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Optimisation d’un modèle DocVQA sans OCR: Encodage hiérarchique et structurel à
faible coût de documents dans un espace multimodal commun

Rayane BENCHAREF

RÉSUMÉ

Le nombre de documents numériques a connu une forte augmentation au cours de la dernière

décennie, et ce dans différents secteurs, que ce soit industriel, médical, académique et bien

d’autres. Bon nombre de ces documents proviennent de numérisations (images de documents),

permettant de construire des banques de données partagées au sein d’entreprises, institutions ou

même sur internet. Ces grandes bases de données peuvent directement contenir les documents

numérisés ou encore être tabulaires, contenant les informations provenant de ces derniers.

Cependant, l’extraction manuelle d’informations contenues sur des documents numérisés est

chronophage dans un contexte où le nombre de ces derniers ne cesse d’augmenter. Ainsi,

automatiser l’extraction d’informations à grande échelle devient un besoin vital, comme par

exemple dans des secteurs industriels où le temps est une ressource précieuse. Cette automatisation

exige cependant des systèmes rapides, précis et peu coûteux afin qu’ils puissent être efficaces sur

de grandes bases de documents.

L’avènement des grands modèles de langues (LLM) a montré de bonnes performances pour

l’extraction d’information sur les tâches de réponse à des questions sur des données de texte

(QA). Cependant, les images de documents sont des données variées, comportant différents

types d’entités (photo, tableau, texte manuscrit, etc.) et pouvant avoir différentes structures

(lettre, articles, etc.). Ainsi, elles sont différentes des données que les LLM prennent en entrée,

et ne sont donc pas directement utilisables par ces derniers. Par conséquent, la tâche de réponse

à des questions sur des images de documents (DocVQA) nécessite de représenter les images de

documents afin que les modèles de langues puissent les utiliser afin de répondre à des questions.

Dans ce contexte, les approches fondées sur des outils de reconnaissance de caractères optiques

(OCR) nécessitent un entraînement supplémentaire, ajoutent de la complexité au système

(détection, reconnaissance) et peuvent conduire à des erreurs de transcription. À l’inverse, les

méthodes bout-en-bout (OCR-free), composées d’un encodeur visuel et d’un modèle de langue,

bénéficient d’une architecture unifiée permettant à la fois de représenter le document et de

répondre à la question. Ce type de méthodes regroupe des modèles de petite taille, peu coûteux

en termes de calcul, mais limités en qualité de réponses, ainsi que des modèles à grande échelle

(LVLM), performants en termes de résultats mais trop lourds pour des déploiements industriels.

Ce mémoire présente ainsi un système DocVQA OCR-free qui apprend un espace de représenta-

tion multimodal (image-texte), composé d’un encodeur visuel hiérarchique de petite taille, d’un

projecteur multimodal et d’un modèle de langue à grande échelle. L’encodeur visuel transforme

l’image de document en jetons (token) projetés sur l’espace du modèle de langue via le projecteur

multimodal. Cet encodeur intègre également un encodage positionnel explicite de la mise en

page, préservant l’ordre de lecture et la structure des éléments (tableaux, graphiques, zones

textuelles) dans l’espace commun. Le décodeur linguistique à grande échelle met directement
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ces représentations alignées en relation avec la question afin de générer la réponse sans outils

additionnels tels que l’OCR. Ce système a été construit en distillant l’encodeur visuel de fondation

d’un LVLM dans une architecture hiérarchique plus petite tout en gardant le LLM décodeur

afin de réduire le coût de calcul tout en conservant des résultats proches du modèle initial. Afin

d’assurer l’alignement image-texte de la représentation, l’encodeur distillé a été supervisé de

bout-en-bout avec le LLM décodeur. Suite à cela, un module d’encodage spatial décomposant la

position de chaque token en caractéristiques de Fourier a été ajouté afin d’enrichir les jetons par

leur position d’origine sur le document. Ces approches ont été évaluées expérimentalement sur

le jeu de données DocVQA, contenant des images de documents industriels de différents types

(formulaires, lettres, articles, etc.). En utilisant le LVLM Paligemma qui a une performance de

84.77% ANLS, la distillation vers une architecture hiérarchique plus petite a permis de réduire

la taille de son encodeur visuel par un facteur de 5, divisant de moitié sa latence (896ms →
446ms) tout en conduisant à un gap de seulement 2.1 points d’ANLS avec une performance de

82.67% ANLS. De plus, l’ajout de l’encodage positionnel a permis d’améliorer les résultats sur

la qualité d’extraction des informations du document, réduisant ce gap à 1.31 points avec une

performance de 83.46% ANLS. Ainsi, le système proposé surpasse en termes de performance

les modèles OCR-free de petites tailles tels que Donut qui a une performance de 66.26% ANLS,

et reste compétitif avec les LVLM tels que Paligemma ainsi qu’avec les méthodes se basant sur

l’OCR telles que UDOP (84.70% d’ANLS).

Des analyses complémentaires sur la classification (RVL-CDIP) et l’analyse de structure (Do-

cLayNet) montrent que l’encodeur capture la structure globale, tandis que le LLM traite cette

dernière de manière plus approfondie à un niveau sémantique.

Enfin, le modèle a été adapté aux documents multi-pages via un sélecteur de page réutilisant

les premières couches du LLM, sans paramètres supplémentaires. Cette approche limite le

coût de calcul en maintenant le modèle à 2.6B paramètres tout en atteignant 71.73% ANLS,

concurrençant les autres modèles de l’état de l’art tels que ScreenAI (72.9% ANLS/5B) ou encore

DocOwl2 (69.42% ANLS/8B), démontrant une mise à l’échelle efficace pour des scénarios

industriels complexes.

En résumé, ce mémoire démontre qu’un alignement image-texte guidé par une méthode OCR-

free intégrant la géométrie spatiale permet de représenter des documents de structures variées

contenant différents types d’entités. De plus, il souligne qu’une architecture hierarchique permet

de réduire la complexité du système tout en maintenant une qualité de réponse compétitive. Enfin,

l’adaptation du modèle aux documents multi-page sans paramètres supplémentaires montre

l’extension du système à des cas d’utilisation plus complexes. Cette approche présente donc un

DocVQA plus efficient et compétitif pour l’automatisation de l’extraction d’information.

Mots-clés: DocVQA, Image de Documents, OCR-Free, Espace de représentation
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ABSTRACT

The number of digital documents has seen a high increase during the last decade in several

sectors such as industry, medicine, academia and others. A lot of those documents come

from digitalization (document images), allowing to build shared databases inside enterprises,

institutions or even across the internet. These high-scale databases may directly contain numerical

documents or be tabular, having extracted information from documents. However, the manual

extraction of this information can be time-consuming in a context where the number of digital

documents continues to grow. Thus, automating the extraction of these information at a high

scale becomes a vital need, as in industrial sectors where time is a precious resource. However,

such automation requires fast, accurate and low-cost systems in order to be efficient and effective

in high-scale document databases.

The advent of large language models (LLM) has shown good performance for information

extraction on question-answering tasks (QA) with text data. However, document images are

varied data, containing several entity types (picture, table, handwriting, text, etc.), and may have

different structures (letter, article, etc.). Thus, these images are different from the data that LLM

usually take as input, and therefore are not directly usable by them. Consequently, the task of

visual question-answering on document images (DocVQA) needs to represent the document

images in order to allow the LLM to answer the questions. In this context, methods based on

optical character recognition tools (OCR) require additional training while adding complexity

into the system (detection, recognition), and may lead to recognition errors. On the other hand,

end-to-end methods (OCR-free), composed of a visual encoder and a language model decoder,

have a unified architecture, allowing both to represent the document and answer the question.

This type of methods can be divided into two groups. Firstly the lightweight methods, efficient

with a small computational cost, but limited in performance. Then, there are the large visual

language models (LVLM), which are accurate in performance but have a high computational

cost that can lead to difficulties for industrial deployments.

Thus, this thesis presents an OCR-free DocVQA system that learns a multimodal representation

space (image-text), composed of a small hierarchical visual encoder, a multimodal projector,

and a LLM. The visual encoder transforms the document image into visual tokens, projected to

the language model’s representation space (embedding), through the multimodal projector. This

encoder also integrates an explicit positional encoding of the document structure, preserving

the reading order and element structures (table, graphics, text, etc.) in the multimodal space.

The language model decoder directly uses these representations with the question to generate

the answer without additional tools such as OCR. This system has been built by distilling the

foundational visual encoder of an LVLM into a smaller hierarchical architecture, while keeping

the LLM decoder, in order to reduce computational cost while conserving close results with the
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initial model. To ensure the image-text alignment of the representation, the distilled encoder has

been end-to-end supervised with the LLM decoder. Then, a spatial encoding module decomposes

the position of each token on the document into Fourier features has been added in order to

enrich the visual tokens by their original position. These approaches have been evaluated on the

DocVQA dataset, which contains industrial document images of different types (forms, letters,

articles, etc.). By using the LVLM Paligemma that has a performance of 84.77% ANLS, the

distillation into a smaller hierarchical architecture has reduced the visual encoder size by a factor

of five, halving its latency (896ms → 446ms) while leading to a gap of 2.1 points of ANLS with

a performance of 82.67% ANLS. Moreover, the addition of the positional encoding has improved

the extraction quality of information, reducing the gap to 1.31 points with a performance of

83.46% ANLS. Thus, the proposed system outperforms the results of lightweight OCR-free

methods such as Donut, which has a performance of 66.26% ANLS, and stays competitive with

LVLM as Paligemma and with OCR-based models such as UDOP (84.70% ANLS).

Additional analysis on classification (RVL-CDIP) and layout analysis (DocLayNet) show that

the encoder captures the global structure, where the LLM handles deeper layout reasoning at a

semantic level.

Finally, the model has been adapted to multi-page documents with a page selector, sharing the

LLM’s first layers. This approach limits the computational cost by keeping the model to 2.6B

parameters while reaching 71.73% ANLS, competing with other state-of-the-art models such as

ScreenAI (72.9% ANLS/5B) and DocOwl2 (69.42% ANLS/8B), showing an efficient scaling

for complex industrial contexts.

In summary, this thesis shows that an image-text alignment led by an OCR-free method, which

integrates the spatial geometry, enables the representation of document images of various

structures and containing different entity types. Moreover, it underlines that a small hierarchical

architecture reduces the system complexity while keeping a competitive response quality. Finally,

the adaptation of the model to multi-page documents without additional parameters shows the

extension of the system to more complex use cases. Thus, this approach presents a DocVQA

more efficient and competitive for the automation of information extraction.

Keywords: DocVQA Document Images, OCR-Free, Embedding space
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INTRODUCTION

0.1 Contexte et motivation

"Just as electricity transformed almost everything 100 years ago, today I actually have a hard

time thinking of an industry that I don’t think AI will transform in the next several years" -

Andrew NG

Les documents ont depuis toujours constitué une source d’information essentielle pour la

civilisation humaine. Des tablettes d’argile datant de -5000 avant J.C, utilisées par les Sumériens

pour enregistrer des transactions commerciales, en passant par les archives de papyrus de la

Grèce antique, qui contenaient à la fois histoires mythiques et textes scientifiques (voir figure

0.1), à la création de l’imprimerie en 1450, facilitant la production de textes à grande échelles,

les documents sont un moyen efficace de stocker et archiver de l’information (Guardian, 2025;

of Encyclopaedia Britannica, 2025). De nos jours, avec l’arrivée d’internet, les documents

passent au format numérique, ce qui permet de les rendre plus accessibles. Cette digitalisation

est entraînée par la numérisation des documents, convertissant le format papier en image. En

effet, une augmentation significative du nombre de documents numérisés a pu être observée lors

de la dernière décennie à travers différents secteurs (Johanne Roy, 2015; Angela Tudico, 2022).

En 2015, le Centre Hospitalier Universitaire (CHU) de Québec a numérisé environ 75 millions

de pages de dossiers patients, ce qui a permis de libérer près de 2000 m2 d’espace de stockage

physique (Johanne Roy, 2015). À l’heure actuelle, certains documents médicaux sont encore

remplis à la main sur papier tels que les ordonnances, formulaires de consentements... avant

d’être scannés et numériquement archivés. Il en est de même dans le secteur administratif, où

beaucoup de documents comme les formulaires, testaments, lettres de correspondance et autres

sont remplis sur papier puis numérisés sous forme d’image. Cette tendance est par exemple

démontrée par le gouvernement canadien qui met en avant la numérisation et la centralisation des
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a) Tablette d’argile sumérienne, -5000 av. JC b) Papyrus, extrait du livre des morts, -1600 av. JC

Figure 0.1 Photos de documents anciens, prise au musé Redpath,

de l’université McGill, Montréal

documents administratifs à travers différentes normes et directives (du Canada, 2025). Le secteur

académique a lui aussi bénéficié de cette numérisation, rendant plus accessibles les anciens

journaux et articles de recherche (Sainte-Anne, 2025). D’autres secteurs tels que la banque,

l’assurance, le commerce de détail, les transports, l’industrie manufacturière se sont mis à

numériser leurs documents, permettant de réduire les espaces de stockage physiques et de faciliter

le partage de ces documents. En parallèle de cette augmentation, les informations contenues dans

les documents sont de plus en plus stockées de manière structurée dans des bases de données

afin de faciliter leur intégration dans des systèmes d’information à des fins d’analyse et de prise

de décisions. Par exemple, l’augmentation du nombre de Dossier Médical Électronique (DME)

nécessite l’extraction et l’enregistrement de données présentes dans les documents archivés

vers des bases de données tabulaires (ASTP, 2021). Cependant, renseigner manuellement les

informations provenant d’images de documents peut s’avérer être une tâche laborieuse, en

raison du nombre important de documents numérisés. De plus, une fois numérisé, retrouver une

information précise dans une collection de documents peut également être chronophage.

Ainsi, l’exploitation automatique des documents numérisés devient un besoin vital dans les



3

secteurs ayant un grand nombre de documents à analyser. En effet, pour que ces documents

puissent être intégrés dans des systèmes d’information modernes, notamment des bases de

données structurées, il est nécessaire d’en extraire le contenu pertinent. C’est dans ce contexte

que s’inscrit la tâche de réponse à des questions visuelles sur des documents (Document Visual

Question Answering, DocVQA), qui vise à interroger un modèle d’intelligence artificielle (IA)

au sujet d’un document sous forme d’image à partir d’une question.

La figure 0.2 illustre trois cas d’usage de cette tâche. Le premier cas est la lecture de documents

par l’interaction avec un assistant conversationnel (figure 0.2a), dans lequel un utilisateur pose

des questions à propos d’un document. Cela peut permettre de résumer le document ou encore

de retrouver rapidement une information spécifique, réduisant ainsi le temps de recherche. Ce

cas d’utilisation peut par exemple être utilisé dans des contextes académiques pour étudiants et

chercheurs, afin de faciliter leur travail.

La figure 0.2b illustre un autre cas d’utilisation relié aux secteurs industriels. Comme énoncé

précédemment, beaucoup d’industries enregistrent leurs données sous forme tabulaire dans

des bases de données, cependant, certaines de ces informations proviennent de documents

numérisés sous forme d’images. Ainsi, extraire à la main chacune de ces informations peut

s’avérer chronophage et ne pas être optimal. La tâche de DocVQA permet d’automatiser

cela en prédéfinissant un ensemble de questions faisant référence aux informations que l’on

souhaite extraire. Ainsi, pour chaque nouveau document digitalisé entrant dans le système

d’information, celui-ci est directement analysé avec l’ensemble des questions prédéfinies.

À partir de cela, les informations du document sont extraites en fonction des questions et

automatiquement sauvegardées dans la base de données. Cette automatisation permet donc aux

employés d’optimiser leur temps de travail, en se consacrant à d’autres tâches plus importantes.



4

a) Assistant conversationnel de documents visuels

b) Analyse et extraction automatique d’informations de documents

c) Recherche et extraction d’une information dans une collection de

documents numérisés

Figure 0.2 Cas d’utilisations de la tâche de réponse à des

questions visuelles sur des documents (DocVQA)
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Enfin, la figure 0.2c met en avant un dernier cas d’utilisation. Dans le cas où des documents

sont stockés sous forme d’archives, leur nombre peut devenir conséquent. Ainsi, retrouver une

information spécifique sans savoir dans quel document elle se situe peut s’avérer compliqué.

La tâche de DocVQA permet également de rendre ce processus plus rapide en donnant la

base d’image accessible à un modèle d’IA, qui est capable de prendre en entrée la question de

l’utilisateur et de retourner la réponse à partir des documents contenus dans la base d’archives.

Cependant, pour chacun des cas d’utilisation cités ci-dessus, cette automatisation doit être

fiable en extrayant uniquement les informations pertinentes et relatives aux questions posées,

ce qui nécessite un modèle d’IA fiable. Au cours de la dernière décennie, l’augmentation

de la capacité de calcul des ordinateurs a permis des avancées majeures dans le domaine

de l’apprentissage profond (deep learning). En 2012, les processeurs graphiques (Graphics

Processing Unit, GPU) NVIDIA ont été adoptés pour entraîner un réseau de neurones profond

par Krizhevsky, Sutskever & Hinton (2012) lors de la compétition annuelle de classification

ImageNet (2012). Les performances obtenues ont permis de démocratiser l’utilisation des GPU,

entraînant le développement d’architectures plus complexes et profondes. L’une de ces dernières

a été les Transformers (Vaswani et al., 2017), qui sont à l’origine des grands modèles de langage

(Large Language Model, LLM), tels que GPT-3 par Brown et al. (2020). Ces modèles de

génération de textes se sont montrés performants pour l’extraction d’informations digitales (sous

forme de texte) en fonction d’une instruction/question (Question Answering, QA).
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0.2 Problématique, questions de recherche et focus de la thèse

Les LLMs se sont montrés particulièrement efficaces pour répondre à des questions sur du

texte digital, en utilisant des représentations vectorielles (embeddings) du vocabulaire pour

analyser à la fois un contexte (ressource digitale) en fonction d’une question et générer une

réponse. Cependant, la tâche de DocVQA introduit la modalité d’image dont les LLM ne sont

pas entraînés à prendre en entrée. Cette modalité entraîne de nouveaux défis en comparaison

avec le texte.

Figure 0.3 Entrée/sortie des LLMs, entraînés à representer et traiter du texte digital
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Figure 0.4 Variabilité des types d’information sur les images de

documents

Les images de documents sont des données complexes ayant différentes composantes et structures,

les rendant chacune uniques et variées par rapport aux autres. La figure 0.4 illustre différents types

d’informations qui peuvent être retrouvées sur des documents. Ces types d’informations incluent

les écritures manuscrites (handwriting), les textes écrits au clavier (text-free), les images (photo)

et les graphiques. Ces types d’entités ont des caractéristiques différentes (formes, couleurs,

tailles, etc.), ce qui peut complexifier leur extraction et leur représentation (inter-variabilité).

D’autre part, une même entité peut avoir des variations d’un document à l’autre. Par exemple,

pour les écritures manuscrites, un même mot peut être écrit différemment selon deux individus.

Dans le cas d’une image, deux photos représentant le même objet peuvent avoir différentes

caractéristiques selon l’angle et la luminosité de la photo. Ainsi, cette intra-variabilité est

également un défi à prendre en compte pour représenter une image de document.

De plus, les images de documents ont des structures (layout) différentes en fonction de leurs

types (lettre, article, formulaire, etc.). Ainsi, pour un document donné, l’ordre de lecture de ce

dernier ne sera pas forcément le même que pour un autre. Cependant, il est essentiel de donner au
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a) Structures spatiales d’images de documents, RVL-CDIP par Harley et al. (2015)

b) Structure sémantiques d’images de documents, DocLayNet par Pfitzmann et al. (2022)

Figure 0.5 Exemples de structures (layout) d’images de

documents

modèle un ordre de lecture correct afin qu’il puisse retrouver les informations dans le document

de manière cohérente. Le layout sémantique est également une composante importante, à savoir

où se trouve le titre, quelle partie du document est un tableau, un graphique ou autre... Ainsi, il

est essentiel d’introduire la position de chaque élément dans la représentation du document afin

que le modèle puisse apprendre à induire la structure de ce dernier.
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Les images de documents sont donc des données complexes, nécessitant un traitement différent

d’un texte numérique pour la tâche de DocVQA. Cependant, elles doivent tout de même être

représentées dans le même espace vectoriel que la question, afin que le LLM puisse générer une

réponse correcte à partir de cette dernière.

Cela amène la problématique de ce mémoire ; Comment représenter les images de documents,

comportant différents types d’entités et des structures variées, dans le même espace de

représentation qu’une question afin de résoudre la tâche de DocVQA?

Cette problématique est décomposée en plusieurs questions de recherches (QR), découlant de la

complexité des images de documents et de leurs différences avec le texte :

• QR 1 Comment représenter des images de documents contenant différents types d’entités ?

• QR 2 Comment intégrer les positions spatiales des composantes du document afin d’en

induire la structure de ce dernier ?

• QR 3 Comment aligner la représentation d’une image de document avec une question

représentée dans l’espace d’un modèle de langue (alignement image-texte) ?

Ainsi, la tâche de DocVQA est délicate avec des composantes variées dont le traitement d’image,

le traitement du langage naturel, les modèles de langue et autres. Ce mémoire a pour but de se

concentrer sur la partie représentation visuelle de cette tâche, essentielle à sa réalisation. Les

images de documents pouvant également être variées, ici, le travail abordera la représentation

d’images de documents industriels afin de répondre à l’augmentation de leur nombre dans les

entreprises sur un large spectre de types de documents.

0.3 Structure du mémoire

Ce mémoire est organisé en huit chapitres. L’introduction présente le contexte, les motivations

ainsi que les problématiques. Le prochain chapitre se concentre sur l’état de l’art des méthodes

traitant ce sujet, afin de fournir au lecteur une compréhension des solutions existantes et de

leurs limites. Il se conclut par la présentation de l’objectif du mémoire, divisé en sous-objectifs.
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Le troisième chapitre est consacré à la théorie et aux fondements scientifiques des modèles

utilisés. Les chapitres quatre et cinq présentent respectivement les méthodologies et approches

mises en œuvre pour répondre aux deux sous-objectifs. Le chapitre six propose une extension

du modèle aux documents multi-page. Le chapitre sept expose et discute les résultats obtenus.

Enfin, le chapitre huit conclut ce mémoire et propose des pistes de recherche pour de futurs axes

à explorer.



CHAPITRE 1

REVUE DE LA LITTÉRATURE ET OBJECTIFS

1.1 État de l’art

Cette section rassemble les différentes approches de l’état de l’art pour l’encodage d’images de

documents dans le contexte de DocVQA.

1.1.1 Architectures d’apprentissage de représentation d’image de documents pour la
tâche de réponse à des questions visuels de documents

Pour répondre à la tâche de DocVQA, il est essentiel de représenter les images de documents

dans un espace de représentation qui contient les caractéristiques nécessaires des différents types

d’entités pour répondre à la question.

En 2020, lors de la sortie du dataset DocVQA par Mathew, Karatzas & Jawahar (2021), les

premières méthodes utilisaient des outils de reconnaissance de texte optique (Optical Character

Recognition, OCR) qui permettent d’extraire et de convertir le texte des documents en texte

digital afin de l’encoder avec la question (Mathew et al., 2021). Cela permet d’avoir les deux

entrées (contexte et question) dans la modalité de texte, directement exploitable par les modèles

de langue basés sur l’architecture Transformer (Vaswani et al., 2017). Cependant, cette technique

rend le modèle « aveugle » aux informations du document non textuel comme les photos. Ainsi,

les méthodes suivantes ont incorporé les caractéristiques visuelles des documents (Xu et al.,

2020; Huang, Lv, Cui, Lu & Wei, 2022). LayoutLMv2 par Xu et al. (2020) utilise en amont un

réseau de convolution (Convolutional Neural Network, CNN) tel que ResNet par He, Zhang,

Ren & Sun (2016). Ce dernier extrait des caractéristiques visuelles simples de l’image de manière

locale par des fenêtres de convolution. Le Transformer encode par la suite ces caractéristiques

de façon globale avec le texte extrait par OCR ainsi que la question, devenant de cette manière

multimodal (voir figure 1.1b). Suite à cela, une version améliorée a été proposée par Huang

et al. (2022), substituant le CNN par une simple couche linéaire, puis entraînant le modèle
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a) OCR b) OCR + caractéristiques visuelles

Figure 1.1 Premières méthodes utilisées pour representer un

document pour la tâche de DocVQA

Transformer à encoder à la fois le texte extrait par OCR et l’image du document avec la question

pour générer la réponse. Cependant, les méthodes se basant sur l’OCR nécessitent un coût de

calcul supplémentaire pour détecter et reconnaître les composantes textuelles sur les documents.

De plus, les erreurs de détection et de reconnaissance peuvent se propager dans le modèle et

détériorer la qualité des réponses comme souligné par Kim et al. (2022).
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En 2022, les architectures bout-à-bout (end-to-end) sont adoptées (Davis et al., 2022; Kim

et al., 2022), se basant uniquement sur un encodeur visuel pour extraire et représenter les

caractéristiques d’un document, sans appel à des outils externes tels que l’OCR. L’encodeur

visuel de ces méthodes est dérivé de l’architecture initiale des Transformers, divisant le document

en patchs afin de le représenter. Ces encodeurs basés sur les Swin Transformers par Liu et al.

(2021) ont une architecture hiérarchique avec un coût de calcul linéaire, permettant d’avoir des

résolutions d’images plus grandes et de capturer des détails à différentes granularités, renforçant

la qualité de la représentation (voir section 2.3). Néanmoins, ces modèles end-to-end ayant peu

de paramètres (lightweight), leurs performances restent assez faibles, ce qui peut rendre leur

utilisation peu fiable dans un contexte industriel.

Suite à cela, les modèles de fondation en vision par ordinateur, basés sur l’architecture des

Transformers Visuels (Vision Transformer, ViT) par Dosovitskiy et al. (2020) ont commencé

à être développés. En augmentant leur taille avec plus de paramètres et, par extension, leurs

capacités d’apprentissage (Radford et al., 2021; Zhai, Mustafa, Kolesnikov & Beyer, 2023),

ces modèles pré-entraînés à aligner les images avec le texte se sont montrés très efficaces en

tant qu’encodeur visuel sur la tâche DocVQA. Cela a conduit à l’utilisation de modèles de

vision-langage à grande échelle (Large Visual Language Model, LVLM) (Beyer et al., 2024;

Chen et al., 2024; Gao et al., 2024; Wu et al., 2024), ayant un encodeur visuel large de fondation

avec un modèle de langue à grande échelle (voir figure 1.2b). Ces modèles également end-to-end

ont permis de repousser la limite de performances sur la tâche de DocVQA, améliorant les

résultats des modèles à plus petite échelle cités précédemment. Ils peuvent être divisés en deux

catégories : les modèles à résolution d’entrée fixe qui prennent toujours la même résolution en

entrée et les modèles qui divisent les images en sous-images à résolution fixe, permettant d’avoir

en entrée une image de résolution plus grande (tilling), (Chen et al., 2024; Gao et al., 2024; Wu

et al., 2024). Les encodeurs visuels de fondation étant non-hiérarchiques, leur coût de calcul est

quadratique tel que 𝑂 (𝑛2) avec 𝑛 le nombre de patchs de l’image (voir section 2.2.2.1), ce qui

limite la résolution de l’image d’entrée pour la première catégorie. Ainsi, le tilling résout cela en

incluant de la linéarité dans le coût de calcul tel que 𝑂 (𝑛2
𝑡 × 𝑡), avec 𝑡 le nombre de tiles et 𝑛𝑡 le
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a) Architecture à petite échelle (lightweights)

b) Architecture à grande échelle (LVLMs)

c) Architecture utilisant le "tilling"

Figure 1.2 Méthodes bout-à-bout de l’état de l’art de DocVQA

nombre de patchs de chaque tile. Toutefois, cette méthode entraîne une étape de preprocessing

supplémentaire et une parallélisation de l’encodage du document augmentant la complexité de

l’architecture.
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D’autre part, les LVLM ayant plus de paramètres, leur utilisation nécessite des infrastructures

avec une plus grande capacité de calcul, pouvant entraîner des coûts supplémentaires.

Tableau 1.1 État de l’art de DocVQA

Encodeur Visuel Spécificités Modèle Transformer Spécificités
Méthode Architecture Tilling # Param (B) OCR Type # Param (B) ANLS (%) ↑

LVLMs

InternVL, Chen et al. (2024) CLIP × 6 Décodeur Textuel 7 95.0

MiniInternVL, Gao et al. (2024) CLIP × 0.3 Décodeur Textuel 1.8 86.9

DeepseekVL2-Tiny, Wu et al. (2024) SigLIP × 0.4 Décodeur Textuel 3 88.9

Paligemma, Beyer et al. (2024) SigLIP 0.4 Décodeur Textuel 2.6 84.77

Modèle à petite échelle bout-en-bout

Donut, Kim et al. (2022) Swin 0.074 Décodeur Textuel 0.126 66.26

Dessurt, Davis et al. (2022) CNN Encodeur-Décodeur Multimodal 0.127 63.2

Modèle se basant sur de l’OCR

LayoutLMv3, Huang et al. (2022) Patch embedding × Encodeur Multimodal 0.133 78.76

LayoutLMv2, Xu et al. (2020) CNN × Encodeur Multimodal 0.2 78.08

Bert, Mathew et al. (2021) - - × Encodeur Textuel 0.110 63.5

1.1.2 L’encodage de position pour la tâche de DocVQA des modèles end-to-end

Figure 1.3 Division d’une image de document en patchs

Une image de document est spatialement représentée en deux dimensions (hauteur et longueur).

La représentation par patchs des ViTs (voir section 2.2.1) nécessite de les traiter comme des

séquences à une dimension en les aplatissant. La figure 1.3 représente cette étape. Cependant,

l’aplatissement entraîne un changement d’ordre des patchs (voir encadré orange sur la figure).

Ainsi, des patchs proches sur l’image originelle peuvent être éloignés dans la séquence, ce qui

perturbe la structure du document traité. De plus, l’opération d’attention qui est au cœur des

Transformers encodent tous les patchs de manière parallèle (voir section 2.2.2.1) et n’intègrent
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pas la notion de position dans le calcul. Intégrer la position des patchs est donc essentielle pour

représenter correctement le document.

Les Swin Transformers de l’état de l’art de DocVQA (Davis et al., 2022; Kim et al., 2022)

sont basés sur le papier initial de Liu et al. (2021) et reprennent ainsi le même encodage de

position. Cette architecture utilise un biais positionnel relatif pour les patchs contenus dans une

fenêtre (voir section 2.3.2). Ainsi, cette approche limite localement l’information apportée par la

position dans la représentation des patchs, ne procurant pas directement une information globale.

Les encodeurs visuels des LVLM sont quant à eux basés sur les modèles CLIP et SigLIP eux-

a) Similarités de position de l’encodeur de

PaliGEMMA (LVLM) avec le patch central

b) Similarités de position spatialement correctes

avec le patch central

Figure 1.4 Similarités de position du patch central d’une image de

document

mêmes construits sur l’architecture initiale des ViTs (non-hiérarchiques). Ces méthodes utilisent

un module de position à l’entrée du modèle, qui apprend pour chaque patch une représentation

vectorielle de sa position sur le document, puis l’ajoute à la représentation du patch correspondant

(voir section 2.2.1). Ainsi, ce module encode la position de manière absolue, chaque position

encodée ne dépendant pas des autres. Cette approche, bien qu’apportant de bons résultats sur la

classification d’images naturelles, ne permet pas d’encoder avec précision la position des patchs,

rendant les positions orthogonales plus proches dans l’espace de représentations que les positions
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réellement proches spatialement (voir figure 1.4). Ainsi, la position induite dans la représentation

de chaque patch n’est pas corrélée avec la position spatiale réelle. Ces architectures étant

construites et évaluées initialement sur des images naturelles, ce type d’encodage positionnel

pourrait ne pas être le plus adéquat dans le contexte de DocVQA.

Tableau 1.2 État de l’art des encodages de positions (PE) des patchs pour la tâche

DocVQA

Information sur l’encodeur visuel et le module de position utilisé

Méthode Architecture/Papier fondation Données d’évaluation Type PE Représentation des Positions

InternVL, Chen et al. (2024) CLIP, Radford et al. (2021) Image Naturelle Absolue/Supervisé Similarités orthogonales

MiniInternVL, Gao et al. (2024) CLIP, Radford et al. (2021) Image Naturelle Absolue/Supervisé Similarités orthogonales

DeepseekVL2-Tiny, Wu et al. (2024) SigLIP, Zhai et al. (2023) Image Naturelle Absolue/Supervisé Similarités orthogonales

Paligemma, Beyer et al. (2024) SigLIP, Zhai et al. (2023) Image Naturelle Absolue/Supervisé Similarités orthogonales

Donut, Kim et al. (2022) Swin, Liu et al. (2021) Image Naturelle Biais relatif Représentations locales

Dessurt, Davis et al. (2022) Swin, Liu et al. (2021) Image Naturelle Biais relatif Représentations locales

1.1.3 L’alignement des images de documents dans l’espace de représentation du
modèle de langue

Les méthodes reposant uniquement sur l’OCR pour représenter un document peuvent directement

encoder la question avec le texte de ce dernier, étant de la même modalité. Cependant, les

méthodes utilisant des patchs visuels pour représenter le document doivent unifier l’espace de ces

derniers avec le modèle de langue afin qu’il puisse les utiliser. De plus, les patchs représentent des

fragments du document, ne contenant donc pas d’information complète à eux seuls, mais plutôt

des morceaux d’entités (texte, images, tableaux, etc.). Pour permettre au modèle de langage

de les traiter conjointement avec la question et de reconstruire l’information, il est nécessaire

d’aligner les représentations visuelles et textuelles.

Dans le contexte de DocVQA, il existe deux paradigmes de fusion pour aligner les patchs avec

la question :

Premièrement, la fusion en amont (early fusion) où l’image et la question sont traitées par un

unique module de fusion qui peut être un encodeur multimodal ou une série de modules d’attention-

croisée entre les patchs et la question (Huang et al., 2022). Cette approche fusionne l’information
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de manière précoce et potentiellement plus profonde. Dans ce cas, les représentations des patchs

sont spécifiques à la question et doivent être recalculées pour chaque nouvelle requête.

Deuxièmement, la fusion intermédiaire (intermediate fusion) où l’encodage visuel est séparé

du reste du modèle. Un encodeur visuel génère en premier lieu une représentation générale

des patchs, qui peut être réutilisée pour différentes questions. Pour aligner cet espace de

représentation avec celui du modèle de langue, un projecteur multimodal est ajouté, faisant le

pont entre l’encodeur visuel et le modèle de langue (Kim et al., 2022; Beyer et al., 2024; Wu

et al., 2024; Chen et al., 2024). Ce dernier est souvent constitué d’une simple couche linéaire ou

d’un perceptron multicouche (MLP), projetant les patchs dans le même espace de représentation

que la question suivant l’équation :

𝑣𝑙𝑚 = 𝑣.𝑊𝑃 (1.1)

dans le cas d’une simple couche linéaire et suivant les équations :

𝑀𝐿𝑃(𝑥) = 𝑊𝑃2𝜎(𝑊𝑃1𝑥) (1.2a)

𝑣𝑙𝑚 = 𝑀𝐿𝑃(𝑣) (1.2b)

dans le cas d’une projection par un MLP tel que 𝑣 ∈ R
𝑁×𝐷 et 𝑣𝑙𝑚 ∈ R

𝑁×𝐷𝑙𝑚 avec 𝑁 le nombre de

patchs, 𝐷 la dimension de l’espace de représentation de l’encodeur visuel et 𝐷𝑙𝑚 la dimension

de l’espace du modèle de langue.

De plus, il est nécessaire que le modèle de langue apprenne à analyser les patchs projetés

conjointement avec la question afin de retrouver l’information correspondante dispatchée sur

plusieurs patchs pour ensuite générer la réponse. Pour cela, les méthodes entraînent de bout en

bout l’architecture complète sur des tâches de question-réponses afin que l’encodeur apprenne

à encoder les patchs de manière à simplifier l’alignement par le projecteur multimodal et que

le modèle de langue apprenne à retrouver des informations dispersées sur plusieurs patchs en

fonction de la question afin de générer une réponse correcte.
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Les documents pouvant être encodés pour extraire différentes informations, l’approche de la

fusion intermédiaire semble préférable dans le contexte de ce mémoire afin de ne pas encoder

un document indépendamment pour chaque question entrante par le système d’information (voir

figure 0.2b).

1.2 Analyse de gap de la littérature

Les méthodes modernes de l’état de l’art de DocVQA ont démontré une progression accrue

en comparaison aux premiers modèles. Les approches récentes montrent ainsi qu’il n’est plus

nécessaire de se baser sur des outils externes tels que l’OCR pour représenter un document.

En effet, les approches bout-en-bout proposent des systèmes unifiés basés sur les Transformer,

capables de représenter des documents dans un espace multimodal utilisable par les modèles

de langue pour répondre à des questions. Cependant, ces méthodes composées d’un encodeur

visuel et d’un modèle de langue imposent un choix entre l’efficience et la performance. Les

approches lightweights permettent de maintenir un coup de calcul faible en restreignant le

nombre de paramètres (inférieur à 1B). Cependant, la taille restreinte de ces méthodes entraîne de

faibles résultats sur la tâche de DocVQA, les rendant peu fiables dans des contextes d’utilisation

industriels. D’autre part, les modèles de type LVLM, qui sont composés d’un grand encodeur

visuel et d’un LLM, offrent des résultats solides mais nécessitent des infrastructures plus

coûteuses du fait de leur nombre de paramètres (supérieur à 2B).

Ainsi, ces méthodes bout-en-bout imposent un choix entre efficience (taille des modèles) et

performance (qualité des réponses), ce qui rend leur utilisation compliquée dans des contextes

où ces deux métriques sont indispensables.

D’autre part, alors que la position des éléments des documents est une notion essentielle afin

d’assurer un ordre de lecture correct et de faciliter la génération de la réponse, les méthodes

bout-en-bout actuelles ne semblent pas avoir étudié l’encodage de position pour cette tâche.

En effet, les encodeurs visuels dans ce contexte se basent sur les architectures initialement

entraînées et évaluées sur des images naturelles. Les modèles lightweights utilisent un biais

relatif par fenêtre, ne permettant pas de représenter la position globale de chaque élément
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sur le document. Les LVLM utilisent des encodeurs visuels fondationnels (CLIP et SigLIP)

composés d’un module d’encodage de position absolue à l’entrée du modèle, ne permettant pas

de représenter la position de manière précise dans l’espace. De plus, les zones d’insertion de la

position dans l’architecture de ces encodeurs visuels ne semblent pas plus étudiées, les modèles

à petite échelle l’intégrant dans chaque opération d’attention (voir section 2.3.2) et les modèles

de fondation à l’entrée de l’architecture (voir section 2.2.1).

Ainsi, là où les méthodes récentes de l’état de l’art se concentrent sur des approches bout-en-bout

sans OCR, elles reprennent les architectures de fondation des encodeurs visuels en limitant les

changements apportés à ces dernières. Cependant, ces modèles étant initialement entraînés sur

des images de scènes naturelles, leurs modules de positions ne semblent pas optimaux pour la

tâche de DocVQA. Ainsi, l’encodage de position est un aspect peu étudié dans l’état de l’art de

DocVQA.

1.3 Objectifs du mémoire

L’objectif de ce mémoire est de développer un modèle d’encodeur visuel capable de

représenter un document afin de répondre à la tâche de DocVQA.

Ce dernier est divisé en deux sous-objectifs :

SO1 - Réduire le coût de calcul de l’encodeur visuel d’un LVLM

Les modèles actuels ont démontré une capacité de répondre à la tâche de DocVQA sans

OCR. Là où les méthodes légères sont efficientes mais peu robustes en termes de résultats, les

LVLM montrent des résultats performants, surpassant même les méthodes utilisant de l’OCR.

Cependant, ces modèles ayant beaucoup de paramètres, leur utilisation dans des environnements

avec peu de puissance de calcul peut être compromise. Leurs encodeurs sont des modèles de

fondation, dont la taille a permis de les rendre efficaces sur des données de différents types, pour

des tâches variées, comme illustré par Chen et al. (2024). Cependant, les documents sont une

sous-catégorie d’image bien spécifique, ne nécessitant pas forcément d’encodeur généraliste.

Ainsi, cet objectif consiste à réduire la taille de l’encodeur visuel d’un LVLM afin de réduire

son coût de calcul tout en conservant une représentation performante des images de documents.
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SO2 - Intégrer un module de position spatial précis dans l’encodeur visuel

Les encodeurs visuels des méthodes bout-en-bout représentent le document en le divisant en

patchs. Intégrer la position de ces derniers est donc un aspect important pour représenter un

document. Cela aidera le modèle de langue à avoir un ordre de lecture correct des informations

pour retrouver et générer la réponse à la question. Cependant, les méthodes actuelles se basent sur

les papiers de fondation des architectures d’encodeurs visuels, évaluées sur des images naturelles,

différentes des documents. Les modèles hiérarchiques ont un encodage relatif local ne permettant

pas de représenter la position du patch sur l’ensemble du document de manière globale. Les

encodeurs des modèles de fondations utilisent un encodage unidimensionnel, résultant en des

positions de patchs dans l’espace de représentation qui ne reflètent pas leur position sur le

document originel. D’autre part, l’insertion de la position dans l’architecture ne semble pas être

plus étudiée. Cet objectif consiste donc à développer un module de position plus précis que

ceux appliqués actuellement dans les modèles de DocVQA et à étudier la position d’insertion

optimale dans l’architecture de l’encodeur visuel.

Par conséquent, ce mémoire se concentre sur l’apprentissage de représentation d’image de

documents. Les deux sous-objectifs sont réalisés sur des documents d’une seule page afin de

limiter les besoins en puissance de calcul lors des entraînements. Cependant, certains cas d’usage

utilisent des documents comportant plusieurs pages, voire même des collections de documents

(voir figure 0.2c). Ainsi, une dernière expérimentation sera de construire un système se basant

sur les résultats des sous-objectifs, capable de répondre à des questions sur des documents

multi-pages.

La figure 1.5 présente l’organisation des chapitres suivants, découlant des sous-objectifs présentés.
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Figure 1.5 Organisations des chapitres suivant les sous objectifs présentés



CHAPITRE 2

L’APPRENTISSAGE DE REPRÉSENTATIONS DE DOCUMENTS AVEC LES
TRANSFORMERS VISUELS

Ce chapitre aborde l’apprentissage de représentations abstraites d’images par des ViTs,

architectures utilisées dans la suite de ce mémoire.

2.1 Les représentations abstraites d’images (embeddings)

Une image est un signal bidimensionnel, représenté par une matrice. Ce dernier est composé de

pixels représentant l’intensité lumineuse en chaque point de l’image. Ces valeurs sont continues

entre 0 et 255 et peuvent être représentées sur un seul canal si elles sont en noir et blanc ou

trois canaux si elles sont en couleurs. Ainsi, une image peut se noter 𝐼 ∈ R
𝐻×𝑊×𝐶 , tel que 𝐻

est le nombre de pixels sur la hauteur, 𝑊 le nombre de pixels sur la largeur, et 𝐶 le nombre

de canaux. Selon la tâche, tous les pixels d’une image ne sont pas forcément pertinents, par

exemple certaines zones comme le fond (background) d’un document sont moins importantes

que les entités (textes, photos, etc.) qui le composent. Une entité sur une image est composée de

plusieurs pixels. Pour des entités similaires, ces groupes de pixels ont souvent des variations

locales d’intensité (formes/motifs visuels) qui se répètent.

Figure 2.1 Schématisation d’un espace de représentation vectoriel

pour la tâche de segmentation de documents
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Une représentation abstraite ou embedding d’une image peut être définie comme un ou plusieurs

vecteurs non compréhensibles pour l’œil humain mais contenant les caractéristiques et motifs

visuels pertinents sur l’image pour répondre à une tâche. L’ensemble de ces vecteurs peut se

noter 𝑣 ∈ R
𝑁×𝐷 avec 𝑁 le nombre de vecteurs pour représenter l’image et 𝐷 la dimension de

l’espace vectoriel. Ainsi, les vecteurs 𝑣 représentant des entités similaires seront proches dans

l’espace de représentations et inversement. Dans le cas d’apprentissage supervisé pour une tâche

donnée, la représentation est apprise pour répondre au mieux à cette dernière. Par exemple, dans

le cas d’une segmentation de document (Document Layout Analysis), l’objectif est de classifier

chaque pixel avec le type d’entité auquel il appartient (titre, image, tableau, etc.). Ainsi, les

formes/caractéristiques extraites de l’image et représentées dans l’embedding se concentrerons

par exemple sur la position, la couleur et l’intensité des pixels, discriminant les éléments différents

et rapprochant les éléments similaires dans l’espace vectoriel de représentation, permettant une

classification correcte de chaque pixel (voir figure 2.1).

Les parties suivantes de ce chapitre se concentrent sur l’extraction et la représentation des

caractéristiques visuelles afin de construire les embeddings d’images, en utilisant des ViTs.

2.2 Les Transformers Visuels

Les Transformers Visuels (Vision Transformers,ViTs) par Dosovitskiy et al. (2020), sont une

variante appliquée à l’image de l’architecture Transformer (Vaswani et al., 2017), initialement

conçue pour le traitement du langage naturel. Cette section fournira la théorie derrière cette

architecture qui s’est imposée comme fondation de la vision par ordinateur ces dernières années.

La figure 2.2 illustre l’architecture des ViTs, qui sera une référence durant cette section.

2.2.1 Des pixels aux patchs

Du fait que les images de documents peuvent contenir des éléments de petite taille comme

des écritures en bas de page (footnote), leur résolution peut être élevée, afin d’être capable de
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Figure 2.2 Architecture originel des Transformer Visuel,

tirée de Dosovitskiy et al. (2020)

représenter chacun de ces éléments. Cependant, pour une image de document de haute résolution

comme par exemple 𝐼 ∈ R
2560×1920×3, extraire caractéristiques visuels pertinentes parmi les

2560 × 1920 pixels peut s’avérer compliqué. De plus, traiter l’ensemble de ces pixels augmente

rapidement le coût de calcul avec la résolution qui est quadratique chez les ViTs (voir section

2.2.2.1).

En vue de résoudre cela, pour une image d’entrée 𝑥 ∈ R
𝐻×𝑊×𝐶 , cette dernière va être divisée en

𝑁 groupements de pixels non superposés, appelés patchs 𝑥𝑝 ∈ R
𝑁×𝑃×𝑃×𝐶 , de résolution 𝑃 × 𝑃 et

𝐶 le nombre de canaux. Ces patchs sont ensuite aplatis et projetés linéairement dans un espace

de représentation de dimension 𝐷. Ainsi, la dimension de l’image devient 𝑥′𝑝 ∈ R
𝑁×𝐷 . Là où la

division de l’image en patch permet de réduire la résolution à traiter, la couche linaire permet de

projeter chaque patch dans un espace de représentation vectoriel.
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L’équation de cette transformation peut être notée telle que :

𝑥′𝑝 = 𝑊𝐸𝑚𝑏. 𝑓 𝑙𝑎𝑡 (𝑥𝑝) (2.1)

avec 𝑊𝐸𝑚𝑏 ∈ R
𝐷×(𝑃2.𝐶) la projection linéaire et 𝑓 𝑙𝑎𝑡 la fonction d’aplatissement, retournant ici

un vecteur de dimension R
𝑁×(𝑃2.𝐶) .

Les ViTs ne sont pas séquentiels, ils encodent chaque patch avec la même projection sans notion

d’ordre, tout comme leur opération d’attention (voir section 2.2.2.1) qui encode chaque patch

parallèlement. Ainsi, ils sont de base équivariants par permutation, sans notion de position

dans la représentation ou dans la manière d’encoder. Les auteurs ont donc ajouté la position

𝑥𝑝𝑒 ∈ R
𝑁×𝐷 dans la représentation, qui est une matrice de poids apprise lors de l’entraînement.

Cela permet d’inférer la position originelle de chaque patch sur l’image dans la séquence 𝑥′𝑝.

Ainsi, la représentation de l’image enrichie par les positions spatiales peut être notée 𝑧0 ∈ R
𝑁×𝐷

telle que.

𝑧0 = 𝑥′𝑝 + 𝑥𝑝𝑒 (2.2)

Dans le papier original, un patch supplémentaire est ajouté (classification token) et est utilisé

pour des tâches après l’encodage de l’image (eg. classification). Comme cela n’est pas utilisé

pour l’encodage dans le contexte de DocVQA, ce patch sera écarté pour la suite de cette thèse.

Les ViTs étant composés de plusieurs couches, l’entrée de chacune d’entre elles sera notée 𝑧𝑙−1,

avec 𝑙 le numéro de la couche courante.

2.2.2 Le mécanisme d’attention

La projection de chaque patch dans l’espace de représentation se fait de manière locale et est

ainsi indépendante des autres patchs. Or pour capturer des caractéristiques du document, un

encodage global est nécessaire.
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2.2.2.1 L’attention

L’attention (self attention) permet d’encoder les patchs de manière globale en fonction des

caractéristiques visuelles qu’ils contiennent.

Dans le contexte de DocVQA, sur une image de document, le texte aura des propriétés

différentes d’une photo/illustration (eg, couleur, forme, etc.), qui sont importantes à extraire.

Ainsi, l’encodage a pour objectif de renforcer ces caractéristiques dans la représentation, en

renforçant les patchs qui contiennent des caractéristiques pertinentes. Pour cela, l’ensemble des

vecteurs de patchs 𝑧𝑙−1 est encodé afin d’obtenir une requête (query) 𝑄, une clé (key) 𝐾 et une

valeur (value) 𝑉 telle que :

𝑄 = 𝑧𝑙−1𝑊𝑞 (2.3)

𝐾 = 𝑧𝑙−1𝑊𝑘 (2.4)

𝑉 = 𝑧𝑙−1𝑊𝑣 (2.5)

avec 𝑊𝑞, 𝑊𝑘 et 𝑊𝑣 des projections linéaires de dimension R
𝐷×𝑑ℎ . 𝑊𝑞 projette chaque patch en

fonction de la caractéristique recherchée, tandis que la 𝑊𝑘 projette chaque patch dans le même

espace 𝑑ℎ que la requête. Les projections 𝑊𝑞 et 𝑊𝑘 sont ainsi apprises conjointement afin de

mettre en évidence les relations entre les patchs. Suite à cela, les scores d’attention sont calculés

en faisant le produit scalaire (dot product) de 𝑄 et 𝐾 , résultant en un coût opérationnel de 𝑂 (𝑁2).
Les patchs qui auront un score élevé sont ceux dont la clé est fortement alignée/similaire à la

requête, c’est-à-dire ceux qui se rapprochent le plus de la caractéristique recherchée. Ces scores

sont normalisés et passés dans une fonction softmax afin que la somme des scores d’attention

qu’un patch distribue à tous les autres patchs soit égale à 1. Ces scores servent ensuite de

poids pour la matrice 𝑉 ∈ R
𝑁×𝑑ℎ . Les patchs ayant des scores proches de 0 auront ainsi une

magnitude faible dans l’espace de représentation, minimisant l’importance de l’information

qu’ils contiennent. Les patchs ayant des scores élevés (proches de 1) auront aussi une magnitude

plus grande dans la représentation et donc une influence plus élevée. Finalement, la formule
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générale de l’attention peut se noter comme l’équation suivante :

Attention(𝑄, 𝐾,𝑉) = softmax

(
𝑄𝐾�
√
𝑑ℎ

)
𝑉 (2.6)

Ce mécanisme, en pondérant la combinaison des vecteurs de 𝑉 , rapproche dans l’espace de

représentation les patchs partageant des caractéristiques similaires et pertinentes pour la tâche.

2.2.2.2 L’attention multi-têtes

Comme décrit précédemment, le mécanisme d’attention permet de renforcer et rapprocher les

patchs de caractéristiques pertinentes pour la tâche via les matrices 𝑄 et 𝐾. Par ailleurs, les

caractéristiques pertinentes d’une image sont souvent multiples et peuvent nécessiter plusieurs

scores pour être bien discriminées.

L’attention multi-têtes (multi-head attention) utilise le même mécanisme d’attention mais avec

une requête 𝑄ℎ, une clé 𝐾ℎ et une valeur 𝑉ℎ par tête ℎ. Cela permet de rechercher dans

chaque patch différentes caractéristiques (texture, forme, couleur, etc.) chacune associée à des

paires de requêtes et de clés. Le nombre de têtes d’attention peut se noter 𝐻. Pour chaque tête

ℎ ∈ {0, . . . , 𝐻 − 1}, les matrices de projection 𝑊ℎ
𝑞 , 𝑊ℎ

𝑘 et 𝑊ℎ
𝑣 sont définies, de dimensions

R
𝐷×𝑑ℎ correspondant respectivement aux requêtes, clés et valeurs, avec 𝑑ℎ = 𝐷

𝐻 . L’attention

pour une tête ℎ peut ainsi s’écrire :

headℎ = Attention(𝑄ℎ, 𝐾ℎ,𝑉ℎ) (2.7)

Suite à cela, les résultats sont de nouveau concaténés, résultant en une dimension R
𝑁×𝐷ℎ .𝐻 . Afin

d’unifier chaque patch avec sa nouvelle représentation, ces derniers passent à travers une dernière

projection linéaire 𝑊𝑂 ∈ R
𝑑ℎ .𝐻×𝐷 . L’attention multi-têtes peut donc se formuler telle que :

𝑧′𝑙 = MultiHeadAttention(𝑧𝑙−1) = Concat(ℎ𝑒𝑎𝑑0, ..., ℎ𝑒𝑎𝑑𝐻−1)𝑊𝑂 (2.8)
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avec 𝑧′𝑙 ∈ R
𝑁×𝐷 Ainsi ce mécanisme permet plus de flexibilité dans l’encodage en tenant compte

de diverses caractéristiques.

2.2.3 Les couches de ViT

L’architecture ViT encadre le mécanisme d’attention par deux couches de normalisation,

restreignant l’intervalle des valeurs dans l’espace de représentation et évitant des gradients trop

importants. De plus, la représentation à l’entrée du bloc est ajoutée à la sortie du mécanisme

d’attention permettant de garder en mémoire la représentation précédente tout en la modifiant

uniquement en fonction des scores d’attention (voir figure 2.2). De plus, cet ajout résiduel permet

de faciliter la retro-propagation des gradients et d’éviter le "vanishing gradient problem" comme

expliqué dans le papier de ResNet (He et al., 2016).

Enfin, après l’ajout de la couche résiduelle et la normalisation, chaque patch est projeté

indépendamment des autres dans un petit réseau à deux couches (Feed-Forward) afin d’ajouter de

la non-linéarité et d’apprendre des relations plus complexes entre les dimensions. Ce dernier est

composé d’une première projection de dimension 𝑊0
𝑀𝐿𝑃 ∈ R

𝐷×𝐷𝐹𝐹 avec 𝐷 << 𝐷𝐹𝐹. L’espace

de représentation 𝐷𝐹𝐹 étant plus grand, il permet d’apprendre des relations plus complexes.

Suite à cela, la représentation est passée dans une fonction d’activation GELU voir figure 2.3.

Cela permet d’ajouter de la non-linéarité tout en régularisant les valeurs négatives sans pour

autant désactiver celles proches de 0. Enfin, une dernière couche linéaire 𝑊1
𝑀𝐿𝑃 ∈ R

𝐷𝐹𝐹×𝐷 est

utilisée pour projeter à nouveau chaque patch dans l’espace de représentation initial.

MLP(𝑥) = 𝑊1
𝑀𝐿𝑃 (GELU(𝑊0

𝑀𝐿𝑃 (𝑥))) (2.9)

Une seconde couche résiduelle est ajoutée en sortie du MLP, pour les mêmes raisons que la

première. Ainsi, une couche de ViT 𝑙 peut être représentée par la suite d’équations suivantes :

𝑧′𝑙 = MultiHeadAttention(𝐿𝑁 (𝑧𝑙−1)) + 𝑧𝑙−1 (2.10)
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Figure 2.3 Fonction d’activation GELU

𝑧𝑙 = MLP(𝐿𝑁 (𝑧′𝑙)) + 𝑧′𝑙 (2.11)

Ainsi, pour chaque couche successive, les patchs ayant des caractéristiques importantes sont

de plus en plus enrichis par les autres patchs ayant des caractéristiques similaires, permettant

d’enrichir chaque patch avec des informations globales.

2.3 Les Transformers Visuels Hiérarchiques

Comme vu précédemment, les ViTs offrent une solide capacité d’apprentissage de représentations

visuelles. Cependant, l’opération d’attention conduit à un coût de calcul quadratique (𝑂 (𝑁2),
limitant les résolutions d’image en entrée. Les Transformers visuels hiérarchiques comme les

Swin Transformers par Liu et al. (2021) permettent de résoudre ce problème. Cette section

a pour but d’expliquer le fonctionnement de ces derniers et leurs intérêts dans le contexte de

DocVQA.
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a) Architecture du Swin Transformer

b) Deux blocs consécutif du Swin

Transformer

Figure 2.4 Schémas du Swin Transformer,

tirée de Liu et al. (2021)

2.3.1 L’architecture hiérarchique

Les architectures hiérarchiques prennent en entrée une image 𝐼 ∈ R
𝐻×𝑊×𝐶 et réduisent sa

résolution au fur et à mesure qu’elle avance dans les couches profondes du réseau. Cela

permet de capturer des caractéristiques à différentes échelles/niveaux, et ainsi de mieux

représenter des éléments de différentes tailles. S’inspirant des architectures hiérarchiques de

CNNs, le Swin Transformer (figure 2.5) allie l’opération d’attention des transformers avec

une architecture hiérarchique. Les CNNs utilisent une opération de downsampling telle que le
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pooling bidimensionnel, à l’échelle de pixels. Les Swin Transformers introduisent les couches

de fusion de patchs (patchs merging).

Ce mécanisme divise la résolution par 2 × 2 en concaténant les patchs voisins sur la profondeur

puis applique une couche linéaire 𝑊𝑚𝑒𝑟𝑔𝑒 ∈ R
4𝐶×2𝐶 sur la concaténation. Ainsi, pour une

résolution de 𝐻
4
× 𝑊

4
×𝐶, la dimension après la concaténation sera de 𝐻

8
× 𝑊

8
× 4𝐶 et 𝐻

8
× 𝑊

8
× 2𝐶

après la projection linéaire. Après chaque couche de patchs merging, la résolution des patchs est

donc divisée par 2 et la taille de l’espace de représentation est quand à elle multipliée par 2.

Les Swin Transformers sont composés d’une entrée qui, comme les ViTs, divise l’image en patchs

et les projette dans l’espace de représentation (voir la section 2.2.1). Suite à cela, l’architecture

est divisée en niveaux (stage) qui contiennent chacune une couche de patch merging (excepté

pour la première). Puis chaque niveau est composé d’une succession de couches (block, voir

figure 2.4b) similaires aux couches de ViTs (voir Section 2.2.3).

Ainsi, l’architecture hiérarchique du Swin Transformer permet de prendre en entrée des images

de haute résolution, ce qui est utile dans la compréhension de documents pour représenter des

éléments de petite taille tels que le texte. Cependant, l’opération d’attention des ViTs étant

quadratique, son utilisation est mal adaptée pour des images de haute résolution, surtout sur les

premiers niveaux où la résolution est encore élevée.
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2.3.2 Les fenêtres d’attentions

Figure 2.5 Illustration des fenêtres et fenêtres décalées d’attention

tirée de Liu et al. (2021)

Afin de résoudre le coût de calcul quadratique de l’attention dans les ViTs, les auteurs de

l’architecture Swin Transformer proposent une approche par fenêtre (window-multihead self-

attention, W-MSA). Dans ce mécanisme, les patchs sont regroupés par des fenêtres contenant

𝑀 patchs. Ainsi, l’attention est uniquement calculée entre les patchs d’une même fenêtre. Le

coût de calcul de l’opération d’attention sera donc de 𝑂 (𝑀2𝑤) avec 𝑤 = 𝑁
𝑀 le nombre de

fenêtres et 𝑀2 << 𝑁2. Ainsi, ce mécanisme permet de réduire le coût de calcul de l’attention

passant de 𝑂 (𝑁2) pour les ViTs classiques à 𝑂 (𝑁𝑀). Cependant, cette attention étant locale,

les connexions entre chaque patch sont restreintes. Ainsi, les auteurs proposent d’alterner entre

deux répartitions de fenêtres différentes (shifted-windows, SW-MSA) afin de permettre des

connexions croisées entre les patchs voisins de différentes fenêtres.

De plus, les auteurs ont introduis un biais spatial 𝐵 ∈ R
𝑀×𝑀 qui est ajouté dans l’opération

d’attention tel que

W-Attention(𝑄, 𝐾,𝑉) = softmax

(
𝑄𝐾�
√
𝑑ℎ

+ 𝐵

)
𝑉 (2.12)
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avec 𝑄, 𝐾,𝑉 ∈ R
𝑀×𝑑ℎ . Ce biais remplace l’encodage de position des ViTs (voir Section 2.2.1) et

démontre de meilleures performances sur les tâches de vision sur des images de scènes naturelles.

Finalement, les fenêtres d’attention permettent de restreindre le coût de l’opération d’attention,

permettant à cette architecture de prendre en entrée des images de plus haute résolution tout en

limitant l’augmentation du coût de calcul, même dans les premières couches.

2.4 Conclusion sur les ViTs

Ainsi, les ViTs sont une architecture efficace pour extraire et représenter les caractéristiques

d’une image. Ayant fait leurs preuves sur les images naturelles, ils sont également utilisés dans

l’état de l’art de DocVQA pour encoder une image de document afin qu’elle puisse être utilisée

par un modèle de langue dans le but de répondre à une question. Comme expliqué dans le

chapitre 1, les architectures classiques (section 2.2) sont utilisées dans les modèles à grande

échelle (LVLMs), composés d’un encodeur visuel et d’un modèle de langue ayant beaucoup

de couches, entraînant de bonnes performances mais nécessitant plus de ressources de calcul.

Les Swin Transformer sont quant à eux, utilisés dans les modèles de petites tailles, requérant

moins de ressources, mais dégradant les résultats. D’autre part, les méthodes d’encodage de

position de ces modèles ont été évaluées sur les images naturelles dans les papiers originels,

sans investigation supplémentaire pour la tâche de DocVQA. Pour poursuivre, les chapitres

suivants présentent les méthodologies et approches expérimentales afin de résoudre ces gaps

dans l’état de l’art.



CHAPITRE 3

ALLÉGER SANS OUBLIER : TRANSFÉRER LES CAPACITÉS D’UN MODÈLE
FONDATION VERS UN ENCODEUR LÉGER

Ce chapitre décrit la méthodologie utilisée pour résoudre le premier objectif de ce mémoire qui

est la réduction de l’encodeur visuel d’un LVLM. Comme indiqué dans le chapitre 1, les modèles

de la tâche de DocVQA sont soit constitués de petits modules, requérant peu de puissance

de calcul mais résultant en une performance limitée, soit de larges modèles de fondation qui

repoussent les limites des petits modèles mais avec un coût de calcul plus excessif. Ainsi, l’état

de l’art impose un choix entre performance et efficience. L’objectif de ce chapitre est donc de

pallier à cela en réduisant la taille de l’encodeur visuel d’un modèle de fondation tout en gardant

un LLM en décodeur, afin de conserver des résultats compétitifs, tout en réduisant le coût de

calcul.

Les encodeurs visuels de fondation sont basés sur des architectures classiques telles que CLIP

Radford et al. (2021) et SigLIP Zhai et al. (2023), entraînant une complexité d’attention qui

évolue de manière quadratique avec le nombre de patchs (voir section 2.2). Les images de

documents pouvant être de haute résolution, utiliser un modèle hiérarchique tel que le Swin

transformer (voir Section 2.3.1), qui a une complexité linéaire, permettrait de prendre en entrée

des images plus grandes tout en limitant le coût de calcul. L’approche choisie pour cet objectif a

donc été la distillation, qui permet un transfert de connaissances entre architectures hétérogènes.

3.1 La réduction de modèles

Les premières méthodes de réduction de modèles se basent sur la suppression de paramètres

non utilisés pour résoudre la tâche (pruning) introduite par LeCun, Denker & Solla (1989). Avec

l’avènement des modèles profonds (AlexNet par Krizhevsky et al. (2012)), les méthodes de

pruning ont été développées pour réduire la taille et le coût de calcul de ces méthodes (Han, Pool,

Tran & Dally, 2015). Plus récemment, avec l’arrivée des ViTs comme modèles de référence

pour le traitement d’image, ces méthodes ont été adaptées à leurs différents types de couches

(eg., têtes d’attention, MLP, etc.) comme par Yang et al. (2023), permettant de réduire le coût de
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calcul de ces modèles. Cependant, même si le pruning a démontré une grande efficacité pour

réduire la taille des modèles tout en conservant une bonne performance, cette technique ne

permet pas de changer l’architecture du modèle initial.

a) Distillation de connaissances classique (KD) b) Distillation de caractéristiques (KD+ FD)

Figure 3.1 Schématisation de la distillation

La distillation de connaissances (Knowledge Distillation, KD) par Hinton, Vinyals & Dean

(2015) vise à transférer les connaissances d’un modèle professeur vers un modèle plus petit

appelé étudiant (voir figure 3.1a). Pour cela, la supervision de l’étudiant se fait par la sortie du

professeur tel que :

𝐿𝐾𝐷 = 𝐿 (𝑦𝑒, 𝑦𝑝𝑟𝑜 𝑓 ) (3.1)

𝐿𝑜𝑠𝑠 = 𝜆1𝐿 (𝑦𝑒, 𝑦𝑔𝑡) + 𝜆2𝐿𝐾𝐷 (3.2)

avec 𝑦𝑒, 𝑦𝑝𝑟𝑜 𝑓 et 𝑦𝑔𝑡 les valeurs prédites respectives de l’étudiant, du professeur, et la réponse

correcte (ground truth) avec 𝐿 une fonction de coût. 𝜆1 et 𝜆2 sont des coefficients induisant

l’importance de chaque erreur dans la mise à jour des poids. Ainsi, l’étudiant apprend à imiter

les prédictions d’un modèle plus gros, le permettant de se rapprocher des performances de ce

dernier pour une tâche spécifique tout en ayant un coût de calcul plus faible. Dans ce contexte, le

professeur est déjà entraîné et n’est donc pas supervisé lors de la distillation (offline distillation).

Certaines méthodes ont été développées pour entraîner le professeur en même temps que

l’étudiant (online distillation) permettant de superviser un ou plusieurs étudiants avec un ou
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plusieurs professeurs (Zhang, Xiang, Hospedales & Lu, 2018). D’autres approches utilisent un

seul modèle qui renforce son propre apprentissage en étant à la fois le professeur et l’étudiant

(self-distillation) introduite par Zhang, Bao & Ma (2021), permettant aux couches profondes de

superviser des couches précédentes. Dans le cas de ce mémoire, le modèle professeur est déjà

entraîné, l’objectif étant de le réduire. La première catégorie de méthodes est choisie.

La distillation de connaissances classique consiste à superviser l’étudiant à l’aide des sorties

du professeur. Cependant, cette approche laisse à l’étudiant la liberté de construire ses propres

représentations internes, en cherchant uniquement à reproduire les sorties finales du professeur.

La distillation de caractéristiques (Feature Distillation, FD) introduite par Ba & Caruana (2014)

étend cette idée en guidant l’étudiant à travers une supervision supplémentaire sur une couche

intermédiaire (hint layer) de l’enseignant, transférant ainsi une partie de ses connaissances

internes vers le modèle plus léger (voir figure 3.1b). L’équation de cette méthode peut s’écrire :

𝐿𝐹𝐷 = 𝜆3𝐿 𝑓 ( 𝑓 𝑙𝑒 , 𝑓 ℎ𝑝𝑟𝑜 𝑓 ) (3.3)

𝐿𝑜𝑠𝑠 = 𝜆1𝐿 (𝑦𝑒, 𝑦𝑔𝑡) + 𝜆2𝐿𝐾𝐷 + 𝜆3𝐿𝐹𝐷 (3.4)

avec 𝑓 𝑙𝑒 la sortie de l’étudiant sur la couche intermédiaire choisie, 𝑓 ℎ𝑝𝑟𝑜 𝑓 la hint layer, 𝐿 𝑓 la

fonction de perte et 𝜆3, le coefficient d’importance de cette supervision dans l’apprentissage.

La distillation de caractéristiques nécessite tout de même d’avoir un espace de représentation

de même dimension pour le professeur et l’étudiant, et dans le cas d’une image, d’avoir des

cartes de caractéristiques (feature maps) de même taille afin de permettre le calcul de l’erreur.

Différents travaux ont été menés pour distiller des réseaux neuronaux convolutifs (CNNs) (Kim,

Park & Kwak, 2018; Chen, Choi, Yu, Han & Chandraker, 2017; Lin et al., 2022; Chen, Liu,

Zhao & Jia, 2021; Chen et al., 2022a), lesquels, en raison de leur structure hiérarchique, ont

des dimensions de feature maps qui varient entre l’enseignant et l’étudiant. Pour permettre la

distillation des caractéristiques, des projecteurs convolutionnels (petites couches de convolution)

sont utilisés afin d’aligner les dimensions des cartes de caractéristiques de l’enseignant et
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de l’étudiant. Les méthodes initiales (Kim et al., 2018; Chen et al., 2017; Lin et al., 2022;

Chen et al., 2021) consistent à entraîner l’ensemble du modèle sur la tâche, ce qui réduit

l’interprétabilité de la distillation et ajoute des étapes dans l’entraînement. Pour y remédier,

SIMKD (Chen et al., 2022a) propose de ne distiller que les cartes de caractéristiques de la dernière

couche convolutionnelle, tout en réutilisant la tête de classification de l’enseignant. Ainsi, ils

n’entraînent que l’encodeur de l’étudiant en supervisant sa représentation interne par le professeur.

Le coût élevé en temps d’entraînement et nombre de données requis par les ViTs a conduit à

l’introduction de la distillation pour ces derniers. DearKD par Chen et al. (2022b) utilise un

CNN comme enseignant pour entraîner un étudiant ViT. Afin de permettre la distillation, les

dimensions de sortie du ViT sont alignées avec les cartes de caractéristiques du CNN grâce à une

interpolation bilinéaire. Les auteurs Liu et al. (2022) améliorent les performances d’un CNN en

utilisant un ViT comme enseignant. Ils alignent les cartes de caractéristiques du CNN avec les

dimensions de sortie du ViT à l’aide d’un petit MLP. Ces méthodes ont montré qu’il est possible

de distiller des architectures hétérogènes en alignant les dimensions de leurs représentations

internes. Cependant, elles prennent la même résolution d’entrée et se concentrent uniquement

sur la distillation inter-architecture entre des paires CNN/ViT.

Plus récemment, d’autres études ont utilisé la distillation entre des paires de ViTs. Yang et al.

(2024a) étudient comment utiliser la distillation entre ViTs avec la même résolution d’entrée et

le même nombre de patchs en sortie. En appliquant une simple projection linéaire pour aligner

les dimensions d’embedding de l’étudiant avec celles de l’enseignant, ils ont montré que la

distillation entre ViT est efficace pour réduire leur taille en conservant la même architecture.

Yang et al. (2024b) ont quant à eux distillé des ViTs d’architecture hétérogène tels que CLIP en

professeur et un Swin en étudiant. Leurs résultats montrent que la distillation entre architectures

hétérogènes conduit à de meilleures performances que l’approche précédente. Là où ces méthodes

se concentrent uniquement sur des tâches simples comme la classification d’image, les avancées

récentes en DocVQA ont conduit à certains travaux utilisant la distillation de caractéristiques
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afin de réduire la taille de l’encodeur visuel (Gao et al., 2024; Van Landeghem et al., 2024).

MiniInternVL par Gao et al. (2024) réduit la taille de l’encodeur visuel InternViT (Chen et al.,

2024), en le faisant passer de 6B paramètres à 300M, ce qui reste une taille conséquente.

DistillDoc par Van Landeghem et al. (2024) adapte la méthode de SIMKD Chen et al. (2022a),

en ne distillant que l’encodeur visuel, mais en utilisant l’OCR pour aider le décodeur sur la

tâche. De plus, ces méthodes supposent que les paires étudiant/enseignant prennent la même

résolution d’image et retournent le même nombre de patchs en sortie. Par conséquent, elles ne

traitent pas le problème d’alignement du nombre de patchs.

En conclusion, la distillation de caractéristiques est une méthode efficace pour transférer un

apprentissage d’un modèle professeur vers un modèle plus petit. Des études ont montré l’efficacité

de la distillation entre différents types de modèles (CNN et ViT). Cependant, les méthodes de

distillation de caractéristiques entre ViTs contraignent la résolution d’entrée de l’étudiant afin

que ses dimensions en sortie soient alignées avec celles du professeur. Cependant, les images de

documents pouvant être de haute résolution, étudier différentes tailles de ces dernières pourrait

s’avérer important pour faire varier les coûts de calcul et les performances pour un même

étudiant.

3.2 Méthodologie et Architecture

Les LVLMs peuvent être séparés en deux groupes : les méthodes utilisant des résolutions

d’entrée variables (Wu et al., 2024; Chen et al., 2024; Gao et al., 2024) et celles ayant une

résolution fixe (Beyer et al., 2024). La première catégorie repose sur la séparation d’une image

en sous-parties (tiles) qui sont envoyées parallèlement au même encodeur. Chaque tile a la

résolution attendue par l’encodeur visuel, ainsi pour un modèle prenant en entrée une image

de résolution 𝐼 ∈ R
𝐻×𝑊×𝐶 , une image de haute résolution 𝐼𝐻𝐷 ∈ R

𝐻𝑙×𝑊𝑙×𝐶 sera divisée en 𝑡

tiles avec 𝑡𝑖 ∈ R
𝐻×𝑊×𝐶 . Cette méthode permet aux modèles de prendre en entrée des images

de plus haute résolution tout en limitant le coût de l’attention. Néanmoins, cela entraîne un

coût de prétraitement plus élevé (Wu et al., 2024) et résulte en une représentation du document
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non globale en sortie de l’encodeur. Le choix du modèle professeur s’est donc porté sur la

deuxième catégorie. PaliGEMMA par Beyer et al. (2024) est un LVLM prenant une résolution

fixe en entrée, composé d’un encodeur visuel SigLIP-SO400M (Zhai et al., 2023) et d’un LLM

décodeur Gemma-2B (Mesnard et al., 2024). La taille de son décodeur qui n’est pas excessive et

ses performances compétitives sur la tâche de DocVQA en font un professeur idéal à distiller.

L’encodeur visuel étudiant est un Swin Transformer (Liu et al., 2021; Kim et al., 2022), choisi

pour ses propriétés hiérarchiques, son coût d’attention linéaire ainsi que sa forte représentation

dans l’état de l’art avec plusieurs modèles pré-entraînés open-source. Ainsi, ses poids sont

initialisés avec ceux du modèle Donut par Kim et al. (2022), déjà entraîné sur la tâche de

DocVQA, ce qui permet de limiter les ressources nécessaires à l’entraînement. Inspiré par

SIMKD (Chen et al., 2022a), la projection multimodale et le décodeur de PaliGEMMA sont

réutilisés dans l’architecture pour éviter un entraînement partant de poids non initialisé. Le

modèle résultant a été nommé "Downscaling Image Visual Encoder for DocVQA" (DIVE-Doc).

3.2.1 Transfert de connaissance et alignement

La stratégie d’entraînement est divisée en deux étapes, permettant le transfert de connaissances

et l’alignement entre le nouvel encodeur et le LLM décodeur.

La première phase est la distillation de l’encodeur de PaliGEMMA dans l’étudiant Swin. Les

sorties de l’étudiant et du professeur sont respectivement notées 𝑣𝑆 ∈ R
𝑁𝑆×𝐷𝑆 et 𝑣𝑇 ∈ R

𝑁𝑇×𝐷𝑇 .

𝑁𝑆 et 𝑁𝑇 représentent le nombre de patchs, tandis que 𝐷𝑆 et 𝐷𝑇 sont les dimensions des

embeddings. Afin d’étudier l’impact de différentes résolutions d’entrées tout en permettant la

distillation, deux stratégies de distillation sont explorées :

1.Distillation à Résolution Fixe (Fixed-Resolution Distillation, FRD)

Dans ce cas, une approche classique de distillation de caractéristiques est adoptée, où la

résolution d’entrée est ajustée de manière à contraindre 𝑁𝑆 = 𝑁𝑇 en sortie de l’étudiant. Les

patchs produits par ce dernier sont alors simplement projetés par une couche linéaire dans
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Figure 3.2 Stratégie d’entraînement de DIVE-Doc

l’espace de représentation du professeur 𝐷𝑇 . Cette méthode, bien que simple sur le plan

architectural, impose toutefois une contrainte directe sur la résolution d’entrée afin d’assurer la

condition 𝑁𝑆 = 𝑁𝑇 en sortie.

2. Distillation à Résolution Adaptative (Adaptive-Resolution Distillation, ARD)

Cette approche permet des résolutions d’entrée flexibles en redimensionnant la sortie de l’étudiant

lorsque 𝑁𝑆 < 𝑁𝑇 ou 𝑁𝑆 > 𝑁𝑇 sans ajout de paramètre, afin que cette dernière soit alignée

avec le professeur. Pour cela, la sortie de l’étudiant 𝑣𝑆 ∈ R
𝑁𝑆×𝐷𝑆 est restructurée en cartes

de caractéristiques 𝐹𝑆
maps ∈ R

ℎ𝑆×𝑤𝑆×𝐷𝑆 . Ces dernières sont ensuite redimensionnées de taille

R
ℎ𝑇×𝑤𝑇×𝐷𝑆 , avec ℎ𝑇 × 𝑤𝑇 = 𝑁𝑇 . Enfin, ces cartes sont aplaties et projetées dans l’espace

de représentation du professeur 𝐷𝑇 par une couche linéaire. Afin d’éviter des paramètres

supplémentaires, une couche d’interpolation bilinéaire sans paramètres lorsque 𝑁𝑆 > 𝑁𝑇

et une couche bicubique lorsque 𝑁𝑆 < 𝑁𝑇 sont utilisées pour redimensionner les cartes de

caractéristiques de l’élève. Cette approche aligne donc le nombre de patchs 𝑁𝑆 en sortie de

l’étudiant avec 𝑁𝑇 , enlevant la contrainte sur la résolution d’entrée de la première approche.
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Pour les deux approches de distillation, inspirées par Yang et al. (2024b), l’erreur quadratique

moyenne (Mean Squared Error, MSE) est choisie comme fonction de coût :

𝑀𝑆𝐸 =
1

𝑁𝑇 × 𝐷𝑇

𝑁𝑇∑
𝑛

𝐷𝑇∑
𝑑

(𝑣𝑆′𝑛,𝑑 − 𝑣𝑇𝑛,𝑑)2 (3.5)

avec 𝑣𝑆
′ ∈ R

𝑁𝑇×𝐷𝑇 les vecteurs en sortie de l’étudiant, alignés avec le professeur. L’élève peut

donc apprendre à imiter la position exacte de chaque patch dans l’espace de représentation du

professeur.

La distillation implique donc de générer les embeddings du professeur 𝑣𝑇 pour chaque image

afin de calculer l’erreur 𝑀𝑆𝐸 . Cependant, générer à chaque itération ces embeddings prend

des ressources de calcul supplémentaires (empreinte sur la mémoire, VRAM). Afin de réduire

l’empreinte VRAM de l’entraînement, les vecteurs d’embedding du professeur sont générés et

sauvegardés dans une base de données avant l’entraînement, ce qui permet de ne pas charger

le modèle lors de la supervision de l’étudiant. Une hmap est également générée avec comme

clé, l’identifiant (id) de l’image dans le dataset originel et en valeur la ligne correspondante

aux vecteurs d’embedding du professeur associés à cette image, ce qui permet de retrouver

rapidement et facilement les embeddings 𝑣𝑇 pour une image 𝐼.

La deuxième étape de cet entraînement est le finetuning bout-en-bout du modèle. En effet, même

si l’encodeur visuel de l’étudiant a appris à imiter la représentation du professeur, ce dernier,

du fait de sa composition différente, a pu apprendre des détails plus affinés ou différents du

professeur, pouvant nécessiter un affinage supplémentaire avec le LLM décodeur. Ainsi, cette

étape consiste à entraîner le modèle entièrement, afin d’aligner le nouvel encodeur visuel avec le

décodeur. Pour cela, l’approche QLoRA par Dettmers, Pagnoni, Holtzman & Zettlemoyer (2023)

a été adoptée afin de limiter les ressources nécessaires à cet entraînement. Les adaptateurs LoRA

ont été initiés par Hu et al. (2022) et permettent d’affiner des modèles, avec un faible coût de
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calcul. Pour cela, au lieu de mettre à jour les paramètres initiaux du modèle, une couche de

nouveaux paramètres s’ajoutent au dessus de ces derniers, préservant les connaissance actuelles

du modèle tel que :

ℎ = 𝑊𝑥 +𝑊𝑙𝑜𝑟𝑎𝑥 (3.6)

avec 𝑊 ∈ R
𝑑×𝑘 les paramètres pré-entraînés du modèle, gelés pour l’entraînement et 𝑊𝑙𝑜𝑟𝑎 ∈

R
𝑑×𝑘 , les paramètres LoRA ajoutés pour le finetuning. Pour limiter le nombre de nouveaux

paramètres, les adaptateurs LoRA sont composés de deux matrices à faibles rangs. On peut ainsi

noter :

𝑊𝑙𝑜𝑟𝑎 = 𝐵𝐴𝑥 (3.7)

avec 𝐵 ∈ R
𝑑×𝑟 et 𝐴 ∈ R

𝑟×𝑘 les décompositions de rang 𝑟 des paramètres LoRA, avec

𝑟 << 𝑚𝑖𝑛(𝑑, 𝑘). Ainsi, lors de l’apprentissage, seules les matrices 𝐴 et 𝐵 sont mises à jour,

réduisant considérablement le nombre de paramètres à entraîner. En plus des adaptateurs LoRA

ajoutés sur chaque couche de l’encodeur visuel, du projecteur multimodal et du décodeur, les

paramètres pre-entraînés sont chargés sur 4 bit au lieu de 32 bit (QLoRA), permettant de réduire

leur empreinte sur la VRAM.

Ainsi, en adoptant cette technique, le modèle peut être affiné de bout-en-bout tout en limitant

la VRAM requise. Cette étape utilise la fonction d’entropie croisée comme fonction de coût,

comparant la prédiction en sortie du décodeur 𝑦̂ avec la réponse correcte 𝑦, présente dans

l’ensemble de données tel que :

𝐿𝐶𝐸 = − 1

𝑇

𝑇∑
𝑡=1

|𝐴|∑
𝑖=1

𝑦𝑡,𝑖 log
���

exp( 𝑦̂𝑡,𝑖)∑|𝐴|
𝑗=1

exp( 𝑦̂𝑡, 𝑗 )
	
� (3.8)

avec 𝑇 la longueur de la réponse et |𝐴| la taille du vocabulaire du modèle de langue.
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3.2.2 Évaluation et interprétation des connaissances de l’encodeur visuel

Figure 3.3 Stratégie d’évaluation de l’encoder visuel

Suite à l’évaluation du modèle sur la tâche de DocVQA, une question peut se poser : Qu’est ce

que l’encodeur visuel a réellement appris et quelles fonctions remplit-il dans la résolution de

la tâche?. Comme énoncé en introduction et au long des chapitres, l’encodeur visuel permet

d’extraire les caractéristiques du document afin que le LLM puisse ensuite les interpréter afin de

répondre à la question. Cependant, les images de documents ont différents types d’éléments

(texte, image, etc.) et des structures (layout) variées. La tâche de DocVQA nécessite à la fois

d’extraire et de représenter les informations de différentes modalités, mais aussi d’avoir une

compréhension de la structure du document (layout) à la fois générale (position spatiale des

éléments) et sémantique (titre, description, tableau, etc.).

Dans le but de mieux étudier et comprendre le rôle de l’encodeur visuel dans le contexte de

DocVQA, ce dernier a été évalué sur deux tâches de compréhension de documents. Premièrement,

afin d’évaluer si l’encodeur visuel a une bonne représentation de la structure générale des
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documents en étant capable de discriminer des structures différentes (lettres, articles, etc.), la

tâche de classification de documents (Document Classification, DocCLS) a été choisie. Pour

cela, un petit MLP est ajouté en sortie de l’encodeur visuel afin de réduire le nombre de patchs

de 𝑁𝑇 à 1, puis un deuxième MLP sert à classifier ce patch, passant de 𝐷𝑇 à 𝐶𝐶𝐿𝑆 avec 𝐶𝐶𝐿𝑆 le

nombre de classes possibles. La fonction de coût utilisée est l’entropie croisé, telle que :

𝐿𝑐𝑙𝑠
𝐶𝐸 = −

𝐶𝐶𝐿𝑆∑
𝑖=1

𝑦𝑐𝑙𝑠𝑖 log
���

exp( 𝑦̂𝑐𝑙𝑠𝑖 )∑𝐶𝐶𝐿𝑆

𝑗=1
exp( 𝑦̂𝑐𝑙𝑠𝑗 )

	
� (3.9)

La deuxième évaluation a lieu sur la tâche d’analyse de la structure du document (Document

Layout Analysis, DLA), consistant à classifier chaque patch ou pixel du document avec une classe

de structure sémantique (titre, tableau, image, texte, etc.). Ainsi, ces classes peuvent être divisées

en deux sous-groupes, les classes de modalités (image et texte) et les classes d’intra-modalité

(tableau, formulaire, titre, etc.) qui sont toutes de la modalité de texte. Cette évaluation permet

donc de déterminer si l’encodeur visuel est capable de représenter et de discriminer les modalités

différentes, et d’avoir une compréhension sémantique du layout dans sa représentation.

Pour résoudre cette tâche, un petit MLP est ajouté à la sortie de l’encodeur afin de classifier

chaque patch, projetant ainsi 𝑣𝑆
′ ∈ R

𝑁𝑇×𝐷𝑇 à R
𝑁𝑇×𝐶𝐷𝐿𝐴, avec 𝐶𝐷𝐿𝐴 le nombre de classes. La

fonction de coût utilisée est l’entropie croisé, tel que :

𝐿𝑑𝑙𝑎
𝐶𝐸 = − 1

𝑁𝑇

𝑁𝑇∑
𝑛=1

𝐶𝐷𝐿𝐴∑
𝑖=1

𝑦𝑑𝑙𝑎𝑛,𝑖 log
���

exp( 𝑦̂𝑑𝑙𝑎𝑛,𝑖 )∑𝐶𝐷𝐿𝐴

𝑗=1
exp( 𝑦̂𝑑𝑙𝑎𝑛, 𝑗 )

	
� (3.10)

Afin d’évaluer correctement ce que l’encodeur visuel a appris pour la tâche de DocVQA, les

connaissances de ce dernier ne doivent pas être modifiées lors de l’entraînement des MLP pour

les deux sous-tâches. Ainsi, les paramètres de l’encodeur visuel sont gelés comme illustré sur la

figure 3.3, afin de ne pas modifier ce qu’il a appris pour la tâche de DocVQA, et de réutiliser ses

connaissances sur les tâches de classification et d’analyse de structure de documents.
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3.3 Notes finales et ouverture

La méthodologie de ce premier objectif peut ainsi être décomposée en deux parties. Premièrement,

la réduction et l’évaluation de l’encodeur visuel d’un LVLM sur la tâche de DocVQA. Cette

étape permet à la fois de réduire la taille de l’encodeur visuel d’un modèle de fondation et

d’évaluer l’impact de différentes résolutions en entrée sur la performance de cette tâche. De plus,

l’ajout de deux sous tâches de compréhension de documents, réutilisant l’encodeur visuel réduit

de la première étape sans modifier ses poids, permet d’évaluer et d’interpréter les connaissances

acquises par ce dernier pour la tâche de DocVQA.

Cependant, cette architecture ne permet pas d’enrichir le module visuel avec une position spatiale

précise, qui est un des gaps de la littérature (voir chapitre 1) et pourrait avoir un impact non

négligeable sur la représentation des structures de documents.



CHAPITRE 4

AU-DELÀ DU CONTENU : ENRICHIR LES REPRÉSENTATIONS VISUELLES PAR
LA GÉOMÉTRIE SPATIALE DES DOCUMENTS

L’opération d’attention est le cœur des ViTs, permettant de mettre en avant les caractéristiques

pertinentes des patchs, ainsi qu’un encodage global entre tous les patchs. Cependant, cette

opération est équivariante par permutation, telle que si l’ordre des patchs change, leur embedding

respectif sera le même en sortie. Dans les tâches de compréhension de document comme

DocVQA, la réponse est souvent dispatchée sur plusieurs patchs, ainsi induire la position spatiale

dans la représentation est essentielle pour que le modèle puisse avoir une compréhension de

la structure du document (ordre des patchs) et retrouver la réponse à la question. Comme vu

dans l’état de l’art, les encodeurs visuels dans la tâche de DocVQA se basent sur des papiers

fondateurs, étudiés sur des images naturelles. Cependant, l’encodage positionnel qu’ils utilisent

ne semble pas être adéquat pour représenter correctement un document (voir section 1). Ainsi,

ce chapitre est dédié au deuxième objectif de ce mémoire, qui consiste à intégrer un encodage

positionnel plus précis dans le modèle de vision afin d’améliorer la compréhension de la structure

des documents dans ce dernier.

4.1 L’encodage des positions spatiales

L’encodage de position est un aspect fondamental de l’architecture des Transformers depuis leur

début. Ces dernières étant introduites sur des tâches de langage naturel (Vaswani et al., 2017),

les premières séquences étaient d’une seule dimension telle que des phrases. Ainsi, l’encodage

de position prenait uniquement l’indice du token (mot, sous-mot, lettre) dans la séquence afin

de l’encoder et l’ajouter à la représentation. Pour cela, les premières méthodes consistaient en

un enchaînement de sinus et cosinus sur les différentes dimensions de l’embedding, prenant en

entrée l’indice de la position du texte dans la séquence tel que :

𝑃𝐸𝑝𝑜𝑠,2𝑖 = 𝑠𝑖𝑛(𝑝𝑜𝑠/1000
2𝑖
𝑑ℎ )

𝑃𝐸𝑝𝑜𝑠,2𝑖+1 = 𝑐𝑜𝑠(𝑝𝑜𝑠/1000
2𝑖
𝑑ℎ )

(4.1)
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avec 𝑝𝑜𝑠 la position du token dans la séquence, 𝑑ℎ la dimension de l’embedding et 𝑖 l’indice de

la dimension courante de l’embedding. Cette méthode permet de toujours avoir un encodage

positionnel différent entre chaque token. Les cosinus et sinus étant des fonctions périodiques,

encoder les positions sur des fréquences différentes pour chaque indice d’embedding permet

d’avoir une position unique par token dans la représentation. Bien que cet encodage de position ait

fait ses preuves pour la compréhension de textes, les images sont des données à deux dimensions,

ainsi chaque patch n’a pas une seule coordonnée, mais deux, à savoir l’indice sur la hauteur et

sur la largeur (ℎ, 𝑤). Cette méthode est donc peu efficace pour représenter leur position.

L’encodage spatial dans les ViTs a donc été un aspect fondamental dans le développement de leur

architecture. Initialement entraînés sur des images naturelles, ces modèles ont conduit à l’étude

de diverses façons d’encoder la position spatiale des patchs. Une première méthode consiste à

adapter l’encodage de position des Transformers (voir équation 4.1) pour utiliser une position à

deux coordonnées. Ainsi, la position ℎ est encodée sur la première moitié de l’embedding et la

position 𝑤 sur l’autre partie, tel que

𝑃𝐸ℎ,2𝑖 = 𝑠𝑖𝑛(ℎ/1000
2𝑖

𝑑ℎ/2 );
𝑃𝐸ℎ,2𝑖+1 = 𝑐𝑜𝑠(ℎ/1000

2𝑖
𝑑ℎ/2 );

𝑃𝐸𝑤,2𝑖 = 𝑠𝑖𝑛(𝑤/1000
2𝑖

𝑑ℎ/2 );
𝑃𝐸𝑤,2𝑖+1 = 𝑐𝑜𝑠(𝑤/1000

2𝑖
𝑑ℎ/2 );

𝑃𝐸 = [𝑃𝐸ℎ, 𝑃𝐸𝑤]

(4.2)

avec ℎ la position spatiale du patch sur la hauteur, 𝑤 la position spatiale du patch sur la longueur

et 𝑃𝐸ℎ, 𝑃𝐸𝑤 ∈ R
1×𝑑ℎ/2 les embeddings de position respectifs à la hauteur et à la longueur.

La cohérence spatiale de ces embeddings de positions peut être évaluée en faisant le produit

scalaire d’une position donnée avec les autres positions des patchs sur l’image. Si les positions

spatialement proches ont des scores de similarité élevés, cela veut dire que les représentations

des positions 𝑃𝐸 sont spatialement correctes. La figure 4.1 montre deux exemples de scores de

similarité utilisant cette méthode. Comme montré par cette figure, les positions similairement

proches dans l’espace de représentation sont les positions orthogonales et non les positions

spatialement proches. Cela peut s’expliquer par le fait que les coordonnées ℎ et 𝑤 sont encodées
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a) Similarités avec la position centrale b) Similarités avec la position (0,0)

Figure 4.1 Similarité entre un vecteur de position choisi et les

autres, utilisant l’encodage de position absolue 2d

séparément et non de manière uniforme. Ainsi cette méthode ne permet pas de representer

correctement la position des patchs dans l’espace de représentation.

Une autre approche consiste à superviser un vecteur de position par indice unidimensionnel

dans la séquence de patchs 𝑁 (voir section 2.2.1). Ces vecteurs étant directement supervisés lors

de l’entraînement, ils n’ont pas besoin de prendre les deux coordonnées spatiales (ℎ, 𝑤). Les

similarités de positions ont été projetées sur la figure 4.2.

Ainsi, bien que légèrement plus performante que la méthode précédente (Dosovitskiy et al.,

2020), cette approche présente le même problème et tend à rapprocher les positions orthogonales

sans uniformité dans les autres directions. Ces encodages de positions sont dit absolu (Absolute

Positional Encoding, APE), car ils encodent la position brute des patchs dans la séquence.

Une approche différente consiste à encoder la position relative (Relative Positional Encoding,

RPE) entre les patchs. Un exemple de cette méthode est présent dans l’architecture Swin

Transformer, introduisant un biais spatial dans les fenêtres d’attention (voir section 2.3.2). Ce
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a) Similarités avec la position centrale b) Similarités avec la position (0,0)

Figure 4.2 Similarités entre un vecteur de position choisi et les

autres, issues du modèle PaliGEMMA

biais est différent pour chaque patch au sein d’une même fenêtre mais se répète entre chaque

fenêtre, cet encodage positionnel est donc local et non global. Ainsi, bien que ces méthodes se

soient montrées efficace en achevant de bons résultats, ces dernières semblent mal adaptées pour

représenter correctement les positions spatiales des patchs, particulièrement dans le contexte

d’image de documents.

Une position spatiale adaptée serait telle qu’illustrée sur la figure 4.3. Sur cette dernière, les

similarités de positions se propagent dans toutes les directions de manière homogène et sont

spatialement cohérentes. Li, Si, Li, Hsieh & Bengio (2021) ont proposé une autre méthode

se basant sur les caractéristiques de Fourier (Fourier Features). En apprenant une projection

linéaire 𝑊𝜏 ∈ R
𝑀×𝐷

2 , avec 𝑀 = 2 dans le cas d’une image, ils créent un espace de représentation

uniforme pour les positions de patchs (ℎ, 𝑤). Les caractéristiques de Fourier sont ensuite extraites

de cette représentation suivant l’équation :

𝑝𝑒 = [ℎ, 𝑤] .𝑊𝜏

𝑓 𝑓 𝑝𝑒 = 1√
𝐷
[𝑐𝑜𝑠(𝑝𝑒), 𝑠𝑖𝑛(𝑝𝑒)]

(4.3)
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avec 𝑝𝑒 ∈ R
𝐷
2 la représentation de la position et 𝑓 𝑓 𝑝𝑒 ∈ R

𝐷 , les caractéristiques de Fourier

extraites de la représentation 𝑝𝑒. Cette technique permet d’avoir une propagation de similarité

dans toutes les directions et non uniquement dans les directions orthogonales. Les auteurs ont

démontré que le noyau gaussien tel que montré sur la figure 4.3 pouvait être obtenu en initialisant

les poids de la projection linéaire 𝑊𝜏 par une distribution normale. Cependant, ils laissent

cette projection être supervisée lors de l’entraînement afin que le modèle puisse apprendre une

représentation pertinente pour la tâche. Afin d’ajouter plus de capacité d’apprentissage à la

représentation, les auteurs ont ajouté un petit MLP de deux couches, permettant d’ajouter de la

non linéarité afin d’enrichir et de rendre plus flexible la représentation :

𝑓 𝑓 𝑝𝑒′ = 𝐺𝑒𝐿𝑈 (𝑊1
𝑓 𝑓 𝑝𝑒 𝑓 𝑓 𝑝𝑒 + 𝐵1

𝑓 𝑓 𝑝𝑒)𝑊2
𝑓 𝑓 𝑝𝑒 + 𝐵2

𝑓 𝑓 𝑝𝑒 (4.4)

où𝑊1
𝑓 𝑓 𝑝𝑒 ∈ R

𝐷×𝐻, 𝐵1
𝑓 𝑓 𝑝𝑒 ∈ R

𝐻,𝑊2
𝑓 𝑓 𝑝𝑒 ∈ R

𝐻×𝐷 et 𝐵2
𝑓 𝑓 𝑝𝑒 ∈ R

𝐷 , avec 𝐻 la dimension interne au

MLP, habituellement 𝐷 < 𝐻 afin d’apprendre des relations complexes. Les auteurs ont démontré

a) Similarités avec la position centrale b) Similarités avec la position (0,0)

Figure 4.3 Similarités entre un vecteur de position choisi et les

autres, obtenues par l’extraction des caractéristiques de Fourier

que cette méthode permettait de meilleurs résultats sur les tâches de vision. Cependant, cette
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méthode reste peu exploitée dans l’état de l’art et, au meilleur de notre connaissance, n’a pas

été étudiée pour des tâches de représentation de documents. Les propriétés de cette approche

permettant un encodage spatial des positions plus précis que les méthodes précédentes de l’état

de l’art de DocVQA, on peut supposer qu’enrichir la représentation des modèles de vision

actuels avec cette approche pourrait améliorer leur représentation de la structure des documents.

4.2 Méthodologie et Architecture

Les encodeurs visuels de la tâche de DocVQA se basent sur les papiers de fondation et intègrent

l’encodage de position soit au début du modèle lors de la division de l’image en patch dans

le cas d’un encodage de type APE (voir section 2.2.1) ou directement dans le mécanisme

d’attention dans le cas RPE (voir section 2.3.2). Ajouter la position uniquement au début entraîne

inexorablement une dilution de cette information dans les couches plus profondes. Cependant,

la position est importante même en sortie de l’encodeur, afin que le modèle de langue puisse

avoir un ordre de lecture correct des patchs afin de retrouver de manière efficace la réponse

à la question posée. Ainsi, dans le cas de DocVQA, la partie la plus propice pour ajouter la

position semblerait être la sortie de l’encodeur visuel. Cependant, afin que l’encodeur visuel

puisse lui aussi apprendre à représenter la structure sémantique et spatiale du document, intégrer

la position au début de son architecture ne doit pas non plus être négligée.

Ainsi, pour assurer une évaluation optimale de l’intégration de cette position dans l’encodeur

visuel, la position d’insertion de cette dernière sera testé au début, à la sortie de chaque bloques,

à la sortie du modèle et enfin à chacune des positions simultanément (voir figure 4.4).

Le module de position FFpos (Fourier Features position) suit donc les équations 4.3 et 4.4, prenant

en entrée les paires de coordonnées (ℎ, 𝑤) de chaque patch et retournant leur représentation

𝑓 𝑓 𝑝𝑒′ ∈ R
𝑁×𝐷 . Ce dernier est ajouté à l’ensemble des vecteurs de patchs 𝑧𝑙 ∈ R

𝑁×𝐷 tel que

𝑧
𝑓 𝑓 𝑝𝑒
𝑙 = 𝑧𝑙 + 𝑓 𝑓 𝑝𝑒′ (4.5)
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Figure 4.4 Emplacement des insertions des encodages de

positions dans l’architecture

avec 𝑧
𝑓 𝑓 𝑝𝑒
𝑙 ∈ R

𝑁×𝐷 l’ensemble des vecteurs de patchs, enrichi par la position des caractéristiques

de Fourier. Dans le cas où l’encodeur visuel est un Swin Transformer, l’ajout de la position se

fait à la sortie de la couche "patch merging" (voir section 2.3).

Comme ce module a pour but d’enrichir les représentations des modèles de l’état de l’art, il est

important de l’ajouter en affinant le modèle sans qu’il "oublie" sa connaissance actuelle de la

tâche (caractéristiques à extraire et représenter). Pour cela, une stratégie d’entraînement divisée

en 3 étapes est choisie (voir figure 4.5).

La première étape consiste à entraîner les modules FFpos, en gelant tous les autres poids du

modèle afin d’intégrer la position sans endommager la connaissance actuelle du modèle. La

deuxième étape consiste ensuite à entraîner entièrement l’encodeur visuel ainsi que la projection

multimodale. Cela permet de laisser le module de vision apprendre de nouvelles caractéristiques

et d’enrichir sa représentation du document grâce à l’ajout des modules de positions. Enfin, la

dernière étape consiste à entraîner tous les poids du modèle de bout-en-bout, afin d’aligner le

modèle de langue avec la nouvelle représentation du document, enrichie par la position. Afin

de limiter les ressources de calcul nécessaires à cette étape, l’entraînement de bout-en-bout

est réalisé avec la méthode QLoRA (voir section 3.2). Afin de permettre au modèle plus de

flexibilité dans l’apprentissage des positions, chaque FFpos module possède ses propres poids
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Figure 4.5 Entraînement des modèles enrichis par l’encodage

positionnel proposé

et est indépendant des autres modules. Pour chaque étape, l’erreur est calculée en utilisant la

fonction d’entropie croisée (voir équation 3.8).

Chaque position d’insertion étudiée est aussi évaluée sur les tâches de classification de document

et d’analyse de structure sémantique de document suivant la méthodologie de la section 3.2.2.



CHAPITRE 5

UNE OUVERTURE SUR LE MULTI-PAGE : ADAPTER UN MODÈLE END-TO-END
AUX DOCUMENTS COMPOSÉS DE PLUSIEURS PAGES

Ce mémoire a pour objectif de développer un encodeur visuel capable de représenter les images

de documents scannés dans un espace de représentation multimodal afin de résoudre la tâche

de DocVQA. Pour cela, deux sous objectifs sont réalisés, premièrement réduire la taille d’un

encodeur visuel de fondation afin de réduire la complexité de calcul sans diminuer la qualité de

la représentation afin de garder des performances compétitives avec les LVLMs (chapitre 3) ;

deuxièmement intégrer un module d’encodage spatial précis afin d’améliorer la représentation

structurel du document et de faciliter les ordres de lecture du modèle de langue (chapitre 4).

Ainsi, les expériences ont été réalisées sur des documents d’une seule page afin de limiter le coût

de calcul des entraînements. Cependant, beaucoup de scénarios impliquent des documents de

plusieurs pages. Par ailleurs, traiter plusieurs pages de documents augmente considérablement

le nombre de patchs à analyser, ce qui entraîne un coût de calcul bien supérieur (VRAM). De

plus, cela dilue l’information à retrouver, ce qui peut complexifier la recherche de cette dernière

par le modèle de langue. La tâche de réponse à des questions visuelles sur des documents

multi-page (MP-DocVQA) entraîne donc de nouveaux défis. Ainsi, basée sur les résultats des

deux sous-objectifs de ce mémoire, une exploration du multi-page est proposée afin d’ouvrir de

nouvelles directions et de potentiels travaux futurs.

5.1 MP-DocVQA : une tâche récente et peu étudiée

La tâche de réponse à des questions visuelles sur des documents multi-page (MP-DocVQA)

est apparue avec la sortie du dataset du même nom par Tito, Karatzas & Valveny (2023).

Composé des mêmes documents que le dataset DocVQA, ce dernier propose des questions sur

des documents allant jusqu’à 20 pages. Les méthodes évaluées sur ces datasets sont soumises

et affichées publiquement sur le site internet Robust Reading Competition par Mathew, Tito,

Karatzas, Manmatha & Jawahar (2020b).
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Figure 5.1 Nombre d’approches soumises par ensemble de

données pour DocVQA et MP-DocVQA

La figure 5.1 montre le nombre d’approches publiquement évaluées sur ces derniers. Comme

affiché sur cette dernière, là où le nombre d’approches soumises pour la base DocVQA est de

140, celles pour MP-DocVQA sont seulement au nombre de 19, ce qui montre l’aspect encore

peu étudié de cette tâche.

Tableau 5.1 État de l’art sur MP-DocVQA

Méthode # Param(B) OCR Tiling Fusion Tot Acc (%) ↑ ANLS (%)↑
Toutes les pages dans le décodeur

Gram, Blau et al. (2024) 0.859 X X 19.98 80.32

DocOwl2, Hu et al. (2024) 8 X 50.78 69.42

HiVT5, Tito et al. (2023) 0.316 X X 79.63 62.01

Longformer, Tito et al. (2023) 0148 X X 71.17 52.87

BigBird, Tito et al. (2023) 0.131 X X 67.54 49.29

LayoutLMv3, Tito et al. (2023) 0.125 X X 51.94 45.38

Sélecteur de réponse

ScreenAI, Baechler et al. (2024) 5 X 77.88 77.1

ScreenAI, Baechler et al. (2024) 5 ? 72.9

Sélecteur de page

Pix2Struct, Kang et al. (2024) 0.273 X 81.55 61.99

Sélecteur de page + top-k pages dans le décodeur

M3DocRAG, Cho, Mahata, Irsoy, He & Bansal (2024) 10B 81.05 84.44

FRAG-LLaVA-OV, Huang, Radhakrishnan, Yu & Kautz (2025) 7B ? 79.1

FRAG-InternVL2, Huang et al. (2025) 8B ? 77.8
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Le tableau 5.1 regroupe différentes solutions de l’état de l’art de MP-DocVQA. Les approches

traitant le multi-page peuvent être divisées en quatre familles. Premièrement, les méthodes

donnant toutes les pages encodées ainsi que la question au décodeur (Tito et al., 2023; Blau

et al., 2024; Hu et al., 2024). Cette approche permet de rechercher la réponse parmi plusieurs

pages sans changer l’architecture, mais augmente le coût de calcul dans le modèle de langue. De

plus, les modèles de petite taille ont des résultats faibles (ANLS, voir équation 6.1) du fait de la

dilution de l’information dans le contexte, comme LayoutLMv3 (45.38%), BigBird (49.29%)

ou encore Longformer (52.87%). Certaines méthodes de cette catégorie obtiennent tout de

même de meilleurs résultats comme DocOwl2 par Hu et al. (2024) qui utilise un compresseur

afin de réduire le nombre de patchs des documents avant de les envoyer au décodeur, ce qui

permet de réduire le coût de calcul tout en atteignant un score de 69.42% d’ANLS. Cependant,

ce modèle nécessite toujours une capacité de calcul conséquente du fait de sa taille (8B de

paramètres). D’autre part, Gram par Blau et al. (2024) utilise un encodeur multimodal avec de

l’OCR et une fusion en amont, ce qui permet d’avoir un modèle de taille raisonnable (859M de

paramètres) atteignant de meilleurs résultats (80.32%). Cependant, la fusion en amont empêche

la réutilisation des embeddings des documents, ce qui nécessite d’encoder à nouveau chaque

page du document pour chaque nouvelle question.

Afin d’éviter un coût de calcul supplémentaire trop important, une autre approche consiste à

transformer le problème multi-page en mono-page (Baechler et al., 2024). En donnant au modèle

chaque page avec la question de manière indépendante afin de générer une réponse par page,

sélectionnant ensuite celle ayant le plus haut score de probabilité en sortie du modèle, cette

approche permet de réutiliser des modèles initialement entraînés sur des bases de données ayant

une page par document. Bien que cela permette de réduire le coût de calcul, cette approche

nécessite d’utiliser le décodeur pour chaque page, soit de manière séquentielle (une page après

l’autre), ce qui augmente le temps pour obtenir la réponse correcte de manière linéaire avec le

nombre de pages, soit de manière parallèle, ce qui augmente l’empreinte sur la VRAM.

Pour remédier à cela, une autre approche consiste à utiliser un filtre en sortie de l’encodeur,

prenant en entrée chaque page du document avec la question générant ainsi un score de probabilité

par page, désignant si la page contient la réponse ou non. La page ayant le plus haut score est
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ensuite envoyée au décodeur, ce qui permet d’éviter d’utiliser le modèle de langue pour chaque

page. Kang et al. (2024) utilise cette approche avec un encodeur multimodal. Cependant, les

auteurs se basent sur la fusion en amont, ce qui ne permet pas de réutiliser les embeddings de

documents pour chaque nouvelle question.

Enfin une dernière approche consiste à utiliser un sélecteur de page, puis à envoyer les 𝑡𝑜𝑝 − 𝑘

pages avec le plus haut score dans le décodeur. Le modèle M3DocRAG par Cho et al. (2024)

combine à la fois l’approche de sélection de page après l’encodeur visuel, et l’envoi de plusieurs

pages au décodeur prenant les 𝑡𝑜𝑝 − 𝑘 pages ayant obtenu le plus haut score par le sélecteur.

Contrairement à la méthode proposée par Kang et al. (2024), ces derniers utilisent un LVLM

comme encodeur, ce qui leur permet d’utiliser une simple similarité entre les embeddings et la

question pour calculer les scores de probabilité. Cependant, cette approche nécessite d’avoir un

encodeur de grande taille puis un autre décodeur également de grande taille. Ici les auteurs ont

utilisé le modèle ColPali (3B) par Faysse et al. (2024) pour encoder la question et les pages du

document, puis le modèle Qwen2-VL pour générer la réponse (7B) par Wang et al. (2024). Les

modèles ColPali et Qwen2-VL étant différents, les embeddings générés par ColPali ne sont pas

réutilisables, ainsi Qwen2-VL prend en entrée les images originales des 𝑡𝑜𝑝 − 𝑘 pages, et les

encode de nouveau avant de générer la réponse. Ainsi bien que cette méthode achève de bons

résultats (84.44% ANLS), le coût de calcul lié à son nombre de paramètres (10B) ainsi que sa

nécessité d’encoder deux fois le document le rendent plus compliqués pour des déploiements

industriels. La méthode FRAG proposée par Huang et al. (2025) utilise deux fois le même

modèle de langue pour calculer les scores par page en utilisant un prompt adapté et générer la

réponse avec les 𝑡𝑜𝑝 − 𝑘 pages sélectionnées ainsi que la question. Cependant, cette méthode

nécessite d’utiliser deux fois le modèle de langue, ce qui augmente considérablement la latence

comme souligné dans l’étude d’ablation (voir section 6.4.3).

Ainsi, la tâche MP-DocVQA est un domaine encore peu étudié où les approches proposent des

compromis entre embeddings réutilisables, coût de calcul et performance.
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5.2 Méthodologie et Architecture

Cette section présente la méthodologie utilisée afin d’adapter le modèle construit lors du premier

et du deuxième sous-objectifs pour la tâche de MP-DocVQA. Afin de répondre aux contraintes

utilisateurs, la méthode doit pouvoir réutiliser les embeddings de document pour potentiellement

construire des bases de données interrogeables (voir figure 0.2c) et éviter d’encoder plusieurs fois

la même page pour chaque question. De plus, afin de pouvoir être utilisé dans des infrastructures

limitées (GPU), il est préférable que l’adaptation du modèle n’entraîne pas une augmentation

trop importante du nombre de paramètres. Enfin, pour éviter l’augmentation du coût de calcul,

le modèle doit limiter le nombre de jetons dans le décodeur afin de ne pas augmenter le coût de

son attention qui est quadratique.

Ainsi, l’approche choisie est celle de la sélection de page présentée dans la section précédente.

Rajoutant seulement un module entre l’encodeur visuel et le modèle de langue, cette approche

permet de sélectionner les 𝑡𝑜𝑝 − 𝑘 pages à envoyer au modèle de langue.

Figure 5.2 Schéma du modèle DIVE-Doc adapté pour

MP-DocVQA
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La figure 5.2 montre l’architecture proposée. Comme illustré sur cette dernière, un module filtre

est inséré entre l’encodeur visuel et le modèle de langue. Le filtre prend en entrée la question

encodée, c’est-à-dire la question divisée en 𝑁𝑡 jetons (tokens), projetés par une couche linéaire

dans le même espace de représentation que le modèle de langue. On note 𝑡 la question encodée

telle que 𝑡 ∈ R
𝑁𝑡×𝐷𝑀 avec 𝐷𝑀 la dimension de l’espace de représentation multimodal.

Figure 5.3 Schéma du sélecteur de page (filtre)
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La figure 5.3 illustre l’architecture du filtre. Issu du modèle Gemma par Mesnard et al. (2024), il

est composé de ℎ couches de Transformer qui encodent la question 𝑡 avec les patchs d’une page

𝑣 ∈ R
𝑁𝑣×𝐷𝑀 où 𝑁𝑣 est le nombre de patchs et 𝐷𝑀 la dimension de l’espace de représentation du

modèle de langue Gemma. Ces couches permettent ainsi de mettre en avant dans la représentation

les informations relatives à la question contenue dans les patchs. Les couches sont composées

d’un bloc d’attention afin d’encoder chaque élément en fonction des autres et de leurs pertinences

(voir section 2.2.2.1), d’un projecteur multicouche afin d’ajouter de la non-linéarité et d’avantage

de capacité de représentation (voir section 2.2.3). En sortie de ces blocs, une connexion résiduelle

ainsi qu’une normalisation sont ajoutées afin d’enrichir les représentations précédentes par les

nouvelles et d’éviter que les valeurs ne deviennent trop élevées. En sortie de la dernière couche,

basé sur le papier de Cho et al. (2024), un score de probabilité est attribué à la page, calculé tel

que :

𝑠(𝑡, 𝑣) =
𝑁𝑡∑
𝑖=1

𝑚𝑎𝑥 𝑗∈[𝑁𝑣]𝑡𝑖 .𝑣 𝑗 (5.1)

avec 𝑡𝑖 un jeton de la question et 𝑣 𝑗 un patch de la page. Ainsi, le score est calculé en faisant le

produit scalaire entre chaque jeton et chaque patch. Pour chaque jeton, le plus haut score avec

les patchs est conservé, puis chacun de ces scores est additionné, donnant le score final de la

page. Ce processus est ensuite répété pour chaque page du document.

Le modèle de langue étant entraîné à prendre uniquement une page en entrée, seulement les

embeddings 𝑣 de la page ayant obtenu le plus haut score sont ensuite envoyés avec la question

pour générer la réponse, ainsi le modèle prend en entrée la 𝑡𝑜𝑝 − 1 page. Cela permet de limiter

l’empreinte sur la VRAM mais empêche la résolution de questions ayant une réponse dispatchée

sur plusieurs pages (cas appelé multi-hop).

Afin de ne pas augmenter l’empreinte du modèle sur la mémoire, les poids du filtre sont partagés

avec ceux du modèle de langue. Pour cela, le filtre réutilise les ℎ premières couches du décodeur,

ne nécessitant donc pas d’entraînement ni d’allocation mémoire supplémentaire. Le modèle de

langue étant composé de 26 couches, le filtre réutilise ses huit premières couches afin de limiter

la latence (voir l’étude d’ablation section 6.4.3).
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Le modèle est évalué en regardant à la fois la qualité des réponses et également si le score

maximal retourné par le filtre correspond bien à la page contenant la réponse. Ainsi, cette

approche propose un système bout-en-bout avec des embeddings réutilisables sans augmenter

l’empreinte mémoire du modèle.



CHAPITRE 6

EXPÉRIMENTATIONS, RÉSULTATS ET DISCUSSIONS

Ce chapitre décrit les résultats obtenus pour les deux objectifs de ce mémoire, suivant les

chapitres 3 et 4 ainsi que ceux de l’extension sur le multipage (chapitre 5). La section suivante

contient les détails expérimentaux (base de données, mesure de performances, etc.) afin d’assurer

la reproductibilité des résultats. Les trois dernières sections présentent respectivement le détail

des résultats des expérimentations, ainsi que leurs analyses.

6.1 Base de données et métriques d’évaluation

6.1.1 Base de données

Pour les expérimentations principales sur la tâche de DocVQA (voir les sections 3.2 et 4.2),

la base de données utilisée est celle du même nom (DocVQA) par Mathew et al. (2021). Elle

contient près de 12.767 images de documents issues de l’industrie, de différentes structures (lettre,

article, formulaire, etc.), et ayant des entités de modalités variées (photo, texte, graphique, etc.).

Elle contient près de 99.000 questions, permettant d’aligner le modèle de langue avec l’encodeur

visuel. Concernant les évaluations approfondies sur l’encodeur visuel (voir section 3.2.2), la

base de données utilisée pour la tâche de classification de documents (DocCLS) se nomme

RVL-CDIP (Harley et al., 2015), contenant près de 400.000 images de documents, réparties

sur 16 classes (lettre, article, etc.). Pour la tâche d’analyse de structure de documents (DLA),

l’ensemble de données DocLayNet par Pfitzmann et al. (2022) a été utilisé. Ce dernier contient

80.863 images de documents, de différentes structures et distribution d’entités sémantiques (titre,

tableau, photo, etc.). Enfin, pour l’ouverture sur le multi-page, la base de données choisie est

MP-DocVQA par Tito et al. (2023). Cette dernière possède près de 46.000 questions posées

sur 6.000 documents industriels, chacun pouvant contenir jusqu’à 20 pages, faisant un total de

48.000 images de pages de documents.



64

6.1.2 Métriques d’évaluation

Chaque tâche entraînant une sortie différente des autres, elles ont ainsi des métriques spécifiques.

La tâche de DocVQA consiste à générer une réponse sous forme de texte numérique. Une

métrique standard pour évaluer cette tâche est la Similarité de Levenshtein Normalisée Moyenne

(Average Normalized Levenshtein Similarity, ANLS). Introduite par Biten et al. (2019), cette

métrique mesure la similarité entre la réponse générée par le modèle et la réponse de référence

(ground truth), en s’appuyant sur la distance de Levenshtein, normalisée pour tenir compte de la

longueur des chaînes comparées. Son équation peut s’écrire :

ANLS =
1

𝑁

𝑁∑
𝑖=1

sim(𝑝𝑖, 𝑔𝑖) (6.1)

sim(𝑝, 𝑔) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − lev(𝑝, 𝑔)
max( |𝑝 |, |𝑔 |) si

lev(𝑝, 𝑔)
max( |𝑝 |, |𝑔 |) < 𝜏

0 sinon

(6.2)

avec 𝑝 la réponse prédite, 𝑔 la réponse dans la base de données et 𝑙𝑒𝑣 la distance de Lcvenshtcin

(1966), consistant à attribuer un nombre d’opérations minimales à effectuer sur 𝑝 pour que

𝑝 = 𝑔.

𝜏 est un seuil qui permet de mettre à zéro la similarité si 𝑝 et 𝑔 diffèrent trop, il a pour valeur

0.5. Pour la tâche de classification de documents, la métrique choisie est la précision (accuracy)

qui a pour formule

Accuracy =
TP + TN

TP + TN + FP + FN
(6.3)

avec 𝑇𝑃 +𝑇𝑁 les prédictions correctes (vrais positifs et vrais négatifs), et 𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

le nombre total de prédictions, où 𝐹𝑃 et 𝐹𝑁 sont respectivement les faux positifs et les faux

négatifs. Enfin, pour la tâche d’analyse de structure de documents, les modèles ont été évalués en

utilisant la moyenne des intersections sur l’union (mean Intersection over Union, mIoU). Cette

métrique fait la moyenne de prédictions positives correctes pour chaque classe tel que :

mIoU =
1

𝐶

𝐶∑
𝑖=1

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
(6.4)
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avec 𝐶 le nombre de classes, et 𝑇𝑃𝑖, 𝐹𝑃𝑖, 𝐹𝑁𝑖 le nombre de vrais positifs, faux positifs et faux

négatifs pour la classe 𝑖.

6.2 Compression d’un encodeur visuel de fondation par distillation

Cette section présente les résultats des expérimentations réalisées pour le premier objectif de ce

mémoire (voir chapitre 3).

6.2.1 Détails des configurations

Le tableau 6.1 décrit les différents hyperparamètres utilisés lors des expérimentations du premier

objectif (voir sections 3.2 et 3.2.2). Les expérimentations ont été réalisés sur 3 GPU v100, ayant

chacun 32GB de VRAM.

Tableau 6.1 Détails des hyperparamètres des expérimentations du premier objectif

Étape d’entraînement/tâche 𝛼 Optimiseur Époques Taille des lots
DocVQA (Distillation) 3e−4 Adam 20 16

DocVQA (Affinement) 3e−5 Adam 3 16

Classification 3e−4 Adam 5 16

Layout Analysis 9e−4 Adam 3 16

Comme expliqué dans la section 3.2, deux méthodes de distillation sont testées. Premièrement,

𝐹𝑅𝐷, qui impose une résolution d’entrée à l’étudiant afin que le nombre de patchs en sortie de

ce dernier soit le même que celui du professeur. Cette méthode évite d’ajouter de la complexité

au modèle, mais contraint la résolution, ne permettant pas de flexibilité. Une autre approche

a donc été proposée (𝐴𝑅𝐷), utilisant un module supplémentaire en sortie de l’étudiant qui

aligne le nombre de patchs de ce dernier avec le professeur. Cette dernière permet de configurer

une résolution d’entrée différente, pouvant être plus petite que la résolution imposée par la

méthode 𝐹𝑅𝐷 afin de limiter l’empreinte sur la VRAM ou plus grande, afin de permettre

l’extraction de caractéristiques à plus petite échelle. Dans le cas de la distillation 𝐹𝑅𝐷, comme

l’encodeur visuel du professeur a une résolution d’entrée 𝑇𝑅𝑒𝑠 ∈ R
896×896×3 et une séquence de
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sortie 𝑣𝑇𝑅𝑒𝑠 ∈ R
4096×1152, la résolution imposée pour l’étudiant sera de 𝑀𝑅𝑒𝑠 ∈ R

2048×2048×3.

L’étudiant (DIVE-Doc) étant un encodeur de type Swin Transformer composé de 4 blocs, la

sortie sera notée 𝑣𝑀𝑅𝑒𝑠 ∈ R
4096×1024 (voir sections 2.3 et 3.2). Pour la méthode 𝐴𝑅𝐷, deux

résolutions ont été testées. Une résolution petite 𝐿𝑅𝑒𝑠 ∈ R
1536×1536×3, entraînant une sortie

𝑣𝐿𝑅𝑒𝑠 ∈ R
2304×1024, et une résolution grande 𝐻𝑅𝑒𝑠 ∈ R

2560×1920×3 entraînant une sortie de taille

𝑣𝐻𝑅𝑒𝑠 ∈ R
4800×1024. Ainsi, 𝐻𝑅𝑒𝑠 aboutit à 704 patchs supplémentaires en comparaison à 𝑀𝑅𝑒𝑠,

entraînant une granularité plus fine. 𝐿𝑅𝑒𝑠 résulte en 1792 patchs en moins que 𝑀𝑅𝑒𝑠, libérant

ainsi de l’espace sur la VRAM. Ces sorties sont alignées avec le professeur par une interpolation

telle qu’expliquée dans la section 3.2. Différentes méthodes d’interpolation ont été évaluées sur

chaque résolution de la méthode 𝐴𝑅𝐷, ces résultats sont présentés dans la section 6.2.3.

6.2.2 Résultats

6.2.2.1 Évaluation sur la tâche DocVQA

Le tableau 6.2 présente les performances (ANLS) sur la tâche de DocVQA, en comparaison

avec l’état de l’art. Les modèles étudiants DIVE-Doc obtiennent 82.67% pour la méthode 𝐹𝑅𝐷,

82.63% pour 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 et 79.26% pour 𝐴𝑅𝐷/𝐿𝑅𝑒𝑠. Là où les méthodes avec OCR (UDOP

et LayoutLMv3) ont des performances de respectivement 84.70% et 78.76%, les modèles

DIVE-Doc ont des performances compétitives sans reposer sur des outils externes tels que

l’OCR. De plus, le LVLM Paligemma a un score de 84.77%, représentant un gap d’environ 2

points d’ANLS avec les modèles DIVE-Doc 𝐹𝑅𝐷 et 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠. L’encodeur de DIVE-Doc

ayant seulement 75 millions de paramètres contre 400 millions pour celui de Paligemma, ce

gap est réalisé avec1
5

du nombre de paramètres de Paligemma. D’autre part, les modèles à

petite échelle tels que Donut et Dessurt obtiennent des performances respectives de 66.26% et

63.22%, soulignant que les modèles DIVE-Doc obtiennent de meilleures performances que ces

derniers, avec un gap minimum de 13 points d’ANLS entre DIVE-Doc 𝐴𝑅𝐷/𝐿𝑅𝑒𝑠 et Donut.

Les résultats de DIVE-Doc cités ci-dessus montrent que la meilleure performance obtenue est

celle de la méthode 𝐹𝑅𝐷, puis 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 et enfin 𝐴𝑅𝐷/𝐿𝑅𝑒𝑠.
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Tableau 6.2 Comparaison des résultats de l’objectif 1 avec l’état de l’art pour la tâche de

DocVQA

Configuration du Modèle
Méthode #Params (VE) #Params Total OCR ANLS Générale (%) ↑

Paligemma, Beyer et al. (2024) 0.4(B) 3(B) 84.77

UDOP, Tang et al. (2023) - 0.8(B) � 84.70

LayoutLMv3, Huang et al. (2022) - 0.133(B) � 78.76

Donut, Kim et al. (2022) 0.075(B) 0.2(B) 66.26

Dessurt, Davis et al. (2022) 0.127(B) 63.22

DIVE-Doc 𝐹𝑅𝐷 0.075(B) 2.58(B) 82.67
DIVE-Doc 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 0.075(B) 2.58(B) 82.63

DIVE-Doc 𝐴𝑅𝐷/𝐿𝑅𝑒𝑠 0.075(B) 2.58(B) 79.26

Le tableau 6.3 présente les résultats détaillés par type de questions, des méthodes présentées

dans le tableau 6.2. La résolution 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 achève une performance de 61.48%, 58.68%

et 85.34% pour les questions portant sur des aspects visuels tels que des figures, des photos

ou encore la structure. Ainsi, elle surpasse les résultats de 𝐹𝑅𝐷 ayant respectivement 59.33%,

49.96% et 85.00% sur ces catégories. Cependant, la méthode 𝐹𝑅𝐷 achève une performance de

78.83% pour des questions portant sur du texte, là où 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 a 77.64%.

Tableau 6.3 Résultats pour la tâche de DocVQA pour différentes catégories de questions

ANLS (%) par catégorie de questions ↑
Méthode Figure Texte Photo Structure

Paligemma, Beyer et al. (2024) 65.43 80.99 73.82 87.33

UDOP, Tang et al. (2023) - - - -

LayoutLMv3, Huang et al. (2022) - - - -

Donut, Kim et al. (2022) 39.60 46.43 29.69 69.87

Dessurt, Davis et al. (2022) 31.64 48.52 28.62 64.86

DIVE-Doc 𝐹𝑅𝐷 59.33 78.83 49.96 85.00

DIVE-Doc 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 61.48 77.64 58.68 85.34
DIVE-Doc 𝐴𝑅𝐷/𝐿𝑅𝑒𝑠 54.94 74.54 58.28 83.15
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6.2.2.2 Évaluation de l’encodeur visuel

Cette section fournit des résultats sur les tâches de classification de document (DocCLS) et

d’analyse de structure de document (DLA), utilisées afin d’évaluer l’encodeur visuel et de

fournir des détails supplémentaires sur ce que cette composante du modèle a réellement appris

pour la tâche de DocVQA (voir section 3.2.2). Afin d’avoir une évaluation plus complète,

ces expérimentations, en plus d’être effectuées sur les modèles DIVE-Doc, ont également été

conduites sur l’encodeur visuel de Donut et de Paligemma. Les résultats sont présentés sur le

tableau 6.4.

Tableau 6.4 Résultats des encodeurs visuels sur les tâches de DocCLS et DLA

Classification (Acc ↑) Analyse de la structure (IoU ↑)
Méthode Générale Moyenne Texte Titre Liste Note en pied de page

Paligemma, Beyer et al. (2024) 0.92 0.36 0.54 0.13 0.07 0.05

Donut, Kim et al. (2022) 0.89 0.37 0.54 0.08 0.07 0.05

DIVE-Doc 𝐹𝑅𝐷 0.90 0.41 0.58 0.1 0.06 0.06

DIVE-Doc 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 0.90 0.30 0.50 0.07 0.05 0.04

DIVE-Doc 𝐴𝑅𝐷/𝐿𝑅𝑒𝑠 0.90 0.39 0.54 0.14 0.07 0.06

Pour la tâche de classification, les encodeurs visuels ont tous une performance correcte avec

peu de différences dans les résultats, allant de 0.89 pour Donut jusqu’à 0.92 pour Paligemma.

Cependant, pour la tâche d’analyse de structure, les résultats chutent drastiquement. Les

performances générales vont de 0.30 (𝐴𝑅𝐷/𝐻𝑅𝑒𝑠) à 0.41 (𝐹𝑅𝐷). Dans les catégories d’entités,

le texte semble être mieux segmenté/reconnu que des catégories de la même modalité mais plus

précises sémantiquement comme le titre allant de 0.07 (𝐴𝑅𝐷/𝐻𝑅𝑒𝑠) à 0.13 (Paligemma), les

liste de 0.05 (𝐴𝑅𝐷/𝐻𝑅𝑒𝑠) à 0.07 (𝐿𝑅𝑒𝑠/𝐻𝑅𝑒𝑠, Donut, Paligemma) et les notes en pieds de

pages (footnote) allant de 0.04 (𝐴𝑅𝐷/𝐻𝑅𝑒𝑠) à 0.06 (𝐴𝑅𝐷/𝐿𝑅𝑒𝑠 et 𝐹𝑅𝐷). La figure 6.1 montre

des visualisations qualitatives de cette tâche. Les modèles semblent segmenter et discriminer

correctement les patchs/pixels d’entités de modalités différentes texte (violet) et photo (vert) par

rapport à la vraie segmentation (ground truth). Cependant, pour les éléments dans la modalité

de texte mais de classes sémantiques plus précises, comme le titre (orange), les listes (rouges) et

les tableaux (gris), les modèles ont du mal à discriminer ces derniers correctement. L’image de
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document sur la deuxième ligne voit une bonne partie de son tableau central classifié tel que du

texte (violet) et certaines zones sont même classifiées telles que liste (rouge). Il en est de même

pour la troisième image de document, qui voit ses listes (rouges sur la ground truth) classifiées

telles que du texte par les modèles.

Donut PaliGEMMA DIVE-Doc (FRD) Ground Truth

Figure 6.1 Analyse qualitative des encodeurs visuels de DocVQA

pour l’analyse de structure de documents

6.2.3 Étude d’ablation

Cette section contient des études supplémentaires conduites pour analyser plus en détail les

choix d’architecture.

Premièrement, une évaluation sur le coût de calcul a été réalisée entre les encodeurs visuels de

Paligemma (le professeur) et les encodeurs visuels étudiants (DIVE-Doc 𝐹𝑅𝐷, 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 et

𝐴𝑅𝐷/𝐿𝑅𝑒𝑠). Pour cela, l’empreinte mémoire sur les GPU (VRAM) a été mesurée ainsi que la

latence afin de comparer les gains de la distillation en temps de procédure.
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Figure 6.2 Comparaison entre l’efficacité (Latence/VRAM) et la

performance (ANLS) des encodeurs visuels distillés

Les résultats sont affichés sur la figure 6.2. L’encodeur visuel de Paligemma a une latence par

image d’environ 896ms. Là où les encodeurs visuels de DIVE-Doc 𝐹𝑅𝐷 et 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 ont

une latence respective de 446 et 520ms par image. Ainsi, la réduction de l’encodeur visuel de

Paligemma a permis de diminuer le coût de calcul de ce dernier en divisant la latence par un

facteur de deux pour les méthodes 𝐹𝑅𝐷 et 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 tout en assurant des résultats compétitifs

sur la tâche de DocVQA. Cependant, là où l’empreinte sur la VRAM est de 3781 MiB, celle des

modèles 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 et 𝐹𝑅𝐷 est environ de la même grandeur avec respectivement 3651 et

3183 MiB. D’autre part, la méthode 𝐴𝑅𝐷/𝐿𝑅𝑒𝑠 a un gap d’ANLS plus grand avec le professeur,

comparée aux méthodes 𝐹𝑅𝐷 et 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠. Cependant, sa résolution plus petite permet de

diviser l’empreinte sur la VRAM par un facteur de deux (1933MiB) et la latence par trois (270ms).

De plus, différents types d’interpolations ont été évalués afin de définir le plus efficace pour les

méthodes 𝐴𝑅𝐷. Avec cela, un encodeur étudiant de type SigLIP a été implémenté afin d’attester

de l’efficacité d’un modèle hiérarchique ayant une architecture différente du professeur. Ainsi, le
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modèle Paligemma𝑇 a été testé, composé d’un encodeur SigLIP de 80 millions de paramètres

(même architecture que celui de Paligemma), prenant en entrée la même résolution 𝑇𝑅𝑒𝑠. Les

évaluations ont été établies sur les modèles entraînés lors de la distillation (étape 1, voir section

3.2). Les résultats sont générés en réutilisant le décodeur de Paligemma, sans affinement ou

entraînement supplémentaire, en utilisant la méthode SIMKD par Chen et al. (2022a). Les

résultats sont affichés sur le tableau 6.5. Les résultats de Paligemma𝑇 (67.13%) sont inférieurs à

Tableau 6.5 Comparaison de l’ANLS (%) après distillation des modèles étudiant

hiérarchique et non-hiérarchique

Méthode # Params (M) Bilinéaire Bicubique Sans Alignement

Prof : Paligemma, Beyer et al. (2024) 400 / / 84.77

Étudiant : Paligemma𝑇 80 / / 67.13

Étudiant : DIVE-Doc 𝐹𝑅𝐷 75 / / 81.71

Étudiant : DIVE-Doc 𝐴𝑅𝐷/𝐻𝑅𝑒𝑠 75 81.07 81.15 /

Étudiant : DIVE-Doc 𝐴𝑅𝐷/𝐿𝑅𝑒𝑠 75 73.1 74.0 /

ceux des modèles DIVE-Doc, montrant l’utilité de l’architecture hiérarchique par rapport à une

architecture réduite mais similaire au modèle de fondation. D’autre part, l’interpolation bicubique

permet les meilleurs résultats pour les deux résolutions (𝐻𝑅𝑒𝑠 → 81.15%) et (𝐿𝑅𝑒𝑠 → 74.0%)

contre (𝐻𝑅𝑒𝑠 → 81.07%) et (𝐿𝑅𝑒𝑠 → 73.1%) pour l’interpolation bilinéaire. Cependant, le

gap pour 𝐻𝑅𝑒𝑠 étant très faible (0.08), la méthode bilinéaire a été choisie pour cette résolution,

car elle ne fait intervenir que 4 pixels voisins avec de simples pondérations linéaires la rendant

légèrement moins coûteuse en opérations que l’interpolation bicubique qui exploite un voisinage

élargi de 16 pixels, nécessitant des calculs polynomiales de plus haut degré (3), entraînant plus

de calculs.

6.2.4 Discussion

Les résultats à travers la tâche de DocVQA ont permis de démontrer la validité de ce premier

objectif. En changeant l’architecture d’un encodeur visuel de fondation pour un modèle

hiérarchique, la résolution a pu être augmentée, tout en réduisant la taille de l’encodeur par un

facteur de cinq. Cette approche a ainsi permis de réduire le coût de calcul de l’encodeur visuel en
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divisant la latence par deux et en minimisant la perte de performances. De plus, pour la méthode

𝐴𝑅𝐷 permettant des résolutions plus variées, il s’est avéré qu’une résolution plus petite que

celle imposée par la méthode 𝐹𝑅𝐷 augmente le gap de performance avec le professeur mais

améliore l’impacte sur le coût de calcul en divisant la latence par trois et l’empreinte sur la

VRAM par deux, ce qui peut être bénéfique pour des environnements limités en puissance de

calcul. D’autre part, la méthode 𝐴𝑅𝐷 avec une résolution supérieure à la méthode 𝐹𝑅𝐷 ne

semble pas améliorer la performance d’un point de vue général mais uniquement sur des entités

visuelles telles que les photos et les graphiques (voir tableau 6.3). La méthode d’alignement

utilisée étant sans paramètres supervisés (sans apprentissage), il peut être supposé que certains

détails de la représentation sont perdus lors de l’alignement de la séquence de sortie de l’étudiant

avec celle du professeur, limitant ainsi les résultats de cette approche. Enfin, les expériences

réalisées sur les tâches de classification et d’analyse de structure de documents apportent des

détails supplémentaires sur ce qu’ont appris les encodeurs visuels. Pour chaque encodeur évalué,

les performances sur la classification sont élevées, indiquant que ces modèles représentent

correctement la structure des documents, leur permettant de les différencier et de les classifier.

Cependant, pour la tâche d’analyse des structures des documents, les encodeurs visuels ont

des performances assez faibles. L’analyse de leurs résultats montre que ces modèles arrivent

à discriminer les éléments de modalités différentes (image et texte). Néanmoins, les éléments

appartenant à une même modalité mais ayant une structure sémantique différente (liste, titre,

pied de page, etc.) sont mélangés et ont du mal à être correctement segmentés. Cependant, pour

la tâche de DocVQA, les modèles obtiennent de bons résultats pour les questions portant sur les

structures sémantiques des documents (voir tableau 6.3). Ainsi, il peut être supposé que pour

cette tâche, la représentation de la structure sémantique des éléments des documents est achevée

par le LLM, là où l’encodeur visuel permet d’extraire les caractéristiques visuelles des images

de documents.
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6.3 Enrichissement des représentations avec la géométrie spatiale des documents

Cette section présente les résultats des expérimentations de l’objectif 2, voir chapitre 4.

6.3.1 Détails des configurations

Les hyperparamètres des expériences de l’objectif 2 (voir section 4.2 et 3.2.2) sont affichés sur le

tableau 6.6. Les expérimentations ont été réalisées sur un GPU H100 de 80GB de VRAM. Afin

Tableau 6.6 Détails des hyperparamètres des expérimentations du premier objectif

Étape d’entraînement/tâche 𝛼 Optimiseur Époques Taille des lots
DocVQA (Étape 1) 3e−4 Adam 2 16

DocVQA (Étape 2) 9e−5 Adam 3 16

DocVQA (Étape 3) 3e−5 Adam 3 16

Classification 3e−4 Adam 5 16

Layout Analysis 9e−4 Adam 3 16

d’évaluer la stratégie étudiée, les expérimentations ont été conduites sur le modèle DIVE-Doc

(𝐹𝑅𝐷), présenté et entraîné dans le cadre de l’objectif 1.

6.3.2 Résultats

Les sections suivantes présentent les résultats des expérimentations réalisées sur DIVE-Doc.

6.3.2.1 Évaluation sur la tâche DocVQA

Le tableau 6.7 présente les résultats de DIVE-Doc enrichie par le module de position FFpos en

sortie du modèle sur l’ensemble de données DocVQA. Les résultats des autres positions sont

affichés dans la section ablation 6.3.3. Le modèle initial a un encodeur visuel faisant 0.075 (B)

de paramètres, ce qui représente une petite taille en comparaison avec les modèles de fondation

qui ont des encodeurs d’environ 0.4 (B) (Paligemma). Comme affiché sur le tableau, le module

de position FFpos (décris dans la section 4.2) ajoute 0.01(B) de paramètres à l’encodeur visuel

de DIVE-Doc. Le modèle enrichi (DIVE-Doc + FFpos) atteint un score de 83.46% d’ANLS. Là
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où le modèle atteint un score de 82.67% sans enrichissement, le module permet une amélioration

de 0.81 point, passant d’un gap de 2.10 à 1.31 points d’ANLS avec le professeur Paligemma.

Le tableau 6.8 affiche les résultats par catégorie de questions sur DocVQA. Le module FFpos

entraîne un décroissement des performances pour les questions portant sur les figures passant de

59.33% à 57.77% d’ANLS. Cependant, il entraîne une amélioration sur les questions portant

sur le texte (78.83% →79.29%) ou encore sur les questions liées à la structure du document

(85.00% →85.44%). Enfin, le module a également permis une amélioration sur les questions de

la catégorie photo, passant de 49.96% à 53.04%, représentant le gap le plus important avec le

modèle initial (3.08 points d’ANLS).

Tableau 6.7 Comparaison des résultats de l’objectif 1 avec l’état de l’art pour la tâche de

DocVQA

Configuration du Modèle
Méthode #Params (VE) #Params Total OCR ANLS Générale (%) ↑

Paligemma, Beyer et al. (2024) 0.4(B) 3(B) 84.77

UDOP, Tang et al. (2023) - 0.8(B) � 84.70

LayoutLMv3, Huang et al. (2022) - 0.133(B) � 78.76

Donut, Kim et al. (2022) 0.075(B) 0.2(B) 66.26

Dessurt, Davis et al. (2022) 0.127(B) 63.22

DIVE-Doc 0.075(B) 2.58(B) 82.67

DIVE-Doc + FFpos 0.085(B) 2.6(B) 83.46

Tableau 6.8 Résultats pour la tâche de DocVQA pour différentes catégories de questions

ANLS (%) par catégorie de questions ↑
Méthode Figure Texte Photo Structure

Paligemma, Beyer et al. (2024) 65.43 80.99 73.82 87.33

UDOP, Tang et al. (2023) - - - -

LayoutLMv3, Huang et al. (2022) - - - -

Donut, Kim et al. (2022) 39.60 46.43 29.69 69.87

Dessurt, Davis et al. (2022) 31.64 48.52 28.62 64.86

DIVE-Doc 59.33 78.83 49.96 85.00

DIVE-Doc + FFpos 57.77 79.29 53.04 85.44
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6.3.2.2 Évaluation de l’encodeur visuel

Le tableau 6.9 affiche les résultats pour les tâches d’évaluation de l’encodeur visuel. Bien que

le modèle initial de DIVE-Doc ait déjà une bonne représentation de la structure générale des

documents en atteignant un score de 0.90, le module FFpos a permis d’améliorer ce dernier de

1%, passant à une performance de 0.91. Cela réduit le gap avec l’encodeur visuel de Paligemma

qui a une performance de 0.92 (2% → 1%), et augmente celui avec Donut qui atteint 0.89 (1%

→ 2%). Cependant, l’ajout du module FFpos semble impacter négativement les résultats sur

la tâche d’analyse de la structure des documents. Là où le modèle DIVE-Doc initial affiche

une performance de 0.41 (mIoU), le module FFpos a entraîné une diminution de cette dernière

(0.37).

Tableau 6.9 Résultats des encodeurs visuels sur les tâches de DocCLS et DLA

Classification (Acc ↑) Analyse de la structure (IoU ↑)
Méthode Générale Moyenne Texte Titre Liste Note en pied de page

Paligemma, Beyer et al. (2024) 0.92 0.36 0.54 0.13 0.07 0.05

Donut, Kim et al. (2022) 0.89 0.37 0.54 0.08 0.07 0.05

DIVE-Doc 0.90 0.41 0.58 0.1 0.06 0.06

DIVE-Doc + FFpos 0.91 0.37 0.54 0.1 0.06 0.04

6.3.3 Étude d’ablation

Cette section présente les différentes études réalisées pour valider l’approche étudiée. Les

résultats présentés en premier lieu sont issus des expérimentations réalisées en étudiant plusieurs

zones d’insertion du module FFpos dans l’encodeur visuel. Comme décrit dans la section 4.2,

les positions évaluées sont à l’entrée du modèle (d), à la fin de chaque niveau (bl), à la sortie

du modèle (s) et enfin, sur toutes ces positions à la fois (dbls). Les résultats des performances

générales pour la tâche de DocVQA sont présentés sur le tableau 6.10.

La performance la plus haute a été obtenue en intégrant la position à la sortie du modèle (83.46%

ANLS), suivie de la position d’ajout à chaque niveau (83.36%) puis de l’insertion à chaque
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Tableau 6.10 Résultats pour les différentes insertions de positions sur la tâche de DocVQA

Modèle Insertion au début Insertion à chaque block Insertion à la sortie ANLS général (%) ↑
DIVE-Doc 82.67

DIVE-Doc (d) � 82.84

DIVE-Doc (bl) � 83.36

DIVE-Doc (s) � 83.46
DIVE-Doc (dbls) � � � 83.19

position proposée (83.19%). L’ajout au début du modèle semble avoir eu le moins d’influence

(82.84%), apportant une amélioration de 0.17 points d’ANLS contre 0.81 pour l’insertion en

sortie.

Le tableau 6.11 montre les détails des résultats sur différents types de questions. Le module

FFpos semble avoir réduit les performances pour les questions portant sur des figures passant de

59.33% d’ANLS pour le modèle initial à 56.74% pour l’ajout à chaque point d’insertion (dbls).

Cependant, l’ajout à chaque point d’insertion a eu un fort impact sur les questions de la catégorie

photo, avec un score de 58.82% d’ANLS, représentant ainsi une amélioration de 8.86 points

d’ANLS. Contrairement aux performances générales, l’insertion du module FFpos uniquement

à la sortie entraîne la plus petite amélioration sur la catégorie photo (3.08 points d’ANLS), là où

l’ajout au début conduit à une progression de 5.37 points et l’ajout à chaque niveau améliore

la performance de 5.17 points. Enfin, pour les questions liées à la structure des documents, le

module FFpos entraîne une amélioration allant de 0.09 (d) à 1 point d’ANLS (dbls).

Tableau 6.11 Résultats pour les différentes insertions de positions sur la tâche de DocVQA

ANLS (%) par catégorie de questions ↑
Modèle Figure Texte Photo Structure

DIVE-Doc 59.33 78.83 49.96 85.00

DIVE-Doc (d) 56.80 77.43 55.33 85.09

DIVE-Doc (bl) 58.88 78.88 55.13 85.55

DIVE-Doc (s) 57.77 79.29 53.04 85.44

DIVE-Doc (dbls) 56.74 78.92 58.82 86.00

Le tableau 6.12 présente les résultats sur les tâches d’évaluation de l’encodeur visuel pour les

différentes positions testées. Chaque position entraîne une amélioration de 1% sur la tâche de
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classification passant de 0.90 à 0.91, excepté l’insertion à chaque position simultanément (dbls)

qui conserve une performance de 0.90. Pour la tâche d’analyse de la structure, les différentes

positions d’insertion entraînent également des résultats similaires, soit 0.37 points de mIoU pour

la performance générale, ce qui montre une baisse des résultats par rapport au modèle initial qui

affiche une performance de 0.41 points.

Tableau 6.12 Résultats des encodeurs visuels sur les tâches de DocCLS et DLA

Classification (Acc ↑) Analyse de la structure (mIoU ↑)
Méthode Générale Moyenne Texte Titre Liste Note en pied de page

DIVE-Doc 0.90 0.41 0.58 0.1 0.06 0.06

DIVE-Doc (d) 0.91 0.37 0.54 0.09 0.06 0.04

DIVE-Doc (bl) 0.91 0.37 0.53 0.1 0.06 0.04

DIVE-Doc (s) 0.91 0.37 0.54 0.1 0.06 0.04

DIVE-Doc (dbls) 0.90 0.37 0.54 0.1 0.06 0.04

6.3.4 Discussion

L’intégration du module de position FFpos à la sortie de l’encodeur a démontré une amélioration

des résultats de la tâche de DocVQA. L’ajout du module entraîne 10 millions de paramètres

supplémentaires, ce qui représente une augmentation de 0.4% du nombre total de paramètres, tout

en réduisant l’écart de performance avec le LVLM Paligemma par rapport au modèle DIVE-Doc

initial. Ainsi, ce module permet à la fois d’améliorer les résultats avec une faible augmentation

du nombre de paramètres. L’étude de ce module sur différentes catégories montre qu’il réduit

cependant les résultats sur les questions portant sur des figures, ce qui suggère une perturbation

de la représentation de ces dernières. DIVE-Doc a été pré-entraîné en distillant l’encodeur visuel

de Paligemma qui est un modèle SigLIP. Ce dernier a lui-même été pré-entraîné sur des images

naturelles (photo). La base de données de DocVQA contient très peu de questions sur des figures

(environ 1000 sur les 50.000), sachant qu’une figure peut avoir plusieurs questions qui lui sont

associées. Il peut donc être supposé que l’ajout d’une composante dans la représentation telle

que la position n’a pas pu être suffisamment adaptée aux entités telles que les figures à cause

de ce déséquilibre dans la distribution des données. Là où les performances sur les questions



78

portant sur des photos ont été améliorées de 3.08 points d’ANLS, ce qui a pu être aidé par

le pré-entraînement de SigLIP. Pour les questions portant sur la structure des documents, les

performances ont été légèrement améliorées (+0.44 points d’ANLS). Cela suit la discussion du

premier objectif qui suggère que la compréhension sémantique de la structure des documents

est achevée par le LLM, tandis que l’encodeur visuel extrait et représente les caractéristiques

visuelles. D’autre part, l’ajout de la position à la sortie du modèle a également permis d’améliorer

de 1% les résultats sur la tâche de classification de documents. Cependant, l’ajout de ce module

a entraîné une diminution des résultats sur la tâche d’analyse de la structure des documents, et

cela pour toutes les positions d’insertion (0.41 mIoU → 0.37 mIoU). Il peut être supposé que le

module FFpos étant entraîné de bout-en-bout avec le LLM, il n’apprend pas de contexte (titre,

tableau, etc.) sémantiquement lié à la position, ce dernier étant traité par le modèle de langue

(voir section 6.2.4).

D’autre part, l’étude de l’insertion du module montre l’importance de l’endroit où est intégré

ce dernier pour la tâche de DocVQA. La performance générale maximale est atteinte lorsque

le module est ajouté uniquement à la sortie de l’encodeur visuel (83.46% d’ANLS). Cette

position d’insertion entraîne également les meilleurs résultats pour les questions portant sur

du texte (79.29%), soulignant l’importance de la position dans la représentation du modèle de

langue pour l’ordre de lecture. Cependant, l’ajout en sortie entraîne la plus petite amélioration

pour les questions de la catégorie photo, ce qui suit naturellement la discussion du premier

objectif. L’encodeur visuel sert à extraire et à représenter les caractéristiques visuelles du

document, les photos étant des entités visuelles, ajouter la position de manière plus précoce dans

la représentation permet à l’encodeur visuel de mieux représenter ces dernières. Cependant, là

où ajouter la position au début, à chaque niveau et à la sortie de l’encodeur visuel simultanément

améliore la performance sur les questions portant sur des photos (+8.86 points), cette stratégie

diminue l’amélioration sur les questions portant sur le texte et sur la performance générale

par rapport à l’ajout de la position en sortie uniquement. Il peut être supposé qu’ajouter une

information positionnelle de manière récurrente dans la représentation dilue d’autres informations

utiles à la compréhension sémantique du LLM.
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6.4 Ajout d’un module de filtrage pour étendre le modèle au multi-page

Cette section présente les résultats de l’adaptation du modèle DIVE-Doc au multi-page suivant

la méthodologie présentée dans le chapitre 5.

6.4.1 Détails des configurations

Le modèle a été testé avec une résolution de page 𝑀𝑅𝑒𝑠 ∈ R
2048×2048×3, basé sur les résultats

du premier sous-objectif (voir section 6.2.2.1). Cela conduit à un ensemble de patchs 𝑣 ∈
R

4096×2048 pour chaque page avec 4096 le nombre de patchs et 2048 la dimension de l’espace de

représentation multimodal. Le nombre de couches ℎ pour le module filtre est de 8. L’évaluation

de la performance a été effectuée en utilisant l’ANLS (voir équation 6.1) pour mesurer la qualité

des réponses et l’accuracy (équation 6.3) pour l’évaluation du filtre sur la sélection de page.

6.4.2 Résultats

Tableau 6.13 Résultats sur MP-DocVQA

Méthode # Param(B) OCR Tiling Fusion Tot Acc (%)↑ ANLS (%)↑
Toutes les pages dans le décodeur

Gram, Blau et al. (2024) 0.859 X X 19.98 80.32

DocOwl2, Hu et al. (2024) 8 X 50.78 69.42

HiVT5, Tito et al. (2023) 0.316 X X 79.63 62.01

Longformer, Tito et al. (2023) 0148 X X 71.17 52.87

BigBird, Tito et al. (2023) 0.131 X X 67.54 49.29

LayoutLMv3, Tito et al. (2023) 0.125 X X 51.94 45.38

Sélecteur de réponse

ScreenAI, Baechler et al. (2024) 5 X 77.88 77.1

ScreenAI, Baechler et al. (2024) 5 ? 72.9

Sélecteur de page + top-k pages dans le décodeur

M3DocRAG, Cho et al. (2024) 10 81.05 84.44

FRAG-LLaVA-OV, Huang et al. (2025) 7 ? 79.1

FRAG-InternVL2, Huang et al. (2025) 8 ? 77.8

Sélecteur de page

Pix2Struct, Kang et al. (2024) 0.273 X 81.55 61.99

MP-DIVE-Doc 2.58 76.25 70.72

MP-DIVE-Doc + FFpos 2.6 76.27 71.73



80

Le tableau 6.13 présente les résultats sur la tâche MP-DocVQA. Les modèles de ce mémoire

adaptés ont été nommés MP-DIVE-Doc (chapitre 3) et MP-DIVE-Doc + FFpos (chapire 4).

Ces derniers ont atteint une performance de 70.72% et 71.73% d’ANLS avec 2.6 milliards

de paramètres sans utiliser d’OCR. En comparaison avec d’autres approches bout-en-bout, il

concurrence des modèles tels que ScreenAI qui a une ANLS de 72.9% et DocOwl2 obtenant

69.42% d’ANLS. Ces derniers ayant respectivement 5 et 8 milliards de paramètres, les deux

modèles MP-DIVE-Doc ont donc des résultats compétitifs avec deux à trois fois moins de

paramètres. De plus, ils surpassent les modèles qui ont peu de paramètres et qui se basent

sur la fusion en amont tels que LayoutLMv3 (45.38% ANLS), BigBird (52.87% ANLS) ou

encore HiVT5 (62.01% ANLS). Le modèle Gram (80.32% d’ANLS) surpasse les méthodes

MP-DIVE-Doc mais nécessite de prendre l’ensemble des pages dans le décodeur tout en se

basant sur l’OCR pour représenter le document, ce qui augmente l’emplacement mémoire

requis. De plus, il se base sur la fusion en amont, ce qui nécessite ainsi d’encoder l’image pour

chaque question, ne permettant pas de stocker et de réutiliser les embeddings qu’il produit. En

comparaison aux modèles sélectionnant les 𝑡𝑜𝑝 − 𝑘 pages pour les envoyer dans leur décodeur,

M3DocRAG (84.44% d’ANLS) et FRAG (79.1% et 77.8%) surpassent également MP-DIVE-Doc

mais ont plus de paramètres (entre 7 et 10B). Ces méthodes faisant soit appel à différents modèles

(M3DocRAG), ou itérant plusieurs fois sur le même modèle de bout-en-bout (FRAG) entraînent

ainsi des systèmes plus complexes. Enfin, en comparaison avec Pix2Struct (61,99%) qui se base

sur une méthode similaire de sélection de page mais utilise la fusion en amont, MP-Dive-DOC

achève un gap supérieur de près de 8.73 points d’ANLS. La fusion en amont de Pix2Struct

combinée à un module de sélection de page entraîné atteint une accuracy de 81.55% sur la page

prédite, ce qui est supérieure au reste de l’état de l’art. La figure 6.3 compare l’efficience de ce

modèle avec MP-DIVE-Doc. Du fait de son nombre de paramètres inférieur à celui de ce dernier,

Pix2Struct a une latence bien inférieure à MP-DIVE-Doc qui est respectivement de 0.83 et 2.60

secondes pour un document de trois pages. Cette dernière évolue très peu avec l’augmentation

du nombre de pages en comparaison à MP-DIVE-Doc, respectivement de 2.14 et 8.31 secondes

pour 19 pages. De même, la faible taille de Pix2Struct lui permet d’avoir une empreinte réduite

sur la VRAM (3544MiB) contre 6635MiB pour MP-DIVE-Doc. Cependant, la faible taille du
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modèle l’empêche d’avoir une qualité de réponse compétitive (61.99% ANLS) par rapport à

MP-DIVE-Doc (70.72% ANLS).

a) Comparaison de l’empreinte VRAM

b) Comparaison de la latence

Figure 6.3 Efficience des modèles MP-DIVE-Doc et Pix2Struct

(Kang et al., 2024)
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Figure 6.4 Comparaison du coût de calcul sur une page entre le

modèle initial DIVE-Doc et MP-DIVE-Doc

La figure 6.4 compare le coût de calcul entre le modèle initial DIVE-Doc et le modèle adapté

MP-DIVE-Doc. Pour cela, la latence et l’empreinte mémoire de chaque modèle ont été mesurées

pour un document d’une page. Comme il est affiché, les deux modèles ont une faible différence

de latence (1.13 et 1.58 secondes) pour retourner la réponse sur une seule page. De plus, leur

empreinte sur la VRAM est la même, ce qui s’explique par le fait que le module filtre n’ajoute

pas de nouveaux poids au modèle mais réutilise directement ceux du décodeur.
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a) Comparaison de la performance de sélection de page en fonction du nombre

de page des documents

b) Nombre de question par taille de documents,

tirée de Tito et al. (2023)

Figure 6.5 Nombre de question par taille de documents et

performance du filtre

La figure 6.5a montre la performance du filtre de MP-DIVE-Doc sur l’ensemble de validation en

fonction du nombre de pages des documents. Comme il est affiché sur ce dernier, les documents à

page multiple où le filtre performe le mieux sont ceux ayant 2, 16 et 18 pages avec respectivement

0.86, 0.82 et 0.81 d’accuracy. Étrangement, l’évolution de la performance n’est pas linéaire avec

l’augmentation du nombre de pages. La figure 6.5b montre le nombre de questions en fonction

du nombre de pages des documents. Comme il est affiché, le nombre de questions pour des

documents de 16 et 18 pages est bien inférieur par rapport à des documents entre 2 et 10 pages,
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ce qui pourrait biaiser ces résultats. Cependant, on remarque que le nombre de questions pour

des documents ayant 20 pages est supérieur au nombre de questions posées sur les autres tailles

de documents. De plus, la figure 6.5a affiche une performance de 0.59 pour les documents de 20

pages, ce qui est similaire voir supérieur aux résultats pour des documents ayant par exemple

13 pages (0.57), 9 pages (0.48) ou encore 7 pages (0.54). Ainsi, il peut être supposé que la

performance du filtre ne dépend pas directement du nombre de pages mais plutôt de la question

posée, à savoir si des informations similaires mais non correctes peuvent être présentes sur les

autres pages du document, ce qui pourrait induire le filtre en erreur.
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6.4.3 Étude d’ablation

a) Comparaison de l’empreinte VRAM

b) Comparaison de la latence

Figure 6.6 Évaluation de l’impact du nombre de couche du

module filtre sur le coût de calcul en fonction du nombre pages
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La figure 6.6 présente une comparaison du coût de calcul en fonction du nombre de pages lorsque

le nombre de couches du filtre est de 4, 8 et 16. Comme affiché, l’empreinte mémoire ne varie

pas en fonction du nombre de couches utilisées mais plutôt en fonction du nombre de pages.

Cela s’explique par le fait que le filtre réutilise les poids du LLM, ainsi peu importe son nombre

de couches ℎ, ces dernières sont dans tous les cas stockées sur la mémoire via l’architecture

initiale. De plus, l’allocation mémoire supplémentaire pour chaque page reste minimale (1 page

→ 6179MiB, 12 pages → 6443MiB, 19 pages → 6635MiB), ce qui limite l’augmentation de

l’emplacement requis sur la VRAM de 0.456MiB pour 18 pages supplémentaires. Cependant, la

latence augmente significativement avec le nombre de couches et le nombre de pages. Pour un

document d’une seule page, la latence est de 1.44 pour le filtre à 4 couches, de 1.58 secondes

pour 8 couches et de 1.82 secondes pour 16 couches. Ces différences augmentent fortement avec

le nombre de pages, atteignant respectivement jusqu’à 6.02, 8.31 et 12.75 secondes de latence

pour les modules à 4, 8 et 16 couches. Le gap augmente donc avec le nombre de pages, passant

de 0.38 secondes pour un document d’une page, à 6.73 secondes pour 19 pages entre les filtres à

4 et 16 couches.

La figure 6.7 montre l’accuracy pour la prédiction de la page contenant la réponse sur l’ensemble

de validation entre les filtres à 4, 8 et 16 couches. Comme il est affiché, le module utilisant 8

couches obtient 78.23% d’accuracy alors que ceux à 4 et 16 couches atteignent respectivement

une valeur de 73.54% et 72.89%. Cela peut s’expliquer par le fait que 4 couches seulement ne

permettent pas d’encoder suffisamment la requête avec les embeddings pour en faire ressortir

les informations relatives. D’autre part, à partir d’un certain nombre de couches, l’information

de la réponse est dispatchée sur plusieurs jetons de l’image suite au mécanisme de l’attention,

réduisant l’efficacité du calcul du score se basant sur la similarité d’un patch par jeton (voir

équation 5.1). Ainsi, le module à 8 couches est plus performant, que ce soit en termes d’efficience

(latence) ou de qualité de prédiction (accuracy).
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Figure 6.7 Comparaison de la qualité de prédiction de la page

contenant la réponse entre les filtre à 8 et 16 couches

6.4.4 Discussion

Les modèles MP-DIVE-Doc ont ainsi obtenu des résultats compétitifs avec l’état de l’art.

Achevant un score de 70.72% d’ANLS et 71.73% (+FFpos), ils surpassent les approches

initiales ayant peu de paramètres qui se basent sur l’OCR et rivalisent aussi avec les méthodes

bout-en-bout ayant beaucoup de paramètres telles que ScreenAI (5B) et DocOwl2 (8B). Il

existe tout de même un gap avec certaines approches comme M3DocRAG (10B) qui utilise

plusieurs modules pour encoder le document, atteignant ainsi une performance de 84,44%

d’ANLS. Cependant, cette approche nécessite d’encoder le document une première fois pour

effectuer la similarité, ainsi qu’une seconde fois pour être utilisable par le LLM génératif.

Ainsi, cette méthode entraîne un coût de calcul plus important. D’autre part, dans le cas de

stockage des embeddings pour des cas d’utilisation de recherche d’information dans des bases

de données vectorielles (voir figure 0.2c), les approches de fusion en amont ne permettent pas
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de sauvegarder les représentations des documents, ces derniers étant encodés spécifiquement

pour chaque question. Les approches MP-DIVE-Doc se basant sur la fusion intermédiaire,

les embeddings de documents qu’elle produit peuvent être sauvegardés et réutilisés pour de

nouvelles questions/recherches d’information. De plus, les modèles MP-DIVE-Doc n’ont pas

besoin de paramètres additionnels pour traiter le multi-page, ce qui limite l’empreinte du modèle

sur la VRAM. Ainsi, la méthode proposée adapte le modèle bout-en-bout initial DIVE-Doc

sans ajout de paramètres, tout en permettant la réutilisation des représentations des documents

pour de nouvelles questions avec une approche de fusion intermédiaire. Il a été constaté que la

performance du filtre n’était pas nécessairement décroissante en fonction du nombre de pages,

ce qui suggère que la performance dépend plutôt de la question et des informations relatives

contenues dans les pages, ce qui ouvre la porte à l’étude d’un critère plus poussé pour calculer

le score par page. De plus, la latence augmente avec le nombre de pages, ce qui peut devenir

une contrainte sur des documents contenant beaucoup de pages, ou même sur une extension de

l’approche à des collections de documents. D’autre part, le LLM utilisé (gemma) étant entraîné

à traiter un nombre limité de jetons, le mécanisme de sélection proposé retourne seulement une

page, ce qui entraîne de nouveaux défis pour des cas d’utilisation où la réponse est dispatchée

sur plusieurs pages (multi-hop).



CONCLUSION ET RECOMMANDATIONS

Ce mémoire a abordé la représentation d’image de document pour la tâche de réponse à des

questions visuelles (DocVQA). Cette tâche a un rôle important dans le contexte de l’augmentation

du nombre de documents numérisés pour des cas d’utilisation allant de l’extraction automatique

de données à la recherche d’information spécifique dans des documents multi-page (MP-

DocVQA). Elle nécessite à la fois une précision sur la qualité des informations extraites et un

coût d’infrastructure restreint afin d’être déployable dans les secteurs industriels. Pour cela,

représenter les documents dans un espace multimodal est essentiel afin que les modèles de

langues puissent s’en servir afin de retrouver l’information à extraire. Ainsi, un modèle de

type vision-language (VLM) a été développé afin de répondre à cette tâche sur des documents

industriels comportant différents types d’information (texte manuscrit, illustration, graphique,

etc.). Ce modèle nommé DIVE-Doc est composé d’un encodeur visuel qui prend en entrée une

image de document numérisée et retourne sa représentation dans un espace multimodal. Cette

dernière est ensuite envoyée avec une question au modèle de langue qui retourne la réponse

extraite à partir de la représentation du document. Ce modèle bout-en-bout ne repose donc pas

sur des outils extérieurs tels que l’OCR, ce qui réduit la complexité du système.

Afin de réduire le coût de calcul du modèle sans dégrader la qualité des réponses, ce dernier a

été construit à partir d’un grand modèle de vision-language (LVLM). Ces architectures ayant

beaucoup de paramètres, ce qui augmente leur latence ainsi que leur emplacement sur la mémoire

de l’infrastructure, l’encodeur visuel du modèle initial a été réduit par distillation. Cette méthode

a permis de changer l’architecture de l’encodeur visuel pour une structure hiérarchique ayant

moins de paramètres, réduisant la latence par deux pour cette composante du modèle. De plus,

l’architecture hiérarchique a permis de prendre en entrée une résolution d’image plus importante,

conservant ainsi la qualité des réponses du modèle. Par ailleurs, une approche de distillation non

conventionnelle a été proposée, permettant d’adapter la résolution des images de documents en

fonction des besoins sans ajout de paramètres.
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De plus, un module de représentation de la géométrie spatiale (structure) des documents a été

intégré afin d’améliorer les ordres de lecture du modèle de langue, ce qui a permis d’affiner la

qualité des réponses. Différentes positions d’insertion de ce dernier ont été testées, suggérant

qu’un ajout en sortie de l’encodeur visuel est bénéfique afin de permettre à ce dernier de

représenter le contenu avant de l’enrichir par sa position sur le document initial. Par ailleurs,

une étude de l’encodeur visuel sur les tâches de classification et d’analyse de la structure

sémantique des documents a été réalisée afin d’interpréter ce que le module de vision a appris à

extraire et représenter. La tâche de classification a révélé que l’encodeur représente correctement

la structure générale du document dans l’espace multimodal, lui permettant de discriminer

les documents de différentes structures (lettre, formulaire, article, etc.). Cependant, la tâche

d’analyse de la structure sémantique révèle que l’encodeur visuel ne discrimine pas les entités

d’un même type d’information mais ayant une sémantique structurelle différente (titre, tableau,

note en pied de page, etc.). Le modèle global (encodeur visuel et modèle de langue) ayant une

bonne qualité de réponse sur les questions portant sur l’analyse de la structure sémantique, cela

souligne que cet aspect est donc traité par le modèle de langue.

Enfin, une ouverture sur les documents multi-page a été proposée, en adaptant le modèle

construit lors des sous-objectifs de ce mémoire. Afin de retrouver la page contenant la réponse,

un module filtre a été ajouté entre l’encodeur visuel et le modèle de langue. Le filtre réutilise les

huit premières couches du décodeur afin d’encoder la question avec les embeddings de chaque

page et retourne un score de probabilité pour chacune de ces dernières. Les embeddings de la

page ayant le plus haut score sont ensuite envoyés au LLM avec la question afin de générer la

réponse. Ainsi, en réutilisant les paramètres du modèle de langue dans le filtre, les modèles

MP-DIVE-Doc atteignent 70.72% et 71.73% ANLS, sans paramètres additionnels, surpassant

des modèles plus lourds en efficacité tout en ayant des performances compétitives. Les modèles

se basant sur la fusion intermédiaire, les représentations des documents qu’ils produisent sont
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réutilisables pour chaque question. Ainsi, cela ancre le système dans des cas d’application réels

tels que les rapports industriels multi-pages.
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Le travail de ce mémoire a été réalisé afin de répondre à la tâche de DocVQA pour des cas

d’utilisation industriels. Ainsi, la base de données utilisée pour entraîner et évaluer le modèle

est essentiellement constituée d’informations sous forme de texte. Cependant, il pourrait être

intéressant d’étudier l’architecture proposée sur d’autres bases de données comportant différentes

distributions des types d’information tels que pour des documents infographiques, des rapports

scientifiques et autres afin de répondre à des contextes d’utilisation différents.

D’autre part, l’approche de distillation proposée pour réduire la taille de l’encodeur visuel initial

étant sans paramètres, cette dernière n’a pas permis de bénéficier totalement des documents de

grande résolution. Ainsi, adapter un module d’alignement à un faible nombre de paramètres

permettrait d’améliorer la qualité des réponses pour les infrastructures disposant d’une plus

grande capacité de calcul. De plus, bien que la distillation de l’encodeur visuel ait permis

de diminuer le coût de calcul du modèle, le LLM reste la composante la plus coûteuse en

termes d’infrastructure. L’étude approfondie de l’encodeur visuel a démontré que l’analyse de la

structure sémantique du document pour la tâche de DocVQA est effectuée par le modèle de

langue. Ainsi, intégrer cette notion dans l’encodeur visuel permettrait de réduire la taille et la

complexité du décodeur afin de faciliter son utilisation sur des infrastructures limitées.

Enfin, l’adaptation des modèles aux documents multi-pages par l’ajout d’un filtre permet de

retrouver la réponse à une question parmi plusieurs pages d’un document. Cependant, il a été

suggéré que la performance du filtre ne dépend pas directement du nombre de pages, mais plutôt

du contexte (informations présentes dans les pages) ainsi que de la question. Ainsi, étudier

d’autres critères de sélection pourrait permettre une meilleure discrimination des pages ayant des

informations similaires mais non relatives à la question posée. D’autre part, la latence augmentant

drastiquement avec le nombre de pages, des défis demeurent pour l’extension sur des collections

de documents, pouvant contenir plusieurs centaines de pages. Un axe de développement pourrait

être l’architecture de base de données vectorielle hiérarchique permettant un premier filtre
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des pages candidates. Une autre difficulté consiste à retrouver la réponse lorsque celle-ci est

dispatchée sur plusieurs pages. En effet, envoyer plusieurs pages au modèle de langue pour

retrouver la réponse augmente considérablement le nombre de jetons à traiter et, par extension,

le coût de calcul. Ainsi, une adaptation du filtre afin de prendre en entrée plusieurs pages

pour une sélection modulable en fonction de la question et du nombre de pages pourrait être

étudiée. D’autre part, les modèles hiérarchiques ayant fait leurs preuves pour allier coût de

calcul et résultats dans le contexte de représentation d’image de documents, s’inspirer de leur

architecture pour les modèles de langue pourrait être une piste intéressante à explorer afin de

réduire l’évolution du coût de calcul en fonction du nombre de pages à traiter.
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