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Évaluation de la conception des ensembles de modèles climatiques pour l’évaluation des 
impacts hydrologiques: attribution, transférabilité et pondération de l’incertitude 

 
Mehrad Rahimpour ASENJAN 

 
RÉSUMÉ 

 
Comprendre les impacts des changements climatiques sur la disponibilité en eau et les 
extrêmes hydrologiques est essentiel pour une planification efficace des ressources hydriques. 
Les évaluations d’impact hydrologique reposent largement sur des ensembles de modèles 
climatiques globaux (GCM) pour quantifier les changements futurs et leurs incertitudes. 
L’utilisation d’ensembles multi-modèles (MME) pose toutefois plusieurs défis 
méthodologiques : choix des modèles, attribution des incertitudes et pondération des modèles 
constituant l’ensemble. L’utilisation d’un sous-ensemble réduit de GCMs implique des 
compromis entre faisabilité computationnelle et représentativité. De même, la pondération des 
modèles selon leur performance ou leur indépendance influence les résultats et les limites 
d’incertitude. Pourtant, malgré l’importance de ces choix, il existe peu de consensus sur les 
meilleures pratiques, et leur influence sur les projections hydrologiques demeure peu explorée. 
 
Pour y répondre, trois objectifs guident cette thèse : (1) quantifier l’impact de la sélection de 
GCM basée sur des indices climatiques sur le transfert d’incertitude vers les projections 
hydrologiques ; (2) examiner les effets hydrologiques de l’inclusion ou exclusion de modèles 
à forte sensibilité climatique ; (3) comparer l’effet de différentes pondérations sur l’incertitude 
des projections de débits futurs. L’objectif n’est pas de promouvoir une stratégie unique, mais 
de comprendre comment les choix de conception d’ensembles influencent la propagation de 
l’incertitude climatique dans l’espace hydrologique. 
 
La première analyse étudie le transfert d’incertitude climatique vers les sorties hydrologiques 
via des méthodes d’échantillonnage (ex. : algorithme KKZ) pour sélectionner des modèles 
selon des indices de température et de précipitation. L’expérience, menée sur 3 540 bassins 
nord-américains avec 20 GCM de l’ensemble CMIP5, deux approches de corrections de biais 
et trois modèles hydrologiques, montre que des ensembles réduits bien conçus peuvent 
conserver l’essentiel de la dispersion observée. Toutefois, ce transfert est non uniforme et non 
linéaire : de petites variations de précipitations peuvent produire de fortes différences de débits, 
surtout aux extrêmes, influencées par la structure du modèle hydrologique et les 
caractéristiques du bassin. 
 
La deuxième analyse évalue l’exclusion des modèles à forte sensibilité climatique (« modèles 
chauds ») sur 3107 bassins nord-américains, en utilisant 19 GCM de l’ensemble CMIP6 dont 
cinq « modèles chauds ». Leur retrait réduit l’incertitude dans certaines régions (Alaska, sud-
ouest des É.-U., parties du Canada) mais l’augmente ailleurs, soulignant l’importance 
d’évaluer les GCM sur des critères régionaux, et pas seulement globaux. 
 
Enfin, la thèse teste plusieurs schémas de pondération via une expérience dans une pseudo-
réalité, où chaque GCM est traité comme la « vraie » réalité future. Six méthodes sont 
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appliquées à 22 GCM couplés à un modèle hydrologique sur 3 107 bassins. Les pondérations 
inégales basées sur les observations historiques améliorent les projections climatiques, mais 
l’effet sur les débits est atténué, surtout après correction de biais, laquelle réduit la sensibilité 
aux choix de pondération. 
 
Cette thèse apporte des perspectives nouvelles sur la conception des ensembles de modèles 
climatiques pour les évaluations d’impact hydrologique. Elle souligne que la construction 
d’ensembles doit intégrer le comportement pertinent pour l’impact (variabilité, saisonnalité 
des débits) et trouver un équilibre entre diversité, efficacité computationnelle et pertinence 
pour l’application visée. 
 
 
Mots-clés: changement climatique, modélisation hydrologique, propagation des incertitudes, 
conception d’ensembles, pondération, correction de biais, modèles chauds, pseudo-réalité, 
débits 

 

 
 
 
 
 
 
 



 

Evaluating Climate Model Ensembles design for Hydrological Impact Assessment: 
Uncertainty Attribution, Transferability, and Weighting 

 
Mehrad Rahimpour ASENJAN 

 
ABSTRACT 

 
Understanding the impacts of climate change on water availability and hydrological extremes 
is critical for effective water resources planning. Hydrological impact assessments rely heavily 
on global climate model (GCM) ensembles to quantify future changes and their associated 
uncertainties. The use of multi-model ensembles (MMEs), however, presents several 
methodological challenges, including model selection, uncertainty attribution, and ensemble 
weighting. Selecting a reduced subset from an ever-growing pool of GCMs introduces 
methodological trade-offs between computational feasibility and ensemble representativeness. 
Similarly, weighting the individual GCMs by performance or by independence affects the 
outcome as well as its uncertainty limits. Yet, despite the critical role of these decisions, there 
is little consensus on best practices, and the influence of these design strategies on hydrological 
projections remains underexplored.  
 
To tackle these issues, three specific research objectives are pursued in this thesis: (1) to 
quantify the impact of GCM selection based on climate indices on uncertainty transferability 
to hydrological projections; (2) to examine the hydrological implications of including or 
excluding high-sensitivity climate models in multi-model ensembles; and (3) to compare the 
effects of different GCM weighting schemes on the uncertainty of future streamflow 
projections. Rather than promoting a single optimal strategy, the objective is to understand 
how different ensemble design choices affect the propagation of climate uncertainty into 
hydrological space. 
 
The first analysis investigates the transferability of climate uncertainty to hydrological outputs 
by applying sampling methods such as the KKZ algorithm to sub-select climate models based 
on temperature and precipitation indices. This experiment was conducted across 3,540 North 
American catchments using 20 CMIP5 GCMs, two bias correction methods and three 
conceptual hydrological models. Results show that when carefully designed, reduced 
ensembles can retain most of the spread observed in streamflow projections derived from the 
full ensemble. However, the translation of uncertainty is non-uniform and nonlinear, meaning 
small differences in climate inputs, particularly precipitation, may result in large variations in 
streamflow, especially for high and low flow regimes.  
 
Secondly, the thesis examines the effect of excluding high Equilibrium Climate Sensitivity 
(ECS) models, referred to as “hot” models, on projected streamflow. Exclusion of these models 
reduces the spread of projected streamflow changes in some regions such as Alaska, 
southwestern U.S., and parts of Canada, but increased it in others, highlighting the need to 
evaluate GCMs using region-specific, rather than global, criteria. 
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Finally, the thesis assesses the performance of weighting schemes in GCMs through a pseudo-
reality experiment, where each of the GCMs is, in turn, simulated as the “true” future. This 
allows an objective comparison of weighting performance against a known target in future 
where the true reality is unknown. The analysis applies six weighting approaches to an 
ensemble of 22 CMIP6 GCMs, coupled with a hydrological model across 3,107 North 
American catchments. Results indicate that unequal weighting by historical temperature and 
precipitation improves climate variable projections' quality. But for streamflow, these 
improvements are blunted, particularly if bias correction has been applied to inputs.  
 
This thesis provides new insights into the design of climate model ensembles for hydrological 
impact assessments. It emphasizes that ensemble construction should not be based solely on 
climate performance metrics, but must incorporate impact-relevant behavior such as 
streamflow variability and seasonality. The findings advocate for a more pragmatic approach 
to ensemble design, balancing model diversity, computational efficiency, and relevance to the 
intended application. 
 
 
Keywords: climate change, hydrological modeling, uncertainty propagation; ensemble design; 
model weighting; bias correction; hot models; pseudo-reality; streamflow 
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INTRODUCTION 

 

Climate change has been one of the most severe challenges that humanity has been facing in 

recent decades. Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has issued 

six assessment reports, which have documented the increasing certainty and magnitude of 

anthropogenic climate change and its consequences. The current Synthesis Report of the Sixth 

Assessment (AR6), published in 2023, confirms that rapid and worldwide alterations of the 

climate system have occurred over recent decades (IPCC, 2023). Adverse effects of climate 

change are, but not restricted to, global warming, increased sea levels, melting of glaciers, and 

even more and prolonged extreme events such as heavy precipitation, floods, droughts, and 

heatwaves (IPCC, 2014, 2023). Climate change severely threatens not only urban security, but 

also environmental stability and the long-term viability of economic and social development 

around the world. Socio-economic consequences range from reduced agricultural production 

and food security to displacement of communities and further pressure on public health 

systems (IPCC, 2023). Because of the scale and scope of these risks, adaptation and mitigation 

strategies to the present and future effects of climate change has become crucial. 

 

Climate change risks can be reduced by implementing proper management strategies (Wilby 

& Dessai, 2010), which necessitate a thorough understanding of the magnitude and uncertainty 

of the projected changes. Reliable projections of future climate are therefore necessary to guide 

policymaking, enable risk management strategies, and influence sustainable development 

planning in the face of a changing climate (Knutti, Furrer, et al., 2010). Importantly, the effects 

of climate change are not uniform across the globe; they vary significantly by region due to 

differences in geography, climate systems, and socio-economic contexts  (IPCC, 2021). As 

such, decision-making must be informed at national and local levels by regional considerations 

through regional-scale impact assessments, as opposed to global scale trends. Regional studies 

are required to inform adaptation planning, design robust infrastructure, and implement 

effective policies across sectors such as flood control, water resources management, and urban 

planning. 
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To evaluate the effects of climate change, researchers typically use mathematical models of 

the Earth's climate system referred to as General Circulation Models (GCMs) or Earth System 

models (ESMs) GCMs are highly advanced numerical models that incorporate interactions 

between the atmosphere, oceans, land surface, and cryosphere to project future and past climate 

conditions according to various greenhouse gas emission scenarios (Illangasingha et al., 2023). 

ESMs are advanced versions of GCMs that include additional components such as the carbon 

cycles and dynamic vegetation. Greenhouse gas emission scenarios, referred to as 

Representative Concentration Pathways (RCPs) or the more recent Shared Socioeconomic 

Pathways (SSPs), represent different trajectories of socio-economic development, energy use, 

and policy choices, each associated with a corresponding radiative forcing level (IPCC, 2021; 

Siabi et al., 2023). However, translating the outputs of GCMs into useful information for 

regional planning requires diligent assessment to overcome their shortfalls and associated 

uncertainties (Knutti, Furrer, et al., 2010). 

 

In hydrological impact studies, the use of GCM outputs involves two key steps. The first is to 

take raw GCM data, which usually have coarse spatial resolution and contain systematic biases, 

and downscale and bias-correct them to provide site-specific climate data (Maraun et al., 2010; 

Menapace et al., 2025; Teutschbein & Seibert, 2012). This can be achieved using statistical 

techniques, which calibrate large-scale GCM outputs against local observations (Miller et al., 

2025), or dynamical downscaling (Fallah et al., 2025), which uses Regional Climate Models 

(RCMs) nested within GCMs. In this approach, the GCM supplies large-scale atmospheric and 

oceanic boundary conditions, that are periodically updated, to drive the RCM. The RCM then 

simulates local processes like topographic effects and land–atmosphere interactions at a finer 

spatial resolution while remaining consistent with the global circulation. Second, the 

downscaled climate outputs, i.e., temperature and precipitation, are used to force hydrological 

models in order to simulate catchment-scale processes such as streamflow and 

evapotranspiration (e.g. Vano et al., 2014). The resulting hydrological projections can 

subsequently be used for the aim of informing real decisions, such as design of infrastructure 

(e.g., storm water systems, dams), water supply management, and flood risk assessment (Wilby 

& Dessai, 2010). 
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Climate modeling has progressed significantly in the last few decades, resulting in an outburst 

of GCMs that are presently available. The Coupled Model Intercomparison Project Phase 5 

(CMIP5) and its successor, CMIP6, have been the key contributors to the increase in the 

number of climate models. CMIP5 featured simulations from 62 different models developed 

by 29 modeling centers worldwide (Taylor et al., 2012; Why So Many Climate Models? | 

California Climate Commons). CMIP6 expanded this further, involving around 100 models 

contributed by 44 institutions (Eyring et al., 2016; Hausfather, 2019). In addition to increasing 

the ensemble size, CMIP6 introduced major improvements such as enhanced spatial resolution, 

a broader range of greenhouse gas concentration scenarios (Shared Socioeconomic Pathways 

– SSPs), and more advanced representations of Earth system processes. 

 

The growing diversity of climate models allows researchers to use large multi-model 

ensembles to better quantify uncertainty in future climate projections, account for structural 

differences among models, and identify robust signals of change (Lehner et al., 2020). 

However, from a practical standpoint, using all available models in hydrological impact 

assessments is infeasible. Running high-resolution downscaling and hydrological simulations 

across dozens of GCMs demands substantial computational resources, time, and data 

management capacity. Although modern hardware and storage solutions can accommodate 

large volumes of climate data, the bottleneck often lies in the workflow: repeatedly bias-

correcting, forcing, calibrating, and analyzing hydrological simulations for dozens of GCMs 

requires substantial researcher time, model-specific tuning, and multi-stage post-processing. 

In operational and academic settings, the limiting factor is therefore less about raw computing 

power and more about managing, interpreting, and making decisions from a very large set of 

uncertain projections. Large ensembles can complicate impact assessment by producing an 

overwhelming range of possible outcomes, making it difficult for practitioners to extract 

actionable information. As a result, selecting a representative subset of credible models, or 

applying weighting strategies, remains a practical approach to maintaining interpretability and 

analytical tractability while still capturing the essential dimensions of uncertainty. 
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Since the predictions provided by these models are so critical, caution needs to be taken to 

ensure that the GCMs selected are representative and credible (Cannon, 2015; Dubrovsky et 

al., 2015). An ill-advised model selection can lead to biased estimates of the magnitude or 

timing of hydrological effects and, subsequently, to suboptimal planning measures. A selection 

of GCMs that is transparent and well-argued, therefore, together with careful downscaling and 

hydrological simulation, is necessary to provide useful and credible climate impact 

assessments (Chowdhury & Eslamian, 2014). Therefore, the selection of a representative 

subset of GCMs has become a key methodological issue in climate impact assessments  (Chen 

et al., 2017; Knutti, Furrer, et al., 2010). The subset that captures the most significant 

dimensions of climate model uncertainty, but is small enough to manage, must be carefully 

selected (Herger et al., 2018; Wilcke & Bärring, 2016).   

 

Given these constraints, the question of how to design GCM subsets that are both 

representative and computationally efficient remains central to the design of robust climate 

impact assessments. The selection of a smaller subset of GCMs from a large ensemble 

inevitably results in information loss. However, it is important to emphasize that subsetting 

does not reduce the actual uncertainty inherent in future climate projections, it only reduces 

the representation of that uncertainty (Wilcke & Bärring, 2016). In other words, fewer models 

mean fewer perspectives on possible climate futures, which can narrow the perceived range of 

outcomes without necessarily improving confidence in any one result. Therefore, the selected 

subset need to preserves the significant statistical and physical characteristics of the overall 

ensemble, such as central tendencies (means or medians), extremes, variability, and spatial 

coherence. 

 



 

CHAPTER 1 
 

LITERATURE REVIEW 
 

1.1 Climate Change 

 

Climate change is defined as the long-term changes in temperature, precipitation, and other 

weather patterns, and they can be caused by both human activity and natural processes like 

volcanic eruptions and variations in solar radiation (IPCC, 2021). However, the primary driver 

of the observed climate change since the late nineteenth century has been human 

activity. Global warming is one of the most prominent indications of this change. The global 

mean surface temperature has risen by roughly 1.09°C [0.95 to 1.20°C] in comparison to the 

pre-industrial baseline (1850–1900) (IPCC, 2023). Warming is not uniform across the globe, 

being stronger over land areas, approaching 2°C, and even more pronounced at higher 

latitudes. The main cause is the increase in atmospheric concentrations of carbon dioxide 

(CO2) which trap outgoing longwave radiation and intensify the natural greenhouse effect 

(IPCC, 2023). 

 

Greenhouse gases are emitted into the atmosphere from two primary sources. The first source 

is the natural systems, such as forest fires and volcanoes. It is noteworthy that the emissions 

and the sinks in the natural systems balance each other out, meaning that the greenhouse gases 

absorbed by the sinks, e.g., oceans, are of the same magnitude as the emission from sources, 

e.g., volcanoes (Yue & Gao, 2018). However, the addition of greenhouse gases from human 

activities, such as fossil fuel combustion, land-use change, agriculture, and industrial activities, 

interrupts the balance in the earth’s system (IPCC, 2023).  

 

With population growth and industrial advances in the last century, greenhouse gas emissions 

from human activities have risen to an unprecedented level in history. Representative 

Concentration Pathways (RCPs), defined as scenarios of different greenhouse gas 

concentration trajectories in the atmosphere, are used by climate modellers to assess the future 

of climate change. In addition, the most recent IPCC reports examine how socioeconomic 
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factors might evolve over the coming century (IPCC, 2023). Population, economic 

development, education, urbanization, and the pace of technological advancement are a few 

examples. These “Shared Socioeconomic Pathways” (SSPs) examine five potential futures and 

examine how various levels of climate change mitigation might be accomplished when the 

mitigation goals of RCPs are combined with the SSPs. According to the climate projections, 

even under an optimistic greenhouse gas emission scenario, the warming will exceed 1.5°C 

(SSP1-1.9) and 2°C (SSP1-2.6) (IPCC, 2023). Even with rigorous policies to reduce emissions, 

it will be challenging to control the warming without substantially lowering emissions in the 

upcoming decades (IPCC, 2023). 

 

Another critical follow-up for climate change is the change in precipitation patterns. But, the 

distribution of changes in precipitation is more spatially variable. Over the last three decades, 

precipitation has generally increased in the higher latitudes of the northern hemisphere (north 

of 30°N) and the eastern part of North and South America. On the other hand, it has decreased 

in lower latitudes (30° to 10°) and in South Africa (IPCC, 2023). It is noteworthy that the results 

for other regions have more uncertainty, and the models do not provide consistent results. 

Overall, future changes are expected to amplify existing precipitation contrasts, with dry areas 

becoming drier and wet regions becoming wetter (Kundzewicz, 2008). It is also important to 

note that in arid regions, small absolute changes in precipitation may translate into large 

percentage changes because the baseline precipitation is low (IPCC, 2021). 

 

 

1.2 Water Resources and Climate Change  

 

The sustainable development of civilization has always been in debt to the availability of water 

resources since agriculture and food security are entirely dependent on accessible water. In 

addition, water is a crucial asset to industries, hydroelectricity, and environmental usage. The 

increased demand caused by the population increase puts extra pressure on this resource. In 

addition, climate change is affecting the distribution and adding uncertainty to future water 

distribution patterns.  
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The impact of climate change is not limited to warming temperatures and changes in 

precipitation. In addition to these effects, higher temperature increases the evaporation rate and 

results in surface drying, consequently raising the intensity and duration of drought (Trenberth, 

2011). Because of the lack of long-term data for drought variables such as soil moisture, 

detection and attribution of drought is challenging (Easterling et al., 2017). Nonetheless, recent 

studies robustly show that climate change is already impacting droughts in several regions 

(Cook et al., 2018). For instance, Dai (2013) concluded that decreasing precipitation combined 

with increased evaporation will contribute to extreme drought events in many regions in the 

21st century. Also, Woodhouse et al. (2016) concluded that the recent droughts in the Colorado 

river basin resulted from the recent warming.  

 

The warming will also impact extreme precipitation, the primary flood generator in most 

regions. (Fischer & Knutti, 2016). Since the 1970s, the frequency of intense rainfall has 

increased, and more intense and prolonged droughts have been seen worldwide (IPCC, 2023). 

The capacity of the atmosphere to hold moisture is temperature-dependent and is governed by 

the Clausius–Clapeyron relationship, which suggests an increase of about 7% in atmospheric 

water-holding capacity per 1 °C of warming, provided moisture is available (Trenberth, 2011; 

Westra et al., 2014). This intrinsically means that a warmer atmosphere can retain more 

moisture, contributing to more extreme precipitation events (Trenberth, 2011). However, the 

link between warming and precipitation extremes is more complex. Global climate models 

project that average precipitation will increase more slowly, on the order of 2–3% per 1 °C of 

warming, due to energy balance constraints (Held & Soden, 2006; Allen & Ingram, 2002). 

Moreover, the magnitude of change varies regionally and depends on the intensity and duration 

of rainfall (Lenderink & Fowler, 2017; Martel et al., 2021; Westra et al., 2014).  

 

The temperature rise will further alter the ratio of rain to snow precipitation, which has already 

been seen in many higher latitude regions, (e.g., Mote, 2003). Higher temperatures will result 

in reduced snowfall compared to an increase in rainfall. Warming will also cause earlier 

snowmelt, which will lead to lower water resources in summer (Trenberth, 2011). For instance, 
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in the western United States, among many other regions, the snowpack formed in winter 

provides freshwater as it melts in summer and spring. The lower snowfall rate, and earlier melt 

of the snowpack, will reduce the freshwater storage capacity. Furthermore, a higher rainfall 

rate is expected to increase the flood rate in winter and spring. Reduced natural freshwater and 

higher flood probability will challenge the managers’ current flood control and reservoir 

management policies (Knowles et al., 2006). 

 

In summary, climate change is changing the hydrological cycle, consequently impacting the 

quantity (Milly et al., 2005; Mourato et al., 2015) and quality (Whitehead et al., 2009) of water 

resources. Hydrologic processes, availability of water resources, agriculture, and 

hydroelectricity will be impacted by climate change (Christensen & Lettenmaier, 2007). In 

other words, the existing risks for humans and the ecosystem, such as floods and droughts, will 

be even worse with the changing climate (IPCC, 2023). However, the risks can be mitigated 

by adopting appropriate management strategies that require understanding the changes’ 

magnitude and uncertainty. Hence, assessment of regional climate change impacts, especially 

on watershed hydrology, becomes very important.  

 

1.3 General Circulation Models 

 

General circulation models, also called global climate models (GCMs), and earth-system 

models (ESMs), which add the biogeochemical cycle, use mathematical equations that 

represent physical processes (conservation of mass, energy, momentum, etc.) to simulate the 

interaction between the atmosphere, land surface, oceans, and sea ice (Trzaska & Schnarr, 

2014). These include, most notably, the Navier–Stokes equations for atmospheric and 

oceanic motion (conservation of momentum), along with equations representing the 

conservation of mass, energy, and the transfer of radiation and water vapor. Each equation is 

solved on vertical and horizontal grid cells and multiple layers in the atmosphere and ocean. 

GCMs generally have coarse resolutions (100km to 500km), because running them on 

smaller scales would be computationally too expensive (Wilby et al., 2009). Despite this 
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limitation, GCMs remain essential tools for analyzing current climate dynamics and 

projecting future changes under various greenhouse gas emission scenarios. 

 

1.3.1 CMIP5 and CMIP6  

 

The Coupled Model Intercomparison Project Phase 5 (CMIP5) has gathered coordinated 

simulations from different climate modeling groups to bridge the gap in understanding climate 

changes in the future and past. CMIP5 is a multimodel context of climate change and variability 

(Taylor et al., 2012). The long-term simulations in the CMIP5 span the range of the nineteenth 

century to the twenty-first century and build upon the previous CMIP projects. On the other 

hand, near-term projections are added to the CMIP5, which start from the observed state of the 

climate to assess the predictability of near-future climatic patterns. Near-term projections will 

help scientists identify the predictable variables and the corresponding time scales of 

predictability. Model robustness, initialization method, and data quality are the primary 

determiners of the prediction skill (Taylor et al., 2012).   

 

CMIP ensembles are often described as “ensembles of opportunity,” meaning they are not 

designed according to a formal experimental plan but instead consist of all simulations 

voluntarily contributed by modelling groups worldwide. As a result, CMIP archives contain 

models with differing levels of complexity, varying numbers of realizations, shared code bases, 

and unequal institutional representation. This lack of experimental design has important 

implications for statistical inference: the ensemble does not constitute a random or balanced 

sample of all plausible climate models, and its spread cannot be interpreted as a probabilistic 

measure of uncertainty. Instead, it reflects the structural diversity, historical choices, and 

modelling philosophies of participating centres. Recognizing CMIP as an ensemble of 

opportunity is therefore essential when interpreting uncertainty, selecting subsets, or assigning 

weights, as these decisions must account for biases, interdependencies, and uneven sampling 

across the ensemble. 
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The more recent phase 6 (CMIP6) (Eyring et al., 2016) has been slowly taking the place of the 

CMIP5, whcih was widely used in the last decade (Hirabayashi et al., 2021; Martel et al., 2022; 

Zhang et al., 2023). The sixth IPCC assessment report (AR6) is based on brand-new and state-

of-the-art CMIP6 models (IPCC, 2023). The CMIP6 models include several new and updated 

emission pathways that investigate a much wider range of potential future outcomes than were 

covered by CMIP5. While the IPCC fifth assessment report (AR5) included four RCPs that 

assessed various potential future greenhouse gas emissions, these scenarios have been updated 

to include various climate policies. The updated scenarios, namely SSP1-2.6, SSP2-4.5, SSP4-

6.0, and SSP5-8.5, each produce levels of radiative forcing in 2100 that are comparable to 

those of their predecessor in AR5.  

 

Climate sensitivity plays a central role in interpreting differences across climate models. While 

Equilibrium Climate Sensitivity (ECS) is the most widely used metric, defined as the long-

term global temperature response to a doubling of CO₂ under equilibrium conditions, it does 

not capture transient behaviour. An alternative measure, the Transient Climate Response 

(TCR), represents the temperature change at the time of CO₂ doubling under a gradual 1% yr⁻¹ 

increase scenario. Because TCR reflects near-term warming under non-equilibrium conditions, 

it is often more relevant for mid-century impact studies. Including both ECS and TCR allows 

for a more comprehensive assessment of how models differ in their response to radiative 

forcing and clarifies why “hot models” may diverge in both magnitude and timing of warming.  

 

The CMIP6 offers temperature and precipitation projections with a smaller spread than those 

of the CMIP5, and except in mountainous areas, the CMIP6-driven hydrological projections 

produce a narrower range of future mean and high flow values (Martel et al., 2022). However, 

the CMIP6 includes a subset of “hot models” which predict much higher warmings than 

previously predicted by CMIP5 (e.g. Kreienkamp et al., 2020). The “hot models” exhibit 

greater ECS and TCR values (Flynn & Mauritsen, 2020; Zelinka et al., 2020). The ECS values’ 

range in CMIP6 models has increased to 1.8–5.6°C compared to 2.1–4.7°C in CMIP5, with an 

increase in multimodel mean of 3.9°C in CMIP6 from 3.3°C in CMIP5 (Zelinka et al., 2020).  
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Recently more research has been aimed at constraining the ECS based on historical and 

paleoclimatic data (Knutti, Rugenstein, et al., 2017; Sherwood et al., 2020) or the emergent 

constraints (Cox et al., 2018; Nijsse et al., 2020). For example, using multiple lines of evidence, 

Sherwood et al., (2020) concluded that the likely (with a 66% chance) ECS value is between 

2.6°C and 4.1°C. Consequently, the most recent reports published by the IPCC have narrowed 

the range of likely ECS range to 2.5 and 4°C (IPCC, 2021).  

 

1.4 Downscaling 

 

The GCMs operate on a coarse scale relative to many small-scale phenomena, such as clouds 

or topography. Furthermore, outputs for each grid cell are homogeneous, meaning that each 

grid holds only one value for each output over each grid.  In other words, small-scale 

phenomena cannot be modeled adequately with GCMs and are therefore simplified and 

parameterized. Yet, in many cases, the impact models require outputs on a smaller scale to 

accurately represent the events. Furthermore, the GCM outputs are often biased (Quintana 

Seguí et al., 2010). To solve this issue, downscaling methods have been proposed. 

Downscaling methods relate the coarse resolution outputs of GCMs to the local and regional 

scale events and derive more detailed information from GCMs (Hewitson & Crane, 1996). 

The outputs of downscaling methods can be used as inputs for impact models for climate 

change impact assessment studies and hydrological modeling. The two primary downscaling 

methods are dynamical and statistical downscaling methods, each with its advantages and 

disadvantages. The general limitations, theory, and practice of downscaling are now well 

described in the literature (Chokkavarapu & Mandla, 2019; Fowler et al., 2007). 

 

1.4.1 Dynamical downscaling 

 

Dynamical downscaling methods use regional climate models (RCMs) to derive local-scale 

data from large-scale GCM outputs. In principle, RCMs are similar to GCM models, but with 

a smaller scale (10-50 km). RCMs use the outputs of GCMs as the boundary conditions to 

model small-scale phenomena, which were simplified in GCMs, such as complex terrain 
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topography. In particular, in regions with complex topography, e.g., coastal areas, where 

GCMs cannot model regionally significant processes, the RCM projection becomes extremely 

valuable (Ekström et al., 2015). The main strength of dynamical downscaling is that RCMs 

provide physically consistent climate data while capturing intricate and nonlinear interactions 

within the climate system (Williams et al., 2010). 

 

Dynamical downscaling methods are physically based yet computationally expensive. As such, 

RCMs are only used with a small selection of GCMs for each region (Ekström et al., 2015). 

RCM outputs strongly depend on the parent GCM (Chokkavarapu & Mandla, 2019). In this 

case, the selection of parent GCMs and their representation of the whole set of GCMs should 

be considered very carefully. Furthermore, RCM outputs also contain substantial biases 

compared to the observed historical data (Muerth et al., 2013). Some of these biases are 

inherited from the driving GCMs through boundary conditions, while others arise from the 

RCMs themselves due to their internal parameterizations, numerical schemes, or 

representation of local processes such as orography and land–atmosphere interactions. These 

biases may hinder impact assessment models from appropriate simulation of the processes. As 

such, a bias correction step is necessary before using the RCM outputs (Teutschbein & Seibert, 

2012).   

 

1.4.2 Statistical downscaling 

 

Statistical downscaling methods develop an empirical relationship between GCM outputs and 

meteorological data at various scales such as station scale (Wilby et al., 1998). Fundamentally, 

statistical downscaling methods assume a stationary relationship between the predictor (GCM 

output) and the predictand (local climate information), which stays the same under the 

changing climate (Fowler et al., 2007; Gutmann et al., 2022). The statistical relationship is then 

used to interpolate the future GCM projections of the studied variable to the local scale.  

 

Statistical methods are simpler to apply, straightforward, and have low computational costs 

(Nasseri et al., 2013). In addition, using these methods, one can derive information that 
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essentially is not available in RCMs (Fowler et al., 2007; Gutmann et al., 2022). Yet, the 

climatic region may affect downscaling skill (Chokkavarapu & Mandla, 2019). Moreover, for 

variables like precipitation, where much of the variability arises from sub-grid processes (e.g. 

Prein et al., 2017) poorly captured by GCMs (Chen & Zhang, 2021), statistical downscaling 

can be less effective (Chen & Zhang, 2021; Hernanz et al., 2022; Maraun et al., 2010).  

 

1.5 Bias correction 

 

GCM and RCM simulations have systematic biases compared to observed historical records 

(François et al., 2020). The biases stem from several sources, such as the intrinsic limitations 

in our understanding of the climate system and the imperfect parameterization of physical 

processes in the models (Chen et al., 2021). Raw outputs from climate models are rarely 

applied directly in impact assessment studies because they would provide unreliable results, 

considering that impact models, especially hydrological models, are sensitive to the quality of 

the data (Dinh & Aires, 2023; Potter et al., 2020). Bias correction is now a common post-

processing technique used to solve the issue and correct important statistical characteristics, to 

make the outputs applicable in practical applications (Chen et al., 2021; Dinh & Aires, 2023; 

Gutmann et al., 2022; Kim et al., 2019). 

 

Early bias correction techniques were designed to be simple and computationally efficient. For 

instance, the delta change method adjusts future climate projections with additive or 

multiplicative constant factors derived from the difference between modeled and observed 

means over a certain reference period (Räty et al., 2014; Teutschbein & Seibert, 2012). While 

effective at eliminating mean biases, such methods are not capable of addressing other aspects 

of the distribution, i.e., variability or extremes (Beyer et al., 2020). By contrast, advanced 

methods such as quantile mapping (QM) align the cumulative distribution functions (CDFs) 

of the modeled data with those of the record data CDFs, allowing adjustment of not only the 

mean but also the variance, skewness, and extremes (Beyer et al., 2020; Cannon et al., 2015). 

Because of its versatility and robustness, QM has become one of the most popular univariate 

bias correction methods. However, when individually applied to a set of variables such as 
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temperature and precipitation, QM may distort inter-variable relationships, and this distortion 

may compromise impact modeling, particularly in studies that depend on the co-variation of 

variables (Zscheischler et al., 2019; Zscheischler & Seneviratne, 2017). This issue is 

particularly significant in hydrological applications, where joint variability between variables 

governs key processes like evapotranspiration, snow accumulation, and melt (Cannon, 2018). 

 

Multivariate bias correction (MBC) techniques have been developed to overcome this 

limitation, with the objective of  correcting the individual distribution of climate variables and 

preserving their interdependencies (Cannon, 2018; Cannon et al., 2015). Recent MBC methods 

are generally categorized under three broad classes. Marginal-dependence techniques involve 

multivariate bias adjustment methods that correct marginal distributions and dependence 

relationships independently (Cannon, 2018; Vrac, 2018). Successive conditional techniques 

apply corrections sequentially, where each variable is adjusted using information from 

variables that have already been corrected earlier in the sequence (Bárdossy & Pegram, 2012; 

Dekens et al., 2017). Finally, all-in-one techniques attempt to correct marginal distributions 

and dependence structures simultaneously (Robin et al., 2019). While each approach has its 

merits, they also have limitations. Successive conditional methods, for instance, are order-

sensitive and decline in performance as the number of variables increases. All-at-once methods 

provide powerful corrections, but at the expense of significantly higher computational 

demands (François et al., 2020). 

 

Despite the advances in methodology, bias correction remains a controversial topic. At the 

heart of the debate is an assumption of bias stationarity, which assumes that biases observed 

during the historical record will remain unchanged in the future (Ehret et al., 2012). This is 

typically a questionable assumption under changing climate conditions, especially for extreme 

events and precipitation mechanisms, where biases may develop over time (Chen et al., 2015, 

2021; Miao et al., 2016).  

 

Yet, when applied carefully, bias correction methods can significantly enhance the value added 

to climate model output applied to impact studies (Chen et al., 2021; Maraun, 2016). They 
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have been shown to improve the representation of key hydrological parameters, such as 

streamflow, precipitation intensity, and temperature trends (Meyer et al., 2019; Teutschbein & 

Seibert, 2012; Worako et al., 2022).  

 

1.6 Hydrological modelling 

 

Hydrological modeling is the fundamental step in the climate-hydrology modeling chain and 

allows the transformation of meteorological inputs to estimates of streamflow, which are 

required to conduct impact studies. A hydrological model is a simplified representation of the 

real water cycle that enables simulation and understanding of runoff generation and streamflow 

dynamics on a variety of spatial and temporal scales (Devi et al., 2015). These models vary in 

complexity of structure, data requirements, spatial discretization, and representation of 

processes, and are usually categorized as empirical, conceptual, or physically based models 

(Jajarmizadeh et al., 2012; Pandi et al., 2021). Hydrological models can further be categorized 

as lumped or distributed, depending on how they represent spatial variability within a 

catchment. 

 

Empirical models (data-driven models) are based only on observed input-output correlations 

and lack the description of the internal physical mechanisms in a catchment. Empirical models 

tend to employ statistical or machine learning techniques (e.g., artificial neural networks, fuzzy 

logic) to derive the relationships between meteorological inputs and streamflow (Hauswirth et 

al., 2021). Empirical models are characterized by simplicity, low computational cost, but by 

an absence of physical interpretability and limited extrapolation capability outside historical 

conditions (Abdulkareem et al., 2018; Devi et al., 2015). 

 

Conceptual models simplify the catchment dynamics to connected reservoirs (e.g., soil water, 

snow, groundwater), regulated by empirical or semi-empirical equations. Conceptual models 

describe major hydrological processes using a limited number of parameters, which are 

typically calibrated from observations (Liu et al., 2019; Merz et al., 2009). Conceptual models 

trade physical realism with computational expense and are best suited for applications at the 
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basin scale where high-resolution spatial data may not be accessible (Biondi et al., 2012; Devi 

et al., 2015; Kavetski et al., 2006). 

 

Physically based models attempt to simulate water flow by solving governing mass, 

momentum, and energy conservation equations (Newman et al., 2017; Paniconi & Putti, 2015). 

They require large spatial sets of soil, topography, land use, and meteorology data and are run 

in a distributed mode (Paniconi & Putti, 2015; Vieux et al., 2004). Physically based models 

offer detailed process representations at the expense of being computationally intensive and 

are subject to parameterization and input data uncertainty (Devi et al., 2015; Paniconi & Putti, 

2015). 

 

Models also vary in their spatial representation. Lumped models simulate the catchment as a 

homogeneous unit of space, averaging both input and output spatially (Seiller et al., 2012; Van 

Lanen et al., 2024). Such models are used most often when streamflow at the catchment outlet 

is most significant, and their simplicity makes them amenable to being used for large ensemble 

runs (Devi et al., 2015; Seiller et al., 2012). 

 

Distributed models specifically explain spatial variation in inputs, parameters, and processes. 

Distributed models disaggregate the catchment into grid squares or hydrological response units 

(HRUs) to more accurately simulate local hydrological responses (Abbott & Refsgaard, 1996).  

Although potentially capable of producing simulations closer to reality, distributed models fail 

to consistently outperform lumped models due to increased complexity, higher data demands, 

and the equifinality of parameter estimation (Beven, 2001). Semi-distributed models maintain 

some spatial heterogeneity (e.g., by employing HRUs or sub-basins) without full spatial 

resolution.  

 

Regardless of structural type, most hydrological models must be calibrated to reconcile 

simulations with observed streamflow (Bárdossy, 2007; Kavetski et al., 2006). Calibration 

involves the optimization of model parameters that minimize discrepancies between simulated 

and observed data, often measured by performance metrics like the Nash-Sutcliffe Efficiency 
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(NSE) (Nash & Sutcliffe, 1970) and the Kling-Gupta Efficiency (KGE) (Kling & Gupta, 2009) 

(Arsenault et al., 2014; S. K. Singh & Bárdossy, 2012). Calibration routines often employ 

optimization algorithms like Dynamically Dimensioned Search (DDS) (Tolson & Shoemaker, 

2007) and the Shuffled Complex Evolution – University of Arizona (SCE-UA). 

 

In recent years, deep learning methods have emerged as powerful alternatives to traditional 

hydrological models (Althoff et al., 2021; Zhong et al., 2023). Deep learning models learn 

parameters directly from large volumes of data, which allows them to capture complex and 

nonlinear relationships between climate drivers and streamflow (Tripathy & Mishra, 2024; 

Zhao et al., 2024). Among these, Long Short-Term Memory (LSTM) networks have become 

particularly popular because of their ability to handle sequential data and represent long-term 

dependencies in hydrological processes (Li et al., 2024; Zhong et al., 2023). Comparative 

studies have demonstrated that LSTMs frequently outperform both process-based models and 

conventional machine learning methods in large-sample hydrological forecasting (e.g. Kratzert 

et al., 2019). In the context of climate change impact studies, LSTM models have also been 

shown to outperform traditional hydrological models and to provide more robust streamflow 

projections with reduced climate sensitivity (e.g. Martel et al., 2025), highlighting their 

growing role in next-generation hydrological modeling. 

 

No one model structure works best in all situations. Hydrological model selection must be 

tailored to the application and is a function of study intent, data availability, spatial and 

temporal resolution, and computational ability (Ghonchepour et al., 2021; Marshall et al., 

2005; Nesru, 2023). Furthermore, different models can yield varying results when calibrated 

against the exact same data, and this contributes to impact studies' structural uncertainty 

(Beven, 2006). Due to the trade-offs between model complexity, precision, interpretability, 

and resource utilization, recent studies advocate the employment of several models or model 

ensembles (Huang et al., 2017; Velázquez et al., 2013; Wan et al., 2021). The employment of 

a multi-model strategy enhances the representation of uncertainty and also enhances 

confidence in simulated hydrological responses to climate change. 
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1.7 Uncertainty of Climate Change Impacts 

 

Uncertainty is defined as incomplete information and knowledge, or lack of consensus on what 

we know and can know (IPCC, 2014). In climate change impact assessment studies, the 

primary sources of uncertainty include: 1) natural variability, 2) scenario uncertainty, 3) 

climate model uncertainty, 4) downscaling method, and 5) impact model uncertainty (Hawkins 

& Sutton, 2009; Poulin et al., 2011). Among these, numerous studies over the past two decades 

have shown that climate model and hydrological model uncertainty are the dominant 

contributors to overall uncertainty in climate change impact assessments (Brient, 2020; Deser 

et al., 2012; Hawkins & Sutton, 2009; Poulin et al., 2011; Vetter et al., 2017). Consequently, 

reducing uncertainty from climate models and hydrological models remains the most effective 

way to improve the reliability of future projections (Lorenz et al., 2018). The objective is not 

to eliminate uncertainty, an impossible and undesirable outcome given the inherently 

unpredictable nature of future climate and natural variability. Instead, the aim is to better 

quantify and manage the uncertainty that arises from avoidable or artificial sources, such as 

structural deficiencies, or methodological choices. Reducing these avoidable uncertainties 

improves the interpretability, credibility, and usefulness of future projections for decision-

making (Lorenz et al., 2018).  

 

1.7.1 Natural variability 

 

Because of the natural processes, the atmosphere-ocean system fluctuates around its mean, 

causing daily and decadal variations. This variability may be due to internal reasons such as 

the El-Niño Southern Oscillation (ENSO) or external natural forcings outside the climate 

system, such as natural changes in radiative forcing (Deser et al., 2012). Large ensembles make 

it possible to estimate the magnitude of natural variability and distinguish its contribution from 

other uncertainty sources. However, because such fluctuations are inherently unpredictable 

beyond a few years to decades, this component of uncertainty cannot be reduced, even as 

climate models improve or greenhouse gas concentration pathways become better constrained  

(Deser et al., 2012).  
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1.7.2 Scenario Uncertainty 
 

Changes in greenhouse gas concentration in the future are one of the primary sources of 

uncertainty in climate modeling (Kundzewicz et al., 2018; Vetter et al., 2017). Scenario 

uncertainty causes uncertainty in future radiative forcing and, hence, climate. Changes in 

population, economic activity, and climate policies are the main drivers of the uncertainty in 

greenhouse gas emissions. The IPCC has recognized different scenarios to account for future 

changes in greenhouse gas concentration, including low, intermediate, and high forcing 

scenarios (IPCC, 2023). Climate change impact studies done with different scenarios yield 

different results. The contribution of scenario uncertainty is of low importance in short time 

scales (less than 30 years); however, it gains more significance for longer lead times, 

depending on the study region (Hawkins & Sutton, 2009). Although scenario uncertainty 

cannot be eliminated, recent analyses suggest that it can be meaningfully constrained by 

observational evidence, socioeconomic trends, and policy modeling, which rule out some 

extreme high- or low-emission trajectories (Moore et al., 2022). 

 

1.7.3 Climate Model Uncertainty 

 

Climate models, and models in general, try to quantify natural phenomena using physical 

equations and through parameterization. Due to our incomplete understanding of nature, 

climate modeling groups use different simplifications and parameterization schemes. Hence, 

based on the parameterization scheme and model structure, each model may produce different 

results for the same input data (Knutti & Sedláček, 2013; Kundzewicz et al., 2018). Previous 

studies have shown that climate model uncertainty dominates the other components, such as 

downscaling methods and hydrological models (e.g., Chen et al., 2011; Joseph et al., 2018).  

 

It is essential for climate change impact assessment studies to adequately characterize the 

climate model uncertainty given its dominant role (Merrifield et al., 2023; Qian et al., 2016). 

Therefore, a common strategy has been to construct envelopes of GCMs that span the range of 
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projected climate responses, providing an indication of the plausible bounds of future climate 

change (Crawford et al., 2019; Haughton et al., 2014; Maher et al., 2021; Merrifield et al., 

2023; Sanderson & Knutti, 2012; Semenov & Stratonovitch, 2010). However, the number of 

available simulations has risen rapidly across successive CMIP phases, from about 25 GCMs 

in CMIP3 to more than 100 in CMIP6, often with multiple ensemble members per model 

(Eyring et al., 2016; Taylor et al., 2012). For impact studies, analyzing the full ensemble has 

become practically unfeasible. This necessitates the selection of GCM subsets, raising a critical 

methodological question: how representative are these subsets of the overall uncertainty space 

(Chen et al., 2016; Di Virgilio et al., 2022; Merrifield et al., 2023; Ruane & McDermid, 2017; 

H.-M. Wang et al., 2018). 

 

Poorly designed selections risk underestimating or mischaracterizing the diversity of plausible 

futures, ultimately leading to biased or misleading conclusions in climate change impact 

assessments (Herger et al., 2018; Ito et al., 2020; Lutz et al., 2016). To address this, a range of 

ensemble design strategies has emerged: performance-based approaches that prioritize model 

skill, envelope methods that aim to capture the full spread of responses, and more recent 

weighting and optimization frameworks that explicitly balance performance, diversity, and 

independence (see section 1.8). Each method carries distinct advantages and limitations, but 

collectively they underscore a central point: because GCMs are typically the dominant source 

of uncertainty, the design of GCM subsets is one of the most consequential decisions in climate 

change impact assessments (Merrifield et al., 2023; Vano et al., 2015; H.-M. Wang et al., 

2018).  

 

1.7.4 Impact Model Uncertainty  

 

Similar to climate models, the structure and parametrization of the impact models, e.g. 

hydrologic models, affect the results of climate change impact studies. For instance, Jiang et 

al., (2007) studied the hydrological model structure uncertainty using six conceptual rainfall-

runoff models. They found that models which simulate the historical climate conditions 

similarly behave differently under future projections of climate change. In addition, Ludwig et 
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al., (2009) compared two physically based and one conceptual hydrological model to show 

that the complexity degree of the hydrologic models can impact the results. Furthermore, 

Poulin et al., (2011) concluded that the uncertainty of different model structures is more 

significant than different parameterizations of the models, suggesting the use of models of 

various complexity in climate change impact studies.  

 

1.8 Climate Model Selection in Impact Assessment Studies 

 

As noted earlier in Section 1.7.3, impact assessment studies cannot rely on the entire set of 

available GCMs. Nonetheless, a robust characterization of uncertainty remains essential. With 

the rapid expansion of climate simulations across successive CMIP phases, analyzing the full 

ensemble has become impractical, if not impossible, for most applications. This reality 

compels researchers to select a subset of GCMs, which in turn raises a critical question: to 

what extent do these subsets adequately represent the broader uncertainty space? 

 

Despite the importance of this issue, there is still no consensus in the literature on selecting 

proper GCMs for impact assessment studies. Until recently, researchers often evaluated 

climate change's effects using only one climate model or a small number of different GCM 

scenarios (e.g., Ott et al., 2013). GCM scenarios were chosen based on arbitrary means or the 

researcher's subjective choice without standard criteria for selecting climate change scenarios. 

For instance, most climate impact assessments have been carried out using high-resolution 

GCM scenarios or a GCM developed by the country in question. The idea that one GCM 

scenario chosen now would perfectly reflect the future conditions decades in the future is not 

convincing (Lee & Kim, 2017). Instead, using multiple models from various institutions is a 

widely acknowledged method to grasp an understanding of the uncertainty of the outputs 

(Tebaldi & Knutti, 2007). Recently more objective methods have been developed to select 

GCMs for impact studies, yet these methods still have limitations and are susceptible to the 

subjective choices made by the researcher (e.g., Cannon, 2015; Mendlik & Gobiet, 2016).  
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1.8.1 Envelope-based GCM selection approach 

 

As mentioned earlier, impact studies primarily use a top-down approach in which the 

downscaled GCM outputs are used with impact models to study the climate change impacts. 

These modeling steps have been called the impact modeling chain, where the uncertainty 

increases as multiple model choices must be made at each step of the study (Wilby & Dessai, 

2010). Previous studies have shown that climate model uncertainty typically dominates the 

other components, such as downscaling methods and impact models (e.g., Chen et al., 2011). 

Since failing to account for the full range of uncertainty may result in substantially biased 

impact studies (Chen et al., 2011), ideally, any selected subset of GCMs should be as unbiased 

as possible relative to the statistical characteristics of the full ensemble, while still covering an 

adequate range of uncertainty. 

 

To address this matter, an approach that researchers have turned to is the envelope-based GCM 

selection approach, which focuses on the selection of GCMs that span the range of future 

changes in climate signals, and clustering algorithms are typically used for this purpose (Houle 

et al., 2012; Mendlik & Gobiet, 2016; Ruane & McDermid, 2017; Wilcke & Bärring, 2016). 

For instance, Raju and Kumar (2016) used the K-means clustering technique to select GCM 

ensembles from 36 climate projections over India. The first limitation of this approach is that 

the used clustering algorithms are designed to maximize the explained variance of an 

ensemble, and are thus biased toward high-density areas of the climate space (Cannon, 2015; 

Seo et al., 2019). In the CMIP5 and CMIP6, for example, some models have contributed 

several realizations, some of which differ only in resolution, and some models are not entirely 

independent, sharing model components and development history (Knutti et al., 2013). The 

issue of model interdependency is discussed further in section 1.8.2. The clustering algorithms 

would favor the realizations that fall closer to each other in the climate space. Furthermore, the 

results are not ordered (the smaller subset results would not necessarily appear in larger 

subsets), meaning that increasing the size of the subset would not necessarily improve the 

coverage of the uncertainty (H.-M. Wang et al., 2018).  
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Cannon (2015) proposed using the KKZ method (Katsavounidis et al., 1994) to select subsets 

that cover the range of overall changes. The KKZ algorithm is a deterministic subset-selection 

approach that identifies a small but representative set of points from a larger dataset (Cannon, 

2015). Multiple studies, including Ross and Najjar (2019) and Wang et al. (2018), showed that 

the KKZ method outperforms other clustering approaches with higher coverage of ensemble 

range and smaller subset size. However, the outlier simulations are more likely to be selected 

by the KKZ method as it is designed to choose GCMs lying on the edge of the ensemble (H.-

M. Wang et al., 2018). The outliers may be the GCMs that cannot capture the climatic patterns 

realistically, and the selection of poor representations may reduce the credibility of the subset. 

Therefore, while the performance of all GCMs in representing key physical processes should 

ideally be evaluated prior to any subset-selection exercise, this assessment becomes 

particularly crucial for potential outliers, given their higher likelihood of being selected by the 

KKZ method. Also, the outlier assessment may help with the preselection of GCMs and 

improve the results, which is discussed in more detail in section 1.8.2. The main disadvantage 

of the envelope-based approach is that the models' performance over the historical period to 

simulate climate is not considered, and all available climate models are assumed to be 

equiprobable (Lutz et al., 2016). The assumption of equiprobability will also be further 

discussed in section 1.8.2. 

 

A noteworthy advantage of the KKZ method is that the results improve by including more 

models in the subset. A subset with n+1 GCMs will either perform better or equally well as the 

subset with n models. Considering this fact, it is recommended to consider as many GCMs as 

possible in the subset to increase the chance of having adequate coverage of the uncertainty in 

the impact world (Chen et al., 2016).  

 

The objective of using multiple climate simulations is to account for different sources of 

uncertainty in the projections (Wilcke & Bärring, 2016). However, regardless of the underlying 

approach, GCM selection studies have focused on the uncertainty in the climate world. Yet, 

there is no guarantee that the selected subset will cover the same range of uncertainty in the 

impact world. Impact models, particularly hydrologic models, are nonlinear models, and small 
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changes in the inputs may result in significant changes in the outputs (Muzik, 2001). It is still 

impossible to know a priori whether the selected subsets would cover the same range of 

uncertainty in the climate world.  

 

In this regard, Chen et al. (2016) studied the transferability of GCM uncertainty to the 

hydrological impacts using KKZ and K-means clustering methods. They showed that the 

optimally selected GCMs in the climate world might not be optimal in the hydrology world. 

In another study, Wang et al. (2018) studied the transferability of the uncertainty between 

climate and hydrology worlds. They used the K-means clustering and the KKZ method with 

31 climate variables to select GCMs from a pool of climate simulations. The results indicated 

that using a subset of 10 GCMs can cover an acceptable range of uncertainty for the 

hydrological variables studied over two watersheds. However, utilizing multiple climate 

variables for GCM selection may result in redundant information that does not have meaning 

and may reduce the performance of the subset selection (Seo et al., 2019). For example, the 

atmospheric pressure field outputs of GCMs can be included (or used solely) in the selection 

variables to select GCMs for flood assessment studies. The relationship between atmospheric 

pressure fields and floods is not as direct as between extreme precipitation and floods. Even 

random numbers can be used as selection criteria that logically provide no meaning and have 

no physical explanation.  

 

Although initially developed to be unsupervised, objective methods of GCM selection, the 

evidence indicates that identifying key climate indices correlated with the impact variable 

under study is key to subset selection, with the KKZ method performing poorly when unrelated 

indices are used (Seo et al., 2019). In other words, instead of using similar climate variables to 

select GCMs in flood and drought-related impact assessment studies, climate variables that 

relate specifically to floods and droughts must be identified separately and used as the selection 

criteria for the subset of climate models when using the KKZ method. Seo et al., (2019) 

concluded that before selecting the GCM subsets, careful identification of the most important 

climatic indicators for the studied impact (e.g., floods) and the region is necessary. A robust 

understanding of the region’s climatic system and the key physical processes would guide the 
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choice of climatic variables (Seo et al., 2019). Further research is still required to evaluate the 

KKZ method and the necessary climatic indicators’ efficiency in various climatic regions with 

different hydrological regimes. 

 

1.8.2 Weighting Multimodel Ensembles 

 

Another complication in GCM selection is that there is no consensus on how to combine the 

GCMs in multimodel ensembles (MME). Typically, the “model democracy” approach is used, 

in which all the models are considered plausible and equiprobable (e.g., Collins et al., 2013). 

“Model democracy” is based on the fact that all models have strengths and limitations and that 

their performance varies regionally but is globally similar (Chen et al., 2017), and a binary set 

of weights is assigned to the models (unit weight for selected GCMs and zero for others). It 

has been shown that the average of equally-weighted projections outperforms every single 

model in simulating the mean climatic patterns (Reichler & Kim, 2008). However, this method 

is arguably a suboptimal way of utilizing the available information (Knutti, Sedláček, et al., 

2017).  

 

An equally-weighted average implies that the simulations in the ensemble are independent; 

however, this might not always be the case (Sanderson et al., 2017). For instance, CMIP5 and 

CMIP6 contain multiple simulations from the same research group, which may only differ in 

resolution. Some simulations share parts of code or parameterization schemes and certainly 

share model-developing expertise (Eyring et al., 2019; Knutti, 2010). The number of 

independent models in an ensemble such as CMIP5 may be significantly lower than the actual 

number of models (Caldwell et al., 2014). The interdependent simulations, at worst, bias the 

results towards repeated simulations and, at best, add little information to the ensemble (Knutti, 

Sedláček, et al., 2017; H.-M. Wang et al., 2019). Ideally, a subset of climate simulation should 

account for the inter-dependency of simulations, however, identifying and accounting for 

interdependence is a difficult task and is not straightforward, and even the definition of 

dependence is a subjective matter depending on the problem at hand (Herger et al., 2018; 

Knutti, Abramowitz, et al., 2010).  
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Recently, efforts have been made to account for model dependence (e.g., Knutti et al., 2017); 

for instance, Herger et al. (2018) accounted for the interdependency of models by comparing 

the correlated biases, arguing that errors in an independent ensemble would be random and 

cancel each other out. Nonetheless, these approaches are practically sensitive to every 

component of the issue, including the chosen measure, variable, analysis period, and dataset 

(Eyring et al., 2019). Although a complicated task affiliated with multiple subjective and 

problem-specific choices regarding how to define dependence or evaluate it, accounting for 

model interdependency of GCMs increases the reliability of the ensemble (Herger et al., 2018).  

 

Furthermore, the performance of GCMs in reproducing climatic patterns depends on the 

location and variable under study (Abramowitz et al., 2019), and in regions where some models 

are more reliable than others, model democracy might not be the ideal choice (Knutti et al., 

2013; Lorenz et al., 2018). Consequently, another common approach for subset selection has 

been based on GCM performance over the historical period (Ahmadalipour et al., 2017; Ahmed 

et al., 2019; Evans et al., 2013; Hamed et al., 2022; Hassan et al., 2020; Salehie et al., 2023). 

To this end, GCMs are evaluated on representing climatic patterns of the recent past based on 

climate metrics defined by modelers (H.-M. Wang et al., 2018). For instance, Raju and Kumar 

(2015) ranked 11 GCMs based on their skill in simulating recent past precipitation and 

temperature patterns. However, the selected subset was completely different from the 

suggested subset by Raju and Kumar (2014) because of the different performance evaluation 

metrics.  

 

Although there is no consensus in the literature on suitable performance metrics, the definition 

of performance measures is straightforward (e.g., the bias between simulated and observed 

precipitation); the challenge is how to translate them into a measure of model quality and then 

to model weight (Knutti, Sedláček, et al., 2017). A quality index assesses the model's suitability 

for a particular purpose by subjectively aggregating numerous indicators necessary for an 

application (Knutti, Abramowitz, et al., 2010). For example, multiple climatic variables (e.g., 

precipitation and temperature) may impact an environmental impact under study (e.g., mean 
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streamflow). Yet, the relative importance of these variables may not be equal and challenging 

to compute (H.-M. Wang et al., 2019).  

 

There have been some attempts to select GCMs with unequal weights based on dependence 

and performance (e.g., Lorenz et al., 2018; Sanderson et al., 2017). For instance, Chen et al. 

(2017) studied the effect of unequal weight assignment to temperature and precipitation on the 

hydrology of a Canadian watershed. They concluded that weight assignment to GCMs may 

not significantly improve the ensemble's performance regarding streamflow. It is worth 

mentioning that the assigned weights are calculated in the climate world based on reproducing 

climate variables such as temperature or precipitation. These weights may not be optimal in 

the impact world since the relation is nonlinear and complex, yet it is impossible to know a 

priori which GCMs perform best in the impact world (Chen et al., 2017; H.-M. Wang et al., 

2019). In addition, Wang et al. (2019) concluded that bias-corrected GCMs assigned with equal 

weights have the same capability as the weighted raw GCM data. However, the question 

remains as to whether weighing climate simulation would impact different hydrological 

variables in various climatic regions, which requires further research.   

 

The quality indices must be defined based on the studied impact and region of the study, and 

general skill scores may not be adequate to evaluate the model's performance (Jagannathan et 

al., 2020). Physical understanding of the region’s climatic system and the dominating processes 

can help in the choice of climatic variables used as the performance metric. It is also possible 

to analyze multiple variables to determine which ones are the most crucial in the study region 

(Wenzel et al., 2016). Although expert judgment is inevitably involved in this step, 

transparency can be maintained by clearly documenting the criteria and physical rationale used. 

It is essential to combine numerous metrics to avoid overconfidence in the subset, but using a 

large set of metrics will reduce the impact of weighting (Borodina et al., 2017; Lorenz et al., 

2018). The optimal number of the metrics is still not known, but including the most relevant 

ones must be the priority.   
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The GCMs that perform well over the observation period may not have realistic future 

projections. The climate and GCM performance are non-stationary, and the GCM performance 

may change for future projections (Hui et al., 2019). Nevertheless, the reliability of poor-

quality models is under question (Lorenz et al., 2018). One of the approaches to address this 

issue is the use of emergent constraints, which are empirical relationships between observed 

behavior and model projections that have a physical explanation (Borodina et al., 2017; Eyring 

et al., 2019). With the use of observational data and by accounting for data uncertainty, the 

empirical relationship can become an emergent constraint that narrows down the range of 

plausible projections by picking a set of models compatible with the observations (Brient, 

2020). For instance, based on evidence from paleoclimate, surface temperature, ocean heat 

content, and physical process models, Hausfather et al. (2022) concluded that some of the 

models in the CMIP6 archive are too sensitive to greenhouse gas emissions and that projected 

temperatures are too hot calling them “hot models,” which are recommended to be excluded 

entirely from the impact assessment studies. 

 

In this regard, Shiogama et al., (2021) presented a subset selection method in which the first 

step of model selection was to screen out the hot models. On the other hand, Palmer et al., 

(2022) showed that models with higher sensitivity better represent some of the key climatic 

processes over Europe. Although they were unable to provide a robust physical explanation 

for their findings, it is still noteworthy that at the regional scale hot models may provide 

valuable information that may be more important than the global warming trend for impact 

modelers, adding another layer of complexity to climate model selection for regional impact 

studies. Removing GCMs that fail to adequately represent key physical processes in the past 

climatic patterns of the study region improves the ensemble's reliability (Klein & Hall, 2015). 

As Sanderson et al. (2017) noted, “a climate model is fit for the purpose if it can adequately 

represent the response of relevant physical processes in the required range of boundary 

conditions.” However, further research is required to assess the impact of, and to further justify, 

dismissing outlier climate simulations in hydrological climate change impact studies.  
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It is worth mentioning that, compared to the non-weighted subset, where the spread is not a 

measure of uncertainty, the spread of the weighted multimodel mean can be regarded as a 

measure of uncertainty given everything that we know (Lorenz et al., 2018). Weighted 

approaches increase our confidence in impact assessment studies using multimodel ensembles. 

Nonetheless, it is recommended that modelers who use model-weighting approaches present 

the unweighted and the weighted results and analyze the sensitivity of the results under various 

weighting strategies, performance, or quality indices (Wootten et al., 2022). In addition, 

performance or quality indices must be justified based on physical reasoning, discussed, and 

analyzed to prevent overconfidence in results (Knutti, Sedláček, et al., 2017; Lorenz et al., 

2018; Weigel et al., 2010).  

 

A combination of envelope-based and performance-based approaches has been recommended 

to ensure that the subset covers multiple future projections and includes adequately performing 

models (Lutz et al., 2016; McSweeney et al., 2015). For instance, Lee & Kim (2017) used K-

means clustering to group the GCMs based on their statistical characteristics and then selected 

a representative of each cluster based on the calculated skill score. Yet, the selected subset is 

sensitive to the selection sequence, meaning that if the performance-based selection is the 

second step, the selected GCMs may not be the best-performing ones overall (Lutz et al., 2016). 

Nonetheless, the selection sequence is not fixed, and the modelers must choose how to 

implement this approach based on the study's objective. As these approaches are, in some 

sense, similar to the past performance approach, they may intrinsically have the same 

weaknesses (H.-M. Wang et al., 2018). 

 

1.9 Research Objectives 

 

Given this context, the overall aim of this thesis is to comparatively examine and evaluate 

GCM selection and weighting approaches for hydrological impact studies. This study does not 

seek to introduce one “optimal” approach that can be applied in all regions and sectors. Rather, 

it aims to explain how different subsetting and weighting approaches affect future streamflow 

predictions in different North American catchments. By doing so, the thesis provides the trade-



30 

offs embodied in different ensemble design choices and facilitates stronger, more transparent 

practices in regional-scale climate change impact assessments. The specific research objectives 

of this study are:  

 

1. To quantify the impact of GCM sub-selection based on climate indices on uncertainty 

transferability to hydrological projections. 

 

2. To investigate the influence of high-sensitivity climate models on the translation of 

climate signals into hydrological responses, and to understand the mechanisms through 

which these models shape future streamflow projections. 

 

3. To compare the effects of different GCM weighting schemes, through the use of a 

pseudo-reality framework, on the uncertainty of future streamflow projections. 

 

This study contributes to the growing literature emphasizing the need for transparent, 

reproducible, and context-dependent ensemble design in climate impact research. By bringing 

into focus the applied significance of model selection and weighting choices, it offers 

methodological findings and actionable recommendations, as much for hydrology-focused 

climate adaptation planning as for climate modeling and impact research more broadly. 

 

This dissertation follows a manuscript-based format composed of three research articles that 

collectively investigate how climate model ensemble design influences hydrological impact 

assessments. Although each article is self-contained, they are intentionally ordered to build a 

coherent methodological progression that addresses the thesis objectives. Chapter 2 examines 

how uncertainty from the “climate-model world” propagates into the “hydrological-model 

world.” It evaluates whether reduced subsets of GCMs, selected using climate indices, can 

preserve the hydrological uncertainty captured by the full ensemble. This establishes the 

foundation for understanding uncertainty transferability and the challenges of ensemble 

reduction.  
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Chapter 3 investigates whether excluding high-ECS climate models alters projected 

streamflow responses across North America. By examining how a specific structural property 

of climate models shapes hydrological impacts, it provides insight into the consequences of 

model exclusion and the importance of regional process evaluation. Chapter 4 evaluates 

whether unequal weighting schemes improve streamflow projections relative to the commonly 

used model-democracy approach. Using a pseudo-reality framework, it tests the performance 

of multiple weighting methods and assesses how model credibility and dependence influence 

impact outcomes. This extends the previous chapters by exploring the role of model 

importance, not just model inclusion. 

 

Together, these three articles form a unified investigation of climate‐model ensemble design, 

from subsetting, to selective exclusion, to weighting, and how these methodological choices 

shape hydrological projections across more than 3,000 North American catchments. The final 

chapter synthesizes the cross-cutting insights, connects the findings back to the research 

objectives, highlights limitations, and outlines promising directions for future work. 
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Abstract 

 

Climate change impact studies often use ensembles of climate projections from General 

Circulation Models (GCMs). These ensembles generate a distribution of future impacts which 

often dominates other uncertainty sources. While using all available GCMs was once 

considered ideal for representing uncertainty, the rapid growth in projections makes this 

approach unfeasible, necessitating representative subsets instead. Understanding how climate-

model uncertainty from these subsets propagates through hydrological impact assessments is 

essential for robust adaptation planning. Using 3,540 catchments across Canada and the 

contiguous United States, we evaluate whether the representativity of GCM subset uncertainty 

is preserved once climate projections are transferred to hydrological projections. We drive 

three lumped hydrological models (GR4J+CemaNeige, HMETS, HSAMI) with 20 CMIP5 

GCMs under RCP8.5, bias-corrected with TSQM and MBCn, and decompose variance in 

projected changes for mean, high, and low flows. We find that GCMs dominate uncertainty 

for mean and high flows, whereas hydrological model structure dominates low-flows. We then 

test GCM sub-selection using K-means and the deterministic KKZ algorithm within 

multivariate spaces defined by climate indices. KKZ consistently preserves ensemble spread 

better than K-means. Crucially, index choice matters: small, physically meaningful pairs 

tailored to the target hydrologic metric (e.g., PRCPTOT with ΔT for mean flows; Rx1day with 

wet-day frequency for high flows) outperform larger index sets. Across most catchments, five 

well-chosen GCMs reproduce most of the full-ensemble spread for mean and low flows, while 
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high-flows require larger subsets. Results provide practical guidance for designing compact, 

representative GCM ensembles that retain key uncertainties in hydrological applications. 

 

2.1 Introduction 

 

Understanding future hydrological regimes in a warmer climate is essential for developing 

adaptation strategies to meet growing demands on food production and increased risks from 

water-related hazards due to climate change and population growth (Lavell et al., 2012; 

Mahadevan et al., 2024; Smirnov et al., 2016). To this end, climate change impact studies 

targeting the water cycle are now routinely performed to guide decision makers into choosing 

the best possible adaptation measures. These impact studies typically use ensembles of 

projections from General Circulation Models (GCMs) and hydrological models to project 

future hydrological regimes (e.g. Feng & Beighley, 2019). However, each component within 

the modeling chain introduces uncertainties that must be carefully studied and accounted for 

(Ashraf Vaghefi et al., 2019; Senatore et al., 2022; H. Wang et al., 2020). A proper  

characterization of uncertainty related to the various components of the hydroclimatic 

modeling chain is critical for impact studies (Clark et al., 2016; Giuntoli et al., 2018). Of all 

uncertainties present in the hydroclimatic modeling chain, the uncertainty related to the choice 

of climate models is often dominant. However, whether subsets chosen in the climate domain 

remain representative after being processed through bias correction and hydrological models 

is still unclear. This raises the broader problem of uncertainty “transferability” between climate 

and impact domains. 

 

Climate model projection uncertainty arises primarily from three factors: internal variability, 

emission scenarios, and model uncertainty (Deser et al., 2012; Tebaldi & Knutti, 2007). Model 

uncertainty arises because different models employ distinct physical and numerical 

formulations, resulting in varied responses to identical external forcing. Scenario uncertainty 

stems from limited knowledge about external factors influencing the climate system, such as 

trends in greenhouse gas emissions, land-use changes, and stratospheric ozone concentrations. 

Internal variability is due to the nonlinear dynamic processes within the atmosphere, ocean, 
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and the coupled ocean-atmosphere system, reflecting the climate system’s inherent 

fluctuations independent of external forces (Deser et al., 2012). The internal variability related 

uncertainty is irreducible, but can be evaluated by running a climate model multiple times with 

slightly different initial conditions (Deser et al., 2012; Leduc et al., 2019). 

 

Impact assessment studies typically involve multiple steps in a modeling chain starting with a 

greenhouse gases emission scenario and ending with an impact model such as a hydrological 

model (Chen et al., 2011; H. Wang et al., 2020). Each of these steps adds uncertainty along the 

way. Several studies have shown that GCM projections are, in most cases, the main source of 

uncertainty in climate change impact assessments (Chen et al., 2011; Giuntoli et al., 2018; 

Hodson et al., 2013; H. Wang et al., 2020). Ideally, capturing the full range of uncertainty 

would involve using all available GCMs, allowing for a comprehensive spectrum of potential 

future scenarios generated by multiple models. However, as the number of GCMs has 

increased from 25 simulations in CMIP3 to 61 in CMIP5 (Taylor et al., 2012) and over 100 in 

CMIP6 (Eyring et al., 2016), incorporating them all in impact studies has become impractical. 

The plethora of existing model choices poses a challenge for researchers and decision-makers 

in selecting the most appropriate models for their assessments.  

 

An ideal subset of GCMs should both accurately reconstruct historical climate patterns and 

represent a range of potential future scenarios (Vano et al., 2015). Accordingly, one approach 

to selecting GCMs has been to evaluate their historical performance, considering models that 

closely replicate past observations as optimal (Gleckler et al., 2008; Palmer et al., 2022; 

Parding et al., 2020; Perkins et al., 2007; Rupp et al., 2013). However, even high-performing 

models during the reference period do not necessarily guarantee the most reliable future 

projections. Many researchers have therefore explored strategies to select climate change 

scenarios that minimize the number of required scenarios while effectively capturing a broad 

spectrum of potential inter-model variability (Cannon, 2015; Mendlik & Gobiet, 2016). Other 

researchers have tried to improve their subset by first eliminating GCMs with the weakest 

performance over the reference period (Dubrovsky et al., 2015; George & Athira, 2022; Lutz 

et al., 2016; McSweeney et al., 2015; Prein et al., 2019; Ruane & McDermid, 2017; Shiogama 
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et al., 2021). While excluding GCMs that fail to capture key processes in the study region may 

enhance accuracy, this approach is still limited in guaranteeing future reliability (Palmer et al., 

2022). The question of whether selection should include all available GCM simulations, even 

those with subpar historical performance, remains under debate (Rahimpour Asenjan et al., 

2023). 

 

To capture inter-model variability, earlier studies predominantly employed clustering-based 

techniques, such as hierarchical (e.g. Mendlik & Gobiet, 2016; Wilcke & Bärring, 2016) and 

k-means clustering (e.g. Casajus et al., 2016; Houle et al., 2012). However, the clustering 

approaches often select scenarios that represent only the central trend rather than the full 

spectrum of an ensemble's variability, and they do not allow for scenarios to be arranged by 

priority (Cannon, 2015). To address these limitations, Cannon (2015) proposed the 

Katsavounidis–Kuo–Zhang (KKZ) algorithm (Katsavounidis et al., 1994), which selects a 

subset of GCMs that more effectively captures a wide range of variability. The KKZ algorithm 

operates recursively, selecting members that thoroughly span multivariate space, thereby 

offering a more effective method for preserving the full inter-model variability than traditional 

clustering approaches. Previous studies demonstrated that the KKZ algorithm better retains the 

comprehensive variability of the ensemble (Cannon, 2015; Chen et al., 2016; Golian & 

Murphy, 2021; Ross & Najjar, 2019). 

 

Previous studies have primarily focused on the “climate world,” conducting analyses within 

the domain of climate models (e.g. Sung et al., 2019). While these methods effectively select 

climate simulations that capture the uncertainty inherent in climate models, they do not 

guarantee that the selected subset will remain optimal when applied to the impact domain. This 

limitation becomes particularly evident after processes such as downscaling, bias correction, 

or passing through the non-linear filters of impact models. For instance, hydrological models 

exhibit highly non-linear responses to even minor variations in temperature and precipitation. 

A limited number of previous studies have explored the transferability of GCM uncertainty to 

hydrological impacts using various methods. For example, Chen et al. (2016) assessed 

transferability over a Canadian watershed using two climate variables and found limited 
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transferability of the uncertainty. Wang et al. (2018) extended this work by incorporating 

multiple climate variables, concluding that a selection of ten GCMs could adequately represent 

uncertainty in both climate and hydrology domains. Seo et al., (2019) and Seo and Kim, (2018) 

extended this line of research by employing the KKZ algorithm with climate extreme indices 

and emphasized that the choice of indices should reflect the hydrological extremes being 

projected. Nonetheless, their analysis was restricted to a limited number of basins and did not 

address how the spatial scale of climate indices may influence hydrological outcomes. 

 

Building on this context, the aim of our study is to investigate the transferability of uncertainty 

from the climate world to the hydrologic domain when GCMs are selected based on climatic 

variables. As Seo et al., (2019) and Seo and Kim, (2018) demonstrated, identifying key climatic 

indices is a crucial step before selecting a representative subset of GCMs. This approach 

minimizes the need to account for a broad range of climate indicators, allowing for a tailored 

selection process based on the specific dependency of each hydrologic variable. In this study, 

various combinations of climate indices are compared to identify the most effective set of 

climate variables for GCM selection in North American catchments. 

 

This paper evaluates climate model sampling methods for preserving uncertainty across 

diverse climatic and hydrologic regimes. Specifically, it investigates whether including 

multiple indices closely related to the hydrologic variable under study improves uncertainty 

preservation and examines how narrowing the ensemble of GCMs impacts this preservation. 

Additionally, it assesses the performance of extreme indices compared to classic indices in 

North American catchments. By addressing these objectives, our study contributes to 

advancing methodological foundations and provides guidance for designing representative, yet 

computationally feasible, GCM ensembles for hydrological applications. 

 

2.2 Methods 

 

2.2.1 Study area and data 
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The meteorological and streamflow data for 3540 catchments spanning Canada and the 

contiguous United States were used in this study. Data was extracted from the NAC2H dataset 

(Arsenault, Brissette, Chen, et al., 2020). The NAC2H dataset integrates 2,842 U.S. catchments 

from the National Hydrography Dataset (U.S. Geological Survey, 2019) with 698 additional 

catchments from both the CANOPEX database (Arsenault et al., 2016) and the U.S. Geological 

Survey’s National Water Information System (NWIS) (U.S. Geological Survey, 2016). The 

meteorological data are obtained from the Livneh gridded database for U.S. catchments 

(Livneh et al., 2015) and CANOPEX for Canadian catchments. The CANOPEX dataset 

includes 10 km resolution gridded climate data from Natural Resources Canada (Hutchinson 

et al., 2009), while the Livneh dataset provides 6 km resolution gridded meteorological data 

for the United States. Daily precipitation (mm/day) and minimum and maximum temperatures 

(°C) are included in the dataset, which are used as input for hydrological model calibration and 

as reference data for climate model bias correction. 

 

The reference period selected for this study is 1971–2000, while the future period for analysis 

is 2070–2099. Catchments with drainage areas smaller than 300 km² were excluded to avoid 

challenges associated with daily-scale hydrological modeling. Figure 2.1 illustrates the spatial 

distribution of catchments across multiple regions, capturing multiple hydrological and 

climatic conditions.  
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Figure 2.1 Geographic distribution of the 3,540 catchments in the dataset. The figure includes 
nested basins, with smaller catchments overlaid atop larger ones 

 

2.2.2 Experimental Setup  

 

Following a top-down hydroclimatic modeling approach, similar to Rahimpour Asenjan et al., 

(2023) and Arsenault et al. (2020), the RCP 8.5 scenario was selected as it represents a high-

emission scenario with substantial warming potential, allowing for the assessment of extreme 

hydrological changes under a worst-case climate change trajectory. While this scenario has 

been increasingly considered as overly pessimistic (e.g. Hausfather & Peters, 2020), it has the 

advantage of limiting the impact of internal variability (irreducible uncertainty) on the 

interpretation of future impacts. Twenty (20) GCMs from the CMIP5 archive were used, which 

provide a diverse ensemble for hydrological simulations and impact analysis. A complete list 

of the selected GCMs is provided in Table 2.1. 
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Table 2.1 The 20 GCMs employed in this study 

 

Climate Models Resolution (Lon  Lat) Modeling center 

ACCESS1-0 1.875°  1.25° CSIRO  

ACCESS1-3 1.875°  1.25° CSIRO  

BCC-CSM1-1 2.8°  2.8° BCC 

BCC-CSM1-1-m 1.125°  1.125° BCC 

BNU-ESM 2.8°  2.8° GCESS  

CanESM2 2.8°  2.8° CCCma 

CMCC-CMS 1.875°  1.875° CMCC 

CSIRO-Mk3-6-0 10.8°  1.8° CSIRO 

FGOALS-g2 1.875°  1.25° CESS 

GFDL-ESM 2G 2.5°  2.0° NOAA-GFDL 

GFDL-ESM 2M 2.5°  2.0° NOAA-GFDL 

GISS-E2-R 2.5°  2.0° NOAA-GISS 

Inmcm4 2.0°  1.5° INM 

IPSL-CM5A-LR 3.75°  1.9° IPSL 

IPSL-CM5A-MR 2.5°  1.25° IPSL 

IPSL-CM5B-LR 3.75°  1.9° IPSL 

MIROC5 1.4°  1.4° MIROC 

MIROC-ESM 2.8°  2.8° MIROC 

MIROC-ESM-CHEM 2.8°  2.8° MIROC 

MRI-CGCM3 1.1°  1.1° MRI 

 

To correct the systematic biases in raw GCM simulations the Two-Stage Quantile Mapping 

(TSQM) and Multivariate Bias Correction (MBCn) (Cannon, 2018) methods were used. 

TSQM is a two-step quantile mapping approach (Guo et al., 2019) developed to enhance bias 
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correction by preserving the relationships between climate variables. TSQM first corrects the 

marginal distributions of precipitation and temperature using a univariate quantile-mapping 

approach, and then restores their dependence structure through a distribution-free shuffling 

step. MBCn, on the other hand, performs a fully multivariate correction by rotating the 

variables into an independent coordinate system, applying quantile mapping in that space, and 

then rotating them back, thereby adjusting both marginal distributions and the full multivariate 

dependence structure simultaneously. In addition to correcting biases in temperature and 

precipitation distributions, the two multivariate bias correction methods also maintain the inter-

variable relationships between  temperature and precipitation (Arsenault, Brissette, Chen, et 

al., 2020; H. Wang et al., 2020).  

 

In this study, three lumped hydrological models namely GR4J, HMETS and HSAMI were 

employed. GR4J (Génie Rural à 4 Paramètres Journalier) is a four-parameter conceptual model 

(Perrin et al., 2003), which is paired with  the CemaNeige snow module (Oudin et al., 2005) 

to account for snow processes and improve performance in snow-dominated catchments, since 

it lacks a built-in snow routine. On the other hand, the 21-parameter HMETS (Hydrological 

Model of the École de Technologie Supérieure) model was created especially for cold climates 

(Martel et al., 2017). Ten parameters are dedicated to snow accumulation and melt processes, 

and PET is calculated internally using the Oudin formulation. HSAMI is a 23-parameter model 

that has a similar structure to HMETS but employs a different snow routine and an empirical 

PET formulation (Poulin et al., 2011). The selected hydrological models were chosen to 

represent different conceptual structures, allowing for an assessment of structural uncertainty 

in hydrological simulations (Poulin et al., 2011). 

 

In this study, we did not perform new hydrological model calibrations; instead, we relied on 

the pre-calibrated simulations provided in the NAC2H dataset. In NAC2H, the hydrological 

models were calibrated using the CMAES optimization algorithm (Hansen et al., 2003), with 

the Kling-Gupta Efficiency (KGE) metric as the objective function (Arsenault et al., 2014; 

Gupta et al., 2009). Each calibration was repeated 15,000 times. The meteorological data of 

the reference period (1971-2000) was used for calibration, with the first two years allocated 
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for model warm-up and the remaining 28 years for calibration. Many catchments achieved 

KGE values above 0.7, demonstrating the effectiveness of hydrological models in simulating 

streamflow. However, modeling remains challenging in regions such as the Midwestern U.S. 

and the Canadian Prairies, where lumped models often struggle to capture hydrological 

processes accurately (Newman et al., 2015). 

 

2.2.3 Uncertainty Decomposition 

 

The study consists of 20 GCMs, 3 hydrological models (HMs), and 2 bias correction (BC) 

methods, resulting in 120 total combinations. To attribute variance in projected streamflow 

changes to these three sources of uncertainty, an Analysis of Variance (ANOVA) was applied. 

ANOVA partitions the overall variance of a projected hydrological variable into components 

attributable to each factor, thereby quantifying the distinct contribution of GCMs, HMs, and 

BC methods (Giuntoli, Vidal, et al., 2015; Meresa et al., 2022; S. Zhang et al., 2024). Because 

our models are deterministic, we obtain only one simulation for each GCM–HM–BC 

combination. In classical ANOVA, interaction effects can only be estimated if multiple 

independent values (replicates) exist for each treatment, allowing variability due to interactions 

to be separated from random noise. Since no such replicates exist in our dataset, interaction 

effects cannot be distinguished and are absorbed into the residual error. The ANOVA is 

therefore simplified to a first-order variance decomposition with one case per treatment and no 

interaction terms ( ) (Giuntoli, Vidal, et al., 2015). The overall variance in 

hydrological responses is divided between the separate components using equation (2.1) 

 

  

 

(2.1) 

Where  is the simulated streamflow response under the i-th GCM, j-th hydrological model, 

and k-th bias correction method,  represents the ensemble mean across all model simulations, 

 captures the effect of the i-th GCM,  accounts for the effect of the j-th hydrological model, 

 represents the effect of the k-th bias correction method,  is the residual error. The total 

variance is then decomposed to each factor using the sum of squares method.  
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(2.2) 

 

where  represents the sum of squares for factor (e.g., climate models, hydrological 

models, or bias correction methods), and  denotes the total response variable representing the 

simulated streamflow projections. Here, total variance is used as a measure of overall 

uncertainty, aligning with methodologies applied in previous studies (Meresa et al., 2022; 

Sansom et al., 2013; H.-M. Wang et al., 2018).  

 

2.2.4 GCM subset selection 

 

GCM selection is typically based on a set of n climate variables (e.g. annual mean precipitation 

and temperature in its simplest form with n=2). These variables define an n-dimensional 

climate space, where each GCM is represented as a point according to its projected changes. 

In order to cover the uncertainty of a large ensemble of GCMs, subsets of N GCMs (2 ≤ N<20) 

are chosen using either K-means clustering or the KKZ method (see details below). The 

selection process relies on selected climate variables (see next section) that are used to assess 

similarity (or differences) between GCMs. Subset selection is therefore dependent on both the 

approach (K-means vs KZZ) as well as on the climate variables (and scaling of said variables) 

used to measure similarity between the various GCMs. In order to assess the ability of those 

subsets at representing explained variance, all possible combinations of n GCMs will also be 

computed. This exhaustive benchmark allows us to determine whether structured selection 

methods preserve ensemble variability more effectively than random sub-selection. Figure 2.2 

schematizes the approach used for testing GCM subset selection approaches. 
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Figure 2.2 Methodological framework for testing GCM subset selection 

 

2.2.5 Climate variables  

 

Subsets of climate models are typically selected using future climate signals, often using a 

reduced 2-D space consisting of mean temperature change (∆T) and relative precipitation 

change (∆P/P), however, in practice any number of climate variables can be used. To 

characterize climate change signals relevant to hydrological impacts, 25 climate indices were 

computed, primarily based on those defined by the Expert Team on Climate Change Detection 

and Indices (ETCCDI). These indices capture extremes in temperature and precipitation, and 

were further complemented by climate variables used in Wang et al. (2018) and Seo et al. 

(2018, 2019) to ensure comprehensive coverage of relevant climate characteristics.  
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Table 2.2 List of climate variables. All indices represent the change between historical and 
future periods. Indices marked with (%) are expressed as ratios (future/historic) 

 
 Index Description Change 

 FD No. of frost days (Tmin < 0°C)  
 SU No. of summer days  (Tmax > 25°C)  

 ID No. of icing days (Tmax < 0°C)  
 TR No. of tropical nights (Tmin > 20°C)  

 TNn Annual minimum of daily minimum temperature  
 TNx Annual maximum of daily minimum temperature  

 TXx Annual maximum of daily maximum temperature  
 TXn Annual minimum of daily maximum temperature  

 DTR Change in diurnal temperature range  
 ΔT Change in annual mean temperature  

 WSDI Warm spell duration index  
 CSDI Cold spell duration index  

 PRCPTOT Total annual precipitation    

 SDII Simple precipitation intensity index  % 
 Rx1day Annual maximum 1-day precipitation  % 

 Rx3day Annual maximum consecutive 3-day precipitation % 
 Rx5day Annual maximum consecutive 5-day precipitation  % 

 R10mm No. of wet days with  ≥10mm precipitation % 
 R20mm No. of wet days with ≥20mm precipitation  % 

 R1mm No. of wet days with ≥1mm precipitation % 
 CDD Maximum number of consecutive dry days  
 CWD Maximum number of consecutive wet days  

 Rn30day Annual min consecutive 30-day precipitation  
 R95pTOT Precipitation from days >95th percentile   % 

 R99pTOT Precipitation from days >99th percentile  % 
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Each index was computed by comparing values from the reference period to those of the future 

projection period, and subsequently normalized to make the indices directly comparable. 

Precipitation-related indices were expressed as relative changes, while temperature-based and 

duration-related metrics were represented as absolute changes. This set of standardized climate 

indicators formed the basis for GCM selection using clustering and sampling methods such as 

KKZ and K-means. Table 2.2 provides a summary of the climate variables used in this study. 

 

2.2.6 K-Means clustering  

 

K-means clustering is a widely used unsupervised learning technique that partitions the set of 

climate simulations into a specified number of clusters, aiming to minimize the within-cluster 

sum of squared errors (SSE) (Hartigan & Wong, 1979). Each cluster is identified by a centroid, 

which is the average position of all simulations allocated to that cluster. The SSE is calculated 

as the Euclidean distance between each simulation and its centroid. Simulations closest to these 

centroids are selected to form a representative subset, a strategy commonly applied in climate 

modeling studies to reduce ensemble size while preserving variability (Logan et al., 2011; 

Cannon, 2015; Houle et al., 2012). 

 

A key limitation of K-means clustering is its sensitivity to initial centroid placement, which 

can strongly influence the final clustering results. To mitigate this issue, the clustering was run 

10,000 times with various initializations, and only the solution that produced the lowest SSE 

was retained. However, a major drawback of this approach is that subset selection is not 

hierarchical, meaning the simulations chosen in a smaller subset may not necessarily be 

included in a larger subset. Because of this lack of ordering, it is less flexible and less 

appropriate for applications in which users must dynamically modify subset sizes in 

accordance with certain specifications. 

 

2.2.7 KKZ method  
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Originally developed for initializing centroids in k-means clustering, the Katsavounidis-Kuo-

Zhang (KKZ) method (Katsavounidis et al., 1994) is a deterministic algorithm later adapted 

by Cannon (2015) for selecting representative climate model simulations. Unlike stochastic 

clustering techniques, KKZ is a deterministic procedure that systematically identifies a subset 

of models that optimally capture the variability within an ensemble. This approach is 

particularly valuable in climate studies, where it is essential to represent a wide range of climate 

projections. By ensuring that the selected models are evenly distributed across the multivariate 

space, KKZ provides a more comprehensive representation of future climate scenarios. 

 

Unlike random sampling or conventional clustering, which may favor models concentrated in 

high-density regions, KKZ prioritizes models that span the full range of climate variability. 

This ensures that the selected ensemble reflects the entire spectrum of climate conditions, 

making it a reliable method for scenario selection in climate impact assessments. The KKZ 

algorithm follows a structured, step-by-step approach to ensure optimal selection of models 

that best represent variability within an ensemble: 

 

1. Select the first model: Identify the model closest to the ensemble centroid, determined 

by the lowest SSE across all variables. 

2. Select the second model: Choose the model farthest from the first selection based on 

Euclidean distance in the multivariate space. 

3. For subsequent selections (starting from the third model onward): 

1. Compute the Euclidean distance between each remaining model and all 

previously selected models. 

2. Retain only the minimum distance for each remaining model, ensuring it is 

evaluated based on its closest selected counterpart. 
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3. Select the model with the maximum minimum distance, ensuring that each 

new selection maximizes diversity within the ensemble. 

4. Repeat Step 3 until the desired number of models has been selected. 

By employing this method, KKZ ensures that the selected models effectively capture the full 

range of variability within the dataset. However, its deterministic nature makes it susceptible 

to outliers, as extreme values may be preferentially chosen. Despite this limitation, KKZ 

remains a valuable tool for selecting climate scenarios in a systematic, reproducible, and 

unbiased manner. 

 

2.3 Results 

 

Figure 2.3 illustrates the contribution of different sources to future mean flow uncertainty using 

the full ensemble of 20 GCMs. Uncertainty is categorized into HMs, BCs, and GCMs, with 

colors representing the percentage contribution to total uncertainty. For mean flow, GCMs are 

identified as the dominant source of uncertainty across most of North America, explaining over 

80% of the variance in many regions. In contrast, HMs generally contribute less to mean flow 

uncertainty, except in certain central regions where they struggle with modeling accuracy, 

resulting in a higher contribution to the overall uncertainty. BCs, while contributing modestly, 

are less influential compared to GCMs and HMs in shaping the uncertainty associated with 

mean flows. These patterns underscore the critical role of GCMs in driving uncertainty in 

future projections of mean flows across North America. 
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Figure 2.3 Contribution to future mean flow uncertainty, separated by (a) Hydrological 
Model (HM), (b) Bias Correction (BC), and (c) General Circulation Model (GCM). 

Colors represent the percentage contribution to total uncertainty 

 

In the same format as Figure 2.3, Figure 2.4 presents uncertainty partitioning for low-flows.  

HMs are identified as the largest source of uncertainty for low flows, with a median 

contribution of 82%. This high contribution reflects the challenges HMs face in accurately 

simulating low flows, which amplifies their impact on overall uncertainty. In comparison, BC 

and GCM contributions to low flow uncertainty are significantly lower, with little regional 

variation observed.  
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Figure 2.4 Contribution to future low flow uncertainty, separated by (a) Hydrological Model 
(HM), (b) Bias Correction (BC), and (c) General Circulation Model (GCM). Colors represent 

the percentage contribution to total uncertainty 

 

Similarly, Figure 2.5 illustrates the contributions to uncertainty for future high flows. GCMs 

emerge as the dominant source of uncertainty for high flows, with a median contribution of 

60%. HMs contribute 40% to high flow uncertainty, performing better in modeling high flows 

compared to low flows. However, HMs exhibit a significant regional pattern, with a notable 

contribution to uncertainty in northern and western regions. These regions are characterized 

by the presence of snow.  In contrast, BC methods contribute minimally to high flow 

uncertainty, having a less significant impact compared to GCMs and HMs.  
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Figure 2.5 Contribution to future high flow uncertainty, separated by (a) Hydrological 
Model (HM), (b) Bias Correction (BC), and (c) General Circulation Model (GCM). Colors 

represent the percentage contribution to total uncertainty 

 

The main objective of the paper is to investigate if a smaller sample of General Circulation 

Models (GCMs) can preserve the variance as the full GCM ensemble. The impact of sampling 

GCMs on their contribution to overall streamflow variance for mean, high, and low flows is 

shown in Figure 2.6. The graph depicts the distribution of GCM contributions to uncertainty, 

obtained from all possible combinations of 5, 10, and 15 GCMs, for one representative 

catchment, though the same analysis was performed for all catchments, with additional 

examples provided in the Supplementary Material. However, the key features of the graph are 
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consistent across most catchments, even though the total GCM contribution varies depending 

on catchment, as seen in Figures 2.3, 2.4 and 2.5. The red line on the right represents the 

contribution to variance of the original 20-member ensemble. 

 

It is apparent that when using a random sample of 5 GCMs, the likelihood of over or 

underestimating future uncertainty is highest, with values ranging from 6% and 94% for mean 

flow. A low value would arise from selecting 5 GCMs that give similar future mean flow 

projections, whereas a large value would result from the selection of 5 highly diverse GCMs 

in terms of future mean flow projections. Increasing the number of GCMs from 5 to 10 and 15 

significantly decreases the potential for over or underestimation of the original ensemble 

variance. However, significant deviations can still arise depending on the choice of GCM 

within the reduced sample. Nevertheless, selecting a larger number of GCMs improves the 

probability of accurately representing the uncertainty of the original GCM ensemble. The 

behavior for high and low flows is similar, although a smaller proportion of the overall variance 

can be attributed to GCMs for these two metrics. Importantly, Figure 2.6 shows that random 

sampling of GCMs is a strategy susceptible to result in large errors in the representation of 

uncertainties, unless a large number of GCMs is included. This is why GCM selection 

strategies have typically been favored over random sampling. Figure 2.6 also shows that there 

is a much higher risk of underestimating GCM variance than overestimating it. In addition, the 

magnitude of the underestimation can be a lot more severe than that resulting from an 

overestimation. 
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Figure 2.6 Boxplot of GCM contribution to uncertainty for all 
possible combinations of 5, 10 and 15 GCMS from the original 

ensemble of 20.  These results are for one typical catchment 

 

Figure 2.7 presents the results of the different GCM selection strategies discussed above.  For 

each selection strategy, it shows the boxplot of the ratio of spread coverage (RSC) computed 

at each catchment, when using a subset of 5 GCMs. Each boxplot is therefore composed of 

3540 catchment values. In the Figures below, the RSC is defined as the ratio of the variable’s 

range in the subset (from each selection strategy) to the variable’s range in the full 20-member 

ensemble. A RSC equal to 1 implies that the subset fully reproduces the spread of the full 

ensemble, while values less than 1 indicate that the subset underestimates the spread of climate 
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model uncertainty. While we acknowledge the limitations of the RSC metric, for example, a 

subset could technically achieve RSC = 1 by including only the models at the extremes, it 

nonetheless provides a simple, transparent representation of how much of the original 

ensemble spread is retained, rather than a complete measure of uncertainty itself. We use RSC 

as a practical diagnostic tool to compare subset performance, while recognizing that true 

uncertainty is multidimensional and cannot be fully captured by a single metric. 

 

The figure compares the two chosen GCM selection methods, KKZ and K-means. For both 

methods, GCM similarity is evaluated using 5 different strategies: 1- using all of the climate 

variables listed in Table 2 (“All”), 2- using all climate variables but excluding highly correlated 

climate variables (“Low Corr”), 3- using the pair of climate variables suggested by Seo et al. 

(2019) which link specific climate indices to different hydrologic regimes; annual total 

precipitation (PRCPTOT) and mean annual temperature (ΔT) for mean flows, Rx5day and 

Rx3day (see table 2.2) precipitation for high flows, and diurnal temperature range (DTR) 

combined with Rn30day for low flows (“Seo”), 4- selecting the best-performing pair that 

maximizes the median RSC across all catchments (“Best”), and 5-choosing a random pair of 

climate variables (“Random”). It’s important to state the ‘best’ performing pair was chosen by 

optimizing the median RSC across all catchments and is NOT catchment-specific. This 

approach will therefore yield the best median result, but may not be the best one on all 

catchments. 

 

For mean flows, the best-performing climate variables (the one resulting in the best RSC) was 

PRCPtot and precipitation above the 95th percentile (R95pTOT). For high flows, the best pair 

was Rx1day and R1mm. For low flows, the best indices were change in annual mean 

temperature (ΔT) and PRCPtot. For any given catchment, the choice of a single random subset 

is not representative (a subset could be good, bad, or average in terms of RSC), but when 

aggregated over 3,540 catchments (as shown in Figure 2.7, for example), it provides 

representative expected results from this strategy. 
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Our findings show that the KKZ method consistently outperformed K-means for selecting 

GCMs that better preserve the range of variability (the boxplots on the left hand side of Figure 

2.7, are systematically better than the ones on the right hand side). The Seo climate variables 

were close to that of the best performing ones for mean flows, but significantly worse for low 

and high flow. For low flows, GCM selection proved to be less critical, as the contribution of 

GCMs to overall uncertainty is relatively small. For low flow, all selection methods give 

somewhat similar results with exception of the ‘best’ approach which clearly outperforms the 

others. Overall results show that a subset of 5 properly selected GCMs allows to preserve most 

of the variability of the full ensemble of 20 GCMs, as the median RSC exceeds 0.9 for the 

‘best’ method. it should be noted that even though the ‘best’ method outperforms the other 

approaches when looking at Figure 2.7, this may not be the case on all catchments. In fact, in 

some catchments, the ‘Seo’ approach outperforms the ‘best’ pair.  
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Figure 2.7 Boxplot of RSC across 3,540 catchments. The RSC is defined as the ratio of 
the range of selected GCMs to the range of all GCMs. The X-axis labels correspond to 
different selection methods: the first five boxplots represent the KKZ method, and the 

next five represent the K-means method. These results are for subsets of 5 GCMs. 

 

Figure 2.8 presents a scatter plot comparing the RSC when using the KKZ method with “Seo” 

and “best” pairs of indices. The results are once again obtained from a subset of 5 GCMs. As 

expected, across all three flow indices, the ‘best’ indices give improved results with RSC 
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consistently closer to one (warmer colors). The difference is however small for mean flow, as 

both approaches provide similar results. Differences are however much larger for high and low 

flow, suggesting that the selection of appropriate climate variables is more complex. This is 

perhaps not surprising since the meteorological, climatological and physical processes leading 

to low flows and high flows are more complex than the ones leading to mean annual flow. For 

mean flow, mean annual precipitation and a temperature related index (e.g. mean annual 

temperature, annual PET, aridity index) are natural choices.  

 

No clear spatial patterns are present in Figure 2.8, suggesting that local catchment 

characteristics or flow regime dynamics may play a larger role in performance. Indeed, in some 

catchments, the “Seo” indices outperform the “best” pairs, underscoring the context-dependent 

nature of index selection. 
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Figure 2.8 Map showing the RSC covered when selecting five GCMs (one combination 
per catchment) using the KKZ method with (a, c, e) Seo indices and (b, d, f) best indices 

across 3,540 catchments. 

 

Results for Figure 2.7 and 2.8 were detailed for subsets of 5 GCMs. To look into the impact of 

subset size, Figure 2.9 presents the median RSC for low, high, and mean flows, for subsets of 

1 to 19 GCMs out of the original ensemble of 20. To simplify the Figure only two selections 

methods are shown: (1) the KKZ method using the “best” pair of climate variables (solid lines 

in Figure 2.9), and (2) KKZ method using the “Seo” pair of climate variables (dashed lines in 

Figure 2.9). These two choices represent the best-performing approaches based on the 

preceding results. The plotted values represent the median RSC from the 3,540 catchments, 

providing a generalized view of subset performance. While the median offers a generalized 

view, the full distributions shown in earlier figures illustrate the underlying spatial variability. 
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It is important to note that RSC is only one representation of uncertainty. Although range-

based measures are intuitive and easy to interpret, they do not capture all aspects of uncertainty 

(e.g., variance or distributional shape). Here, RSC is used as a practical and interpretable metric 

for large-sample comparison, while acknowledging its limitations. 

 

The “best” variable pair consistently outperforms the “Seo” one. This is by design, since the 

“best” pair was optimized to have the best median RSC. The difference between the two is 

smallest for mean flows and largest for low flows as was also shown in Figure 2.7. All results 

eventually converge toward a RSC of 1. However, the rate of convergence depends on the 

chosen streamflow metric. Convergence is particularly slow for the high flows with 

respectively 8 (best) and 11 (Seo) GCMs needed to reach a RSC of 95%, compared with 4 

(best) and 9 (Seo) for low flows and 6 (best) and 7 (Seo) for mean flow. The large difference 

between these two options for high and low flow indicate that results are sensitive to the choice 

of climate variable used for GCM selection. In those two cases, 10 GCMs need to be selected 

so that differences become much smaller. For mean flow, which is less sensitive to the choice 

of climate variables, only 5 GCMs are needed to reach comparable results. 
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Figure 2.9 RSC for low, high, and mean flows. GCM subsets are selected using the KKZ 

method with “Seo” and “best” indices. The values shown represent the median RSC across 
3,540 catchments. 

 

 

2.4 Discussion 

 

Hydrological impact studies often use ensemble approaches to capture uncertainty across the 

modeling chain. Since climate models contribute significantly to this uncertainty, selecting a 

representative subset is essential but nontrivial. The main objective of this study was to 

investigate if the uncertainty from the climate modeling domain can be effectively transferred 

to the hydrological domain. GCM subset selection was performed using KKZ and K-means 
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algorithms, both of which rely on a multivariate space defined by climate variables to capture 

the differences among GCM outputs. A key objective was to identify the most effective climate 

indices for capturing GCM-driven variability and translating it into hydrological impact 

projections. 

 

The findings show that carefully selected climate variables can significantly improve the 

transferability of variability from the climate modeling domain to hydrological impact 

assessments. The choice of indices used to define the multivariate space plays a critical role in 

determining how well the selected GCMs preserve the relevant variability for hydrological 

impacts. In many cases, a well-chosen pair of climate indices is sufficient to achieve strong 

performance. Adding more variables does not necessarily improve results and can even 

degrade performance by introducing redundancy, particularly when the added indices are 

highly correlated. For example, in the case of high flows, a randomly selected pair of indices 

performed similarly to the full set of climatic indices, which contain ETCCDI indices as well, 

suggesting that increasing the number of variables does not guarantee better transferability. 

 

A pairwise comparison of climate indices was conducted to identify the best combinations for 

transferring variability from climate simulations to hydrological responses. For mean flows, 

the indices suggested by Seo et al. (2019) (e.g., annual total precipitation and mean 

temperature) performed almost as well as the best-performing pairs. This is likely because 

mean flows are largely influenced by long-term averages in temperature and precipitation, 

which these commonly used indices capture effectively. Although a comprehensive list of 

precomputed indices is available through ETCCDI, reducing this list by removing highly 

correlated indices did not improve performance, for mean flows, using the full set of indices 

generally yielded better results. This shows that indiscriminate elimination of the correlated 

climate variables does not necessarily yield improvements. On the other hand, a well-chosen 

small subset of indices (e.g., two variables) can perform nearly as well as the best possible 

combinations as shown above, underscoring the importance of informed selection rather than 

simple reduction. 
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However, for high flows and low flows, the performance differences between the suggested 

indices by Seo et al., the full set of ETCCDI indices, the reduced set of low-correlated indices, 

and even randomly selected pairs were relatively small. The underlying reason remains 

uncertain, but this may indicate that these flow regimes are influenced by more complex or 

indirect climate drivers, which are not easily captured by a limited set of general-purpose 

indices. For high flows, the most effective combination was Rx1day and the number of wet 

days, while for low flows, the optimal pair was the change in annual mean temperature (ΔT) 

and PRCPtot. In both cases, the optimal sets make a lot of hydrological sense. This shows that 

rather than relying solely on standardized indices such as those from the ETCCDI or default 

pairs like temperature and precipitation changes a more effective strategy may be to prioritize 

climate variables that are directly and physically linked to the specific hydrologic metric of 

interest. Such a targeted approach can enhance the precision and relevance of GCM subset 

selection, ultimately leading to more robust and meaningful hydrological impact assessments. 

 

It’s also noteworthy that the best-performing climate indices varied across catchments. The 

“best indices” identified in this study reflect those with the best median performance across all 

catchments; however, different pairs of indices may perform better in specific locations. For 

example, the previously identified Rx1day predictor for high flows may be a great one for 

medium size catchments with a response time close to one day, but may fail for larger 

catchments who may be more sensitive to long wet periods, or for catchments whose spring 

snowmelt is the main driver of high flows. Crucially, there is no way to know in advance which 

indices will perform best for a given catchment. Even catchments with similar characteristics 

can yield different results, indicating that the relationship between climate indices and 

hydrological responses is not easily predictable. Stepwise regression analysis revealed no 

consistent relationship between catchment characteristics and the most effective indices, 

highlighting the highly site-specific nature of GCM sub-selection. This variability makes it 

difficult to generalize best practices across regions. While tailored index selection can improve 

performance, it limits scalability for regional or continental-scale studies. As such, GCM 

selection should align with the specific objectives of the impact assessment and the 

hydrological variables of interest. Although it is feasible to determine optimal indices at the 
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catchment scale, these combinations often lack broad applicability, reinforcing the need for 

flexible, context-sensitive selection strategies. To offer more reliable recommendations, 

regional-scale (e.g., sub-national or basin-level) studies, perhaps guided by expert judgement 

on local hydrological processes, should be done to assist in identifying index combinations that 

balance transferability and performance. 

 

The KKZ method generally outperforms K-means in preserving the spread of projections, as 

it tends to select models located near the boundaries of the multivariate space. That said, KKZ’s 

tendency to prioritize outlier models can pose challenges, particularly when such models are 

unavailable or excluded due to poor historical performance. In these situations, the 

representativeness and reliability of the resulting subset may be reduced. To mitigate this issue, 

some studies recommend pre-screening GCMs and excluding those with inadequate 

performance before applying subset selection techniques. This ensures that only credible 

models are considered, improving the robustness of the selected ensemble. However, it is 

important to recognize that no single GCM selection method performs optimally across all 

catchments or hydrological metrics. The effectiveness of each method is context-dependent 

and should be aligned with the specific goals and characteristics of the study. 

 

The number of GCMs needed to adequately capture uncertainty also varied by flow regime. 

Mean and low flows were often well represented with just five GCMs, whereas high flows 

required larger subsets to preserve the full range of projected variability. This can be attributed 

to the heightened sensitivity of high flows to extreme precipitation events, which are less 

consistently simulated across GCMs. Consequently, studies focused on high-flow metrics may 

need to retain a broader ensemble to avoid underestimating future risk. 

 

Strategically selecting a representative GCM subset offers a practical pathway to reduce 

computational burden without sacrificing uncertainty representation. This is particularly 

valuable for regional-scale assessments or large-sample hydrology studies where running full 

GCM ensembles across many catchments is often infeasible. Our results support the notion 
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that well-designed GCM subsets can serve as viable alternatives to full ensembles in 

hydrological impact assessments.  

 

Climate variable selection should be tailored to the specific flow regime and objectives of the 

impact study. A one-size-fits-all approach may overlook important aspects of hydrological 

behavior. The choice of climate variables used in GCM selection should reflect the physical 

processes relevant to the hydrologic variable of interest, be it rainfall intensity for floods or 

temperature trends for drought. 

 

While subset selection is a simplification of the full ensemble approach, it remains a viable 

and often necessary alternative in data- and computation-intensive applications. By aligning 

selection strategies with study objectives and hydrological contexts, researchers can achieve 

reliable, efficient assessments that still account for the key sources of uncertainty. 

 

2.5 Conclusion 

 

This study used two GCM subset selection techniques (KKZ and K-means) and numerous 

climate indices to examine the transferability of climate model uncertainty to hydrological 

impact estimates over 3,540 North American catchments. The following is a summary of the 

key findings.  

 
 K-means clustering and KKZ clustering are effective tools for choosing subsets of 

GCMs that cover the spectrum of climate projections. However, when taking the 

transferability of uncertainty to the hydrological world into account, KKZ mostly 

outperformed K-means. 

 
 No single subset of GCMs can simultaneously preserve uncertainty across multiple 

hydrological metrics. The optimal subset depends on the variable of interest: the models 

that best capture mean flows are not the same as those that best capture high or low 
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flows. Consequently, to achieve a high transferability of uncertainty, carefully selected 

climatic indices are crucial. For mean flows, indices such as mean temperature and 

annual precipitation (Seo et al., 2019) are almost as effective as the best performing 

pairs of indices. For both high and low flows, higher performance is obtained when 

using indices that are more closely associated with these extremes (e.g., Rx1day, 

R1mm, PRCPTOT, ΔT). 

 

 Expanding the selection space with additional indices does not necessarily improve 

transferability and may instead introduce redundancy, especially when variables are 

not directly linked to the hydrological and climatological dynamics of the system. In 

many cases, small, well-chosen subsets of indices outperform the full ETCCDI set. 

 
 The hydrologic metric taken into consideration determines how many GCMs are 

required. While high flow typically requires larger subsets to preserve uncertainty due 

to the increased sensitivity to extremes, mean and low flows are generally well 

represented with five GCMs. 

 
 The best-performing indices varied across catchments, with no consistent relationship 

to catchment characteristics. This demonstrates how GCM sub-selection is site-

specific, making it challenging to generalize best practices across regions. Finding 

index combinations that strike a balance between performance and transferability may 

consequently need regional or basin-scale research, possibly assisted by expert 

judgement.  
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In conclusion, the study shows that well-crafted subsets of GCMs, chosen with suitable indices 

and strong sampling techniques, can retain a significant amount of the uncertainty from 

complete ensembles, providing a computationally viable and reliable substitute for large-

sample hydrological impact analyses. 
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Figure S2.10 Boxplots of GCM contribution to total uncertainty in streamflow projections, 

calculated across all possible combinations of 5, 10, and 15 GCMs (out of a 20-member 

ensemble). Results are shown for five additional representative catchments, with the 

location of each catchment indicated on the accompanying map (red markers). 
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Figure 2.11 Same as Figure 2.7, but for subsets of 10 GCMs. 
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Abstract 

 

Efficient adaptation strategies to climate change require estimating future impacts and the 

uncertainty surrounding this estimation. Over- or under-estimating future uncertainty may lead 

to maladaptation. Hydrological impact studies typically use a top-down approach in which 

multiple climate models are used to assess the uncertainty related to climate model structure 

and climate sensitivity. Despite ongoing debate, impact modelers have typically embraced the 

concept of “model democracy” in which each climate model is considered equally fit. The 

newer CMIP6 simulations, with several models showing a climate sensitivity larger than that 

of CMIP5 and larger than the likely range based on past climate information and understanding 

of planetary physics, have reignited the model democracy debate. Some have suggested that 

hot models be removed from impact studies to avoid skewing impact results toward unlikely 

futures. Indeed, the inclusion of these models in impact studies carries a significant risk of 

overestimating the impact of climate change. 

 

This large-sample study looks at the impact of removing hot models on the projections of future 

streamflow over 3,107 North American catchments. More precisely, the variability of future 

projections of mean, high, and low flows is evaluated using an ensemble of 19 CMIP6 GCMs, 

5 of which are deemed “hot” based on their global equilibrium climate sensitivity (ECS). The 

results show that the reduced ensemble of 14 climate models provides streamflow projections 

with reduced future variability for Canada, Alaska, the Southwest US, and along the Pacific 

coast. Elsewhere, the reduced ensemble has either no impact or results in increased variability 
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of future streamflow, indicating that global outlier climate models do not necessarily provide 

regional outlier projections of future impacts. These results emphasize the delicate nature of 

climate model selection, especially based on global fitness metrics that may not be appropriate 

for local and regional assessments.  

 

3.1 Introduction 

 

Understanding the impact of climate change on water resources and hydrology is crucial for 

developing effective strategies for mitigation and adaptation (Eyring et al., 2019; Miara et al., 

2017). The output of hydrological (e.g. Karlsson et al. 2016), water quality (Prajapati et al., 

2023) and sediment transport (Sabokruhie et al., 2021) impact assessment studies is dependent 

on the choice of the future climate change projections. Hydrologists primarily use climate 

projection outputs from GCMs (e.g. Tabari, 2020) to study these impacts. The Coupled Model 

Intercomparison Project (CMIP) provides standardized metadata from coordinated simulations 

by different climate modeling groups (Meehl et al., 2007). The more recent CMIP6 (Eyring et 

al., 2016) is gradually replacing the widely used CMIP5 from the last decade (Hirabayashi et 

al., 2021; Martel et al., 2022; Y. Zhang et al., 2023). 

 

The concept of “model democracy” has been widely used in impact studies (e.g. Collins et al., 

2013; IPCC, 2014) despite criticism (Knutti, 2010). This approach considers climate 

simulations independent and equally plausible, and uses the ensemble mean and spread to 

define climate model uncertainty. Research has shown that the average of equally-weighted 

projections outperforms single models in simulating mean climatic patterns (Chen et al., 2017; 

Reichler & Kim, 2008). However, this approach may be less effective for CMIP6 ensemble as 

the validity of some simulations is under question (Hausfather et al., 2022). 

 

The CMIP6 ensemble includes a subset of “hot models” that predict greater warming than 

previous predictions made by CMIP5 (e.g. Kreienkamp et al., 2020). These hot models have a 

climate sensitivity that exceeds the expected plausible range, which is based on observations 

and our understanding of planetary physics. They also exhibit a higher equilibrium climate 
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sensitivity (ECS), a measure of the steady-state temperature increase in the event of doubled 

carbon dioxide (CO2) concentrations in the atmosphere (Flynn & Mauritsen, 2020; Zelinka et 

al., 2020). The ECS values' range in CMIP6 models has increased to 1.8–5.6 °C compared to 

2.1–4.7 °C in CMIP5, with an increase in multimodel mean of 3.9 °C in CMIP6 from 3.3 °C 

in CMIP5 (Zelinka et al., 2020).  

 

However, a plethora of evidence based on observations and our understanding of planetary 

physics indicate that we can confidently restrict the likely range of future warming trend and, 

more importantly, give less weight to extreme estimates (Liang et al., 2020; Tokarska et al., 

2020). Recently, more research has been focused on constraining the ECS based on historical 

and paleoclimatic data (Knutti, Rugenstein, et al., 2017; Sherwood et al., 2020) or emergent 

constraints (Cox et al., 2018; Nijsse et al., 2020; Shiogama, Watanabe, et al., 2022). For 

example, Sherwood et al. (2020) used multiple lines of evidence and concluded that the likely 

(with a 66% chance) ECS value is between 2.6°C and 4.1°C. Consequently, the most recent 

reports published by the Intergovernmental Panel on Climate Change (IPCC) have narrowed 

the likely ECS range to 2.5 and 4°C (IPCC, 2021). It should be noted that the uncertainty 

surrounding the cooling impact (both direct and indirect) of aerosols on radiative forcing poses 

challenges in constraining future warming estimates (Bellouin et al., 2020; Forster et al., 2013; 

Smith et al., 2021). In essence, the current historical measurements do not provide a clear 

understanding of whether we are in a scenario of high sensitivity, fast-warming, accompanied 

by strong contemporary aerosol cooling, or if the situation is the opposite.  

 

Climate change impact studies that include models with high ECS may be biased and may 

overestimate the magnitude of impacts (Hausfather et al., 2022). Using the full ensemble of 

CMIP6 projections without restricting the “hot models” may no longer be the most appropriate 

option for impact studies (Ribes et al., 2021). Incorporating climate models with high 

sensitivity into impact studies may potentially lead to an overestimation of the overall 

economic consequences arising from future climate changes (Shiogama, Takakura, et al., 

2022). For instance, Shiogama et al. (2021) proposed a subset selection method that involves 

screening out hot models as the first step. On the other hand, Palmer et al. (2022) found that 
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models with higher sensitivity better represent some key climatic processes over Europe. While 

they were unable to provide robust physical explanations for their findings, it is worth noting 

that at the regional scale, hot models may provide valuable information that may be more 

important than the global warming trend for impact modelers, adding to the complexity of 

selecting models for regional impact studies.  

 

The decision to weight climate models for impact studies remains controversial, but it is 

difficult to ignore the potential pitfalls of using hot models in these studies (Hausfather et al., 

2022). This study aims to evaluate how including or excluding hot models in a multi-model 

ensemble affects the results of a large-scale hydrological climate change impact study. This 

influence is measured in terms of the magnitude and uncertainty of various streamflow metrics 

for 3107 North-American catchments. 

 

3.2 Materials and Methods 

 

The data for this study was obtained from the HYSETS database, which contains 

hydrometeorological data from various sources for over 14,000 catchments in North America 

(Arsenault, Brissette, Martel, et al., 2020). The database includes all necessary data for the 

reference period of this study, including catchment boundaries (in the form of shapefiles), 

streamflow observations, weather observations (from stations as well as multiple gridded and 

reanalysis datasets), and static catchment descriptors such as area, slope, elevation, land-use 

fractions, and soil properties. This study used the ERA5 reanalysis dataset for meteorological 

data, which was found to be a reliable alternative to gauge observations in a previous large-

scale comparison study over the same study area (Tarek et al., 2020). To ensure 

representativeness, a subset of HYSETS catchments was selected using filters. First, 

catchments with drainage areas below 500 km2 were excluded because daily hydrological 

models would be inappropriate for modeling hydrological processes at smaller scales. Next, 

catchments required at least ten years of data to ensure sufficient data for successfully 

calibrating hydrological models and bias-correcting climate models. Overall, 3107 catchments 

were retained.  



73 

 

Table 3-1 presents the list of 19 CMIP6 GCMs selected for this study. This list includes 5 hot 

models, defined by their ECS greater than 4.1. These models are: CanESM5 (ECS: 5.62), 

NESM3 (ECS: 4.68), IPSL-CM6A-LR (ECS: 4.52), EC-Earth3-veg (ECS: 4.3), EC-Earcth3 

(ECS: 4.2). This study will be able to compare the uncertainty generated by the entire ensemble 

(19 models) to that of a reduced ensemble (14 models) obtained by removing the 5 hot models. 

 

The impact study in this paper uses a traditional top-down hydroclimatic modeling chain 

consisting of one shared socioeconomic pathway (SSP8.5), 19 CMIP6 GCMs, one bias 

correction method, and one hydrological model. The study focuses solely on GCM uncertainty 

and doesn't consider other components, such as alternative SSPs, bias correction methods, or 

hydrological models, which would add uncertainty to future projections. These have been 

explored in previous studies (e.g. Chen et al., 2011; Giuntoli et al., 2018; Troin et al., 2022; 

Wilby & Harris, 2006), and are outside the scope of this work. The reference period is based 

on the 1971-2000 time frame, while the future climate is based on 2070-2099. 
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Table 3.1 The 19 GCMs selected in this study and their corresponding ECS. ECS values 
were taken from either 1- Tokarska et al. (2020) or 2-Hausfather et al. (2022) 

 

GCM ECS 

CANESM5 5.621  

NESM3 4.681 

IPSL-CM6A-LR 4.521  

EC-Earth3-Veg 4.31  

EC-Earth3 4.21  

ACCESS-ESM1-5 3.882 

GFDL-CM4_gr1 3.892 

GFDL-CM4_gr2 3.892 

MRI-ESM2-0 3.141 

MPI-ESM1-2-LR 3.022 

BCC-CSM2-MR 3.011 

MPI-ESM1-2-HR 2.982 

FGOALS-g3 2.872 

GFDL-ESM4 2.621 

NorESM2-LM 2.601  

MIROC6 2.571  

NorESM2-MM 2.492 

INM-CM5-0 1.921 

INM-CM4-8 1.831 

 

Figure 3.1 illustrates the methodological framework for each study catchment. Precipitation 

and temperature data are first extracted from 19 CMIP6 climate models under the SSP8.5 

scenario for both the reference and future periods. Using precipitation and temperature from 

the ERA5 reanalysis over the reference period, climate data is then bias-corrected using the 
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MBCn method. These bias-corrected climate scenarios are subsequently employed as inputs 

for a calibrated hydrological model to compute streamflows. These computed streamflows are 

then used to examine the impact of including (or not including) 'hot' models in the impact 

study, using a set of defined metrics. Further details are provided below. 

 

 

Figure 3.1 Methodological framework performed for each of the study catchments 

 

Climate models are mathematical representations of the Earth's climate system, based on 

current understanding of its physics and chemistry. They are formulated using simplifying 

assumptions and parameterizations, but may not fully capture the complexity of the real 

climate system due to limited observations and understanding. As a result, climate models can 

be biased when compared to observations, due to factors such as model resolution, errors in 

reference datasets, and sensitivity to initial conditions. To ensure realistic impact simulations 

in impact studies, it is important to bias-correct climate model outputs. In this work, Cannon's 
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(2018) N-dimensional multivariate bias correction (MBCn) method was used to correct biases 

in daily precipitation and temperature. MBCn is considered the most advanced and efficient 

quantile-based multivariate bias correction method, as reported by studies such as Chen et al. 

(2018), Su et al. (2020), and Cannon et al. (2020). MBCn transfers the distribution of 

observational data to the corresponding distribution from the climate model while preserving 

its projection trends, crucial for climate change impact studies (Maraun, 2016). No 

downscaling was performed since this study was conducted at the catchment scale. 

 

In this study, the GR4J lumped rainfall-runoff model (Perrin et al., 2003) was chosen to 

simulate streamflows. The model was selected due to the large number of catchments, which 

made it infeasible to use more complex, distributed models. Additionally, lumped models use 

averaged temperature and precipitation at the catchment scale, which is more consistent with 

the scale of GCMs, eliminating the need for downscaling. Lumped models have been shown 

to perform well in simulating streamflows at catchment outlets (e.g. Dos Santos et al., 2018; 

Reed et al., 2004). The GR4J model is simple, efficient, and high-performing compared to 

other lumped conceptual models. It uses precipitation, potential evapotranspiration (PET), and 

catchment surface area as inputs. To account for snow accumulation in some catchments, the 

GR4J model is linked with the CemaNeige snow module (Valéry et al., 2014), resulting in a 

6-parameter model (GR4J_CN). The GR4J_CN model combination has been used in many 

studies, including climate change impact studies, and has been shown to perform well under a 

wide range of conditions (e.g. Riboust et al., 2019; Tarek et al., 2020; Wang et al., 2019). The 

calibration was performed using the Kling-Gupta Efficiency (KGE) metric. The KGE metric 

(Gupta et al., 2009) directly combines the bias, ratio of variance, and correlation into a single 

metric. It provides a more robust and refined assessment of model performance when 

calibrating hydrological models, addressing the drawbacks of the Nash-Sutcliffe Efficiency 

metric (NSE, Nash & Sutcliffe, 1970) (Knoben et al., 2019). Figure 3.2 presents the location 

of the 3107 retained catchments, each having a KGE calibration value above 0.5.     
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Figure 3.2 Study catchment location.  The color scale corresponds to the hydrological model 
KGE calibration score over the reference period. Only catchments with available data, KGE 

values higher than 0.5 and area larger than 500 km2 were selected 

 

The hydroclimatic modeling chain described above generated 19 different 30-year time series 

of daily streamflow for the 2070-2099 future period, each corresponding to one of the 19 

GCMs listed in Table 1. Three streamflow metrics were extracted from each 30-year time 

series, representing mass balance (Qmean) and high (Qmax) and low (Qmin) flows: 

● Qmean: obtained by averaging daily streamflow over the 30-year period. 

● Qmax: obtained by averaging the 30 annual maximum simulated streamflows. 

● Qmin: obtained by averaging the 30 annual minimum simulated streamflows. 

These metrics will be used to assess the impact of removing hot climate models across a range 

of flow conditions. 
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Figure 3.3 provides a schematic representation illustrating how the three dispersion metrics are 

interpreted in this study. It serves as a guide for understanding the spread (or uncertainty) of 

future streamflow projections. For the three streamflow metrics, 19 values from the original 

ensemble and 14 from the reduced ensemble for both the reference and future periods are 

extracted. The spread of the streamflow projections over the reference period is small, but it is 

not zero due to imperfect bias correction and the hydrology model's strong non-linear response 

to precipitation and temperature inputs. The spread is comparatively much larger in the future 

period, mainly due to differences in sensitivity and structure of the climate models.   

 

 

Figure 3.3 Representation of the dispersion metrics used in this paper. Each marker 
represents one of the 19 climate models. METRIC will either be Qmean, Qmax or Qmin, all 

having units of m3/sec 

 

Total spread (TS) is defined as the full range of future streamflow responses: 

 

  

 

(3.1) 
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The interquartile range (IQR) is defined as the distance between the 75th and 25th quantiles of 

the distribution as shown by the blue rectangle in the boxplot in Figure 3.3.  

 

 

 

(3.2) 

Finally, the standard deviation (σ) is the standard mathematical measure of dispersion. In the 

case of a normal distribution, the standard deviation and interquartile range are perfectly 

correlated, but this may not be the case for a skewed distribution.  

   

All three metrics have units of m3/s and are therefore dependent on catchment size and, to a 

lesser extent, mean annual precipitation. To account for this, the metrics will be presented in a 

non-dimensional form: 

 

 

 

(3.3) 

Where  and  respectively represent the total spread for the full and reduced ensemble. 

 varies between 0 and 1, with =1 meaning that no reduction in total spread was 

obtained by removing the five warm models from the ensemble, and = 0 signifies that the 

total spread of the reduced ensemble has been totally eliminated.  

 

Similarly, for the interquartile range ratio, we find: 

 

 

 

(3.4) 

However, in this case, the potential values vary in the 0 to ∞ range. More practically, a value 

below 1 indicates that the IQR has been reduced by removing the five hot models from the 

ensemble, whereas a value larger than 1 shows the opposite. The latter is possible if the 

removed models are somewhat close to the median of the ensemble. 
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Finally, for the standard deviation the following ratio is used: 

 

 

 

(3.5) 

where a value below 1 indicates a smaller standard deviation for the reduced ensemble, and 

the opposite for a value above 1.  has the same possible range of values as  (0 to ∞). 

 

3.3 Results 

 

Figure 3.4-a presents the box plots of projected temperature increases for each of the 3107 

catchments and for each climate model. The box plots provide a visual representation of key 

elements of the temperature increase distribution. The median of the distribution is shown as 

the red line near the centre of the blue rectangle, which delimits the interquartile range (Q75 

and Q25 for the upper and lower end of the rectangle). The whiskers represent the 2.5th and 

97.5th quantile of the distribution, providing a 95% coverage of the dataset. Quantiles below 

2.5 and above 97.5 are shown as dots. Results indicate that the distribution of projected 

temperature increases generally follows the same order as the ECS values presented in Table 

1. However, there are some differences, which are not unexpected as global-scale ECS values 

are compared to regional-scale ΔT values. The five hot models are ranked as the first, second, 

third, fifth, and sixth hottest regional models based on median values (considering that GFDL-

CMA gr1 and gr2, respectively fourth and fifth, are actually the same model with different 

spatial resolutions). 
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Figure 3.4 a) Distribution of projected temperature increase (ΔT) and b) 
projected relative annual precipitation increase (ΔP/P) for the 19 CMIP6 

selected model for the 2070-2099 future period, compared to the 1971-2000 
reference period. Each boxplot represents the distribution of projected 

increases for the 3107 study catchments. The climate models are ordered in 
terms of their global-scale ECS values, starting with the largest to the left. The 

boxplot whiskers correspond to the 2.5th and 97.5th quantiles and a few 
catchments that were beyond the Y-axis limits are not shown 
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Figure 3.4-b presents the boxplots of the projected changes in relative precipitation between 

the future and reference periods ( ). The boxplots depict the distribution of the 

projected precipitation changes for each of the 3107 catchments. Results indicate that the hot 

models, identified by their ECS values, are also among the models with the largest projected 

changes in relative precipitation. Specifically, the five hot models are all within the group of 

the eight wettest models. The models with more modest increases in precipitation (e.g., MPI-

ESM, ACCESS) are also among the cooler models. This trend is expected, as a warmer 

atmosphere can hold more moisture (up to 7% per °C, according to the Clausius-Clapeyron 

relationship), leading to more precipitation. Increased precipitation may mitigate the 

anticipated impacts of warmer models, such as increased evapotranspiration. 

 

In order to show regional patterns related to Figure 3.4, Figure 3.5 displays the mean ∆T (3-

5a) and mean ∆P/P (3-5b) ratios between hot models and normal models.  For temperature a 

red color indicates that hot models are warmer than the other models on average. For 

precipitation, blue colors highlight increased precipitation in the hot models compared to the 

normal models. Overall, the hot global models exhibit a systematically larger temperature 

increase over the entire study domain. The hot models mostly exhibit increased precipitation 

compared to the normal models.  However, the west coast of the U.S., as well as some 

catchments in the southwestern U.S., exhibit a decrease in precipitation according to the hot 

models. These observations underscore the regional variability in temperature and 

precipitation patterns when comparing hot and normal models. 
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Figure 3.5 Mean ∆T (a) and ∆P/P (b) ratios (hot models to normal 
models). For ∆T, a red color indicates that hot models, on average, 
are warmer than their normal (non-hot) counterparts. For ∆P/P, a 

blue color shows that hot models are wetter than their normal (non-
hot) counterparts. The graphs represent the differences computed 

between the future and reference periods 

 

Figure 3.6 presents the ratio of mean projected streamflow changes (hot models/normal 

models) for Qmean, Qmax and Qmin. A blue color indicates larger projected streamflows by the 

‘hot’ models. Results show spatial patterns which differ depending on the streamflow metrics. 

Hot models project higher mean flows over most of the study domain, except in the south-west 

regions, where increased evapotranspiration nullifies potential increases in precipitation.  For 

Qmax, increases are mostly localized in the Eastern US, whereas Qmin are widely increasing in 

Canada and mostly decreasing in the US.   
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Figure 3.6 Ratio of mean projected changes: ‘hot’ divided by 
normal models.  a): Qmean; b) Qmin; c): Qmax). A blue color shows 
that hot project larger streamflows than their normal (non-hot) 

counterparts 

 

Figure 3.7 presents the  for mean (Qmean), annual max (Qmax), and min (Qmin) streamflow 

obtained by removing the 5 hot models from the 19-member ensemble. A dark red color 
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indicates no reduction in TS with the reduced ensemble, while lighter colors indicate a 

reduction. It can be seen that there is a clear spatial pattern that is relatively similar for all three 

streamflow metrics. The largest reductions in TS are seen in the northern regions as well as in 

the US southeast, and along the US Pacific coast for Qmean and Qmin. For all other regions of 

the US, no reduction in TS is observed. The reduced spread observed in the northern regions 

is smaller for Qmax. Despite these trends, a lot of variability remains present, with neighbouring 

catchments sometimes showing contrasting behaviour. More specifically, 57.0% of the 

catchments see a decrease in TS for Qmean, 53.3% for Qmax and 61.7% for Qmin. 

 

The data from Figure 3.7 are shown in the form of boxplots in the left side of each panel to 

better illustrate the range of TS reduction. It shows that the median is relatively high for 

all three streamflow metrics: Qmean (0.96), Qmax (0.95) and Qmin (0.93). This is primarily 

because a significant number of catchments see no reduction in TS (43%, 46.7%, and 38.3% 

respectively). However, there is a significant reduction in TS observed in many catchments, 

and this decrease is strongly dependent on the geographical location of the catchments. 

Additionally, it can be seen that removing the hot models has a greater impact on Qmin than on 

the other two metrics. 
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Figure 3.7 Total spread ratio ( )  for Qmean (a), Qmax (b), and 
Qmin (c) resulting from the removal of the five hot models. Boxplots are 

shown in the left 

 

The is heavily impacted by outliers and may not accurately represent the overall spread 

of models. Figure 3.8 presents the  for the three streamflow metrics. A red color ( > 1) 

indicates that the model spread has increased following the removal of the hot models whereas 
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a blue color ( < 1) corresponds to a decrease. Results indicate that removing the hot models 

consistently reduces  in Canada for Qmean and Qmin, and to a lesser extent for Qmax. 

However, in CONUS, the results are more complex with a lot of regional variability. Removing 

outlier models in the north central, north-east, and southwest of the US results in an increase 

in  for both Qmean and Qmax. Overall, as shown in the boxplots of Figure 3.8, removing the 

hot models likely reduces the spread in roughly two-thirds of catchments, while one-third see 

an increase. These values are larger than those obtained for TS. The Trends seen in IQRnd is 

also very similar to that of  (see figures S3.10 and S3.11). 
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Figure 3.8 Standard deviation ratio ( ) for Qmean (a), Qmax (b), and Qmin  

(c) resulting from the removal of the five hot models. Boxplots are shown in 
the left side of each panel 

 



89 

3.4 Discussion 

 

Uncertainty is a key factor in assessing the impact of climate change. Different models and 

techniques, including various climate models, can lead to diverse climate projections and 

scenarios. Climate change interacts with other stressors, such as land use change and 

population growth, in complex and unpredictable ways, making it important to accurately 

address uncertainty in climate impact studies to develop effective adaptation measures. 

Incorrectly representing uncertainty can lead to poor adaptation. 

 

With the increased future temperatures, an intensification in the hydrological cycle is expected. 

However, it does not guarantee an automatic increase in water flow rates. This is because the 

rise in average temperature can also have a considerable impact on evapotranspiration. The 

outcome of these two factors working together is complex and varies based on the geographical 

location and primary climate zones. The research paper indicates that regions characterized as 

‘hot’ tend to be associated with increased precipitation, further complicating the relationship 

between temperature and water flow. 

 

Results show that removing the “hot models” is likely to reduce the spread of three streamflow 

metrics. Between 60% and 75% of catchments show a decrease in the spread of future 

streamflow projections, indicating that the hot models are outliers or further from the mean 

than the average model. In such cases, keeping the hot models would result in an 

overestimation of future streamflow uncertainty. However, removing the hot models also led 

to an increase in the spread in certain regions, indicating overconfidence in the results. This 

means that while the hot models are outliers with respect to ECS, they may not be outliers with 

respect to impact studies. Generally, a reduction in spread was evident in northern regions such 

as Canada and Alaska, as well as the coast of California and the southeastern region of the US. 

Shiogama, Watanabe, et al., (2022) also concluded that the inclusion of hot models leads to an 

overestimation of annual mean precipitation increases in Alaska, Canada, and the western 

United States, where there is a substantial decrease in the variability of streamflow metrics. 
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A reduction in the spread of future streamflow is expected when removing the hot models or 

reducing the number of climate models. A bootstrap methodology was used to determine if the 

changes in spread were due to a reduction in the number of models. This was conducted by 

selecting a random sample of 14 (out of 19) models 100 times and computing the average 

standard deviation ratio. This was repeated for all catchments and the aggregated results are 

shown in Figure 3.9. 

 

The results indicate that removing five random models results in a decrease in the standard 

deviation ratio almost 75% of the time for all three streamflow metrics, but the median spread 

reduction ratio for this spread metric is extremely small (about 0.99 for all three streamflow 

metrics). This shows that removing the 5 hot models has a much larger impact than removing 

5 random models. The spread reduction observed in many catchments is therefore not solely 

related to a reduction in the number of models. 

 

 

Figure 3.9 Boxplots of the average standard deviation ratio 
for Qmean, Qmax, and Qmin resulting from the removal of 5 
random models, after sampling 100 random combinations 

of 5 models 
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At first glance, there is a strong physical reasoning for removing climate models with 

equilibrium climate sensitivity (ECS) exceeding values expected from current data and 

understanding of planetary physics (Ribes et al., 2021; Shiogama et al., 2021). However, it 

should be noted that most impact studies are conducted at the regional or local scale and these 

models may not be considered outliers at these scales. This study found that while globally hot 

models may still be among the hottest in the study domain, they are not consistently the hottest, 

raising questions about whether their global behavior should automatically eliminate them 

from regional studies. 

 

In this study, the climate performance of these models (such as their ability to represent 

climatic, hydroclimatic, or hydrological metrics) was not evaluated. The goal was to examine 

the impact of removing 5 hot models from a 19-member ensemble. However, it is important to 

note that judging climate models based solely on their ECS values may result in the removal 

of models that have desirable characteristics at the regional scale (e.g. Palmer et al., 2022). 

Additionally, keeping hot models may also be useful from an impact perspective as they may 

provide a clearer picture of future changes, as internal variability is less likely to obscure 

changes. This is similar to the rationale behind using high-emission scenarios in impact studies, 

such as SSP8.5, even though they may not be considered realistic scenarios anymore (e.g. 

Hausfather & Peters, 2020). It is important to consider worst-case scenarios when analysing 

potential outcomes, as high levels of greenhouse gas emissions, or high model sensitivity, such 

as those projected in SSP8.5 or high ECS models, are not unrealistic, even though they may be 

less likely. While it is valuable to consider these high-end scenarios, it should be made clear 

that they are indeed worst-case scenarios. 

 

In this study, the question of whether to remove the “hot models” for impact studies is complex. 

Results showed that for about one-third of all catchments, removing these models increased 

the future uncertainty of streamflow. This suggests that these “hot outliers” may not always be 

“hydrological outliers” when put through a hydrological modeling process. Hydrological 

models are well-known for being highly non-linear integrators of weather variables such as 

temperature and precipitation, and these results align with findings from other studies that have 
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demonstrated the complex relationship between climate model projections and hydrological 

projections (e.g. Chen et al., 2016; Ross & Najjar, 2019). The fact that the CMIP6 hot climate 

models tend to be wet models may also be a factor in these results, as increased 

evapotranspiration could be offset by increased precipitation, leading to somewhat average 

results for the wrong reasons. 

 

The regional impact of model importance is also compared (see figures S3.12 and S3.13 

supporting information), which demonstrate the total spread ratio resulting from removing a 

single climate model and creating an 18-member ensemble. CanESM5 (Figure S3.12) and 

NESM3 (Figure S3.11) have the highest global sensitivity in this study. Removing CanESM5 

leads to a clear reduction of total spread in Alaska and Yukon (for Qmean and Qmin) and in the 

Southeast USA for Qmax, indicating that CanESM5 is an outlier in these regions. Conversely, 

removing NESM3 does not result in significant decreases in spread over most of the study 

domain, as the high ECS value of NESM3 does not automatically translate into a 

correspondingly higher level of regional warming (see also Figure 3.4), demonstrating that it 

is not an outlier in most regions. This underscores the strong regional differences among 

globally identified hot models. 

 

The only uncertainty in this study is that originating from GCM/EMSs. As stated earlier, in 

most impact studies, additional sources of uncertainty would also be incorporated. Additional 

greenhouse gases emissions scenarios would be selected as well as other impact models (e.g. 

hydrology models). Downscaling and additional bias correction may be performed. These 

additional components are likely to generate additional uncertainty which may, in some cases, 

dwarf that of climate models.  As such, many of the differences observed in this paper between 

the original and reduced climate model ensembles may have little impact on the final 

uncertainty estimation. For example, for low flows, many studies have shown that most of the 

uncertainty lies within the hydrology models (e.g. Giuntoli et al., 2018; Krysanova et al., 2018; 

Trudel et al., 2017) and removing climate models would have no impact on uncertainty.    
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The results show that there is no simple answer as to whether or not including hot models in 

climate change impact studies. In the absence of any computational limitations, we would 

recommend using as many climate models as possible and study a posteriori the impact of 

including hot models or not. If a selection of a subset of climate models is necessary (whether 

due to computational constraints or to avoid redundant or poorly performing models) removing 

hot models may be a reasonable option. Evaluating climate model fitness for impact studies is 

a difficult endeavour, and in addition to ECS, additional performance metrics should also 

carefully be taken into account.  

 

3.5 Conclusion 

 

This study examines the impact of removing a subset of hot climate models on the spread of 

future projections of streamflow for 3,107 North American catchments. Three streamflow 

metrics were considered: mean annual streamflow, as well as the mean of the annual maximum 

and minimum streamflow, over the reference period (1971-2000) and future period (2070-

2099). 

 

Hot climate models are determined based on their global equilibrium climate sensitivity (ECS), 

whereas impact studies typically focus on the local to regional scale. The hot climate models 

remain among the hottest in our regional evaluation, but they also tend to be among the wettest, 

potentially leading to a complex hydrological response. 

 

Our research revealed mixed impacts of removing the hot climate models. A decrease in the 

variability of projected streamflow metrics was generally observed in Canada and Alaska, the 

southeast US, and the Pacific coast of the US. However, in other regions, removing the hot 

models resulted in no changes, and in some cases, even increases in the variability of projected 

flows. This suggests that the hot models are not necessarily hydrological outliers, raising 

questions about using global performance metrics rather than regional ones for model 

selection. 
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The findings of this study emphasize the importance of carefully selecting climate models and 

the potential risks of including inadequate models in impact studies. In the absence of 

constraints, it is recommended to use as many climate models as possible in determining 

impact uncertainty and to assess the impact of subsets of climate models (based on high global 

equilibrium climate sensitivity or other performance metrics) a posteriori to assess the 

sensitivity of the impact model to climate model selection. These results highlight the need for 

further research on climate model fitness and the proper selection of model subsets for impact 

studies. 

 

3.6 Code and data availability.  

 

The hydrometeorological data used in this study was obtained from the HYSETS database, 

which is available at  https://doi.org/10.17605/OSF.IO/RPC3W (Arsenault et al., 2020). The 

CMIP6 GCM model outputs are accessible through the Earth System Grid Federation Portal 

at Lawrence Livermore National Laboratory (https://esgf-node.llnl.gov/search/cmip5/). The 

processed data and the used codes are available via contacting the authors.  
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3.9 Supplementary material 

 

 

Figure S3.10 Change in the IQR ratio for Qmean (a), Qmax 
(b), and Qmin (c) resulting from the removal of the five hot 

models 
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Figure S3.11 Boxplots of change in the interquartile range ratio 
 for Qmean, Qmax and Qmin resulting from the removal of 

the 5 hot models. A few outliers are beyond the Y-axis limits 
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Figure S3.12 Total spread ratio for Qmean (a), Qmax (b), and 
Qmin (c) resulting from the removal of a single climate model 

(CanESM5) 
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Figure S3.13 Total spread ratio for Qmean (a), Qmax (b), and 
Qmin (c) resulting from the removal of a single climate 

model (NESM3) 
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Abstract 

 

Climate change impact studies use ensembles of General Circulation Model (GCM) 

simulations. Combining ensemble members is challenging due to uncertainties in how well 

each model performs. The concept of model democracy, where equal weight is given to each 

model, is common but criticized for ignoring regional variations and dependencies between 

models. Various weighting schemes address these concerns, but their effectiveness in impact 

studies remains unclear due to the absence of future observational data.  

 

This study evaluated the impact of six weighting strategies on future streamflow projections 

using a pseudo-reality approach, where each GCM is treated as “the true” climate. The analysis 

involved an ensemble of 22 CMIP6 climate simulations and used a hydrological model across 

3,107 North American catchments. This study implemented two approaches: one with bias 

correction applied to precipitation and temperature inputs, and one without. Weighting 

schemes were evaluated based on biases relative to the pseudo-reality GCM for annual mean 

temperature, precipitation and streamflow. 

 

Results show that unequal weighting schemes produce improved precipitation and temperature 

projections than equal weighting. For streamflow projections, unequal weighting offered minor 

improvement only when bias correction was not applied. However, with bias correction, both 

equal and unequal weighting delivered similar results. While bias correction has limitations, it 

remains essential for realistic streamflow projections in impact studies. A pragmatic strategy 
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may be to combine model democracy with selective model exclusion based on robust 

performance metrics. This study emphasizes the need for careful approaches and further 

research to manage uncertainties in climate change impact studies.  

 

4.1 Introduction 

 

To assess the impacts of climate change on hydrology, researchers often rely on projections 

from global and regional climate models (GCMs and RCMs) (Chen et al., 2012; Hagemann et 

al., 2013; Reshmidevi et al., 2018). Typically, outputs from these models are post-processed 

(i.e., downscaled and/or bias-corrected) before being used by hydrologic models to simulate 

future hydrologic conditions (e.g., Raulino et al., 2021). The varying spatial and temporal 

resolutions, along with differences in the representation of physical processes and feedback 

mechanisms among GCMs, lead to diverse climate sensitivities and a broad range of future 

climate projections. While this variability is widely recognized as a primary source of 

uncertainty (Hausfather et al., 2022; Li et al., 2023; Murphy et al., 2004; Prein et al., 2020; 

Stainforth et al., 2007), it is essential for capturing the spectrum of plausible future conditions 

(Hallegatte, 2009). However, this is compounded  by numerous other sources of uncertainty 

(Merrifield et al., 2020; H. Wang et al., 2020). 

 

Using ensembles of climate models is widely accepted as the best strategy to tackle this 

uncertainty (Giuntoli et al., 2018; Tebaldi & Knutti, 2007). A common approach for presenting 

results from such multi-model ensembles is by providing a best estimate along with an 

uncertainty range or a probabilistic distribution (Brunner et al., 2020). However, there is no 

consensus on the most effective method to integrate the outcomes from multiple GCMs. 

Traditionally, these simulations have been combined by treating each climate model as equally 

plausible (e.g. Lawrence et al., 2021), a practice known as “model democracy”, which assumes 

all models are equally capable of simulating past and future climates (Chen et al., 2017; Knutti, 

2010).  
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Model democracy is critiqued primarily for two reasons. First, GCMs’ performance in 

reproducing climatic patterns varies by location and variable (Abramowitz et al., 2019), 

suggesting model democracy might not be the best choice in regions where some models 

perform worse than others (Knutti et al., 2013; Lorenz et al., 2018). Second, averaging equally 

weighted models assumes independence within an ensemble. However, this assumption is 

often proven incorrect, especially in ensembles like CMIP5 and CMIP6 (Sanderson et al., 

2017), since simulations from the same research group may differ only in resolution, and there 

has been extensive sharing among climate modeling centers, including shared coding and 

parameterization schemes (Eyring et al., 2019; Knutti et al., 2010). Consequently, the number 

of truly independent models in these ensembles is likely lower than it appears (Merrifield et 

al., 2020), which can skew results by duplicating similar information and adding little 

knowledge to the ensemble (Knutti et al., 2017; Wang et al., 2019). 

 

To mitigate these issues, several studies have explored assigning different weights to climate 

model simulations based on historical performance, resulting in more confidence in the 

projections compared to simple averaging (e.g. Lorenz et al., 2018; Palmer et al., 2023; Yuan 

et al., 2020). Other studies have accounted for model interdependence in their weighting 

schemes (Brunner et al., 2019; Di Virgilio et al., 2022; Easterling et al., 2017; Liang et al., 

2020; Massoud et al., 2019; Sanderson et al., 2015, 2017). However, selecting the ideal set of 

weights for climate simulations that considers interdependence is challenging and somewhat 

subjective (Herger et al., 2018), with a risk of information loss due to inappropriate weighting 

(Weigel et al., 2010).  

 

In hydrological impact studies, a common method to weight or select GCMs assesses their 

capability to effectively depict historical climate conditions such as temperature and 

precipitation (Chen et al., 2017; Kolusu et al., 2021; Massoud et al., 2019; Padrón et al., 2019; 

Ruane & McDermid, 2017). While some studies highlight the benefits of weighting (e.g., 

Massoud et al., 2019), others note that weighting climate models only slightly affects 

streamflow projections derived from GCMs (e.g., Chen et al., 2017; Kolusu et al., 2021).  
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Recent impact assessment studies have utilized streamflow values to weigh simulations 

(Castaneda-Gonzalez et al., 2023; Dong et al., 2021; Giuntoli et al., 2021; Wang et al., 2019; 

Yang et al., 2017). For instance, Castaneda-Gonzalez et al., 2023, found that unequal weights 

improve the accuracy of representing mean annual and seasonal hydrographs during the 

reference period. Wang et al., (2019), noted that when using raw GCM outputs to simulate 

streamflows, applying streamflow-based weighting schemes enhanced the reproduction of 

observed mean hydrographs better than using weights based on climate variables. However, 

the impact of weighting diminished once bias correction was applied to the GCM outputs.  

 

The effectiveness of climate model weighting is often benchmarked against equal weights 

(model democracy) by evaluating their performance in reproducing observed climate variables 

over a reference period (e.g., Chen et al., 2017). To further assess the suitability of these 

weights for a specific application, a calibration–validation framework can be employed, in 

which historical data is divided into two sets: one for calibrating the weights and the other for 

testing the sub-ensemble's performance (e.g. Bishop & Abramowitz, 2013). This approach is 

limited for the majority of regional to global climate applications due to the lack of high-quality 

observational data, which, depending on the region and variable, usually spans no more than 

60 years (Abramowitz et al., 2019). Another limitation is the absence of future observational 

data, which makes it impossible to directly evaluate model performance in future scenarios. 

Thus, most studies on the efficiency of climate model weighting for future streamflow 

projections focus on whether unequal weights produce different future projections (e.g. Lorenz 

et al., 2018). While improving the skill scores during the reference period is important (Eyring 

et al., 2019), comprehensive out-of-sample testing is crucial to validate weighting methods for 

future projection periods (Abramowitz et al., 2019; Herger et al., 2018). However, only few 

studies have explored how well these schemes perform in future scenarios for their intended 

application by using pseudo-reality testing (Abramowitz et al., 2019; Abramowitz & Bishop, 

2015; Bishop & Abramowitz, 2013; Brunner et al., 2020; Herger et al., 2018; Knutti et al., 

2017; Sanderson et al., 2017; Shin et al., 2020).  
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In this context, our study aims to address a critical gap by investigating how different climate 

model weighting strategies influence hydrological impact assessments, specifically in the 

context of future projections where observational data is unavailable. One approach to 

overcome this challenge is pseudo-reality (or model-as-truth) testing, which involves selecting 

a climate model simulation as a “pseudo-reality” and treating it as true observed data for both 

reference and future periods (Abramowitz et al., 2019; Brunner et al., 2020; Herger et al., 2018; 

Shin et al., 2020). The remaining models are then calibrated to the pseudo-reality during the 

reference period, after which the ensemble’s performance is evaluated for future conditions 

using the known projections of the “truth” member as a benchmark. By doing so, we can 

provide a more robust validation framework for evaluating weighting schemes in future 

hydrological projections, which is not possible with real-world data alone (Herger et al., 2018; 

Knutti et al., 2017). By comparing different weighting schemes against this pseudo-reality, 

researchers can infer their effectiveness for future projections (Chen et al., 2020; Hernanz et 

al., 2022; Mendoza Paz & Willems, 2023). This study contributes to the ongoing debate on 

model weighting effectiveness by offering a thorough evaluation of multiple weighting 

schemes, including equal and random weighting as benchmarks. By conducting multiple 

iterations of the pseudo-reality method across various climate variables and geographic 

regions, we aim to gain a nuanced understanding of the sensitivity of these schemes. 

Ultimately, our goal is to provide valuable insights into how climate model weighting 

influences hydrological impact assessments, helping to better inform adaptation and mitigation 

strategies. 

 

4.2 Materials and Methods  

 

4.2.1 Study Area and Data 

 

In this study, catchments were selected from the comprehensive HYSETS database, which 

includes data from 14,425 catchments across North America (Arsenault et al., 2020b). For our 

analysis, 3,107 catchments were chosen to ensure coverage across the entire North American 

continent. The selection criteria included a minimum drainage area of 500 km² to avoid flashy 
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catchments due to the daily scale of data, and at least 10 years of data availability, as dictated 

by the requirements of the hydrological models used. While no upper area limit was imposed, 

97.5% of the selected catchments had areas smaller than 11,000 km², with the largest being 

650,000 km². This is comparable to the range suggested by Giuntoli et al. (2015) where 

catchments are selected to be of comparable size to the grid  cell resolution of the global 

models, and our results show no significant effect of catchment size on the regional consistency 

of the hydrological simulations. The spatial distribution of these catchments is illustrated in 

Figure 4.1. Additionally, the meteorological data required for our study were obtained from 

the ERA5 reanalysis dataset. While ERA5 performance varies by variable and region, it has 

been shown to provide reliable precipitation estimates in extratropical regions, which include 

much of our study area (Lavers et al., 2022). This dataset has been demonstrated to perform as 

good as using observational data in hydrological modelling over most of the USA, without the 

problems related to missing data, thus ensuring complete temporal coverage (Tarek et al., 

2020). 
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Figure 4.1 Map of the 3,107 catchments used in this study. The color code represents the 
hydrological model Kling–Gupta efficiency (KGE) calibration score over the reference 
period.  In the case of nested catchments, the smaller ones were plotted on top of larger 

catchments. 

 

4.2.2 Modelling Chain 

 

Following the standard procedures for hydrological climate change impact analysis, a top-

down hydroclimatic modeling chain was used (as outlined in Arsenault et al., 2020a; 

Rahimpour Asenjan et al., 2023). Precipitation and temperature data were extracted from 22 

CMIP6 climate models under the SSP5-8.5 scenario for both the reference and future periods. 

Table 1 lists the 22 CMIP6 GCMs used in this study, along with their corresponding 

Equilibrium Climate Sensitivity (ECS) values. ECS is a metric indicating the expected rise in 

Earth's average surface temperature in response to a doubling of carbon dioxide concentrations 

in the atmosphere, relative to pre-industrial levels, upon reaching equilibrium. The reference 

period for this analysis is 1971–2000, with future climate projections covering the period 

2071–2100. Figure 4.2 displays the projected changes in temperature (difference between the 
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future and reference periods) and precipitation (change ratio, calculated as (future P - reference 

P) / reference P) between the reference (1971-2000) and future (2071-2100) periods for all 22 

GCMs. The ECS values among the GCMs varied between 1.83 to 5.62 °C, highlighting the 

diverse responses of different models to climate change scenarios and emphasizing the 

potential significance of weighting model selection. It has been suggested that GCMs with 

higher ECS values may present less realistic or less probable future scenarios (Hausfather et 

al., 2022). Consequently, the exclusion (Rahimpour Asenjan et al., 2023) or down-weighting 

(Massoud et al., 2023) of these models could be considered, making ECS a critical factor in 

the weighting of models. 
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Table 4.1 The 22 GCMs selected in this study and their 
corresponding ECS. ECS values were taken from either 1- Tokarska 
et al., (2020) or 2-Hausfather et al., (2022). The models are listed by 

their ECS values 

 

GCM ECS Modeling Center 

CanESM5 5.621 CCCma 

NESM3 4.681 NUIST 

IPSL-CM6A-LR 4.521 IPSL 

EC-Earth3-Veg 4.31 EC-Earth-Consortium 

EC-Earth3-CC 4.232 EC-Earth-Consortium 

EC-Earth3 4.21 EC-Earth-Consortium 

EC-Earth3-Veg-LR 4.22 EC-Earth-Consortium 

GFDL-CM4_gr1 3.892 NOAA-GFDL 

GFDL-CM4_gr2 3.892 NOAA-GFDL 

ACCESS-ESM1-5 3.881 CSIRO 

KIOST-ESM 3.362 KIOST 

MRI-ESM2-0 3.141 MRI 

MPI-ESM1-2-HR 3.022 DKRZ 

BCC-CSM2-MR 3.011 BCC 

MPI-ESM1-2-LR 2.982 MPI-M 

FGOALS-g3 2.872 CAS 
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Table 4.2 The 22 GCMs selected in this study and their 
corresponding ECS. ECS values were taken from either 1- Tokarska 
et al., (2020) or 2-Hausfather et al., (2022). The models are listed by 

their ECS values (continued) 

 

GCM ECS Modeling Center 

GFDL-ESM4 2.621 NOAA-GFDL 

NorESM2-LM 2.601 NCC 

MIROC6 2.571 MIROC 

NorESM2-MM 2.492 NCC 

INM-CM5-0 1.921 INM 

INM-CM4-8 1.831 INM 

 

The study involves two experiments. In the first experiment, uncorrected (raw) GCM data is 

used. For the second experiment, the multivariate bias correction (MBCn) method (Cannon, 

2018) is applied to the climate data, with bias correction performed exclusively using the 

pseudo-reality GCM data. In this approach, pseudo-reality is treated as the true climate 

condition, and the GCM data is corrected based on this assumed truth. Typically, bias 

correction relies on observed real-world data (e.g. Mendez et al., 2020), but in this case, 

pseudo-reality was used to establish a hypothetical baseline (Hui et al., 2019; Maraun, 2012; 

Schmith et al., 2021). This allows us to apply bias correction in a controlled environment where 

the “true” future climate is also known, ensuring that the corrected GCM data aligns more 

closely with these hypothetical true conditions (Chen et al., 2020; Schmith et al., 2021). 

Subsequently, both the raw and bias-corrected climate data were used as inputs for a pre-

calibrated hydrological model, which then generated streamflow simulations.  
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Figure 4.2 Projected temperature (a) and precipitation (b) changes between the reference 
(1971-2000) and future (2071-2100) periods over all 3,107 catchments for all 22 GCMs 

 

The HMETS conceptual lumped rainfall–runoff model was used for simulating streamflow 

(Martel et al., 2017). The HMETS model operates on a daily time scale, with both inputs and 

outputs at this temporal resolution, and has demonstrated effective performance in previous 

hydrological studies (e.g., Tarek et al., 2021). It was calibrated using the Kling-Gupta 

Efficiency (KGE) objective function (Kling et al., 2012; Kling & Gupta, 2009) with 

streamflow observation data and ERA5 data spanning 1981-2018. The calibration process’s 

duration varied depending on the availability of streamflow data for each catchment, requiring 

at least 10 years of observation data, including a 2-year warm-up period, entailed and 10,000 

model evaluations using the SCE-UA (Shuffled Complex Evolution - University of Arizona; 

Duan et al., 1994) algorithm. The studied watersheds have a minimum KGE value of 0.5, 

indicating a satisfactory performance of the hydrological model (see Figure 4.1). 
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4.2.3 Overview of the weighting strategies 

 

In this study, six weighting methods were employed to aggregate the outcomes of the 

hydrological model, as detailed in Table 4.2. These methods were selected based on recent 

literature to ensure a comprehensive evaluation of different criteria, including GCM 

performance, model independence, and the inclusion of random and equal weighting for 

comparison. These methods are described below.  

 

Table 4.3 Weighing methods used in this study  

 

Method   Description  References 

RAC  Evaluating how closely models match pseudo reality series 

in terms of annual cycles 

 Wang et 

al., 2019 

REA  Weights are assigned based on independence and 

convergence, considering the models' consistency and 

convergence towards collective projections. 

 Giorgi & 

Mearns, 

2002 

Skill  Weights are assigned based on the skill of reproducing the 

annual means, prioritizing models with higher skill. 

 Sanderson 

et al., 2017 

BMA  Weights are assigned based on Bayesian model averaging 

of equilibrium climate sensitivity (ECS) value 

 Massoud et 

al., 2023 

Equal  Weights are assigned equally   

Random  Weights are assigned randomly to models for 

benchmarking and comparison 

  

 

4.2.3.1 Representation of the Annual Cycle (RAC) 
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The Representation of the Annual Cycle (RAC) skill score measures the similarity between a 

climate simulation series and the pseudo-reality series in terms of their annual cycles, as 

defined in equation 1. It calculates the correlation coefficient (r) between the monthly pseudo 

reality and simulated series, with the maximum correlation (r0) set to 1 for this study. To apply 

this analysis, we aggregate the daily data to a monthly temporal scale. This aggregation is 

necessary because the RAC method is designed to capture larger-scale seasonal and annual 

patterns. Additionally, the parameter σ = σs / σo represents the ratio between the standard 

deviations of the monthly simulated series and the monthly pseudo reality series. The RAC 

method aims to quantify the degree of resemblance between the simulated and pseudo reality 

annual cycles (Wang et al., 2019). 

 

 
(4.1) 

  

4.2.3.2 Reliability Ensemble Averaging (REA) 

 

The Reliability Ensemble Averaging (REA) technique assigns weights to GCMs based on the 

model's performance criterion, which evaluates how accurately it reproduces the pseudo reality 

in the reference period, and the model convergence criterion, assessing the extent to which a 

GCM aligns with the multi-model mean in future projections. This indicates its consistency 

and convergence toward collective model projections (Giorgi & Mearns, 2002). The 

convergence criterion assumes that models that closely follow the collective behavior of the 

ensemble are more reliable. However, we recognize that this assumption may overlook the 

potential value of outlier models, which could offer important information in certain cases.  

The REA framework evaluates the reliability of a GCM based on several factors, including 

natural climate variability (ε), determined from the range between the maximum and minimum 

20-year moving averages of yearly observations, as shown in equation 4.2. It also considers 

the bias ( ) of a simulation compared to the observational climatological means and the 

distance ( ) between the projected change by a given model and the REA-weighted mean 

change. If the absolute value of the bias or distance is smaller than the climate variability (ε), 
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indicating that the model's deviation falls within natural variability, the climate simulation is 

considered reliable. This reliability condition is expressed as ε/| | or ε/| | being set to 1. The 

parameters m and n represent the weights assigned to the performance and convergence 

criteria, respectively, with both set to 1 in this study. 

 

 (4.2) 

 

4.2.3.3 Skill 

 

The “Skill” weighting method assesses model performance relative to historical climate data 

to allocate weights to each model within ensemble Projections (Massoud et al., 2019; Wootten 

et al., 2020). Models that more accurately reflect pseudo reality data receive higher weights, 

thus having a greater influence within the ensemble. The weights, , are calculated 

according to equation 4.3 (Sanderson et al., 2017), based on the RMSE distances (δi(obs)) 

between each climate simulation and the pseudo-reality scenario. The index i corresponds to 

each individual model within the ensemble. The radius of model quality, , determines the 

degree to which models with lower skill are down-weighted, fixed at 0.9 similar to Massoud 

et al. (2019). By adjusting model weights according to their skill levels, this method favors 

models with superior performance while reducing the impact of less skillful ones. 

 

 
(4.3) 

 

4.2.3.4 Bayesian Model Averaging (BMA)  

 

Bayesian Model Averaging (BMA) optimizes the likelihood function to ensure that the 

combination of models best matches the target distribution (Massoud et al., 2020). In this 

study, the ECS values are estimated by the IPCC AR6 as the target distribution, represented 

by a gamma distribution with a range of 2.5–4 °C and a peak near 3 °C (similar to Massoud et 

al., 2023). For each test, a variety of combinations (n=15,000) of model weights is 



113 

systematically sampled to find those that result in model combinations with the highest 

likelihood of matching the desired target field. 

 

4.2.3.5 Equal weights and random weights 

 

Equal weights and random weights are used as benchmarks for comparison in this study. Equal 

weights allocate the same importance to each model in the ensemble, ensuring all models 

contribute equally to the final outcome. Random weights are assigned from a uniform 

distribution between 0 and 1. The weights for each catchment and experiment are randomized, 

using one of the 22 GCMs as the pseudo-reality. Both equal and random weights are 

normalized to sum to 1. 

 

4.2.4 Experiment Design 

 

The main methodological steps are depicted in Figure 4.3. Specifically, Figure 4.3-a illustrates 

the steps for evaluating the performance of each weighting method for both future precipitation 

and temperature, while Figure 4.3-b shows similar steps for future streamflows. Given the 

potential risk of selecting one of the 22 GCMs as the pseudo-reality, where picking an outlier 

could skew results, each GCM is alternately used as the pseudo-reality, with the remaining 21 

GCMs evaluated against it. Using a larger number of simulations allows us to better 

differentiate between structural differences and internal variability, an issue that earlier studies 

with fewer simulations struggled to address (Deser et al., 2020). The steps in Figure 4.3 are 

carried out for each catchment and for each of the six weighting methods, necessitating a total 

of 18,642 repetitions (3,107 catchments x 6 weighting methods). Weights are determined based 

on the similarity between each of the remaining GCMs and the one chosen as pseudo-reality 

over the reference period (1971-2000), with all weights normalized to sum to one. For the 

future period (2071-2100), weighted precipitation and temperature estimates are derived using 

the weights from the reference period. The bias between these weighted estimates and those 

from the pseudo-reality GCM is calculated for each catchment. This process is repeated 22 

times, once for each GCM as pseudo-reality, resulting in 22 bias (bi) values for each weighting 
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scheme. To assess the performance of each weighting scheme, the median of these 22 bias 

values is used. 

 

 

 

Figure 4.3 Main methodological steps (a) for the evaluation of the performance of each 
weighing method for precipitation (shown as P) and temperature (not shown). A = {GCM1, 

GCM2, GCM3, …, GCM22}, and bias = median {b1, b2, b3, …, b22}. Additional 
methodological (b) steps for the evaluation of the performance of each weighing method for 

streamflow metrics 

 

To assess the impact of weighting on streamflow values, it is necessary to include an additional 

step of bias correction, as detailed in Figure 4.3-b. Numerous studies have indicated the 

necessity of bias-correcting precipitation and temperature values to obtain realistic outputs 
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from impact model such as streamflows (Cannon et al., 2020; Dinh & Aires, 2023; Maraun, 

2016). Due to the inherent limitations of climate models, using uncorrected simulations often 

leads to systematic discrepancies when compared to projections that have undergone bias 

correction (Dinh & Aires, 2023; Ehret et al., 2012; Räty et al., 2014). However, it is important 

to acknowledge that bias correction introduces additional uncertainty into the modeling 

process, as it may reduce inter-GCM variability and obscure some of the original 

characteristics of the climate models (Ehret et al., 2012). 

 

A significant issue is that GCMs do not directly produce streamflow values. While they do 

generate runoff values at each computational grid point, these values are not routed through a 

catchment outlet, which is essential for accurately simulating streamflows. Furthermore, the 

resolution of GCMs is often too coarse to effectively represent water fluxes in the stream 

network. To address this, a calibrated hydrological model (as previously described) was 

employed to generate streamflow for each catchment using precipitation (P) and temperature 

(T) data from the chosen pseudo-reality GCM (GCMi). For the other 21 GCMs (GCMk), 

precipitation and temperature values were bias-corrected to align with those of the pseudo-

reality GCMi. This adjustment allows for the computation of streamflow values using the bias-

corrected P and T with the calibrated hydrological model. In this study, we matched the GCM 

meteorological forcing to the lumped hydrological model by using the mean of all included 

grid points within the watershed or, if none were available, the closest grid point to ensure 

accurate simulations. It is important to note that the hydrological model is calibrated using 

observation data. While the absolute performance of the hydrological model is important, our 

primary focus remains on effectively representing the key underlying hydrological processes. 

As long as these processes are reasonably represented, the hydrologic model's absolute 

performance may not be of critical concern. The input data for the hydrological model 

comprises GCM data, which has been bias-corrected against the pseudo-reality, which serves 

as the hypothetical truth in our study. Crucially, the pseudo-reality is not intended for 

comparison with real-world observations; instead, it acts as a controlled framework to evaluate 

different climate model weighting strategies in future projections where observational data is 

unavailable. The comparison is performed on climatological statistics (e.g., interannual means, 
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long-term distributions) rather than on day-to-day correspondence, since individual daily 

sequences from the GCMs do not, and are not expected to, match the pseudo-reality. 

 

After applying bias correction, the streamflow characteristics of the 21 GCMs (GCMk) should 

closely resemble those of the pseudo-reality GCMi. Streamflow weights for each weighting 

method are determined based on two approaches: 1) assigning a 50%-50% weight to each 

precipitation and temperature, assuming that GCMs with precipitation and temperature 

characteristics closest to the pseudo-reality GCM should be weighted more heavily, and 2) 

basing them on streamflows computed using uncorrected precipitation and temperature. Since, 

after bias correction, the streamflow characteristics of the 21 GCMs should align closely with 

the pseudo-reality GCM, the different weighting methods are not expected to result in a 

weighted average that significantly deviates from the pseudo-reality. However, the non-linear 

response of hydrological models to precipitation and temperature may lead to differing 

weights. For the future period, pseudo-reality streamflow is generated using the pseudo-reality 

GCM P and T in the hydrological model, just as in the reference period. For the 21 remaining 

GCMs, P and T outputs are bias-corrected with the same factors used for the reference period, 

and streamflow projections are computed using the hydrological model. Streamflow biases are 

calculated as outlined in Figure 4.3-b. 

 

4.3 Results 

 

4.3.1 Climate Variable Sensitivity to Weighting Methods 

 

Figure 4.4 presents the results for all six weighting schemes for mean annual precipitation 

(prcptot). Specifically, it plots the difference between the median absolute bias of each method 

and that of equal weighting, represented as a colored circle centered on the centroid of each 

catchment. For Equal Weighting the median bias value is directly plotted. The median value 

is taken from the distribution of 22 values, corresponding to the 22 GCMs. Each model is taken 

in turn as the pseudo-reality, with weighting applied to the remaining 21 GCMs, as discussed 

in the methodology and presented in Figure 4.3. A bias of 0 for Equal Weighting (Figure 4.4-
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a) indicates a perfect prediction of the pseudo-reality. For the other five methods, a value of 0 

signifies performance on par with Equal Weighting (equal biases). A red color indicates that 

the weighting method performs better than equal weighting, and a blue color indicates the 

opposite. The metric used in Figures 4.4b-f is the difference in the absolute values of bias, 

meaning that the absolute values of the equal weighting method biases and those of the tested 

methods are first computed before taking the difference. This means the initial direction of the 

bias (positive or negative) is not considered in this calculation.  This approach helps us discern 

the deviation of each method from Equal Weighting, aiding in understanding their relative 

effectiveness. Supplementary material Figures S4.12 and S4.13 show the median bias for each 

method.  

 

 

Figure 4.4 Difference in median absolute precipitation (prcptot) bias across all catchments 
for the future period (2071-2100). Equal weighting (a) is presented as the actual bias value, 

while the biases from all other methods (b-f) are expressed as differences between the 
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absolute values of the tested method bias and the absolute value of the equal weighting 
method bias 

 

Results highlight the superior performance of the REA weighting scheme compared to other 

methods tested. The skill method performs better than equal weighting in the western half of 

the domain but slightly poorer in the eastern half. The other three methods produce results 

similar to equal weighting, even though BMA tends to be slightly worse and RAC slightly 

better. Overall, these findings emphasize the need to account for regional variations when 

evaluating the effectiveness of different weighting schemes. 

 

Looking at the median precipitation with equal weights (Figure 4.4-a), the western and 

southeastern catchments display positive biases, while other regions exhibit negative biases. 

This pattern suggests regional differences in model behavior. For instance, areas with negative 

biases (in red) are predominantly continental climates (Dfa, Dfb, Dfc, Cfa in the Köppen 

classification), while regions with positive biases tend to have maritime or mountainous 

climates. Similar discrepancies were observed in ERA5 precipitation biases (Tarek et al., 

2020), where precipitation was negatively biased in these same zones. This could point to 

potential shortcomings in the climate models' ability to accurately capture certain climatic 

conditions, particularly in regions influenced by maritime or orographic effects. A full analysis 

of bias distribution across all 22 models may reveal if specific GCMs disproportionately affect 

the median bias, but this is beyond the scope of the paper and will be left for future regional 

studies. 

 

Figure 4.5 presents results for mean annual temperature (tas) using the same format as Figure 

4.4. In this case, the SKILL method outperforms the others, closely followed by the REA 

method. The other four methods (RAC, BMA of climate sensitivity, equal weights, Random) 

yield very similar results. The SKILL and RAC methods demonstrate particularly better 

performance over the Rockies, British Columbia and Alaska. The largest biases are observed 

in Northern Canada and Alaska. It should be noted that, despite the sharp color gradient 

observed in Figure 4.5, the overall median absolute biases remain small, always less than 0.25 

(less than 25% of the original value) for all catchments. 
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Figure 4.5 Same as Figure 4.4, but for mean annual temperature (tas) 

 

Figure 4.6 presents the median bias for mean annual streamflow (Qm) in the same format as 

Figures 4.4 and 4.5. In this figure, the GCM weighting is equally based on uncorrected 

precipitation and temperature values over the reference period. To derive daily streamflow, 

precipitation and temperature data were bias-corrected to match those of the chosen GCM, 

considered the pseudo-reality. These corrected values were then utilized as inputs to the 

hydrological model, as detailed in the methodological section. The results indicate that all 

weighting methods yield nearly identical outcomes. This suggests that unequal weighting of 

climate models does not offer any significant advantage over the use of equal weights. Similar 

results are observed for the mean of the maximum and minimum annual discharge values, as 

shown in supplementary material Figures S4.14 and S4.15. 
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Figure 4.6 Same as Figure 4.4, but for mean annual streamflow (Qm) 

 

Figures 4.6 have used the median as the representative metric to evaluate the distribution of 22 

values, each derived from treating one of the 22 GCMs as the pseudo-reality target. While a 

good median performance is considered an important asset, it does not provide a complete 

assessment of performance. To gain a more comprehensive understanding of the performance 

of each weighting method, Figure 4.7 displays the standard deviation of the distribution of the 

22 bias values for Qm. The findings indicate that the standard deviation for all weighting 

methods is nearly identical. This strongly indicates that the performance of the weighting 

methods is comparable, regardless of which GCM is selected as the pseudo-reality. These 

results corroborate the findings from Figure 4.6, showing that equal weighting provides similar 

results to more complex weighting methods.  
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Additionally, similar outcomes are observed for the mean of the maximum and minimum 

annual discharge values, as detailed in the supplementary material (Figures S4.14 and S4.15). 

This consistency across different metrics and figures reinforces the conclusion that the choice 

of weighting method does not significantly affect the assessment of GCM performance in 

predicting future streamflow. 

 

 

Figure 4.7 Boxplot for the standard deviation of the 
distribution of the 22 bias values of mean annual 

streamflow (Qm) 

 

Results from Figures 4.6 and 4.7 show that the bias correction step which is almost always 

used for precipitation and temperature prior to computing streamflow removes the advantage 

of some weighting methods as was seen for precipitation and temperature (Figures 4.4 and 

4.5). 

 

4.3.2 Streamflow Weighting without Bias Correction 
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To delve deeper into the matter of bias correction, a repeat of the streamflow weighting 

experiment was conducted without applying any bias correction. The weighting was carried 

out based on two different approaches:  

1. Weighting based on climate variables: In this approach, model weights were derived 

from the raw (non–bias-corrected) precipitation and temperature data, as in Figure 

4.6. These weights were then used to combine the corresponding uncorrected 

streamflow simulations. 

 

2. Weighting based on streamflow simulations: In this approach, the weights were 

computed directly from streamflow outputs simulated with raw precipitation and 

temperature over the reference period, rather than from the climate variables 

themselves. 

This distinction allows assessing whether deriving weights from meteorological variables or 

from hydrological responses leads to different outcomes when no bias correction is applied. 

 

Omitting the bias correction of precipitation and temperature values before computing 

streamflows was expected to result in a broader range of streamflow outcomes. As explained 

in the methodology, GCMs exhibiting the smallest deviations in precipitation and temperature 

when compared to the target pseudo-reality GCM are likely to produce streamflows closer to 

the pseudo-reality, thus receiving heavier weighting. 

 

The outcomes of this experiment are showcased in Figure 4.8 (for the first approach) and 

Figure 4.9 (for the second approach), both of which illustrate the median bias for the mean 

annual streamflow discharge in the same format as Figure 4.6. The results from both figures 

are very similar, as hypothesized in the methodology, and are therefore discussed together. It 

is observed that the REA weighting method, with the Skill method trailing closely, results in 

biases that are mostly lower than those resulting from equal weighting, although the 

improvements are relatively modest. The other three weighting methods give results that are 

very similar to that of equal weighting. 
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Figure 4.8 Same as Figure 4.4, but for mean annual streamflow (Qm) and using the first 
approach. 

 

In both experiments, the biases are considerably larger than those observed in Figure 4.6. This 

pattern underscores the importance of bias correction in achieving more accurate projections 

of streamflow. It also suggests that the bias correction process effectively standardizes all 

temperature and precipitation projections against each other, thereby nullifying any potential 

benefits of employing more complex weighting methods over simple equal weighting. 

 

A slight improvement is observed when weighting is based on streamflow performance rather 

than precipitation and temperature. This improvement is likely due to the inherently nonlinear 

nature of the relationship between precipitation, temperature and streamflow. Streamflow-
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based weights are unaffected by the nonlinear relationship between climate and impact 

variables, and thus reflect the degree of agreement between GCM simulations and observed 

streamflow more accurately.  

 

 

Figure 4.9 Same as Figure 4.4, but for mean annual streamflow (Qm) and using the second 
approach 

 

4.4 Discussion 

 

4.4.1 Evaluation of Weighting Methods in Hydrological Impact Studies 

 

Assigning weights to climate model projections can be subjective and introduces additional 

uncertainty into impact analysis, making the selection of an appropriate weighting method a 

challenging task (Knutti, Furrer, et al., 2010). There is considerable debate over the best 



125 

approach to weighing climate models in impact assessment studies. A key concern is that 

weights are often based on past performance, which may not translate to future conditions (Hui 

et al., 2019). Model weighting is inherently complex and requires a comprehensive assessment 

of the uncertainties involved (Abramowitz et al., 2019; Brunner et al., 2020). Moreover, 

performance metrics are subjective and vary depending on the parameters chosen for 

evaluation (Sanderson et al., 2015). It is worth noting that relying solely on outputs like 

temperature and precipitation for weighting may fail to capture the intricate relationship 

between climate variables and hydrological responses, potentially limiting the models’ 

effectiveness in representing hydrological changes (Wang et al., 2019; Wootten et al., 2023). 

 

In hydrological impact studies, the use of weights is an implicit practice. While the most 

common approach is equal weighting, binary weights (0 or 1) are also employed to either 

include or exclude specific climate projections, such as excluding SSP1-2.6 scenarios, for 

example. The goal of applying unequal weighting is to improve reliability through a more 

accurate assessment of the uncertainty associated with GCMs. In this context, our findings 

suggest that in the absence of a bias correction step, applying unequal weighting—particularly 

the Reliability Ensemble Averaging (REA) method, results in better projections for future 

precipitation, temperature, and streamflows. This improvement is consistent regardless of 

whether the weights are based on precipitation and temperature data or on streamflow data, 

with a notable enhancement for weights based on streamflow. These results align with previous 

studies, such as  those by Castaneda-Gonzalez et al., (2023) and Wang et al., (2019). The results 

also show that the best weighting method for temperature (Skill) differs from that for 

precipitation (REA), even though the latter also performs well for temperature. This introduces 

an additional layer of complexity when choosing a weighting approach. 

 

To assess the effectiveness of the REA method, a test was conducted where model weights 

were inverted relative to their REA-calculated values. This meant that models assigned the 

least weight became the most heavily weighted, and vice versa. In theory, this should provide 

the worst possible weights and result in the largest possible biases. After inverting the weights 

(1/W) and renormalizing them to sum to 1, the resulting median bias values were evaluated. 
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The inversion of REA weights results in notably increased bias values, as indicated by the 

darker colors in Figure 4.10. This observation serves to underscore the effectiveness of the 

REA method. 

 

 

Figure 4.10 Same as figure 4.9 with a) REA and b) inverted REA weights 
 

Conversely, the findings of this study suggest that when bias correction is applied, equal and 

unequal weighting methods lead to similar outcomes regarding streamflow projections. 

Weights were determined before applying bias correction because, after bias correction, all 

precipitation and temperature time series would closely align with the pseudo-reality time 

series, essentially leading to equal weights (Shin et al., 2020). Performing bias correction prior 

to running the hydrological model normalizes all climate projections over the reference period, 

effectively diminishing the initial performance advantage of certain climate models. Looking 

towards future periods, the effectiveness of bias correction is influenced by the climate 

sensitivity of each GCM and the internal variability of the climate system (Chen et al., 2020), 

which can negate all benefits derived from computed weights. 

 

Bias correction is often considered a necessary but flawed tool. Without it, impact studies 

would yield unrealistic streamflow projections. This process introduces several challenges 

(Maraun, 2016), including added uncertainty, the potential misrepresentation of extremes, the 

assumption that biases remain constant over time, and concerns regarding the manipulation of 

physically consistent data. Even advanced bias correction methods, such as the MBCn, which 

preserves the delta change signal and maintains multivariate properties and was used in this 

study, cannot fully overcome these issues. In hydrology, streamflow results from complex, 
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non-linear interactions between precipitation and temperature, indicating that even minor 

modifications to time series can lead to significant changes in streamflow. Despite these 

challenges, bias correction remains indispensable for addressing issues related to climate 

model resolution, parameterization, and the imperfect representation of physical processes 

(Chen et al., 2021). 

 

4.4.2 Embracing Model Democracy as a Middle-Ground Strategy 

 

If unequal weighting does not significantly enhance hydrological impact studies, as shown in 

this study, then advocating for the principle of model democracy is justifiable, at least from a 

practical perspective. This approach simplifies the modeling process by eliminating the need 

to assign weights within the impact study modeling chain. 

 

A middle-ground strategy involves adopting a model democracy approach after excluding 

some poorly performing GCMs. This method can be equated to a binary [0, 1] weighting 

approach. Di Virgilio et al. (2022) have supported this as an advantageous strategy. However, 

the effectiveness of this approach necessitates careful selection of model weighting schemes, 

as well as the availability of reliable observational data, as noted by Singh & AchutaRao 

(2020). These considerations are crucial for improving the robustness of future change 

estimates and the uncertainties associated with them. The exclusion of GCMs might also be 

guided by factors other than performance, such as excluding models with a climate sensitivity 

considered too high (Hausfather et al., 2022; Rahimpour Asenjan et al., 2023), or based on 

more specific criteria, like omitting GCMs that do not physically represent the North American 

Great Lakes for a study focused on that region. 

 

4.4.3 Implication of ensemble size on random weighting 

 

An intriguing finding from this study was that random weighting yielded results comparable 

to those of equal weighting. For random weighting, a uniform distribution between 0 and 1 

was used, and the weights were then normalized to ensure their sum was 1. This finding can 
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be attributed to the large number of GCMs in the ensemble, as it is recognized that the ensemble 

mean from a large sample of GCMs typically is better than any individual GCM (e.g. Crawford 

et al., 2019; Ganguly & Arya, 2023). In other words, the number of GCMs is large enough to 

compensate for the inclusion of poorly performing GCMS.  

 

To investigate the impact of GCM ensemble size, an experiment test was conducted with a 

reduced ensemble of 7 randomly selected GCMs (one-third of the remaining 21 models, after 

choosing one as the pseudo-reality). The results of this experiment, depicted in Figure 4.11, 

demonstrate that using random weights in this smaller ensemble performed worse than equal 

weighting, as shown by the darker blue colors compared to Figure 4.9-b. This supports the 

previously mentioned hypothesis.  

 

 

Figure 4.11 Similar to figure 4.9, comparing two scenarios: a) Using 7 randomly selected 
and equally weighted GCMs, and b) the difference in median streamflow bias when using 

7 randomly selected GCMs with random and equal weights. 

 

In addition, a single trial of random weight was used. Ideally, multiple trials with different sets 

of random weights would have been performed to ensure that no bias was introduced. 

However, given the large number of GCMs in the ensemble and the extensive number of 

catchments in this study, any significant impact is highly unlikely. The fact that the spatial 

coherences of the random weights' results were the same as that of other methods supports this 

assertion. 

 

4.4.4 Limitation and future work 
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Weighting methods in climate impact studies involve subjective decisions in selecting 

diagnostic metrics, translating them into performance measures, and normalizing these into 

weights. It is essential to recognize these subjective uncertainties since inappropriate weighting 

methods can either compromise the robustness of projections or mask underlying uncertainties. 

In this study, precipitation (prcptot) and temperature (tas) were used for weighting purposes 

because they are critical inputs to all hydrological models and directly influence streamflow 

outputs. Another subjective choice was how to combine these variables. It was chosen to treat 

them equally, with each contributing 50% of the final weights, though this decision was also 

subjective as well. Impact studies relying on climate variables for weighting, face uncertain 

trade-offs, often due to nonlinear relationships with streamflow. Relying solely on a single 

diagnostic metric, such as the climatological mean, for weight determination raises concerns 

about whether reducing bias in one metric would be beneficial for others. In addition, some 

models may receive disproportionately high (or low) weights due to their high similarity (or 

discrepancy) to observations over the reference period. As Shin et al. (2020) noted, this can be 

particularly noticeable with precipitation, and some form of smoothing scheme might be 

necessary. Employing a suite of metrics or calibrating multiple metrics could improve the 

rationale behind the weighted multi-model mean, yet uncertainties in these methods continue 

to be a subject for further research.  

 

In this study, we used each of the 22 GCMs as the pseudo-reality target in turn, an important 

methodological step to account for the potential impact of selecting a model with either low or 

high sensitivity. As a result, the median findings provide a robust estimate of the expected 

performance of each weighting method. The underlying hypothesis of using pseudo-reality is 

that if a weighting scheme can accurately replicate the pseudo-reality scenario, it is likely to 

be effective in projecting future climate impacts. By utilizing multiple pseudo-reality 

scenarios, we simulate the range of uncertainties inherent in climate projections, helping to 

identify weighting schemes that are consistently reliable across different conditions. 

 

However, the use of pseudo-reality comes with several limitations. First, pseudo-reality is a 

hypothetical construct, and while it mimics future climate conditions, it does not represent 
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actual observations. Without future observational data, it is impossible to verify how well the 

pseudo-reality reflects real-world climate outcomes, introducing further uncertainty, especially 

when making long-term projections. Another limitation is that, as with any method operating 

in a ‘climate model world,’ the model-as-truth approach may oversimplify complex real-world 

processes, potentially overlooking important factors that influence climate impacts. Pseudo-

reality may also fail to fully capture real-world extremes, resulting in an incomplete assessment 

of model performance in predicting such events. Moreover, without future observations, the 

results remain theoretical despite the methodological advantages. Despite these limitations, 

pseudo-reality remains a valuable tool for evaluating model weighting strategies when applied 

cautiously and in conjunction with other methods. It provides important insights into model 

performance and uncertainty, helping to enhance the robustness of climate projections across 

diverse scenarios. 

 

In this study, we utilized the lumped hydrological model HMETS due to the large-sample 

nature of our research, which made the use of a process-based model impractical. For the 

hydrological model calibration, observed precipitation, temperature, and streamflow data were 

used. This approach was necessitated by the challenges associated with using GCM data for 

hydrological model calibration, primarily because the daily sequences in observations and 

GCM outputs are not correlated. Using this hydrological model with the pseudo-reality GCM 

without any prior bias correction is somewhat unconventional and will likely result in mean 

annual streamflows that are biased, possibly to a significant degree, compared to streamflow 

observations. However, the pseudo-reality approach requires only the generation of somewhat 

realistic streamflows, since all other GCMs will be assessed against this reality, and even bias-

corrected against this pseudo-reality, thus providing a correct assessment of the weighting 

strategy. An alternative strategy allowing for direct hydrological model calibration against 

GCM data has been proposed by Ricard et al. (2023). However, this approach has not yielded 

streamflow results as reliable as those obtained through direct observation-based calibration. 

 

To further assess these impacts, all methodological steps outlined in Figure 4.3-b were 

conducted using another hydrological model, the GR4J model (Perrin et al., 2003) linked with 
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the CemaNeige snow module (Valéry et al., 2014). Using this model produced very similar 

results and led us to the same conclusions with respect to climate model weighting (results not 

shown). The two lumped conceptual hydrological used, while effective in simulating general 

hydrological processes, may not fully capture the complexity of spatially distributed processes 

or account for the detailed physical interactions at the sub-basin scale. Therefore, future work 

could benefit from incorporating more diverse hydrological models, including physically-

based or distributed models, to provide a broader evaluation of the impacts of climate model 

weighting on hydrological simulations. 

 

4.5 Conclusion 

 

This study offers a comprehensive analysis of how weighting members within an ensemble of 

22 CMIP6 climate models affects streamflow projections across a large sample of 3,107 North 

American catchments. Six weighting schemes, including random and equal approaches, were 

established. Assessing the efficiency of weighting for future conditions presents a challenge 

due to the absence of future precipitation, temperature, and streamflow data. Therefore, to 

validate the weighting methods, the study employed the pseudo-reality approach. Each of the 

22 GCMs was treated as the pseudo-reality in turn, thus providing future temperature and 

precipitation data against which the efficiency of the weighting could be evaluated. Future 

streamflows were generated using the pseudo-reality GCM in conjunction with a hydrological 

model. 

 

The results indicated that weighting the ensemble led to improved projections of future 

precipitation and temperature. The optimal weighting method varied between precipitation and 

temperature. In terms of streamflow projections, the REA weighting method resulted in modest 

improvements in streamflow predictions compared to equal weighting when no bias correction 

was performed. No weighting method outperformed equal weighting once bias correction was 

applied to the precipitation and temperature time series. This is likely due to the complex 

nonlinear interactions that lead to streamflow. Consequently, using equal weighting of GCMs 
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(model democracy) seems to be a valid strategy for hydrological impact assessment, and 

especially so when bias correction of climate model outputs is considered necessary.  

 

4.6 Code and data availability 

 

The hydrometeorological data used in this study were obtained from the HYSETS database: 

https://doi.org/10.17605/OSF.IO/RPC3W (Arsenault et al., 2022). The CMIP6 GCM model 

outputs are available from the Earth System Grid Federation (ESGF) portal at Lawrence 

Livermore National Laboratory (https://esgf-node.llnl.gov/search/cmip6/; ESGF, 2022). The 

processed data and the used codes are available via contacting the authors.  
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Figure S4.12 Similar to Figure 4.4 but median bias is plotted. 
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Figure S4.13 Similar to Figure 4.5, but bias is plotted as negative and positive values 
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Figure S4.14 Similar to Figure 4.6 but for minimum streamflow (Qmin).   
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Figure S4.15 Similar to Figure 4.6 but for maximum streamflow (Qmax). 
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Figure S4.16 Standard deviation of streamflow bias from weighting applied to streamflow 
simulated with raw precipitation and temperature (no bias correction), using the HMETS 

hydrological model. 

 

 





 

CHAPTER 5 
 

GENERAL DISCUSSION 
 

This thesis explored the challenges and implications associated with climate model selection 

and their combination methods in hydrological climate change impact assessments. Through 

three complementary studies, it investigated different aspects of uncertainty of future 

streamflow projections over a comprehensive sample of North American catchments. As a 

whole, these studies provide an integrative description of how methodological decisions 

regarding model selection, weighting, and bias correction influence hydrological projections. 

This chapter discusses the key findings, reflects on their implications, and offers 

recommendations for future research and practice. It is noteworthy to mention that the 

objective of this thesis is not to point out a single method or a single set of models that is 

practical for all impact studies, as, arguably, such a method or subset has not been developed 

yet (Kolusu et al., 2021), but to provide overall strategies that can be used to guide the choice 

of models. 

 

5.1 Ensemble Design and Uncertainty Transfer in Hydrological Impact Modeling 

 

In climate change impact assessment studies, multi-model ensembles have become a standard 

approach to account for the uncertainties inherent in projecting future climate (Bellucci et al., 

2015; Grose et al., 2023; Maher et al., 2021; Semenov & Stratonovitch, 2010; Tebaldi & 

Knutti, 2007). By combining outputs from multiple GCMs, multi-model ensembles are able to 

capture a broad spectrum of potential futures while enabling the assessment of uncertainty 

contributions from individual modeling components.  

 

Of the many links in the chain of climate-impact modeling; starting with GCMs, through bias 

correction, and hydrological modeling; GCMs have most frequently been cited as the main 

source of uncertainty for variables such as flood extremes and flood risk (Gao et al., 2020; 

Shen et al., 2018; H. Wang et al., 2020). The results presented in this thesis also showcase the 

central role of GCMs in introducing uncertainty into hydrological projections. However, their 
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relative contribution to uncertainty is not consistent through different regions and hydrological 

flow regimes. This observation aligns with previous research that has shown that uncertainty 

contributions of GCMs differ with the dominant hydroclimatic process of a basin, seasonality, 

and structural characteristics of the hydrological model employed (e.g. Castaneda-Gonzalez et 

al., 2022; Meresa et al., 2021). For instance, our analysis revealed that hydrological models 

made larger contributions to uncertainty in dry regions, and for low-flow and high-flow 

regimes. This larger contribution is presumably because the models have a limited capacity to 

represent conditions in arid areas and during peak events effectively. On the other hand, Troin 

et al. (2022) showed that in cold and snow-dominated catchments, uncertainty was largely 

caused by hydrological models, mainly due to the fact that it was challenging for the models 

to adequately simulate snow accumulation and melt processes. 

 

The thesis further examined how uncertainty originating from climate models transfers into 

hydrological projections. While larger ensembles naturally represent a wider diversity of 

possible futures, they also increase the computational, analytical, and interpretative burden—

particularly when downscaling, bias correction, and hydrological modeling must be applied 

consistently across thousands of catchments. Even with modern computational resources, the 

practical challenge often lies not only in running the simulations, but in managing, comparing, 

and interpreting the resulting volume of data in a transparent and reproducible way. This work 

demonstrated that by appropriate design, reduced ensembles can still preserve a large part of 

the original hydrological uncertainty envelope. In particular, the KKZ algorithm performed 

well in preserving spread while reducing ensemble size, offering a good compromise between 

representational accuracy and computational efficiency. 

 

Uncertainty transfer from climate world to hydrological responses is, however, non-uniform 

and nonlinear. For instance, small changes in precipitation projections, which is often the most 

uncertain climate projection, can result in considerably large differences in simulated 

streamflow, particularly during low-flow and high-flow conditions. These nonlinear responses 

critically depend on the structure of the hydrological model, the characteristics of the 

catchment, and the design of the climate model ensemble. As a result, variability in climate 
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space does not translate directly into variability in impact space, underscoring the importance 

of incorporating hydrological sensitivities into ensemble construction. 

 

This leads to a broader methodological insight that ensemble selection methods cannot be 

based solely on climate performance metrics (e.g., temperature or precipitation bias or RMSE). 

Otherwise, they will potentially overlook the behavior of impact models in simulating the 

variables of concern, such as streamflow. For example, a moderately warm-biased GCM can 

project winter precipitation as rain instead of snow and produce greatly underestimated spring 

runoff even if other “acceptable” temperature performance is realized. Therefore, it is 

necessary that impact-based criteria be applied during ensemble selection in order to remain 

applicable in the final ensemble for the intended application, including hydrological sensitivity, 

seasonal character, and representation of regional processes. 

 

No single selection or weighting strategy performs optimally across all variables, regions, or 

hydrological metrics, indeed, this is one of the central findings of this thesis. While model 

selection and weighting are both feasible and widely used, they are inherently constrained by 

trade-offs and methodological choices. Ultimately, ensemble design is not only a technical 

process but an intellectual bridge between climate modelling and impact assessment. Subset 

selection strategies involve trade-offs and choices regarding what model properties or 

performance statistics are more important. Rather than searching for an optimal “best” subset, 

a better approach is to have a robust and logical set of choices that are appropriate to the context 

of the research. Through the development of methods that simultaneously respect uncertainty 

structure, computational efficiency, and end-use relevance, we can progress toward more 

credible and actionable hydrological projections in a changing world. The thesis thus makes 

the case for the strategic, contextually aware ensemble design that considers the nonlinearity 

of interactions between climate and hydrology and prioritizes impact-relevance over purely 

climate-space performance. 

 

5.2 Trade-offs in Excluding Climate Models 
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Model evaluation is fundamental in GCM selection, as the ability to realistically reproduce 

past climates is generally viewed as a prerequisite for confidence in future projections, though 

on its own, it does not provide sufficient grounds for such confidence (Nguyen et al., 2024). 

Model performance can be evaluated using different metrics at both the global (e.g. Donat et 

al., 2023; Ridder et al., 2021) and regional sclaes (e.g. Di Virgilio et al., 2022; Palmer et al., 

2023). Yet the lack of standard evaluation metrics between studies makes direct comparison 

of results or consistent tracking of model performance between regions difficult. 

 

One of the most controversial discussions in climate impact studies, particularly in hydrology, 

is whether to filter out climate models with high ECS (Hausfather et al., 2022; Ribes et al., 

2021). Removing models that project extreme global warming can be justified on the basis of 

physical credibility, with specific concerns that these models fall outside projected warming 

ranges according to current observations and theoretical limits (Knutti, Rugenstein, et al., 

2017). Our results nevertheless highlight that such exclusion decisions are far from easy to 

make, particularly when moving from the global climate modeling to regional hydrological 

impact assessments. While the exclusion of high-ECS models reduced the spread of 

streamflow projections in the majority of the catchments, it counterintuitively resulted in 

increased uncertainty in others, a slightly more than one-third of the catchments examined 

experienced this uncertainty rise after model exclusion. Our results point out that globally 

extreme climate models will not necessarily be outliers for hydrological simulations. In fact, 

in certain situations, e.g., snow-dominated basins or dry regions, high-ECS models can 

generate hydrological responses that appear more plausible when compared with regional 

hydroclimatic behavior and pseudo-reality experiments. 

 

Model exclusion on the basis of global metrics such as ECS alone runs the danger of 

overlooking crucial hydrological behaviour. High-ECS models can be implausible at the global 

scale but still have valuable insights to offer at the regional scale, particularly in stress-testing 

contexts or in examining worst-case futures. Model exclusion inevitably results in information 

loss, particularly regarding the uncertainty in the projections. It should be noted that by 

reducing the ensemble, only information about the uncertainty is reduced, not the uncertainty 
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itself (Wilcke & Bärring, 2016). Although subsetting GCMs unavoidably results in loss of 

information, it is critical to identify and maintain the most relevant information for the study's 

objective. While physical and statistical relationships between data and projections could help 

keep as much information as possible, at the end of the day, this is a subjective choice best 

determined in the discussion between researchers and stakeholders. 

 

To this end, the thesis recommends exclusion decisions to be made cautiously with 

justification, taking into account the study's specific hydrological objective, regional 

sensitivities, and risk management needs (Palmer et al., 2023; Ribes et al., 2021; Shiogama et 

al., 2024). Rather than simply focusing on global plausibility, hydrological modellers are to 

consider if the inclusion of such models helps to inform plausible extreme futures or worst-

case scenarios that are beneficial to adaptation planning. 

 

5.3 Evaluating the Utility of Model Weighting in Hydrological Impact Studies 

 

Climate model weighting strategies aim to constrain the uncertainty of ensemble projections 

by assigning more weights to the models that better capture key climatic processes in the 

historical period. While this approach appears logically sound, this thesis's findings and 

broader literature suggest that the effectiveness of model weighting is conditional. Its success 

strongly depends on methodological decisions, the modeling task context, and the nature of 

the downstream impact models (H.-M. Wang et al., 2019; Wootten et al., 2022). 

 

Through a pseudo-reality framework, this thesis explored model weighting to assess the 

performance of various weighting approaches on streamflow projections. The results 

confirmed that, if uncorrected (raw) climate model outputs are used, unequal weighting can 

improve hydrological projection skill. The findings support earlier studies, such as Knutti et 

al., 2017, who suggest unweighted means can be misleading if ensemble members have 

substantially varying qualities or are non-independent. Weighting, in these cases, is a remedial 

action, lessening the effect of poor or too-similar models (Lorenz et al., 2018; Merrifield et al., 

2020, 2023). However, in bias-corrected projections, the added value of any weighting 
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approach became insignificant with little to no difference observed between weighted and 

unweighted ensemble outputs. These findings suggest that weighting loses its value when used 

alongside preprocessing steps (e.g., bias correction) that already align model outputs with 

observations.  

 

To this is the added complexity that the performance of weighting schemes is heavily 

dependent on the variable of interest, geographic area, and performance measure (Palmer et 

al., 2023; Wootten et al., 2022). The use of weights without regard to these factors can reduce, 

rather than enhance, projection robustness. Our analysis also revealed hydrological-based 

weighting to outperform climate-only approaches for projecting streamflow, highlighting the 

importance of weighting criteria to be aligned to the specific aims of an impact study. Even so, 

these performance-weighted weights were of limited value when bias correction was applied. 

 

In particular, the relationship between climate drivers and hydrological outputs is often 

nonlinear and site-dependent. Therefore, evaluating weighting schemes solely in “climate 

space”, i.e., based on a model’s skill in simulating temperature or precipitation, can be 

misleading. To ensure models contribute meaningfully to realistic impact estimates, 

performance must also be assessed in “impact space,” where the end-use variable (e.g., 

streamflow) is directly simulated. Applying climate-based weights without verifying their 

validity in impact models can reduce, rather than enhance, the credibility of projections. While 

impact-based weighting remains underdeveloped, it offers a promising direction, especially 

when improving projections of hydrologically significant outcomes is the goal.  

 

These findings collectively suggest a pragmatic modeling philosophy: model democracy, or 

equal weighting, remains a robust and justifiable strategy for many hydrological applications, 

particularly after bias correction. However, model democracy should not be mistaken for 

indiscriminate inclusion; strategic model exclusion, based on regional hydrological 

performance or physical realism, remains a valuable means to improve ensemble reliability. 
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5.4 Limitations and Recommendations  

 

5.4.1 Emission Scenario 

 

This study relied only on a single high-emission greenhouse gas scenario, RCP8.5, and its new 

equivalent SSP5-8.5. While in hindsight these scenarios are seen as pessimistic, their use 

remains legitimate in climate effect studies. Even though the overall conclusions of this study 

will most likely concur with general trends reported in the literature and will not significantly 

differ under other emission pathways, addition of additional scenarios, can be beneficial to 

position the results in a wider socio-economic context. This addition would make the findings 

more robust as well as express the set of plausible climatic futures. 

 

5.4.2 Bias Correction 

 

Advanced multivariate bias correction techniques were employed, chosen for their ability to 

preserve inter-variable relationships and reduce systematic error. These techniques have been 

demonstrated recently in the literature to perform well. However, alternative bias correction 

strategies, particularly designed for extreme event, seasonality, or temporal ordering, were not 

explored. These techniques, taken into account in future work, may strengthen hydro-climatic 

extreme representation and further improve impact projection credibility. 

 

Similar to other bias correction strategies, the employed techniques in this study assume that 

the statistical relationships between observed and modeled data within the calibration period 

are also applicable in the future (i.e., stationarity). However, in cases of strong climate change, 

this assumption may not be valid, especially in extreme cases or unprecedented climates, 

potentially introducing non-negligible biases in impact estimates. 

 

5.4.3 Hydrological Modeling 
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Hydrological simulations were carried out with lumped conceptual models, chosen for their 

computational efficiency in large-sample applications. Even though the choice is appropriate 

for the scale of our study, it inherently constrains the spatial representation of key hydrological 

processes, such as groundwater flow, snowpack heterogeneity, and land surface heterogeneity. 

Conceptual models, including GR4J, often exhibit reduced transferability when applied to 

climate states that differ substantially from the calibration period, reflecting well-documented 

challenges in representing hydrologic non-stationarity (Harvey et al., 2024; Saavedra et al., 

2022; Stephens et al., 2019). Their fixed parameter sets and simplified treatment of snow, 

vegetation, and evapotranspiration processes limit their ability to capture evolving 

hydroclimatological dynamics under climate change. Nonetheless, conceptual models provide 

a practical and transparent framework for large-ensemble climate impact experiments, serving 

as a useful baseline from which more process-rich modelling strategies can evolve. 

 

Future work would benefit from incorporating models with more explicit representations of 

these changing processes or models that allow climate-dependent parameters or structural 

flexibility. Semi-distributed or fully distributed models, physically based frameworks, or data-

driven architectures such as Long Short-Term Memory (LSTM) networks may offer improved 

robustness when extrapolating beyond historical conditions. Machine-learning approaches, 

particularly deep learning, have shown strong performance in large-sample hydrology and 

potential advantages in ungauged basins, though challenges remain regarding interpretability 

and generalizability. Recent studies also suggest that LSTMs may provide more stable 

projections under climate change (e.g. Martel et al., 2025).  

 

The hydrologic model was run on a daily time step, which, although common in literature, 

limits the analysis of short-duration extreme events such as flash flood or sub-daily drought 

dynamics. Events that evolve at sub-daily timescales are not fully resolved, potentially 

underestimating impacts under more intense precipitation scenarios. To partly mitigate this 

limitation, we excluded very small catchments from the analysis, using catchment area as a 

proxy for hydrological response time. The assumption is that smaller basins tend to respond 

more rapidly to precipitation inputs and are thus more sensitive to sub-daily variability. By 



147 

filtering out these basins, we reduced the risk of misrepresenting sub-daily processes within a 

daily time-step framework. While this does not fully resolve the scale mismatch, it provides a 

pragmatic balance between computational feasibility and representativeness of hydrological 

responses across the domain. 

 

Finally, the subset of GCMs identified as most representative in this study is conditional on 

the hydrological model structure and the climate forcing used. More complex or spatially 

explicit hydrological models, or dynamically downscaled RCM inputs, may respond 

differently to climatic drivers, potentially altering which GCMs span the relevant hydrological 

uncertainty. This reinforces a central conclusion of the thesis: model selection is inherently 

context-specific, and no universal subset can be expected to perform optimally across modeling 

frameworks. 

 

5.4.4 Physically Informed Model Selection 

 

Finally, future work should also explore physically informed model selection approaches. 

While this thesis focuses on statistical and performance-based criteria, an additional avenue 

involves evaluating GCMs based on their ability to represent key regional hydroclimatological 

processes (e.g., snow accumulation and melt, atmospheric rivers, monsoon dynamics, soil 

moisture feedbacks). Incorporating such process-based diagnostics could help identify models 

that are not only statistically adequate but also physically credible for the region of interest, 

thereby improving the interpretability and robustness of hydrological impact assessments. 

 

 





 

CONCLUSION 

 

This thesis explored the influence of ensemble design decisions such as climate model sub-

selection and weighting on hydrological impact assessments over North American catchments. 

In three connected studies, this research offers important insights on the impact of 

methodological decisions on projected streamflow, highlighting that choices made in the 

design of climate model ensembles are not only technical decisions but have significant 

implications for the credibility, interpretability, and usefulness of hydrological impact 

assessments. 

 

The first study demonstrated that sub-selection of climate models by using informed sampling 

techniques, such as the KKZ algorithm using key climate indices, is able to preserve much of 

the uncertainty captured by full GCM ensembles. However, the transfer of uncertainty from 

the climate domain to the hydrologic domain is nonlinear and catchment-dependent. While 

ensemble reduction offers computational advantages, its implications extend further, shaping 

the extent to which the model ensemble captures the plausible range of future hydrological 

conditions.  

 

The second study evaluated the effect of excluding high ECS models on variability in future 

streamflow. Even though these models produce higher spread in global climate projections, 

their impact on hydrological response in their respective regions is less critical. Even though 

their removal yielded reduced projection spread in Canada, Alaska, the southeastern United 

States, and the Pacific coast, small changes or even greater variability was seen in other 

locations. This kind of spatial heterogeneity means hot models are not hydrologically outliers 

in and of themselves. Their generally wetter projections may well be compatible with potential 

futures for some locations within some catchments, and a one-model-fits-all model exclusion 

approach becomes more challenging. The implications emphasize the need to choose models 

not merely on the basis of global climate metrics like ECS but also on local hydrological 

relevance.  

 



150 

Finally, the value of climate model weighting schemes was studied using a pseudo-reality 

experiment in which all GCMs were run as the “true” future and the performance of six 

weighting schemes were compared. Model weighting improved temperature and precipitation 

projections, but these improvements did not always lead to improved streamflow projections, 

particularly when bias correction had been done. when bias correction was applied, no 

weighting scheme outperformed the baseline equal-weighting case. These findings suggest that 

model democracy, or equal weighting, remains a robust and justifiable strategy for many 

hydrological applications, particularly after bias correction. 

 

The thesis proposes cautious, context-driven approaches to ensemble sub-selection and 

weighting. Instead of rigorously applying global performance metrics or statistical 

abstractions, researchers would be well advised to consider regional hydroclimatic relevance, 

the nature of the impact variable being simulated, and the nature of the modeling pipeline (e.g., 

bias correction). Although equal weighting and model democracy remain justified, especially 

following bias correction, strategic model exclusion and performance-weighting are useful 

under specific circumstances, provided they are applied judiciously and with full 

understanding of trade-offs. In the absence of a universally applicable best practice, an open 

and adaptable modeling philosophy is proposed: exploit a large ensemble where possible to 

allow for uncertainty, meticulously estimate the impact of omission, and employ weighting 

cautiously, being aware when and where it adds value. It is this pragmatic approach that serves 

to advance the evolution of reproducible, reliable, and policy-relevant hydrological climate 

impact assessments. 
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