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Optimisation d’un modele DocVQA sans OCR: Encodage hiérarchique et structurel a
faible coiit de documents dans un espace multimodal commun

Rayane BENCHAREF

RESUME

Le nombre de documents numériques a connu une forte augmentation au cours de la dernicre
décennie, et ce dans différents secteurs, que ce soit industriel, médical, académique et bien
d’autres. Bon nombre de ces documents proviennent de numérisations (images de documents),
permettant de construire des banques de données partagées au sein d’entreprises, institutions ou
méme sur internet. Ces grandes bases de données peuvent directement contenir les documents
numérisés ou encore €tre tabulaires, contenant les informations provenant de ces derniers.
Cependant, I’extraction manuelle d’informations contenues sur des documents numérisés est
chronophage dans un contexte ou le nombre de ces derniers ne cesse d’augmenter. Ainsi,
automatiser 1’extraction d’informations a grande échelle devient un besoin vital, comme par
exemple dans des secteurs industriels ol le temps est une ressource précieuse. Cette automatisation
exige cependant des systemes rapides, précis et peu coliteux afin qu’ils puissent étre efficaces sur
de grandes bases de documents.

[’avenement des grands modeles de langues (LLM) a montré de bonnes performances pour
I’extraction d’information sur les taches de réponse a des questions sur des données de texte
(QA). Cependant, les images de documents sont des données variées, comportant différents
types d’entités (photo, tableau, texte manuscrit, etc.) et pouvant avoir différentes structures
(lettre, articles, etc.). Ainsi, elles sont différentes des données que les LLM prennent en entrée,
et ne sont donc pas directement utilisables par ces derniers. Par conséquent, la tiche de réponse
a des questions sur des images de documents (DocVQA) nécessite de représenter les images de
documents afin que les modeles de langues puissent les utiliser afin de répondre a des questions.
Dans ce contexte, les approches fondées sur des outils de reconnaissance de caracteres optiques
(OCR) nécessitent un entrainement supplémentaire, ajoutent de la complexité au systeme
(détection, reconnaissance) et peuvent conduire a des erreurs de transcription. A I’inverse, les
méthodes bout-en-bout (OCR-free), composées d’un encodeur visuel et d’un modele de langue,
bénéficient d’une architecture unifiée permettant a la fois de représenter le document et de
répondre a la question. Ce type de méthodes regroupe des modeles de petite taille, peu coliteux
en termes de calcul, mais limités en qualité de réponses, ainsi que des modeles a grande échelle
(LVLM), performants en termes de résultats mais trop lourds pour des déploiements industriels.

Ce mémoire présente ainsi un systtme DocVQA OCR-free qui apprend un espace de représenta-
tion multimodal (image-texte), composé d’un encodeur visuel hiérarchique de petite taille, d’un
projecteur multimodal et d’un modele de langue a grande échelle. L’ encodeur visuel transforme
I’image de document en jetons (token) projetés sur I’espace du modele de langue via le projecteur
multimodal. Cet encodeur integre également un encodage positionnel explicite de la mise en
page, préservant I’ordre de lecture et la structure des éléments (tableaux, graphiques, zones
textuelles) dans I’espace commun. Le décodeur linguistique a grande échelle met directement



VIII

ces représentations alignées en relation avec la question afin de générer la réponse sans outils
additionnels tels que I’OCR. Ce systeme a été construit en distillant I’encodeur visuel de fondation
d’un LVLM dans une architecture hiérarchique plus petite tout en gardant le LLM décodeur
afin de réduire le cofit de calcul tout en conservant des résultats proches du modele initial. Afin
d’assurer I’alignement image-texte de la représentation, I’encodeur distillé a été supervisé de
bout-en-bout avec le LLM décodeur. Suite a cela, un module d’encodage spatial décomposant la
position de chaque token en caractéristiques de Fourier a été ajouté afin d’enrichir les jetons par
leur position d’origine sur le document. Ces approches ont été évaluées expérimentalement sur
le jeu de données DocVQA, contenant des images de documents industriels de différents types
(formulaires, lettres, articles, etc.). En utilisant le LVLM Paligemma qui a une performance de
84.77% ANLS, la distillation vers une architecture hiérarchique plus petite a permis de réduire
la taille de son encodeur visuel par un facteur de 5, divisant de moitié sa latence (§96ms —
446ms) tout en conduisant a un gap de seulement 2.1 points d’ANLS avec une performance de
82.67% ANLS. De plus, I’ajout de I’encodage positionnel a permis d’améliorer les résultats sur
la qualité d’extraction des informations du document, réduisant ce gap a 1.31 points avec une
performance de 83.46% ANLS. Ainsi, le systeme proposé surpasse en termes de performance
les modeles OCR-free de petites tailles tels que Donut qui a une performance de 66.26% ANLS,
et reste compétitif avec les LVLM tels que Paligemma ainsi qu’avec les méthodes se basant sur
I’OCR telles que UDOP (84.70% d’ANLYS).

Des analyses complémentaires sur la classification (RVL-CDIP) et I’analyse de structure (Do-
cLayNet) montrent que 1’encodeur capture la structure globale, tandis que le LLM traite cette
derniere de maniere plus approfondie a un niveau sémantique.

Enfin, le modele a été adapté aux documents multi-pages via un sélecteur de page réutilisant
les premieres couches du LLM, sans parametres supplémentaires. Cette approche limite le
cofit de calcul en maintenant le modele a 2.6B parametres tout en atteignant 71.73% ANLS,
concurrencgant les autres modeles de 1’état de 1’art tels que ScreenAl (72.9% ANLS/5B) ou encore
DocOwl12 (69.42% ANLS/8B), démontrant une mise a 1’échelle efficace pour des scénarios
industriels complexes.

En résumé, ce mémoire démontre qu’un alignement image-texte guidé par une méthode OCR-
free intégrant la géométrie spatiale permet de représenter des documents de structures variées
contenant différents types d’entités. De plus, il souligne qu’une architecture hierarchique permet
de réduire la complexité du systéme tout en maintenant une qualité de réponse compétitive. Enfin,
I’adaptation du modele aux documents multi-page sans parametres supplémentaires montre
I’extension du systeme a des cas d’utilisation plus complexes. Cette approche présente donc un
DocVQA plus efficient et compétitif pour 1’automatisation de I’extraction d’information.

Mots-clés: DocVQA, Image de Documents, OCR-Free, Espace de représentation



Optimization of an OCR-Free DocVQA model : Hierarchical and structural encoding at
low cost of documents in a common multimodal space

Rayane BENCHAREF

ABSTRACT

The number of digital documents has seen a high increase during the last decade in several
sectors such as industry, medicine, academia and others. A lot of those documents come
from digitalization (document images), allowing to build shared databases inside enterprises,
institutions or even across the internet. These high-scale databases may directly contain numerical
documents or be tabular, having extracted information from documents. However, the manual
extraction of this information can be time-consuming in a context where the number of digital
documents continues to grow. Thus, automating the extraction of these information at a high
scale becomes a vital need, as in industrial sectors where time is a precious resource. However,
such automation requires fast, accurate and low-cost systems in order to be efficient and effective
in high-scale document databases.

The advent of large language models (LLM) has shown good performance for information
extraction on question-answering tasks (QA) with text data. However, document images are
varied data, containing several entity types (picture, table, handwriting, text, etc.), and may have
different structures (letter, article, etc.). Thus, these images are different from the data that LLM
usually take as input, and therefore are not directly usable by them. Consequently, the task of
visual question-answering on document images (DocVQA) needs to represent the document
images in order to allow the LLM to answer the questions. In this context, methods based on
optical character recognition tools (OCR) require additional training while adding complexity
into the system (detection, recognition), and may lead to recognition errors. On the other hand,
end-to-end methods (OCR-free), composed of a visual encoder and a language model decoder,
have a unified architecture, allowing both to represent the document and answer the question.
This type of methods can be divided into two groups. Firstly the lightweight methods, efficient
with a small computational cost, but limited in performance. Then, there are the large visual
language models (LVLM), which are accurate in performance but have a high computational
cost that can lead to difficulties for industrial deployments.

Thus, this thesis presents an OCR-free DocVQA system that learns a multimodal representation
space (image-text), composed of a small hierarchical visual encoder, a multimodal projector,
and a LLM. The visual encoder transforms the document image into visual tokens, projected to
the language model’s representation space (embedding), through the multimodal projector. This
encoder also integrates an explicit positional encoding of the document structure, preserving
the reading order and element structures (table, graphics, text, etc.) in the multimodal space.
The language model decoder directly uses these representations with the question to generate
the answer without additional tools such as OCR. This system has been built by distilling the
foundational visual encoder of an LVLM into a smaller hierarchical architecture, while keeping
the LLM decoder, in order to reduce computational cost while conserving close results with the



initial model. To ensure the image-text alignment of the representation, the distilled encoder has
been end-to-end supervised with the LLLM decoder. Then, a spatial encoding module decomposes
the position of each token on the document into Fourier features has been added in order to
enrich the visual tokens by their original position. These approaches have been evaluated on the
DocVQA dataset, which contains industrial document images of different types (forms, letters,
articles, etc.). By using the LVLM Paligemma that has a performance of 84.77% ANLS, the
distillation into a smaller hierarchical architecture has reduced the visual encoder size by a factor
of five, halving its latency (896ms — 446ms) while leading to a gap of 2.1 points of ANLS with
a performance of 82.67% ANLS. Moreover, the addition of the positional encoding has improved
the extraction quality of information, reducing the gap to 1.31 points with a performance of
83.46% ANLS. Thus, the proposed system outperforms the results of lightweight OCR-free
methods such as Donut, which has a performance of 66.26% ANLS, and stays competitive with
LVLM as Paligemma and with OCR-based models such as UDOP (84.70% ANLS).
Additional analysis on classification (RVL-CDIP) and layout analysis (DocLayNet) show that
the encoder captures the global structure, where the LLM handles deeper layout reasoning at a
semantic level.

Finally, the model has been adapted to multi-page documents with a page selector, sharing the
LLM’s first layers. This approach limits the computational cost by keeping the model to 2.6B
parameters while reaching 71.73% ANLS, competing with other state-of-the-art models such as
ScreenAl (72.9% ANLS/5B) and DocOwlI2 (69.42% ANLS/8B), showing an efficient scaling
for complex industrial contexts.

In summary, this thesis shows that an image-text alignment led by an OCR-free method, which
integrates the spatial geometry, enables the representation of document images of various
structures and containing different entity types. Moreover, it underlines that a small hierarchical
architecture reduces the system complexity while keeping a competitive response quality. Finally,
the adaptation of the model to multi-page documents without additional parameters shows the
extension of the system to more complex use cases. Thus, this approach presents a DocVQA
more efficient and competitive for the automation of information extraction.

Keywords: DocVQA Document Images, OCR-Free, Embedding space
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INTRODUCTION

0.1 Contexte et motivation

"Just as electricity transformed almost everything 100 years ago, today I actually have a hard
time thinking of an industry that I don’t think Al will transform in the next several years" -

Andrew NG

Les documents ont depuis toujours constitué une source d’information essentielle pour la
civilisation humaine. Des tablettes d’argile datant de -5000 avant J.C, utilisées par les Sumériens
pour enregistrer des transactions commerciales, en passant par les archives de papyrus de la
Grece antique, qui contenaient a la fois histoires mythiques et textes scientifiques (voir figure
0.1), a la création de I’imprimerie en 1450, facilitant la production de textes a grande échelles,
les documents sont un moyen efficace de stocker et archiver de 1’information (Guardian, 2025;
of Encyclopaedia Britannica, 2025). De nos jours, avec I’arrivée d’internet, les documents
passent au format numérique, ce qui permet de les rendre plus accessibles. Cette digitalisation
est entrainée par la numérisation des documents, convertissant le format papier en image. En
effet, une augmentation significative du nombre de documents numérisés a pu étre observée lors
de la derniere décennie a travers différents secteurs (Johanne Roy, 2015; Angela Tudico, 2022).
En 2015, le Centre Hospitalier Universitaire (CHU) de Québec a numérisé environ 75 millions
de pages de dossiers patients, ce qui a permis de libérer prés de 2000 m? d’espace de stockage
physique (Johanne Roy, 2015). A I’heure actuelle, certains documents médicaux sont encore
remplis a la main sur papier tels que les ordonnances, formulaires de consentements... avant
d’étre scannés et numériquement archivés. Il en est de méme dans le secteur administratif, ou
beaucoup de documents comme les formulaires, testaments, lettres de correspondance et autres
sont remplis sur papier puis numérisés sous forme d’image. Cette tendance est par exemple

démontrée par le gouvernement canadien qui met en avant la numérisation et la centralisation des



a) Tablette d’argile sumérienne, -5000 av. JC b) Papyrus, extrait du livre des morts, -1600 av. JC

Figure 0.1 Photos de documents anciens, prise au musé Redpath,
de I’université McGill, Montréal

documents administratifs a travers différentes normes et directives (du Canada, 2025). Le secteur
académique a lui aussi bénéficié de cette numérisation, rendant plus accessibles les anciens
journaux et articles de recherche (Sainte-Anne, 2025). D’autres secteurs tels que la banque,
I’assurance, le commerce de détail, les transports, I’industrie manufacturiere se sont mis a
numériser leurs documents, permettant de réduire les espaces de stockage physiques et de faciliter
le partage de ces documents. En parallele de cette augmentation, les informations contenues dans
les documents sont de plus en plus stockées de maniere structurée dans des bases de données
afin de faciliter leur intégration dans des systeémes d’information a des fins d’analyse et de prise
de décisions. Par exemple, I’augmentation du nombre de Dossier Médical Electronique (DME)
nécessite I’extraction et I’enregistrement de données présentes dans les documents archivés
vers des bases de données tabulaires (ASTP, 2021). Cependant, renseigner manuellement les
informations provenant d’images de documents peut s’avérer €tre une tache laborieuse, en
raison du nombre important de documents numérisés. De plus, une fois numérisé, retrouver une
information précise dans une collection de documents peut également étre chronophage.

Ainsi, I’exploitation automatique des documents numérisé€s devient un besoin vital dans les



secteurs ayant un grand nombre de documents a analyser. En effet, pour que ces documents
puissent étre intégrés dans des systemes d’information modernes, notamment des bases de
données structurées, il est nécessaire d’en extraire le contenu pertinent. C’est dans ce contexte
que s’inscrit la tdche de réponse a des questions visuelles sur des documents (Document Visual
Question Answering, DocVQA), qui vise a interroger un modele d’intelligence artificielle (IA)

au sujet d’un document sous forme d’image a partir d’une question.

La figure 0.2 illustre trois cas d’usage de cette tiche. Le premier cas est la lecture de documents
par I’interaction avec un assistant conversationnel (figure 0.2a), dans lequel un utilisateur pose
des questions a propos d’un document. Cela peut permettre de résumer le document ou encore
de retrouver rapidement une information spécifique, réduisant ainsi le temps de recherche. Ce
cas d’utilisation peut par exemple €tre utilisé dans des contextes académiques pour étudiants et
chercheurs, afin de faciliter leur travail.

La figure 0.2b illustre un autre cas d’utilisation relié aux secteurs industriels. Comme énoncé
précédemment, beaucoup d’industries enregistrent leurs données sous forme tabulaire dans
des bases de données, cependant, certaines de ces informations proviennent de documents
numérisés sous forme d’images. Ainsi, extraire a la main chacune de ces informations peut
s’avérer chronophage et ne pas étre optimal. La tdche de DocVQA permet d’automatiser
cela en prédéfinissant un ensemble de questions faisant référence aux informations que 1’on
souhaite extraire. Ainsi, pour chaque nouveau document digitalisé entrant dans le systeme
d’information, celui-ci est directement analysé avec I’ensemble des questions prédéfinies.
A partir de cela, les informations du document sont extraites en fonction des questions et
automatiquement sauvegardées dans la base de données. Cette automatisation permet donc aux

employés d’optimiser leur temps de travail, en se consacrant a d’autres taches plus importantes.
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Figure 0.2 Cas d’utilisations de la tiche de réponse a des
questions visuelles sur des documents (DocVQA)




Enfin, la figure 0.2c met en avant un dernier cas d’utilisation. Dans le cas ou des documents
sont stockés sous forme d’archives, leur nombre peut devenir conséquent. Ainsi, retrouver une
information spécifique sans savoir dans quel document elle se situe peut s’avérer compliqué.
La tiche de DocVQA permet également de rendre ce processus plus rapide en donnant la
base d’image accessible a un modele d’TA, qui est capable de prendre en entrée la question de

I"utilisateur et de retourner la réponse a partir des documents contenus dans la base d’archives.

Cependant, pour chacun des cas d’utilisation cités ci-dessus, cette automatisation doit €tre
fiable en extrayant uniquement les informations pertinentes et relatives aux questions posées,
ce qui nécessite un modele d’IA fiable. Au cours de la derniere décennie, I’augmentation
de la capacité de calcul des ordinateurs a permis des avancées majeures dans le domaine
de I’apprentissage profond (deep learning). En 2012, les processeurs graphiques (Graphics
Processing Unit, GPU) NVIDIA ont été adoptés pour entrainer un réseau de neurones profond
par Krizhevsky, Sutskever & Hinton (2012) lors de la compétition annuelle de classification
ImageNet (2012). Les performances obtenues ont permis de démocratiser 1’utilisation des GPU,
entrainant le développement d’architectures plus complexes et profondes. L'une de ces dernieres
a été les Transformers (Vaswani et al., 2017), qui sont a ’origine des grands modeles de langage
(Large Language Model, LLM), tels que GPT-3 par Brown et al. (2020). Ces modeles de
génération de textes se sont montrés performants pour I’extraction d’informations digitales (sous

forme de texte) en fonction d’une instruction/question (Question Answering, QA).



0.2 Problématique, questions de recherche et focus de la these

Les LLMs se sont montrés particulierement efficaces pour répondre a des questions sur du
texte digital, en utilisant des représentations vectorielles (embeddings) du vocabulaire pour
analyser a la fois un contexte (ressource digitale) en fonction d’une question et générer une
réponse. Cependant, la tiche de DocVQA introduit la modalité d’image dont les LLLM ne sont

pas entrainés a prendre en entrée. Cette modalité entraine de nouveaux défis en comparaison

avec le texte.

Christopher Columbus, an Italian explorer, sailed
across the Atlantic in 1492, reaching the Caribbean
and encountering indigenous civilizations

Digital
context

Christopher
Columbus

What is the name of
the explorer?

Question

Image
Document

> LLM

Answer

Christopher
Columbus

What is the name of
the explorer?

Question

Answer

Q Text embedding space

Figure 0.3 Entrée/sortie des LLMs, entrainés a representer et traiter du texte digital
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Figure 0.4 Variabilité des types d’information sur les images de
documents

Les images de documents sont des données complexes ayant différentes composantes et structures,
les rendant chacune uniques et variées par rapport aux autres. La figure 0.4 illustre différents types
d’informations qui peuvent étre retrouvées sur des documents. Ces types d’informations incluent
les écritures manuscrites (handwriting), les textes écrits au clavier (text-free), les images (photo)
et les graphiques. Ces types d’entités ont des caractéristiques différentes (formes, couleurs,
tailles, etc.), ce qui peut complexifier leur extraction et leur représentation (inter-variabilité).
D’autre part, une méme entité peut avoir des variations d’'un document a I’autre. Par exemple,
pour les écritures manuscrites, un méme mot peut tre écrit différemment selon deux individus.
Dans le cas d’une image, deux photos représentant le méme objet peuvent avoir différentes
caractéristiques selon 1’angle et la luminosité de la photo. Ainsi, cette intra-variabilité est
également un défi a prendre en compte pour représenter une image de document.

De plus, les images de documents ont des structures (layout) différentes en fonction de leurs
types (lettre, article, formulaire, etc.). Ainsi, pour un document donné, I’ordre de lecture de ce

dernier ne sera pas forcément le méme que pour un autre. Cependant, il est essentiel de donner au
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Figure 0.5 Exemples de structures (layout) d’images de
documents

modele un ordre de lecture correct afin qu’il puisse retrouver les informations dans le document
de maniere cohérente. Le layout sémantique est également une composante importante, a savoir
ou se trouve le titre, quelle partie du document est un tableau, un graphique ou autre... Ainsi, il
est essentiel d’introduire la position de chaque élément dans la représentation du document afin

que le modele puisse apprendre a induire la structure de ce dernier.



Les images de documents sont donc des données complexes, nécessitant un traitement différent

d’un texte numérique pour la tiche de DocVQA. Cependant, elles doivent tout de méme étre

représentées dans le méme espace vectoriel que la question, afin que le LLM puisse générer une

réponse correcte a partir de cette derniere.

Cela amene la problématique de ce mémoire ; Comment représenter les images de documents,

comportant différents types d’entités et des structures variées, dans le méme espace de

représentation qu’une question afin de résoudre la tache de DocVQA ?

Cette problématique est décomposée en plusieurs questions de recherches (QR), découlant de la

complexité des images de documents et de leurs différences avec le texte :

* QR 1 Comment représenter des images de documents contenant différents types d’entités ?

* QR 2 Comment intégrer les positions spatiales des composantes du document afin d’en
induire la structure de ce dernier ?

* QR 3 Comment aligner la représentation d’une image de document avec une question

représentée dans 1’espace d’un modele de langue (alignement image-texte) ?

Ainsi, la tiche de DocVQA est délicate avec des composantes vari€es dont le traitement d’image,
le traitement du langage naturel, les modeles de langue et autres. Ce mémoire a pour but de se
concentrer sur la partie représentation visuelle de cette tache, essentielle a sa réalisation. Les
images de documents pouvant également étre variées, ici, le travail abordera la représentation
d’images de documents industriels afin de répondre a I’augmentation de leur nombre dans les

entreprises sur un large spectre de types de documents.

0.3 Structure du mémoire

Ce mémoire est organisé en huit chapitres. L’introduction présente le contexte, les motivations
ainsi que les problématiques. Le prochain chapitre se concentre sur 1’état de 1’art des méthodes
traitant ce sujet, afin de fournir au lecteur une compréhension des solutions existantes et de

leurs limites. Il se conclut par la présentation de 1’objectif du mémoire, divisé en sous-objectifs.
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Le troisieme chapitre est consacré a la théorie et aux fondements scientifiques des modeles
utilisés. Les chapitres quatre et cinq présentent respectivement les méthodologies et approches
mises en ceuvre pour répondre aux deux sous-objectifs. Le chapitre six propose une extension
du modele aux documents multi-page. Le chapitre sept expose et discute les résultats obtenus.
Enfin, le chapitre huit conclut ce mémoire et propose des pistes de recherche pour de futurs axes

a explorer.



CHAPITRE 1

REVUE DE LA LITTERATURE ET OBJECTIFS

1.1 Etat de I’art

Cette section rassemble les différentes approches de 1’état de I’art pour I’encodage d’images de

documents dans le contexte de DocVQA.

1.1.1 Architectures d’apprentissage de représentation d’image de documents pour la
tache de réponse a des questions visuels de documents

Pour répondre a la tiche de DocVQA, il est essentiel de représenter les images de documents
dans un espace de représentation qui contient les caractéristiques nécessaires des différents types

d’entités pour répondre a la question.

En 2020, lors de la sortie du dataset DocVQA par Mathew, Karatzas & Jawahar (2021), les
premieres méthodes utilisaient des outils de reconnaissance de texte optique (Optical Character
Recognition, OCR) qui permettent d’extraire et de convertir le texte des documents en texte
digital afin de I’encoder avec la question (Mathew et al., 2021). Cela permet d’avoir les deux
entrées (contexte et question) dans la modalité de texte, directement exploitable par les modeles
de langue basés sur I’architecture Transformer (Vaswani et al., 2017). Cependant, cette technique
rend le modele « aveugle » aux informations du document non textuel comme les photos. Ainsi,
les méthodes suivantes ont incorporé les caractéristiques visuelles des documents (Xu et al.,
2020; Huang, Lv, Cui, Lu & Wei, 2022). LayoutLMv?2 par Xu et al. (2020) utilise en amont un
réseau de convolution (Convolutional Neural Network, CNN) tel que ResNet par He, Zhang,
Ren & Sun (2016). Ce dernier extrait des caractéristiques visuelles simples de I’image de maniere
locale par des fenétres de convolution. Le Transformer encode par la suite ces caractéristiques
de facon globale avec le texte extrait par OCR ainsi que la question, devenant de cette manicre
multimodal (voir figure 1.1b). Suite a cela, une version améliorée a été proposée par Huang

et al. (2022), substituant le CNN par une simple couche linéaire, puis entrainant le modele
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Figure 1.1 Premieres méthodes utilisées pour representer un
document pour la tiche de DocVQA

Transformer a encoder a la fois le texte extrait par OCR et I'image du document avec la question
pour générer la réponse. Cependant, les méthodes se basant sur I’OCR nécessitent un colt de
calcul supplémentaire pour détecter et reconnaitre les composantes textuelles sur les documents.
De plus, les erreurs de détection et de reconnaissance peuvent se propager dans le modele et

détériorer la qualité des réponses comme souligné par Kim et al. (2022).
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En 2022, les architectures bout-a-bout (end-to-end) sont adoptées (Davis et al., 2022; Kim
et al., 2022), se basant uniquement sur un encodeur visuel pour extraire et représenter les
caractéristiques d’un document, sans appel a des outils externes tels que I’OCR. L’encodeur
visuel de ces méthodes est dérivé de I’ architecture initiale des Transformers, divisant le document
en patchs afin de le représenter. Ces encodeurs basés sur les Swin Transformers par Liu et al.
(2021) ont une architecture hiérarchique avec un cofit de calcul linéaire, permettant d’avoir des
résolutions d’images plus grandes et de capturer des détails a différentes granularités, renforgant
la qualité de la représentation (voir section 2.3). Néanmoins, ces modeles end-to-end ayant peu
de parametres (lightweight), leurs performances restent assez faibles, ce qui peut rendre leur

utilisation peu fiable dans un contexte industriel.

Suite a cela, les modeles de fondation en vision par ordinateur, basés sur I’architecture des
Transformers Visuels (Vision Transformer, ViT) par Dosovitskiy et al. (2020) ont commencé
a étre développés. En augmentant leur taille avec plus de parametres et, par extension, leurs
capacités d’apprentissage (Radford et al., 2021; Zhai, Mustafa, Kolesnikov & Beyer, 2023),
ces modeles pré-entrainés a aligner les images avec le texte se sont montrés tres efficaces en
tant qu’encodeur visuel sur la tiche DocVQA. Cela a conduit a I’utilisation de modeles de
vision-langage a grande échelle (Large Visual Language Model, LVLM) (Beyer et al., 2024;
Chen et al., 2024; Gao et al., 2024; Wu et al., 2024), ayant un encodeur visuel large de fondation
avec un modele de langue a grande échelle (voir figure 1.2b). Ces modeles également end-to-end
ont permis de repousser la limite de performances sur la taiche de DocVQA, améliorant les
résultats des modeles a plus petite échelle cités précédemment. IIs peuvent étre divisés en deux
catégories : les modeles a résolution d’entrée fixe qui prennent toujours la méme résolution en
entrée et les modeles qui divisent les images en sous-images a résolution fixe, permettant d’avoir
en entrée une image de résolution plus grande (tilling), (Chen et al., 2024; Gao et al., 2024; Wu
et al., 2024). Les encodeurs visuels de fondation étant non-hiérarchiques, leur coit de calcul est
quadratique tel que O(n?) avec n le nombre de patchs de I’image (voir section 2.2.2.1), ce qui
limite la résolution de I’'image d’entrée pour la premicre catégorie. Ainsi, le tilling résout cela en

incluant de la linéarité dans le coit de calcul tel que O(nI2 X t), avec t le nombre de tiles et n; le
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Figure 1.2 Méthodes bout-a-bout de 1’état de I’art de DocVQA

nombre de patchs de chaque tile. Toutefois, cette méthode entraine une étape de preprocessing
supplémentaire et une parallélisation de I’encodage du document augmentant la complexité de

I’architecture.
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D’autre part, les LVLM ayant plus de parametres, leur utilisation nécessite des infrastructures

avec une plus grande capacité de calcul, pouvant entrainer des colits supplémentaires.

Tableau 1.1 Etat de I’art de DocVQA

Encodeur Visuel Spécificités Modele Transformer Spécificités
Meéthode Architecture Tilling # Param (B) | OCR Type # Param (B) ANLS (%) T
LVLMs
InternVL, Chen et al. (2024) CLIP X 6 Décodeur Textuel 7 95.0
MinilnternVL, Gao ef al. (2024) CLIP X 0.3 Décodeur Textuel 1.8 86.9
DeepseekVL2-Tiny, Wu et al. (2024) SigLIP X 0.4 Décodeur Textuel 3 88.9
Paligemma, Beyer et al. (2024) SigLIP 0.4 Décodeur Textuel 2.6 84.77
Modele a petite échelle bout-en-bout
Donut, Kim et al. (2022) Swin 0.074 Décodeur Textuel 0.126 66.26
Dessurt, Davis et al. (2022) CNN Encodeur-Décodeur Multimodal 0.127 63.2
Modele se basant sur de I’'OCR
LayoutLMv3, Huang et al. (2022) Patch embedding X Encodeur Multimodal 0.133 78.76
LayoutLMv2, Xu et al. (2020) CNN X Encodeur Multimodal 0.2 78.08
Bert, Mathew ef al. (2021) - - X Encodeur Textuel 0.110 63.5

1.1.2 L’encodage de position pour la tache de DocVQA des modéles end-to-end

d

(-
—TFlatien >}
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L-——-----d
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Figure 1.3 Division d’une image de document en patchs

Une image de document est spatialement représentée en deux dimensions (hauteur et longueur).
La représentation par patchs des ViTs (voir section 2.2.1) nécessite de les traiter comme des
séquences a une dimension en les aplatissant. La figure 1.3 représente cette étape. Cependant,
I’aplatissement entraine un changement d’ordre des patchs (voir encadré orange sur la figure).
Ainsi, des patchs proches sur I’image originelle peuvent étre éloignés dans la séquence, ce qui
perturbe la structure du document traité. De plus, I’opération d’attention qui est au cceur des

Transformers encodent tous les patchs de maniere parallele (voir section 2.2.2.1) et n’integrent
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pas la notion de position dans le calcul. Intégrer la position des patchs est donc essentielle pour
représenter correctement le document.

Les Swin Transformers de I’état de 1’art de DocVQA (Davis et al., 2022; Kim et al., 2022)
sont basés sur le papier initial de Liu er al. (2021) et reprennent ainsi le méme encodage de
position. Cette architecture utilise un biais positionnel relatif pour les patchs contenus dans une
fenétre (voir section 2.3.2). Ainsi, cette approche limite localement 1’information apportée par la
position dans la représentation des patchs, ne procurant pas directement une information globale.

Les encodeurs visuels des LVLM sont quant a eux basés sur les modeles CLIP et SigL.IP eux-

a) Similarités de position de I’encodeur de b) Similarités de position spatialement correctes
PaliGEMMA (LVLM) avec le patch central avec le patch central

Figure 1.4 Similarités de position du patch central d’ une image de
document

mémes construits sur I’architecture initiale des ViTs (non-hiérarchiques). Ces méthodes utilisent
un module de position a I’entrée du modele, qui apprend pour chaque patch une représentation
vectorielle de sa position sur le document, puis I’ ajoute a la représentation du patch correspondant
(voir section 2.2.1). Ainsi, ce module encode la position de maniere absolue, chaque position
encodée ne dépendant pas des autres. Cette approche, bien qu’apportant de bons résultats sur la
classification d’images naturelles, ne permet pas d’encoder avec précision la position des patchs,

rendant les positions orthogonales plus proches dans 1’espace de représentations que les positions
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réellement proches spatialement (voir figure 1.4). Ainsi, la position induite dans la représentation
de chaque patch n’est pas corrélée avec la position spatiale réelle. Ces architectures étant
construites et évaluées initialement sur des images naturelles, ce type d’encodage positionnel

pourrait ne pas étre le plus adéquat dans le contexte de DocVQA.

Tableau 1.2  Etat de I’art des encodages de positions (PE) des patchs pour la tiche

DocVQA
Information sur I’encodeur visuel et le module de position utilisé
Méthode Architecture/Papier fondation Données d’évaluation Type PE Représentation des Positions
InternVL, Chen et al. (2024) CLIP, Radford et al. (2021) Image Naturelle Absolue/Supervisé Similarités orthogonales
MinilnternVL, Gao et al. (2024) CLIP, Radford et al. (2021) Image Naturelle Absolue/Supervisé Similarités orthogonales
DeepseekVL2-Tiny, Wu et al. (2024) SigLIP, Zhai et al. (2023) Image Naturelle Absolue/Supervisé Similarités orthogonales
Paligemma, Beyer et al. (2024) SigLIP, Zhai et al. (2023) Image Naturelle Absolue/Supervisé Similarités orthogonales
Donut, Kim et al. (2022) Swin, Liu et al. (2021) Image Naturelle Biais relatif Représentations locales
Dessurt, Davis et al. (2022) Swin, Liu et al. (2021) Image Naturelle Biais relatif Représentations locales
1.1.3 L’alignement des images de documents dans I’espace de représentation du

modele de langue

Les méthodes reposant uniquement sur I’OCR pour représenter un document peuvent directement
encoder la question avec le texte de ce dernier, étant de la méme modalité. Cependant, les
méthodes utilisant des patchs visuels pour représenter le document doivent unifier I’espace de ces
derniers avec le modele de langue afin qu’il puisse les utiliser. De plus, les patchs représentent des
fragments du document, ne contenant donc pas d’information complete a eux seuls, mais plutdt
des morceaux d’entités (texte, images, tableaux, etc.). Pour permettre au modele de langage
de les traiter conjointement avec la question et de reconstruire I’information, il est nécessaire

d’aligner les représentations visuelles et textuelles.

Dans le contexte de DocVQA, il existe deux paradigmes de fusion pour aligner les patchs avec

la question :

Premierement, la fusion en amont (early fusion) ot I’'image et la question sont traitées par un
unique module de fusion qui peut étre un encodeur multimodal ou une série de modules d’ attention-

croisée entre les patchs et la question (Huang et al., 2022). Cette approche fusionne 1’information
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de maniere précoce et potentiellement plus profonde. Dans ce cas, les représentations des patchs

sont spécifiques a la question et doivent étre recalculées pour chaque nouvelle requéte.

Deuxiemement, la fusion intermédiaire (intermediate fusion) ou I’encodage visuel est séparé
du reste du modele. Un encodeur visuel géneére en premier lieu une représentation générale
des patchs, qui peut étre réutilisée pour différentes questions. Pour aligner cet espace de
représentation avec celui du modele de langue, un projecteur multimodal est ajouté, faisant le
pont entre I’encodeur visuel et le modele de langue (Kim et al., 2022; Beyer et al., 2024; Wu
et al., 2024; Chen et al., 2024). Ce dernier est souvent constitué d’une simple couche linéaire ou
d’un perceptron multicouche (MLP), projetant les patchs dans le méme espace de représentation
que la question suivant 1I’équation :

Vim = v.WE (1.1)

dans le cas d’une simple couche linéaire et suivant les équations :

MLP(x) = WP2a(WFx) (1.2a)

Vim = MLP(v) (1.2b)

dans le cas d’une projection par un MLP tel que v € RV*P et v;,, € RV*Pim avec N le nombre de
patchs, D la dimension de I’espace de représentation de 1’encodeur visuel et D, la dimension

de I’espace du modele de langue.

De plus, il est nécessaire que le modele de langue apprenne a analyser les patchs projetés
conjointement avec la question afin de retrouver I’information correspondante dispatchée sur
plusieurs patchs pour ensuite générer la réponse. Pour cela, les méthodes entrainent de bout en
bout I’architecture compléte sur des tiches de question-réponses afin que I’encodeur apprenne
a encoder les patchs de maniere a simplifier I’alignement par le projecteur multimodal et que
le modele de langue apprenne a retrouver des informations dispersées sur plusieurs patchs en

fonction de la question afin de générer une réponse correcte.
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Les documents pouvant étre encodés pour extraire différentes informations, 1’approche de la
fusion intermédiaire semble préférable dans le contexte de ce mémoire afin de ne pas encoder
un document indépendamment pour chaque question entrante par le syst¢eme d’information (voir

figure 0.2b).

1.2 Analyse de gap de la littérature

Les méthodes modernes de 1’état de 1’art de DocVQA ont démontré une progression accrue
en comparaison aux premiers modeles. Les approches récentes montrent ainsi qu’il n’est plus
nécessaire de se baser sur des outils externes tels que I’OCR pour représenter un document.
En effet, les approches bout-en-bout proposent des systemes unifiés basés sur les Transformer,
capables de représenter des documents dans un espace multimodal utilisable par les modeles
de langue pour répondre a des questions. Cependant, ces méthodes composées d’un encodeur
visuel et d’un modele de langue imposent un choix entre 1’efficience et la performance. Les
approches lightweights permettent de maintenir un coup de calcul faible en restreignant le
nombre de parametres (inférieur a 1B). Cependant, la taille restreinte de ces méthodes entraine de
faibles résultats sur la tiche de DocVQA, les rendant peu fiables dans des contextes d’utilisation
industriels. D’autre part, les modeles de type LVLM, qui sont composés d’un grand encodeur
visuel et d’un LLM, offrent des résultats solides mais nécessitent des infrastructures plus
cofiteuses du fait de leur nombre de parametres (supérieur a 2B).

Ainsi, ces méthodes bout-en-bout imposent un choix entre efficience (taille des modeles) et
performance (qualité des réponses), ce qui rend leur utilisation compliquée dans des contextes

ol ces deux métriques sont indispensables.

D’autre part, alors que la position des éléments des documents est une notion essentielle afin
d’assurer un ordre de lecture correct et de faciliter la génération de la réponse, les méthodes
bout-en-bout actuelles ne semblent pas avoir étudié I’encodage de position pour cette tache.
En effet, les encodeurs visuels dans ce contexte se basent sur les architectures initialement
entrainées et évaluées sur des images naturelles. Les modeles lightweights utilisent un biais

relatif par fenétre, ne permettant pas de représenter la position globale de chaque élément
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sur le document. Les LVLM utilisent des encodeurs visuels fondationnels (CLIP et SiglLIP)
composés d’un module d’encodage de position absolue a I’entrée du modele, ne permettant pas
de représenter la position de maniere précise dans 1’espace. De plus, les zones d’insertion de la
position dans I’architecture de ces encodeurs visuels ne semblent pas plus étudiées, les modeles
a petite échelle I'intégrant dans chaque opération d’attention (voir section 2.3.2) et les modeles
de fondation a I’entrée de I’architecture (voir section 2.2.1).

Ainsi, 1a ot les méthodes récentes de 1’état de I’art se concentrent sur des approches bout-en-bout
sans OCR, elles reprennent les architectures de fondation des encodeurs visuels en limitant les
changements apportés a ces dernicres. Cependant, ces modeles étant initialement entrainés sur
des images de scénes naturelles, leurs modules de positions ne semblent pas optimaux pour la
tache de DocVQA. Ainsi, I’encodage de position est un aspect peu étudié dans 1’état de I’art de

DocVQA.

1.3 Objectifs du mémoire

L'objectif de ce mémoire est de développer un modele d’encodeur visuel capable de
représenter un document afin de répondre a la tiche de DocVQA.

Ce dernier est divisé en deux sous-objectifs :

SO1 - Réduire le coiit de calcul de I’encodeur visuel d’un LVLM

Les modeles actuels ont démontré une capacité de répondre a la tiche de DocVQA sans
OCR. La ou les méthodes l1égeres sont efficientes mais peu robustes en termes de résultats, les
LVLM montrent des résultats performants, surpassant méme les méthodes utilisant de I’OCR.
Cependant, ces modeles ayant beaucoup de parametres, leur utilisation dans des environnements
avec peu de puissance de calcul peut étre compromise. Leurs encodeurs sont des modeles de
fondation, dont la taille a permis de les rendre efficaces sur des données de diftférents types, pour
des taches variées, comme illustré par Chen et al. (2024). Cependant, les documents sont une
sous-catégorie d’image bien spécifique, ne nécessitant pas forcément d’encodeur généraliste.
Ainsi, cet objectif consiste a réduire la taille de I’encodeur visuel d’'un LVLM afin de réduire

son colt de calcul tout en conservant une représentation performante des images de documents.
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SO2 - Intégrer un module de position spatial précis dans I’encodeur visuel

Les encodeurs visuels des méthodes bout-en-bout représentent le document en le divisant en
patchs. Intégrer la position de ces derniers est donc un aspect important pour représenter un
document. Cela aidera le modele de langue a avoir un ordre de lecture correct des informations
pour retrouver et générer la réponse a la question. Cependant, les méthodes actuelles se basent sur
les papiers de fondation des architectures d’encodeurs visuels, évaluées sur des images naturelles,
différentes des documents. Les modeles hiérarchiques ont un encodage relatif local ne permettant
pas de représenter la position du patch sur I’ensemble du document de maniere globale. Les
encodeurs des modeles de fondations utilisent un encodage unidimensionnel, résultant en des
positions de patchs dans I’espace de représentation qui ne refleétent pas leur position sur le
document originel. D autre part, I’insertion de la position dans I’architecture ne semble pas étre
plus étudiée. Cet objectif consiste donc a développer un module de position plus précis que
ceux appliqués actuellement dans les modeles de DocVQA et a étudier la position d’insertion

optimale dans I’architecture de 1’encodeur visuel.

Par conséquent, ce mémoire se concentre sur 1’apprentissage de représentation d’image de
documents. Les deux sous-objectifs sont réalisés sur des documents d’une seule page afin de
limiter les besoins en puissance de calcul lors des entrainements. Cependant, certains cas d’usage
utilisent des documents comportant plusieurs pages, voire méme des collections de documents
(voir figure 0.2c). Ainsi, une derniére expérimentation sera de construire un systéme se basant
sur les résultats des sous-objectifs, capable de répondre a des questions sur des documents
multi-pages.

La figure 1.5 présente I’organisation des chapitres suivants, découlant des sous-objectifs présentés.
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Figure 1.5 Organisations des chapitres suivant les sous objectifs présentés




CHAPITRE 2

L’APPRENTISSAGE DE REPRESENTATIONS DE DOCUMENTS AVEC LES
TRANSFORMERS VISUELS

Ce chapitre aborde 1’apprentissage de représentations abstraites d’images par des ViTs,

architectures utilis€es dans la suite de ce mémoire.

2.1 Les représentations abstraites d’images (embeddings)

Une image est un signal bidimensionnel, représenté par une matrice. Ce dernier est composé de
pixels représentant I’intensité lumineuse en chaque point de I’'image. Ces valeurs sont continues
entre 0 et 255 et peuvent étre représentées sur un seul canal si elles sont en noir et blanc ou
trois canaux si elles sont en couleurs. Ainsi, une image peut se noter I € R7>*W*C te] que H
est le nombre de pixels sur la hauteur, W le nombre de pixels sur la largeur, et C le nombre
de canaux. Selon la tache, tous les pixels d’une image ne sont pas forcément pertinents, par
exemple certaines zones comme le fond (background) d’un document sont moins importantes
que les entités (textes, photos, etc.) qui le composent. Une entité sur une image est composée de
plusieurs pixels. Pour des entités similaires, ces groupes de pixels ont souvent des variations

locales d’intensité (formes/motifs visuels) qui se répetent.

ST

Picture section-header Background Text

Image Document Pixel projection in 3D embedding space Image Document Segmentation

Figure 2.1 Schématisation d’un espace de représentation vectoriel
pour la tache de segmentation de documents
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Une représentation abstraite ou embedding d’une image peut étre définie comme un ou plusieurs
vecteurs non compréhensibles pour I’ceil humain mais contenant les caractéristiques et motifs
visuels pertinents sur I’image pour répondre a une tache. ’ensemble de ces vecteurs peut se
noter v € RV*P avec N le nombre de vecteurs pour représenter 1’image et D la dimension de
I’espace vectoriel. Ainsi, les vecteurs v représentant des entités similaires seront proches dans
I’espace de représentations et inversement. Dans le cas d’apprentissage supervisé pour une tache
donnée, la représentation est apprise pour répondre au mieux a cette derniere. Par exemple, dans
le cas d’une segmentation de document (Document Layout Analysis), I’objectif est de classifier
chaque pixel avec le type d’entité auquel il appartient (titre, image, tableau, etc.). Ainsi, les
formes/caractéristiques extraites de 1’image et représentées dans I’embedding se concentrerons
par exemple sur la position, la couleur et I’intensité des pixels, discriminant les éléments différents
et rapprochant les éléments similaires dans I’espace vectoriel de représentation, permettant une

classification correcte de chaque pixel (voir figure 2.1).

Les parties suivantes de ce chapitre se concentrent sur 1’extraction et la représentation des

caractéristiques visuelles afin de construire les embeddings d’images, en utilisant des ViTs.

2.2 Les Transformers Visuels

Les Transformers Visuels (Vision Transformers, ViTs) par Dosovitskiy et al. (2020), sont une
variante appliquée a I’'image de I’architecture Transformer (Vaswani et al., 2017), initialement
concue pour le traitement du langage naturel. Cette section fournira la théorie derriere cette
architecture qui s’est imposée comme fondation de la vision par ordinateur ces dernieres années.

La figure 2.2 illustre I’architecture des ViTs, qui sera une référence durant cette section.

2.2.1 Des pixels aux patchs

Du fait que les images de documents peuvent contenir des éléments de petite taille comme

des écritures en bas de page (footnote), leur résolution peut Etre élevée, afin d’€tre capable de
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Figure 2.2  Architecture originel des Transformer Visuel,
tirée de Dosovitskiy et al. (2020)

représenter chacun de ces éléments. Cependant, pour une image de document de haute résolution

comme par exemple / € R>60x1920x3

, extraire caractéristiques visuels pertinentes parmi les
2560 x 1920 pixels peut s’avérer compliqué. De plus, traiter I’ensemble de ces pixels augmente
rapidement le colt de calcul avec la résolution qui est quadratique chez les ViTs (voir section

2.2.2.1).

RAXWXC " cette derniére va étre divisée en

En vue de résoudre cela, pour une image d’entrée x €
N groupements de pixels non superposés, appelés patchs x,, € RV*P*PXC_de résolution P x P et
C le nombre de canaux. Ces patchs sont ensuite aplatis et projetés linéairement dans un espace
de représentation de dimension D. Ainsi, la dimension de I'image devient x), € RV*P L3 ou la

division de I’image en patch permet de réduire la résolution a traiter, la couche linaire permet de

projeter chaque patch dans un espace de représentation vectoriel.
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[’équation de cette transformation peut €tre notée telle que :
Emb
x, = WE_ flat(xp) (2.1)

2 .. .. . s . . .
avec WEmP ¢ RPX(P"-C) 13 projection linéaire et flat la fonction d’aplatissement, retournant ici

. . 2
un vecteur de dimension RVN*(P*-C)

Les ViTs ne sont pas séquentiels, ils encodent chaque patch avec la méme projection sans notion
d’ordre, tout comme leur opération d’attention (voir section 2.2.2.1) qui encode chaque patch
parallelement. Ainsi, ils sont de base équivariants par permutation, sans notion de position
dans la représentation ou dans la maniere d’encoder. Les auteurs ont donc ajouté la position

Xpe € RN*P dans la représentation, qui est une matrice de poids apprise lors de I’entrainement.

e L .. o . 5 2 ’
Cela permet d’inférer la position originelle de chaque patch sur I'image dans la séquence x7,.
Ainsi, la représentation de 1’image enrichie par les positions spatiales peut étre notée zg € RV*P
telle que.

20 = X, + Xpe (2.2)

Dans le papier original, un patch supplémentaire est ajouté (classification token) et est utilisé
pour des taches apres I’encodage de 1I’image (eg. classification). Comme cela n’est pas utilisé
pour I’encodage dans le contexte de DocVQA, ce patch sera écarté pour la suite de cette these.
Les ViTs étant composés de plusieurs couches, I’entrée de chacune d’entre elles sera notée z;_1,

avec [ le numéro de la couche courante.

2.2.2 Le mécanisme d’attention

La projection de chaque patch dans 1’espace de représentation se fait de maniere locale et est
ainsi indépendante des autres patchs. Or pour capturer des caractéristiques du document, un

encodage global est nécessaire.
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2.2.2.1 L’attention

L attention (self attention) permet d’encoder les patchs de maniere globale en fonction des
caractéristiques visuelles qu’ils contiennent.

Dans le contexte de DocVQA, sur une image de document, le texte aura des propriétés
différentes d’une photo/illustration (eg, couleur, forme, etc.), qui sont importantes a extraire.
Ainsi, I’encodage a pour objectif de renforcer ces caractéristiques dans la représentation, en
renforcant les patchs qui contiennent des caractéristiques pertinentes. Pour cela, I’ensemble des
vecteurs de patchs z;—; est encodé afin d’obtenir une requéte (query) Q, une clé (key) K et une

valeur (value) V telle que :

0=z1W, (2.3)
K =z,_4W; 2.4)
V=z.4W, (2.5)

avec W, Wy et W, des projections linéaires de dimension RP>¢»

. W, projette chaque patch en
fonction de la caractéristique recherchée, tandis que la Wy projette chaque patch dans le méme
espace dj, que la requéte. Les projections W, et W) sont ainsi apprises conjointement afin de
mettre en évidence les relations entre les patchs. Suite a cela, les scores d’attention sont calculés
en faisant le produit scalaire (dot product) de Q et K, résultant en un cofit opérationnel de O (N?).
Les patchs qui auront un score élevé sont ceux dont la clé est fortement alignée/similaire a la
requéte, c’est-a-dire ceux qui se rapprochent le plus de la caractéristique recherchée. Ces scores
sont normalisés et passés dans une fonction softmax afin que la somme des scores d’attention
qu’un patch distribue a tous les autres patchs soit égale a 1. Ces scores servent ensuite de
poids pour la matrice V € R¥*“:_ Les patchs ayant des scores proches de 0 auront ainsi une
magnitude faible dans 1’espace de représentation, minimisant I’importance de I’information

qu’ils contiennent. Les patchs ayant des scores €élevés (proches de 1) auront aussi une magnitude

plus grande dans la représentation et donc une influence plus élevée. Finalement, la formule
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générale de I’attention peut se noter comme 1’équation suivante :

Attention(Q, K, V) = softmax (QKT) Vv (2.6)
o Vdy '

Ce mécanisme, en pondérant la combinaison des vecteurs de V, rapproche dans 1’espace de

représentation les patchs partageant des caractéristiques similaires et pertinentes pour la tache.

2.2.2.2 L’attention multi-tétes

Comme décrit précédemment, le mécanisme d’attention permet de renforcer et rapprocher les
patchs de caractéristiques pertinentes pour la tiche via les matrices Q et K. Par ailleurs, les
caractéristiques pertinentes d’une image sont souvent multiples et peuvent nécessiter plusieurs

scores pour étre bien discriminées.

L’ attention multi-tétes (multi-head attention) utilise le méme mécanisme d’attention mais avec
une requéte Q", une clé K" et une valeur V" par téte h. Cela permet de rechercher dans
chaque patch différentes caractéristiques (texture, forme, couleur, etc.) chacune associée a des
paires de requétes et de clés. Le nombre de tétes d’attention peut se noter H. Pour chaque téte
h € {0,...,H — 1}, les matrices de projection wh, Wl? et th sont définies, de dimensions
RP>dr correspondant respectivement aux requétes, clés et valeurs, avec dj, = %. L attention

pour une téte / peut ainsi s’écrire :
head;, = Attention(Qh, K", Vh) 2.7

Suite a cela, les résultats sont de nouveau concaténés, résultant en une dimension RV*Pr-H Afin
d’unifier chaque patch avec sa nouvelle représentation, ces derniers passent a travers une derniere

projection linéaire WO € R%-#xD 1 attention multi-tétes peut donc se formuler telle que :

Z) = MultiHeadAttention(z;-1) = Concat(heady, ..., heady_1)W? (2.8)
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avec z; € RV*P Ainsi ce mécanisme permet plus de flexibilité dans 1’encodage en tenant compte

de diverses caractéristiques.

2.2.3 Les couches de ViT

L architecture ViT encadre le mécanisme d’attention par deux couches de normalisation,
restreignant I’intervalle des valeurs dans 1’espace de représentation et évitant des gradients trop
importants. De plus, la représentation a I’entrée du bloc est ajoutée a la sortie du mécanisme
d’attention permettant de garder en mémoire la représentation précédente tout en la modifiant
uniquement en fonction des scores d’attention (voir figure 2.2). De plus, cet ajout résiduel permet
de faciliter la retro-propagation des gradients et d’éviter le "vanishing gradient problem" comme

expliqué dans le papier de ResNet (He ef al., 2016).

Enfin, apres 1’ajout de la couche résiduelle et la normalisation, chaque patch est projeté
indépendamment des autres dans un petit réseau a deux couches (Feed-Forward) afin d’ajouter de
la non-linéarité et d’apprendre des relations plus complexes entre les dimensions. Ce dernier est

composé d’une premiére projection de dimension W?, ., € RP*PFF avec D << DFF. Lespace

MLP
de représentation D F'F étant plus grand, il permet d’apprendre des relations plus complexes.
Suite a cela, la représentation est passée dans une fonction d’activation GELU voir figure 2.3.

Cela permet d’ajouter de la non-linéarité tout en régularisant les valeurs négatives sans pour

autant désactiver celles proches de 0. Enfin, une derniere couche linéaire W}, , € RPFF*D est
utilisée pour projeter a nouveau chaque patch dans 1’espace de représentation initial.
MLP(x) = W,,; p(GELU(WY,, p(x))) (2.9)

Une seconde couche résiduelle est ajoutée en sortie du MLP, pour les mémes raisons que la

premiere. Ainsi, une couche de ViT [ peut €tre représentée par la suite d’équations suivantes :

z; = MultiHeadAttention(LN (z;-1)) + zi-1 (2.10)
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71 = MLP(LN(z))) + z; (2.11)

Ainsi, pour chaque couche successive, les patchs ayant des caractéristiques importantes sont
de plus en plus enrichis par les autres patchs ayant des caractéristiques similaires, permettant

d’enrichir chaque patch avec des informations globales.

23 Les Transformers Visuels Hiérarchiques

Comme vu précédemment, les ViTs offrent une solide capacité d’apprentissage de représentations
visuelles. Cependant, I’opération d’attention conduit & un coiit de calcul quadratique (O(N?),
limitant les résolutions d’image en entrée. Les Transformers visuels hiérarchiques comme les
Swin Transformers par Liu et al. (2021) permettent de résoudre ce probleme. Cette section

a pour but d’expliquer le fonctionnement de ces derniers et leurs intéréts dans le contexte de

DocVQA.
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Figure 2.4 Schémas du Swin Transformer,
tirée de Liu et al. (2021)

2.3.1 L’architecture hiérarchique

RHXWXC ot réduisent sa

Les architectures hiérarchiques prennent en entrée une image [ €
résolution au fur et a mesure qu’elle avance dans les couches profondes du réseau. Cela
permet de capturer des caractéristiques a différentes échelles/niveaux, et ainsi de mieux
représenter des éléments de différentes tailles. S’inspirant des architectures hiérarchiques de

CNNs, le Swin Transformer (figure 2.5) allie I’opération d’attention des transformers avec

une architecture hiérarchique. Les CNNs utilisent une opération de downsampling telle que le
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pooling bidimensionnel, a I’échelle de pixels. Les Swin Transformers introduisent les couches

de fusion de patchs (patchs merging).

Ce mécanisme divise la résolution par 2 X 2 en concaténant les patchs voisins sur la profondeur

puis applique une couche linéaire Wy,¢r. € RACx2C

sur la concaténation. Ainsi, pour une
résolution de % X % x C, la dimension apres la concaténation sera de % X % X 4C et % X % x2C
apres la projection linéaire. Aprés chaque couche de patchs merging, la résolution des patchs est

donc divisée par 2 et la taille de I’espace de représentation est quand a elle multipliée par 2.

Les Swin Transformers sont composés d’une entrée qui, comme les ViTs, divise I’image en patchs
et les projette dans I’espace de représentation (voir la section 2.2.1). Suite a cela, I’architecture
est divisée en niveaux (stage) qui contiennent chacune une couche de patch merging (excepté
pour la premiere). Puis chaque niveau est composé d’une succession de couches (block, voir
figure 2.4b) similaires aux couches de ViTs (voir Section 2.2.3).

Ainsi, I’architecture hiérarchique du Swin Transformer permet de prendre en entrée des images
de haute résolution, ce qui est utile dans la compréhension de documents pour représenter des
éléments de petite taille tels que le texte. Cependant, I’opération d’attention des ViTs étant
quadratique, son utilisation est mal adaptée pour des images de haute résolution, surtout sur les

premiers niveaux ou la résolution est encore élevée.
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2.3.2 Les fenétres d’attentions
Layer 1 Layer 1+1
A local window to
perform self-attention
—
A patch

Figure 2.5 Illustration des fenétres et fenétres décalées d’attention
tirée de Liu er al. (2021)

Afin de résoudre le coflit de calcul quadratique de I’attention dans les ViTs, les auteurs de
I’architecture Swin Transformer proposent une approche par fenétre (window-multihead self-
attention, W-MSA). Dans ce mécanisme, les patchs sont regroupés par des fenétres contenant
M patchs. Ainsi, I’attention est uniquement calculée entre les patchs d’une méme fenétre. Le
cofit de calcul de I’opération d’attention sera donc de O(M?w) avec w = % le nombre de
fenétres et M? << N2. Ainsi, ce mécanisme permet de réduire le cofit de calcul de I’ attention
passant de O(N?) pour les ViTs classiques 2 O(NM). Cependant, cette attention étant locale,
les connexions entre chaque patch sont restreintes. Ainsi, les auteurs proposent d’alterner entre
deux répartitions de fenétres différentes (shifted-windows, SW-MSA) afin de permettre des
connexions croisées entre les patchs voisins de différentes fenétres.

De plus, les auteurs ont introduis un biais spatial B € RM¥*M qui est ajouté dans I’opération

d’attention tel que

W-Attention(Q, K, V) = softmax (Q

+B|V (2.12)
Vd,, )
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avec Q, K,V € RM*dr_(Ce biais remplace I’encodage de position des ViTs (voir Section 2.2.1) et

démontre de meilleures performances sur les taches de vision sur des images de scenes naturelles.

Finalement, les fenétres d’attention permettent de restreindre le coiit de I’opération d’attention,
permettant a cette architecture de prendre en entrée des images de plus haute résolution tout en

limitant I’augmentation du cofit de calcul, méme dans les premieres couches.

2.4 Conclusion sur les ViTs

Ainsi, les ViTs sont une architecture efficace pour extraire et représenter les caractéristiques
d’une image. Ayant fait leurs preuves sur les images naturelles, ils sont également utilisés dans
I’état de I’art de DocVQA pour encoder une image de document afin qu’elle puisse étre utilisée
par un modele de langue dans le but de répondre a une question. Comme expliqué dans le
chapitre 1, les architectures classiques (section 2.2) sont utilisées dans les modeles a grande
échelle (LVLMs), composés d’un encodeur visuel et d’'un modele de langue ayant beaucoup
de couches, entrainant de bonnes performances mais nécessitant plus de ressources de calcul.
Les Swin Transformer sont quant a eux, utilisés dans les modeles de petites tailles, requérant
moins de ressources, mais dégradant les résultats. D’autre part, les méthodes d’encodage de
position de ces modeles ont été évaluées sur les images naturelles dans les papiers originels,
sans investigation supplémentaire pour la tiche de DocVQA. Pour poursuivre, les chapitres
suivants présentent les méthodologies et approches expérimentales afin de résoudre ces gaps

dans I’état de 1’art.



CHAPITRE 3

ALLEGER SANS OUBLIER : TRANSFERER LES CAPACITES D’UN MODELE
FONDATION VERS UN ENCODEUR LEGER

Ce chapitre décrit la méthodologie utilisée pour résoudre le premier objectif de ce mémoire qui
est la réduction de I’encodeur visuel d’'un LVLM. Comme indiqué dans le chapitre 1, les modeles
de la tiche de DocVQA sont soit constitués de petits modules, requérant peu de puissance
de calcul mais résultant en une performance limitée, soit de larges modeles de fondation qui
repoussent les limites des petits modeles mais avec un cofit de calcul plus excessif. Ainsi, 1’état
de I’art impose un choix entre performance et efficience. L'objectif de ce chapitre est donc de
pallier a cela en réduisant la taille de I’encodeur visuel d’un modele de fondation tout en gardant
un LLM en décodeur, afin de conserver des résultats compétitifs, tout en réduisant le colit de
calcul.

Les encodeurs visuels de fondation sont basés sur des architectures classiques telles que CLIP
Radford et al. (2021) et SigLIP Zhai et al. (2023), entrainant une complexité d’attention qui
évolue de maniere quadratique avec le nombre de patchs (voir section 2.2). Les images de
documents pouvant étre de haute résolution, utiliser un modele hiérarchique tel que le Swin
transformer (voir Section 2.3.1), qui a une complexité linéaire, permettrait de prendre en entrée
des images plus grandes tout en limitant le cott de calcul. L’approche choisie pour cet objectif a

donc été la distillation, qui permet un transfert de connaissances entre architectures hétérogenes.

3.1 La réduction de modeles

Les premieres méthodes de réduction de modeles se basent sur la suppression de parametres
non utilisés pour résoudre la tache (pruning) introduite par LeCun, Denker & Solla (1989). Avec
I’avenement des modeles profonds (AlexNet par Krizhevsky et al. (2012)), les méthodes de
pruning ont été développées pour réduire la taille et le cofit de calcul de ces méthodes (Han, Pool,
Tran & Dally, 2015). Plus récemment, avec I’arrivée des ViTs comme modeles de référence
pour le traitement d’image, ces méthodes ont été adaptées a leurs différents types de couches

(eg., tétes d’attention, MLP, etc.) comme par Yang et al. (2023), permettant de réduire le colit de



36

calcul de ces modeles. Cependant, méme si le pruning a démontré une grande efficacité pour
réduire la taille des modeles tout en conservant une bonne performance, cette technique ne

permet pas de changer I’architecture du modele initial.
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a) Distillation de connaissances classique (KD) b) Distillation de caractéristiques (KD+ FD)

Figure 3.1 Schématisation de la distillation

La distillation de connaissances (Knowledge Distillation, KD) par Hinton, Vinyals & Dean
(2015) vise a transférer les connaissances d’un modele professeur vers un modele plus petit
appelé étudiant (voir figure 3.1a). Pour cela, la supervision de I’étudiant se fait par la sortie du

professeur tel que :

Lgp = L(ye, Yprof) (3.1
Loss = A1 L(Ye,ygr) + A2Lgp (3.2)

avec Y., Yprof €t ygr les valeurs prédites respectives de 1’étudiant, du professeur, et la réponse
correcte (ground truth) avec L une fonction de coft. 4 et A, sont des coefficients induisant
I’importance de chaque erreur dans la mise a jour des poids. Ainsi, I’étudiant apprend a imiter
les prédictions d’un modele plus gros, le permettant de se rapprocher des performances de ce
dernier pour une tache spécifique tout en ayant un cofit de calcul plus faible. Dans ce contexte, le
professeur est déja entrainé et n’est donc pas supervisé lors de la distillation (offline distillation).
Certaines méthodes ont ét€ développées pour entrainer le professeur en méme temps que

I’étudiant (online distillation) permettant de superviser un ou plusieurs étudiants avec un ou
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plusieurs professeurs (Zhang, Xiang, Hospedales & Lu, 2018). D’autres approches utilisent un
seul modele qui renforce son propre apprentissage en étant a la fois le professeur et I’étudiant
(self-distillation) introduite par Zhang, Bao & Ma (2021), permettant aux couches profondes de
superviser des couches précédentes. Dans le cas de ce mémoire, le modele professeur est déja

entrainé, I’objectif étant de le réduire. La premiere catégorie de méthodes est choisie.

La distillation de connaissances classique consiste a superviser I’étudiant a 1’aide des sorties
du professeur. Cependant, cette approche laisse a 1’étudiant la liberté de construire ses propres
représentations internes, en cherchant uniquement a reproduire les sorties finales du professeur.
La distillation de caractéristiques (Feature Distillation, FD) introduite par Ba & Caruana (2014)
étend cette idée en guidant I’étudiant a travers une supervision supplémentaire sur une couche
intermédiaire (hint layer) de I’enseignant, transférant ainsi une partie de ses connaissances

internes vers le modele plus léger (voir figure 3.1b). L’équation de cette méthode peut s’écrire :

Lip = BLs(f) fhhoy (3.3)

Loss = A1 L(Ye,ygr) + A2Lkp + A3LFp (3.4)

avec fel la sortie de 1’étudiant sur la couche intermédiaire choisie, f lflm. ¢ la hint layer, Ly la
fonction de perte et A3, le coefficient d’importance de cette supervision dans 1’apprentissage.

La distillation de caractéristiques nécessite tout de méme d’avoir un espace de représentation
de méme dimension pour le professeur et 1’étudiant, et dans le cas d’une image, d’avoir des
cartes de caractéristiques (feature maps) de méme taille afin de permettre le calcul de I’erreur.
Différents travaux ont été menés pour distiller des réseaux neuronaux convolutifs (CNNs) (Kim,
Park & Kwak, 2018; Chen, Choi, Yu, Han & Chandraker, 2017; Lin et al., 2022; Chen, Liu,
Zhao & Jia, 2021; Chen et al., 2022a), lesquels, en raison de leur structure hiérarchique, ont
des dimensions de feature maps qui varient entre 1’enseignant et 1’étudiant. Pour permettre la
distillation des caractéristiques, des projecteurs convolutionnels (petites couches de convolution)

sont utilisés afin d’aligner les dimensions des cartes de caractéristiques de 1’enseignant et
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de I’étudiant. Les méthodes initiales (Kim et al., 2018; Chen et al., 2017; Lin et al., 2022;
Chen et al., 2021) consistent a entrainer I’ensemble du modele sur la tache, ce qui réduit
I’interprétabilité de la distillation et ajoute des étapes dans I’entrainement. Pour y remédier,
SIMKD (Chen et al., 2022a) propose de ne distiller que les cartes de caractéristiques de la derniere
couche convolutionnelle, tout en réutilisant la téte de classification de I’enseignant. Ainsi, ils

n’entrainent que I’encodeur de I’ étudiant en supervisant sa représentation interne par le professeur.

Le colt élevé en temps d’entrainement et nombre de données requis par les ViTs a conduit a
I’introduction de la distillation pour ces derniers. DearKD par Chen et al. (2022b) utilise un
CNN comme enseignant pour entrainer un étudiant ViT. Afin de permettre la distillation, les
dimensions de sortie du ViT sont alignées avec les cartes de caractéristiques du CNN grace a une
interpolation bilinéaire. Les auteurs Liu et al. (2022) améliorent les performances d’'un CNN en
utilisant un ViT comme enseignant. Ils alignent les cartes de caractéristiques du CNN avec les
dimensions de sortie du ViT a I’aide d’un petit MLP. Ces méthodes ont montré qu’il est possible
de distiller des architectures hétérogenes en alignant les dimensions de leurs représentations
internes. Cependant, elles prennent la méme résolution d’entrée et se concentrent uniquement

sur la distillation inter-architecture entre des paires CNN/ViT.

Plus récemment, d’autres études ont utilisé la distillation entre des paires de ViTs. Yang et al.
(2024a) étudient comment utiliser la distillation entre ViTs avec la méme résolution d’entrée et
le méme nombre de patchs en sortie. En appliquant une simple projection linéaire pour aligner
les dimensions d’embedding de I’étudiant avec celles de I’enseignant, ils ont montré que la
distillation entre ViT est efficace pour réduire leur taille en conservant la méme architecture.
Yang et al. (2024b) ont quant a eux distillé des ViTs d’architecture hétérogeéne tels que CLIP en
professeur et un Swin en étudiant. Leurs résultats montrent que la distillation entre architectures
hétérogenes conduit a de meilleures performances que I’approche précédente. La ou ces méthodes
se concentrent uniquement sur des taches simples comme la classification d’image, les avancées

récentes en DocVQA ont conduit a certains travaux utilisant la distillation de caractéristiques
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afin de réduire la taille de I’encodeur visuel (Gao et al., 2024; Van Landeghem et al., 2024).
MinilnternVL par Gao et al. (2024) réduit la taille de I’encodeur visuel InternViT (Chen et al.,
2024), en le faisant passer de 6B parametres a 300M, ce qui reste une taille conséquente.
DistillDoc par Van Landeghem et al. (2024) adapte la méthode de SIMKD Chen et al. (2022a),
en ne distillant que 1’encodeur visuel, mais en utilisant I’OCR pour aider le décodeur sur la
tache. De plus, ces méthodes supposent que les paires étudiant/enseignant prennent la méme
résolution d’image et retournent le méme nombre de patchs en sortie. Par conséquent, elles ne

traitent pas le probleme d’alignement du nombre de patchs.

En conclusion, la distillation de caractéristiques est une méthode efficace pour transférer un
apprentissage d’un modele professeur vers un modele plus petit. Des études ont montré I’efficacité
de la distillation entre différents types de modeles (CNN et ViT). Cependant, les méthodes de
distillation de caractéristiques entre ViTs contraignent la résolution d’entrée de I’étudiant afin
que ses dimensions en sortie soient alignées avec celles du professeur. Cependant, les images de
documents pouvant étre de haute résolution, étudier différentes tailles de ces dernieres pourrait
s’avérer important pour faire varier les colits de calcul et les performances pour un méme

étudiant.

3.2 Méthodologie et Architecture

Les LVLMs peuvent étre séparés en deux groupes : les méthodes utilisant des résolutions
d’entrée variables (Wu et al., 2024; Chen et al., 2024; Gao et al., 2024) et celles ayant une
résolution fixe (Beyer et al., 2024). La premiere catégorie repose sur la séparation d’une image
en sous-parties (tiles) qui sont envoyées parallelement au méme encodeur. Chaque tile a la
résolution attendue par I’encodeur visuel, ainsi pour un modele prenant en entrée une image
de résolution I € R¥*"*C une image de haute résolution Iyp € R7>WiXC sera divisée en ¢
tiles avec t; € RI>WXC_ Cette méthode permet aux modeles de prendre en entrée des images
de plus haute résolution tout en limitant le cofit de 1’attention. Néanmoins, cela entraine un

colit de prétraitement plus €levé (Wu et al., 2024) et résulte en une représentation du document
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non globale en sortie de I’encodeur. Le choix du modele professeur s’est donc porté sur la
deuxieme catégorie. PaliGEMMA par Beyer et al. (2024) est un LVLM prenant une résolution
fixe en entrée, composé d’un encodeur visuel SigLIP-SO400M (Zhai et al., 2023) et d’un LLM
décodeur Gemma-2B (Mesnard et al., 2024). La taille de son décodeur qui n’est pas excessive et

ses performances compétitives sur la taiche de DocVQA en font un professeur idéal a distiller.

L’encodeur visuel étudiant est un Swin Transformer (Liu ef al., 2021; Kim et al., 2022), choisi
pour ses propriétés hiérarchiques, son cofit d’attention linéaire ainsi que sa forte représentation
dans I’état de I’art avec plusieurs modeles pré-entrainés open-source. Ainsi, ses poids sont
initialisés avec ceux du modele Donut par Kim er al. (2022), déja entrainé sur la tache de
DocVQA, ce qui permet de limiter les ressources nécessaires a 1’entrailnement. Inspiré par
SIMKD (Chen et al., 2022a), la projection multimodale et le décodeur de PaliGEMMA sont
réutilisés dans I’architecture pour éviter un entralnement partant de poids non initialisé. Le

modele résultant a été nommé "Downscaling Image Visual Encoder for DocVQA" (DIVE-Doc).

3.2.1 Transfert de connaissance et alignement

La stratégie d’entrailnement est divisée en deux étapes, permettant le transfert de connaissances
et I’alignement entre le nouvel encodeur et le LLM décodeur.

La premiere phase est la distillation de I’encodeur de PaliGEMMA dans 1’étudiant Swin. Les
sorties de 1’étudiant et du professeur sont respectivement notées v € RVsXPs et yT' € RVN1*DPr
Ngs et Nt représentent le nombre de patchs, tandis que Dg et D7 sont les dimensions des
embeddings. Afin d’étudier I’'impact de différentes résolutions d’entrées tout en permettant la

distillation, deux stratégies de distillation sont explorées :
1.Distillation a Résolution Fixe (Fixed-Resolution Distillation, FRD)

Dans ce cas, une approche classique de distillation de caractéristiques est adoptée, ou la
résolution d’entrée est ajustée de maniere a contraindre Ng = N7 en sortie de I’étudiant. Les

patchs produits par ce dernier sont alors simplement projetés par une couche linéaire dans
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Figure 3.2 Stratégie d’entrainement de DIVE-Doc

I’espace de représentation du professeur Dr. Cette méthode, bien que simple sur le plan
architectural, impose toutefois une contrainte directe sur la résolution d’entrée afin d’assurer la

condition Ng = Ny en sortie.
2. Distillation a Résolution Adaptative (Adaptive-Resolution Distillation, ARD)

Cette approche permet des résolutions d’entrée flexibles en redimensionnant la sortie de I’étudiant
lorsque Ns < N7 ou Ng > Nr sans ajout de parametre, afin que cette derniere soit alignée
avec le professeur. Pour cela, la sortie de I’étudiant vS € RNs*Ds egt restructurée en cartes
de caractéristiques Frflaps € Rs*wsxDs _(Ces derniéres sont ensuite redimensionnées de taille
RhrwrxDs - avec hy x wr = Ny. Enfin, ces cartes sont aplaties et projetées dans 1’espace
de représentation du professeur D7 par une couche linéaire. Afin d’éviter des parametres
supplémentaires, une couche d’interpolation bilinéaire sans parametres lorsque Ng > Np
et une couche bicubique lorsque Ng < Nr sont utilisées pour redimensionner les cartes de

caractéristiques de I’éleve. Cette approche aligne donc le nombre de patchs Ng en sortie de

I’étudiant avec N7, enlevant la contrainte sur la résolution d’entrée de la premiere approche.
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Pour les deux approches de distillation, inspirées par Yang et al. (2024b), I’erreur quadratique

moyenne (Mean Squared Error, MSE) est choisie comme fonction de cofit :

| Ny Dy
MSE = ——— 8y 2 3.5
Ny x Dy an Zdl("n’d Vn,d) (3.5)

avec V3 € RNVTXPT Jes vecteurs en sortie de I’étudiant, alignés avec le professeur. L éléve peut
donc apprendre a imiter la position exacte de chaque patch dans I’espace de représentation du

professeur.

La distillation implique donc de générer les embeddings du professeur v/ pour chaque image
afin de calculer I’erreur MSE. Cependant, générer a chaque itération ces embeddings prend
des ressources de calcul supplémentaires (empreinte sur la mémoire, VRAM). Afin de réduire
I’empreinte VRAM de I’entrainement, les vecteurs d’embedding du professeur sont générés et
sauvegardés dans une base de données avant I’entrainement, ce qui permet de ne pas charger
le modele lors de la supervision de I’étudiant. Une hmap est également générée avec comme
clé, I’identifiant (id) de I’'image dans le dataset originel et en valeur la ligne correspondante
aux vecteurs d’embedding du professeur associés a cette image, ce qui permet de retrouver

rapidement et facilement les embeddings v’ pour une image I.

La deuxieme étape de cet entrainement est le finetuning bout-en-bout du modele. En effet, méme
si ’encodeur visuel de I’étudiant a appris a imiter la représentation du professeur, ce dernier,
du fait de sa composition différente, a pu apprendre des détails plus affinés ou différents du
professeur, pouvant nécessiter un affinage supplémentaire avec le LLM décodeur. Ainsi, cette
étape consiste a entrainer le modele entierement, afin d’aligner le nouvel encodeur visuel avec le
décodeur. Pour cela, I’approche QLoRA par Dettmers, Pagnoni, Holtzman & Zettlemoyer (2023)
a été adoptée afin de limiter les ressources nécessaires a cet entrainement. Les adaptateurs LoRA

ont été initiés par Hu et al. (2022) et permettent d’affiner des modeles, avec un faible colt de
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calcul. Pour cela, au lieu de mettre a jour les parametres initiaux du modele, une couche de
nouveaux parametres s’ajoutent au dessus de ces derniers, préservant les connaissance actuelles
du modele tel que :

h=Wx+ Wyrax (3.6)

avec W € R les parametres pré-entrainés du modele, gelés pour I’entrainement et Wi, €
R4k les parametres LoRA ajoutés pour le finetuning. Pour limiter le nombre de nouveaux
parametres, les adaptateurs LoRA sont composés de deux matrices a faibles rangs. On peut ainsi
noter :

Wiora = BAx 3.7

avec B € R et A € R™F les décompositions de rang r des paramétres LoRA, avec
r << min(d, k). Ainsi, lors de 1’apprentissage, seules les matrices A et B sont mises a jour,
réduisant considérablement le nombre de parametres a entrainer. En plus des adaptateurs LoRA
ajoutés sur chaque couche de I’encodeur visuel, du projecteur multimodal et du décodeur, les
parametres pre-entrainés sont chargés sur 4 bit au lieu de 32 bit (QLoRA), permettant de réduire
leur empreinte sur la VRAM.

Ainsi, en adoptant cette technique, le modele peut étre affiné de bout-en-bout tout en limitant
la VRAM requise. Cette étape utilise la fonction d’entropie croisée comme fonction de cofit,
comparant la prédiction en sortie du décodeur y avec la réponse correcte y, présente dans

I’ensemble de données tel que :

S exp(§i)
yeilog| —m= (3.8)
221 exp(9r,))

L
LCE:_TZ

=1 i=1

avec T la longueur de la réponse et |A| la taille du vocabulaire du modele de langue.
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3.2.2 Evaluation et interprétation des connaissances de I’encodeur visuel
&Learning Frozen DIVE-Doc's Segmentation Classification
weights weights visual encoder decoder decoder
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MLP
projector

— > DIVE-Doc (VE)

4

LP Article
projector

Figure 3.3 Stratégie d’évaluation de I’encoder visuel

Suite a I’évaluation du modele sur la taiche de DocVQA, une question peut se poser : Qu’est ce
que ’encodeur visuel a réellement appris et quelles fonctions remplit-il dans la résolution de
la tache ?. Comme énoncé en introduction et au long des chapitres, I’encodeur visuel permet
d’extraire les caractéristiques du document afin que le LLM puisse ensuite les interpréter afin de
répondre a la question. Cependant, les images de documents ont différents types d’éléments
(texte, image, etc.) et des structures (layout) variées. La tiche de DocVQA nécessite a la fois
d’extraire et de représenter les informations de différentes modalités, mais aussi d’avoir une
compréhension de la structure du document (layout) a la fois générale (position spatiale des

éléments) et sémantique (titre, description, tableau, etc.).

Dans le but de mieux étudier et comprendre le role de I’encodeur visuel dans le contexte de
DocVQA, ce dernier a été évalué sur deux taches de compréhension de documents. Premierement,

afin d’évaluer si I’encodeur visuel a une bonne représentation de la structure générale des
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documents en étant capable de discriminer des structures différentes (lettres, articles, etc.), la
tache de classification de documents (Document Classification, DocCLS) a été choisie. Pour
cela, un petit MLP est ajouté en sortie de I’encodeur visuel afin de réduire le nombre de patchs
de N7 a 1, puis un deuxieme MLP sert a classifier ce patch, passant de D7 a Ccrs avec Cers le

nombre de classes possibles. La fonction de cofit utilisée est I’entropie croisé, telle que :

CcLs exp( ClS)

cls _ cls
LC Z Vi log CCLS exp(yCIS) (3:9)

La deuxieme évaluation a lieu sur la tiche d’analyse de la structure du document (Document
Layout Analysis, DLA), consistant a classifier chaque patch ou pixel du document avec une classe
de structure sémantique (titre, tableau, image, texte, etc.). Ainsi, ces classes peuvent étre divisées
en deux sous-groupes, les classes de modalités (image et texte) et les classes d’intra-modalité
(tableau, formulaire, titre, etc.) qui sont toutes de la modalité de texte. Cette évaluation permet
donc de déterminer si I’encodeur visuel est capable de représenter et de discriminer les modalités
différentes, et d’avoir une compréhension sémantique du layout dans sa représentation.

Pour résoudre cette tache, un petit MLP est ajouté a la sortie de 1’encodeur afin de classifier
chaque patch, projetant ainsi v5' € RV7*Pr 3 RN1XCora avec Cpy 4 le nombre de classes. La

fonction de cott utilisée est I’entropie croisé, tel que :

Nr Cpra exp(ydl“)

Ldla _ Z Z dla
CE — In, CDLA ~dla

2P exp(54

(3.10)

Afin d’évaluer correctement ce que I’encodeur visuel a appris pour la tiche de DocVQA, les
connaissances de ce dernier ne doivent pas étre modifiées lors de I’entralnement des MLP pour
les deux sous-taches. Ainsi, les parametres de I’encodeur visuel sont gelés comme illustré sur la
figure 3.3, afin de ne pas modifier ce qu’il a appris pour la tiche de DocVQA, et de réutiliser ses

connaissances sur les tiches de classification et d’analyse de structure de documents.
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3.3 Notes finales et ouverture

La méthodologie de ce premier objectif peut ainsi tre décomposée en deux parties. Premierement,
la réduction et 1’évaluation de I’encodeur visuel d’un LVLM sur la tiche de DocVQA. Cette
étape permet a la fois de réduire la taille de I’encodeur visuel d’un modele de fondation et
d’évaluer I'impact de différentes résolutions en entrée sur la performance de cette tache. De plus,
I’ajout de deux sous taches de compréhension de documents, réutilisant I’encodeur visuel réduit
de la premicre étape sans modifier ses poids, permet d’évaluer et d’interpréter les connaissances
acquises par ce dernier pour la tiche de DocVQA.

Cependant, cette architecture ne permet pas d’enrichir le module visuel avec une position spatiale
précise, qui est un des gaps de la littérature (voir chapitre 1) et pourrait avoir un impact non

négligeable sur la représentation des structures de documents.



CHAPITRE 4

AU-DELA DU CONTENU : ENRICHIR LES REPRESENTATIONS VISUELLES PAR
LA GEOMETRIE SPATIALE DES DOCUMENTS

L’opération d’attention est le coeur des ViTs, permettant de mettre en avant les caractéristiques
pertinentes des patchs, ainsi qu'un encodage global entre tous les patchs. Cependant, cette
opération est équivariante par permutation, telle que si I’ordre des patchs change, leur embedding
respectif sera le méme en sortie. Dans les tiches de compréhension de document comme
DocVQA, la réponse est souvent dispatchée sur plusieurs patchs, ainsi induire la position spatiale
dans la représentation est essentielle pour que le modele puisse avoir une compréhension de
la structure du document (ordre des patchs) et retrouver la réponse a la question. Comme vu
dans 1’état de I’art, les encodeurs visuels dans la tiche de DocVQA se basent sur des papiers
fondateurs, étudiés sur des images naturelles. Cependant, I’encodage positionnel qu’ils utilisent
ne semble pas étre adéquat pour représenter correctement un document (voir section 1). Ainsi,
ce chapitre est dédié au deuxieme objectif de ce mémoire, qui consiste a intégrer un encodage
positionnel plus précis dans le modele de vision afin d’améliorer la compréhension de la structure

des documents dans ce dernier.

4.1 L’encodage des positions spatiales

L’encodage de position est un aspect fondamental de I’architecture des Transformers depuis leur
début. Ces dernieres étant introduites sur des taches de langage naturel (Vaswani et al., 2017),
les premieres séquences étaient d’une seule dimension telle que des phrases. Ainsi, I’encodage
de position prenait uniquement I’indice du token (mot, sous-mot, lettre) dans la séquence afin
de I’encoder et I’ajouter a la représentation. Pour cela, les premieres méthodes consistaient en
un enchainement de sinus et cosinus sur les différentes dimensions de I’embedding, prenant en

entrée ’indice de la position du texte dans la s€quence tel que :

20
PE 52 = sin(pos/10007 )

2 4.1)
PEpos,2i+1 = COS(pOS/l()OO"h)
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avec pos la position du token dans la séquence, dj, la dimension de I’embedding et i I’'indice de
la dimension courante de I’embedding. Cette méthode permet de toujours avoir un encodage
positionnel différent entre chaque token. Les cosinus et sinus étant des fonctions périodiques,
encoder les positions sur des fréquences différentes pour chaque indice d’embedding permet
d’avoir une position unique par token dans la représentation. Bien que cet encodage de position ait
fait ses preuves pour la compréhension de textes, les images sont des données a deux dimensions,
ainsi chaque patch n’a pas une seule coordonnée, mais deux, a savoir I’indice sur la hauteur et
sur la largeur (h, w). Cette méthode est donc peu efficace pour représenter leur position.

L’encodage spatial dans les ViTs a donc été un aspect fondamental dans le développement de leur
architecture. Initialement entrainés sur des images naturelles, ces modeles ont conduit a I’étude
de diverses facons d’encoder la position spatiale des patchs. Une premiere méthode consiste a
adapter ’encodage de position des Transformers (voir équation 4.1) pour utiliser une position a
deux coordonnées. Ainsi, la position / est encodée sur la premiere moitié de I’embedding et la

position w sur I’autre partie, tel que

2i
PE},2; = sin(h/1000%7);
2i
PE} 241 = cos(h/1000972);

2
PE,, »; = sin(w/10009/2); (4.2)
2i
PE,; 51 = cos(w/1000%/7);
PE = [PEy, PE,]

avec h la position spatiale du patch sur la hauteur, w la position spatiale du patch sur la longueur
et PEy, PE,, € R4 /2 les embeddings de position respectifs a la hauteur et a la longueur.
La cohérence spatiale de ces embeddings de positions peut étre évaluée en faisant le produit
scalaire d’une position donnée avec les autres positions des patchs sur I’image. Si les positions
spatialement proches ont des scores de similarité élevés, cela veut dire que les représentations
des positions PE sont spatialement correctes. La figure 4.1 montre deux exemples de scores de
similarité utilisant cette méthode. Comme montré par cette figure, les positions similairement
proches dans I’espace de représentation sont les positions orthogonales et non les positions

spatialement proches. Cela peut s’expliquer par le fait que les coordonnées / et w sont encodées
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a) Similarités avec la position centrale b) Similarités avec la position (0,0)

Figure 4.1 Similarité entre un vecteur de position choisi et les
autres, utilisant I’encodage de position absolue 2d

séparément et non de maniere uniforme. Ainsi cette méthode ne permet pas de representer
correctement la position des patchs dans 1’espace de représentation.

Une autre approche consiste a superviser un vecteur de position par indice unidimensionnel
dans la séquence de patchs N (voir section 2.2.1). Ces vecteurs étant directement supervisés lors
de I’entrainement, ils n’ont pas besoin de prendre les deux coordonnées spatiales (h, w). Les
similarités de positions ont été projetées sur la figure 4.2.

Ainsi, bien que 1égerement plus performante que la méthode précédente (Dosovitskiy et al.,
2020), cette approche présente le méme probleme et tend a rapprocher les positions orthogonales
sans uniformité dans les autres directions. Ces encodages de positions sont dit absolu (Absolute

Positional Encoding, APE), car ils encodent la position brute des patchs dans la séquence.

Une approche différente consiste a encoder la position relative (Relative Positional Encoding,
RPE) entre les patchs. Un exemple de cette méthode est présent dans 1’architecture Swin

Transformer, introduisant un biais spatial dans les fenétres d’attention (voir section 2.3.2). Ce
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a) Similarités avec la position centrale b) Similarités avec la position (0,0)

Figure 4.2 Similarités entre un vecteur de position choisi et les
autres, issues du modele PaliGEMMA

biais est différent pour chaque patch au sein d’une méme fenétre mais se répete entre chaque
fenétre, cet encodage positionnel est donc local et non global. Ainsi, bien que ces méthodes se
soient montrées efficace en achevant de bons résultats, ces dernieres semblent mal adaptées pour
représenter correctement les positions spatiales des patchs, particulierement dans le contexte
d’image de documents.

Une position spatiale adaptée serait telle qu’illustrée sur la figure 4.3. Sur cette derniere, les
similarités de positions se propagent dans toutes les directions de maniere homogene et sont
spatialement cohérentes. Li, Si, Li, Hsieh & Bengio (2021) ont proposé une autre méthode
se basant sur les caractéristiques de Fourier (Fourier Features). En apprenant une projection
linéaire W, € RM xZ ,avec M = 2 dans le cas d’une image, ils créent un espace de représentation
uniforme pour les positions de patchs (#, w). Les caractéristiques de Fourier sont ensuite extraites
de cette représentation suivant I’équation :

= [h,w].W;
pe = [hw] (4.3)

ffpe = gslcos(pe), sin(pe)]
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avec pe € R? la représentation de la position et f fpe € RP, les caractéristiques de Fourier
extraites de la représentation pe. Cette technique permet d’avoir une propagation de similarité
dans toutes les directions et non uniquement dans les directions orthogonales. Les auteurs ont
démontré que le noyau gaussien tel que montré sur la figure 4.3 pouvait étre obtenu en initialisant
les poids de la projection linéaire W, par une distribution normale. Cependant, ils laissent
cette projection €tre supervisée lors de I’entrainement afin que le modele puisse apprendre une
représentation pertinente pour la tiche. Afin d’ajouter plus de capacité d’apprentissage a la
représentation, les auteurs ont ajouté un petit MLP de deux couches, permettant d’ajouter de la

non linéarité afin d’enrichir et de rendre plus flexible la représentation :

ffpe = GeLU(W}fpeffpe + B.}‘fpe)Wz%fpe + B?‘fpe *4)

ol W}fpe e RP*xH gl e RA, W]%fpe € RIXD ot B2 € RP, avec H la dimension interne au

ffpe ffpe
MLP, habituellement D < H afin d’apprendre des relations complexes. Les auteurs ont démontré

a) Similarités avec la position centrale b) Similarités avec la position (0,0)

Figure 4.3  Similarités entre un vecteur de position choisi et les
autres, obtenues par I’extraction des caractéristiques de Fourier

que cette méthode permettait de meilleurs résultats sur les taches de vision. Cependant, cette
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méthode reste peu exploitée dans 1’état de 1’art et, au meilleur de notre connaissance, n’a pas
été étudiée pour des taches de représentation de documents. Les propriétés de cette approche
permettant un encodage spatial des positions plus précis que les méthodes précédentes de 1’état
de I’art de DocVQA, on peut supposer qu’enrichir la représentation des modeles de vision

actuels avec cette approche pourrait améliorer leur représentation de la structure des documents.

4.2 Méthodologie et Architecture

Les encodeurs visuels de la tiche de DocVQA se basent sur les papiers de fondation et integrent
I’encodage de position soit au début du modele lors de la division de I’image en patch dans
le cas d’un encodage de type APE (voir section 2.2.1) ou directement dans le mécanisme
d’attention dans le cas RPE (voir section 2.3.2). Ajouter la position uniquement au début entraine
inexorablement une dilution de cette information dans les couches plus profondes. Cependant,
la position est importante méme en sortie de 1I’encodeur, afin que le modele de langue puisse
avoir un ordre de lecture correct des patchs afin de retrouver de maniere efficace la réponse
a la question posée. Ainsi, dans le cas de DocVQA, la partie la plus propice pour ajouter la
position semblerait étre la sortie de I’encodeur visuel. Cependant, afin que I’encodeur visuel
puisse lui aussi apprendre a représenter la structure s€émantique et spatiale du document, intégrer
la position au début de son architecture ne doit pas non plus étre négligée.

Ainsi, pour assurer une évaluation optimale de I’intégration de cette position dans I’encodeur
visuel, la position d’insertion de cette derniere sera testé au début, a la sortie de chaque bloques,

a la sortie du modele et enfin a chacune des positions simultanément (voir figure 4.4).

Le module de position FFpos (Fourier Features position) suit donc les équations 4.3 et 4.4, prenant
en entrée les paires de coordonnées (4, w) de chaque patch et retournant leur représentation

ffpe € RVXP_Ce dernier est ajouté a ’ensemble des vecteurs de patchs z; € RV*P tel que

7 =2+ ffpe’ 4.5)
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Figure 4.4 Emplacement des insertions des encodages de
positions dans I’architecture

avec z{ P¢ ¢ RNXD 1ensemble des vecteurs de patchs, enrichi par la position des caractéristiques

de Fourier. Dans le cas ou I’encodeur visuel est un Swin Transformer, 1’ ajout de la position se
fait a la sortie de la couche "patch merging" (voir section 2.3).

Comme ce module a pour but d’enrichir les représentations des modeles de I’état de I’art, il est
important de I’ajouter en affinant le modele sans qu’il "oublie" sa connaissance actuelle de la
tache (caractéristiques a extraire et représenter). Pour cela, une stratégie d’entrainement divisée

en 3 étapes est choisie (voir figure 4.5).

La premiere étape consiste a entrainer les modules FFpos, en gelant tous les autres poids du
modele afin d’intégrer la position sans endommager la connaissance actuelle du modele. La
deuxieme étape consiste ensuite a entrainer enticrement I’encodeur visuel ainsi que la projection
multimodale. Cela permet de laisser le module de vision apprendre de nouvelles caractéristiques
et d’enrichir sa représentation du document grace a 1’ajout des modules de positions. Enfin, la
derniere étape consiste a entrainer tous les poids du modele de bout-en-bout, afin d’aligner le
modele de langue avec la nouvelle représentation du document, enrichie par la position. Afin
de limiter les ressources de calcul nécessaires a cette étape, I’entrainement de bout-en-bout
est réalisé avec la méthode QLoRA (voir section 3.2). Afin de permettre au modele plus de

flexibilité dans I’apprentissage des positions, chaque FFpos module possede ses propres poids
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Figure 4.5 Entrainement des modeles enrichis par I’encodage
positionnel proposé

et est indépendant des autres modules. Pour chaque étape, 1’erreur est calculée en utilisant la
fonction d’entropie croisée (voir équation 3.8).

Chaque position d’insertion étudiée est aussi évaluée sur les taches de classification de document

et d’analyse de structure sémantique de document suivant la méthodologie de la section 3.2.2.




CHAPITRE 5

UNE OUVERTURE SUR LE MULTI-PAGE : ADAPTER UN MODELE END-TO-END
AUX DOCUMENTS COMPOSES DE PLUSIEURS PAGES

Ce mémoire a pour objectif de développer un encodeur visuel capable de représenter les images
de documents scannés dans un espace de représentation multimodal afin de résoudre la tiche
de DocVQA. Pour cela, deux sous objectifs sont réalisés, premierement réduire la taille d’un
encodeur visuel de fondation afin de réduire la complexité de calcul sans diminuer la qualité de
la représentation afin de garder des performances compétitives avec les LVLMs (chapitre 3);
deuxiemement intégrer un module d’encodage spatial précis afin d’améliorer la représentation
structurel du document et de faciliter les ordres de lecture du modele de langue (chapitre 4).
Ainsi, les expériences ont été réalisées sur des documents d’une seule page afin de limiter le coft
de calcul des entrainements. Cependant, beaucoup de scénarios impliquent des documents de
plusieurs pages. Par ailleurs, traiter plusieurs pages de documents augmente considérablement
le nombre de patchs a analyser, ce qui entraine un colit de calcul bien supérieur (VRAM). De
plus, cela dilue I’information a retrouver, ce qui peut complexifier la recherche de cette derniere
par le modele de langue. La tache de réponse a des questions visuelles sur des documents
multi-page (MP-DocVQA) entraine donc de nouveaux défis. Ainsi, basée sur les résultats des
deux sous-objectifs de ce mémoire, une exploration du multi-page est proposée afin d’ouvrir de

nouvelles directions et de potentiels travaux futurs.

5.1 MP-DocVQA : une tiche récente et peu étudiée

La tache de réponse a des questions visuelles sur des documents multi-page (MP-DocVQA)
est apparue avec la sortie du dataset du méme nom par Tito, Karatzas & Valveny (2023).
Composé des mémes documents que le dataset DocVQA, ce dernier propose des questions sur
des documents allant jusqu’a 20 pages. Les méthodes €valuées sur ces datasets sont soumises
et affichées publiquement sur le site internet Robust Reading Competition par Mathew, Tito,

Karatzas, Manmatha & Jawahar (2020Db).
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Figure 5.1 Nombre d’approches soumises par ensemble de
données pour DocVQA et MP-DocVQA

La figure 5.1 montre le nombre d’approches publiquement évaluées sur ces derniers. Comme
affiché sur cette derniere, 1a ou le nombre d’approches soumises pour la base DocVQA est de

140, celles pour MP-DocVQA sont seulement au nombre de 19, ce qui montre I’aspect encore

peu étudié de cette tache.

Tableau 5.1 Etat de I’art sur MP-DocVQA

Méthode # Param(B) OCR Tiling Fusion Tot Acc (%) T ANLS (%)T
Toutes les pages dans le décodeur

Gram, Blau et al. (2024) 0.859 X X 19.98 80.32

DocOwl2, Hu et al. (2024) 8 X 50.78 69.42

HiVTS5, Tito et al. (2023) 0.316 X X 79.63 62.01

Longformer, Tito et al. (2023) 0148 X X 71.17 52.87

BigBird, Tito ef al. (2023) 0.131 X X 67.54 49.29
LayoutLMv3, Tito et al. (2023) 0.125 X X 51.94 45.38

Sélecteur de réponse
ScreenAl, Baechler et al. (2024) 5 X 77.88 77.1
ScreenAl, Baechler et al. (2024) 5 ? 72.9
Sélecteur de page
Pix2Struct, Kang ez al. (2024) 0.273 X 81.55 61.99
Sélecteur de page + top-k pages dans le décodeur

M3DocRAG, Cho, Mahata, Irsoy, He & Bansal (2024) 10B 81.05 84.44
FRAG-LLaVA-OV, Huang, Radhakrishnan, Yu & Kautz (2025) 7B ? 79.1
FRAG-InternVL2, Huang et al. (2025) 8B ? 77.8
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Le tableau 5.1 regroupe différentes solutions de 1’état de 1’art de MP-DocVQA. Les approches
traitant le multi-page peuvent étre divisées en quatre familles. Premierement, les méthodes
donnant toutes les pages encodées ainsi que la question au décodeur (Tito et al., 2023; Blau
etal.,2024; Hu et al., 2024). Cette approche permet de rechercher la réponse parmi plusieurs
pages sans changer I’architecture, mais augmente le colit de calcul dans le modele de langue. De
plus, les modeles de petite taille ont des résultats faibles (ANLS, voir équation 6.1) du fait de la
dilution de I’information dans le contexte, comme LayoutLMv3 (45.38%), BigBird (49.29%)
ou encore Longformer (52.87%). Certaines méthodes de cette catégorie obtiennent tout de
méme de meilleurs résultats comme DocOwI2 par Hu et al. (2024) qui utilise un compresseur
afin de réduire le nombre de patchs des documents avant de les envoyer au décodeur, ce qui
permet de réduire le colit de calcul tout en atteignant un score de 69.42% d’ANLS. Cependant,
ce modele nécessite toujours une capacité de calcul conséquente du fait de sa taille (8B de
parametres). D’autre part, Gram par Blau et al. (2024) utilise un encodeur multimodal avec de
I’OCR et une fusion en amont, ce qui permet d’avoir un modele de taille raisonnable (859M de
parametres) atteignant de meilleurs résultats (80.32%). Cependant, la fusion en amont empéche
la réutilisation des embeddings des documents, ce qui nécessite d’encoder a nouveau chaque
page du document pour chaque nouvelle question.

Afin d’éviter un cofit de calcul supplémentaire trop important, une autre approche consiste a
transformer le probléme multi-page en mono-page (Baechler et al., 2024). En donnant au modele
chaque page avec la question de maniere indépendante afin de générer une réponse par page,
sélectionnant ensuite celle ayant le plus haut score de probabilité en sortie du modele, cette
approche permet de réutiliser des modeles initialement entrainés sur des bases de données ayant
une page par document. Bien que cela permette de réduire le colit de calcul, cette approche
nécessite d’utiliser le décodeur pour chaque page, soit de maniere séquentielle (une page apres
I’autre), ce qui augmente le temps pour obtenir la réponse correcte de maniere linéaire avec le
nombre de pages, soit de maniere parallele, ce qui augmente I’empreinte sur la VRAM.

Pour remédier a cela, une autre approche consiste a utiliser un filtre en sortie de I’encodeur,
prenant en entrée chaque page du document avec la question générant ainsi un score de probabilité

par page, désignant si la page contient la réponse ou non. La page ayant le plus haut score est
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ensuite envoyée au décodeur, ce qui permet d’éviter d’utiliser le modele de langue pour chaque
page. Kang et al. (2024) utilise cette approche avec un encodeur multimodal. Cependant, les
auteurs se basent sur la fusion en amont, ce qui ne permet pas de réutiliser les embeddings de
documents pour chaque nouvelle question.

Enfin une derniére approche consiste a utiliser un sélecteur de page, puis a envoyer les top — k
pages avec le plus haut score dans le décodeur. Le modele M3DocRAG par Cho et al. (2024)
combine a la fois I’approche de sélection de page apres 1’encodeur visuel, et I’envoi de plusieurs
pages au décodeur prenant les rop — k pages ayant obtenu le plus haut score par le sélecteur.
Contrairement a la méthode proposée par Kang et al. (2024), ces derniers utilisent un LVLM
comme encodeur, ce qui leur permet d’utiliser une simple similarité entre les embeddings et la
question pour calculer les scores de probabilité. Cependant, cette approche nécessite d’avoir un
encodeur de grande taille puis un autre décodeur également de grande taille. Ici les auteurs ont
utilisé le modele ColPali (3B) par Faysse et al. (2024) pour encoder la question et les pages du
document, puis le modele Qwen2-VL pour générer la réponse (7B) par Wang et al. (2024). Les
modeles ColPali et Qwen2-VL étant différents, les embeddings générés par ColPali ne sont pas
réutilisables, ainsi Qwen2-VL prend en entrée les images originales des top — k pages, et les
encode de nouveau avant de générer la réponse. Ainsi bien que cette méthode acheve de bons
résultats (84.44% ANLS), le colt de calcul li€ a son nombre de parametres (10B) ainsi que sa
nécessité d’encoder deux fois le document le rendent plus compliqués pour des déploiements
industriels. La méthode FRAG proposée par Huang et al. (2025) utilise deux fois le méme
modele de langue pour calculer les scores par page en utilisant un prompt adapté et générer la
réponse avec les rop — k pages sélectionnées ainsi que la question. Cependant, cette méthode
nécessite d’utiliser deux fois le modele de langue, ce qui augmente considérablement la latence

comme souligné dans 1’étude d’ablation (voir section 6.4.3).

Ainsi, la taiche MP-DocVQA est un domaine encore peu étudié ou les approches proposent des

compromis entre embeddings réutilisables, colt de calcul et performance.



59

5.2 Méthodologie et Architecture

Cette section présente la méthodologie utilisée afin d’adapter le modele construit lors du premier
et du deuxieme sous-objectifs pour la taiche de MP-DocVQA. Afin de répondre aux contraintes
utilisateurs, la méthode doit pouvoir réutiliser les embeddings de document pour potentiellement
construire des bases de données interrogeables (voir figure 0.2c) et éviter d’encoder plusieurs fois
la méme page pour chaque question. De plus, afin de pouvoir étre utilisé dans des infrastructures
limitées (GPU), il est préférable que I’adaptation du modele n’entraine pas une augmentation
trop importante du nombre de parametres. Enfin, pour éviter I’augmentation du colt de calcul,
le modele doit limiter le nombre de jetons dans le décodeur afin de ne pas augmenter le colit de
son attention qui est quadratique.

Ainsi, I’approche choisie est celle de la sélection de page présentée dans la section précédente.
Rajoutant seulement un module entre I’encodeur visuel et le modele de langue, cette approche

permet de sélectionner les fop — k pages a envoyer au modele de langue.

Visual encoder '[I O3 Ij\ Page Embedding Filter Page Selector Decoder | LLM

SP-DocVQA Architecture

e
@] ;i Can Vlsu:;olziizder 4'{ o] % Decoder }— Answer
== = Multimodal Page Embedding \ )

e — projection —Ti

Single-Page Question
Document Input

MP-DocVQA Architecture

o — (@ 5@ O ( )
Vlsuﬁoizjgdef _ 0 0B 0] ———— @ 0O :,H Decoder }—» Answer
MU|t_|m0_da| ‘ﬁ Page Embedding with
projection O b & Hj the highest probability - g
Multi-Page ' ) P1 P,
Document Input ‘ Filter =3 Probability score
\ J P3 of each page
Question

Figure 5.2 Schéma du modele DIVE-Doc adapté pour
MP-DocVQA
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La figure 5.2 montre 1’architecture proposée. Comme illustré sur cette derniere, un module filtre
est inséré entre I’encodeur visuel et le modele de langue. Le filtre prend en entrée la question
encodée, c’est-a-dire la question divisée en N, jetons (tokens), projetés par une couche linéaire
dans le méme espace de représentation que le modele de langue. On note ¢ la question encodée

telle que r € RV*PM avec D, la dimension de ’espace de représentation multimodal.
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Figure 5.3 Schéma du sélecteur de page (filtre)
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La figure 5.3 illustre I’architecture du filtre. Issu du modele Gemma par Mesnard ez al. (2024), il
est composé de h couches de Transformer qui encodent la question ¢ avec les patchs d’une page
v € RM*Dm ol N, est le nombre de patchs et D, la dimension de I’espace de représentation du
modele de langue Gemma. Ces couches permettent ainsi de mettre en avant dans la représentation
les informations relatives a la question contenue dans les patchs. Les couches sont composées
d’un bloc d’attention afin d’encoder chaque élément en fonction des autres et de leurs pertinences
(voir section 2.2.2.1), d’un projecteur multicouche afin d’ajouter de la non-linéarité et d’avantage
de capacité de représentation (voir section 2.2.3). En sortie de ces blocs, une connexion résiduelle
ainsi qu’une normalisation sont ajoutées afin d’enrichir les représentations précédentes par les
nouvelles et d’éviter que les valeurs ne deviennent trop élevées. En sortie de la derniere couche,
basé sur le papier de Cho et al. (2024), un score de probabilité est attribué a la page, calculé tel

que :

Ny
s(t,v) = Zmaxje[Nv]ti.vj (5.1
i=1

avec f; un jeton de la question et v; un patch de la page. Ainsi, le score est calcul€ en faisant le
produit scalaire entre chaque jeton et chaque patch. Pour chaque jeton, le plus haut score avec
les patchs est conservé, puis chacun de ces scores est additionné, donnant le score final de la

page. Ce processus est ensuite répété pour chaque page du document.

Le modele de langue étant entrainé a prendre uniquement une page en entrée, seulement les
embeddings v de la page ayant obtenu le plus haut score sont ensuite envoyés avec la question
pour générer la réponse, ainsi le modele prend en entrée la rop — 1 page. Cela permet de limiter
I’empreinte sur la VRAM mais empéche la résolution de questions ayant une réponse dispatchée
sur plusieurs pages (cas appelé multi-hop).

Afin de ne pas augmenter I’empreinte du modele sur la mémoire, les poids du filtre sont partagés
avec ceux du modele de langue. Pour cela, le filtre réutilise les 4 premieres couches du décodeur,
ne nécessitant donc pas d’entrailnement ni d’allocation mémoire supplémentaire. Le modele de
langue étant composé de 26 couches, le filtre réutilise ses huit premieres couches afin de limiter

la latence (voir 1’étude d’ablation section 6.4.3).
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Le modele est évalué en regardant a la fois la qualité des réponses et également si le score
maximal retourné par le filtre correspond bien a la page contenant la réponse. Ainsi, cette
approche propose un systeme bout-en-bout avec des embeddings réutilisables sans augmenter

I’empreinte mémoire du modele.



CHAPITRE 6

EXPERIMENTATIONS, RESULTATS ET DISCUSSIONS

Ce chapitre décrit les résultats obtenus pour les deux objectifs de ce mémoire, suivant les
chapitres 3 et 4 ainsi que ceux de I’extension sur le multipage (chapitre 5). La section suivante
contient les détails expérimentaux (base de données, mesure de performances, etc.) afin d’assurer
la reproductibilité des résultats. Les trois dernieres sections présentent respectivement le détail

des résultats des expérimentations, ainsi que leurs analyses.

6.1 Base de données et métriques d’évaluation

6.1.1 Base de données

Pour les expérimentations principales sur la tiche de DocVQA (voir les sections 3.2 et 4.2),
la base de données utilisée est celle du méme nom (DocVQA) par Mathew et al. (2021). Elle
contient pres de 12.767 images de documents issues de I’industrie, de différentes structures (lettre,
article, formulaire, etc.), et ayant des entités de modalités variées (photo, texte, graphique, etc.).
Elle contient pres de 99.000 questions, permettant d’aligner le modele de langue avec I’encodeur
visuel. Concernant les évaluations approfondies sur I’encodeur visuel (voir section 3.2.2), la
base de données utilisée pour la tiche de classification de documents (DocCLS) se nomme
RVL-CDIP (Harley et al., 2015), contenant pres de 400.000 images de documents, réparties
sur 16 classes (lettre, article, etc.). Pour la tache d’analyse de structure de documents (DLA),
I’ensemble de données DocLayNet par Pfitzmann et al. (2022) a été utilisé. Ce dernier contient
80.863 images de documents, de différentes structures et distribution d’entités sémantiques (titre,
tableau, photo, etc.). Enfin, pour I’ouverture sur le multi-page, la base de données choisie est
MP-DocVQA par Tito et al. (2023). Cette derniere possede pres de 46.000 questions posées
sur 6.000 documents industriels, chacun pouvant contenir jusqu’a 20 pages, faisant un total de

48.000 images de pages de documents.
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6.1.2 Métriques d’évaluation

Chaque tache entrainant une sortie différente des autres, elles ont ainsi des métriques spécifiques.
La tache de DocVQA consiste a générer une réponse sous forme de texte numérique. Une
métrique standard pour évaluer cette tache est la Similarité de Levenshtein Normalisée Moyenne
(Average Normalized Levenshtein Similarity, ANLS). Introduite par Biten et al. (2019), cette
métrique mesure la similarité entre la réponse générée par le modele et la réponse de référence
(ground truth), en s’appuyant sur la distance de Levenshtein, normalisée pour tenir compte de la

longueur des chaines comparées. Son équation peut s’écrire :

N

1
ANLS = Zl: sim(p;, gi) (6.1)

_ _levip.g) L levip.g)
sim(p.g) =1 max(pl,lgD " max(pl, [g]) 62)
0 sinon

avec p la réponse prédite, g la réponse dans la base de données et [ev la distance de Lcvenshtcin
(1966), consistant a attribuer un nombre d’opérations minimales a effectuer sur p pour que
P =8

7 est un seuil qui permet de mettre a z€ro la similarité si p et g different trop, il a pour valeur
0.5. Pour la tache de classification de documents, la métrique choisie est la précision (accuracy)

qui a pour formule
TP + TN

TP + TN + FP + FN

Accuracy = (6.3)

avec TP + TN les prédictions correctes (vrais positifs et vrais négatifs), et TP+ TN + FP + FN
le nombre total de prédictions, ou FP et F'N sont respectivement les faux positifs et les faux
négatifs. Enfin, pour la tiche d’analyse de structure de documents, les modeles ont été évalués en
utilisant la moyenne des intersections sur 1’'union (mean Intersection over Union, mloU). Cette

métrique fait la moyenne de prédictions positives correctes pour chaque classe tel que :

Mo

mloU =

(6.4)

LI TP; “FP TN,
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avec C le nombre de classes, et TP;, F P;, FN; le nombre de vrais positifs, faux positifs et faux

négatifs pour la classe i.

6.2 Compression d’un encodeur visuel de fondation par distillation

Cette section présente les résultats des expérimentations réalisées pour le premier objectif de ce

mémoire (voir chapitre 3).

6.2.1 Détails des configurations

Le tableau 6.1 décrit les différents hyperparametres utilisés lors des expérimentations du premier
objectif (voir sections 3.2 et 3.2.2). Les expérimentations ont été réalisés sur 3 GPU v100, ayant

chacun 32GB de VRAM.

Tableau 6.1 Détails des hyperparametres des expérimentations du premier objectif

Etape d’entrainement/tiche | o | Optimiseur | Epoques | Taille des lots
DocVQA (Distillation) 3e—4 Adam 20 16
DocVQA (Affinement) 3e-5 Adam 3 16

Classification 3e—4 Adam 5 16
Layout Analysis 9e—4 Adam 3 16

Comme expliqué dans la section 3.2, deux méthodes de distillation sont testées. Premic¢rement,
FRD, qui impose une résolution d’entrée a I’étudiant afin que le nombre de patchs en sortie de
ce dernier soit le méme que celui du professeur. Cette méthode évite d’ajouter de la complexité
au modele, mais contraint la résolution, ne permettant pas de flexibilité. Une autre approche
a donc été proposée (ARD), utilisant un module supplémentaire en sortie de 1’étudiant qui
aligne le nombre de patchs de ce dernier avec le professeur. Cette derniere permet de configurer
une résolution d’entrée différente, pouvant étre plus petite que la résolution imposée par la
méthode FRD afin de limiter I’empreinte sur la VRAM ou plus grande, afin de permettre
I’extraction de caractéristiques a plus petite échelle. Dans le cas de la distillation FRD, comme

I’encodeur visuel du professeur a une résolution d’entrée TRes € R399393 et une séquence de
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sortie Vrges € R¥096X1152 1 résolution imposée pour 1’étudiant sera de M Res € R2048x2048x3
L’ étudiant (DIVE-Doc) étant un encodeur de type Swin Transformer composé de 4 blocs, la
sortie sera notée vy ges € R¥90X1024 (yoir sections 2.3 et 3.2). Pour la méthode ARD, deux

R1336X1336>3 “entrainant une sortie

résolutions ont été testées. Une résolution petite LRes €
ViRes € R2304X1024 "ot yne résolution grande HRes € R260x1920X3 entrainant une sortie de taille
ViRes € R¥800X1024 "Ajngi HRes aboutit & 704 patchs supplémentaires en comparaison 2 M Res,
entrainant une granularité plus fine. LRes résulte en 1792 patchs en moins que M Res, libérant
ainsi de I’espace sur la VRAM. Ces sorties sont alignées avec le professeur par une interpolation

telle qu’expliquée dans la section 3.2. Différentes méthodes d’interpolation ont été évaluées sur

chaque résolution de la méthode ARD, ces résultats sont présentés dans la section 6.2.3.

6.2.2 Résultats

6.2.2.1 Evaluation sur la tiche DocVQA

Le tableau 6.2 présente les performances (ANLS) sur la tiche de DocVQA, en comparaison
avec I’état de I’art. Les modeles étudiants DIVE-Doc obtiennent 82.67% pour la méthode FRD,
82.63% pour ARD/HRes et 79.26% pour ARD /LRes. La ou les méthodes avec OCR (UDOP
et LayoutLMv3) ont des performances de respectivement 84.70% et 78.76%, les modeles
DIVE-Doc ont des performances compétitives sans reposer sur des outils externes tels que
I’OCR. De plus, le LVLM Paligemma a un score de 84.77%, représentant un gap d’environ 2
points d’ANLS avec les modeéles DIVE-Doc FRD et ARD/HRes. ’encodeur de DIVE-Doc
ayant seulement 75 millions de parametres contre 400 millions pour celui de Paligemma, ce
gap est réalisé avec% du nombre de parametres de Paligemma. D’autre part, les modeles a
petite échelle tels que Donut et Dessurt obtiennent des performances respectives de 66.26% et
63.22%, soulignant que les modeles DIVE-Doc obtiennent de meilleures performances que ces
derniers, avec un gap minimum de 13 points d’ANLS entre DIVE-Doc ARD /LRes et Donut.
Les résultats de DIVE-Doc cités ci-dessus montrent que la meilleure performance obtenue est

celle de la méthode FRD, puis ARD/HRes et enfin ARD/LRes.
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Tableau 6.2 Comparaison des résultats de 1’objectif 1 avec I’état de 1’art pour la tache de

DocVQA
Configuration du Modele
Méthode #Params (VE) #Params Total OCR | ANLS Générale (%) T
Paligemma, Beyer et al. (2024) 0.4(B) 3(B) 84.77
UDOP, Tang et al. (2023) - 0.8(B) v 84.70
LayoutL.Mv3, Huang et al. (2022) - 0.133(B) vV 78.76
Donut, Kim et al. (2022) 0.075(B) 0.2(B) 66.26
Dessurt, Davis et al. (2022) 0.127(B) 63.22
DIVE-Doc FRD 0.075(B) 2.58(B) 82.67
DIVE-Doc ARD/HRes 0.075(B) 2.58(B) 82.63
DIVE-Doc ARD/LRes 0.075(B) 2.58(B) 79.26

Le tableau 6.3 présente les résultats détaillés par type de questions, des méthodes présentées

dans le tableau 6.2. La résolution ARD /HRes achéve une performance de 61.48%, 58.68%

et 85.34% pour les questions portant sur des aspects visuels tels que des figures, des photos

ou encore la structure. Ainsi, elle surpasse les résultats de F'RD ayant respectivement 59.33%,

49.96% et 85.00% sur ces catégories. Cependant, la méthode FRD achéve une performance de

78.83% pour des questions portant sur du texte, 1a ot ARD/HRes a 77.64%.

Tableau 6.3 Résultats pour la tiche de DocVQA pour différentes catégories de questions

ANLS (%) par catégorie de questions T
Meéthode Figure Texte Photo Structure

Paligemma, Beyer et al. (2024) | 65.43 80.99 73.82 87.33
UDQOP, Tang et al. (2023) - - - -
LayoutLMv3, Huang et al. (2022) - - - -

Donut, Kim er al. (2022) 39.60 46.43 29.69 69.87

Dessurt, Davis et al. (2022) 31.64 48.52 28.62 64.86

DIVE-Doc FRD 59.33 78.83 49.96 85.00

DIVE-Doc ARD/HRes 61.48 77.64 58.68 85.34

DIVE-Doc ARD/LRes 5494 7454 5828 83.15
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6.2.2.2 Evaluation de I’encodeur visuel

Cette section fournit des résultats sur les tiches de classification de document (DocCLS) et
d’analyse de structure de document (DLA), utilisées afin d’évaluer I’encodeur visuel et de
fournir des détails supplémentaires sur ce que cette composante du modele a réellement appris
pour la tiche de DocVQA (voir section 3.2.2). Afin d’avoir une évaluation plus complete,
ces expérimentations, en plus d’étre effectuées sur les modeles DIVE-Doc, ont également été
conduites sur I’encodeur visuel de Donut et de Paligemma. Les résultats sont présentés sur le

tableau 6.4.

Tableau 6.4 Résultats des encodeurs visuels sur les tiches de DocCLS et DLA

Classification (Acc T) Analyse de la structure (IoU T)
Meéthode Générale Moyenne Texte Titre Liste Note en pied de page
Paligemma, Beyer et al. (2024) 0.92 0.36 0.54 0.13 0.07 0.05
Donut, Kim et al. (2022) 0.89 0.37 0.54 0.08 0.07 0.05
DIVE-Doc FRD 0.90 0.41 0.58 0.1 0.06 0.06
DIVE-Doc ARD/HRes 0.90 0.30 0.50 0.07 0.05 0.04
DIVE-Doc ARD/LRes 0.90 0.39 0.54 0.14 0.07 0.06

Pour la tache de classification, les encodeurs visuels ont tous une performance correcte avec
peu de différences dans les résultats, allant de 0.89 pour Donut jusqu’a 0.92 pour Paligemma.
Cependant, pour la tiche d’analyse de structure, les résultats chutent drastiquement. Les
performances générales vont de 0.30 (ARD /HRes) 20.41 (FRD). Dans les catégories d’entités,
le texte semble étre mieux segmenté/reconnu que des catégories de la méme modalité mais plus
précises sémantiquement comme le titre allant de 0.07 (ARD /HRes) a 0.13 (Paligemma), les
liste de 0.05 (ARD /HRes) a2 0.07 (LRes/HRes, Donut, Paligemma) et les notes en pieds de
pages (footnote) allant de 0.04 (ARD /HRes)20.06 (ARD/LRes et FRD). La figure 6.1 montre
des visualisations qualitatives de cette tiche. Les modeles semblent segmenter et discriminer
correctement les patchs/pixels d’entités de modalités différentes texte (violet) et photo (vert) par
rapport a la vraie segmentation (ground truth). Cependant, pour les éléments dans la modalité
de texte mais de classes sémantiques plus précises, comme le titre (orange), les listes (rouges) et

les tableaux (gris), les modeles ont du mal a discriminer ces derniers correctement. L’ image de
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document sur la deuxieme ligne voit une bonne partie de son tableau central classifié tel que du
texte (violet) et certaines zones sont méme classifiées telles que liste (rouge). Il en est de méme
pour la troisieme image de document, qui voit ses listes (rouges sur la ground truth) classifiées

telles que du texte par les modeles.

Donut PaliGEMMA DIVE-Doc (FRD) Ground Truth

T
Table Text

Page-header Picture Section-header

Figure 6.1 Analyse qualitative des encodeurs visuels de DocVQA
pour I’analyse de structure de documents

6.2.3 Etude d’ablation

Cette section contient des études supplémentaires conduites pour analyser plus en détail les
choix d’architecture.

Premierement, une évaluation sur le colit de calcul a été réalisée entre les encodeurs visuels de
Paligemma (le professeur) et les encodeurs visuels étudiants (DIVE-Doc FRD, ARD /HRes et
ARD/LRes). Pour cela, I’empreinte mémoire sur les GPU (VRAM) a été€ mesurée ainsi que la

latence afin de comparer les gains de la distillation en temps de procédure.
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Figure 6.2 Comparaison entre I’efficacité (Latence/VRAM) et la
performance (ANLS) des encodeurs visuels distillés

Les résultats sont affichés sur la figure 6.2. L'encodeur visuel de Paligemma a une latence par
image d’environ 896ms. La ou les encodeurs visuels de DIVE-Doc FRD et ARD /HRes ont
une latence respective de 446 et 520ms par image. Ainsi, la réduction de I’encodeur visuel de
Paligemma a permis de diminuer le cofit de calcul de ce dernier en divisant la latence par un
facteur de deux pour les méthodes FRD et ARD /H Res tout en assurant des résultats compétitifs
sur la taiche de DocVQA. Cependant, 1a ou I’empreinte sur la VRAM est de 3781 MiB, celle des
modeles ARD/HRes et FRD est environ de la méme grandeur avec respectivement 3651 et
3183 MiB. D’autre part, la méthode ARD /LRes aun gap d’ANLS plus grand avec le professeur,
comparée aux méthodes FRD et ARD /HRes. Cependant, sa résolution plus petite permet de

diviser I’empreinte sur la VRAM par un facteur de deux (1933MiB) et la latence par trois (270ms).

De plus, différents types d’interpolations ont été évalués afin de définir le plus efficace pour les
méthodes ARD. Avec cela, un encodeur étudiant de type SigLIP a été implémenté afin d’attester

de I'efficacité d’un modele hiérarchique ayant une architecture différente du professeur. Ainsi, le
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modele Paligemmar a été testé, composé d’un encodeur SigLLIP de 80 millions de parametres
(méme architecture que celui de Paligemma), prenant en entrée la méme résolution 7'Res. Les
évaluations ont été établies sur les modeles entrainés lors de la distillation (étape 1, voir section
3.2). Les résultats sont générés en réutilisant le décodeur de Paligemma, sans affinement ou
entrailnement supplémentaire, en utilisant la méthode SIMKD par Chen et al. (2022a). Les

résultats sont affichés sur le tableau 6.5. Les résultats de Paligemmayz (67.13%) sont inférieurs a

Tableau 6.5 Comparaison de ’ANLS (%) apres distillation des modeles étudiant
hiérarchique et non-hiérarchique

Méthode # Params (M) Bilinéaire Bicubique Sans Alignement
Prof : Paligemma, Beyer et al. (2024) 400 / / 84.77
Etudiant : Paligemmar 80 / / 67.13
Etudiant : DIVE-Doc FRD 75 / / 81.71
Etudiant : DIVE-Doc ARD/HRes 75 81.07 81.15 /
Etudiant : DIVE-Doc ARD/LRes 75 73.1 74.0 /

ceux des modeles DIVE-Doc, montrant I’utilité de I’architecture hiérarchique par rapport a une
architecture réduite mais similaire au modele de fondation. D’autre part, I’interpolation bicubique
permet les meilleurs résultats pour les deux résolutions (HRes — 81.15%) et (LRes — 74.0%)
contre (HRes — 81.07%) et (LRes — 73.1%) pour I’interpolation bilinéaire. Cependant, le
gap pour HRes étant tres faible (0.08), la méthode bilinéaire a été choisie pour cette résolution,
car elle ne fait intervenir que 4 pixels voisins avec de simples pondérations linéaires la rendant
légerement moins coliteuse en opérations que 1’interpolation bicubique qui exploite un voisinage
élargi de 16 pixels, nécessitant des calculs polynomiales de plus haut degré (3), entrainant plus

de calculs.

6.2.4 Discussion

Les résultats a travers la tiche de DocVQA ont permis de démontrer la validité de ce premier
objectif. En changeant I’architecture d’un encodeur visuel de fondation pour un modele
hiérarchique, la résolution a pu étre augmentée, tout en réduisant la taille de I’encodeur par un

facteur de cing. Cette approche a ainsi permis de réduire le coiit de calcul de I’encodeur visuel en
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divisant la latence par deux et en minimisant la perte de performances. De plus, pour la méthode
ARD permettant des résolutions plus variées, il s’est avéré qu’une résolution plus petite que
celle imposée par la méthode FRD augmente le gap de performance avec le professeur mais
améliore I’impacte sur le colt de calcul en divisant la latence par trois et I’empreinte sur la
VRAM par deux, ce qui peut étre bénéfique pour des environnements limités en puissance de
calcul. D’autre part, la méthode ARD avec une résolution supérieure a la méthode FRD ne
semble pas améliorer la performance d’un point de vue général mais uniquement sur des entités
visuelles telles que les photos et les graphiques (voir tableau 6.3). La méthode d’alignement
utilisée étant sans parametres supervisés (sans apprentissage), il peut étre supposé que certains
détails de la représentation sont perdus lors de 1’alignement de la séquence de sortie de I’ étudiant
avec celle du professeur, limitant ainsi les résultats de cette approche. Enfin, les expériences
réalisées sur les taches de classification et d’analyse de structure de documents apportent des
détails supplémentaires sur ce qu’ont appris les encodeurs visuels. Pour chaque encodeur évalué,
les performances sur la classification sont élevées, indiquant que ces modeles représentent
correctement la structure des documents, leur permettant de les différencier et de les classifier.
Cependant, pour la tiche d’analyse des structures des documents, les encodeurs visuels ont
des performances assez faibles. L’ analyse de leurs résultats montre que ces modeles arrivent
a discriminer les éléments de modalités différentes (image et texte). Néanmoins, les éléments
appartenant a une méme modalité mais ayant une structure sémantique différente (liste, titre,
pied de page, etc.) sont mélangés et ont du mal a étre correctement segmentés. Cependant, pour
la tache de DocVQA, les modeles obtiennent de bons résultats pour les questions portant sur les
structures sémantiques des documents (voir tableau 6.3). Ainsi, il peut étre supposé que pour
cette tache, la représentation de la structure sémantique des éléments des documents est achevée
par le LLM, la ou I’encodeur visuel permet d’extraire les caractéristiques visuelles des images

de documents.
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6.3 Enrichissement des représentations avec la géométrie spatiale des documents

Cette section présente les résultats des expérimentations de I’objectif 2, voir chapitre 4.

6.3.1 Détails des configurations

Les hyperparameétres des expériences de I’objectif 2 (voir section 4.2 et 3.2.2) sont affichés sur le

tableau 6.6. Les expérimentations ont été réalisées sur un GPU H100 de 80GB de VRAM. Afin

Tableau 6.6 Détails des hyperparametres des expérimentations du premier objectif

Etape d’entrainement/tache | o | Optimiseur | Epoques | Taille des lots
DocVQA (Etape 1) 3e—4 Adam 2 16
DocVQA (Etape 2) 9e-5 Adam 3 16
DocVQA (Etape 3) 3e-5 Adam 3 16

Classification 3e—4 Adam 5 16
Layout Analysis 9e—4 Adam 3 16

d’évaluer la stratégie étudiée, les expérimentations ont été conduites sur le modele DIVE-Doc

(FRD), présenté et entrainé dans le cadre de I’objectif 1.

6.3.2 Résultats

Les sections suivantes présentent les résultats des expérimentations réalisées sur DIVE-Doc.

6.3.2.1 Evaluation sur la tAiche DocVQA

Le tableau 6.7 présente les résultats de DIVE-Doc enrichie par le module de position FFpos en
sortie du modele sur I’ensemble de données DocVQA. Les résultats des autres positions sont
affichés dans la section ablation 6.3.3. Le mod¢le initial a un encodeur visuel faisant 0.075 (B)
de parametres, ce qui représente une petite taille en comparaison avec les modeles de fondation
qui ont des encodeurs d’environ 0.4 (B) (Paligemma). Comme affiché sur le tableau, le module
de position FFpos (décris dans la section 4.2) ajoute 0.01(B) de parametres a I’encodeur visuel

de DIVE-Doc. Le modele enrichi (DIVE-Doc + FFpos) atteint un score de 83.46% d’ANLS. La
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ou le modele atteint un score de 82.67% sans enrichissement, le module permet une amélioration
de 0.81 point, passant d’un gap de 2.10 a 1.31 points d’ANLS avec le professeur Paligemma.
Le tableau 6.8 affiche les résultats par catégorie de questions sur DocVQA. Le module FFpos
entraine un décroissement des performances pour les questions portant sur les figures passant de
59.33% a 57.77% d’ANLS. Cependant, il entraine une amélioration sur les questions portant
sur le texte (78.83% —79.29%) ou encore sur les questions liées a la structure du document
(85.00% —85.44%). Enfin, le module a également permis une amélioration sur les questions de
la catégorie photo, passant de 49.96% a 53.04%, représentant le gap le plus important avec le
modele initial (3.08 points d’ANLS).

Tableau 6.7 Comparaison des résultats de 1’objectif 1 avec I’état de 1’art pour la tache de

DocVQA
Configuration du Modele
Méthode #Params (VE) #Params Total OCR | ANLS Générale (%) T
Paligemma, Beyer et al. (2024) 0.4(B) 3(B) 84.77
UDOP, Tang et al. (2023) - 0.8(B) v 84.70
LayoutLMv3, Huang et al. (2022) - 0.133(B) v 78.76
Donut, Kim et al. (2022) 0.075(B) 0.2(B) 66.26
Dessurt, Davis et al. (2022) 0.127(B) 63.22
DIVE-Doc 0.075(B) 2.58(B) 82.67
DIVE-Doc + FFpos 0.085(B) 2.6(B) 83.46

Tableau 6.8 Résultats pour la tiche de DocVQA pour différentes catégories de questions

ANLS (%) par catégorie de questions T
Méthode Figure Texte Photo Structure

Paligemma, Beyer et al. (2024) | 65.43 80.99 73.82 87.33
UDOP, Tang et al. (2023) - - - -
LayoutLMv3, Huang et al. (2022) - - - -

Donut, Kim et al. (2022) 39.60 46.43 29.69 69.87

Dessurt, Davis et al. (2022) 31.64 48.52 28.62 64.86

DIVE-Doc 59.33 78.83 49.96 85.00

DIVE-Doc + FFpos 5777 79.29 53.04 85.44
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6.3.2.2 Evaluation de I’encodeur visuel

Le tableau 6.9 affiche les résultats pour les taches d’évaluation de 1’encodeur visuel. Bien que
le modgele initial de DIVE-Doc ait déja une bonne représentation de la structure générale des
documents en atteignant un score de 0.90, le module FFpos a permis d’améliorer ce dernier de
1%, passant a une performance de 0.91. Cela réduit le gap avec I’encodeur visuel de Paligemma
qui a une performance de 0.92 (2% — 1%), et augmente celui avec Donut qui atteint 0.89 (1%
— 2%). Cependant, 1’ajout du module FFpos semble impacter négativement les résultats sur
la tache d’analyse de la structure des documents. La ou le modele DIVE-Doc initial affiche
une performance de 0.41 (mloU), le module FFpos a entrainé une diminution de cette derniére

(0.37).

Tableau 6.9 Résultats des encodeurs visuels sur les tiches de DocCLS et DLA

Classification (Acc T) Analyse de la structure (IoU 7)
Méthode Générale Moyenne Texte Titre Liste Note en pied de page
Paligemma, Beyer et al. (2024) 0.92 0.36 054 0.13 0.07 0.05
Donut, Kim et al. (2022) 0.89 0.37 0.54 0.08 0.07 0.05
DIVE-Doc 0.90 0.41 058 0.1 0.06 0.06
DIVE-Doc + FFpos 0.91 0.37 054 0.1 0.06 0.04

6.3.3 Etude d’ablation

Cette section présente les différentes études réalisées pour valider 1’approche étudiée. Les
résultats présentés en premier lieu sont issus des expérimentations réalisées en étudiant plusieurs
zones d’insertion du module FFpos dans I’encodeur visuel. Comme décrit dans la section 4.2,
les positions évaluées sont a I’entrée du modele (d), a la fin de chaque niveau (bl), a la sortie
du modele (s) et enfin, sur toutes ces positions a la fois (dbls). Les résultats des performances

générales pour la tiche de DocVQA sont présentés sur le tableau 6.10.

La performance la plus haute a été obtenue en intégrant la position a la sortie du modele (83.46%

ANLS), suivie de la position d’ajout a chaque niveau (83.36%) puis de I’insertion a chaque
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Tableau 6.10 Résultats pour les différentes insertions de positions sur la tiche de DocVQA

Modele Insertion au début | Insertion a chaque block | Insertion a la sortie | ANLS général (%) T
DIVE-Doc 82.67
DIVE-Doc (d) v 82.84
DIVE-Doc (bl) v 83.36
DIVE-Doc (s) v 83.46
DIVE-Doc (dbls) v v v 83.19

position proposée (83.19%). L ajout au début du modele semble avoir eu le moins d’influence
(82.84%), apportant une amélioration de 0.17 points d’ANLS contre 0.81 pour I’insertion en
sortie.

Le tableau 6.11 montre les détails des résultats sur différents types de questions. Le module
FFpos semble avoir réduit les performances pour les questions portant sur des figures passant de
59.33% d’ANLS pour le modele initial a 56.74% pour 1’ajout a chaque point d’insertion (dbls).
Cependant, 1’ajout a chaque point d’insertion a eu un fort impact sur les questions de la catégorie
photo, avec un score de 58.82% d’ANLS, représentant ainsi une amélioration de 8.86 points
d’ANLS. Contrairement aux performances générales, I’insertion du module FFpos uniquement
a la sortie entraine la plus petite amélioration sur la catégorie photo (3.08 points d’ANLS), 1a ou
I’ajout au début conduit a une progression de 5.37 points et I’ajout a chaque niveau améliore
la performance de 5.17 points. Enfin, pour les questions liées a la structure des documents, le

module FFpos entraine une amélioration allant de 0.09 (d) a 1 point d’ANLS (dbls).

Tableau 6.11 Résultats pour les différentes insertions de positions sur la tiche de DocVQA

ANLS (%) par catégorie de questions |
Modele Figure Texte Photo Structure
DIVE-Doc 59.33 78.83 49.96 85.00
DIVE-Doc (d) 56.80 77.43 55.33 85.09
DIVE-Doc (bl) 58.88 78.88 55.13 85.55
DIVE-Doc (s) 5777 79.29 53.04 85.44
DIVE-Doc (dbls) | 56.74 78.92 58.82 86.00

Le tableau 6.12 présente les résultats sur les taches d’évaluation de 1’encodeur visuel pour les

différentes positions testées. Chaque position entraine une amélioration de 1% sur la tache de
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classification passant de 0.90 a 0.91, excepté I'insertion a chaque position simultanément (dbls)
qui conserve une performance de 0.90. Pour la tiche d’analyse de la structure, les différentes
positions d’insertion entrainent également des résultats similaires, soit 0.37 points de mIoU pour
la performance générale, ce qui montre une baisse des résultats par rapport au modele initial qui

affiche une performance de 0.41 points.

Tableau 6.12 Résultats des encodeurs visuels sur les tiches de DocCLS et DLA

Classification (Acc T) Analyse de la structure (mlIoU 7)

Méthode Générale Moyenne Texte Titre Liste Note en pied de page
DIVE-Doc 0.90 0.41 0.58 0.1 0.06 0.06
DIVE-Doc (d) 0.91 0.37 0.54 0.09 0.06 0.04
DIVE-Doc (bl) 0.91 0.37 0.53 0.1 0.06 0.04
DIVE-Doc (s) 0.91 0.37 0.54 0.1 0.06 0.04
DIVE-Doc (dbls) 0.90 0.37 0.54 0.1 0.06 0.04

6.3.4 Discussion

L'intégration du module de position FFpos a la sortie de I’encodeur a démontré une amélioration
des résultats de la tiche de DocVQA. L’ajout du module entraine 10 millions de parametres
supplémentaires, ce qui représente une augmentation de 0.4% du nombre total de parametres, tout
en réduisant I’écart de performance avec le LVLM Paligemma par rapport au modele DIVE-Doc
initial. Ainsi, ce module permet a la fois d’améliorer les résultats avec une faible augmentation
du nombre de parametres. L’étude de ce module sur différentes catégories montre qu’il réduit
cependant les résultats sur les questions portant sur des figures, ce qui suggere une perturbation
de la représentation de ces dernieres. DIVE-Doc a été€ pré-entrainé en distillant I’encodeur visuel
de Paligemma qui est un modele SigLIP. Ce dernier a lui-méme été pré-entrainé sur des images
naturelles (photo). La base de données de DocVQA contient tres peu de questions sur des figures
(environ 1000 sur les 50.000), sachant qu’une figure peut avoir plusieurs questions qui lui sont
associées. Il peut donc étre supposé que 1’ajout d’'une composante dans la représentation telle
que la position n’a pas pu étre suffisamment adaptée aux entités telles que les figures a cause

de ce déséquilibre dans la distribution des données. La ou les performances sur les questions
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portant sur des photos ont ét€¢ améliorées de 3.08 points d’ANLS, ce qui a pu étre aidé par
le pré-entrainement de SiglLIP. Pour les questions portant sur la structure des documents, les
performances ont été 1égerement améliorées (+0.44 points d’ANLS). Cela suit la discussion du
premier objectif qui suggere que la compréhension sémantique de la structure des documents
est achevée par le LLM, tandis que I’encodeur visuel extrait et représente les caractéristiques
visuelles. D’autre part, I’ajout de la position a la sortie du modele a également permis d’améliorer
de 1% les résultats sur la tache de classification de documents. Cependant, 1’ajout de ce module
a entrainé une diminution des résultats sur la tiche d’analyse de la structure des documents, et
cela pour toutes les positions d’insertion (0.41 mloU — 0.37 mloU). Il peut étre supposé que le
module FFpos étant entrainé de bout-en-bout avec le LLM, il n’apprend pas de contexte (titre,
tableau, etc.) sémantiquement li€ a la position, ce dernier étant traité par le modele de langue
(voir section 6.2.4).

D’autre part, I’étude de I’insertion du module montre I’importance de I’endroit ou est intégré
ce dernier pour la tiche de DocVQA. La performance générale maximale est atteinte lorsque
le module est ajouté uniquement a la sortie de I’encodeur visuel (83.46% d’ANLS). Cette
position d’insertion entraine également les meilleurs résultats pour les questions portant sur
du texte (79.29%), soulignant I’importance de la position dans la représentation du modele de
langue pour I’ordre de lecture. Cependant, 1’ajout en sortie entraine la plus petite amélioration
pour les questions de la catégorie photo, ce qui suit naturellement la discussion du premier
objectif. L’encodeur visuel sert a extraire et a représenter les caractéristiques visuelles du
document, les photos étant des entités visuelles, ajouter la position de maniere plus précoce dans
la représentation permet a I’encodeur visuel de mieux représenter ces dernieres. Cependant, la
ou ajouter la position au début, a chaque niveau et a la sortie de 1’encodeur visuel simultanément
améliore la performance sur les questions portant sur des photos (+8.86 points), cette stratégie
diminue I’amélioration sur les questions portant sur le texte et sur la performance générale
par rapport a 1’ajout de la position en sortie uniquement. Il peut étre supposé qu’ajouter une
information positionnelle de maniere récurrente dans la représentation dilue d’autres informations

utiles a la compréhension sémantique du LLM.
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6.4 Ajout d’un module de filtrage pour étendre le modéle au multi-page

Cette section présente les résultats de 1’adaptation du modele DIVE-Doc au multi-page suivant

la méthodologie présentée dans le chapitre 5.

6.4.1 Détails des configurations

Le modele a été testé avec une résolution de page MRes € R2048x2048X3 "bagé sur les résultats
du premier sous-objectif (voir section 6.2.2.1). Cela conduit a un ensemble de patchs v €
RA096x2048 1our chaque page avec 4096 le nombre de patchs et 2048 la dimension de I’espace de
représentation multimodal. Le nombre de couches % pour le module filtre est de 8. L’ évaluation

de la performance a été effectuée en utilisant 'ANLS (voir équation 6.1) pour mesurer la qualité

des réponses et I’accuracy (équation 6.3) pour I’évaluation du filtre sur la sélection de page.

6.4.2 Résultats

Tableau 6.13 Résultats sur MP-DocVQA

Méthode #Param(B) OCR Tiling Fusion Tot Acc (%)T ANLS (%)7T
Toutes les pages dans le décodeur
Gram, Blau et al. (2024) 0.859 X X 19.98 80.32
DocOwl12, Hu et al. (2024) 8 X 50.78 69.42
HiVTS5, Tito et al. (2023) 0.316 X X 79.63 62.01
Longformer, Tito et al. (2023) 0148 X X 71.17 52.87
BigBird, Tito et al. (2023) 0.131 X X 67.54 49.29
LayoutLMv3, Tito et al. (2023) 0.125 X X 51.94 45.38
Sélecteur de réponse
ScreenAl, Baechler er al. (2024) 5 X 77.88 77.1
ScreenAl, Baechler ef al. (2024) 5 ? 72.9
Sélecteur de page + top-k pages dans le décodeur
M3DocRAG, Cho et al. (2024) 10 81.05 84.44
FRAG-LLaVA-OV, Huang et al. (2025) 7 ? 79.1
FRAG-InternVL2, Huang et al. (2025) 8 ? 77.8
Sélecteur de page

Pix2Struct, Kang er al. (2024) 0.273 X 81.55 61.99
MP-DIVE-Doc 2.58 76.25 70.72
MP-DIVE-Doc + FFpos 2.6 76.27 71.73
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Le tableau 6.13 présente les résultats sur la tiche MP-DocVQA. Les modeles de ce mémoire
adaptés ont ét€ nommés MP-DIVE-Doc (chapitre 3) et MP-DIVE-Doc + FFpos (chapire 4).
Ces derniers ont atteint une performance de 70.72% et 71.73% d’ANLS avec 2.6 milliards
de parametres sans utiliser d’OCR. En comparaison avec d’autres approches bout-en-bout, il
concurrence des modeles tels que ScreenAl qui a une ANLS de 72.9% et DocOwl2 obtenant
69.42% d’ANLS. Ces derniers ayant respectivement 5 et 8 milliards de parametres, les deux
modeles MP-DIVE-Doc ont donc des résultats compétitifs avec deux a trois fois moins de
parametres. De plus, ils surpassent les modeles qui ont peu de parametres et qui se basent
sur la fusion en amont tels que LayoutLMv3 (45.38% ANLS), BigBird (52.87% ANLS) ou
encore HiVT5 (62.01% ANLS). Le modele Gram (80.32% d’ANLS) surpasse les méthodes
MP-DIVE-Doc mais nécessite de prendre 1’ensemble des pages dans le décodeur tout en se
basant sur I’OCR pour représenter le document, ce qui augmente 1’emplacement mémoire
requis. De plus, il se base sur la fusion en amont, ce qui nécessite ainsi d’encoder 1’'image pour
chaque question, ne permettant pas de stocker et de réutiliser les embeddings qu’il produit. En
comparaison aux modeles sélectionnant les fop — k pages pour les envoyer dans leur décodeur,
M3DocRAG (84.44% d’ANLS) et FRAG (79.1% et 77.8%) surpassent également MP-DIVE-Doc
mais ont plus de parametres (entre 7 et 10B). Ces méthodes faisant soit appel a différents modeles
(M3DocRAG), ou itérant plusieurs fois sur le méme modele de bout-en-bout (FRAG) entrainent
ainsi des systemes plus complexes. Enfin, en comparaison avec Pix2Struct (61,99%) qui se base
sur une méthode similaire de sélection de page mais utilise la fusion en amont, MP-Dive-DOC
acheve un gap supérieur de pres de 8.73 points d’ANLS. La fusion en amont de Pix2Struct
combinée a un module de sélection de page entrainé atteint une accuracy de 81.55% sur la page
prédite, ce qui est supérieure au reste de 1’état de 1’art. La figure 6.3 compare 1’efficience de ce
modele avec MP-DIVE-Doc. Du fait de son nombre de parametres inférieur a celui de ce dernier,
Pix2Struct a une latence bien inférieure a MP-DIVE-Doc qui est respectivement de 0.83 et 2.60
secondes pour un document de trois pages. Cette derniére évolue trés peu avec I’augmentation
du nombre de pages en comparaison a MP-DIVE-Doc, respectivement de 2.14 et 8.31 secondes
pour 19 pages. De méme, la faible taille de Pix2Struct lui permet d’avoir une empreinte réduite

sur la VRAM (3544MiB) contre 6635MiB pour MP-DIVE-Doc. Cependant, la faible taille du



modele I’empéche d’avoir une qualité de réponse compétitive (61.99% ANLS) par rapport a

MP-DIVE-Doc (70.72% ANLS).
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Figure 6.3 Efficience des modeles MP-DIVE-Doc et Pix2Struct

(Kang et al., 2024)
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Figure 6.4 Comparaison du cofit de calcul sur une page entre le
modele initial DIVE-Doc et MP-DIVE-Doc

La figure 6.4 compare le coflit de calcul entre le modele initial DIVE-Doc et le modele adapté
MP-DIVE-Doc. Pour cela, la latence et I’empreinte mémoire de chaque modele ont été mesurées
pour un document d’une page. Comme il est affiché, les deux modeles ont une faible différence
de latence (1.13 et 1.58 secondes) pour retourner la réponse sur une seule page. De plus, leur
empreinte sur la VRAM est la méme, ce qui s’explique par le fait que le module filtre n’ajoute

pas de nouveaux poids au modele mais réutilise directement ceux du décodeur.
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Figure 6.5 Nombre de question par taille de documents et
performance du filtre

La figure 6.5a montre la performance du filtre de MP-DIVE-Doc sur I’ensemble de validation en
fonction du nombre de pages des documents. Comme il est affiché sur ce dernier, les documents a
page multiple ou le filtre performe le mieux sont ceux ayant 2, 16 et 18 pages avec respectivement
0.86, 0.82 et 0.81 d’accuracy. Etrangement, 1’évolution de la performance n’est pas linéaire avec
I’augmentation du nombre de pages. La figure 6.5b montre le nombre de questions en fonction
du nombre de pages des documents. Comme il est affiché, le nombre de questions pour des

documents de 16 et 18 pages est bien inférieur par rapport a des documents entre 2 et 10 pages,
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ce qui pourrait biaiser ces résultats. Cependant, on remarque que le nombre de questions pour
des documents ayant 20 pages est supérieur au nombre de questions posées sur les autres tailles
de documents. De plus, la figure 6.5a affiche une performance de 0.59 pour les documents de 20
pages, ce qui est similaire voir supérieur aux résultats pour des documents ayant par exemple
13 pages (0.57), 9 pages (0.48) ou encore 7 pages (0.54). Ainsi, il peut étre supposé que la
performance du filtre ne dépend pas directement du nombre de pages mais plutdt de la question
posée, a savoir si des informations similaires mais non correctes peuvent étre présentes sur les

autres pages du document, ce qui pourrait induire le filtre en erreur.
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La figure 6.6 présente une comparaison du coiit de calcul en fonction du nombre de pages lorsque
le nombre de couches du filtre est de 4, 8 et 16. Comme affiché, I’empreinte mémoire ne varie
pas en fonction du nombre de couches utilisées mais plutot en fonction du nombre de pages.
Cela s’explique par le fait que le filtre réutilise les poids du LLM, ainsi peu importe son nombre
de couches £, ces derniéres sont dans tous les cas stockées sur la mémoire via 1’architecture
initiale. De plus, I’allocation mémoire supplémentaire pour chaque page reste minimale (1 page
— 6179MiB, 12 pages — 6443MiB, 19 pages — 6635MiB), ce qui limite I’augmentation de
I’emplacement requis sur la VRAM de 0.456MiB pour 18 pages supplémentaires. Cependant, la
latence augmente significativement avec le nombre de couches et le nombre de pages. Pour un
document d’une seule page, la latence est de 1.44 pour le filtre a 4 couches, de 1.58 secondes
pour 8 couches et de 1.82 secondes pour 16 couches. Ces différences augmentent fortement avec
le nombre de pages, atteignant respectivement jusqu’a 6.02, 8.31 et 12.75 secondes de latence
pour les modules a 4, 8 et 16 couches. Le gap augmente donc avec le nombre de pages, passant
de 0.38 secondes pour un document d’une page, a 6.73 secondes pour 19 pages entre les filtres a

4 et 16 couches.

La figure 6.7 montre 1’accuracy pour la prédiction de la page contenant la réponse sur I’ensemble
de validation entre les filtres a 4, 8 et 16 couches. Comme il est affiché, le module utilisant 8
couches obtient 78.23% d’accuracy alors que ceux a 4 et 16 couches atteignent respectivement
une valeur de 73.54% et 72.89%. Cela peut s’expliquer par le fait que 4 couches seulement ne
permettent pas d’encoder suffisamment la requéte avec les embeddings pour en faire ressortir
les informations relatives. D’autre part, a partir d’un certain nombre de couches, 1’information
de la réponse est dispatchée sur plusieurs jetons de I’image suite au mécanisme de I’ attention,
réduisant I’efficacité du calcul du score se basant sur la similarité d’un patch par jeton (voir
équation 5.1). Ainsi, le module a 8 couches est plus performant, que ce soit en termes d’efficience

(latence) ou de qualité de prédiction (accuracy).
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Figure 6.7 Comparaison de la qualité de prédiction de la page
contenant la réponse entre les filtre a 8 et 16 couches

644 Discussion

Les modeles MP-DIVE-Doc ont ainsi obtenu des résultats compétitifs avec 1’état de I’art.
Achevant un score de 70.72% d’ANLS et 71.73% (+FFpos), ils surpassent les approches
initiales ayant peu de parametres qui se basent sur I’OCR et rivalisent aussi avec les méthodes
bout-en-bout ayant beaucoup de parametres telles que ScreenAl (5B) et DocOwl2 (8B). 11
existe tout de méme un gap avec certaines approches comme M3DocRAG (10B) qui utilise
plusieurs modules pour encoder le document, atteignant ainsi une performance de 84,44%
d’ANLS. Cependant, cette approche nécessite d’encoder le document une premiere fois pour
effectuer la similarité, ainsi qu'une seconde fois pour étre utilisable par le LLM génératif.
Ainsi, cette méthode entraine un coflit de calcul plus important. D’autre part, dans le cas de
stockage des embeddings pour des cas d’utilisation de recherche d’information dans des bases

de données vectorielles (voir figure 0.2¢), les approches de fusion en amont ne permettent pas
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de sauvegarder les représentations des documents, ces derniers étant encodés spécifiquement
pour chaque question. Les approches MP-DIVE-Doc se basant sur la fusion intermédiaire,
les embeddings de documents qu’elle produit peuvent étre sauvegardés et réutilisés pour de
nouvelles questions/recherches d’information. De plus, les modeles MP-DIVE-Doc n’ont pas
besoin de parametres additionnels pour traiter le multi-page, ce qui limite I’empreinte du modele
sur la VRAM. Ainsi, la méthode proposée adapte le modele bout-en-bout initial DIVE-Doc
sans ajout de parametres, tout en permettant la réutilisation des représentations des documents
pour de nouvelles questions avec une approche de fusion intermédiaire. Il a été constaté que la
performance du filtre n’était pas nécessairement décroissante en fonction du nombre de pages,
ce qui suggere que la performance dépend plutdt de la question et des informations relatives
contenues dans les pages, ce qui ouvre la porte a I’étude d’un critere plus poussé pour calculer
le score par page. De plus, la latence augmente avec le nombre de pages, ce qui peut devenir
une contrainte sur des documents contenant beaucoup de pages, ou méme sur une extension de
I’approche a des collections de documents. D’autre part, le LLM utilisé (gemma) étant entrainé
a traiter un nombre limité de jetons, le mécanisme de sélection proposé retourne seulement une
page, ce qui entraine de nouveaux défis pour des cas d’utilisation ot la réponse est dispatchée

sur plusieurs pages (multi-hop).



CONCLUSION ET RECOMMANDATIONS

Ce mémoire a abordé la représentation d’image de document pour la tache de réponse a des
questions visuelles (DocVQA). Cette tache a un role important dans le contexte de I’augmentation
du nombre de documents numérisés pour des cas d’utilisation allant de 1’extraction automatique
de données a la recherche d’information spécifique dans des documents multi-page (MP-
DocVQA). Elle nécessite a la fois une précision sur la qualité des informations extraites et un
cotit d’infrastructure restreint afin d’étre déployable dans les secteurs industriels. Pour cela,
représenter les documents dans un espace multimodal est essentiel afin que les modeles de
langues puissent s’en servir afin de retrouver I’information a extraire. Ainsi, un modele de
type vision-language (VLM) a été€ développé afin de répondre a cette tache sur des documents
industriels comportant différents types d’information (texte manuscrit, illustration, graphique,
etc.). Ce modele nommé DIVE-Doc est composé d’un encodeur visuel qui prend en entrée une
image de document numérisée et retourne sa représentation dans un espace multimodal. Cette
derniere est ensuite envoyée avec une question au modele de langue qui retourne la réponse
extraite a partir de la représentation du document. Ce modele bout-en-bout ne repose donc pas

sur des outils extérieurs tels que I’OCR, ce qui réduit la complexité du systeme.

Afin de réduire le coiit de calcul du modele sans dégrader la qualité des réponses, ce dernier a
été construit a partir d’un grand modele de vision-language (LVLM). Ces architectures ayant
beaucoup de parametres, ce qui augmente leur latence ainsi que leur emplacement sur la mémoire
de I’infrastructure, I’encodeur visuel du modele initial a été réduit par distillation. Cette méthode
a permis de changer I’architecture de 1I’encodeur visuel pour une structure hiérarchique ayant
moins de parametres, réduisant la latence par deux pour cette composante du modele. De plus,
I’architecture hiérarchique a permis de prendre en entrée une résolution d’image plus importante,
conservant ainsi la qualité des réponses du modele. Par ailleurs, une approche de distillation non
conventionnelle a été proposée, permettant d’adapter la résolution des images de documents en

fonction des besoins sans ajout de parametres.
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De plus, un module de représentation de la géométrie spatiale (structure) des documents a été
intégré afin d’améliorer les ordres de lecture du modele de langue, ce qui a permis d’affiner la
qualité des réponses. Différentes positions d’insertion de ce dernier ont été testées, suggérant
qu’un ajout en sortie de 1’encodeur visuel est bénéfique afin de permettre a ce dernier de
représenter le contenu avant de I’enrichir par sa position sur le document initial. Par ailleurs,
une étude de 1’encodeur visuel sur les taches de classification et d’analyse de la structure
sémantique des documents a été réalisée afin d’interpréter ce que le module de vision a appris a
extraire et représenter. La tache de classification a révélé que 1’encodeur représente correctement
la structure générale du document dans 1’espace multimodal, lui permettant de discriminer
les documents de différentes structures (lettre, formulaire, article, etc.). Cependant, la tiche
d’analyse de la structure sémantique révele que I’encodeur visuel ne discrimine pas les entités
d’un méme type d’information mais ayant une sémantique structurelle différente (titre, tableau,
note en pied de page, etc.). Le modele global (encodeur visuel et modele de langue) ayant une
bonne qualité de réponse sur les questions portant sur 1’analyse de la structure sémantique, cela

souligne que cet aspect est donc traité par le modele de langue.

Enfin, une ouverture sur les documents multi-page a été proposée, en adaptant le modele
construit lors des sous-objectifs de ce mémoire. Afin de retrouver la page contenant la réponse,
un module filtre a été ajouté entre I’encodeur visuel et le modele de langue. Le filtre réutilise les
huit premieres couches du décodeur afin d’encoder la question avec les embeddings de chaque
page et retourne un score de probabilité pour chacune de ces dernieres. Les embeddings de la
page ayant le plus haut score sont ensuite envoyés au LLLM avec la question afin de générer la
réponse. Ainsi, en réutilisant les parametres du modele de langue dans le filtre, les modeles
MP-DIVE-Doc atteignent 70.72% et 71.73% ANLS, sans parametres additionnels, surpassant
des modeles plus lourds en efficacité tout en ayant des performances compétitives. Les modeles

se basant sur la fusion intermédiaire, les représentations des documents qu’ils produisent sont
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réutilisables pour chaque question. Ainsi, cela ancre le systeme dans des cas d’application réels

tels que les rapports industriels multi-pages.
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Le travail de ce mémoire a été réalisé€ afin de répondre a la tiche de DocVQA pour des cas
d’utilisation industriels. Ainsi, la base de données utilisée pour entrainer et évaluer le modele
est essentiellement constituée d’informations sous forme de texte. Cependant, il pourrait étre
intéressant d’étudier 1’architecture proposée sur d’autres bases de données comportant différentes
distributions des types d’information tels que pour des documents infographiques, des rapports

scientifiques et autres afin de répondre a des contextes d’utilisation différents.

D’autre part, I’approche de distillation proposée pour réduire la taille de I’encodeur visuel initial
étant sans parametres, cette derniere n’a pas permis de bénéficier totalement des documents de
grande résolution. Ainsi, adapter un module d’alignement a un faible nombre de parametres
permettrait d’améliorer la qualité des réponses pour les infrastructures disposant d’une plus
grande capacité de calcul. De plus, bien que la distillation de I’encodeur visuel ait permis
de diminuer le cofit de calcul du modele, le LLM reste la composante la plus coliteuse en
termes d’infrastructure. L’ étude approfondie de I’encodeur visuel a démontré que I’analyse de la
structure sémantique du document pour la tiche de DocVQA est effectuée par le modele de
langue. Ainsi, intégrer cette notion dans 1’encodeur visuel permettrait de réduire la taille et la

complexité du décodeur afin de faciliter son utilisation sur des infrastructures limitées.

Enfin, I’adaptation des modeles aux documents multi-pages par 1’ajout d’un filtre permet de
retrouver la réponse a une question parmi plusieurs pages d’un document. Cependant, il a été
suggéré que la performance du filtre ne dépend pas directement du nombre de pages, mais plutdt
du contexte (informations présentes dans les pages) ainsi que de la question. Ainsi, étudier
d’autres criteres de sélection pourrait permettre une meilleure discrimination des pages ayant des
informations similaires mais non relatives a la question posée. D’autre part, la latence augmentant
drastiquement avec le nombre de pages, des défis demeurent pour I’extension sur des collections
de documents, pouvant contenir plusieurs centaines de pages. Un axe de développement pourrait

étre ’architecture de base de données vectorielle hiérarchique permettant un premier filtre
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des pages candidates. Une autre difficulté consiste a retrouver la réponse lorsque celle-ci est
dispatchée sur plusieurs pages. En effet, envoyer plusieurs pages au modele de langue pour
retrouver la réponse augmente considérablement le nombre de jetons a traiter et, par extension,
le colt de calcul. Ainsi, une adaptation du filtre afin de prendre en entrée plusieurs pages
pour une sélection modulable en fonction de la question et du nombre de pages pourrait étre
étudiée. D’autre part, les modeles hiérarchiques ayant fait leurs preuves pour allier colit de
calcul et résultats dans le contexte de représentation d’image de documents, s’inspirer de leur
architecture pour les modeles de langue pourrait étre une piste intéressante a explorer afin de

réduire I’évolution du cofit de calcul en fonction du nombre de pages a traiter.
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