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Décomposition autonome et interprétable d’images multispectrales de documents par
apprentissage contraint

Kilian DECLERCQ

RÉSUMÉ
Les archives numérisées recourent de plus en plus à l’imagerie multispectrale (MS) pour révéler

des contenus faibles (encres délavées, palimpsestes, annotations, etc.) et séparer le texte du

fond. Or, la décomposition spectrale reste difficile : les approches classiques (e.g., PCA, GMM

ou NMF avec rang fixe) exigent des réglages ad hoc, des pré/post-traitements lourds et se

généralisent mal à la diversité des supports, des encres et des conditions d’acquisition spectrales.

Pour répondre à ces défis, dans un premier temps, nous introduisons un cadre d’apprentissage

bout en bout pour la décomposition multispectrale qui combine un auto-encodeur convolutionnel,

couplé à une tête de démélange contrainte (non-négativité, interprétabilité, orthogonalité),

enrichie de priors de mise en page (bloc d’attention), afin de préserver la structure des glyphes

tout en modélisant le contexte spectro-spatial. Cette approche hybride intègre les principes de la

NMF dans une architecture d’auto-encodeur, exploitant ainsi les avantages complémentaires des

deux approches. Dans un deuxième temps, face au problème ouvert qu’est le choix manuel du

rang, nous proposons un mécanisme pour sa sélection automatique via un élagage (pruning)

guidé par longueur de description minimale (MDL), appris conjointement. Les composantes

peu informatives sont alors progressivement supprimées pour minimiser simultanément l’erreur

de reconstruction et la complexité du modèle. Enfin, dans un troisième temps, nous montrons

que ce cadre, nommé PRISM, s’applique aux différentes configurations d’images MS, que ce

soit pour les cas sur-déterminés (i.e., plus de bandes que de sources) ou sous-déterminés (i.e.,
moins de bandes, e.g. RVB), et se généralise au-delà des documents multispectraux.

Évalué sur MSBin et MStex, deux ensembles de documents variés (e.g., lettres, formulaires,

manuscrits) de différentes périodes et états, PRISM améliore de manière constante la séparation

encre/fond de +29.5 points F-score contre la binarisation de Howe et dépasse ACE v2 de +1.32

points (état-de-l’art). De plus, pour décomposition d’images MS non-supervisée, PRISM reste

jusqu’à 7.4× plus rapide que VBONMF, la meilleure approche NMF concurrente. Des tests sur

des scènes hyperspectrales de référence, Jasper Ridge et Urban, ainsi que sur des images RVB,

confirment une bonne transférabilité au-delà du domaine documentaire. Des études d’ablation

valident l’apport du pruning MDL et des différents priors. Ces résultats indiquent qu’associer

contraintes physiques et contexte spatial permet des décompositions interprétables et adaptatives,

utiles pour la transcription et la restauration. Le code, les poids et les hyperparamètres de PRISM

sont disponibles sur Github et accompagnent le mémoire, dont les contributions ont été intégrées

dans une publication acceptée au workshop VisionDocs de la conférence ICCV 2025.

Mots-clés: Factorisation matricielle non-négative, apprentissage automatique interprétable,

élagage de réseaux neuronaux, imagerie multispectrale et hyperspectrale, apprentissage non

supervisé, documents historiques.





Autonomous and interpretable decomposition of multispectral document images through
constrained learning

Kilian DECLERCQ

ABSTRACT

Digitized archives are increasingly using multispectral (MS) imaging to reveal weak content

(faded inks, palimpsests, annotations, etc.) and separate text from background. However, spectral

decomposition remains difficult : conventional approaches (e.g., fixed-rank NMF, PCA or GMM)

require ad hoc settings, cumbersome pre/post-processing and generalize poorly to the diversity

of substrates, inks and spectral acquisition conditions.

To address these challenges, we first introduce an end-to-end learning framework for multispectral

decomposition that combines a convolutional auto-encoder, coupled with a constrained unmixing

head (non-negativity, interpretability, orthogonality), enriched with layout priors (attention block),

to preserve glyph structure while modeling the spectro-spatial context. This hybrid approach

integrates NMF principles into an auto-encoder architecture, exploiting the complementary

advantages of both approaches. Secondly, in response to the open problem of manual rank

selection, we propose a mechanism for its automatic selection via pruning guided by minimum

description length (MDL), learned jointly. Uninformative components are then progressively

removed to simultaneously minimize reconstruction error and model complexity. Finally, in

a third step, we show that this framework, named PRISM, holds for different MS image

configurations, for both overdetermined (i.e., more bands than sources) and underdetermined

(i.e., fewer bands, e.g. RGB) cases, and generalizes beyond multispectral documents.

Evaluated on MSBin and MStex, two varied document datasets (e.g., letters, forms, manuscripts)

from different periods and states, PRISM consistently improves ink/background separation by

+29.5 F-score points against Howe’s binarization and outperforms ACE v2 by +1.32 points

(state-of-the-art). Furthermore, for unsupervised MS image decomposition, PRISM remains up to

7.4× faster than VBONMF, the best competing NMF approach. Tests on reference hyperspectral

scenes, Jasper Ridge and Urban, as well as on RGB images, confirm good transferability beyond

the documentary domain. Ablation studies validate the contribution of the MDL pruning and

the various priors. These results show that combining physical constraints and spatial context

enables interpretable and adaptive decompositions, useful for transcription and restoration.

PRISM code, weights and hyperparameters are available on Github and accompany this thesis,

whose contributions have been integrated into an ICCV 2025 VisionDocs workshop publication.

Keywords: Nonnegative Matrix Factorization, interpretable machine learning, neural net-

work pruning, Multispectral and Hyperspectral imaging, unsupervised representation learning,

historical documents.
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INTRODUCTION

0.1 Contexte et motivation

La lumière pourrait-elle ressusciter des connaissances réduites en cendres? Des rouleaux

carbonisés par l’éruption du Vésuve aux équations d’Archimède effacées sous des textes

religieux, la pensée humaine s’est souvent trouvée prisonnière de supports devenus illisibles. Les

progrès en imagerie multibandes transforment aujourd’hui ce rapport aux documents historiques,

concrétisant cette intuition du grec Anaxagore : « Le visible ouvre nos regards sur l’invisible ».

L’analyse des documents historiques joue un rôle crucial dans la préservation et la compréhension

de notre héritage culturel. Cependant, sa nature complexe présente des défis uniques pour les

techniques traditionnelles d’analyse d’images. Avec le temps, le papier se dégrade, les encres

s’estompent et de multiples couches de texte ou d’annotations peuvent se superposer, créant un

mélange complexe de matériaux, aussi appelés sources. Les méthodes d’imagerie traditionnelles

peinent souvent à les démêler, limitant notre capacité à interpréter et à préserver intégralement

ces documents. L’imagerie multispectrale (MS) s’est alors imposée comme un outil puissant

pour cette tâche, capturant des informations au-delà du spectre électromagnétique visible.

En capturant des informations sur une plus large gamme du spectre électromagnétique, notamment

dans l’ultraviolet et l’infrarouge, elle révèle des empreintes spectrales uniques à chaque matériau ;

reflétant leur façon spécifique d’absorber, de réfléchir ou d’émettre la lumière à différentes

longueurs d’onde, permettant ainsi de révéler du texte caché, de distinguer différentes encres

et de fournir des informations sur la composition et l’histoire du document. Un exemple

notable de son utilisation et de son efficacité est le Palimpseste illustré sur la Figure 0.1. Une

analyse multispectrale de ce livre a permis de révéler sept traités du célèbre mathématicien grec

Archimède, dont deux uniques et originaux, qui avaient été grattés et recouverts par des textes

religieux au XIIe siècle (Easton, Knox & Christens-Barry, 2003).
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Figure 0.1 Application de l’imagerie multispectrale au Palimpseste d’Archimède.

Les images en niveaux de gris dévoilent le texte original, tandis que les images

Rouge-Vert-Bleu (RVB) montrent le document tel qu’observé à l’œil nu. Images

tirées de The Archimedes Palimpsest (Toth, 2004)

L’imagerie MS a aussi plus récemment été utilisée dans le cadre du challenge Vesuvius, une

compétition internationale lancée en 2023. Son but étant de déchiffrer les papyrus carbonisés

d’Herculanum, une bibliothèque antique ensevelie par l’éruption du Vésuve en 79 apr. J.-C. Ces

rouleaux, trop fragiles pour être déroulés physiquement, sont étudiés grâce à des scans 3D et

l’intelligence artificielle. L’intérêt majeur réside dans la possibilité unique de révéler des textes

antiques perdus depuis près de 2000 ans. Cela pourrait potentiellement enrichir le corpus actuel

d’informations textuelles de l’Antiquité européenne dans une proportion significative, estimée à

environ 20 %, selon la quantité recouvrable des manuscrits encore présents.

Ainsi, l’approche MS se révèle particulièrement prometteuse pour l’étude et la récupération

d’informations textuelles enfouies dans les documents anciens, là où les méthodes classiques

basées sur l’imagerie RVB atteignent leurs limites. Cela est bien illustré par la difficulté à

distinguer les écritures superposées sur la Figure 0.2, et ce même pour un œil humain averti.
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Figure 0.2 Exemple de dégradation du texte sur des documents

historiques. En noir et blanc est représenté le texte extrait manuellement

Cependant, bien que capable de capturer une richesse de données spectrales, cette même

abondance soulève un défi majeur en termes de traitement et d’interprétation. En effet, ces

images multibandes de haute dimension, tant en résolution spatiale qu’en nombre de canaux,

offrent une mine d’informations dont une grande partie peut s’avérer redondante ou non

pertinente pour l’analyse et le déchiffrement. Le défi consiste alors à réduire efficacement

cette dimensionnalité tout en préservant un contenu interprétable, c.-à-d. compréhensible et

pertinent, et ce, parfois sans connaissance préalable de la nature de l’information recherchée.

Aussi, contrairement aux caméras RVB omniprésentes, l’acquisition d’images multispectrales

demeure une activité très spécialisée, limitant considérablement la disponibilité d’images

annotées. Cette rareté de données étiquetées représente un défi majeur pour l’entraînement de

modèles d’apprentissage automatique, où la quantité et la qualité des données sont des facteurs

déterminants pour la performance, demandant le développement de modèles non-supervisés.
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0.2 Problématique et questions de recherche

Un cadre particulièrement intéressant pour relever les défis évoqués précédemment est offert

par la séparation aveugle des sources (SAS). Le problème de la SAS peut être défini comme

le problème d’estimation de sources à partir d’un mélange donné sans connaître ni la fonction

de mélange, ni les sources latentes, ni-même leur nombre. Dans le contexte des documents

historiques, il est raisonnable d’admettre que l’image finale résulte de l’addition de différentes

couches visuelles, chacune venant se superposer à la précédente : l’arrière-plan, le support (e.g.,

le papier ou le parchemin), les textes originaux, les annotations ajoutées, ainsi que les diverses

dégradations liées au vieillissement. Par définition, le cadre de la SAS est non supervisé : il

repose uniquement sur les données observées, sans nécessiter de connaissances préalables ou

d’annotations. Cette propriété en fait donc une approche adaptée aux documents historiques.

Différentes variantes de factorisation matricielle non négative (NMF) ont déjà démontré

son efficacité, permettant d’exploiter les propriétés spectrales des images multispectrales de

documents (Rahiche, Bakhta & Cheriet, 2019; Rahiche & Cheriet, 2021, 2022).

Cependant, les sources observées interagissent souvent de manière subtile et présentent des

signatures spectrales parfois proches, compliquant leur séparation pour les méthodes classique

de SAS. Cette difficulté est amplifiée par la grande variabilité des images MS, qui peuvent avoir

des caractéristiques variables selon les conditions d’acquisition et les données observées. Cela

inclut le nombre de bandes, les longueurs d’ondes utilisées, ou encore l’état de dégradation

des images. De plus, ces méthodes traitent souvent chaque pixel indépendamment, ce qui pose

problème avec les images de tailles croissantes. L’approche à développer devra donc être robuste

en terme de coût de calcul, capable d’intégrer la structure spatiale des documents et de s’adapter

à la grande variabilité des configurations rencontrées dans les images multispectrales. Le défi est

d’atteindre cette adaptabilité tout en conservant la nature non supervisée de l’approche et en

garantissant l’interprétabilité des composantes extraites.
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La problématique de recherche devient : Comment développer un modèle robuste capable

de capturer les interactions complexes entre des sources superposées, afin de réaliser une

décomposition non supervisée et interprétable des images multibandes de documents?

Pour répondre à cette problématique, ce mémoire s’articulera autour de trois questions de

recherche qui abordent chacune un défi spécifique de la décomposition non supervisée d’images

multispectrales :

QR1. Comment surmonter les limites des approches existantes face aux sources complexes, afin de

proposer une décomposition interprétable des images multispectrales de document?

QR2. Comment éliminer la nécessité de spécifier manuellement le nombre de sources à extraire

pour réaliser une décomposition réellement non supervisée?

QR3. Comment s’assurer de la robustesse du modèle face à la variabilité des configurations

d’images multibandes (e.g., nombre de bandes variable, cas sur/sous-déterminés) ?

Ces trois questions ciblent donc les limites méthodologiques de l’état de l’art, où les approches

classiques requièrent des réglages ad hoc qui limitent à la fois leur automatisation et leur

généralisation face à la diversité des données multispectrales rencontrées dans l’analyse de

documents historiques. Pour cadrer cette recherche, le terrain d’étude considéré reste celui des

documents anciens, qui cristallise l’ensemble de ces défis. La question de la généralisation sera

toutefois examinée empiriquement à travers l’applicabilité du modèle à d’autres types d’images

multibandes (e.g., HS ou RVB) de domaine présentant des défis similaires.

0.3 Objectifs et organisation du mémoire

Pour relever ce défi majeur, cette thèse s’articulera autour de ces trois axes de recherche

principaux, afin de développer une solution robuste et novatrice :



6

SO1. Explorer la synergie entre la Factorisation Matricielle Non-négative (NMF) et les

Auto-encodeurs (AE) pour une décomposition améliorée. Bien que la NMF soit une

technique non-supervisée éprouvée pour la séparation aveugle de sources (SAS), elle montre

ses limites face à des sources complexes et fortement enchevêtrées. Parallèlement, l’utilisation

d’architectures d’auto-encodeurs pour l’interprétabilité des cartes de caractéristiques est un

domaine de recherche actif et prometteur. Nous chercherons donc à conceptualiser la NMF

traditionnelle au sein d’une architecture d’auto-encodeur, combinant ainsi les forces des

deux approches pour obtenir une décomposition plus fine et sémantiquement riche. L’étude

portera également sur l’intégration de techniques de régularisation, telles que l’orthogonalité,

au sein de ce cadre hybride afin d’améliorer la parcimonie des matrices et la distinction

des composantes extraites, éléments cruciaux pour l’analyse de documents dégradés où la

variabilité spectrale et le chevauchement des sources sont courants.

SO2. Développer un mécanismes de sélection automatique du rang pour une décomposition

véritablement non supervisée. Un obstacle significatif des méthodes de décomposition

existantes, y compris la NMF et de nombreux modèles d’AE, est la nécessité de spécifier

manuellement le paramètre de rang (c.-à-d., le nombre de sources ou de composantes à

extraire). Cette contrainte limite fortement l’autonomie et l’applicabilité des modèles, en

particulier pour les documents historiques où le nombre exact d’encres, de pigments ou de

couches de dégradation est inconnu a priori. Cette partie de la recherche se concentrera sur

la conception et l’évaluation d’une stratégie permettant au modèle de déterminer de manière

autonome le nombre optimal de sources pertinentes directement à partir des données, en

s’inspirant par exemple de principes issus de la théorie de l’information comme la Longueur

de Description Minimale (MDL) ou de techniques d’élagage (ou pruning) interprétables.

SO3. Étendre la généralisation du modèle à différents types d’images multibandes, qu’elles

présentent des caractéristiques spectrales et spatiales distinctes. Cela inclut le cas sur-

déterminé, où le nombre de bandes excède celui des matériaux à séparer, notamment avec
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les images hyperspectrales (HS) (i.e., images MS avec plus de 12 canaux, voir Fig. 0.3)

et, à terme, le cas sous-déterminé, avec les images RVB standard, où potentiellement

plus de matériaux doivent être séparés que de bandes disponibles pour les discriminer. La

complexité de la composition matérielle de nombreux documents historiques peut entraîner

des problèmes de sous-détermination, où le nombre de sources distinctes excède le nombre de

bandes spectrales disponibles. Résoudre ce défi est non seulement crucial pour les images MS

mais ouvrirait également la voie à l’application du modèle à des images RVB naturelles, voire

à des images monocanales. De plus, la robustesse du modèle face à des variations dans les

données d’entrée (e.g., nombre de bandes, longueurs d’onde spécifiques, résolution spatiale)

est essentielle, étant donné la diversité des capteurs d’imagerie MS et HS. Cette partie visera

donc à évaluer et à améliorer la capacité du modèle à s’adapter à ces différents types de

données, en testant notamment sa performance sur des jeux de données de télédétection HS

et en envisageant des adaptations pour l’analyse d’images naturelles RVB.

Figure 0.3 Comparaison entre une image multispectrale de document (gauche) et une

image satellite hyperspectrale (droite). L’image MS provient de la base de données

MSBin, tandis que l’image HS est extraite de la base de données Urban (voir section

4.2.1 et 4.3.3). Les couleurs sont utilisées uniquement à des fins de visualisation



8

Figure 0.4 Structure du mémoire et axes de recherche

En abordant méthodiquement ces trois sous-objectifs, l’ambition de cette thèse est de proposer un

modèle de décomposition d’images multibandes de document qui soit non seulement performant

mais aussi complet, non supervisé, et dont les résultats soient directement interprétables, offrant

ainsi un outil précieux pour la valorisation du patrimoine documentaire et pour potentiellement

d’autres domaines d’application confrontés à des problématiques similaires de mélange de

sources. Après un premier chapitre introductif et de revue de littérature globale, ce mémoire

explorera les trois sous-problématiques identifiées en trois chapitres distincts correspondants.



CHAPITRE 1

REVUE DE LA LITTERATURE

Ce chapitre établit le cadre théorique et les bases scientifiques essentielles à la compréhension

de la problématique de cette thèse et de l’approche proposée. L’analyse de documents historiques

par imagerie multibande vise à résoudre un problème de démélange spectral. L’objectif est de

décomposer une image observée, où les signatures spectrales de multiples matériaux comme les

encres et le support sont mélangées dans chaque pixel, en ses composantes pures.

Pour un rappel sur les principes physiques de l’acquisition d’images et le concept de signature

spectrale, le lecteur est invité à consulter l’Annexe I.

1.1 Analyse des documents historiques par imagerie multibande

L’imagerie multispectrale (MS), développée initialement pour la télédétection, s’est imposée

comme une technique essentielle pour l’analyse non-invasive des documents historiques. Un

avantage majeur de cette méthode pour le patrimoine culturel est qu’elle ne nécessite pas de

prélèvement d’échantillons sur l’objet, préservant ainsi l’intégrité des documents tout en révélant

des informations invisibles. Depuis les travaux pionniers du frère Kögel (1920) utilisant la

lumière ultraviolette pour la lecture de palimpsestes, l’imagerie MS a permis d’étudier des

documents emblématiques tels que les manuscrits de la mer Morte (Shor et al., 2014), le

palimpseste d’Archimède (Toth, 2004) ou les lettres de David Livingstone (Knox, Easton Jr,

Christens-Barry & Boydston, 2011), permettant de détecter des textes indiscernables à l’œil nu.

1.1.1 Fonctionnement d’une caméra multispectrale

La caméra multispectrale fonctionne selon le même principe fondamental que l’appareil photo

conventionnel, avec une différence majeure dans la sélectivité spectrale. Alors que le filtre

de Bayer d’un appareil photo RVB utilise trois types de filtres colorés à large bande passante

(voir Figure I-2) ; la caméra MS emploie entre 4 et 20 filtres passe-bande étroits (10 - 40

nm) qui ne transmettent que des longueurs d’onde spécifiques. Chaque filtre agit comme une
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fenêtre spectrale précise, la valeur enregistrée suivant la relation décrite par l’équation A I-1.

L’acquisition nécessite des conditions très contrôlées : une chambre noire élimine toute lumière

ambiante non désirée, tandis qu’un système d’illumination calibré fournit un éclairage uniforme

sur toute la gamme spectrale d’intérêt. L’illumination UV est particulièrement critique, les

documents historiques n’émettent pas naturellement ces rayonnements. Une source externe est

donc indispensable pour exciter la fluorescence des matériaux et mesurer leur réflectance dans

cette région, selon les principes d’interaction lumière-matière (voir Figure 1.1 et Équation A

I-2). Cette source doit être stable spectralement et spatialement pour garantir des mesures

reproductibles et représentatives de la réflectance du document pour chaque longueur d’onde 𝜆.

Figure 1.1 Acquisition MS de documents patrimoniaux illustrant la variabilité

spectrale des matériaux. Chaque pixel enregistre une signature de réflectance distincte

en fonction de la longueur d’onde. Chaque filtre passe-bande étroit permet d’isoler une

bande spectrale spécifique. Visualisation tirée de Joo Kim et al. (2011)

1.1.2 Mélange de sources : encres, supports, dégradations et annotations

Les documents historiques présentent une complexité visuelle élevée liée à la diversité des

matériaux et aux altérations accumulées. Les supports (papier, parchemin, papyrus), issus

de procédés artisanaux, sont hétérogènes : la structure des fibres végétales ou animales varie
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localement, influençant densité et couleur. Les encres, principalement ferro-galliques, se déclinent

en plus de 250 recettes recensées en Europe (Duh, Krstić, Desnica & Fazinić, 2018), modifiées

selon les régions et époques par l’ajout d’additifs variés. Cette diversité chimique produit une

large palette spectrale, parfois au sein d’un même manuscrit. La dégradation des encres et

supports accentue cette complexité : écaillage, perte de couches, corrosion avec halos bruns,

infiltrations dans le support, fragilisation et effritement du papier (Melo et al., 2022). L’humidité

favorise les moisissures et l’effacement partiel, l’infestation d’insectes crée des perforations, et

les dépôts de poussière ou taches de cire masquent le texte. Enfin, les corrections, annotations

marginales et ajouts ultérieurs sont fréquemment observées pour les manuscrits les plus âgés.

Les parchemins anciens, coûteux à produire en leur temps, étaient souvent effacés et réparés afin

de réutiliser le support, créant ce que l’on appelle des palimpsestes. Il est courant que ce genre

de document puisse présenter jusqu’à trois couches de texte superposées, chacune écrite avec

une encre différente à des époques distinctes, ajoutant leurs signatures optiques au texte original

et aux dégradations. Des exemples notables comme le palimpseste syriaque de Galien (Easton,

Knox, Christens-Barry & Boydston, 2018) illustrent ces défis, tandis que certaines situations

extrêmes, comme les manuscrits carbonisés d’Herculanum, mentionnés dans l’introduction, sont

complètement inaccessibles à l’imagerie RVB (Parker et al., 2019).

Tous ces éléments se combinent pour former un «mélange» où chaque pixel de l’image observée

contient l’information spectrale de multiples sources superposées. Cette superposition rend

souvent le texte totalement illisible à l’œil nu ou par imagerie RVB conventionnelle. Les

recherches récentes sur les palimpsestes démontrent que l’imagerie spectrale appliquée à

ces manuscrits pose de nombreux défis mais promet également de produire beaucoup de

résultats (Rossi, Zoleo, Bertoncello, Meneghetti & Deiana, 2021; Mazzocato, Cimino & Daffara,

2024). L’imagerie MS s’avère alors particulièrement efficace pour restaurer l’information

perdue (Leão et al., 2024). Elle permet d’examiner chaque page des documents comme une

superposition de couches qui donnent des réponses différentes en fonction des bandes, révélant

ainsi leur nature complexe matérielle et historique.
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1.1.3 Variabilité spectrale et similarité entre composants

L’imagerie MS des manuscrits souffre cependant d’une variabilité spectrale importante, lié

à la fois aux documents observés mais aussi à l’absence de standardisation des caméras

utilisées (Jones, Duffy, Gibson & Terras, 2020). D’une part, les signatures d’un même

matériau peuvent varier selon les conditions d’acquisition (illumination, sensibilité des capteurs,

température) (Hedjam & Cheriet, 2013; Hollaus, Diem, Fiel, Kleber & Sablatnig, 2015a) et

selon les systèmes (caméras monochromes, LEDs, logiciels), qui possèdent chacun leur profil

spectral propre. D’autre part, les objets similaires en couleur peuvent avoir des réflectances

spectrales différentes, rendant complexe l’interprétation automatique des données spectrales.

Cette variabilité dépend des objets en eux-mêmes ainsi que des processus de dégradation qui

modifient leurs propriétés optiques de manière non uniforme. Deux encres ferro-galliques, bien

que chimiquement similaires, peuvent présenter des signatures spectrales significativement

différentes en fonction de nombreux paramètres. La concentration en fer, le type de tanins utilisés

(p. ex., noix de galle, écorce de chêne, sumac, etc.), les additifs (p. ex., gomme arabique, sulfate

de cuivre, etc.) et même les conditions de préparation peuvent influencer la réponse spectrale de

l’encre (Teixeira, Nabais, de Freitas, Lopes & Melo, 2021). Aussi, une même encre sur un même

matériel peut présenter une signature différente selon son état de dégradation aux différents

endroits de l’image. Elle peut présenter des teintes visible allant du noir au brun pâle, ou même

des teintes verdâtres dues à la corrosion. Ce vieillissement introduit une dimension temporelle

dans la variabilité spectrale, pouvant être utile lorsque exploitée par certaines méthodes de

datation (Rahiche, Hedjam, Al-maadeed & Cheriet, 2020; Ursescu, Malutan & Ciovica, 2009).

En revanche, la conséquence de cette haute variabilité est qu’il n’existe pas de méthode

universelle pour l’analyse des images MS de documents historiques. La plupart des systèmes de

compréhension des documents sont basés sur l’application de techniques de reconnaissance de

formes pour les images RVB conventionnelles, qui peuvent avoir du mal face à la complexité

des données MS. Les approches doivent être adaptées à chaque manuscrit selon son support, ses

encres, ses dégradations et son histoire de conservation (Tonazzini et al., 2019), les algorithmes

devant tenir compte des propriétés physiques spécifiques des matériaux.
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1.2 Séparation Aveugle des Sources pour la décomposition d’images multibandes

Face à cette complexité, les méthodes traditionnelles de segmentation et de classification

atteignent leurs limites. Lorsque peu de bandes spectrales sont disponibles, il est difficile de

trouver une stratégie de segmentation efficace pour estimer correctement les différentes classes ou

objets des documents historiques. La nature même du problème ; séparer des signaux mélangés

sans connaissance préalable ni des sources originales ni du processus de mélange, oriente

naturellement vers les techniques de Séparation Aveugle des Sources (SAS). Le cadre théorique

offert par la SAS, cherche à résoudre un problème de séparation de signaux où les sources

originales ainsi que leur méthode de combinaison sont inconnues, en se basant uniquement sur

les signaux mélangés accessibles (Cardoso, 1998). Dans le contexte des documents historiques,

chaque pixel de l’image MS peut être considéré comme un mélange de plusieurs sources :

premier plan (texte, encre), arrière-plan (parchemin, support), informations de dégradation et

potentielles couches d’écriture superposées. Les recherches récentes démontrent l’efficacité de

cette approche pour traiter les documents multibandes (Rahiche et al., 2019).

Le caractère «aveugle» des techniques de SAS est un atout majeur lorsqu’il s’agit d’analyser

des documents historiques. En effet, l’information a priori disponible sur la composition exacte

des matériaux utilisés ou sur l’étendue et la nature des dégradations est souvent partielle,

voire totalement absente avant une analyse approfondie. Les méthodes qui reposeraient sur des

bibliothèques spectrales de référence pour chaque matériau pourraient se heurter aux difficultés

liées à la variabilité discutées plus tôt. La SAS, en revanche, exploite principalement des

hypothèses statistiques sur les propriétés des sources (p. ex., leur indépendance statistique ou

leur non-négativité) pour les estimer directement à partir des données observées (Naik, Wang

et al., 2014). Cette capacité à laisser parler les données rend la SAS particulièrement adaptée à

l’exploration et à la découverte de la composition matérielle des documents anciens, où la part

d’inconnu est souvent importante (Giacometti et al., 2017). Par conséquent, la SAS ouvre la voie

à une caractérisation matérielle non invasive plus objective et détaillée, ce qui est essentiel non

seulement pour la lecture et la compréhension des textes, mais aussi pour les problématiques de

conservation, d’authentification et de datation des documents.
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1.2.1 Principes fondamentaux et modèle mathématique

Au cœur de la Séparation Aveugle des Sources se trouve le problème de la récupération d’un

ensemble de signaux sources originaux, notés s(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑟 (𝑡)]𝑇 , à partir d’un

ensemble d’observations mélangées, notées y(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑚 (𝑡)]𝑇 (Cardoso, 1998).

Dans le contexte spécifique des images multibandes de documents historiques, l’indice 𝑡 peut

être assimilé à un index représentant la position spatiale d’un pixel, r est le nombre de sources

que l’on cherche à identifier, et m est le nombre de bandes spectrales acquises. Ainsi, chaque

composante 𝑦𝑖 (𝑡) du vecteur d’observation y(𝑡) représente l’intensité (ou la réflectance) du pixel

𝑡 dans la 𝑖-ème bande spectrale.

Le modèle le plus couramment utilisé pour décrire la relation entre les sources et les observations

en SAS est le modèle de mélange linéaire (Linear Mixture Model, LMM). Ce modèle postule

que chaque signal observé 𝑦𝑖 (𝑡) est une combinaison linéaire des signaux sources, affectée par

un bruit additif. Mathématiquement, cela s’exprime sous forme vectorielle comme :

y(𝑡) = Ea(𝑡) + n(𝑡) (1.1)

où :

• y(𝑡) ∈ R
𝑚 est le vecteur des m observations au pixel 𝑡 (spectre du pixel 𝑡) ;

• a(𝑡) ∈ R
𝑟 est le vecteur des r abondances au pixel 𝑡. Dans le contexte de l’imagerie

multispectrale, ces abondances représentent les proportions de chaque matériau pur présent

au pixel 𝑡 ;

• E ∈ R
𝑚×𝑟 est la matrice de mélange, supposée inconnue en SAS. Ses colonnes contiennent les

signatures spectrales des 𝑟 sources pures, et ses coefficients 𝑒𝑖 𝑗 représentent la contribution

de la 𝑗-ème source dans la 𝑖-ème bande spectrale ;

• n(𝑡) ∈ R
𝑚 est un vecteur de bruit additif, généralement supposé de moyenne nulle et

statistiquement indépendant des sources.
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Dans la pratique de l’imagerie multispectrale, on travaille souvent avec la factorisation matricielle

globale :

Y ≈ EA (1.2)

où Y ∈ R
𝑚×𝑛 est la matrice des données observées (chaque colonne étant le spectre d’un

pixel), E ∈ R
𝑚×𝑟 contient les signatures spectrales des sources pures, et A ∈ R

𝑟×𝑛 contient les

abondances correspondantes pour les 𝑛 pixels de l’image.

Pour que ce problème ; qui sera admis comme sur-déterminé dans le cadre des images MS (i.e.,

plus de bandes disponibles que de matériaux observés), admette une solution unique, certaines

hypothèses fondamentales peuvent être formulées concernant les signaux sources :

1. Indépendance statistique mutuelle des signaux sources : Les composantes 𝑠 𝑗 (𝑡) du

vecteur source s(𝑡) sont supposées être statistiquement indépendantes les unes des autres.

C’est l’hypothèse la plus cruciale et distinctive de nombreuses méthodes de SAS, notamment

l’Analyse en Composantes Indépendantes (ACI). Elle signifie que la connaissance de la

valeur d’une source ne fournit aucune information sur la valeur des autres sources.

2. Non-gaussianité des sources (pour l’ACI) : Au plus une des sources 𝑠 𝑗 (𝑡) peut avoir une

distribution de probabilité gaussienne. En effet, si plusieurs sources sont gaussiennes et

indépendantes, le théorème central limite implique que leur mélange linéaire tend également

vers une distribution gaussienne, et la matrice de mélange ne peut alors être identifiée de

manière unique au-delà d’une simple décorrélation.

3. Nombre de sources : Le nombre de sources 𝑟 est généralement supposé inférieur ou égal

au nombre d’observations 𝑚 (𝑟 ≤ 𝑚) pour le modèle de base.

Il est important de noter que la SAS souffre de certaines indéterminations fondamentales :

• Amplitude des sources : Il est impossible de déterminer de manière unique l’amplitude des

sources estimées. Si a(𝑡) est une solution, alors Da(𝑡) est aussi une solution, où D est une

matrice diagonale inversible, et la matrice de mélange devient ED−1.
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• Ordre des sources : L’ordre dans lequel les sources sont estimées est arbitraire. Si P est

une matrice de permutation, alors Pa(𝑡) est aussi une solution valide, avec une matrice de

mélange EP−1.

• Polarité des sources : Le signe des sources peut être inversé, absorbé par la matrice de

mélange.

Dans le contexte de l’analyse d’images multibandes de documents, ces indéterminations sont

souvent acceptables. L’échelle absolue des signatures spectrales est moins importante que leur

forme relative, et l’ordre des matériaux identifiés n’affecte pas leur caractérisation. La forme

des spectres et leur distribution spatiale relative (cartes d’abondance) sont les informations

primordiales recherchées.

1.2.2 Techniques algébriques traditionnelles associées à la SAS et au regroupement

Le modèle de mélange linéaire y(𝑡) = Ea(𝑡) + n(𝑡) est une simplification de la réalité physique

complexe des interactions lumière-matière au sein d’un document historique. Des phénomènes

tels que la diffusion multiple de la lumière dans les couches d’encre ou de pigment, les interactions

chimiques entre l’encre et le support, ou la pénétration de l’encre dans les fibres du papier

peuvent introduire des non-linéarités. Néanmoins, pour de nombreuses applications en imagerie

multispectrale de documents, où l’objectif principal est de discriminer différents matériaux,

d’améliorer la lisibilité d’un texte effacé ou de cartographier des dégradations, le modèle linéaire

fournit une approximation souvent suffisante et mathématiquement traitable. Avant d’aborder

la Factorisation Matricielle Non-négative (NMF), il est utile d’évoquer plusieurs méthodes

classiques souvent employées pour le traitement des images MS de documents. Certaines, comme

l’Analyse en Composantes Principales (ACP) et l’Analyse en Composantes Indépendantes (ACI),

sont directement associées à la SAS (Yu, Hu & Xu, 2013). D’autres, comme k-moyennes et GMM,

relèvent du regroupement non supervisé et sont plus souvent utilisées pour la segmentation.
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• L’Analyse en Composantes Principales (ACP) est souvent employée en imagerie MS

de documents pour la réduction de dimensionnalité, le débruitage et l’amélioration du

contraste (Rodarmel & Shan, 2002; Kaarna, Zemcik, Kalviainen & Parkkinen, 2002). Des

études de cas spécifiques ont démontré son utilité pour révéler des détails cachés dans des

œuvres d’art et manuscrits anciens (Knox et al., 2011; Leão et al., 2024; López-Baldomero,

Buzzelli, Moronta-Montero, Martínez-Domingo & Valero, 2025). Cependant, l’ACP n’est pas

une véritable technique de séparation de sources : elle se limite à une décorrélation statistique

et ses composantes correspondent rarement aux spectres physiques des matériaux (Tonazzini

et al., 2019; Jones et al., 2020).

• L’Analyse en Composantes Indépendantes (ACI) représente une évolution conceptuelle

en cherchant l’indépendance statistique des composantes (Choi, Cichocki, Park & Lee,

2005; Hyvarinen, 1999). Elle a montré son potentiel pour la séparation des couches dans

les palimpsestes et l’amélioration de la lisibilité des textes effacés (Davies & Zawacki,

2019; Salerno, Tonazzini & Bedini, 2007; Tonazzini, Bedini & Salerno, 2004). Néanmoins,

l’hypothèse d’indépendance est souvent compromise, avec par exemple des mécanismes

de dégradation qui affectent simultanément plusieurs composants, ou la dépendance

statistique inhérentes à la décomposition des données MS en cartes d’abondances 1. De

plus, les composantes indépendantes estimées peuvent contenir des valeurs négatives, ce

qui est physiquement incohérent pour des grandeurs comme la réflectance spectrale ou

les concentrations de matériaux. Cette limitation fondamentale compromet l’interprétation

directe des résultats comme des spectres de matériaux purs ou des cartes d’abondance.

• Les K-moyennes, méthodes de regroupement, permettent une segmentation rapide des

régions spectralement distinctes (MacQueen, 1967). Des variantes adaptées aux documents

ont étés développées comme les K-moyennes sphériques utilisant la dissimilarité cosinus

(Hornik, Feinerer, Kober & Buchta, 2012) et SKKHM intégrant l’information spatiale (Li,

Mitianoudis & Stathaki, 2007). Cependant, ces variantes conservent le même inconvénient

1 La somme des fractions d’abondance étant constante, celles-ci présentent forcément une dépendance

statistique (Nascimento & Dias, 2005).
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que les K-moyennes standard : les centroïdes résultants sont des moyennes mathématiques et

ne garantissent pas la correspondance avec des signatures spectrales pures.

• Le Modèle de Mélange Gaussien (GMM) offre une segmentation probabiliste plus

flexible pour le regroupement non supervisé (Reynolds et al., 2009). L’idée fondamentale

est de supposer que les données observées proviennent d’un mélange de K distributions

de probabilité Gaussiennes multidimensionnelles. Le GMM a été appliqué aux images

multispectrales de documents, comme le montrent les travaux de Hollaus, Diem & Sablatnig

(2018). Bien que son application soit prometteuse, ces travaux soulignent une limitation

importante : la sensibilité des GMM aux variations des données brutes. La méthode nécessite

un pré-traitement crucial et met en évidence le manque d’informations spatiales nécessaire

pour obtenir une segmentation plus robuste.

En résumé, ces méthodes ont permis des avancées notables en imagerie MS de documents, mais

elles partagent un défaut majeur : l’absence de contrainte de non-négativité, qui limite leur

interprétation physique. Cette faiblesse motive l’adoption d’approches alternatives comme la

Factorisation Matricielle Non-négative, qui intègre naturellement cette contrainte et fournit

une interprétation directe en termes de spectres de matériaux et de cartes d’abondance.

1.2.3 La Factorisation Matricielle Non-négative (NMF) pour la séparation aveugle de
sources

La Factorisation Matricielle Non-négative (NMF) a connu un essor considérable au sein de

diverses communautés scientifiques, de l’analyse informatique au décodage génétique (Gillis,

2020). Initialement développée par Paatero & Tapper (1994), elle fut popularisée par Lee et Seung

à travers une série d’articles à la fin des années 90 (Lee & Seung, 1999, 2000). La NMF repose

sur une observation fondamentale : dans la nature, la plupart des structures complexes résultent

de l’addition de sous-structures ou de composants plus simples. Que ce soit en architecture

(bâtiments comme une somme de matériaux), en chimie (molécules comme une combinaison

d’atomes) ou en imagerie (pixels comme une somme d’ondes électromagnétiques), ce principe
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additif prévaut. La NMF postule qu’en décomposant une structure complexe en une somme

de «briques» constitutives non-négatives, on peut obtenir une représentation plus interprétable.

En effet, notamment dans le contexte des images de documents, des composantes négatives

manquent de sens physique, que ce soit pour l’intensité de réflectance ou indiquer la présence

d’objets. Cette présence est signifiée par un nombre positif, l’absence par zéro (Ngoc-Diep, 2008).

L’adéquation particulière de cette méthode pour l’étude des documents historiques multibandes

justifie un examen détaillé de ses principes, de ses avantages, de ses applications spécifiques.

1.2.3.1 Formulation Mathématique

La NMF vise à factoriser une matrice de données Y en deux matrices de rang inférieur, U et V,

dont tous les éléments sont non-négatifs 2 :

Y ≈ UV (1.3)

Dans le contexte de l’imagerie multibande de documents historiques, Y est une matrice R𝑏×𝑛+ , où

𝑏 est le nombre de bandes spectrales et 𝑛 le nombre de pixels (après réorganisation de l’image

2D en une structure 1D de pixels). La NMF cherche à estimer U de dimension R
𝑏×𝑟
+ et V de

dimension R
𝑟×𝑛
+ , avec 𝑟 (le rang) représentant le nombre de sources recherchées. Typiquement, r

est choisi de manière à ce que 𝑟 	 min(𝑚, 𝑛), ce qui implique que la NMF réalise également

une réduction de dimensionnalité. Cette factorisation obtenue constitue une approximation, la

résolution exacte du problème ayant été prouvée NP-difficile par Vavasis (2010), c’est-à-dire

qu’il n’existe aucun d’algorithme déterministe capable de garantir une solution optimale en

temps polynomial par rapport à la taille des données, d’où la nécessité de relaxer le problème.

Un développement mathématique de la NMF, avec son algorithme, les fonctions de coût utilisées

ainsi que les méthodes d’optimisation associées, est proposé en Annexe II.

2 Les notations peuvent varier selon les publications mais restent équivalentes : Y ≈ UV𝑇 , 𝑌 ≈ MA,

𝑌 ≈ AX, V ≈ WH, A ≈ XY𝑇 .
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1.2.3.2 Interprétation des facteurs dans l’analyse d’images MS de documents

L’un des principaux avantages de la NMF pour l’analyse des documents historiques multibandes

réside dans l’interprétabilité physique des matrices de factorisation U et V :

• Matrice des composantes (Endmembers en anglais) : Les 𝑟 colonnes de la matrice U ∈ R
𝑏×𝑟

peuvent être interprétées comme les signatures spectrales des 𝑟 composantes pures présentes

dans l’image. Chaque colonne u 𝑗 constitue un vecteur de 𝑏 valeurs non-négatives représentant

la réflectance du 𝑗-ème matériau pur (p. ex., encre spécifique, support, ou dégradation etc.).

• Matrice d’abondance : Les 𝑛 colonnes de la matrice V ∈ R
𝑟×𝑛 contiennent les coefficients

d’abondance correspondants à chaque source pour chacun des 𝑛 pixels. La 𝑗-ème ligne de V,

notée v𝑇𝑗 , peut être réorganisée spatialement pour former une carte d’abondance illustrant la

distribution spatiale du 𝑗-ème matériau à travers l’image. Chaque coefficient v 𝑗𝑖 indique la

proportion (contribution) de la 𝑗-ème signature spectrale au spectre observé du 𝑖-ème pixel.

Ces éléments sont illustrés sur la Figure 1.2, qui schématise la décomposition d’une image

MS synthétique en ses signatures spectrales pures et ses cartes d’abondance correspondantes.

Bien que la NMF soit fondamentalement une méthode de séparation de sources non-supervisée,

son application aux documents historiques nécessite une approche semi-supervisée, avec

une interprétation guidée par l’expertise. L’identification des colonnes de U comme matériaux

spécifiques requiert généralement une comparaison avec des spectres de référence (si disponibles),

une analyse contextuelle des cartes d’abondance, ou une validation par des techniques analytiques

complémentaires. Des variantes de la NMF permettent alors d’intégrer explicitement des

connaissances a priori dans le processus de factorisation, grâce à l’implémentation de différentes

contraintes, améliorant la décomposition en fonction des besoins.

1.2.3.3 Contraintes et variantes de la NMF

Dans le contexte du démélange spectral, deux contraintes fondamentales sont généralement

appliquées aux cartes d’abondance : la contrainte de non-négativité (Abundance Non-negativity
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Figure 1.2 Illustration schématique de la décomposition par NMF d’une image

multispectrale synthétique. L’image originale est constituée de trois matériaux (encre

violette, encre bleue et support) réagissant de manière unique aux différentes longueurs

d’onde. La factorisation permet d’extraire les signatures spectrales pures U et les cartes

d’abondance spatiales correspondantes V, représentés sous leur forme matricielle. Les

données présentées sont entièrement simulées à des fins de visualisation, les couleurs

étant utilisées uniquement pour faciliter l’interprétation visuelle

Constraint - ANC), ainsi que la contrainte de somme à l’unité (Abundance Sum-to-one

Constraint - ASC), imposant que
∑
𝑖 𝑉𝑖 𝑗 = 1 pour chaque pixel 𝑗 (i.e., somme à 100%). Ce cadre

général de NMF contrainte permet alors d’intégrer des connaissances a priori (p. ex., colonnes

de U partiellement fixées lorsque des signatures spectrales sont connues), en gardant une

interprétation cohérente des abondances comme contributions relatives des matériaux. Au-delà

de ces contraintes de base, diverses variantes de la NMF ont été développées pour répondre à

différents besoins spécifiques (voir Cichocki, Zdunek, Phan & Amari (2009) ou Wang & Zhang

(2012) pour une revue développée). Parmi les principales variantes développées, on peut citer :

• NMF Parcimonieuse (Sparse NMF) : Impose des contraintes de parcimonie (p. ex.,

régularisation 𝐿0, 𝐿1, 𝐿1/2 ou log-norme) sur les matrices de facteurs U et/ou V favorisant des
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représentations localisées et basées sur les parties, améliorant potentiellement l’interprétabilité

et la robustesse au bruit (Peharz & Pernkopf, 2012; Le Roux, Weninger & Hershey, 2015).

• NMF Orthogonale (ONMF) : Impose des contraintes d’orthogonalité sur les matrices de

facteurs, telles que UTU = I (colonnes de U orthogonales) et/ou VVT = I (lignes de V

orthogonales). Cette orthogonalité garantit que les composantes extraites sont maximalement

indépendantes et non-redondantes, ce qui améliore l’identification de matériaux distincts.

Dans le contexte des documents historiques, l’ONMF est prouvée efficace pour séparer

des pigments aux signatures spectrales proches mais chimiquement différents (Choi, 2008;

Yoo & Choi, 2010a; Rahiche & Cheriet, 2020).

• NMF Lisse (Smooth NMF) : Impose des contraintes de régularité spatiale sur les cartes

d’abondance V, particulièrement utile pour les matériaux variant de manière graduelle. Cette

approche améliore la cohérence spatiale et réduit l’impact du bruit (Salehani & Gazor, 2017).

• NMF Régularisée par Graphe (GNMF) : Incorpore la structure géométrique locale des

données via un terme de régularisation basé sur un graphe de similarité, préservant les

relations de voisinage dans l’espace de faible dimension défini par𝑈 ou V (Yi et al., 2019;

Rahiche & Cheriet, 2020; Rhodes, Jiang & Jiang, 2025).

• Tri-NMF : Décompose la matrice de données Y en trois facteurs, souvent non négatifs, par

exemple Y ≈ USVT. Dans ce cadre, S peut être une matrice centrale de taille variable, et des

contraintes supplémentaires (comme l’orthogonalité sur U et V, ou la parcimonie) peuvent

être imposées. Cette formulation peut offrir plus de flexibilité et est utilisée pour relaxer

problème d’optimisation (Ding, Li, Peng & Park, 2006; Ding, Li & Jordan, 2008).

1.2.3.4 Applications de la NMF pour l’analyse des documents

La NMF est une technique non supervisé employée pour l’analyse d’images de documents,

notamment avec des données MS ou HS (Pauca, Piper & Plemmons, 2006; Soukup & Bajla,

2008; Rahiche et al., 2019). L’utilisation de contraintes assure que les caractéristiques extraites

sont additives et physiquement interprétables, ce qui est fondamental pour les données d’imagerie
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dont les valeurs sont intrinsèquement non négatives (Magkanas, Bagán, Sistach & García, 2021).

Les applications principales de la NMF dans l’analyse de documents historiques incluent :

• Analyse et discrimination d’encres et pigments : La NMF permet d’identifier et de

discriminer les signatures spectrales de divers matériaux d’écriture, tels que les encres et les

pigments, même lorsque ceux-ci sont visuellement indiscernables (López-Baldomero et al.,

2023; Lyu et al., 2020). Cette capacité est cruciale pour l’authentification de documents,

l’étude des techniques artistiques et potentiellement la datation (Magkanas et al., 2021).

Pour les données MS/HS, des variantes orthogonales (ONMF) sont souvent employées pour

améliorer la distinction des composantes spectrales extraites (Rahiche et al., 2019, 2020).

• Détection de falsifications : La technique est appliquée à la détection de falsifications, comme

l’identification d’ajouts d’encre. La NMF peut révéler des composantes distinctes présentant

des incohérences spectrales indiquant ainsi des altérations. Des modèles spécifiques, tels que

la NMF orthogonale régularisée par graphe, ont été proposés pour la détection de discordance

d’encres dans les images MS de documents (Rahiche & Cheriet, 2020).

• Restauration et analyse de documents : Dans le domaine de la restauration et de l’analyse,

la NMF contribue à la séparation virtuelle des couches d’une image permettant la suppression

de l’effet de transparence parasite du texte verso (Merrikh-Bayat, Babaie-Zadeh & Jutten,

2010) ou la récupération de textes effacés ou superposés (Wang & Zhang, 2011; Phon-

Amnuaisuk, 2013). Elle est également utilisée pour l’identification de pigments dans les

manuscrits enluminés et les œuvres d’art, aidant à caractériser les matériaux et les techniques

de création (Magkanas et al., 2021; Lyu et al., 2020).

• Extraction de contenu et modélisation thématique : En plus de son application dans

l’analyse d’images, la NMF est avant tout une technique reconnue pour la modélisation

thématique et l’analyse sémantique latente de contenu textuel (Kulkarni, Madurwar, Narlawar,

Pandya & Gawande, 2023). Dans ces applications, la matrice U peut représenter des thèmes

(ensembles de mots) et V leur distribution ou prévalence au sein d’un corpus de documents.

• Segmentation et binarisation : La NMF est employée pour la segmentation d’images de

documents, permettant de séparer le texte du fond, les illustrations ou différentes régions

matérielles (Mazack, 2009). Des cadres spécifiques, comme MSdB-NMF (MultiSpectral
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Document image Binarization via NMF) (Salehani, Arabnejad, Rahiche, Bakhta & Cheriet,

2020) ou des approches basées sur l’ONMF, ont été développés pour la binarisation et la

décomposition de documents multispectraux (Rahiche et al., 2019).

Cependant, l’efficacité de la NMF est conditionnée par la résolution de plusieurs défis

méthodologiques. Le problème d’optimisation en NMF, non convexe, peut converger vers

des minima locaux, et la solution obtenue est sensible aux valeurs initiales des matrices U et

V (Magkanas et al., 2021). De plus, la NMF standard repose sur l’hypothèse d’un mélange

linéaire additif des composantes spectrales. Cependant, les interactions lumière-matière dans

les documents, telles que celles impliquant des couches d’encre épaisses ou des phénomènes

de diffusion multiple, peuvent introduire des non-linéarités significatives. Ces effets peuvent

invalider le modèle linéaire, un problème parfois désigné comme le «problème du mélange

linéaire» (López-Baldomero et al., 2025). Aussi, la signature spectrale d’un même matériau

(encre, pigment) peut varier au sein d’un document en raison de facteurs tels que les différences

de concentration, l’état de dégradation, ou les interactions avec le support. Cette variabilité

peut conduire à des erreurs de modélisation ou à l’identification erronée de multiples sources

pour un seul matériau. Les données MS sont d’ailleurs souvent affectées par le bruit, ce qui

peut fausser les composantes extraites par la NMF. Un autre défi est le passage à l’échelle ;

avec des images MS volumineuses, présentant une haute résolution spatiale et spectrale, des

contraintes augmentant la complexité algorithmique et le besoin de détermination du nombre de

composantes, l’automatisation de la décomposition par NMF devient particulièrement critique,

certaines méthodes demandant le réglage de paramètres pour chaque image analysée (Rahiche

et al., 2019; Rahiche & Cheriet, 2022). Par ailleurs, l’absence de critères objectifs universels pour

évaluer la qualité d’une décomposition complique l’établissement de protocoles standardisés

pour le traitement en masse de collections documentaires. Ces limitations, partagées à divers

degrés par l’ensemble des méthodes algébriques traditionnelles (voir Tableau 1.1 pour une

synthèse comparative), soulignent la nécessité d’explorer des approches alternatives.
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Tableau 1.1 Synthèse comparative des méthodes algébriques traditionnelles pour l’analyse

de documents historiques multibandes

Caractéristique ACP ACI K-moyennes GMM NMF

Objectif Principal Maximisation de la

variance, décorrélation

Maximisation de l’indé-

pendance statistique

Regrouper les données en

K groupes distincts,

basés sur la proximité

Modéliser les données comme

un mélange de K

distributions Gaussiennes

Factorisation en matrices

non-négatives,

reconstruction additive

Application aux images
MS de documents

Réduction de dimension,

amélioration de contraste,

pré-traitement

Séparation de couches,

discrimination d’encres

Segmentation rapide en

régions spectralement

distinctes

Segmentation probabiliste

("douce")

Démélange spectral

(encres, support, dégradations)

Statistiques Utilisées Second ordre

(covariance)

Ordres supérieurs

(cumulants)

Distance (Euclidienne,

Cosinus), Moyenne

Probabilités, EM,

Moyenne et Covariance
Basé sur la fonction de coût

Hypothèses 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 Aucune
Non-gaussiennes,

indépendance statistique

K prédéfini,

clusters sphériques

Données suivent un mélange

de K Gaussiennes

Données Non-négatives,

K sources distinctes

Avantages Simple, rapide,

bien établie

Meilleure décomposition

que l’ACP
Simple, rapide Assignation flexible

Interprétation physique directe,

adaptée aux images MS

Inconvénients Ne sépare pas les sources,

interprétation difficile

Hypothèse d’indépendance forte,

non-négativité non garantie

Sensible à l’initialisation,

optimums locaux

Sensible aux variations,

K à définir

Sensible à l’initialisation,

K à définir

Contexte spatial X X ≈
(SKKHM)

X X

Non-négativité X X X X V
(pour E et A)

Interprétabilité
Physique

Limitée

(combinaisons linéaires,

valeurs négatives)

Modérée

(plus proche des sources,

valeurs négatives)

Limitée

(centroïdes = moyennes

pas de spectres purs garantis)

Limitée

(paramètres Gaussiens donc

pas de spectres purs garantis)

Élevée

(signatures spectrales et

abondances non-négatives)

Les méthodes d’apprentissage profond émergent alors comme une voie prometteuse, offrant

la capacité d’apprendre automatiquement des représentations non-linéaires complexes et de

s’adapter aux spécificités de donnée hautement variables (Squires, 2019; Yu et al., 2024).

1.3 Apprentissage profond pour l’extraction de composantes et l’analyse d’images

L’apprentissage profond (Deep Learning, DL) représente une branche de l’intelligence

artificielle (IA) qui a transformé de nombreux domaines, notamment celui de l’analyse d’images.

Sa capacité à modéliser des abstractions de haut niveau dans les données en utilisant des

architectures composées de multiples couches de traitement non linéaire en fait un outil puissant

pour l’extraction de composantes complexes.
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Cette section introductive vise à définir l’apprentissage profond, à le situer par rapport à

l’apprentissage automatique classique, et à introduire certains des concepts fondamentaux.

1.3.1 Définition et positionnement par rapport aux méthodes algébriques
traditionnelles

L’apprentissage profond est une branche de l’apprentissage automatique (Machine Learning,

ML) qui repose sur l’entraînement de réseaux de neurones artificiels à partir de grandes

quantités de données. Contrairement aux méthodes algébriques traditionnelles, les méthodes

d’apprentissage profond apprennent des représentations de données complexes de manière

adaptative, sans hypothèses fortes sur la structure sous-jacente. Les modèles d’apprentissage

profond, sont conçus pour apprendre des caractéristiques complexes de manière hiérarchique et

autonome, directement à partir des données brutes. Leur structure algorithmique en couches

permet un traitement progressif de l’information, où chaque couche affine les résultats de la

précédente, facilitant l’identification de motifs complexes souvent sans étiquetage préalable

exhaustif. Dans le contexte de l’analyse d’images, cette approche se distingue par l’extraction

automatique des caractéristiques. Contrairement aux méthodes traditionnelles qui exigent une

sélection manuelle des caractéristiques pertinentes (couleur, contours, texture) par un expert,

l’apprentissage profond adopte un concept d’apprentissage de bout en bout. L’algorithme

identifie automatiquement les caractéristiques les plus saillantes pour chaque classe en analysant

des exemples, rendant cette approche particulièrement adaptée à la gestion d’une grande

variabilité des objets et des conditions d’acquisition. Il est important de noter que les modèles

d’apprentissage profond sont généralement plus complexes et de plus grande taille que leurs

homologues classiques. Ils requièrent par conséquent des volumes de données plus importants

pour l’entraînement et une puissance de calcul considérable, les unités de traitement graphique

(GPU) étant souvent privilégiées pour leur capacité à effectuer des calculs parallèles massifs.
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1.3.2 Réseaux de Perceptron Multicouche (MLP) : La base

Le Perceptron Multicouche (Multilayer Perceptron - MLP) est l’une des architectures

fondamentales des réseaux de neurones profonds. Un MLP est structuré en plusieurs couches de

neurones interconnectés :

1. La couche d’entrée reçoit les données initiales. Chaque neurone de cette couche correspond

à une caractéristique d’entrée (p. ex., valeurs d’un pixel si une image est aplatie en vecteur).

2. Les couches cachées se situent entre la couche d’entrée et la couche de sortie. Elles

effectuent des transformations successives sur les données. Dans un MLP, chaque neurone

d’une couche est typiquement connecté à tous les neurones de la couche précédente (on

parle de couches «entièrement connectées» ou fully connected) et transmet sa sortie à la

couche suivante. Le nombre de couches cachées et le nombre de neurones dans chaque

couche sont des hyperparamètres importants du modèle, définis lors de sa conception.

3. La couche de sortie produit la prédiction finale du réseau. Le nombre de neurones dans cette

couche dépend de la nature de la tâche : par exemple, un seul neurone peut être utilisé pour

une classification binaire (avec une fonction d’activation sigmoïde), tandis que plusieurs

neurones (avec softmax) sont nécessaires pour une classification multi-classes.

Mathématiquement, la propagation avant dans un MLP peut être décrite par les équations

suivantes. Pour une couche 𝑙 avec 𝑛(𝑙) neurones, la sortie est calculée comme :

z(𝑙) = W(𝑙)a(𝑙−1) + b(𝑙) (1.4)

a(𝑙) = 𝑓 (z(𝑙)) (1.5)

où W(𝑙) ∈ R
𝑛(𝑙)×𝑛(𝑙−1)

est la matrice des poids de la couche 𝑙, b(𝑙) ∈ R
𝑛(𝑙) est le vecteur

de biais, a(𝑙−1) est la sortie de la couche précédente, et 𝑓 (·) est la fonction d’activation (p.

ex., ReLU, sigmoïde, tanh, etc.). L’entraînement du réseau s’effectue par rétropropagation

des gradients, qui minimise une fonction de coût L en ajustant les paramètres. La nature

«entièrement connectée» des MLP, bien que simple à conceptualiser, est à la fois une force et sa

faiblesse majeure. Elle offre la capacité de modéliser des interactions complexes si le réseau est
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suffisamment profond, mais elle conduit aussi à une explosion du nombre de paramètres, en

particulier pour les entrées de haute dimension comme les images. Ce choix architectural est à

l’origine de ses limitations dans les tâches de vision. En effet, si chaque neurone d’une couche est

connecté à ceux de la suivante, le nombre de poids est le produit du nombre de neurones dans ces

couches adjacentes. Pour une image de taille modeste (p. ex., 224×224 pixels soit 50176 valeurs

d’entrée), la première couche cachée, même si comportant un nombre raisonnable de neurones,

aura un nombre massif de poids à apprendre, entraînant des coûts de calcul et des besoins en

mémoire élevés. La structure du MLP est donc mal adaptée aux données d’image brutes de haute

dimension. De plus, avec l’aplatissement en vecteurs unidimensionnels, la structure spatiale des

images est perdue, poussant vers le développement d’architectures spécialisées comme les CNN.

1.3.3 Réseaux de neurones convolutifs (CNN) : Le contexte spatial

Les Réseaux de neurones convolutifs (CNN) exploitent la structure spatiale des images grâce à

la convolution, qui constitue l’opération mathématique centrale de leur architecture. Pour des

images multibandes, cette opération s’étend sur tous les canaux. Mathématiquement, pour une

image d’entrée 𝑋 ∈ R
𝐻×𝑊×𝐶 et un ensemble de filtres (ou kernel) 𝐾 ∈ R

𝐹𝐻×𝐹𝑊 , l’opération de

convolution 2D discrète est définie par :

(𝑋 ∗ 𝐾𝑘 )𝑖, 𝑗 =
𝐶−1∑
𝑐=0

𝐹𝐻−1∑
𝑚=0

𝐹𝑊−1∑
𝑛=0

𝑋𝑖+𝑚, 𝑗+𝑛,𝑐 · 𝐾𝑘𝑚,𝑛,𝑐 + 𝑏𝑘 (1.6)

où 𝐶 est le nombre de canaux d’entrée, 𝑏 est le terme de biais, et où 𝑘 ∈ {1, ..., 𝑁 𝑓 } est l’indice

du filtre produisant 𝑁 𝑓 cartes de caractéristiques en sortie et où (𝑖, 𝑗) représente la position dans

ces cartes. La taille de ces cartes dépend de deux hyperparamètres :

• Le Stride 𝑠 : le pas entre chaque déplacement du filtre.

• Le Padding 𝑝 : le nombre de valeurs ajoutées autour de l’image pour le calcul des bordures.

La dimension de l’image de sortie, dépendante de 𝑠 et 𝑝, est alors calculée comme :

𝐻𝑜𝑢𝑡 =

⌊
𝐻 + 2𝑝 − 𝐹𝐻

𝑠

⌋
+ 1 , 𝑊𝑜𝑢𝑡 =

⌊
𝑊 + 2𝑝 − 𝐹𝑊

𝑠

⌋
+ 1 (1.7)
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Une autre composante importante associé aux CNN sont les couches de pooling, qui réduisent

la dimensionnalité spatiale et contribuent à l’invariance translationnelle (Ng et al., 2014). Le

partage de poids permet de réduire drastiquement le nombre de paramètres, en utilisant les

mêmes valeurs de filtre pour toute l’image. Contrairement à un MLP où chaque connexion

a un poids unique, un CNN avec 𝑁 𝑓 filtres de taille 𝐹 × 𝐹 sur 𝐶 canaux d’entrée n’a que

𝑁 𝑓 × (𝐹 × 𝐹 × 𝐶 + 1) paramètres, indépendamment de la taille de l’image d’entrée. Cette

propriété permet aux CNN de traiter des images de différentes tailles avec le même modèle.

Aussi, l’invariance translationnelle, obtenue par la nature glissante de la convolution, permet de

reconnaître les objets indépendamment de leur position exacte dans l’image. L’architecture CNN

construit une hiérarchie de caractéristiques : les premières couches détectent des éléments

simples (p. ex., contours, textures), grâce à des champs récepteurs locaux de petite taille. Les

couches intermédiaires assemblent ces éléments en formes plus complexes avec des champs

récepteurs plus larges, et les couches profondes reconnaissent des objets entiers ou des concepts

abstraits. Cette progression peut être formalisée par la croissance du champ récepteur effectif :

𝑅𝐹𝑙 = 𝑅𝐹𝑙−1 + (𝐾𝑙 − 1) ×
𝑙−1∏
𝑖=1

𝑆𝑖 (1.8)

où 𝑅𝐹𝑙 est le champ récepteur à la couche 𝑙, 𝐾𝑙 la taille du noyau et 𝑆𝑖 le stride de la couche 𝑖.

La Figure 1.3 illustre un CNN simple suivi de couches de MLP pour une tâche de classification

de chiffres manuscrits. Cette approche hiérarchique s’inspire du système visuel biologique

et a prouvé son efficacité pour diverses tâches de vision, en étant à la base d’architectures

compétitives plus complexes comme les modèles LeNet, AlexNet, VGG, GoogLeNet ou encore

le ResNet (Bhatt et al. (2021) propose une revue complète de l’évolution de ces architectures).

Hollaus, Brenner & Sablatnig (2019) propose d’utiliser un ResNet supervisé pour la binarisation

d’images de documents, les résultats confirmant l’efficacité des modèles CNN pour cette tâche.

1.3.4 Auto-encodeurs : Apprentissage non-supervisé de représentations

Les Auto-encodeurs (AE) constituent une famille d’architectures de réseaux de neurones

principalement utilisée pour l’apprentissage non supervisé de représentations de données. A
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Figure 1.3 Exemple d’application d’un CNN pour la tâche de

classification de chiffres manuscrits. Figure tirée de Patel (2019)

l’instar de la NMF, leur objectif est d’apprendre des représentations vectorielles (ou embeddings)

compactes des données, souvent dans un espace de dimensionnalité réduite, sans supervision.

Le principe de base d’un autoencodeur s’articule autour de deux composantes principales :

1. L’encodeur a pour rôle de transformer les données d’entrée en une représentation de plus

faible dimensionnalité. L’encodeur apprend à extraire les informations les plus saillantes et

pertinentes de l’entrée pour former cette représentation, aussi appelée espace latent.

2. Le décodeur prend ensuite cette représentation latente en entrée et tente de reconstruire les

données d’origine aussi fidèlement que possible.

L’ensemble du réseau est entraîné en minimisant une fonction de reconstruction, qui mesure la

différence entre les données d’entrée originales et les données reconstruites par le décodeur. Le

goulot d’étranglement contraint la représentation latente à avoir une dimensionnalité inférieure

à celle de l’entrée, forçant le réseau à apprendre une représentation compressée qui capture

l’essence des données, plutôt que de simplement apprendre une fonction identité.

Les Auto-encodeurs Convolutifs (CAE) adaptent l’architecture des auto-encodeurs en intégrant

des couches convolutives. L’encodeur d’un CAE agit comme un CNN classique, extrayant une

hiérarchie de caractéristiques spatiales de l’image d’entrée. Le décodeur effectue l’opération
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inverse pour reconstruire l’image à partir de la représentation latente. Cette architecture est

particulièrement adaptée pour les images de document car elle préserve l’information spatiale et

apprend des filtres qui capturent des motifs locaux (Calvo-Zaragoza & Gallego, 2019).

Les Auto-encodeurs Variationnels (VAE) sont une extension des auto-encodeurs qui appartiennent

à la catégorie des modèles génératifs. De manière analogue à la NMF qui possède une variante

basée sur la divergence KL, les auto-encodeurs ont leur extension probabiliste sous la forme des

VAE. Leur particularité est de représenter explicitement l’espace latent comme une distribution

de probabilité N(𝜇, 𝜎2𝐼), permettant la génération de données synthéthiques réalistes. La

Figure 1.4 illustre une piste d’application de VAE pour la SAS, visant à distinguer des textes

superposés. Bien que prometteuse, cette approche présente des limitations notables, puisque

le modèle ne fonctionne que sur des images monobandes de faible résolution et que son

entraînement requiert un vaste corpus de données déjà séparées (Neri, Badeau & Depalle, 2021).

Figure 1.4 Exemple d’application d’un Autoencodeur Variationnel (VAE) pour la

tâche de séparation de chiffres manuscrits. Réimplémentation de Neri et al. (2021)

1.3.5 Transformers en vision (ViT) : Le contexte global

Initialement conçus pour le traitement automatique du langage naturel (Natural Langage

Processing - NLP), les Transformers ont récemment révolutionné la vision par ordinateur après
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leur introduction par Vaswani et al. (2017). Le cœur des modèles Transformer est le mécanisme

d’auto-attention. Ce mécanisme permet au modèle de pondérer l’importance de différentes

parties de la séquence d’entrée les unes par rapport aux autres, afin de calculer une représentation

de chaque élément de la séquence qui tienne compte du contexte global. Contrairement aux

CNN qui construisent un contexte global progressivement, les transformers ont la capacité de

capturer des relations et dépendances de longue portée entre tous les éléments dès les premières

couches du réseau. Chaque élément peut «regarder» tous les autres afin de trouver les plus

pertinents pour sa propre représentation. Cependant, l’attention possède une haute complexité

computationnelle, quadratique par rapport à la longueur de la séquence d’entrée. Pour adapter

cette architecture aux images, le Vision Transformer (ViT) divise alors l’image en patchs de

taille fixe, evitant ainsi de traiter chaque pixels. Les ViT ont prouvé leur capacité à extraire

une compréhension sémantique des images à partir de grands ensembles de données, apportant

les meilleurs performance en segmentation d’images. Contrairement aux CNN qui extraient

des relations locales, les ViT parviennent à regrouper des objets par leur sens ou contexte,

permettant une meilleure compréhension globale d’une scène. Des variantes comme le Swin

Transformer adaptent le mécanisme d’attention pour améliorer l’efficacité computationnelle,

permettant de traiter des images plus grandes tout en conservant une compréhension sémantique

globale. Cependant, le découpage en patchs inhérent aux ViT sacrifie la résolution spatiale

fine, les rendant moins adaptés pour l’analyse de documents haute résolution nécessitant une

segmentation précise au pixel près. Cela explique l’échec des methodes de fondations pour la

segmentation et l’extraction de texte manuscrit (voir Figure 1.5).

1.3.6 Applications pratiques aux images de documents

Les architectures d’apprentissage profond trouvent des applications spécifiques dans l’analyse

de documents. Les CNN excellent dans la détection et la reconnaissance de texte (OCR), la

segmentation de mise en page, et l’extraction de tableaux. Les AE sont utilisés pour le débruitage

de documents anciens ou de mauvaise qualité, la compression de documents, l’extraction de

caractéristiques ou la séparation de textes superposés (voir Figure 1.4). Les ViT avec leur capacité



33

Figure 1.5 Exemple d’application de deux ViT reconnus, pour la tâche de

segmentation automatique d’une image de texte, avec (a) Dinov2 (Oquab

et al., 2024) et (b) Segment Anything Model (SAM) (Kirillov et al., 2023)

à capturer le contexte global, montrent des performances prometteuses pour la compréhension

de la structure de documents et l’analyse de leur contenu, comme démontré sur la tâche de

DocVQA (Mathew, Karatzas & Jawahar, 2021) mais restent limités pour une segmentation fine.

1.3.7 Apprentissage supervisé contre non-supervisé

La distinction entre apprentissage supervisé et non-supervisé constitue alors un choix fondamental

dans la conception de modèles pour l’analyse d’images. Le premier, qui s’appuie sur des paires

entrée-sortie annotées, permet d’obtenir des performances remarquables lorsque les données

étiquetées sont abondantes et représentatives. Dans le contexte de l’analyse documentaire,

cette approche excelle pour des tâches bien définies comme la segmentation sémantique ou la

classification de régions. Cependant, la création d’annotations précises pour les images MS

représente un défi majeur : elle requiert une expertise spécialisée, s’avère chronophage et coûteuse,

et peut introduire des biais liés à l’interprétation subjective des experts. À l’inverse, l’apprentissage

non-supervisé, comme utilisé par les auto-encodeurs, explore la structure intrinsèque des données

pour automatiquement découvrir des motifs latents et des décompositions naturelles, le rendant

particulièrement adapté aux contextes où celles-ci sont rares ou inexistantes.
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1.4 Identification des lacunes et justification d’une approche hybride

La revue des méthodes existantes révèle un paysage contrasté où chaque approche présente des

forces et limitations complémentaires :

Les méthodes algébriques traditionnelles, notamment la NMF, ont démontré leur efficacité pour

la décomposition non supervisée d’images MS. Leur principal atout réside dans l’interprétabilité

directe des composantes extraites, chaque facteur pouvant être associé à un matériau ou une

caractéristique physique spécifique, essentielle pour l’analyse de documents patrimoniaux.

Cependant, elles souffrent de limitations face à la complexité des données réelles : nécessité de

définir le rang de factorisation a priori, difficulté à capturer les relations spatiales complexes, et

capacité limitée à modéliser des phénomènes non linéaires.

À l’inverse, les modèles d’apprentissage profond, notamment les auto-encodeurs convolutifs

(CAE), excellent dans l’extraction automatique de caractéristiques complexes et la modélisation

de relations non linéaires. Leur capacité à apprendre des représentations hiérarchiques directement

à partir des données leur confère une puissance de modélisation supérieure. Néanmoins, cette

puissance s’accompagne d’un manque d’interprétabilité : les représentations latentes apprises

sont souvent opaques et difficiles à relier aux propriétés physiques des matériaux analysés.

Face à ces constats, une approche hybride combinant l’interprétabilité de la factorisation

matricielle avec la puissance d’extraction des réseaux de neurones émerge comme une solution

naturelle. En intégrant les contraintes de non-négativité garantes d’interprétabilité physique

avec les capacités de modélisation non linéaire et spatiale des CAE, il devient possible de

concevoir un modèle préservant la transparence des résultats tout en bénéficiant de la richesse

représentationnelle de l’apprentissage profond. Cette synergie permettrait de répondre aux

exigences spécifiques de l’analyse non supervisée de documents MS : résultats interprétables

pour les experts, robustesse aux données bruitées, et fonctionnement avec des ensembles de

données limités. L’originalité de cette direction réside dans la fusion de deux paradigmes

traditionnellement distincts, ouvrant la voie au développement présenté dans le chapitre suivant.



CHAPITRE 2

APPROCHE HYBRIDE AUTOENCODEUR-FACTORISATION NMF

L’une des révolutions apportées par l’apprentissage profond est sa capacité à apprendre une

hiérarchie de caractéristiques. Plutôt que d’analyser les données sur un seul niveau, un modèle

profond extrait des concepts de complexité croissante à travers ses différentes couches. Les

premières couches apprennent des caractéristiques simples et locales (des contours, des textures,

des gradients de couleur), tandis que les couches suivantes les combinent pour former des motifs

plus complexes (des parties d’objets), jusqu’à la reconnaissance d’objets entiers dans les couches

finales. Cette approche hiérarchique est directement inspirée du fonctionnement du cortex

visuel humain et permet de modéliser des relations non-linéaires et complexes, bien au-delà

des capacités d’un modèle plat comme la NMF classique.

Face à ce constat, l’idée de rendre la NMF multicouche a émergé suivant deux paradigmes à

distinguer, tout deux pourtant désignés sous le terme «NMF profonde» :

1. La NMF profonde par factorisation en cascade : Cette première approche est une

extension directe du modèle NMF en une structure multi-couches. La matrice obtenue à une

couche 𝑘 sert de matrice d’entrée pour la factorisation à la couche 𝑘 + 1, instaurant ainsi une

décomposition en cascade. Le principe repose sur une factorisation hiérarchique où chaque

niveau de décomposition affine les représentations du niveau précédent, dans le but d’obtenir

une hiérarchie de facteurs où les parties sont combinées pour former des touts. La matrice

décomposée peut être la matrice d’abondance, comme Y ≈ E1E2...E𝑘A𝑘 où A𝑖−1 ≈ E𝑖A𝑖 ;

la matrice des signatures spectrales, comme Y ≈ E𝑘A𝑘 ...A2A1 où E𝑖−1 ≈ E𝑖A𝑖 ; ou les deux.

Toutefois, bien que hiérarchique, ce modèle demeure fondamentalement une technique

de factorisation matricielle. Il nécessite un entraînement en deux phases, d’abord un pré-

entraînement de chaque de factorisation, suivi d’une étape de «fine-tuning» apportant une

cohérence globale. Il n’intègre pas nativement de mécanismes pour l’apprentissage de

dépendances spatiales et est dépourvu de la flexibilité architecturale des réseaux de neurones

modernes, ce qui le rend moins optimal pour le traitement direct de données d’images.
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2. L’intégration de contraintes de type NMF au sein d’architectures neuronales profondes :

Cette seconde approche, plus flexible, consiste à s’appuyer sur des architectures neuronales

connexes de l’état de l’art, telles que les auto-encodeurs, et d’y intégrer les principes de

la NMF non comme un bloc architectural, mais comme un ensemble de contraintes de

régularisation. L’objectif n’est donc pas d’empiler des modules de factorisation, mais de

contraindre un réseau puissant à reproduire des représentations interprétables similaires à la

NMF. Cette contrainte se matérialise souvent par l’imposition de la non-négativité sur les

poids du modèle, sur les cartes d’activation ou sur les fonctions d’activation de l’espace

latent. Le modèle est alors optimisé de bout en bout (end-to-end) par rétropropagation des

gradients en respectant ces contraintes. Cette méthodologie présente des avantages clés :

elle permet d’exploiter les opérateurs convolutifs pour prendre en compte les dépendances

spatiales et offre la flexibilité d’intégrer ces contraintes dans des architectures modernes

robustes et éprouvées, bénéficiant de leur meilleure capacité de généralisation.

Une revue détaillée des différents types de NMF profondes est proposé par Chen, Zeng & Pan

(2022). Face à notre problématique ; la décomposition d’images multi-bandes de documents

historiques, le second paradigme s’avère le plus pertinent. En effet, cette tâche requiert un modèle

capable de généraliser et de s’adapter à la grande variabilité inhérente à ces données. Notre

objectif est de capitaliser sur la puissance et la flexibilité des réseaux de neurones convolutifs,

tout en leur injectant l’interprétabilité physique de la NMF au moyen de contraintes ciblées.

2.1 Fondements et synergies entre NMF et réseaux de neurones

Les mathématiques de l’auto-encodeur, lorsque certaines contraintes sont imposées, ont des

caractéristiques similaires à celles de la NMF. En considérant une matrice d’entrée Y ∈ R
𝑏×𝑛

avec 𝑏 dimensions et 𝑛 pixels, un auto-encodeur peut traiter un point de données y𝑖 ∈ R
𝑏×1 en

cherchant à reconstruire ŷ𝑖 ∈ R
𝑏×1. Si l’on définit un nombre de neurones 𝑟 dans l’espace latent

comme 𝑟 < 𝑏, le modèle est forcé d’apprendre une représentation simplifiée de la donnée. Il se

sert de celle-ci pour reconstruire une prédiction en sortie, permettant ainsi d’évaluer sa qualité.
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Le nombre de poids appris par une couche de neurones connectés est défini comme le produit

du nombre de neurones dans la couche précédente par le nombre dans la couche suivante. Pour

le décodeur, il s’agit donc du produit du nombre de neurones dans l’espace latent, 𝑟, par le

nombre neurones dans la couche de sorties, 𝑏. On peut alors noter ces poids comme une matrice

W𝑇
𝑑 ∈ R

𝑟×𝑏, de taille similaire à la matrice des composantes M ∈ R
𝑟×𝑏 dans la NMF. D’une

manière similaire, la matrice de poids reliant l’entrée à la couche cachée est W𝑒 ∈ R
𝑟×𝑏 où 𝑟

est le nombre de neurones dans la couche cachée. Nous pouvons alors exprimer la sortie de

la couche cachée ℎ𝑖 = 𝜎𝑒 (W𝑒y𝑖), où 𝜎𝑒 est une fonction non-linéaire qui opère élément par

élément et ℎ𝑖 ∈ R
𝑟×1. La Figure 2.1 illustre un modèle simple de type auto-encodeur.

Figure 2.1 La NMF vue comme un réseau neuronal

Il est alors possible de traiter tous les pixels d’une image par ce réseau de neurones pour obtenir

𝑛 vecteurs h𝑖. On peut alors construire H𝑇 ∈ R
𝑛×𝑟 , de taille similaire aux cartes d’abondances

A ∈ R
𝑛×𝑟 . La couche finale produit alors la sortie Ŷ = 𝜎𝑑 (W𝑑H). Si la fonction d’activation

𝜎𝑑 est l’identité, et que W𝑑 et H sont tous deux non-négatifs, nous avons un auto-encodeur qui

peut être interprété comme effectuant une NMF. Pour qu’un auto-encodeur de base effectue une

NMF standard, les contraintes suivantes doivent être respectées (Squires, 2019) :

• La fonction d’activation 𝜎𝑒 doit produire une sortie non-négative.

• La fonction d’activation 𝜎𝑑 doit être l’identité.

• Les poids de W𝑑 doivent être non-négatifs.

• Le nombre d’unités cachées dans la couche latente doit être le même que le rang désiré.
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Contrairement à la NMF classique où l’optimisation est formulée à partir de la mesure de

reconstruction ; soit la divergence Kullback-Leibler, soit l’erreur quadratique moyenne, cette

formulation permet l’utilisation de différentes fonctions de coût et l’utilisation d’optimiseur

robuste pour les réseaux de neurones, comme Adam (Kingma & Ba, 2017).

2.2 État de l’art des approches combinant NMF et réseaux de neurones

La fusion de la NMF avec des architectures d’apprentissage profond spécifiques a donné

naissance à une nouvelle génération de modèles hybrides, capitalisant sur les forces respectives

de chaque approche. Les réseaux de neurones convolutifs (CNN), récurrents (RNN) et les

mécanismes d’attention ont été intégrés de manière innovante pour aborder des problèmes

complexes dans divers domaines. Cependant les progrès rapides et itératifs des architectures

neuronales de type auto-encodeurs, notamment appliqués au domaine du démélange HS, ont

créé une scission entre la NMF classique et ces architectures semblables à des NMF «profondes».

La Figure 2.2 illustre cette scission entre des papiers appartenant à ces deux communautés.

Figure 2.2 Visualisation de la scission entre la recherche sur le démélange HS et sur la

NMF. Chaque noeud représente un papier tandis que chaque lien représente une citation.

Les travaux des deux communautés aboutissent au développement de modèle AE

non-négatifs bien qu’ayant eu un développement distinct avec peu d’interactions.

Visualisation réalisée à l’aide de l’outil ResearchRabbit
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Cette scission a engendré une redondance de certains développements, créant deux «communautés»

de recherches avec peu de lien entre elles, mais qui ont abouti toutes les deux au développement

de modèles de type AE non-négatifs. C’est notamment le cas des travaux de Ngoc-Diep (2008)

et de Squires (2019) pour la NMF; ou des travaux de Palsson, Sveinsson & Ulfarsson (2022)

pour le démélange HS. Ce dernier papier propose notamment une critique comparative de

différents modèles AE développés pour le démélange HS et note que ces modèles HS performent

implicitement une NMF, sans toutefois faire de rapprochement entre les deux communautés. La

suite de cet état-de-l’art présentera donc différents modèles NMF hybrides, ainsi que différents

modèles AE non-négatifs, qui seront comparés et catégorisés de manière interchangeable.

Le traitement des données multispectrales peut être réalisé selon plusieurs stratégies, qui se

distinguent principalement par la manière dont elles exploitent l’information spatiale et spectrale

contenue dans le cube de données. Trois grandes familles d’approches se dégagent, comme

illustré à la Figure 2.3, traitant les images par pixels, par bandes ou directement comme un cube.

Figure 2.3 Schématisation de trois approches pour le traitement d’un cube MS :

(a) approche traitant chaque pixel comme un vecteur spectral, (b) approche traitant

chaque bande spectrale distinctement, et (c) approche traitant une image ou des

patchs de l’image directement comme un cube spatio-spectral
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2.2.1 L’approche par pixel

C’est l’approche la plus classique et la plus intuitive. Elle considère chaque pixel de manière

isolée et l’analyse repose uniquement sur son vecteur spectral, qui représente l’intensité lumineuse

à travers les différentes bandes. Chaque pixel est ainsi traité comme une signature indépendante,

ignorant toute information sur son contexte spatial (ses pixels voisins). Les auto-encodeurs

utilisés dans ce cadre sont typiquement des MLP, dont l’origine remonte aux travaux fondateurs

de Rumelhart, Hinton, Williams et al. (1985) et Bourlard & Kamp (1988). L’idée est de forcer le

réseau à apprendre une représentation compressée de la signature spectrale d’un pixel.

Dans le contexte du démélange HS, cette représentation latente est conçue pour correspondre

aux abondances des matériaux purs. Les premières applications de réseaux de neurones pour le

démélange par pixel, comme celles de Licciardi & Del Frate (2011), utilisaient des auto-encodeurs

non linéaires pour la réduction de dimensionnalité. Plus récemment, des modèles d’apprentissage

profond ont été proposés. Par exemple, Palsson, Sigurdsson, Sveinsson & Ulfarsson (2018) ont

développé un autoencodeur profond où le décodeur est contraint pour représenter le modèle de

mélange linéaire, et dont les poids correspondent aux endmembers. De même, les travaux de Su

et al. (2019) proposent un réseau d’auto-encodeurs profonds (DAEN) en deux étapes : des auto-

encodeurs empilés pour initialiser les signatures spectrales, suivis d’un autoencodeur variationnel

(VAE) pour estimer simultanément les signatures et les abondances, tout en garantissant les

contraintes de non-négativité (ANC) et de somme à l’unité (ASC).

L’avantage de cette approche est sa simplicité et son coût de calcul relativement faible. Cependant,

son incapacité à exploiter la corrélation spatiale la rend sensible au bruit et moins performante

dans les scènes à forte variabilité spatiale.

2.2.2 L’approche par bande

Cette méthode traite les données en considérant chaque bande spectrale comme une image 2D

indépendante. Le traitement est donc appliqué sur chaque «canal», ce qui permet d’utiliser

des algorithmes de traitement d’images 2D traditionnels. Une stratégie proposée par Zhou,
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Hang, Liu & Yuan (2019) pour la classification, consiste à traiter les canaux spectraux

comme une séquence temporelle à l’aide d’un réseau LSTM (Long Short-Term Memory)

pour modéliser les dépendances spectrales, ajoutant une dimension spatiale aux encodeurs par

pixels. Dans le domaine de la binarisation de documents, Calvo-Zaragoza & Gallego (2019)

utilise un autoencodeur convolutif 2D pour transformer une image en une carte de probabilité

d’appartenance au premier plan ou à l’arrière-plan.

L’avantage principal de cette approche est de pouvoir capitaliser sur des architectures 2D très

matures et performantes. Cependant, en traitant chaque bande séparément ou séquentiellement,

elle risque de ne pas capturer efficacement les corrélations subtiles et complexes qui existent

entre les différentes bandes spectrales, qui sont pourtant au cœur de l’analyse multibande.

2.2.3 L’approche par cube

Plus récente et souvent plus performante, cette approche exploite simultanément les informations

spatiale et spectrale. Elle analyse directement des sous-volumes 3D (appelés patchs) extraits du

cube de données. Cette stratégie permet de prendre en compte à la fois la signature spectrale

d’un pixel et les caractéristiques spatiales de son voisinage.

Cette approche est la plus naturelle pour les auto-encodeurs convolutifs. Ces modèles utilisent

des filtres de convolution capables d’apprendre des caractéristiques directement depuis le cube

de données, capturant ainsi les dépendances locales à la fois dans le domaine spatial et spectral.

L’évolution des travaux de Palsson, Ulfarsson & Sveinsson (2021) est assez emblématiques

de cette catégorie. Ils proposent un autoencodeur convolutif spécifiquement conçu pour le

démélange hyperspectral. Le réseau apprend à extraire les signatures spectrales et les cartes

d’abondances en analysant des patchs 3D, ce qui le rend beaucoup plus robuste au bruit et

améliore significativement la qualité du démélange par rapport aux approches pixel par pixel.

Le modèle encode un patch 3D en une série de cartes d’abondances 2D, qu’il décode pour

reconstruire le patch original. L’article de synthèse de Palsson et al. (2022) analyse et compare

d’ailleurs plusieurs de ces modèles, soulignant la supériorité des approches spectro-spatiales.
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Cette méthode offre le meilleur compromis en exploitant toute la richesse de l’information

disponible, tout en gardant un coût de calcul bas grâce à l’utilisation de CNN. En revanche, un

de ses points faible réside dans la limitation du champ récepteur effectif du CNN. En effet, pour

que les cartes d’abondances conservent la même résolution spatiale que l’image d’entrée, ces

réseaux évitent les couches de pooling, ce qui restreint leur analyse à un contexte purement local.

2.2.4 Analyse de l’état de l’art et perspectives

L’analyse des trois grandes familles d’approches, résumée dans le Tab. 2.1, met en évidence la

supériorité des méthodes par cube pour le traitement de données MS. En exploitant à la fois

l’information spatiale et spectrale, ces modèles, notamment basés sur des AE convolutifs, offrent

les performances les plus robustes, comme souligné par la synthèse de Palsson et al. (2022).

Tableau 2.1 Tableau comparatif de différentes approches hybrides

factorisation–autoencodeur

Méthode Approche Spectral Spatial Non-local Contraintes Coût Rang

Licciardi et al. (2011) Pixel + - - / MSE -
Liu et al. (2017) Bande + + - / Cross-entropy -
Flenner et al. (2017) Cube - + - ANC ACC -
Palsson et al. (2018) Pixel + - - ANC, ASC

Parcimonie
SAD -

Palsson et al. (2019) Pixel + + - ASC, ANC SAD -
Squires (2019) Pixel + - - ANC

MSE, RAE

NRAE
-

Su et al. (2019) Pixel + - - ASC, ANC MSE -
Mei et al. (2019) Cube + + - / MSE -
Debain (2020) Bande - + - ANC B divergence -
Palsson et al. (2021) Cube + + - ASC, ANC SAD, MSE -
Zhao et al. (2022) Cube + + - ASC, ANC MSE -
Li et al. (2023) Cube + + - ASC, ANC

SAD

Cross-entropy
-

Alfaro-Meija (2023) Cube + + - ASC, ANC Cross-entropy -
Su et al. (2023) Cube + + + ASC, L𝑆𝐻𝐶

Uniformité
SAD -

Zheng et al. (2024) Cube + - - ASC, ANC SAD, Log SAD -
Su et al. (2024) Cube + + - ANC, ASC

Uniformité
SAD -
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Cependant, une limitation majeure de ces modèles réside dans leur champ récepteur effectif limité,

souvent restreint par l’absence de couches de pooling, nécessaires pour préserver la résolution

spatiale des cartes d’abondance. Cette contrainte devient particulièrement problématique pour

des données qui, comme les images MS de documents, possèdent une dimension spatiale

importante, significativement plus grande que celle des images HS typiques (voir Fig. 0.3).

Une perspective de recherche essentielle est donc de développer des architectures capables

d’étendre ce champ récepteur pour capturer des dépendances à plus longue portée, sans pour

autant sacrifier la résolution spatiale, par exemple via l’intégration de mécanismes d’attention.

L’approche convolutive conserve un avantage fondamental : sa capacité à traiter des images de

taille variable, y compris très grandes, sans augmenter le nombre de paramètres du modèle,

garantissant ainsi un coût de calcul maîtrisé. Cette scalabilité marque une rupture avec les

approches NMF classiques, dont la complexité dépend souvent directement de la taille des

données d’entrée. Le traitement de l’image dans son entièreté permet un suivi visuel des cartes

d’abondances durant l’entraînement, à la différence des approches par pixels où l’image complète

n’est disponible qu’à la toute fin du processus, après que chaque pixel unique soit traité.

Enfin une observation clef dans cet état-de-l’art, notamment formulée par Squires (2019),

est que la factorisation NMF, dans ces architectures, s’opère seulement au sein de l’espace

latent et du décodeur. L’encodeur, quant à lui, n’est pas soumis aux mêmes contraintes de

non-négativité et peut être conçu de manière aussi complexe que nécessaire. Il peut ainsi profiter

de tous les bénéfices des architectures profondes modernes, telles que l’utilisation de couches

de normalisation et de fonctions d’activation non linéaires. Ce mode de fonctionnement mène

naturellement à des architectures d’auto-encodeurs asymétriques, où un encodeur profond et

puissant extrait les caractéristiques, tandis qu’un décodeur plus simple et interprétable assure la

reconstruction. Un exemple de ce type est schématisé sur la Figure 2.4.

2.3 Description du modèle hybride proposé

L’architecture du modèle NMF de type autoencodeur proposé se base donc sur une structure

encodeur-décodeur asymétrique dotée d’une couche d’attention conçue pour estimer des
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Figure 2.4 Schéma d’un autoencodeur asymétrique : le décodeur est contraint à

une opération NMF, laissant l’encodeur (boîte noire) non contraint et modulable

caractéristiques non-locales durant l’entraînement. L’encodeur extrait une représentation riche

en caractéristiques du cube MS d’entrée, Y ∈ R
ℎ×𝑤×𝑏, où ℎ × 𝑤 est la taille spatiale et 𝑏

est le nombre de bandes spectrales. Il génère les cartes d’abondance A ∈ R
ℎ×𝑤×𝑟 , où chaque

bande représente les proportions relatives des signatures spectrales présents dans chaque pixel.

Le décodeur reconstruit ensuite l’image d’entrée à partir de ces abondances, en apprenant

les signatures spectrales M ∈ R
𝑟×𝑏 comme les poids d’une convolution. Un aperçu de cette

architecture hybride légère est illustré dans la Figure 2.5, traitant l’exemple d’un document MS.

Figure 2.5 Schéma de l’architecture hybride. En bleu des convolutions dites

«depthwise», en vert des convolutions dites «pointwise»
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2.3.1 Encodeur

L’encodeur se compose de quatre couches séquentielles conçues pour traiter l’ensemble des

bandes MS simultanément. Contrairement aux approches existantes Palsson et al. (2021) qui

adoptent une stratégie basée sur des patchs, notre encodeur opère sur l’image entière, extrayant

des relations utiles entre l’ensemble des pixels. Il commence par une couche de convolution 2D

employant des noyaux de tailles 3× 3. Les cartes de caractéristiques résultantes sont acheminées

vers un bloc d’attention, qui affine la représentation des caractéristiques en mettant l’accent sur

les régions les plus informatives (voir Section 2.3.1.1). L’encodeur se termine par une seconde

couche 2D, similaire à la première, possédant 𝑐 = 4 × 𝑏 noyaux, suivie d’une convolution

ponctuelle (i.e., convolution avec un noyau 1 × 1 agissant dans la profondeur), créant un motif

d’expansion-compression qui capture les dépendances spatiales et inter-canaux. La convolution

ponctuelle permet de réduire la dimensionnalité en terme de profondeur (i.e., la dimension

spectrale), afin de produire les 𝑟 cartes d’abondances.

2.3.1.1 Bloc d’Attention Non-local

Le cœur du bloc d’attention proposé est adapté du bloc Large Kernel Attention (LKA) (Guo, Lu,

Liu, Cheng & Hu, 2023), qui est conçu pour améliorer la représentation des caractéristiques en

capturant les relations locales et globales entre les pixels des images MS. Le module commence

par traiter la carte de caractéristiques d’entrée via une couche de convolution 2D standard

«DW-Conv» avec un noyau de taille 5×5 pour extraire les caractéristiques spatiales locales.

Celui-ci est suivi d’une convolution dilatée «DW-D-Conv» avec un noyau de 7×7 et un stride

de 3 , qui étend le champ récepteur sans augmenter le nombre de paramètres (voir Eq. 1.8),

capturant un contexte plus large en traitant chaque canal indépendamment. Une convolution

ponctuelle combine ensuite les caractéristiques de tous les canaux, affinant la représentation

spectrale. La carte de caractéristiques résultante est multipliée élément par élément avec la carte

de caractéristiques d’entrée originale, agissant comme un mécanisme d’attention, mettant en

évidence les régions informatives tout en supprimant les caractéristiques moins pertinentes.

Enfin, une convolution ponctuelle, avec le même nombre de canaux de sortie que d’entrée, affine
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davantage les caractéristiques pour produire la sortie finale. Ce bloc d’attention est illustré sur la

Figure 2.6.

Figure 2.6 Visualisation du bloc d’attention LKA

2.3.2 Decodeur

2.3.2.1 Signatures spectrales comme poids de convolution contrainte

Contrairement aux modèles utilisant des structures encodeur-décodeur symétriques comme Alayrac,

Carreira & Zisserman (2019), notre architecture intègre un décodeur léger et non négatif qui

préserve l’interprétabilité de ses composantes apprises. Ce décodeur reconstruit les 𝑏 bandes

spectrales d’entrée à partir des 𝑟 cartes d’abondance A en utilisant une convolution ponctuelle

avec des poids contraint non négatifs et non biaisée. Ces poids non négatifs de taille 𝑟 × 𝑏
constituent la matrice des signatures spectral apprise M.
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2.3.2.2 La factorisation tripartite (NMF à 3 facteurs) : flexibilité et potentiel

A la manière de Ding et al. (2008) pour la NMF ou de Su et al. (2023) pour le démélange HS,

notre architecture intègre une matrice d’interaction S. Le rôle de cette matrice est d’émuler

une tri-factorisation NMF comme Y ≈ MSA. Pour cela, les 𝑟 cartes d’abondance produites par

l’encodeur sont d’abord modulées par cette S, qui est une matrice non négative de taille 𝑟 × 𝑟
initialisée comme la matrice identité (i.e., 𝐼𝑟). L’introduction de cette matrice poursuit un double

objectif :

1. Modéliser la variabilité spectrale : Elle permet de capturer des interactions complexes

et non linéaires entre les différentes composantes. Cela est crucial pour adresser des

phénomènes comme la variabilité de la signature spectrale d’un même matériau en fonction

de son état (p. ex., son niveau d’humidité ou son état de dégradation).

2. Relâcher les contraintes d’optimisation : La matrice S découple l’échelle des signatures

spectrales M de celle des cartes d’abondance A. Ce découplage est essentiel dans des cas où

l’intensité physique d’un signal ne correspond pas à sa proportion relative. Par exemple, dans

un document, le texte a souvent une réflectance bien plus faible que celle du papier. Sans la

matrice S, la contrainte de somme à l’unité forcerait la carte d’abondance du texte à être

très activée. En pondérant cette abondance, S permet au décodeur d’estimer correctement la

signature spectrale du texte par rétropropagation, sans que les poids de cette signature ne

soient artificiellement tirés vers zéro.

La conception asymétrique optimisée du décodeur réduit considérablement les exigences de

calcul et le nombre total de paramètres ; par exemple, les paramètres totaux du décodeur totalisent

seulement 𝑟 (𝑟 + 𝑏) paramètres pour une image quelque soit sa résolution spatiale. Enfin, les

deux matrices S et M sont toutes deux contraintes à être non négatives et sont mises à jour par

rétropropagation.
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2.3.3 Ajout de contraintes (non-négativité, somme à l’unité, orthogonalité)

Pour assurer le respect des contraintes physiques des abondances, plusieurs approches peuvent

être envisagées au niveau du décodeur, telles que l’utilisation de fonctions d’activation comme

ReLU, la valeur absolue, ou encore la fonction Softmax (Palsson et al., 2021). Parmi celles-ci, la

fonction Softmax se distingue comme la solution la plus adaptée. En effet, elle est différentiable

et garantit de manière élégante le respect à la fois de la contrainte de non-négativité (ANC) ainsi

que celle de la somme à l’unité (ASC). Nous utilisons une fonction Softmax dotée d’un paramètre

de température 𝜏, ce qui offre une flexibilité supplémentaire pour contrôler la distribution des

coefficients d’abondance. L’équation s’écrit comme suit pour chaque pixel 𝑖 et chaque abondance

𝑘 parmi 𝑟 cartes, où 𝑎𝑖 est le logit d’entrée :

Softmax(𝑎𝑖) = exp(𝑎𝑖/𝜏)∑𝑟
𝑘=1 exp(𝑎𝑘/𝜏)

(2.1)

L’ajustement de l’hyperparamètre 𝜏 permet de moduler la dispersion des cartes d’abondance. Une

température élevée conduit à des abondances plus douces et réparties, adaptées au démélange de

spectres où les matériaux sont intrinsèquement mélangés. À l’inverse, une température faible

pousse les probabilités vers des distributions quasi-binaires, ce qui est particulièrement pertinent

pour des tâches comme la segmentation de documents textuels qui requièrent des pixels purs.

Enfin, pour améliorer la séparabilité des matériaux extraits, une contrainte d’orthogonalité

est imposée sur la matrice des abondances A. Cette contrainte a démontré son efficacité pour

accentuer la distinction entre les différentes composantes, notamment dans le contexte de

l’analyse de documents (Rahiche et al., 2019; Rahiche & Cheriet, 2022). La régularisation par

l’orthogonalité est formulée comme suit :

L𝑜𝑟𝑡ℎ = ‖AA𝑇 − I𝑟 ‖1 (2.2)
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où ‖ · ‖1 désigne la norme 𝐿1, I𝑟 est la matrice identité de taille 𝑟 × 𝑟 , et 𝑟 est le nombre de cartes

d’abondances 𝑟. Cette pénalité minimise la corrélation linéaire entre les cartes d’abondances

estimées, décourageant ainsi la représentation d’un même matériau sur plusieurs composantes.

2.3.4 Fonction de coût globale

Contrairement à la factorisation en matrices non-négatives (NMF) classique, où l’optimisation

est généralement contrainte à une mesure de reconstruction spécifique, notre approche basée

sur un réseau de neurones offre une plus grande flexibilité. La fonction de coût totale, que le

modèle cherche à minimiser, est une combinaison linéaire de trois termes principaux. Chacun

de ces termes vise un objectif spécifique, permettant d’équilibrer la qualité de la reconstruction

spatiale, la fidélité spectrale et la décorrélation des composantes extraites. La fonction de coût

globale L𝑇𝑜𝑡𝑎𝑙 est définie comme suit :

L𝑇𝑜𝑡𝑎𝑙 = L𝑆𝐴𝐷 + 𝜆1L𝑀𝑆𝐸 + 𝜆𝑜𝑟𝑡ℎL𝑜𝑟𝑡ℎ, (2.3)

où 𝜆1 et 𝜆𝑜𝑟𝑡ℎ sont des hyperparamètres de pénalisation ajustés empiriquement (voir la

section 2.4.4 pour les valeurs détaillées).

Le premier terme, l’erreur quadratique moyenne (Mean Square Error, MSE), évalue la qualité

de la reconstruction pixel par pixel. Il mesure la différence entre l’image multispectrale d’entrée

Y et l’image reconstruite Ŷ :

L𝑀𝑆𝐸 =
1

ℎ𝑤𝑏

ℎ∑
𝑖=1

𝑤∑
𝑗=1

𝑏∑
𝑙=1

(Y𝑖 𝑗 𝑙 − Ŷ𝑖 𝑗 𝑙)2, (2.4)

où ℎ, 𝑤, 𝑏 sont les dimensions (hauteur, largeur, nombre de bandes) de l’image.

Pour compléter la MSE, nous utilisons la distance angulaire spectrale (Spectral Angle Distance,

SAD), qui est équivalente à la similarité cosinus. L’avantage principal de cette métrique est son

insensibilité aux variations d’illumination, car elle se concentre sur la forme de la signature

spectrale plutôt que sur son intensité absolue. Suivant l’approche de Palsson et al. (2022), ce
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terme mesure la similarité spectrale entre le vecteur spectral d’un pixel d’entrée et celui du pixel

de sortie correspondant :

L𝑆𝐴𝐷 (Y𝑖 𝑗 ., Ŷ𝑖 𝑗 .) = acos

(
〈Y𝑖 𝑗 ., Ŷ𝑖 𝑗 .〉
‖Y𝑖 𝑗 .‖‖Ŷ𝑖 𝑗 .‖

)
, (2.5)

où Y𝑖 𝑗 . et Ŷ𝑖 𝑗 . sont respectivement les vecteurs spectraux d’entrée et de sortie pour le pixel à la

position (𝑖, 𝑗).

Enfin, pour garantir l’indépendance des cartes d’abondance extraites, nous intégrons le terme

de régularisation par l’orthogonalité L𝑜𝑟𝑡ℎ, tel que défini dans l’équation (2.2). Comme dit

précédemment, cette contrainte pénalise la corrélation linéaire entre les différentes cartes

d’abondance, favorisant ainsi une décomposition où chaque composante est distincte et représente

un élément unique.

Cette fonction de coût multi-termes permet ainsi une optimisation équilibrée qui prend en compte

différent facteurs :

• L𝑀𝑆𝐸 force le modèle à reconstruire l’intensité exacte de chaque pixel.

• L𝑆𝐴𝐷 force le modèle à préserver la fidélité spectrale (la nature du matériau).

• L𝑜𝑟𝑡ℎ pousse le modèle à chercher une indépendance spatiale des différentes composantes.

2.3.5 Stratégie d’apprentissage et d’optimisation

Une force majeure de l’architecture proposée, par rapport aux approches algorithmiques

traditionnelles, est sa capacité à tirer parti d’optimiseurs avancés issus de l’apprentissage

profond. En conséquence, l’optimisation du modèle est réalisée à l’aide de l’optimiseur

Adam (Kingma & Ba, 2017), une méthode de descente de gradient stochastique particulièrement

efficace pour l’entraînement des réseaux de neurones. Adam se distingue en calculant des taux

d’apprentissage adaptatifs pour chaque paramètre, en se basant sur des estimations des moments

du premier et du second ordre des gradients. Cette approche flexible est bien adaptée à notre

fonction de coût composite, permettant un ajustement robuste et efficace des poids du réseau.
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La procédure d’entraînement est, elle, régulée par un mécanisme d’arrêt anticipé (early

stopping) afin de prévenir le surapprentissage et de conserver le modèle le plus performant.

Plus spécifiquement, l’entraînement est configuré pour un maximum de nombre d’époques.

L’arrêt anticipé est déclenché si aucune amélioration de la fonction de coût n’est observée après

une période d’époques consécutives, ou patience. Cela signifie que le modèle ne parvient plus

à trouver une représentation des abondances plus orthogonale tout en conservant une bonne

reconstruction du cube d’origine. Ce plateau dans l’optimisation est conceptuellement similaire

aux critères de convergence qui gouvernent l’arrêt des algorithmes itératifs de la NMF classique,

lorsque les mises à jour n’apportent plus de gain significatif ou qu’une tolérance seuil est atteinte.

2.4 Validation de l’architecture hybride

Afin de valider les bénéfices de l’architecture neuronale hybride proposée, une série d’ablations

et d’expériences ont été menées pour la comparer à différentes implémentations de la NMF.

Cette section s’articule autour de quatre axes principaux : le temps de calcul, la qualité de la

décomposition, l’apport du contexte spatial et l’influence de l’orthogonalité et de la température.

2.4.1 Temps de calcul

Afin d’évaluer l’efficacité de notre approche, nous avons mesuré son temps d’exécution sur

des cubes de données de taille croissante et l’avons comparé à plusieurs variantes de la NMF.

Les méthodes de référence incluent : EM-ONMF (Pompili, Gillis, Absil & Glineur, 2014),

ONMF (Yoo & Choi, 2010b), et ONPMF (Pompili et al., 2014), trois NMF orthogonales

conçues pour le clustering, psNMF (Hinrich & Mørup, 2018), un modèle de NMF probabiliste

parcimonieux, MA-ONMF (Rahiche et al., 2019), un modèle NMF imposant l’orthogonalité par

optimisation riemannienne sur variété de Stiefel ; et VBONMF (Rahiche & Cheriet, 2022), une

approche bayésienne avec contrainte d’orthogonalité, intégrant la détermination automatique de

la pertinence (ARD). Enfin nous avons aussi comparé à une NMF classique par mises à jour

multiplicatives, avec l’implémentation optimisée proposée par la librairie Scikit-learn (Pedregosa

et al., 2011), servant de référence pour une NMF sans contrainte.
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Figure 2.7 Comparaison de l’évolution du temps de calcul pour 100 itérations en

fonction de la taille du cube de données pour plusieurs algorithmes de NMF de l’état

de l’art et notre méthode. L’axe du temps suit une échelle logarithmique

La Figure 2.7 illustre les résultats de cette analyse comparative. Les méthodes ont été évaluées sur

100 itérations, et ont été lancées dix fois pour chaque volume afin de garantir la reproductibilité

des résultats. Les résultats représentés en pointillés correspondent aux valeurs extrapolées,

obtenues par interpolation log-log, afin d’estimer les gains de temps pour des volumes de

données plus importants. On observe que les variantes de la NMF intégrant des contraintes,

qu’elles soient orthogonales comme EM-ONMF, parcimonieuses comme psNMF ou bayésiennes

comme VBONMF, présentent des temps de calcul significativement plus élevés que la NMF

basique, avec une croissance souvent supérieure à linéaire. Pour le plus grand cube de données,

de dimensions 8 × 3069 × 1202, notre méthode ne requiert que 37 secondes. En comparaison, la

NMF orthogonale EM-ONMF est la moins performante, requérant environ 99788s estimées,

soit près de 28h. Ces résultats soulignent l’avantage computationnel significatif de la méthode

proposée, la rendant particulièrement adaptée au traitement de données MS/HS volumineuses

où la rapidité d’exécution est un critère essentiel.

Une régression par loi de puissance a permis d’estimer la complexité empirique de chaque

méthode en fonction du volume de données. EM-ONMF présente une croissance clairement sur-

linéaire, avec O(𝑛1.43). Les méthodes psNMF, VBONMF et MAONMF suivent une croissance
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proche de la linéarité, avec des exposants respectifs de (𝑛0.92),(𝑛0.97) et (𝑛1.04). La NMF basique

affiche aussi une croissance linéaire, O(𝑛1.00), mais reste néanmoins nettement plus rapide pour

chaque volume étudié, avec un temps de calcule de 43s pour le plus grand cube.

En comparaison, notre méthode présente une croissance nettement plus lente, O(𝑛0.38) < O(√𝑛).
Cette complexité sous-linéaire s’explique par l’implémentation optimisée des CNN, qui exploite

efficacement l’accélération GPU pour garder des temps de calculs faibles, tout en permettant

l’intégration de contraintes similaires à celles des méthodes plus coûteuses. Le parallélisme du

GPU est moins bien exploité sur les petites données, avec un coût légèrement plus élevé pour le

plus petit cube, de l’ordre de 1.85s. Ces coûts fixes sont néanmoins largement amortis sur les

gros volumes, où notre méthode devient alors particulièrement rapide et extensible. L’approche

proposée constitue ainsi un compromis optimal entre expressivité, intégration de contraintes

et performance de calcul, la rendant particulièrement adaptée à l’analyse de grands volumes

de données des images MS (p. ex., le cube moyen pour le jeu de donnée MStex de document

historique est de l’ordre de 8 × 1627 × 523).

2.4.2 Qualité de la décomposition

Afin d’évaluer la pertinence de notre approche, nous avons mené une étude qualitative sur

la qualité de la décomposition obtenue. L’objectif est de vérifier visuellement la capacité des

différentes méthodes de factorisation de matrices non-négatives (NMF) à séparer distinctement

les différents matériaux constituant une image de document ancien. Une décomposition de haute

qualité doit isoler chaque composant, tel que le texte, l’arrière-plan ou le support papier, dans

une matrice d’abondance distincte, sans chevauchement ni résidu d’information provenant des

autres composantes. Cette analyse visuelle permet de juger de l’efficacité des contraintes de

régularisation, notamment l’orthogonalité, reconnue pour éliminer la redondance et produire

une séparation physiquement interprétable.

La Figure 2.8 présente une comparaison visuelle des résultats de décomposition de différentes

méthodes présentées précédemment. L’analyse met en évidence des différences significatives
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Figure 2.8 Comparaison qualitative de la décomposition obtenue par différentes

méthodes NMF sur une image de document ancien. Chaque ligne représente une

méthode et chaque colonne une composante extraite

dans la qualité de la séparation. La méthode NMF de base produit une décomposition plus simple

où les composantes sont fortement mélangées. C’est aussi le cas pour la méthode probabiliste

psNMF ainsi que pour la méthode ONMF. A l’exception de cette dernière, on peut observer que

l’introduction de contraintes d’orthogonalité améliore sensiblement la discrimination entre les

différents matériaux. Les trois méthodes, ONPMF, EM-ONMF et surtout MA-ONMF, permettent

une interprétation directe des composantes extraites, malgré certaines régions incertaines.

La méthode proposée suit aussi cette observation, en fournissant une décomposition nette et

interprétable. Elle parvient à isoler chaque matériau dans une composante distincte, où le texte

est clairement extrait, le papier rendu homogène, et l’arrière plan décomposé en deux composants

clairs et distincts. Cette performance est le fruit de la synergie entre la régularisation orthogonale

et l’utilisation de la fonction softmax avec température, qui force le modèle à effectuer un

«choix franc» lors de l’assignation des pixels. La décomposition résultante est physiquement

interptétable. Cette méthode est notamment la seule à séparer clairement le texte du tapis de
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découpe visible en arrière plan (i.e., composants (b) et (c)). A l’inverse de toutes les méthodes

NMF présentées, l’approche hybride est la seule à prendre en compte les relations spatiales entre

les pixels afin de produire les cartes d’abondances. Ce contexte spatial permet d’apporter une

cohérence locale entre les zones identifiée, son apport est donc détaillé dans la section suivante.

2.4.3 Apport du contexte spatial

Afin de quantifier rigoureusement l’impact du module d’attention à grand noyau (LKA) sur la

portée spatiale de notre encodeur convolutionnel, un protocole expérimental a été mis en place

pour comparer un modèle de référence à une variante intégrant un bloc LKA. Dans un premier

temps, le champ récepteur théorique (TRF) peut être déterminé en appliquant l’équation (1.8).

Pour le modèle de référence, la succession des couches convolutionnelles aboutit à un TRF de

5× 5, tandis que pour le modèle expérimental, l’insertion du bloc LKA , qui contient notamment

une convolution dilatée avec un noyau effectif de taille 19 (K=7,D=3), étend le TRF à 27 × 27.

Le champ récepteur effectif (ERF) est ensuite mesuré empiriquement en moyennant sur 150

échantillons la norme L1 du gradient du neurone de sortie central rétropropagé jusqu’à l’entrée.

Pour garantir une initialisation fonctionnelle des poids, les deux architectures ont été pré-

entraînées sur une tâche d’auto-reconstruction. Une cartographie comparative des topologies de

l’ERF est alors obtenue pour les deux configurations : avec ou sans bloc d’attention LKA.

Figure 2.9 Visualisation comparative des champs récepteurs effectifs pour le modèle

sans LKA (gauche) et avec LKA (centre). Le graphique (droite) illustre une coupe

permettant du champ réceptif, permettant de mieux quantifier cette augmentation
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La Figure 2.9 montre des différences très nettes entre les deux modèles. Le modèle de contrôle

sans LKA a un champ récepteur effectif très concentré, ce qui correspond bien à son petit

champ théorique de 5 × 5 et confirme qu’il est limité à un contexte local. À l’inverse, l’ajout du

module LKA agrandit fortement l’ERF pour atteindre 27 × 27 pixels, en accord avec le calcul

théorique. Le graphique de coupe confirme cette observation : le modèle de base présente un

pic très étroit, tandis que le modèle LKA affiche une courbe beaucoup plus étalée, montrant

que les pixels lointains peuvent influer sur la sortie du modèle. Ces résultats expérimentaux

illustrent l’expansion spatiale prédite par les calculs théoriques, agrandissant le champ récepteur

d’un facteur 4.3 permettant d’agréger l’information contextuelle sur une plus grande échelle,

et donc une meilleur compréhension globale de l’image. Cette analyse de l’ERF s’appuie sur

un pré-entraînement sur du bruit aléatoire afin d’éviter tout biais. Elle n’évalue pas ce que le

modèle apprend, mais illustre plutôt sa capacité à chercher de l’information spatiale.

Figure 2.10 Illustration de l’importance du contexte sur une image du dataset

Mstex : un patch de 5 × 5 (gauche) ne montre qu’une texture ambiguë, tandis que

le patch de 27 × 27 (droite) révèle la structure du caractère textuel entier

Pour démontrer plus concrètement l’impact d’un champ réceptif plus étendu, la Figure 2.10

compare deux extraits d’une même image de la base de donnée Mstex. A gauche, la taille du

patch correspond au champ récepteur du modèle de base, qui ne capture qu’un fragment de
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texture non identifiable. L’information est trop locale pour être interprétée. A droite, la taille

du patch, qui représente la portée du modèle avec LKA, révèle la lettre M dans son intégralité.

Cette comparaison simple illustre l’avantage du module LKA. Ce dernier permet au réseau une

fenêtre suffisamment grande pour accéder à un contexte sémantique pertinent permettant de

reconnaître des caractères textuels. Le modèle est alors libre d’identifier les relations qui lui

sembles pertinentes afin de segmenter l’image proposée.

Figure 2.11 Visualisation de cartes d’attention en sortie du bloc d’attention

LKA pour différentes images de documents. La première rangée montre les

images d’entrée, tandis que les rangées suivantes illustrent certaines

caractéristiques sur lesquelles le modèle porte son attention

La Figure 2.11 illustre concrètement cette capacité d’attention appliquée aux images de document.

La première rangée expose les images d’entrée, tandis que les suivantes montrent plusieurs

cartes d’attention mettant en valeur certaines caractéristiques clefs lors de l’apprentissage du

modèle. On observe que pour la catégorie « Texte », l’attention se concentre précisément sur

les caractères manuscrits. Pour la classe « Papier », le modèle isole le support du document, et
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enfin, pour les « Éléments secondaires », il parvient à identifier des objets distincts comme les

tampons d’archive, les encres secondaires ou encore l’arrière-plan.

Cette visualisation démontre que le modèle n’utilise pas seulement son large champ réceptif

pour voir plus loin, mais qu’il apprend également à utiliser le contexte pour mieux discriminer

les différents éléments spécifiques. Cette compétence est essentielle pour une segmentation

sémantique précise.

2.4.4 Influence de l’orthogonalité et de la température

Les hyperparamètres de régularisation jouent un rôle déterminant dans la qualité de la

décomposition spectrale obtenue par notre méthode. Deux paramètres clés contrôlent le

comportement du modèle : la température softmax 𝜏𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 , qui régit la netteté des cartes

d’abondances, et le coefficient de régularisation orthogonale 𝜆𝑜𝑟𝑡ℎ, qui impose l’indépendance

spatiale entre les composantes extraites. Pour analyser leur influence respective et leurs

interactions, nous avons conduit une étude ablative sur le document manuscrit historique

présenté précédemment.

Figure 2.12 Influence des paramètres de température 𝜏𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 et d’orthogonalité 𝜆𝑜𝑟𝑡ℎ
sur la décomposition. Une température élevée combinée à une faible régularisation

orthogonale produit des cartes d’abondances à forte entropie, tandis qu’une température

basse avec une forte pénalité orthogonale favorise une séparation nette des composantes

La Figure 2.12 présente les résultats de décomposition pour quatre configurations représentatives,

obtenues en croisant deux valeurs de température (𝜏𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ∈ {0.5, 1.5}) avec deux niveaux de

pénalité orthogonale (𝜆𝑜𝑟𝑡ℎ ∈ {0.001, 0.05}). Cette grille expérimentale permet d’observer le
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comportement du modèle, avec des décompositions pouvant être plus diffuses ou extrêmement

segmentées en fonction du choix des paramètres.

Chaque configuration produit quatre cartes d’abondances correspondant à des composantes

physiques différentes. Bien que la décomposition (d) soit plus redondante, en ayant deux

composants représentant le papier et ne séparant pas l’arrière plan en deux composantes, elle

arrive à identifier le texte, visible par transparence, écrit à l’arrière du papier. Il est alors

intéressant de noter que le choix de ces paramètres peut être adapté en fonction des besoins.

Dans le cadre de notre étude, des composantes distinctes et directement interprétables sont

préférées afin d’obtenir des segmentations nettes des images multispectrales. Les paramètres

seront donc fixés suivant le scénario (a) avec 𝜏𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 = 0.5 et 𝜆𝑜𝑟𝑡ℎ = 5 × 10−2.

2.5 Limites du modèle et problématique du rang

Malgré ses avantages significatifs en terme de temps de calcul et de qualité de décomposition,

notre approche partage une limite fondamentale avec la NMF classique et les différentes

méthodes d’apprentissage machine (voir Tab. 2.1) : la nécessité de fixer manuellement le rang

𝑟 , soit le nombre de sources à extraire. Ce prérequis est le principal obstacle à une automatisation

complète du modèle, et surtout, à son application à des données réelles où le nombre de matériaux

est inconnu à priori. Le choix du rang est pourtant une tâche critique, une mauvaise estimation

conduit inévitablement à une sous-représentation (rang trop faible) ou à une sur-segmentation

des sources (rang trop élevé), compromettant la fiabilité de la décomposition. Pour adresser cette

problématique et permettre une analyse de données entièrement autonome, le chapitre suivant

introduit un mécanisme d’estimation automatique du rang.





CHAPITRE 3

MÉCANISME DE SÉLECTION AUTOMATIQUE DU RANG

La détermination du rang, soit le nombre optimal de composantes latentes dans un modèle, est

une étape fondamentale et souvent complexe dans de nombreuses méthodes d’apprentissage

automatique et de traitement du signal, tel que la NMF. Que ce soit pour déterminer le nombre de

sujets dans un corpus de textes, le nombre de sources dans une scène observée, ou la complexité

intrinsèque d’un réseau de neurones, le choix du rang 𝑟 a un impact direct sur la capacité du

modèle à généraliser, son interprétabilité et sa performance. Un rang sous-estimé peut conduire

à un modèle trop simple, incapable de capturer la richesse des données (sous-apprentissage),

tandis qu’un rang sur-estimé peut entraîner un sur-apprentissage, où le modèle s’ajuste au

bruit et perd son pouvoir de généralisation, tout en augmentant inutilement le coût de calcul.

L’importance d’une sélection de rang autonome, c.-à-d. d’une méthode capable de déduire le

rang optimal directement à partir des données sans supervision manuelle, est donc évidente. Ce

chapitre explore d’abord les approches classiques pour cette tâche avant de présenter une méthode

dynamique combinant l’élagage et le principe de la Longueur de Description Minimale.

3.1 Revue des méthodes existantes pour la détermination rang, soit le nombre de
composantes

La question de la sélection du modèle, et plus particulièrement du choix de sa dimensionnalité,

est un problème classique toujours non résolu. Les approches pour y répondre se divisent

principalement en deux grandes familles. La première, celle des méthodes de sélection a

posteriori, requiert d’entraîner plusieurs modèles avec différents rangs pour ensuite choisir

le meilleur en appliquant un critère externe. À l’opposé, la seconde famille regroupe les

méthodes de sélection en ligne (ou online), qui visent à déterminer le rang optimal au sein d’un

unique processus d’apprentissage, généralement en partant d’un modèle sur-paramétré dont la

complexité est ajustée dynamiquement durant l’entraînement.
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3.1.1 Méthodes de sélection du rang a posteriori

3.1.1.1 Critères statistiques basés sur la théorie de l’information

Ces méthodes formulent la sélection du rang comme un problème d’optimisation cherchant à

équilibrer la fidélité du modèle aux données et sa complexité. L’idée centrale est de pénaliser les

modèles plus complexes pour éviter le sur-apprentissage.

Le Critère d’Information d’Akaike (AIC) est l’un des plus connus (Akaike, 1974). Il est défini

par :

𝐴𝐼𝐶 = 2𝑘 − 2 ln( 𝐿̂) (3.1)

où 𝑘 est le nombre de paramètres du modèle (directement lié au rang 𝑟) et 𝐿̂ est la vraisemblance

maximale du modèle. Dans un cadre général, l’AIC est un outil très apprécié dont l’avantage

majeur est sa capacité à sélectionner le modèle offrant la meilleure performance prédictive, une

qualité qui devient optimale avec de grands volumes de données. Cependant, sa pénalité pour la

complexité d’un modèle est relativement faible, ce qui crée une tendance naturelle à favoriser

des modèles plus complexes. Ce défaut est particulièrement handicapant lorsqu’il existe plus

d’un bon modèle candidat, l’AIC étant alors reconnu comme ni efficace ni convergent pour

identifier la structure la plus simple (Zhang, Yang & Ding, 2023).

Pour remédier à cela, le Critère d’information d’Akaike corrigé (AICc) a été développé. L’AICc

introduit un terme correctif d’ordre deux qui renforce la pénalisation de la complexité du modèle,

en particulier lorsque le nombre d’observations est faible par rapport au nombre de paramètres.

La formule de l’AICc est la suivante :

AICc = AIC + 2𝑘 (𝑘 + 1)
𝑛 − 𝑘 − 1

(3.2)

Ce terme correctif supplémentaire est d’autant plus important que 𝑛 est petit. Lorsque la taille

de l’échantillon 𝑛 devient grande, le terme de correction tend vers zéro et l’AICc converge
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vers l’AIC. Une règle empirique largement adoptée suggère d’utiliser l’AICc chaque fois que le

rapport entre la taille de l’échantillon et le nombre de paramètres, 𝑛/𝑘 , est inférieur à 40.

Le Critère d’Information Bayésien (BIC), ou critère de Schwarz, propose une pénalité plus

forte pour la complexité du modèle, surtout pour les grands ensembles de données (Schwarz,

1978) :

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln( 𝐿̂) (3.3)

où 𝑛 est le nombre d’échantillons de données. De manière générale, le critère BIC est plus

parcimonieux que l’AIC car il pénalise plus sévèrement la complexité des modèles, ce qui limite

la tendance au surajustement souvent associée à l’AIC.

Le principe de la Longueur de Description Minimale (MDL), introduit par Rissanen (1978),

est une autre approche puissante issue de la théorie de l’information. Il postule que le meilleur

modèle est celui qui permet la compression la plus courte des données. La longueur de description

totale est la somme de la longueur du code pour décrire le modèle lui-même, 𝐿(𝐻), et la longueur

du code pour décrire les données étant donné le modèle, 𝐿(𝐷 |𝐻). Le BIC est souvent considéré

comme une approximation du MDL. Des travaux récents continuent d’explorer des variantes

du MDL, par exemple en utilisant la Vraisemblance Maximale Normalisée (NML) pour des

factorisations non-négatives (Ito, Oeda & Yamanishi, 2016).

Cependant, les approches basées sur le MDL nécessitent généralement une sélection du rang

a posteriori, après avoir exécuté plusieurs factorisations NMF avec différents rangs (Squires,

Prügel-Bennett & Niranjan, 2017). Ce processus implique de comparer la longueur totale de

description pour chaque rang candidat afin de choisir celui qui la minimise. Bien que rigoureux,

il peut être coûteux en temps de calcul, car il ne permet pas une estimation directe du rang au

cours de l’optimisation elle-même.
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3.1.1.2 Méthodes basées sur la stabilité des solutions et l’erreur de reconstruction

Une approche plus heuristique mais très intuitive consiste à examiner la courbe de l’erreur de

reconstruction en fonction du rang. En théorie, cette courbe devrait présenter un «coude» (ou

"elbow" en anglais) au niveau du rang optimal, après lequel l’ajout de nouvelles composantes

n’apporte qu’un gain marginal (voir Fig. 3.1). Cependant, le coude est souvent ambigu et difficile

à identifier de manière automatique avec des données réelles, pouvant rendre cette méthode très

subjective. L’erreur de reconstruction seule n’est alors pas suffisante pour juger de l’optimalité

d’une décomposition, comme illustrée sur la Figure 3.1, où les rangs supérieurs continuent

d’améliorer cette dernière malgré un rang optimal synthétique fixé à trois composants.

Figure 3.1 Méthode du coude pour la sélection du rang pour une NMF sur

des données synthétiques. L’erreur de reconstruction diminue rapidement

jusqu’au coude, puis se stabilise. Le rang optimal correspond au point

d’inflexion où l’amélioration devient négligeable avec l’ajout de composantes,

permettant d’équilibrer la reconstruction et la complexité du modèle

Pour surmonter cette subjectivité, des méthodes basées sur la stabilité ont été développées.

L’idée fondamentale est qu’un modèle avec le rang correct devrait produire des solutions

stables si les données d’entrée sont légèrement perturbées. L’approche de Stability Selection

Meinshausen & Bühlmann (2010), formalise cette idée en entraînant le modèle sur de nombreux

sous-échantillons des données et en ne retenant que les composantes (ou variables) qui
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apparaissent de manière stable à travers les différentes exécutions. Cette approche suggère un

rang en analysant la variabilité des solutions obtenues à partir de différentes initialisations

aléatoires, postulant que le rang optimal correspond à une région de plus grande stabilité des

solutions. En revanche, cette méthode nécessite le lancement de plusieurs itérations d’un même

modèle pour différents rangs, demandant des coûts de calculs importants.

3.1.2 Méthodes de sélection du rang en ligne

3.1.2.1 Inférence bayésienne et Détermination Automatique de la Pertinence (ARD)

L’approche bayésienne formule la sélection du rang comme un problème d’inférence statistique,

unifiant l’estimation des paramètres et le choix de la complexité du modèle. La Détermination

Automatique de la Pertinence (ARD) est un cadre particulièrement puissant à cet égard,

notamment mis en œuvre dans les modèles de NMF variationnels (p. ex., VBONMF par

Rahiche & Cheriet (2022)). Le principe fondamental de l’ARD consiste à placer un a priori

hiérarchique sur les paramètres du modèle. Typiquement, chaque composante latente 𝑘 (par

exemple, la colonne mk de la matrice de dictionnaire) est gouvernée par un hyperparamètre de

précision 𝜆𝑘 (où 𝜆𝑘 = 1/𝜎2
𝑘 ) . On assigne un a priori gaussien de moyenne nulle aux poids de la

composante, et un a priori Gamma Γ sur son paramètre de précision

𝑝(m𝑘 |𝜆𝑘 ) = N(m𝑘 |0, 𝜆−1
𝑘 I) (3.4)

𝑝(𝜆𝑘 ) = Γ(𝜆𝑘 |𝑎0, 𝑏0) (3.5)

Durant l’apprentissage par inférence variationnelle, le modèle optimise les distributions de

ces hyperparamètres. Si une composante k est jugée superflue pour expliquer les données, la

valeur attendue de sa précision E[𝜆𝑘 ] sera poussée vers l’infini. En conséquence, la distribution

a posteriori de m𝑘 se concentre massivement à zéro, ce qui équivaut à une suppression de la

composante associée. Le rang effectif du modèle est alors simplement le nombre de composantes

dont la pertinence reste finie.
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Cette méthode, initialisée avec un nombre de composant initial 𝑟𝑖𝑛𝑖𝑡 élevé, détermine ainsi le rang

optimal de manière automatique. Cependant, sa mise en œuvre présente des défis, notamment

pour la sensibilité du choix des hyperparamètres de l’a priori Γ (i.e., 𝑎0, 𝑏0) et un coût de calcul

qui, bien qu’amélioré par des algorithmes d’inférence rapides, peut rester élevé (voir Fig. 2.7).

3.1.2.2 Approches d’élagage dans les réseaux de neurones et leur pertinence

L’élagage (ou pruning) dans les réseaux de neurones profonds est un ensemble de techniques

visant à réduire la taille du modèle en supprimant des poids, des neurones ou des filtres

redondants, afin de diminuer le coût de calcul et d’améliorer la généralisation. Ces techniques

sont particulièrement pertinentes pour notre discussion car elles offrent un mécanisme pour

ajuster dynamiquement la complexité du modèle.

On distingue principalement deux types d’élagage (Cheng, Zhang & Shi, 2024) :

• L’élagage non structuré, qui supprime des poids individuels dans les matrices de poids. Cela

crée des matrices creuses mais ne réduit pas directement la «largeur» ou la «profondeur».

• L’élagage structuré, qui supprime des groupes entiers de poids, comme des canaux de

convolution, des couches des blocs de neurones.

A partir d’un réseau sur-paramétré, l’élagage réduit le nombre de paramètres progressivement,

en se basant sur des critère de pertinence ou de redondance pour sélectionner les poids, ou filtres

dans les CNNS, à supprimer. L’élagage est alors majoritairement appliqué après l’entraînement

(post-training), mais plusieurs méthodes récentes s’intéressent a des application dites «online»,

c.-à-d. pendant l’entraînement (Elkerdawy, Elhoushi, Zhang & Ray, 2022). En revanche, bien que

ces méthodes en ligne effectuent une réduction de la complexité du modèle, elles sont dépourvues

d’un objectif explicite interprétable visant à déterminer un rang optimal. Le processus s’arrête

généralement lorsqu’un taux de compression prédéfini est atteint (Park, Kim, Kim, Choi & Lee,

2023; Anagnostidis et al., 2023). Même si certains critères de sélection ciblent la redondance

pour ne garder que les éléments les plus importants (He, Wu, Liang & Lam, 2021), les méthodes

d’élagage n’ont pas directement été conçu pour directement estimer un rang de décomposition.
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Toutefois, un parallèle peut être fait entre l’élagage dans un réseau de neurone pour une réduction

de dimensionnalité et la sélection d’un rang pour la NMF. Comme vu avec la similarité avec les

auto-encodeurs présentée au Chapitre 2, la suppression d’un canal ou de neurones dans l’espace

latent revient à réduire la dimensionnalité et donc à une modification du rang.

Figure 3.2 Exemple schématique du processus d’élagage (pruning) de filtres

dans un modèle CNN, tiré de Shao et al. (2021). (a) Modèle initial avec tous

les filtres actifs. (b) Modèle élagué où certains filtres redondants ou peu utiles

sont supprimés. (c) Modèle réajusté (fine-tuning) pour compenser la perte

induite par l’élagage. Appliqué aux filtres produisant les cartes d’abondances

d’un modèle, l’élagage correspond à une réduction du rang effective

3.1.2.3 Réseaux de neurones avec sélection du nombre de composantes

Les architectures récentes basées sur des transformeurs visuels (ViT) ont profondément transformé

la segmentation d’images, mais la question de la sélection automatique du rang reste largement

ouverte. Des modèles comme Mask2Former (Cheng, Misra, Schwing, Kirillov & Girdhar,
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2022), atteignent des performances de pointe pour la segmentation d’images, mais reposent

sur un apprentissage supervisé et un nombre de classes fixé prédéfini. DINOv2 (Oquab et al.,

2024) propose un pré-entraînement non-supervisé à grande échelle de ViT, produisant des

représentations visuelles robustes réutilisables pour diverses tâches. Cependant, l’application

à la segmentation nécessite l’ajout de modules dédiées, eux-même entraînés sur des données

annotées, empêchant une estimation directe du nombre de classes.

Kirillov et al. (2023) introduisent SAM, proposant une segmentation « universelle ». Un ViT

génère des masques de segmentation en réponse à des indications visuelles (points, boîtes).

Une segmentation automatique est alors proposée en générant des nombreux points quadrillant

l’image, chacun produisant un masque. Ces masques candidats sont alors fusionnés selon des

scores de qualité et via une suppression non maximale (NMS) basée sur leur superposition. Ainsi,

bien que le nombre de composants varie automatiquement, cette sélection repose uniquement

sur des critères locaux de redondance, sans prise en compte d’une structure sémantique globale.

Pour des images de texte, SAM peut produire un masque par lettre. Chacun de ces masques est

jugé valide individuellement, mais n’ayant aucun chevauchement, le modèle ne les regroupe pas

en un seul composant qui pourrait correspondre à un mot ou une ligne de texte (voir Fig. 3.3).

Figure 3.3 Exemple de segmentation automatique d’une image de

documents historique par SAM. Le ViT segmente chaque lettre de manière

automatique, mais ne réussit pas à les identifier comme un même composant

Dans le domaine médical, MS-Former (Karimijafarbigloo, Azad, Kazerouni & Merhof, 2024)

se distingue comme l’unique approche à combiner segmentation non supervisée et ajustement

dynamique du rang. Il s’appuie sur une régularisation auto-supervisée (cohérence intra/inter-

classe et entropie croisée) pour estimer le nombre de segments sans supervision humaine.
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Toutefois, il reste spécialisé sur des images médicales et n’a pas été validé sur d’autres domaines

comme les images de documents. L’utilisation des patchs pour la segmentation de documents

manuscrits peut être sous-optimal, comme observé sur la Figure 1.5

3.2 Sélection dynamique du rang basée sur l’élagage et le principe MDL

En nous inspirant des approches d’élagage et d’identification du rang, nous proposons une

méthode qui détermine le rang optimal non pas en testant une série de rangs discrets, mais en

adaptant le modèle lui-même de manière dynamique.

3.2.1 Principe : De la surcomplétude à l’optimalité

Au lieu de chercher à deviner le bon rang a priori, notre stratégie part d’un état initial délibérément

sur-complet, c’est-à-dire avec plus de cartes d’abondance (𝑟𝑖𝑛𝑖𝑡) que d’objets potentiellement

présents dans les données. Cette sur-complétude initiale permet au réseau de capturer un

ensemble exhaustif de toutes les composantes possibles, comme cela a été fait dans des travaux

antérieurs (Karimijafarbigloo et al., 2024; Rahiche & Cheriet, 2022).

À partir de ces 𝑟𝑖𝑛𝑖𝑡 cartes d’abondance de départ, une stratégie d’entraînement itérative est

employée. Le but est de progressivement combiner les cartes d’abondances les plus redondantes,

jusqu’à obtenir un rang optimal. A la différence de SAM, la combinaison des composantes se

produit durant l’entraînement. En intégrant un principe d’élagage au modèle hybride présenté

précédemment, il est alors possible de réduire le rang, tout en gardant des composantes

interprétables ayant un sens sémantique.

Deux composantes majeures au fonctionnement de cet algorithme sont alors nécessaires : (1) Un

critère de similarité permettant d’identifier les composantes à supprimer, et (2) un critère de

sélection pour le rang optimal.
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3.2.2 Développement d’un critère de similarité inter-composantes

Pour identifier la carte la moins informative, un score de similarité par paire est calculé entre

toutes les cartes non élaguées afin d’identifier la paire la plus similaire. De cette paire, la carte

ayant la plus petite norme de Frobenius (i.e., la carte représentant la plus petite proportion

de l’image) est ajoutée à l’ensemble des cartes élaguées. Pour chaque carte de cet ensemble,

les poids de la convolution ponctuelle qui la produisent sont masqués. De même, les poids

correspondants du décodeur, qui représentent la signature spectrale associée sont aussi désactivés.

Cela permet de sélectionner la carte la moins informative. Le modèle est forcé de réorganiser ses

poids pour combiner cette carte d’abondance avec les cartes restantes. Le modèle transfert les

connaissances apprises vers les cartes d’abondances les plus proches ressemblantes, produisant

une nouvelle décomposition.

Pour évaluer de manière exhaustive la relation entre nos cartes, nous avons développé un score

de similarité qui intègre deux aspects cruciaux : la similarité spatiale et la similarité spectrale.

Si une approche purement spatiale, telle que la suppression non-maximale (NMS), permet

d’identifier des composants similaires dans les cartes d’abondance, cela n’est pas suffisant

comme discuté à la section 3.1.2.3. C’est pourquoi une composante de similarité spectrale est

ajoutée. Celle-ci est essentielle pour pénaliser les éléments similaires situés à des localisations

spatiales différentes.

3.2.2.1 Prise en compte de la similarité spatiale

Notre mesure de similarité spatiale s’inspire de la corrélation croisée normalisée, qui évalue la

ressemblance entre deux cartes d’abondance 𝐴𝑖 et 𝐴𝑗 . Sa formulation de base est la suivante :

Scorr(𝑖, 𝑗) =
〈𝐴𝑖, 𝐴𝑗 〉
‖𝐴𝑖‖‖𝐴𝑗 ‖

, (3.6)

où 〈·, ·〉 est le produit scalaire de Frobenius et ‖ · ‖ est la norme de Frobenius. Cependant,

en raison de la contrainte d’orthogonalité ajoutée, les cartes d’abondances générées ont peu

de zones de chevauchement. Lors des premières itérations du modèle, le modèle est forcé de
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fragmenter des mêmes éléments en plusieurs parties. Une simple corrélation ne peut alors pas

identifier la ressemblance entre ces cartes d’abondances. Pour contrer cet effet de fragmentation

d’objets, nous appliquons d’abord une opération de lissage spatial à l’aide d’un noyau gaussien,

obtenant A𝑖 et A 𝑗 , avant de mesurer une possible corrélation.

Un autre manque de la corrélation simple peut être observé lorsqu’un objet similaire est divisé en

deux parties égales. Ainsi, un petit objet à l’intérieur d’un plus grand était souvent plus pénalisé

qu’un même objet divisé en deux parties égales et séparées (p. ex., le texte et le papier sont plus

corrélés que le même support papier divisé en deux zones). Dans ce cas, seulement une fine

zone de contact est mesurée par la corrélation, résultant en l’identification de deux matériaux

distincts. Pour mieux gérer cet effet, la différence absolue des activations totales entre les deux

cartes est utilisée comme facteur pénalisant.

1

|〈A𝑖 − A 𝑗 , 1〉| + 𝜖
(3.7)

où 〈·, ·〉 est le produit scalaire de Frobenius, | · | est la valeur absolue et 𝜖 est une constante évitant

une division par zéro. Ce terme amplifie la similarité des paires de cartes ayant des distributions

d’abondance très proches en termes de magnitudes et inversement. Deux éléments représentant

une grande proportion de l’image, et ce même avec une faible corrélation spatiale, sont alors

plus pénalisés que deux éléments corrélés mais ayant une grande différence d’activation.

3.2.2.2 Prise en compte de la similarité spectrale

En plus de la similarité spatiale, il est impératif de considérer la ressemblance spectrale des

matériaux eux-mêmes, représentés par leurs signatures spectrales. Pour ce faire, nous utilisons

l’angle spectral, une mesure qui évalue la similarité de forme entre deux signatures spectrales,

indépendamment des variations d’illumination. Cette mesure standard, connue sous le nom

de Distance Angulaire Spectrale (SAD), est une mesure de distance. Or, pour l’intégrer de

manière cohérente à notre score de similarité spatiale, nous devons la convertir en une mesure
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de similarité (où une valeur élevée indique une forte ressemblance). Nous utilisons donc l’angle

complémentaire de la distance angulaire (SAD′) :

SAD′(E𝑖 ,E 𝑗 ) = 𝜋

2
− arccos

( 〈E𝑖 ,E 𝑗 〉
‖E𝑖‖‖E 𝑗 ‖

)
(3.8)

où E𝑖 et E 𝑗 sont les i-ème et j-ème colonnes de la matrice des signatures spectrales E. Cette

transformation assure qu’une similarité spectrale élevée se traduit par une valeur de SAD′ élevée,

rendant cette mesure directement additive à la composante de similarité spatiale.

La formule finale de similarité, capturant à la fois la similarité spatiale et spectrale entre les

matériaux, est alors exprimée comme suit :

S𝑖, 𝑗 = 1

|〈A𝑖 − A 𝑗 , 1〉| + 𝜖
〈A𝑖 ,A 𝑗 〉
‖𝐴𝑖‖‖𝐴𝑗 ‖

+ 𝜆SAD′L𝑆𝐴𝐷′ (𝐸𝑖, 𝐸 𝑗 ), (3.9)

où A𝑖 et A 𝑗 sont les cartes d’abondance lissées, 𝐸𝑖 et 𝐸 𝑗 sont les signatures correspondantes,

〈·, ·〉 est le produit scalaire, et 𝜆𝑆𝐴𝐷′ est un paramètre équilibrant la similarité spectrale et

spatiale.

3.2.3 Guidage par le principe de la Longueur de Description Minimale (MDL)

Une fois le critère de similarité 𝑆𝑖, 𝑗 établi, combiné avec l’élagage, il permet une suppression

itérative de la composante la plus redondante. La paire obtenant le score le plus élevé est identifiée

comme la plus redondante. De cette paire, la composante ayant la plus faible norme, représentant

donc la plus petite fraction de l’image, est désignée pour être élaguée. Cela permet d’adapter le

rang de manière dynamique durant l’entraînement. Cependant, une question demeure : comment

identifier le rang de décomposition optimal?

Pour cela, notre approche s’appuie sur le principe de la Longueur de Description Minimale

(MDL), un cadre théorique robuste pour la sélection de modèles (Squires et al., 2017; Rissanen,

1978). Le principe MDL postule que le meilleur modèle est celui qui permet la description la
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plus concise des données. L’objectif est donc de minimiser la somme de deux termes :

min
𝐻
{𝐿 (𝐻) + 𝐿(𝐷 | 𝐻)} , (3.10)

où 𝐿 (𝐷 | 𝐻) est la qualité de description des données 𝐷 étant donné le modèle 𝐻, et 𝐿 (𝐻)
représente longueur de description du modèle lui-même (i.e., sa complexité).

Dans le contexte de notre modèle de type hybride proposé, cette formulation trouve une analogie

directe :

• La fidélité des données 𝐿(𝐷 | 𝐻) correspond à notre fonction objective utilisée, L𝑆𝐴𝐷 +
𝜆1L𝑀𝑆𝐸 , qui mesure l’erreur de reconstruction à partir du modèle 𝐻.

• La complexité du modèle 𝐿(𝐻) est capturée par le coût de description des facteurs {A,S,E}.

Ce dernier est influencé à la fois par la structure et la taille des facteurs. Cela est représenté

par le rang, qui diminue à chaque étape d’élagage et réduit la taille du modèle, ainsi que par

la contrainte d’orthogonalité, 𝜆2L𝑜𝑟𝑡ℎ qui réduit la complexité structurelle.

La fonction de coût globale LMDL, que notre algorithme cherche à minimiser, est donc définie

comme suit :

LMDL = (LSAD + 𝜆1LMSE)︸�����������������︷︷�����������������︸
Fidélité aux données 𝐿 (𝐷 |𝐻)

+ (𝜆orthLorth + 𝜆𝑟𝑟)︸����������������︷︷����������������︸
Complexité du modèle 𝐿 (𝐻)

(3.11)

En suivant ce principe, il est possible de calculer le coût MDL total à chaque itération du modèle.

Au début de l’entraînement, le rang est haut, les composantes ne sont pas orthogonales et le

modèle peine à reconstruire les données. Le coût MDL associé est donc naturellement plus

élevé. Au fil de l’entraînement, le modèle apprend à mieux représenter les données, réduisant

donc 𝐿(𝐷 | 𝐻). La contrainte d’orthogonalité ainsi que l’élagage progressif réduisent alors la

complexité du modèle 𝐿 (𝐻), faisant ainsi chuter le coût total MDL. Ce coût atteint alors un

minimum lorsque le modèle atteint un équilibre optimal entre simplicité et fidélité. Lorsque

l’élagage se poursuit au-delà de ce point, le modèle devient trop simple pour représenter les

données, et l’erreur de reconstruction 𝐿 (𝐷 | 𝐻) augmente. Cela entraîne une remontée du coût

MDL total. Ce minimum empirique observé sur la courbe du coût MDL sert alors de critère de
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sélection objectif. Le rang correspondant à ce point est considéré comme le rang optimal, car il

représente le compromis idéal entre la compression du modèle et la préservation de l’information

contenue dans les données.

3.2.4 Algorithme d’élagage progressif des composantes redondantes

L’algorithme alterne entre deux phases : une phase d’entraînement du modèle jusqu’à un critère

d’arrêt précoce, et une phase d’élagage qui supprime la carte jugée la moins informative.

Algorithme 3.1 : Algorithme de la méthode d’élagage progressif proposée (PRISM)
Input : Image MS à décomposer Y ;

Rang initial 𝑟𝑖𝑛𝑖𝑡 et nombre de composantes minimum 𝑟𝑚𝑖𝑛 ;

Hyperparamètres 𝜆1, 𝜆orth, 𝜆𝑟 , 𝜆𝑆𝐴𝐷′ et kernel de lissage 𝐾 ;

Output : Cartes d’abondances optimales Aopt, Signatures spectrales optimales Eopt, Rang optimal 𝑟
1 Initialisation du modèle PRISM avec 𝑟𝑖𝑛𝑖𝑡 composantes (toutes actives);

2 active_map_indices ← {1, 2, . . . , 𝑟𝑖𝑛𝑖𝑡 };
3 best_overall_mdl_cost ←∞, best_model_config ← null, et best_rank ← 𝑟𝑖𝑛𝑖𝑡 ;
4 for 𝑘 from 𝑟𝑖𝑛𝑖𝑡 down to 𝑟𝑚𝑖𝑛 do
5 Entraînement du modèle PRISM jusqu’au critère d’early stopping;

6 Soit trained_model𝑘 le modèle après convergence;

7 A𝑘 ,E𝑘 , S𝑘 , Ŷ ← trained_model𝑘 (Y);
8 𝐿recon ← L𝑆𝐴𝐷 (Y, Ŷ) + 𝜆1L𝑀𝑆𝐸 (Y, Ŷ) // Erreur de reconstruction 𝐿 (𝐷 |𝐻)
9 𝐿struct ← 𝜆2L𝑜𝑟𝑡ℎ (A𝑘) // Complexité structurelle de 𝐿 (𝐻)

10 𝐿rank_penalty ← 𝜆3 · 𝑘 // Terme de pénalité de rang de 𝐿 (𝐻)
11 current_mdl_cost ← 𝐿recon + 𝐿struct + 𝐿rank_penalty;

12 if current_mdl_cost < best_overall_mdl_cost then
13 best_overall_mdl_cost ← current_mdl_cost;

14 best_model_config ← trained_model𝑘 ;

15 best_rank ← 𝑘;

16 if 𝑘 > 𝑟𝑚𝑖𝑛 then
17 Soit A𝑎𝑐𝑡𝑖𝑣𝑒 le set des cartes d’abondances correspondants aux active_map_indices dans A𝑘 ;

18 Soit E𝑎𝑐𝑡𝑖𝑣𝑒 le set des signatures spectrales correspondants aux active_map_indices dans E𝑘 ;

19 for each map 𝐴𝑚 in A𝑎𝑐𝑡𝑖𝑣𝑒 do
20 A𝑚 ← 𝐾 ∗ 𝐴𝑚 ; // Convolution spatiale (lissage)
21 for each pair of distinct maps (A𝑖 ,A 𝑗 ) (and corresponding 𝐸𝑖 , 𝐸 𝑗 from E𝑎𝑐𝑡𝑖𝑣𝑒) do
22 Calcul de la similarité 𝑆𝑖 𝑗 à partir de A𝑖 ,A 𝑗 , 𝐸𝑖 , 𝐸 𝑗 (en utilisant l’Eq. 3.9);

23 (𝑖∗, 𝑗∗) ← indices de la paire la plus similaire;

24 map_to_prune ← arg min𝑚∈{𝑖∗ , 𝑗∗ } ‖𝐴𝑚‖𝐹 ;

25 Supprimer map_to_prune du set active_map_indices;

26 Élagage des poids produisant les cartes inactives dans la convolution pré-abondances;

27 Élagage des signatures spectrales associées;

28 Charger le modèle PRISM avec la configuration et les paramètres de best_model_config;

29 Aopt,Eopt ← Optimal_Model(Y);
30 𝑟 ← best_rank;

31 return Aopt,Eopt, 𝑟
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À chaque étape d’élagage, le modèle est contraint de s’adapter en fusionnant, déplaçant ou

supprimant des éléments, distillant ainsi efficacement ses connaissances dans une représentation

plus compacte. Cette stratégie offre l’avantage significatif de fournir une interprétabilité sur la

focalisation du modèle et de permettre un contrôle sur son processus de décision.

Le coût MDL permet alors de trouver un équilibre entre la qualité de la reconstruction et la

complexité du modèle. Cet équilibre représente le rang optimal estimé de la décomposition.

3.2.5 Intégration dans l’architecture hybride proposée

L’architecture complète du modèle, appelé PRISM, est présentée à la Figure 3.4. L’architecture

intègre tous les composants décrits précédemment. Cette architecture hybride de NMF profonde

établit un pont entre l’apprentissage profond non supervisé et les contraintes physiques des

modèles NMF. Elle permet à la fois la performance computationnelle, l’interprétabilité physique

des résultats et une sélection adaptative du rang.

Figure 3.4 Schéma de l’architecture hybride avec sélection adaptative du rang.

En vert est illustré l’élagage progressif des composantes. Au fil des itérations, les

poids de la convolution pré-abondance sont élagués, résultant en la suppression

des carte d’abondance redondantes associées

L’implémentation du modèle à l’aide de la librairie PyTorch permet la création de cette

architecture, tout en permettant une optimisation des différents modules par rétro-propagation.
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Afin d’obtenir un élagage non-structuré des poids, c’est-à-dire sans utiliser des ratios aléatoires

de suppressions, le module torch.nn.utils.prune.custom_from_mask est utilisé. Les

masques de pruning sont spécifiquement conçus pour supprimer les poids neuronaux responsables

de la génération des cartes d’abondances sélectionnées lors de la procédure d’élagage progressif.

L’implémentation conjointe de contraintes de paramétrisation et d’élagage personnalisé par

masque pour des couches de convolution étant non-standard, nous renvoyons le lecteur intéressé

par les détails techniques vers les tutoriels et la documentation officielle de Pytorch 3 4 5.

L’utilisation du principe MDL pour la sélection automatique du rang constitue une contribution

majeure de notre approche. La Figure 3.5 illustre l’évolution du coût MDL en fonction du

rang pour une image du jeu de données MStex (voir section 4.1). A chaque itération, la carte

Figure 3.5 Visualisation de l’élagage progressif sur une image de document. Après

chaque itération, une carte est élaguée et le modèle s’entraîne à adapter la décomposition

d’abondance la moins pertinente est supprimée par élagage des poids correspondants. Afin

de respecter la contrainte ASC, le modèle est contraint de réorganiser ses connexions durant

l’entraînement, ce qui se manifeste par une augmentation transitoire du coût MDL suivie d’une

3 Paramétrisation des modules PyTorch : https://docs.pytorch.org/tutorials/intermediate/parametrizations.

html

4 Tutoriel d’élagage et re-paramétrisation : https://docs.pytorch.org/tutorials/intermediate/pruning_

tutorial.html

5 Documentation custom_from_mask : https://docs.pytorch.org/docs/stable/generated/torch.nn.utils.

prune.custom_from_mask.html
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convergence vers une valeur inférieure. Au-delà d’un certain rang, la capacité du modèle devient

insuffisante pour maintenir simultanément une reconstruction fidèle des données et la distinction

entre les composantes. Cette dégradation se traduit par une augmentation du coût MDL, signalant

que le compromis entre complexité du modèle et qualité de reconstruction n’est plus optimal.

3.3 Validation de la sélection dynamique du rang

Cette section présente une analyse approfondie des différentes composantes de notre approche

de sélection dynamique du rang. Nous évaluons l’impact de chaque module sur les performances

du système à travers une série d’études d’ablation et d’analyses paramétriques.

3.3.1 Ablation des composantes du critère de similarité

Afin d’évaluer la contribution de chaque terme dans notre mesure de similarité, nous conduisons

une étude d’ablation systématique sur des paires de cartes d’abondances extraites de données

réelles. La Figure 3.6 présente trois scénarios représentatifs : (a) cartes d’abondances représentant

du texte avec l’effet de fragmentation, (b) cartes d’abondances présentant une composante de

papier fragmentée en deux parties égales, et (c) cartes d’abondances de texte et de papier.

Pour chaque scénario, nous évaluons l’impact progressif de l’ajout des différentes composantes

du critère de similarité :

• Corrélation seule (ligne 1) : Utilisation du coefficient simple de corrélation entre les cartes

d’abondances

• Corrélation et différence d’activation (ligne 2) : Ajout du terme mesurant les différences

d’intensité d’activation

• Configuration complète (ligne 3) : Intégration du lissage spatial des cartes d’abondances

via le noyau de convolution 𝐾

Les résultats quantitatifs démontrent l’importance cruciale de chaque composante. Avec la

corrélation seule, les trois scénarios obtiennent des scores de similarité très faibles (0.04%, 4.5%

et 0.05% respectivement), ne permettant pas de distinguer les paires similaires des dissimilaires.
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Figure 3.6 Étude d’ablation des composantes du critère de similarité sur trois paires

de cartes d’abondances représentatives. (a) Paire de cartes hautement similaires issues

du même matériau avec variations effet de fragmentation. (b) Paire de cartes hautement

similaires mais partageant seulement une fine région de contact. (c) Paire de cartes

dissimilaires correspondant à des matériaux distincts. Les pourcentages indiquent le

score de similarité calculé pour chaque configuration

L’ajout du terme de différence d’activation améliore significativement la discrimination. Pour

les scénarios (a) et (b), les scores augmentent à 0.46% et 50.8%, tandis que pour le scénario

(c), représentant deux matériaux distincts, le score diminue de 0.05% à 0.017‰, confirmant

sa dissimilarité. En revanche, le scénario (a) reste tout de même sous-évalué avec seulement

0.46%, bien que représentant le même texte fragmenté.

L’intégration finale du lissage spatial complète efficacement le critère. Les scénarios (a) et (b)

atteignent des scores de 31.9% et 76.5% respectivement, permettant leur identification correcte

comme paires similaires. Le scénario (c) maintient un score négligeable (0.09‰), confirmant la

robustesse du critère pour identifier les véritables dissimilarités.

Au-delà de ces composantes spatiales, le critère intègre également une composante de similarité

spectrale. Cette composante est essentielle pour l’identification et le regroupement de cartes

d’abondances correspondant au même matériau mais n’ayant aucun chevauchement spatial, un

phénomène observé précédemment pour la méthode SAM avec suppression NMS (voir Fig. 3.3).
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3.3.2 Apport du coût MDL pour la sélection du rang

Comme illustré dans la Figure 3.7, l’utilisation de la fonction de perte seule, sans régularisation

MDL, conduit à un modèle sur-complet. Dans ce cas, les meilleurs résultats se concentrent autour

de rangs sous-optimaux de 4, 5 et 6. Qualitativement, ces solutions de rang élevé produisent

des composantes avec des matériaux textuels fragmentés, indiquant une décomposition moins

interprétable du point de vue physique.

Figure 3.7 Ablation sur la sélection du rang avec et sans le coût MDL. La courbe

du haut représente l’évolution de la fonction de perte seule, montrant une

préférence pour des rangs plus élevés. La courbe du bas intègre le coût MDL

complet, révélant un minimum global au rang 3 et une sélection plus claire

L’incorporation du coût MDL total améliore non seulement les propriétés de convergence, mais

guide également le modèle vers une solution plus robuste. Le coût MDL identifie correctement

une plage stable et acceptable de solutions autour des rangs 2, 3 et 4, avec un minimum global

clair au rang 3. Cette observation confirme que le coût MDL est crucial pour prévenir le

sur-apprentissage du modèle et pour déterminer correctement le nombre réel de composantes

latentes dans les données. Sans le terme 𝐿 (𝐷 | 𝐻), le modèle tend à favoriser des décompositions

complexes qui maximisent la fidélité de reconstruction au détriment de l’interprétabilité.
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3.3.3 Influence du rang initial et sélection du rang minimal

Contrairement aux approches traditionnelles où le rang sélectionné influence directement la

décomposition finale, le choix du rang initial 𝑟𝑖𝑛𝑖𝑡 dans notre méthode n’a qu’un impact limité sur

la solution finale. Nos expériences révèlent que ce paramètre influence principalement le temps

de calcul total, avec une relation linéaire entre le nombre d’itérations d’élagage (𝑟𝑖𝑛𝑖𝑡 − 𝑟 𝑓 𝑖𝑛𝑎𝑙)
et le temps d’exécution. La qualité de la décomposition finale reste généralement invariante,

l’algorithme combinant de manière hiérarchique les différentes composantes selon leur pertinence.

Dans les rares cas où une composante importante serait supprimée prématurément, l’adoption

d’une stratégie de sélection basée sur plusieurs exécutions (typiquement 10) permet de garantir

la convergence vers le rang optimal, indépendamment de l’initialisation.

Figure 3.8 Évolution du coût MDL en fonction du rang pour différentes

initialisations. Les courbes correspondent à des rangs initiaux de 8, 12, 16 et 20,

montrant la convergence vers un minimum commun aux rang 4 pour une même image

La Figure 3.8 illustre cette robustesse en présentant les trajectoires du coût MDL pour différentes

valeurs de 𝑟𝑖𝑛𝑖𝑡 ∈ {8, 12, 16, 20}. Toutes les courbes convergent vers le même minimum global,

confirmant que le processus d’élagage guidé par le critère MDL identifie de manière fiable les

composantes les moins pertinentes, indépendamment du point de départ. La seule contrainte

pratique est que 𝑟𝑖𝑛𝑖𝑡 doit être supérieur ou égal au nombre réel de composantes dans les données.

Dans nos expériences, nous fixons 𝑟𝑖𝑛𝑖𝑡 = 12, correspondant au nombre de bandes spectrales du

jeu de données MSBin, assurant ainsi une initialisation suffisamment riche pour tous les scénarios
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testés, tout en gardant un temps d’exécution plus bas. Comme le montre la Figure 3.9, ce choix

représente un bon compromis entre capacité de représentation et efficacité computationnelle.

Le temps d’exécution croît linéairement avec le rang initial, passant d’environ 1 minutes pour

𝑟𝑖𝑛𝑖𝑡 = 8 à plus de 3 minutes pour 𝑟𝑖𝑛𝑖𝑡 = 20.

Figure 3.9 Temps d’exécution de l’algorithme en fonction du rang

initial. Les points montrent les temps mesurés pour les rangs 8, 12, 16 et

20, avec une relation linéaire claire (ligne pointillée)

Le rang minimal 𝑟𝑚𝑖𝑛 est lui fixé à 2, représentant la configuration minimale physiquement

significative pour le démélange spectral : une composante pour le matériau d’intérêt (typiquement

le texte) et une pour l’arrière-plan. Une valeur de 1 conduirait à une solution triviale (i.e.,

une image uniforme) violant les hypothèses fondamentales d’un mélange linéaire. Cette

configuration minimale permet à l’algorithme d’explorer des solutions avec peu de composantes,

tout en maintenant l’interprétabilité physique des résultats. Cela permet d’optimiser l’efficacité

computationnelle en supprimant la dernière itération superflue.
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3.4 Discussion des avantages et des défis de la sélection dynamique du rang

La sélection dynamique du rang présente plusieurs avantages significatifs par rapport aux

approches traditionnelles à rang fixe. Premièrement, elle élimine le besoin de validation croisée

exhaustive pour déterminer le nombre optimal de composantes, réduisant ainsi considérablement

le coût computationnel. Deuxièmement, l’intégration du critère MDL fournit une justification

théorique solide pour le compromis entre complexité du modèle et qualité de reconstruction.

Cependant, plusieurs défis demeurent. Les différents hyperparamètres du critère MDL nécessitent

un réglage, bien que nos expériences, présentées au chapitre suivant, suggèrent que des valeurs

par défaut robustes puissent être établies. Une limitation importante de notre approche réside

dans la conception du critère de similarité, initialement optimisé pour des données textuelles

où la redondance spatiale est clairement définie. Pour des données hyperspectrales de nature

différente, ce critère pourrait potentiellement éliminer des composantes spectralement proches

mais physiquement distinctes et importantes pour l’interprétation.

Cette observation suggère que l’approche est optimalement déployée dans un contexte semi-

supervisé, où l’expert peut valider les décisions d’élagage. En effet, l’analyse des décompositions

sur-complètes avant élagage offre un éclairage pertinent sur la structure des données, révélant

comment le modèle identifie et sépare initialement les différentes régions de l’image. Cette

capacité d’exploration s’avère particulièrement pertinente pour des scènes complexes (voir

Section 4.3.3), où la visualisation de l’évolution du rang permet de comprendre les relations

hiérarchiques entre composantes. Le chapitre suivant présente une évaluation exhaustive de notre

approche sur divers jeux de données, démontrant sa capacité de généralisation tout en illustrant

ces considérations pratiques pour différents types de scènes multispectrales et hyperspectrales.



CHAPITRE 4

EXPÉRIMENTATIONS ET GÉNÉRALISATION DES APPLICATIONS DU MODÈLE

Ce chapitre évalue la capacité de généralisation de l’approche proposée, dénommée PRISM, à

travers trois objectifs expérimentaux : (1) valider la robustesse sur des images multibandes

de documents avec diverses configurations spectrales, (2) positionner PRISM par rapport

aux auto-encodeurs de démélange HS sur des données de télédétection, et (3) s’attaquer à

l’extension au cas sous-déterminé, avec des images RVB de documents et des représentations

profondes d’images naturelles traitées comme données HS.

4.1 Résultats sur la base d’image MS de documents MStex

Le premier jeu de données que nous utilisons dans le cadre de cette étude est une combinaison

des collections appelées MStex 1 et 2 6. Ces collections, fournies par Bibliothèque et Archives

nationales du Québec (BAnQ) et digitalisés par Hedjam & Cheriet (2013), regroupent deux

ensembles distincts de dix cubes MS de manuscrits historiques couvrant une période s’étendant

du XVIIe au XXe siècle. Chaque cube est composé de 8 bandes spectrales, capturées dans une

plage allant de 340 nm à 1100 nm, comme présentées dans le Tab. 4.1. Les acquisitions ont

été réalisées à l’aide d’une caméra Chroma KAF 6303E (Kodak) offrant une résolution de 6

mégapixels. Les données acquises présentent alors une large résolution spatiale de 3072 × 2048

pixels par bande spectrale, chaque pixel couvrant une zone de 9 × 9 μm. Chaque document a

ensuite été segmenté en zones d’intérêt, générant des images de résolutions spatiales variables.

Tableau 4.1 Détail des bandes spectrales utilisées pour la collection MStex

Bande F1s F2s F3s F4s F5s F6s F7s F8s
Longueur d’onde (nm) 340 500 600 700 800 900 1000 1100

Filtre de lumière UV Bleu Vert Rouge IR 1 IR 2 IR 3 IR 4

Il est à noter que l’image z58 du premier jeu de données n’a pas été retenue dans notre analyse

en raison de dégradations importantes observées sur l’une de ses bandes spectrales.

6 Ces collections ont été introduites dans le cadre du concours MSTex (Hedjam, Nafchi, Moghaddam,

Kalacska & Cheriet, 2015). Données disponibles en ligne : https://tc11.cvc.uab.es/datasets/SMADI_1
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La vérité terrain (ground-truth) associée à ces images classifie alors les pixels en deux catégories :

texte ou non-texte. La qualité de décomposition peut alors seulement être évaluée par la qualité

du texte extrait, en partant du principe que si la décomposition est bonne, alors le texte extrait

devrait l’être aussi. En effet, une décomposition optimale des composantes spectrales doit

conduire à une séparation efficace entre les différents matériaux constitutifs du document (encre,

papier, agents de dégradation, etc.). Si cette séparation est réalisée de manière satisfaisante,

l’extraction et la lisibilité du texte s’en trouvent nécessairement améliorées. Par conséquent, les

métriques de qualité textuelle agissent comme un indicateur direct et fiable de la performance

globale du processus de décomposition. Cette approche présente l’avantage de fournir une

évaluation objective et quantifiable, où une amélioration des scores de qualité textuelle traduit

directement une meilleure séparation des composantes spectrales.

4.1.1 Métriques d’évaluation

Pour quantifier cette qualité d’extraction du texte et ainsi mesurer l’efficacité de différentes

approches, quatre métriques complémentaires issues de la littérature en binarisation de document

manuscrits ont été adoptées. Ces métriques ont été sélectionnées pour leur capacité à capturer

différentes caractéristiques complémentaires de la qualité de binarisation.

La première métrique évalue directement l’exactitude de la classification binaire. La F-Mesure

(FM), largement reconnue dans la communauté scientifique, constitue notre métrique principale

de performance. Elle s’exprime comme la moyenne harmonique entre la précision et le rappel :

FM =
2 × Rappel × Précision

Rappel + Précision
, (4.1)

où le Rappel = 𝑉𝑃
𝑉𝑃+𝐹𝑁 quantifie la capacité du modèle à identifier l’ensemble des pixels textuels,

tandis que la Précision = 𝑉𝑃
𝑉𝑃+𝐹𝑃 mesure la justesse de ces identifications, avec VP, FP et FN

représentant respectivement les vrais positifs, faux positifs et faux négatifs. Cette métrique,

exprimée en pourcentage, offre un équilibre entre sur-détection et sous-détection du texte.
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La seconde métrique s’attache à caractériser les distorsions introduites lors du processus de

binarisation. La Métrique de Taux Négatif (NRM) quantifie spécifiquement les erreurs de

classification au niveau des pixels :

𝑁𝑅𝑀 =
𝑇𝑅𝐹𝑁 + 𝑇𝑅𝐹𝑃

2
, (4.2)

où 𝑇𝑅𝐹𝑁 = 𝐹𝑁
𝐹𝑁+𝑉𝑃 et 𝑇𝑅𝐹𝑃 = 𝐹𝑃

𝐹𝑃+𝑉𝑁 représentent respectivement les taux de faux négatifs et

de faux positifs. Cette métrique, variant de 0 à 1, est particulièrement sensible aux erreurs qui

peuvent affecter la lisibilité du texte extrait.

De manière complémentaire, la Distorsion de Distance Réciproque (DRD) évalue les distorsions

perceptuelles en considérant un voisinage spatial de chaque pixel :

𝐷𝑅𝐷 =

∑𝑁
𝑘=1 𝐷𝑅𝐷𝑘

𝑁𝑈𝐵𝑁
, (4.3)

où 𝐷𝑅𝐷𝑘 représente la distorsion pondérée dans un voisinage 5 × 5 centré sur le k-ième pixel

erroné, et NUBN dénombre les blocs 8 × 8 non-uniformes dans l’image de référence. Cette

métrique, également bornée entre 0 et 1, mesure efficacement l’impact visuel des erreurs de

binarisation sur la lecture, les erreurs isolées étant moins pénalisées que les clusters d’erreurs.

Enfin, le Rapport Pic de Signal sur Bruit (PSNR) offre une mesure globale de fidélité entre

l’image binarisée et la vérité terrain :

𝑃𝑆𝑁𝑅 = 10 log10

(
𝐼2𝑚𝑎𝑥
𝐸𝑄𝑀

)
, (4.4)

où 𝐼𝑚𝑎𝑥 représente l’intensité maximale possible et EQM l’erreur quadratique moyenne. Exprimé

en décibels (dB), le PSNR fournit une quantification logarithmique de la qualité de reconstruction,

particulièrement pertinente pour évaluer la préservation des détails fins du texte.

L’utilisation conjointe de ces quatre métriques permet une évaluation quantitative de la

performance : tandis que la FM et le PSNR (valeurs élevées souhaitables) quantifient la
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qualité globale de l’extraction, la NRM et la DRD (valeurs faibles souhaitables) caractérisent les

erreurs commises. Cette approche garantit une évaluation objective avec les méthodes de l’état

de l’art, tout en capturant les nuances essentielles à l’évaluation de la qualité du texte extrait.

4.1.2 Méthodes comparées

Étant donné que la vérité terrain (GT) n’existe que pour les composantes textuelles, nous évaluons

la qualité de la décomposition à l’aide d’un banc d’essai de binarisation de texte. D’une part,

comme référence de l’état de l’art en binarisation de documents MS, nous utilisons la méthode

de Howe (Howe, 2013). Cinq modèles traditionnels conçus pour l’extraction de texte sont

également comparés : SKKHM (Spatial Kernel K-Harmonic Means), qui exploite des noyaux

spatiaux et des moyennes harmoniques pour regrouper les pixels de texte (Li et al., 2007) ;

GMM (Gaussian Mixture Models), qui modélise les distributions d’intensité par un mélange de

gaussiennes (Hollaus et al., 2018) ; SAE (Selectional Autoencoder), un autoencodeur profond

entraîné à extraire une représentation discriminative du texte (Calvo-Zaragoza & Gallego, 2019) ;

et ACE v1 & v2 (Adaptive Coherence Estimator), qui mesurent la cohérence spectrale et spatiale

pour détecter le texte dans les images multispectrales (Hollaus, Diem & Sablatnig, 2015b;

Diem, Hollaus & Sablatnig, 2016). Nous confrontons également ces approches à deux modèles

NMF pour la décomposition d’images multispectrales de documents : MA-ONMF, un NMF

bi-orthogonal, et VBONMF, un NMF orthogonal bayésien variationnel, présentant les résultats

de l’état-de-l’art sur le jeu de données MStex (Rahiche & Cheriet, 2021, 2022).

D’autre part, pour explorer l’apport des techniques basées sur le modèle linéaire de mélange, cinq

auto-encodeurs conçus pour le démélange hyperspectral ont été ré-implémentés : EndNet, un

autoencodeur estimant simultanément les spectres purs et les abondances (Ozkan, Kaya & Akar,

2019) ; MTAEU (Multi-Task Autoencoder for Unmixing), qui combine reconstruction et

régularisation spatiale pour un démélange multitâche (Palsson et al., 2019) ; DAEU (Denoising

Autoencoder for Unmixing), intégrant un module de débruitage pour renforcer la robustesse

face au bruit (Palsson et al., 2018) ; OSPAEU (Optimized Spatially-Aware Autoencoder for

Unmixing), qui optimise une pénalité spatiale afin de préserver la cohérence locale (Dou, Gao,
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Zhang, Wang & Wang, 2020) ; et CNNAEU (Convolutional Neural Network Autoencoder for

Unmixing), exploitant des couches convolutionnelles pour capturer efficacement les dépendances

spatiales et étant à la base de l’architecture de PRISM (Palsson et al., 2021). Enfin, nous évaluons

MSFormer, un modèle ViT à rang capable d’ajuster dynamiquement le nombre de composants

spécialisé dans la segmentation d’images médicales MS (Karimijafarbigloo et al., 2024).

4.1.3 Résultats quantitatifs

Le Tableau 4.2 présente les performances moyennes des différentes méthodes sur l’ensemble

des 20 images de la collection MSTEx. La méthode proposée PRISM obtient les meilleures

performances sur la majorité des métriques indiquant une méthode qui généralise aux différentes

configurations d’images, avec notamment un score FM de 86.47%.

Tableau 4.2 Performances moyenne sur les 20 images MS de MSTEx

Method FM(%)↑ DRD(10-3)↓ NRM(10-2)↓ PSNR↑
Méthodes issues de domaines connexes

MSFormer 57.15 19.76 16.79 11.55

Endnet 61.23 32.20 14.08 11.87

CNNAEU 65.43 31.02 17.99 13.22

DAEU 71.49 12.33 14.88 14.50

OSPAEU 73.62 18.74 12.98 14.78

MTAEU 73.30 17.01 8.30 13.95

Méthodes pour les images de documents
SAE 64.98 9.94 14.33 13.45

SKKHM 71.78 11.09 13.37 14.35

Howe 76.96 6.63 8.94 14.94

GMM 80.72 5.12 10.42 16.05

ACE v1 83.85 4.12 9.11 -

MAONMF 85.09 3.59 7.52 -

ACE v2 85.15 3.66 8.29 -

VBONMF 85.70 3.55 6.31 17.12
PRISM 86.47 3.11 7.30 17.24

Pour mieux comprendre ces résultats moyens et évaluer la robustesse des différentes approches,

nous présentons dans les Tableaux 4.3 et 4.4, les résultats détaillés sur chaque image pour les

méthodes qui ont pu être réimplémentées. Comme observé sur ces deux tableaux, une grande

variabilité peut-être observée dans les résultats pour chaque méthode.
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Tableau 4.3 Comparaison de différentes méthodes sur les images de MSTEx1. Les

meilleurs résultats sont montrés en gras noir, les deuxièmes meilleurs en gras bleu

Image Métrique
Méthodes

Howe SAE SKKHM GMM CNNAEU EndNet DAEU OSPAEU MSFormer MTAEU Ours

z64

FM↑ 82.71 72.43 82.21 87.28 64.53 76.34 85.88 84.43 66.11 85.24 86.60
DRD↓ 4.48 9.24 3.62 3.14 6.01 7.97 3.31 3.46 10.76 3.84 2.90
NRM↓ 4.14 3.70 12.24 5.97 24.15 4.59 7.79 9.42 10.56 5.10 7.80

PSNR↑ 15.44 12.66 16.22 17.25 13.72 13.63 16.84 16.52 11.96 16.32 17.00

z37

FM↑ 84.80 75.21 87.22 83.74 78.15 84.25 88.20 86.72 68.03 86.44 88.73
DRD↓ 4.37 10.13 2.98 3.86 5.13 3.49 2.69 3.06 15.46 3.90 2.62
NRM↓ 5.98 5.47 9.54 12.43 16.51 12.93 9.27 10.03 8.34 5.36 7.59

PSNR↑ 13.63 10.74 15.07 14.17 12.98 14.32 15.36 14.84 9.19 14.14 15.38

z35

FM↑ 70.30 66.14 91.07 78.75 78.14 81.78 92.15 89.97 82.22 91.14 91.80
DRD↓ 17.33 10.01 2.32 5.99 8.32 7.88 2.20 2.70 5.49 2.59 2.06
NRM↓ 4.55 22.86 3.73 15.06 7.45 2.53 4.02 7.38 8.00 3.04 4.77

PSNR↑ 11.67 13.32 18.22 15.04 13.80 14.31 18.76 17.94 15.04 18.08 18.63

z80

FM↑ 78.97 79.62 71.61 82.45 65.27 62.72 64.18 94.46 69.93 81.55 94.39
DRD↓ 10.18 6.83 10.51 4.63 11.61 11.54 8.89 1.67 16.53 9.23 1.71
NRM↓ 4.91 9.29 15.87 14.45 21.53 23.87 26.35 3.43 6.17 4.77 2.29
PSNR↑ 13.69 14.37 13.21 15.89 12.63 12.53 13.38 20.20 11.49 14.32 20.03

z38

FM↑ 83.74 13.37 82.17 55.26 87.72 86.42 74.31 87.23 68.09 85.59 88.14
DRD↓ 3.91 14.73 3.92 14.36 2.98 2.94 5.08 2.96 11.58 4.15 2.71
NRM↓ 5.08 46.45 13.35 26.04 7.38 9.81 20.26 7.53 14.52 3.85 6.67

PSNR↑ 13.47 10.29 14.78 12.27 15.70 15.70 13.40 15.70 11.55 15.14 16.12

z68

FM↑ 83.84 72.41 84.45 81.28 69.43 70.63 80.31 81.03 62.09 88.44 90.37
DRD↓ 5.09 9.31 4.34 6.24 7.00 9.73 4.82 5.38 14.17 2.57 2.05
NRM↓ 2.91 5.59 5.94 6.71 13.81 10.22 12.20 10.78 11.91 4.53 3.62
PSNR↑ 16.50 12.73 17.10 15.62 13.61 13.23 15.11 15.45 11.29 18.45 19.25

z70

FM↑ 85.34 57.59 79.67 77.53 59.31 79.98 75.18 74.73 48.13 85.10 91.99
DRD↓ 4.64 14.52 5.64 5.34 5.48 4.23 7.81 7.63 13.17 3.15 1.99
NRM↓ 3.98 14.53 8.70 13.67 28.29 13.14 13.35 14.16 30.49 8.08 3.96
PSNR↑ 16.04 12.33 15.36 15.17 13.28 16.27 14.02 14.35 11.90 17.42 19.74

z76

FM↑ 90.18 54.15 73.45 63.81 82.18 86.94 73.70 68.57 48.12 88.39 92.82
DRD↓ 2.48 20.11 6.72 10.79 4.24 3.26 9.46 19.53 21.08 2.89 1.82
NRM↓ 6.43 22.74 17.35 29.52 8.82 5.49 10.77 6.82 21.56 3.57 3.07
PSNR↑ 16.72 10.83 14.31 12.56 16.19 17.26 13.81 11.81 11.07 17.84 19.35

z82

FM↑ 78.12 80.47 76.47 86.00 62.86 73.99 77.09 77.28 77.33 86.74 88.86
DRD↓ 7.29 8.70 6.26 3.60 6.36 8.63 5.85 25.79 7.16 3.78 2.59
NRM↓ 6.35 2.91 10.72 8.68 21.05 6.31 15.06 2.90 12.69 6.02 5.16

PSNR↑ 14.02 13.77 14.38 16.50 13.27 13.88 14.64 10.96 13.65 16.80 17.91

z58

FM↑ 72.33 67.94 84.04 80.28 77.30 82.45 87.71 82.49 77.74 88.80 88.75
DRD↓ 10.55 10.18 4.15 5.68 5.02 5.10 3.04 4.74 8.38 2.94 2.71
NRM↓ 7.24 13.72 9.46 12.54 17.03 7.68 7.61 11.71 7.02 5.23 4.99
PSNR↑ 12.92 13.20 16.48 15.35 15.22 15.97 17.28 15.65 14.11 17.42 17.70

Note : FM = F-Measure, DRD = Distance Reciprocal Distortion, NRM = Negative Rate Metric, PSNR =

Peak Signal-to-Noise Ratio. ↑ indique une valeur optimale élevée, ↓ indique une valeur optimale basse.
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Tableau 4.4 Comparaison de différentes méthodes sur les images de MSTEx2. Les

meilleurs résultats sont montrés en gras noir, les deuxièmes meilleurs en gras bleu

Image Métrique
Méthodes

Howe SAE SKKHM GMM CNNAEU EndNet DAEU OSPAEU MSFormer MTAEU Ours

z27

FM↑ 78.57 49.24 70.59 81.67 64.26 79.92 80.56 79.73 72.64 77.86 82.14
DRD↓ 6.96 9.73 10.35 4.86 8.08 6.04 5.40 5.32 9.38 6.22 5.28
NRM↓ 10.20 33.29 14.50 11.67 24.56 11.01 11.90 13.51 11.95 13.90 8.90
PSNR↑ 12.44 10.59 10.99 13.57 11.26 12.82 13.13 13.12 10.98 12.64 13.23

z31

FM↑ 66.22 63.43 59.34 86.25 51.15 54.68 56.61 68.78 44.69 57.50 86.82
DRD↓ 12.48 14.52 13.01 2.77 12.10 12.76 6.36 4.30 16.70 21.53 2.41
NRM↓ 9.29 8.64 14.23 5.15 25.51 22.32 30.10 23.52 25.76 5.92 8.90

PSNR↑ 14.45 13.82 14.12 19.21 13.84 13.93 15.88 16.92 12.64 12.31 13.22

z43

FM↑ 68.05 70.55 50.01 81.00 57.97 54.53 60.49 60.47 51.49 64.71 81.75
DRD↓ 10.78 11.74 13.56 4.56 19.03 12.33 10.97 11.66 20.04 11.26 3.07
NRM↓ 13.33 6.53 27.58 9.14 11.96 25.06 21.43 20.38 18.05 16.69 10.90

PSNR↑ 13.39 13.17 12.19 16.08 11.10 12.48 12.99 12.81 10.65 13.10 16.44

z582

FM↑ 19.93 7.21 18.13 79.09 73.33 17.05 70.26 15.98 43.16 18.91 83.12
DRD↓ 11.51 12.19 71.34 4.71 7.37 173 5.05 141 12.95 149 3.44
NRM↓ 44.38 48.13 36.54 11.21 10.29 26.73 22.54 33.31 32.19 24.05 11.10
PSNR↑ 13.42 13.19 6.89 16.85 15.14 3.05 16.20 3.92 12.91 3.68 17.82

z592

FM↑ 81.53 78.43 72.92 86.46 80.72 16.87 59.90 80.85 60.97 67.52 86.50
DRD↓ 5.51 5.69 10.08 3.19 4.49 124 6.34 4.87 11.74 14.50 2.90
NRM↓ 6.42 8.94 7.09 4.67 9.53 32.92 28.50 10.58 16.91 5.45 7.80

PSNR↑ 16.95 16.36 14.79 18.40 16.95 4.51 15.28 17.11 13.41 13.34 18.60

z65

FM↑ 84.35 81.56 74.05 82.27 47.79 63.71 29.09 59.86 55.02 71.48 84.06
DRD↓ 4.21 4.35 6.55 4.45 9.02 16.94 86.93 21.94 20.62 10.72 4.07
NRM↓ 6.68 6.27 14.61 9.28 33.33 8.67 21.1 8.11 14.63 9.54 7.40

PSNR↑ 15.96 15.01 14.03 15.58 12.27 10.84 4.11 9.98 9.08 12.65 15.82

z802

FM↑ 81.28 62.04 81.52 92.73 7.77 34.43 68.72 88.02 37.76 56.86 91.57
DRD↓ 2.35 20.57 5.25 1.53 443.71 81.81 15.18 2.92 53.5 26.96 1.78
NRM↓ 7.31 4.39 10.28 4.12 46.71 9.48 3.46 6.53 11.6 4.42 4.38

PSNR↑ 17.87 13.68 18.76 22.77 0.72 7.92 14.79 20.46 9.61 12.55 21.9

z822

FM↑ 84.64 81.67 79.09 78.26 76.64 23.95 84.98 75.11 38.99 83.61 83.7

DRD↓ 2.64 3.42 3.93 4.41 4.06 94.93 2.86 3.87 13.55 2.73 2.90

NRM↓ 10.41 9.44 14.13 13.24 15.53 19.05 8.46 19.28 33.28 11.99 9.60

PSNR↑ 19.01 18.12 17.96 17.63 17.36 6.25 18.92 17.52 13.16 18.87 18.64

z90

FM↑ 84.64 68.38 51.36 83.77 45.64 49.98 41.75 54.59 26.58 47.94 83.2

DRD↓ 2.64 7.72 26.81 4.68 41.21 24.8 52.94 24.47 106.5 40.46 4.13
NRM↓ 10.41 18.74 15.43 7.75 12.35 19.87 10.29 14.70 16.47 9.31 9.22
PSNR↑ 13.86 15.51 11.67 18.01 10.03 11.93 8.98 12.08 5.96 10.12 17.89

z92

FM↑ 72.11 63.88 69.98 69.01 75.59 54.98 76.65 81.64 61.55 71.27 80.44
DRD↓ 8.68 9.55 10.74 10.09 5.44 25.79 7.56 4.06 16.53 11.01 4.61
NRM↓ 10.46 17.81 8.93 10.47 14.59 9.42 6.39 9.71 10.85 6.18 8.5

PSNR↑ 12.96 11.49 11.59 11.58 13.5 8.19 12.62 14.52 9.78 11.38 14.02

Note : FM = F-Measure, DRD = Distance Reciprocal Distortion, NRM = Negative Rate Metric, PSNR =

Peak Signal-to-Noise Ratio. ↑ indique une valeur optimale élevée, ↓ indique une valeur optimale basse.
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L’analyse de ces tableaux révèle plusieurs observations importantes. Premièrement, on constate

que la collection MSTEx2 présente des défis significativement plus importants que MSTEx1. La

plupart des méthodes montrent une dégradation notable de leurs performances sur MSTEx2, avec

des cas extrêmes comme l’image z582 où EndNet, OSPAEU, MTAEU et même Howe obtiennent

des valeurs catastrophiques, indiquant un échec quasi-total de la binarisation. De manière

surprenante, GMM constitue une exception notable, maintenant des performances relativement

stables entre les deux collections et obtenant même certains de ses meilleurs résultats sur MSTEx2

(FM de 92.73% sur l’image z802). La méthode de Howe illustre parfaitement le problème de

variabilité des performances. Bien qu’elle obtienne d’excellents résultats sur certaines images

(z822 avec un FM de 84.64% et un DRD de 2.64×10−3), elle échoue complètement sur d’autres,

comme z31 où son FM chute à 66.22% avec un DRD élevé de 12.48×10−3. Cette inconsistance

rend certaines méthodes peu fiables face aux variations des documents inhérentes à leur nature.

Parmi les méthodes basées sur les auto-encodeurs, MTAEU se distingue comme étant la plus

performante, obtenant régulièrement des résultats compétitifs. Par exemple, sur l’image z68,

MTAEU atteint un FM de 88.44% avec un excellent DRD de 2.57×10−3, surpassant toutes

les autres approches d’apprentissage profond. Cependant, même MTAEU présente une forte

variabilité, avec des échecs notables sur certaines images difficiles de MSTEx2.

En contraste, notre méthode PRISM démontre une remarquable stabilité à travers l’ensemble

des images. Elle obtient systématiquement des performances parmi les meilleures sur chaque

image, avec des résultats dépassant tous le seuil de 80% en FM. Sur les 20 cube MS testés,

PRISM se classe première ou deuxième pour la métrique FM dans 17 cas, et maintient toujours

un DRD inférieur à 5.28×10−3. Cette constance, reflétée dans les métriques moyennes, confirme

la robustesse de notre approche face à la variabilité des contenus manuscrits, quelle que soit sa

structure spatiale, l’âge du document, ou son état de dégradation.



91

4.1.4 Résultats qualitatifs

L’analyse qualitative présentée dans la Figure 4.1 révèle des différences marquantes entre les

performances visuelles des différentes méthodes sur l’image z31 de MSTEx-1. Cette image,

particulièrement représentative des défis rencontrés dans l’extraction de texte manuscrit, permet

d’observer concrètement les limitations et avantages des différentes approches.

(a) 𝑧31 (b) GT (c) Howe (d) VBONMF

(e) OSPAEU (f) MA-ONMF (g) GMM (h) PRISM

Figure 4.1 Composantes de texte extraites par différentes méthodes, classées par score

FM, sur l’image z31 de MSTEx-1. Visualisation suivant Rahiche & Cheriet (2021, 2022)

L’image en pseudo-couleur (a) ainsi que la vérité terrain associée (b) illustrent la complexité de la

tâche. Les caractères manuscrits présentant des variations d’épaisseur, et différentes connexions

entre lettres. Un tampon des archives nationales a aussi été ajouté sur le texte, rendant la tâche

de segmentation encore plus difficile. La méthode de Howe (c) présente des résultats décevants

sur cette image, confirmant les observations quantitatives précédentes. L’extraction apparaît

incomplète, avec le tampon qui n’est pas séparé du texte et de l’arrière-plan. Cette dégradation

visuelle explique directement le score FM particulièrement faible de 66.22% obtenu sur cette

image, illustrant parfaitement les problèmes de robustesse de cette approche. VBONMF (d)

ne montre pas d’amélioration notable par rapport à Howe sur cette image, bien que présentant

des résultats moyens plus haut sur MStex. La méthode ne réussit pas à différencier le tampon

du texte. Sur cette image, OSPAEU (e) obtient les meilleurs résultats parmi les méthodes AE

ré-implémentées. Cela révèle les manques inhérents aux méthodes d’apprentissage profond

se basant seulement sur les pixels. La méthode parvient à distinguer le tampon du texte, mais
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a plus de mal à bien identifier les bordures du texte ainsi que les traits plus fins, rendant la

lecture plus difficile. MA-ONMF (f) démontre une performance intermédiaire intéressante.

L’extraction préserve mieux la connectivité des traits manuscrits que les méthodes précédentes,

mais présente encore des difficultés dans la zone sous le tampon. On observe une tendance à

lisser excessivement certains détails fins, ce qui peut compromettre la lisibilité de caractères

particulièrement stylisés ou dégradés. La méthode GMM (g) surprend par sa robustesse relative

sur cette image difficile. L’approche statistique semble bien adaptée à la nature de la distribution

des intensités dans cette image, résultant en une extraction relativement propre et cohérente.

Cette performance visuelle corrobore les résultats quantitatifs favorables obtenus par GMM sur

certaines images de la collection MStex. Le seul défaut, consiste en une partie du tampon qui

n’est pas correctement discriminée, résultant en un score FM plus bas.

Figure 4.2 Décomposition de PRISM sur l’image z31 de MStex,

montrant le texte, le tampon et l’arrière-plan bien décomposé

Enfin, la méthode PRISM (h) se distingue nettement par la qualité de l’extraction obtenue. Le

résultat présente une remarquable fidélité à la vérité terrain, étant une des seules méthodes

à correctement séparer le tampon du texte. A la différence de OSPAEU et MA-ONMF, la

composante extraite préserve les détails fins et les traits manuscrits du texte. Les caractères

apparaissent alors nets et complets, améliorant la lisibilité du texte par rapport à d’autres

méthodes. Cette qualité visuelle supérieure explique directement les performances quantitatives

élevées et constantes de PRISM à travers l’ensemble des images testées. Comme montré sur la

Figure 4.2, la méthode proposée décompose l’image en trois composant distincts : le texte, le

tampon des archives ainsi que l’arrière plan. Cette analyse qualitative montre que la supériorité

quantitative de PRISM pour l’extraction de texte se traduit effectivement par une amélioration

visuelle de la décomposition, permettant une meilleur compréhension de l’image décomposée.
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4.2 Généralisation de l’approche à différentes configurations d’images multibandes

4.2.1 MSBin : Jeu de données MS de documents anciens

Afin d’évaluer la capacité de généralisation de notre méthode PRISM, il est crucial de la tester

sur des configurations d’acquisition multispectrale variées. En effet, les systèmes d’imagerie

diffèrent considérablement en termes de nombre de bandes spectrales, de leur répartition et de

la plage spectrale couverte. Cette variabilité représente un défi majeur pour les méthodes de

traitement, qui doivent s’adapter à des caractéristiques spectrales hétérogènes tout en maintenant

leurs performances. Nous évaluons donc notre approche sur la collection MSBin, qui présente

une configuration spectrale distincte avec 12 bandes étroites au lieu de 8, permettant ainsi de

vérifier la robustesse de PRISM face à différentes modalités d’acquisition. Cette collection

comprend 30 cubes multispectraux acquis à l’aide d’une caméra achromatique Phase One IQ260

d’une résolution de 60 mégapixels, capturés sur douze bandes spectrales étroites s’étendant de

365 nm à 940 nm (Hollaus et al., 2019). Celles-ci sont montrées sur le Tab. 4.5.

Tableau 4.5 Détail des bandes spectrales utilisées pour le jeu de données MSbin

Bande F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
Longueur d’onde (nm) Toutes 365 450 465 505 535 570 625 700 780 870 940

Filtre de lumière Blanc UV · · · Visible · · · IR 1 IR 2 IR 3

Temps d’exposition (s) 0.066 10 0.125 0.1 0.05 0.066 0.166 0.033 0.166 0.2 0.2 0.5

Les images proviennent de la numérisation de deux manuscrits : le Bitola-Triodion ABAN

38 (livre BT) et l’Enina-Apostolus NBMK 1144 (livre EA), ce dernier présentant un état de

dégradation sévère. La vérité terrain classe chaque pixel en trois catégories : texte au premier

plan (encre ferro-gallique), arrière-plan, ou régions incertaines jugées trop complexes pour une

annotation manuelle (ces dernières étant exclues de l’évaluation). Certaines images comportent

également un second plan textuel à l’encre rouge. Ces images possèdent une taille spatiale et

spectrale plus élevé que celles de la collection MStex.
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4.2.2 Résultats quantitatifs

Le Tableau 4.6 présente les performances moyennes des différentes méthodes sur l’ensemble des

30 cubes MS de la collection MSBin. La méthode proposée obtient les meilleures performances

sur l’ensemble des métriques, avec notamment un score FM de 82.57%, confirmant sa capacité

à traiter efficacement des documents manuscrits aux caractéristiques variées.

Tableau 4.6 Performances moyenne sur les 30 cubes MS de MSBin

Method FM(%)↑ DRD(10-3)↓ NRM(10-2)↓ PSNR↑
Méthodes issues de domaines connexes

CNNAEU 67.10 39.52 19.35 10.32

Endnet 67.62 41.71 20.61 10.57

MSFormer 69.87 46.62 12.55 13.18

OSPAEU 71.59 52.90 13.14 11.77

DAEU 72.68 29.73 16.50 11.77

MTAEU 74.02 34.25 12.81 11.35

Méthodes pour les images de documents
MAONMF - - - -

VBONMF - - - -

SAE 40.83 50.86 32.42 8.95

Howe 41.50 38.68 31.27 10.48

SKKHM 73.42 26.78 17.43 11.74

GMM 80.00 20.35 - 13.18

ACE v2 81.25 20.80 - 13.27

ACE v1 81.28 22.03 - 13.28
PRISM 82.57 18.71 10.45 13.74

Parmi les méthodes spécifiquement conçues pour les documents, on observe une grande

disparité de performances. SAE et Howe, deux approches classiques, obtiennent des résultats

catastrophiques avec des scores FM de 40.83% et 41.50% respectivement, suggérant leur

inadéquation face à la complexité des manuscrits de MSBin. Ces échecs sont particulièrement

visibles dans leurs métriques NRM dépassant 30 ×10−2, témoignant d’une incapacité à préserver

correctement les structures du texte. Les résultats pour les méthodes MAONMF et VBONMF,

qui obtiennent de bons résultats sur MStex, n’ont pas pu être produits en raison des difficultés

computationnelles, renforçant l’idée que MSBin représente un défi significatif.
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La plupart des méthodes obtiennent des résultats inférieurs à ceux du jeu de données MStex.

En revanche, les méthodes proposant une décomposition parviennent à maintenir des résultats

élevés en comparaison avec les méthodes de binarisation uniquement. C’est le cas de SKKHM,

qui, bien qu’obtenant des résultats plus bas, affiche un score FM de 73,42 % supérieur à celui de

MStex (71,78 %). GMM semble indiquer une certaine robustesse, avec 80 % de FM sur les deux

collections. Les deux versions d’ACE obtiennent des performances quasi identiques (FM de

81,25 % et 81,28 %), plus basses que pour MStex. Étrangement, ACE v2 obtient des résultats

légèrement plus bas que ACE v1 pour le score FM et le PSNR, mais pas pour la DRD. Cela

semble démontrer que l’ensemble de ces métriques doit être pris en compte pour mieux évaluer

la qualité du texte extrait, chacune étant complémentaire. Cela suggère également une grande

variabilité dans les images MS, chacune présentant ses propres défis.

Les méthodes issues de domaines connexes, bien qu’ayant démontré leur efficacité sur d’autres

types de données, peinent manifestement à s’adapter aux spécificités des manuscrits historiques.

Cependant, malgré des paramètres qui n’ont pas été adaptés, elles obtiennent des résultats

similaires, indiquant une bonne généralisation des méthodes d’apprentissage profond de

démélange HS. Étonnamment, MS Former est la méthode dont les résultats augmentent

le plus entre les deux jeux de données. Cela peut s’expliquer par le fait que le texte de MSBin

est significativement plus large. Il est donc mieux traité par l’architecture transformer qui prend

des patchs en entrée, ce qui permet d’obtenir une plus grande précision.

Enfin, notre méthode PRISM démontre sa supériorité en surpassant toutes les approches

concurrentes sur l’ensemble des métriques. Avec un FM de 82.57%, elle dépasse d’environ

1.3 points de pourcentage les meilleures méthodes alternatives. Plus significatif encore, elle

obtient simultanément le meilleur DRD (18.71 ×10−3) et le meilleur NRM (10.45 ×10−2), ce

qui témoigne de sa capacité à équilibrer précision de détection et qualité visuelle. Le PSNR de

13.74, supérieur de 0.46 points à ACE v1, confirme la qualité globale supérieure des images

binarisées. Cette domination sur l’ensemble des métriques, contrairement aux autres méthodes

qui excellent généralement sur certains aspects au détriment d’autres, souligne la robustesse et

l’équilibre de notre approche face à la diversité des défis présents dans la collection MSBin.
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4.2.3 Résultats qualitatifs

L’analyse qualitative présentée dans la Figure 4.3 offre une perspective complémentaire sur les

performances des différentes méthodes d’extraction de texte manuscrit sur la base de données

MSBin. Cette image, présente plusieurs défis caractéristiques : un texte manuscrit avec deux

différentes couleurs, un support papier avec des variations d’intensité, ainsi qu’une petite

déchirure ajoutant un fond complexe visible en haut à gauche dans l’image pseudo-couleur (b).

(a) Cube MS (b) Image en pseudo-coleurs

(c) OSPAEU (d) Howe (e) MS-Former

(f) SKKHM (g) Endnet (h) DAEU

(i) MTAEU (j) CNNAEU (k) PRISM

Figure 4.3 Décomposition de PRISM sur l’image BT56 de MSBin

Le cube MS (a) ainsi que l’image en pseudo-couleurs correspondante, révèlent la richesse de

l’information spectrale disponible, que les différentes méthodes exploitent avec des degrés de

succès variables. Parmi ces différentes méthodes, toutes ont vu leur rang fixé à 4 à l’exception

de Howe (d), qui peut seulement identifier un texte et un arrière-plan, ainsi que de MS-Former

(e), et de PRISM (k), qui proposent une sélection du rang dynamique.
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On peut alors observer plusieurs comportements pour la décomposition du texte. Certaines

méthodes réussissent à faire la distinction entre le texte principal et la deuxième encre, comme

Howe, SKKHM, DAEU ou PRISM, tandis que les autres ne distinguent pas ces encres différentes.

OSPAEU (c) produit une extraction relativement propre mais ne distingue que deux composantes

importantes. Cette limitation suggère une capacité insuffisante du modèle à discriminer finement

les signatures spectrales. La méthode de Howe (d), bien qu’étant une approche classique

respectée, montre ici ses limites face à la complexité spectrale de l’image. L’extraction apparaît

incomplète avec une perte significative de détails, la perte de la distinction de la deuxième

encre et une confusion entre certaines parties du texte et de l’arrière-plan, confirmant les

observations faites sur MSTEx. MS-Former (e) démontre les défis d’une architecture transformer

pour les tâches de segmentation fine. Les caractères extraits sont grossiers, et des artefacts

d’illuminations sont identifiés comme des composants à part entière, suggérant que l’attention

multi-tête seule ne suffit pas à capturer toutes les nuances spectrales nécessaires à une séparation

optimale. SKKHM (f) présente une contamination similaire par les variations d’illuminations,

représenté par la composantes violette, illustrant les défis inhérents aux approches de clustering

appliquées aux données MS. Les méthodes basées sur les auto-encodeurs ; Endnet (g), DAEU

(h), MTAEU (i) et CNNAEU (j), montrent des performances variables. Endnet et MTAEU

souffrent particulièrement d’une mauvaise séparation spectrale, avec des composants extraits

qui ne sont pas interprétables, compromettant la lisibilité. CNNAEU présente un compromis

intéressant avec moins d’artefacts colorés mais ne réussit pas à distinguer les deux couleurs de

texte. DAEU offre une amélioration notable avec une extraction plus nette mais ne réussit pas à

différencier l’arrière-plan du texte principal (en vert).

Finalement, la méthode proposée PRISM (k) se distingue une fois de plus par la qualité de

l’extraction obtenue. Le texte apparaît net et complet, avec une séparation des deux couleurs du

texte. Parmi toutes les méthodes, PRISM est la seule à réussir à distinguer l’arrière-plan (en

violet) du texte principale. L’absence quasi-totale d’artefacts colorés et la préservation fidèle de

tous les détails du manuscrit, y compris les traits les plus fins et les variations d’intensité subtiles,

confirment la robustesse de l’approche proposée. Cette supériorité visuelle corrobore les résultats
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quantitatifs et démontre la capacité de PRISM à exploiter efficacement l’information MS pour

produire des décompositions de haute qualité et interprétables. L’avantage de la décomposition

par rapport à une approche de binarisation directe est illustré dans la Figure 4.4.

(a) Image pseudo-couleur (b) Texte binarisé par Howe (c) PRISM

Figure 4.4 Comparaison entre décomposition PRISM et binarisation seule (Howe) sur

l’image EA58, montrant l’avantage de la décomposition pour révéler les textes dégradés

La méthode de Howe, référence en binarisation MS, inverse les composantes en classifiant

l’arrière-plan comme texte. L’approche proposée réussit à identifier le texte, tout en proposant une

décomposition physiquement interprétable. Cette supériorité qualitative se traduit quantitativement

par un gain de performance de 28,4 points de FM, moyenné sur l’ensemble de MSBin et MSTex.

4.3 Application et validation sur des données hyperspectrales satellitaires

L’analyse comparative présentée dans les sections précédentes établit la supériorité de la méthode

PRISM dans le contexte de l’extraction de texte à partir d’images multispectrales, démontrant des

performances quantitatives et qualitatives supérieures aux approches concurrentes. Différentes

architectures hybrides de démélange HS ont aussi été testées en référence, réussissant à généraliser

sans adaptations des paramètres. Cette observation empirique conduit à une problématique

scientifique fondamentale concernant la proximité entre ces deux domaines : dans quelle mesure

une approche développée spécifiquement pour la séparation de composantes textuelles peut-elle

être généralisée aux problèmes classiques de démélange hyperspectral?
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Cette question de recherche trouve sa justification dans l’analyse des fondements théoriques

communs aux deux domaines. En effet, tant l’extraction de texte MS que le démélange HS

reposent sur le même cadre mathématique de séparation aveugle de source (SAS), formalisé par

le modèle linéaire de mélange (LMM). L’évaluation de PRISM sur des données HS constitue

donc une validation cruciale permettant d’établir la robustesse de l’algorithme face à des

caractéristiques spectrales différentes de celles des manuscrits. Cela pourrait démontrer une

généralisation au-delà du domaine d’application initial, soulignant sa force d’adaptation.

4.3.1 Initialisation par VCA

L’algorithme Vertex Component Analysis (VCA) est une méthode largement utilisée pour

extraire des signatures spectrales dans les données HS sous l’hypothèse de l’existence de «pixels

purs» (Nascimento & Dias, 2005). La VCA repose sur des projections itératives dans un espace

de dimension réduite, de façon à faire apparaître tour à tour les sommets (vertices) du simplexe

englobant les données. Concrètement, à chaque itération on projette l’ensemble des spectres le

long d’une direction aléatoire orthogonale au sous-espace déjà identifié, puis on sélectionne le

pixel extrême (maximum de la projection) comme nouvelle signature spectrale pure.

Initialiser les méthodes par des signatures spectrales extraites par VCA permet de placer le point

de départ de l’algorithme de démélange dans une configuration physiquement plausible, ce

qui accélère la convergence et réduit le risque d’être piégé dans un optimum local. Plusieurs

travaux ont montré que, comparé à une initialisation aléatoire ou fondée sur une simple réduction

de dimension (PCA, ICA), l’utilisation de VCA améliore significativement la précision de

l’estimation des abondances et est devenu un standard pour l’initialisation dans ce domaine.

Ainsi, pour l’application de PRISM aux images hyperspectrales, une étape d’initialisation par

VCA est ajoutée pour assurer à la fois la rapidité de convergence et la fiabilité des résultats, tout

en exploitant pleinement les hypothèses initiales propres à ce domaine.
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4.3.2 Jasper Ridge : Jeu de données de démélange HS

Le site de Jasper Ridge, situé en Californie du Nord, fournit une image hyperspectrale largement

utilisée pour évaluer les algorithmes de démélange spectral. L’acquisition a été réalisée à l’aide

d’un imageur Aisa Eagle, couvrant 224 bandes spectrales dans la gamme 400–1000nm, avec

une résolution spatiale de 100 × 100 pixels et une taille de pixel au sol d’environ 17m. Quatre

matériaux dominants sont annotés sur l’image observée : la forêt, l’eau, le sol nu et l’asphalte.

Ces classes servent de références pour valider la précision des cartes d’abondance estimées.

Figure 4.5 Décomposition de PRISM sur l’image HS de Jasper Ridge

La Figure 4.5 montre les cartes d’abondance extraites par PRISM pour chaque materiel, avec :

• Forêt : la zone boisée sur la rive gauche est clairement délimitée, avec un contraste élevé entre

la végétation dense (valeurs d’abondance élevées) et les zones non forestières (RMSE= 0.06).

• Eau : la rivière centrale apparaît avec une abondance très homogène et maximale, attestant

de la pureté spectrale de l’eau selon PRISM (RMSE= 0.22).

• Sol : les terrains dégagés environnants sont bien extraits, même dans les zones de transition

où le sol se mélange à la végétation (RMSE= 0.1049).

• Asphalte : les différentes routes est reconstituée avec précision, y compris ses bordures fines,

démontrant la capacité de PRISM à capturer des signatures discrètes (RMSE= 0.20).

La racine de l’erreur quadratique moyenne (RMSE) sur l’ensemble des classes est de 0.146, ce

qui se situe dans la plage basse des valeurs observées dans la littérature (entre [0.0838; 0.2943]).
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Les résultats qualitatifs et quantitatifs confirment ainsi l’adéquation des cartes d’abondance

produites par PRISM avec les annotations du sol, illustrant sa robustesse pour le démélange HS.

4.3.3 Urban : Jeu de données de démélange HS multi-composantes

Le jeu de données Urban est acquis par le capteur HYDICE au-dessus de la ville de Houston.

C’est un jeu de référence pour le domaine du démélange HS. Il se compose d’une image de

307 × 307 pixels, couvrant 210 bandes spectrales dans la gamme 400–2500 nm. Ce jeu de

données est caractérisé par une forte hétérogénéité spectrale et spatiale, notamment en raison

de la coexistence de matériaux aux signatures proches comme le béton, l’asphalte, les toits ou

la végétation. Une particularité intéressante de ce jeu de données réside dans la disponibilité

de plusieurs vérités terrain annotées, définissant trois scénarios de démélange correspondant

respectivement à 6, 5 ou 4 matériaux. Ces trois variantes permettent de tester la robustesse

des méthodes de démélange face à des définitions de classes plus ou moins précises, et offrent

une opportunité d’analyser l’adéquation du rang dynamique proposé par PRISM. Suivant la

méthode de Palsson et al. (2022), la RMSE entre les abondances générées et la référence GT

correspondante a été calculée, en retenant le meilleur résultat parmi dix exécutions indépendantes

afin d’atténuer les effets d’initialisation pour les trois scénarios. Dans cette configuration, pour

notre méthode, le rang minimal possible 𝑟𝑚𝑖𝑛 a été fixé à quatre pour chaque exécution, et les

cartes d’abondance correspondantes à chaque scénario GT ont été sauvegardées. Les résultats

sont présentés ci-dessous dans les Tab. 4.7, 4.8, et 4.9 et sur la Fig. 4.6.

Tableau 4.7 Comparaison quantitative avec les méthodes de démélange HS sur le jeu de

données Urban pour SIX éléments. Les meilleurs résultats en gras et les deuxièmes en bleu

Métrique Élément CNNAEU Endnet DAEU OSPAEU MTAEU PRISM

RMSE ↓

Asphalte 0.2270 0.1528 0.1322 0.2994 0.1517 0.1786

Herbe 0.3622 0.2141 0.2352 0.1782 0.1862 0.2080

Arbre 0.1972 0.0939 0.1492 0.1358 0.1152 0.1492

Toit 0.1252 0.1060 0.0915 0.1460 0.1152 0.0852
Sol 0.2096 0.2017 0.2195 0.2354 0.1395 0.1732

Métal 0.1710 0.2508 0.1606 0.0844 0.1808 0.1881

Moyenne 0.2154 0.1699 0.1647 0.1847 0.1515 0.1637
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6 matériaux
Asphalte Herbe Arbres Toit Sol Métal

PRISM

GT

5 matériaux
Asphalte Herbe Arbres Toit Sol

PRISM

GT

4 matériaux
Asphalte Herbe Arbres Toit

PRISM

GT

Figure 4.6 Évaluation qualitative de PRISM sur le dataset Urban pour 6, 5 et 4 matériaux :

chaque groupe commence par la décomposition proposée suivie de la ligne GT
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Tableau 4.8 Comparaison quantitative avec les méthodes de démélange HS sur le jeu de

données Urban pour CINQ éléments. Les meilleurs résultats sont en gras et les deuxièmes

meilleurs en bleu

Métrique Élément CNNAEU Endnet DAEU OSPAEU MTAEU PRISM

RMSE ↓

Asphalte 0.2499 0.1102 0.1266 0.3159 0.1295 0.2221

Herbe 0.2563 0.1688 0.1856 0.2064 0.1620 0.2113

Arbre 0.2022 0.1082 0.1169 0.1644 0.1105 0.1197

Toit 0.1212 0.0870 0.1022 0.1563 0.0693 0.0591
Sol 0.2641 0.1534 0.1815 0.2410 0.1157 0.2326

Moyenne 0.2187 0.1255 0.1426 0.2168 0.1117 0.1689

Tableau 4.9 Comparaison quantitative avec les méthodes de démélange HS sur le jeu de

données Urban pour QUATRE éléments. Les meilleurs résultats sont en gras et les

deuxièmes meilleurs en bleu

Métrique Élément CNNAEU Endnet DAEU OSPAEU MTAEU PRISM

RMSE ↓

Asphalte 0.2369 0.1084 0.1703 0.3028 0.1426 0.0948
Herbe 0.2756 0.1660 0.1678 0.2688 0.1346 0.1562
Arbre 0.2070 0.1019 0.0762 0.2134 0.0951 0.1252

Toit 0.1876 0.0845 0.0867 0.2876 0.0904 0.0560
Moyenne 0.2268 0.1152 0.1253 0.2682 0.1157 0.1081

PRISM démontre des performances compétitives par rapport aux méthodes de démélange HS

sur ce jeu de données, avec des résultats particulièrement solides pour les cartes d’abondance

représentant le toit. Bien que PRISM n’obtienne pas la RMSE la plus basse pour toutes les classes

de matériaux, il surpasse systématiquement la méthode de référence CNNAEU qui a servi de

base à son architecture. La RMSE plus élevée, notamment pour les composants Asphalte et Sol,

peut être attribuée à une similitude entre ces deux matériaux, PRISM classant certaines sentiers

hors route comme Asphalte plutôt que Sol. Cette confusion est atténuée lorsque ces composants

sont combinés en un seul matériau dans le dernier scénario, produisant même les meilleurs

résultats quantitatifs. PRISM, grâce à son adaptation dynamique du rang, est aussi la seule

méthode capable de générer les résultats pour les trois scénarios dans un même entraînement.

Cela démontre la force de son système d’élagage pour l’interprétation des décompositions.



104

4.4 Exploration d’applications aux Images RVB et monocanales

4.4.1 Problème du cas sous-déterminé

Dans le cadre de l’analyse d’images multibandes, comme celles issues de documents historiques,

on cherche souvent à retrouver un certain nombre de sources latentes à partir d’un nombre donné

de bandes spectrales. Ce problème devient particulièrement complexe lorsque le nombre

de sources à estimer dépasse le nombre de bandes disponibles : on parle alors de cas

sous-déterminé. Intuitivement, cela signifie que l’on dispose de moins d’informations que

de variables inconnues, ce qui rend le problème mal posé sans hypothèses ou contraintes

supplémentaires. Mathématiquement, on considère la matrice Y ∈ R
𝑏×𝑛
+ , où 𝑏 est le nombre

de bandes spectrales et 𝑛 le nombre de pixels. L’objectif est de factoriser cette matrice avec

U ∈ R
𝑏×𝑟
+ représentant les signatures spectrales estimées et V ∈ R

𝑟×𝑛
+ les cartes d’abondance

correspondantes. Lorsque le rang 𝑟 dépasse le nombre de bandes 𝑏 (i.e., 𝑟 > 𝑏), le système

devient sous-déterminé : le nombre d’inconnues est alors supérieur au nombre d’observations

disponibles par pixel.

Dans ce contexte, des techniques spécifiques deviennent indispensables pour restreindre l’espace

des solutions à une abondance parcimonieuse réaliste. Ce cadre souligne la nécessité du contexte

spatial : chaque pixel n’est plus considéré seul mais dépend aussi de ses différents voisins.

4.4.2 DIBCO : Jeu de données RVB de documents

Le concours Document Image Binarization Contest (DIBCO), propose un ensemble de données

annotées pour l’évaluation des méthodes de binarisation de documents. L’édition 2018 contient

des images de documents numérisés en couleur (RVB), dégradés par du bruit, des taches, des

plis ou une faible lisibilité, avec leurs masques binaires de vérité terrain correspondants. Les

documents incluent des textes manuscrits, imprimés ou mixtes, posant ainsi un défi varié pour

les méthodes de séparation de texte et de fond.
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Figure 4.7 Décomposition de PRISM sur l’image 1 de DIBCO 2018

Sur la Figure 4.7, on observe la décomposition obtenue par le modèle PRISM appliqué à la

première image du jeu de données DIBCO 2018. L’image originale (en haut à gauche) présente

un document manuscrit avec du texte encre noire, quelques annotations en encre plus claire

représentant le texte du verso de la feuille, des taches visibles, ainsi que différentes dégradations.

Les autres sous-figures montrent différentes composantes extraites par PRISM : certaines mettent

en évidence les structures textuelles principales (en haut centre), d’autres isolent des artefacts

ou des éléments de fond (en bas à gauche et au centre). La dernière image (en bas à droite)

illustre une abondance mettant en évidence le texte du verso, proche d’un masque de binarisation.

PRISM parvient ainsi à dissocier efficacement les différentes sources présentes dans l’image, en

particulier le texte manuscrit, malgré la présence de quelques dégradations visuelles.

Le Tableau 4.10 présente les performances de PRISM comparées à celles des autres participants

au concours DIBCO 2018, selon trois métriques de binarisation. PRISM se positionne nettement

au-dessus des méthodes classiques de binarisation RVB (Sauvola, Otsu) et dépasse la plupart

des méthodes du concours. La méthode gagnante combine plusieurs pré/post-traitements

(e.g., transformée bottom-hat, binarisation de Howe, et élimination du bruit) ainsi qu’un

pré-entraînement sur les images des éditions précédentes similaires (DIBCO 2017). Ces

choix lui assurent les meilleurs scores, au prix d’une approche spécialisée et dépendante des

données d’entraînement. En comparaison, PRISM, conçu comme une méthode générique et non

supervisée, propose une décomposition bout-en-bout qui extrait plusieurs composantes sans
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Tableau 4.10 Résultats de PRISM parmi les méthodes du concours DIBCO 2018

Methode FM(%)↑ DRD↓ PSNR↑
Méthodes du concours DIBCO 2018

Méthode gagnante (supervisée) 88.34 4.92 19.11
PRISM 76.87 8.99 15.34
Méthode 7 73.45 26.24 14.62

Méthode 2 70.01 17.45 13.58

Méthode 3b 64.52 16.67 13.57

PRISM s/ attention spatiale 56.96 19.13 12.53

Méthode 5 56.08 28.99 11.50

Méthode 6 46.35 24.56 11.79

Méthode 3a 43.36 40.80 10.42

Méthode 4 41.87 37.36 10.38

Binarisation classique RVB
Sauvola 67.81 17.69 13.78

Otsu 51.45 59.07 9.74

être spécifiquement adapté au dataset DIBCO. Malgré cette absence d’optimisation, PRISM

obtient la deuxième place, surpassant plusieurs approches spécialisées. Ces résultats soulignent

la robustesse de PRISM dans un contexte de décomposition sous-déterminée et l’apport du

contexte spatial (+19.9 FM) pour compenser la perte d’information spectrale (voir Tab. 4.10).

4.4.3 Différences entre images de documents et images naturelles

Les images de documents et les images naturelles représentent deux catégories d’images

fondamentalement distinctes, dont les caractéristiques influencent directement la conception et

l’efficacité des modèles de vision par ordinateur. Au-delà des différences évidentes de structure

et de contenu, la distinction la plus fondamentale entre les images de documents et les images

naturelles réside dans leurs propriétés statistiques. Alors que les images naturelles sont complexes,

organiques et riches en occlusions, les documents présentent une nature structurée et prévisible.

Cette différence est particulièrement manifeste dans le domaine de Fourier. Dans cet espace

fréquentiel, les images naturelles démontrent une décroissance en loi de puissance 1/ 𝑓 𝛼 (où

𝛼 est proche de 2), propriété universelle observable dans de nombreux phénomènes naturels.

Cela illustre et reflète l’organisation hiérarchique et fractale du monde naturel, où le spectre de

puissance suit exactement une relation linéaire en représentation log-log, caractéristique d’une
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distribution énergétique décroissant progressivement avec la fréquence. À l’opposé, les images

de documents, constituées d’artefacts répétitifs (e.g., lignes de texte équidistantes, caractères

uniformes, structures tabulaires), présentent un spectre marqué par des pics à différentes

fréquences spécifiques. Ces singularités spectrales correspondent directement aux périodicités

spatiales inhérentes à la mise en page documentaire, illustrées sur la Fig. 4.8.

Figure 4.8 Analyse spectrale de Fourier en représentation log-log pour une

image de document (a), et une image naturelle (b). L’ajustement linéaire (rouge)

révèle que seules les images naturelles suivent une loi de puissance

Cette distinction éclaire d’ailleurs les performances remarquables des petits CNN simples

comme PRISM, pour traiter les images de documents. Le théorème de convolution établit

que cette opération dans le domaine spatial équivaut à une multiplication dans le domaine de

Fourier. Les filtres convolutifs peuvent ainsi efficacement capturer les motifs périodiques et les

structures régulières caractéristiques des documents, expliquant pourquoi des architectures CNN

relativement peu profondes atteignent des bonnes performances. En revanche, la complexité

spectrale des images naturelles, avec leur continuum de fréquences et l’absence de régularités

exploitables, nécessite des architectures plus sophistiquées pour les décomposer adéquatement.
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4.4.4 Analyse des représentations d’encodeurs pré-entraînés comme cubes HS

Face aux limitations des CNN légers pour les images RVB naturelles, une approche alternative

pourrait consister à exploiter la puissance des architectures transformers pré-entraînées. Ces

modèles, ayant appris des représentations riches et complexes sur des millions d’images naturelles,

réussisent a encoder une compréhension profonde des structures visuelles. La Figure 4.9 illustre

la différence de qualité entre les représentations CNN et Dino v2 pré-entraînés. L’image originale

(a) montre des bananes sur un support en papier journal. Lorsqu’on applique un algorithme de

k-moyennes sur les embeddings produits par un CNN classique (b), la segmentation résultante se

limite principalement à une distinction basée sur les couleurs de l’image et des textures locales

sans cohérence sémantique claire. En revanche, le même algorithme appliqué aux embeddings

de Dino v2 (c) produit une segmentation nettement plus structurée et sémantiquement cohérente,

distinguant les différentes régions de l’image (i.e., bananes, journal, mangues, et arrière-plan).

Figure 4.9 Analyse comparative des représentations apprises sur des images

naturelles : (a) Image naturelle originale, (b) k-moyennes sur les embeddings d’un

CNN pré-entraîné montrant une segmentation limitée, (c) k-moyennes sur les

embeddings de Dino v2 démontrant une segmentation sémantique riche

L’idée est alors de traiter les représentations produite par des modèles ViT comme Dino v2,

en les considérant comme des cubes HS. Chaque dimension de l’embedding joue alors le

rôle d’une bande spectrale, permettant d’appliquer notre méthode PRISM directement sur

ces représentations de haut niveau. Ainsi, plutôt que d’analyser les pixels bruts d’images

naturelles complexes, PRISM peut opérer sur des représentations déjà enrichies sémantiquement,

combinant la simplicité de notre approche avec la puissance des ces architectures pré-entraînés.



109

Figure 4.10 Résultats de segmentation binaire obtenus par l’application de PRISM

sur les embeddings Dino v2. Chaque ligne présente une image naturelle sélectionnée

aléatoirement dans le dataset ImageNet, suivie de différents masques binaires extraits

automatiquement par la combinaison PRISM + Dino v2, illustrant la capacité de la

méthode à identifier diverses structures sémantiques sans supervision

La Figure 4.10 démontre l’application de PRISM sur les embeddings Dino v2 pour segmenter des

images naturelles complexes. Pour chaque image test (motos, antenne parabolique, bus scolaire,

poubelle, chien), PRISM extrait automatiquement plusieurs segmentations binaires pertinentes

sans aucune supervision. Les résultats révèlent que les embeddings Dino v2, traités comme

des cubes HS, contiennent une richesse d’information sémantique exploitable. Par exemple,

pour l’image des motards, PRISM parvient à isoler séparément les silhouettes des pilotes, les
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motos, et même des éléments d’arrière-plan. L’antenne parabolique est segmentée, distinguant la

parabole du support et du ciel. Pour le bus scolaire, la méthode sépare efficacement le véhicule

de son environnement urbain, tandis que la poubelle est extraite proprement de l’arrière-plan.

Particulièrement remarquable, la segmentation du husky démontre la capacité de PRISM à

capturer des formes complexes de différentes couleurs et textures. Cette diversité de segmentations

pertinentes, malgré quelques artefacts résiduels, est obtenue sans apprentissage spécifique sur ces

catégories d’objets, validant l’hypothèse que les représentations des transformers pré-entraînés

peuvent être efficacement exploités comme cube HS. Ainsi, cela pourrait ouvrir l’application du

modèle pour la segmentation d’images naturelles ou même pour l’analyse d’embeddings de ViT.

4.5 Synthèse expérimentale

Ces évaluations expérimentales ont permis de valider la capacité de généralisation de notre

approche hybride tout en révélant des pistes d’application qui dépassent le cadre initialement

envisagé pour ce mémoire. Sur les images multibandes de documents historiques, PRISM remplit

son objectif premier avec des performances supérieures aux méthodes existantes sur diverses

configurations spectrales. Ces résultats confirment l’adéquation de l’approche pour son domaine

d’application cible. L’application aux données HS de télédétection démontre qu’une architecture

unique peut alors traiter efficacement des données historiques et satellitaires, démontrant la

généralité du LMM pour le démélange spectral. Si la séparation de sources sur images RVB

de documents reste dans la continuité logique des travaux, l’application aux représentations

profondes de Dino v2 ouvre une perspective non anticipée. En traitant les embeddings comme

des cubes HS, PRISM produit des segmentations sémantiquement cohérentes sans apprentissage

spécifique des catégories d’objets. Bien que préliminaires, ces résultats suggèrent que PRISM

pourrait avoir des applications dans la vision par ordinateur moderne, pour l’interprétabilité

des représentions profondes ou même la génération non-supervisée d’annotations.

Au-delà de la validation des trois axes de recherche initiaux, ces expériences suggèrent donc

que l’architecture proposée possède une flexibilité qui pourrait s’étendre à d’autres domaines

nécessitant une décomposition interprétable de données multi-dimensionnelles.



CONCLUSION ET RECOMMANDATIONS

Ce mémoire s’est attaqué à un défi majeur de l’analyse d’images de documents historiques :

développer une méthode de décomposition d’images multispectrales qui soit à la fois performante,

automatique et interprétable. Face aux limitations des approches existantes, nous avons proposé

PRISM, une architecture hybride qui combine l’interprétabilité physique de la factorisation

matricielle non-négative avec la puissance de modélisation des réseaux de neurones convolutifs.

5.1 Synthèse des contributions

Les trois besoins fondamentaux identifiés en introduction : interprétabilité, amélioration des

performances et non supervision, ont guidé notre démarche de recherche. L’analyse systématique

de l’état de l’art (Chapitre 1) a confirmé ces besoins tout en révélant des lacunes spécifiques

suggérant qu’une approche hybride serait la plus prometteuse pour y répondre. Ces constats ont

structuré nos trois contributions principales :

1. Synergie NMF-Autoencodeur : Notre première contribution réside dans la conception

d’une architecture qui intègre naturellement les contraintes de non-négativité au sein d’un

autoencodeur convolutif. Cette approche a démontré sa capacité à préserver l’interprétabilité

physique des composantes extraites tout en bénéficiant de la modélisation spatiale et non-

linéaire des réseaux profonds. Les résultats expérimentaux ont confirmé que cette synergie

produit des décompositions plus précises et plus robustes que les méthodes traditionnelles,

avec des gains de performance dans les coûts de calculs.

2. Sélection automatique du rang : La deuxième innovation majeure concerne le mécanisme

d’estimation automatique du nombre de sources. En combinant une stratégie d’élagage

progressif avec le principe de Longueur de Description Minimale, nous avons développé

une approche qui libère l’utilisateur de la contrainte de spécifier a priori le nombre de

composantes. Cette automatisation représente une avancée significative vers une analyse

véritablement non supervisée des images de documents.
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3. Généralisation multi-domaines : La troisième contribution, qui s’est révélée plus riche

que prévu, concerne la capacité de généralisation de PRISM. Au-delà de son domaine

d’application initial, la méthode a démontré son efficacité sur des données hyperspectrales

de télédétection et sur des représentations profondes d’images naturelles.

5.2 Discussion et positionnement scientifique

Les résultats obtenus positionnent PRISM à l’intersection de plusieurs domaines de recherche.

D’une part, la méthode s’inscrit dans la continuité des travaux sur la NMF et sur le démélange

spectral, apportant une solution qui unifie les approches classiques des méthodes d’apprentissage

profond. D’autre part, l’application réussie aux représentations de transformers pré-entraînés

permet un lien entre les méthodes plus classiques et la vision par ordinateur moderne.

Cette approche arrive à un moment où l’interprétabilité redevient une priorité dans la recherche

en intelligence artificielle. Les architectures d’auto-encodeurs connaissent un regain d’intérêt

pour leur capacité à produire des représentations compactes et significatives. Cela reflète une

évolution plus large vers des approches génériques et adaptatives en traitement du signal. Alors

que les méthodes traditionnelles étaient souvent conçues pour des types de données spécifiques,

ce travail démontre qu’il est possible de développer des architectures suffisamment flexibles

pour s’adapter à des contextes variés tout en maintenant des garanties d’interprétabilité.

5.3 Limites et considérations pratiques

Malgré ces avancées, plusieurs limites doivent être soulignées. Premièrement, bien que le

mécanisme de sélection automatique du rang fonctionne de manière satisfaisante, il reste

perfectible pour les cas les plus complexes où des sources spectralement proches mais

sémantiquement distinctes coexistent. Dans ces situations, une validation experte demeure

précieuse pour affiner les résultats. Deuxièmement, bien que les cartes d’abondance et les
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signatures spectrales produites par PRISM soient physiquement cohérentes, leur interprétation

en termes de matériaux spécifiques (e.g., types d’encres, dégradations) requiert des connaissances

en sciences des matériaux et en conservation afin de s’assurer de la véracité. Troisièmement,

bien que PRISM présente une forte capacité de généralisation sans adaptation, il accuse

une legère baisse de performance en F-score lors du passage d’un cube multispectral à une

représentation RVB, réduisant la capacité de discrimination fine des matériaux. Pour compenser

cette perte d’information spectrale, plusieurs améliorations peuvent être envisagées, comme un

pré-entraînement sur des images RVB comme proposé par la méthode gagnante du concours

DIBCO, un ajustement du module d’attention pour mieux exploiter l’information spatiale

disponible, ou encore l’augmentation des données via l’ajout d’autres espaces de représentation

(e.g., HSL, LAB) pour simuler l’information spectrale manquante. Quatrièmement, le passage

à l’échelle pour des collections massives de documents reste un défi. Bien que PRISM soit

plus efficace que de nombreuses méthodes concurrentes, le traitement de milliers d’images

multispectrales haute résolution nécessite encore des ressources computationnelles significatives.

5.4 Perspectives futures

Les développements récents en intelligence artificielle, notamment l’émergence de modèles

fondationnaux comme Spectral-GPT (Hong et al., 2024) ou AlphaEarth Foundations (Brown

et al., 2025) par Google DeepMind, ouvrent des perspectives fascinantes pour l’analyse

HS. L’intégration de modèles comme PRISM dans un cadre plus large, où un modèle pré-

entraîné sur des millions d’images hyperspectrales pourrait être affiné spécifiquement pour des

besoins spécifiques représente une direction de recherche prometteuse. Cette approche pourrait

considérablement améliorer la généralisation tout en réduisant les besoins en données annotées.

Au-delà de la décomposition, l’intégration de modules d’identification et de localisation

automatique des matériaux constitue une extension naturelle de nos travaux. Si le problème de

passage à l’échelle est résolu, en combinant PRISM avec des modèles de langage multimodaux,
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il devient envisageable de développer des systèmes capables non seulement de décomposer les

images, mais aussi de générer automatiquement des rapports d’analyse compréhensibles par les

conservateurs et les historiens. Cette approche de type «Visual Question Answering» pour les

documents historiques pourrait révolutionner l’accès et l’exploitation des collections numérisées.

La capacité démontrée de PRISM à traiter les représentations de transformers suggère des

applications bien au-delà du patrimoine documentaire. En médecine, l’analyse d’images

multibandes pourrait bénéficier de cette approche pour la création automatique d’annotations.

En agriculture, la décomposition d’images satellitaires pourrait permettre un suivi des terrains et

des cultures. Plus généralement, toute application nécessitant une décomposition interprétable

de données multibandes pourrait potentiellement bénéficier de l’architecture proposée.

Ce mémoire a donc présenté PRISM, une nouvelle approche de NMF profonde pour la

décomposition non supervisée d’images multibandes qui combine performance et interprétabilité.

Les contributions techniques avec une architecture hybride, la sélection dynamique du rang, et

la généralisation multi-domaines, constituent des avancées pour le domaine. Plus important

encore, la flexibilité et la robustesse démontrées ouvrent la voie à différentes applications futures,

suggérant que les principes développés ici pourraient avoir un impact bien au-delà de l’analyse

de documents. Alors que nous entrons dans une époque où l’intelligence artificielle joue un rôle

croissant dans de nombreux domaines, des approches comme PRISM, qui maintiennent une

interprétabilité tout en automatisant des tâches complexes, représentent un équilibre prometteur

entre innovation technologique et préservation du contrôle expert sur les processus d’analyse.

L’ensemble des contributions présentées dans ce mémoire ont fait l’objet d’une publication

acceptée au workshop Vision Docs de la conférence ICCV en octobre 2025 :

Declercq, Rahiche & Cheriet (2025). PRISM : Pruning for Rank-adaptive Interpretable

Segmentation Model with Application to Historical Document Multiband Images. Proceedings

of the IEEE/CVF International Conference on Computer Vision Workshops, ICCV 2025.



ANNEXE I

L’IMAGERIE MULTIBANDE : PRINCIPES ET APPLICATIONS

La capture d’une image par un appareil photo numérique moderne, qu’il soit simple ou intégré

à des systèmes d’imagerie avancés, repose sur des principes physiques et mathématiques

fondamentaux. Comprendre son fonctionnement est une première étape essentielle pour aborder

l’imagerie multibande pour l’analyse de document historiques.

1. L’appareil photo comme système linéaire non négatif

L’appareil photo capture la lumière émise ou réfléchie par une scène grâce à son objectif, qui

projette une image de cette dernière sur un capteur photosensible. Ce capteur est une mosaïque

de millions de cellules appelés pixels, chacun disposant de photosite, convertissant les photons

incidents en une charge électrique. La charge électrique accumulée par chaque photodiode

est ensuite échantillonnée et quantifiée par un convertisseur analogique-numérique (CAN),

produisant une valeur numérique discrète proportionnelle à l’intensité lumineuse pour cet

emplacement. Ces valeurs brutes sont ensuite traitées par le processeur de la caméra (balance des

blancs, corrections gamma, etc.) avant d’être enregistrées. La Figure I-1 illustre ce processus.

Figure-A I-1 Schéma d’un appareil photo RVB
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Pour capturer la couleur, des filtres colorés (généralement rouge, vert et bleu) sont disposés

au-dessus de groupes adjacents de photodiodes, selon des motifs spécifiques visant à reproduire

l’appareil visuel humain. Chaque photosite mesure ainsi l’intensité lumineuse dans une bande

spectrale limitée par la transmission du filtre. La réponse spectrale du capteur décrit sa sensibilité

aux différentes longueurs d’onde du spectre électromagnétique. Un lien peut alors être fait entre

l’intensité lumineuse physique et la mesure numérique observée. En considérant les données

brutes (avant l’application de traitements non linéaires significatifs), l’appareil photo peut être

modélisé comme un système linéaire. Cela signifie que la valeur numérique 𝑃𝑘 enregistrée par

le k-ième type de capteur (par exemple, le canal rouge) est approximativement proportionnelle

à l’intégrale du produit de l’intensité lumineuse incidente 𝐿(𝜆) et de la réponse spectrale du

capteur 𝑆𝑘 (𝜆) sur l’ensemble des longueurs d’onde 𝜆 :

𝑃𝑘 ≈
∫

𝐿(𝜆)𝑆𝑘 (𝜆)𝑑𝜆. (A I-1)

Figure-A I-2 Efficacité quantique (EQ) du capteur RVB CMOS Canon Rebel

EOS. La sensibilité spectrale relative est directement liée à l’efficacité quantique 7.

Les lignes pointillées verticales marquent les pics de sensibilité (modes) pour

chaque canal colorimétrique. Graphique adapté de Pan et al. (2021)

Enfin, il est important de souligner que ce système présente une caractéristique fondamentale :

la non-négativité. En effet, l’intensité lumineuse, qu’elle soit mesurée en termes de radiance, de
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réflectance ou de quantité de photons, ne peut physiquement pas être négative ; l’absence totale

de photons représente la valeur minimale d’intensité, correspondant à zéro. Par conséquent,

les valeurs numériques enregistrées par le capteur, qui représentent ces intensités, doivent

également être non-négatives (supérieures ou égales à zéro). Cette propriété physique peut alors

être exploitée comme une contrainte avantageuse dans le cadre du traitement ultérieur d’images.

Cela permet notamment d’optimiser des algorithmes et de garantir l’interprétatibilité physique

des résultats lors d’opérations de filtrage, de reconstruction ou même de restauration d’images.

2. Couleurs et spectre éléctromagnétique

Figure-A I-3 Visualisation du spectre électromagnétique. Adapté d’une image de

l’Agence spatiale canadienne (2021)

La perception des couleurs est une expérience humaine fondamentale, mais elle ne représente

qu’une infime partie d’un vaste continuum d’énergies rayonnantes : le spectre électromagnétique,

illustré sur la Figure I-3. La richesse des couleurs que nous percevons n’est qu’une interprétation

par notre système visuel d’une petite fraction de ce spectre. Notre capacité à voir les couleurs

est due à la présence dans la rétine de l’œil de trois types de cellules photoréceptrices appelées

cônes, chacun sensible à une des principales gammes de longueurs d’onde du spectre visible

(Rouge, Vert et Bleu). Le cerveau reçoit les signaux électriques émis par ces trois types de cônes

et les combine pour produire la sensation d’une vaste palette de couleurs. Si les trois types

7 Rapport nombre d’électrons générés par photon incident (Rogalski, Adamiec & Rutkowski, 2000)
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de cônes sont stimulés de manière égale, nous percevons la lumière blanche. Il est important

de noter que les humains ne sont pas sensibles aux couleurs de manière égale, notre vision

étant particulièrement réceptive aux longueurs d’onde vertes-jaunes (autour de 555 nm) et

moins sensible aux extrémités du spectre visible. Cette caractéristique biologique explique

pourquoi les motifs de filtres pour les appareils numériques RVB, comme celui de Bayer, utilisent

généralement deux photodiodes vertes pour une rouge et une bleue (voir Figure I-1). Les capteurs

d’imagerie multibande, contrairement à l’œil humain, peuvent être conçus pour être sensibles à

des longueurs d’onde bien au-delà du spectre visible, notamment dans l’ultraviolet et le proche

infrarouge, voire l’infrarouge moyen et thermique. Cette capacité à voir l’invisible ouvre des

perspectives considérables pour l’analyse des matériaux et des phénomènes, car de nombreuses

substances possèdent des caractéristiques spectrales distinctives en dehors du domaine visible.

L’apparence des objets, et en particulier leur couleur, est déterminée par l’interaction entre la

lumière et la matière. Lorsqu’un rayonnement électromagnétique incident atteint un matériau,

trois phénomènes principaux peuvent se produire :

• L’absorption (𝛼) : L’énergie du rayonnement est absorbée par le matériau, souvent

transformée en chaleur. La sélectivité de l’absorption à certaines longueurs d’onde est

une cause majeure de la couleur des objets. Par exemple, un objet apparaît rouge parce qu’il

absorbe les longueurs d’onde bleues et vertes tout en réfléchissant les rouges.

• La réflexion (𝜌) : Le rayonnement est renvoyé par la surface du matériau. Elle peut être

spéculaire (comme un miroir, avec un angle de réflexion égal à l’angle d’incidence) ou diffuse

(la lumière est dispersée dans de multiples directions, typique des surfaces mates).

• La transmission (𝜏) : Le rayonnement traverse le matériau. Si le matériau est transparent

ou translucide, la lumière peut le traverser, subissant potentiellement une réfraction.

Pour une longueur d’onde donnée, la somme de ces trois proportions est égale à un,

𝛼 + 𝜌 + 𝜏 = 1, (A I-2)

conformément au principe de conservation de l’énergie. Ces interactions sont fondamentales car

elles sont à la base de la formation des signatures spectrales.
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3. La notion de signature spectrale et son importance

La notion de signature spectrale est fondamentale dans divers domaines scientifiques et techniques,

car elle permet d’identifier et de distinguer les matériaux en fonction de leur interaction unique

avec le rayonnement électromagnétique à différentes longueurs d’onde. Une signature spectrale

est définie comme le modèle de réflexion, d’absorption ou d’émission d’un matériau en fonction

de la longueur d’onde, qui est caractéristique de sa composition et de sa structure. Ce concept est

essentiel car il permet de reconnaître des matériaux spécifiques en comparant leur signature à des

références connues. Dans le domaine de la télédétection, par exemple, les signatures spectrales

sont utilisées pour analyser des images satellites et identifier des types de végétation, de sols ou

de minéraux, aidant à des applications comme la surveillance environnementale ou l’estimation

des rendements agricoles. Dans l’analyse d’œuvres d’art, la spectroscopie, qui repose sur les

signatures spectrales, est employée pour identifier les pigments et les liants utilisés, ce qui est

crucial pour l’authentification, la conservation et la compréhension des techniques artistiques.

La signature spectrale est un outil clé pour la caractérisation des matériaux dans des contextes

variés, alliant précision et non-invasivité, point essentiel pour l’étude de documents fragiles.

4. Images multispectrales (MS) contre hyperspectrales (HS)

L’imagerie multibandes exploite la manière dont les matériaux interagissent avec les diverses

régions du spectre électromagnétique. En addition aux images traditionnelles RVB, on distingue

principalement deux autres types d’images multibandes : les images multispectrales (MS) et les

images hyperspectrales (HS). La Figure 0.3 illustre un exemple de chacun de ces deux types.

Une image multispectrale (MS) est acquise en enregistrant l’information lumineuse dans

un nombre limité de bandes spectrales, typiquement entre 3 à 15 bandes. Ces bandes sont

généralement larges (i.e., plusieurs dizaines de nanomètres de largeur) et peuvent être espacées

à travers le spectre (p. ex., une bande dans le bleu, une dans le vert, une dans le rouge, et

quelques-unes dans le proche infrarouge). Elles ne fournissent donc pas une couverture continue

du spectre, mais permettent d’augmenter l’information disponible sur une scène observée.
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Une image hyperspectrale (HS), en revanche, capture l’information lumineuse dans un plus

grand nombre de bandes spectrales, allant de plusieurs dizaines à des centaines, voire même des

milliers. La caractéristique essentielle de ces bandes est leur faible épaisseur (souvent de l’ordre

de quelques nanomètres à une dizaine de nanomètres de largeur au maximum) ainsi que leur

contiguïté. Elles permettent ainsi d’obtenir un continuum de réflectance pour chaque pixel de

l’image, offrant une information spectrale beaucoup plus détaillée que pour les images MS.

La résolution spectrale, qui correspond à la capacité des bandes spectrales à discerner des

détails fins dans le spectre, est donc significativement plus élevée pour les images HS que pour

les images MS. En matière de résolution spatiale, un compromis doit souvent être établi. La

première option consiste à diviser le signal lumineux en de nombreuses bandes étroites, ce qui

se traduit par une réduction de la quantité d’énergie par bande. Cette approche nécessite alors

l’adoption d’une résolution spatiale plus grossière afin de maintenir un bon rapport signal/bruit

(HS). À l’inverse, la seconde option consiste à réduire le nombre de bandes et à les rendre

plus larges, permettant d’obtenir une résolution spatiale plus fine (MS). L’imagerie HS excelle

alors dans l’observation terrestre, notamment par le biais de la photographie aérienne et de

la télédétection. Grâce à la capture de centaines de bandes spectrales contiguës, les caméras

HS équipées sur satellites permettent de distinguer des matériaux aux signatures spectrales

presque identiques, essentiel pour l’étude des ressources naturelles et le suivi climatique à

grande échelle. La couverture de vastes territoires justifie le sacrifice en résolution spatiale,

susceptible de générer des pixels présentant des mélanges de matériaux. Cela est compensé par

la richesse spectrale permettant de caractériser en détail ces zones hétérogènes et par la moindre

pertinence des détails spatiaux fins (e.g., feuilles ou brins d’herbe individuels) dans l’observation

terrestre. D’un autre côté, l’imagerie MS est particulièrement utile pour l’analyse de documents,

permettant de distinguer encres et papiers ou de révéler des altérations grâce à quelques bandes

spectrales clés avec des images de hautes résolution. Cette haute résolution spatiale est cruciale

dans un contexte où chaque pixel compte, que ce soit pour la détection de détails fins comme les

traits de plume ou même pour observer en détails des altérations subtiles sur des documents.



ANNEXE II

DÉVELOPPEMENT MATHÉMATIQUE DE LA NMF

1. Fonctions de Coût

L’approximation dans l’équation 1.3 est obtenue en minimisant une fonction de coût qui mesure

la divergence ou l’erreur entre la matrice originale Y et sa reconstruction UV. Les deux fonctions

de coût les plus couramment utilisées sont :

1. L’erreur quadratique (basée sur la norme de Frobenius) :

min
U,V≥0

| |Y − UV| |2𝐹 = min
U,V≥0

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝑌𝑖 𝑗 − (𝑈𝑉)𝑖 𝑗 )2 (A II-1)

Cette fonction de coût est souvent choisie lorsque le bruit dans les données est supposé être

additif et gaussien.

2. La divergence de Kullback-Leibler (ou entropie relative généralisée) :

min
U,V≥0

𝐷𝐾𝐿 (Y| |UV) = min
U,V≥0

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(
𝑌𝑖 𝑗 log

𝑌𝑖 𝑗

(𝑈𝑉)𝑖 𝑗 − 𝑌𝑖 𝑗 + (𝑈𝑉)𝑖 𝑗
)

(A II-2)

Cette fonction est particulièrement adaptée lorsque les données peuvent être interprétées

comme des comptages (p. ex., issues de distributions de Poisson) avec des applications pour

le séquençage des génomes, l’extraction de texte ou le traitement de signaux audio.

Le choix de la fonction de coût peut influencer la nature des composantes extraites ainsi que la

rapidité de convergence. La norme de Frobenius est sensible aux grandes valeurs, tandis que la

divergence de Kullback-Leibler peut mieux gérer les données avec une grande plage dynamique.

Pour les données de réflectance MS, le bruit peut avoir des caractéristiques complexes, et le

choix optimal de la fonction de coût peut dépendre de l’application spécifique et des propriétés

du bruit.



122

2. Algorithmes d’Optimisation

La minimisation de ces fonctions de coût sous les contraintes de non-négativité pour W et H est

un problème d’optimisation non convexe, ce qui signifie qu’il peut exister de multiples minima

locaux. Les algorithmes les plus répandus pour résoudre ce problème sont itératifs :

1. Règles de mise à jour multiplicatives (Multiplicative Update - MU) : Proposées initialement

par Lee et Seung, ces règles consistent à mettre à jour alternativement U et V en utilisant

des multiplications matricielles qui garantissent le maintien de la non-négativité à chaque

itération. Elles sont relativement simples à implémenter et ont été prouvées comme

convergeant vers un minimum local de la fonction de coût choisie (Lee & Seung, 2000).

2. Moindres Carrés Alternés (Alternating Least Squares - ALS) : Cette approche consiste

à fixer alternativement l’une des matrices et à résoudre un problème de moindres carrés

non-négatifs pour l’autre. Ce processus est répété jusqu’à convergence (Kim & Park, 2007).

3. Méthodes de gradient projeté : Ces méthodes utilisent des techniques de descente de

gradient pour minimiser la fonction de coût, en projetant à chaque étape les solutions sur

l’ensemble des matrices non-négatives (Lin, 2007).

Le principe commun est d’optimiser U and V alternativement, l’optimisation simultanée étant

non convexe :

min
𝑈≥0

‖Y − UV‖2
𝐹 et min

𝑉≥0
‖Y − UV‖2

𝐹 (A II-3)

Les Mises à Jour Multiplicatives (MU) de Lee et Seung, dérivées des conditions Karush-

Kuhn-Tucker (KKT), sont particulièrement populaires. Pour 𝐷𝐹 = 1
2
‖𝑌 −𝑈𝑉 ‖2

𝐹 , les conditions

KKT impliquent :

U ≥ 0, V ≥ 0, (A II-4)

∇𝑈𝐷𝐹 ≥ 0, ∇𝑉𝐷𝐹 ≥ 0, (A II-5)

U � ∇𝑈𝐷𝐹 = 0, V � ∇𝑉𝐷𝐹 = 0 (A II-6)
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Avec les gradients :

∇𝑈𝐷𝐹 = UVV𝑇 − YV𝑇 (A II-7)

∇𝑉𝐷𝐹 = U𝑇UV − U𝑇Y (A II-8)

On obtient les règles de mise à jour (où � est le produit Hadamard) :

U = U � YV𝑇

UVV𝑇
(A II-9)

V = V � U𝑇Y
U𝑇UV (A II-10)

L’algorithme de Lee et Seung (voir Algorithme II-1), consiste à appliquer ces règles itérativement

jusqu’à convergence pour la décomposition Y ≈ UV, déterminée par un critère de tolérance 𝜖

sur la variation relative de la fonction de coût ou l’atteinte d’un nombre maximal d’itérations.

Algorithme-A II-1 : Mises à Jour Multiplicatives (Lee & Seung, 2000)
Input : Matrix Y ∈ R

𝑚×𝑛
+ , rank 𝑟

Output : Matrices U ∈ R
𝑚×𝑟
+ and V ∈ R

𝑟×𝑛
+ such that Y ≈ UV

1 Initialize U0 ≥ 0 and V0 ≥ 0 randomly;

2 Set 𝑘 ← 0;

3 while not convergence do

4 Mise à jour de U :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Norme de Frobenius : U𝑘+1 ← U𝑘 � Y(V𝑘)𝑇

U𝑘V𝑘 (V𝑘)𝑇

Divergence KL : U𝑘+1 ← U𝑘 �
Y

U𝑘V𝑘 (V𝑘)𝑇
1(V𝑘)𝑇

;

5 Mise à jour de V :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Norme de Frobenius : V𝑘+1 ← V𝑘 � (U𝑘+1)𝑇Y

(U𝑘+1)𝑇U𝑘+1𝑉 𝑘

Divergence KL : V𝑘+1 ← V𝑘 � (U𝑘+1)𝑇 Y
U𝑘+1V𝑘

(U𝑘+1)𝑇1

;

6 𝑘 ← 𝑘 + 1;

7 end while

8 return U𝑘 ,V𝑘 ;
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