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Des contours aux pages : binarisation sensible aux frontières et reconstitution en deux
étapes des documents d’archives

Amin GHASEMI NAFCHI

RÉSUMÉ

Les documents historiques souffrent souvent de dégradations sévères telles que le bleed-through

(translucidité de l’encre), les taches, la décoloration et les pertes physiques, qui compromettent

à la fois la lisibilité humaine et l’analyse automatique. La restauration de ces documents doit

permettre de récupérer un texte lisible et un arrière-plan fidèle, tout en préservant l’authenticité

structurelle et l’utilisabilité dans les flux de travail archivistiques. Les méthodes conventionnelles

brouillent souvent les traits fins ou ne parviennent pas à maintenir l’intégrité visuelle, limitant

ainsi leur efficacité pratique. Cette thèse propose un cadre de restauration en deux étapes qui

optimise conjointement la fidélité des traits et la reconstruction de l’arrière-plan à grande échelle.

Dans la première partie, nous présentons BA-GAN (Boundary-Aware Generative Adversarial

Network), un cadre robuste de bout en bout pour la restauration d’images de documents

historiques fortement dégradés. BA-GAN s’appuie sur un générateur unique guidé par deux

discriminateurs : l’un centré sur le contenu global et l’autre sur les contours. En exploitant

simultanément les informations globales et locales, le modèle améliore l’extraction des contours

de traits, renforce les résultats de binarisation et assure une reconstruction précise des limites

textuelles. Les expériences menées sur HDIBCO 2017/2018 démontrent des performances à

l’état de l’art, atteignant par exemple, sur DIBCO 2018, un Fm de 89,28, un PSNR de 18,44 dB

et un DRD de 4,10.

Au-delà de la binarisation, BA-GAN intègre un cadre complet de reconstruction de documents

qui restaure à la fois le texte et l’arrière-plan. Une stratégie d’inpainting en deux étapes est

mise en œuvre : une estimation initiale de l’arrière-plan par interpolation pixelique, suivie d’un

inpainting basé sur GAN pour reconstruire sans discontinuité le contenu manquant, supprimer le

bruit et corriger les artefacts liés au bleed-through (translucidité de l’encre). Les expériences

sur READ 2016, évaluées avec les scores VDQAM, montrent des améliorations notables après

reconstruction, confirmant une meilleure fidélité visuelle et une lisibilité textuelle accrue. Cette

approche permet une restauration robuste de documents historiques entiers tout en préservant

leur intégrité structurelle et leur authenticité historique.

Les principales contributions de ce travail sont : (i) la proposition d’un cadre novateur de

binarisation adversariale formulé comme un jeu à trois acteurs ; (ii) le développement d’une

architecture cGAN à double discriminateur permettant une meilleure préservation des contours

de traits ; (iii) l’obtention de performances à l’état de l’art sur les benchmarks DIBCO ; et (iv)

la conception d’un pipeline de restauration centré sur le document, combinant binarisation et

inpainting, validé sur des manuscrits dégradés du monde réel.



VIII

Bien que des défis subsistent dans les cas de traits à très faible contraste et de forte translucidité

croisée, les perspectives futures incluent la fusion multispectrale, l’auto-apprentissage non

supervisé et l’intégration de contraintes structurelles plus fortes pour la préservation du contenu.

Mots-clés: Restauration de documents historiques, Réseaux antagonistes génératifs, Binarisa-

tion sensible aux contours, Inpainting de texte, Correction de dégradations d’image
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ABSTRACT

Historical documents often suffer from severe degradations such as bleed-through, stains, fading,

and physical losses, which compromise both human readability and machine analysis. Historical

document restoration must therefore recover legible text and faithful backgrounds while ensuring

structural authenticity and usability for archival workflows. Conventional pipelines either blur

fine strokes or fail to maintain visual integrity, limiting their effectiveness in practice. This thesis

introduces a two-part restoration framework that jointly optimizes stroke fidelity and background

reconstruction at scale.

In the first part, we propose BA-GAN (Boundary-Aware Generative Adversarial Network),

a robust end-to-end framework for restoring heavily degraded historical document images.

BA-GAN features a single generator guided by two discriminators: one focused on object-

level content and another on contour-level information. By leveraging both global and local

information concurrently, the model improves stroke edge extraction, enhances binarization

results, and ensures precise reconstruction of text boundaries. Experiments on HDIBCO

2017/2018 demonstrate state-of-the-art performance, achieving, for example, DIBCO 2018

metrics: Fm 89.28, PSNR 18.44 dB, and DRD 4.10.

Beyond binarization, BA-GAN integrates a full document reconstruction framework that restores

both text and background. A two-stage inpainting strategy is employed: initial background

estimation via pixel-based interpolation, followed by deep learning-based GAN inpainting to

seamlessly reconstruct missing content, remove noise, and correct ink bleed-through artifacts.

Experiments on READ 2016 using VDQAM scores show higher evaluation scores after

reconstruction, demonstrating improved visual fidelity and text legibility. This approach enables

robust reconstruction of entire historical documents while preserving structural integrity and

historical authenticity.

Key contributions include: (i) a novel adversarial binarization framework modeled as a

three-player game; (ii) a dual-discriminator cGAN architecture enabling superior stroke edge

preservation; (iii) state-of-the-art performance on DIBCO benchmarks; and (iv) a document-

centric restoration pipeline combining binarization with inpainting, validated on real-world

degraded manuscripts. While challenges remain in ultra-low-contrast and cross-bleed scenarios,

future directions include multispectral fusion, self-supervised pretraining, and stronger content-

preservation priors.

Keywords: Historical Document Restoration, Generative Adversarial Networks, Boundary-

Aware Binarization, Text Inpainting, Image Degradation Removal
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INTRODUCTION

0.1 Context and Motivation

Historical documents are invaluable cultural artifacts that provide unique insights into the social,

political, and cultural contexts of their time. Preserving these documents is essential not only to

safeguard historical knowledge but also to ensure that future generations can access and study

them. However, many of these materials have suffered significant degradation over the years,

with fading ink, discoloration, stains, and physical damage threatening their readability and

longevity. Restoration is a critical step in digitizing, archiving, and analyzing these records for

research, education, and heritage preservation (Chellapilla, Puri & Simard (2006)).

Document restoration plays a pivotal role as a pre-processing step for downstream tasks. High-

quality restoration of text edges and fine details is essential for accurate optical character

recognition (OCR), which relies on clearly defined text boundaries to recognize characters

effectively. Additionally, metadata extraction and historical analysis depend on preserving

unique textual and visual elements that provide context and authenticity. A precise and effective

restoration approach ensures that documents retain their legibility and historical integrity, making

them suitable for archival and analytical purposes.

Restoring historical document images remains a challenging task due to extensive degradation

caused by environmental and physical factors over time. Issues such as fading ink, discoloration,

stains, and structural damage obscure content, distort edges, and compromise fine details. These

degradations hinder crucial tasks like OCR, content analysis, and metadata extraction, which

rely on clear and accurate representations of the documents. Effective restoration techniques are

therefore vital to preserving both the usability and historical significance of these invaluable

materials.
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Figure 0.1 Examples of ancient document images with different types of

degradation
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0.2 Problem Statement

Historical document restoration is complicated by severe degradation, which obscures text,

damages edges, and compromises content integrity. These challenges hinder the digitization

and preservation of these valuable materials (Sulaiman, Omar & Nasrudin (2019)). The main

problems are summarized as follows:

0.2.1 PS1. Multiple Degradation Factors

Historical documents often suffer from several types of deterioration—such as ink bleeding,

paper aging, tears, stains, and fading—which together reduce image quality and make accurate

text extraction difficult for both printed and handwritten materials. Ink bleeding happens

when moisture, excess ink, or poor-quality paper cause the ink to spread and blur the writing.

As documents age, the paper can discolor, become brittle, and develop cracks because of

light, humidity, and pollutants. Over time, handling also causes tears along edges and folds,

interrupting the text or even removing parts of it. Stains from water, oils, or dirt add another

layer of visual noise that hides important details. In addition, inks and pigments gradually fade

with exposure to air and light, making characters faint or hard to see.

0.2.2 PS2. Stroke Edge Ambiguity

Accurate reconstruction of text edges and fine strokes is a significant challenge. Degradation

introduces uncertainty in stroke boundaries, leading to incomplete or blurred contours. Current

restoration techniques often fail to preserve authentic edges, especially in detailed or handwritten

content.
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0.2.3 PS3. Severe Degradation Recovery

Existing methods are limited in handling severely degraded content. While partial recovery is

possible, essential textual and visual details are often lost. The challenge lies in developing robust

algorithms that enhance readability while preserving historical authenticity and completeness.

Figure 0.2 Example of degraded ancient document images alongside their

corresponding ground truth version

0.2.4 PS4. Legibility and Preservation in Digitization

Degradation reduces the legibility of documents during digitization, often resulting in inaccurate

transcription, partial content loss, and increased risk of further damage during handling. Beyond

binarization, restoring the underlying background and correcting artifacts such as stains, bleed-

through, and missing content is essential for fully reconstructing historical documents. Effective

reconstruction methods must enhance visual clarity and readability while preserving structural

integrity and historical authenticity, ensuring that digitized documents remain reliable for

archival use, computational analysis, and long-term preservation.
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0.3 Research Questions

In order to address the aforementioned problems and guide the methodology of this thesis, we

refine the problem statement into four coherent research questions (RQs). Each RQ is linked

to a specific challenge in historical document restoration, and together they build a systematic

framework for tackling degradation, stroke preservation, severe damage recovery, and long-term

digitization. Detailed answers to these questions will be provided in the subsequent chapters.

0.3.1 Research Question (RQ1): Degradation Modeling

1. How can we systematically model the diverse degradation factors (ink bleeding, paper aging,

stains, tears, and fading) found in historical documents?

2. How can restoration methods be designed to effectively handle multiple degradation types

occurring simultaneously in the same document?

0.3.2 Research Question (RQ2): Stroke Edge Extraction and Preservation

1. How can fine text strokes and edges be accurately extracted from degraded historical

documents?

2. What deep learning architectures (e.g., GANs, transformers, diffusion models) are most

effective in preserving authentic stroke boundaries?

3. How can restoration techniques ensure both readability for OCR systems and authenticity

for historical study?

0.3.3 Research Question (RQ3): Robust Recovery from Severe Degradation

1. How can restoration algorithms be made robust against extreme degradation, where

large portions of content are missing or distorted, while preserving structural and textual

authenticity?
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2. Can generative models, such as boundary-aware GANs (BA-GAN), reconstruct missing

content plausibly without introducing artificial or misleading details, and be extended to

handle uncertainty estimation and dataset generalization?

3. How can inpainting and related methods enhance the recovery of degraded backgrounds,

improving readability while maintaining historical fidelity and context in heavily damaged

documents?

0.3.4 Research Question (RQ4): Quality Assessment for Reliable Digital Preservation

1. How can restored document images be optimized for long-term digital preservation while

maintaining historical authenticity?

2. What evaluation metrics best capture the dual objectives of readability and historical integrity

(for archival preservation)?

0.4 Objectives

The primary objective of this thesis is to develop a robust framework for the restoration

and reconstruction of historical document images, addressing the challenges posed by severe

degradation while preserving historical authenticity and legibility. To achieve this overarching

goal, we define the following specific objectives:

1. Modeling Degradation: To develop a restoration model capable of reliably recognizing

and processing text in historical documents affected by various forms of degradation—such

as ink bleed-through, paper wear, stains, and fading, ensuring stable performance even when

multiple degradation types are present.

2. Stroke and Edge Preservation: To accurately extract and preserve fine text strokes and

edges from degraded documents using advanced deep learning architectures, ensuring that

restored text maintains both readability for OCR systems and authenticity for historical

study.
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3. Robust Recovery from Severe Degradation: To design a restoration framework that can

identify text regions, separate text from background, and reconstruct damaged or obscured

areas, improving readability while maintaining the structural authenticity and historical

integrity of the document without introducing artificial content.

4. Quality Assessment for Reliable Digital Preservation: To evaluate reconstruction results

using no-reference image quality assessment (IQA) metrics, since large portions of historical

document datasets are unlabeled. This ensures reliable evaluation of readability, visual

fidelity, and preservation suitability without requiring ground-truth references.

0.5 Contributions

In this work, we aim to harness the potential of Generative Adversarial Networks (GANs) in

the challenging field of document restoration, where documents often suffer from complex

degradation patterns, such as faded text, background noise, and uneven contrast. Our approach

adapts a conditional GAN (cGAN) architecture specifically for the document binarization process,

focusing on extracting and enhancing text quality while effectively handling various forms of

degradation. This tailored architecture not only addresses text clarity but also accommodates

diverse damage patterns unique to historical and degraded documents. Our contributions are

outlined below:

1. Novel End-to-End Document Binarization Framework: We introduce an innovative

document binarization framework that leverages a minimax three-player game in a deep

learning context. Unlike traditional binarization methods that rely on fixed heuristics, our

framework is data-driven and optimized to capture text features in degraded documents. By

framing document binarization as a game between three players—generator, discriminator,

and an auxiliary discriminator for fine-tuned feature alignment—our model learns to balance

text preservation with noise reduction, providing a robust, fully end-to-end solution.
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2. Enhanced Stroke Edge Extraction via Conditional GAN with Dual Discriminators:

One major challenge in document restoration is the accurate extraction of text strokes,

particularly for faint or irregular characters. To address this, we propose an image-to-image

translation approach using a conditional GAN (cGAN) with two discriminators: a primary

discriminator for general feature extraction and an auxiliary discriminator specifically

focused on stroke edges. This dual-discriminator setup enables our model to better capture

the fine-grained details of text, ensuring precise stroke edge preservation and enhancing

the overall clarity of restored documents. This configuration surpasses the limitations

of single-discriminator architectures by enabling the model to focus on both global and

localized features, thereby achieving more accurate text restoration.

3. Superior Performance on DIBCO Benchmarks: Our model achieves state-of-the-

art performance on the Document Image Binarization Contest (DIBCO) benchmarks,

demonstrating its effectiveness across a range of document restoration tasks. We conduct

extensive experiments that show significant improvements over existing methods in terms

of both quantitative metrics and qualitative results, showcasing the model’s ability to handle

various degradation scenarios and deliver clear, binarized outputs. This advancement

underscores the potential of our cGAN-based approach in document restoration and

highlights its contribution to the field, particularly in applications involving historical or

damaged documents. This work builds upon our prior publication (Nafchi & Cheriet (2025)),

which received the second-best paper award at ISPR’2024.

4. Reconstruction of Historical Documents: We propose a comprehensive framework for

reconstructing degraded historical documents by integrating text localization via binary

masks with a two-stage background inpainting technique. Leveraging our pre-trained

model and deep learning-based restoration, our method ensures improved readability and

preservation of historical content. It significantly improves visual quality, as measured
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by the no-reference VDQAM metric (Shahkolaei, Nafchi, Al-Maadeed & Cheriet (2018),

demonstrating its effectiveness in challenging real-world scenarios.

0.6 Outline of the thesis

The thesis "From Edges to Pages: Boundary-Aware Binarization and Two-Stage Reconstruction

of Historical Documents" is organized into several chapters that address the challenges of

historical document restoration.

Chapter 1: Literature Review surveys existing approaches to document restoration, including

traditional binarization methods, convolutional neural network (CNN)-based techniques, and

generative adversarial networks (GANs). It also covers image-to-image translation frameworks

and discusses the limitations that motivate the need for a boundary-aware approach.

Chapter 2: Boundary-Aware Generative Adversarial Network (BA-GAN) introduces the

proposed model, detailing the design of the generator and discriminator, auxiliary components,

network architecture, datasets, training strategy, and evaluation metrics. This chapter presents

our main contributions in binarization, including the development of a boundary-aware loss

function and a GAN capable of preserving fine stroke edges. Key results demonstrate that

BA-GAN outperforms state-of-the-art methods in both objective metrics (e.g., PSNR, SSIM)

and visual quality.

Chapter 3: Full-Page Historical Document Reconstruction Using Two-Stage Inpainting

extends the restoration to heavily degraded manuscripts using a two-stage inpainting strategy.

The first stage estimates the background, while the second stage refines the reconstruction

to reduce ink bleed-through and noise. This chapter highlights contributions in full-page

reconstruction and shows that the proposed two-stage approach significantly improves both
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structural fidelity and readability compared to baseline methods, as confirmed by quantitative

and qualitative evaluations.

Finally, the Conclusion and Recommendations chapter summarizes the main findings, discusses

the limitations of the current work, and proposes directions for future research in document

restoration and digital preservation.

A schematic diagram included in this section illustrates the overall workflow of the thesis,

showing the progression from BA-GAN binarization to two-stage reconstruction.

Figure 0.3 Overview of the proposed document restoration pipeline, illustrating the full

process from degraded input documents through degradation modeling, text extraction, and

background estimation to reconstruction



CHAPTER 1

LITERATURE REVIEW

1.1 Document Restoration

Document restoration involves enhancing the visual quality of degraded documents, including

historical manuscripts, legal records, and damaged texts, to improve legibility and facilitate

digital preservation. The primary objective is not only to improve readability but also to maintain

the authenticity and historical integrity of these cultural artifacts.

Traditional restoration techniques, such as Otsu’s thresholding (Otsu et al. (1975)) and Sauvola’s

adaptive binarization (Sauvola & Pietikäinen (2000)), rely on classical image processing methods

to enhance document clarity. These approaches are effective under controlled conditions but often

struggle with complex degradation patterns, including uneven illumination, ink bleed-through,

overlapping noise, and faded text—challenges common in historical documents.

With the rise of deep learning, adaptive, data-driven methods have significantly advanced

document restoration. Convolutional Neural Networks (CNNs) excel in feature extraction,

image enhancement, and segmentation, while Generative Adversarial Networks (GANs) can

learn mappings between degraded and clean document images. Despite these advancements,

challenges remain in balancing text enhancement with noise removal, ensuring generalization

across diverse degradation types, and preserving fine structural details. Our work aims to address

these challenges through a GAN-based framework that enhances text clarity, removes noise, and

maintains structural integrity.

1.2 Traditional Binarization Methods

1.2.1 Global Thresholding

Global thresholding applies a single threshold value across an entire image to separate text

from the background. This approach is computationally efficient and works well for images
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with uniform backgrounds. However, its performance significantly deteriorates in cases where

documents exhibit varying illumination or complex degradation patterns, leading to suboptimal

binarization results.

One of the most widely used global thresholding techniques is Otsu’s method (Otsu et al. (1975)).

This algorithm automatically determines an optimal threshold by analyzing the histogram of

the grayscale image, aiming to minimize intra-class variance while maximizing the separation

between text and background. The intra-class variance, denoted as 𝜎2
intra

(𝑘), is calculated as:

𝜎2
intra(𝑘) = 𝑝1(𝑘)𝜎

2
1 (𝑘) + 𝑝2(𝑘)𝜎

2
2 (𝑘), (1.1)

where 𝑝1(𝑘) and 𝑝2(𝑘) are the probabilities of pixel groups divided by the threshold 𝑘 , and 𝜎2
1
(𝑘)

and 𝜎2
2
(𝑘) represent the variances of these groups. The optimal threshold, 𝑇Otsu, maximizes the

between-class variance, calculated as:

𝑇Otsu =
𝜎2

𝐵

𝜎2
𝐺

. (1.2)

Otsu’s algorithm, often referred to as the "maximized between-classes variance method," is

particularly effective for images with consistent backgrounds. It partitions an image into

foreground and background segments by maximizing the difference between their grayscale

distributions. This ensures robust segmentation for images with sufficient grayscale contrast.

However, Otsu’s method has limitations when applied to documents with uneven backgrounds or

severe degradation. For instance, in scenarios involving significant ink penetration or insufficient

contrast, the algorithm may misclassify parts of the background as text or vice versa. These

shortcomings highlight the need for more advanced methods to address the challenges of

document restoration, particularly in handling non-uniform degradation and noise.
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1.2.2 Local Thresholding

Local thresholding techniques were introduced to address the limitations of global thresholding,

especially in handling images with uneven backgrounds or localized variations in contrast. These

methods compute the threshold dynamically within a local window, making them more robust

for complex document degradation scenarios.

The Niblack algorithm Niblack (1985) was developed to overcome the shortcomings of fixed

thresholds by employing a local binarization approach. This method calculates the mean

and standard deviation within a local window surrounding each pixel, adjusting the threshold

accordingly. The threshold calculation is expressed as:

𝑇 = 𝑚 + 𝑘 · 𝑠, (1.3)

where 𝑚 represents the mean gray value of the local window, 𝑠 is the standard deviation, and

𝑘 is a correction factor that can be tuned based on the contrast between the foreground and

background. Niblack’s method has been recognized as effective for images with low contrast,

noise, and uneven background intensity (trier1995). However, it can produce excessive noise in

high-contrast regions or areas with significant variations in intensity.

Sauvola’s method (Sauvola & Pietikäinen (2000)) extends Niblack’s approach (Niblack (1985))

by introducing a dynamic thresholding mechanism that adapts to local image variations, making

it more robust to noise and uneven illumination. The threshold 𝑇sau is calculated as:

𝑇sau(𝑎, 𝑏) = 𝑚(𝑎, 𝑏)

(
1 + 𝑘

(
𝜎(𝑎, 𝑏)

𝑅
− 1

))
, (1.4)

where 𝑚(𝑎, 𝑏) and 𝜎(𝑎, 𝑏) represent the local mean and standard deviation within the

neighborhood of pixel (𝑎, 𝑏), respectively. The parameter 𝑅 is a predefined constant (typically
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set to 128) that defines the dynamic range of the standard deviation, and 𝑘 is a tuning factor that

controls the threshold’s sensitivity to local contrast.

The key innovation of Sauvola’s method lies in its ability to refine the threshold dynamically

based on local contrast, particularly in high-contrast regions where the threshold value converges

towards the local mean 𝑚(𝑎, 𝑏). This adaptability makes it more effective for handling documents

with uneven lighting and varying levels of degradation compared to Niblack’s approach (Niblack

(1985)).

However, despite its advantages, Sauvola’s method is not without limitations. It requires careful

tuning of parameters such as 𝑘 and window size, which can vary depending on the document’s

characteristics. Additionally, it may face challenges in scenarios with diverse text sizes and

fonts, often necessitating further optimization for consistent results.

To address the issue of black noise produced by the Niblack algorithm, (Khurshid, Siddiqi,

Faure & Vincent (2009)) proposed the NICK algorithm. This method enhances the binarization

of degraded and noisy documents by lowering the binary threshold for lighter regions. The

threshold is calculated as:

𝑇 = 𝑚 + 𝑘

√∑
𝑝2
𝑖 − 𝑚2

𝑁𝑃
, (1.5)

where 𝑝𝑖 denotes the pixel values within the local window, 𝑁𝑃 is the number of pixels, and 𝑘 is

a correction factor. By adjusting 𝑘 , NICK can effectively suppress noise: a 𝑘 value close to 0.2

reduces noise but risks faint or broken characters, while a 𝑘 value near 0.1 retains text clarity

but may preserve some noise.

These algorithms demonstrate the evolution of local thresholding methods in addressing the

complexities of document binarization. Each method offers unique strengths but also faces

limitations, highlighting the ongoing need for innovation in this area.
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Local thresholding techniques address the limitations of global methods by adaptively calculating

a threshold for each local region of the document, thereby improving binarization accuracy in

scenarios with non-uniform backgrounds or shadows.

1.3 Convolutional Neural Networks (CNNs)

1.3.1 Fundamentals of CNNs

With the advent of deep learning, CNNs have been applied to document binarization, automatically

learning features for text and background separation through feature extraction. These methods

are particularly effective in handling complex document degradation.

The core operation of CNNs is the convolution operation, which involves applying a filter or

kernel to an input matrix, like an image, to produce a feature map. Mathematically, the 2D

convolution operation between an input image 𝐼 and a filter 𝐾 can be represented as:

(𝐼 ∗ 𝐾) (𝑖, 𝑗) =
∑
𝑚

∑
𝑛

𝐼 (𝑖 + 𝑚, 𝑗 + 𝑛) · 𝐾 (𝑚, 𝑛) (1.6)

where:

• 𝐼 (𝑖, 𝑗) denotes the pixel value at position (𝑖, 𝑗) in the input image,

• 𝐾 (𝑚, 𝑛) represents the filter of size 𝑚 × 𝑛,

• The resulting output is a feature map that highlights particular features, such as edges or

textures, detected by the filter.

Each filter in the convolutional layer is learned during training to capture specific characteristics

in the input data, allowing CNNs to recognize increasingly complex patterns as they progress

through the network. The hierarchical feature extraction capability of CNNs enables them to

model increasingly abstract patterns, making them a powerful tool for document restoration

tasks where fine-grained structural information must be preserved.
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Figure 1.1 Overview of convolutional layer operation in a CNN, from raw

input to filtered output

Figure 1.2 The original LeNet-5 architecture as described in the pioneering

research paper.

Source: Feng et al. (2016)

1.3.2 Pooling and Activation

Following the convolutional layer, CNNs often include pooling layers to reduce the spatial

dimensions of the feature maps, effectively decreasing the number of parameters, reducing

computational load, and controlling overfitting. The most commonly used pooling operation is

max pooling, defined as:

𝑃(𝑖, 𝑗) = max
(𝑚,𝑛)∈𝑅

𝐹 (𝑖 + 𝑚, 𝑗 + 𝑛) (1.7)
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where:

• 𝑃(𝑖, 𝑗) is the output at position (𝑖, 𝑗) in the pooling layer,

• 𝐹 (𝑖, 𝑗) is the feature map from the previous convolutional layer,

• 𝑅 denotes the pooling region, commonly of size 2 × 2 or 3 × 3.

Figure 1.3 An Example of Max Pooling 2x2

Pooling retains prominent features within each region, which is critical for downsampling the

feature maps and achieving translation invariance.

To introduce non-linearity, CNNs employ activation functions, with the Rectified Linear Unit

(ReLU) being one of the most popular. ReLU is defined as:

𝑓 (𝑥) = max(0, 𝑥) (1.8)

where 𝑥 represents the input to the activation function from the preceding layer. By setting

negative values to zero, ReLU helps the network learn complex, non-linear relationships within

the data.

This simple yet effective non-linearity enables the network to model complex functions, making

it a core component of most modern CNN architectures.
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1.3.3 Loss, Backpropagation, and Batch Normalization

In classification tasks, CNNs are trained by minimizing a loss function that measures the

discrepancy between predicted and true labels, commonly the cross-entropy loss for classification

tasks. Given an input image 𝑥 with label 𝑦 and CNN prediction 𝑦̂, the cross-entropy loss 𝐿 is

defined as:

𝐿 (𝑦, 𝑦̂) = −
𝐶∑

𝑐=1

𝑦𝑐 log( 𝑦̂𝑐) (1.9)

where:

• 𝐶 is the number of classes,

• 𝑦𝑐 is the true label for class 𝑐,

• 𝑦̂𝑐 is the predicted probability for class 𝑐.

Backpropagation computes the gradients of the loss with respect to each parameter in the

network, enabling gradient-based optimizers such as stochastic gradient descent (SGD) to update

the weights and minimize prediction error.

Batch normalization (BN) is an essential component in modern deep learning architectures,

introduced to address the issue of internal covariate shift. This shift refers to the change in the

distribution of layer inputs as the parameters are updated during training, which can slow down

convergence. BN normalizes the inputs of each layer to have a mean of zero and a standard

deviation of one, stabilizing the learning process.

BN is defined by normalizing each mini-batch as follows:

𝑥𝑖 =
𝑥𝑖 − 𝜇𝐵√
𝜎2

𝐵 + 𝜖
× 𝛾 + 𝛽 (1.10)

where:

• 𝑥𝑖 is the normalized output for input 𝑥𝑖,

• 𝜇𝐵 and 𝜎2
𝐵 are the batch mean and variance, respectively, computed over the mini-batch,

• 𝜖 is a small constant added to prevent division by zero,
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• 𝛾 and 𝛽 are learnable parameters that scale and shift the normalized values.

Figure 1.4 ReLU Activation Function

By normalizing and scaling layer inputs, Batch Normalization (BN) provides several key benefits:

it enables higher learning rates and accelerates convergence by reducing internal covariate

shifts; it introduces a mild regularization effect through mini-batch variability, helping to reduce

overfitting, and it improves training stability by keeping activations within a consistent range,

resulting in smoother gradients and minimizing issues such as exploding or vanishing gradients,

an advantage especially important in deep networks.

BN has become a standard layer in Convolutional Neural Networks (CNNs), typically placed

after a convolutional layer and before an activation function such as ReLU. This positioning

allows BN to stabilize activations, thus facilitating a smoother learning process.

1.4 CNN-Based Binarization Techniques

Document image binarization and restoration have seen significant improvements with the

advent of deep learning techniques. Among these, Convolutional Neural Networks (CNNs) have
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emerged as a leading approach due to their ability to automatically extract features and learn

hierarchical representations from data. In the context of document restoration, convolutional

layers detect important image features, pooling layers reduce the dimensionality of these features,

and fully connected layers convert them into binary outputs. By capturing complex patterns

in degraded documents, CNNs consistently outperform traditional methods such as global or

adaptive thresholding, delivering more accurate, robust, and visually faithful restorations.

Methods like U-Net (Ronneberger, Fischer & Brox (2015)) and Fully Convolutional Networks

(FCNs) have been specifically adapted for this task, achieving remarkable results. U-Net, with

its encoder-decoder structure, excels in capturing multi-scale features, while FCNs, introduced

by Long et al. (Long, Shelhamer & Darrell (2015)), classify images at the pixel level without

restricting image size. FCNs are particularly useful for document binarization tasks, as they

enable pixel-wise classification and handle input images of various sizes, making them more

efficient compared to traditional CNNs. However, FCNs can sometimes lack sensitivity to fine

image details, which is crucial when processing ancient or heavily degraded documents.

Recent advancements have further integrated CNNs with traditional image processing methods.

For example, He et al. (He & Schomaker (2019)) introduced DeepOtsu, which combines CNNs

with the Otsu algorithm for image binarization. This model leverages deep learning to optimize

threshold selection, improving performance on images with complex lighting conditions and

noise. In another approach, Vo et al. (Quang Nhat,Vo & Gueesang (2017)) proposed a Deep

Supervised Network (DSN) for binarization, which uses multi-level features to better distinguish

text from background noise, ensuring high-quality text retention.

Beyond CNNs, Generative Adversarial Networks (GANs) have emerged as a powerful tool for

document restoration. GANs (Goodfellow et al. (2014)), known for their ability to generate

high-quality images, have been successfully adapted for image-to-image translation tasks, where

the input is a degraded document and the output is a restored version. These models use a

generator network to produce restored images and a discriminator network to distinguish between

real and generated images, creating a robust system that can handle various degradation patterns.
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Conditional GANs (cGANs), which use paired images for supervised learning, have shown

impressive results in document restoration tasks. Additionally, unsupervised GANs, which can

work with unpaired images, have been utilized to further improve restoration quality without

requiring large labeled datasets. These approaches have set new benchmarks on datasets such as

DIBCO, outperforming traditional methods in both visual quality and quantitative metrics.

1.5 Generative Adversarial Networks (GANs)

GANs are composed of a generator and a discriminator network. The generator learns to produce

restored document images, while the discriminator evaluates their authenticity. Through this

adversarial training process, GANs progressively enhance the quality of restored document

images, leading to highly accurate reconstructions (Goodfellow et al. (2014)).

Figure 1.5 Generative Adversarial Network

1.5.1 Generator

The Generator is a neural network that aims to produce samples that resemble real data from a

given domain. It does this by taking in a random noise vector as input and transforming it into a

data sample that could pass as real.
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The Generator 𝐺 learns to map a prior noise distribution 𝑝𝑧 (𝑧) (such as a normal or uniform

distribution) to a data distribution 𝑝data(𝑥). Its objective is to generate samples that the

Discriminator cannot distinguish from real data. By learning from the feedback provided by the

Discriminator, the Generator iteratively improves its output quality.

The Generator’s objective function, or loss, can be expressed as:

min
𝐺

𝑉 (𝐺) = E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))] (1.11)

Where:

• 𝑧 is a random noise vector drawn from the prior distribution 𝑝𝑧 (𝑧).

• 𝐺 (𝑧) represents the generated data sample, which the Generator creates to approximate the

real data.

• 𝐷 (𝐺 (𝑧)) is the probability, as estimated by the Discriminator, that 𝐺 (𝑧) is a real sample.

The Generator aims to minimize log(1 − 𝐷 (𝐺 (𝑧))), encouraging 𝐷 (𝐺 (𝑧)) to be as close to 1 as

possible (i.e., making the generated sample indistinguishable from real data in the Discriminator’s

view).

1.5.2 Discriminator

The Discriminator is a neural network tasked with classifying inputs as either real (from the

actual data) or fake (from the Generator). It receives both real data samples and generated

samples, learning to differentiate between the two.

The Discriminator 𝐷 outputs a probability 𝐷 (𝑥), representing the likelihood that input 𝑥 is from

the real data distribution. Through training, the Discriminator improves its ability to detect

generated samples, helping the Generator improve as well. It serves as the "critic" in the GAN

framework, providing feedback to the Generator.

The Discriminator’s objective function, or loss, is given by:
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max
𝐷

𝑉 (𝐷) = E𝑥∼𝑝data (𝑥) [log 𝐷 (𝑥)] + E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))] (1.12)

Where:

• 𝑥 represents a real data sample drawn from the real data distribution 𝑝data(𝑥).

• 𝐷 (𝑥) is the Discriminator’s estimate of the probability that 𝑥 is a real data sample.

• 𝐺 (𝑧) is a generated sample from the Generator, based on noise 𝑧.

• 𝐷 (𝐺 (𝑧)) is the Discriminator’s estimate of the probability that 𝐺 (𝑧) is a real sample.

The Discriminator aims to maximize log 𝐷 (𝑥) for real samples and log(1 − 𝐷 (𝐺 (𝑧))) for fake

samples, effectively becoming better at distinguishing between real and generated data.

1.6 Limitations of Current Approaches

Historical document restoration often begins with binarization, yet existing methods face

significant challenges. Traditional techniques, such as global or adaptive thresholding, frequently

fail to capture text in severely degraded documents affected by ink bleed-through, fading, stains,

tears, or missing regions. These methods are highly sensitive to noise and typically cannot

preserve fine-grained stroke edges, resulting in reduced legibility and unreliable downstream

analysis. Deep learning-based methods, particularly CNNs, have improved performance by

learning complex features automatically, but they still primarily focus on foreground text

and often miss subtle strokes or fail under complex degradation patterns. These limitations

highlight the need for a more robust model capable of accurate text detection and precise stroke

preservation in challenging historical documents.

While improved binarization enhances text extraction, most existing approaches do not provide a

complete reconstruction of historical documents. Current solutions often stop at text binarization

or partial restoration, leaving background regions and degraded areas unprocessed. This

incomplete reconstruction reduces structural fidelity and fails to preserve the historical and visual

integrity of the documents, limiting their archival and analytical usability. A comprehensive
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pipeline that restores both text and background is therefore essential to fully recover degraded

manuscripts.

To address these gaps, we propose BA-GAN, a Boundary-Aware Generative Adversarial Network

designed for historical document restoration. The model features a single generator guided by

dual discriminators: one focused on content-level features and another on contour-level details.

This design enables BA-GAN to capture fine stroke edges, improve binarization quality, and

generate precise text masks even in heavily degraded areas. By leveraging both local and global

information, BA-GAN significantly enhances text reconstruction compared to prior methods.

Building upon accurate binarization, BA-GAN integrates a complete document reconstruction

pipeline using a two-stage inpainting strategy. The first stage estimates the background using

pixel-based interpolation, providing a coarse reconstruction of missing content. The second

stage applies deep learning-based GAN inpainting to refine textures, remove noise, and correct

bleed-through artifacts. This combined approach ensures precise stroke reconstruction, seamless

background restoration, and preservation of structural and historical authenticity. Unlike prior

methods, this pipeline produces fully reconstructed historical documents with enhanced legibility,

structural fidelity, and long-term archival usability.



CHAPTER 2

BA-GAN: A BOUNDARY-AWARE GENERATIVE ADVERSARIAL NETWORK FOR
DOCUMENT RESTORATION

2.1 Introduction

In this section, we detail the proposed approach for restoring degraded document images using a

novel architecture, BA-GAN (Boundary-Aware Generative Adversarial Network). Document

restoration is framed as an image-to-image translation problem, where the goal is to transform

an input degraded image into a clean version while preserving the document’s structural and

textual integrity. The use of Generative Adversarial Networks (GANs) allows for the generation

of high-quality outputs, especially in settings where paired data (degraded image and ground

truth clean image) is available. Conditional GANs, a variation of GANs, take advantage of

paired data by incorporating conditional information, enabling more controlled and realistic

image generation. This makes them highly suitable for the document restoration task, where the

condition could be the degraded image or other related data.

Our proposed architecture, BA-GAN, is designed with two key objectives in mind:

• Restoring the content of degraded documents: This objective focuses on restoring

documents suffering from heavy degradation. The goal is to reconstruct the content while

preserving the text’s integrity and readability, even in challenging scenarios.

• Preserving boundary details: This is crucial for accurate restoration of text and structural

elements. Boundaries, such as edges of text and lines, play a key role in document clarity.

Ensuring that these details remain intact or are restored effectively is important for improving

the quality and legibility of the restored document.

The architecture consists of a generator 𝐺 and two discriminators 𝐷1 and 𝐷2, which work in

tandem to ensure the generation of high-fidelity, clean document images. Below, we discuss the

different components of BA-GAN in detail.
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The remainder of this chapter is organized as follows: the next section details our approach,

including the design of a custom loss function, the structure of the generator, and the two

discriminators used. We describe both the conditional and adversarial loss components,

highlighting their roles in optimizing model performance. Finally, in the experimental evaluation,

we demonstrate the effectiveness of each system component and compare our results with similar

approaches.

2.2 Proposed Approach

To achieve a clean, restored version of a degraded document, we frame the task as an image-

to-image translation problem. This approach leverages the strengths of conditional Generative

Adversarial Networks (GANs), which are particularly effective in generating high-quality outputs

when paired data are available—a unique advantage of the GAN framework. Our model, BA-

GAN (Boundary-Aware Document Restoration Conditional Generative Adversarial Network), is

specifically designed to address this objective with precision and robustness.

The BA-GAN model comprises a generator network, 𝐺, and two discriminator networks, 𝐷1

and 𝐷2, each with distinct roles in enhancing restoration accuracy. These neural networks are

defined by their parameters 𝜃𝐺 , 𝜃𝐷1, and 𝜃𝐷2, respectively. In conditional GANs, both the

generator and discriminators receive additional conditional information, enabling controlled,

context-aware outputs that adhere closely to the original document’s structure. This conditioning

mechanism enhances the model’s capacity to focus selectively on document boundaries and

intricate details, ensuring that even complex, degraded regions are accurately restored.

The objective function for the BA-GAN model is formulated as:

𝐿net(𝜃𝐺, 𝜃𝐷1, 𝜃𝐷2) = min
𝜃𝐺

max
𝜃𝐷1,𝜃𝐷2

𝐿GAN(𝜃𝐺, 𝜃𝐷1, 𝜃𝐷2) + 𝜆𝐿log(𝜃𝐺), (2.1)

where 𝐿GAN represents the adversarial loss that drives the generator to produce outputs

indistinguishable from the real target by the discriminators, and 𝐿log is a regularization term
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or reconstruction loss to ensure the generated output aligns closely with the real data. Here, 𝜆

serves as a weighting factor that balances the contributions of both loss components.

In this context, the min-max formulation reflects the adversarial training dynamics between the

generator and the discriminators. The generator 𝐺 aims to minimize the loss 𝐿net by producing

realistic document restorations, while the discriminators 𝐷1 and 𝐷2 strive to maximize their

ability to differentiate between real and generated images.

Specifically, the generator’s goal is to learn a mapping from degraded input images to their

corresponding pristine forms, while the discriminators assess the quality of the generator’s

outputs. This interplay creates a competitive environment where the generator continually

improves its outputs to deceive the discriminators, and the discriminators refine their ability

to detect fake images. Over successive training iterations, this adversarial process leads to

a convergence where the generator produces increasingly accurate restorations of degraded

documents.

Ultimately, this min-max strategy creates a balance of cooperation and competition between

the components of the BA-GAN model, helping each part improve the overall performance.

This synergy is important for handling the complex challenges of document restoration and

enables the model to learn detailed and meaningful representations from document images. By

combining boundary-aware features with adversarial training, BA-GAN not only improves the

visual quality of the restored documents but also preserves the original content and structure.

2.3 Generator:

The generator 𝐺𝜃𝑔 : {𝐼𝑔𝑡 , 𝐼} → 𝐼𝑐 is designed to learn a mapping that transforms the observed

ground truth image 𝐼𝑔𝑡 and an original document image 𝐼 into a clean document, represented

as 𝐼𝑐. The primary objective of this generator is to create an output that closely resembles the

ground truth image, effectively reconstructing the original document in its cleanest form.
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Figure 2.1 The proposed BA-GAN architecture

Within the framework of a Generative Adversarial Network (GAN), the optimization process for

the generator focuses on determining the optimal parameters 𝜃∗𝑔. This is formalized in Equation

2.2:

𝜃∗𝑔 = arg max
𝜃𝑔

E𝑋∼𝑝𝜃𝑔
[− log(1 − 𝐷 (𝑋; 𝜃𝑑))] (2.2)

The goal of this optimization objective is to maximize the expected value of the negative log-

likelihood of the discriminator’s output for the generated samples. In this context, 𝑋 represents

the samples produced by the generator 𝐺 with parameters 𝜃𝑔, while 𝐷 (𝑋; 𝜃𝑑) indicates the

discriminator’s response to these samples. Essentially, the generator’s training process aims

to produce images that are realistic enough to fool the discriminator, thereby enhancing the

generator’s ability to create high-quality outputs. As the generator improves its performance, it

contributes to the overall efficacy and realism of the images generated by the GAN, fostering a

competitive dynamic between the generator and the discriminator that ultimately leads to more

authentic image generation.
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2.4 Main Discriminator

The main discriminator 𝐷1 determines whether the image generated by 𝐺 is fake or real,

outputting a probability value 𝐷𝜃𝑑1
: 𝐼𝑐 → 𝑃(real), thereby distinguishing between the ground

truth and the generated image.

The optimization process for the primary discriminator 𝐷1 within a GAN entails the search for

optimal parameters 𝜃∗𝑑1
through the minimization of the following objective, as indicated by

Equation 2.3:

𝜃∗𝑑1 = arg min
𝜃𝑑1

E𝑋∼𝑝data
[− log 𝐷 (𝑋; 𝜃𝑑1)] + E𝑋∼𝑝𝜃𝑔

[− log(1 − 𝐷 (𝑋; 𝜃𝑑1))] (2.3)

Here, 𝜃∗𝑑1
represents the optimal parameters for the primary discriminator 𝐷1. The objective

function comprises two terms: the expected negative log-likelihood of 𝐷1’s output for real

data samples 𝑋 with parameters 𝜃𝑑1, and the expected negative log-likelihood of 𝐷1’s output

for generated samples 𝑋 from generator 𝐺 with parameters 𝜃𝑔. The goal is to minimize 𝐷1’s

combined error in classifying real and generated data, thereby enhancing its ability to distinguish

between the two. This adversarial training improves 𝐷1’s discrimination abilities, guiding 𝐺 to

produce more realistic images.

Equation 2.3 represents a fundamental aspect of GAN training, crucial for achieving high-quality

image generation by iteratively improving the main discriminator 𝐷1.

2.5 Auxiliary Discriminator

In order to precisely match the text boundaries with the ground truth, the generator uses a second

discriminator, which is devoted to text boundary segmentation. The discriminator enhances its

ability to predict whether the image is fake, a phenomenon known as adversarial learning.
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The objective for the auxiliary discriminator 𝜃∗𝑑2
is given by:

𝜃∗𝑑2 = arg min
𝜃𝑑2

E𝑋∼𝑝data
[− log 𝐷 (𝑋; 𝜃𝑑2)] + E𝑋∼𝑝𝜃𝑔

[− log(1 − 𝐷 (𝑋; 𝜃𝑑2))] (2.4)

Here, 𝜃∗𝑑2
denotes the optimal parameters for 𝐷2. The goal is to minimize the combined error in

classifying the contour image and generated data, thereby enhancing 𝐷2’s capability to discern

real from fake images alongside the primary discriminator 𝐷1. Consequently, the generated

images will exhibit sharper, more defined edges and boundaries as the generator refines its ability

to reproduce these features faithfully. Overall, the enhancement of 𝐷2 contributes to generating

higher-quality images with finer details, leading to a more realistic and visually pleasing output.

The formalization of the adversarial training process between the generator (G) and two

discriminators (𝐷1, 𝐷2) can be described as follows:

LGAN(𝜃𝑔, 𝜃𝑑1, 𝜃𝑑2) = E𝐼,𝐼𝑔𝑡

[
log[𝐷𝜃𝑑1

(𝐼, 𝐼𝑔𝑡)]
]

+ E𝐼

[
log[1 − 𝐷𝜃𝑑1

(𝐼, 𝐺𝜃𝑔 (𝐼))]
]

+ E𝐼,𝐼𝑔𝑡

[
log[𝐷𝜃𝑑2

(𝐼, 𝐼𝑔𝑡)]
]

+ E𝐼

[
log[1 − 𝐷𝜃𝑑2

(𝐼, 𝐺𝜃𝑔 (𝐼))]
]

(2.5)

The utilization of this methodology involves the generator’s objective to create an image

resembling the ground truth after numerous training iterations aimed at removing the degradation

to potentially deceive the discriminator. However, ensuring that the quality of the text aligns

precisely with the ground truth is not guaranteed. To address this concern, an additional log loss

function is introduced between the generated image and the ground truth, aiming to mitigate

discrepancies. This supplementary step enforces the model to produce images with text content

identical to the ground truth. It is pertinent to note that this additional loss function enhances

training efficiency and expedites the model’s convergence. This extra loss function can be

expressed as follows:
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𝐿log(𝜃) = E𝐼gt,𝐼

[
−

(
𝐼gt log(𝐺𝜃 (𝐼)) + ((1 − 𝐼gt) log(1 − 𝐺𝜃 (𝐼)))

) ]
(2.6)

Therefore, the formulated loss function for our network, denoted as 𝐿net, is expressed as:

𝐿net(𝜃𝐺, 𝜃𝐷1, 𝜃𝐷2) = min
𝜃𝐺

max
𝜃𝐷1,𝜃𝐷2

𝐿GAN(𝜃𝐺, 𝜃𝐷1, 𝜃𝐷2) + 𝜆𝐿log(𝜃𝐺) (2.7)

In the context of this study, the parameter 𝜆 is used as a hyper-parameter, set explicitly to 500

during training. Detailed descriptions of the generator and discriminator network structures will

be provided in subsequent sections.

2.6 Network Architecture

A) Generator Architecture: The generator architecture utilized in this study for image-to-

image translation is meticulously designed to optimize performance and efficiency. Drawing

from convolutional neural networks (CNNs) principles, it incorporates tailored components to

achieve this goal, as illustrated in Figure 2.2. The encoder module efficiently downsamples

the input image to capture multi-scale features while the decoder module reconstructs the

output. Skip connections aid in recovering fine details lost during downsampling, and batch

normalization layers enhance training stability and speed. This balanced design preserves

information, maintains model depth, and addresses challenges such as redundant features and

prolonged training times, making it highly effective in tasks requiring fine detail preservation.

B) Discriminators: The structure of the two discriminators employed in this study is a

straightforward yet effective fully convolutional network (FCN). As depicted in Figure 2.3, this

network outputs a 2D matrix containing the probability of the authentic input image. Notably, the

discriminator is unique in receiving two input images: the version cleaned by the generator and

its corresponding counterpart (either the ground truth or the contour image). These images are

concatenated into a tensor with 256 × 256 × 2 dimensions. Subsequently, this tensor undergoes
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Figure 2.2 The generator is structured based on the U-net architecture.

Figure 2.3 The Discriminator architecture for 𝐷1 and 𝐷2

processing through the network, culminating in a matrix with dimensions of 16 × 16 × 1 at

the final layer. In this final matrix, the probabilities are ideally close to 1 if the clean image
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corresponds to the ground truth and close to 0 if the network generates it. To achieve this, the last

layer utilizes a sigmoid activation function. Throughout the training process, the discriminator

plays a crucial role in compelling the generator to produce high-quality results. However,

post-training, the discriminator is no longer utilized. When presented with a degraded image,

only the generative network enhances it, making the discriminator exclusive to the training

phase.

2.7 Evaluation Metrics

To evaluate the performance of document image binarization methods, several evaluation metrics

were employed, including the F-measure (FM), pseudo-F-measure (pFM), peak signal-to-noise

ratio (PSNR), and distance reciprocal distortion (DRD). These metrics provide a comprehensive

assessment of binarization quality from multiple perspectives, enabling the comparison of

different techniques based on both objective and perceptual criteria.

F-measure (FM)

The F-measure (FM) is a harmonic mean of precision and recall, representing the balance

between correctly identified text pixels and the total number of detected pixels. It is defined as:

𝐹𝑀 =
2 · Precision · Recall

Precision + Recall
, (2.8)

where precision is the ratio of true positives (TP) to the sum of true positives and false positives

(FP), and recall is the ratio of true positives to the sum of true positives and false negatives (FN):

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (2.9)
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The FM ranges from 0 to 1, with higher values indicating a better balance between precision and

recall. This metric is widely used because it provides a robust measure of binarization quality

by balancing text preservation and noise suppression.

Pseudo-F-measure (pFM)

The pseudo-F-measure (pFM) is a variant of FM designed specifically for document image

binarization tasks. It emphasizes the preservation of text strokes and the reduction of noise. While

its mathematical formulation is similar to FM, the pFM incorporates additional considerations

for text stroke width and edge connectivity, making it more sensitive to text details in binarized

images. Like FM, the pFM ranges from 0 to 1, with higher values indicating superior performance

in retaining textual integrity and suppressing noise.

Peak Signal-to-Noise Ratio (PSNR)

The peak signal-to-noise ratio (PSNR) measures the similarity between the binarized image and

the ground truth (GT) binary image. It is calculated as:

𝑃𝑆𝑁𝑅 = 10 · log10

(
𝑀𝐴𝑋2

𝐼

𝑀𝑆𝐸

)
, (2.10)

where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value (e.g., 255 for 8-bit images), and 𝑀𝑆𝐸 is the

mean squared error between the binarized image and the GT image:

𝑀𝑆𝐸 =
1

𝑁

𝑁∑
𝑖=1

(𝐼𝑖 − 𝐺𝑇𝑖)
2 . (2.11)

A higher PSNR value indicates a closer resemblance to the GT image, reflecting better

preservation of the document’s structural features, such as text and edges.



35

Distance Reciprocal Distortion (DRD)

The distance reciprocal distortion (DRD) evaluates the structural distortion introduced during

the binarization process. It is defined as:

𝐷𝑅𝐷 =
1

|𝐺𝑇1 |

∑
𝑝∈𝐼1

DRD𝑝, (2.12)

where |𝐺𝑇1 | is the total number of foreground pixels in the GT image, 𝐼1 represents the set

of foreground pixels in the binarized image, and DRD𝑝 is the distortion of pixel 𝑝, calculated

based on its deviation from the GT and weighted by its distance to nearby pixels.

A lower DRD value indicates less distortion and better overall binarization quality. This metric

is particularly useful for assessing how well the binarization method preserves fine details and

handles complex document degradations.

2.8 Datasets

The Historical Document Image Binarization Competition (H-DIBCO) and Document Image

Binarization Competition (DIBCO) datasets are widely used benchmarks for evaluating document

binarization techniques. They include modern (DIBCO) and historical (H-DIBCO) document

images with various degradations such as ink fading, noise, blur, and uneven illumination. Each

image is annotated with ground truth binary masks, providing reference outputs for evaluation.

These datasets are essential for developing and assessing binarization methods, particularly for

historical document preservation and optical character recognition (OCR). Common evaluation

metrics include Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and

false positive/false negative rates. By offering a standardized comparison platform, (H)DIBCO

has driven advancements in deep learning-based binarization techniques, significantly improving

OCR accuracy and the legibility of degraded documents.
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In this study, we evaluated the performance of our document image binarization model

using a comprehensive set of nine benchmark competition datasets, ranging from 2009 to

2018. These datasets, curated to test binarization methodologies, include DIBCO 2009 (Gatos,

Ntirogiannis & Pratikakis (2009)), 2011 Pratikakis, Gatos & Ntirogiannis (2011), 2013 Pratikakis,

Gatos & Ntirogiannis (2013), and 2017 Pratikakis, Zagoris, Barlas & Gatos (2017), as well

as H-DIBCO datasets from 2010 Pratikakis, Gatos & Ntirogiannis (2010), 2012 Pratikakis,

Gatos & Ntirogiannis (2012), 2014 Ntirogiannis, Gatos & Pratikakis (2014), 2016 Pratikakis,

Zagoris, Barlas & Gatos (2016), and 2018 Pratikakis, Zagoris, Kaddas & Gatos (2018). These

datasets consist of degraded document images paired with ground truth binarizations, offering a

diverse and challenging set of real-world scenarios for model training and evaluation.

Table 2.1 Summary of DIBCO datasets

Dataset # of Samples Handwritten Printed
DIBCO 2009 10 10 0

DIBCO 2010 10 10 0

DIBCO 2011 16 8 8

DIBCO 2012 14 14 0

DIBCO 2013 16 8 8

DIBCO 2014 10 10 0

DIBCO 2016 10 10 0

DIBCO 2017 20 10 10

DIBCO 2018 10 10 0

Total 106 80 26

2.9 Training Process

For training purposes, we employed 86 images sourced from the DIBCO datasets spanning from

2009 to 2016. The selected images encompass a wide range of degradations, such as uneven

illumination, faded text, and complex noise patterns, enabling the model to generalize effectively

across various challenges. To ensure an unbiased evaluation of our method, the images from the

DIBCO 2017 and DIBCO 2018 datasets were exclusively used as test sets, following standard

benchmarking practices.
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During the preprocessing phase, random image patches of size 256 × 256 256×256 pixels were

extracted from the training images. This patch-based training strategy not only augments the

dataset by increasing its effective size but also ensures that the model is exposed to diverse

regions of the images, including text, background, and degraded areas. The patches were shuffled

and fed into the model during training, providing a balanced representation of text and non-text

regions, crucial for accurate binarization.

The training pipeline incorporated data augmentation techniques, such as rotation, flipping, and

contrast adjustment, to further enhance the model’s robustness to variations in document image

quality. The optimization process utilized a loss function tailored to minimize discrepancies

between the predicted binarized outputs and the ground truth, emphasizing text preservation and

background suppression.

This systematic training process allowed the model to learn hierarchical features critical for

document image binarization, enabling it to generalize effectively across unseen test datasets.

The results, as discussed in subsequent sections, underscore the efficacy of our approach in

achieving state-of-the-art performance on challenging benchmarks.

2.10 Comparison with state-of-the-art methods and best competition system

First, our proposed method is compared with the top five performing methodologies from the

2018 Handwritten Document Image Binarization Competition (H-DIBCO) (Pratikakis et al.

(2018)), held during the International Conference on Frontiers in Handwriting Recognition

(ICFHR) 2018.

The comparative analysis involves assessing our model against the state-of-the-art methods that

ranked highest in the competition. These methods are recognized for their innovative designs

and exceptional performance in handling complex document degradation scenarios, including

variable illumination, noise, and blurred text regions. Table 2.2 provides a detailed comparison

of the evaluation metrics, showcasing the results achieved by our approach alongside those

of the top five performers. The metrics used include the F-measure, PSNR, and DRD, which
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collectively offer a multidimensional evaluation of binarization quality. This analysis not only

highlights the competitive edge of our proposed method but also underscores its ability to

generalize effectively across challenging datasets.

Table 2.2 Results for H-DIBCO 2018

Rank in the competition FM(%) pFM(%) PSNR DRD
1st 88.34 90.24 19.11 4.92

2nd 73.45 75.94 14.62 26.24

3rd 70.01 74.68 13.58 17.45

4th 64.52 68.29 13.57 16.67

5th 46.35 51.39 11.79 24.56

Ours 89.28 91.61 18.44 4.1

Our approach demonstrates exceptional performance on the DIBCO 2018 test set, achieving

the best scores for Distance Reciprocal Distortion (DRD), F-measure, and pseudo F-measure,

and securing the second-highest score for Peak Signal-to-Noise Ratio (PSNR). This consistent

excellence across key metrics highlights the robustness and efficiency of our proposed method

in accurately binarizing degraded document images. It is particularly noteworthy that the

algorithm used by the competition’s winning approach incorporates several pre-processing and

post-processing steps, which are tailored to enhance its effectiveness for the specific challenges

of the H-DIBCO 2018 dataset. These additional steps are carefully designed to optimize

performance but may limit its adaptability to other datasets or generalization to diverse tasks.

In contrast, our method presents a streamlined, end-to-end architecture that does not rely on any

supplementary pre- or post-processing procedures. Despite its simplicity, it exhibits remarkable

effectiveness and flexibility, delivering competitive or superior results across various datasets

and tasks without the need for specialized adjustments. This adaptability underscores the

versatility of our model, making it a valuable tool for broader applications beyond the scope of

the H-DIBCO 2018 dataset, while maintaining high efficiency and ease of implementation.

Table 2.3 provides a detailed comparison of document image binarization methods, categorized

into traditional and deep learning-based approaches. Traditional techniques include global
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thresholding methods like Otsu (Otsu et al. (1975)), which minimizes intra-class variance, and

local thresholding methods such as Niblack (Niblack (1985), Sauvola (Sauvola & Pietikäinen

(2000)), and Wolf (Wolf & Jolion (2004)), which dynamically adjust thresholds based on local

image properties. While these approaches achieve reasonable results in cases with uniform

illumination, they often fail to handle complex degradations and non-uniform lighting effectively.

Contrast or edge-based methods, such as Su (Su, Lu & Tan (2010)) and Jia (Jia, Shi, He,

Wang & Xiao (2016)), enhance text regions by leveraging edge and contrast information. Energy-

based techniques, including Howe (Howe (2013)) and Gib (Bhowmik, Sarkar, Das & Doermann

(2018)), use optimization frameworks to balance noise suppression and text detail preservation.

Deep supervised learning-based methods have emerged as state-of-the-art solutions, leveraging

neural networks to learn hierarchical features from data. Fully convolutional architectures, such

as FCNN (Tensmeyer & Martinez (2017)) and SAE (Calvo-Zaragoza & Gallego (2019)), achieve

pixel-level classification, with SAE achieving notable performance metrics (FM: 88.17%, DRD:

4.69). Generative models like Zhao (Zhao, Shi, Jia, Wang & Xiao (2019)), cycleGAN (Zhu, Park,

Isola & Efros (2017)), and pix2pix-HD (Wang et al. (2018)) specialize in transforming degraded

images into their clean binary counterparts, albeit with varying levels of success. Advanced

methods, such as DeepOtsu (He & Schomaker (2019)), DE-GAN (Souibgui, Kessentini & Fornés

(2021)), and DP-LinkNet (Xiong et al. (2021)), employ custom architectures and loss functions

to further improve accuracy.

The results highlight a clear evolution in binarization techniques, with deep learning methods

significantly outperforming traditional approaches, particularly in handling complex degradation

patterns. Notably, our proposed method achieves superior performance, surpassing all listed

techniques with an FM score of 89.28%, a pseudo-FM of 91.61%, a PSNR of 18.44, and a DRD

of 4.1. These outcomes highlight the robustness and effectiveness of our approach in addressing

a wide range of document image challenges.

The qualitative binarization results for sample (9) from the H-DIBCO 2018 dataset further

highlight the strengths of our proposed method. Figure 2.4 showcases the visual outcomes
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Table 2.3 Comparison of Different Approaches on H-DIBCO 2018

Category Approach FM (%) pFM (%) PSNR DRD
Threshold-based Otsu 51.45 53.05 9.47 59.07

Niblack 42.47 42.98 6.79 88.99

Sauvola 67.81 74.08 13.78 17.69

Wolf 81.40 86.01 16.82 5.98

Contrast / Edge-based Su 87.94 89.77 18.24 5.10

Jia 76.05 80.36 16.90 11.96

Energy-based Howe 80.84 82.85 16.67 11.96

Gib 76.63 81.13 15.12 11.72

Deep supervised learning-based FCNN 66.33 68.57 12.96 23.98

SAE 88.17 91.11 18.44 4.69

Zhao 87.73 90.90 18.37 4.58

cycleGAN 56.33 58.07 11.00 30.07

pix2pix-HD 72.79 76.28 14.42 15.13

DE-GAN 77.59 85.74 16.16 7.93

DeepOtsu 66.60 68.83 12.72 42.52

DP-LinkNet 78.56 80.70 15.73 13.72

Ours 89.28 91.61 18.44 4.10

generated by various competing models, including ours. Compared to other approaches, our

method produces cleaner and more accurate binarized images, preserving text strokes with sharp

edges while effectively suppressing background noise. This balance between text clarity and

noise reduction demonstrates the robustness of our model in handling challenging document

degradations, such as uneven illumination, stains, and bleed-through artifacts.

Notably, competing models often struggle with fine details or introduce artifacts that compromise

the visual quality of the binarized output. In contrast, our approach excels in maintaining the

structural integrity of text and document features, as evidenced by the superior visual quality

of the processed sample. These qualitative results complement the quantitative evaluations,

underscoring the capability of our model to generalize well across various degradation scenarios,

making it a reliable solution for real-world document restoration tasks.
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a) Document b) Ground Truth

c) CycleGan d) Pix2pix-HD

e) DP-Link f) DE-GAN

g) Ours

Figure 2.4 Qualitative binarization results for sample (9) from the H-DIBCO

2018 dataset, generated by various models

From the findings, it can be concluded that BA-GAN surpasses the current state-of-the-art

methods based on the metrics mentioned above. Figure 2.4 and Figure 2.5 illustrate some

examples of H-DIBCO 2018 image binarization using BA-GAN.

Qualitative binarization results for sample (8) from the H-DIBCO 2018 dataset, generated

by DE-GAN and our model, further emphasize the effectiveness of our approach in handling
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document image degradation. As shown in Figure 2.5, our model demonstrates a remarkable

ability to accurately classify white pixels as background and black pixels as text, resulting in a

cleaner and more visually consistent binarized output. This precision is critical for applications

that require high-fidelity text preservation, such as optical character recognition (OCR) and

archival documentation.

To provide a deeper insight into the performance, misclassifications are highlighted: regions

where text is incorrectly classified as background are marked in red, while areas where the

background is erroneously classified as text are shown in blue. Our model significantly reduces

these misclassifications compared to DE-GAN, particularly in regions with faint text or complex

background patterns. This result highlights the robustness of our end-to-end architecture in

distinguishing fine details and mitigating noise. By consistently preserving text strokes and

minimizing false positives and negatives, our method sets a higher standard for binarization

quality, further validated by both quantitative and qualitative assessments.

To provide more insight into the results, demonstrating its effectiveness in preserving text and

capturing finer strokes, comparative analyses among methods can be found in Figure 2.5.

For the H-DIBCO 2017 dataset, we performed an extensive comparative analysis to benchmark

the performance of our model against the state-of-the-art methodologies from that year. The

evaluation was conducted with a focus on key metrics such as the F-measure (FM), pseudo-F-

measure (pFM), Peak Signal-to-Noise Ratio (PSNR), and the Distance Reciprocal Distortion

(DRD). Table 2.4 presents the detailed results of this comparison, highlighting our model’s

performance alongside the top five winning approaches from the H-DIBCO 2017 competition.

Our proposed model demonstrated outstanding performance across multiple metrics, securing

the highest scores for the F-measure and pseudo-F-measure. These results emphasize its

capability to accurately binarize document images while preserving fine details and text regions.

Additionally, our model achieved a competitive third-best score for DRD, underscoring its

effectiveness in minimizing distortions during the binarization process.
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a) Document

b) Ground Truth

c) DE-GAN

d) Ours

Figure 2.5 Qualitative binarization results for sample (8) from the H-DIBCO 2018 dataset,

generated by DE-GAN and our models. Our method effectively classifies white pixels as

background and black pixels as text. Misclassifications of text as background are

highlighted in red, and misclassifications of background as text are shown in blue
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Beyond the numerical analysis, qualitative comparisons were conducted to assess the visual

quality of the binarized outputs. As shown in Table 2.4 and Figure 2.6, our model consistently

outperformed the competing methods, especially in handling challenging cases with complex

degradations, such as uneven illumination, faded text, and noisy backgrounds. These results

confirm the robustness and adaptability of our approach, making it a reliable solution for

document image binarization tasks.

This comprehensive evaluation validates the superiority of our method over traditional and deep

learning-based approaches, establishing it as a leading tool for high-quality document restoration

in real-world scenarios.

Table 2.4 Results for DIBCO 2017

Rank in the competition FM(%) pFM(%) PSNR DRD
1st 91.04 92.86 18.28 3.40
2nd 89.67 91.03 17.58 4.35

3rd 89.42 91.52 17.61 3.56

4th 86.05 90.25 17.53 4.52

5th 83.76 90.35 17.07 4.33

Ours 92.62 94.15 18.38 3.75

2.11 Conclusion

BA-GAN, or Boundary-Aware Generative Adversarial Network, is specifically designed

to address challenges in stroke edge extraction and the restoration of severely degraded

documents. By employing an adversarial learning framework with a dual discriminator, BA-

GAN simultaneously refines both text structure and boundary details, leading to enhanced

binarization outcomes.

Comprehensive evaluations demonstrate BA-GAN’s superiority over existing approaches,

particularly in accurately predicting stroke edges and preserving text smoothness. While minor

challenges persist in recovering small text gaps, the model consistently excels in overall text

restoration and document binarization. Notably, BA-GAN outperforms recent state-of-the-art
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a) Document b) Ground Truth

c) Winner’s output (Pratikakis et al.
(2017)) d) Ours

Figure 2.6 Example binarization outputs of the proposed method and winner of

DIBCO 2017

techniques on benchmark datasets such as DIBCO 2017 and H-DIBCO 2018, establishing itself

as a robust solution for document enhancement.





CHAPTER 3

FULL PAGE HISTORICAL DOCUMENT RECONSTRUCTION USING TWO-STAGE
INPAINTING

3.1 Introduction

The reconstruction of historical documents is crucial for preserving the cultural, linguistic, and

intellectual heritage embedded within them. Many historical documents suffer from degradation

over time due to physical wear, environmental conditions, or improper storage, resulting in

damaged or illegible text. In this chapter, we describe a robust methodology for reconstructing

such historical documents, with a specific focus on techniques that predict, identify, and restore

text. This methodology involves using a pre-trained model, binary masks for text identification,

and inpainting techniques to remove noise and restore the background of historical documents,

ensuring they remain accessible for future generations.

Our approach leverages modern machine learning techniques and computer vision methods

specifically designed to handle the challenges of working with historical documents. By utilizing

pre-trained models, followed by advanced segmentation and inpainting methods, we generate

high-quality reconstructions that preserve the document’s original structure and content.

3.2 Pre-trained Model for Text Recognition and Prediction

The first step in document reconstruction involves detecting and predicting the text from a given

historical document. A pre-trained model plays a critical role in this process, as it helps identify

the text even in heavily degraded or unseen document datasets.

3.2.1 Model Selection and Text Recognition

For detecting and predicting text in historical documents, we utilize the pre-trained BA-GAN

model, which was trained on the H-DIBCO dataset (a widely used benchmark in document

image analysis). The H-DIBCO dataset contains a diverse collection of historical document
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images exhibiting various forms of degradation, such as faded ink, smudges, uneven strokes,

and irregular layouts. By learning from this variety, BA-GAN can effectively capture complex

features in both printed and handwritten documents, enabling it to generalize well to unseen

datasets, such as READ 2016, which presents additional challenges including severe degradation,

bleed-through, and inconsistent lighting.

a) b)

Figure 3.1 Text detection and binary mask generation using BA-GAN. Left:

original degraded document; Right: detected text regions highlighted by the

binary mask

When applied to a new document, BA-GAN first identifies the text regions, even in highly

degraded or noisy areas where conventional methods often fail. Leveraging its boundary-aware

architecture, the model refines text strokes and edges, ensuring that fine details and character

shapes are accurately preserved. Simultaneously, BA-GAN generates masks that mark the

text regions, which can later be removed during background restoration, resulting in a cleaner
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and more legible document. In addition, the model produces a binary mask in which pixels

corresponding to text are assigned a value of “1” and non-text regions are assigned “0.” This

precise delineation of text supports subsequent inpainting and reconstruction processes by clearly

separating the text from the background.

The combination of accurate text detection, boundary-aware refinement, and mask generation

ensures that the document’s textual content is faithfully identified and preserved. By separating

the text from the background, BA-GAN establishes a solid foundation for effective document

reconstruction, allowing inpainting techniques to focus on restoring the underlying surface

without compromising text integrity. Overall, this process enhances both the visual quality

and readability of historical documents, making them suitable for scholarly analysis and digital

archiving.

3.3 Text Removal and Background Restoration

After generating binary masks that accurately identify the text locations within the document

and separate them from background noise and bleed-through artifacts, the next step is to remove

the text and restore the background. The goal is to replace the text regions with content that

seamlessly blends into the surrounding background, while maintaining the document’s overall

structure.

3.3.1 Initial Background Estimation via Simple Inpainting

The primary goal of this stage is to reconstruct the background of historical documents while

removing text strokes, thereby producing a clean version of the document’s underlying surface.

This is essential not only for aesthetic visualization but also for downstream analysis, such as

examining stains, paper texture, or other degradation patterns that may otherwise be obscured

by the presence of text. Accurate background estimation thus provides both a clearer visual

representation of the document and a reliable foundation for subsequent restoration steps.
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Let the degraded document image be denoted as

𝐼 ∈ R
𝐻×𝑊,

where 𝐻 and 𝑊 are the height and width of the image. A binary mask

𝑀 ∈ {0, 1}𝐻×𝑊

is generated from the text regions identified through the BA-GAN binarization method, where

𝑀 (𝑥, 𝑦) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if pixel (𝑥, 𝑦) belongs to foreground text,

0, otherwise.

To improve robustness, the binary mask is refined using morphological operations such as

dilation and erosion. This ensures complete coverage of text regions and reduces edge artifacts.

The refined mask, denoted 𝑀̃ , expands slightly around the original text strokes to guarantee full

suppression during inpainting.

The inpainting process then estimates a restored background image 𝐼 as:

𝐼 (𝑥, 𝑦) = (1 − 𝑀̃ (𝑥, 𝑦)) · 𝐼 (𝑥, 𝑦) + 𝑀̃ (𝑥, 𝑦) · F (𝐼, 𝑀̃, 𝑥, 𝑦),

where F is a diffusion-based interpolation function that propagates neighboring pixel intensities

into masked regions. This ensures smooth tonal transitions and structural continuity. In areas

with homogeneous paper texture, this yields convincing background estimates, while in regions

affected by bleed-through or stains, it produces an approximate but coherent reconstruction that

suppresses residual text traces.

Although the method is relatively simple compared to deep learning–based approaches, it fulfills

two critical objectives: (i) the suppression of recognized text regions, and (ii) the construction of

a visually consistent background that resembles the original surface of the manuscript. Thus, the
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initial inpainting step provides a mathematically well-defined process for background estimation

and lays a robust foundation for subsequent, more sophisticated document restoration techniques.

3.3.2 Deep Learning-Based Inpainting for Noise and Bleed-Through Removal

After the initial stage of background estimation using traditional inpainting, a deep learning-based

method is applied to refine the document background and remove remaining noise, including

bleed-through artifacts, stains, and other occlusions. For this purpose, we created binary masks

specifically highlighting the bleed-through regions, ensuring that the inpainting model focuses

only on areas that require restoration.

We employed the Free-Form Image Inpainting with Gated Convolution framework proposed by

(Yu et al. (2019)), which is particularly suitable for historical documents due to the irregular and

non-rectangular shapes of missing regions.

This model introduces gated convolutions, which provide a learnable dynamic feature selection

mechanism for each channel at every spatial location. Unlike vanilla convolutions, which treat all

pixels equally, or partial convolutions, which rely on binary masks, gated convolutions allow the

network to focus adaptively on valid pixels while ignoring occluded or noisy regions, enabling

more accurate background reconstruction.

Model Architecture: The inpainting network follows a two-stage encoder–decoder design:

1. Coarse Network: Generates an initial approximation of the missing regions, capturing

global structure and overall layout of the background.

2. Refinement Network: Enhances the coarse output with fine textures and detailed reconstruction

using contextual attention and gated convolutions.

The system uses SN-PatchGAN, a patch-based GAN discriminator with spectral normalization

applied to dense image patches, to stabilize training and enforce realism in both local and

global regions. The architecture is fully convolutional, supporting variable input resolutions and

arbitrary mask shapes. By applying the gated convolution model on the masked bleed-through
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Figure 3.2 Architecture of the gated convolution inpainting network: coarse

network generates initial background estimate; refinement network improves

details; SN-PatchGAN ensures realistic output. Masks highlight bleed-through

regions to guide inpainting

regions, the network predicts plausible background content while preserving structural coherence

and fine-grained details.

3.4 Reconstruction of the Final Document Image

The final stage of the restoration pipeline focuses on reassembling a complete and legible version

of the document by combining the reconstructed background with the recognized text content.

While the background restoration process effectively removes bleed-through, stains, and textual

strokes, the ultimate objective is not to produce a blank page but rather to recreate a faithful

representation of the original document, where text and background coexist in a clean and natural

manner.
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a) Estimated Background b) Reconstructed Background

Figure 3.3 Example from the READ 2016 Dataset: left shows the initial

background estimation; right shows the refined reconstruction using gated

convolution inpainting

Text Reintroduction

The text layer is obtained through the BA-GAN binarization process, which provides an accurate

separation of foreground strokes from degraded backgrounds. After binarization, the recognized

text regions are preserved as a binary mask 𝑀text ∈ {0, 1}
𝐻×𝑊 , where 1 corresponds to foreground

strokes and 0 to background. This mask acts as a stencil that can be superimposed onto the

restored background image 𝐼bg. The reconstructed document image 𝐼final is then generated as:

𝐼final(𝑥, 𝑦) = 𝑀text(𝑥, 𝑦) · 𝐼text(𝑥, 𝑦) +
(
1 − 𝑀text(𝑥, 𝑦)

)
· 𝐼bg(𝑥, 𝑦),

where 𝐼text(𝑥, 𝑦) represents the intensity (or ink value) of the recognized strokes at pixel (𝑥, 𝑦).
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Preserving Authenticity

By reintroducing the text in this way, the method ensures that the restored image preserves the

semantic content and stylistic features of the manuscript, including stroke thickness, handwriting

style, and layout. Unlike approaches that rely purely on OCR-based text replacement, this strategy

does not alter the visual identity of the script; instead, it directly overlays the original shapes

of the strokes extracted during binarization. This guarantees both readability and authenticity,

which are crucial for historical and archival purposes.

Advantages of the Reconstruction Approach

The reconstruction method preserves the authenticity of historical manuscripts by reintroducing

text through the original binarized strokes, ensuring that semantic content, handwriting style,

stroke thickness, and layout remain intact without relying on OCR-based replacement that could

alter the visual identity of the script. This approach offers several advantages: it produces

noise-free readability by removing bleed-through and stains from the background, maintains

the unique stylistic characteristics of the handwriting through the reuse of original strokes, and

separates the content from the background, allowing future operations such as style transfer,

re-colorization, or enhancement to be applied independently. As a result, the final restored image

remains faithful to the original manuscript while significantly reducing degradation artifacts.

Resulting Document

The resulting reconstructed image therefore represents a synthesis of two complementary

processes: (i) background restoration through inpainting, and (ii) accurate reintroduction of

foreground text strokes. This dual-layer strategy balances legibility with authenticity, producing

restored historical documents that are both suitable for scholarly analysis and accessible for

modern digital archives.

Algorithm 3.1 summarizes the proposed two-stage inpainting procedure for historical document

reconstruction. The algorithm first identifies text regions using BA-GAN, then performs a



55

Algorithm 3.1 Two-Stage Inpainting for Historical Document Reconstruction

Input: Degraded document image 𝐼 ∈ R
𝐻×𝑊 , pre-trained BA-GAN model for text

detection

Output: Reconstructed document image 𝐼final

1 𝑀text ← BA-GAN_Binarization(𝐼) ; // Generate binary mask for text
regions

2 Refine 𝑀text using morphological operations (dilation, erosion) to obtain 𝑀̃text;

3 𝐼coarse ← (1 − 𝑀̃text) · 𝐼 + 𝑀̃text · F (𝐼, 𝑀̃text); // Diffusion-based inpainting
for coarse background

4 𝑀bleed ← DetectBleedThroughRegions(𝐼coarse);

5 𝐼bg ← GatedConvolutionInpainting(𝐼coarse, 𝑀bleed); // Refined background
using two-stage gated convolution network

6 𝐼final ← 𝑀text · 𝐼text + (1 − 𝑀text) · 𝐼bg; // Overlay original text strokes onto
restored background

7 return 𝐼final

coarse background estimation using traditional inpainting. A deep learning-based refinement

stage further restores the background and removes bleed-through artifacts. Finally, the text is

reintroduced to produce the reconstructed document image.

3.5 Dataset

For our experiments, we utilized the READ 2016 dataset, a benchmark designed for evaluating

Handwritten Text Recognition (HTR) techniques on historical documents. The dataset was

introduced as part of the ICHFR 2016 Handwritten Text Recognition (HTR) competition

(Sánchez, Romero, Toselli & Vidal (2016)), which aimed to bring together researchers in the

field and provide a standardized benchmark for comparing different transcription techniques. It

includes various challenges such as document degradation, noise, and varying handwriting styles,

making it a suitable benchmark for evaluating the performance of our proposed Boundary-Aware

Generative Adversarial Network (BA-GAN) for document restoration.
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3.6 Evaluation Using NR-IQA Metrics

Since our dataset lacks labeled ground-truth data for direct comparison, we evaluate the quality

of our reconstructed documents using No-Reference Image Quality Assessment (NR-IQA)

metrics. Specifically, we employ the Visual Document Quality Assessment Metric (VDQAM)

(Shahkolaei et al. (2018)), a state-of-the-art approach that analyzes the spatial domain statistics

of document images. Unlike traditional NR-IQA metrics, VDQAM segments each degraded

document into four distinct layers using a log-Gabor filter, which allows for a more refined

assessment of document quality. This segmentation is based on the assumption that the human

visual system (HVS) exhibits different sensitivities to text and non-text regions, enabling a more

perceptually accurate evaluation of restoration quality.

Let the reconstructed document image be denoted as

𝐼 ∈ R
𝐻×𝑊.

VDQAM first applies a log-Gabor filter bank to decompose the image into 𝐿 frequency-orientation

sub-bands, capturing both textural and structural information:

𝑆𝑙 = 𝐼 ∗ 𝐺𝑙, 𝑙 = 1, . . . , 𝐿,

where 𝐺𝑙 represents the 𝑙-th log-Gabor filter, and ∗ denotes convolution. Each sub-band 𝑆𝑙

emphasizes features corresponding to different spatial frequencies and orientations, allowing the

method to distinguish text from background content.

Next, the image is segmented into four perceptual layers based on the responses of the log-Gabor

filters:

{𝑆1
𝑙 , 𝑆

2
𝑙 , 𝑆

3
𝑙 , 𝑆

4
𝑙 } ⊂ 𝑆𝑙, ∀𝑙

which represent combinations of low/high-frequency and text/non-text regions, motivated by the

differential sensitivities of the human visual system (HVS).
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For each layer, statistical features describing local contrast, sharpness, and structural coherence

are computed. Let 𝜙(𝑆𝑘
𝑙 ) denote the feature vector extracted from the 𝑘-th layer of the 𝑙-th

sub-band. The combined feature vector for the entire image is then:

Φ(𝐼) =
𝐿⋃

𝑙=1

4⋃
𝑘=1

𝜙(𝑆𝑘
𝑙 ).

Finally, the VDQAM score is obtained by a learned regression function 𝑓VDQAM that maps the

extracted features to a perceptual quality score:

VDQAM(𝐼) = 𝑓VDQAM(Φ(𝐼)) ∈ [0, 5],

where higher values indicate better visual quality. The regression model is trained on a document

quality dataset (e.g., VDIQA) to match human subjective assessments of clarity, readability, and

structural integrity.

By leveraging VDQAM, we can objectively assess the clarity, legibility, and structural

integrity of the restored documents without requiring ground-truth references. This metric

effectively captures text distortions, background inconsistencies, and noise artifacts, providing

a comprehensive evaluation of document quality. Experimental results have demonstrated

that VDQAM outperforms conventional NR-IQA methods, particularly on the VDIQA dataset,

making it a reliable choice for evaluating historical document restoration. By integrating this

evaluation into our workflow, we ensure that our reconstruction approach enhances document

legibility while preserving the authenticity of the original content.
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a) VDQAM = 3.74 b) VDQAM = 4.00

c) VDQAM = 3.85 d) VDQAM = 4.10

Figure 3.4 Original vs. reconstructed images from the READ 2016 Dataset. The

left column shows original degraded documents, while the right column shows

reconstructed results after inpainting and background restoration
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Figure 3.4 presents a comparative analysis of a sample from the READ 2016 dataset, illustrating

the effectiveness of our document restoration approach. The left image (Figure 3.4a) represents

the original degraded document with a VDQAM score of 3.74, indicating lower visual quality.

The right image (Figure 3.4b) shows the reconstructed version, which achieves a higher VDQAM

score of 4.00, reflecting improved readability and structural integrity. This comparison highlights

the effectiveness of our method in enhancing document clarity while preserving essential textual

and structural elements.

Despite these improvements, some failure cases remain. For instance, documents that are

severely degraded with heavy cross bleed-through—where ink from the reverse side interferes

strongly with the foreground text—continue to pose challenges, as the model struggles to fully

disentangle overlapping strokes. Likewise, in cases of ultra high-contrast degradation, where

certain regions are oversaturated while others are extremely faint, the restoration may either

amplify noise or oversmooth fine details. These limitations indicate that while the approach is

robust for moderate degradations, its performance decreases in extreme scenarios where signal

and noise characteristics are deeply intertwined.

3.7 Conclusion

In this chapter, we presented a robust and systematic methodology for the reconstruction of

historical documents, combining the strengths of pre-trained models, binary masks, and advanced

inpainting techniques. Leveraging the BA-GAN model for boundary-aware text detection, our

approach accurately identifies and preserves text structure, while two-stage inpainting inpainting

effectively restores the background and removes noise, bleed-through, and other degradation

artifacts.

Experimental results on the READ 2016 dataset demonstrate that our method improves both

the legibility and structural integrity of historical documents, as quantified by NR-IQA metrics

such as VDQAM. By preserving original text strokes and maintaining the authenticity of the
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document’s visual appearance, this approach strikes a balance between readability and faithful

restoration, making it suitable for archival and scholarly applications.

While the method performs well on complex degradations, future work may focus on further

improving small gap recovery, exploring alternative or hybrid neural network architectures,

and generalizing the pipeline to a broader range of historical document types and degradation

patterns. Overall, this work underscores the potential of combining deep learning and traditional

inpainting techniques for preserving cultural heritage in digital form.



CONCLUSION AND RECOMMENDATIONS

In this thesis, we introduced BA-GAN, a Boundary-Aware Generative Adversarial Network,

along with a two-stage inpainting pipeline to address two fundamental tasks in the restoration

of historical documents: binarization and reconstruction. For the binarization task, BA-GAN

utilizes dual discriminators—one dedicated to object-level content and the other to contour-level

details—to ensure boundary sensitivity. This architecture enables the generation of sharper

text strokes and a more precise separation between foreground text and background elements.

Through comprehensive evaluations on established public benchmarks, including DIBCOs,

BA-GAN has demonstrated superior performance. Qualitatively, it effectively reduces issues

such as edge fraying and interruptions in text strokes, resulting in visually cleaner and more

coherent binary images.

For the reconstruction of historical documents, we adopted a two-step approach built upon

BA-GAN binarization. Building upon this binarized output, the two-stage inpainting pipeline

addresses restoration: the initial stage performs coarse background estimation to suppress

noise and preliminarily fill missing or damaged regions, while the second stage employs deep

learning-based refinement with gated convolutions to eliminate complex degradations, including

ink bleed-through, seamless integration of reconstructed text with the original background.

Together, BA-GAN and the two-stage inpainting pipeline provide a robust methodology that

enhances human legibility and preserves the structural integrity of the page, while acknowledging

that full semantic recovery remains beyond the scope of this visual restoration framework.

Extensive experiments conducted on benchmark datasets, including DIBCO 2017, DIBCO 2018,

and READ 2016, demonstrate that BA-GAN consistently outperforms state-of-the-art methods.

Quantitative evaluation using metrics such as PSNR, DRD, FM, and VDQAM, alongside

qualitative visual assessments, shows significant improvements in legibility, reduced degradation

artifacts, and better preservation of fine textual and structural details. These results highlight
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the model’s ability to produce high-quality restorations that closely approximate the original

appearance of historical documents.

While the proposed framework demonstrates strong performance on a wide range of degradations,

certain challenges remain. Recovery of very small gaps, handling extremely complex or rare

degradation patterns, and generalization across diverse manuscript types still require further

investigation. Additionally, current evaluation metrics, though effective, may not fully capture

human perception of historical authenticity and visual quality.

Recommendations for Future Work

Building on the contributions of this thesis, several directions can be pursued to enhance

historical document restoration:

1. Multispectral Fusion for Enhanced Restoration: Explore multispectral imaging techniques

to capture information beyond the visible spectrum, allowing the model to recover text and

structural details that are obscured in standard RGB scans. By combining cues from different

wavelength bands, this approach can improve robustness to severe degradation, reveal hidden

or faded writing, and support more accurate restoration across diverse historical documents.

2. OCR-In-the-Loop Evaluation: Integrate downstream transcription tasks to evaluate how

improvements in binarization and restoration translate to end-to-end OCR performance,

linking visual restoration quality to practical usability.

3. Development of Advanced Evaluation Metrics: While standard metrics such as PSNR

and DRD are useful, the creation of no-reference document image quality assessment

(NR-DIQA) metrics that align with human perception could better quantify legibility and

historical fidelity.
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