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Evaluation de la conception des ensembles de modéles climatiques pour I’évaluation des
impacts hydrologiques: attribution, transférabilité et pondération de I’incertitude

Mehrad Rahimpour ASENJAN
RESUME

Comprendre les impacts des changements climatiques sur la disponibilité en eau et les
extrémes hydrologiques est essentiel pour une planification efficace des ressources hydriques.
Les évaluations d’impact hydrologique reposent largement sur des ensembles de modeles
climatiques globaux (GCM) pour quantifier les changements futurs et leurs incertitudes.
L’utilisation d’ensembles multi-modeles (MME) pose toutefois plusieurs défis
méthodologiques : choix des modéles, attribution des incertitudes et pondération des modeles
constituant 1’ensemble. L’utilisation d’un sous-ensemble réduit de GCMs implique des
compromis entre faisabilité computationnelle et représentativité. De méme, la pondération des
modeles selon leur performance ou leur indépendance influence les résultats et les limites
d’incertitude. Pourtant, malgré I’importance de ces choix, il existe peu de consensus sur les
meilleures pratiques, et leur influence sur les projections hydrologiques demeure peu explorée.

Pour y répondre, trois objectifs guident cette thése : (1) quantifier I’impact de la sélection de
GCM basée sur des indices climatiques sur le transfert d’incertitude vers les projections
hydrologiques ; (2) examiner les effets hydrologiques de 1’inclusion ou exclusion de mode¢les
a forte sensibilité climatique ; (3) comparer I’effet de différentes pondérations sur I’incertitude
des projections de débits futurs. L’objectif n’est pas de promouvoir une stratégie unique, mais
de comprendre comment les choix de conception d’ensembles influencent la propagation de
I’incertitude climatique dans 1’espace hydrologique.

La premiere analyse étudie le transfert d’incertitude climatique vers les sorties hydrologiques
via des méthodes d’échantillonnage (ex. : algorithme KKZ) pour sélectionner des modeles
selon des indices de température et de précipitation. L’expérience, menée sur 3 540 bassins
nord-américains avec 20 GCM de I’ensemble CMIP5, deux approches de corrections de biais
et trois modeles hydrologiques, montre que des ensembles réduits bien congus peuvent
conserver 1’essentiel de la dispersion observée. Toutefois, ce transfert est non uniforme et non
linéaire : de petites variations de précipitations peuvent produire de fortes différences de débits,
surtout aux extrémes, influencées par la structure du modéle hydrologique et les
caractéristiques du bassin.

La deuxiéme analyse évalue I’exclusion des mode¢les a forte sensibilité climatique (« modeles
chauds ») sur 3107 bassins nord-américains, en utilisant 19 GCM de I’ensemble CMIP6 dont
cinq « mod¢les chauds ». Leur retrait réduit I’incertitude dans certaines régions (Alaska, sud-
ouest des E.-U., parties du Canada) mais 1’augmente ailleurs, soulignant 1’importance
d’évaluer les GCM sur des critéres régionaux, et pas seulement globaux.

Enfin, la theése teste plusieurs schémas de pondération via une expérience dans une pseudo-
réalité, ou chaque GCM est traité comme la « vraie » réalité future. Six méthodes sont
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appliquées a 22 GCM couplés a un modele hydrologique sur 3 107 bassins. Les pondérations
inégales basées sur les observations historiques améliorent les projections climatiques, mais
I’effet sur les débits est atténué, surtout apres correction de biais, laquelle réduit la sensibilité
aux choix de pondération.

Cette these apporte des perspectives nouvelles sur la conception des ensembles de modéles
climatiques pour les évaluations d’impact hydrologique. Elle souligne que la construction
d’ensembles doit intégrer le comportement pertinent pour I’impact (variabilité, saisonnalité
des débits) et trouver un équilibre entre diversité, efficacité computationnelle et pertinence
pour I’application visée.

Mots-clés: changement climatique, modélisation hydrologique, propagation des incertitudes,
conception d’ensembles, pondération, correction de biais, modeles chauds, pseudo-réalité,
débits



Evaluating Climate Model Ensembles design for Hydrological Impact Assessment:
Uncertainty Attribution, Transferability, and Weighting

Mehrad Rahimpour ASENJAN
ABSTRACT

Understanding the impacts of climate change on water availability and hydrological extremes
is critical for effective water resources planning. Hydrological impact assessments rely heavily
on global climate model (GCM) ensembles to quantify future changes and their associated
uncertainties. The use of multi-model ensembles (MMEs), however, presents several
methodological challenges, including model selection, uncertainty attribution, and ensemble
weighting. Selecting a reduced subset from an ever-growing pool of GCMs introduces
methodological trade-offs between computational feasibility and ensemble representativeness.
Similarly, weighting the individual GCMs by performance or by independence affects the
outcome as well as its uncertainty limits. Yet, despite the critical role of these decisions, there
is little consensus on best practices, and the influence of these design strategies on hydrological
projections remains underexplored.

To tackle these issues, three specific research objectives are pursued in this thesis: (1) to
quantify the impact of GCM selection based on climate indices on uncertainty transferability
to hydrological projections; (2) to examine the hydrological implications of including or
excluding high-sensitivity climate models in multi-model ensembles; and (3) to compare the
effects of different GCM weighting schemes on the uncertainty of future streamflow
projections. Rather than promoting a single optimal strategy, the objective is to understand
how different ensemble design choices affect the propagation of climate uncertainty into
hydrological space.

The first analysis investigates the transferability of climate uncertainty to hydrological outputs
by applying sampling methods such as the KKZ algorithm to sub-select climate models based
on temperature and precipitation indices. This experiment was conducted across 3,540 North
American catchments using 20 CMIP5 GCMs, two bias correction methods and three
conceptual hydrological models. Results show that when carefully designed, reduced
ensembles can retain most of the spread observed in streamflow projections derived from the
full ensemble. However, the translation of uncertainty is non-uniform and nonlinear, meaning
small differences in climate inputs, particularly precipitation, may result in large variations in
streamflow, especially for high and low flow regimes.

Secondly, the thesis examines the effect of excluding high Equilibrium Climate Sensitivity
(ECS) models, referred to as “hot” models, on projected streamflow. Exclusion of these models
reduces the spread of projected streamflow changes in some regions such as Alaska,
southwestern U.S., and parts of Canada, but increased it in others, highlighting the need to
evaluate GCMs using region-specific, rather than global, criteria.



Finally, the thesis assesses the performance of weighting schemes in GCMs through a pseudo-
reality experiment, where each of the GCMs is, in turn, simulated as the “true” future. This
allows an objective comparison of weighting performance against a known target in future
where the true reality is unknown. The analysis applies six weighting approaches to an
ensemble of 22 CMIP6 GCMs, coupled with a hydrological model across 3,107 North
American catchments. Results indicate that unequal weighting by historical temperature and
precipitation improves climate variable projections' quality. But for streamflow, these
improvements are blunted, particularly if bias correction has been applied to inputs.

This thesis provides new insights into the design of climate model ensembles for hydrological
impact assessments. It emphasizes that ensemble construction should not be based solely on
climate performance metrics, but must incorporate impact-relevant behavior such as
streamflow variability and seasonality. The findings advocate for a more pragmatic approach
to ensemble design, balancing model diversity, computational efficiency, and relevance to the
intended application.

Keywords: climate change, hydrological modeling, uncertainty propagation; ensemble design;
model weighting; bias correction; hot models; pseudo-reality; streamflow
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INTRODUCTION

Climate change has been one of the most severe challenges that humanity has been facing in
recent decades. Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has issued
six assessment reports, which have documented the increasing certainty and magnitude of
anthropogenic climate change and its consequences. The current Synthesis Report of the Sixth
Assessment (AR6), published in 2023, confirms that rapid and worldwide alterations of the
climate system have occurred over recent decades (IPCC, 2023). Adverse effects of climate
change are, but not restricted to, global warming, increased sea levels, melting of glaciers, and
even more and prolonged extreme events such as heavy precipitation, floods, droughts, and
heatwaves (IPCC, 2014, 2023). Climate change severely threatens not only urban security, but
also environmental stability and the long-term viability of economic and social development
around the world. Socio-economic consequences range from reduced agricultural production
and food security to displacement of communities and further pressure on public health
systems (IPCC, 2023). Because of the scale and scope of these risks, adaptation and mitigation

strategies to the present and future effects of climate change has become crucial.

Climate change risks can be reduced by implementing proper management strategies (Wilby
& Dessai, 2010), which necessitate a thorough understanding of the magnitude and uncertainty
of the projected changes. Reliable projections of future climate are therefore necessary to guide
policymaking, enable risk management strategies, and influence sustainable development
planning in the face of a changing climate (Knutti, Furrer, et al., 2010). Importantly, the effects
of climate change are not uniform across the globe; they vary significantly by region due to
differences in geography, climate systems, and socio-economic contexts (IPCC, 2021). As
such, decision-making must be informed at national and local levels by regional considerations
through regional-scale impact assessments, as opposed to global scale trends. Regional studies
are required to inform adaptation planning, design robust infrastructure, and implement
effective policies across sectors such as flood control, water resources management, and urban

planning.



To evaluate the effects of climate change, researchers typically use mathematical models of
the Earth's climate system referred to as General Circulation Models (GCMs) or Earth System
models (ESMs) GCMs are highly advanced numerical models that incorporate interactions
between the atmosphere, oceans, land surface, and cryosphere to project future and past climate
conditions according to various greenhouse gas emission scenarios (Illangasingha et al., 2023).
ESMs are advanced versions of GCMs that include additional components such as the carbon
cycles and dynamic vegetation. Greenhouse gas emission scenarios, referred to as
Representative Concentration Pathways (RCPs) or the more recent Shared Socioeconomic
Pathways (SSPs), represent different trajectories of socio-economic development, energy use,
and policy choices, each associated with a corresponding radiative forcing level (IPCC, 2021;
Siabi et al., 2023). However, translating the outputs of GCMs into useful information for
regional planning requires diligent assessment to overcome their shortfalls and associated

uncertainties (Knutti, Furrer, et al., 2010).

In hydrological impact studies, the use of GCM outputs involves two key steps. The first is to
take raw GCM data, which usually have coarse spatial resolution and contain systematic biases,
and downscale and bias-correct them to provide site-specific climate data (Maraun et al., 2010;
Menapace et al., 2025; Teutschbein & Seibert, 2012). This can be achieved using statistical
techniques, which calibrate large-scale GCM outputs against local observations (Miller et al.,
2025), or dynamical downscaling (Fallah et al., 2025), which uses Regional Climate Models
(RCMs) nested within GCMs. In this approach, the GCM supplies large-scale atmospheric and
oceanic boundary conditions, that are periodically updated, to drive the RCM. The RCM then
simulates local processes like topographic effects and land—atmosphere interactions at a finer
spatial resolution while remaining consistent with the global circulation. Second, the
downscaled climate outputs, i.e., temperature and precipitation, are used to force hydrological
models in order to simulate catchment-scale processes such as streamflow and
evapotranspiration (e.g. Vano et al., 2014). The resulting hydrological projections can
subsequently be used for the aim of informing real decisions, such as design of infrastructure
(e.g., storm water systems, dams), water supply management, and flood risk assessment (Wilby

& Dessai, 2010).



Climate modeling has progressed significantly in the last few decades, resulting in an outburst
of GCMs that are presently available. The Coupled Model Intercomparison Project Phase 5
(CMIPS5) and its successor, CMIP6, have been the key contributors to the increase in the
number of climate models. CMIPS5 featured simulations from 62 different models developed
by 29 modeling centers worldwide (Taylor et al., 2012; Why So Many Climate Models? |
California Climate Commons). CMIP6 expanded this further, involving around 100 models
contributed by 44 institutions (Eyring et al., 2016; Hausfather, 2019). In addition to increasing
the ensemble size, CMIP6 introduced major improvements such as enhanced spatial resolution,
a broader range of greenhouse gas concentration scenarios (Shared Socioeconomic Pathways

— SSPs), and more advanced representations of Earth system processes.

The growing diversity of climate models allows researchers to use large multi-model
ensembles to better quantify uncertainty in future climate projections, account for structural
differences among models, and identify robust signals of change (Lehner et al., 2020).
However, from a practical standpoint, using all available models in hydrological impact
assessments is infeasible. Running high-resolution downscaling and hydrological simulations
across dozens of GCMs demands substantial computational resources, time, and data
management capacity. Although modern hardware and storage solutions can accommodate
large volumes of climate data, the bottleneck often lies in the workflow: repeatedly bias-
correcting, forcing, calibrating, and analyzing hydrological simulations for dozens of GCMs
requires substantial researcher time, model-specific tuning, and multi-stage post-processing.
In operational and academic settings, the limiting factor is therefore less about raw computing
power and more about managing, interpreting, and making decisions from a very large set of
uncertain projections. Large ensembles can complicate impact assessment by producing an
overwhelming range of possible outcomes, making it difficult for practitioners to extract
actionable information. As a result, selecting a representative subset of credible models, or
applying weighting strategies, remains a practical approach to maintaining interpretability and

analytical tractability while still capturing the essential dimensions of uncertainty.



Since the predictions provided by these models are so critical, caution needs to be taken to
ensure that the GCMs selected are representative and credible (Cannon, 2015; Dubrovsky et
al., 2015). An ill-advised model selection can lead to biased estimates of the magnitude or
timing of hydrological effects and, subsequently, to suboptimal planning measures. A selection
of GCMs that is transparent and well-argued, therefore, together with careful downscaling and
hydrological simulation, is necessary to provide useful and credible climate impact
assessments (Chowdhury & Eslamian, 2014). Therefore, the selection of a representative
subset of GCMs has become a key methodological issue in climate impact assessments (Chen
et al., 2017; Knutti, Furrer, et al., 2010). The subset that captures the most significant
dimensions of climate model uncertainty, but is small enough to manage, must be carefully

selected (Herger et al., 2018; Wilcke & Bérring, 2016).

Given these constraints, the question of how to design GCM subsets that are both
representative and computationally efficient remains central to the design of robust climate
impact assessments. The selection of a smaller subset of GCMs from a large ensemble
inevitably results in information loss. However, it is important to emphasize that subsetting
does not reduce the actual uncertainty inherent in future climate projections, it only reduces
the representation of that uncertainty (Wilcke & Bérring, 2016). In other words, fewer models
mean fewer perspectives on possible climate futures, which can narrow the perceived range of
outcomes without necessarily improving confidence in any one result. Therefore, the selected
subset need to preserves the significant statistical and physical characteristics of the overall
ensemble, such as central tendencies (means or medians), extremes, variability, and spatial

coherence.



CHAPTER 1

LITERATURE REVIEW

1.1 Climate Change

Climate change is defined as the long-term changes in temperature, precipitation, and other
weather patterns, and they can be caused by both human activity and natural processes like
volcanic eruptions and variations in solar radiation (IPCC, 2021). However, the primary driver
of the observed climate change since the late nineteenth century has been human
activity. Global warming is one of the most prominent indications of this change. The global
mean surface temperature has risen by roughly 1.09°C [0.95 to 1.20°C] in comparison to the
pre-industrial baseline (1850-1900) (IPCC, 2023). Warming is not uniform across the globe,
being stronger over land areas, approaching 2°C, and even more pronounced at higher
latitudes. The main cause is the increase in atmospheric concentrations of carbon dioxide
(CO2) which trap outgoing longwave radiation and intensify the natural greenhouse effect

(IPCC, 2023).

Greenhouse gases are emitted into the atmosphere from two primary sources. The first source
is the natural systems, such as forest fires and volcanoes. It is noteworthy that the emissions
and the sinks in the natural systems balance each other out, meaning that the greenhouse gases
absorbed by the sinks, e.g., oceans, are of the same magnitude as the emission from sources,
e.g., volcanoes (Yue & Gao, 2018). However, the addition of greenhouse gases from human
activities, such as fossil fuel combustion, land-use change, agriculture, and industrial activities,

interrupts the balance in the earth’s system (IPCC, 2023).

With population growth and industrial advances in the last century, greenhouse gas emissions
from human activities have risen to an unprecedented level in history. Representative
Concentration Pathways (RCPs), defined as scenarios of different greenhouse gas
concentration trajectories in the atmosphere, are used by climate modellers to assess the future

of climate change. In addition, the most recent IPCC reports examine how socioeconomic



factors might evolve over the coming century (IPCC, 2023). Population, economic
development, education, urbanization, and the pace of technological advancement are a few
examples. These “Shared Socioeconomic Pathways” (SSPs) examine five potential futures and
examine how various levels of climate change mitigation might be accomplished when the
mitigation goals of RCPs are combined with the SSPs. According to the climate projections,
even under an optimistic greenhouse gas emission scenario, the warming will exceed 1.5°C
(SSP1-1.9) and 2°C (SSP1-2.6) (IPCC, 2023). Even with rigorous policies to reduce emissions,
it will be challenging to control the warming without substantially lowering emissions in the

upcoming decades (IPCC, 2023).

Another critical follow-up for climate change is the change in precipitation patterns. But, the
distribution of changes in precipitation is more spatially variable. Over the last three decades,
precipitation has generally increased in the higher latitudes of the northern hemisphere (north
of 30°N) and the eastern part of North and South America. On the other hand, it has decreased
in lower latitudes (30° to 10°) and in South Africa (IPCC, 2023). It is noteworthy that the results
for other regions have more uncertainty, and the models do not provide consistent results.
Overall, future changes are expected to amplify existing precipitation contrasts, with dry areas
becoming drier and wet regions becoming wetter (Kundzewicz, 2008). It is also important to
note that in arid regions, small absolute changes in precipitation may translate into large

percentage changes because the baseline precipitation is low (IPCC, 2021).

1.2 Water Resources and Climate Change

The sustainable development of civilization has always been in debt to the availability of water
resources since agriculture and food security are entirely dependent on accessible water. In
addition, water is a crucial asset to industries, hydroelectricity, and environmental usage. The
increased demand caused by the population increase puts extra pressure on this resource. In
addition, climate change is affecting the distribution and adding uncertainty to future water

distribution patterns.



The impact of climate change is not limited to warming temperatures and changes in
precipitation. In addition to these effects, higher temperature increases the evaporation rate and
results in surface drying, consequently raising the intensity and duration of drought (Trenberth,
2011). Because of the lack of long-term data for drought variables such as soil moisture,
detection and attribution of drought is challenging (Easterling et al., 2017). Nonetheless, recent
studies robustly show that climate change is already impacting droughts in several regions
(Cook et al., 2018). For instance, Dai (2013) concluded that decreasing precipitation combined
with increased evaporation will contribute to extreme drought events in many regions in the
21% century. Also, Woodhouse et al. (2016) concluded that the recent droughts in the Colorado

river basin resulted from the recent warming.

The warming will also impact extreme precipitation, the primary flood generator in most
regions. (Fischer & Knutti, 2016). Since the 1970s, the frequency of intense rainfall has
increased, and more intense and prolonged droughts have been seen worldwide (IPCC, 2023).
The capacity of the atmosphere to hold moisture is temperature-dependent and is governed by
the Clausius—Clapeyron relationship, which suggests an increase of about 7% in atmospheric
water-holding capacity per 1 °C of warming, provided moisture is available (Trenberth, 2011;
Westra et al., 2014). This intrinsically means that a warmer atmosphere can retain more
moisture, contributing to more extreme precipitation events (Trenberth, 2011). However, the
link between warming and precipitation extremes is more complex. Global climate models
project that average precipitation will increase more slowly, on the order of 2—3% per 1 °C of
warming, due to energy balance constraints (Held & Soden, 2006; Allen & Ingram, 2002).
Moreover, the magnitude of change varies regionally and depends on the intensity and duration

of rainfall (Lenderink & Fowler, 2017; Martel et al., 2021; Westra et al., 2014).

The temperature rise will further alter the ratio of rain to snow precipitation, which has already
been seen in many higher latitude regions, (e.g., Mote, 2003). Higher temperatures will result
in reduced snowfall compared to an increase in rainfall. Warming will also cause earlier

snowmelt, which will lead to lower water resources in summer (Trenberth, 2011). For instance,



in the western United States, among many other regions, the snowpack formed in winter
provides freshwater as it melts in summer and spring. The lower snowfall rate, and earlier melt
of the snowpack, will reduce the freshwater storage capacity. Furthermore, a higher rainfall
rate is expected to increase the flood rate in winter and spring. Reduced natural freshwater and
higher flood probability will challenge the managers’ current flood control and reservoir

management policies (Knowles et al., 2006).

In summary, climate change is changing the hydrological cycle, consequently impacting the
quantity (Milly et al., 2005; Mourato et al., 2015) and quality (Whitehead et al., 2009) of water
resources. Hydrologic processes, availability of water resources, agriculture, and
hydroelectricity will be impacted by climate change (Christensen & Lettenmaier, 2007). In
other words, the existing risks for humans and the ecosystem, such as floods and droughts, will
be even worse with the changing climate (IPCC, 2023). However, the risks can be mitigated
by adopting appropriate management strategies that require understanding the changes’
magnitude and uncertainty. Hence, assessment of regional climate change impacts, especially

on watershed hydrology, becomes very important.

1.3 General Circulation Models

General circulation models, also called global climate models (GCMs), and earth-system
models (ESMs), which add the biogeochemical cycle, use mathematical equations that
represent physical processes (conservation of mass, energy, momentum, etc.) to simulate the
interaction between the atmosphere, land surface, oceans, and sea ice (Trzaska & Schnarr,
2014). These include, most notably, the Navier—Stokes equations for atmospheric and
oceanic motion (conservation of momentum), along with equations representing the
conservation of mass, energy, and the transfer of radiation and water vapor. Each equation is
solved on vertical and horizontal grid cells and multiple layers in the atmosphere and ocean.
GCMs generally have coarse resolutions (100km to 500km), because running them on

smaller scales would be computationally too expensive (Wilby et al., 2009). Despite this



limitation, GCMs remain essential tools for analyzing current climate dynamics and

projecting future changes under various greenhouse gas emission scenarios.

1.3.1 CMIPS and CMIP6

The Coupled Model Intercomparison Project Phase 5 (CMIP5) has gathered coordinated
simulations from different climate modeling groups to bridge the gap in understanding climate
changes in the future and past. CMIP5 is a multimodel context of climate change and variability
(Taylor et al., 2012). The long-term simulations in the CMIP5 span the range of the nineteenth
century to the twenty-first century and build upon the previous CMIP projects. On the other
hand, near-term projections are added to the CMIP5, which start from the observed state of the
climate to assess the predictability of near-future climatic patterns. Near-term projections will
help scientists identify the predictable variables and the corresponding time scales of
predictability. Model robustness, initialization method, and data quality are the primary

determiners of the prediction skill (Taylor et al., 2012).

CMIP ensembles are often described as “ensembles of opportunity,” meaning they are not
designed according to a formal experimental plan but instead consist of all simulations
voluntarily contributed by modelling groups worldwide. As a result, CMIP archives contain
models with differing levels of complexity, varying numbers of realizations, shared code bases,
and unequal institutional representation. This lack of experimental design has important
implications for statistical inference: the ensemble does not constitute a random or balanced
sample of all plausible climate models, and its spread cannot be interpreted as a probabilistic
measure of uncertainty. Instead, it reflects the structural diversity, historical choices, and
modelling philosophies of participating centres. Recognizing CMIP as an ensemble of
opportunity is therefore essential when interpreting uncertainty, selecting subsets, or assigning
weights, as these decisions must account for biases, interdependencies, and uneven sampling

across the ensemble.
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The more recent phase 6 (CMIP6) (Eyring et al., 2016) has been slowly taking the place of the
CMIPS5, wheih was widely used in the last decade (Hirabayashi et al., 2021; Martel et al., 2022;
Zhang et al., 2023). The sixth [IPCC assessment report (AR6) is based on brand-new and state-
of-the-art CMIP6 models (IPCC, 2023). The CMIP6 models include several new and updated
emission pathways that investigate a much wider range of potential future outcomes than were
covered by CMIP5. While the IPCC fifth assessment report (ARS) included four RCPs that
assessed various potential future greenhouse gas emissions, these scenarios have been updated
to include various climate policies. The updated scenarios, namely SSP1-2.6, SSP2-4.5, SSP4-
6.0, and SSP5-8.5, each produce levels of radiative forcing in 2100 that are comparable to

those of their predecessor in ARS.

Climate sensitivity plays a central role in interpreting differences across climate models. While
Equilibrium Climate Sensitivity (ECS) is the most widely used metric, defined as the long-
term global temperature response to a doubling of CO: under equilibrium conditions, it does
not capture transient behaviour. An alternative measure, the Transient Climate Response
(TCR), represents the temperature change at the time of CO- doubling under a gradual 1% yr!
increase scenario. Because TCR reflects near-term warming under non-equilibrium conditions,
it is often more relevant for mid-century impact studies. Including both ECS and TCR allows
for a more comprehensive assessment of how models differ in their response to radiative

forcing and clarifies why “hot models” may diverge in both magnitude and timing of warming.

The CMIP6 offers temperature and precipitation projections with a smaller spread than those
of the CMIPS5, and except in mountainous areas, the CMIP6-driven hydrological projections
produce a narrower range of future mean and high flow values (Martel et al., 2022). However,
the CMIP6 includes a subset of “hot models” which predict much higher warmings than
previously predicted by CMIP5 (e.g. Kreienkamp et al., 2020). The “hot models” exhibit
greater ECS and TCR values (Flynn & Mauritsen, 2020; Zelinka et al., 2020). The ECS values’
range in CMIP6 models has increased to 1.8-5.6°C compared to 2.1-4.7°C in CMIP5, with an
increase in multimodel mean of 3.9°C in CMIP6 from 3.3°C in CMIP5 (Zelinka et al., 2020).
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Recently more research has been aimed at constraining the ECS based on historical and
paleoclimatic data (Knutti, Rugenstein, et al., 2017; Sherwood et al., 2020) or the emergent
constraints (Cox et al., 2018; Nijsse et al., 2020). For example, using multiple lines of evidence,
Sherwood et al., (2020) concluded that the likely (with a 66% chance) ECS value is between
2.6°C and 4.1°C. Consequently, the most recent reports published by the [IPCC have narrowed
the range of likely ECS range to 2.5 and 4°C (IPCC, 2021).

1.4 Downscaling

The GCMs operate on a coarse scale relative to many small-scale phenomena, such as clouds
or topography. Furthermore, outputs for each grid cell are homogeneous, meaning that each
grid holds only one value for each output over each grid. In other words, small-scale
phenomena cannot be modeled adequately with GCMs and are therefore simplified and
parameterized. Yet, in many cases, the impact models require outputs on a smaller scale to
accurately represent the events. Furthermore, the GCM outputs are often biased (Quintana
Segui et al., 2010). To solve this issue, downscaling methods have been proposed.
Downscaling methods relate the coarse resolution outputs of GCMs to the local and regional
scale events and derive more detailed information from GCMs (Hewitson & Crane, 1996).
The outputs of downscaling methods can be used as inputs for impact models for climate
change impact assessment studies and hydrological modeling. The two primary downscaling
methods are dynamical and statistical downscaling methods, each with its advantages and
disadvantages. The general limitations, theory, and practice of downscaling are now well

described in the literature (Chokkavarapu & Mandla, 2019; Fowler et al., 2007).

1.4.1 Dynamical downscaling

Dynamical downscaling methods use regional climate models (RCMs) to derive local-scale
data from large-scale GCM outputs. In principle, RCMs are similar to GCM models, but with
a smaller scale (10-50 km). RCMs use the outputs of GCMs as the boundary conditions to

model small-scale phenomena, which were simplified in GCMs, such as complex terrain
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topography. In particular, in regions with complex topography, e.g., coastal areas, where
GCMs cannot model regionally significant processes, the RCM projection becomes extremely
valuable (Ekstrom et al., 2015). The main strength of dynamical downscaling is that RCMs
provide physically consistent climate data while capturing intricate and nonlinear interactions

within the climate system (Williams et al., 2010).

Dynamical downscaling methods are physically based yet computationally expensive. As such,
RCMs are only used with a small selection of GCMs for each region (Ekstrom et al., 2015).
RCM outputs strongly depend on the parent GCM (Chokkavarapu & Mandla, 2019). In this
case, the selection of parent GCMs and their representation of the whole set of GCMs should
be considered very carefully. Furthermore, RCM outputs also contain substantial biases
compared to the observed historical data (Muerth et al., 2013). Some of these biases are
inherited from the driving GCMs through boundary conditions, while others arise from the
RCMs themselves due to their internal parameterizations, numerical schemes, or
representation of local processes such as orography and land—atmosphere interactions. These
biases may hinder impact assessment models from appropriate simulation of the processes. As

such, a bias correction step is necessary before using the RCM outputs (Teutschbein & Seibert,

2012).

1.4.2 Statistical downscaling

Statistical downscaling methods develop an empirical relationship between GCM outputs and
meteorological data at various scales such as station scale (Wilby et al., 1998). Fundamentally,
statistical downscaling methods assume a stationary relationship between the predictor (GCM
output) and the predictand (local climate information), which stays the same under the
changing climate (Fowler et al., 2007; Gutmann et al., 2022). The statistical relationship is then

used to interpolate the future GCM projections of the studied variable to the local scale.

Statistical methods are simpler to apply, straightforward, and have low computational costs

(Nasseri et al., 2013). In addition, using these methods, one can derive information that
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essentially is not available in RCMs (Fowler et al., 2007; Gutmann et al., 2022). Yet, the
climatic region may affect downscaling skill (Chokkavarapu & Mandla, 2019). Moreover, for
variables like precipitation, where much of the variability arises from sub-grid processes (e.g.
Prein et al., 2017) poorly captured by GCMs (Chen & Zhang, 2021), statistical downscaling
can be less effective (Chen & Zhang, 2021; Hernanz et al., 2022; Maraun et al., 2010).

1.5 Bias correction

GCM and RCM simulations have systematic biases compared to observed historical records
(Frangois et al., 2020). The biases stem from several sources, such as the intrinsic limitations
in our understanding of the climate system and the imperfect parameterization of physical
processes in the models (Chen et al., 2021). Raw outputs from climate models are rarely
applied directly in impact assessment studies because they would provide unreliable results,
considering that impact models, especially hydrological models, are sensitive to the quality of
the data (Dinh & Aires, 2023; Potter et al., 2020). Bias correction is now a common post-
processing technique used to solve the issue and correct important statistical characteristics, to
make the outputs applicable in practical applications (Chen et al., 2021; Dinh & Aires, 2023;
Gutmann et al., 2022; Kim et al., 2019).

Early bias correction techniques were designed to be simple and computationally efficient. For
instance, the delta change method adjusts future climate projections with additive or
multiplicative constant factors derived from the difference between modeled and observed
means over a certain reference period (Réty et al., 2014; Teutschbein & Seibert, 2012). While
effective at eliminating mean biases, such methods are not capable of addressing other aspects
of the distribution, i.e., variability or extremes (Beyer et al., 2020). By contrast, advanced
methods such as quantile mapping (QM) align the cumulative distribution functions (CDFs)
of the modeled data with those of the record data CDFs, allowing adjustment of not only the
mean but also the variance, skewness, and extremes (Beyer et al., 2020; Cannon et al., 2015).
Because of its versatility and robustness, QM has become one of the most popular univariate

bias correction methods. However, when individually applied to a set of variables such as
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temperature and precipitation, QM may distort inter-variable relationships, and this distortion
may compromise impact modeling, particularly in studies that depend on the co-variation of
variables (Zscheischler et al., 2019; Zscheischler & Seneviratne, 2017). This issue is
particularly significant in hydrological applications, where joint variability between variables

governs key processes like evapotranspiration, snow accumulation, and melt (Cannon, 2018).

Multivariate bias correction (MBC) techniques have been developed to overcome this
limitation, with the objective of correcting the individual distribution of climate variables and
preserving their interdependencies (Cannon, 2018; Cannon et al., 2015). Recent MBC methods
are generally categorized under three broad classes. Marginal-dependence techniques involve
multivariate bias adjustment methods that correct marginal distributions and dependence
relationships independently (Cannon, 2018; Vrac, 2018). Successive conditional techniques
apply corrections sequentially, where each variable is adjusted using information from
variables that have already been corrected earlier in the sequence (Bardossy & Pegram, 2012;
Dekens et al., 2017). Finally, all-in-one techniques attempt to correct marginal distributions
and dependence structures simultaneously (Robin et al., 2019). While each approach has its
merits, they also have limitations. Successive conditional methods, for instance, are order-
sensitive and decline in performance as the number of variables increases. All-at-once methods
provide powerful corrections, but at the expense of significantly higher computational

demands (Frangois et al., 2020).

Despite the advances in methodology, bias correction remains a controversial topic. At the
heart of the debate is an assumption of bias stationarity, which assumes that biases observed
during the historical record will remain unchanged in the future (Ehret et al., 2012). This is
typically a questionable assumption under changing climate conditions, especially for extreme
events and precipitation mechanisms, where biases may develop over time (Chen et al., 2015,

2021; Miao et al., 2016).

Yet, when applied carefully, bias correction methods can significantly enhance the value added

to climate model output applied to impact studies (Chen et al., 2021; Maraun, 2016). They
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have been shown to improve the representation of key hydrological parameters, such as
streamflow, precipitation intensity, and temperature trends (Meyer et al., 2019; Teutschbein &

Seibert, 2012; Worako et al., 2022).

1.6 Hydrological modelling

Hydrological modeling is the fundamental step in the climate-hydrology modeling chain and
allows the transformation of meteorological inputs to estimates of streamflow, which are
required to conduct impact studies. A hydrological model is a simplified representation of the
real water cycle that enables simulation and understanding of runoff generation and streamflow
dynamics on a variety of spatial and temporal scales (Devi et al., 2015). These models vary in
complexity of structure, data requirements, spatial discretization, and representation of
processes, and are usually categorized as empirical, conceptual, or physically based models
(Jajarmizadeh et al., 2012; Pandi et al., 2021). Hydrological models can further be categorized
as lumped or distributed, depending on how they represent spatial variability within a

catchment.

Empirical models (data-driven models) are based only on observed input-output correlations
and lack the description of the internal physical mechanisms in a catchment. Empirical models
tend to employ statistical or machine learning techniques (e.g., artificial neural networks, fuzzy
logic) to derive the relationships between meteorological inputs and streamflow (Hauswirth et
al., 2021). Empirical models are characterized by simplicity, low computational cost, but by
an absence of physical interpretability and limited extrapolation capability outside historical

conditions (Abdulkareem et al., 2018; Devi et al., 2015).

Conceptual models simplify the catchment dynamics to connected reservoirs (e.g., soil water,
snow, groundwater), regulated by empirical or semi-empirical equations. Conceptual models
describe major hydrological processes using a limited number of parameters, which are
typically calibrated from observations (Liu et al., 2019; Merz et al., 2009). Conceptual models

trade physical realism with computational expense and are best suited for applications at the
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basin scale where high-resolution spatial data may not be accessible (Biondi et al., 2012; Devi

et al., 2015; Kavetski et al., 2006).

Physically based models attempt to simulate water flow by solving governing mass,
momentum, and energy conservation equations (Newman et al., 2017; Paniconi & Putti, 2015).
They require large spatial sets of soil, topography, land use, and meteorology data and are run
in a distributed mode (Paniconi & Putti, 2015; Vieux et al., 2004). Physically based models
offer detailed process representations at the expense of being computationally intensive and
are subject to parameterization and input data uncertainty (Devi et al., 2015; Paniconi & Putti,

2015).

Models also vary in their spatial representation. Lumped models simulate the catchment as a
homogeneous unit of space, averaging both input and output spatially (Seiller et al., 2012; Van
Lanen et al., 2024). Such models are used most often when streamflow at the catchment outlet
is most significant, and their simplicity makes them amenable to being used for large ensemble

runs (Devi et al., 2015; Seiller et al., 2012).

Distributed models specifically explain spatial variation in inputs, parameters, and processes.
Distributed models disaggregate the catchment into grid squares or hydrological response units
(HRUs) to more accurately simulate local hydrological responses (Abbott & Refsgaard, 1996).
Although potentially capable of producing simulations closer to reality, distributed models fail
to consistently outperform lumped models due to increased complexity, higher data demands,
and the equifinality of parameter estimation (Beven, 2001). Semi-distributed models maintain
some spatial heterogeneity (e.g., by employing HRUs or sub-basins) without full spatial

resolution.

Regardless of structural type, most hydrological models must be calibrated to reconcile
simulations with observed streamflow (Bardossy, 2007; Kavetski et al., 2006). Calibration
involves the optimization of model parameters that minimize discrepancies between simulated

and observed data, often measured by performance metrics like the Nash-Sutcliffe Efficiency
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(NSE) (Nash & Sutcliffe, 1970) and the Kling-Gupta Efficiency (KGE) (Kling & Gupta, 2009)
(Arsenault et al., 2014; S. K. Singh & Bardossy, 2012). Calibration routines often employ
optimization algorithms like Dynamically Dimensioned Search (DDS) (Tolson & Shoemaker,
2007) and the Shuffled Complex Evolution — University of Arizona (SCE-UA).

In recent years, deep learning methods have emerged as powerful alternatives to traditional
hydrological models (Althoff et al., 2021; Zhong et al., 2023). Deep learning models learn
parameters directly from large volumes of data, which allows them to capture complex and
nonlinear relationships between climate drivers and streamflow (Tripathy & Mishra, 2024;
Zhao et al., 2024). Among these, Long Short-Term Memory (LSTM) networks have become
particularly popular because of their ability to handle sequential data and represent long-term
dependencies in hydrological processes (Li et al., 2024; Zhong et al., 2023). Comparative
studies have demonstrated that LSTMs frequently outperform both process-based models and
conventional machine learning methods in large-sample hydrological forecasting (e.g. Kratzert
et al., 2019). In the context of climate change impact studies, LSTM models have also been
shown to outperform traditional hydrological models and to provide more robust streamflow
projections with reduced climate sensitivity (e.g. Martel et al., 2025), highlighting their

growing role in next-generation hydrological modeling.

No one model structure works best in all situations. Hydrological model selection must be
tailored to the application and is a function of study intent, data availability, spatial and
temporal resolution, and computational ability (Ghonchepour et al., 2021; Marshall et al.,
2005; Nesru, 2023). Furthermore, different models can yield varying results when calibrated
against the exact same data, and this contributes to impact studies' structural uncertainty
(Beven, 2006). Due to the trade-offs between model complexity, precision, interpretability,
and resource utilization, recent studies advocate the employment of several models or model
ensembles (Huang et al., 2017; Velazquez et al., 2013; Wan et al., 2021). The employment of
a multi-model strategy enhances the representation of uncertainty and also enhances

confidence in simulated hydrological responses to climate change.
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1.7 Uncertainty of Climate Change Impacts

Uncertainty is defined as incomplete information and knowledge, or lack of consensus on what
we know and can know (IPCC, 2014). In climate change impact assessment studies, the
primary sources of uncertainty include: 1) natural variability, 2) scenario uncertainty, 3)
climate model uncertainty, 4) downscaling method, and 5) impact model uncertainty (Hawkins
& Sutton, 2009; Poulin et al., 2011). Among these, numerous studies over the past two decades
have shown that climate model and hydrological model uncertainty are the dominant
contributors to overall uncertainty in climate change impact assessments (Brient, 2020; Deser
et al., 2012; Hawkins & Sutton, 2009; Poulin et al., 2011; Vetter et al., 2017). Consequently,
reducing uncertainty from climate models and hydrological models remains the most effective
way to improve the reliability of future projections (Lorenz et al., 2018). The objective is not
to eliminate uncertainty, an impossible and undesirable outcome given the inherently
unpredictable nature of future climate and natural variability. Instead, the aim is to better
quantify and manage the uncertainty that arises from avoidable or artificial sources, such as
structural deficiencies, or methodological choices. Reducing these avoidable uncertainties
improves the interpretability, credibility, and usefulness of future projections for decision-

making (Lorenz et al., 2018).

1.7.1 Natural variability

Because of the natural processes, the atmosphere-ocean system fluctuates around its mean,
causing daily and decadal variations. This variability may be due to internal reasons such as
the El-Nifio Southern Oscillation (ENSO) or external natural forcings outside the climate
system, such as natural changes in radiative forcing (Deser et al., 2012). Large ensembles make
it possible to estimate the magnitude of natural variability and distinguish its contribution from
other uncertainty sources. However, because such fluctuations are inherently unpredictable
beyond a few years to decades, this component of uncertainty cannot be reduced, even as
climate models improve or greenhouse gas concentration pathways become better constrained

(Deser et al., 2012).
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1.7.2 Scenario Uncertainty

Changes in greenhouse gas concentration in the future are one of the primary sources of
uncertainty in climate modeling (Kundzewicz et al., 2018; Vetter et al., 2017). Scenario
uncertainty causes uncertainty in future radiative forcing and, hence, climate. Changes in
population, economic activity, and climate policies are the main drivers of the uncertainty in
greenhouse gas emissions. The IPCC has recognized different scenarios to account for future
changes in greenhouse gas concentration, including low, intermediate, and high forcing
scenarios (IPCC, 2023). Climate change impact studies done with different scenarios yield
different results. The contribution of scenario uncertainty is of low importance in short time
scales (less than 30 years); however, it gains more significance for longer lead times,
depending on the study region (Hawkins & Sutton, 2009). Although scenario uncertainty
cannot be eliminated, recent analyses suggest that it can be meaningfully constrained by
observational evidence, socioeconomic trends, and policy modeling, which rule out some

extreme high- or low-emission trajectories (Moore et al., 2022).

1.7.3 Climate Model Uncertainty

Climate models, and models in general, try to quantify natural phenomena using physical
equations and through parameterization. Due to our incomplete understanding of nature,
climate modeling groups use different simplifications and parameterization schemes. Hence,
based on the parameterization scheme and model structure, each model may produce different
results for the same input data (Knutti & Sedlacek, 2013; Kundzewicz et al., 2018). Previous
studies have shown that climate model uncertainty dominates the other components, such as

downscaling methods and hydrological models (e.g., Chen et al., 2011; Joseph et al., 2018).

It is essential for climate change impact assessment studies to adequately characterize the
climate model uncertainty given its dominant role (Merrifield et al., 2023; Qian et al., 2016).

Therefore, a common strategy has been to construct envelopes of GCMs that span the range of
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projected climate responses, providing an indication of the plausible bounds of future climate
change (Crawford et al., 2019; Haughton et al., 2014; Mabher et al., 2021; Merrifield et al.,
2023; Sanderson & Knutti, 2012; Semenov & Stratonovitch, 2010). However, the number of
available simulations has risen rapidly across successive CMIP phases, from about 25 GCMs
in CMIP3 to more than 100 in CMIP6, often with multiple ensemble members per model
(Eyring et al., 2016; Taylor et al., 2012). For impact studies, analyzing the full ensemble has
become practically unfeasible. This necessitates the selection of GCM subsets, raising a critical
methodological question: how representative are these subsets of the overall uncertainty space
(Chen et al., 2016; Di Virgilio et al., 2022; Merrifield et al., 2023; Ruane & McDermid, 2017;
H.-M. Wang et al., 2018).

Poorly designed selections risk underestimating or mischaracterizing the diversity of plausible
futures, ultimately leading to biased or misleading conclusions in climate change impact
assessments (Herger et al., 2018; Ito et al., 2020; Lutz et al., 2016). To address this, a range of
ensemble design strategies has emerged: performance-based approaches that prioritize model
skill, envelope methods that aim to capture the full spread of responses, and more recent
weighting and optimization frameworks that explicitly balance performance, diversity, and
independence (see section 1.8). Each method carries distinct advantages and limitations, but
collectively they underscore a central point: because GCMs are typically the dominant source
of uncertainty, the design of GCM subsets is one of the most consequential decisions in climate
change impact assessments (Merrifield et al., 2023; Vano et al., 2015; H.-M. Wang et al.,
2018).

1.7.4 Impact Model Uncertainty

Similar to climate models, the structure and parametrization of the impact models, e.g.
hydrologic models, affect the results of climate change impact studies. For instance, Jiang et
al., (2007) studied the hydrological model structure uncertainty using six conceptual rainfall-
runoff models. They found that models which simulate the historical climate conditions

similarly behave differently under future projections of climate change. In addition, Ludwig et
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al., (2009) compared two physically based and one conceptual hydrological model to show
that the complexity degree of the hydrologic models can impact the results. Furthermore,
Poulin et al., (2011) concluded that the uncertainty of different model structures is more
significant than different parameterizations of the models, suggesting the use of models of

various complexity in climate change impact studies.

1.8 Climate Model Selection in Impact Assessment Studies

As noted earlier in Section 1.7.3, impact assessment studies cannot rely on the entire set of
available GCMs. Nonetheless, a robust characterization of uncertainty remains essential. With
the rapid expansion of climate simulations across successive CMIP phases, analyzing the full
ensemble has become impractical, if not impossible, for most applications. This reality
compels researchers to select a subset of GCMs, which in turn raises a critical question: to

what extent do these subsets adequately represent the broader uncertainty space?

Despite the importance of this issue, there is still no consensus in the literature on selecting
proper GCMs for impact assessment studies. Until recently, researchers often evaluated
climate change's effects using only one climate model or a small number of different GCM
scenarios (e.g., Ott et al., 2013). GCM scenarios were chosen based on arbitrary means or the
researcher's subjective choice without standard criteria for selecting climate change scenarios.
For instance, most climate impact assessments have been carried out using high-resolution
GCM scenarios or a GCM developed by the country in question. The idea that one GCM
scenario chosen now would perfectly reflect the future conditions decades in the future is not
convincing (Lee & Kim, 2017). Instead, using multiple models from various institutions is a
widely acknowledged method to grasp an understanding of the uncertainty of the outputs
(Tebaldi & Knutti, 2007). Recently more objective methods have been developed to select
GCMs for impact studies, yet these methods still have limitations and are susceptible to the

subjective choices made by the researcher (e.g., Cannon, 2015; Mendlik & Gobiet, 2016).
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1.8.1 Envelope-based GCM selection approach

As mentioned earlier, impact studies primarily use a top-down approach in which the
downscaled GCM outputs are used with impact models to study the climate change impacts.
These modeling steps have been called the impact modeling chain, where the uncertainty
increases as multiple model choices must be made at each step of the study (Wilby & Dessai,
2010). Previous studies have shown that climate model uncertainty typically dominates the
other components, such as downscaling methods and impact models (e.g., Chen et al., 2011).
Since failing to account for the full range of uncertainty may result in substantially biased
impact studies (Chen et al., 2011), ideally, any selected subset of GCMs should be as unbiased
as possible relative to the statistical characteristics of the full ensemble, while still covering an

adequate range of uncertainty.

To address this matter, an approach that researchers have turned to is the envelope-based GCM
selection approach, which focuses on the selection of GCMs that span the range of future
changes in climate signals, and clustering algorithms are typically used for this purpose (Houle
et al., 2012; Mendlik & Gobiet, 2016; Ruane & McDermid, 2017; Wilcke & Bérring, 2016).
For instance, Raju and Kumar (2016) used the K-means clustering technique to select GCM
ensembles from 36 climate projections over India. The first limitation of this approach is that
the used clustering algorithms are designed to maximize the explained variance of an
ensemble, and are thus biased toward high-density areas of the climate space (Cannon, 2015;
Seo et al., 2019). In the CMIP5 and CMIP6, for example, some models have contributed
several realizations, some of which differ only in resolution, and some models are not entirely
independent, sharing model components and development history (Knutti et al., 2013). The
issue of model interdependency is discussed further in section 1.8.2. The clustering algorithms
would favor the realizations that fall closer to each other in the climate space. Furthermore, the
results are not ordered (the smaller subset results would not necessarily appear in larger
subsets), meaning that increasing the size of the subset would not necessarily improve the

coverage of the uncertainty (H.-M. Wang et al., 2018).
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Cannon (2015) proposed using the KKZ method (Katsavounidis et al., 1994) to select subsets
that cover the range of overall changes. The KKZ algorithm is a deterministic subset-selection
approach that identifies a small but representative set of points from a larger dataset (Cannon,
2015). Multiple studies, including Ross and Najjar (2019) and Wang et al. (2018), showed that
the KKZ method outperforms other clustering approaches with higher coverage of ensemble
range and smaller subset size. However, the outlier simulations are more likely to be selected
by the KKZ method as it is designed to choose GCMs lying on the edge of the ensemble (H.-
M. Wang et al., 2018). The outliers may be the GCMs that cannot capture the climatic patterns
realistically, and the selection of poor representations may reduce the credibility of the subset.
Therefore, while the performance of all GCMs in representing key physical processes should
ideally be evaluated prior to any subset-selection exercise, this assessment becomes
particularly crucial for potential outliers, given their higher likelihood of being selected by the
KKZ method. Also, the outlier assessment may help with the preselection of GCMs and
improve the results, which is discussed in more detail in section 1.8.2. The main disadvantage
of the envelope-based approach is that the models' performance over the historical period to
simulate climate is not considered, and all available climate models are assumed to be
equiprobable (Lutz et al., 2016). The assumption of equiprobability will also be further

discussed in section 1.8.2.

A noteworthy advantage of the KKZ method is that the results improve by including more
models in the subset. A subset with n+1 GCMs will either perform better or equally well as the
subset with n models. Considering this fact, it is recommended to consider as many GCMs as
possible in the subset to increase the chance of having adequate coverage of the uncertainty in

the impact world (Chen et al., 2016).

The objective of using multiple climate simulations is to account for different sources of
uncertainty in the projections (Wilcke & Barring, 2016). However, regardless of the underlying
approach, GCM selection studies have focused on the uncertainty in the climate world. Yet,
there is no guarantee that the selected subset will cover the same range of uncertainty in the

impact world. Impact models, particularly hydrologic models, are nonlinear models, and small
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changes in the inputs may result in significant changes in the outputs (Muzik, 2001). It is still
impossible to know a priori whether the selected subsets would cover the same range of

uncertainty in the climate world.

In this regard, Chen et al. (2016) studied the transferability of GCM uncertainty to the
hydrological impacts using KKZ and K-means clustering methods. They showed that the
optimally selected GCMs in the climate world might not be optimal in the hydrology world.
In another study, Wang et al. (2018) studied the transferability of the uncertainty between
climate and hydrology worlds. They used the K-means clustering and the KKZ method with
31 climate variables to select GCMs from a pool of climate simulations. The results indicated
that using a subset of 10 GCMs can cover an acceptable range of uncertainty for the
hydrological variables studied over two watersheds. However, utilizing multiple climate
variables for GCM selection may result in redundant information that does not have meaning
and may reduce the performance of the subset selection (Seo et al., 2019). For example, the
atmospheric pressure field outputs of GCMs can be included (or used solely) in the selection
variables to select GCMs for flood assessment studies. The relationship between atmospheric
pressure fields and floods is not as direct as between extreme precipitation and floods. Even
random numbers can be used as selection criteria that logically provide no meaning and have

no physical explanation.

Although initially developed to be unsupervised, objective methods of GCM selection, the
evidence indicates that identifying key climate indices correlated with the impact variable
under study is key to subset selection, with the KKZ method performing poorly when unrelated
indices are used (Seo et al., 2019). In other words, instead of using similar climate variables to
select GCMs in flood and drought-related impact assessment studies, climate variables that
relate specifically to floods and droughts must be identified separately and used as the selection
criteria for the subset of climate models when using the KKZ method. Seo et al., (2019)
concluded that before selecting the GCM subsets, careful identification of the most important
climatic indicators for the studied impact (e.g., floods) and the region is necessary. A robust

understanding of the region’s climatic system and the key physical processes would guide the
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choice of climatic variables (Seo et al., 2019). Further research is still required to evaluate the
KKZ method and the necessary climatic indicators’ efficiency in various climatic regions with

different hydrological regimes.

1.8.2 Weighting Multimodel Ensembles

Another complication in GCM selection is that there is no consensus on how to combine the
GCMs in multimodel ensembles (MME). Typically, the “model democracy” approach is used,
in which all the models are considered plausible and equiprobable (e.g., Collins et al., 2013).
“Model democracy” is based on the fact that all models have strengths and limitations and that
their performance varies regionally but is globally similar (Chen et al., 2017), and a binary set
of weights is assigned to the models (unit weight for selected GCMs and zero for others). It
has been shown that the average of equally-weighted projections outperforms every single
model in simulating the mean climatic patterns (Reichler & Kim, 2008). However, this method
is arguably a suboptimal way of utilizing the available information (Knutti, Sedlacek, et al.,

2017).

An equally-weighted average implies that the simulations in the ensemble are independent;
however, this might not always be the case (Sanderson et al., 2017). For instance, CMIP5 and
CMIP6 contain multiple simulations from the same research group, which may only differ in
resolution. Some simulations share parts of code or parameterization schemes and certainly
share model-developing expertise (Eyring et al., 2019; Knutti, 2010). The number of
independent models in an ensemble such as CMIP5 may be significantly lower than the actual
number of models (Caldwell et al., 2014). The interdependent simulations, at worst, bias the
results towards repeated simulations and, at best, add little information to the ensemble (Knutti,
Sedlacek, et al., 2017; H.-M. Wang et al., 2019). Ideally, a subset of climate simulation should
account for the inter-dependency of simulations, however, identifying and accounting for
interdependence is a difficult task and is not straightforward, and even the definition of
dependence is a subjective matter depending on the problem at hand (Herger et al., 2018;

Knutti, Abramowitz, et al., 2010).
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Recently, efforts have been made to account for model dependence (e.g., Knutti et al., 2017);
for instance, Herger et al. (2018) accounted for the interdependency of models by comparing
the correlated biases, arguing that errors in an independent ensemble would be random and
cancel each other out. Nonetheless, these approaches are practically sensitive to every
component of the issue, including the chosen measure, variable, analysis period, and dataset
(Eyring et al., 2019). Although a complicated task affiliated with multiple subjective and
problem-specific choices regarding how to define dependence or evaluate it, accounting for

model interdependency of GCMs increases the reliability of the ensemble (Herger et al., 2018).

Furthermore, the performance of GCMs in reproducing climatic patterns depends on the
location and variable under study (Abramowitz et al., 2019), and in regions where some models
are more reliable than others, model democracy might not be the ideal choice (Knutti et al.,
2013; Lorenz et al., 2018). Consequently, another common approach for subset selection has
been based on GCM performance over the historical period (Ahmadalipour et al., 2017; Ahmed
et al., 2019; Evans et al., 2013; Hamed et al., 2022; Hassan et al., 2020; Salehie et al., 2023).
To this end, GCMs are evaluated on representing climatic patterns of the recent past based on
climate metrics defined by modelers (H.-M. Wang et al., 2018). For instance, Raju and Kumar
(2015) ranked 11 GCMs based on their skill in simulating recent past precipitation and
temperature patterns. However, the selected subset was completely different from the
suggested subset by Raju and Kumar (2014) because of the different performance evaluation

metrics.

Although there is no consensus in the literature on suitable performance metrics, the definition
of performance measures is straightforward (e.g., the bias between simulated and observed
precipitation); the challenge is how to translate them into a measure of model quality and then
to model weight (Knutti, Sedlacek, et al., 2017). A quality index assesses the model's suitability
for a particular purpose by subjectively aggregating numerous indicators necessary for an
application (Knutti, Abramowitz, et al., 2010). For example, multiple climatic variables (e.g.,

precipitation and temperature) may impact an environmental impact under study (e.g., mean
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streamflow). Yet, the relative importance of these variables may not be equal and challenging

to compute (H.-M. Wang et al., 2019).

There have been some attempts to select GCMs with unequal weights based on dependence
and performance (e.g., Lorenz et al., 2018; Sanderson et al., 2017). For instance, Chen et al.
(2017) studied the effect of unequal weight assignment to temperature and precipitation on the
hydrology of a Canadian watershed. They concluded that weight assignment to GCMs may
not significantly improve the ensemble's performance regarding streamflow. It is worth
mentioning that the assigned weights are calculated in the climate world based on reproducing
climate variables such as temperature or precipitation. These weights may not be optimal in
the impact world since the relation is nonlinear and complex, yet it is impossible to know a
priori which GCMs perform best in the impact world (Chen et al., 2017; H.-M. Wang et al.,
2019). In addition, Wang et al. (2019) concluded that bias-corrected GCMs assigned with equal
weights have the same capability as the weighted raw GCM data. However, the question
remains as to whether weighing climate simulation would impact different hydrological

variables in various climatic regions, which requires further research.

The quality indices must be defined based on the studied impact and region of the study, and
general skill scores may not be adequate to evaluate the model's performance (Jagannathan et
al., 2020). Physical understanding of the region’s climatic system and the dominating processes
can help in the choice of climatic variables used as the performance metric. It is also possible
to analyze multiple variables to determine which ones are the most crucial in the study region
(Wenzel et al., 2016). Although expert judgment is inevitably involved in this step,
transparency can be maintained by clearly documenting the criteria and physical rationale used.
It is essential to combine numerous metrics to avoid overconfidence in the subset, but using a
large set of metrics will reduce the impact of weighting (Borodina et al., 2017; Lorenz et al.,
2018). The optimal number of the metrics is still not known, but including the most relevant

ones must be the priority.
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The GCMs that perform well over the observation period may not have realistic future
projections. The climate and GCM performance are non-stationary, and the GCM performance
may change for future projections (Hui et al., 2019). Nevertheless, the reliability of poor-
quality models is under question (Lorenz et al., 2018). One of the approaches to address this
issue is the use of emergent constraints, which are empirical relationships between observed
behavior and model projections that have a physical explanation (Borodina et al., 2017; Eyring
et al., 2019). With the use of observational data and by accounting for data uncertainty, the
empirical relationship can become an emergent constraint that narrows down the range of
plausible projections by picking a set of models compatible with the observations (Brient,
2020). For instance, based on evidence from paleoclimate, surface temperature, ocean heat
content, and physical process models, Hausfather et al. (2022) concluded that some of the
models in the CMIP6 archive are too sensitive to greenhouse gas emissions and that projected
temperatures are too hot calling them “hot models,” which are recommended to be excluded

entirely from the impact assessment studies.

In this regard, Shiogama et al., (2021) presented a subset selection method in which the first
step of model selection was to screen out the hot models. On the other hand, Palmer et al.,
(2022) showed that models with higher sensitivity better represent some of the key climatic
processes over Europe. Although they were unable to provide a robust physical explanation
for their findings, it is still noteworthy that at the regional scale hot models may provide
valuable information that may be more important than the global warming trend for impact
modelers, adding another layer of complexity to climate model selection for regional impact
studies. Removing GCMs that fail to adequately represent key physical processes in the past
climatic patterns of the study region improves the ensemble's reliability (Klein & Hall, 2015).
As Sanderson et al. (2017) noted, “a climate model is fit for the purpose if it can adequately
represent the response of relevant physical processes in the required range of boundary
conditions.” However, further research is required to assess the impact of, and to further justify,

dismissing outlier climate simulations in hydrological climate change impact studies.
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It is worth mentioning that, compared to the non-weighted subset, where the spread is not a
measure of uncertainty, the spread of the weighted multimodel mean can be regarded as a
measure of uncertainty given everything that we know (Lorenz et al., 2018). Weighted
approaches increase our confidence in impact assessment studies using multimodel ensembles.
Nonetheless, it is recommended that modelers who use model-weighting approaches present
the unweighted and the weighted results and analyze the sensitivity of the results under various
weighting strategies, performance, or quality indices (Wootten et al., 2022). In addition,
performance or quality indices must be justified based on physical reasoning, discussed, and
analyzed to prevent overconfidence in results (Knutti, Sedlacek, et al., 2017; Lorenz et al.,

2018; Weigel et al., 2010).

A combination of envelope-based and performance-based approaches has been recommended
to ensure that the subset covers multiple future projections and includes adequately performing
models (Lutz et al., 2016; McSweeney et al., 2015). For instance, Lee & Kim (2017) used K-
means clustering to group the GCMs based on their statistical characteristics and then selected
a representative of each cluster based on the calculated skill score. Yet, the selected subset is
sensitive to the selection sequence, meaning that if the performance-based selection is the
second step, the selected GCMs may not be the best-performing ones overall (Lutz et al., 2016).
Nonetheless, the selection sequence is not fixed, and the modelers must choose how to
implement this approach based on the study's objective. As these approaches are, in some
sense, similar to the past performance approach, they may intrinsically have the same

weaknesses (H.-M. Wang et al., 2018).

1.9 Research Objectives

Given this context, the overall aim of this thesis is to comparatively examine and evaluate
GCM selection and weighting approaches for hydrological impact studies. This study does not
seek to introduce one “optimal” approach that can be applied in all regions and sectors. Rather,
it aims to explain how different subsetting and weighting approaches affect future streamflow

predictions in different North American catchments. By doing so, the thesis provides the trade-
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offs embodied in different ensemble design choices and facilitates stronger, more transparent
practices in regional-scale climate change impact assessments. The specific research objectives

of this study are:

1. To quantify the impact of GCM sub-selection based on climate indices on uncertainty

transferability to hydrological projections.

2. To investigate the influence of high-sensitivity climate models on the translation of
climate signals into hydrological responses, and to understand the mechanisms through

which these models shape future streamflow projections.

3. To compare the effects of different GCM weighting schemes, through the use of a

pseudo-reality framework, on the uncertainty of future streamflow projections.

This study contributes to the growing literature emphasizing the need for transparent,
reproducible, and context-dependent ensemble design in climate impact research. By bringing
into focus the applied significance of model selection and weighting choices, it offers
methodological findings and actionable recommendations, as much for hydrology-focused

climate adaptation planning as for climate modeling and impact research more broadly.

This dissertation follows a manuscript-based format composed of three research articles that
collectively investigate how climate model ensemble design influences hydrological impact
assessments. Although each article is self-contained, they are intentionally ordered to build a
coherent methodological progression that addresses the thesis objectives. Chapter 2 examines
how uncertainty from the “climate-model world” propagates into the “hydrological-model
world.” It evaluates whether reduced subsets of GCMs, selected using climate indices, can
preserve the hydrological uncertainty captured by the full ensemble. This establishes the
foundation for understanding uncertainty transferability and the challenges of ensemble

reduction.
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Chapter 3 investigates whether excluding high-ECS climate models alters projected
streamflow responses across North America. By examining how a specific structural property
of climate models shapes hydrological impacts, it provides insight into the consequences of
model exclusion and the importance of regional process evaluation. Chapter 4 evaluates
whether unequal weighting schemes improve streamflow projections relative to the commonly
used model-democracy approach. Using a pseudo-reality framework, it tests the performance
of multiple weighting methods and assesses how model credibility and dependence influence
impact outcomes. This extends the previous chapters by exploring the role of model

importance, not just model inclusion.

Together, these three articles form a unified investigation of climate-model ensemble design,
from subsetting, to selective exclusion, to weighting, and how these methodological choices
shape hydrological projections across more than 3,000 North American catchments. The final
chapter synthesizes the cross-cutting insights, connects the findings back to the research

objectives, highlights limitations, and outlines promising directions for future work.
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Abstract

Climate change impact studies often use ensembles of climate projections from General
Circulation Models (GCMs). These ensembles generate a distribution of future impacts which
often dominates other uncertainty sources. While using all available GCMs was once
considered ideal for representing uncertainty, the rapid growth in projections makes this
approach unfeasible, necessitating representative subsets instead. Understanding how climate-
model uncertainty from these subsets propagates through hydrological impact assessments is
essential for robust adaptation planning. Using 3,540 catchments across Canada and the
contiguous United States, we evaluate whether the representativity of GCM subset uncertainty
is preserved once climate projections are transferred to hydrological projections. We drive
three lumped hydrological models (GR4J+CemaNeige, HMETS, HSAMI) with 20 CMIP5
GCMs under RCP8.5, bias-corrected with TSQM and MBCn, and decompose variance in
projected changes for mean, high, and low flows. We find that GCMs dominate uncertainty
for mean and high flows, whereas hydrological model structure dominates low-flows. We then
test GCM sub-selection using K-means and the deterministic KKZ algorithm within
multivariate spaces defined by climate indices. KKZ consistently preserves ensemble spread
better than K-means. Crucially, index choice matters: small, physically meaningful pairs
tailored to the target hydrologic metric (e.g., PRCPTOT with AT for mean flows; Rx1day with
wet-day frequency for high flows) outperform larger index sets. Across most catchments, five

well-chosen GCMs reproduce most of the full-ensemble spread for mean and low flows, while
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high-flows require larger subsets. Results provide practical guidance for designing compact,

representative GCM ensembles that retain key uncertainties in hydrological applications.

2.1 Introduction

Understanding future hydrological regimes in a warmer climate is essential for developing
adaptation strategies to meet growing demands on food production and increased risks from
water-related hazards due to climate change and population growth (Lavell et al., 2012;
Mahadevan et al., 2024; Smirnov et al., 2016). To this end, climate change impact studies
targeting the water cycle are now routinely performed to guide decision makers into choosing
the best possible adaptation measures. These impact studies typically use ensembles of
projections from General Circulation Models (GCMs) and hydrological models to project
future hydrological regimes (e.g. Feng & Beighley, 2019). However, each component within
the modeling chain introduces uncertainties that must be carefully studied and accounted for
(Ashraf Vaghefi et al., 2019; Senatore et al., 2022; H. Wang et al., 2020). A proper
characterization of uncertainty related to the various components of the hydroclimatic
modeling chain is critical for impact studies (Clark et al., 2016; Giuntoli et al., 2018). Of all
uncertainties present in the hydroclimatic modeling chain, the uncertainty related to the choice
of climate models is often dominant. However, whether subsets chosen in the climate domain
remain representative after being processed through bias correction and hydrological models
is still unclear. This raises the broader problem of uncertainty “transferability” between climate

and impact domains.

Climate model projection uncertainty arises primarily from three factors: internal variability,
emission scenarios, and model uncertainty (Deser et al., 2012; Tebaldi & Knutti, 2007). Model
uncertainty arises because different models employ distinct physical and numerical
formulations, resulting in varied responses to identical external forcing. Scenario uncertainty
stems from limited knowledge about external factors influencing the climate system, such as
trends in greenhouse gas emissions, land-use changes, and stratospheric ozone concentrations.

Internal variability is due to the nonlinear dynamic processes within the atmosphere, ocean,
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and the coupled ocean-atmosphere system, reflecting the climate system’s inherent
fluctuations independent of external forces (Deser et al., 2012). The internal variability related
uncertainty is irreducible, but can be evaluated by running a climate model multiple times with

slightly different initial conditions (Deser et al., 2012; Leduc et al., 2019).

Impact assessment studies typically involve multiple steps in a modeling chain starting with a
greenhouse gases emission scenario and ending with an impact model such as a hydrological
model (Chen et al., 2011; H. Wang et al., 2020). Each of these steps adds uncertainty along the
way. Several studies have shown that GCM projections are, in most cases, the main source of
uncertainty in climate change impact assessments (Chen et al., 2011; Giuntoli et al., 2018;
Hodson et al., 2013; H. Wang et al., 2020). Ideally, capturing the full range of uncertainty
would involve using all available GCMs, allowing for a comprehensive spectrum of potential
future scenarios generated by multiple models. However, as the number of GCMs has
increased from 25 simulations in CMIP3 to 61 in CMIP5 (Taylor et al., 2012) and over 100 in
CMIP6 (Eyring et al., 2016), incorporating them all in impact studies has become impractical.
The plethora of existing model choices poses a challenge for researchers and decision-makers

in selecting the most appropriate models for their assessments.

An ideal subset of GCMs should both accurately reconstruct historical climate patterns and
represent a range of potential future scenarios (Vano et al., 2015). Accordingly, one approach
to selecting GCMs has been to evaluate their historical performance, considering models that
closely replicate past observations as optimal (Gleckler et al., 2008; Palmer et al., 2022;
Parding et al., 2020; Perkins et al., 2007; Rupp et al., 2013). However, even high-performing
models during the reference period do not necessarily guarantee the most reliable future
projections. Many researchers have therefore explored strategies to select climate change
scenarios that minimize the number of required scenarios while effectively capturing a broad
spectrum of potential inter-model variability (Cannon, 2015; Mendlik & Gobiet, 2016). Other
researchers have tried to improve their subset by first eliminating GCMs with the weakest
performance over the reference period (Dubrovsky et al., 2015; George & Athira, 2022; Lutz
et al., 2016; McSweeney et al., 2015; Prein et al., 2019; Ruane & McDermid, 2017; Shiogama
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et al., 2021). While excluding GCMs that fail to capture key processes in the study region may
enhance accuracy, this approach is still limited in guaranteeing future reliability (Palmer et al.,
2022). The question of whether selection should include all available GCM simulations, even
those with subpar historical performance, remains under debate (Rahimpour Asenjan et al.,

2023).

To capture inter-model variability, earlier studies predominantly employed clustering-based
techniques, such as hierarchical (e.g. Mendlik & Gobiet, 2016; Wilcke & Birring, 2016) and
k-means clustering (e.g. Casajus et al., 2016; Houle et al., 2012). However, the clustering
approaches often select scenarios that represent only the central trend rather than the full
spectrum of an ensemble's variability, and they do not allow for scenarios to be arranged by
priority (Cannon, 2015). To address these limitations, Cannon (2015) proposed the
Katsavounidis—Kuo—Zhang (KKZ) algorithm (Katsavounidis et al., 1994), which selects a
subset of GCMs that more effectively captures a wide range of variability. The KKZ algorithm
operates recursively, selecting members that thoroughly span multivariate space, thereby
offering a more effective method for preserving the full inter-model variability than traditional
clustering approaches. Previous studies demonstrated that the KKZ algorithm better retains the
comprehensive variability of the ensemble (Cannon, 2015; Chen et al., 2016; Golian &
Murphy, 2021; Ross & Najjar, 2019).

Previous studies have primarily focused on the “climate world,” conducting analyses within
the domain of climate models (e.g. Sung et al., 2019). While these methods effectively select
climate simulations that capture the uncertainty inherent in climate models, they do not
guarantee that the selected subset will remain optimal when applied to the impact domain. This
limitation becomes particularly evident after processes such as downscaling, bias correction,
or passing through the non-linear filters of impact models. For instance, hydrological models
exhibit highly non-linear responses to even minor variations in temperature and precipitation.
A limited number of previous studies have explored the transferability of GCM uncertainty to
hydrological impacts using various methods. For example, Chen et al. (2016) assessed

transferability over a Canadian watershed using two climate variables and found limited
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transferability of the uncertainty. Wang et al. (2018) extended this work by incorporating
multiple climate variables, concluding that a selection of ten GCMs could adequately represent
uncertainty in both climate and hydrology domains. Seo et al., (2019) and Seo and Kim, (2018)
extended this line of research by employing the KKZ algorithm with climate extreme indices
and emphasized that the choice of indices should reflect the hydrological extremes being
projected. Nonetheless, their analysis was restricted to a limited number of basins and did not

address how the spatial scale of climate indices may influence hydrological outcomes.

Building on this context, the aim of our study is to investigate the transferability of uncertainty
from the climate world to the hydrologic domain when GCMs are selected based on climatic
variables. As Seo et al., (2019) and Seo and Kim, (2018) demonstrated, identifying key climatic
indices is a crucial step before selecting a representative subset of GCMs. This approach
minimizes the need to account for a broad range of climate indicators, allowing for a tailored
selection process based on the specific dependency of each hydrologic variable. In this study,
various combinations of climate indices are compared to identify the most effective set of

climate variables for GCM selection in North American catchments.

This paper evaluates climate model sampling methods for preserving uncertainty across
diverse climatic and hydrologic regimes. Specifically, it investigates whether including
multiple indices closely related to the hydrologic variable under study improves uncertainty
preservation and examines how narrowing the ensemble of GCMs impacts this preservation.
Additionally, it assesses the performance of extreme indices compared to classic indices in
North American catchments. By addressing these objectives, our study contributes to
advancing methodological foundations and provides guidance for designing representative, yet

computationally feasible, GCM ensembles for hydrological applications.

2.2 Methods

2.2.1 Study area and data
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The meteorological and streamflow data for 3540 catchments spanning Canada and the
contiguous United States were used in this study. Data was extracted from the NAC?H dataset
(Arsenault, Brissette, Chen, et al., 2020). The NAC?H dataset integrates 2,842 U.S. catchments
from the National Hydrography Dataset (U.S. Geological Survey, 2019) with 698 additional
catchments from both the CANOPEX database (Arsenault et al., 2016) and the U.S. Geological
Survey’s National Water Information System (NWIS) (U.S. Geological Survey, 2016). The
meteorological data are obtained from the Livneh gridded database for U.S. catchments
(Livneh et al., 2015) and CANOPEX for Canadian catchments. The CANOPEX dataset
includes 10 km resolution gridded climate data from Natural Resources Canada (Hutchinson
et al., 2009), while the Livneh dataset provides 6 km resolution gridded meteorological data
for the United States. Daily precipitation (mm/day) and minimum and maximum temperatures
(°C) are included in the dataset, which are used as input for hydrological model calibration and

as reference data for climate model bias correction.

The reference period selected for this study is 1971-2000, while the future period for analysis
is 2070-2099. Catchments with drainage areas smaller than 300 km? were excluded to avoid
challenges associated with daily-scale hydrological modeling. Figure 2.1 illustrates the spatial
distribution of catchments across multiple regions, capturing multiple hydrological and

climatic conditions.
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Figure 2.1 Geographic distribution of the 3,540 catchments in the dataset. The figure includes
nested basins, with smaller catchments overlaid atop larger ones

2.2.2 Experimental Setup

Following a top-down hydroclimatic modeling approach, similar to Rahimpour Asenjan et al.,
(2023) and Arsenault et al. (2020), the RCP 8.5 scenario was selected as it represents a high-
emission scenario with substantial warming potential, allowing for the assessment of extreme
hydrological changes under a worst-case climate change trajectory. While this scenario has
been increasingly considered as overly pessimistic (e.g. Hausfather & Peters, 2020), it has the
advantage of limiting the impact of internal variability (irreducible uncertainty) on the
interpretation of future impacts. Twenty (20) GCMs from the CMIP5 archive were used, which
provide a diverse ensemble for hydrological simulations and impact analysis. A complete list

of the selected GCMs is provided in Table 2.1.
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Table 2.1 The 20 GCMs employed in this study

Climate Models Resolution (Lon X Lat) Modeling center
ACCESS1-0 1.875° x 1.25° CSIRO
ACCESSI1-3 1.875° x 1.25° CSIRO
BCC-CSM1-1 2.8°%2.8° BCC
BCC-CSM1-1-m 1.125° x 1.125° BCC
BNU-ESM 2.8° % 2.8° GCESS
CanESM2 2.8° % 2.8° CCCma
CMCC-CMS 1.875° x 1.875° CMCC
CSIRO-Mk3-6-0 10.8° x 1.8° CSIRO
FGOALS-g2 1.875° x 1.25° CESS
GFDL-ESM 2G 2.5°%2.0° NOAA-GFDL
GFDL-ESM 2M 2.5°%2.0° NOAA-GFDL
GISS-E2-R 2.5°%2.0° NOAA-GISS
Inmcm4 2.0°x 1.5° INM
IPSL-CMS5A-LR 3.75° X 1.9° IPSL
[PSL-CM5A-MR 2.5° % 1.25° IPSL
IPSL-CM5B-LR 3.75° X 1.9° IPSL
MIROCS 1.4° x 1.4° MIROC
MIROC-ESM 2.8°%2.8° MIROC
MIROC-ESM-CHEM 2.8° % 2.8° MIROC
MRI-CGCM3 1.1° % 1.1° MRI

To correct the systematic biases in raw GCM simulations the Two-Stage Quantile Mapping
(TSQM) and Multivariate Bias Correction (MBCn) (Cannon, 2018) methods were used.
TSQM is a two-step quantile mapping approach (Guo et al., 2019) developed to enhance bias
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correction by preserving the relationships between climate variables. TSQM first corrects the
marginal distributions of precipitation and temperature using a univariate quantile-mapping
approach, and then restores their dependence structure through a distribution-free shuftling
step. MBCn, on the other hand, performs a fully multivariate correction by rotating the
variables into an independent coordinate system, applying quantile mapping in that space, and
then rotating them back, thereby adjusting both marginal distributions and the full multivariate
dependence structure simultaneously. In addition to correcting biases in temperature and
precipitation distributions, the two multivariate bias correction methods also maintain the inter-
variable relationships between temperature and precipitation (Arsenault, Brissette, Chen, et

al., 2020; H. Wang et al., 2020).

In this study, three lumped hydrological models namely GR4J, HMETS and HSAMI were
employed. GR4J (Génie Rural a 4 Parameétres Journalier) is a four-parameter conceptual model
(Perrin et al., 2003), which is paired with the CemaNeige snow module (Oudin et al., 2005)
to account for snow processes and improve performance in snow-dominated catchments, since
it lacks a built-in snow routine. On the other hand, the 21-parameter HMETS (Hydrological
Model of the Ecole de Technologie Supérieure) model was created especially for cold climates
(Martel et al., 2017). Ten parameters are dedicated to snow accumulation and melt processes,
and PET is calculated internally using the Oudin formulation. HSAMI is a 23-parameter model
that has a similar structure to HMETS but employs a different snow routine and an empirical
PET formulation (Poulin et al., 2011). The selected hydrological models were chosen to
represent different conceptual structures, allowing for an assessment of structural uncertainty

in hydrological simulations (Poulin et al., 2011).

In this study, we did not perform new hydrological model calibrations; instead, we relied on
the pre-calibrated simulations provided in the NAC?H dataset. In NAC?H, the hydrological
models were calibrated using the CMAES optimization algorithm (Hansen et al., 2003), with
the Kling-Gupta Efficiency (KGE) metric as the objective function (Arsenault et al., 2014;
Gupta et al., 2009). Each calibration was repeated 15,000 times. The meteorological data of

the reference period (1971-2000) was used for calibration, with the first two years allocated
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for model warm-up and the remaining 28 years for calibration. Many catchments achieved
KGE values above 0.7, demonstrating the effectiveness of hydrological models in simulating
streamflow. However, modeling remains challenging in regions such as the Midwestern U.S.
and the Canadian Prairies, where lumped models often struggle to capture hydrological

processes accurately (Newman et al., 2015).

223 Uncertainty Decomposition

The study consists of 20 GCMs, 3 hydrological models (HMs), and 2 bias correction (BC)
methods, resulting in 120 total combinations. To attribute variance in projected streamflow
changes to these three sources of uncertainty, an Analysis of Variance (ANOVA) was applied.
ANOVA partitions the overall variance of a projected hydrological variable into components
attributable to each factor, thereby quantifying the distinct contribution of GCMs, HMs, and
BC methods (Giuntoli, Vidal, et al., 2015; Meresa et al., 2022; S. Zhang et al., 2024). Because
our models are deterministic, we obtain only one simulation for each GCM-HM-BC
combination. In classical ANOVA, interaction effects can only be estimated if multiple
independent values (replicates) exist for each treatment, allowing variability due to interactions
to be separated from random noise. Since no such replicates exist in our dataset, interaction
effects cannot be distinguished and are absorbed into the residual error. The ANOVA is
therefore simplified to a first-order variance decomposition with one case per treatment and no

interaction terms (af;; = 0) (Giuntoli, Vidal, et al., 2015). The overall variance in

hydrological responses is divided between the separate components using equation (2.1)

Where Y is the simulated streamflow response under the i-th GCM, j-th hydrological model,
and k-th bias correction method, u represents the ensemble mean across all model simulations,
G; captures the effect of the i-th GCM, H; accounts for the effect of the j-th hydrological model,
By represents the effect of the k-th bias correction method, €;jy is the residual error. The total

variance is then decomposed to each factor using the sum of squares method.
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where SSy represents the sum of squares for factor X (e.g., climate models, hydrological
models, or bias correction methods), and Y denotes the total response variable representing the
simulated streamflow projections. Here, total variance is used as a measure of overall
uncertainty, aligning with methodologies applied in previous studies (Meresa et al., 2022;

Sansom et al., 2013; H.-M. Wang et al., 2018).
2.24 GCM subset selection

GCM selection is typically based on a set of # climate variables (e.g. annual mean precipitation
and temperature in its simplest form with n=2). These variables define an n-dimensional
climate space, where each GCM is represented as a point according to its projected changes.
In order to cover the uncertainty of a large ensemble of GCMs, subsets of N GCMs (2 < N<20)
are chosen using either K-means clustering or the KKZ method (see details below). The
selection process relies on selected climate variables (see next section) that are used to assess
similarity (or differences) between GCMs. Subset selection is therefore dependent on both the
approach (K-means vs KZZ) as well as on the climate variables (and scaling of said variables)
used to measure similarity between the various GCMs. In order to assess the ability of those
subsets at representing explained variance, all possible combinations of n» GCMs will also be
computed. This exhaustive benchmark allows us to determine whether structured selection
methods preserve ensemble variability more effectively than random sub-selection. Figure 2.2

schematizes the approach used for testing GCM subset selection approaches.
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Figure 2.2 Methodological framework for testing GCM subset selection

2.2.5 Climate variables

Subsets of climate models are typically selected using future climate signals, often using a
reduced 2-D space consisting of mean temperature change (AT) and relative precipitation
change (AP/P), however, in practice any number of climate variables can be used. To
characterize climate change signals relevant to hydrological impacts, 25 climate indices were
computed, primarily based on those defined by the Expert Team on Climate Change Detection
and Indices (ETCCDI). These indices capture extremes in temperature and precipitation, and
were further complemented by climate variables used in Wang et al. (2018) and Seo et al.

(2018, 2019) to ensure comprehensive coverage of relevant climate characteristics.
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Table 2.2 List of climate variables. All indices represent the change between historical and
future periods. Indices marked with (%) are expressed as ratios (future/historic)

Index Description Change
FD No. of frost days (Tmin < 0°C)

SU No. of summer days (Tmax > 25°C)

ID No. of icing days (Tmax < 0°C)

TR No. of tropical nights (Tmin > 20°C)

TNn Annual minimum of daily minimum temperature

TNx Annual maximum of daily minimum temperature

TXx Annual maximum of daily maximum temperature

TXn Annual minimum of daily maximum temperature

DTR Change in diurnal temperature range

AT Change in annual mean temperature

WSDI Warm spell duration index

CSDI Cold spell duration index

PRCPTOT Total annual precipitation

SDII Simple precipitation intensity index %
Rx1day Annual maximum 1-day precipitation %
Rx3day Annual maximum consecutive 3-day precipitation %
Rx5day Annual maximum consecutive 5-day precipitation %
R10mm No. of wet days with >10mm precipitation %
R20mm No. of wet days with >20mm precipitation %
R1mm No. of wet days with >Imm precipitation %
CDD Maximum number of consecutive dry days

CWD Maximum number of consecutive wet days

Rn30day  Annual min consecutive 30-day precipitation

RO5pTOT  Precipitation from days >95th percentile %
R99pTOT  Precipitation from days >99th percentile %
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Each index was computed by comparing values from the reference period to those of the future
projection period, and subsequently normalized to make the indices directly comparable.
Precipitation-related indices were expressed as relative changes, while temperature-based and
duration-related metrics were represented as absolute changes. This set of standardized climate
indicators formed the basis for GCM selection using clustering and sampling methods such as

KKZ and K-means. Table 2.2 provides a summary of the climate variables used in this study.

2.2.6 K-Means clustering

K-means clustering is a widely used unsupervised learning technique that partitions the set of
climate simulations into a specified number of clusters, aiming to minimize the within-cluster
sum of squared errors (SSE) (Hartigan & Wong, 1979). Each cluster is identified by a centroid,
which is the average position of all simulations allocated to that cluster. The SSE is calculated
as the Euclidean distance between each simulation and its centroid. Simulations closest to these
centroids are selected to form a representative subset, a strategy commonly applied in climate
modeling studies to reduce ensemble size while preserving variability (Logan et al., 2011;

Cannon, 2015; Houle et al., 2012).

A key limitation of K-means clustering is its sensitivity to initial centroid placement, which
can strongly influence the final clustering results. To mitigate this issue, the clustering was run
10,000 times with various initializations, and only the solution that produced the lowest SSE
was retained. However, a major drawback of this approach is that subset selection is not
hierarchical, meaning the simulations chosen in a smaller subset may not necessarily be
included in a larger subset. Because of this lack of ordering, it is less flexible and less
appropriate for applications in which users must dynamically modify subset sizes in

accordance with certain specifications.

2.2.7 KKZ method
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Originally developed for initializing centroids in k-means clustering, the Katsavounidis-Kuo-
Zhang (KKZ) method (Katsavounidis et al., 1994) is a deterministic algorithm later adapted
by Cannon (2015) for selecting representative climate model simulations. Unlike stochastic
clustering techniques, KKZ is a deterministic procedure that systematically identifies a subset
of models that optimally capture the variability within an ensemble. This approach is
particularly valuable in climate studies, where it is essential to represent a wide range of climate
projections. By ensuring that the selected models are evenly distributed across the multivariate

space, KKZ provides a more comprehensive representation of future climate scenarios.

Unlike random sampling or conventional clustering, which may favor models concentrated in
high-density regions, KKZ prioritizes models that span the full range of climate variability.
This ensures that the selected ensemble reflects the entire spectrum of climate conditions,
making it a reliable method for scenario selection in climate impact assessments. The KKZ
algorithm follows a structured, step-by-step approach to ensure optimal selection of models

that best represent variability within an ensemble:

1. Select the first model: Identify the model closest to the ensemble centroid, determined

by the lowest SSE across all variables.

2. Select the second model: Choose the model farthest from the first selection based on

Euclidean distance in the multivariate space.

3. For subsequent selections (starting from the third model onward):

1. Compute the Euclidean distance between each remaining model and all
previously selected models.
2. Retain only the minimum distance for each remaining model, ensuring it is

evaluated based on its closest selected counterpart.
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3. Select the model with the maximum minimum distance, ensuring that each

new selection maximizes diversity within the ensemble.

4. Repeat Step 3 until the desired number of models has been selected.

By employing this method, KKZ ensures that the selected models effectively capture the full
range of variability within the dataset. However, its deterministic nature makes it susceptible
to outliers, as extreme values may be preferentially chosen. Despite this limitation, KKZ
remains a valuable tool for selecting climate scenarios in a systematic, reproducible, and

unbiased manner.

2.3 Results

Figure 2.3 illustrates the contribution of different sources to future mean flow uncertainty using
the full ensemble of 20 GCMs. Uncertainty is categorized into HMs, BCs, and GCMs, with
colors representing the percentage contribution to total uncertainty. For mean flow, GCMs are
identified as the dominant source of uncertainty across most of North America, explaining over
80% of the variance in many regions. In contrast, HMs generally contribute less to mean flow
uncertainty, except in certain central regions where they struggle with modeling accuracy,
resulting in a higher contribution to the overall uncertainty. BCs, while contributing modestly,
are less influential compared to GCMs and HMs in shaping the uncertainty associated with
mean flows. These patterns underscore the critical role of GCMs in driving uncertainty in

future projections of mean flows across North America.
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Figure 2.3 Contribution to future mean flow uncertainty, separated by (a) Hydrological
Model (HM), (b) Bias Correction (BC), and (¢) General Circulation Model (GCM).
Colors represent the percentage contribution to total uncertainty

In the same format as Figure 2.3, Figure 2.4 presents uncertainty partitioning for low-flows.
HMs are identified as the largest source of uncertainty for low flows, with a median
contribution of 82%. This high contribution reflects the challenges HMs face in accurately
simulating low flows, which amplifies their impact on overall uncertainty. In comparison, BC
and GCM contributions to low flow uncertainty are significantly lower, with little regional

variation observed.
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Figure 2.4 Contribution to future low flow uncertainty, separated by (a) Hydrological Model
(HM), (b) Bias Correction (BC), and (c) General Circulation Model (GCM). Colors represent
the percentage contribution to total uncertainty

Similarly, Figure 2.5 illustrates the contributions to uncertainty for future high flows. GCMs
emerge as the dominant source of uncertainty for high flows, with a median contribution of
60%. HMs contribute 40% to high flow uncertainty, performing better in modeling high flows
compared to low flows. However, HMs exhibit a significant regional pattern, with a notable
contribution to uncertainty in northern and western regions. These regions are characterized
by the presence of snow. In contrast, BC methods contribute minimally to high flow

uncertainty, having a less significant impact compared to GCMs and HMs.
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Figure 2.5 Contribution to future high flow uncertainty, separated by (a) Hydrological
Model (HM), (b) Bias Correction (BC), and (c) General Circulation Model (GCM). Colors
represent the percentage contribution to total uncertainty

The main objective of the paper is to investigate if a smaller sample of General Circulation
Models (GCMs) can preserve the variance as the full GCM ensemble. The impact of sampling
GCMs on their contribution to overall streamflow variance for mean, high, and low flows is
shown in Figure 2.6. The graph depicts the distribution of GCM contributions to uncertainty,
obtained from all possible combinations of 5, 10, and 15 GCMs, for one representative
catchment, though the same analysis was performed for all catchments, with additional

examples provided in the Supplementary Material. However, the key features of the graph are
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consistent across most catchments, even though the total GCM contribution varies depending
on catchment, as seen in Figures 2.3, 2.4 and 2.5. The red line on the right represents the

contribution to variance of the original 20-member ensemble.

It is apparent that when using a random sample of 5 GCMs, the likelihood of over or
underestimating future uncertainty is highest, with values ranging from 6% and 94% for mean
flow. A low value would arise from selecting 5 GCMs that give similar future mean flow
projections, whereas a large value would result from the selection of 5 highly diverse GCMs
in terms of future mean flow projections. Increasing the number of GCMs from 5 to 10 and 15
significantly decreases the potential for over or underestimation of the original ensemble
variance. However, significant deviations can still arise depending on the choice of GCM
within the reduced sample. Nevertheless, selecting a larger number of GCMs improves the
probability of accurately representing the uncertainty of the original GCM ensemble. The
behavior for high and low flows is similar, although a smaller proportion of the overall variance
can be attributed to GCMs for these two metrics. Importantly, Figure 2.6 shows that random
sampling of GCMs is a strategy susceptible to result in large errors in the representation of
uncertainties, unless a large number of GCMs is included. This is why GCM selection
strategies have typically been favored over random sampling. Figure 2.6 also shows that there
is a much higher risk of underestimating GCM variance than overestimating it. In addition, the
magnitude of the underestimation can be a lot more severe than that resulting from an

overestimation.
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Figure 2.6 Boxplot of GCM contribution to uncertainty for all
possible combinations of 5, 10 and 15 GCMS from the original
ensemble of 20. These results are for one typical catchment

Figure 2.7 presents the results of the different GCM selection strategies discussed above. For
each selection strategy, it shows the boxplot of the ratio of spread coverage (RSC) computed
at each catchment, when using a subset of 5 GCMs. Each boxplot is therefore composed of
3540 catchment values. In the Figures below, the RSC is defined as the ratio of the variable’s
range in the subset (from each selection strategy) to the variable’s range in the full 20-member
ensemble. A RSC equal to 1 implies that the subset fully reproduces the spread of the full

ensemble, while values less than 1 indicate that the subset underestimates the spread of climate
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model uncertainty. While we acknowledge the limitations of the RSC metric, for example, a
subset could technically achieve RSC = 1 by including only the models at the extremes, it
nonetheless provides a simple, transparent representation of how much of the original
ensemble spread is retained, rather than a complete measure of uncertainty itself. We use RSC
as a practical diagnostic tool to compare subset performance, while recognizing that true

uncertainty is multidimensional and cannot be fully captured by a single metric.

The figure compares the two chosen GCM selection methods, KKZ and K-means. For both
methods, GCM similarity is evaluated using 5 different strategies: 1- using all of the climate
variables listed in Table 2 (“All”), 2- using all climate variables but excluding highly correlated
climate variables (“Low Corr”), 3- using the pair of climate variables suggested by Seo et al.
(2019) which link specific climate indices to different hydrologic regimes; annual total
precipitation (PRCPTOT) and mean annual temperature (AT) for mean flows, Rx5day and
Rx3day (see table 2.2) precipitation for high flows, and diurnal temperature range (DTR)
combined with Rn30day for low flows (“Seo”), 4- selecting the best-performing pair that
maximizes the median RSC across all catchments (“Best”), and 5-choosing a random pair of
climate variables (“Random”). It’s important to state the ‘best’ performing pair was chosen by
optimizing the median RSC across all catchments and is NOT catchment-specific. This
approach will therefore yield the best median result, but may not be the best one on all

catchments.

For mean flows, the best-performing climate variables (the one resulting in the best RSC) was
PRCPtot and precipitation above the 95th percentile (R95pTOT). For high flows, the best pair
was Rxlday and Rlmm. For low flows, the best indices were change in annual mean
temperature (AT) and PRCPtot. For any given catchment, the choice of a single random subset
is not representative (a subset could be good, bad, or average in terms of RSC), but when
aggregated over 3,540 catchments (as shown in Figure 2.7, for example), it provides

representative expected results from this strategy.
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Our findings show that the KKZ method consistently outperformed K-means for selecting
GCMs that better preserve the range of variability (the boxplots on the left hand side of Figure
2.7, are systematically better than the ones on the right hand side). The Seo climate variables
were close to that of the best performing ones for mean flows, but significantly worse for low
and high flow. For low flows, GCM selection proved to be less critical, as the contribution of
GCMs to overall uncertainty is relatively small. For low flow, all selection methods give
somewhat similar results with exception of the ‘best’ approach which clearly outperforms the
others. Overall results show that a subset of 5 properly selected GCMs allows to preserve most
of the variability of the full ensemble of 20 GCMs, as the median RSC exceeds 0.9 for the
‘best” method. it should be noted that even though the ‘best” method outperforms the other
approaches when looking at Figure 2.7, this may not be the case on all catchments. In fact, in

some catchments, the ‘Seo’ approach outperforms the ‘best’ pair.
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Figure 2.7 Boxplot of RSC across 3,540 catchments. The RSC is defined as the ratio of

the range of selected GCMs to the range of all GCMs. The X-axis labels correspond to

different selection methods: the first five boxplots represent the KKZ method, and the
next five represent the K-means method. These results are for subsets of 5 GCMs.

Figure 2.8 presents a scatter plot comparing the RSC when using the KKZ method with “Seo”
and “best” pairs of indices. The results are once again obtained from a subset of 5 GCMs. As

expected, across all three flow indices, the ‘best’ indices give improved results with RSC
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consistently closer to one (warmer colors). The difference is however small for mean flow, as
both approaches provide similar results. Differences are however much larger for high and low
flow, suggesting that the selection of appropriate climate variables is more complex. This is
perhaps not surprising since the meteorological, climatological and physical processes leading
to low flows and high flows are more complex than the ones leading to mean annual flow. For
mean flow, mean annual precipitation and a temperature related index (e.g. mean annual

temperature, annual PET, aridity index) are natural choices.

No clear spatial patterns are present in Figure 2.8, suggesting that local catchment
characteristics or flow regime dynamics may play a larger role in performance. Indeed, in some
catchments, the “Seo” indices outperform the “best” pairs, underscoring the context-dependent

nature of index selection.
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Figure 2.8 Map showing the RSC covered when selecting five GCMs (one combination
per catchment) using the KKZ method with (a, c, €) Seo indices and (b, d, f) best indices
across 3,540 catchments.

Results for Figure 2.7 and 2.8 were detailed for subsets of 5 GCMs. To look into the impact of
subset size, Figure 2.9 presents the median RSC for low, high, and mean flows, for subsets of
1 to 19 GCMs out of the original ensemble of 20. To simplify the Figure only two selections
methods are shown: (1) the KKZ method using the “best” pair of climate variables (solid lines
in Figure 2.9), and (2) KKZ method using the “Seo” pair of climate variables (dashed lines in
Figure 2.9). These two choices represent the best-performing approaches based on the
preceding results. The plotted values represent the median RSC from the 3,540 catchments,
providing a generalized view of subset performance. While the median offers a generalized

view, the full distributions shown in earlier figures illustrate the underlying spatial variability.
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It is important to note that RSC is only one representation of uncertainty. Although range-
based measures are intuitive and easy to interpret, they do not capture all aspects of uncertainty
(e.g., variance or distributional shape). Here, RSC is used as a practical and interpretable metric

for large-sample comparison, while acknowledging its limitations.

The “best” variable pair consistently outperforms the “Seo” one. This is by design, since the
“best” pair was optimized to have the best median RSC. The difference between the two is
smallest for mean flows and largest for low flows as was also shown in Figure 2.7. All results
eventually converge toward a RSC of 1. However, the rate of convergence depends on the
chosen streamflow metric. Convergence is particularly slow for the high flows with
respectively 8 (best) and 11 (Seo) GCMs needed to reach a RSC of 95%, compared with 4
(best) and 9 (Seo) for low flows and 6 (best) and 7 (Seo) for mean flow. The large difference
between these two options for high and low flow indicate that results are sensitive to the choice
of climate variable used for GCM selection. In those two cases, 10 GCMs need to be selected
so that differences become much smaller. For mean flow, which is less sensitive to the choice

of climate variables, only 5 GCMs are needed to reach comparable results.
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Figure 2.9 RSC for low, high, and mean flows. GCM subsets are selected using the KKZ
method with “Seo” and “best” indices. The values shown represent the median RSC across
3,540 catchments.

2.4 Discussion

Hydrological impact studies often use ensemble approaches to capture uncertainty across the
modeling chain. Since climate models contribute significantly to this uncertainty, selecting a
representative subset is essential but nontrivial. The main objective of this study was to
investigate if the uncertainty from the climate modeling domain can be effectively transferred

to the hydrological domain. GCM subset selection was performed using KKZ and K-means
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algorithms, both of which rely on a multivariate space defined by climate variables to capture
the differences among GCM outputs. A key objective was to identify the most effective climate
indices for capturing GCM-driven variability and translating it into hydrological impact

projections.

The findings show that carefully selected climate variables can significantly improve the
transferability of variability from the climate modeling domain to hydrological impact
assessments. The choice of indices used to define the multivariate space plays a critical role in
determining how well the selected GCMs preserve the relevant variability for hydrological
impacts. In many cases, a well-chosen pair of climate indices is sufficient to achieve strong
performance. Adding more variables does not necessarily improve results and can even
degrade performance by introducing redundancy, particularly when the added indices are
highly correlated. For example, in the case of high flows, a randomly selected pair of indices
performed similarly to the full set of climatic indices, which contain ETCCDI indices as well,

suggesting that increasing the number of variables does not guarantee better transferability.

A pairwise comparison of climate indices was conducted to identify the best combinations for
transferring variability from climate simulations to hydrological responses. For mean flows,
the indices suggested by Seo et al. (2019) (e.g., annual total precipitation and mean
temperature) performed almost as well as the best-performing pairs. This is likely because
mean flows are largely influenced by long-term averages in temperature and precipitation,
which these commonly used indices capture effectively. Although a comprehensive list of
precomputed indices is available through ETCCDI, reducing this list by removing highly
correlated indices did not improve performance, for mean flows, using the full set of indices
generally yielded better results. This shows that indiscriminate elimination of the correlated
climate variables does not necessarily yield improvements. On the other hand, a well-chosen
small subset of indices (e.g., two variables) can perform nearly as well as the best possible
combinations as shown above, underscoring the importance of informed selection rather than

simple reduction.
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However, for high flows and low flows, the performance differences between the suggested
indices by Seo et al., the full set of ETCCDI indices, the reduced set of low-correlated indices,
and even randomly selected pairs were relatively small. The underlying reason remains
uncertain, but this may indicate that these flow regimes are influenced by more complex or
indirect climate drivers, which are not easily captured by a limited set of general-purpose
indices. For high flows, the most effective combination was Rx1day and the number of wet
days, while for low flows, the optimal pair was the change in annual mean temperature (AT)
and PRCPtot. In both cases, the optimal sets make a lot of hydrological sense. This shows that
rather than relying solely on standardized indices such as those from the ETCCDI or default
pairs like temperature and precipitation changes a more effective strategy may be to prioritize
climate variables that are directly and physically linked to the specific hydrologic metric of
interest. Such a targeted approach can enhance the precision and relevance of GCM subset

selection, ultimately leading to more robust and meaningful hydrological impact assessments.

It’s also noteworthy that the best-performing climate indices varied across catchments. The
“best indices” identified in this study reflect those with the best median performance across all
catchments; however, different pairs of indices may perform better in specific locations. For
example, the previously identified Rx1day predictor for high flows may be a great one for
medium size catchments with a response time close to one day, but may fail for larger
catchments who may be more sensitive to long wet periods, or for catchments whose spring
snowmelt is the main driver of high flows. Crucially, there is no way to know in advance which
indices will perform best for a given catchment. Even catchments with similar characteristics
can yield different results, indicating that the relationship between climate indices and
hydrological responses is not easily predictable. Stepwise regression analysis revealed no
consistent relationship between catchment characteristics and the most effective indices,
highlighting the highly site-specific nature of GCM sub-selection. This variability makes it
difficult to generalize best practices across regions. While tailored index selection can improve
performance, it limits scalability for regional or continental-scale studies. As such, GCM
selection should align with the specific objectives of the impact assessment and the

hydrological variables of interest. Although it is feasible to determine optimal indices at the
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catchment scale, these combinations often lack broad applicability, reinforcing the need for
flexible, context-sensitive selection strategies. To offer more reliable recommendations,
regional-scale (e.g., sub-national or basin-level) studies, perhaps guided by expert judgement
on local hydrological processes, should be done to assist in identifying index combinations that

balance transferability and performance.

The KKZ method generally outperforms K-means in preserving the spread of projections, as
it tends to select models located near the boundaries of the multivariate space. That said, KKZ’s
tendency to prioritize outlier models can pose challenges, particularly when such models are
unavailable or excluded due to poor historical performance. In these situations, the
representativeness and reliability of the resulting subset may be reduced. To mitigate this issue,
some studies recommend pre-screening GCMs and excluding those with inadequate
performance before applying subset selection techniques. This ensures that only credible
models are considered, improving the robustness of the selected ensemble. However, it is
important to recognize that no single GCM selection method performs optimally across all
catchments or hydrological metrics. The effectiveness of each method is context-dependent

and should be aligned with the specific goals and characteristics of the study.

The number of GCMs needed to adequately capture uncertainty also varied by flow regime.
Mean and low flows were often well represented with just five GCMs, whereas high flows
required larger subsets to preserve the full range of projected variability. This can be attributed
to the heightened sensitivity of high flows to extreme precipitation events, which are less
consistently simulated across GCMs. Consequently, studies focused on high-flow metrics may

need to retain a broader ensemble to avoid underestimating future risk.

Strategically selecting a representative GCM subset offers a practical pathway to reduce
computational burden without sacrificing uncertainty representation. This is particularly
valuable for regional-scale assessments or large-sample hydrology studies where running full

GCM ensembles across many catchments is often infeasible. Our results support the notion
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that well-designed GCM subsets can serve as viable alternatives to full ensembles in

hydrological impact assessments.

Climate variable selection should be tailored to the specific flow regime and objectives of the
impact study. A one-size-fits-all approach may overlook important aspects of hydrological
behavior. The choice of climate variables used in GCM selection should reflect the physical
processes relevant to the hydrologic variable of interest, be it rainfall intensity for floods or

temperature trends for drought.

While subset selection is a simplification of the full ensemble approach, it remains a viable
and often necessary alternative in data- and computation-intensive applications. By aligning
selection strategies with study objectives and hydrological contexts, researchers can achieve

reliable, efficient assessments that still account for the key sources of uncertainty.

2.5 Conclusion

This study used two GCM subset selection techniques (KKZ and K-means) and numerous
climate indices to examine the transferability of climate model uncertainty to hydrological
impact estimates over 3,540 North American catchments. The following is a summary of the
key findings.
e K-means clustering and KKZ clustering are effective tools for choosing subsets of
GCMs that cover the spectrum of climate projections. However, when taking the

transferability of uncertainty to the hydrological world into account, KKZ mostly

outperformed K-means.

e No single subset of GCMs can simultaneously preserve uncertainty across multiple
hydrological metrics. The optimal subset depends on the variable of interest: the models

that best capture mean flows are not the same as those that best capture high or low
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flows. Consequently, to achieve a high transferability of uncertainty, carefully selected
climatic indices are crucial. For mean flows, indices such as mean temperature and
annual precipitation (Seo et al., 2019) are almost as effective as the best performing
pairs of indices. For both high and low flows, higher performance is obtained when
using indices that are more closely associated with these extremes (e.g., Rxlday,

R1mm, PRCPTOT, AT).

Expanding the selection space with additional indices does not necessarily improve
transferability and may instead introduce redundancy, especially when variables are
not directly linked to the hydrological and climatological dynamics of the system. In

many cases, small, well-chosen subsets of indices outperform the full ETCCDI set.

The hydrologic metric taken into consideration determines how many GCMs are
required. While high flow typically requires larger subsets to preserve uncertainty due
to the increased sensitivity to extremes, mean and low flows are generally well

represented with five GCMs.

The best-performing indices varied across catchments, with no consistent relationship
to catchment characteristics. This demonstrates how GCM sub-selection is site-
specific, making it challenging to generalize best practices across regions. Finding
index combinations that strike a balance between performance and transferability may
consequently need regional or basin-scale research, possibly assisted by expert

judgement.
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In conclusion, the study shows that well-crafted subsets of GCMs, chosen with suitable indices
and strong sampling techniques, can retain a significant amount of the uncertainty from
complete ensembles, providing a computationally viable and reliable substitute for large-

sample hydrological impact analyses.
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Figure S2.10 Boxplots of GCM contribution to total uncertainty in streamflow projections,
calculated across all possible combinations of 5, 10, and 15 GCMs (out of a 20-member
ensemble). Results are shown for five additional representative catchments, with the

location of each catchment indicated on the accompanying map (red markers).
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Abstract

Efficient adaptation strategies to climate change require estimating future impacts and the
uncertainty surrounding this estimation. Over- or under-estimating future uncertainty may lead
to maladaptation. Hydrological impact studies typically use a top-down approach in which
multiple climate models are used to assess the uncertainty related to climate model structure
and climate sensitivity. Despite ongoing debate, impact modelers have typically embraced the
concept of “model democracy” in which each climate model is considered equally fit. The
newer CMIP6 simulations, with several models showing a climate sensitivity larger than that
of CMIP5 and larger than the likely range based on past climate information and understanding
of planetary physics, have reignited the model democracy debate. Some have suggested that
hot models be removed from impact studies to avoid skewing impact results toward unlikely
futures. Indeed, the inclusion of these models in impact studies carries a significant risk of

overestimating the impact of climate change.

This large-sample study looks at the impact of removing hot models on the projections of future
streamflow over 3,107 North American catchments. More precisely, the variability of future
projections of mean, high, and low flows is evaluated using an ensemble of 19 CMIP6 GCMs,
5 of which are deemed “hot” based on their global equilibrium climate sensitivity (ECS). The
results show that the reduced ensemble of 14 climate models provides streamflow projections
with reduced future variability for Canada, Alaska, the Southwest US, and along the Pacific

coast. Elsewhere, the reduced ensemble has either no impact or results in increased variability
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of future streamflow, indicating that global outlier climate models do not necessarily provide
regional outlier projections of future impacts. These results emphasize the delicate nature of
climate model selection, especially based on global fitness metrics that may not be appropriate

for local and regional assessments.

3.1 Introduction

Understanding the impact of climate change on water resources and hydrology is crucial for
developing effective strategies for mitigation and adaptation (Eyring et al., 2019; Miara et al.,
2017). The output of hydrological (e.g. Karlsson et al. 2016), water quality (Prajapati et al.,
2023) and sediment transport (Sabokruhie et al., 2021) impact assessment studies is dependent
on the choice of the future climate change projections. Hydrologists primarily use climate
projection outputs from GCMs (e.g. Tabari, 2020) to study these impacts. The Coupled Model
Intercomparison Project (CMIP) provides standardized metadata from coordinated simulations
by different climate modeling groups (Meehl et al., 2007). The more recent CMIP6 (Eyring et
al., 2016) is gradually replacing the widely used CMIP5 from the last decade (Hirabayashi et
al., 2021; Martel et al., 2022; Y. Zhang et al., 2023).

The concept of “model democracy” has been widely used in impact studies (e.g. Collins et al.,
2013; IPCC, 2014) despite criticism (Knutti, 2010). This approach considers climate
simulations independent and equally plausible, and uses the ensemble mean and spread to
define climate model uncertainty. Research has shown that the average of equally-weighted
projections outperforms single models in simulating mean climatic patterns (Chen et al., 2017;
Reichler & Kim, 2008). However, this approach may be less effective for CMIP6 ensemble as

the validity of some simulations is under question (Hausfather et al., 2022).

The CMIP6 ensemble includes a subset of “hot models” that predict greater warming than
previous predictions made by CMIPS5 (e.g. Kreienkamp et al., 2020). These hot models have a
climate sensitivity that exceeds the expected plausible range, which is based on observations

and our understanding of planetary physics. They also exhibit a higher equilibrium climate
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sensitivity (ECS), a measure of the steady-state temperature increase in the event of doubled
carbon dioxide (CO.) concentrations in the atmosphere (Flynn & Mauritsen, 2020; Zelinka et
al., 2020). The ECS values' range in CMIP6 models has increased to 1.8-5.6 °C compared to
2.1-4.7 °C in CMIP5, with an increase in multimodel mean of 3.9 °C in CMIP6 from 3.3 °C
in CMIP5 (Zelinka et al., 2020).

However, a plethora of evidence based on observations and our understanding of planetary
physics indicate that we can confidently restrict the likely range of future warming trend and,
more importantly, give less weight to extreme estimates (Liang et al., 2020; Tokarska et al.,
2020). Recently, more research has been focused on constraining the ECS based on historical
and paleoclimatic data (Knutti, Rugenstein, et al., 2017; Sherwood et al., 2020) or emergent
constraints (Cox et al., 2018; Nijsse et al., 2020; Shiogama, Watanabe, et al., 2022). For
example, Sherwood et al. (2020) used multiple lines of evidence and concluded that the likely
(with a 66% chance) ECS value is between 2.6°C and 4.1°C. Consequently, the most recent
reports published by the Intergovernmental Panel on Climate Change (IPCC) have narrowed
the likely ECS range to 2.5 and 4°C (IPCC, 2021). It should be noted that the uncertainty
surrounding the cooling impact (both direct and indirect) of aerosols on radiative forcing poses
challenges in constraining future warming estimates (Bellouin et al., 2020; Forster et al., 2013;
Smith et al., 2021). In essence, the current historical measurements do not provide a clear
understanding of whether we are in a scenario of high sensitivity, fast-warming, accompanied

by strong contemporary aerosol cooling, or if the situation is the opposite.

Climate change impact studies that include models with high ECS may be biased and may
overestimate the magnitude of impacts (Hausfather et al., 2022). Using the full ensemble of
CMIP6 projections without restricting the “hot models” may no longer be the most appropriate
option for impact studies (Ribes et al., 2021). Incorporating climate models with high
sensitivity into impact studies may potentially lead to an overestimation of the overall
economic consequences arising from future climate changes (Shiogama, Takakura, et al.,
2022). For instance, Shiogama et al. (2021) proposed a subset selection method that involves

screening out hot models as the first step. On the other hand, Palmer et al. (2022) found that



72

models with higher sensitivity better represent some key climatic processes over Europe. While
they were unable to provide robust physical explanations for their findings, it is worth noting
that at the regional scale, hot models may provide valuable information that may be more
important than the global warming trend for impact modelers, adding to the complexity of

selecting models for regional impact studies.

The decision to weight climate models for impact studies remains controversial, but it is
difficult to ignore the potential pitfalls of using hot models in these studies (Hausfather et al.,
2022). This study aims to evaluate how including or excluding hot models in a multi-model
ensemble affects the results of a large-scale hydrological climate change impact study. This
influence is measured in terms of the magnitude and uncertainty of various streamflow metrics

for 3107 North-American catchments.

3.2 Materials and Methods

The data for this study was obtained from the HYSETS database, which contains
hydrometeorological data from various sources for over 14,000 catchments in North America
(Arsenault, Brissette, Martel, et al., 2020). The database includes all necessary data for the
reference period of this study, including catchment boundaries (in the form of shapefiles),
streamflow observations, weather observations (from stations as well as multiple gridded and
reanalysis datasets), and static catchment descriptors such as area, slope, elevation, land-use
fractions, and soil properties. This study used the ERAS reanalysis dataset for meteorological
data, which was found to be a reliable alternative to gauge observations in a previous large-
scale comparison study over the same study area (Tarek et al., 2020). To ensure
representativeness, a subset of HYSETS catchments was selected using filters. First,
catchments with drainage areas below 500 km? were excluded because daily hydrological
models would be inappropriate for modeling hydrological processes at smaller scales. Next,
catchments required at least ten years of data to ensure sufficient data for successfully
calibrating hydrological models and bias-correcting climate models. Overall, 3107 catchments

were retained.
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Table 3-1 presents the list of 19 CMIP6 GCMs selected for this study. This list includes 5 hot
models, defined by their ECS greater than 4.1. These models are: CanESMS5 (ECS: 5.62),
NESM3 (ECS: 4.68), IPSL-CM6A-LR (ECS: 4.52), EC-Earth3-veg (ECS: 4.3), EC-Earcth3
(ECS: 4.2). This study will be able to compare the uncertainty generated by the entire ensemble

(19 models) to that of a reduced ensemble (14 models) obtained by removing the 5 hot models.

The impact study in this paper uses a traditional top-down hydroclimatic modeling chain
consisting of one shared socioeconomic pathway (SSP8.5), 19 CMIP6 GCMs, one bias
correction method, and one hydrological model. The study focuses solely on GCM uncertainty
and doesn't consider other components, such as alternative SSPs, bias correction methods, or
hydrological models, which would add uncertainty to future projections. These have been
explored in previous studies (e.g. Chen et al., 2011; Giuntoli et al., 2018; Troin et al., 2022;
Wilby & Harris, 2006), and are outside the scope of this work. The reference period is based
on the 1971-2000 time frame, while the future climate is based on 2070-2099.
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Table 3.1 The 19 GCMs selected in this study and their corresponding ECS. ECS values
were taken from either 1- Tokarska et al. (2020) or 2-Hausfather et al. (2022)

GCM ECS
CANESMS5 5.62!
NESM3 4.68!
IPSL-CM6A-LR 4.52!
EC-Earth3-Veg 43!
EC-Earth3 42!
ACCESS-ESM1-5 3.882
GFDL-CM4 grl 3.892
GFDL-CM4 _gr2 3.89°
MRI-ESM2-0 3.14!
MPI-ESM1-2-LR 3.022
BCC-CSM2-MR 3.01'
MPI-ESM1-2-HR 2.982
FGOALS-g3 2.87°
GFDL-ESM4 2.62!
NorESM2-LM 2.60!
MIROC6 2.57!
NorESM2-MM 2.49?
INM-CMS5-0 1.92!
INM-CM4-8 1.83!

Figure 3.1 illustrates the methodological framework for each study catchment. Precipitation
and temperature data are first extracted from 19 CMIP6 climate models under the SSP8.5
scenario for both the reference and future periods. Using precipitation and temperature from

the ERAS reanalysis over the reference period, climate data is then bias-corrected using the
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MBCn method. These bias-corrected climate scenarios are subsequently employed as inputs
for a calibrated hydrological model to compute streamflows. These computed streamflows are
then used to examine the impact of including (or not including) 'hot' models in the impact

study, using a set of defined metrics. Further details are provided below.

Climate Models _
<>

SSP8.5

19 CMIP6 models (P.T)

Reference and future periods

ERAS data (PT)

Reference period

Climate scenarios (PT)
Reference and future periods

v
Hydrological Model GRAJ-CN || GRA-CN
T calibrated
Observed data (P,T,Q)
Reference period
Metrics showing Y
Streamflows

A

differences between
hot/normal scenarios

Reference and future periods

Figure 3.1 Methodological framework performed for each of the study catchments

Climate models are mathematical representations of the Earth's climate system, based on
current understanding of its physics and chemistry. They are formulated using simplifying
assumptions and parameterizations, but may not fully capture the complexity of the real
climate system due to limited observations and understanding. As a result, climate models can
be biased when compared to observations, due to factors such as model resolution, errors in
reference datasets, and sensitivity to initial conditions. To ensure realistic impact simulations

in impact studies, it is important to bias-correct climate model outputs. In this work, Cannon's
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(2018) N-dimensional multivariate bias correction (MBCn) method was used to correct biases
in daily precipitation and temperature. MBCn is considered the most advanced and efficient
quantile-based multivariate bias correction method, as reported by studies such as Chen et al.
(2018), Su et al. (2020), and Cannon et al. (2020). MBCn transfers the distribution of
observational data to the corresponding distribution from the climate model while preserving
its projection trends, crucial for climate change impact studies (Maraun, 2016). No

downscaling was performed since this study was conducted at the catchment scale.

In this study, the GR4J lumped rainfall-runoff model (Perrin et al., 2003) was chosen to
simulate streamflows. The model was selected due to the large number of catchments, which
made it infeasible to use more complex, distributed models. Additionally, lumped models use
averaged temperature and precipitation at the catchment scale, which is more consistent with
the scale of GCMs, eliminating the need for downscaling. Lumped models have been shown
to perform well in simulating streamflows at catchment outlets (e.g. Dos Santos et al., 2018;
Reed et al., 2004). The GR4J model is simple, efficient, and high-performing compared to
other lumped conceptual models. It uses precipitation, potential evapotranspiration (PET), and
catchment surface area as inputs. To account for snow accumulation in some catchments, the
GR4J model is linked with the CemaNeige snow module (Valéry et al., 2014), resulting in a
6-parameter model (GR4J CN). The GR4J CN model combination has been used in many
studies, including climate change impact studies, and has been shown to perform well under a
wide range of conditions (e.g. Riboust et al., 2019; Tarek et al., 2020; Wang et al., 2019). The
calibration was performed using the Kling-Gupta Efficiency (KGE) metric. The KGE metric
(Gupta et al., 2009) directly combines the bias, ratio of variance, and correlation into a single
metric. It provides a more robust and refined assessment of model performance when
calibrating hydrological models, addressing the drawbacks of the Nash-Sutcliffe Efficiency
metric (NSE, Nash & Sutcliffe, 1970) (Knoben et al., 2019). Figure 3.2 presents the location

of the 3107 retained catchments, each having a KGE calibration value above 0.5.
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Figure 3.2 Study catchment location. The color scale corresponds to the hydrological model
KGE calibration score over the reference period. Only catchments with available data, KGE
values higher than 0.5 and area larger than 500 km? were selected

The hydroclimatic modeling chain described above generated 19 different 30-year time series
of daily streamflow for the 2070-2099 future period, each corresponding to one of the 19
GCMs listed in Table 1. Three streamflow metrics were extracted from each 30-year time
series, representing mass balance (Qmean) and high (Qmax) and low (Qmin) flows:

® Qmen: obtained by averaging daily streamflow over the 30-year period.
® Qmax: obtained by averaging the 30 annual maximum simulated streamflows.
® Qumin: obtained by averaging the 30 annual minimum simulated streamflows.

These metrics will be used to assess the impact of removing hot climate models across a range

of flow conditions.
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Figure 3.3 provides a schematic representation illustrating how the three dispersion metrics are
interpreted in this study. It serves as a guide for understanding the spread (or uncertainty) of
future streamflow projections. For the three streamflow metrics, 19 values from the original
ensemble and 14 from the reduced ensemble for both the reference and future periods are
extracted. The spread of the streamflow projections over the reference period is small, but it is
not zero due to imperfect bias correction and the hydrology model's strong non-linear response
to precipitation and temperature inputs. The spread is comparatively much larger in the future

period, mainly due to differences in sensitivity and structure of the climate models.
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Figure 3.3 Representation of the dispersion metrics used in this paper. Each marker
represents one of the 19 climate models. METRIC will either be Qmean, Qmax OF Qmin, all
having units of m*/sec

Total spread (TS) is defined as the full range of future streamflow responses:

TS = metric,qg,, — metricyin 3.1
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The interquartile range (IQR) is defined as the distance between the 75" and 25" quantiles of

the distribution as shown by the blue rectangle in the boxplot in Figure 3.3.

IQR = Q75 — Qs (3.2)

Finally, the standard deviation (o) is the standard mathematical measure of dispersion. In the
case of a normal distribution, the standard deviation and interquartile range are perfectly

correlated, but this may not be the case for a skewed distribution.

All three metrics have units of m*/s and are therefore dependent on catchment size and, to a
lesser extent, mean annual precipitation. To account for this, the metrics will be presented in a

non-dimensional form:

TS14 (3.3)

Where TSS9 and TSy, respectively represent the total spread for the full and reduced ensemble.
TS, 4 varies between 0 and 1, with TS, ;=1 meaning that no reduction in total spread was
obtained by removing the five warm models from the ensemble, and T'S,,;= O signifies that the

total spread of the reduced ensemble has been totally eliminated.

Similarly, for the interquartile range ratio, we find:

[QR, (3.4)
1QRy4

[QRnq =

However, in this case, the potential values vary in the 0 to oo range. More practically, a value
below 1 indicates that the IQR has been reduced by removing the five hot models from the
ensemble, whereas a value larger than 1 shows the opposite. The latter is possible if the

removed models are somewhat close to the median of the ensemble.
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Finally, for the standard deviation the following ratio is used:

014 (3.5)

019

Ona =

where a value below 1 indicates a smaller standard deviation for the reduced ensemble, and

the opposite for a value above 1. 0,4 has the same possible range of values as IQR,,4 (0 to ).

3.3 Results

Figure 3.4-a presents the box plots of projected temperature increases for each of the 3107
catchments and for each climate model. The box plots provide a visual representation of key
elements of the temperature increase distribution. The median of the distribution is shown as
the red line near the centre of the blue rectangle, which delimits the interquartile range (Q75
and Q25 for the upper and lower end of the rectangle). The whiskers represent the 2.5™ and
97.5™ quantile of the distribution, providing a 95% coverage of the dataset. Quantiles below
2.5 and above 97.5 are shown as dots. Results indicate that the distribution of projected
temperature increases generally follows the same order as the ECS values presented in Table
1. However, there are some differences, which are not unexpected as global-scale ECS values
are compared to regional-scale AT values. The five hot models are ranked as the first, second,
third, fifth, and sixth hottest regional models based on median values (considering that GFDL-
CMA grl and gr2, respectively fourth and fifth, are actually the same model with different

spatial resolutions).



12

101

S —p—

IS

TS e B W o o o B0

E -

SRS, LR ———

AT [°C]
[+2]
S %....1.__..«
Jo——
i
o
i
[FR——
it

I VI TP N A S S & ;
géb\i(é?@@vy&\\ Q/’D(\ 9“{\@”"@"‘9 2 W r\ﬂ’g\mq’l\/\r@ & @q"\/@‘ \;@’Q\Cﬁ@ i :
F YN SE TS TN N FF & TS K
& FLEIFEE T
b)
: ! T l !‘I T T T T T T T T T T T T
0'6_; I i ; i
I -
04T i .- o pee ot I
Pl oE T TR i By ! ] P
= Lo : v F b op f l
:o.z-QEBBEl : IB | El 1 J'-El ]
o L b : Q : B
s Y0P Neab g et ten
N T A S R I
Il i | i I | ® i . ‘I’
SAIE T I T A i
02r: 2 R - T ; ;
- : <1 2 ! i = o,
L i ' :
04k Walrmes! Mudelsl*—l-: | ; ; J .

Figure 3.4 a) Distribution of projected temperature increase (AT) and b)
projected relative annual precipitation increase (AP/P) for the 19 CMIP6
selected model for the 2070-2099 future period, compared to the 1971-2000
reference period. Each boxplot represents the distribution of projected
increases for the 3107 study catchments. The climate models are ordered in
terms of their global-scale ECS values, starting with the largest to the left. The
boxplot whiskers correspond to the 2.5™ and 97.5" quantiles and a few
catchments that were beyond the Y-axis limits are not shown
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Figure 3.4-b presents the boxplots of the projected changes in relative precipitation between

the future and reference periods (@). The boxplots depict the distribution of the
ref

projected precipitation changes for each of the 3107 catchments. Results indicate that the hot
models, identified by their ECS values, are also among the models with the largest projected
changes in relative precipitation. Specifically, the five hot models are all within the group of
the eight wettest models. The models with more modest increases in precipitation (e.g., MPI-
ESM, ACCESS) are also among the cooler models. This trend is expected, as a warmer
atmosphere can hold more moisture (up to 7% per °C, according to the Clausius-Clapeyron
relationship), leading to more precipitation. Increased precipitation may mitigate the

anticipated impacts of warmer models, such as increased evapotranspiration.

In order to show regional patterns related to Figure 3.4, Figure 3.5 displays the mean AT (3-
5a) and mean AP/P (3-5b) ratios between hot models and normal models. For temperature a
red color indicates that hot models are warmer than the other models on average. For
precipitation, blue colors highlight increased precipitation in the hot models compared to the
normal models. Overall, the hot global models exhibit a systematically larger temperature
increase over the entire study domain. The hot models mostly exhibit increased precipitation
compared to the normal models. However, the west coast of the U.S., as well as some
catchments in the southwestern U.S., exhibit a decrease in precipitation according to the hot
models. These observations underscore the regional variability in temperature and

precipitation patterns when comparing hot and normal models.
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Figure 3.5 Mean AT (a) and AP/P (b) ratios (hot models to normal
models). For AT, a red color indicates that hot models, on average,
are warmer than their normal (non-hot) counterparts. For AP/P, a
blue color shows that hot models are wetter than their normal (non-
hot) counterparts. The graphs represent the differences computed
between the future and reference periods

Figure 3.6 presents the ratio of mean projected streamflow changes (hot models/normal
models) for Qmean, Qmax and Qmin. A blue color indicates larger projected streamflows by the
‘hot” models. Results show spatial patterns which differ depending on the streamflow metrics.
Hot models project higher mean flows over most of the study domain, except in the south-west
regions, where increased evapotranspiration nullifies potential increases in precipitation. For
Qmax, increases are mostly localized in the Eastern US, whereas Qmin are widely increasing in

Canada and mostly decreasing in the US.
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Figure 3.7 presents the TS,; for mean (Qmean), annual max (Qmax), and min (Qmin) streamflow

obtained by removing the 5 hot models from the 19-member ensemble. A dark red color
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indicates no reduction in TS with the reduced ensemble, while lighter colors indicate a
reduction. It can be seen that there is a clear spatial pattern that is relatively similar for all three
streamflow metrics. The largest reductions in TS are seen in the northern regions as well as in
the US southeast, and along the US Pacific coast for Qmean and Qmin. For all other regions of
the US, no reduction in TS is observed. The reduced spread observed in the northern regions
is smaller for Qmax. Despite these trends, a lot of variability remains present, with neighbouring
catchments sometimes showing contrasting behaviour. More specifically, 57.0% of the

catchments see a decrease in TS for Qmean, 53.3% for Qmax and 61.7% for Qumin.

The data from Figure 3.7 are shown in the form of boxplots in the left side of each panel to
better illustrate the range of TS reduction. It shows that the median TS, is relatively high for
all three streamflow metrics: Qmean (0.96), Qmax (0.95) and Qmin (0.93). This is primarily
because a significant number of catchments see no reduction in TS (43%, 46.7%, and 38.3%
respectively). However, there is a significant reduction in TS observed in many catchments,
and this decrease is strongly dependent on the geographical location of the catchments.
Additionally, it can be seen that removing the hot models has a greater impact on Qmin than on

the other two metrics.
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Figure 3.7 Total spread ratio (T'S,,q = ) for Qmean (2), Qmax (b), and

Qmin (c) resulting from the removal of the ﬁve hot models. Boxplots are
shown in the left

The TS, is heavily impacted by outliers and may not accurately represent the overall spread
of models. Figure 3.8 presents the a,,,; for the three streamflow metrics. A red color ( 6;,,4> 1)

indicates that the model spread has increased following the removal of the hot models whereas
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a blue color ( 6,,4< 1) corresponds to a decrease. Results indicate that removing the hot models
consistently reduces o¢,,; in Canada for Qmean and Qmin, and to a lesser extent for Qmax.
However, in CONUS, the results are more complex with a lot of regional variability. Removing
outlier models in the north central, north-east, and southwest of the US results in an increase
in 0,4 for both Qmean and Qmax. Overall, as shown in the boxplots of Figure 3.8, removing the
hot models likely reduces the spread in roughly two-thirds of catchments, while one-third see
an increase. These values are larger than those obtained for TS. The Trends seen in IQRnq is

also very similar to that of 0,4 (see figures S3.10 and S3.11).
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34 Discussion

Uncertainty is a key factor in assessing the impact of climate change. Different models and
techniques, including various climate models, can lead to diverse climate projections and
scenarios. Climate change interacts with other stressors, such as land use change and
population growth, in complex and unpredictable ways, making it important to accurately
address uncertainty in climate impact studies to develop effective adaptation measures.

Incorrectly representing uncertainty can lead to poor adaptation.

With the increased future temperatures, an intensification in the hydrological cycle is expected.
However, it does not guarantee an automatic increase in water flow rates. This is because the
rise in average temperature can also have a considerable impact on evapotranspiration. The
outcome of these two factors working together is complex and varies based on the geographical
location and primary climate zones. The research paper indicates that regions characterized as
‘hot’ tend to be associated with increased precipitation, further complicating the relationship

between temperature and water flow.

Results show that removing the “hot models” is likely to reduce the spread of three streamflow
metrics. Between 60% and 75% of catchments show a decrease in the spread of future
streamflow projections, indicating that the hot models are outliers or further from the mean
than the average model. In such cases, keeping the hot models would result in an
overestimation of future streamflow uncertainty. However, removing the hot models also led
to an increase in the spread in certain regions, indicating overconfidence in the results. This
means that while the hot models are outliers with respect to ECS, they may not be outliers with
respect to impact studies. Generally, a reduction in spread was evident in northern regions such
as Canada and Alaska, as well as the coast of California and the southeastern region of the US.
Shiogama, Watanabe, et al., (2022) also concluded that the inclusion of hot models leads to an
overestimation of annual mean precipitation increases in Alaska, Canada, and the western

United States, where there is a substantial decrease in the variability of streamflow metrics.
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A reduction in the spread of future streamflow is expected when removing the hot models or
reducing the number of climate models. A bootstrap methodology was used to determine if the
changes in spread were due to a reduction in the number of models. This was conducted by
selecting a random sample of 14 (out of 19) models 100 times and computing the average
standard deviation ratio. This was repeated for all catchments and the aggregated results are

shown in Figure 3.9.

The results indicate that removing five random models results in a decrease in the standard
deviation ratio almost 75% of the time for all three streamflow metrics, but the median spread
reduction ratio for this spread metric is extremely small (about 0.99 for all three streamflow
metrics). This shows that removing the 5 hot models has a much larger impact than removing
5 random models. The spread reduction observed in many catchments is therefore not solely

related to a reduction in the number of models.
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At first glance, there is a strong physical reasoning for removing climate models with
equilibrium climate sensitivity (ECS) exceeding values expected from current data and
understanding of planetary physics (Ribes et al., 2021; Shiogama et al., 2021). However, it
should be noted that most impact studies are conducted at the regional or local scale and these
models may not be considered outliers at these scales. This study found that while globally hot
models may still be among the hottest in the study domain, they are not consistently the hottest,
raising questions about whether their global behavior should automatically eliminate them

from regional studies.

In this study, the climate performance of these models (such as their ability to represent
climatic, hydroclimatic, or hydrological metrics) was not evaluated. The goal was to examine
the impact of removing 5 hot models from a 19-member ensemble. However, it is important to
note that judging climate models based solely on their ECS values may result in the removal
of models that have desirable characteristics at the regional scale (e.g. Palmer et al., 2022).
Additionally, keeping hot models may also be useful from an impact perspective as they may
provide a clearer picture of future changes, as internal variability is less likely to obscure
changes. This is similar to the rationale behind using high-emission scenarios in impact studies,
such as SSP8.5, even though they may not be considered realistic scenarios anymore (e.g.
Hausfather & Peters, 2020). It is important to consider worst-case scenarios when analysing
potential outcomes, as high levels of greenhouse gas emissions, or high model sensitivity, such
as those projected in SSP8.5 or high ECS models, are not unrealistic, even though they may be
less likely. While it is valuable to consider these high-end scenarios, it should be made clear

that they are indeed worst-case scenarios.

In this study, the question of whether to remove the “hot models” for impact studies is complex.
Results showed that for about one-third of all catchments, removing these models increased
the future uncertainty of streamflow. This suggests that these “hot outliers” may not always be
“hydrological outliers” when put through a hydrological modeling process. Hydrological
models are well-known for being highly non-linear integrators of weather variables such as

temperature and precipitation, and these results align with findings from other studies that have
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demonstrated the complex relationship between climate model projections and hydrological
projections (e.g. Chen et al., 2016; Ross & Najjar, 2019). The fact that the CMIP6 hot climate
models tend to be wet models may also be a factor in these results, as increased
evapotranspiration could be offset by increased precipitation, leading to somewhat average

results for the wrong reasons.

The regional impact of model importance is also compared (see figures S3.12 and S3.13
supporting information), which demonstrate the total spread ratio resulting from removing a
single climate model and creating an 18-member ensemble. CanESMS5 (Figure S3.12) and
NESM3 (Figure S3.11) have the highest global sensitivity in this study. Removing CanESM5
leads to a clear reduction of total spread in Alaska and Yukon (for Qmean and Qmin) and in the
Southeast USA for Qmax, indicating that CanESMS is an outlier in these regions. Conversely,
removing NESM3 does not result in significant decreases in spread over most of the study
domain, as the high ECS value of NESM3 does not automatically translate into a
correspondingly higher level of regional warming (see also Figure 3.4), demonstrating that it
is not an outlier in most regions. This underscores the strong regional differences among

globally identified hot models.

The only uncertainty in this study is that originating from GCM/EMSs. As stated earlier, in
most impact studies, additional sources of uncertainty would also be incorporated. Additional
greenhouse gases emissions scenarios would be selected as well as other impact models (e.g.
hydrology models). Downscaling and additional bias correction may be performed. These
additional components are likely to generate additional uncertainty which may, in some cases,
dwarf that of climate models. As such, many of the differences observed in this paper between
the original and reduced climate model ensembles may have little impact on the final
uncertainty estimation. For example, for low flows, many studies have shown that most of the
uncertainty lies within the hydrology models (e.g. Giuntoli et al., 2018; Krysanova et al., 2018;

Trudel et al., 2017) and removing climate models would have no impact on uncertainty.
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The results show that there is no simple answer as to whether or not including hot models in
climate change impact studies. In the absence of any computational limitations, we would
recommend using as many climate models as possible and study a posteriori the impact of
including hot models or not. If a selection of a subset of climate models is necessary (whether
due to computational constraints or to avoid redundant or poorly performing models) removing
hot models may be a reasonable option. Evaluating climate model fitness for impact studies is
a difficult endeavour, and in addition to ECS, additional performance metrics should also

carefully be taken into account.

3.5 Conclusion

This study examines the impact of removing a subset of hot climate models on the spread of
future projections of streamflow for 3,107 North American catchments. Three streamflow
metrics were considered: mean annual streamflow, as well as the mean of the annual maximum
and minimum streamflow, over the reference period (1971-2000) and future period (2070-

2099).

Hot climate models are determined based on their global equilibrium climate sensitivity (ECS),
whereas impact studies typically focus on the local to regional scale. The hot climate models
remain among the hottest in our regional evaluation, but they also tend to be among the wettest,

potentially leading to a complex hydrological response.

Our research revealed mixed impacts of removing the hot climate models. A decrease in the
variability of projected streamflow metrics was generally observed in Canada and Alaska, the
southeast US, and the Pacific coast of the US. However, in other regions, removing the hot
models resulted in no changes, and in some cases, even increases in the variability of projected
flows. This suggests that the hot models are not necessarily hydrological outliers, raising
questions about using global performance metrics rather than regional ones for model

selection.
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The findings of this study emphasize the importance of carefully selecting climate models and
the potential risks of including inadequate models in impact studies. In the absence of
constraints, it is recommended to use as many climate models as possible in determining
impact uncertainty and to assess the impact of subsets of climate models (based on high global
equilibrium climate sensitivity or other performance metrics) a posteriori to assess the
sensitivity of the impact model to climate model selection. These results highlight the need for
further research on climate model fitness and the proper selection of model subsets for impact

studies.

3.6 Code and data availability.

The hydrometeorological data used in this study was obtained from the HYSETS database,
which is available at https://doi.org/10.17605/OSF.IO/RPC3W (Arsenault et al., 2020). The
CMIP6 GCM model outputs are accessible through the Earth System Grid Federation Portal
at Lawrence Livermore National Laboratory (https://esgf-node.lInl.gov/search/cmip5/). The

processed data and the used codes are available via contacting the authors.
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Abstract

Climate change impact studies use ensembles of General Circulation Model (GCM)
simulations. Combining ensemble members is challenging due to uncertainties in how well
each model performs. The concept of model democracy, where equal weight is given to each
model, is common but criticized for ignoring regional variations and dependencies between
models. Various weighting schemes address these concerns, but their effectiveness in impact

studies remains unclear due to the absence of future observational data.

This study evaluated the impact of six weighting strategies on future streamflow projections
using a pseudo-reality approach, where each GCM is treated as “the true” climate. The analysis
involved an ensemble of 22 CMIP6 climate simulations and used a hydrological model across
3,107 North American catchments. This study implemented two approaches: one with bias
correction applied to precipitation and temperature inputs, and one without. Weighting
schemes were evaluated based on biases relative to the pseudo-reality GCM for annual mean

temperature, precipitation and streamflow.

Results show that unequal weighting schemes produce improved precipitation and temperature
projections than equal weighting. For streamflow projections, unequal weighting offered minor
improvement only when bias correction was not applied. However, with bias correction, both
equal and unequal weighting delivered similar results. While bias correction has limitations, it

remains essential for realistic streamflow projections in impact studies. A pragmatic strategy
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may be to combine model democracy with selective model exclusion based on robust
performance metrics. This study emphasizes the need for careful approaches and further

research to manage uncertainties in climate change impact studies.

4.1 Introduction

To assess the impacts of climate change on hydrology, researchers often rely on projections
from global and regional climate models (GCMs and RCMs) (Chen et al., 2012; Hagemann et
al., 2013; Reshmidevi et al., 2018). Typically, outputs from these models are post-processed
(i.e., downscaled and/or bias-corrected) before being used by hydrologic models to simulate
future hydrologic conditions (e.g., Raulino et al., 2021). The varying spatial and temporal
resolutions, along with differences in the representation of physical processes and feedback
mechanisms among GCMs, lead to diverse climate sensitivities and a broad range of future
climate projections. While this variability is widely recognized as a primary source of
uncertainty (Hausfather et al., 2022; Li et al., 2023; Murphy et al., 2004; Prein et al., 2020;
Stainforth et al., 2007), it is essential for capturing the spectrum of plausible future conditions
(Hallegatte, 2009). However, this is compounded by numerous other sources of uncertainty

(Merrifield et al., 2020; H. Wang et al., 2020).

Using ensembles of climate models is widely accepted as the best strategy to tackle this
uncertainty (Giuntoli et al., 2018; Tebaldi & Knutti, 2007). A common approach for presenting
results from such multi-model ensembles is by providing a best estimate along with an
uncertainty range or a probabilistic distribution (Brunner et al., 2020). However, there is no
consensus on the most effective method to integrate the outcomes from multiple GCMs.
Traditionally, these simulations have been combined by treating each climate model as equally
plausible (e.g. Lawrence et al., 2021), a practice known as “model democracy”, which assumes
all models are equally capable of simulating past and future climates (Chen et al., 2017; Knutti,
2010).
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Model democracy is critiqued primarily for two reasons. First, GCMs’ performance in
reproducing climatic patterns varies by location and variable (Abramowitz et al., 2019),
suggesting model democracy might not be the best choice in regions where some models
perform worse than others (Knutti et al., 2013; Lorenz et al., 2018). Second, averaging equally
weighted models assumes independence within an ensemble. However, this assumption is
often proven incorrect, especially in ensembles like CMIP5 and CMIP6 (Sanderson et al.,
2017), since simulations from the same research group may differ only in resolution, and there
has been extensive sharing among climate modeling centers, including shared coding and
parameterization schemes (Eyring et al., 2019; Knutti et al., 2010). Consequently, the number
of truly independent models in these ensembles is likely lower than it appears (Merrifield et
al., 2020), which can skew results by duplicating similar information and adding little

knowledge to the ensemble (Knutti et al., 2017; Wang et al., 2019).

To mitigate these issues, several studies have explored assigning different weights to climate
model simulations based on historical performance, resulting in more confidence in the
projections compared to simple averaging (e.g. Lorenz et al., 2018; Palmer et al., 2023; Yuan
et al., 2020). Other studies have accounted for model interdependence in their weighting
schemes (Brunner et al., 2019; Di Virgilio et al., 2022; Easterling et al., 2017; Liang et al.,
2020; Massoud et al., 2019; Sanderson et al., 2015, 2017). However, selecting the ideal set of
weights for climate simulations that considers interdependence is challenging and somewhat
subjective (Herger et al., 2018), with a risk of information loss due to inappropriate weighting

(Weigel et al., 2010).

In hydrological impact studies, a common method to weight or select GCMs assesses their
capability to effectively depict historical climate conditions such as temperature and
precipitation (Chen et al., 2017; Kolusu et al., 2021; Massoud et al., 2019; Padron et al., 2019;
Ruane & McDermid, 2017). While some studies highlight the benefits of weighting (e.g.,
Massoud et al., 2019), others note that weighting climate models only slightly affects
streamflow projections derived from GCMs (e.g., Chen et al., 2017; Kolusu et al., 2021).
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Recent impact assessment studies have utilized streamflow values to weigh simulations
(Castaneda-Gonzalez et al., 2023; Dong et al., 2021; Giuntoli et al., 2021; Wang et al., 2019;
Yang et al., 2017). For instance, Castaneda-Gonzalez et al., 2023, found that unequal weights
improve the accuracy of representing mean annual and seasonal hydrographs during the
reference period. Wang et al., (2019), noted that when using raw GCM outputs to simulate
streamflows, applying streamflow-based weighting schemes enhanced the reproduction of
observed mean hydrographs better than using weights based on climate variables. However,

the impact of weighting diminished once bias correction was applied to the GCM outputs.

The effectiveness of climate model weighting is often benchmarked against equal weights
(model democracy) by evaluating their performance in reproducing observed climate variables
over a reference period (e.g., Chen et al., 2017). To further assess the suitability of these
weights for a specific application, a calibration—validation framework can be employed, in
which historical data is divided into two sets: one for calibrating the weights and the other for
testing the sub-ensemble's performance (e.g. Bishop & Abramowitz, 2013). This approach is
limited for the majority of regional to global climate applications due to the lack of high-quality
observational data, which, depending on the region and variable, usually spans no more than
60 years (Abramowitz et al., 2019). Another limitation is the absence of future observational
data, which makes it impossible to directly evaluate model performance in future scenarios.
Thus, most studies on the efficiency of climate model weighting for future streamflow
projections focus on whether unequal weights produce different future projections (e.g. Lorenz
et al., 2018). While improving the skill scores during the reference period is important (Eyring
et al., 2019), comprehensive out-of-sample testing is crucial to validate weighting methods for
future projection periods (Abramowitz et al., 2019; Herger et al., 2018). However, only few
studies have explored how well these schemes perform in future scenarios for their intended
application by using pseudo-reality testing (Abramowitz et al., 2019; Abramowitz & Bishop,
2015; Bishop & Abramowitz, 2013; Brunner et al., 2020; Herger et al., 2018; Knutti et al.,
2017; Sanderson et al., 2017; Shin et al., 2020).
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In this context, our study aims to address a critical gap by investigating how different climate
model weighting strategies influence hydrological impact assessments, specifically in the
context of future projections where observational data is unavailable. One approach to
overcome this challenge is pseudo-reality (or model-as-truth) testing, which involves selecting
a climate model simulation as a “pseudo-reality” and treating it as true observed data for both
reference and future periods (Abramowitz et al., 2019; Brunner et al., 2020; Herger et al., 2018;
Shin et al., 2020). The remaining models are then calibrated to the pseudo-reality during the
reference period, after which the ensemble’s performance is evaluated for future conditions
using the known projections of the “truth” member as a benchmark. By doing so, we can
provide a more robust validation framework for evaluating weighting schemes in future
hydrological projections, which is not possible with real-world data alone (Herger et al., 2018;
Knutti et al., 2017). By comparing different weighting schemes against this pseudo-reality,
researchers can infer their effectiveness for future projections (Chen et al., 2020; Hernanz et
al., 2022; Mendoza Paz & Willems, 2023). This study contributes to the ongoing debate on
model weighting effectiveness by offering a thorough evaluation of multiple weighting
schemes, including equal and random weighting as benchmarks. By conducting multiple
iterations of the pseudo-reality method across various climate variables and geographic
regions, we aim to gain a nuanced understanding of the sensitivity of these schemes.
Ultimately, our goal is to provide valuable insights into how climate model weighting
influences hydrological impact assessments, helping to better inform adaptation and mitigation

strategies.

4.2 Materials and Methods

4.2.1 Study Area and Data

In this study, catchments were selected from the comprehensive HYSETS database, which
includes data from 14,425 catchments across North America (Arsenault et al., 2020b). For our

analysis, 3,107 catchments were chosen to ensure coverage across the entire North American

continent. The selection criteria included a minimum drainage area of 500 km? to avoid flashy



104

catchments due to the daily scale of data, and at least 10 years of data availability, as dictated
by the requirements of the hydrological models used. While no upper area limit was imposed,
97.5% of the selected catchments had areas smaller than 11,000 km?, with the largest being
650,000 km?. This is comparable to the range suggested by Giuntoli et al. (2015) where
catchments are selected to be of comparable size to the grid cell resolution of the global
models, and our results show no significant effect of catchment size on the regional consistency
of the hydrological simulations. The spatial distribution of these catchments is illustrated in
Figure 4.1. Additionally, the meteorological data required for our study were obtained from
the ERAS reanalysis dataset. While ERAS performance varies by variable and region, it has
been shown to provide reliable precipitation estimates in extratropical regions, which include
much of our study area (Lavers et al., 2022). This dataset has been demonstrated to perform as
good as using observational data in hydrological modelling over most of the USA, without the
problems related to missing data, thus ensuring complete temporal coverage (Tarek et al.,

2020).
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Figure 4.1 Map of the 3,107 catchments used in this study. The color code represents the
hydrological model Kling—Gupta efficiency (KGE) calibration score over the reference
period. In the case of nested catchments, the smaller ones were plotted on top of larger

catchments.

4.2.2 Modelling Chain

Following the standard procedures for hydrological climate change impact analysis, a top-
down hydroclimatic modeling chain was used (as outlined in Arsenault et al., 2020a;
Rahimpour Asenjan et al., 2023). Precipitation and temperature data were extracted from 22
CMIP6 climate models under the SSP5-8.5 scenario for both the reference and future periods.
Table 1 lists the 22 CMIP6 GCMs used in this study, along with their corresponding
Equilibrium Climate Sensitivity (ECS) values. ECS is a metric indicating the expected rise in
Earth's average surface temperature in response to a doubling of carbon dioxide concentrations
in the atmosphere, relative to pre-industrial levels, upon reaching equilibrium. The reference
period for this analysis is 1971-2000, with future climate projections covering the period

2071-2100. Figure 4.2 displays the projected changes in temperature (difference between the
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future and reference periods) and precipitation (change ratio, calculated as (future P - reference
P) / reference P) between the reference (1971-2000) and future (2071-2100) periods for all 22
GCMs. The ECS values among the GCMs varied between 1.83 to 5.62 °C, highlighting the
diverse responses of different models to climate change scenarios and emphasizing the
potential significance of weighting model selection. It has been suggested that GCMs with
higher ECS values may present less realistic or less probable future scenarios (Hausfather et
al., 2022). Consequently, the exclusion (Rahimpour Asenjan et al., 2023) or down-weighting
(Massoud et al., 2023) of these models could be considered, making ECS a critical factor in

the weighting of models.



Table 4.1 The 22 GCMs selected in this study and their
corresponding ECS. ECS values were taken from either 1- Tokarska
et al., (2020) or 2-Hausfather et al., (2022). The models are listed by

their ECS values
GCM ECS Modeling Center
CanESM5 5.62! CCCma
NESM3 4.68' NUIST
IPSL-CM6A-LR 4.52! IPSL
EC-Earth3-Veg 43! EC-Earth-Consortium
EC-Earth3-CC 4.232 EC-Earth-Consortium
EC-Earth3 42! EC-Earth-Consortium
EC-Earth3-Veg-LR 4.2° EC-Earth-Consortium
GFDL-CM4 grl 3.89° NOAA-GFDL
GFDL-CM4 gr2 3.892 NOAA-GFDL
ACCESS-ESM1-5 3.88! CSIRO
KIOST-ESM 3.367 KIOST
MRI-ESM2-0 3.14! MRI
MPI-ESM1-2-HR 3.02° DKRZ
BCC-CSM2-MR 3.01! BCC
MPI-ESM1-2-LR 2.98? MPI-M
FGOALS-g3 2.87? CAS

107
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Table 4.2 The 22 GCMs selected in this study and their
corresponding ECS. ECS values were taken from either 1- Tokarska
et al., (2020) or 2-Hausfather et al., (2022). The models are listed by

their ECS values (continued)

GCM ECS Modeling Center
GFDL-ESM4 2.62! NOAA-GFDL
NorESM2-LM 2.60! NCC

MIROC6 2.57! MIROC
NorESM2-MM 2.49? NCC
INM-CMS5-0 1.921 INM
INM-CM4-8 1.83! INM

The study involves two experiments. In the first experiment, uncorrected (raw) GCM data is
used. For the second experiment, the multivariate bias correction (MBCn) method (Cannon,
2018) is applied to the climate data, with bias correction performed exclusively using the
pseudo-reality GCM data. In this approach, pseudo-reality is treated as the true climate
condition, and the GCM data is corrected based on this assumed truth. Typically, bias
correction relies on observed real-world data (e.g. Mendez et al., 2020), but in this case,
pseudo-reality was used to establish a hypothetical baseline (Hui et al., 2019; Maraun, 2012;
Schmith et al., 2021). This allows us to apply bias correction in a controlled environment where
the “true” future climate is also known, ensuring that the corrected GCM data aligns more
closely with these hypothetical true conditions (Chen et al., 2020; Schmith et al., 2021).
Subsequently, both the raw and bias-corrected climate data were used as inputs for a pre-

calibrated hydrological model, which then generated streamflow simulations.
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Figure 4.2 Projected temperature (a) and precipitation (b) changes between the reference
(1971-2000) and future (2071-2100) periods over all 3,107 catchments for all 22 GCMs

The HMETS conceptual lumped rainfall-runoff model was used for simulating streamflow
(Martel et al., 2017). The HMETS model operates on a daily time scale, with both inputs and
outputs at this temporal resolution, and has demonstrated effective performance in previous
hydrological studies (e.g., Tarek et al., 2021). It was calibrated using the Kling-Gupta
Efficiency (KGE) objective function (Kling et al., 2012; Kling & Gupta, 2009) with
streamflow observation data and ERAS data spanning 1981-2018. The calibration process’s
duration varied depending on the availability of streamflow data for each catchment, requiring
at least 10 years of observation data, including a 2-year warm-up period, entailed and 10,000
model evaluations using the SCE-UA (Shuffled Complex Evolution - University of Arizona;
Duan et al., 1994) algorithm. The studied watersheds have a minimum KGE value of 0.5,

indicating a satisfactory performance of the hydrological model (see Figure 4.1).
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4.2.3

Overview of the weighting strategies

In this study, six weighting methods were employed to aggregate the outcomes of the

hydrological model, as detailed in Table 4.2. These methods were selected based on recent

literature to ensure a comprehensive evaluation of different criteria, including GCM

performance, model independence, and the inclusion of random and equal weighting for

comparison. These methods are described below.

Table 4.3 Weighing methods used in this study

Method Description References

RAC Evaluating how closely models match pseudo reality series Wang et
in terms of annual cycles al., 2019

REA Weights are assigned based on independence and Giorgi &
convergence, considering the models' consistency and Mearns,
convergence towards collective projections. 2002

Skill Weights are assigned based on the skill of reproducing the Sanderson
annual means, prioritizing models with higher skill. etal., 2017

BMA Weights are assigned based on Bayesian model averaging Massoud et
of equilibrium climate sensitivity (ECS) value al., 2023

Equal Weights are assigned equally

Random Weights are assigned randomly to models for
benchmarking and comparison

4.2.3.1 Representation of the Annual Cycle (RAC)
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The Representation of the Annual Cycle (RAC) skill score measures the similarity between a
climate simulation series and the pseudo-reality series in terms of their annual cycles, as
defined in equation 1. It calculates the correlation coefficient () between the monthly pseudo
reality and simulated series, with the maximum correlation (7o) set to 1 for this study. To apply
this analysis, we aggregate the daily data to a monthly temporal scale. This aggregation is
necessary because the RAC method is designed to capture larger-scale seasonal and annual
patterns. Additionally, the parameter ¢ = o5 / 0, represents the ratio between the standard
deviations of the monthly simulated series and the monthly pseudo reality series. The RAC
method aims to quantify the degree of resemblance between the simulated and pseudo reality

annual cycles (Wang et al., 2019).

4(1+7)* .1
(6 +1/0)?(1 +1ry)*

RACL =

4.2.3.2 Reliability Ensemble Averaging (REA)

The Reliability Ensemble Averaging (REA) technique assigns weights to GCMs based on the
model's performance criterion, which evaluates how accurately it reproduces the pseudo reality
in the reference period, and the model convergence criterion, assessing the extent to which a
GCM aligns with the multi-model mean in future projections. This indicates its consistency
and convergence toward collective model projections (Giorgi & Mearns, 2002). The
convergence criterion assumes that models that closely follow the collective behavior of the
ensemble are more reliable. However, we recognize that this assumption may overlook the
potential value of outlier models, which could offer important information in certain cases.

The REA framework evaluates the reliability of a GCM based on several factors, including
natural climate variability (¢), determined from the range between the maximum and minimum
20-year moving averages of yearly observations, as shown in equation 4.2. It also considers
the bias (f3;) of a simulation compared to the observational climatological means and the
distance (D;) between the projected change by a given model and the REA-weighted mean

change. If the absolute value of the bias or distance is smaller than the climate variability (),
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indicating that the model's deviation falls within natural variability, the climate simulation is
considered reliable. This reliability condition is expressed as €/|[5;| or €/|D;| being set to 1. The
parameters m and n represent the weights assigned to the performance and convergence

criteria, respectively, with both set to 1 in this study.

REA; = {[ ny1/mn (4.2)

]m

X =
abs (B;) abs (D;)

4.2.3.3 Skill

The “Skill” weighting method assesses model performance relative to historical climate data
to allocate weights to each model within ensemble Projections (Massoud et al., 2019; Wootten
et al., 2020). Models that more accurately reflect pseudo reality data receive higher weights,
thus having a greater influence within the ensemble. The weights, W, g (i), are calculated
according to equation 4.3 (Sanderson et al., 2017), based on the RMSE distances (iobs))
between each climate simulation and the pseudo-reality scenario. The index 1 corresponds to
each individual model within the ensemble. The radius of model quality, D,, determines the
degree to which models with lower skill are down-weighted, fixed at 0.9 similar to Massoud
et al. (2019). By adjusting model weights according to their skill levels, this method favors

models with superior performance while reducing the impact of less skillful ones.

Winskin(®) = e Pa

4.2.3.4 Bayesian Model Averaging (BMA)

Bayesian Model Averaging (BMA) optimizes the likelihood function to ensure that the
combination of models best matches the target distribution (Massoud et al., 2020). In this
study, the ECS values are estimated by the IPCC ARG6 as the target distribution, represented
by a gamma distribution with a range of 2.5-4 °C and a peak near 3 °C (similar to Massoud et

al., 2023). For each test, a variety of combinations (n=15,000) of model weights is
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systematically sampled to find those that result in model combinations with the highest

likelihood of matching the desired target field.

4.2.3.5 Equal weights and random weights

Equal weights and random weights are used as benchmarks for comparison in this study. Equal
weights allocate the same importance to each model in the ensemble, ensuring all models
contribute equally to the final outcome. Random weights are assigned from a uniform
distribution between 0 and 1. The weights for each catchment and experiment are randomized,
using one of the 22 GCMs as the pseudo-reality. Both equal and random weights are

normalized to sum to 1.

4.2.4 Experiment Design

The main methodological steps are depicted in Figure 4.3. Specifically, Figure 4.3-a illustrates
the steps for evaluating the performance of each weighting method for both future precipitation
and temperature, while Figure 4.3-b shows similar steps for future streamflows. Given the
potential risk of selecting one of the 22 GCMs as the pseudo-reality, where picking an outlier
could skew results, each GCM is alternately used as the pseudo-reality, with the remaining 21
GCMs evaluated against it. Using a larger number of simulations allows us to better
differentiate between structural differences and internal variability, an issue that earlier studies
with fewer simulations struggled to address (Deser et al., 2020). The steps in Figure 4.3 are
carried out for each catchment and for each of the six weighting methods, necessitating a total
of 18,642 repetitions (3,107 catchments x 6 weighting methods). Weights are determined based
on the similarity between each of the remaining GCMs and the one chosen as pseudo-reality
over the reference period (1971-2000), with all weights normalized to sum to one. For the
future period (2071-2100), weighted precipitation and temperature estimates are derived using
the weights from the reference period. The bias between these weighted estimates and those
from the pseudo-reality GCM is calculated for each catchment. This process is repeated 22

times, once for each GCM as pseudo-reality, resulting in 22 bias (bi) values for each weighting
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scheme. To assess the performance of each weighting scheme, the median of these 22 bias

values is used.

a)

ﬂference period \
1971-2000 .
ﬂuture period \

2071-2100

21

Select GCM; as 21 GCMs i Z
L] _ " Weighted P: Pw; = P
pseudo reality A-{GCM}= k=1:21 » e " k=1 e
_ (Pw; — P)

b,

\_ "

Assignment of weights w;,

\ [ T Wy, =1 J j

b)
@nce period Pref, Tref \ ﬁure period \
1971-2000 (GCM) 2071-2100

Bias correction
using correction
factors of reference
period

|

Calibrated Hydrological model for J

Bias correction
using pseudo reality

Pref: Tref
(GCMm)

e

Calibrated Hydrological model for }

P futs Tfut
(GCm)

rE

each catchment each catchment

)

/ /

/
i

Figure 4.3 Main methodological steps (a) for the evaluation of the performance of each
weighing method for precipitation (shown as P) and temperature (not shown). A = {GCM1,
GCM2, GCM3, ..., GCM22}, and bias = median {bl, b2, b3, ..., b22}. Additional
methodological (b) steps for the evaluation of the performance of each weighing method for
streamflow metrics

To assess the impact of weighting on streamflow values, it is necessary to include an additional
step of bias correction, as detailed in Figure 4.3-b. Numerous studies have indicated the

necessity of bias-correcting precipitation and temperature values to obtain realistic outputs
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from impact model such as streamflows (Cannon et al., 2020; Dinh & Aires, 2023; Maraun,
2016). Due to the inherent limitations of climate models, using uncorrected simulations often
leads to systematic discrepancies when compared to projections that have undergone bias
correction (Dinh & Aires, 2023; Ehret et al., 2012; Rty et al., 2014). However, it is important
to acknowledge that bias correction introduces additional uncertainty into the modeling
process, as it may reduce inter-GCM variability and obscure some of the original

characteristics of the climate models (Ehret et al., 2012).

A significant issue is that GCMs do not directly produce streamflow values. While they do
generate runoff values at each computational grid point, these values are not routed through a
catchment outlet, which is essential for accurately simulating streamflows. Furthermore, the
resolution of GCMs is often too coarse to effectively represent water fluxes in the stream
network. To address this, a calibrated hydrological model (as previously described) was
employed to generate streamflow for each catchment using precipitation (P) and temperature
(T) data from the chosen pseudo-reality GCM (GCM;). For the other 21 GCMs (GCMy),
precipitation and temperature values were bias-corrected to align with those of the pseudo-
reality GCM;. This adjustment allows for the computation of streamflow values using the bias-
corrected P and T with the calibrated hydrological model. In this study, we matched the GCM
meteorological forcing to the lumped hydrological model by using the mean of all included
grid points within the watershed or, if none were available, the closest grid point to ensure
accurate simulations. It is important to note that the hydrological model is calibrated using
observation data. While the absolute performance of the hydrological model is important, our
primary focus remains on effectively representing the key underlying hydrological processes.
As long as these processes are reasonably represented, the hydrologic model's absolute
performance may not be of critical concern. The input data for the hydrological model
comprises GCM data, which has been bias-corrected against the pseudo-reality, which serves
as the hypothetical truth in our study. Crucially, the pseudo-reality is not intended for
comparison with real-world observations; instead, it acts as a controlled framework to evaluate
different climate model weighting strategies in future projections where observational data is

unavailable. The comparison is performed on climatological statistics (e.g., interannual means,
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long-term distributions) rather than on day-to-day correspondence, since individual daily

sequences from the GCMs do not, and are not expected to, match the pseudo-reality.

After applying bias correction, the streamflow characteristics of the 21 GCMs (GCMk) should
closely resemble those of the pseudo-reality GCM;. Streamflow weights for each weighting
method are determined based on two approaches: 1) assigning a 50%-50% weight to each
precipitation and temperature, assuming that GCMs with precipitation and temperature
characteristics closest to the pseudo-reality GCM should be weighted more heavily, and 2)
basing them on streamflows computed using uncorrected precipitation and temperature. Since,
after bias correction, the streamflow characteristics of the 21 GCMs should align closely with
the pseudo-reality GCM, the different weighting methods are not expected to result in a
weighted average that significantly deviates from the pseudo-reality. However, the non-linear
response of hydrological models to precipitation and temperature may lead to differing
weights. For the future period, pseudo-reality streamflow is generated using the pseudo-reality
GCM P and T in the hydrological model, just as in the reference period. For the 21 remaining
GCMs, P and T outputs are bias-corrected with the same factors used for the reference period,
and streamflow projections are computed using the hydrological model. Streamflow biases are

calculated as outlined in Figure 4.3-b.

4.3 Results

4.3.1 Climate Variable Sensitivity to Weighting Methods

Figure 4.4 presents the results for all six weighting schemes for mean annual precipitation
(preptot). Specifically, it plots the difference between the median absolute bias of each method
and that of equal weighting, represented as a colored circle centered on the centroid of each
catchment. For Equal Weighting the median bias value is directly plotted. The median value
is taken from the distribution of 22 values, corresponding to the 22 GCMs. Each model is taken
in turn as the pseudo-reality, with weighting applied to the remaining 21 GCMs, as discussed
in the methodology and presented in Figure 4.3. A bias of 0 for Equal Weighting (Figure 4.4-
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a) indicates a perfect prediction of the pseudo-reality. For the other five methods, a value of 0
signifies performance on par with Equal Weighting (equal biases). A red color indicates that
the weighting method performs better than equal weighting, and a blue color indicates the
opposite. The metric used in Figures 4.4b-f is the difference in the absolute values of bias,
meaning that the absolute values of the equal weighting method biases and those of the tested
methods are first computed before taking the difference. This means the initial direction of the
bias (positive or negative) is not considered in this calculation. This approach helps us discern
the deviation of each method from Equal Weighting, aiding in understanding their relative
effectiveness. Supplementary material Figures S4.12 and S4.13 show the median bias for each

method.
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Figure 4.4 Difference in median absolute precipitation (prcptot) bias across all catchments
for the future period (2071-2100). Equal weighting (a) is presented as the actual bias value,
while the biases from all other methods (b-f) are expressed as differences between the
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absolute values of the tested method bias and the absolute value of the equal weighting
method bias

Results highlight the superior performance of the REA weighting scheme compared to other
methods tested. The skill method performs better than equal weighting in the western half of
the domain but slightly poorer in the eastern half. The other three methods produce results
similar to equal weighting, even though BMA tends to be slightly worse and RAC slightly
better. Overall, these findings emphasize the need to account for regional variations when

evaluating the effectiveness of different weighting schemes.

Looking at the median precipitation with equal weights (Figure 4.4-a), the western and
southeastern catchments display positive biases, while other regions exhibit negative biases.
This pattern suggests regional differences in model behavior. For instance, areas with negative
biases (in red) are predominantly continental climates (Dfa, Dfb, Dfc, Cfa in the Kdppen
classification), while regions with positive biases tend to have maritime or mountainous
climates. Similar discrepancies were observed in ERAS precipitation biases (Tarek et al.,
2020), where precipitation was negatively biased in these same zones. This could point to
potential shortcomings in the climate models' ability to accurately capture certain climatic
conditions, particularly in regions influenced by maritime or orographic effects. A full analysis
of bias distribution across all 22 models may reveal if specific GCMs disproportionately affect
the median bias, but this is beyond the scope of the paper and will be left for future regional

studies.

Figure 4.5 presents results for mean annual temperature (tas) using the same format as Figure
4.4. In this case, the SKILL method outperforms the others, closely followed by the REA
method. The other four methods (RAC, BMA of climate sensitivity, equal weights, Random)
yield very similar results. The SKILL and RAC methods demonstrate particularly better
performance over the Rockies, British Columbia and Alaska. The largest biases are observed
in Northern Canada and Alaska. It should be noted that, despite the sharp color gradient
observed in Figure 4.5, the overall median absolute biases remain small, always less than 0.25

(less than 25% of the original value) for all catchments.
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Figure 4.5 Same as Figure 4.4, but for mean annual temperature (tas)

Figure 4.6 presents the median bias for mean annual streamflow (Qm) in the same format as

Figures 4.4 and 4.5. In this figure, the GCM weighting is equally based on uncorrected

precipitation and temperature values over the reference period. To derive daily streamflow,

precipitation and temperature data were bias-corrected to match those of the chosen GCM,

considered the pseudo-reality. These corrected values were then utilized as inputs to the

hydrological model, as detailed in the methodological section. The results indicate that all

weighting methods yield nearly identical outcomes. This suggests that unequal weighting of

climate models does not offer any significant advantage over the use of equal weights. Similar

results are observed for the mean of the maximum and minimum annual discharge values, as

shown in supplementary material Figures S4.14 and S4.15.
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Figure 4.6 Same as Figure 4.4, but for mean annual streamflow (Qm)

Figures 4.6 have used the median as the representative metric to evaluate the distribution of 22
values, each derived from treating one of the 22 GCMs as the pseudo-reality target. While a
good median performance is considered an important asset, it does not provide a complete
assessment of performance. To gain a more comprehensive understanding of the performance
of each weighting method, Figure 4.7 displays the standard deviation of the distribution of the
22 bias values for Qm. The findings indicate that the standard deviation for all weighting
methods is nearly identical. This strongly indicates that the performance of the weighting
methods is comparable, regardless of which GCM is selected as the pseudo-reality. These
results corroborate the findings from Figure 4.6, showing that equal weighting provides similar

results to more complex weighting methods.
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Additionally, similar outcomes are observed for the mean of the maximum and minimum
annual discharge values, as detailed in the supplementary material (Figures S4.14 and S4.15).
This consistency across different metrics and figures reinforces the conclusion that the choice
of weighting method does not significantly affect the assessment of GCM performance in

predicting future streamflow.
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Figure 4.7 Boxplot for the standard deviation of the
distribution of the 22 bias values of mean annual
streamflow (Qm)

Results from Figures 4.6 and 4.7 show that the bias correction step which is almost always
used for precipitation and temperature prior to computing streamflow removes the advantage
of some weighting methods as was seen for precipitation and temperature (Figures 4.4 and

4.5).

4.3.2 Streamflow Weighting without Bias Correction
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To delve deeper into the matter of bias correction, a repeat of the streamflow weighting
experiment was conducted without applying any bias correction. The weighting was carried

out based on two different approaches:

1. Weighting based on climate variables: In this approach, model weights were derived
from the raw (non—bias-corrected) precipitation and temperature data, as in Figure
4.6. These weights were then used to combine the corresponding uncorrected

streamflow simulations.

2. Weighting based on streamflow simulations: In this approach, the weights were
computed directly from streamflow outputs simulated with raw precipitation and
temperature over the reference period, rather than from the climate variables

themselves.

This distinction allows assessing whether deriving weights from meteorological variables or

from hydrological responses leads to different outcomes when no bias correction is applied.

Omitting the bias correction of precipitation and temperature values before computing
streamflows was expected to result in a broader range of streamflow outcomes. As explained
in the methodology, GCMs exhibiting the smallest deviations in precipitation and temperature
when compared to the target pseudo-reality GCM are likely to produce streamflows closer to

the pseudo-reality, thus receiving heavier weighting.

The outcomes of this experiment are showcased in Figure 4.8 (for the first approach) and
Figure 4.9 (for the second approach), both of which illustrate the median bias for the mean
annual streamflow discharge in the same format as Figure 4.6. The results from both figures
are very similar, as hypothesized in the methodology, and are therefore discussed together. It
is observed that the REA weighting method, with the Skill method trailing closely, results in
biases that are mostly lower than those resulting from equal weighting, although the
improvements are relatively modest. The other three weighting methods give results that are

very similar to that of equal weighting.
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Figure 4.8 Same as Figure 4.4, but for mean annual streamflow (Qm) and using the first
approach.

In both experiments, the biases are considerably larger than those observed in Figure 4.6. This
pattern underscores the importance of bias correction in achieving more accurate projections
of streamflow. It also suggests that the bias correction process effectively standardizes all
temperature and precipitation projections against each other, thereby nullifying any potential

benefits of employing more complex weighting methods over simple equal weighting.

A slight improvement is observed when weighting is based on streamflow performance rather
than precipitation and temperature. This improvement is likely due to the inherently nonlinear

nature of the relationship between precipitation, temperature and streamflow. Streamflow-
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based weights are unaffected by the nonlinear relationship between climate and impact
variables, and thus reflect the degree of agreement between GCM simulations and observed

streamflow more accurately.
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Figure 4.9 Same as Figure 4.4, but for mean annual streamflow (Qm) and using the second
approach

4.4 Discussion

4.4.1 Evaluation of Weighting Methods in Hydrological Impact Studies

Assigning weights to climate model projections can be subjective and introduces additional

uncertainty into impact analysis, making the selection of an appropriate weighting method a

challenging task (Knutti, Furrer, et al., 2010). There is considerable debate over the best
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approach to weighing climate models in impact assessment studies. A key concern is that
weights are often based on past performance, which may not translate to future conditions (Hui
et al., 2019). Model weighting is inherently complex and requires a comprehensive assessment
of the uncertainties involved (Abramowitz et al., 2019; Brunner et al., 2020). Moreover,
performance metrics are subjective and vary depending on the parameters chosen for
evaluation (Sanderson et al., 2015). It is worth noting that relying solely on outputs like
temperature and precipitation for weighting may fail to capture the intricate relationship
between climate variables and hydrological responses, potentially limiting the models’

effectiveness in representing hydrological changes (Wang et al., 2019; Wootten et al., 2023).

In hydrological impact studies, the use of weights is an implicit practice. While the most
common approach is equal weighting, binary weights (0 or 1) are also employed to either
include or exclude specific climate projections, such as excluding SSP1-2.6 scenarios, for
example. The goal of applying unequal weighting is to improve reliability through a more
accurate assessment of the uncertainty associated with GCMs. In this context, our findings
suggest that in the absence of a bias correction step, applying unequal weighting—particularly
the Reliability Ensemble Averaging (REA) method, results in better projections for future
precipitation, temperature, and streamflows. This improvement is consistent regardless of
whether the weights are based on precipitation and temperature data or on streamflow data,
with a notable enhancement for weights based on streamflow. These results align with previous
studies, such as those by Castaneda-Gonzalez et al., (2023) and Wang et al., (2019). The results
also show that the best weighting method for temperature (Skill) differs from that for
precipitation (REA), even though the latter also performs well for temperature. This introduces

an additional layer of complexity when choosing a weighting approach.

To assess the effectiveness of the REA method, a test was conducted where model weights
were inverted relative to their REA-calculated values. This meant that models assigned the
least weight became the most heavily weighted, and vice versa. In theory, this should provide
the worst possible weights and result in the largest possible biases. After inverting the weights

(1/W) and renormalizing them to sum to 1, the resulting median bias values were evaluated.
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The inversion of REA weights results in notably increased bias values, as indicated by the
darker colors in Figure 4.10. This observation serves to underscore the effectiveness of the

REA method.
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Figure 4.10 Same as figure 4.9 with a) REA and b) inverted REA weights

Conversely, the findings of this study suggest that when bias correction is applied, equal and
unequal weighting methods lead to similar outcomes regarding streamflow projections.
Weights were determined before applying bias correction because, after bias correction, all
precipitation and temperature time series would closely align with the pseudo-reality time
series, essentially leading to equal weights (Shin et al., 2020). Performing bias correction prior
to running the hydrological model normalizes all climate projections over the reference period,
effectively diminishing the initial performance advantage of certain climate models. Looking
towards future periods, the effectiveness of bias correction is influenced by the climate
sensitivity of each GCM and the internal variability of the climate system (Chen et al., 2020),

which can negate all benefits derived from computed weights.

Bias correction is often considered a necessary but flawed tool. Without it, impact studies
would yield unrealistic streamflow projections. This process introduces several challenges
(Maraun, 2016), including added uncertainty, the potential misrepresentation of extremes, the
assumption that biases remain constant over time, and concerns regarding the manipulation of
physically consistent data. Even advanced bias correction methods, such as the MBCn, which
preserves the delta change signal and maintains multivariate properties and was used in this

study, cannot fully overcome these issues. In hydrology, streamflow results from complex,
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non-linear interactions between precipitation and temperature, indicating that even minor
modifications to time series can lead to significant changes in streamflow. Despite these
challenges, bias correction remains indispensable for addressing issues related to climate
model resolution, parameterization, and the imperfect representation of physical processes

(Chen et al., 2021).

4.4.2 Embracing Model Democracy as a Middle-Ground Strategy

If unequal weighting does not significantly enhance hydrological impact studies, as shown in
this study, then advocating for the principle of model democracy is justifiable, at least from a
practical perspective. This approach simplifies the modeling process by eliminating the need

to assign weights within the impact study modeling chain.

A middle-ground strategy involves adopting a model democracy approach after excluding
some poorly performing GCMs. This method can be equated to a binary [0, 1] weighting
approach. Di Virgilio et al. (2022) have supported this as an advantageous strategy. However,
the effectiveness of this approach necessitates careful selection of model weighting schemes,
as well as the availability of reliable observational data, as noted by Singh & AchutaRao
(2020). These considerations are crucial for improving the robustness of future change
estimates and the uncertainties associated with them. The exclusion of GCMs might also be
guided by factors other than performance, such as excluding models with a climate sensitivity
considered too high (Hausfather et al., 2022; Rahimpour Asenjan et al., 2023), or based on
more specific criteria, like omitting GCMs that do not physically represent the North American

Great Lakes for a study focused on that region.

4.4.3 Implication of ensemble size on random weighting

An intriguing finding from this study was that random weighting yielded results comparable

to those of equal weighting. For random weighting, a uniform distribution between 0 and 1

was used, and the weights were then normalized to ensure their sum was 1. This finding can
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be attributed to the large number of GCMs in the ensemble, as it is recognized that the ensemble
mean from a large sample of GCMs typically is better than any individual GCM (e.g. Crawford
et al., 2019; Ganguly & Arya, 2023). In other words, the number of GCMs is large enough to

compensate for the inclusion of poorly performing GCMS.

To investigate the impact of GCM ensemble size, an experiment test was conducted with a
reduced ensemble of 7 randomly selected GCMs (one-third of the remaining 21 models, after
choosing one as the pseudo-reality). The results of this experiment, depicted in Figure 4.11,
demonstrate that using random weights in this smaller ensemble performed worse than equal
weighting, as shown by the darker blue colors compared to Figure 4.9-b. This supports the

previously mentioned hypothesis.
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Figure 4.11 Similar to figure 4.9, comparing two scenarios: a) Using 7 randomly selected
and equally weighted GCMs, and b) the difference in median streamflow bias when using
7 randomly selected GCMs with random and equal weights.

In addition, a single trial of random weight was used. Ideally, multiple trials with different sets
of random weights would have been performed to ensure that no bias was introduced.
However, given the large number of GCMs in the ensemble and the extensive number of
catchments in this study, any significant impact is highly unlikely. The fact that the spatial
coherences of the random weights' results were the same as that of other methods supports this

assertion.

4.4.4 Limitation and future work
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Weighting methods in climate impact studies involve subjective decisions in selecting
diagnostic metrics, translating them into performance measures, and normalizing these into
weights. It is essential to recognize these subjective uncertainties since inappropriate weighting
methods can either compromise the robustness of projections or mask underlying uncertainties.
In this study, precipitation (prcptot) and temperature (tas) were used for weighting purposes
because they are critical inputs to all hydrological models and directly influence streamflow
outputs. Another subjective choice was how to combine these variables. It was chosen to treat
them equally, with each contributing 50% of the final weights, though this decision was also
subjective as well. Impact studies relying on climate variables for weighting, face uncertain
trade-offs, often due to nonlinear relationships with streamflow. Relying solely on a single
diagnostic metric, such as the climatological mean, for weight determination raises concerns
about whether reducing bias in one metric would be beneficial for others. In addition, some
models may receive disproportionately high (or low) weights due to their high similarity (or
discrepancy) to observations over the reference period. As Shin et al. (2020) noted, this can be
particularly noticeable with precipitation, and some form of smoothing scheme might be
necessary. Employing a suite of metrics or calibrating multiple metrics could improve the
rationale behind the weighted multi-model mean, yet uncertainties in these methods continue

to be a subject for further research.

In this study, we used each of the 22 GCMs as the pseudo-reality target in turn, an important
methodological step to account for the potential impact of selecting a model with either low or
high sensitivity. As a result, the median findings provide a robust estimate of the expected
performance of each weighting method. The underlying hypothesis of using pseudo-reality is
that if a weighting scheme can accurately replicate the pseudo-reality scenario, it is likely to
be effective in projecting future climate impacts. By utilizing multiple pseudo-reality
scenarios, we simulate the range of uncertainties inherent in climate projections, helping to

identify weighting schemes that are consistently reliable across different conditions.

However, the use of pseudo-reality comes with several limitations. First, pseudo-reality is a

hypothetical construct, and while it mimics future climate conditions, it does not represent
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actual observations. Without future observational data, it is impossible to verify how well the
pseudo-reality reflects real-world climate outcomes, introducing further uncertainty, especially
when making long-term projections. Another limitation is that, as with any method operating
in a ‘climate model world,” the model-as-truth approach may oversimplify complex real-world
processes, potentially overlooking important factors that influence climate impacts. Pseudo-
reality may also fail to fully capture real-world extremes, resulting in an incomplete assessment
of model performance in predicting such events. Moreover, without future observations, the
results remain theoretical despite the methodological advantages. Despite these limitations,
pseudo-reality remains a valuable tool for evaluating model weighting strategies when applied
cautiously and in conjunction with other methods. It provides important insights into model
performance and uncertainty, helping to enhance the robustness of climate projections across

diverse scenarios.

In this study, we utilized the lumped hydrological model HMETS due to the large-sample
nature of our research, which made the use of a process-based model impractical. For the
hydrological model calibration, observed precipitation, temperature, and streamflow data were
used. This approach was necessitated by the challenges associated with using GCM data for
hydrological model calibration, primarily because the daily sequences in observations and
GCM outputs are not correlated. Using this hydrological model with the pseudo-reality GCM
without any prior bias correction is somewhat unconventional and will likely result in mean
annual streamflows that are biased, possibly to a significant degree, compared to streamflow
observations. However, the pseudo-reality approach requires only the generation of somewhat
realistic streamflows, since all other GCMs will be assessed against this reality, and even bias-
corrected against this pseudo-reality, thus providing a correct assessment of the weighting
strategy. An alternative strategy allowing for direct hydrological model calibration against
GCM data has been proposed by Ricard et al. (2023). However, this approach has not yielded

streamflow results as reliable as those obtained through direct observation-based calibration.

To further assess these impacts, all methodological steps outlined in Figure 4.3-b were

conducted using another hydrological model, the GR4J model (Perrin et al., 2003) linked with
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the CemaNeige snow module (Valéry et al., 2014). Using this model produced very similar
results and led us to the same conclusions with respect to climate model weighting (results not
shown). The two lumped conceptual hydrological used, while effective in simulating general
hydrological processes, may not fully capture the complexity of spatially distributed processes
or account for the detailed physical interactions at the sub-basin scale. Therefore, future work
could benefit from incorporating more diverse hydrological models, including physically-
based or distributed models, to provide a broader evaluation of the impacts of climate model

weighting on hydrological simulations.

4.5 Conclusion

This study offers a comprehensive analysis of how weighting members within an ensemble of
22 CMIP6 climate models affects streamflow projections across a large sample of 3,107 North
American catchments. Six weighting schemes, including random and equal approaches, were
established. Assessing the efficiency of weighting for future conditions presents a challenge
due to the absence of future precipitation, temperature, and streamflow data. Therefore, to
validate the weighting methods, the study employed the pseudo-reality approach. Each of the
22 GCMs was treated as the pseudo-reality in turn, thus providing future temperature and
precipitation data against which the efficiency of the weighting could be evaluated. Future
streamflows were generated using the pseudo-reality GCM in conjunction with a hydrological

model.

The results indicated that weighting the ensemble led to improved projections of future
precipitation and temperature. The optimal weighting method varied between precipitation and
temperature. In terms of streamflow projections, the REA weighting method resulted in modest
improvements in streamflow predictions compared to equal weighting when no bias correction
was performed. No weighting method outperformed equal weighting once bias correction was
applied to the precipitation and temperature time series. This is likely due to the complex

nonlinear interactions that lead to streamflow. Consequently, using equal weighting of GCMs
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(model democracy) seems to be a valid strategy for hydrological impact assessment, and

especially so when bias correction of climate model outputs is considered necessary.

4.6 Code and data availability

The hydrometeorological data used in this study were obtained from the HYSETS database:
https://doi.org/10.17605/OSF.IO/RPC3W (Arsenault et al., 2022). The CMIP6 GCM model
outputs are available from the Earth System Grid Federation (ESGF) portal at Lawrence
Livermore National Laboratory (https://esgf-node.llnl.gov/search/cmip6/; ESGF, 2022). The

processed data and the used codes are available via contacting the authors.
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simulated with raw precipitation and temperature (no bias correction), using the HMETS
hydrological model.






CHAPTER 5

GENERAL DISCUSSION

This thesis explored the challenges and implications associated with climate model selection
and their combination methods in hydrological climate change impact assessments. Through
three complementary studies, it investigated different aspects of uncertainty of future
streamflow projections over a comprehensive sample of North American catchments. As a
whole, these studies provide an integrative description of how methodological decisions
regarding model selection, weighting, and bias correction influence hydrological projections.
This chapter discusses the key findings, reflects on their implications, and offers
recommendations for future research and practice. It is noteworthy to mention that the
objective of this thesis is not to point out a single method or a single set of models that is
practical for all impact studies, as, arguably, such a method or subset has not been developed
yet (Kolusu et al., 2021), but to provide overall strategies that can be used to guide the choice

of models.

5.1 Ensemble Design and Uncertainty Transfer in Hydrological Impact Modeling

In climate change impact assessment studies, multi-model ensembles have become a standard
approach to account for the uncertainties inherent in projecting future climate (Bellucci et al.,
2015; Grose et al., 2023; Mabher et al., 2021; Semenov & Stratonovitch, 2010; Tebaldi &
Knutti, 2007). By combining outputs from multiple GCMs, multi-model ensembles are able to
capture a broad spectrum of potential futures while enabling the assessment of uncertainty

contributions from individual modeling components.

Of the many links in the chain of climate-impact modeling; starting with GCMs, through bias
correction, and hydrological modeling; GCMs have most frequently been cited as the main
source of uncertainty for variables such as flood extremes and flood risk (Gao et al., 2020;
Shen et al., 2018; H. Wang et al., 2020). The results presented in this thesis also showcase the

central role of GCMs in introducing uncertainty into hydrological projections. However, their
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relative contribution to uncertainty is not consistent through different regions and hydrological
flow regimes. This observation aligns with previous research that has shown that uncertainty
contributions of GCMs differ with the dominant hydroclimatic process of a basin, seasonality,
and structural characteristics of the hydrological model employed (e.g. Castaneda-Gonzalez et
al., 2022; Meresa et al., 2021). For instance, our analysis revealed that hydrological models
made larger contributions to uncertainty in dry regions, and for low-flow and high-flow
regimes. This larger contribution is presumably because the models have a limited capacity to
represent conditions in arid areas and during peak events effectively. On the other hand, Troin
et al. (2022) showed that in cold and snow-dominated catchments, uncertainty was largely
caused by hydrological models, mainly due to the fact that it was challenging for the models

to adequately simulate snow accumulation and melt processes.

The thesis further examined how uncertainty originating from climate models transfers into
hydrological projections. While larger ensembles naturally represent a wider diversity of
possible futures, they also increase the computational, analytical, and interpretative burden—
particularly when downscaling, bias correction, and hydrological modeling must be applied
consistently across thousands of catchments. Even with modern computational resources, the
practical challenge often lies not only in running the simulations, but in managing, comparing,
and interpreting the resulting volume of data in a transparent and reproducible way. This work
demonstrated that by appropriate design, reduced ensembles can still preserve a large part of
the original hydrological uncertainty envelope. In particular, the KKZ algorithm performed
well in preserving spread while reducing ensemble size, offering a good compromise between

representational accuracy and computational efficiency.

Uncertainty transfer from climate world to hydrological responses is, however, non-uniform
and nonlinear. For instance, small changes in precipitation projections, which is often the most
uncertain climate projection, can result in considerably large differences in simulated
streamflow, particularly during low-flow and high-flow conditions. These nonlinear responses
critically depend on the structure of the hydrological model, the characteristics of the

catchment, and the design of the climate model ensemble. As a result, variability in climate
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space does not translate directly into variability in impact space, underscoring the importance

of incorporating hydrological sensitivities into ensemble construction.

This leads to a broader methodological insight that ensemble selection methods cannot be
based solely on climate performance metrics (e.g., temperature or precipitation bias or RMSE).
Otherwise, they will potentially overlook the behavior of impact models in simulating the
variables of concern, such as streamflow. For example, a moderately warm-biased GCM can
project winter precipitation as rain instead of snow and produce greatly underestimated spring
runoff even if other “acceptable” temperature performance is realized. Therefore, it is
necessary that impact-based criteria be applied during ensemble selection in order to remain
applicable in the final ensemble for the intended application, including hydrological sensitivity,

seasonal character, and representation of regional processes.

No single selection or weighting strategy performs optimally across all variables, regions, or
hydrological metrics, indeed, this is one of the central findings of this thesis. While model
selection and weighting are both feasible and widely used, they are inherently constrained by
trade-offs and methodological choices. Ultimately, ensemble design is not only a technical
process but an intellectual bridge between climate modelling and impact assessment. Subset
selection strategies involve trade-offs and choices regarding what model properties or
performance statistics are more important. Rather than searching for an optimal “best” subset,
a better approach is to have a robust and logical set of choices that are appropriate to the context
of the research. Through the development of methods that simultaneously respect uncertainty
structure, computational efficiency, and end-use relevance, we can progress toward more
credible and actionable hydrological projections in a changing world. The thesis thus makes
the case for the strategic, contextually aware ensemble design that considers the nonlinearity
of interactions between climate and hydrology and prioritizes impact-relevance over purely

climate-space performance.

5.2 Trade-offs in Excluding Climate Models



142

Model evaluation is fundamental in GCM selection, as the ability to realistically reproduce
past climates is generally viewed as a prerequisite for confidence in future projections, though
on its own, it does not provide sufficient grounds for such confidence (Nguyen et al., 2024).
Model performance can be evaluated using different metrics at both the global (e.g. Donat et
al., 2023; Ridder et al., 2021) and regional sclaes (e.g. Di Virgilio et al., 2022; Palmer et al.,
2023). Yet the lack of standard evaluation metrics between studies makes direct comparison

of results or consistent tracking of model performance between regions difficult.

One of the most controversial discussions in climate impact studies, particularly in hydrology,
is whether to filter out climate models with high ECS (Hausfather et al., 2022; Ribes et al.,
2021). Removing models that project extreme global warming can be justified on the basis of
physical credibility, with specific concerns that these models fall outside projected warming
ranges according to current observations and theoretical limits (Knutti, Rugenstein, et al.,
2017). Our results nevertheless highlight that such exclusion decisions are far from easy to
make, particularly when moving from the global climate modeling to regional hydrological
impact assessments. While the exclusion of high-ECS models reduced the spread of
streamflow projections in the majority of the catchments, it counterintuitively resulted in
increased uncertainty in others, a slightly more than one-third of the catchments examined
experienced this uncertainty rise after model exclusion. Our results point out that globally
extreme climate models will not necessarily be outliers for hydrological simulations. In fact,
in certain situations, e.g., snow-dominated basins or dry regions, high-ECS models can
generate hydrological responses that appear more plausible when compared with regional

hydroclimatic behavior and pseudo-reality experiments.

Model exclusion on the basis of global metrics such as ECS alone runs the danger of
overlooking crucial hydrological behaviour. High-ECS models can be implausible at the global
scale but still have valuable insights to offer at the regional scale, particularly in stress-testing
contexts or in examining worst-case futures. Model exclusion inevitably results in information
loss, particularly regarding the uncertainty in the projections. It should be noted that by

reducing the ensemble, only information about the uncertainty is reduced, not the uncertainty
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itself (Wilcke & Barring, 2016). Although subsetting GCMs unavoidably results in loss of
information, it is critical to identify and maintain the most relevant information for the study's
objective. While physical and statistical relationships between data and projections could help
keep as much information as possible, at the end of the day, this is a subjective choice best

determined in the discussion between researchers and stakeholders.

To this end, the thesis recommends exclusion decisions to be made cautiously with
justification, taking into account the study's specific hydrological objective, regional
sensitivities, and risk management needs (Palmer et al., 2023; Ribes et al., 2021; Shiogama et
al., 2024). Rather than simply focusing on global plausibility, hydrological modellers are to
consider if the inclusion of such models helps to inform plausible extreme futures or worst-

case scenarios that are beneficial to adaptation planning.

53 Evaluating the Utility of Model Weighting in Hydrological Impact Studies

Climate model weighting strategies aim to constrain the uncertainty of ensemble projections
by assigning more weights to the models that better capture key climatic processes in the
historical period. While this approach appears logically sound, this thesis's findings and
broader literature suggest that the effectiveness of model weighting is conditional. Its success
strongly depends on methodological decisions, the modeling task context, and the nature of

the downstream impact models (H.-M. Wang et al., 2019; Wootten et al., 2022).

Through a pseudo-reality framework, this thesis explored model weighting to assess the
performance of various weighting approaches on streamflow projections. The results
confirmed that, if uncorrected (raw) climate model outputs are used, unequal weighting can
improve hydrological projection skill. The findings support earlier studies, such as Knutti et
al., 2017, who suggest unweighted means can be misleading if ensemble members have
substantially varying qualities or are non-independent. Weighting, in these cases, is a remedial
action, lessening the effect of poor or too-similar models (Lorenz et al., 2018; Merrifield et al.,

2020, 2023). However, in bias-corrected projections, the added value of any weighting



144

approach became insignificant with little to no difference observed between weighted and
unweighted ensemble outputs. These findings suggest that weighting loses its value when used
alongside preprocessing steps (e.g., bias correction) that already align model outputs with

observations.

To this is the added complexity that the performance of weighting schemes is heavily
dependent on the variable of interest, geographic area, and performance measure (Palmer et
al., 2023; Wootten et al., 2022). The use of weights without regard to these factors can reduce,
rather than enhance, projection robustness. Our analysis also revealed hydrological-based
weighting to outperform climate-only approaches for projecting streamflow, highlighting the
importance of weighting criteria to be aligned to the specific aims of an impact study. Even so,

these performance-weighted weights were of limited value when bias correction was applied.

In particular, the relationship between climate drivers and hydrological outputs is often
nonlinear and site-dependent. Therefore, evaluating weighting schemes solely in “climate
space”, i.e., based on a model’s skill in simulating temperature or precipitation, can be
misleading. To ensure models contribute meaningfully to realistic impact estimates,
performance must also be assessed in “impact space,” where the end-use variable (e.g.,
streamflow) is directly simulated. Applying climate-based weights without verifying their
validity in impact models can reduce, rather than enhance, the credibility of projections. While
impact-based weighting remains underdeveloped, it offers a promising direction, especially

when improving projections of hydrologically significant outcomes is the goal.

These findings collectively suggest a pragmatic modeling philosophy: model democracy, or
equal weighting, remains a robust and justifiable strategy for many hydrological applications,
particularly after bias correction. However, model democracy should not be mistaken for
indiscriminate inclusion; strategic model exclusion, based on regional hydrological

performance or physical realism, remains a valuable means to improve ensemble reliability.
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5.4 Limitations and Recommendations

54.1 Emission Scenario

This study relied only on a single high-emission greenhouse gas scenario, RCP8.5, and its new
equivalent SSP5-8.5. While in hindsight these scenarios are seen as pessimistic, their use
remains legitimate in climate effect studies. Even though the overall conclusions of this study
will most likely concur with general trends reported in the literature and will not significantly
differ under other emission pathways, addition of additional scenarios, can be beneficial to
position the results in a wider socio-economic context. This addition would make the findings

more robust as well as express the set of plausible climatic futures.

5.4.2 Bias Correction

Advanced multivariate bias correction techniques were employed, chosen for their ability to
preserve inter-variable relationships and reduce systematic error. These techniques have been
demonstrated recently in the literature to perform well. However, alternative bias correction
strategies, particularly designed for extreme event, seasonality, or temporal ordering, were not
explored. These techniques, taken into account in future work, may strengthen hydro-climatic

extreme representation and further improve impact projection credibility.

Similar to other bias correction strategies, the employed techniques in this study assume that
the statistical relationships between observed and modeled data within the calibration period
are also applicable in the future (i.e., stationarity). However, in cases of strong climate change,
this assumption may not be valid, especially in extreme cases or unprecedented climates,

potentially introducing non-negligible biases in impact estimates.

5.4.3 Hydrological Modeling
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Hydrological simulations were carried out with lumped conceptual models, chosen for their
computational efficiency in large-sample applications. Even though the choice is appropriate
for the scale of our study, it inherently constrains the spatial representation of key hydrological
processes, such as groundwater flow, snowpack heterogeneity, and land surface heterogeneity.
Conceptual models, including GR4J, often exhibit reduced transferability when applied to
climate states that differ substantially from the calibration period, reflecting well-documented
challenges in representing hydrologic non-stationarity (Harvey et al., 2024; Saavedra et al.,
2022; Stephens et al., 2019). Their fixed parameter sets and simplified treatment of snow,
vegetation, and evapotranspiration processes limit their ability to capture evolving
hydroclimatological dynamics under climate change. Nonetheless, conceptual models provide
a practical and transparent framework for large-ensemble climate impact experiments, serving

as a useful baseline from which more process-rich modelling strategies can evolve.

Future work would benefit from incorporating models with more explicit representations of
these changing processes or models that allow climate-dependent parameters or structural
flexibility. Semi-distributed or fully distributed models, physically based frameworks, or data-
driven architectures such as Long Short-Term Memory (LSTM) networks may offer improved
robustness when extrapolating beyond historical conditions. Machine-learning approaches,
particularly deep learning, have shown strong performance in large-sample hydrology and
potential advantages in ungauged basins, though challenges remain regarding interpretability
and generalizability. Recent studies also suggest that LSTMs may provide more stable

projections under climate change (e.g. Martel et al., 2025).

The hydrologic model was run on a daily time step, which, although common in literature,
limits the analysis of short-duration extreme events such as flash flood or sub-daily drought
dynamics. Events that evolve at sub-daily timescales are not fully resolved, potentially
underestimating impacts under more intense precipitation scenarios. To partly mitigate this
limitation, we excluded very small catchments from the analysis, using catchment area as a
proxy for hydrological response time. The assumption is that smaller basins tend to respond

more rapidly to precipitation inputs and are thus more sensitive to sub-daily variability. By
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filtering out these basins, we reduced the risk of misrepresenting sub-daily processes within a
daily time-step framework. While this does not fully resolve the scale mismatch, it provides a
pragmatic balance between computational feasibility and representativeness of hydrological

responses across the domain.

Finally, the subset of GCMs identified as most representative in this study is conditional on
the hydrological model structure and the climate forcing used. More complex or spatially
explicit hydrological models, or dynamically downscaled RCM inputs, may respond
differently to climatic drivers, potentially altering which GCMs span the relevant hydrological
uncertainty. This reinforces a central conclusion of the thesis: model selection is inherently
context-specific, and no universal subset can be expected to perform optimally across modeling

frameworks.

5.4.4 Physically Informed Model Selection

Finally, future work should also explore physically informed model selection approaches.
While this thesis focuses on statistical and performance-based criteria, an additional avenue
involves evaluating GCMs based on their ability to represent key regional hydroclimatological
processes (e.g., snow accumulation and melt, atmospheric rivers, monsoon dynamics, soil
moisture feedbacks). Incorporating such process-based diagnostics could help identify models
that are not only statistically adequate but also physically credible for the region of interest,

thereby improving the interpretability and robustness of hydrological impact assessments.






CONCLUSION

This thesis explored the influence of ensemble design decisions such as climate model sub-
selection and weighting on hydrological impact assessments over North American catchments.
In three connected studies, this research offers important insights on the impact of
methodological decisions on projected streamflow, highlighting that choices made in the
design of climate model ensembles are not only technical decisions but have significant
implications for the credibility, interpretability, and usefulness of hydrological impact

assessments.

The first study demonstrated that sub-selection of climate models by using informed sampling
techniques, such as the KKZ algorithm using key climate indices, is able to preserve much of
the uncertainty captured by full GCM ensembles. However, the transfer of uncertainty from
the climate domain to the hydrologic domain is nonlinear and catchment-dependent. While
ensemble reduction offers computational advantages, its implications extend further, shaping
the extent to which the model ensemble captures the plausible range of future hydrological

conditions.

The second study evaluated the effect of excluding high ECS models on variability in future
streamflow. Even though these models produce higher spread in global climate projections,
their impact on hydrological response in their respective regions is less critical. Even though
their removal yielded reduced projection spread in Canada, Alaska, the southeastern United
States, and the Pacific coast, small changes or even greater variability was seen in other
locations. This kind of spatial heterogeneity means hot models are not hydrologically outliers
in and of themselves. Their generally wetter projections may well be compatible with potential
futures for some locations within some catchments, and a one-model-fits-all model exclusion
approach becomes more challenging. The implications emphasize the need to choose models
not merely on the basis of global climate metrics like ECS but also on local hydrological

relevance.
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Finally, the value of climate model weighting schemes was studied using a pseudo-reality
experiment in which all GCMs were run as the “true” future and the performance of six
weighting schemes were compared. Model weighting improved temperature and precipitation
projections, but these improvements did not always lead to improved streamflow projections,
particularly when bias correction had been done. when bias correction was applied, no
weighting scheme outperformed the baseline equal-weighting case. These findings suggest that
model democracy, or equal weighting, remains a robust and justifiable strategy for many

hydrological applications, particularly after bias correction.

The thesis proposes cautious, context-driven approaches to ensemble sub-selection and
weighting. Instead of rigorously applying global performance metrics or statistical
abstractions, researchers would be well advised to consider regional hydroclimatic relevance,
the nature of the impact variable being simulated, and the nature of the modeling pipeline (e.g.,
bias correction). Although equal weighting and model democracy remain justified, especially
following bias correction, strategic model exclusion and performance-weighting are useful
under specific circumstances, provided they are applied judiciously and with full
understanding of trade-offs. In the absence of a universally applicable best practice, an open
and adaptable modeling philosophy is proposed: exploit a large ensemble where possible to
allow for uncertainty, meticulously estimate the impact of omission, and employ weighting
cautiously, being aware when and where it adds value. It is this pragmatic approach that serves
to advance the evolution of reproducible, reliable, and policy-relevant hydrological climate

impact assessments.
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