

From Edges to Pages: Boundary-Aware Binarization and Two-Stage Reconstruction of Historical Documents

by

Amin GHASEMI NAFCHI

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT OF A MASTER'S DEGREE
WITH THESIS IN INFORMATION TECHNOLOGIES ENGINEERING
M.A.Sc.

MONTREAL, "NOVEMBER 24, 2025"

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Amin Ghasemi Nafchi, 2025

This Creative Commons license allows readers to download this work and share it with others as long as the author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS
THIS THESIS HAS BEEN EVALUATED
BY THE FOLLOWING BOARD OF EXAMINERS

Prof. Mohamed Cheriet, Thesis supervisor
Department of Software and IT Engineering, Ecole de technologie Supérieure, Montreal,
Canada

Prof. Sylvie Ratté, Chair, Board of Examiners
Department of Software and IT Engineering, Ecole de technologie Supérieure, Montreal,
Canada

Prof. Luc Duong, Member of the Jury
Department of Software and IT Engineering, Ecole de technologie Supérieure, Montreal,
Canada

THIS THESIS WAS PRESENTED AND DEFENDED
IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC
ON "NOVEMBER 12, 2025"
AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

This thesis became a reality with the kind support and encouragement of many individuals, to whom I am deeply grateful.

First and foremost, I would like to express my heartfelt thanks to my supervisor, Prof. Mohamed Cheriet, for his continuous support, valuable advice, and guidance throughout my Master's studies. His mentorship, encouragement, and insightful feedback played a central role in shaping the direction and quality of this work.

I extend my deepest appreciation to my family — my mother, father, and sister — for their endless love, support, and sacrifices. Their belief in me has been a constant source of strength.

A special thanks goes to Hossein, Atila and Atena, whose generous support, motivation, and technical help were instrumental throughout this work.

I would also like to thank my dear friends Milad, Aryan, Nima, Mohamadhasan, and many others whose encouragement and companionship made this journey much smoother.

My sincere gratitude goes to all my colleagues at the Synchromedia Lab for creating a collaborative and friendly environment.

Des contours aux pages : binarisation sensible aux frontières et reconstitution en deux étapes des documents d'archives

Amin GHASEMI NAFCHI

RÉSUMÉ

Les documents historiques souffrent souvent de dégradations sévères telles que le bleed-through (translucidité de l'encre), les taches, la décoloration et les pertes physiques, qui compromettent à la fois la lisibilité humaine et l'analyse automatique. La restauration de ces documents doit permettre de récupérer un texte lisible et un arrière-plan fidèle, tout en préservant l'authenticité structurelle et l'utilisabilité dans les flux de travail archivistiques. Les méthodes conventionnelles brouillent souvent les traits fins ou ne parviennent pas à maintenir l'intégrité visuelle, limitant ainsi leur efficacité pratique. Cette thèse propose un cadre de restauration en deux étapes qui optimise conjointement la fidélité des traits et la reconstruction de l'arrière-plan à grande échelle.

Dans la première partie, nous présentons BA-GAN (Boundary-Aware Generative Adversarial Network), un cadre robuste de bout en bout pour la restauration d'images de documents historiques fortement dégradés. BA-GAN s'appuie sur un générateur unique guidé par deux discriminateurs : l'un centré sur le contenu global et l'autre sur les contours. En exploitant simultanément les informations globales et locales, le modèle améliore l'extraction des contours de traits, renforce les résultats de binarisation et assure une reconstruction précise des limites textuelles. Les expériences menées sur HDIBCO 2017/2018 démontrent des performances à l'état de l'art, atteignant par exemple, sur DIBCO 2018, un Fm de 89,28, un PSNR de 18,44 dB et un DRD de 4,10.

Au-delà de la binarisation, BA-GAN intègre un cadre complet de reconstruction de documents qui restaure à la fois le texte et l'arrière-plan. Une stratégie d'inpainting en deux étapes est mise en œuvre : une estimation initiale de l'arrière-plan par interpolation pixelique, suivie d'un inpainting basé sur GAN pour reconstruire sans discontinuité le contenu manquant, supprimer le bruit et corriger les artefacts liés au bleed-through (translucidité de l'encre). Les expériences sur READ 2016, évaluées avec les scores VDQAM, montrent des améliorations notables après reconstruction, confirmant une meilleure fidélité visuelle et une lisibilité textuelle accrue. Cette approche permet une restauration robuste de documents historiques entiers tout en préservant leur intégrité structurelle et leur authenticité historique.

Les principales contributions de ce travail sont : (i) la proposition d'un cadre novateur de binarisation adversariale formulé comme un jeu à trois acteurs ; (ii) le développement d'une architecture cGAN à double discriminateur permettant une meilleure préservation des contours de traits ; (iii) l'obtention de performances à l'état de l'art sur les benchmarks DIBCO ; et (iv) la conception d'un pipeline de restauration centré sur le document, combinant binarisation et inpainting, validé sur des manuscrits dégradés du monde réel.

Bien que des défis subsistent dans les cas de traits à très faible contraste et de forte translucidité croisée, les perspectives futures incluent la fusion multispectrale, l'auto-apprentissage non supervisé et l'intégration de contraintes structurelles plus fortes pour la préservation du contenu.

Mots-clés: Restauration de documents historiques, Réseaux antagonistes génératifs, Binarisation sensible aux contours, Inpainting de texte, Correction de dégradations d'image

From Edges to Pages: Boundary-Aware Binarization and Two-Stage Reconstruction of Historical Documents

Amin GHASEMI NAFCHI

ABSTRACT

Historical documents often suffer from severe degradations such as bleed-through, stains, fading, and physical losses, which compromise both human readability and machine analysis. Historical document restoration must therefore recover legible text and faithful backgrounds while ensuring structural authenticity and usability for archival workflows. Conventional pipelines either blur fine strokes or fail to maintain visual integrity, limiting their effectiveness in practice. This thesis introduces a two-part restoration framework that jointly optimizes stroke fidelity and background reconstruction at scale.

In the first part, we propose BA-GAN (Boundary-Aware Generative Adversarial Network), a robust end-to-end framework for restoring heavily degraded historical document images. BA-GAN features a single generator guided by two discriminators: one focused on object-level content and another on contour-level information. By leveraging both global and local information concurrently, the model improves stroke edge extraction, enhances binarization results, and ensures precise reconstruction of text boundaries. Experiments on HDIBCO 2017/2018 demonstrate state-of-the-art performance, achieving, for example, DIBCO 2018 metrics: Fm 89.28, PSNR 18.44 dB, and DRD 4.10.

Beyond binarization, BA-GAN integrates a full document reconstruction framework that restores both text and background. A two-stage inpainting strategy is employed: initial background estimation via pixel-based interpolation, followed by deep learning-based GAN inpainting to seamlessly reconstruct missing content, remove noise, and correct ink bleed-through artifacts. Experiments on READ 2016 using VDQAM scores show higher evaluation scores after reconstruction, demonstrating improved visual fidelity and text legibility. This approach enables robust reconstruction of entire historical documents while preserving structural integrity and historical authenticity.

Key contributions include: (i) a novel adversarial binarization framework modeled as a three-player game; (ii) a dual-discriminator cGAN architecture enabling superior stroke edge preservation; (iii) state-of-the-art performance on DIBCO benchmarks; and (iv) a document-centric restoration pipeline combining binarization with inpainting, validated on real-world degraded manuscripts. While challenges remain in ultra-low-contrast and cross-bleed scenarios, future directions include multispectral fusion, self-supervised pretraining, and stronger content-preservation priors.

Keywords: Historical Document Restoration, Generative Adversarial Networks, Boundary-Aware Binarization, Text Inpainting, Image Degradation Removal

TABLE OF CONTENTS

	Page
INTRODUCTION	1
0.1 Context and Motivation	1
0.2 Problem Statement	3
0.2.1 PS1. Multiple Degradation Factors	3
0.2.2 PS2. Stroke Edge Ambiguity	3
0.2.3 PS3. Severe Degradation Recovery	4
0.2.4 PS4. Legibility and Preservation in Digitization	4
0.3 Research Questions	5
0.3.1 Research Question (RQ1): Degradation Modeling	5
0.3.2 Research Question (RQ2): Stroke Edge Extraction and Preservation	5
0.3.3 Research Question (RQ3): Robust Recovery from Severe Degradation	5
0.3.4 Research Question (RQ4): Quality Assessment for Reliable Digital Preservation	6
0.4 Objectives	6
0.5 Contributions	7
0.6 Outline of the thesis	9
CHAPTER 1 LITERATURE REVIEW	11
1.1 Document Restoration	11
1.2 Traditional Binarization Methods	11
1.2.1 Global Thresholding	11
1.2.2 Local Thresholding	13
1.3 Convolutional Neural Networks (CNNs)	15
1.3.1 Fundamentals of CNNs	15
1.3.2 Pooling and Activation	16
1.3.3 Loss, Backpropagation, and Batch Normalization	18
1.4 CNN-Based Binarization Techniques	19
1.5 Generative Adversarial Networks (GANs)	21
1.5.1 Generator	21
1.5.2 Discriminator	22
1.6 Limitations of Current Approaches	23
CHAPTER 2 BA-GAN: A BOUNDARY-AWARE GENERATIVE ADVERSARIAL NETWORK FOR DOCUMENT RESTORATION	25
2.1 Introduction	25
2.2 Proposed Approach	26
2.3 Generator:	27
2.4 Main Discriminator	29
2.5 Auxiliary Discriminator	29
2.6 Network Architecture	31

2.7	Evaluation Metrics	33
2.8	Datasets	35
2.9	Training Process	36
2.10	Comparison with state-of-the-art methods and best competition system	37
2.11	Conclusion	44
CHAPTER 3 FULL PAGE HISTORICAL DOCUMENT RECONSTRUCTION USING TWO-STAGE INPAINTING		47
3.1	Introduction	47
3.2	Pre-trained Model for Text Recognition and Prediction	47
3.2.1	Model Selection and Text Recognition	47
3.3	Text Removal and Background Restoration	49
3.3.1	Initial Background Estimation via Simple Inpainting	49
3.3.2	Deep Learning-Based Inpainting for Noise and Bleed-Through Removal	51
3.4	Reconstruction of the Final Document Image	52
3.5	Dataset	55
3.6	Evaluation Using NR-IQA Metrics	56
3.7	Conclusion	59
CONCLUSION AND RECOMMENDATIONS		61
BIBLIOGRAPHY		65

LIST OF TABLES

	Page
Table 2.1	Summary of DIBCO datasets
Table 2.2	Results for H-DIBCO 2018
Table 2.3	Comparison of Different Approaches on H-DIBCO 2018
Table 2.4	Results for DIBCO 2017

LIST OF FIGURES

	Page	
Figure 0.1	Examples of ancient document images with different types of degradation	2
Figure 0.2	Example of degraded ancient document images alongside their corresponding ground truth version	4
Figure 0.3	Overview of the proposed document restoration pipeline, illustrating the full process from degraded input documents through degradation modeling, text extraction, and background estimation to reconstruction .	10
Figure 1.1	Overview of convolutional layer operation in a CNN, from raw input to filtered output	16
Figure 1.2	The original LeNet-5 architecture as described in the pioneering research paper. [3pt] <i>Source: Feng, Hu, Chen & Wu (2016)</i>	16
Figure 1.3	An Example of Max Pooling 2x2	17
Figure 1.4	ReLU Activation Function	19
Figure 1.5	Generative Adversarial Network	21
Figure 2.1	The proposed BA-GAN architecture	28
Figure 2.2	The generator is structured based on the U-net architecture.	32
Figure 2.3	The Discriminator architecture for D_1 and D_2	32
Figure 2.4	Qualitative Binarization Results	41
Figure 2.5	Qualitative binarization results for sample (8) from the H-DIBCO 2018 dataset, generated by DE-GAN and our models. Our method effectively classifies white pixels as background and black pixels as text. Misclassifications of text as background are highlighted in red, and misclassifications of background as text are shown in blue	43
Figure 2.6	Example Binarization Outputs	45
Figure 3.1	Text Detection Example	48
Figure 3.2	Inpainting Network Architecture	52

Figure 3.3	READ 2016 Background Reconstruction	53
Figure 3.4	Original vs. reconstructed images	58

LIST OF ALGORITHMS

	Page
Algorithm 3.1	Two-Stage Inpainting for Historical Document Reconstruction
	55

LIST OF ABBREVIATIONS

ML	Machine Learning
DL	Deep Learning
CNNs	Convolutional Neural Networks
RNNs	Recurrent Neural Networks
ReLU	Rectified Linear Unit
NR-IQA	No-Reference Image Quality Assessment
OCR	Optical Character Recognition
VDQAM	Visual Document image Quality Assessment Metric
GAN	Generative Adversarial Network
IQA	Image Quality Assessment
cGAN	Conditional Generative Adversarial Network
DIBCO	Document Image Binarization Contest

INTRODUCTION

0.1 Context and Motivation

Historical documents are invaluable cultural artifacts that provide unique insights into the social, political, and cultural contexts of their time. Preserving these documents is essential not only to safeguard historical knowledge but also to ensure that future generations can access and study them. However, many of these materials have suffered significant degradation over the years, with fading ink, discoloration, stains, and physical damage threatening their readability and longevity. Restoration is a critical step in digitizing, archiving, and analyzing these records for research, education, and heritage preservation (Chellapilla, Puri & Simard (2006)).

Document restoration plays a pivotal role as a pre-processing step for downstream tasks. High-quality restoration of text edges and fine details is essential for accurate optical character recognition (OCR), which relies on clearly defined text boundaries to recognize characters effectively. Additionally, metadata extraction and historical analysis depend on preserving unique textual and visual elements that provide context and authenticity. A precise and effective restoration approach ensures that documents retain their legibility and historical integrity, making them suitable for archival and analytical purposes.

Restoring historical document images remains a challenging task due to extensive degradation caused by environmental and physical factors over time. Issues such as fading ink, discoloration, stains, and structural damage obscure content, distort edges, and compromise fine details. These degradations hinder crucial tasks like OCR, content analysis, and metadata extraction, which rely on clear and accurate representations of the documents. Effective restoration techniques are therefore vital to preserving both the usability and historical significance of these invaluable materials.

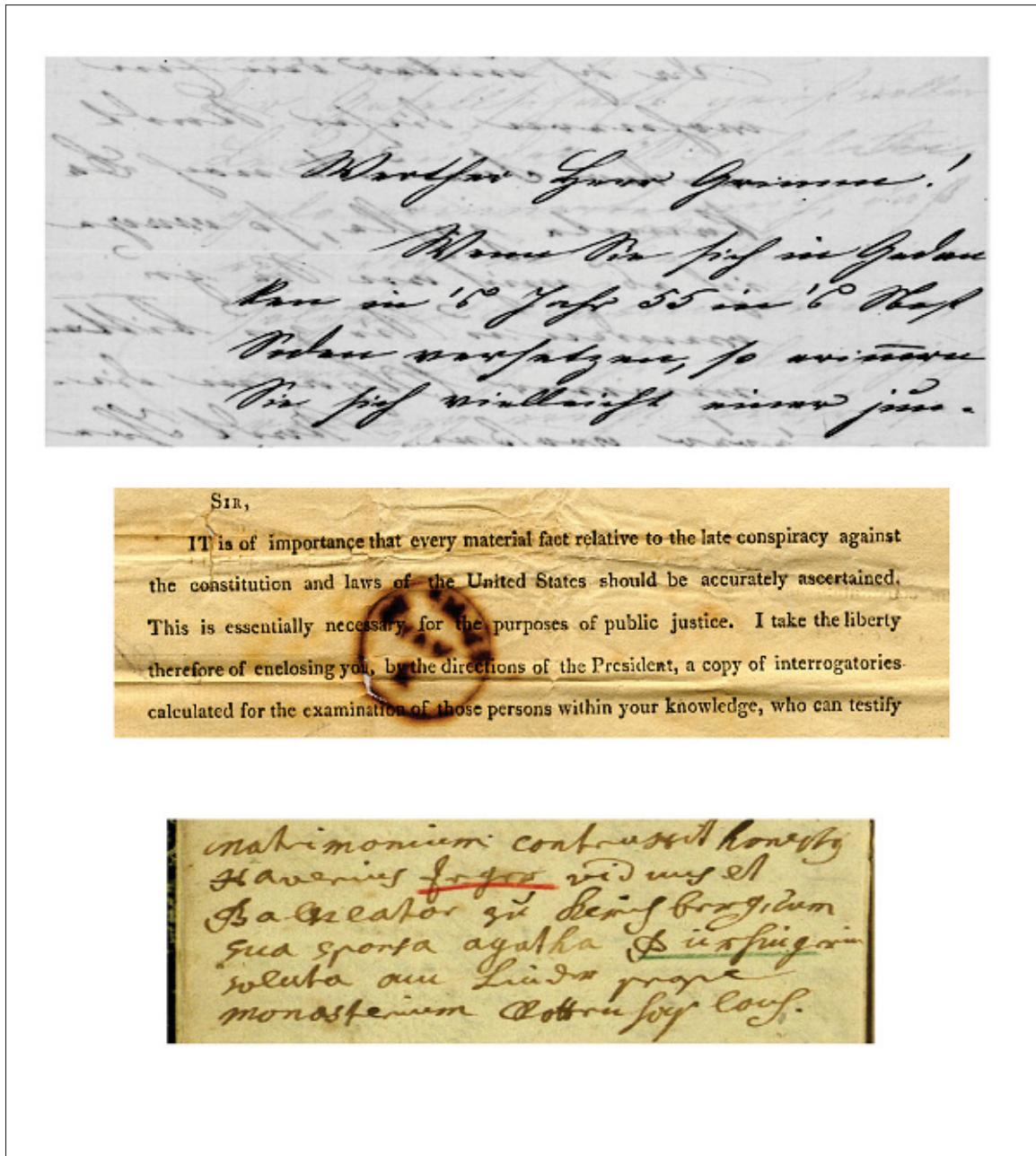


Figure 0.1 Examples of ancient document images with different types of degradation

0.2 Problem Statement

Historical document restoration is complicated by severe degradation, which obscures text, damages edges, and compromises content integrity. These challenges hinder the digitization and preservation of these valuable materials (Sulaiman, Omar & Nasrudin (2019)). The main problems are summarized as follows:

0.2.1 PS1. Multiple Degradation Factors

Historical documents often suffer from several types of deterioration—such as ink bleeding, paper aging, tears, stains, and fading—which together reduce image quality and make accurate text extraction difficult for both printed and handwritten materials. Ink bleeding happens when moisture, excess ink, or poor-quality paper cause the ink to spread and blur the writing. As documents age, the paper can discolor, become brittle, and develop cracks because of light, humidity, and pollutants. Over time, handling also causes tears along edges and folds, interrupting the text or even removing parts of it. Stains from water, oils, or dirt add another layer of visual noise that hides important details. In addition, inks and pigments gradually fade with exposure to air and light, making characters faint or hard to see.

0.2.2 PS2. Stroke Edge Ambiguity

Accurate reconstruction of text edges and fine strokes is a significant challenge. Degradation introduces uncertainty in stroke boundaries, leading to incomplete or blurred contours. Current restoration techniques often fail to preserve authentic edges, especially in detailed or handwritten content.

0.2.3 PS3. Severe Degradation Recovery

Existing methods are limited in handling severely degraded content. While partial recovery is possible, essential textual and visual details are often lost. The challenge lies in developing robust algorithms that enhance readability while preserving historical authenticity and completeness.

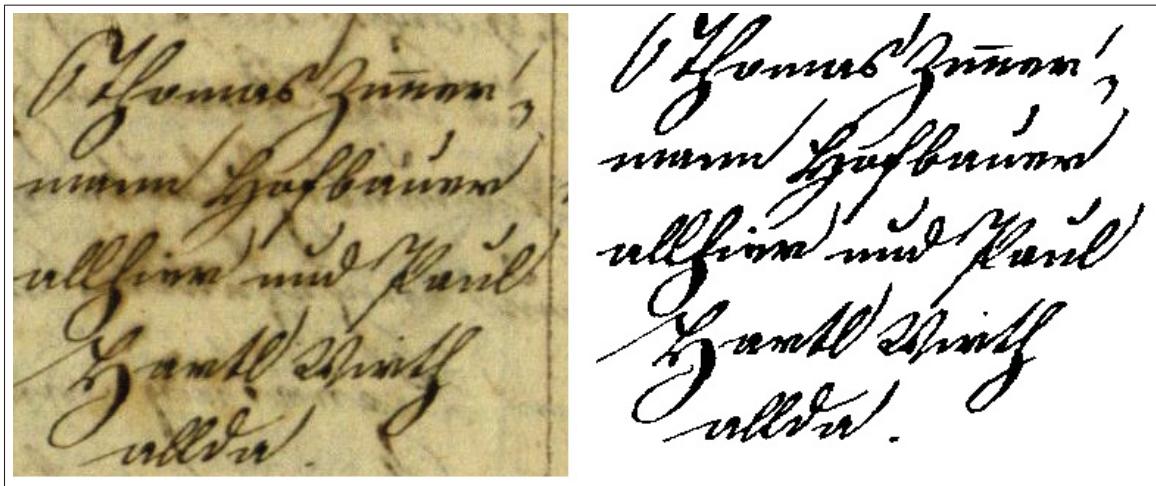


Figure 0.2 Example of degraded ancient document images alongside their corresponding ground truth version

0.2.4 PS4. Legibility and Preservation in Digitization

Degradation reduces the legibility of documents during digitization, often resulting in inaccurate transcription, partial content loss, and increased risk of further damage during handling. Beyond binarization, restoring the underlying background and correcting artifacts such as stains, bleed-through, and missing content is essential for fully reconstructing historical documents. Effective reconstruction methods must enhance visual clarity and readability while preserving structural integrity and historical authenticity, ensuring that digitized documents remain reliable for archival use, computational analysis, and long-term preservation.

0.3 Research Questions

In order to address the aforementioned problems and guide the methodology of this thesis, we refine the problem statement into four coherent research questions (RQs). Each RQ is linked to a specific challenge in historical document restoration, and together they build a systematic framework for tackling degradation, stroke preservation, severe damage recovery, and long-term digitization. Detailed answers to these questions will be provided in the subsequent chapters.

0.3.1 Research Question (RQ1): Degradation Modeling

1. How can we systematically model the diverse degradation factors (ink bleeding, paper aging, stains, tears, and fading) found in historical documents?
2. How can restoration methods be designed to effectively handle multiple degradation types occurring simultaneously in the same document?

0.3.2 Research Question (RQ2): Stroke Edge Extraction and Preservation

1. How can fine text strokes and edges be accurately extracted from degraded historical documents?
2. What deep learning architectures (e.g., GANs, transformers, diffusion models) are most effective in preserving authentic stroke boundaries?
3. How can restoration techniques ensure both readability for OCR systems and authenticity for historical study?

0.3.3 Research Question (RQ3): Robust Recovery from Severe Degradation

1. How can restoration algorithms be made robust against extreme degradation, where large portions of content are missing or distorted, while preserving structural and textual authenticity?

2. Can generative models, such as boundary-aware GANs (BA-GAN), reconstruct missing content plausibly without introducing artificial or misleading details, and be extended to handle uncertainty estimation and dataset generalization?
3. How can inpainting and related methods enhance the recovery of degraded backgrounds, improving readability while maintaining historical fidelity and context in heavily damaged documents?

0.3.4 Research Question (RQ4): Quality Assessment for Reliable Digital Preservation

1. How can restored document images be optimized for long-term digital preservation while maintaining historical authenticity?
2. What evaluation metrics best capture the dual objectives of readability and historical integrity (for archival preservation)?

0.4 Objectives

The primary objective of this thesis is to develop a robust framework for the restoration and reconstruction of historical document images, addressing the challenges posed by severe degradation while preserving historical authenticity and legibility. To achieve this overarching goal, we define the following specific objectives:

1. **Modeling Degradation:** To develop a restoration model capable of reliably recognizing and processing text in historical documents affected by various forms of degradation—such as ink bleed-through, paper wear, stains, and fading, ensuring stable performance even when multiple degradation types are present.
2. **Stroke and Edge Preservation:** To accurately extract and preserve fine text strokes and edges from degraded documents using advanced deep learning architectures, ensuring that restored text maintains both readability for OCR systems and authenticity for historical study.

3. **Robust Recovery from Severe Degradation:** To design a restoration framework that can identify text regions, separate text from background, and reconstruct damaged or obscured areas, improving readability while maintaining the structural authenticity and historical integrity of the document without introducing artificial content.
4. **Quality Assessment for Reliable Digital Preservation:** To evaluate reconstruction results using no-reference image quality assessment (IQA) metrics, since large portions of historical document datasets are unlabeled. This ensures reliable evaluation of readability, visual fidelity, and preservation suitability without requiring ground-truth references.

0.5 Contributions

In this work, we aim to harness the potential of Generative Adversarial Networks (GANs) in the challenging field of document restoration, where documents often suffer from complex degradation patterns, such as faded text, background noise, and uneven contrast. Our approach adapts a conditional GAN (cGAN) architecture specifically for the document binarization process, focusing on extracting and enhancing text quality while effectively handling various forms of degradation. This tailored architecture not only addresses text clarity but also accommodates diverse damage patterns unique to historical and degraded documents. Our contributions are outlined below:

1. **Novel End-to-End Document Binarization Framework:** We introduce an innovative document binarization framework that leverages a minimax three-player game in a deep learning context. Unlike traditional binarization methods that rely on fixed heuristics, our framework is data-driven and optimized to capture text features in degraded documents. By framing document binarization as a game between three players—generator, discriminator, and an auxiliary discriminator for fine-tuned feature alignment—our model learns to balance text preservation with noise reduction, providing a robust, fully end-to-end solution.

2. Enhanced Stroke Edge Extraction via Conditional GAN with Dual Discriminators:

One major challenge in document restoration is the accurate extraction of text strokes, particularly for faint or irregular characters. To address this, we propose an image-to-image translation approach using a conditional GAN (cGAN) with two discriminators: a primary discriminator for general feature extraction and an auxiliary discriminator specifically focused on stroke edges. This dual-discriminator setup enables our model to better capture the fine-grained details of text, ensuring precise stroke edge preservation and enhancing the overall clarity of restored documents. This configuration surpasses the limitations of single-discriminator architectures by enabling the model to focus on both global and localized features, thereby achieving more accurate text restoration.

3. Superior Performance on DIBCO Benchmarks:

Our model achieves state-of-the-art performance on the Document Image Binarization Contest (DIBCO) benchmarks, demonstrating its effectiveness across a range of document restoration tasks. We conduct extensive experiments that show significant improvements over existing methods in terms of both quantitative metrics and qualitative results, showcasing the model’s ability to handle various degradation scenarios and deliver clear, binarized outputs. This advancement underscores the potential of our cGAN-based approach in document restoration and highlights its contribution to the field, particularly in applications involving historical or damaged documents. This work builds upon our prior publication (Nafchi & Cheriet (2025)), which received the second-best paper award at ISPR’2024.

4. Reconstruction of Historical Documents:

We propose a comprehensive framework for reconstructing degraded historical documents by integrating text localization via binary masks with a two-stage background inpainting technique. Leveraging our pre-trained model and deep learning-based restoration, our method ensures improved readability and preservation of historical content. It significantly improves visual quality, as measured

by the no-reference VDQAM metric (Shahkolaei, Nafchi, Al-Maadeed & Cheriet (2018), demonstrating its effectiveness in challenging real-world scenarios.

0.6 Outline of the thesis

The thesis "From Edges to Pages: Boundary-Aware Binarization and Two-Stage Reconstruction of Historical Documents" is organized into several chapters that address the challenges of historical document restoration.

Chapter 1: Literature Review surveys existing approaches to document restoration, including traditional binarization methods, convolutional neural network (CNN)-based techniques, and generative adversarial networks (GANs). It also covers image-to-image translation frameworks and discusses the limitations that motivate the need for a boundary-aware approach.

Chapter 2: Boundary-Aware Generative Adversarial Network (BA-GAN) introduces the proposed model, detailing the design of the generator and discriminator, auxiliary components, network architecture, datasets, training strategy, and evaluation metrics. This chapter presents our main contributions in binarization, including the development of a boundary-aware loss function and a GAN capable of preserving fine stroke edges. Key results demonstrate that BA-GAN outperforms state-of-the-art methods in both objective metrics (e.g., PSNR, SSIM) and visual quality.

Chapter 3: Full-Page Historical Document Reconstruction Using Two-Stage Inpainting extends the restoration to heavily degraded manuscripts using a two-stage inpainting strategy. The first stage estimates the background, while the second stage refines the reconstruction to reduce ink bleed-through and noise. This chapter highlights contributions in full-page reconstruction and shows that the proposed two-stage approach significantly improves both

structural fidelity and readability compared to baseline methods, as confirmed by quantitative and qualitative evaluations.

Finally, the **Conclusion and Recommendations** chapter summarizes the main findings, discusses the limitations of the current work, and proposes directions for future research in document restoration and digital preservation.

A schematic diagram included in this section illustrates the overall workflow of the thesis, showing the progression from BA-GAN binarization to two-stage reconstruction.



Figure 0.3 Overview of the proposed document restoration pipeline, illustrating the full process from degraded input documents through degradation modeling, text extraction, and background estimation to reconstruction

CHAPTER 1

LITERATURE REVIEW

1.1 Document Restoration

Document restoration involves enhancing the visual quality of degraded documents, including historical manuscripts, legal records, and damaged texts, to improve legibility and facilitate digital preservation. The primary objective is not only to improve readability but also to maintain the authenticity and historical integrity of these cultural artifacts.

Traditional restoration techniques, such as Otsu's thresholding (Otsu *et al.* (1975)) and Sauvola's adaptive binarization (Sauvola & Pietikäinen (2000)), rely on classical image processing methods to enhance document clarity. These approaches are effective under controlled conditions but often struggle with complex degradation patterns, including uneven illumination, ink bleed-through, overlapping noise, and faded text—challenges common in historical documents.

With the rise of deep learning, adaptive, data-driven methods have significantly advanced document restoration. Convolutional Neural Networks (CNNs) excel in feature extraction, image enhancement, and segmentation, while Generative Adversarial Networks (GANs) can learn mappings between degraded and clean document images. Despite these advancements, challenges remain in balancing text enhancement with noise removal, ensuring generalization across diverse degradation types, and preserving fine structural details. Our work aims to address these challenges through a GAN-based framework that enhances text clarity, removes noise, and maintains structural integrity.

1.2 Traditional Binarization Methods

1.2.1 Global Thresholding

Global thresholding applies a single threshold value across an entire image to separate text from the background. This approach is computationally efficient and works well for images

with uniform backgrounds. However, its performance significantly deteriorates in cases where documents exhibit varying illumination or complex degradation patterns, leading to suboptimal binarization results.

One of the most widely used global thresholding techniques is Otsu's method (Otsu *et al.* (1975)). This algorithm automatically determines an optimal threshold by analyzing the histogram of the grayscale image, aiming to minimize intra-class variance while maximizing the separation between text and background. The intra-class variance, denoted as $\sigma_{\text{intra}}^2(k)$, is calculated as:

$$\sigma_{\text{intra}}^2(k) = p_1(k)\sigma_1^2(k) + p_2(k)\sigma_2^2(k), \quad (1.1)$$

where $p_1(k)$ and $p_2(k)$ are the probabilities of pixel groups divided by the threshold k , and $\sigma_1^2(k)$ and $\sigma_2^2(k)$ represent the variances of these groups. The optimal threshold, T_{Otsu} , maximizes the between-class variance, calculated as:

$$T_{\text{Otsu}} = \frac{\sigma_B^2}{\sigma_G^2}. \quad (1.2)$$

Otsu's algorithm, often referred to as the "maximized between-classes variance method," is particularly effective for images with consistent backgrounds. It partitions an image into foreground and background segments by maximizing the difference between their grayscale distributions. This ensures robust segmentation for images with sufficient grayscale contrast.

However, Otsu's method has limitations when applied to documents with uneven backgrounds or severe degradation. For instance, in scenarios involving significant ink penetration or insufficient contrast, the algorithm may misclassify parts of the background as text or vice versa. These shortcomings highlight the need for more advanced methods to address the challenges of document restoration, particularly in handling non-uniform degradation and noise.

1.2.2 Local Thresholding

Local thresholding techniques were introduced to address the limitations of global thresholding, especially in handling images with uneven backgrounds or localized variations in contrast. These methods compute the threshold dynamically within a local window, making them more robust for complex document degradation scenarios.

The Niblack algorithm Niblack (1985) was developed to overcome the shortcomings of fixed thresholds by employing a local binarization approach. This method calculates the mean and standard deviation within a local window surrounding each pixel, adjusting the threshold accordingly. The threshold calculation is expressed as:

$$T = m + k \cdot s, \quad (1.3)$$

where m represents the mean gray value of the local window, s is the standard deviation, and k is a correction factor that can be tuned based on the contrast between the foreground and background. Niblack's method has been recognized as effective for images with low contrast, noise, and uneven background intensity (trier1995). However, it can produce excessive noise in high-contrast regions or areas with significant variations in intensity.

Sauvola's method (Sauvola & Pietikäinen (2000)) extends Niblack's approach (Niblack (1985)) by introducing a dynamic thresholding mechanism that adapts to local image variations, making it more robust to noise and uneven illumination. The threshold T_{sau} is calculated as:

$$T_{\text{sau}}(a, b) = m(a, b) \left(1 + k \left(\frac{\sigma(a, b)}{R} - 1 \right) \right), \quad (1.4)$$

where $m(a, b)$ and $\sigma(a, b)$ represent the local mean and standard deviation within the neighborhood of pixel (a, b) , respectively. The parameter R is a predefined constant (typically

set to 128) that defines the dynamic range of the standard deviation, and k is a tuning factor that controls the threshold's sensitivity to local contrast.

The key innovation of Sauvola's method lies in its ability to refine the threshold dynamically based on local contrast, particularly in high-contrast regions where the threshold value converges towards the local mean $m(a, b)$. This adaptability makes it more effective for handling documents with uneven lighting and varying levels of degradation compared to Niblack's approach (Niblack (1985)).

However, despite its advantages, Sauvola's method is not without limitations. It requires careful tuning of parameters such as k and window size, which can vary depending on the document's characteristics. Additionally, it may face challenges in scenarios with diverse text sizes and fonts, often necessitating further optimization for consistent results.

To address the issue of black noise produced by the Niblack algorithm, (Khurshid, Siddiqi, Faure & Vincent (2009)) proposed the NICK algorithm. This method enhances the binarization of degraded and noisy documents by lowering the binary threshold for lighter regions. The threshold is calculated as:

$$T = m + k \sqrt{\frac{\sum p_i^2 - m^2}{N_P}}, \quad (1.5)$$

where p_i denotes the pixel values within the local window, N_P is the number of pixels, and k is a correction factor. By adjusting k , NICK can effectively suppress noise: a k value close to 0.2 reduces noise but risks faint or broken characters, while a k value near 0.1 retains text clarity but may preserve some noise.

These algorithms demonstrate the evolution of local thresholding methods in addressing the complexities of document binarization. Each method offers unique strengths but also faces limitations, highlighting the ongoing need for innovation in this area.

Local thresholding techniques address the limitations of global methods by adaptively calculating a threshold for each local region of the document, thereby improving binarization accuracy in scenarios with non-uniform backgrounds or shadows.

1.3 Convolutional Neural Networks (CNNs)

1.3.1 Fundamentals of CNNs

With the advent of deep learning, CNNs have been applied to document binarization, automatically learning features for text and background separation through feature extraction. These methods are particularly effective in handling complex document degradation.

The core operation of CNNs is the *convolution* operation, which involves applying a filter or kernel to an input matrix, like an image, to produce a feature map. Mathematically, the 2D convolution operation between an input image I and a filter K can be represented as:

$$(I * K)(i, j) = \sum_m \sum_n I(i + m, j + n) \cdot K(m, n) \quad (1.6)$$

where:

- $I(i, j)$ denotes the pixel value at position (i, j) in the input image,
- $K(m, n)$ represents the filter of size $m \times n$,
- The resulting output is a *feature map* that highlights particular features, such as edges or textures, detected by the filter.

Each filter in the convolutional layer is learned during training to capture specific characteristics in the input data, allowing CNNs to recognize increasingly complex patterns as they progress through the network. The hierarchical feature extraction capability of CNNs enables them to model increasingly abstract patterns, making them a powerful tool for document restoration tasks where fine-grained structural information must be preserved.

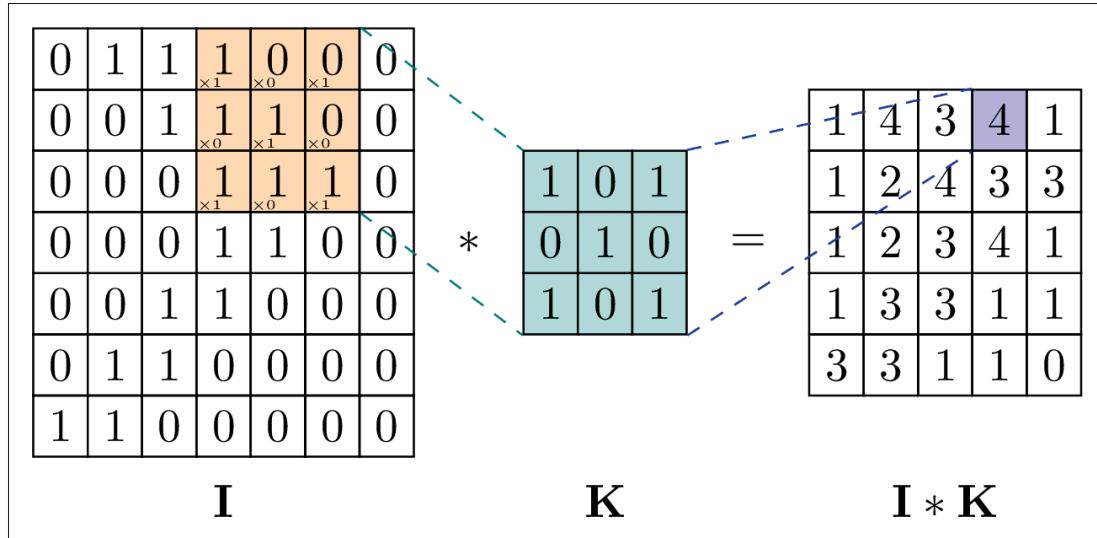


Figure 1.1 Overview of convolutional layer operation in a CNN, from raw input to filtered output

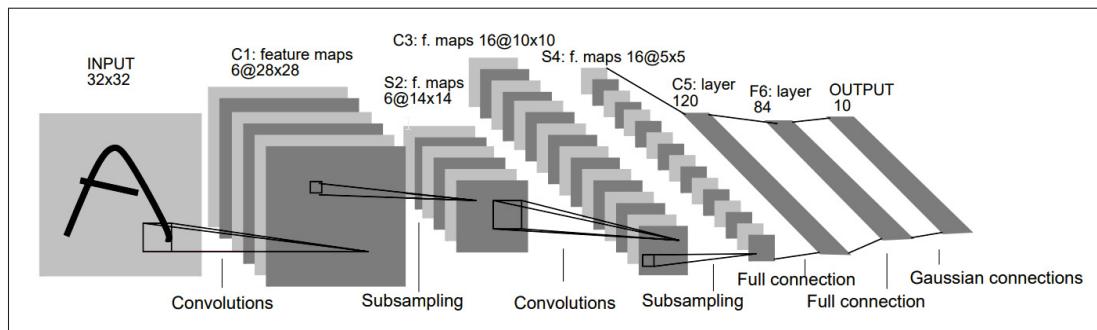


Figure 1.2 The original LeNet-5 architecture as described in the pioneering research paper.

Source: Feng *et al.* (2016)

1.3.2 Pooling and Activation

Following the convolutional layer, CNNs often include *pooling layers* to reduce the spatial dimensions of the feature maps, effectively decreasing the number of parameters, reducing computational load, and controlling overfitting. The most commonly used pooling operation is *max pooling*, defined as:

$$P(i, j) = \max_{(m, n) \in R} F(i + m, j + n) \quad (1.7)$$

where:

- $P(i, j)$ is the output at position (i, j) in the pooling layer,
- $F(i, j)$ is the feature map from the previous convolutional layer,
- R denotes the pooling region, commonly of size 2×2 or 3×3 .

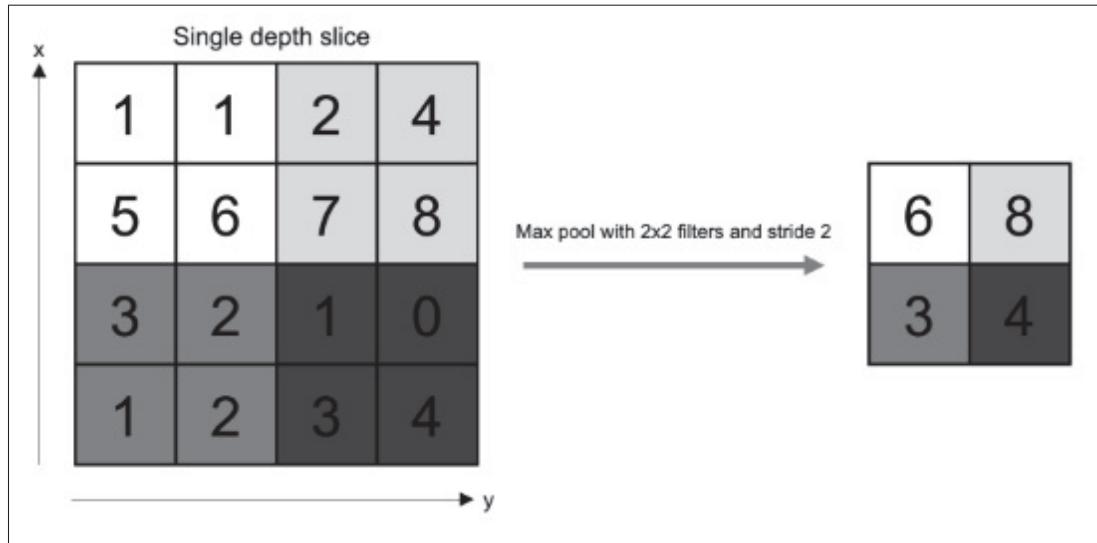


Figure 1.3 An Example of Max Pooling 2x2

Pooling retains prominent features within each region, which is critical for downsampling the feature maps and achieving translation invariance.

To introduce non-linearity, CNNs employ activation functions, with the *Rectified Linear Unit (ReLU)* being one of the most popular. ReLU is defined as:

$$f(x) = \max(0, x) \quad (1.8)$$

where x represents the input to the activation function from the preceding layer. By setting negative values to zero, ReLU helps the network learn complex, non-linear relationships within the data.

This simple yet effective non-linearity enables the network to model complex functions, making it a core component of most modern CNN architectures.

1.3.3 Loss, Backpropagation, and Batch Normalization

In classification tasks, CNNs are trained by minimizing a loss function that measures the discrepancy between predicted and true labels, commonly the *cross-entropy loss* for classification tasks. Given an input image x with label y and CNN prediction \hat{y} , the cross-entropy loss L is defined as:

$$L(y, \hat{y}) = - \sum_{c=1}^C y_c \log(\hat{y}_c) \quad (1.9)$$

where:

- C is the number of classes,
- y_c is the true label for class c ,
- \hat{y}_c is the predicted probability for class c .

Backpropagation computes the gradients of the loss with respect to each parameter in the network, enabling gradient-based optimizers such as stochastic gradient descent (SGD) to update the weights and minimize prediction error.

Batch normalization (BN) is an essential component in modern deep learning architectures, introduced to address the issue of *internal covariate shift*. This shift refers to the change in the distribution of layer inputs as the parameters are updated during training, which can slow down convergence. BN normalizes the inputs of each layer to have a mean of zero and a standard deviation of one, stabilizing the learning process.

BN is defined by normalizing each mini-batch as follows:

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \times \gamma + \beta \quad (1.10)$$

where:

- \hat{x}_i is the normalized output for input x_i ,
- μ_B and σ_B^2 are the batch mean and variance, respectively, computed over the mini-batch,
- ϵ is a small constant added to prevent division by zero,

- γ and β are learnable parameters that scale and shift the normalized values.

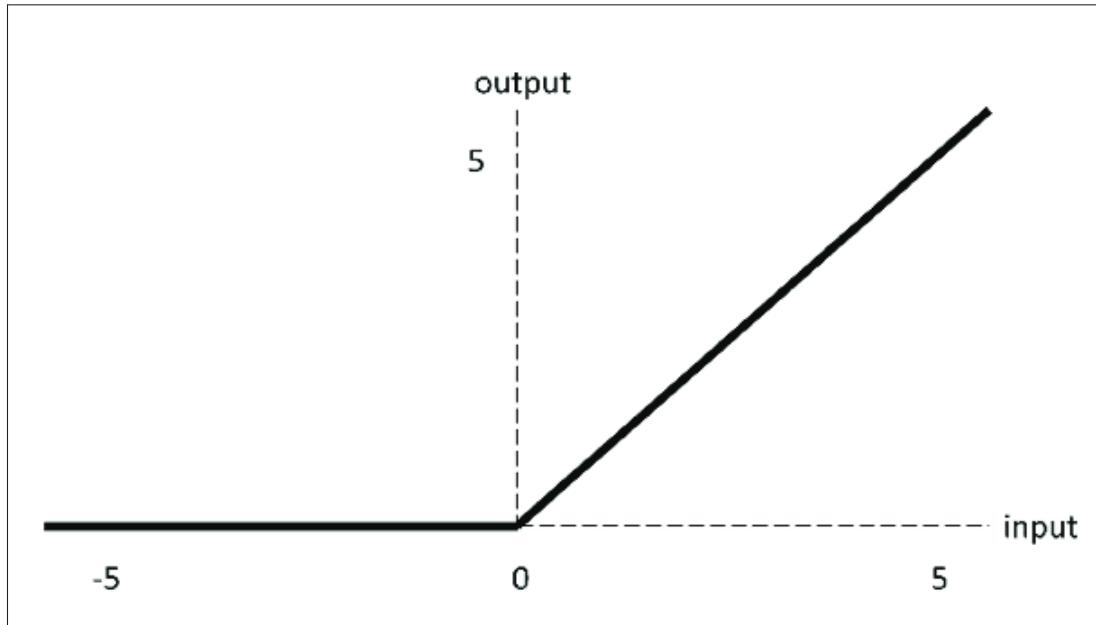


Figure 1.4 ReLU Activation Function

By normalizing and scaling layer inputs, Batch Normalization (BN) provides several key benefits: it enables higher learning rates and accelerates convergence by reducing internal covariate shifts; it introduces a mild regularization effect through mini-batch variability, helping to reduce overfitting, and it improves training stability by keeping activations within a consistent range, resulting in smoother gradients and minimizing issues such as exploding or vanishing gradients, an advantage especially important in deep networks.

BN has become a standard layer in Convolutional Neural Networks (CNNs), typically placed after a convolutional layer and before an activation function such as ReLU. This positioning allows BN to stabilize activations, thus facilitating a smoother learning process.

1.4 CNN-Based Binarization Techniques

Document image binarization and restoration have seen significant improvements with the advent of deep learning techniques. Among these, Convolutional Neural Networks (CNNs) have

emerged as a leading approach due to their ability to automatically extract features and learn hierarchical representations from data. In the context of document restoration, convolutional layers detect important image features, pooling layers reduce the dimensionality of these features, and fully connected layers convert them into binary outputs. By capturing complex patterns in degraded documents, CNNs consistently outperform traditional methods such as global or adaptive thresholding, delivering more accurate, robust, and visually faithful restorations.

Methods like U-Net (Ronneberger, Fischer & Brox (2015)) and Fully Convolutional Networks (FCNs) have been specifically adapted for this task, achieving remarkable results. U-Net, with its encoder-decoder structure, excels in capturing multi-scale features, while FCNs, introduced by Long et al. (Long, Shelhamer & Darrell (2015)), classify images at the pixel level without restricting image size. FCNs are particularly useful for document binarization tasks, as they enable pixel-wise classification and handle input images of various sizes, making them more efficient compared to traditional CNNs. However, FCNs can sometimes lack sensitivity to fine image details, which is crucial when processing ancient or heavily degraded documents.

Recent advancements have further integrated CNNs with traditional image processing methods. For example, He et al. (He & Schomaker (2019)) introduced DeepOtsu, which combines CNNs with the Otsu algorithm for image binarization. This model leverages deep learning to optimize threshold selection, improving performance on images with complex lighting conditions and noise. In another approach, Vo et al. (Quang Nhat, Vo & Gueesang (2017)) proposed a Deep Supervised Network (DSN) for binarization, which uses multi-level features to better distinguish text from background noise, ensuring high-quality text retention.

Beyond CNNs, Generative Adversarial Networks (GANs) have emerged as a powerful tool for document restoration. GANs (Goodfellow *et al.* (2014)), known for their ability to generate high-quality images, have been successfully adapted for image-to-image translation tasks, where the input is a degraded document and the output is a restored version. These models use a generator network to produce restored images and a discriminator network to distinguish between real and generated images, creating a robust system that can handle various degradation patterns.

Conditional GANs (cGANs), which use paired images for supervised learning, have shown impressive results in document restoration tasks. Additionally, unsupervised GANs, which can work with unpaired images, have been utilized to further improve restoration quality without requiring large labeled datasets. These approaches have set new benchmarks on datasets such as DIBCO, outperforming traditional methods in both visual quality and quantitative metrics.

1.5 Generative Adversarial Networks (GANs)

GANs are composed of a generator and a discriminator network. The generator learns to produce restored document images, while the discriminator evaluates their authenticity. Through this adversarial training process, GANs progressively enhance the quality of restored document images, leading to highly accurate reconstructions (Goodfellow *et al.* (2014)).

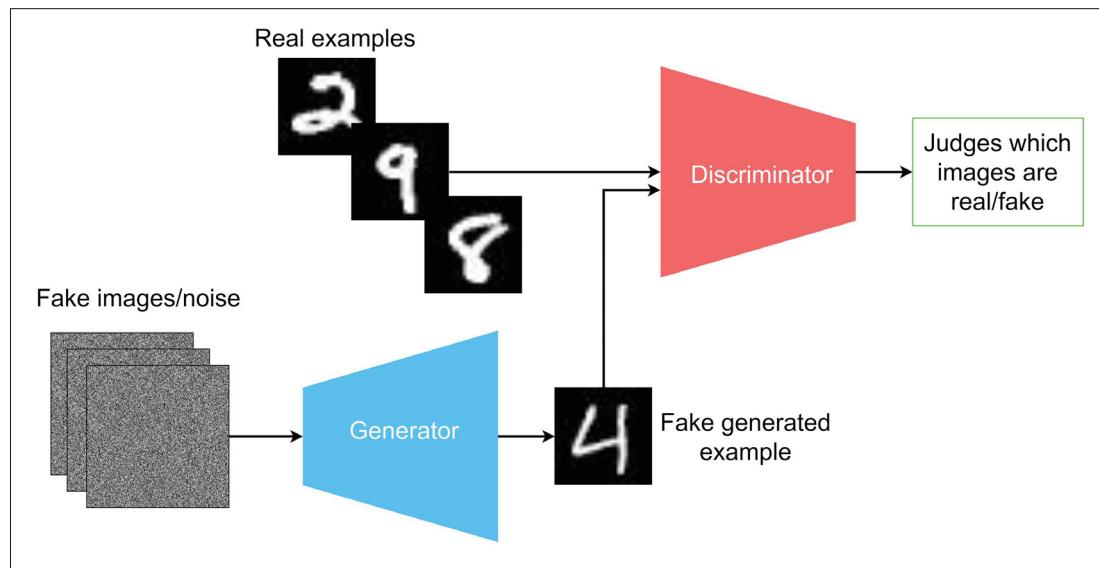


Figure 1.5 Generative Adversarial Network

1.5.1 Generator

The Generator is a neural network that aims to produce samples that resemble real data from a given domain. It does this by taking in a random noise vector as input and transforming it into a data sample that could pass as real.

The Generator G learns to map a prior noise distribution $p_z(z)$ (such as a normal or uniform distribution) to a data distribution $p_{\text{data}}(x)$. Its objective is to generate samples that the Discriminator cannot distinguish from real data. By learning from the feedback provided by the Discriminator, the Generator iteratively improves its output quality.

The Generator's objective function, or loss, can be expressed as:

$$\min_G V(G) = \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))] \quad (1.11)$$

Where:

- z is a random noise vector drawn from the prior distribution $p_z(z)$.
- $G(z)$ represents the generated data sample, which the Generator creates to approximate the real data.
- $D(G(z))$ is the probability, as estimated by the Discriminator, that $G(z)$ is a real sample.

The Generator aims to minimize $\log(1 - D(G(z)))$, encouraging $D(G(z))$ to be as close to 1 as possible (i.e., making the generated sample indistinguishable from real data in the Discriminator's view).

1.5.2 Discriminator

The Discriminator is a neural network tasked with classifying inputs as either real (from the actual data) or fake (from the Generator). It receives both real data samples and generated samples, learning to differentiate between the two.

The Discriminator D outputs a probability $D(x)$, representing the likelihood that input x is from the real data distribution. Through training, the Discriminator improves its ability to detect generated samples, helping the Generator improve as well. It serves as the "critic" in the GAN framework, providing feedback to the Generator.

The Discriminator's objective function, or loss, is given by:

$$\max_D V(D) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))] \quad (1.12)$$

Where:

- x represents a real data sample drawn from the real data distribution $p_{\text{data}}(x)$.
- $D(x)$ is the Discriminator's estimate of the probability that x is a real data sample.
- $G(z)$ is a generated sample from the Generator, based on noise z .
- $D(G(z))$ is the Discriminator's estimate of the probability that $G(z)$ is a real sample.

The Discriminator aims to maximize $\log D(x)$ for real samples and $\log(1 - D(G(z)))$ for fake samples, effectively becoming better at distinguishing between real and generated data.

1.6 Limitations of Current Approaches

Historical document restoration often begins with binarization, yet existing methods face significant challenges. Traditional techniques, such as global or adaptive thresholding, frequently fail to capture text in severely degraded documents affected by ink bleed-through, fading, stains, tears, or missing regions. These methods are highly sensitive to noise and typically cannot preserve fine-grained stroke edges, resulting in reduced legibility and unreliable downstream analysis. Deep learning-based methods, particularly CNNs, have improved performance by learning complex features automatically, but they still primarily focus on foreground text and often miss subtle strokes or fail under complex degradation patterns. These limitations highlight the need for a more robust model capable of accurate text detection and precise stroke preservation in challenging historical documents.

While improved binarization enhances text extraction, most existing approaches do not provide a complete reconstruction of historical documents. Current solutions often stop at text binarization or partial restoration, leaving background regions and degraded areas unprocessed. This incomplete reconstruction reduces structural fidelity and fails to preserve the historical and visual integrity of the documents, limiting their archival and analytical usability. A comprehensive

pipeline that restores both text and background is therefore essential to fully recover degraded manuscripts.

To address these gaps, we propose BA-GAN, a Boundary-Aware Generative Adversarial Network designed for historical document restoration. The model features a single generator guided by dual discriminators: one focused on content-level features and another on contour-level details. This design enables BA-GAN to capture fine stroke edges, improve binarization quality, and generate precise text masks even in heavily degraded areas. By leveraging both local and global information, BA-GAN significantly enhances text reconstruction compared to prior methods.

Building upon accurate binarization, BA-GAN integrates a complete document reconstruction pipeline using a two-stage inpainting strategy. The first stage estimates the background using pixel-based interpolation, providing a coarse reconstruction of missing content. The second stage applies deep learning-based GAN inpainting to refine textures, remove noise, and correct bleed-through artifacts. This combined approach ensures precise stroke reconstruction, seamless background restoration, and preservation of structural and historical authenticity. Unlike prior methods, this pipeline produces fully reconstructed historical documents with enhanced legibility, structural fidelity, and long-term archival usability.

CHAPTER 2

BA-GAN: A BOUNDARY-AWARE GENERATIVE ADVERSARIAL NETWORK FOR DOCUMENT RESTORATION

2.1 Introduction

In this section, we detail the proposed approach for restoring degraded document images using a novel architecture, BA-GAN (Boundary-Aware Generative Adversarial Network). Document restoration is framed as an image-to-image translation problem, where the goal is to transform an input degraded image into a clean version while preserving the document's structural and textual integrity. The use of Generative Adversarial Networks (GANs) allows for the generation of high-quality outputs, especially in settings where paired data (degraded image and ground truth clean image) is available. Conditional GANs, a variation of GANs, take advantage of paired data by incorporating conditional information, enabling more controlled and realistic image generation. This makes them highly suitable for the document restoration task, where the condition could be the degraded image or other related data.

Our proposed architecture, BA-GAN, is designed with two key objectives in mind:

- **Restoring the content of degraded documents:** This objective focuses on restoring documents suffering from heavy degradation. The goal is to reconstruct the content while preserving the text's integrity and readability, even in challenging scenarios.
- **Preserving boundary details:** This is crucial for accurate restoration of text and structural elements. Boundaries, such as edges of text and lines, play a key role in document clarity. Ensuring that these details remain intact or are restored effectively is important for improving the quality and legibility of the restored document.

The architecture consists of a generator G and two discriminators D_1 and D_2 , which work in tandem to ensure the generation of high-fidelity, clean document images. Below, we discuss the different components of BA-GAN in detail.

The remainder of this chapter is organized as follows: the next section details our approach, including the design of a custom loss function, the structure of the generator, and the two discriminators used. We describe both the conditional and adversarial loss components, highlighting their roles in optimizing model performance. Finally, in the experimental evaluation, we demonstrate the effectiveness of each system component and compare our results with similar approaches.

2.2 Proposed Approach

To achieve a clean, restored version of a degraded document, we frame the task as an image-to-image translation problem. This approach leverages the strengths of conditional Generative Adversarial Networks (GANs), which are particularly effective in generating high-quality outputs when paired data are available—a unique advantage of the GAN framework. Our model, **BA-GAN** (Boundary-Aware Document Restoration Conditional Generative Adversarial Network), is specifically designed to address this objective with precision and robustness.

The BA-GAN model comprises a generator network, G , and two discriminator networks, D_1 and D_2 , each with distinct roles in enhancing restoration accuracy. These neural networks are defined by their parameters θ_G , θ_{D1} , and θ_{D2} , respectively. In conditional GANs, both the generator and discriminators receive additional conditional information, enabling controlled, context-aware outputs that adhere closely to the original document’s structure. This conditioning mechanism enhances the model’s capacity to focus selectively on document boundaries and intricate details, ensuring that even complex, degraded regions are accurately restored.

The objective function for the BA-GAN model is formulated as:

$$L_{\text{net}}(\theta_G, \theta_{D1}, \theta_{D2}) = \min_{\theta_G} \max_{\theta_{D1}, \theta_{D2}} L_{\text{GAN}}(\theta_G, \theta_{D1}, \theta_{D2}) + \lambda L_{\log}(\theta_G), \quad (2.1)$$

where L_{GAN} represents the adversarial loss that drives the generator to produce outputs indistinguishable from the real target by the discriminators, and L_{\log} is a regularization term

or reconstruction loss to ensure the generated output aligns closely with the real data. Here, λ serves as a weighting factor that balances the contributions of both loss components.

In this context, the min-max formulation reflects the adversarial training dynamics between the generator and the discriminators. The generator G aims to minimize the loss L_{net} by producing realistic document restorations, while the discriminators D_1 and D_2 strive to maximize their ability to differentiate between real and generated images.

Specifically, the generator's goal is to learn a mapping from degraded input images to their corresponding pristine forms, while the discriminators assess the quality of the generator's outputs. This interplay creates a competitive environment where the generator continually improves its outputs to deceive the discriminators, and the discriminators refine their ability to detect fake images. Over successive training iterations, this adversarial process leads to a convergence where the generator produces increasingly accurate restorations of degraded documents.

Ultimately, this min-max strategy creates a balance of cooperation and competition between the components of the BA-GAN model, helping each part improve the overall performance. This synergy is important for handling the complex challenges of document restoration and enables the model to learn detailed and meaningful representations from document images. By combining boundary-aware features with adversarial training, BA-GAN not only improves the visual quality of the restored documents but also preserves the original content and structure.

2.3 Generator:

The generator $G_{\theta_g} : \{I_{gt}, I\} \rightarrow I_c$ is designed to learn a mapping that transforms the observed ground truth image I_{gt} and an original document image I into a clean document, represented as I_c . The primary objective of this generator is to create an output that closely resembles the ground truth image, effectively reconstructing the original document in its cleanest form.

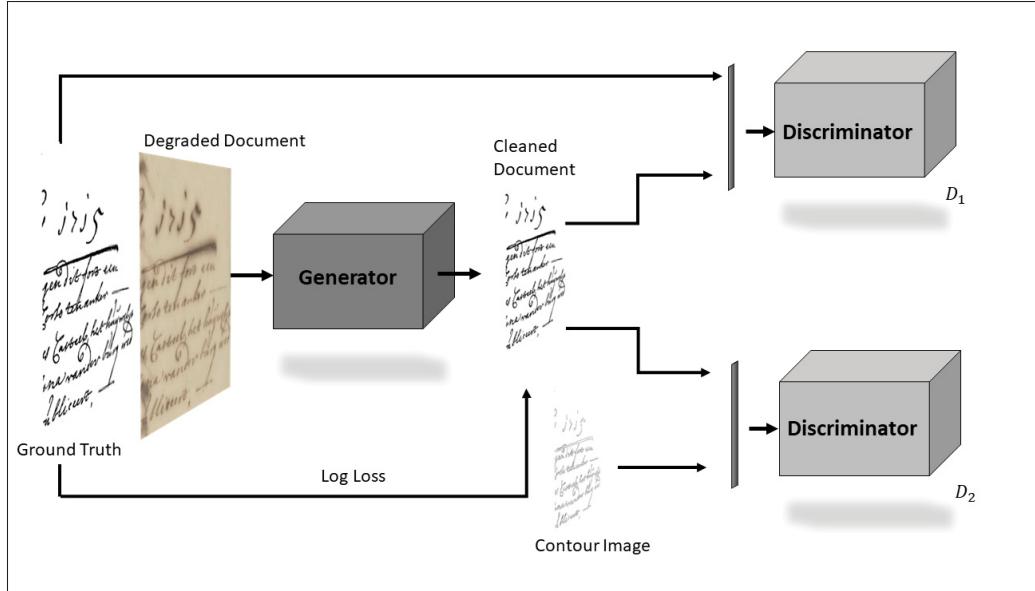


Figure 2.1 The proposed BA-GAN architecture

Within the framework of a Generative Adversarial Network (GAN), the optimization process for the generator focuses on determining the optimal parameters θ_g^* . This is formalized in Equation 2.2:

$$\theta_g^* = \arg \max_{\theta_g} \mathbb{E}_{X \sim p_{\theta_g}} [-\log(1 - D(X; \theta_d))] \quad (2.2)$$

The goal of this optimization objective is to maximize the expected value of the negative log-likelihood of the discriminator's output for the generated samples. In this context, X represents the samples produced by the generator G with parameters θ_g , while $D(X; \theta_d)$ indicates the discriminator's response to these samples. Essentially, the generator's training process aims to produce images that are realistic enough to fool the discriminator, thereby enhancing the generator's ability to create high-quality outputs. As the generator improves its performance, it contributes to the overall efficacy and realism of the images generated by the GAN, fostering a competitive dynamic between the generator and the discriminator that ultimately leads to more authentic image generation.

2.4 Main Discriminator

The main discriminator D_1 determines whether the image generated by G is fake or real, outputting a probability value $D_{\theta_{d1}} : I_c \rightarrow P(\text{real})$, thereby distinguishing between the ground truth and the generated image.

The optimization process for the primary discriminator D_1 within a GAN entails the search for optimal parameters θ_{d1}^* through the minimization of the following objective, as indicated by Equation 2.3:

$$\theta_{d1}^* = \arg \min_{\theta_{d1}} \mathbb{E}_{X \sim p_{\text{data}}} [-\log D(X; \theta_{d1})] + \mathbb{E}_{X \sim p_{\theta_g}} [-\log(1 - D(X; \theta_{d1}))] \quad (2.3)$$

Here, θ_{d1}^* represents the optimal parameters for the primary discriminator D_1 . The objective function comprises two terms: the expected negative log-likelihood of D_1 's output for real data samples X with parameters θ_{d1} , and the expected negative log-likelihood of D_1 's output for generated samples X from generator G with parameters θ_g . The goal is to minimize D_1 's combined error in classifying real and generated data, thereby enhancing its ability to distinguish between the two. This adversarial training improves D_1 's discrimination abilities, guiding G to produce more realistic images.

Equation 2.3 represents a fundamental aspect of GAN training, crucial for achieving high-quality image generation by iteratively improving the main discriminator D_1 .

2.5 Auxiliary Discriminator

In order to precisely match the text boundaries with the ground truth, the generator uses a second discriminator, which is devoted to text boundary segmentation. The discriminator enhances its ability to predict whether the image is fake, a phenomenon known as adversarial learning.

The objective for the auxiliary discriminator θ_{d2}^* is given by:

$$\theta_{d2}^* = \arg \min_{\theta_{d2}} \mathbb{E}_{X \sim p_{\text{data}}} [-\log D(X; \theta_{d2})] + \mathbb{E}_{X \sim p_{\theta_g}} [-\log(1 - D(X; \theta_{d2}))] \quad (2.4)$$

Here, θ_{d2}^* denotes the optimal parameters for D_2 . The goal is to minimize the combined error in classifying the contour image and generated data, thereby enhancing D_2 's capability to discern real from fake images alongside the primary discriminator D_1 . Consequently, the generated images will exhibit sharper, more defined edges and boundaries as the generator refines its ability to reproduce these features faithfully. Overall, the enhancement of D_2 contributes to generating higher-quality images with finer details, leading to a more realistic and visually pleasing output.

The formalization of the adversarial training process between the generator (G) and two discriminators (D_1, D_2) can be described as follows:

$$\begin{aligned} \mathcal{L}_{\text{GAN}}(\theta_g, \theta_{d1}, \theta_{d2}) = & \mathbb{E}_{I, I_{gt}} [\log[D_{\theta_{d1}}(I, I_{gt})]] \\ & + \mathbb{E}_I [\log[1 - D_{\theta_{d1}}(I, G_{\theta_g}(I))]] \\ & + \mathbb{E}_{I, I_{gt}} [\log[D_{\theta_{d2}}(I, I_{gt})]] \\ & + \mathbb{E}_I [\log[1 - D_{\theta_{d2}}(I, G_{\theta_g}(I))]] \end{aligned} \quad (2.5)$$

The utilization of this methodology involves the generator's objective to create an image resembling the ground truth after numerous training iterations aimed at removing the degradation to potentially deceive the discriminator. However, ensuring that the quality of the text aligns precisely with the ground truth is not guaranteed. To address this concern, an additional log loss function is introduced between the generated image and the ground truth, aiming to mitigate discrepancies. This supplementary step enforces the model to produce images with text content identical to the ground truth. It is pertinent to note that this additional loss function enhances training efficiency and expedites the model's convergence. This extra loss function can be expressed as follows:

$$L_{\log}(\theta) = \mathbb{E}_{I_{\text{gt}}, I} \left[- (I_{\text{gt}} \log(G_{\theta}(I)) + ((1 - I_{\text{gt}}) \log(1 - G_{\theta}(I)))) \right] \quad (2.6)$$

Therefore, the formulated loss function for our network, denoted as L_{net} , is expressed as:

$$L_{\text{net}}(\theta_G, \theta_{D1}, \theta_{D2}) = \min_{\theta_G} \max_{\theta_{D1}, \theta_{D2}} L_{\text{GAN}}(\theta_G, \theta_{D1}, \theta_{D2}) + \lambda L_{\log}(\theta_G) \quad (2.7)$$

In the context of this study, the parameter λ is used as a hyper-parameter, set explicitly to 500 during training. Detailed descriptions of the generator and discriminator network structures will be provided in subsequent sections.

2.6 Network Architecture

A) Generator Architecture: The generator architecture utilized in this study for image-to-image translation is meticulously designed to optimize performance and efficiency. Drawing from convolutional neural networks (CNNs) principles, it incorporates tailored components to achieve this goal, as illustrated in Figure 2.2. The encoder module efficiently downsamples the input image to capture multi-scale features while the decoder module reconstructs the output. Skip connections aid in recovering fine details lost during downsampling, and batch normalization layers enhance training stability and speed. This balanced design preserves information, maintains model depth, and addresses challenges such as redundant features and prolonged training times, making it highly effective in tasks requiring fine detail preservation.

B) Discriminators: The structure of the two discriminators employed in this study is a straightforward yet effective fully convolutional network (FCN). As depicted in Figure 2.3, this network outputs a 2D matrix containing the probability of the authentic input image. Notably, the discriminator is unique in receiving two input images: the version cleaned by the generator and its corresponding counterpart (either the ground truth or the contour image). These images are concatenated into a tensor with $256 \times 256 \times 2$ dimensions. Subsequently, this tensor undergoes

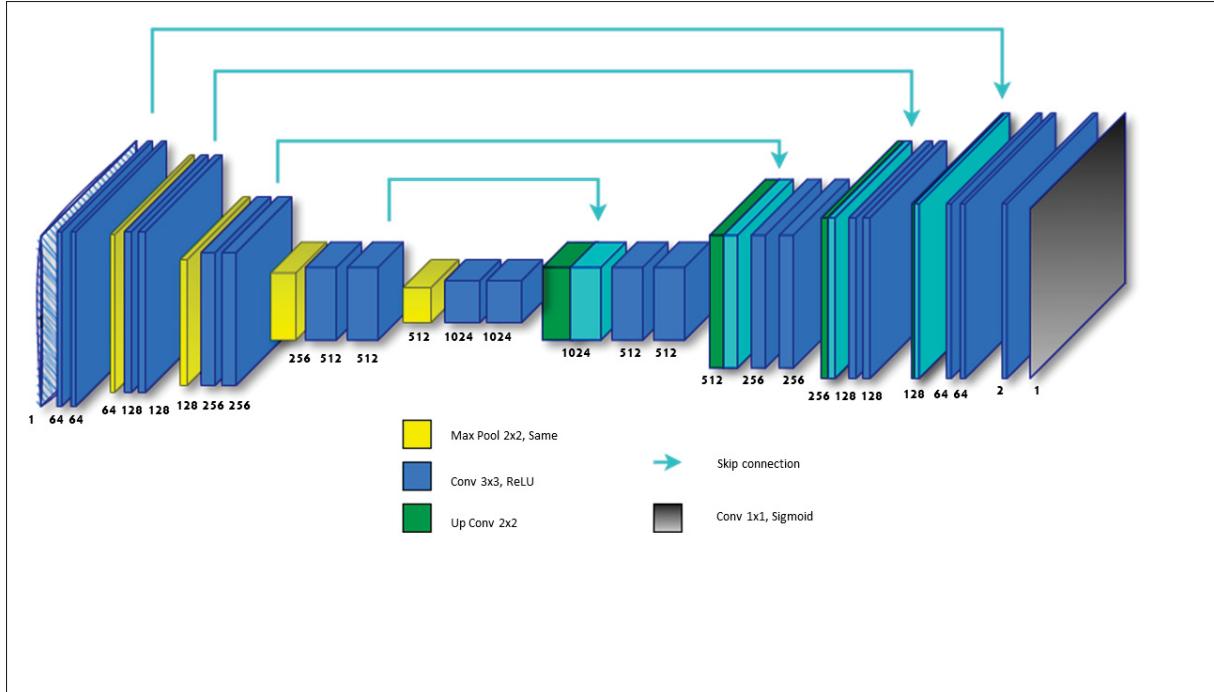


Figure 2.2 The generator is structured based on the U-net architecture.

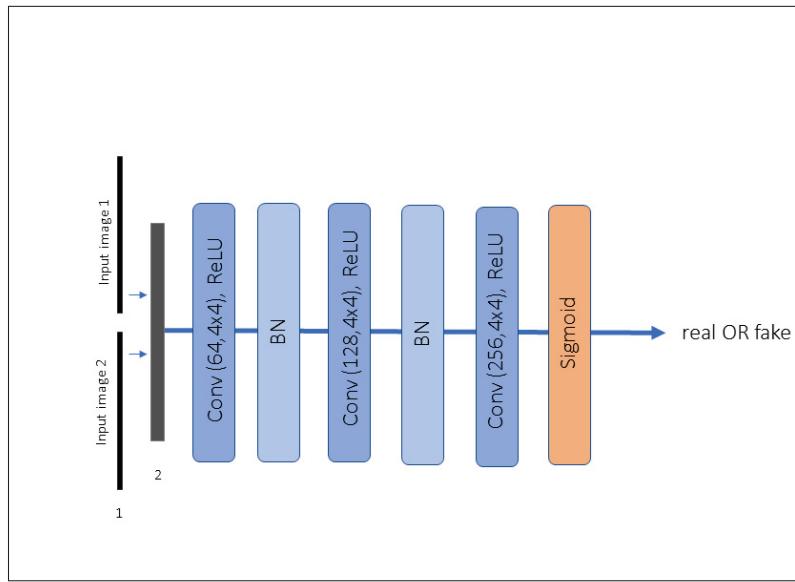


Figure 2.3 The Discriminator architecture for D_1 and D_2

processing through the network, culminating in a matrix with dimensions of $16 \times 16 \times 1$ at the final layer. In this final matrix, the probabilities are ideally close to 1 if the clean image

corresponds to the ground truth and close to 0 if the network generates it. To achieve this, the last layer utilizes a sigmoid activation function. Throughout the training process, the discriminator plays a crucial role in compelling the generator to produce high-quality results. However, post-training, the discriminator is no longer utilized. When presented with a degraded image, only the generative network enhances it, making the discriminator exclusive to the training phase.

2.7 Evaluation Metrics

To evaluate the performance of document image binarization methods, several evaluation metrics were employed, including the F-measure (FM), pseudo-F-measure (pFM), peak signal-to-noise ratio (PSNR), and distance reciprocal distortion (DRD). These metrics provide a comprehensive assessment of binarization quality from multiple perspectives, enabling the comparison of different techniques based on both objective and perceptual criteria.

F-measure (FM)

The F-measure (FM) is a harmonic mean of precision and recall, representing the balance between correctly identified text pixels and the total number of detected pixels. It is defined as:

$$FM = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}, \quad (2.8)$$

where precision is the ratio of true positives (TP) to the sum of true positives and false positives (FP), and recall is the ratio of true positives to the sum of true positives and false negatives (FN):

$$\text{Precision} = \frac{TP}{TP + FP}, \quad \text{Recall} = \frac{TP}{TP + FN}. \quad (2.9)$$

The FM ranges from 0 to 1, with higher values indicating a better balance between precision and recall. This metric is widely used because it provides a robust measure of binarization quality by balancing text preservation and noise suppression.

Pseudo-F-measure (pFM)

The pseudo-F-measure (pFM) is a variant of FM designed specifically for document image binarization tasks. It emphasizes the preservation of text strokes and the reduction of noise. While its mathematical formulation is similar to FM, the pFM incorporates additional considerations for text stroke width and edge connectivity, making it more sensitive to text details in binarized images. Like FM, the pFM ranges from 0 to 1, with higher values indicating superior performance in retaining textual integrity and suppressing noise.

Peak Signal-to-Noise Ratio (PSNR)

The peak signal-to-noise ratio (PSNR) measures the similarity between the binarized image and the ground truth (GT) binary image. It is calculated as:

$$PSNR = 10 \cdot \log_{10} \left(\frac{MAX_I^2}{MSE} \right), \quad (2.10)$$

where MAX_I is the maximum possible pixel value (e.g., 255 for 8-bit images), and MSE is the mean squared error between the binarized image and the GT image:

$$MSE = \frac{1}{N} \sum_{i=1}^N (I_i - GT_i)^2. \quad (2.11)$$

A higher PSNR value indicates a closer resemblance to the GT image, reflecting better preservation of the document's structural features, such as text and edges.

Distance Reciprocal Distortion (DRD)

The distance reciprocal distortion (DRD) evaluates the structural distortion introduced during the binarization process. It is defined as:

$$DRD = \frac{1}{|GT_1|} \sum_{p \in I_1} DRD_p, \quad (2.12)$$

where $|GT_1|$ is the total number of foreground pixels in the GT image, I_1 represents the set of foreground pixels in the binarized image, and DRD_p is the distortion of pixel p , calculated based on its deviation from the GT and weighted by its distance to nearby pixels.

A lower DRD value indicates less distortion and better overall binarization quality. This metric is particularly useful for assessing how well the binarization method preserves fine details and handles complex document degradations.

2.8 Datasets

The Historical Document Image Binarization Competition (H-DIBCO) and Document Image Binarization Competition (DIBCO) datasets are widely used benchmarks for evaluating document binarization techniques. They include modern (DIBCO) and historical (H-DIBCO) document images with various degradations such as ink fading, noise, blur, and uneven illumination. Each image is annotated with ground truth binary masks, providing reference outputs for evaluation.

These datasets are essential for developing and assessing binarization methods, particularly for historical document preservation and optical character recognition (OCR). Common evaluation metrics include Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and false positive/false negative rates. By offering a standardized comparison platform, (H)DIBCO has driven advancements in deep learning-based binarization techniques, significantly improving OCR accuracy and the legibility of degraded documents.

In this study, we evaluated the performance of our document image binarization model using a comprehensive set of nine benchmark competition datasets, ranging from 2009 to 2018. These datasets, curated to test binarization methodologies, include DIBCO 2009 (Gatos, Ntirogiannis & Pratikakis (2009)), 2011 Pratikakis, Gatos & Ntirogiannis (2011), 2013 Pratikakis, Gatos & Ntirogiannis (2013), and 2017 Pratikakis, Zagoris, Barlas & Gatos (2017), as well as H-DIBCO datasets from 2010 Pratikakis, Gatos & Ntirogiannis (2010), 2012 Pratikakis, Gatos & Ntirogiannis (2012), 2014 Ntirogiannis, Gatos & Pratikakis (2014), 2016 Pratikakis, Zagoris, Barlas & Gatos (2016), and 2018 Pratikakis, Zagoris, Kaddas & Gatos (2018). These datasets consist of degraded document images paired with ground truth binarizations, offering a diverse and challenging set of real-world scenarios for model training and evaluation.

Table 2.1 Summary of DIBCO datasets

Dataset	# of Samples	Handwritten	Printed
DIBCO 2009	10	10	0
DIBCO 2010	10	10	0
DIBCO 2011	16	8	8
DIBCO 2012	14	14	0
DIBCO 2013	16	8	8
DIBCO 2014	10	10	0
DIBCO 2016	10	10	0
DIBCO 2017	20	10	10
DIBCO 2018	10	10	0
Total	106	80	26

2.9 Training Process

For training purposes, we employed 86 images sourced from the DIBCO datasets spanning from 2009 to 2016. The selected images encompass a wide range of degradations, such as uneven illumination, faded text, and complex noise patterns, enabling the model to generalize effectively across various challenges. To ensure an unbiased evaluation of our method, the images from the DIBCO 2017 and DIBCO 2018 datasets were exclusively used as test sets, following standard benchmarking practices.

During the preprocessing phase, random image patches of size 256×256 pixels were extracted from the training images. This patch-based training strategy not only augments the dataset by increasing its effective size but also ensures that the model is exposed to diverse regions of the images, including text, background, and degraded areas. The patches were shuffled and fed into the model during training, providing a balanced representation of text and non-text regions, crucial for accurate binarization.

The training pipeline incorporated data augmentation techniques, such as rotation, flipping, and contrast adjustment, to further enhance the model's robustness to variations in document image quality. The optimization process utilized a loss function tailored to minimize discrepancies between the predicted binarized outputs and the ground truth, emphasizing text preservation and background suppression.

This systematic training process allowed the model to learn hierarchical features critical for document image binarization, enabling it to generalize effectively across unseen test datasets. The results, as discussed in subsequent sections, underscore the efficacy of our approach in achieving state-of-the-art performance on challenging benchmarks.

2.10 Comparison with state-of-the-art methods and best competition system

First, our proposed method is compared with the top five performing methodologies from the 2018 Handwritten Document Image Binarization Competition (H-DIBCO) (Pratikakis *et al.* (2018)), held during the International Conference on Frontiers in Handwriting Recognition (ICFHR) 2018.

The comparative analysis involves assessing our model against the state-of-the-art methods that ranked highest in the competition. These methods are recognized for their innovative designs and exceptional performance in handling complex document degradation scenarios, including variable illumination, noise, and blurred text regions. Table 2.2 provides a detailed comparison of the evaluation metrics, showcasing the results achieved by our approach alongside those of the top five performers. The metrics used include the F-measure, PSNR, and DRD, which

collectively offer a multidimensional evaluation of binarization quality. This analysis not only highlights the competitive edge of our proposed method but also underscores its ability to generalize effectively across challenging datasets.

Table 2.2 Results for H-DIBCO 2018

Rank in the competition	FM(%)	pFM(%)	PSNR	DRD
1 st	88.34	90.24	19.11	4.92
2 nd	73.45	75.94	14.62	26.24
3 rd	70.01	74.68	13.58	17.45
4 th	64.52	68.29	13.57	16.67
5 th	46.35	51.39	11.79	24.56
Ours	89.28	91.61	18.44	4.1

Our approach demonstrates exceptional performance on the DIBCO 2018 test set, achieving the best scores for Distance Reciprocal Distortion (DRD), F-measure, and pseudo F-measure, and securing the second-highest score for Peak Signal-to-Noise Ratio (PSNR). This consistent excellence across key metrics highlights the robustness and efficiency of our proposed method in accurately binarizing degraded document images. It is particularly noteworthy that the algorithm used by the competition’s winning approach incorporates several pre-processing and post-processing steps, which are tailored to enhance its effectiveness for the specific challenges of the H-DIBCO 2018 dataset. These additional steps are carefully designed to optimize performance but may limit its adaptability to other datasets or generalization to diverse tasks.

In contrast, our method presents a streamlined, end-to-end architecture that does not rely on any supplementary pre- or post-processing procedures. Despite its simplicity, it exhibits remarkable effectiveness and flexibility, delivering competitive or superior results across various datasets and tasks without the need for specialized adjustments. This adaptability underscores the versatility of our model, making it a valuable tool for broader applications beyond the scope of the H-DIBCO 2018 dataset, while maintaining high efficiency and ease of implementation.

Table 2.3 provides a detailed comparison of document image binarization methods, categorized into traditional and deep learning-based approaches. **Traditional techniques** include global

thresholding methods like Otsu (Otsu *et al.* (1975)), which minimizes intra-class variance, and local thresholding methods such as Niblack (Niblack (1985), Sauvola (Sauvola & Pietikäinen (2000)), and Wolf (Wolf & Jolion (2004)), which dynamically adjust thresholds based on local image properties. While these approaches achieve reasonable results in cases with uniform illumination, they often fail to handle complex degradations and non-uniform lighting effectively. Contrast or edge-based methods, such as Su (Su, Lu & Tan (2010)) and Jia (Jia, Shi, He, Wang & Xiao (2016)), enhance text regions by leveraging edge and contrast information. Energy-based techniques, including Howe (Howe (2013)) and Gib (Bhowmik, Sarkar, Das & Doermann (2018)), use optimization frameworks to balance noise suppression and text detail preservation.

Deep supervised learning-based methods have emerged as state-of-the-art solutions, leveraging neural networks to learn hierarchical features from data. Fully convolutional architectures, such as FCNN (Tensmeyer & Martinez (2017)) and SAE (Calvo-Zaragoza & Gallego (2019)), achieve pixel-level classification, with SAE achieving notable performance metrics (FM: 88.17%, DRD: 4.69). Generative models like Zhao (Zhao, Shi, Jia, Wang & Xiao (2019)), cycleGAN (Zhu, Park, Isola & Efros (2017)), and pix2pix-HD (Wang *et al.* (2018)) specialize in transforming degraded images into their clean binary counterparts, albeit with varying levels of success. Advanced methods, such as DeepOtsu (He & Schomaker (2019)), DE-GAN (Souibgui, Kessentini & Fornés (2021)), and DP-LinkNet (Xiong *et al.* (2021)), employ custom architectures and loss functions to further improve accuracy.

The results highlight a clear evolution in binarization techniques, with deep learning methods significantly outperforming traditional approaches, particularly in handling complex degradation patterns. Notably, our proposed method achieves superior performance, surpassing all listed techniques with an FM score of 89.28%, a pseudo-FM of 91.61%, a PSNR of 18.44, and a DRD of 4.1. These outcomes highlight the robustness and effectiveness of our approach in addressing a wide range of document image challenges.

The qualitative binarization results for sample (9) from the H-DIBCO 2018 dataset further highlight the strengths of our proposed method. Figure 2.4 showcases the visual outcomes

Table 2.3 Comparison of Different Approaches on H-DIBCO 2018

Category	Approach	FM (%)	pFM (%)	PSNR	DRD
Threshold-based	Otsu	51.45	53.05	9.47	59.07
	Niblack	42.47	42.98	6.79	88.99
	Sauvola	67.81	74.08	13.78	17.69
	Wolf	81.40	86.01	16.82	5.98
Contrast / Edge-based	Su	87.94	89.77	18.24	5.10
	Jia	76.05	80.36	16.90	11.96
Energy-based	Howe	80.84	82.85	16.67	11.96
	Gib	76.63	81.13	15.12	11.72
Deep supervised learning-based	FCNN	66.33	68.57	12.96	23.98
	SAE	88.17	91.11	18.44	4.69
	Zhao	87.73	90.90	18.37	4.58
	cycleGAN	56.33	58.07	11.00	30.07
	pix2pix-HD	72.79	76.28	14.42	15.13
	DE-GAN	77.59	85.74	16.16	7.93
	DeepOtsu	66.60	68.83	12.72	42.52
	DP-LinkNet	78.56	80.70	15.73	13.72
	Ours	89.28	91.61	18.44	4.10

generated by various competing models, including ours. Compared to other approaches, our method produces cleaner and more accurate binarized images, preserving text strokes with sharp edges while effectively suppressing background noise. This balance between text clarity and noise reduction demonstrates the robustness of our model in handling challenging document degradations, such as uneven illumination, stains, and bleed-through artifacts.

Notably, competing models often struggle with fine details or introduce artifacts that compromise the visual quality of the binarized output. In contrast, our approach excels in maintaining the structural integrity of text and document features, as evidenced by the superior visual quality of the processed sample. These qualitative results complement the quantitative evaluations, underscoring the capability of our model to generalize well across various degradation scenarios, making it a reliable solution for real-world document restoration tasks.

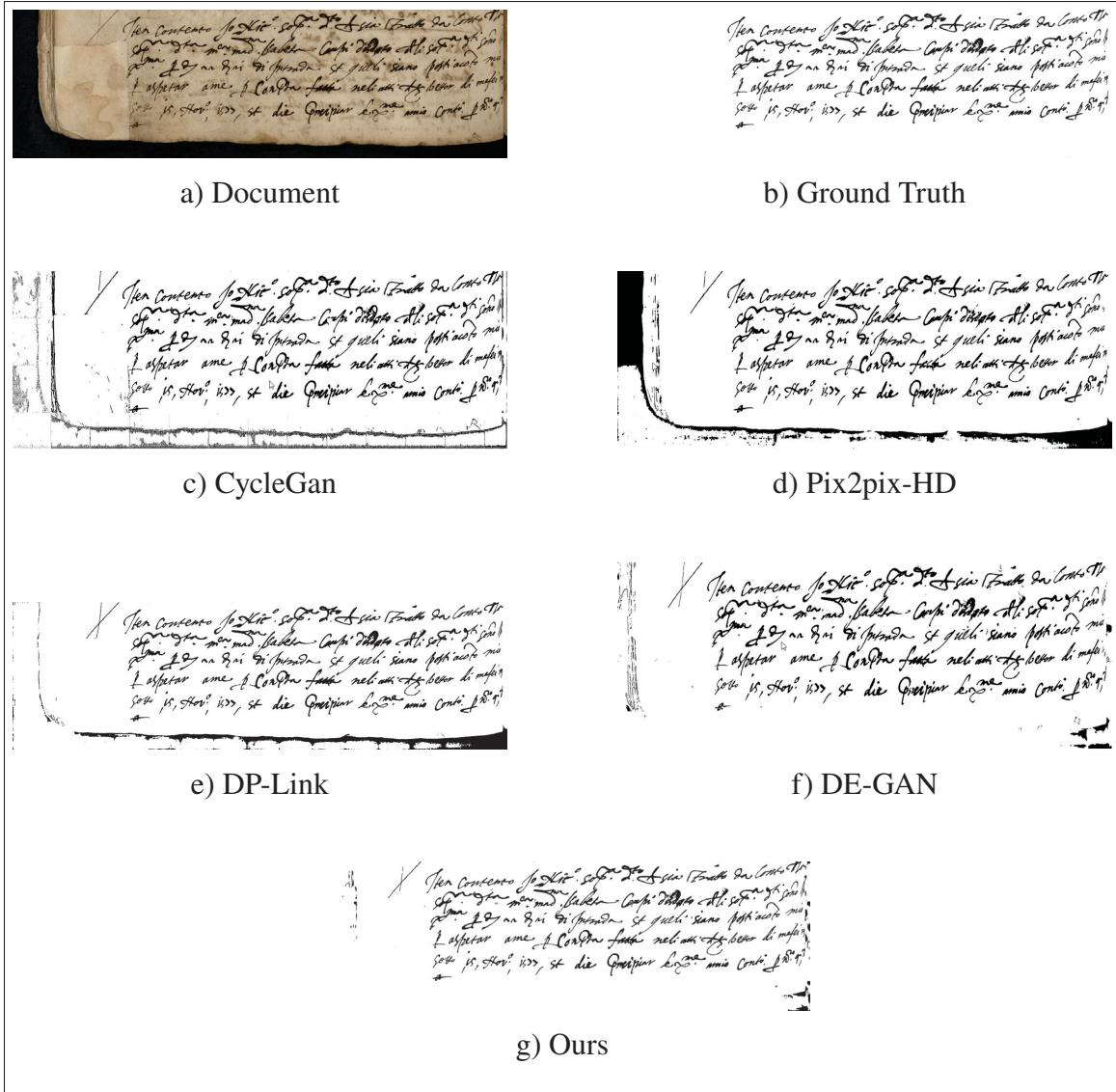


Figure 2.4 Qualitative binarization results for sample (9) from the H-DIBCO 2018 dataset, generated by various models

From the findings, it can be concluded that BA-GAN surpasses the current state-of-the-art methods based on the metrics mentioned above. Figure 2.4 and Figure 2.5 illustrate some examples of H-DIBCO 2018 image binarization using BA-GAN.

Qualitative binarization results for sample (8) from the H-DIBCO 2018 dataset, generated by DE-GAN and our model, further emphasize the effectiveness of our approach in handling

document image degradation. As shown in Figure 2.5, our model demonstrates a remarkable ability to accurately classify white pixels as background and black pixels as text, resulting in a cleaner and more visually consistent binarized output. This precision is critical for applications that require high-fidelity text preservation, such as optical character recognition (OCR) and archival documentation.

To provide a deeper insight into the performance, misclassifications are highlighted: regions where text is incorrectly classified as background are marked in red, while areas where the background is erroneously classified as text are shown in blue. Our model significantly reduces these misclassifications compared to DE-GAN, particularly in regions with faint text or complex background patterns. This result highlights the robustness of our end-to-end architecture in distinguishing fine details and mitigating noise. By consistently preserving text strokes and minimizing false positives and negatives, our method sets a higher standard for binarization quality, further validated by both quantitative and qualitative assessments.

To provide more insight into the results, demonstrating its effectiveness in preserving text and capturing finer strokes, comparative analyses among methods can be found in Figure 2.5.

For the H-DIBCO 2017 dataset, we performed an extensive comparative analysis to benchmark the performance of our model against the state-of-the-art methodologies from that year. The evaluation was conducted with a focus on key metrics such as the F-measure (FM), pseudo-F-measure (pFM), Peak Signal-to-Noise Ratio (PSNR), and the Distance Reciprocal Distortion (DRD). Table 2.4 presents the detailed results of this comparison, highlighting our model’s performance alongside the top five winning approaches from the H-DIBCO 2017 competition.

Our proposed model demonstrated outstanding performance across multiple metrics, securing the highest scores for the F-measure and pseudo-F-measure. These results emphasize its capability to accurately binarize document images while preserving fine details and text regions. Additionally, our model achieved a competitive third-best score for DRD, underscoring its effectiveness in minimizing distortions during the binarization process.

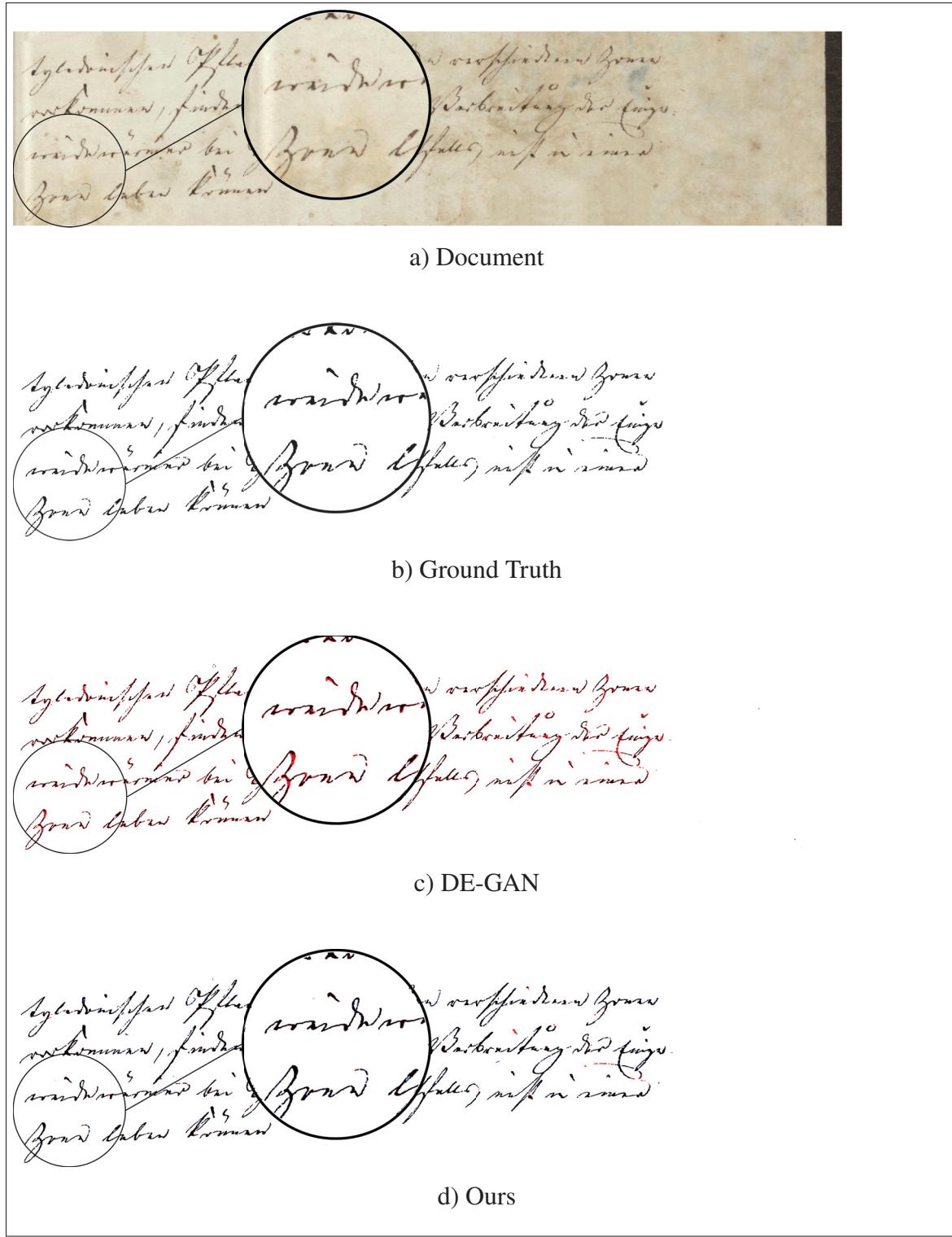


Figure 2.5 Qualitative binarization results for sample (8) from the H-DIBCO 2018 dataset, generated by DE-GAN and our models. Our method effectively classifies white pixels as background and black pixels as text. Misclassifications of text as background are highlighted in red, and misclassifications of background as text are shown in blue

Beyond the numerical analysis, qualitative comparisons were conducted to assess the visual quality of the binarized outputs. As shown in Table 2.4 and Figure 2.6, our model consistently outperformed the competing methods, especially in handling challenging cases with complex degradations, such as uneven illumination, faded text, and noisy backgrounds. These results confirm the robustness and adaptability of our approach, making it a reliable solution for document image binarization tasks.

This comprehensive evaluation validates the superiority of our method over traditional and deep learning-based approaches, establishing it as a leading tool for high-quality document restoration in real-world scenarios.

Table 2.4 Results for DIBCO 2017

Rank in the competition	FM(%)	pFM(%)	PSNR	DRD
1 st	91.04	92.86	18.28	3.40
2 nd	89.67	91.03	17.58	4.35
3 rd	89.42	91.52	17.61	3.56
4 th	86.05	90.25	17.53	4.52
5 th	83.76	90.35	17.07	4.33
Ours	92.62	94.15	18.38	3.75

2.11 Conclusion

BA-GAN, or Boundary-Aware Generative Adversarial Network, is specifically designed to address challenges in stroke edge extraction and the restoration of severely degraded documents. By employing an adversarial learning framework with a dual discriminator, BA-GAN simultaneously refines both text structure and boundary details, leading to enhanced binarization outcomes.

Comprehensive evaluations demonstrate BA-GAN’s superiority over existing approaches, particularly in accurately predicting stroke edges and preserving text smoothness. While minor challenges persist in recovering small text gaps, the model consistently excels in overall text restoration and document binarization. Notably, BA-GAN outperforms recent state-of-the-art

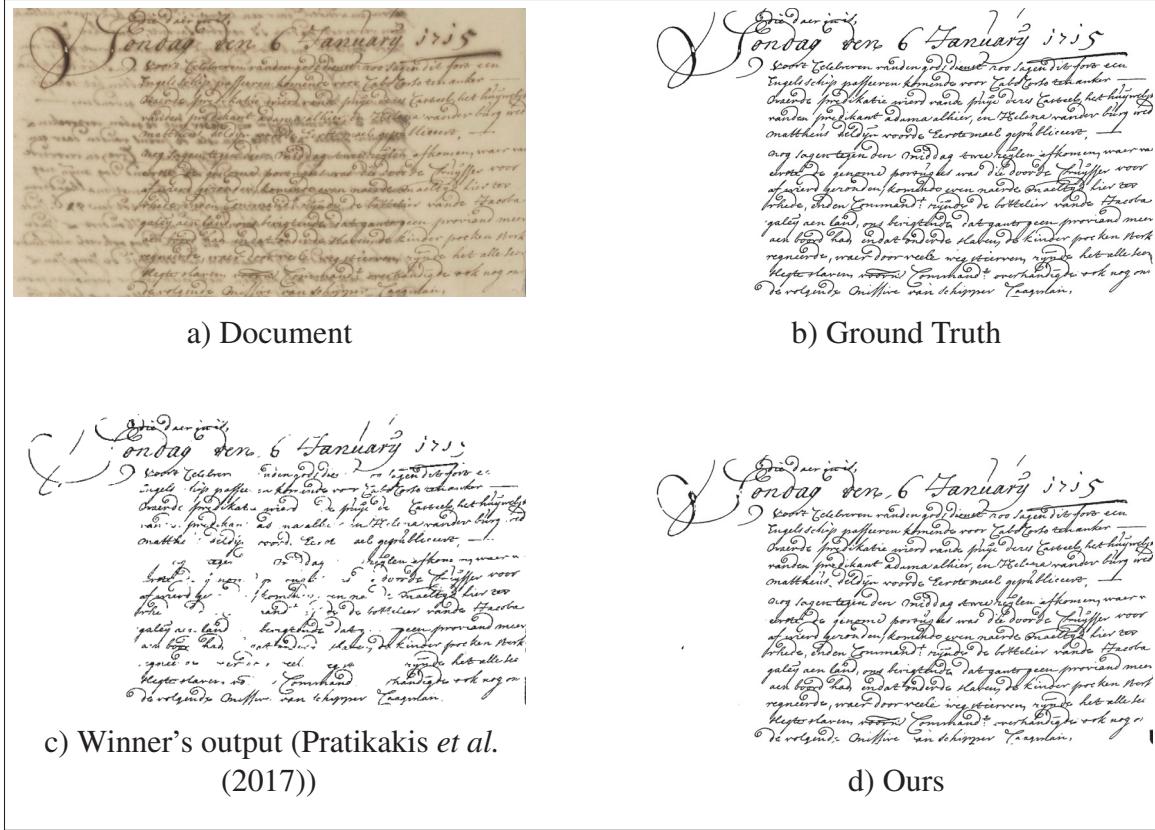


Figure 2.6 Example binarization outputs of the proposed method and winner of DIBCO 2017

techniques on benchmark datasets such as DIBCO 2017 and H-DIBCO 2018, establishing itself as a robust solution for document enhancement.

CHAPTER 3

FULL PAGE HISTORICAL DOCUMENT RECONSTRUCTION USING TWO-STAGE INPAINTING

3.1 Introduction

The reconstruction of historical documents is crucial for preserving the cultural, linguistic, and intellectual heritage embedded within them. Many historical documents suffer from degradation over time due to physical wear, environmental conditions, or improper storage, resulting in damaged or illegible text. In this chapter, we describe a robust methodology for reconstructing such historical documents, with a specific focus on techniques that predict, identify, and restore text. This methodology involves using a pre-trained model, binary masks for text identification, and inpainting techniques to remove noise and restore the background of historical documents, ensuring they remain accessible for future generations.

Our approach leverages modern machine learning techniques and computer vision methods specifically designed to handle the challenges of working with historical documents. By utilizing pre-trained models, followed by advanced segmentation and inpainting methods, we generate high-quality reconstructions that preserve the document's original structure and content.

3.2 Pre-trained Model for Text Recognition and Prediction

The first step in document reconstruction involves detecting and predicting the text from a given historical document. A pre-trained model plays a critical role in this process, as it helps identify the text even in heavily degraded or unseen document datasets.

3.2.1 Model Selection and Text Recognition

For detecting and predicting text in historical documents, we utilize the pre-trained BA-GAN model, which was trained on the H-DIBCO dataset (a widely used benchmark in document image analysis). The H-DIBCO dataset contains a diverse collection of historical document

images exhibiting various forms of degradation, such as faded ink, smudges, uneven strokes, and irregular layouts. By learning from this variety, BA-GAN can effectively capture complex features in both printed and handwritten documents, enabling it to generalize well to unseen datasets, such as READ 2016, which presents additional challenges including severe degradation, bleed-through, and inconsistent lighting.

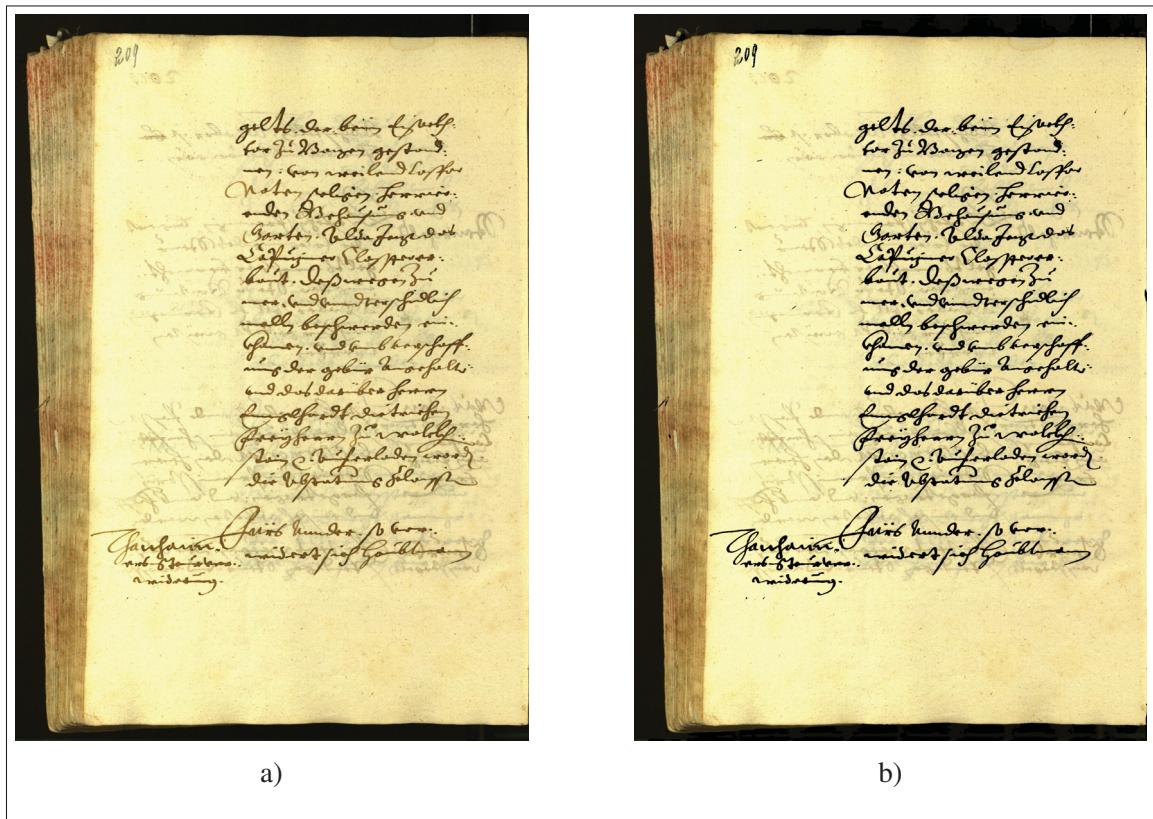


Figure 3.1 Text detection and binary mask generation using BA-GAN. Left: original degraded document; Right: detected text regions highlighted by the binary mask

When applied to a new document, BA-GAN first identifies the text regions, even in highly degraded or noisy areas where conventional methods often fail. Leveraging its boundary-aware architecture, the model refines text strokes and edges, ensuring that fine details and character shapes are accurately preserved. Simultaneously, BA-GAN generates masks that mark the text regions, which can later be removed during background restoration, resulting in a cleaner

and more legible document. In addition, the model produces a binary mask in which pixels corresponding to text are assigned a value of “1” and non-text regions are assigned “0.” This precise delineation of text supports subsequent inpainting and reconstruction processes by clearly separating the text from the background.

The combination of accurate text detection, boundary-aware refinement, and mask generation ensures that the document’s textual content is faithfully identified and preserved. By separating the text from the background, BA-GAN establishes a solid foundation for effective document reconstruction, allowing inpainting techniques to focus on restoring the underlying surface without compromising text integrity. Overall, this process enhances both the visual quality and readability of historical documents, making them suitable for scholarly analysis and digital archiving.

3.3 Text Removal and Background Restoration

After generating binary masks that accurately identify the text locations within the document and separate them from background noise and bleed-through artifacts, the next step is to remove the text and restore the background. The goal is to replace the text regions with content that seamlessly blends into the surrounding background, while maintaining the document’s overall structure.

3.3.1 Initial Background Estimation via Simple Inpainting

The primary goal of this stage is to reconstruct the background of historical documents while removing text strokes, thereby producing a clean version of the document’s underlying surface. This is essential not only for aesthetic visualization but also for downstream analysis, such as examining stains, paper texture, or other degradation patterns that may otherwise be obscured by the presence of text. Accurate background estimation thus provides both a clearer visual representation of the document and a reliable foundation for subsequent restoration steps.

Let the degraded document image be denoted as

$$I \in \mathbb{R}^{H \times W},$$

where H and W are the height and width of the image. A binary mask

$$M \in \{0, 1\}^{H \times W}$$

is generated from the text regions identified through the BA-GAN binarization method, where

$$M(x, y) = \begin{cases} 1, & \text{if pixel } (x, y) \text{ belongs to foreground text,} \\ 0, & \text{otherwise.} \end{cases}$$

To improve robustness, the binary mask is refined using morphological operations such as dilation and erosion. This ensures complete coverage of text regions and reduces edge artifacts. The refined mask, denoted \tilde{M} , expands slightly around the original text strokes to guarantee full suppression during inpainting.

The inpainting process then estimates a restored background image \hat{I} as:

$$\hat{I}(x, y) = (1 - \tilde{M}(x, y)) \cdot I(x, y) + \tilde{M}(x, y) \cdot \mathcal{F}(I, \tilde{M}, x, y),$$

where \mathcal{F} is a diffusion-based interpolation function that propagates neighboring pixel intensities into masked regions. This ensures smooth tonal transitions and structural continuity. In areas with homogeneous paper texture, this yields convincing background estimates, while in regions affected by bleed-through or stains, it produces an approximate but coherent reconstruction that suppresses residual text traces.

Although the method is relatively simple compared to deep learning-based approaches, it fulfills two critical objectives: (i) the suppression of recognized text regions, and (ii) the construction of a visually consistent background that resembles the original surface of the manuscript. Thus, the

initial inpainting step provides a mathematically well-defined process for background estimation and lays a robust foundation for subsequent, more sophisticated document restoration techniques.

3.3.2 Deep Learning-Based Inpainting for Noise and Bleed-Through Removal

After the initial stage of background estimation using traditional inpainting, a deep learning-based method is applied to refine the document background and remove remaining noise, including bleed-through artifacts, stains, and other occlusions. For this purpose, we created binary masks specifically highlighting the bleed-through regions, ensuring that the inpainting model focuses only on areas that require restoration.

We employed the *Free-Form Image Inpainting with Gated Convolution* framework proposed by (Yu *et al.* (2019)), which is particularly suitable for historical documents due to the irregular and non-rectangular shapes of missing regions.

This model introduces **gated convolutions**, which provide a learnable dynamic feature selection mechanism for each channel at every spatial location. Unlike vanilla convolutions, which treat all pixels equally, or partial convolutions, which rely on binary masks, gated convolutions allow the network to focus adaptively on valid pixels while ignoring occluded or noisy regions, enabling more accurate background reconstruction.

Model Architecture: The inpainting network follows a two-stage encoder–decoder design:

1. *Coarse Network:* Generates an initial approximation of the missing regions, capturing global structure and overall layout of the background.
2. *Refinement Network:* Enhances the coarse output with fine textures and detailed reconstruction using contextual attention and gated convolutions.

The system uses **SN-PatchGAN**, a patch-based GAN discriminator with spectral normalization applied to dense image patches, to stabilize training and enforce realism in both local and global regions. The architecture is fully convolutional, supporting variable input resolutions and arbitrary mask shapes. By applying the gated convolution model on the masked bleed-through

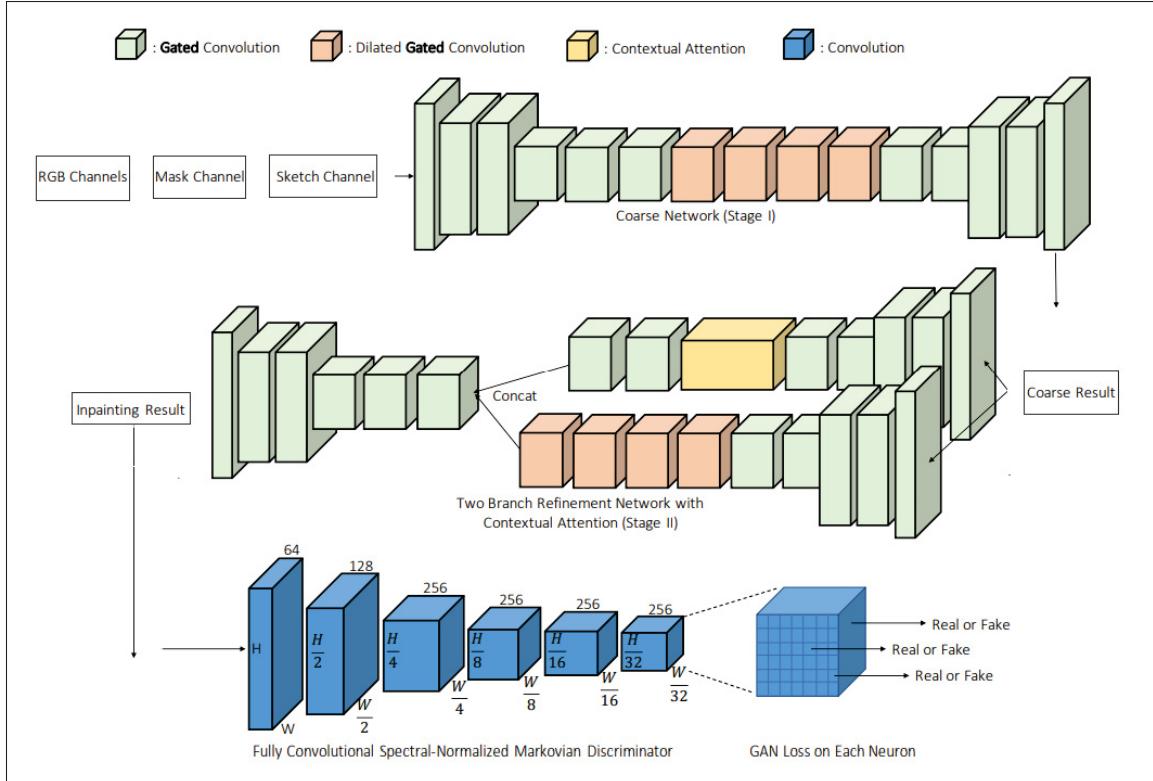


Figure 3.2 Architecture of the gated convolution inpainting network: coarse network generates initial background estimate; refinement network improves details; SN-PatchGAN ensures realistic output. Masks highlight bleed-through regions to guide inpainting

regions, the network predicts plausible background content while preserving structural coherence and fine-grained details.

3.4 Reconstruction of the Final Document Image

The final stage of the restoration pipeline focuses on reassembling a complete and legible version of the document by combining the reconstructed background with the recognized text content. While the background restoration process effectively removes bleed-through, stains, and textual strokes, the ultimate objective is not to produce a blank page but rather to recreate a faithful representation of the original document, where text and background coexist in a clean and natural manner.

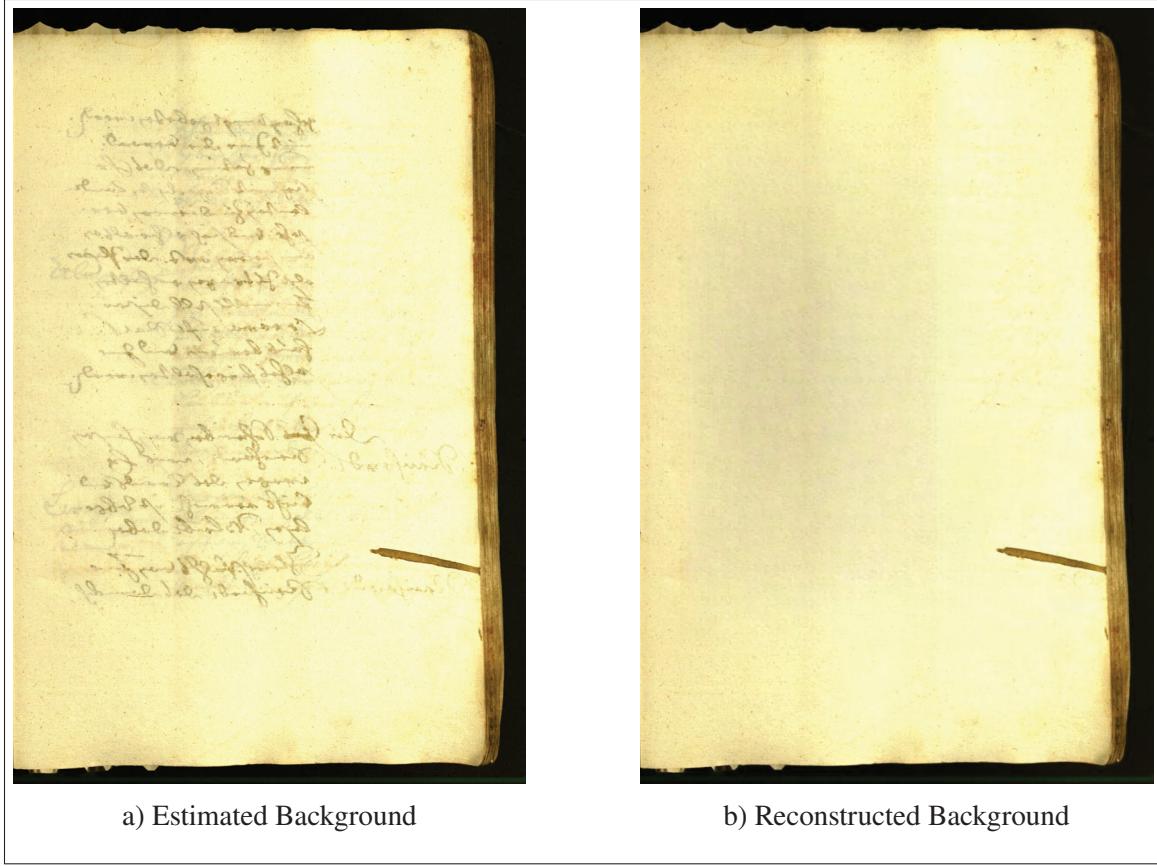


Figure 3.3 Example from the READ 2016 Dataset: left shows the initial background estimation; right shows the refined reconstruction using gated convolution inpainting

Text Reintroduction

The text layer is obtained through the BA-GAN binarization process, which provides an accurate separation of foreground strokes from degraded backgrounds. After binarization, the recognized text regions are preserved as a binary mask $M_{\text{text}} \in \{0, 1\}^{H \times W}$, where 1 corresponds to foreground strokes and 0 to background. This mask acts as a stencil that can be superimposed onto the restored background image \hat{I}_{bg} . The reconstructed document image \hat{I}_{final} is then generated as:

$$\hat{I}_{\text{final}}(x, y) = M_{\text{text}}(x, y) \cdot I_{\text{text}}(x, y) + (1 - M_{\text{text}}(x, y)) \cdot \hat{I}_{\text{bg}}(x, y),$$

where $I_{\text{text}}(x, y)$ represents the intensity (or ink value) of the recognized strokes at pixel (x, y) .

Preserving Authenticity

By reintroducing the text in this way, the method ensures that the restored image preserves the semantic content and stylistic features of the manuscript, including stroke thickness, handwriting style, and layout. Unlike approaches that rely purely on OCR-based text replacement, this strategy does not alter the visual identity of the script; instead, it directly overlays the original shapes of the strokes extracted during binarization. This guarantees both readability and authenticity, which are crucial for historical and archival purposes.

Advantages of the Reconstruction Approach

The reconstruction method preserves the authenticity of historical manuscripts by reintroducing text through the original binarized strokes, ensuring that semantic content, handwriting style, stroke thickness, and layout remain intact without relying on OCR-based replacement that could alter the visual identity of the script. This approach offers several advantages: it produces noise-free readability by removing bleed-through and stains from the background, maintains the unique stylistic characteristics of the handwriting through the reuse of original strokes, and separates the content from the background, allowing future operations such as style transfer, re-colorization, or enhancement to be applied independently. As a result, the final restored image remains faithful to the original manuscript while significantly reducing degradation artifacts.

Resulting Document

The resulting reconstructed image therefore represents a synthesis of two complementary processes: (i) background restoration through inpainting, and (ii) accurate reintroduction of foreground text strokes. This dual-layer strategy balances legibility with authenticity, producing restored historical documents that are both suitable for scholarly analysis and accessible for modern digital archives.

Algorithm 3.1 summarizes the proposed two-stage inpainting procedure for historical document reconstruction. The algorithm first identifies text regions using BA-GAN, then performs a

Algorithm 3.1 Two-Stage Inpainting for Historical Document Reconstruction

Input: Degraded document image $I \in \mathbb{R}^{H \times W}$, pre-trained BA-GAN model for text detection

Output: Reconstructed document image \hat{I}_{final}

```

1  $M_{\text{text}} \leftarrow \text{BA-GAN\_Binarization}(I);$            // Generate binary mask for text regions
2 Refine  $M_{\text{text}}$  using morphological operations (dilation, erosion) to obtain  $\tilde{M}_{\text{text}};$ 
3  $\hat{I}_{\text{coarse}} \leftarrow (1 - \tilde{M}_{\text{text}}) \cdot I + \tilde{M}_{\text{text}} \cdot \mathcal{F}(I, \tilde{M}_{\text{text}});$  // Diffusion-based inpainting for coarse background
4  $M_{\text{bleed}} \leftarrow \text{DetectBleedThroughRegions}(\hat{I}_{\text{coarse}});$ 
5  $\hat{I}_{\text{bg}} \leftarrow \text{GatedConvolutionInpainting}(\hat{I}_{\text{coarse}}, M_{\text{bleed}});$            // Refined background using two-stage gated convolution network
6  $\hat{I}_{\text{final}} \leftarrow M_{\text{text}} \cdot I_{\text{text}} + (1 - M_{\text{text}}) \cdot \hat{I}_{\text{bg}};$  // Overlay original text strokes onto restored background
7 return  $\hat{I}_{\text{final}}$ 
```

coarse background estimation using traditional inpainting. A deep learning-based refinement stage further restores the background and removes bleed-through artifacts. Finally, the text is reintroduced to produce the reconstructed document image.

3.5 Dataset

For our experiments, we utilized the READ 2016 dataset, a benchmark designed for evaluating Handwritten Text Recognition (HTR) techniques on historical documents. The dataset was introduced as part of the ICHFR 2016 Handwritten Text Recognition (HTR) competition (Sánchez, Romero, Toselli & Vidal (2016)), which aimed to bring together researchers in the field and provide a standardized benchmark for comparing different transcription techniques. It includes various challenges such as document degradation, noise, and varying handwriting styles, making it a suitable benchmark for evaluating the performance of our proposed Boundary-Aware Generative Adversarial Network (BA-GAN) for document restoration.

3.6 Evaluation Using NR-IQA Metrics

Since our dataset lacks labeled ground-truth data for direct comparison, we evaluate the quality of our reconstructed documents using No-Reference Image Quality Assessment (NR-IQA) metrics. Specifically, we employ the Visual Document Quality Assessment Metric (VDQAM) (Shahkolaei *et al.* (2018)), a state-of-the-art approach that analyzes the spatial domain statistics of document images. Unlike traditional NR-IQA metrics, VDQAM segments each degraded document into four distinct layers using a log-Gabor filter, which allows for a more refined assessment of document quality. This segmentation is based on the assumption that the human visual system (HVS) exhibits different sensitivities to text and non-text regions, enabling a more perceptually accurate evaluation of restoration quality.

Let the reconstructed document image be denoted as

$$I \in \mathbb{R}^{H \times W}.$$

VDQAM first applies a log-Gabor filter bank to decompose the image into L frequency-orientation sub-bands, capturing both textural and structural information:

$$S_l = I * G_l, \quad l = 1, \dots, L,$$

where G_l represents the l -th log-Gabor filter, and $*$ denotes convolution. Each sub-band S_l emphasizes features corresponding to different spatial frequencies and orientations, allowing the method to distinguish text from background content.

Next, the image is segmented into four perceptual layers based on the responses of the log-Gabor filters:

$$\{S_l^1, S_l^2, S_l^3, S_l^4\} \subset S_l, \quad \forall l$$

which represent combinations of low/high-frequency and text/non-text regions, motivated by the differential sensitivities of the human visual system (HVS).

For each layer, statistical features describing local contrast, sharpness, and structural coherence are computed. Let $\phi(S_l^k)$ denote the feature vector extracted from the k -th layer of the l -th sub-band. The combined feature vector for the entire image is then:

$$\Phi(I) = \bigcup_{l=1}^L \bigcup_{k=1}^4 \phi(S_l^k).$$

Finally, the VDQAM score is obtained by a learned regression function f_{VDQAM} that maps the extracted features to a perceptual quality score:

$$\text{VDQAM}(I) = f_{\text{VDQAM}}(\Phi(I)) \in [0, 5],$$

where higher values indicate better visual quality. The regression model is trained on a document quality dataset (e.g., VDIQA) to match human subjective assessments of clarity, readability, and structural integrity.

By leveraging VDQAM, we can objectively assess the clarity, legibility, and structural integrity of the restored documents without requiring ground-truth references. This metric effectively captures text distortions, background inconsistencies, and noise artifacts, providing a comprehensive evaluation of document quality. Experimental results have demonstrated that VDQAM outperforms conventional NR-IQA methods, particularly on the VDIQA dataset, making it a reliable choice for evaluating historical document restoration. By integrating this evaluation into our workflow, we ensure that our reconstruction approach enhances document legibility while preserving the authenticity of the original content.

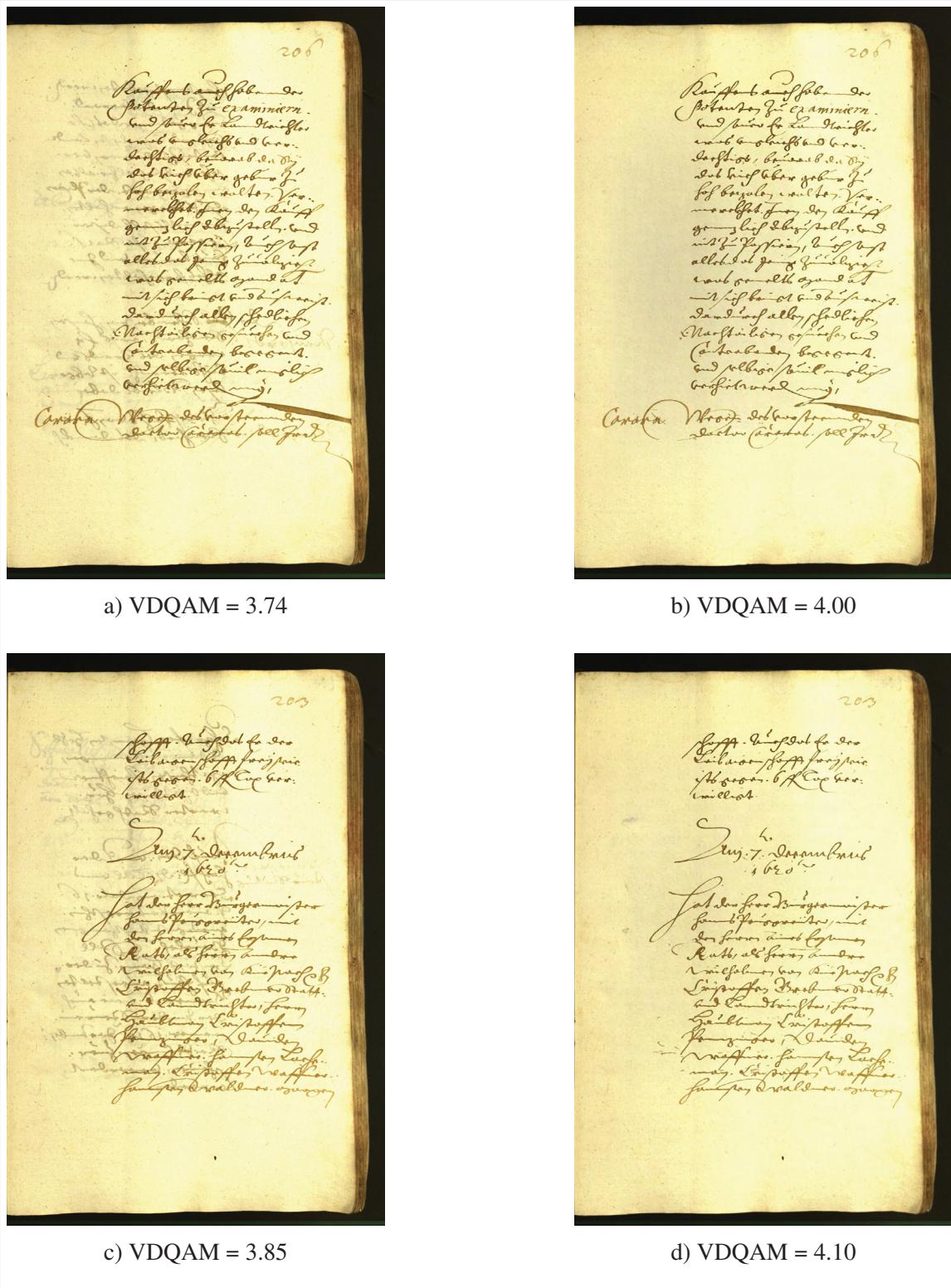


Figure 3.4 Original vs. reconstructed images from the READ 2016 Dataset. The left column shows original degraded documents, while the right column shows reconstructed results after inpainting and background restoration

Figure 3.4 presents a comparative analysis of a sample from the READ 2016 dataset, illustrating the effectiveness of our document restoration approach. The left image (Figure 3.4a) represents the original degraded document with a VDQAM score of 3.74, indicating lower visual quality. The right image (Figure 3.4b) shows the reconstructed version, which achieves a higher VDQAM score of 4.00, reflecting improved readability and structural integrity. This comparison highlights the effectiveness of our method in enhancing document clarity while preserving essential textual and structural elements.

Despite these improvements, some failure cases remain. For instance, documents that are severely degraded with heavy cross bleed-through—where ink from the reverse side interferes strongly with the foreground text—continue to pose challenges, as the model struggles to fully disentangle overlapping strokes. Likewise, in cases of ultra high-contrast degradation, where certain regions are oversaturated while others are extremely faint, the restoration may either amplify noise or oversmooth fine details. These limitations indicate that while the approach is robust for moderate degradations, its performance decreases in extreme scenarios where signal and noise characteristics are deeply intertwined.

3.7 Conclusion

In this chapter, we presented a robust and systematic methodology for the reconstruction of historical documents, combining the strengths of pre-trained models, binary masks, and advanced inpainting techniques. Leveraging the BA-GAN model for boundary-aware text detection, our approach accurately identifies and preserves text structure, while two-stage inpainting inpainting effectively restores the background and removes noise, bleed-through, and other degradation artifacts.

Experimental results on the READ 2016 dataset demonstrate that our method improves both the legibility and structural integrity of historical documents, as quantified by NR-IQA metrics such as VDQAM. By preserving original text strokes and maintaining the authenticity of the

document's visual appearance, this approach strikes a balance between readability and faithful restoration, making it suitable for archival and scholarly applications.

While the method performs well on complex degradations, future work may focus on further improving small gap recovery, exploring alternative or hybrid neural network architectures, and generalizing the pipeline to a broader range of historical document types and degradation patterns. Overall, this work underscores the potential of combining deep learning and traditional inpainting techniques for preserving cultural heritage in digital form.

CONCLUSION AND RECOMMENDATIONS

In this thesis, we introduced **BA-GAN**, a Boundary-Aware Generative Adversarial Network, along with a **two-stage inpainting pipeline** to address two fundamental tasks in the restoration of historical documents: binarization and reconstruction. For the binarization task, BA-GAN utilizes dual discriminators—one dedicated to object-level content and the other to contour-level details—to ensure boundary sensitivity. This architecture enables the generation of sharper text strokes and a more precise separation between foreground text and background elements. Through comprehensive evaluations on established public benchmarks, including DIBCOs, BA-GAN has demonstrated superior performance. Qualitatively, it effectively reduces issues such as edge fraying and interruptions in text strokes, resulting in visually cleaner and more coherent binary images.

For the reconstruction of historical documents, we adopted a two-step approach built upon BA-GAN binarization. Building upon this binarized output, the two-stage inpainting pipeline addresses restoration: the initial stage performs coarse background estimation to suppress noise and preliminarily fill missing or damaged regions, while the second stage employs deep learning-based refinement with gated convolutions to eliminate complex degradations, including ink bleed-through, seamless integration of reconstructed text with the original background. Together, BA-GAN and the two-stage inpainting pipeline provide a robust methodology that enhances human legibility and preserves the structural integrity of the page, while acknowledging that full semantic recovery remains beyond the scope of this visual restoration framework.

Extensive experiments conducted on benchmark datasets, including DIBCO 2017, DIBCO 2018, and READ 2016, demonstrate that BA-GAN consistently outperforms state-of-the-art methods. Quantitative evaluation using metrics such as PSNR, DRD, FM, and VDQAM, alongside qualitative visual assessments, shows significant improvements in legibility, reduced degradation artifacts, and better preservation of fine textual and structural details. These results highlight

the model's ability to produce high-quality restorations that closely approximate the original appearance of historical documents.

While the proposed framework demonstrates strong performance on a wide range of degradations, certain challenges remain. Recovery of very small gaps, handling extremely complex or rare degradation patterns, and generalization across diverse manuscript types still require further investigation. Additionally, current evaluation metrics, though effective, may not fully capture human perception of historical authenticity and visual quality.

Recommendations for Future Work

Building on the contributions of this thesis, several directions can be pursued to enhance historical document restoration:

1. **Multispectral Fusion for Enhanced Restoration:** Explore multispectral imaging techniques to capture information beyond the visible spectrum, allowing the model to recover text and structural details that are obscured in standard RGB scans. By combining cues from different wavelength bands, this approach can improve robustness to severe degradation, reveal hidden or faded writing, and support more accurate restoration across diverse historical documents.
2. **OCR-In-the-Loop Evaluation:** Integrate downstream transcription tasks to evaluate how improvements in binarization and restoration translate to end-to-end OCR performance, linking visual restoration quality to practical usability.
3. **Development of Advanced Evaluation Metrics:** While standard metrics such as PSNR and DRD are useful, the creation of no-reference document image quality assessment (NR-DIQA) metrics that align with human perception could better quantify legibility and historical fidelity.

Articles in Conferences

1. Amin Ghasemi Nafchi, Mohamed Cheriet, "BA-GAN: A Boundary-Aware Generative Adversarial Network for Document Restoration", in Intelligent Systems and Pattern Recognition, Springer Nature Switzerland, Cham, 2025, pp. 344–358.

BIBLIOGRAPHY

Ayumi, V., Rere, L., Fanany, M. I. & Arymurthy, A. (2016). Optimization of Convolutional Neural Network using Microcanonical Annealing Algorithm. doi: 10.48550/arXiv.1610.02306.

Bhowmik, S., Sarkar, R., Das, B. & Doermann, D. (2018). GiB: A Game Theory-Inspired Binarization Technique for Degraded Document Images. *IEEE Transactions on Image Processing*, 28(3), 1443–1455.

Calvo-Zaragoza, J. & Gallego, A.-J. (2019). A selectional auto-encoder approach for document image binarization. *Pattern Recognition*, 86, 37–47.

Chellapilla, K., Puri, S. & Simard, P. (2006). High performance convolutional neural networks for document processing. *Tenth international workshop on frontiers in handwriting recognition*.

Dai, T., Cai, J., Zhang, Y., Xia, S.-T. & Zhang, L. (2019). Second-order attention network for single image super-resolution. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11065–11074.

Feng, G., Hu, Z., Chen, S. & Wu, F. (2016). Energy-efficient and high-throughput FPGA-based accelerator for Convolutional Neural Networks. *2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)*, pp. 624-626. doi: 10.1109/ICSICT.2016.7998996.

Gatos, B., Ntirogiannis, K. & Pratikakis, I. (2009). ICDAR 2009 document image binarization contest (DIBCO 2009). *2009 10th International conference on document analysis and recognition*, pp. 1375–1382.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. & Bengio, Y. (2014). Generative adversarial nets. *Advances in neural information processing systems*, 27.

He, S. & Schomaker, L. (2019). DeepOtsu: Document enhancement and binarization using iterative deep learning. *Pattern recognition*, 91, 379–390.

He, S. & Schomaker, L. (2021). CT-Net: Cascade T-shape deep fusion networks for document binarization. *Pattern Recognition*, 118, 108010.

Howe, N. R. (2013). Document binarization with automatic parameter tuning. *International journal on document analysis and recognition (ijdar)*, 16, 247–258.

Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. (2017a). Image-to-Image Translation with Conditional Adversarial Networks. *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5967–5976. doi: 10.1109/CVPR.2017.632.

Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. (2017b). Image-to-image translation with conditional adversarial networks. *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1125–1134.

Jia, F., Shi, C., He, K., Wang, C. & Xiao, B. (2016). Document image binarization using structural symmetry of strokes. *2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)*, pp. 411–416.

Jia, F., Shi, C., He, K., Wang, C. & Xiao, B. (2018). Degraded document image binarization using structural symmetry of strokes. *Pattern Recognition*, 74, 225–240.

Karras, T., Aila, T., Laine, S. & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. *arXiv preprint arXiv:1710.10196*.

Khurshid, K., Siddiqi, I., Faure, C. & Vincent, N. (2009). Comparison of Niblack inspired binarization methods for ancient documents. *Document Recognition and Retrieval XVI*, 7247, 72470U. doi: 10.1117/12.805827.

Long, J., Shelhamer, E. & Darrell, T. (2015, June). Fully Convolutional Networks for Semantic Segmentation. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

Lu, S., Su, B. & Tan, C. L. (2010). Document image binarization using background estimation and stroke edges. *International Journal on Document Analysis and Recognition (IJDAR)*, 13, 303–314.

Moghaddam, R. F. & Cheriet, M. (2012). AdOtsu: An adaptive and parameterless generalization of Otsu's method for document image binarization. *Pattern Recognition*, 45(6), 2419–2431.

Nafchi, A. G. & Cheriet, M. (2025). BA-GAN: A Boundary-Aware Generative Adversarial Network for Document Restoration. *Intelligent Systems and Pattern Recognition*, pp. 344–358.

Nafchi, H. Z., Moghaddam, R. F. & Cheriet, M. (2014). Phase-based binarization of ancient document images: Model and applications. *IEEE transactions on image processing*, 23(7), 2916–2930.

Niblack, W. (1985). An introduction to digital image processing. *someti*.

Ntirogiannis, K., Gatos, B. & Pratikakis, I. (2014). ICFHR2014 competition on handwritten document image binarization (H-DIBCO 2014). *2014 14th International conference on frontiers in handwriting recognition*, pp. 809–813.

Otsu, N. et al. (1975). A threshold selection method from gray-level histograms. *Automatica*, 11(285-296), 23–27.

Peng, X., Cao, H. & Natarajan, P. (2017). Using convolutional encoder-decoder for document image binarization. *2017 14th IAPR international conference on document analysis and recognition (ICDAR)*, 1, 708–713.

Pratikakis, I., Gatos, B. & Ntirogiannis, K. (2010). H-DIBCO 2010-handwritten document image binarization competition. *2010 12th International Conference on Frontiers in Handwriting Recognition*, pp. 727–732.

Pratikakis, I., Gatos, B. & Ntirogiannis, K. (2011). ICDAR 2011 Document Image Binarization Contest (DIBCO 2011). *2011 International Conference on Document Analysis and Recognition*, pp. 1506-1510. doi: 10.1109/ICDAR.2011.299.

Pratikakis, I., Gatos, B. & Ntirogiannis, K. (2012). ICFHR 2012 competition on handwritten document image binarization (H-DIBCO 2012). *2012 international conference on frontiers in handwriting recognition*, pp. 817–822.

Pratikakis, I., Gatos, B. & Ntirogiannis, K. (2013). ICDAR 2013 document image binarization contest (DIBCO 2013). *2013 12th International Conference on Document Analysis and Recognition*, pp. 1471–1476.

Pratikakis, I., Zagoris, K., Barlas, G. & Gatos, B. (2016). ICFHR2016 handwritten document image binarization contest (H-DIBCO 2016). *2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)*, pp. 619–623.

Pratikakis, I., Zagoris, K., Barlas, G. & Gatos, B. (2017). ICDAR2017 competition on document image binarization (DIBCO 2017). *2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)*, 1, 1395–1403.

Pratikakis, I., Zagoris, K., Kaddas, P. & Gatos, B. (2018). ICFHR2018 competition on handwritten document image binarization contest (H-DIBCO 2018). *International Conference on Frontiers in Handwriting Recognition*, pp. 1–1.

Quang Nhat, Vo, S. H. K. H. J. Y. & Gueesang, L. (2017). *Binarization of degraded document images based on hierarchical deep supervised network*. Pattern Recognition.

Ronneberger, O., Fischer, P. & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. *Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18*, pp. 234–241.

Rowley-Brooke, R., Pitié, F. & Kokaram, A. (2013). A non-parametric framework for document bleed-through removal. *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp. 2954–2960.

Sauvola, J. & Pietikäinen, M. (2000). Adaptive document image binarization. *Pattern recognition*, 33(2), 225–236.

Shahkolaei, A., Nafchi, H. Z., Al-Maadeed, S. & Cheriet, M. (2018). Subjective and objective quality assessment of degraded document images. *Journal of Cultural Heritage*, 30, 199-209. doi: <https://doi.org/10.1016/j.culher.2017.10.001>.

Smith, R. (2007). An overview of the Tesseract OCR engine. *Ninth international conference on document analysis and recognition (ICDAR 2007)*, 2, 629–633.

Souibgui, M. A., Kessentini, Y. & Fornés, A. (2021). A conditional gan based approach for distorted camera captured documents recovery. *Pattern Recognition and Artificial Intelligence: 4th Mediterranean Conference, MedPRAI 2020, Hammamet, Tunisia, December 20–22, 2020, Proceedings 4*, pp. 215–228.

Su, B., Lu, S. & Tan, C. L. (2010). Binarization of historical document images using the local maximum and minimum. *Proceedings of the 9th IAPR International Workshop on Document Analysis Systems*, pp. 159–166.

Sulaiman, A., Omar, K. & Nasrudin, M. F. (2019). Degraded Historical Document Binarization: A Review on Issues, Challenges, Techniques, and Future Directions. *Journal of Imaging*, 5(4), 48. doi: 10.3390/jimaging5040048.

Sánchez, J. A., Romero, V., Toselli, A. H. & Vidal, E. (2016). ICFHR2016 Competition on Handwritten Text Recognition on the READ Dataset. *2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)*, pp. 630–635. doi: 10.1109/ICFHR.2016.0120.

Tensmeyer, C. & Martinez, T. (2017). Document image binarization with fully convolutional neural networks. *2017 14th IAPR international conference on document analysis and recognition (ICDAR)*, 1, 99–104.

Tong, T., Li, G., Liu, X. & Gao, Q. (2017). Image super-resolution using dense skip connections. *Proceedings of the IEEE international conference on computer vision*, pp. 4799–4807.

Wang, B. & Chen, C. P. (2019). An effective background estimation method for shadows removal of document images. *2019 IEEE International Conference on Image Processing (ICIP)*, pp. 3611–3615.

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J. & Catanzaro, B. (2018). High-resolution image synthesis and semantic manipulation with conditional gans. *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8798–8807.

Wolf, C. & Jolion, J.-M. (2004). Extraction and recognition of artificial text in multimedia documents. *Formal Pattern Analysis & Applications*, 6, 309–326.

Xiong, W., Jia, X., Yang, D., Ai, M., Li, L. & Wang, S. (2021). DP-LinkNet: A convolutional network for historical document image binarization. *KSII Transactions on Internet and Information Systems (TIIS)*, 15(5), 1778–1797.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X. & Huang, T. (2019). Free-Form Image Inpainting With Gated Convolution. *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4470-4479. doi: 10.1109/ICCV.2019.00457.

Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., Yang, M.-H. & Shao, L. (2020). Cycleisp: Real image restoration via improved data synthesis. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2696–2705.

Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W. & Li, H. (2020). Deblurring by realistic blurring. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2737–2746.

Zhang, Y., Tian, Y., Kong, Y., Zhong, B. & Fu, Y. (2018). Residual dense network for image super-resolution. *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2472–2481.

Zhao, J., Shi, C., Jia, F., Wang, Y. & Xiao, B. (2019). Document image binarization with cascaded generators of conditional generative adversarial networks. *Pattern Recognition*, 96, 106968.

Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. *Proceedings of the IEEE international conference on computer vision*, pp. 2223–2232.