement une meilleure séparation des composantes spectrales.

4.1.1 Métriques d’évaluation

Pour quantifier cette qualité d’extraction du texte et ainsi mesurer 1’efficacité de différentes
approches, quatre métriques complémentaires issues de la littérature en binarisation de document
manuscrits ont été€ adoptées. Ces métriques ont été sélectionnées pour leur capacité a capturer

différentes caractéristiques complémentaires de la qualité de binarisation.

La premiere métrique €value directement 1’exactitude de la classification binaire. La F-Mesure
(FM), largement reconnue dans la communauté scientifique, constitue notre métrique principale

de performance. Elle s’exprime comme la moyenne harmonique entre la précision et le rappel :

EM = 2 x Rappel x Précision

PSP 4.1)
Rappel + Précision

ou le Rappel = % quantifie la capacité du modele a identifier I’ensemble des pixels textuels,
VP

tandis que la Précision = 575

mesure la justesse de ces identifications, avec VP, FP et FN
représentant respectivement les vrais positifs, faux positifs et faux négatifs. Cette métrique,

exprimée en pourcentage, offre un équilibre entre sur-détection et sous-détection du texte.
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La seconde métrique s’attache a caractériser les distorsions introduites lors du processus de
binarisation. La Métrique de Taux Négatif (NRM) quantifie spécifiquement les erreurs de

classification au niveau des pixels :

TRpy +TR
NRM = ——EN =" 7FP (4.2)
2
ouTRpy = % et TRpp = % représentent respectivement les taux de faux négatifs et

de faux positifs. Cette métrique, variant de 0 a 1, est particulierement sensible aux erreurs qui

peuvent affecter la lisibilité du texte extrait.

De maniere complémentaire, 1a Distorsion de Distance Réciproque (DRD) évalue les distorsions

perceptuelles en considérant un voisinage spatial de chaque pixel :

4.3)

ol DRDy, représente la distorsion pondérée dans un voisinage 5 X 5 centré sur le k-ieme pixel
erroné, et NUBN dénombre les blocs 8 X 8 non-uniformes dans I’image de référence. Cette
métrique, également bornée entre O et 1, mesure efficacement I’impact visuel des erreurs de

binarisation sur la lecture, les erreurs isolées étant moins pénalisées que les clusters d’erreurs.

Enfin, le Rapport Pic de Signal sur Bruit (PSNR) offre une mesure globale de fidélité entre

I’image binarisée et la vérité terrain :

12
PSNR = 10log,, ( E"é;l) , 4.4)

ou 7,4y représente 1’intensité maximale possible et EQM I’erreur quadratique moyenne. Exprimé
en décibels (dB), le PSNR fournit une quantification logarithmique de la qualité de reconstruction,

particulierement pertinente pour évaluer la préservation des détails fins du texte.

L utilisation conjointe de ces quatre métriques permet une évaluation quantitative de la

performance : tandis que la FM et le PSNR (valeurs élevées souhaitables) quantifient la



86

qualité globale de I’extraction, la NRM et la DRD (valeurs faibles souhaitables) caractérisent les
erreurs commises. Cette approche garantit une évaluation objective avec les méthodes de 1’état

de I’art, tout en capturant les nuances essentielles a I’évaluation de la qualité du texte extrait.

4.1.2 Méthodes comparées

Etant donné que la vérité terrain (GT) n’existe que pour les composantes textuelles, nous évaluons
la qualité de la décomposition a 1’aide d’un banc d’essai de binarisation de texte. D une part,
comme référence de I’€tat de 1’art en binarisation de documents MS, nous utilisons la méthode
de Howe (Howe, 2013). Cinq modeles traditionnels concus pour I’extraction de texte sont
également comparés : SKKHM (Spatial Kernel K-Harmonic Means), qui exploite des noyaux
spatiaux et des moyennes harmoniques pour regrouper les pixels de texte (Li er al., 2007);
GMM (Gaussian Mixture Models), qui modélise les distributions d’intensité par un mélange de
gaussiennes (Hollaus et al., 2018) ; SAE (Selectional Autoencoder), un autoencodeur profond
entrainé a extraire une représentation discriminative du texte (Calvo-Zaragoza & Gallego, 2019);
et ACE v1 & v2 (Adaptive Coherence Estimator), qui mesurent la cohérence spectrale et spatiale
pour détecter le texte dans les images multispectrales (Hollaus, Diem & Sablatnig, 2015b;
Diem, Hollaus & Sablatnig, 2016). Nous confrontons également ces approches a deux modeles
NMF pour la décomposition d’images multispectrales de documents : MA-ONMF, un NMF
bi-orthogonal, et VBONMF, un NMF orthogonal bayésien variationnel, présentant les résultats

de I’état-de-1’art sur le jeu de données MStex (Rahiche & Cheriet, 2021, 2022).

D’autre part, pour explorer 1’apport des techniques basées sur le modele linéaire de mélange, cinq
auto-encodeurs congus pour le démélange hyperspectral ont été ré-implémentés : EndNet, un
autoencodeur estimant simultanément les spectres purs et les abondances (Ozkan, Kaya & Akar,
2019); MTAEU (Multi-Task Autoencoder for Unmixing), qui combine reconstruction et
régularisation spatiale pour un démélange multitache (Palsson et al., 2019); DAEU (Denoising
Autoencoder for Unmixing), intégrant un module de débruitage pour renforcer la robustesse
face au bruit (Palsson et al., 2018) ; OSPAEU (Optimized Spatially-Aware Autoencoder for

Unmixing), qui optimise une pénalité spatiale afin de préserver la cohérence locale (Dou, Gao,
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Zhang, Wang & Wang, 2020) ; et CNNAEU (Convolutional Neural Network Autoencoder for
Unmixing), exploitant des couches convolutionnelles pour capturer efficacement les dépendances
spatiales et étant a la base de 1’architecture de PRISM (Palsson et al., 2021). Enfin, nous évaluons
MSFormer, un modele ViT a rang capable d’ajuster dynamiquement le nombre de composants

spécialisé dans la segmentation d’images médicales MS (Karimijafarbigloo et al., 2024).

4.1.3 Résultats quantitatifs

Le Tableau 4.2 présente les performances moyennes des différentes méthodes sur I’ensemble
des 20 images de la collection MSTEx. La méthode proposée PRISM obtient les meilleures
performances sur la majorité des métriques indiquant une méthode qui généralise aux différentes

configurations d’images, avec notamment un score FM de 86.47%.

Tableau 4.2 Performances moyenne sur les 20 images MS de MSTEx

Method | FM(%)7 DRD(103)] NRM(107%)] PSNR7
Méthodes issues de domaines connexes
MSFormer 57.15 19.76 16.79 11.55
Endnet 61.23 32.20 14.08 11.87
CNNAEU 65.43 31.02 17.99 13.22
DAEU 71.49 12.33 14.88 14.50
OSPAEU 73.62 18.74 12.98 14.78
MTAEU 73.30 17.01 8.30 13.95
Meéthodes pour les images de documents
SAE 64.98 9.94 14.33 13.45
SKKHM 71.78 11.09 13.37 14.35
Howe 76.96 6.63 8.94 14.94
GMM 80.72 5.12 10.42 16.05
ACE vl 83.85 4.12 9.11 -
MAONMF 85.09 3.59 7.52 -
ACE v2 85.15 3.66 8.29 -
VBONMF 85.70 3.55 6.31 17.12
PRISM 86.47 3.11 7.30 17.24

Pour mieux comprendre ces résultats moyens et évaluer la robustesse des différentes approches,
nous présentons dans les Tableaux 4.3 et 4.4, les résultats détaillés sur chaque image pour les
méthodes qui ont pu étre réimplémentées. Comme observé sur ces deux tableaux, une grande

variabilité peut-€tre observée dans les résultats pour chaque méthode.
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Tableau 4.3 Comparaison de différentes méthodes sur les images de MSTEx1. Les
meilleurs résultats sont montrés en gras noir, les deuxieémes meilleurs en gras bleu

Image Métrique Meéthodes

Howe SAE SKKHM GMM CNNAEU EndNet DAEU OSPAEU MSFormer MTAEU Ours
FM1 82.71 72.43 82.21 87.28 64.53 76.34  85.88 84.43 66.11 85.24  86.60

264 DRD| 448 924 3.62 3.14 6.01 7.97 3.31 3.46 10.76 3.84 2.90
NRM| 4.14 3.70 12.24 5.97 24.15 4.59 7.79 9.42 10.56 5.10 7.80
PSNRT 1544 12.66 16.22 17.25 13.72 13.63 16.84 16.52 11.96 16.32 17.00
FM7T 84.80 75.21 87.22 83.74 78.15 8425  88.20 86.72 68.03 86.44  88.73

237 DRD| 437 10.13 2.98 3.86 5.13 3.49 2.69 3.06 15.46 3.90 2.62
NRM| 598 547 9.54 12.43 16.51 12.93 9.27 10.03 8.34 5.36 7.59
PSNRT 13.63 10.74 15.07 14.17 12.98 1432 15.36 14.84 9.19 14.14  15.38
FM71 70.30 66.14  91.07 78.75 78.14 81.78  92.15 89.97 82.22 91.14  91.80

235 DRD] 17.33 10.01 2.32 5.99 8.32 7.88 2.20 2.70 5.49 2.59 2.06
NRM| 4.55 22.86 3.73 15.06 7.45 2.53 4.02 7.38 8.00 3.04 4.77
PSNRT 11.67 13.32 18.22 15.04 13.80 14.31 18.76 17.94 15.04 18.08  18.63
FM1 7897 79.62  71.61 82.45 65.27 62.72  64.18 94.46 69.93 81.55  94.39

480 DRD| 10.18 6.83 10.51 4.63 11.61 11.54 8.89 1.67 16.53 9.23 1.71
NRM| 491 929 15.87 14.45 21.53 23.87  26.35 343 6.17 4.77 2.29
PSNRT 13.69 14.37 13.21 15.89 12.63 12.53 13.38 20.20 11.49 1432  20.03
FM1 83.74 13.37 82.17 55.26 87.72 86.42 7431 87.23 68.09 85.59 88.14

38 DRDJ 391 14.73 3.92 14.36 2.98 2.94 5.08 2.96 11.58 4.15 2.71
NRM| 5.08 46.45 13.35 26.04 7.38 9.81 20.26 7.53 14.52 3.85 6.67

PSNRT  13.47 10.29 14.78 12.27 15.70 15.70 13.40 15.70 11.55 15.14  16.12

FM1 83.84 7241 84.45 81.28 69.43 70.63  80.31 81.03 62.09 88.44  90.37

263 DRDJ 5.09 931 4.34 6.24 7.00 9.73 4.82 5.38 14.17 2.57 2.05
NRM| 291  5.59 5.94 6.71 13.81 10.22 12.20 10.78 11.91 4.53 3.62

PSNRT 16.50 12.73 17.10 15.62 13.61 13.23 15.11 15.45 11.29 18.45  19.25

FM7T 85.34 57.59  79.67 77.53 59.31 7998  75.18 74.73 48.13 85.10  91.99

270 DRD| 464 14.52 5.64 5.34 5.48 4.23 7.81 7.63 13.17 3.15 1.99
NRM| 398 14.53 8.70 13.67 28.29 13.14 13.35 14.16 30.49 8.08 3.96
PSNRT 16.04 12.33 15.36 15.17 13.28 16.27 14.02 14.35 11.90 17.42  19.74

FM7T 90.18 54.15 73.45 63.81 82.18 86.94  73.70 68.57 48.12 88.39  92.82

476 DRD| 248 20.11 6.72 10.79 4.24 3.26 9.46 19.53 21.08 2.89 1.82
NRM| 643 2274 17.35 29.52 8.82 5.49 10.77 6.82 21.56 3.57 3.07

PSNRT 16.72 10.83 14.31 12.56 16.19 17.26 13.81 11.81 11.07 17.84 19.35
FM71 78.12 80.47  76.47 86.00 62.86 7399  77.09 77.28 77.33 86.74  88.86

480 DRDJ 729 8.70 6.26 3.60 6.36 8.63 5.85 25.79 7.16 3.78 2.59
NRM| 6.35 291 10.72 8.68 21.05 6.31 15.06 2.90 12.69 6.02 5.16

PSNRT 14.02 13.77 14.38 16.50 13.27 13.88 14.64 10.96 13.65 16.80 1791

EM7T 7233 6794  84.04 80.28 77.30 82.45  87.71 82.49 77.74 88.80  88.75

458 DRD| 10.55 10.18 4.15 5.68 5.02 5.10 3.04 4.74 8.38 2.94 2.71
NRM| 724  13.72 9.46 12.54 17.03 7.68 7.61 11.71 7.02 5.23 4.99
PSNRT 1292 13.20 16.48 15.35 15.22 15.97 17.28 15.65 14.11 1742  17.70

Note : FM = F-Measure, DRD = Distance Reciprocal Distortion, NRM = Negative Rate Metric, PSNR =
Peak Signal-to-Noise Ratio. T indique une valeur optimale élevée, | indique une valeur optimale basse.




Tableau 4.4 Comparaison de différentes méthodes sur les images de MSTEx2. Les
meilleurs résultats sont montrés en gras noir, les deuxieémes meilleurs en gras bleu

&9

Image Métrique Meéthodes
Howe SAE SKKHM GMM CNNAEU EndNet DAEU OSPAEU MSFormer MTAEU Ours
FM7T 78.57 49.24  70.59 81.67 64.26 79.92  80.56 79.73 72.64 77.86  82.14
7 DRD| 6.96 9.73 10.35 4.86 8.08 6.04 5.40 5.32 9.38 6.22 5.28
NRM| 10.20 33.29 14.50 11.67 24.56 11.01 11.90 13.51 11.95 13.90 8.90
PSNRT 1244 10.59 10.99 13.57 11.26 12.82 13.13 13.12 10.98 12.64 13.23
FM7T 66.22 6343 59.34 86.25 51.15 54.68 56.61 68.78 44.69 57.50  86.82
A1 DRD| 1248 14.52 13.01 2.77 12.10 12.76 6.36 4.30 16.70 21.53 241
NRM| 9.29 8.64 14.23 5.15 25.51 2232 30.10 23.52 25.76 5.92 8.90
PSNRT 1445 13.82 14.12 19.21 13.84 13.93 15.88 16.92 12.64 12.31 13.22
EM7T 68.05 70.55 50.01 81.00 57.97 54.53 6049 60.47 51.49 64.71 81.75
243 DRD| 10.78 11.74 13.56 4.56 19.03 12.33 10.97 11.66 20.04 11.26 3.07
NRM| 13.33 6.53 27.58 9.14 11.96 25.06 2143 20.38 18.05 16.69 10.90
PSNRT 1339 13.17 12.19 16.08 11.10 12.48 12.99 12.81 10.65 13.10 16.44
FM71 19.93 7.21 18.13 79.09 73.33 17.05  70.26 15.98 43.16 18.91 83.12
4582 DRD] 11.51 12.19 71.34 4.71 7.37 173 5.05 141 12.95 149 3.44
NRM| 4438 48.13 36.54 11.21 10.29 26.73  22.54 33.31 32.19 24.05 11.10
PSNRT 1342 13.19 6.89 16.85 15.14 3.05 16.20 3.92 12.91 3.68 17.82
FM1 81.53 78.43 72.92 86.46 80.72 16.87  59.90 80.85 60.97 67.52  86.50
2592 DRDJ 5.51  5.69 10.08 3.19 4.49 124 6.34 4.87 11.74 14.50 2.90
NRM| 642 894 7.09 4.67 9.53 3292 28.50 10.58 16.91 5.45 7.80
PSNRT 1695 16.36 14.79 18.40 16.95 4.51 15.28 17.11 13.41 13.34  18.60
FM1 84.35 81.56  74.05 82.27 47.79 63.71 29.09 59.86 55.02 7148  84.06
465 DRD| 421 435 6.55 4.45 9.02 16.94  86.93 21.94 20.62 10.72 4.07
NRM| 6.68  6.27 14.61 9.28 33.33 8.67 21.1 8.11 14.63 9.54 7.40
PSNRT 1596 15.01 14.03 15.58 12.27 10.84 4.11 9.98 9.08 12.65 15.82
FM1 81.28 62.04 81.52 92.73 7.77 3443  68.72 88.02 37.76 56.86  91.57
2802 DRD| 2.35 20.57 5.25 1.53 443.71 81.81 15.18 2.92 53.5 26.96 1.78
NRM| 731  4.39 10.28 4.12 46.71 9.48 3.46 6.53 11.6 4.42 4.38
PSNRT 17.87 13.68 18.76 22.77 0.72 7.92 14.79 20.46 9.61 12.55 21.9
FM?T 84.64 81.67  79.09 78.26 76.64 2395 84.98 75.11 38.99 83.61 83.7
4822 DRD| 2.64 342 3.93 441 4.06 94.93 2.86 3.87 13.55 2.73 2.90
NRM| 1041 9.44 14.13 13.24 15.53 19.05 8.46 19.28 33.28 11.99 9.60
PSNRT 19.01 18.12 17.96 17.63 17.36 6.25 18.92 17.52 13.16 18.87 18.64
EM7T 84.64 068.38 51.36 83.77 45.64 4998 41.75 54.59 26.58 47.94 83.2
290 DRDJ 2,64 772 26.81 4.68 41.21 24.8 52.94 24.47 106.5 40.46 4.13
NRM| 1041 18.74 15.43 7.75 12.35 19.87 10.29 14.70 16.47 9.31 9.22
PSNRT 13.86 15.51 11.67 18.01 10.03 11.93 8.98 12.08 5.96 10.12  17.89
EM7T 72.11 63.88  69.98 69.01 75.59 5498  76.65 81.64 61.55 7127  80.44
492 DRDJ 8.68  9.55 10.74 10.09 5.44 25.79 7.56 4.06 16.53 11.01 4.61
NRM| 1046 17.81 8.93 10.47 14.59 9.42 6.39 9.71 10.85 6.18 8.5
PSNRT 1296 11.49 11.59 11.58 13.5 8.19 12.62 14.52 9.78 11.38  14.02

Note : FM = F-Measure, DRD = Distance Reciprocal Distortion, NRM = Negative Rate Metric, PSNR =
Peak Signal-to-Noise Ratio. T indique une valeur optimale élevée, | indique une valeur optimale basse.
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L’analyse de ces tableaux révele plusieurs observations importantes. Premierement, on constate
que la collection MSTEX2 présente des défis significativement plus importants que MSTEx1. La
plupart des méthodes montrent une dégradation notable de leurs performances sur MSTEx2, avec
des cas extrémes comme I’'image 2582 ou EndNet, OSPAEU, MTAEU et méme Howe obtiennent
des valeurs catastrophiques, indiquant un échec quasi-total de la binarisation. De maniere
surprenante, GMM constitue une exception notable, maintenant des performances relativement
stables entre les deux collections et obtenant méme certains de ses meilleurs résultats sur MSTEx2
(FM de 92.73% sur I’'image z802). La méthode de Howe illustre parfaitement le probleme de
variabilité des performances. Bien qu’elle obtienne d’excellents résultats sur certaines images
(2822 avec un FM de 84.64% et un DRD de 2.64x1073), elle échoue completement sur d’autres,
comme z31 ol1 son FM chute 4 66.22% avec un DRD élevé de 12.48x1073. Cette inconsistance

rend certaines méthodes peu fiables face aux variations des documents inhérentes a leur nature.

Parmi les méthodes basées sur les auto-encodeurs, MTAEU se distingue comme étant la plus
performante, obtenant régulierement des résultats compétitifs. Par exemple, sur I’image z68,
MTAEU atteint un FM de 88.44% avec un excellent DRD de 2.57x1073, surpassant toutes
les autres approches d’apprentissage profond. Cependant, méme MTAEU présente une forte

variabilité, avec des échecs notables sur certaines images difficiles de MSTEx2.

En contraste, notre méthode PRISM démontre une remarquable stabilité a travers I’ensemble
des images. Elle obtient systématiquement des performances parmi les meilleures sur chaque
image, avec des résultats dépassant tous le seuil de 80% en FM. Sur les 20 cube MS testés,
PRISM se classe premiere ou deuxieme pour la métrique FM dans 17 cas, et maintient toujours
un DRD inférieur 4 5.28%1073. Cette constance, reflétée dans les métriques moyennes, confirme
la robustesse de notre approche face a la variabilité des contenus manuscrits, quelle que soit sa

structure spatiale, I’age du document, ou son état de dégradation.
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4.14 Résultats qualitatifs

L’ analyse qualitative présentée dans la Figure 4.1 révele des différences marquantes entre les
performances visuelles des différentes méthodes sur I'image z31 de MSTEx-1. Cette image,
particulierement représentative des défis rencontrés dans I’extraction de texte manuscrit, permet

d’observer concretement les limitations et avantages des différentes approches.
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Figure 4.1 Composantes de texte extraites par différentes méthodes, classées par score
FM, sur I'image z31 de MSTEx-1. Visualisation suivant Rahiche & Cheriet (2021, 2022)

L’image en pseudo-couleur (a) ainsi que la vérité terrain associée (b) illustrent la complexité de la
tache. Les caractéres manuscrits présentant des variations d’épaisseur, et différentes connexions
entre lettres. Un tampon des archives nationales a aussi été ajouté sur le texte, rendant la tache
de segmentation encore plus difficile. La méthode de Howe (c) présente des résultats décevants
sur cette image, confirmant les observations quantitatives précédentes. L’ extraction apparait
incomplete, avec le tampon qui n’est pas séparé du texte et de I’arriere-plan. Cette dégradation
visuelle explique directement le score FM particulierement faible de 66.22% obtenu sur cette
image, illustrant parfaitement les problémes de robustesse de cette approche. VBONMEF (d)
ne montre pas d’amélioration notable par rapport 2 Howe sur cette image, bien que présentant
des résultats moyens plus haut sur MStex. La méthode ne réussit pas a différencier le tampon
du texte. Sur cette image, OSPAEU (e) obtient les meilleurs résultats parmi les méthodes AE
ré-implémentées. Cela révele les manques inhérents aux méthodes d’apprentissage profond

se basant seulement sur les pixels. La méthode parvient a distinguer le tampon du texte, mais
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a plus de mal a bien identifier les bordures du texte ainsi que les traits plus fins, rendant la
lecture plus difficile. MA-ONMF (f) démontre une performance intermédiaire intéressante.
L’extraction préserve mieux la connectivité des traits manuscrits que les méthodes précédentes,
mais présente encore des difficultés dans la zone sous le tampon. On observe une tendance a
lisser excessivement certains détails fins, ce qui peut compromettre la lisibilité de caracteres
particulierement stylisés ou dégradés. La méthode GMM (g) surprend par sa robustesse relative
sur cette image difficile. L’approche statistique semble bien adaptée a la nature de la distribution
des intensités dans cette image, résultant en une extraction relativement propre et cohérente.
Cette performance visuelle corrobore les résultats quantitatifs favorables obtenus par GMM sur
certaines images de la collection MStex. Le seul défaut, consiste en une partie du tampon qui

n’est pas correctement discriminée, résultant en un score FM plus bas.
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Figure 4.2 Décomposition de PRISM sur I’'image z31 de MStex,
montrant le texte, le tampon et I’arriere-plan bien décomposé

Enfin, la méthode PRISM (h) se distingue nettement par la qualité de I’extraction obtenue. Le
résultat présente une remarquable fidélité a la vérité terrain, étant une des seules méthodes
a correctement séparer le tampon du texte. A la différence de OSPAEU et MA-ONMEF, la
composante extraite préserve les détails fins et les traits manuscrits du texte. Les caracteres
apparaissent alors nets et complets, améliorant la lisibilité du texte par rapport a d’autres
méthodes. Cette qualité visuelle supérieure explique directement les performances quantitatives
élevées et constantes de PRISM a travers 1’ensemble des images testées. Comme montré sur la
Figure 4.2, 1a méthode proposée décompose I’image en trois composant distincts : le texte, le
tampon des archives ainsi que I’arriere plan. Cette analyse qualitative montre que la supériorité
quantitative de PRISM pour I’extraction de texte se traduit effectivement par une amélioration

visuelle de la décomposition, permettant une meilleur compréhension de I’image décomposée.
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4.2 Généralisation de I’approche a différentes configurations d’images multibandes

4.2.1 MSBin : Jeu de données MS de documents anciens

Afin d’évaluer la capacité de généralisation de notre méthode PRISM, il est crucial de la tester
sur des configurations d’acquisition multispectrale variées. En effet, les systemes d’imagerie
different considérablement en termes de nombre de bandes spectrales, de leur répartition et de
la plage spectrale couverte. Cette variabilité représente un défi majeur pour les méthodes de
traitement, qui doivent s’adapter a des caractéristiques spectrales hétérogenes tout en maintenant
leurs performances. Nous évaluons donc notre approche sur la collection MSBin, qui présente
une configuration spectrale distincte avec 12 bandes étroites au lieu de 8, permettant ainsi de
vérifier la robustesse de PRISM face a différentes modalités d’acquisition. Cette collection
comprend 30 cubes multispectraux acquis a I’aide d’une caméra achromatique Phase One 1Q260
d’une résolution de 60 mégapixels, capturés sur douze bandes spectrales étroites s’étendant de

365 nm a 940 nm (Hollaus et al., 2019). Celles-ci sont montrées sur le Tab. 4.5.

Tableau 4.5 Détail des bandes spectrales utilisées pour le jeu de données MSbin

Bande FO F1 F2 F3 F4 F5 Fo F7 F8 F9 F10 Fl11
Longueur d’onde (nm) Toutes 365 450 465 505 535 570 625 700 780 870 940
Filtre de lumiére Blanc UV -+ - Visible - - - IR1 IR2 1IR3
Temps d’exposition (s) 0.066 10 0.125 0.1 0.05 0.066 0.166 0.033 0.166 0.2 02 05

Les images proviennent de la numérisation de deux manuscrits : le Bitola-Triodion ABAN
38 (livre BT) et I’Enina-Apostolus NBMK 1144 (livre EA), ce dernier présentant un état de
dégradation sévere. La vérité terrain classe chaque pixel en trois catégories : texte au premier
plan (encre ferro-gallique), arriere-plan, ou régions incertaines jugées trop complexes pour une
annotation manuelle (ces dernieres étant exclues de I’évaluation). Certaines images comportent
également un second plan textuel a I’encre rouge. Ces images possedent une taille spatiale et

spectrale plus élevé que celles de la collection MStex.
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4.2.2 Résultats quantitatifs

Le Tableau 4.6 présente les performances moyennes des différentes méthodes sur I’ensemble des
30 cubes MS de la collection MSBin. La méthode proposée obtient les meilleures performances
sur I’ensemble des métriques, avec notamment un score FM de 82.57%, confirmant sa capacité

a traiter efficacement des documents manuscrits aux caractéristiques variées.

Tableau 4.6  Performances moyenne sur les 30 cubes MS de MSBin

Method \ FM@0)T DRDu0?)] NRMo02)| PSNRT
Méthodes issues de domaines connexes
CNNAEU 67.10 39.52 19.35 10.32
Endnet 67.62 41.71 20.61 10.57
MSFormer 69.87 46.62 12.55 13.18
OSPAEU 71.59 52.90 13.14 11.77
DAEU 72.68 29.73 16.50 11.77
MTAEU 74.02 34.25 12.81 11.35
Méthodes pour les images de documents
MAONMF - - - -
VBONMF - - - -
SAE 40.83 50.86 32.42 8.95
Howe 41.50 38.68 31.27 10.48
SKKHM 73.42 26.78 17.43 11.74
GMM 80.00 20.35 - 13.18
ACE v2 81.25 20.80 - 13.27
ACE vl 81.28 22.03 - 13.28
PRISM 82.57 18.71 10.45 13.74

Parmi les méthodes spécifiquement congues pour les documents, on observe une grande
disparité de performances. SAE et Howe, deux approches classiques, obtiennent des résultats
catastrophiques avec des scores FM de 40.83% et 41.50% respectivement, suggérant leur
inadéquation face a la complexité des manuscrits de MSBin. Ces échecs sont particulierement
visibles dans leurs métriques NRM dépassant 30 x1072, témoignant d’une incapacité  préserver
correctement les structures du texte. Les résultats pour les méthodes MAONMEF et VBONME,
qui obtiennent de bons résultats sur MStex, n’ont pas pu étre produits en raison des difficultés

computationnelles, renfor¢ant I’idée que MSBin représente un défi significatif.
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La plupart des méthodes obtiennent des résultats inférieurs a ceux du jeu de données MStex.
En revanche, les méthodes proposant une décomposition parviennent a maintenir des résultats
élevés en comparaison avec les méthodes de binarisation uniquement. C’est le cas de SKKHM,
qui, bien qu’obtenant des résultats plus bas, affiche un score FM de 73,42 % supérieur a celui de
MStex (71,78 %). GMM semble indiquer une certaine robustesse, avec 80 % de FM sur les deux
collections. Les deux versions d’ACE obtiennent des performances quasi identiques (FM de
81,25 % et 81,28 %), plus basses que pour MStex. Etrangement, ACE v2 obtient des résultats
légerement plus bas que ACE v1 pour le score FM et le PSNR, mais pas pour la DRD. Cela
semble démontrer que I’ensemble de ces métriques doit étre pris en compte pour mieux évaluer
la qualité du texte extrait, chacune étant complémentaire. Cela suggere également une grande

variabilité dans les images MS, chacune présentant ses propres défis.

Les méthodes issues de domaines connexes, bien qu’ayant démontré leur efficacité sur d’autres
types de données, peinent manifestement a s’adapter aux spécificités des manuscrits historiques.
Cependant, malgré des parametres qui n’ont pas été adaptés, elles obtiennent des résultats
similaires, indiquant une bonne généralisation des méthodes d’apprentissage profond de
démélange HS. Etonnamment, MS Former est la méthode dont les résultats augmentent
le plus entre les deux jeux de données. Cela peut s’expliquer par le fait que le texte de MSBin
est significativement plus large. Il est donc mieux traité par 1’architecture transformer qui prend

des patchs en entrée, ce qui permet d’obtenir une plus grande précision.

Enfin, notre méthode PRISM démontre sa supériorité en surpassant toutes les approches
concurrentes sur I’ensemble des métriques. Avec un FM de 82.57%, elle dépasse d’environ
1.3 points de pourcentage les meilleures méthodes alternatives. Plus significatif encore, elle
obtient simultanément le meilleur DRD (18.71 x1073) et le meilleur NRM (10.45 x1072), ce
qui témoigne de sa capacité a équilibrer précision de détection et qualité visuelle. Le PSNR de
13.74, supérieur de 0.46 points a ACE v1, confirme la qualité globale supérieure des images
binarisées. Cette domination sur I’ensemble des métriques, contrairement aux autres méthodes
qui excellent généralement sur certains aspects au détriment d’autres, souligne la robustesse et

I’équilibre de notre approche face a la diversité des défis présents dans la collection MSBin.
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4.2.3 Résultats qualitatifs

L analyse qualitative présentée dans la Figure 4.3 offre une perspective complémentaire sur les
performances des différentes méthodes d’extraction de texte manuscrit sur la base de données
MSBin. Cette image, présente plusieurs défis caractéristiques : un texte manuscrit avec deux
différentes couleurs, un support papier avec des variations d’intensité, ainsi qu’une petite

déchirure ajoutant un fond complexe visible en haut a gauche dans I’image pseudo-couleur (b).

5 ffmugl‘e;_n'"mﬁm-’;r« m‘;. 5
"’“'"*Mmﬁwﬁm A n:
; Aa-

(a) Cube MS (b) Image en pseudo-coleurs
an CAE € Mamp CMBATH.- F’" TEMLAEE Hams CABATH.- S
¢ H4n‘rE g JTI(BTNM 4'

HAHTE N 4 Ne.r.-r,wrnm v
anoe 4 lratm{vrv‘-"ku" 1€ ll'lﬂf ltecm *r'lmsqn
fg;' A idcero: HeFomi e TAa a: IACTO: . cTOME:, Her et &
T HTOHD 6 menavieind TP f‘” &ramenayNerF 4 T no mzemuurf!!!
TRHG: XAt HacmMs T puss E,"‘-‘ 4nn HOEMBIT Py na: tcm Ba e T PR

T Arc Noaa WK
(c) OSPAEU (d) Howe e) MS-Former
p— N A ru‘lt‘ntlhlif'ﬂ‘llub CMEITH .-
q H-ﬂt‘rE "JL N. f,pr,gprnm "’4‘
Hxnos 4ua¢m'f'r1mm;n 1e
“l‘;u a: 4;r4c'rn Hc'r'mmn ;;ue-
TOLHT HO: Eramenayiern
TEHG: '(411'5 ‘AaEMB T o HD

e z YV ane N aw K
(g) Endnet (h) DAEU
XEN "‘"ll]; (an'r" F"Yt"fﬁﬂfmlﬂb (MB""H

'(Hm'rt BT Ne;a',cprma iy CHMBTEIN 3 Ns.ur]cprnm v
Hxnu A 18 ey Cr e i 1 NXmiE: A Iea ems L R 1 e
A atriﬂ'u HeTonid.pyies "“' A FredcTo: Hc-romn pHE
CHTIND: ﬁumemn‘?pmﬁ no WTeni>: ﬁmmemvnr‘ni
TL"“". '(-mn Hacrmb: T ond TEHA: X and:AacmME T pity

Y Ar N aa Y ar- N‘- -

(i) MTAEU (i) CNNAEU (k) PRISM

Figure 4.3 Décomposition de PRISM sur I’'image BT56 de MSBin

Le cube MS (a) ainsi que I’image en pseudo-couleurs correspondante, révelent la richesse de
I’information spectrale disponible, que les différentes méthodes exploitent avec des degrés de
succes variables. Parmi ces différentes méthodes, toutes ont vu leur rang fixé a 4 a I’exception
de Howe (d), qui peut seulement identifier un texte et un arriere-plan, ainsi que de MS-Former

(e), et de PRISM (k), qui proposent une sélection du rang dynamique.
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On peut alors observer plusieurs comportements pour la décomposition du texte. Certaines
méthodes réussissent a faire la distinction entre le texte principal et la deuxieme encre, comme

Howe, SKKHM, DAEU ou PRISM, tandis que les autres ne distinguent pas ces encres différentes.

OSPAEU (c) produit une extraction relativement propre mais ne distingue que deux composantes
importantes. Cette limitation suggere une capacité insuffisante du modele a discriminer finement
les signatures spectrales. La méthode de Howe (d), bien qu’étant une approche classique
respectée, montre ici ses limites face a la complexité spectrale de ’image. L’extraction apparait
incomplete avec une perte significative de détails, la perte de la distinction de la deuxieme
encre et une confusion entre certaines parties du texte et de I’arriere-plan, confirmant les
observations faites sur MSTEx. MS-Former (e) démontre les défis d’une architecture transformer
pour les taches de segmentation fine. Les caracteres extraits sont grossiers, et des artefacts
d’illuminations sont identifiés comme des composants a part entiere, suggérant que 1’ attention
multi-téte seule ne suffit pas a capturer toutes les nuances spectrales nécessaires a une séparation
optimale. SKKHM (f) présente une contamination similaire par les variations d’illuminations,
représenté par la composantes violette, illustrant les défis inhérents aux approches de clustering
appliquées aux données MS. Les méthodes basées sur les auto-encodeurs ; Endnet (g), DAEU
(h), MTAEU (i) et CNNAEU (j), montrent des performances variables. Endnet et MTAEU
souffrent particulierement d’une mauvaise séparation spectrale, avec des composants extraits
qui ne sont pas interprétables, compromettant la lisibilit€. CNNAEU présente un compromis
intéressant avec moins d’artefacts colorés mais ne réussit pas a distinguer les deux couleurs de
texte. DAEU offre une amélioration notable avec une extraction plus nette mais ne réussit pas a

différencier I’arriere-plan du texte principal (en vert).

Finalement, la méthode proposée PRISM (k) se distingue une fois de plus par la qualité de
I’extraction obtenue. Le texte apparait net et complet, avec une séparation des deux couleurs du
texte. Parmi toutes les méthodes, PRISM est la seule a réussir a distinguer I’arrieére-plan (en
violet) du texte principale. L' absence quasi-totale d’artefacts colorés et la préservation fidele de
tous les détails du manuscrit, y compris les traits les plus fins et les variations d’intensité subtiles,

confirment la robustesse de I’approche proposée. Cette supériorité visuelle corrobore les résultats
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quantitatifs et démontre la capacité de PRISM a exploiter efficacement I’information MS pour
produire des décompositions de haute qualité et interprétables. L’avantage de la décomposition

par rapport a une approche de binarisation directe est illustré dans la Figure 4.4.
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(a) Image pseudo-couleur (b) Texte binarisé par Howe (¢) PRISM

Figure 4.4 Comparaison entre décomposition PRISM et binarisation seule (Howe) sur
I’image EAS58, montrant I’avantage de la décomposition pour révéler les textes dégradés

La méthode de Howe, référence en binarisation MS, inverse les composantes en classifiant
I’arriere-plan comme texte. L’ approche proposée réussit a identifier le texte, tout en proposant une
décomposition physiquement interprétable. Cette supériorité qualitative se traduit quantitativement

par un gain de performance de 28,4 points de FM, moyenné sur I’ensemble de MSBin et MSTex.

4.3 Application et validation sur des données hyperspectrales satellitaires

L’analyse comparative présentée dans les sections précédentes établit 1a supériorité de la méthode
PRISM dans le contexte de 1’extraction de texte a partir d’images multispectrales, démontrant des
performances quantitatives et qualitatives supérieures aux approches concurrentes. Différentes
architectures hybrides de démélange HS ont aussi été testées en référence, réussissant a généraliser
sans adaptations des parametres. Cette observation empirique conduit a une problématique
scientifique fondamentale concernant la proximité entre ces deux domaines : dans quelle mesure
une approche développée spécifiquement pour la séparation de composantes textuelles peut-elle

étre généralisée aux problémes classiques de démélange hyperspectral ?
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Cette question de recherche trouve sa justification dans 1’analyse des fondements théoriques
communs aux deux domaines. En effet, tant I’extraction de texte MS que le démélange HS
reposent sur le méme cadre mathématique de séparation aveugle de source (SAS), formalisé par
le modele linéaire de mélange (LMM). L’évaluation de PRISM sur des données HS constitue
donc une validation cruciale permettant d’établir la robustesse de 1’algorithme face a des
caractéristiques spectrales différentes de celles des manuscrits. Cela pourrait démontrer une

généralisation au-dela du domaine d’application initial, soulignant sa force d’adaptation.

4.3.1 Initialisation par VCA

Lalgorithme Vertex Component Analysis (VCA) est une méthode largement utilisée pour
extraire des signatures spectrales dans les données HS sous 1’hypothese de 1’existence de «pixels
purs» (Nascimento & Dias, 2005). La VCA repose sur des projections itératives dans un espace
de dimension réduite, de fagon a faire apparaitre tour a tour les sommets (vertices) du simplexe
englobant les données. Concretement, a chaque itération on projette I’ensemble des spectres le
long d’une direction aléatoire orthogonale au sous-espace déja identifié, puis on sélectionne le

pixel extréme (maximum de la projection) comme nouvelle signature spectrale pure.

Initialiser les méthodes par des signatures spectrales extraites par VCA permet de placer le point
de départ de I’algorithme de démélange dans une configuration physiquement plausible, ce
qui accélere la convergence et réduit le risque d’étre piégé dans un optimum local. Plusieurs
travaux ont montré que, comparé a une initialisation aléatoire ou fondée sur une simple réduction
de dimension (PCA, ICA), I'utilisation de VCA améliore significativement la précision de

I’estimation des abondances et est devenu un standard pour I’initialisation dans ce domaine.

Ainsi, pour I’application de PRISM aux images hyperspectrales, une étape d’initialisation par
VCA est ajoutée pour assurer a la fois la rapidité de convergence et la fiabilité des résultats, tout

en exploitant pleinement les hypotheses initiales propres a ce domaine.
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4.3.2 Jasper Ridge : Jeu de données de démélange HS

Le site de Jasper Ridge, situé en Californie du Nord, fournit une image hyperspectrale largement

utilisée pour évaluer les algorithmes de démélange spectral. L’ acquisition a été réalisée a I’aide

d’un imageur Aisa Eagle, couvrant 224 bandes spectrales dans la gamme 400—1000nm, avec

une résolution spatiale de 100 x 100 pixels et une taille de pixel au sol d’environ 17m. Quatre

matériaux dominants sont annotés sur I’image observée : la forét, I’eau, le sol nu et I’asphalte.

Ces classes servent de références pour valider la précision des cartes d’abondance estimées.

Forét Sol

(b) PRISM %

Eau
‘! I
L]
i S

(a) Cube MS

Figure 4.5 Décomposition de PRISM sur I’'image HS de Jasper Ridge

La Figure 4.5 montre les cartes d’abondance extraites par PRISM pour chaque materiel, avec :

Forét : 1a zone boisée sur la rive gauche est clairement délimitée, avec un contraste élevé entre
la végétation dense (valeurs d’abondance élevées) et les zones non forestieres (RMSE= 0.06).
Eau : la riviere centrale apparait avec une abondance tres homogene et maximale, attestant
de la pureté spectrale de 1’eau selon PRISM (RMSE= 0.22).

Sol : les terrains dégagés environnants sont bien extraits, méme dans les zones de transition
ou le sol se mélange a la végétation (RMSE= 0.1049).

Asphalte : les différentes routes est reconstituée avec précision, y compris ses bordures fines,

démontrant la capacité de PRISM a capturer des signatures discretes (RMSE= 0.20).

La racine de I’erreur quadratique moyenne (RMSE) sur I’ensemble des classes est de 0.146, ce

qui se situe dans la plage basse des valeurs observées dans la littérature (entre [0.0838;0.2943]).
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Les résultats qualitatifs et quantitatifs confirment ainsi 1’adéquation des cartes d’abondance

produites par PRISM avec les annotations du sol, illustrant sa robustesse pour le démélange HS.

4.3.3 Urban : Jeu de données de démélange HS multi-composantes

Le jeu de données Urban est acquis par le capteur HYDICE au-dessus de la ville de Houston.
C’est un jeu de référence pour le domaine du démélange HS. Il se compose d’une image de
307 x 307 pixels, couvrant 210 bandes spectrales dans la gamme 400-2500 nm. Ce jeu de
données est caractérisé€ par une forte hétérogénéité spectrale et spatiale, notamment en raison
de la coexistence de matériaux aux signatures proches comme le béton, 1’asphalte, les toits ou
la végétation. Une particularité intéressante de ce jeu de données réside dans la disponibilité
de plusieurs vérités terrain annotées, définissant trois scénarios de démélange correspondant
respectivement a 6, 5 ou 4 matériaux. Ces trois variantes permettent de tester la robustesse
des méthodes de démélange face a des définitions de classes plus ou moins précises, et offrent
une opportunité d’analyser 1’adéquation du rang dynamique proposé par PRISM. Suivant la
méthode de Palsson et al. (2022), la RMSE entre les abondances générées et la référence GT
correspondante a été calculée, en retenant le meilleur résultat parmi dix exécutions indépendantes
afin d’atténuer les effets d’initialisation pour les trois scénarios. Dans cette configuration, pour
notre méthode, le rang minimal possible r,,;, a été fixé a quatre pour chaque exécution, et les
cartes d’abondance correspondantes a chaque scénario GT ont été sauvegardées. Les résultats

sont présentés ci-dessous dans les Tab. 4.7, 4.8, et 4.9 et sur la Fig. 4.6.

Tableau 4.7 Comparaison quantitative avec les méthodes de démélange HS sur le jeu de
données Urban pour SIX éléments. Les meilleurs résultats en gras et les deuxiémes en bleu

Métrique | Elément | CNNAEU Endnet DAEU OSPAEU MTAEU PRISM
Asphalte 0.2270 0.1528 0.1322  0.2994 0.1517  0.1786
Herbe 0.3622 0.2141 0.2352  0.1782 0.1862  0.2080
Arbre 0.1972 0.0939 0.1492  0.1358 0.1152  0.1492
RMSE | Toit 0.1252 0.1060 0.0915  0.1460 0.1152  0.0852
Sol 0.2096 0.2017 0.2195  0.2354 0.1395  0.1732
Meétal 0.1710 0.2508 0.1606  0.0844 0.1808  0.1881
Moyenne | 0.2154 0.1699 0.1647  0.1847 0.1515  0.1637
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6 matériaux
Asphalte Herbe Arbres Toit Sol Meétal

5 matériaux
Arbres

PRISM §

GT

4 matériaux
Asphalte Herbe Arbres Toit

=

Figure 4.6 Evaluation qualitative de PRISM sur le dataset Urban pour 6, 5 et 4 matériaux :
chaque groupe commence par la décomposition proposée suivie de la ligne GT
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Tableau 4.8 Comparaison quantitative avec les méthodes de démélange HS sur le jeu de
données Urban pour CINQ éléments. Les meilleurs résultats sont en gras et les deuxieémes
meilleurs en bleu

Métrique | Elément | CNNAEU Endnet DAEU OSPAEU MTAEU PRISM
Asphalte 0.2499 0.1102 0.1266  0.3159 0.1295  0.2221
Herbe 0.2563 0.1688 0.1856  0.2064 0.1620  0.2113
Arbre 0.2022 0.1082 0.1169 0.1644 0.1105  0.1197
Toit 0.1212 0.0870 0.1022  0.1563 0.0693  0.0591
Sol 0.2641 0.1534 0.1815  0.2410 0.1157  0.2326
Moyenne | 0.2187 0.1255 0.1426  0.2168 0.1117  0.1689

RMSE |

Tableau 4.9 Comparaison quantitative avec les méthodes de démélange HS sur le jeu de
données Urban pour QUATRE éléments. Les meilleurs résultats sont en gras et les
deuxiemes meilleurs en bleu

Métrique | Elément | CNNAEU Endnet DAEU OSPAEU MTAEU PRISM
Asphalte 0.2369 0.1084 0.1703  0.3028 0.1426  0.0948
Herbe 0.2756 0.1660 0.1678  0.2688 0.1346  0.1562
RMSE | Arbre 0.2070 0.1019 0.0762 0.2134 0.0951  0.1252
Toit 0.1876 0.0845 0.0867  0.2876 0.0904  0.0560
Moyenne | 0.2268 0.1152 0.1253  0.2682 0.1157  0.1081

PRISM démontre des performances compétitives par rapport aux méthodes de démélange HS
sur ce jeu de données, avec des résultats particulierement solides pour les cartes d’abondance
représentant le toit. Bien que PRISM n’obtienne pas la RMSE la plus basse pour toutes les classes
de matériaux, il surpasse systématiquement la méthode de référence CNNAEU qui a servi de
base a son architecture. La RMSE plus élevée, notamment pour les composants Asphalte et Sol,
peut étre attribuée a une similitude entre ces deux matériaux, PRISM classant certaines sentiers
hors route comme Asphalte plutot que Sol. Cette confusion est atténuée lorsque ces composants
sont combinés en un seul matériau dans le dernier scénario, produisant méme les meilleurs
résultats quantitatifs. PRISM, grace a son adaptation dynamique du rang, est aussi la seule
méthode capable de générer les résultats pour les trois scénarios dans un méme entrainement.

Cela démontre la force de son systeme d’élagage pour I’interprétation des décompositions.
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44 Exploration d’applications aux Images RVB et monocanales

4.4.1 Probléme du cas sous-déterminé

Dans le cadre de I’analyse d’images multibandes, comme celles issues de documents historiques,
on cherche souvent a retrouver un certain nombre de sources latentes a partir d’un nombre donné
de bandes spectrales. Ce probleme devient particuliecrement complexe lorsque le nombre
de sources a estimer dépasse le nombre de bandes disponibles : on parle alors de cas
sous-déterminé. Intuitivement, cela signifie que I'on dispose de moins d’informations que
de variables inconnues, ce qui rend le probléeme mal posé sans hypothéses ou contraintes
supplémentaires. Mathématiquement, on considére la matrice Y € R2*", ot b est le nombre
de bandes spectrales et n le nombre de pixels. L’objectif est de factoriser cette matrice avec
U € R représentant les signatures spectrales estimées et V € R’*" les cartes d’abondance
correspondantes. Lorsque le rang r dépasse le nombre de bandes b (i.e., r > b), le systeme
devient sous-déterminé : le nombre d’inconnues est alors supérieur au nombre d’observations

disponibles par pixel.

Dans ce contexte, des techniques spécifiques deviennent indispensables pour restreindre 1’espace
des solutions a une abondance parcimonieuse réaliste. Ce cadre souligne la nécessité du contexte

spatial : chaque pixel n’est plus considéré seul mais dépend aussi de ses différents voisins.

4.4.2 DIBCO : Jeu de données RVB de documents

Le concours Document Image Binarization Contest (DIBCO), propose un ensemble de données
annotées pour 1’évaluation des méthodes de binarisation de documents. L’édition 2018 contient
des images de documents numérisés en couleur (RVB), dégradés par du bruit, des taches, des
plis ou une faible lisibilité, avec leurs masques binaires de vérité terrain correspondants. Les
documents incluent des textes manuscrits, imprimés ou mixtes, posant ainsi un défi varié pour

les méthodes de séparation de texte et de fond.
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Figure 4.7 Décomposition de PRISM sur I’'image 1 de DIBCO 2018

Sur la Figure 4.7, on observe la décomposition obtenue par le modele PRISM appliqué a la
premiere image du jeu de données DIBCO 2018. L'image originale (en haut a gauche) présente
un document manuscrit avec du texte encre noire, quelques annotations en encre plus claire
représentant le texte du verso de la feuille, des taches visibles, ainsi que différentes dégradations.
Les autres sous-figures montrent différentes composantes extraites par PRISM : certaines mettent
en évidence les structures textuelles principales (en haut centre), d’autres isolent des artefacts
ou des €éléments de fond (en bas a gauche et au centre). La derniere image (en bas a droite)
illustre une abondance mettant en évidence le texte du verso, proche d’un masque de binarisation.
PRISM parvient ainsi a dissocier efficacement les différentes sources présentes dans I’image, en

particulier le texte manuscrit, malgré la présence de quelques dégradations visuelles.

Le Tableau 4.10 présente les performances de PRISM comparées a celles des autres participants
au concours DIBCO 2018, selon trois métriques de binarisation. PRISM se positionne nettement
au-dessus des méthodes classiques de binarisation RVB (Sauvola, Otsu) et dépasse la plupart
des méthodes du concours. La méthode gagnante combine plusieurs pré/post-traitements
(e.g., transformée bottom-hat, binarisation de Howe, et élimination du bruit) ainsi qu'un
pré-entrainement sur les images des éditions précédentes similaires (DIBCO 2017). Ces
choix lui assurent les meilleurs scores, au prix d’une approche spécialisée et dépendante des
données d’entrainement. En comparaison, PRISM, con¢cu comme une méthode générique et non

supervisée, propose une décomposition bout-en-bout qui extrait plusieurs composantes sans
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Tableau 4.10 Résultats de PRISM parmi les méthodes du concours DIBCO 2018

Methode \ FM(%)T DRD| PSNRT
Méthodes du concours DIBCO 2018
Méthode gagnante (supervisée) 88.34 4.92 19.11
PRISM 76.87 8.99 15.34
Meéthode 7 73.45 26.24 14.62
Méthode 2 70.01 17.45 13.58
Meéthode 3b 64.52 16.67 13.57
PRISM s/ attention spatiale 56.96 19.13 12.53
Meéthode 5 56.08 28.99 11.50
Meéthode 6 46.35 24.56 11.79
Meéthode 3a 43.36 40.80 10.42
Méthode 4 41.87 37.36 10.38
Binarisation classique RVB
Sauvola 67.81 17.69 13.78
Otsu 51.45 59.07 9.74

étre spécifiquement adapté au dataset DIBCO. Malgré cette absence d’optimisation, PRISM
obtient la deuxiéme place, surpassant plusieurs approches spécialisées. Ces résultats soulignent
la robustesse de PRISM dans un contexte de décomposition sous-déterminée et I’apport du

contexte spatial (+19.9 FM) pour compenser la perte d’information spectrale (voir Tab. 4.10).

4.4.3 Différences entre images de documents et images naturelles

Les images de documents et les images naturelles représentent deux catégories d’images
fondamentalement distinctes, dont les caractéristiques influencent directement la conception et
I’efficacité des modeles de vision par ordinateur. Au-dela des différences évidentes de structure
et de contenu, la distinction la plus fondamentale entre les images de documents et les images
naturelles réside dans leurs propriétés statistiques. Alors que les images naturelles sont complexes,
organiques et riches en occlusions, les documents présentent une nature structurée et prévisible.
Cette différence est particuliecrement manifeste dans le domaine de Fourier. Dans cet espace
fréquentiel, les images naturelles démontrent une décroissance en loi de puissance 1/ f* (ou
a est proche de 2), propriété universelle observable dans de nombreux phénomenes naturels.
Cela illustre et reflete I’organisation hiérarchique et fractale du monde naturel, ou le spectre de

puissance suit exactement une relation linéaire en représentation log-log, caractéristique d’une
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distribution énergétique décroissant progressivement avec la fréquence. A I’opposé, les images
de documents, constituées d’artefacts répétitifs (e.g., lignes de texte équidistantes, caracteres
uniformes, structures tabulaires), présentent un spectre marqué par des pics a différentes
fréquences spécifiques. Ces singularités spectrales correspondent directement aux périodicités

spatiales inhérentes a la mise en page documentaire, illustrées sur la Fig. 4.8.

(a) Image de document \/m ¢ (b) Image naturelle

= /A 4z
'

—— spectre de puissance —— Spectre de puissance
--- Ajustement (pente = -4.19) --- Ajustement (pente = -2.46)

log(Puissance)
log(Puissance)

3 3
log(Fréquence) log(Fréquence)

Figure 4.8 Analyse spectrale de Fourier en représentation log-log pour une
image de document (a), et une image naturelle (b). L’ ajustement linéaire (rouge)
révele que seules les images naturelles suivent une loi de puissance

Cette distinction éclaire d’ailleurs les performances remarquables des petits CNN simples
comme PRISM, pour traiter les images de documents. Le théoreme de convolution établit
que cette opération dans le domaine spatial équivaut a une multiplication dans le domaine de
Fourier. Les filtres convolutifs peuvent ainsi efficacement capturer les motifs périodiques et les
structures régulieres caractéristiques des documents, expliquant pourquoi des architectures CNN
relativement peu profondes atteignent des bonnes performances. En revanche, la complexité
spectrale des images naturelles, avec leur continuum de fréquences et 1’absence de régularités

exploitables, nécessite des architectures plus sophistiquées pour les décomposer adéquatement.
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4.4.4 Analyse des représentations d’encodeurs pré-entrainés comme cubes HS

Face aux limitations des CNN légers pour les images RVB naturelles, une approche alternative
pourrait consister a exploiter la puissance des architectures transformers pré-entrainées. Ces
modeles, ayant appris des représentations riches et complexes sur des millions d’images naturelles,
réussisent a encoder une compréhension profonde des structures visuelles. La Figure 4.9 illustre
la différence de qualité entre les représentations CNN et Dino v2 pré-entrainés. L’ image originale
(a) montre des bananes sur un support en papier journal. Lorsqu’on applique un algorithme de
k-moyennes sur les embeddings produits par un CNN classique (b), la segmentation résultante se
limite principalement a une distinction basée sur les couleurs de I’image et des textures locales
sans cohérence s€émantique claire. En revanche, le méme algorithme appliqué aux embeddings
de Dino v2 (c¢) produit une segmentation nettement plus structurée et sémantiquement cohérente,

distinguant les différentes régions de I’image (i.e., bananes, journal, mangues, et arricre-plan).

(a) Image d’entrée

(¢) Dino v2

Figure 4.9 Analyse comparative des représentations apprises sur des images
naturelles : (a) Image naturelle originale, (b) k-moyennes sur les embeddings d’un
CNN pré-entrainé montrant une segmentation limitée, (c) k-moyennes sur les
embeddings de Dino v2 démontrant une segmentation sémantique riche

L’idée est alors de traiter les représentations produite par des modeles ViT comme Dino v2,
en les considérant comme des cubes HS. Chaque dimension de I’embedding joue alors le
role d’une bande spectrale, permettant d’appliquer notre méthode PRISM directement sur
ces représentations de haut niveau. Ainsi, plutdt que d’analyser les pixels bruts d’images

naturelles complexes, PRISM peut opérer sur des représentations déja enrichies sémantiquement,

combinant la simplicité de notre approche avec la puissance des ces architectures pré-entrainés.
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Figure 4.10 Résultats de segmentation binaire obtenus par 1’application de PRISM
sur les embeddings Dino v2. Chaque ligne présente une image naturelle sélectionnée
aléatoirement dans le dataset ImageNet, suivie de différents masques binaires extraits
automatiquement par la combinaison PRISM + Dino v2, illustrant la capacité de la
méthode a identifier diverses structures sémantiques sans supervision

La Figure 4.10 démontre I’application de PRISM sur les embeddings Dino v2 pour segmenter des
images naturelles complexes. Pour chaque image test (motos, antenne parabolique, bus scolaire,
poubelle, chien), PRISM extrait automatiquement plusieurs segmentations binaires pertinentes
sans aucune supervision. Les résultats révelent que les embeddings Dino v2, traités comme
des cubes HS, contiennent une richesse d’information sémantique exploitable. Par exemple,

pour I’image des motards, PRISM parvient a isoler séparément les silhouettes des pilotes, les
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motos, et méme des éléments d’arriere-plan. L’ antenne parabolique est segmentée, distinguant la
parabole du support et du ciel. Pour le bus scolaire, la méthode sépare efficacement le véhicule
de son environnement urbain, tandis que la poubelle est extraite proprement de 1’ arriere-plan.
Particulierement remarquable, la segmentation du husky démontre la capacité de PRISM a
capturer des formes complexes de différentes couleurs et textures. Cette diversité de segmentations
pertinentes, malgré quelques artefacts résiduels, est obtenue sans apprentissage spécifique sur ces
catégories d’objets, validant I’hypothese que les représentations des transformers pré-entrainés
peuvent étre efficacement exploités comme cube HS. Ainsi, cela pourrait ouvrir I’application du

modele pour la segmentation d’images naturelles ou méme pour 1’analyse d’embeddings de ViT.

4.5 Synthese expérimentale

Ces évaluations expérimentales ont permis de valider la capacité de généralisation de notre
approche hybride tout en révélant des pistes d’application qui dépassent le cadre initialement
envisagé pour ce mémoire. Sur les images multibandes de documents historiques, PRISM remplit
son objectif premier avec des performances supérieures aux méthodes existantes sur diverses
configurations spectrales. Ces résultats confirment 1’adéquation de I’approche pour son domaine
d’application cible. L’application aux données HS de télédétection démontre qu’une architecture
unique peut alors traiter efficacement des données historiques et satellitaires, démontrant la
généralité du LMM pour le démélange spectral. Si la séparation de sources sur images RVB
de documents reste dans la continuité logique des travaux, 1’application aux représentations
profondes de Dino v2 ouvre une perspective non anticipée. En traitant les embeddings comme
des cubes HS, PRISM produit des segmentations sémantiquement cohérentes sans apprentissage
spécifique des catégories d’objets. Bien que préliminaires, ces résultats suggerent que PRISM
pourrait avoir des applications dans la vision par ordinateur moderne, pour I’interprétabilité

des représentions profondes ou méme la génération non-supervisée d’annotations.

Au-dela de la validation des trois axes de recherche initiaux, ces expériences suggerent donc
que I’architecture proposée possede une flexibilité qui pourrait s’étendre a d’autres domaines

nécessitant une décomposition interprétable de données multi-dimensionnelles.



CONCLUSION ET RECOMMANDATIONS

Ce mémoire s’est attaqué a un défi majeur de 1’analyse d’images de documents historiques :
développer une méthode de décomposition d’images multispectrales qui soit a la fois performante,
automatique et interprétable. Face aux limitations des approches existantes, nous avons proposé
PRISM, une architecture hybride qui combine I’interprétabilité physique de la factorisation

matricielle non-négative avec la puissance de modélisation des réseaux de neurones convolutifs.

51 Synthese des contributions

Les trois besoins fondamentaux identifi€s en introduction : interprétabilité, amélioration des

performances et non supervision, ont guidé notre démarche de recherche. L’analyse systématique

de I’état de I’art (Chapitre 1) a confirmé ces besoins tout en révélant des lacunes spécifiques
suggérant qu'une approche hybride serait la plus prometteuse pour y répondre. Ces constats ont
structuré nos trois contributions principales :

1. Synergie NMF-Autoencodeur : Notre premiere contribution réside dans la conception
d’une architecture qui integre naturellement les contraintes de non-négativité au sein d’un
autoencodeur convolutif. Cette approche a démontré sa capacité a préserver I’interprétabilité
physique des composantes extraites tout en bénéficiant de la modélisation spatiale et non-
linéaire des réseaux profonds. Les résultats expérimentaux ont confirmé que cette synergie
produit des décompositions plus précises et plus robustes que les méthodes traditionnelles,
avec des gains de performance dans les cofits de calculs.

2. Sélection automatique du rang : La deuxieéme innovation majeure concerne le mécanisme
d’estimation automatique du nombre de sources. En combinant une stratégie d’élagage
progressif avec le principe de Longueur de Description Minimale, nous avons développé
une approche qui libere I’utilisateur de la contrainte de spécifier a priori le nombre de
composantes. Cette automatisation représente une avancée significative vers une analyse

véritablement non supervisée des images de documents.
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3. Généralisation multi-domaines : La troisieme contribution, qui s’est révélée plus riche
que prévu, concerne la capacité de généralisation de PRISM. Au-dela de son domaine
d’application initial, la méthode a démontré son efficacité sur des données hyperspectrales

de télédétection et sur des représentations profondes d’images naturelles.

5.2 Discussion et positionnement scientifique

Les résultats obtenus positionnent PRISM a I’intersection de plusieurs domaines de recherche.
D’une part, la méthode s’inscrit dans la continuité des travaux sur la NMF et sur le démélange
spectral, apportant une solution qui unifie les approches classiques des méthodes d’apprentissage
profond. D’autre part, 1’application réussie aux représentations de transformers pré-entrainés

permet un lien entre les méthodes plus classiques et la vision par ordinateur moderne.

Cette approche arrive a un moment ou I’interprétabilité redevient une priorité dans la recherche
en intelligence artificielle. Les architectures d’auto-encodeurs connaissent un regain d’intérét
pour leur capacité a produire des représentations compactes et significatives. Cela reflete une
évolution plus large vers des approches génériques et adaptatives en traitement du signal. Alors
que les méthodes traditionnelles étaient souvent congues pour des types de données spécifiques,
ce travail démontre qu’il est possible de développer des architectures suffisamment flexibles

pour s’adapter a des contextes variés tout en maintenant des garanties d’interprétabilité.

53 Limites et considérations pratiques

Malgré ces avancées, plusieurs limites doivent €tre soulignées. Premi¢rement, bien que le
mécanisme de sélection automatique du rang fonctionne de maniere satisfaisante, il reste
perfectible pour les cas les plus complexes ou des sources spectralement proches mais
sémantiquement distinctes coexistent. Dans ces situations, une validation experte demeure

précieuse pour affiner les résultats. Deuxiemement, bien que les cartes d’abondance et les
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signatures spectrales produites par PRISM soient physiquement cohérentes, leur interprétation
en termes de matériaux spécifiques (e.g., types d’encres, dégradations) requiert des connaissances
en sciences des matériaux et en conservation afin de s’assurer de la véracité. Troisiemement,
bien que PRISM présente une forte capacité de généralisation sans adaptation, il accuse
une legere baisse de performance en F-score lors du passage d’un cube multispectral a une
représentation RVB, réduisant la capacité de discrimination fine des matériaux. Pour compenser
cette perte d’information spectrale, plusieurs améliorations peuvent étre envisagées, comme un
pré-entrainement sur des images RVB comme proposé par la méthode gagnante du concours
DIBCO, un ajustement du module d’attention pour mieux exploiter I’information spatiale
disponible, ou encore I’augmentation des données via 1’ajout d’autres espaces de représentation
(e.g., HSL, LAB) pour simuler I’'information spectrale manquante. Quatricmement, le passage
a I’échelle pour des collections massives de documents reste un défi. Bien que PRISM soit

plus efficace que de nombreuses méthodes concurrentes, le traitement de milliers d’images

multispectrales haute résolution nécessite encore des ressources computationnelles significatives.

54 Perspectives futures

Les développements récents en intelligence artificielle, notamment 1’émergence de modeles
fondationnaux comme Spectral-GPT (Hong et al., 2024) ou AlphaEarth Foundations (Brown
et al., 2025) par Google DeepMind, ouvrent des perspectives fascinantes pour 1’analyse
HS. L’intégration de modeles comme PRISM dans un cadre plus large, oi un modele pré-
entrainé sur des millions d’images hyperspectrales pourrait étre affiné spécifiquement pour des
besoins spécifiques représente une direction de recherche prometteuse. Cette approche pourrait

considérablement améliorer la généralisation tout en réduisant les besoins en données annotées.

Au-dela de la décomposition, I'intégration de modules d’identification et de localisation
automatique des matériaux constitue une extension naturelle de nos travaux. Si le probléme de

passage a I’échelle est résolu, en combinant PRISM avec des modeles de langage multimodaux,
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il devient envisageable de développer des systemes capables non seulement de décomposer les
images, mais aussi de générer automatiquement des rapports d’analyse compréhensibles par les
conservateurs et les historiens. Cette approche de type «Visual Question Answering» pour les

documents historiques pourrait révolutionner 1’acces et 1’exploitation des collections numérisées.

La capacité démontrée de PRISM a traiter les représentations de transformers suggere des
applications bien au-dela du patrimoine documentaire. En médecine, 1’analyse d’images
multibandes pourrait bénéficier de cette approche pour la création automatique d’annotations.
En agriculture, la décomposition d’images satellitaires pourrait permettre un suivi des terrains et
des cultures. Plus généralement, toute application nécessitant une décomposition interprétable

de données multibandes pourrait potentiellement bénéficier de 1’architecture proposée.

Ce mémoire a donc présenté PRISM, une nouvelle approche de NMF profonde pour la
décomposition non supervisée d’images multibandes qui combine performance et interprétabilité.
Les contributions techniques avec une architecture hybride, la sélection dynamique du rang, et
la généralisation multi-domaines, constituent des avancées pour le domaine. Plus important
encore, la flexibilité et la robustesse démontrées ouvrent la voie a différentes applications futures,
suggérant que les principes développés ici pourraient avoir un impact bien au-dela de I’analyse
de documents. Alors que nous entrons dans une époque ou I’intelligence artificielle joue un role
croissant dans de nombreux domaines, des approches comme PRISM, qui maintiennent une
interprétabilité tout en automatisant des taches complexes, représentent un équilibre prometteur

entre innovation technologique et préservation du contrdle expert sur les processus d’analyse.

L’ensemble des contributions présentées dans ce mémoire ont fait I’objet d’une publication
acceptée au workshop Vision Docs de la conférence ICCV en octobre 2025 :

Declercq, Rahiche & Cheriet (2025). PRISM : Pruning for Rank-adaptive Interpretable
Segmentation Model with Application to Historical Document Multiband Images. Proceedings

of the IEEE/CVF International Conference on Computer Vision Workshops, ICCV 2025.



ANNEXE I

L’IMAGERIE MULTIBANDE : PRINCIPES ET APPLICATIONS

La capture d’une image par un appareil photo numérique moderne, qu’il soit simple ou intégré
a des systemes d’imagerie avancés, repose sur des principes physiques et mathématiques
fondamentaux. Comprendre son fonctionnement est une premiere étape essentielle pour aborder

I’imagerie multibande pour I’analyse de document historiques.

1. L’appareil photo comme systéme linéaire non négatif

L appareil photo capture la lumiere émise ou réfléchie par une sceéne grace a son objectif, qui
projette une image de cette derniere sur un capteur photosensible. Ce capteur est une mosaique
de millions de cellules appelés pixels, chacun disposant de photosite, convertissant les photons
incidents en une charge électrique. La charge électrique accumulée par chaque photodiode
est ensuite échantillonnée et quantifiée par un convertisseur analogique-numérique (CAN),
produisant une valeur numérique discrete proportionnelle a I’intensité lumineuse pour cet
emplacement. Ces valeurs brutes sont ensuite traitées par le processeur de la caméra (balance des

blancs, corrections gamma, etc.) avant d’étre enregistrées. La Figure I-1 illustre ce processus.

Microlentilles

Capteur

Optique Matrice de Bayer

Photosites

/

Objectif Sso
Signal éléctrique

CAN & Processeur

Figure-A I-1 Schéma d’un appareil photo RVB
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Pour capturer la couleur, des filtres colorés (généralement rouge, vert et bleu) sont disposés
au-dessus de groupes adjacents de photodiodes, selon des motifs spécifiques visant a reproduire
I’appareil visuel humain. Chaque photosite mesure ainsi I’intensité lumineuse dans une bande
spectrale limitée par la transmission du filtre. La réponse spectrale du capteur décrit sa sensibilité
aux différentes longueurs d’onde du spectre électromagnétique. Un lien peut alors étre fait entre
I’intensité lumineuse physique et la mesure numérique observée. En considérant les données
brutes (avant I’application de traitements non linéaires significatifs), 1’appareil photo peut étre
modélisé comme un systeme linéaire. Cela signifie que la valeur numérique P enregistrée par
le k-ieme type de capteur (par exemple, le canal rouge) est approximativement proportionnelle
a I’intégrale du produit de I’intensité lumineuse incidente L(A) et de la réponse spectrale du

capteur S (A) sur I’ensemble des longueurs d’onde A :

sz/L(/l)Sk(/l)d/l. (AI-1)

100 === Canal Bleu
= Canal Vert
= Canal Rouge
=== Mode Bleu
--- Mode Vert
80 ---- Mode Rouge

60

40

EQ « Sensibilité spectrale / A (%)

20

300 400 500 600 700 800 900 1000 1100
Longueur d'onde A (nm)

Figure-A I-2  Efficacité quantique (EQ) du capteur RVB CMOS Canon Rebel
EOS. La sensibilité spectrale relative est directement liée a I’efficacité quantique .
Les lignes pointillées verticales marquent les pics de sensibilité (modes) pour
chaque canal colorimétrique. Graphique adapté de Pan et al. (2021)

Enfin, il est important de souligner que ce systeéme présente une caractéristique fondamentale :

la non-négativité. En effet, I’intensité lumineuse, qu’elle soit mesurée en termes de radiance, de
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réflectance ou de quantité de photons, ne peut physiquement pas €tre négative ; I’absence totale
de photons représente la valeur minimale d’intensité, correspondant a zéro. Par conséquent,
les valeurs numériques enregistrées par le capteur, qui représentent ces intensités, doivent
également étre non-négatives (supérieures ou égales a zéro). Cette propriété physique peut alors
étre exploitée comme une contrainte avantageuse dans le cadre du traitement ultérieur d’images.
Cela permet notamment d’optimiser des algorithmes et de garantir I’interprétatibilité physique

des résultats lors d’opérations de filtrage, de reconstruction ou méme de restauration d’images.

2. Couleurs et spectre éléctromagnétique

Visible
380nm - 780nm

Rayons gamma Rayons X Ultraviolet

Infrarouge Micro-ondes Ondes radio
[l 1 1

220

<10m 10m 10° 107 10° 10° > 102 A(m)

Figure-A I-3  Visualisation du spectre électromagnétique. Adapté d’une image de
I’ Agence spatiale canadienne (2021)

La perception des couleurs est une expérience humaine fondamentale, mais elle ne représente
qu’une infime partie d’un vaste continuum d’énergies rayonnantes : le spectre électromagnétique,
illustré sur la Figure I-3. La richesse des couleurs que nous percevons n’est qu’une interprétation
par notre systeme visuel d’une petite fraction de ce spectre. Notre capacité a voir les couleurs
est due a la présence dans la rétine de I’ eil de trois types de cellules photoréceptrices appelées
cones, chacun sensible a une des principales gammes de longueurs d’onde du spectre visible
(Rouge, Vert et Bleu). Le cerveau recoit les signaux électriques €mis par ces trois types de cones

et les combine pour produire la sensation d’une vaste palette de couleurs. Si les trois types

7 Rapport nombre d’électrons générés par photon incident (Rogalski, Adamiec & Rutkowski, 2000)
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de cones sont stimulés de maniere égale, nous percevons la lumiere blanche. Il est important
de noter que les humains ne sont pas sensibles aux couleurs de maniere égale, notre vision
étant particulierement réceptive aux longueurs d’onde vertes-jaunes (autour de 555 nm) et
moins sensible aux extrémités du spectre visible. Cette caractéristique biologique explique
pourquoi les motifs de filtres pour les appareils numériques RVB, comme celui de Bayer, utilisent
généralement deux photodiodes vertes pour une rouge et une bleue (voir Figure I-1). Les capteurs

d’imagerie multibande, contrairement a I’ ceil humain, peuvent €tre congus pour €tre sensibles a

des longueurs d’onde bien au-dela du spectre visible, notamment dans I’ultraviolet et le proche

infrarouge, voire I’infrarouge moyen et thermique. Cette capacité a voir ’invisible ouvre des
perspectives considérables pour I’analyse des matériaux et des phénomenes, car de nombreuses
substances possedent des caractéristiques spectrales distinctives en dehors du domaine visible.

Lapparence des objets, et en particulier leur couleur, est déterminée par I’interaction entre la

lumiere et la matiere. Lorsqu’un rayonnement électromagnétique incident atteint un matériau,

trois phénomenes principaux peuvent se produire :

* L’absorption («) : L'énergie du rayonnement est absorbée par le matériau, souvent
transformée en chaleur. La sélectivité de 1’absorption a certaines longueurs d’onde est
une cause majeure de la couleur des objets. Par exemple, un objet apparait rouge parce qu’il
absorbe les longueurs d’onde bleues et vertes tout en réfléchissant les rouges.

* La réflexion (p) : Le rayonnement est renvoyé par la surface du matériau. Elle peut étre
spéculaire (comme un miroir, avec un angle de réflexion égal a I’angle d’incidence) ou diffuse
(la lumiere est dispersée dans de multiples directions, typique des surfaces mates).

* La transmission (7) : Le rayonnement traverse le matériau. Si le matériau est transparent

ou translucide, la lumiere peut le traverser, subissant potentiellement une réfraction.

Pour une longueur d’onde donnée, la somme de ces trois proportions est égale a un,

a+p+7=1, (AI1-2)

conformément au principe de conservation de I’énergie. Ces interactions sont fondamentales car

elles sont a la base de la formation des signatures spectrales.
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3. La notion de signature spectrale et son importance

Lanotion de signature spectrale est fondamentale dans divers domaines scientifiques et techniques,
car elle permet d’identifier et de distinguer les matériaux en fonction de leur interaction unique
avec le rayonnement électromagnétique a différentes longueurs d’onde. Une signature spectrale
est définie comme le modele de réflexion, d’absorption ou d’émission d’un matériau en fonction
de la longueur d’onde, qui est caractéristique de sa composition et de sa structure. Ce concept est
essentiel car il permet de reconnaitre des matériaux spécifiques en comparant leur signature a des
références connues. Dans le domaine de la télédétection, par exemple, les signatures spectrales
sont utilisées pour analyser des images satellites et identifier des types de végétation, de sols ou
de minéraux, aidant a des applications comme la surveillance environnementale ou 1’estimation
des rendements agricoles. Dans I’analyse d’ceuvres d’art, la spectroscopie, qui repose sur les
signatures spectrales, est employée pour identifier les pigments et les liants utilisés, ce qui est
crucial pour I’authentification, la conservation et la compréhension des techniques artistiques.
La signature spectrale est un outil clé pour la caractérisation des matériaux dans des contextes

variés, alliant précision et non-invasivité, point essentiel pour I’étude de documents fragiles.

4. Images multispectrales (MS) contre hyperspectrales (HS)

[’imagerie multibandes exploite la maniere dont les matériaux interagissent avec les diverses
régions du spectre électromagnétique. En addition aux images traditionnelles RVB, on distingue
principalement deux autres types d’images multibandes : les images multispectrales (MS) et les

images hyperspectrales (HS). La Figure 0.3 illustre un exemple de chacun de ces deux types.

Une image multispectrale (MS) est acquise en enregistrant I’information lumineuse dans
un nombre limité de bandes spectrales, typiquement entre 3 & 15 bandes. Ces bandes sont
généralement larges (i.e., plusieurs dizaines de nanometres de largeur) et peuvent étre espacées
a travers le spectre (p. ex., une bande dans le bleu, une dans le vert, une dans le rouge, et
quelques-unes dans le proche infrarouge). Elles ne fournissent donc pas une couverture continue

du spectre, mais permettent d’augmenter 1’information disponible sur une scéne observée.
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Une image hyperspectrale (HS), en revanche, capture I’information lumineuse dans un plus
grand nombre de bandes spectrales, allant de plusieurs dizaines a des centaines, voire méme des
milliers. La caractéristique essentielle de ces bandes est leur faible épaisseur (souvent de I’ordre
de quelques nanometres a une dizaine de nanometres de largeur au maximum) ainsi que leur
contiguité. Elles permettent ainsi d’obtenir un continuum de réflectance pour chaque pixel de

I’image, offrant une information spectrale beaucoup plus détaillée que pour les images MS.

La résolution spectrale, qui correspond a la capacité des bandes spectrales a discerner des
détails fins dans le spectre, est donc significativement plus élevée pour les images HS que pour
les images MS. En matiere de résolution spatiale, un compromis doit souvent étre établi. La
premicre option consiste a diviser le signal lumineux en de nombreuses bandes étroites, ce qui
se traduit par une réduction de la quantité d’énergie par bande. Cette approche nécessite alors
I’adoption d’une résolution spatiale plus grossiere afin de maintenir un bon rapport signal/bruit
(HS). A l’inverse, la seconde option consiste a réduire le nombre de bandes et a les rendre
plus larges, permettant d’obtenir une résolution spatiale plus fine (MS). L'imagerie HS excelle
alors dans I’observation terrestre, notamment par le biais de la photographie aérienne et de
la télédétection. Grace a la capture de centaines de bandes spectrales contigués, les caméras
HS équipées sur satellites permettent de distinguer des matériaux aux signatures spectrales
presque identiques, essentiel pour 1’étude des ressources naturelles et le suivi climatique a
grande échelle. La couverture de vastes territoires justifie le sacrifice en résolution spatiale,
susceptible de générer des pixels présentant des mélanges de matériaux. Cela est compensé par
la richesse spectrale permettant de caractériser en détail ces zones hétérogenes et par la moindre
pertinence des détails spatiaux fins (e.g., feuilles ou brins d’herbe individuels) dans I’observation
terrestre. D’un autre coté, I'imagerie MS est particulierement utile pour 1’analyse de documents,
permettant de distinguer encres et papiers ou de révéler des altérations grace a quelques bandes
spectrales clés avec des images de hautes résolution. Cette haute résolution spatiale est cruciale
dans un contexte ou chaque pixel compte, que ce soit pour la détection de détails fins comme les

traits de plume ou méme pour observer en détails des altérations subtiles sur des documents.



ANNEXE II

DEVELOPPEMENT MATHEMATIQUE DE LA NMF

1. Fonctions de Coiit

L’ approximation dans I’équation 1.3 est obtenue en minimisant une fonction de coiit qui mesure
la divergence ou I’erreur entre la matrice originale Y et sa reconstruction UV. Les deux fonctions

de cofit les plus couramment utilisées sont :

1. L’erreur quadratique (basée sur la norme de Frobenius) :

Jmin [[Y - UV|)2 = min ZZ(Y,] (UV)ij)? (ATL-1)
=1l j=
Cette fonction de colt est souvent choisie lorsque le bruit dans les données est supposé étre
additif et gaussien.

2. La divergence de Kullback-Leibler (ou entropie relative généralisée) :

in Dk (Y||UV -Yij+ UV ATI-2
RITIN kL (Y[|UV) = mm ;121( (UV) ij+ (UV); ( )
Cette fonction est particuliecrement adaptée lorsque les données peuvent Etre interprétées
comme des comptages (p. ex., issues de distributions de Poisson) avec des applications pour

le séquencage des génomes, I’extraction de texte ou le traitement de signaux audio.

Le choix de la fonction de colt peut influencer la nature des composantes extraites ainsi que la
rapidité de convergence. La norme de Frobenius est sensible aux grandes valeurs, tandis que la
divergence de Kullback-Leibler peut mieux gérer les données avec une grande plage dynamique.
Pour les données de réflectance MS, le bruit peut avoir des caractéristiques complexes, et le
choix optimal de la fonction de coiit peut dépendre de I’application spécifique et des propriétés

du bruit.
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2. Algorithmes d’Optimisation

La minimisation de ces fonctions de colit sous les contraintes de non-négativité pour W et H est
un probleme d’optimisation non convexe, ce qui signifie qu’il peut exister de multiples minima
locaux. Les algorithmes les plus répandus pour résoudre ce probleme sont itératifs :

1. Regles de mise a jour multiplicatives (Multiplicative Update - MU) : Proposées initialement
par Lee et Seung, ces régles consistent a mettre a jour alternativement U et V en utilisant
des multiplications matricielles qui garantissent le maintien de la non-négativité a chaque
itération. Elles sont relativement simples a implémenter et ont été prouvées comme
convergeant vers un minimum local de la fonction de colt choisie (Lee & Seung, 2000).

2. Moindres Carrés Alternés (Alternating Least Squares - ALS) : Cette approche consiste
a fixer alternativement I’une des matrices et a résoudre un probleme de moindres carrés
non-négatifs pour I’autre. Ce processus est répété jusqu’a convergence (Kim & Park, 2007).

3. Méthodes de gradient projeté : Ces méthodes utilisent des techniques de descente de
gradient pour minimiser la fonction de coft, en projetant a chaque étape les solutions sur

I’ensemble des matrices non-négatives (Lin, 2007).

Le principe commun est d’optimiser U and V alternativement, I’optimisation simultanée étant

non convexe :

in|Y - 2 et minl|Y - 2 A 113
gggll UV[z e rvnzlgll UV|z ( )

Les Mises a Jour Multiplicatives (MU) de Lee et Seung, dérivées des conditions Karush-
Kuhn-Tucker (KKT), sont particulierement populaires. Pour D = %HY -U V||%, les conditions
KKT impliquent :

U>0, V>0, (A II-4)
VuDp >0, VyDp >0, (A II-5)

UoVyDr=0, VoVyDr=0 (A 1I-6)
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Avec les gradients :

VyDp =UVV!I —YV! (A 1I-7)

VyDp =UTUV-U'Y (A 11-8)

On obtient les regles de mise a jour (ou © est le produit Hadamard) :

Y T

U=Uo UVVVT (A 1I-9)
U’y

V:VOW (A II-10)

L’algorithme de Lee et Seung (voir Algorithme II-1), consiste a appliquer ces regles itérativement
jusqu’a convergence pour la décomposition Y =~ UV, déterminée par un critere de tolérance €

sur la variation relative de la fonction de cott ou I’ atteinte d’un nombre maximal d’itérations.

Algorithme-A II-1 : Mises a Jour Multiplicatives (Lee & Seung, 2000)
Input : Matrix Y € R7*", rank r

Output : Matrices U € R and V € R7*" such that Y ~ UV

1 Initialize UY > 0 and VY > 0 randomly;

2 Setk « 0;
3 while not convergence do
kN\T
Norme de Frobenius : U « U 0 %
4 | Misea jourdeU: X (ykyT ’
Divergence KL : UK « Ut o UkIV(kT)T
k+I\T
Norme de Frobenius : V¥ «— V¥ o (Uk(H)T%
5 Mise a jour de V : < (UkHYT Y ;
Divergence KL : VK1 « Vk @ (U+)]}+;Vk
6 ke—k+1;
7 end while

8 return UX, V¥;
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