ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC

MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

COMME EXIGENCE PARTIELLE À L'OBTENTION DE LA MAÎTRISE EN GÉNIE MÉCANIQUE M.Ing.

PAR BRUNO MARTIN

APPLICATION DE LA PHOTOÉLASTICITÉ À LA MESURE DE LA CONTRAINTE DYNAMIQUE DES ENGRENAGES CYLINDRIQUES

MONTRÉAL, LE 12 MAI 2006

O droits réservés de Bruno Martin

CE MÉMOIRE A ÉTÉ ÉVALUÉ PAR UN JURY COMPOSÉ DE :

M. Raynald Guilbault, directeur de mémoire Département de génie mécanique à l'École de technologie supérieure

M. Anh Dung Ngô, président du jury Département de génie mécanique à l'École de technologie supérieure

M. Marc Thomas, examinateur Département de génie mécanique à l'École de technologie supérieure

IL A FAIT L'OBJET D'UNE SOUTENANCE DEVANT JURY ET PUBLIC LE 10 MAI 2006 À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

APPLICATION DE LA PHOTOÉLASTICITÉ À LA MESURE DE LA CONTRAINTE DYNAMIQUE DES ENGRENAGES CYLINDRIQUES

Bruno Martin

SOMMAIRE.

Il est de notion courante qué la distribution de la charge appliquée sur une dent d'engrenage n'est pas linéaire d'un point de vue dynamique. Ce type de comportement peut seulement être décrit par une analyse en trois dimensions. Cependant, l'équation de la contrainte de flexion en tension selon la norme de l'AGMA donne une valeur linéaire pour toute la largeur de face ce qui résulte en un comportement à deux dimensions. Donc, les roues d'engrenage à large face ne peuvent être considérées lorsque l'équation de l'AGMA est utilisée. D'un autre coté, elle peut être valide avec des roues d'engrenage minces.

Un plan d'expériences a donc été mis en œuvre afin d'évaluer la contrainte dynamique sur des roues d'engrenage minces. À l'intérieur du plan, il va être question de l'effet de la variation du pas diamétral, de l'angle d'hélice, du couple appliqué, de la vitesse de rotation ainsi que du nombre de dents. Un banc d'essai a par la suite, été utilisé afin de recevoir des roues d'engrenage tenant compte des différents facteurs émis par le plan d'expérience. Le banc d'essai est composé principalement de deux arbres en rotation. Un des arbres est entrainé par un moteur électrique avec lequel la vitesse de rotation peut être ajustée. Le deuxième arbre est jumelé à un dynamomètre mécanique sur lequel différents couples sont appliqués. Les roues d'engrenage déterminées par le plan d'expérience sont attachées à l'une des extrémités des arbres sachant que l'une d'entre elles est définie comme le pignon et l'autre comme la roue. Cependant, la roue possède une dent de plus que le pignon afin d'obtenir un engrènement de toutes les dents du pignon avec toutes les dents de la roue. À l'autre extrémité des arbres, des roues d'engrenage similaires sont utilisées à l'exception de posséder trois fois plus de dents pour éviter une superposition de signaux lors de mesures vibratoires par accéléromètres. Finalement, l'espacement entre les arbres est ajustable afin de recevoir toutes les roues d'engrenage choisies dans le plan d'expérience.

La méthode de la photoélasticité a été appliquée pour déterminer la contrainte de flexion. Malheureusement, les résultats expérimentaux ont été jugés invalides. Les différentes valeurs de cette contrainte ne concordent pas avec la norme de l'AGMA. Il a été conclu que la colle utilisée avec le matériel photoélastique était la cause majeure pour l'invalidité des résultats expérimentaux.

DYNAMIC STRESS MEASURMENTS BY PHOTOELASTICITY ON CYLINDRICAL GEARS

Bruno Martin

ABSTRACT

It is common knowledge that the load distribution on the face width of spur and helical gears is not linear considering a dynamic point of view. This type of behaviour can only be described in three dimensions. On the other hand, the AGMA equation for bending stress gives only one linear value throughout the entire length of the face width, resulting in a two dimensions behaviour. Obviously, thick gears must be discarded when using the AGMA equation but thin gears may be salvageable.

In order to measure dynamic stress of thin spur and helical gears, a factorial design has been drawn. This plan includes variations of the pitch, helix angle, applied torque, rotation speed and contact ratio. By respecting the constraints arising from these factors, a test bench has been built. This bench has two rotating shafts. One of these shafts is driven by an electric motor where the rotation speed can be varied. The other shaft has a mechanical dynamometer attached to it so that different torques can be applied. On one end of the two shafts are attached the gears given by the factorial design knowing that one of the gears is pinion and the other is wheel. The only difference between the two is for the wheel having one more tooth than the pinion. The reason for this variation is meshing all the teeth from the pinion with all the teeth from the wheel. At the other end of the two shafts, similar gears are used except that the pinion and the wheel have three times more teeth for noise purposes when taking measurements with accelerometers. Finally, the spacing between the two shafts is adjustable so that all the gears determined by the factorial design can be attached to it.

Photoelastic material and numerical imaging have been used to determine the bending stress at the root of the tooth. Unfortunately, the test results were not conclusive. The photoelastic method would only show the bending stress on the tension side but its values would not correspond to the AGMA equation. It was determined that the glue used between the photoelastic material and the gears was the major factor for the failure of the test.

REMERCIEMENTS

J'aimerais tout d'abord remercier le professeur Raynald Guilbault, mon directeur de recherche, pour son soutien technique tout au long de la réalisation de mon projet.

Je tiens à remercier aussi Alexandre Vigneault, Hugo Landry, Michel Drouin et Serge Plamondon, ingénieur et techniciens à l'École de technologie supérieure pour leur collaboration et la qualité du travail qu'ils ont offert durant ce projet.

Finalement, je voudrais dédier ce mémoire à ma famille et mes amis pour leur support et encouragements.

TABLE DES MATIÈRES

Page
Page 1
1 11 11

SOMMAIRE		í
ABSTRACT		ii
REMERCIEM	ENTS	
TABLE DES M	MATIÈRES	iv
LISTE DES TA	ABLEAUX	vii
LISTE DES FI	GURES	ix
LISTE DES A	BRÉVIATIONS ET DES SIGLES	xiv
INTRODUCT	ON	1
CHAPITRE 1	REVUE DE LA LITTÉRATURE	
1.1	Introduction	
1.2	Analyse	
1.2.1	Méthodes expérimentales	
1.2.2	Approches analytiques et méthodes numériques	
1.2.2.1	Méthode des éléments finis	
1.3	Conclusion	
CHAPITRE 2	PRÉPARATION EXPÉRIMENTALE	
2.1	Introduction	
2.2	Élaboration du plan d'expérience	
2.2.1	Paramètres intrinsèques des engrenages	
2.2.2	Phénomènes physiques et caractéristiques de montage	22
2.2.3	Plan d'expérience	
2.2.3.1	Facteurs invariables	
2.2.3.2	Facteurs variables	
2.3	Mesure des roues d'engrenage	
2.3.1	Interprétation des résultats	
2.3.2	Courbe de tendance de la tolérance sur le profil	
2.3.3	Courbe de tendance de la tolérance sur l'angle d'inclinaison	
2.3.4	Grade de qualité des roues d'engrenage	
2.4	Description et fonctionnement du banc d'essai	
2.4.1	Critères de fonctionnement du banc d'essai	
2.5	Conclusion	
CHAPITRE 3	MISE EN FONCTION DU BANC D'ESSAI	
3.1	Introduction	

3.2	Instrumentation du banc d'essai	
3.2.1	Calibration de l'arbre	
3.2.2	Mesures vibratoires	
3.3	Instrumentation des roues d'engrenage	
3.3.1	Photoélasticité	
3.3.2	Jauges de déformation	
3.4	Prise de mesures	
CHAPITRE 4	APPLICATION DE LA PHOTOÉLASTICITÉ	
4.1	Introduction	
4.2	Fondement de la photoélasticité	
4.2.1	Notions supplémentaires	
4.2.1.1	Isotropie et anisotropie	
4.2.1.2	Chromaticité	
4.2.1.3	Photoélasticité et photoélasticimétrie	
4.2.1.4	Biréfringence et biréfringence accidentelle	
4.3	Principes fondamentaux de la lumière polarisée	
4.4	Interprétation des franges photoélastiques	
4.5	Mesure de l'ordre de frange	
4.5.1	Mesure de l'ordre de frange par la méthode de Tardy	
4.6	Essais expérimentaux statiques sur des plaques minces	
4.6.1	Essai 1 : plaque en flexion	
4.6.2	Essai 2 : plaque en flexion dans son plan	
4.6.3	Essai 3 : plaque percée en flexion	
4.6.4	Essai 4 : plaque trouée en flexion	
4.7	Conclusion	
CHAPITRE 5	ESSAIS EXPÉRIMENTAUX ET ANALYSE DES RÉSULTATS 100	
5.1	Introduction	
5.2	Photoélasticimétrie	
5.3	Essais expérimentaux	
5.3.1	Essais expérimentaux sur la roue d'engrenage Pa490°F3/2N24	
5.3.2	Essais expérimentaux sur la roue d'engrenage P ₀ 4µ0 ⁺ F ¹ / ₂ N34	
5.3.3	Essais expérimentaux sur la roue d'engrenage Pa4w20 FV2N24	
5.3.4	Essais expérimentaux sur la roue d'engrenage Pa4µ20°F½N34	
5.3.5	Résultats expérimentaux	
5.4	Analyse des résultats	
5.4.1	Analyse de la contrainte de flexion en tension	
5.4.2	Analyse de la contrainte de flexion en compression	
5.4.3	Analyse de la contrainte de contact	
5.4.4	Analyse du facteur dynamique expérimental K, commune 127	
5.5	Conclusion	
CONCLUSION	s	
RECOMMAN	DATIONS	

x

ANNEXE 1 Application générale de la photoélasticité	
ANNEXE 2 Fiches techniques des roues d'engrenage	
ANNEXE 3 Calculs pour obtenir le grade de qualité des roues d'engrenage	
ANNEXE 4 Photographies numériques des essais expérimentaux statiques	
ANNEXE 5 Contraintes de flexion théoriques selon l'AGMA	
ANNEXE 6 Photographies numériques des essais expérimentaux	
BIBLIOGRAPHIE	

LISTE DES TABLEAUX

Tableau I	Valeurs de T en fonction de P _d et de F
Tableau II	Première partie du plan d'expérience
Tableau III	Deuxième partie du plan d'expérience
Tableau IV	Q_i sur la tolérance sur le profil avec $P_d = 4$, $\psi = 0^\circ$ et $N = 24$ 40
Tableau V	Q_i sur la tolérance sur le profil avec $P_d = 4$, $\psi = 0^\circ$ et $N = 24$ 41
Tableau VI	Q_i sur la tolérance de l'angle d'inclinaison ($F = 0.5 \text{ po}$)42
Tableau VII	Q_1 , sur la tolérance de l'angle d'inclinaison ($F = 0.5 \text{ po}$)44
Tableau VIII	Q, des roues d'engrenage ($F = 0.5 po$)45
Tableau IX	Liste des roues d'engrenage nécessaires47
Tableau XII	Tension de voltage en fonction du couple appliqué55
Tableau XIII	Tension de voltage relative en fonction du couple appliqué57
Tableau X	Liste des roues d'engrenage pour la fermeture de la boucle
Tableau XI	Valeurs radiales pour le positionnement des jauges62
Tableau XII	Valeur numérique des constantes géométrique de la plaque83
Tableau XIII	Constantes pour évaluer la contrainte de flexion
Tableau XIV	Photélasticimétrie sur une plaque en flexion
Tableau XV	Valeur numérique des constantes géométrique de la plaque87
Tableau XVI	Constantes pour évaluer la contrainte de flexion dans son plan88
Tableau XVII	Photélasticimétrie sur une plaque en flexion dans son plan
Tableau XVIII	Valeur numérique des constantes géométrique de la plaque91
Tableau XIX	Constantes pour évaluer la contrainte de flexion
Tableau XX	Photélasticimétrie d'une plaque percée en flexion
Tableau XXI	Valeur numérique des constantes géométrique de la plaque95
Tableau XXII	Constantes pour évaluer la contrainte de flexion
Tableau XXIII	Photélasticimétrie d'une plaque trouée en flexion

Tableau XXIV	Valeur numérique des constantes pour les engrenages109
Tableau XXV	Contraintes de flexion théoriques selon l'AGMA
Tableau XXVI	Résultats expérimentaux
Tableau XXVII	Écart relatifs de K_i^+ et de σ_j
Tableau XXVIII	Excentricité cumulée des roues d'engrenage étudiées
Tableau XXIX	Q_i de la tolérance sur le profil pour un engrenage $P_d \neq \psi O^* N 2 4 \dots 189$
Tableau XXX	Q, de la tolérance sur le profil pour un engrenage P,4 \u00c00N25 189
Tableau XXXI	Q_i de la tolérance sur le profil pour un engrenage $P_a 4 \psi 0^a N_i 34 \dots 190$
Tableau XXXII	Q_s de la tolérance sur le profil pour un engrenage $P_a 4 \psi O^a N.35 \dots 190$
Tableau XXXIII	Q, de la tolérance sur le profil pour un engrenage P,4 \u00c020^N24 190
Tableau XXXIV	Q_v de la tolérance sur le profil pour un engrenage $P_v A \psi 20^o N25 191$
Tableau XXXV	Q_i de la tolérance sur le profil pour un engrenage $P_a 4 \psi 20^o N_s 4 \dots 191^o$
Tableau XXXVI	Q_c de la tolérance sur le profil pour un engrenage $P_d 4 \psi 20^{\circ} N35 191$
Tableau XXXVII	Q _v de la tolérance sur le profil pour un engrenage P _a 6 \u00c00N24 192
Tableau XXXVIII	Q, de la tolérance sur le profil pour un engrenage P.6 \u00c07N25 192
Tableau XXXIX	Q, de la tolérance sur le profil pour un engrenage P_6 \u00c00^N37 192
Tableau XL	Q, de la tolérance sur le profil pour un engrenage P.6 \u00c00N38 193
Tableau XLI	Q, de la tolérance sur le profil pour un engrenage P,6 \u00c020^N24 193
Tableau XLII	Q, de la tolérance sur le profil pour un engrenage P_6 \u00c020"N25193
Tableau XLIII	Q, de la tolérance sur le profil pour un engrenage P,6 \u00c020"N37194
Tableau XLIV	Q, de la tolérance sur le profil pour un engrenage P,6 \u00c020"N38 194
Tableau XLV	Q_1 de la tolérance sur l'angle d'inclinaison ($F = 0.5 \text{ po}$)
Tableau XLVI	Q_i de la tolérance sur l'angle d'inclinaison ($F = 3.0$ po)195
Tableau XLVII	Q_1 des roues d'engrenage ($F = 0.5$ po)
Tableau XLVIII	Q_i des roues d'engrenage ($F = 3.0$ po)
Tableau XLIX	Contraintes de flexion théoriques selon l'AGMA

LISTE DES FIGURES

Figure 1	Paramètres intrinsèques des engrenages droits et hélicoïdaux	15
Figure 2	Paramètres intrinsèques des engrenages hélicoïdaux	16
Figure 3	Positionnement de l'engrenage entre deux roulements	19
Figure 4	Facteur géométrique pour les engrenages droits	20
Figure 5	Correction pour le facteur géométrique des engrenages hélicoïdaux .	,21
Figure 6	Charge appliquée sur une dent d'engrenage	22
Figure 7	Longueur d'action sur une paire d'engrenages droits	24
Figure 8	Points de la norme de la tolérance sur le profil	40
Figure 9	Points de la norme de la tolérance sur l'angle d'inclinaison	43
Figure 10	Schéma simplifié du dynamomètre mécanique	49
Figure 11	Schématisation du banc d'essai en circuit fermé	50
Figure 12	Banc d'essai	51
Figure 13	Banc d'essai	52
Figure 14	Jauges de torsion sur l'arbre instrumenté	
Figure 19	Couple appliqué en fonction de la tension de voltage relative	56
Figure 15	Adaptateur pour les accéléromètres	57
Figure 16	Roue d'engrenage avec matériel photoélastique PSM-1	
Figure 17	Positionnement radial des jauges de déformation	61
Figure 18	Matériel pour l'acquisition de donnée	63
Figure 19	Assemblage du polariscope de la série 030	
Figure 20	Principe de la photoélasticité par transmission	70
Figure 21	Représentation schématique du polariscope	72
Figure 22	Chargement perpendiculaire au plan des contraintes	74
Figure 23	Chargement parallèle au plan des contraintes	75
Figure 24	Exemples de génération de franges	77

Figure 25	Séquence de franges sur une poutre encastrée	78
Figure 26	Séquence de frange sur un spécimen en flexion biaxiale	78
Figure 27	Caractéristiques des franges isochromatiques	
Figure 28	Point de mesure entre deux ordres de franges	81
Figure 29	Plaque mince en flexion	
Figure 30	Plaque mince en flexion à 3.81 mm de déflexion	
Figure 31	Plaque mince en flexion dans son plan	86
Figure 32	Plaque mince en flexion à 3.81 mm de déflexion	
Figure 33	Plaque mince en flexion avec un trou percé	
Figure 34	Plaque percée en flexion à 2.54 mm de déflexion	
Figure 35	Plaque mince en flexion avec un trou collé	
Figure 36	Plaque trouée en flexion à 2.54 mm de déflexion	
Figure 38	Contrainte de contact et contraintes de flexion	,101
Figure 39	Contrainte de flexion en tension	102
Figure 40	Montage de l'appareil de calibration pour la photoélasticité	103
Figure 41	Ordre de frange statique et dynamique sur une roue d'engrenage	,104
Figure 42	Modèle complet et vue agrandie	106
Figure 43	Champ de contraintes associés à σ_1	107
Figure 44	Champ de contraintes associés à σ_2	108
Figure 45	Effet de la chaleur sur le matériel photoélastique	111
Figure 46	Effet de la chaleur sur le matériel photoélastique	
Figure 47	Effet combiné du couple et de la chaleur sur le PSM-1	
Figure 48	Effet combiné du couple et de la chaleur sur le PSM-1	114
Figure 49	Position erronée de la contrainte de flexion en tension	119
Figure 50	Vue en coupe de la colle sur le contour du profil	121
Figure 51	Flambage du matériel photoélastique sur une roue d'engrenage	123
Figure 52	Contrainte de flexion en compression	12-
Figure 53	Type de contact durant les essais expérimentaux	
Figure 54	Contrainte de contact sur des roues d'engrenage hélicoïdales	

Figure 55	Géométrie particulière des roues d'engrenage hélicoïdales126
Figure 56	Point d'écrasement du matériel photoélastique
Figure 57	Collets avec leurs clavettes
Figure 58	Jeux causant l'excentricité
Figure 59	Support à accéléromètres
Figure 60	Représentation schématique du polariscope
Figure 61	Tension d'opération pour la lampe
Figure 62	Assemblage du polariscope
Figure 63	Tête du polariscope
Figure 64	Exemples de génération de franges
Figure 65	Séquence de franges sur une poutre encastrée142
Figure 66	Séquence de frange sur un spécimen en flexion biaxiale142
Figure 67	Caractéristiques des franges isochromatiques
Figure 68	Schématisation des déformations sur un échantillon144
Figure 69	Orientation du polariscope
Figure 70	Orientation schématisée du polariscope
Figure 71	Orientation du polariscope
Figure 72	Analogie avec une balance mécanique
Figure 73	Compensateur pour la méthode de la balance nulle
Figure 74	Positionnement du compensateur sur le polariscope
Figure 75	Manipulation du polariscope avec le compensateur
Figure 76	Abaque de calibration pour le compensateur
Figure 77	Point de mesure entre deux ordres de frange
Figure 78	Schématisation du système optique
Figure 79	Montage du polariscope
Figure 80	Essai I à 2.54 mm de déflexion
Figure 81	Essai 1 à 3.81 mm de déflexion
Figure 82	Essai 1 à 5.08 mm de déflexion
Figure 83	Essai 1 à 6.35 mm de déflexion

Figure 84	Essai 1 à 7.62 mm de déflexion201
Figure 85	Essai 2 à 2.54 mm de déflexion
Figure 86	Essai 2 à 3.81 mm de déflexion
Figure 87	Essai 2 à 5.08 mm de déflexion
Figure 88	Essai 2 à 6.35 mm de déflexion
Figure 89	Essai 2 à 7.62 mm de déflexion
Figure 90	Essai 3 à 2.54 mm de déflexion
Figure 91	Essai 3 à 3.81 mm de déflexion
Figure 92	Essai 3 à 5.08 mm de déflexion
Figure 93	Essai 3 à 6.35 mm de déflexion
Figure 94	Essai 3 à 7.62 mm de déflexion
Figure 95	Essai 4 à 2.54 mm de déflexion
Figure 96	Essai 4 à 3.81 mm de déflexion
Figure 97	Essai 4 à 5.08 mm de déflexion
Figure 98	Essai 4 à 6.35 mm de déflexion
Figure 99	Essai 4 à 7.62 mm de déflexion
Figure 100	P_J4\u0^FV_N24T275\u00
Figure 101	P_Aw0°F1/5N24T300@0
Figure 102	P_J400 FV:N24T27500500
Figure 103	P_d490°F1/2N24T275@1000
Figure 104	P_d4y0°F1/2N24T300eo500
Figure 105	P_4w0^F1/2N24T300001000
Figure 106	P_Hw0°F1/2N34T27500
Figure 107	P_Ay0°F1/2N34T300es0
Figure 108	P_4w0°F1/2N34T27500500
Figure 109	P_400°F1/2N34T275e91000
Figure 110	P_J4w0°F1/2N34T300co500
Figure 111	P_s4\u00fte00F1/2N34T300\u00fte01000
Figure 112	P _a 4\u00ft20°F\u00c72N24T275\u00c60

Figure 113	P _a 4y20°F½N24T300@0	220
Figure 114	P_44y20_F1/2N24T275c)500	221
Figure 115	P _a 4y20°F½N24T275@1000	221
Figure 116	P ₄ 4\u00c020'F\u00c0500	222
Figure 117	$P_{a} 4 \psi 20^{\circ} F \frac{1}{2} N24 T300 \oplus 1000$	222
Figure 118	P_44y20 F1/2N34T275co0	223
Figure 119	$P_{a}A\psi 20^{\circ}F\psi N34T300\omega 0$	
Figure 120	$P_{a}A\psi 20^{\circ}F\psi N34T275\phi 500$	224
Figure 121	P _a 4y20°F ¹ / ₂ N34T275(91000	224
Figure 122	$P_{a}4\psi 20^{\circ}F_{2}N34T300\omega 500$	225
Figure 123	P ₄ 4y20°F ¹ / ₂ N34T300@1000	225

LISTE DES ABRÉVIATIONS ET DES SIGLES

α_p	saillie du pignon
a_r	saillie de la roue
AGMA	American Gear Manufacturers Association
Ь	largeur de la plaque
с	distance entre le point de mesure et l'axe de rotation géométrique
С	entraxe
C_B	coefficient de contrainte en flexion
C_{c}	constante de correction pour l'enlignement à l'engrènement
C_{mi}	facteur d'enlignement à l'engrènement
C_{pq}	facteur de proportion du pignon
C_{par}	constante modificatrice applicable à la proportion du pignon
C_{ps}	coefficient de contrainte en état plan
D_p	diamètre primitif
$D_{p \ pignon}$	diamètre primitif du pignon
D _{p rose}	diamètre primitif de la roue
Ε	module d'élasticité
E_c	module d'élasticité du matériel photoélastique
Ε,	module d'élasticité du spécimen étudié
E	module d'élasticité relatif adimensionnel
ſ	facteur de frange du matériel photoélastique
F	largeur de face
1	inertie géométrique
I_c	intensité de la lumière émergente
Ia	intensité de la lumière entrante
J	facteur géométrique
K	coefficient de contrainte optique
K_B	facteur de jante

Kg	kilogramme
K_m	facteur de charge
<i>K.</i> ,	facteur de surcharge
Κ.	facteur de grosseur
Κ,	facteur de concentration de contrainte
K_{r}	facteur dynamique
$K_{x exp}$	facteur dynamique expérimental
Ky their	facteur dynamique théorique
L	longueur de la plaque
m	rapport de conduite
m_f	rapport de conduite de face
m_t	rapport de conduite transversal
M	moment appliqué
n	constante de nombre naturel
n_x	indice de réfraction selon la direction des abscisses
n_y	indice de réfraction selon la direction des ordonnées
NASA	National Aeronautics and Space Administration
Ν	nombre de dents
N_i	nombre de dents ajustées
Nprgana	nombre de dents du pignon
Nione	nombre de dents de la roue
Nm	Newton-mètre
O_{f}	ordre de frange
O _f statique	ordre de frange statique
O _f dynamique	ordre de frange dynamique
Р	puissance
P_d	pas diamétral
P_{κ}	pas normal
P_{t}	pas tangentielle

P_{x}	pas axial
ро	pouce
~	pouce
PSM-1	matériel photoélastique utilisé pour les essais expérimentaux
Q_{v}	grade de qualité
Q_v roue	grade de qualité
$Q_r V_{rT}$	grade de qualité du faux-rond de l'engrenage
$Q_{\gamma} V_{\phi}$	grade de qualité du profil de l'engrenage
$Q_v \pm V_{PA}$	grade de qualité du pas de l'engrenage
Q. Vyr	grade de qualité de l'angle d'inclinaison de l'engrenage
r	constante obtenue du compensateur
R_b	rayon de base
$R_{\mu n tge}$	rayon pour le positionnement des jauges de déformation
R_p	rayon primitif
R_{p_p}	rayon primitif du pignon
R_{p_r}	rayon primitif de la roue
I.c.	épaisseur du matériel photoélastique
t _s	épaisseur du spécimen étudié
1 [°]	épaisseur relative adimensionnelle
Т	couple transmis
tr/min	tour par minute
V	vitesse tangentielle
V_L	vitesse de la lumière dans le vide
$\pm V_{PA}$	tolérance du pas de l'engrenage
V_{ϕ}	tolérance du profil de l'engrenage
$V_{\psi T}$	tolérance de l'angle d'inclinaison de l'engrenage
V_{rT}	tolérance du faux-rond de l'engrenage
V _{rT pignon}	tolérance du faux-rond de l'engrenage pignon
Vitrowe	tolérance du faux-rond de l'engrenage roue

V_s	vitesse de la lumière vibrant selon la direction des abscisses
V_{τ}	vitesse de la lumière vibrant selon la direction des ordonnées
W	charge transmise
W	charge transmise radiale
W	charge transmise tangentielle
Y	facteur de forme de Lewis
Z	longueur d'action
α	angle entre l'axe du polariseur et l'axe de référence
β	angle entre la direction des contraintes principales et l'axe
	référence
δ	retard en phase dimensionnel
\mathcal{E}_{τ}	déformation principale selon l'axe des abscisses
Ev	déformation principale selon l'axe des abscisses
E K.	écart relatif du facteur dynamique
EO	écart relatif de la contrainte de tension en flexion
0	angle de pression
ϕ_{n}	angle de pression normal
Yo	déformation maximale en cisaillement
ø	retard en phase adimensionnel
λ	longueur d'onde
v	coefficient de Poisson
θ	angle entre l'analyseur et la direction des contraintes principales
σ_i	contrainte de flexion en tension
of_essail_esp	contrainte de flexion en tension expérimentale de l'essai 1
of_even2_exp	contrainte de flexion en tension expérimentale de l'essai 2
σ _{l_evenβ_exp}	contrainte de flexion en tension expérimentale de l'essai 3
𝑣_evai4_eup	contrainte de flexion en tension expérimentale de l'essai 4
Of_coull_theo	contrainte de flexion en tension théorique de l'essai 1

Ty_essai2_théo	contrainte de flexion en tension théorique de l'essai 2
$\sigma_{f_{cssai3_{theo}}}$	contrainte de flexion en tension théorique de l'essai 3
$\sigma_{f_cssaid_th\acute{e}o}$	contrainte de flexion en tension théorique de l'essai 4
$\sigma_{\!$	contrainte de flexion en tension expérimentale
$\sigma_{f \ theo}$	contrainte de flexion en tension théorique
σ_x	contrainte principale selon l'axe des abscisses
$\sigma_{\rm v}$	contrainte principale selon l'axe des ordonnées
σ_l	première contrainte principale
σ_2	deuxième contrainte principale
Times	cisaillement maximum
ω	vitesse de rotation
Ψ	angle d'hélice
ψr_{c}	angle d'hélice de base
0	degré
O_{trow}	diamètre du trou

INTRODUCTION

Depuis quelques millénaires, les engrenages sont présents et se retrouvent un peu partout. Aujourd'hui, ils sont utilisés dans plusieurs domaines où leur importance est primordiale. Les domaines de l'automobile, de l'aviation et des machines industrielles en sont des exemples. Avec l'évolution constante de la technologie, les moteurs sont de plus en plus puissants, les propriétés mécaniques des matériaux sont accrues et le poids minimum est toujours visé dans une conception. Les engrenages ne font que s'adapter aux conséquences de cette évolution constante. En revanche, ces mêmes engrenages doivent être plus légers, plus résistants et d'une meilleure qualité de fabrication pour subvenir à cette demande.

Règle générale, pour une conception quelconque incluant une transmission de puissance par des engrenages droits ou hélicoïdaux, il faut déterminer le pas, l'angle d'hélice, la largeur de face ainsi que le nombre de dents pour être capable de résister à la charge appliquée en fatigue de flexion et en usure. Il faut donc calculer la contrainte de tension et la contrainte de contact afin de vérifier qu'elles sont toutes deux inférieures à la résistance du matériau. Dans la formulation des équations de calculs habituelles, se retrouve un facteur qui tient compte de l'effet dynamique. Cependant, les valeurs obtenues pour ce facteur peuvent être considérées trop générales pour bien quantifier l'effet dynamique. La mesure de la contrainte dynamique des engrenages inclut énormément de variables et différents phénomènes physiques, ce qui le rend en somme très complexe.

L'étude présentée dans ce document propose l'application de la photoélasticité à la mesure de la contrainte dynamique des engrenages cylindriques. Cette étude est basée sur un plan d'expérience double qui comporte deux volets. Le plan d'expérience a été conçu pour accommoder deux types de mesure expérimentale permettant ainsi une éventuelle comparaison entre les deux. Le premier volet concerne l'analyse

expérimentale à l'aide de la photoélasticité tandis que le deuxième volet couvre l'analyse expérimentale à l'aide de mesures directes par jauges de déformation et accéléromètres en torsion. Seulement le premier volet du plan d'expérience double est étudié dans le présent document, soit la mesure de la contrainte dynamique dans les engrenages cylindriques par l'application de la photoélasticité.

Le plan d'expérience double établi pour faire la mesure de la contrainte dynamique des engrenages cylindriques avec la photoélasticité inclut l'effet des variations du pas, de l'angle d'hélice, de la largeur de face, du nombre de dents, du couple transmis et de la vitesse de rotation. Un banc d'essai a donc été exploité afin de subvenir aux exigences du plan d'expérience.

Une fois que le volet sur l'application de la photoélasticité du plan d'expérience double sera effectué, il sera possible d'identifier clairement le poids de chacun des facteurs étudiés. La photoélasticité appliquée sur des roues d'engrenage minces permet d'obtenir la contrainte de tension et de compression en pied de dent.

Le présent document comporte cinq chapitres. Le premier chapitre présente une revue littéraire afin de situer le projet dans le milieu scientifique. Le deuxième chapitre porte sur l'élaboration complète du plan d'expérience double de l'étude envisagée. Le troisième chapitre traite de la mise en fonction du banc d'essai. Le quatrième chapitre traite de la photoélasticité en général, expliquant les fondements de cette méthode de mesure expérimentale. Il traite aussi d'essais préliminaires montrant la validité et la précision de cette méthode. Le cinquième et dernier chapitre est une analyse des résultats provenant de l'application de la photoélasticité à la mesure de la contrainte dynamique à des engrenages cylindriques.

CHAPITRE 1

REVUE DE LA LITTÉRATURE

1.1 Introduction

La section suivante traite de la revue littéraire. Elle permet de situer le projet de recherche par rapport aux différentes études et travaux effectués dans un domaine connexe ou similaire traitant des engrenages. Cette revue littéraire mettra en évidence que le sujet étudié dans le présent document possède certaines qualités significatives et uniques.

1.2 Analyse

Pour bien évaluer la mesure de la contrainte dynamique des engrenages, plusieurs méthodes sont accessibles. Il s'agit des méthodes expérimentales notamment de la photoélasticité et des méthodes numériques, particulièrement de la méthode des éléments finis (MEF).

1.2.1 Méthodes expérimentales

La photoélasticité est une méthode visuelle pour déterminer un champ de contraintes ou de déplacements d'une surface donnée d'un objet sur lequel on applique une charge. Pour ce faire, il faut recouvrir cette surface d'un enduit photoélastique et utiliser un polariscope. La lumière provenant du polariscope est filtrée et polarisée avant de rejoindre l'enduit photoélastique. Une fois que la lumière est en contact avec l'enduit. elle provoque une réaction optique donnant naissance à des franges de différentes couleurs qui sont perçues par un observateur regardant au travers d'un analyseur. Après avoir déterminé le nombre exact de franges pour la région étudiée, il est alors possible d'obtenir les valeurs des contraintes et des déplacements à l'aide de formulations mathématiques déjà établies.

Les premiers essais photoélastiques sur des engrenages ont été faits par Dolan et Broghamer [1] ainsi que Allison et Hearn [2]. Leurs essais étaient en condition statique. De plus, les modèles utilisés ne permettaient pas de simuler un train d'engrenages (engrenages et conditions de chargement). Cependant, ils ont vu juste en utilisant la photoélasticité car c'est une méthode rapide, précise et très versatile. De plus, elle ne nécessite pas de modèles mathématiques complexes pour l'extraction des résultats.

Ming-Jong Wang [3] utilise aussi l'approche photoélastique pour mesurer et localiser la contrainte maximale en tension sur des engrenages droits. Il utilise un système photoélastique digital pour obtenir des images en temps réel. Il simule ainsi un train d'engrenage en rotation et inclut l'effet dynamique. Les paramètres étudiés sont la vitesse de rotation, le couple transmis et le point de contact entre les dents d'engrenages. Par la suite, il obtient l'effet dynamique, la position et l'amplitude de la contrainte de tension à l'aide d'une analyse rigoureuse des différentes images prises pendant les essais. Cependant, il utilise seulement une paire d'engrenages fait de matériel photoélastique PSM-1 pour ses expériences. Il ne fait pas varier les différents paramètres intrinsèques à des engrenages comme le pas. l'angle d'hélice et la largeur de face qui peuvent avoir de l'influence sur l'effet dynamique et l'amplitude de la contrainte de flexion. De plus, en utilisant une paire d'engrenages fait de matériel photoélastique, no peut croire que les données associées à la mesure de la contrainte dynamique s'en trouvent affectées.

B. Rebbechi et al. [4] ont utilisé un banc d'essai pour valider un programme mathématique basé sur l'analyse modale. Leur modèle avait de 6 à 8 degrés de liberté dépendant de la valeur du rapport de conduite. Ils ont mesuré expérimentalement le bruit, les vibrations ainsi que la charge dynamique appliquée sur les dents d'engrenages à l'aide de jauges de déformation et d'accéléromètres en se servant d'une paire engrenages identiques sur lesquels ils ont fait varier la vitesse d'opération et le couple transmis. Les jauges de déformation ont été placées sur deux dents successives au niveau de la racine pour mesurer les déformations dynamiques pour ensuite déduire les charges dynamiques. À l'aide des résultats expérimentaux, les auteurs ont pu valider leur code. Cependant, ils ont remarqué un phénomène de séparation des dents à l'engrènement pour des vitesses de rotation élevée avec un faible couple transmis. Ceci entraîne ce que l'on nomme comportement non-linéaire. Comme il a été mentionné précédemment, ils ont seulement fait varier le couple et la vitesse de rotation sans toutefois jouer sur les paramètres des engrenages. De plus, ils ont utilisé un engrenage ayant un nombre de dents identiques sur la roue et le pignon, ce qui favorise une usure particulière des dents.

En utilisant le même banc d'essai, F. B. Oswald et al. [5] ont aussi mesuré la charge dynamique appliquée sur les dents d'engrenages. Dans leurs essais, ils ont encore une fois, fait varier le couple transmis et la vitesse de rotation. Sauf que cette fois-ci, ils ont aussi modifié la forme des profils de denture. Selon les auteurs, ce dernier paramètre pourrait avoir une grande influence sur le comportement dynamique. Encore une fois, ils ont utilisé des paires de roues ayant le même nombre de dents.

Un autre facteur relié au comportement dynamique des engrenages est celui de la friction dynamique entre les dents. B. Rebbechi et al. [6] ont aussi étudié le phénomène. Ils ont mesuré sur un banc d'essai la friction dynamique pendant l'engrènement avec des jauges de déformation. Les jauges étaient placées en pied de deux dents successives. Les résultats présentés démontrent que les coefficients de friction ne sont pas influencés par le changement de direction du glissement au point de contact. De plus, la valeur des coefficients a tendance à augmenter lorsque cette vitesse de glissement est faible. Il est permis de croire que la friction dynamique peut engendrer des phénomènes vibratoires et donc influencer le comportement dynamique des engrenages.

Y. Ogawa et al. [7] ont développé un simulateur pouvant représenter les vibrations des engrenages droits en rotation. La particularité du simulateur est qu'il peut s'adapter à tous les types de déviations tant sur l'erreur du profil que sur l'angle d'hélice. Il est basé sur une analyse modale à un degré de liberté tenant compte des masses équivalentes, de l'amortissement et de la rigidité à l'engrènement pour une paire de roues d'engrenage. Pour valider leur simulateur, ils ont fait un montage expérimental sur lequel ils ont fait varier l'angle d'hélice, l'erreur du profil et le couple transmis. D'après ces essais, la déviation sur l'angle d'hélice ainsi que sur l'erreur du profil influence grandement le comportement vibratoire d'un engrenage droit en rotation. De plus, ils ont indiqué que la valeur du facteur d'amortissement est beaucoup plus faible que celle utilisée dans la littérature. Cependant, ils ne font pas varier le pas, la largeur de face, la vitesse de rotation et le rapport de conduite ce qui limite l'étendue de leur étude.

1.2.2 Approches analytiques et méthodes numériques

Les modèles mathématiques ont aussi été utilisés pour expliquer le comportement dynamique des engrenages. Ils se penchent cependant sur des points spécifiques. Il s'agit de la charge dynamique, les contraintes de tension et de contact, l'erreur de transmission, l'analyse vibratoire d'un train d'engrenages, l'effet de l'erreur du profil et de la vitesse d'engrènement d'une paire de dents.

J.-H. Kuang et A.-D. Lin [8] ont formulé un modèle analytique sur le comportement dynamique d'une paire d'engrenages droits. Leur modèle suggère un engrènement en deux étapes pour tenir compte de la variation de la rigidité des dents durant le temps d'engagement. Il tient compte aussi de l'erreur de profil sur le couple transmis. Les résultats numériques confirment que la variation de la rigidité des dents ainsi que le rapport de conduite ont une influence sur le couple transmis. S. C. Mohanty [9] propose un modèle analytique capable de calculer la charge dynamique appliquée sur des engrenages droits ayant un rapport de conduite élevé. Son modèle est basé sur les vibrations des engrenages dues à la torsion. Il tient compte de la variation de la rigidité des dents pendant l'engrènement. Le paramètre est déterminant sur la charge dynamique. Les résultats numériques obtenus suggèrent que la position ainsi que l'amplitude de la charge dynamique dépendent de la vitesse d'opération.

F. Choi et al. [10] ont d'autre part développé un modèle numérique simulant l'effet de l'imperfection du profil des dents d'engrenages sur le comportement d'un train d'engrenages. L'imperfection du profil est due soit à de l'usure ou aux erreurs de fabrication. Les auteurs indiquent notamment que l'usure des dents affaiblie leur rigidité en statique et en dynamique.

F. Choi et al. [11] ont aussi développé un modèle mathématique à l'aide de l'analyse modale pour étudier le comportement dynamique d'un train d'engrenages à plusieurs étages. Leur modèle permet de calculer les vibrations transitoires dues aux différentes sources d'excitation sous des conditions d'opération normales. Il tient compte d'un mauvais équilibrage, de la déflection des arbres, de la rigidité non linéaire à l'engrènement, de la friction entre les dents, de la rigidité axiale et latérale des roulements ainsi que l'effet gyroscopique. Les auteurs ont pu valider leur modèle avec des résultats expérimentaux appartenant à un des centres de recherche de la NASA. De plus, leurs résultats numériques concordent très bien avec ceux de la NASA ce qui implique la validité des facteurs émis précédemment.

S. S. Rao et K. Y. Yoon [12] ont trouvé une méthode afin de minimiser l'erreur de transmission sur des engrenages hélicoïdaux. Ils utilisent le concept de modification du plan d'action optimal avec l'utilisation des splines cubiques afin de générer un nouveau profil de dent. Cette méthode permet d'améliorer les performances d'un train d'engrenages et n'affecte presque pas les facteurs dynamiques. J. D. Smith [13] propose un modèle mathématique pour déterminer les forces dynamiques lorsqu'il y a perte de contact entre les dents. Son modèle tient compte des dépouilles en sommet de dents, de l'erreur d'enlignement, de la rigidité et de la réponse harmonique. Il confirme que ces aspects influencent le comportement des engrenages.

P. K. Mahanta et L. Nayak [14] utilisent une approche non-Hertzienne approximative et simplifiée pour prédire la distribution de pression au contact des dents d'engrenages. Les auteurs ont souligné notamment que pendant l'engrènement, il y a une combinaison de roulement et de glissement ce qui crée une surface de contact n'ayant pas tout à fait la forme générale d'un rectangle. De plus, la combinaison de la traction tangentielle entre les dents avec les facteurs dynamiques et les conditions de chargement normales influencent de manière significative la forme et la superficie de la surface de contact et aussi la valeur des contraintes de contact et de tension.

Y. C. Chen et C. B. Tsay [15] étudient le rapport de conduite ainsi que l'erreur de transmission sur une paire d'engrenages hélicoïdaux par l'entremise de l'analyse de contact des dents. Leurs travaux démontrent que l'erreur de transmission et le rapport de conduite sont intimement liés au comportement dynamique. Cependant, les calculs de l'erreur de transmission, du rapport de conduite et de l'analyse de contact sont basés sur le principe de contact à une dent et sur la notion des corps rigides.

J. Perret-Liaudet et J. Sabot [16] ont étudié un modèle dynamique des engrenages à un degré de liberté. Ce modèle tient compte du jeu entre les dents et de la rigidité à l'engrènement en lien avec le rapport de conduite. Ils analysent la non-linéarité de la réponse due à l'erreur de transmission. Les résultats obtenus confirment la présence de phénomènes complexes quant aux résonances principales et secondaires qui sont dus principalement à des scénarios de type cascade harmonique (forme étagée du signal). Cependant, seuls des engrenages droits avec un rapport de conduite fixe ont été testés. De cette manière, l'étendue de leur recherche demeure limitée.

1.2.2.1 Méthode des éléments finis

D. Dennin et F. Pfeiffer [17] ont étudié les forces de contact dynamiques sur des engrenages droits et hélicoïdaux avec la méthode des éléments finis. Leur modèle est basé sur un train d'engrenage simple à trois degrés de liberté pour bien simuler l'engrènement. Les auteurs utilisent aussi la position exacte des points de contact ainsi que des éléments ressort-amortisseur simulant la lubrification et le jeu pour la génération du maillage. Pendant l'interaction des dents du pignon et de la roue, les forces dynamiques de contact et de friction sont considérées. Les auteurs concluent que les forces présentées sont dépendantes de la vitesse de rotation et du couple transmis.

K. Lee [18] a développé une méthode numérique analysant le contact dynamique entre des engrenages droits en rotation. Dans son étude, il utilise la méthode des éléments finis ainsi que la technique des corps dynamiques (*multi-body dynamics techniques*). Pour simuler un engrenage, il le modélise comme étant un disque rigide relié par une contrainte cinématique à une dent élastique ayant une masse. Il impose aussi des conditions de contact à l'engrènement. L'auteur conclut que l'effet de la masse au niveau de la dent est un facteur très influent. Cependant, son analyse est bidimensionnelle ce qui limite les résultats. De plus, il ne traite pas des engrenages hélicoïdaux puisqu'une analyse tridimensionnelle serait nécessaire.

L. D. MacLennan [19] utilise la méthode des éléments finis et analyse l'influence de l'erreur de profil des dents sur la distribution de la charge et la rigidité à l'engrènement des engrenages droits. Il conclut que le rapport de conduite est dépendant de la distribution de la charge. Cependant, son modèle est statique et bidimensionnel ce qui limite la portée des résultats à des engrenages minces dont la vitesse de rotation est très faible. I. Huseyin Filiz et O. Eyercioglu [20] ont évalué les contraintes en pied de dent avec la méthode des éléments finis. Dans leur étude, ils font varier le module, le rapport de conduite, le rayon à la racine, la largeur de face, l'angle de pression, l'amplitude et la position de la charge transmise ainsi que le nombre de dents. Même si leur analyse est toutefois statique, les auteurs ont conclu que la contrainte de flexion est fonction des paramètres mentionnés ci haut. Cependant, ils n'ont pas réussi à quantifier l'influence de chacun des paramètres sur la contrainte de flexion.

M. H. Arafa et M. M. Megahed [21] ont étudié la facilité avec laquelle les dents sur des engrenages droits s'épousent l'une à l'autre pendant l'engrènement en utilisant la méthode des éléments finis. D'après leur analyse, la déflection des dents se comporte de manière non-linéaire au commencement de l'application de la charge et devient linéaire avec une application complète. Ils stipulent aussi que cette déflection est dépendante de la position de la charge appliquée sur le profil de la dent. Donc cette facilité d'engagement à l'engrènement peut être considérée comme un facteur qui aurait de l'influence sur le comportement vibratoire des engrenages. Cependant, leur modèle simule un pignon et une roue ayant un nombre de dents identiques. De plus, la roue et le pignon ont seulement une seule dent de modélisée ce qui amène un rapport de conduite unitaire.

R. G. Parker et al. [22] utilisent la méthode des éléments finis pour faire une analyse dynamique des engrenages axée sur le contact des dents. En prenant comme modèle une paire d'engrenages droits à un degré de liberté sur laquelle ils font varier la vitesse d'opération ainsi que le couple transmis, ils peuvent étudier la réponse dynamique. Dans leur étude, ils prennent en considération les fréquences de résonance par rapport au couple transmis ainsi que le nombre de dents à l'engrènement. Ils indiquent que la perte de contact entre les dents d'engrenages pendant qu'elles sont en opération est la non-linéarité du comportement dynamique. Cependant, ils se limitent seulement aux engrenages droits sur lesquels ils ne font pas varier les paramètres physiques de ceux-ci.

S. H. Choi et al. [23] ont investigué les vibrations latérales, axiales et de torsions de source inconnue provenant d'un générateur à turbine. Ils ont observé que la source des vibrations provenait de la boîte de transmission reliant la turbine au générateur. Dans cette boîte se trouvait un train d'engrenages hélicoïdaux sur lequel une étude des charges dynamiques était nécessaire. Les auteurs ont donc modélisé ce système utilisant la méthode des éléments finis. Dans leur modèle, ils ont simulé les conditions d'opération en faisant varier la vitesse de rotation et le couple transmis. Ils ont réussi à isoler la source du problème qui était reliée à l'erreur de transmission. Donc, le couple transmis ainsi que la vitesse d'opération influencent le comportement dynamique des engrenages.

M. Kubur et al. [24] ont créé un modèle dynamique basé sur un réducteur de vitesse à plusieurs arbres entrainé par des engrenages hélicoïdaux. En utilisant la méthode des éléments finis, ils ont modélisé les structures des arbres combinés avec un modèle discret d'une paire d'engrenages hélicoïdaux. Le modèle inclut aussi les roulements ainsi que leur support respectif. Il a été solutionné à l'aïde des valeurs propres et de la technique de sommation modale afin de prédire les vibrations libres et forcées du système. Ils ont ensuite validé leur modèle. Ils ont donc étudié les modes d'excitation ainsi que la réponse forcée sous la forme de l'erreur de transmission dynamique. Cependant, ils se limitent seulement à une paire d'engrenages hélicoïdaux sur lesquels ils ne font pas varier les paramètres physiques de ceux-ci.

1.3 Conclusion

Selon la littérature, deux avenues sont possibles pour la mesure de la contrainte dynamique des engrenages cylindriques. Il s'agit de la modélisation autant par des modèles mathématiques spécifiques que par la méthode des éléments finis ou bien par les approches expérimentales comme la photoélasticité ou la mesure directe par jauges de déformation et accéléromètres. Les approches analytiques et les méthodes numériques sont des méthodes de prédiction devant être validées par des résultats expérimentaux. Dans la littérature, les différents facteurs pouvant influencer la contrainte dynamique des engrenages sont abordés indépendamment. Cependant, l'existence d'un modèle complet éprouvé est toutefois manquante. Ces approches ou méthodes permettent de prédire l'influence de différents paramètres sur la contrainte dynamique avec l'avantage d'une très grande flexibilité au niveau des essais. En outre, cette flexibilité permet d'obtenir différents résultats pour un plus grand nombre d'essais et ce, en très peu de temps en comparaison avec les approches expérimentales.

L'application de la photoélasticité ainsi que la mesure directe par jauges de déformation et accéléromètres s'avèrent sans doute deux excellentes méthodes. Dans la littérature, des travaux présentent des essais expérimentaux pour étudier certains aspects pouvant influencer la mesure de la contrainte dynamique des engrenages droits et hélicoïdaux. Toutefois, à notre connaissance, aucune étude ne couvre l'effet d'une variation combinée des paramètres suivants :

- a. le pas ou le module:
- b. l'angle d'hélice:
- c. le nombre de dents:
- d. la largeur de face:
- e. le couple transmis:
- f. la vitesse de rotation.

L'étude présentée dans ce document propose l'application de la photoélasticité à la mesure de la contrainte dynamique des engrenages cylindriques sous l'effet de la variation des paramètres mentionnés précédemment. La photoélasticité permet d'étudier l'évolution et la distribution des contraintes de tension et de compression sur les dents d'engrenages. Elle est très efficace sur des roues minces mais n'est pas représentative sur des roues ayant une largeur de face plus grande. Il s'agit par contre d'une méthode

visuelle. En d'autres mots, l'ordre de frange doit être déterminé avec exactitude puisque ce nombre est directement proportionnel à l'amplitude de la contrainte.

Pour bien étudier et comprendre l'influence de chacun des facteurs, un plan d'expérience sera établi. Ce plan d'expérience devra cependant accommoder les deux types de mesures expérimentales mentionnés précédemment permettant ainsi une éventuelle comparaison entre les deux. Le premier volet de plan d'expérience concernera l'analyse expérimentale à l'aide de la photoélasticité tandis que le deuxième volet du plan d'expérience couvrira l'analyse expérimentale à l'aide de mesures directes par jauges de déformation et accéléromètres en torsion. Par la suite, un banc d'essai servira à étudier les différents trains d'engrenages inclus par le plan d'expérience.

La grande majorité des causes pouvant influencer la mesure de la contrainte dynamique des engrenages cylindriques sera couverte. Donc, l'amplitude et la forme de la distribution des contraintes de flexion en tension et en compression seront traitées par l'application de la photoélasticité.

CHAPITRE 2

PRÉPARATION EXPÉRIMENTALE

2.1 Introduction

Le chapitre précédent a justifié l'élaboration d'une campagne expérimentale traitant de la mesure des contraintes dynamiques des engrenages cylindriques par l'application de la photoélasticité. Cette campagne expérimentale entraine nécessairement la création d'un plan d'expérience afin de couvrir l'influence de différents paramètres sur la mesure des contraintes dynamiques des engrenages cylindriques. Cependant, il doit être conçu pour accommoder les deux avenues expérimentales déjà mentionnée. Ceci permettra une éventuelle comparaison entre les deux.

Le chapitre suivant porte sur l'élaboration et l'explication du plan d'expérience traitant de la mesure des contraintes dynamiques des engrenages cylindriques. Il porte aussi sur l'élaboration et le fonctionnement du banc d'essai s'y rattachant.

2.2 Élaboration du plan d'expérience

Le plan d'expérience porte uniquement sur les engrenages droits et hélicoïdaux car ceux-ci sont les plus répandus. Il aurait été intéressant d'étudier les autres familles d'engrenages (coniques, hypoïdes, spiroïdes, ...) mais la mesure de la contrainte dynamique de ces familles d'engrenages amenait un degré de complexité supplémentaire ce qui dépassait le cadre de l'étude.

Pour l'élaboration du plan, il a fallu cerner les paramètres pouvant influencer la contrainte dynamique des engrenages cylindriques. Les paramètres peuvent se diviser en deux groupes. Le premier groupe tient compte des caractéristiques intrinsèques des engrenages tandis que le deuxième groupe tient compte des phénomènes physiques et des caractéristiques de montage.

2.2.1 Paramètres intrinsèques des engrenages

Les deux figures suivantes indiquent la majorité des paramètres intrinsèques des roues d'engrenage.

Figure 1 Paramètres intrinsèques des engrenages droits et hélicoïdaux (Adapté de J. E. Shigley et C. R. Mischke, 2001)

La figure 1 présente une image de deux dents consécutives d'une roue d'engrenage droite. En regardant la figure, on y remarque plusieurs paramètres dont les principaux sont le pas diamétral (P_d), la largeur de face (F) et le nombre de dents (N).

Figure 2 Paramètres intrinsèques des engrenages hélicoïdaux (Adapté de J. E. Shigley et C. R. Mischke, 2001)

La figure 2 montre la seule différence entre un engrenage droit et un engrenage hélicoïdal. Cette différence se situe au niveau de l'angle entre la section normale (section B-B) et la section transversale (section A-A). Cet angle entre ces deux plans se nomme angle d'hélice (ψ). L'angle d'hélice montré est l'angle d'hélice primitif. Cette valeur diffère de l'angle d'hélice à d'autres rayons. De plus, il est important de savoir qu'un engrenage droit est considéré comme un engrenage hélicoïdal avec un angle d'hélice nul.

Tous les paramètres qui viennent d'être mentionnés sont des paramètres géométriques. D'autres paramètres comme le grade de qualité, le matériau utilisé et le traitement thermique sont aussi des paramètres propres aux engrenages même si on ne peut les voir. Il faut donc les prendre en considération.
La prochaine étape consiste à déterminer les paramètres qui feront partie de l'étude sur la mesure de la contrainte dynamique des engrenages cylindriques. Dans cette étude, les déformations au niveau des dents seront transmises au matériel photoélastique pour ensuite établir les contraintes de flexion en tension et en compression. Il faut donc vérifier comment ces contraintes sont traitées dans la littérature.

Selon les normes de l'AGMA, la contrainte de flexion est définie comme :

$$\sigma_{j} = W' \cdot K_{w} \cdot K_{y} \cdot K_{y} \cdot \frac{P_{J}}{F} \cdot \frac{K_{w} \cdot K_{B}}{J}$$
(2.1)

L'expression de la contrainte de flexion contient plusieurs facteurs qui nécessitent d'être discutés. Le premier facteur, K_i , est le facteur dynamique :

$$K_{\pm} = \left(\frac{A + \sqrt{V}}{A}\right)^{B}$$
(2.2)

Où les variables de ce facteur sont égales à :

$$A = 50 + 56 \cdot (1 - B) \qquad (2.3)$$

$$B = 0.25 \cdot (12 - Q_z)^{2/3} \qquad (2.4)$$

En regardant de plus près les équations (2.2), (2.3) et (2.4), on remarque que le facteur dynamique dépend du grade de qualité (Q_i) et de la vitesse tangentielle (V).

Le deuxième facteur, K, est le facteur de grosseur :

$$K_{\gamma} = 1.192 \cdot \left(\frac{F \cdot \sqrt{Y}}{P_d}\right)^{0.0535}$$
(2.5)

Il est à noter que cette équation ne fait pas partie de l'AGMA. C'est une équation modifiée mais qui est valable pour interpréter physiquement le facteur de grosseur [25]. En regardant l'équation du facteur de grosseur, on remarque qu'il dépend notamment du pas diamétral et de la largeur de face. De plus, on y retrouve le facteur de forme de Lewis (*Y*) qui dépend uniquement du nombre de dents.

Le troisième facteur est le pas diamétral :

$$P_{\mu} = \frac{N}{D_{\mu}}$$
 pour un engrenage droit (2.6a)

$$P_d = \frac{N}{D_p \cdot \cos(\psi)} \qquad \text{pour un engrenage hélicoïdal}$$
(2.6b)

Les équations pour le pas diamétral dépendent dans les deux cas du nombre de dents ainsi que du diamètre primitif de l'engrenage. Cependant, le pas diamétral pour un engrenage hélicoïdal dépend aussi de l'angle d'hélice.

Le quatrième facteur, Km, est le facteur de distribution de charge :

$$K_{ss} = 1 + C_{ss} \cdot \left(C_{ps} \cdot C_{pss} + C_{sss} \cdot C_{c}\right)$$

$$(2.7)$$

Où les variables de ce facteur sont égales à :

$$C_{py} = \begin{cases} \frac{F}{10 \cdot D_{p}} - 0.025 & \text{pour } F \le 1 \text{ pouce} \\ \frac{F}{10 \cdot D_{p}} - 0.0375 \pm 0.0125 & \text{pour } 1 < F \le 17 \text{ pouces} \end{cases}$$

$$C_{pw} = \begin{cases} 1.0 & \text{pour } SI/S < 0.175 \\ 1.1 & \text{pour } SI/S \ge 0.175 \end{cases}$$
(2.9)

L'équation (2.8) est l'équation pour établir le facteur de proportion du pignon (C_{pl}) tandis que l'équation (2.9) est plutôt une constante modificatrice servant à la proportion du pignon (C_{pm}).

La figure suivante indique la signification des variables S et SI pour l'équation (2.9). La variable S est la distance entre les deux roulements tandis que la variable SI est la distance entre le centre de la roue d'engrenage et le point milieu se situant entre les deux roulements.

Figure 3 Positionnement de l'engrenage entre deux roulements (Adapté de J. E. Shigley et C. R. Mischke, 2001)

$$C_{mi} = 0.127 + 0.0158 \cdot F + (-0.093 \times 10^{-4}) \cdot F^2$$

(2.10)

$$C_e = \begin{cases} 0.8 & \text{pour un engrènement ajusté à l'assemblage} \\ 1.0 & \text{pour toutes autres conditions} \end{cases} (2.11)$$

L'équation (2.10) est l'équation pour établir le facteur d'enlignement à l'engrènement (C_{max}) tandis que l'équation (2.11) est plutôt une constante de correction pour l'enlignement à l'engrènement (C_e) .

En inspectant les variables du facteur de distribution de charge, on remarque qu'elles dépendent essentiellement de la largeur de face et du diamètre primitif.

Le cinquième facteur, J, est le facteur géométrique.

Figure 4 Facteur géométrique pour les engrenages droits (Adapté de J. E. Shigley et C. R. Mischke, 2001)

Le facteur géométrique, pour des engrenages droits, peut être obtenu à l'aide de cet abaque (figure 4). Il est important de remarquer que ce facteur dépend directement du nombre de dents des roues d'engrenage. Il s'agit ici du nombre de dents du pignon et du nombre de dents de la roue.

Figure 5 Correction pour le facteur géométrique des engrenages hélicoïdaux (Adapté de J. E. Shigley et C. R. Mischke, 2001)

Dans le cas des engrenages hélicoïdaux, il faut appliquer une correction à la valeur obtenue par l'entremise de la figure 4. Cette correction s'effectue à l'aide des deux abaques montrés à la figure 5. En analysant toutes les figures et les équations mentionnées dans cette section, il est maintenant possible de dresser une liste des paramètres intrinsèques des engrenages droits et hélicoïdaux qui seront inclus dans le plan d'expérience. On y retrouvera donc le pas (P_d) , le nombre de dents (N), l'angle d'hélice (ψ) , le grade de qualité (Q_t) et la largeur de face (F).

2.2.2 Phénomènes physiques et caractéristiques de montage

La section suivante porte sur différents facteurs, phénomènes et caractéristiques particuliers pouvant influencer la mesure de la contrainte dynamique mais n'étant pas considérés comme des paramètres intrinsèques des engrenages.

En regardant de nouveau la formulation de la contrainte de flexion, équation (2.1), la majorité des facteurs de cette équation tient compte de phénomènes physiques et de caractéristiques de montage. Le premier terme attirant l'attention est celui de la charge tangentielle appliquée sur la dent.

Figure 6 Charge appliquée sur une dent d'engrenage (Adapté de J. E. Shigley et C. R. Mischke, 2001)

La figure 6 montre la charge appliquée sur une dent d'engrenage avec sa composante radiale et sa composante tangentielle. L'image de gauche traite une charge pour un engrenage droit tandis que l'image de droite traite une charge pour un engrenage hélicoïdal. Cependant, la charge tangentielle n'est pas un paramètre direct. Autrement dit, cette charge est obtenue en combinant la puissance du moteur ainsi que la résistance de l'appareil à entraîner. Dans la formulation générale, on retrouve :

$$P = T \cdot \omega \tag{2.12}$$

$$T = W' \cdot R_{\mu} \tag{2.13}$$

Les équations (2.12) et (2.13) illustrent bien la relation entre la puissance transmise (P) par le moteur, le couple induit (T) ainsi que la charge tangentielle (W).

Dans le cas du facteur dynamique, équation (2.2), on fait référence à la vitesse tangentielle (V) qui a une influence directe sur ce facteur. À l'aide de l'équation suivante :

$$V = R_{\mu} \cdot \omega$$
 (2.14)

On remarque que la vitesse tangentielle est le produit entre le rayon primitif de l'engrenage (R_p) et la vitesse de rotation (ω) .

Un dernier paramètre doit être mentionné dans cette section. Il fait allusion au nombre de dents en contact durant l'engrènement. Ce paramètre est le rapport de conduite et il est introduit d'une manière indirecte dans l'équation du facteur géométrique. Cependant, l'équation du facteur géométrique tient compte du facteur de distribution de charge qui est en fait presque l'inverse du rapport de conduite.

Le rapport de conduite, m, est défini comme :

$$m = m_i + m_F$$
 (2.15)

$$m_{i} = \frac{P_{d} \cdot Z}{\pi \cdot \cos(\phi)}$$
(2.16)

$$m_F = \frac{F}{P_x} \tag{2.17}$$

L'équation (2.16) exprime le rapport de conduite transversal (m_t). Cette équation est valable pour les engrenages droits ainsi que les engrenages hélicoïdaux. Elle est composée du pas diamétral, de l'angle de pression (ϕ) et la longueur d'action (Z).

Figure 7 Longueur d'action sur une paire d'engrenages droits (Adapté de J. E. Shigley et C. R. Mischke, 2001)

La figure 7 montre la longueur d'action entre deux engrenages. Il s'agit ici de la distance entre le point a et le point b. Cette longueur ne peut être mesurée à l'aide d'instruments conventionnels. Elle est plutôt obtenue mathématiquement à l'aide de l'équation suivante :

$$Z = \sqrt{\left(R_{p_{-}p} + a_{p}\right)^{2} - \left(R_{p_{-}p}\cos(\phi)\right)^{2} + \sqrt{\left(R_{p_{-}r} + a_{r}\right)^{2} - \left(R_{p_{-}r}\cos(\phi)\right)^{2} - C\cdot\sin(\phi)} \quad (2.18)$$

L'équation de la longueur d'action est basée sur les paramètres intrinsèques suivants : le rayon primitif $(R_{p,p})$ et la saillie du pignon (a_p) , le rayon primitif $(R_{p,p})$ et la saillie de la roue (a_r) , l'angle de pression et l'entraxe (C).

L'équation (2.17) exprime le rapport de conduite de face (m_F). Cette équation est valable seulement pour les engrenages hélicoïdaux. L'application de cette équation aux engrenages droits nous donne une valeur nulle. En fait, il s'agit du rapport entre la largeur de face et le pas axial (P_A). Ce dernier est défini comme :

$$P_{\nu} = \frac{2\pi \cdot R_{\nu}}{N \cdot \tan(\psi_{\nu})} \tag{2.19}$$

Il y a cependant deux nouveaux paramètres intrinsèques qui se rajoutent. Il s'agit du rayon de base (R_b) :

$$R_{p} = R_{p} \cdot \cos(\phi) \tag{2.20}$$

Il est obtenu par le produit du rayon primitif avec le cosinus de l'angle de pression. L'équation (2.19) fait aussi mention de l'angle d'hélice de base (ψ_h) :

$$\psi_h = \sin^{-1}(\sin(\psi) \cdot \cos(\phi_h)) \tag{2.21}$$

Cet angle dépend de l'angle d'hélice et de l'angle de pression normal (ϕ_n). L'angle de pression normal est illustré à la figure 6.

En analysant toutes les figures et les équations mentionnées dans cette section, il est maintenant possible de dresser une liste des phénomènes physiques et des caractéristiques de montage qui seront inclus dans le plan d'expérience. On y retrouvera donc le couple transmis (T) et la vitesse de rotation (ω). Dans le cas du rapport de conduite (m), il est déjà fonction du nombre de dents (N).

2.2.3 Plan d'expérience

Les sections 2.2.1 et 2.2.2 énumère tous les paramètres qui sont contenus dans la formulation du plan d'expérience. Il faut maintenant donner des valeurs tangibles aux paramètres pour compléter le plan d'expérience.

En premier lieu, il faut choisir le type de plan d'expérience utilisé pour la mesure de la contrainte dynamique des engrenages cylindriques. Chaque paramètre choisi doit avoir au moins deux niveaux distincts afin d'en étudier son influence. Nous essaierons de nous limiter à deux valeurs par paramètre en raison des coûts associés et des temps d'étude Donc, un plan d'expérience factoriel de type 2^t est mis en œuvre pour cette étude.

2.2.3.1 Facteurs invariables

Avant d'énumérer tous les paramètres à deux niveaux, il faut mentionner les autres paramètres auxquels une seule valeur a été fixée pour garder une invariabilité et du même coup, la validité du plan d'expérience. Il s'agit ici du matériau utilisé pour les engrenages, le traitement thermique associé aux dents, le grade de qualité et l'angle de pression. Les engrenages seront en acier 1045 et n'auront subi aucun traitement thermique. Ces derniers auront été usinés de manière à obtenir un grade de qualité AGMA 8 et l'angle de pression sera de vingt degrés ($\phi = 20^{\circ}$). Le grade de qualité sera néanmoins difficile à maintenir parfaitement constant, compte tenu que les roues seront fabriquées spécifiquement pour l'étude et que ce paramètre demeure difficile à contrôler sans inspection rigoureuse.

L'acier 1045 est un matériau commun. Il a été préféré à l'aluminium à cause d'une meilleure gamme de propriétés mécaniques en plus d'être largement documenté. Il a été décidé de ne pas faire subir de traitements thermiques aux engrenages à cause des coûts engendrés, mais surtout dans le but de limiter le nombre de facteurs étudiés. Il est certain que les traitements thermiques influencent la mesure de la contrainte dynamique des engrenages cylindriques. Il serait intéressant de vérifier ce facteur dans le cadre d'une étude ultérieure.

2.2.3.2 Facteurs variables

Le premier facteur variable inscrit dans le plan d'expérience est le pas diamétral. Deux valeurs ont été déterminées pour ce facteur. Il y a donc des roues d'engrenage avec un pas d'une valeur de quatre ($P_d = 4$) et des roues d'engrenage avec un pas d'une valeur de six ($P_d=6$). Les valeurs associées au pas diamétral étant mises à l'essai sont conséquentes de l'instrumentation utilisée dans cette étude. Autrement dit, une bonne grosseur de dent est nécessaire pour une utilisation adéquate du matériel photoélastique. Il en est de même pour l'utilisation ultérieure des jauges de déformation.

Le deuxième facteur variable inscrit dans le plan d'expérience est l'angle d'hélice. Deux valeurs ont été déterminées pour ce facteur. Il y a donc des roues d'engrenage avec un angle d'hélice d'une valeur nulle ($\psi = 0^{\circ}$). Il s'agit donc d'engrenages droits. Il y a aussi des roues d'engrenage avec un angle d'hélice d'une valeur de vingt degrés ($\psi = 20^{\circ}$). Il s'agit donc d'engrenages hélicoïdaux. La valeur de vingt degrés donnée à l'angle d'hélice a été établie en fonction de la valeur du nombre de dents et du rapport de conduite en utilisant une procédure itérative pour la validité du plan d'expérience.

Le troisième facteur variable inscrit dans le plan d'expérience est la largeur de face. Deux valeurs ont été déterminées pour ce facteur. Il y a donc des roues d'engrenage avec une largeur de face d'une valeur d'un demi-pouce (F=0.5"). Il s'agit donc d'engrenages minces. Il y a aussi des roues d'engrenage avec une largeur de face d'une valeur de trois pouces ($F=3.0^{\prime\prime\prime}$). Il s'agit donc d'engrenages à large face. Les deux valeurs choisies pour la largeur de face ont été déterminées en fonction de la distribution des contraintes sur la face car celle-ci n'est pas la même sur des engrenages minces et sur des engrenages épais. Il fallait aussi que la valeur associée à la largeur de face pour obtenir des engrenages à large face ne soit pas trop élevée car la comparaîson entre les engrenages droits et hélicoïdaux auraît été biaisée. Il est important de noter que seulement les roues d'engrenage minces seront utilisées pour la mesure de la contrainte dynamique avec l'application de la photoélasticité.

Le quatrième facteur variable inscrit dans le plan d'expérience est le couple transmis. Les valeurs du couple ont été déterminées par rapport à la charge maximale qu'une dent d'engrenage pouvait subir avant qu'il y ait déformation plastique selon l'équation de la contrainte de flexion. Cependant les valeurs du couple varient d'une roue d'engrenage à l'autre dépendamment de la valeur du pas, de la valeur de l'angle d'hélice et de la valeur de la largeur de face.

Il est certain que les roues d'engrenage hélicoïdales peuvent supporter une plus grande charge que les roues d'engrenage droites ce qui laisse entendre que ces dernières vont limiter les valeurs données au couple. Avec cette limitation, les valeurs du couple données aux roues d'engrenage droites vont être les mêmes que celles données aux roues d'engrenage hélicoïdales.

Quant à la largeur de face, les roues d'engrenage à large face peuvent supporter une plus grande charge que les roues d'engrenage minces. Cependant, il faut limiter les valeurs données au couple pour les roues d'engrenage à large face car ces dernières déformeraient plastiquement les roues d'engrenage minces. Donc, les valeurs données au couples transmis vont être identiques peu importe la valeur associée à la largeur de face. Le pas diamétral de l'engrenage est le dernier facteur pouvant influencer les valeurs données au couple transmis. Règle générale, la valeur maximale donnée au couple est plus grande pour une valeur de pas plus faible. Cependant, c'est la valeur la plus élevée du pas diamétral qui va limiter les valeurs du couple transmis.

Il faut aussi tenir compte des méthodes de mesures pour établir les différentes valeurs du couple transmis. La méthode de la photoélasticité nécessite des déformations suffisantes afin que des franges puissent apparaître.

Il est maintenant possible d'établir les deux valeurs du couple transmis qui vont s'intégrer au plan d'expérience.

Tableau I

P_{\perp}	F =0.5"	F = 3.0''
النسا	275 Nm	275 Nm
+ po	300 Nm	300 Nm
2	275 Nm	275 Nm
o po .	300 Nm	300 Nm

Valeurs de T en fonction de P_d et de F

Le tableau I indique les deux valeurs données au couple transmis en fonction de la valeur du pas diamétral et de la largeur de face. On constate que les deux valeurs du couple transmis en fonction des deux largeurs de face ainsi que des deux valeurs du pas diamétral sont les mêmes.

Le cinquième facteur variable inscrit dans le plan d'expérience est la vitesse de rotation. La vitesse de rotation dépend du moteur électrique entraînant le banc d'essai mais surtout de la vitesse d'obturation de l'appareil photo (1/8000 sec) afin d'obtenir une image claire lors de l'application de la méthode photoélastique. Deux valeurs ont été déterminées pour ce facteur. La première valeur est de 1000 tr/min car il s'agit de la vitesse limite à laquelle l'appareil photo numérique obtient des images claires. La deuxième valeur est égale à 50% de la vitesse limite qui est de 500 tr/min.

Le sixième facteur variable inserit dans le plan d'expérience est le nombre de dents. Cependant, les valeurs associées au nombre de dents ont été très difficiles à déterminer car ce facteur se retrouve dans de nombreuses équations qui font varier les facteurs précédents.

Il a été mentionné précédemment que le rapport de conduite est directement lié au nombre de dents. Il est donc important d'obtenir des valeurs spécifiques associées au rapport de conduite pour être capable de déterminer un nombre de dents adéquat. De manière plus précise, le rapport de conduite doit posséder des valeurs entières (m = 2) et (m = 3) ainsi que des valeurs intermédiaires (1 < m < 2) et (3 < m < 4).

Sachant que les valeurs des autres facteurs sont déjà établies, il est possible d'étudier chacun des scénarios pour fixer le rapport de conduite et ainsi déterminer le nombre de dents.

Le premier scénario représente les deux valeurs du rapport de conduite sachant que le pas a une valeur de 4. l'angle d'hélice a une valeur de 0° et que la largeur de face a une valeur de 1/2". En faisant varier le nombre de dents du pignon et de la roue ainsi que la valeur de l'entraxe, il est possible d'obtenir deux valeurs différentes du rapport de conduite. Cependant, il y a un nombre de dents minimum et maximum à respecter à cause des limites du banc d'essai. De plus, il y a aussi une valeur minimale et maximale de l'entraxe qu'il faut respecter. Ces limitations seront expliquées dans la section traitant du banc d'essai. Donc en se servant d'une méthode itérative, les deux valeurs du rapport de conduite sont fixées à 1.6 et 1.675. Le premier scénario permet d'obtenir le nombre de dents suivant :

- pour un rapport de conduite fixé à 1.6, le pignon doit posséder 24 dents tandis que la roue doit posséder 25 dents ;
- b. pour un rapport de conduite fixé à 1.675, le pignon doit posséder 34 dents tandis que la roue doit posséder 35 dents.

Le deuxième scénario représente les deux valeurs du rapport de conduite sachant que le pas a une valeur de 4. l'angle d'hélice a une valeur de 0° et que la largeur de face a une valeur de 3". Ce scénario est identique au premier à part la valeur de la largeur de face. Étant donné que ces deux scénarios traitent d'engrenages droits, les deux valeurs du rapport de conduite sont aussi fixées à 1.6 et 1.675. Le deuxième scénario permet d'obtenir le nombre de dents suivant :

- pour un rapport de conduite fixé à 1.6, le pignon doit posséder 24 dents tandis que la roue doit posséder 25 dents ;
- b. pour un rapport de conduite fixé à 1.675, le pignon doit posséder 34 dents tandis que la roue doit posséder 35 dents.

Le troisième scénario représente les deux valeurs du rapport de conduite sachant que le pas a une valeur de 4. l'angle d'hélice a une valeur de 20° et que la largeur de face a une valeur de 1/2". La valeur donnée à l'angle d'hélice est la seule différence entre ce scénario et le premier. Cette différence entraînera donc une légère augmentation des deux valeurs données au rapport de conduite. Il faut donc minimiser cette augmentation pour avoir une certaine similitude. Par conséquent, les deux valeurs du rapport de conduite sont fixées à 1.77 et 1.85. Le troisième scénario permet d'obtenir le nombre de dents suivant :

 pour un rapport de conduite fixé à 1.77, le pignon doit posséder 24 dents tandis que la roue doit posséder 25 dents ; b. pour un rapport de conduite fixé à 1.85, le pignon doit posséder 34 dents tandis que la roue doit posséder 35 dents.

Le quatrième scénario représente les deux valeurs du rapport de conduite sachant que le pas a une valeur de 4. l'angle d'hélice a une valeur de 20° et que la largeur de face a une valeur de 3". Ce scénario est bien différent du premier à cause des valeurs associées à l'angle d'hélice et à la largeur de face. Ceci a pour conséquence de fixer la valeur minimum au rapport de conduite égale à 3. Le quatrième scénario à donc 3 et 3.1 comme valeurs associées au rapport de conduite. Le quatrième scénario permet d'obtenir le nombre de dents suivant :

- pour un rapport de conduite fixé à 3, le pignon doit posséder 24 dents tandis que la roue doit posséder 25 dents ;
- b. pour un rapport de conduite fixé à 3.1, le pignon doit posséder 34 dents tandis que la roue doit posséder 35 dents.

Le cinquième scénario représente les deux valeurs du rapport de conduite sachant que le pas a une valeur de 6. l'angle d'hélice a une valeur de 0° et que la largeur de face a une valeur de 1/2". Ce scénario est similaire au premier à part la valeur du pas. Il a donc été possible, en ajustant le nombre de dents du pignon et de la roue ainsi que la valeur de l'entraxe, d'obtenir les mêmes valeurs associées au rapport de conduite du premier scénario. Donc, les deux valeurs du rapport de conduite ont été fixées à 1.6 et 1.675. Le cinquième scénario permet d'obtenir le nombre de dents suivant :

- a. pour un rapport de conduite fixé à 1.6, le pignon doit posséder 24 dents tandis que la roue doit posséder 25 dents ;
- b. pour un rapport de conduite fixé à 1.675, le pignon doit posséder 37 dents tandis que la roue doit posséder 38 dents.

Le sixième scénario représente les deux valeurs du rapport de conduite sachant que le pas a une valeur de 6. l'angle d'hélice a une valeur de 0° et que la largeur de face a une valeur de 3". Ce scénario est identique au cinquième à part la valeur de la largeur de face. Étant donné que ces deux scénarios traitent d'engrenages droits comme le premier et le deuxième, les deux valeurs du rapport de conduite seront aussi fixées à 1.6 et 1.675. Le sixième scénario permet d'obtenir le nombre de dents suivant :

- pour un rapport de conduite fixé à 1.6, le pignon doit posséder 24 dents tandis que la roue doit posséder 25 dents ;
- b. pour un rapport de conduite fixé à 1.675, le pignon doit posséder 37 dents tandis que la roue doit posséder 38 dents.

Le septième scénario représente les deux valeurs du rapport de conduite sachant que le pas a une valeur de 6. l'angle d'hélice a une valeur de 20° et que la largeur de face a une valeur de 1/2". La valeur donnée au pas est la seule différence entre ce scénario et le troisième. Cette différence entraînera donc une légère augmentation des deux valeurs données au rapport de conduite. Il faut donc minimiser cette augmentation pour avoir une certaine similitude. Par conséquent, les deux valeurs du rapport de conduite sont fixées à 1.9 et 2. Le cinquième scénario permet d'obtenir le nombre de dents suivant :

- pour un rapport de conduite fixé à 1.9, le pignon doit posséder 24 dents tandis que la roue doit posséder 25 dents ;
- b. pour un rapport de conduite fixé à 2, le pignon doit posséder 37 dents tandis que la roue doit posséder 38 dents.

Le huitième scénario représente les deux valeurs du rapport de conduite sachant que le pas a une valeur de 6, l'angle d'hélice a une valeur de 20° et que la largeur de face a une valeur de 3". La valeur donnée au pas est la seule différence entre ce scénario et le quatrième. Cette différence entraînera donc une légère augmentation des deux valeurs données au rapport de conduite. Il faut donc minimiser cette augmentation pour avoir une certaine similitude. Par conséquent, les deux valeurs du rapport de conduite sont fixées à 3.75 et 3.85. Le huitième scénario permet d'obtenir le nombre de dents suivant :

- pour un rapport de conduite fixé à 3.75, le pignon doit posséder 24 dents tandis que la roue doit posséder 25 dents;
- b. pour un rapport de conduite fixé à 3.85, le pignon doit posséder 37 dents tandis que la roue doit posséder 38 dents.

Le sixième et dernier facteur du plan d'expérience est maintenant complété. En résumant les huit scénarios possibles, on obtient pour un pas diamétral de 4 po⁻¹, deux paires d'engrenages. La première paire possède 24 et 25 dents tandis que la deuxième paire possède 34 et 35 dents. Dans le cas où le pas diamétral est de 6 po⁻¹, il y a aussi deux paires d'engrenages. La première paire possède 24 et 25 dents tandis que la deuxième paire paires d'engrenages. La première paire possède 24 et 25 dents tandis que la deuxième paire possède 37 et 38 dents.

Comme on peut le remarquer, les deux valeurs associées au pas diamétral ne possède pas les mêmes valeurs associées au nombre de dents. Étant donné que les deux paires d'engrenages associées au pas diamétral de 4 po⁻¹ ne sont pas identiques à celles du pas diamétral de 6 po⁻¹, le plan d'expérience ne peut être considéré complet ou fermé. Étant donné que la première paire d'engrenages est identique pour les deux valeurs du pas diamétral et que la deuxième paire est similaire pour les deux valeurs du pas diamétral, on peut quand même faire un plan d'expérience double. Ce plan pourra être résolu de la même manière qu'un plan d'expérience complet. Pour sa résolution, il faudra simplement interpoler les valeurs des contraintes obtenues avec les paires d'engrenages de 37 et 38 dents pour les ramener à des paires d'engrenages de 34 et 35 dents.

Nous avons maintenant tous les facteurs nécessaires ainsi que leurs valeurs respectives pour l'assemblage du plan d'expérience en tenant compte de l'application de la photoélasticité ainsi que de la mesure directe par jauges de déformation et accéléromètres. Il est maintenant possible d'écrire le plan d'expérience double.

Tableau II

Première partie du plan d'expérience

P_d	¥	F	T	Ø	m	Npresson	N_{row}
				S(V) tr/min	1.6	24	25
		275 Nm		1.675	34	.35	
			07	1000 televin	1.6	24	25
		1/3"		1000 07000	1.675	34	35
		1/2		500 tr/min	1.6	24	25
		300 Nm	5007 U7000	1.675	,34	35	
			.900 1810	1000 tr/min	1.6	24	25
10			1000 07000	1.675	.34	.35	
				500 tr/min	1.6	24	25
		376 N	300 0/000	1.675	34	35	
			275 Nm	1000 televie	1.6	24	25
				1000 070000	1.675	.34	35
		,	300 Nm	500 tr/min	1.6	24	25
					1.675	.34	35
4					1.6	24	25
					1.675	.34	35
			275 Nm	500 telmin	1.77	24	25
				1000 televie	1.85	.34	35
					1.77	24	25
		1.137		1000 u/min	1.85	34	35
		1/2		500 telmin	1.77	24	25
			200 No.	500 ti/min	1.85	.34	35
	20		,500 Nm	1000	1.77	24	25
				1000 u/min	1.85	.34	35
				eno	3	24	25
				500 tr/min	3.1	34	35
		3.	275 Nm	1000	3	24	25
				1000 tr/min	3.1	34	35

Tableau II (suite)

P_{J}	Ψ	F	T	0	111	Npresson	N_{rear}	
			500 tr/min	500 tr/min	2 ⁴ 200 No.	3	24	25
,	20	2" 200 Nor	20 2 ⁴⁰ 200 Nm			200 No.	3.1	.34
+	20	,	300 Nm	1000	3	24	25	
				1000 tr/min	3.1	34	35	

Tableau III

Deuxième partie du plan d'expérience

P_d	ψ	F	T	0	m	Npignon	Nrow	
				\$00 telmin	1.6	24	25	
			275 Nm	500 u/min	1.675	.37	.38	
		275 1800	1000 televie	1.6	24	25		
	1/2"		1000 171111	1.675	37	38		
	1/-		500 telmin	1.6	24	25		
			200 Nos	300 Nm 1000 tr/min	1.675	.37	38	
			300715111		1.6	24	25	
0			1000 u/min	1.675	.37	.38		
			500 tr/min	1.6	24	25		
6		2	275 No.	300 07000	1.675	37	38	
			27.5 1911	1000 relation	1.6	24	25	
				1000 07000	1.675	37	38	
				500 minin	1.6	24	25	
			200 Nm	500 171111	1.675	37	38	
			300 Nm	300 Nm	1000 relatio	1.6	24	25
		1000 think	1.675	37	38			
20°			500 televie	1.9	24	25		
	1/2"	275 Nm	.500 u/min	2	37	38		
				1000 tr/min	1.9	24	25	

P_{J}	ų.	F	T	0	m	Npiper	N_{row}
			275 Nm	1000 tr/min	2	37	.38
				El Vi estado	1.9	24	25
	1/2"	200 No.	500 tr/min	2	37	,38	
			1000 tr/min	1.9	24	25	
				1000 07000	2	37	.38
		-	275 Nm	\$00 urlmin	3.75	24	25
6	20			.500 ti/min	3.85	37	38
				1000 minin	3.75	24	25
		2"		10000 070000	3.85	37	38
				500 televie	3.75	24	25
		200 Nm	300 07000	3.85	37	38	
			300 Nm	1000 televie	3.75	24	25
				1000 d/min	3.85	37	38

Tableau III (suite)

Le tableau II et le tableau III montrent le plan d'expérience double portant sur la mesure de la contrainte dynamique des engrenages cylindriques. Le rapport de conduite y est présent, bien qu'il ne soit pas un facteur proprement dit, mais une conséquence des autres facteurs. Il inclut aussi, sans qu'ils soient affichés, les paramètres invariables qui ont été mentionnés à la section 2.2.3.1 à savoir que les engrenages sont en acier 1045 et n'ont subi aucun traitement thermique, que l'angle de pression est de vingt degrés ($\phi =$ 20°) et que le grade de qualité visé est de huit ($Q_t = 8$). Le plan d'expérience double est maintenant complété. La fabrication des roues d'engrenage peut être exécutée car toutes les informations nécessaires sont disponibles.

2.3 Mesure des roues d'engrenage

Dans la section précédente, un plan d'expérience double a été mis en œuvre. Ce dernier a établi de manière précise les roues d'engrenage nécessaires pour l'application de la photoélasticité à la mesure de la contrainte dynamique des engrenages cylindriques. Celles-ci ont été taillées dans un atelier d'usinage.

Après avoir pris réception des engrenages, il faut connaître, de manière précise, le grade de qualité correspondant à chacun. Ce dernier est un facteur influençant directement la contrainte de flexion que nous voulons mesurer. Les roues d'engrenage ont donc été inspectées par une machine à mesurer les coordonnées spécialisée pour les roues d'engrenage. Il est important de noter que seulement les paires d'engrenages étudiés ont été mesurés.

2.3.1 Interprétation des résultats

Pour établir correctement le grade de qualité des roues d'engrenage, quatre facteurs doivent être mesurés selon la norme de l'AGMA [27]. Il s'agit du faux-rond (*runout*, V_{rT}), du pas (*pitch*, $\pm V_{PA}$), du profil (*profile*, V_{θ}) et de l'angle d'inclinaison (*lead*, $V_{\theta T}$). Une fois que les valeurs numériques pour ces quatre facteurs sont obtenues, on associe un grade de qualité à chacun des facteurs à partir de tables ou en utilisant les formules adéquates de la norme. Par la suite, il faut identifier le grade de qualité le plus faible parmi les quatre obtenus et celui-ci dictera le grade de qualité est celui qui devrait aussi déterminer le comportement vibratoire d'une roue d'engrenage. Cette hypothèse sera vérifiée ultérieurement.

En regardant les équations normalisées de plus près, on remarque que des valeurs minimales et maximales spécifiques sont données pour le faux-rond, le pas, le profil et l'angle d'inclinaison. La valeur du grade de qualité associé au faux-rond varie entre 3 et 15 tandis que la valeur du grade de qualité associé au pas varie entre 6 et 15. De plus, la valeur du grade de qualité associé au profil et à l'angle d'inclinaison varie entre 8 et 15. Cette situation devient problématique lorsqu'une des valeurs numériques obtenues par mesure pour un des quatre facteurs ne soit quantifiable selon les extremums des équations.

Ceci étant dit, chaque roue qui a été mesurée s'est vue liée avec une fiche technique spécifiant une valeur numérique précise pour le faux-rond, le pas, le profil et l'angle d'inclinaison. Après la lecture de chacune des fiches qui se retrouvent à l'annexe 2, le grade de qualité de la majorité des engrenages ne pouvait être obtenu car certaines valeurs associées au profil et à l'angle d'inclinaison n'étaient pas quantifiables par les tables ou avec les équations en admettant l'hypothèse que le grade de qualité de l'engrenage doit être obtenu à l'aide des quatre facteurs mesurés.

Pour remédier à cette situation, des courbes de tendance ont été établies pour les tolérances sur le profil et sur l'angle d'inclinaison afin d'estimer par extrapolation un grade de qualité représentatif.

2.3.2 Courbe de tendance de la tolérance sur le profil

Pour obtenir le grade de qualité du profil, il faut connaître au préalable la valeur du pas ainsi que le nombre de dents de l'engrenage. Dans le cas des engrenages hélicoïdaux, le nombre de dents doit être ajusté avec la formule suivante :

$$N_{i} = \frac{N}{\cos(\psi)} \tag{2.22}$$

Pour un engrenage droit connaissant la valeur du pas ($P_d = 4 \text{ po}^{-1}$) et le nombre de dents (N = 24 dents), la norme nous indique les différentes valeurs de la tolérance du profil en fonction du grade de qualité dans le tableau suivant.

Tableau IV

Q_r sur la tolérance sur le profil avec $P_d = 4$, $\psi = 0^\circ$ et N = 24

Grade de qualité (Q_i)	8	9	10	11	12	13	14	15
Tolérance sur le profil (0.0001 po)	16.0	11.0	7.9	5.7	4.1	2.9	2.1	1.5

Les valeurs de la tolérance du profil mentionnées dans le tableau VI sont obtenues à l'aide de l'équation suivante :

$$V_{\phi T} = 21.5 \cdot (N_{T})^{0.154} \cdot (P_{T})^{-0.589} \cdot (1.4)^{(8-Q_{T})}$$
(2.23)

Il faut maintenant tracer le graphique pour être en mesure d'établir une courbe de tendance.

Figure 8 Points de la norme de la tolérance sur le profil

Le graphique donné à la figure 8 montre les points de la norme par des astérisques. Ces derniers ont pu être reliés seulement par une équation polynomiale du troisième degré. L'équation de la courbe est définie comme :

$$Tolerance = -0.043434 \cdot Q_{1}^{-8} + 1.8211 \cdot Q_{1}^{-2} - 26.187 \cdot Q_{1} + 131.07$$
(2.24)

À l'aide de cette équation, on peut maintenant extrapoler les valeurs de la tolérance sur le profil en fonction du grade de qualité pour un engrenage droit ayant un pas de 4 po⁻¹ et 24 dents. De plus, on peut vérifier avec l'équation de la norme (équation 2.23) même si cette dernière est limitée dans son application. Les valeurs sont données dans le tableau suivant.

Tableau V

Q_v sur la tolérance sur le profil avec $P_d = 4$, $\psi = 0^\circ$ et N = 24

Grade de qualité (Q_i)	2	3	4	5	6	7
Tolérance sur le profil (0,0001 po) équation (2.24)	85.6	67.7	52.7	40.2	30.1	22.1
Tolérance normalisée (0.0001 po) équation (2.23)	116,7	83.4	59.6	42.5	30.4	21.7

En analysant les données du tableau V, on remarque que l'équation extrapolée (équation 2.24) est plus sévère que celle de la norme car les valeurs associées à la tolérance du profil sont plus faibles. Ceci nous permet donc de l'utiliser afin d'évaluer les grades de qualité manquants à la norme tout en sachant que les roues demeurent hors norme.

Il faut maintenant répéter la même démarche pour toutes les roues d'engrenage qui ont été mesurées afin d'obtenir le grade de qualité en fonction de la tolérance sur le profil. Tous les tableaux des résultats sont présentés à l'annexe 3.

2.3.3 Courbe de tendance de la tolérance sur l'angle d'inclinaison

Pour obtenir le grade de qualité de l'angle d'inclinaison, il faut connaître au préalable la valeur de la largeur de face de l'engrenage. Pour un engrenage dont la largeur de face (F) vaut 0.5 po, la norme nous indique les différentes valeurs de la tolérance sur l'angle d'inclinaison en fonction du grade de qualité dans le tableau suivant.

Tableau VI

Q_v sur la tolérance de l'angle d'inclinaison (F = 0.5 po)

Grade de qualité (Q,)	8	9	10	11	12	13	14	15
Tolérance sur l'angle d'inclinaison (0.0001 po)	4.9	4.0	3.3	2.6	2.1	1.7	1.3	1.0

Les valeurs de la tolérance de l'angle d'inclinaison mentionnées dans le tableau VI sont obtenues à l'aide des équations suivantes :

$$V_{\psi T} = -0.00244 \cdot Q_{1}^{-3} + 0.13638 \cdot Q_{2}^{-2} - 2.69177 \cdot Q_{2} + 18.956 \qquad F \le 1.0 \text{ po} \qquad (2.25)$$

$$V_{\psi T} = (-0.00244 \cdot Q_{1}^{-3} + 0.13638 \cdot Q_{2}^{-2} - 2.69177 \cdot Q_{2} + 18.956) \cdot F^{0.72} \qquad 1.0 < F \le 10 \text{ po} \qquad (2.26)$$

Il faut maintenant tracer le graphique pour être en mesure d'établir une courbe de tendance.

Figure 9 Points de la norme de la tolérance sur l'angle d'inclinaison

Le graphique donné à la figure 9 montre par des astérisques, les points de la norme. Ces derniers ont pu être reliés seulement par une équation polynomiale du troisième degré. L'équation de la courbe est définie comme :

$$Tolérance = -0.0027778 \cdot Q_1^{(8)} + 0.14405 \cdot Q_1^{(2)} - 2.7341 \cdot Q_1 + 18.976 \quad (2.27)$$

À l'aide de cette équation, on peut maintenant extrapoler les valeurs de la tolérance de l'angle d'inclinaison en fonction du grade de qualité pour un engrenage dont la largeur de face (F) vaut 0.5 po. Les valeurs sont données dans le tableau suivant.

Tableau VII

Grade de qualité (Q,)	2	3	4	5	6	7
Tolérance sur l'angle d'inclinaison (0.0001 po) équation (2.27)	14.06	11.99	10.17	8.56	7.16	5.94
Tolérance normalisée (0.0001 po) équation (2.25 et 2.26)	14.10	12.04	10.21	8.60	7.19	5.96

$Q_{\rm r}$ sur la tolérance de l'angle d'inclinaison (F = 0.5 po)

En analysant les données du tableau VII, on remarque que l'équation extrapolée (équation 2.27) est légèrement plus sévère que celle de la norme car les valeurs associées à la tolérance de l'angle d'inclinaison sont plus faibles. Ceci nous permet donc de l'utiliser afin d'évaluer les grades de qualité manquants à la norme tout en sachant que les roues demeurent hors norme.

La démarche a été répétée pour les engrenages possédant une largeur de face de 3 po même si ces derniers ne se retrouvent pas dans la présente étude. Tous les tableaux des résultats sont présentés à l'annexe 3.

2.3.4 Grade de qualité des roues d'engrenage

Il est maintenant possible d'évaluer le grade de qualité des engrenages. Le tableau suivant résume les quatre grades de qualité associés à chaque engrenage et où le plus faible dictera le grade de qualité de l'engrenage. Le tableau VIII utilise beaucoup d'abréviations et de codes pour des raisons d'espace et sont expliqués dans les paragraphes suivants.

Tableau VIII

Engrenage	Q, V_{ϕ}	Q, V_{yt}	$Q_{\gamma} \neq V_{p1}$	$Q_r V_{cl}$	Q, roue
P_4 \u00fte0 P_1/2N24	8	<u>8</u>	9	8	8
P_A \u00ft 0°F\u00ft 2N25	6	7	6	4	4
P_A \u00f802N34	6	1	8	7	1
P_A \u00fter F\u00fter N35	Z	8	9	8	7
P.A. w20°F1/2N24	6	3	8	10	3
P_A w20°F1/2N25	5	<u>0</u>	6	8	0
P.A WO'F 1/2N34	6	1	7	7	1
P_A w0°F1/2N35	6	2	8	8	2
P_6\v0°F1/2N24	5	4	8	8	4
P_6\0°F1/2N25	6	5	9	8	5
P_6@0°F1/2N37	6	1	7	6	1
P_6w0°F1/2N38	7	5	8	7	5
P_6.w20°F1/2N24	7	3	9	10	3
P.6. 120°F1/2N25	6	4	8	8	4
P_6. y20°F1/2N37	7	1	8	9	1
P_6420°F1/5N38	7	4	9	8	4

Q_r des roues d'engrenage (F = 0.5 po)

Les lignes de la première colonne indiquent tous les engrenages nécessaires pour l'étude du comportement dynamique par photoélasticité. L'engrenage peut être décodé comme suit. Les trois premiers caractères indiquent qu'il s'agit du pas diamétral et de sa valeur. Le quatrième caractère indique l'angle d'hélice suivi de sa valeur en degrés. On retrouve par la suite la lettre F suivie de la fraction ½. Ceci indique tout simplement la valeur de la largeur de face en pouces. Finalement, les trois derniers caractères indiquent qu'il s'agit du nombre de dents de l'engrenage et de sa valeur.

Les lignes de la deuxième colonne indiquent la valeur du grade de qualité de l'engrenage par rapport à la tolérance sur le profil (Q, V_{ϕ}) . Les lignes de la troisième colonne indiquent la valeur du grade de qualité de l'engrenage par rapport à la tolérance sur l'angle d'inclinaison $(Q, V_{\phi T})$. Les lignes de la quatrième colonne indiquent la valeur du grade de qualité de l'engrenage par rapport à la variation sur le pas $(Q, \pm V_{PA})$. Les lignes de la cinquième colonne indiquent la valeur du grade de qualité de l'engrenage par rapport à la tolérance sur le faux-rond (Q, V_{rT}) . Finalement, les lignes de la sixième colonne indiquent la valeur du grade de qualité de l'engrenage (Q, rouc). Il est aussi important de noter que pour chaque roue d'engrenage, le facteur déterminant pour le grade de qualité est souligné et en caractère gras.

Ce sont donc les grades de qualité retrouvés dans cette colonne (Q_i roue) qui vont servir à établir la valeur du facteur dynamique (K_i) que l'on retrouve dans la formule de la contrainte en flexion de l'AGMA. Par contre, les grades de qualité associés à la tolérance sur le profil, à la tolérance sur l'angle d'inclinaison, à la variation sur le pas et à la tolérance sur le faux-rond vont plutôt servir à expliquer les différents phénomènes rencontrés durant l'étude associée à la mesure de la contrainte dynamique des engrenages cylindriques.

2.4 Description et fonctionnement du banc d'essai

La section 2.2 nous a permis d'établir un plan d'expérience double nécessaire pour la mesure de la contrainte dynamique des engrenages cylindriques. Elle a aussi permis de déterminer toutes les caractéristiques nécessaires pour la fabrication des roues d'engrenage servant à l'étude. Par la suite, les roues d'engrenage ont été mesurées afin d'extraire toutes leurs caractéristiques intrinsèques. Toutes ces informations nous donnent maintenant les lignes directrices pour un bon fonctionnement du banc d'essai servant à l'étude.

2.4.1 Critères de fonctionnement du banc d'essai

Le premier critère de fonctionnement du banc d'essai est celui traitant de l'ajustement des différentes paires d'engrenages à étudier. D'après le plan d'expérience, il y a seize paires d'engrenages au total mais pour l'application de la photoélasticité, seulement huit paires seront étudiées.

Tableau IX

P_d	¥	F	Npapaon	D _p popular	N_{rest}	Dproar
		1.12%	24	6.0000"	25	6.2500"
		1/2	34	8.5000"	35	8.7500"
	0.		24	6.0000"	25	6.2500"
			34	8.5000"	35	8.7500"
4		1.0%	24	6.3850"	25	6.6511"
		1/2*	.34	9.0455"	35	9.3116"
	20	24	24	6.3850"	25	6.6511"
		3	.34	9.0455"	35	9.3116"
			24	4.0000"	25	4.1667"
		1/2"	37	6.1667"	.38	6.3333"
	0.		24	4.0000"	25	4.1667"
		3"	37	6.1667"	38	6.3333"
6	-		24	4.2567"	25	4.4341"
		1/2"	37	6.5624"	38	6.7398"
	20°	r	24	4.2567"	25	4.4341*
		3"	37	6.5624"	38	6.7398"

Liste des roues d'engrenage nécessaires

Le tableau IX énumère les roues d'engrenage nécessaires pour la complétion adéquate des expériences en spécifiant les paramètres intrinsèques importants. Il indique aussi le diamètre primitif du pignon et de la roue.

Le premier point important à remarquer du tableau IX est que le nombre de dents du pignon est différent du nombre de dents de la roue. La roue a toujours une dent de plus que le pignon. La raison de cette différence s'explique en deux points. La première raison veut que le pignon et la roue possèdent un diamètre primitif semblable à cause des applications de charges. La deuxième raison veut que toutes les dents du pignon puissent interagir avec toutes les dents de la roue pour obtenir une usure globale sans correspondance entre les dents.

Le deuxième point important du tableau IX est que les diamètres primitifs des seize paires d'engrenages différent de l'un à l'autre. Cette différence implique que le banc d'essai soit ajustable afin de pouvoir monter toutes les paires d'engrenages sur le même banc. Il faut donc être capable de modifier l'entraxe entre les différents essais.

Le deuxième critère de fonctionnement du banc d'essai est celui traitant de sa rigidité. Il doit être rigide pour absorber les vibrations encourues sans affecter la prise de mesure. Il y a donc deux options pour respecter ce deuxième critère. La première option propose que le banc soit ancré dans le béton mais cette option doit être rejetée car elle annule toute possibilité d'ajustement au niveau de l'engrènement. La deuxième option propose que le banc d'essai soit monté sur une plaque d'acier rainurée permettant la possibilité d'ajustement. Cette plaque doit être d'une certaine masse pour ne pas être affectée par les vibrations transmises par le banc lors de sa mise en opération. Le banc d'essai sera done monté sur une plaque d'acier rainurée dont la masse sera d'au moins 1000 Kg.

Le troisième critère de fonctionnement du banc d'essai est celui traitant de l'entrainement du système. Le moteur doit avoir la puissance nécessaire pour entraîner le banc d'essai. De plus, il faut que la vitesse de rotation du moteur soit ajustable pour répondre à un des paramètres du plan d'expérience. Pour répondre à ce critère, le système d'entraînement est un moteur électrique de 10 Hp muni d'une commande électrique pouvant ajuster la vitesse de rotation.

Le quatrième critère de fonctionnement du banc d'essai est celui traitant de la variation du couple appliquée aux engrenages. Il faut donc qu'une section du banc d'essai soit capable d'introduire et d'ajuster le couple comme il est spécifié dans le plan d'expérience. Il faut aussi que le couple soit introduit de manière mécanique et non pas hydraulique comme peut le faire un dynamomètre car on ne veut pas de perte énergétique.

Pour introduire le couple de manière mécanique, il faut que la roue menée possède une certaine résistance en rotation durant l'engrènement.

Figure 10 Schéma simplifié du dynamomètre mécanique

La figure 10 présente, de façon simplifiée, le module du banc d'essai permettant d'introduire et de varier le couple. Le module est conçu avec deux réducteurs de vitesse dont l'un des deux est placé en position inverse. Un des deux réducteurs est fixé à la plaque et l'autre est monté sur un roulement à bille. Le réducteur monté sur roulement possèdera une tige sur laquelle des masses sont ajoutées ou enlevées afin d'introduire et de varier le couple. Pour que ce module puisse fonctionner correctement, il est nécessaire d'avoir une paire d'engrenages à l'entrée et une paire d'engrenages à la sortie. Ceci implique donc que le banc d'essai doit être en circuit fermé.

Figure 11 Schématisation du banc d'essai en circuit fermé

La figure 11 nous montre un circuit fermé entre deux paires d'engrenages avec des flèches représentant le couple restant prisonnier du système. Il est important de remarquer les deux axes de rotation nécessaires pour que tout le système fonctionne. L'axe de rotation du haut comporte le module servant à introduire et varier le couple tandis que l'axe de rotation du bas comporte le moteur électrique servant à l'entraînement du banc d'essai. On constate aussi les quatre modules servant de support aux engrenages. Le banc d'essai est donc composé de six modules qui sont liés par des accouplements flexibles pour des raisons d'assemblages et d'ajustements.

La figure 11 nous montre aussi que les deux paires d'engrenages ne possèdent pas le même nombre de dents. L'engrenage de droite représente les engrenages déterminés par le plan d'expérience. L'engrenage de gauche représente les engrenages nécessaires pour obtenir un circuit fermé possédant un nombre de dents plus élevé. La raison du nombre de dents plus élevé est expliquée dans le chapitre suivant.

2.5 Conclusion

Ce chapitre a permis d'établir un plan d'expérience double pour l'application de la photoélasticité à la mesure de la contrainte dynamique des engrenages cylindriques. Le plan d'expérience a aussi dû tenir compte d'une éventuelle mesure directe de la contrainte dynamique par jauges de déformation et accéléromètres lors de sa conception. Par la suite, les roues d'engrenage ont été usinées puis mesurées. Finalement, le banc d'essai a été assemblé. Les figures 12 et 13 montrent le banc d'essai une fois complété.

Figure 12 Banc d'essai

Figure 13 Banc d'essai

Les résultats finaux permettront de tester les facteurs suivants :

- a. le pas (P_d) diamétral;
- b. l'angle d'hélice (w);
- c. le couple transmis (T);
- d. la vitesse de rotation (ω);
- e. le nombre de dents (N).

Ceci aura pour conséquence de réduire le plan d'expérience à 5 facteurs. Ils permettront cependant d'établir la contrainte de flexion (tension et compression) statique et dynamique pour en extraire le facteur dynamique (K_v).
CHAPITRE 3

MISE EN FONCTION DU BANC D'ESSAI

3.1 Introduction

Le présent chapitre porte sur la mise en fonction du banc d'essai. Il s'agit de l'instrumentation utilisée pour récupérer l'information nécessaire afin de mesurer la contrainte dynamique des engrenages cylindriques. Il est question de l'instrumentation du banc d'essai et de l'instrumentation des roues d'engrenage.

3.2 Instrumentation du banc d'essai

Le banc d'essai est instrumenté de deux manières. La première traite de l'instrumentation nécessaire pour la mesure du couple. La deuxième traite de l'instrumentation nécessaire pour les mesures vibratoires. Même si les mesures vibratoires ne font pas partie de cette étude, il faut cependant les considérer pour ne pas avoir à modifier le banc d'essai à nouveau lorsqu'elles seront entreprises.

Pour la mesure du couple, il faut coller deux jauges de torsion sur l'arbre de l'un des quatre modules supportant les roues d'engrenage. Elles sont collées à 180° d'intervalle et l'arbre instrumenté sera par la suite calibré. La figure suivante montre la position de l'une des deux jauges de torsion.

Figure 14 Jauges de torsion sur l'arbre instrumenté

Une fois que les deux jauges de torsion ont été collées et que le signal électrique a été vérifié, il est maintenant possible de calibrer l'arbre en fonction du couple à transmettre selon le plan d'expérience.

3.2.1 Calibration de l'arbre

La première étape pour être en mesure de faire les essais expérimentaux est la calibration de l'arbre où se situent les jauges de torsion. L'arbre a donc été maintenu en place à une de ses extrémités et tordu à l'autre par l'introduction de différents couples. Les couples ont été introduits à l'aide d'une barre et de masses calibrées. Lorsqu'un couple est introduit, il faut prendre deux mesures de tension de voltage. La première s'effectue au niveau des jauges de torsion tandis que la deuxième s'effectue au niveau de la source. Il faut aussi s'assurer que les tensions de voltage sont stables lorsque prises en note. Par la suite, il faut diviser la tension de voltage des jauges de torsion par la tension de voltage de la source pour obtenir une tension de voltage relative. Le tableau XII montre toutes les mesures effectuées afin d'obtenir les tensions de voltage relatives pour les différents couples introduits.

Tableau XII

Couple (Nm)	119,546	165.636	206.830	248.024	294.114
Tension de voltage des jauges de torsion (V)	-2.215	-2.368	-2.506	-2.645	-2.801
Tension de voltage de la source (V)	9,480	9,480	9,480	9.480	9.480
Tension de voltage relative (V/V)	-0.2336	-0.2498	-0.2643	-0.2790	-0.2955

Tension de voltage en fonction du couple appliqué

Une fois que toutes les valeurs des tensions relatives ont été compilées, il faut ensuite tracer une droite qui relie tous les points et vérifier qu'il y a régression linéaire.

Figure 19 Couple appliqué en fonction de la tension de voltage relative

La figure 19 illustre les points de la tension de voltage relative en fonction du couple appliqué. De plus, la droite qui passe par ces points indique de manière concluante qu'il y a régression linéaire à cause de la proximité entre la droite et les points de mesure.

Il est maintenant possible d'extraire l'équation de la droite car il y a régression linéaire. L'équation (4.1) est l'équation de cette droite :

À l'aide de cette équation, il faut maintenant trouver les deux valeurs de tension de voltage relative pour les couples exigés par le plan d'expériences.

Tableau XIII

Tension de voltage relative en fonction du couple appliqué

Couple appliqué	Tension de voltage relative
275 Nm	-0.2886 V/V
300 Nm	-0.2974 V/V

Le tableau XIII indique les deux valeurs de tension de voltage relative qu'il faut atteindre lors de la mise en opération du banc d'essai pendant l'application du couple.

3.2.2 Mesures vibratoires

Pour les mesures vibratoires, il faut installer des accéléromètres sur le même arbre où se trouvent les jauges de torsion. Un adaptateur spécialement conçu est mis en place sur l'arbre pour les accommoder et les positionner à 180° d'intervalle. Les mesures vibratoires servent essentiellement à enregistrer les variations de positions, vitesses et accélérations. La figure suivante montre l'adaptateur avec ses accéléromètres installés sur l'arbre instrumenté. Les accéléromètres sont de marque ISOTRON, ENDEVCO et possède une sensibilité de 10.24 mV/m/s² @ 100 Hz avec une bande passante de 0.6 %.

Figure 15 Adaptateur pour les accéléromètres

Étant donné que le banc d'essai doit être en circuit fermé, il est nécessaire d'avoir deux engrenages. Le premier engrenage est celui décrit dans le plan d'expérience. Le deuxième engrenage ou engrenage de fermeture de la boucle doit posséder trois fois plus de dents en ayant aussi le même diamètre primitif respectif. L'objectif est d'obtenir des fréquences d'engrènement dissociables dans le signal mesuré.

Lorsqu'un engrenage du plan d'expérience sera étudié sur le banc d'essai, il possèdera une fréquence d'engrènement propre. Dans le cas où l'engrenage de fermeture de la boucle serait identique, il possèderait la même fréquence d'engrènement. Le signal mesuré serait l'addition des fréquences d'engrènement, la lecture serait faussée. Dans le cas où l'engrenage de fermeture de la boucle aurait trois fois plus de dents, il possèderait une fréquence trois fois plus élevée que l'engrenage étudié. Sachant que l'usure des profils fait apparaître de manière dominante la deuxième harmonique dans la réponse vibratoire, cette situation est un bon compromis pour décomposer et traiter le signal mesuré.

Tableau X

P_{d}	ų.	F	Npierow	Dppipper	$N_{c_{1SN}}$	Derow	
				72	6.0000"	75	6.2500"
	0	0 20 3″ 20	102	8.5000"	105	8.7500"	
12	242		72	6.3850"	75	6,6511"	
	20		102	9.0455"	105	9.3116"	
			72	4.0000"	75	4.1667"	
	0.		111	6.1667"	114	6.3333"	
18	20		72	4.2567"	75	4.4341"	
			111	6.5624"	114	6.7398"	

Liste des roues d'engrenage pour la fermeture de la boucle

Le tableau X énumère toutes les paires d'engrenages nécessaires pour fermer la boucle du banc afin de pouvoir réaliser tous les essais du plan d'expérience.

3.3 Instrumentation des roues d'engrenage

Les roues d'engrenage vont être instrumentées de deux manières. La première implique le matériel nécessaire pour l'application de la méthode de la photoélasticité. La deuxième impliquera ultérieurement des jauges de déformation.

3.3.1 Photoélasticité

Pour l'application de la photoélasticité, chaque pignon du plan d'expérience a une feuille de matériel photoélastique collée sur un côté (figure 16). Les feuilles de type PSM-1 sont taillées à l'aide d'une fraiseuse à commande numérique pour obtenir un bon mariage entre la roue d'engrenage et la feuille taillée au niveau du profil de la dent. Il est important de noter que la méthode de la photoélasticité employée s'applique pour des roues d'engrenage minces, donc en état plan de contrainte.

Figure 16 Roue d'engrenage avec matériel photoélastique PSM-1

3.3.2 Jauges de déformation

Les jauges de déformation seront, dans une étude à venir, installées en racine de dents pour mesurer les déformations du coté de la dent qui est en compression. Il est très important d'installer les jauges du coté en compression car c'est à cet endroit qu'il y a un jeu pendant l'engrènement. Ceci permet donc d'éviter d'endommager les jauges durant les expériences. Le nombre de jauges varie d'un engrenage à l'autre en fonction de la largeur de face, de l'angle d'hélice et du rapport de conduite qui lui est associé. Cependant, les jauges seront seulement installées sur les roues d'engrenage pignons du plan d'expérience.

Pour une roue d'engrenage droite et mince, quatre jauges lui sont associées. Elles seront installées sur deux dents consécutives au dessus du rayon de la racine et localisées au tiers au deux tiers de l'épaisseur de la dent.

Pour une roue d'engrenage droite à large face, six jauges lui sont associées. Elles seront installées sur deux dents consécutives au dessus du rayon de la racine de la dent et localisées au quart, à la moitié et au trois quarts de l'épaisseur de la dent.

Pour une roue d'engrenage hélicoïdale et mince, quatre jauges lui sont associées. Elles seront installées sur deux dents consécutives au dessus du rayon de la racine de la dent. Les deux dents ont chacune deux jauges placées au tiers et au deux tiers de l'épaisseur de la dent.

Pour une roue d'engrenage hélicoïdale à large face, huit jauges lui sont associées. Elles seront installées sur trois dents consécutives au dessus du rayon de la racine de la dent. La première et la troisième dent ont chacune deux jauges placées au tiers et au deux tiers de l'épaisseur de la dent. La deuxième dent a quatre jauges placées au cinquième, au deux cinquième, au trois cinquième et au quatre cinquième de l'épaisseur de la dent. Il est important de noter que le positionnement des jauges de déformation près du rayon de la racine est différent pour chacun des engrenages. De manière plus exacte, le positionnement des jauges se situe à la jonction de la développante de cercle et de la trochoïde de cône.

Figure 17 Positionnement radial des jauges de déformation

La figure 17 montre schématiquement la position radiale à laquelle les jauges de déformation doivent être collées. Les différentes valeurs du rayon (R_{jauge}) sont données au tableau XI. Elles ont été obtenues en traçant chacune des roues d'engrenage pignons du plan d'expérience avec un logiciel de simulation.

Tableau XI

P_{J}	¢.	F	Npagawa	$R_{\mu\alpha\gamma\sigma}$
		0.5"	24	2.8290"
		0.5	34	4.0450"
	0	4.0	24	2.8290"
		3	34	4.0450"
+		0.57	24	3.0012"
	205	0.5	34	4.3072"
		4.0	24	3.0012"
		3	34	4.3072"
		0.5"	24	1.8897"
	0.	0.5	37	2.9524"
			24	1.8897"
		3	37	2.9524"
0		0.5"	24	2.0083"
	200	0.5	37	3.1441"
		2.0	24	2.0083"
		,	37	3.1441"

Valeurs radiales pour le positionnement des jauges

3.4 Prise de mesures

Dans cette section, il est question de l'acquisition de donnée en rapport à l'application de la méthode de la photoélasticité et aux jauges de torsion mais aussi de la mesure directe par jauges de déformation et accéléromètres.

Dans le cas de la méthode de la photoélasticité, des photographies numériques sont prises à travers un polariscope et sont interprétées à partir d'un logiciel de traitement d'images pour en dégager les valeurs des contraintes de flexion. Toutes les étapes à suivre quant à cette méthode sont décrites dans l'annexe 1.

Dans le cas des jauges de torsion, des accéléromètres et des jauges de déformation, tout le filage nécessaire passe par une bague collectrice (*slipring*) pour se rendre vers un ordinateur. Dans le cas de la mesure du couple, une carte d'acquisition indépendante est installée pour le mesurer instantanément à l'aide d'un multimètre. Le couple doit être mesuré instantanément pour des fins d'ajustement et de contrôle lors des essais expérimentaux. Pour le reste, un système d'acquisition de donnée *Wavebook* sera utilisé pour récupérer les valeurs provenant des jauges de déformation et des accéléromètres. La figure 18 illustre bien tout le matériel nécessaire pour la prise de mesures.

Figure 18 Matériel pour l'acquisition de donnée

Tout est maintenant en place pour l'application de la photoélasticité à la mesure de la contrainte dynamique des engrenages cylindriques.

CHAPITRE 4

APPLICATION DE LA PHOTOÉLASTICITÉ

4.1 Introduction

Le présent chapitre a pour but de présenter la méthode de la photoélasticité. Il s'agit des fondements de la photoélasticité, l'interprétation des franges photoélastiques ainsi que de la mesure des franges photoélastiques. De manière générale, la photoélasticité peut aussi bien mesurer les contraintes que les déformations selon du type de franges observées. Cependant, ce chapitre met l'emphase sur les franges permettant la mesure des contraintes.

Par la suite, différents essais statiques sont effectués sur des plaques minces pour valider cette méthode de mesure expérimentale et ainsi justifier son utilisation pour la mesure de la contrainte dynamique sur des engrenages cylindriques.

4.2 Fondement de la photoélasticité

La méthode de la photoélasticité est fondée sur des principes théoriques simples, explicables par des calculs trigonométriques [28]. Un des avantages de la méthode de la photoélasticité veut que ces calculs trigonométriques soient uniquement nécessaires à la compréhension du fonctionnement des différents instruments de mesures. Ils n'ont pas à être repris lors des essais. Il faut toutefois suivre attentivement les instructions du manufacturier pour obtenir de bons résultats. Dans le cadre de ce projet d'étude, l'instrument de mesure choisi est le polariscope de la série 030 (voir la figure suivante). Il s'agit d'un instrument optique de précision permettant de mesurer quantitativement les contraintes et les déformations. Il le fait par la méthode PhotoStress® à partir de la

réflexion et/ou réfraction photoélastique [26]. La démarche à suivre pour son utilisation est donnée à l'annexe 1.

Figure 19 Assemblage du polariscope de la série 030 (Adapté de Photolastic Division measurement group, Inc., 1992)

Pour bien comprendre les aspects théoriques derrière la méthode de la photoélasticité, il faut maîtriser la connaissance de certains principes de physiques. Ces principes ont été adaptés de R. Bouzidi [28] et ils se définissent comme :

 a. en un point de la surface d'un corps soumis à un chargement, la contrainte normale à la surface est nulle ou négligeable comparativement aux deux autres contraintes. Ces contraintes principales, nommées σ_x et σ_y, se situent dans le plan tangent à la surface, suivant deux directions principales. Les déformations principales, nommées ε_x et ε_y, sont orientées dans les mêmes directions que les contraintes principales dans le cas des matériaux isotropes;

- b. dans le cas des poutres droites, la première direction principale est suivant l'axe ou la longueur de la poutre. l'autre est dans une direction perpendiculaire à la première mais parallèle à la surface;
- c. l'indice de réfraction d'un milieu transparent est le rapport de la vitesse de la lumière dans le vide sur celui de la vitesse de la lumière dans ce milieu;
- d. la lumière se propage sous la forme d'ondes sinusoïdales. Chaque onde peut être décrite plane, monochromatique et représentée par deux grandeurs vectorielles sinusoïdales, en phase et perpendiculaires l'une à l'autre. Les deux grandeurs vectorielles représentent le champ électrique et le champ magnétique. En un point de l'espace, chacun de ces champs est défini comme une fonction sinusoïdale du temps. Donc, à un instant donné, la distribution dans l'espace est sinusoïdale le long de l'axe de propagation. Sous cette forme, la lumière monochromatique est maintenant polarisée du fait que les vecteurs du champ électrique et du champ magnétique restent parallèles à une direction fixe. Les vecteurs du champ électrique et du champ magnétique étant perpendiculaires, synchrones et en phase, il est permis de les alterner au cours des calculs;
- e. de manière générale, les composantes d'une même onde monochromatique, c'est à dire de même période mais de phases et directions différentes se composent pour former une onde elliptique. En un point donné, l'extrémité du vecteur du champ magnétique ou du champ électrique décrit une ellipse dans un champ perpendiculaire à la direction de propagation. Donc, à un instant donné, l'onde est représentée par une hélice elliptique centrée sur l'axe de propagation;
- f. une couleur spécifique est toujours associée à une longueur d'onde provenant d'un rayonnement monochromatique. La lumière blanche visible comprend toutes les longueurs d'ondes comprises entre 800nm et 400nm approximativement. Les couleurs forment donc un spectre passant progressivement par le rouge, l'orange, le jaune, le vert, le bleu, l'indigo et le violet;
- g. L'énergie transportée par une onde lumineuse est proportionnelle au produit des champs électrique et magnétique, donc au carré de l'amplitude de l'un ou l'autre.

4.2.1 Notions supplémentaires

Comme il a été expliqué précédemment, la photoélasticité présente différents phénomènes optiques résultat de certaines propriétés des matériaux. Il est important de les définir et de bien les différencier. Il faut parler d'isotropie, d'anisotropie et de chromaticité. Il faut faire la distinction entre la photoélasticité et la photoélasticimétrie. De plus, il faut bien expliquer la différence entre la biréfringence et la biréfringence accidentelle.

4.2.1.1 Isotropie et anisotropie

P. Robert et A. Rey. [29] stipulent que l'isotropie est la qualité d'un matériau dont les caractéristiques mécaniques sont les mêmes dans toutes les directions, de sorte qu'il se déforme élastiquement ou plastiquement, et à la limite se rompt, toujours dans les mêmes conditions quelle que soit l'orientation de la microstructure. L'anisotropie est relative à un milieu dont l'évaluation des propriétés physiques dépend de la direction suivant laquelle on observe ce milieu. Elle est donc la qualité d'un milieu dont les propriétés varient suivant la direction selon laquelle on les évalue.

4.2.1.2 Chromaticité

P. Robert et A. Rey. [29] définissent la chromaticité comme une caractéristique colorimétrique d'un stimulus de couleur ou d'une réalisation colorée repérable, soit par les coordonnées trichromatiques X et Y, soit par l'ensemble de la longueur d'onde dominante ou complémentaire dans le cas des pourpres et de la pureté. Il faut ensuite parler des propriétés monochromatiques et isochromatiques qui s'associent à la chromaticité. Une propriété monochromatique se dit d'un rayonnement lumineux qui ne comporte que des radiations d'une même longueur d'onde alors qu'une propriété

isochromatique se dit de rayonnements ou de réalisations colorées qui ont même chromaticité.

4.2.1.3 Photoélasticité et photoélasticimétrie

La photoélasticité est la science qui étudie en physique les effets sur la lumière des contraintes ou déformations appliquées à des corps élastiques. Par contre, la technique expérimentale qui sert à mesurer les contraintes par photoélasticité est la photoélasticimétrie. Cependant, dans la littérature, on lui substitue souvent le mot photoélasticité.

4.2.1.4 Biréfringence et biréfringence accidentelle

Comme définition, P. Robert et A. Rey. [29] stipulent que la biréfringence est une propriété que possède un matériau cristallin de produire une double réfraction de la lumière. R. Bouzidi [28] décrit de manière plus détaillée, la différence entre la biréfringence et la biréfringence accidentelle.

Pour qu'un matériau présente le phénomène de biréfringence, il faut qu'une lumière polarisée le traverse. Cependant, elle ne doit pas se propager à la même vitesse suivant chacune de deux directions perpendiculaires propres au corps biréfringent. Donc, chacune des composantes vectorielles suivant ces deux directions se comporte comme une onde plane autonome et progresse à la vitesse propre à cette direction toujours en conservant la même fréquence. Le phénomène de biréfringence peut donc être défini comme un retard optique entre deux composantes.

La biréfringence est une propriété intrinsèque d'un matériau transparent. Cependant, la majorité des matériaux transparents isotropes ne présentent pas naturellement cette propriété. Ils peuvent seulement la présenter lorsqu'ils sont soumis à un chargement quelconque. Ce phénomène se nomme biréfringence accidentelle et son amplitude ou son niveau de sensibilité dépend uniquement de la nature du matériau.

Les matériaux qui sont utilisés pour la photoélasticité possèdent donc un niveau de biréfringence accidentelle très élevée. De plus, les axes de biréfringence du matériel photoélastique utilisé suivent toujours les directions des déformations principales lorsque celui-ci est chargé.

La première notion importante de la biréfringence accidentelle veut que le retard optique δ entre les deux composantes est le même pour toutes les couleurs du spectre en ce qui concerne les phénomènes photoélastiques. Par contre, pour un même retard optique exprimé en longueur, le retard en phase φ augmente à mesure que la longueur d'onde diminue. Le retard en phase est donc inversement proportionnel à la longueur d'onde et prend donc la formulation suivante :

$$\varphi = 2\pi \cdot \frac{\delta}{\lambda} \tag{4.1}$$

4.3 Principes fondamentaux de la lumière polarisée

La section suivante a été adaptée de R. Bouzidi [28] ainsi que d'A. Kuske et G. Robertson [30] expliquant que la vibration associée à la lumière est perpendiculaire à sa direction de propagation. Une source lumineuse émet un agrégat d'ondes contenant des vibrations dans toutes les directions perpendiculaires. Cependant, l'ajout d'un polariseur permet seulement à une composante de ces vibrations d'être transmise. La figure suivante montre cette composante qui est parallèle à l'axe privilégié du polariseur. Sur la figure, l'axe privilégié est nommé α .

Figure 20 Principe de la photoélasticité par transmission (Adapté de R. Bouzidi, 2004)

Un tel faisceau lumineux se nomme lumière polarisée parce que la vibration est contenue dans une direction. Si un autre polariseur est placé à la suite, l'extinction complète du faisceau lumineux transmis peut être obtenue quand les directions des deux polariseurs sont perpendiculaires à l'un à l'autre.

Il est de notion courante que la lumière se propage dans le vide ou dans l'air à une vitesse où $V_L = 3x10^8$ m/s. Dans tout autres corps transparents, la vitesse de la lumière est inférieure et le rapport obtenu entre les deux se nomme indice de réfraction. Dans un corps homogène, cet indice est constant indépendant de la direction de la propagation ou du plan de la vibration. Cependant, dans les cristaux. l'indice de réfraction dépend de l'orientation de la vibration. Certains plastiques se comportent comme un matériau isotrope quand ils sont non chargés mais deviennent optiquement anisotropes une fois soumis à une déformation. La variation de l'indice de réfraction est fonction de la déformation résultante. Cette variation est donc fonction de la contrainte résultante.

Quand un faisceau lumineux polarisé traverse un plastique transparent d'épaisseur t_c, où X et Y sont les directions principales des déformations au point d'étude, deux composantes polarisées se propagent dans les plans X et Y comme illustrés à la figure 20.

La déformation suivant l'axe X se nomme ε_x et celle suivant l'axe Y se nomme ε_y . La vitesse de la lumière vibrant respectivement dans ces directions est représentée par V_x et V_y . Le temps nécessaire pour traverser le plastique pour chacune d'elles devient t_c/V . Le retard relatif entre ces deux faisceaux s'écrit comme :

$$\delta = 2 \cdot V_L \cdot \left(\frac{t_s}{V_s} - \frac{t_s}{V_s} \right) + 2 \cdot t_s \cdot \left(\frac{V_L}{V_s} - \frac{V_L}{V_s} \right) = 2 \cdot t_s \cdot (n_s - n_s)$$
(4.2)

Où n, et n, sont les indices de réfraction.

Le changement relatif de l'indice de réfraction est proportionnel à la différence des déformations principales dans le cas de la photoélasticité par réflexion [26]. Cette loi donne sous forme d'équation la relation suivante :

$$(n_x - n_y) = K \cdot (\mathcal{E}_x - \mathcal{E}_y) \tag{4.3}$$

La constante K se nomme coefficient de contrainte optique car il caractérise une propriété physique du matériau. C'est une constante adimensionnelle habituellement établie par calibration. La combinaison des expressions 4.2 et 4.3 donne maintenant :

$$\delta = 2 \cdot t_{1} \cdot K \cdot (\varepsilon_{1} - \varepsilon_{1}) \tag{4.4}$$

En conséquence, la relation de base pour la mesure de contrainte employant la technique de photoélasticité est :

$$(\varepsilon_x - \varepsilon_y) = \frac{\delta}{2 \cdot t_y \cdot K} \tag{4.5}$$

En raison du retard relatif, les deux ondes n'ont pas la même phase en émergeant du plastique. L'analyseur transmettra seulement une composante de chacune de ces ondes comme illustré à la figure 35. En les projetant sur un écran, ces ondes s'y méleront et l'intensité de la lumière résultante devient une fonction du retard φ , de l'angle entre l'analyseur et la direction des contraintes principales ($\theta = (\beta - \alpha)$) et de l'intensité de la lumière intensité de la lumière cas d'un polariscope plat, l'intensité de la lumière émergente (I_{α}). Dans le cas d'un polariscope plat, l'intensité de la lumière émergente (I_{α}) est définie comme :

$$I_e = I_u \cdot \sin^2(2 \cdot \theta) \cdot \sin^2\left(\frac{\varphi}{2}\right) = I_u \cdot \sin^2(2 \cdot (\beta - \alpha)) \sin^2\left(\frac{\pi \cdot \delta}{\lambda}\right)$$
(4.6)

L'intensité de la lumière devient nulle quand $\beta - \alpha = 0$ ou quand le polariseur/analyseur croisé est parallèle à la direction des contraintes principales. En ajoutant des filtres optiques connus sous le nom de lame quart-d'onde (*W-wave plate*) sur l'axe de propagation de la lumière, on produit ainsi de la lumière circulairement polarisée, et l'image observée n'est pas influencée par la direction des déformations principales.

Figure 21 Représentation schématique du polariscope (Adapté de Photolastic Division measurement group, Inc., 1992)

La figure 21 schématise l'ajout des filtres optiques. Il est important de remarquer qu'il y a deux types de photoélasticité. La photoélasticité par transmission est illustrée en (a) tandis que la photoélasticité par réflexion est illustrée en (b). Dans le cadre de ce projet d'étude, la photoélasticité par réflexion est celle qui est employée. Avec l'ajout des filtres optiques, l'intensité de la lumière sortante devient ainsi :

$$I_c = I_0 \cdot \sin^2 \left(\frac{\pi \delta}{\lambda}\right) \tag{4.7}$$

Dans un polariscope circulaire, l'intensité de la lumière devient nulle quand $\delta = 0$, $\delta = \lambda$, $\delta = 2\lambda$... ou en général lorsque :

$$\delta = n \cdot \lambda$$
 $n = 1, 2, 3, 4...$ (4.8)

La différence des déformations principale peut maintenant s'écrire comme :

$$(\mathcal{E}_{x} - \mathcal{E}_{y}) = \frac{\delta}{2 \cdot t_{y} \cdot K} = n \cdot \frac{\lambda}{2 \cdot t_{y} \cdot K} = n \cdot f = O_{y} \cdot f \tag{4.9}$$

Où O_f représente le résultat des mesures ou le nombre de franges. Ce terme se nomme ordre de frange. La constante f est une constante globale qui regroupe toutes les constantes précédentes. Elle est fonction du matériau utilisé et de la longueur d'onde de la lumière transmise. Dans la littérature, cette constante se nomme coefficient photoélastique et il peut être défini comme la différence entre les contraintes principales nécessaire afin de produire une variation sur la valeur de l'ordre de frange par unité d'épaisseur du matériau utilisé [30].

La loi de Hooke permet d'écrire que :

$$(\sigma_{\gamma} - \sigma_{\gamma}) = \frac{E_{\gamma}}{1 + \nu_{\gamma}} \cdot (\mathcal{E}_{\gamma} - \mathcal{E}_{\gamma})$$
(4.10)

Où E, est le module de Young du matériau et v, est le coefficient de Poisson du même matériau. En combinant les équations 4.9 et 4.10, on obtient :

$$(\sigma_x - \sigma_y) = \frac{E_y}{1 + v_y} \cdot f \cdot O_y \tag{4.11}$$

L'équation 4.11 est la formulation générale pour évaluer les contraintes avec l'application de la photoélasticité. Cependant, cette équation doit être ajustée par l'ajout d'un facteur de correction qui dépend du type de chargement appliqué.

Lorsqu'il s'agit d'un essai en flexion où la charge appliquée est perpendiculaire aux contraintes mesurées, il faut ajouter à l'équation 4.10, le facteur de correction associé à la flexion comme prescrit par la compagnie Photoelastic Division measuring group [26]. Le type de chargement est illustré à la figure suivante.

Figure 22 Chargement perpendiculaire au plan des contraintes

L'équation 4.11 prend maintenant la forme suivante :

$$(\sigma_{\gamma} - \sigma_{\gamma}) = \frac{E_{\gamma}}{1 + \nu_{\gamma}} \cdot f \cdot O_{\gamma} \cdot C_{g}$$
(4.12)

Où C_B est défini comme le facteur de correction pour compenser l'influence de la flexion sur la lecture de l'ordre de frange lors de la prise de mesure. Il s'agit d'un facteur adimensionnel employé lorsque la charge appliquée est perpendiculaire aux contraintes et déformations principales.

Le facteur de correction C_B est défini comme :

$$C_B = \frac{1 + E^{*} \cdot (4t^* + 6t^{*2} + 4t^{*3}) + E^{*2} \cdot t^{*4}}{1 + t^*}$$
(4.13)

$$E^{\otimes} = \frac{E_s}{E_s} \tag{4.14}$$

$$t^* = \frac{t_*}{t_*}$$
 (4.15)

Où E_r et E_s sont respectivement les modules de Young du matériel photoélastique et du spécimen étudié. Il y a aussi t_r et t_s qui sont respectivement les épaisseurs du matériel photoélastique et du spécimen étudié.

Lorsqu'il s'agit d'un essai en flexion où la charge appliquée est localisée dans le même plan que contraintes mesurées, il faut ajouter à l'équation 4.11, le facteur de correction associé à la flexion comme prescrit par la compagnie Photoelastic Division measuring group [26]. Le type de chargement est illustré à la figure suivante.

Figure 2.3 Chargement parallèle au plan des contraintes

L'équation 4.11 prend maintenant la forme suivante :

$$(\sigma_x - \sigma_y) = \frac{E_x}{1 + v_y} \cdot f \cdot O_y \cdot C_p$$
(4.16)

Où C_p est défini comme le facteur de correction pour compenser l'influence de la flexion sur la lecture de l'ordre de frange lors de la prise de mesure. Il s'agit d'un facteur adimensionnel employé lorsque la charge appliquée se situe dans le même que les contraintes et les déformations principales.

Le facteur de correction Cps est défini comme :

$$C_{p_1} = 1 + E^{\pm} t^{\pm}$$
(4.17)

$$E^{\oplus} = \frac{E_{\star}}{E_{\star}} \tag{4.18}$$

$$t^{\otimes} = \frac{t_{\star}}{t_{\star}} \tag{4.19}$$

Où E_c et E_s sont respectivement les modules de Young du matériel photoélastique et du spécimen étudié. Il y a aussi t_c et t_s qui sont respectivement les épaisseurs du matériel photoélastique et du spécimen étudié.

4.4 Interprétation des franges photoélastiques

Lorsqu'un échantillon recouvert d'un enduit photoélastique est soumis à une charge, des franges isochromatiques apparaissent. Elles sont visibles seulement lorsqu'on regarde l'échantillon au travers du polariseur. Plus la charge est élevée, plus le nombre de franges augmente. De plus, les franges vont toujours se concentrer aux endroits où les contraintes sont plus importantes. Ceci est montré à la figure suivante.

Figure 24 Exemples de génération de franges (Adapté de Photolastic Division measurement group, Inc., 1992)

Il y a deux manières de compter les franges lorsqu'elles apparaissent. On peut soit les compter par nombre ou les compter par ordre. Pour le calcul des contraintes, il faut savoir l'ordre des franges. L'ordre des franges observé sur l'enduit photoélastique est proportionnel à l'écart entre les déformations de l'enduit et de l'échantillon.

Donc en appliquant une source de lumière blanche, les franges photoélastiques apparaissent en une série de bandes continues de couleur différentes. Ces bandes ont la forme d'une boucle fermée ou d'une ligne courbée. Chaque bande possède une couleur unique qui est reliée directement à la valeur de l'ordre de frange (O_f). Les couleurs de bandes apparaissent toujours dans la même séquence ce qui rend possible d'associer une valeur à O_f (ordre de frange). Ce phénomène est démontré sur les deux figures suivantes.

Figure 25 Séquence de franges sur une poutre encastrée (Adapté de Photolastic Division measurement group, Inc., 1992)

Figure 26 Séquence de frange sur un spécimen en flexion biaxiale (Adapté de Photolastic Division measurement group, Inc., 1992)

Le polariscope de la série 030 est un instrument à champ noir: lorsque aucune charge n'est appliquée. l'échantillon apparaît noir. Quand on applique la charge graduellement, le gris commence à apparaître suivi du blanc et quand le violet disparaît. le jaune apparaît. Avec plus de charge, le bleu cède sa place pour de l'orange et le vert pour du rouge. Par la suite, le jaune tourne au mauve suivi de la disparition de l'orange pour un bleu plus riche. La frange mauve est très sensible aux déformations ce qui lui mérite le titre de teint de passage et donc possède un ordre de frange égal à un ($O_t = 1$). La figure suivante indique plusieurs valeurs d'ordre de frange associées à leur couleur respective.

Color	Approximate Relative Retardation nm	Fringe Order Oy	$\underset{\mu \varepsilon}{\operatorname{Strain}}$
BLACK	0	0	0
GRAY	160	0.28	265
WHITE	260	0.45	425
PALE YELLOW	345	0.60	570
ORANGE	460	0.80	760
DULL RED	520	0.90	855
PURPLE (TINT OF PASSAGE)	575	1.00	950
DEEP BLUE	620	1.08	1025
DLUE-GREEN	700	1.22	1160
GREEN-YELLOW	800	1.39	1320
ORANGE	935	1.63	1550
ROSE RED	1050	1.82	1730
PURPLE (TINT OF PASSAGE)	1150	2.00	1900
GREEN	1350	2.35	2230
GREEN-YELLOW	1440	2.50	2380
RED	1520	2.65	2520
RED/GREEN TRANSITION	1730	3.00	2850
GREEN	1800	3.10	2950
PINK	2100	3.65	3470
PINK/GREEN TRANSITION	2300	4,00	3800
GREEN	2400	4.15	3940

Figure 27 Caractéristiques des franges isochromatiques (Adapté de Photolastic Division measurement group, Inc., 1992)

4.5 Mesure de l'ordre de frange

Lorsque l'on veut obtenir une plus grande précision sur la valeur de l'ordre de frange, il est suggéré d'utiliser l'une des trois méthodes suivantes :

- a. méthode de la balance nulle (null-balance compensation method);
- b. méthode de Tardy (Tardy compensation method);
- méthode d'incidence oblique (oblique incidence method).

Durant des essais préliminaires, ces trois méthodes de mesure ont été mises à l'épreuve. La méthode d'incidence oblique n'a pas été retenue du fait qu'elle est encombrante et nécessite beaucoup d'ajustement. La méthode de la balance nulle n'a pas été retenue du fait qu'il est très difficile d'obtenir avec constance, un ordre de frange nul à l'aide du compensateur. La méthode de Tardy a été choisie comme méthode de mesure car elle a été la seule des trois méthodes à donner des résultats avec une bonne précision. Les démarches nécessaires pour l'application de ces méthodes sont décrites à l'annexe 1.

4.5.1 Mesure de l'ordre de frange par la méthode de Tardy

Lors des essais de photoélasticité, on ne peut pas se fier uniquement au tableau de la figure 27 pour obtenir l'ordre de frange. Ce tableau sert essentiellement de référence. En utilisant la méthode de Tardy, on peut interpréter l'ordre de frange avec une bonne précision.

Le principe de base de la méthode de Tardy ressemble à une échelle Vernier. Un point de mesure quelconque sur un échantillon chargé se trouve toujours entre deux ordres de frange entiers. Le point de mesure se trouve donc toujours entre l'ordre de frange n et l'ordre de frange n + 1. La figure suivante en est un exemple.

Figure 28 Point de mesure entre deux ordres de franges (Adapté de Photolastic Division measurement group, Inc., 1992)

Le polariscope de la série 030 possède un compensateur spécialement conçu pour la méthode de Tardy. En le déplaçant dans le sens horaire ou anti horaire d'une valeur *r*, la frange d'ordre inférieur ou d'ordre supérieur va se déplacer vers le point de mesure. L'ordre de frange est donc établit en utilisant les relations suivantes :

$$O_r = n + r$$
 si la frange d'ordre inférieur se déplace (4.20)
 $O_r = n + 1 - r$ si la frange d'ordre supérieur se déplace (4.21)

4.6 Essais expérimentaux statiques sur des plaques minces

Des essais expérimentaux statiques sur des plaques minces ont été définis afin de représenter le type de contrainte que l'on retrouve sur une dent d'engrenage soumise à une charge. Trois caractéristiques doivent être retenues pour cette application. La première veut que la contrainte se retrouve dans le même plan que la charge appliquée, montrant ainsi de la tension et de la compression. La deuxième veut que la contrainte soit maximale au niveau du contour. La troisième veut que le matériel photoélastique soit usiné puis collé sur les roues d'engrenage. Les essais statiques doivent tenir compte de ces trois caractéristiques. Il s'agit ici d'étudier le comportement de la méthode face à ces trois conditions particulières.

Ainsi, quatre essais expérimentaux ont été définis. Le premier essai est un test en flexion dans le plan perpendiculaire au plan d'une plaque mince. Le deuxième essai est un test flexion dans le plan d'une plaque mince. Le troisième essai est un test en flexion identique au premier essai, mais avec une plaque mince percée. Le quatrième essai est un test identique au troisième essai. Cependant, la méthode de perçage diffère entre les deux. La plaque et le matériel photoélastique pour le troisième essai sont déjà collés pour être percés par la suite tandis que la plaque et le matériel photoélastique pour le quatrième essai sont percés indépendamment et collés par la suite. Pour tous les essais effectués, les plaques minces sont encastrées à une extrémité et chargée à l'autre extrémité. Cependant, les plaques sont chargées par une déflection contrôlée à l'aide d'une vis micrométrique.

4.6.1 Essai 1 : plaque en flexion

Cet essai a pour but de se familiariser avec l'application de la photoélasticité pour ainsi effectuer une lecture adéquate des franges qui apparaissent lorsque la plaque mince est soumise à une charge. Ce cas n'est pas représentatif du cas d'une roue d'engrenage. La figure suivante illustre une plaque mince en flexion. La plaque est encastrée à une extrémité et chargée à l'autre extrémité.

Figure 29 Plaque mince en flexion

Il faut maintenant évaluer la contrainte théorique de la plaque en flexion pour ensuite la comparer avec les résultats obtenus de la photoélasticité. La plaque mince possède une section de largeur b par une épaisseur t_{s} . Le point de mesure est à une distance de L de la charge appliquée. Le tableau suivant donne les dimensions exactes.

Tableau XII

Valeur numérique des constantes géométrique de la plaque

Constante	L	b	t,
Valeur	190.500 mm	11.455 mm	6.375 mm

La contrainte de la plaque mince est obtenue avec l'équation suivante :

$$\sigma_{I_{-}cyant_{-}nby} = \frac{M \cdot c}{I} \tag{4.22}$$

Où :

$$M = ch \arg e \cdot L$$
 (4.23)

$$c = \frac{t_s}{2} = 3.188 \text{ mm}$$
 (4.24)

$$I = \frac{b \cdot t_s^{-3}}{12} = 247.372 \text{ mm}^4 \tag{4.25}$$

Pour évaluer ce type de contrainte par photoélasticité, il faut se référer à l'équation 4.12 de la section 4.3 où la preuve mathématique a été faite. Avec une nouvelle terminologie, cette équation s'écrit maintenant comme :

$$\sigma_{f_{-}\text{coarl}_{-}\exp} = \frac{E_s}{(1+V_s)} \cdot f \cdot O_f \cdot C_B$$
(4.26)

Tableau XIII

Constantes pour évaluer la contrainte de flexion

I,	τ,	t®	E,	Ε,	E*	C_B	f	ν,
3.073 mm	6.375 mm	0.484	2.5 GPa	70 GPa	0.036	0.803	625 με	0.3

Le tableau XIII indique toutes les valeurs numériques des constantes nécessaires pour évaluer la contrainte de flexion sur la plaque décrite par l'équation 4.26. Elles proviennent des équations 4.13 à 4.15. Le point de lecture doit s'effectuer à la position des deux marques blanches montré à la figure 30. Les cinq essais de déflexion sur cette plaque ont été photographiés et se retrouvent à l'annexe 4. Le tableau suivant résume et compare les résultats obtenus par l'application de la photoélasticité avec la théorie.

Tableau XIV

Charge N	σ _{f theo} MPa	Of	σ _{f rap} MPa	Erreur relative
7.94	19.48	0.71	19.19	-2%
11.91	29.23	1.02	27.57	-6%
15.87	38.97	1.37	37.02	-5%
19.84	48.71	1.76	47.56	-2%
23.81	58.45	2.14	57.83	-1%
	Charge N 7.94 11.91 15.87 19.84 23.81	Charge σ _{f theo} N MPa 7.94 19.48 11.91 29.23 15.87 38.97 19.84 48.71 23.81 58.45	Charge σ _{f dev} O _f N MPa 0.71 7.94 19.48 0.71 11.91 29.23 1.02 15.87 38.97 1.37 19.84 48.71 1.76 23.81 58.45 2.14	Charge σf dev Of σf exp N MPa MPa MPa 7.94 19.48 0.71 19.19 11.91 29.23 1.02 27.57 15.87 38.97 1.37 37.02 19.84 48.71 1.76 47.56 23.81 58.45 2.14 57.83

Photoélasticimétrie sur une plaque en flexion

Les données du tableau XIV indiquent une bonne corrélation entre la théorie et l'application de la photoélasticité. Pour tous les essais, l'erreur relative est inférieure ou égale à 6%. De plus, l'erreur relative moyenne est de 3.2%. Il est donc permis d'affirmer que l'application de la photoélasticité est une méthode de mesure expérimentale précise dans le cas d'un essai simple.

4.6.2 Essai 2 : plaque en flexion dans son plan

Cet essai a pour but de vérifier la précision de l'application de la photoélasticité à de la flexion dans le plan de la plaque. Cet essai permet d'obtenir des contraintes de tension et de compression simultanément. Cette condition correspond à l'état de chargement d'une dent d'engrenage. La figure suivante illustre le type d'essai effectué. Il s'agit d'une plaque en flexion. La plaque est encastrée à une extrémité et chargée à l'autre extrémité.

Figure 31 Plaque mince en flexion dans son plan

Il faut maintenant évaluer la contrainte théorique de la plaque en flexion pour ensuite la comparer avec les résultats obtenus de la photoélasticité. La plaque mince possède une section de largeur *t*, par une épaisseur *b*. Le point de mesure est à une distance de *L* de la charge appliquée. Le tableau suivant donne les dimensions exactes.

Tableau XV

Valeur numérique des constantes géométrique de la plaque

Constante	L	b	Ι,
Valeur	190.500 mm	11.455 mm	6.375 mm

La contrainte de la plaque mince est obtenue avec l'équation suivante :

$$\sigma_{T_{const}^{2}, min} = \frac{M \cdot c}{I}$$
(4.27)

Où :

$$M = ch \arg e \cdot L$$
 (4.28)

$$c = \frac{b}{2} = 5.728 \text{ mm}$$
 (4.29)

$$I = \frac{t_s \cdot b^3}{12} = 798.651 \text{ mm}^4 \tag{4.30}$$

Pour évaluer ce type de contrainte avec l'application de la photoélasticité, il faut se référer à l'équation 4.16 de la section 4.3 où la preuve mathématique a été faite. Avec une nouvelle terminologie, cette équation s'écrit maintenant comme :

$$\sigma_{f_{-}cost_{2}exp} = \frac{E_{x}}{(1+\nu_{x})} \cdot f \cdot O_{t} \cdot C_{px}$$

$$(4.31)$$

Tableau XVI

Constantes pour évaluer la contrainte de flexion dans son plan

t,	t,	1*	E,	Ε,	E	Cpn	f	ν,
3.073 mm	6.375 mm	0.484	2.5 GPa	70 GPa	0.036	1.017	625 με	0.3

Le tableau XVI indique toutes les valeurs numériques des constantes nécessaires pour évaluer la contrainte de flexion sur la plaque décrite par l'équation 4.31. Elles proviennent des équations 4.17 à 4.19.

La figure 32 montre l'essai effectué avec une déflexion de 3.81 mm. Cet essai montre de la tension et de la compression sur le même échantillon. Le point de lecture doit s'effectuer à la position de la marque blanche où il faut prendre une mesure de chaque coté. Les cinq essais de déflexion sur cette plaque ont été photographiés et se retrouvent à l'annexe 4. Le tableau suivant résume et compare les résultats obtenus par l'application de la photoélasticité avec la théorie sur une plaque avec de la flexion dans son plan. La comparaison est faite pour la tension et la compression.

point de lecture pour la plaque en tension

Tableau XVII

Deflection	Charge	$\sigma_{j_{10m}}$	O _j tension	σ _{free} tension	Erreur relative	O ₇ compression	σ _{terp} compression	Erreur
mm	N	MPa		MPa			MPa	
2.54	25.62	35.01	1.00	34.24	-2%	0.86	29.44	-16%
3.81	38.44	52.51	1.48	50.67	-49	1.25	42.79	-19%
5.08	51.25	70.02	1.96	67.10	-4%	1.78	60.94	-13%
6.35	64.06	87.52	2.58	88.33	+197	2.14	73.26	~16%
7.62	76.87	105.03	2,99	102.36	-3%	2.54	86.96	-179

Photoélasticimétrie sur une plaque en flexion dans son plan

Les données du tableau XVII des résultats indiquent une bonne corrélation entre la théorie et l'application de la photoélasticité pour la contrainte de tension. Pour la contrainte de compression, il y a un manque de précision ce qui donne un écart beaucoup plus grand entre la théorie et l'application de la photoélasticité. Dans le cas de la contrainte de tension. l'erreur relative est toujours inférieure ou égale à 4%. L'erreur relative moyenne est de 2.8%. Dans le cas de la contrainte de compression. l'erreur relative est toujours inférieure ou égale à 19%. De plus, l'erreur relative moyenne est de 16.2%. Cet essai a permis de constater lors d'un essai en flexion dans le plan de la plaque, que la contrainte en tension mesurée concorde avec la théorie. Cependant, la contrainte en compression affiche des valeurs de 13% à 19% inférieures à celles de la théorie selon cet essai. Lors de la mesure expérimentale de la contrainte dynamique sur des roues d'engrenage cylindriques, il faut s'attendre à obtenir une contrainte de flexion en tension représentative de la théorie. Il faut aussi s'attendre à obtenir une erreur beaucoup plus importante sur la contrainte de flexion en compression. Une analyse précise des causes de divergence sera présentée au chapitre 5 traitant des engrenages.

4.6.3 Essai 3 : plaque percée en flexion

Cet essai a pour but de vérifier la précision de l'application de la photoélasticité lorsque la contrainte étudiée se situe dans une région où il y a concentration de contraintes. Il est très important de vérifier cet aspect car il se retrouve aussi dans la mesure de la contrainte dynamique sur des roues d'engrenage cylindriques. En effet, la contrainte maximale sur une dent d'engrenage se localise en pied de dent au niveau du contour. Pour tenir compte de cet aspect. l'essai se fait donc sur une plaque dont le matériel photoélastique a été collé et percé par la suite afin d'obtenir des conditions de lecture idéales.

Figure 33 Plaque mince en flexion avec un trou percé

Il faut maintenant évaluer la contrainte théorique de la plaque en flexion pour ensuite la comparer avec les résultats obtenus de la photoélasticité. La plaque mince possède une section de largeur *b* par une épaisseur *t*_s. Le point de mesure est à une distance de *L* de la charge appliquée. Le tableau suivant donne les dimensions exactes.

Tableau XVIII

Valeur numérique des constantes géométrique de la plaque

Constante	L	b	τ,	0
Valeur	190.500 mm	24.409 mm	6.223 mm	7.938 mm

La contrainte au niveau du trou percé de la plaque est obtenue avec l'équation suivante :

$$\sigma_{f_{-coult}3_{-theor}} = K_{f} \frac{M \cdot c}{I}$$
(4.32)

Où :

$$M = ch \arg e \cdot L$$
 (4.33)

$$c = \frac{t_{\star}}{2} = 3.112 \text{ mm}$$
 (4.34)

$$I = \frac{(b - \phi_{max}) \cdot t_s^3}{12} = 330.797 \text{ mm}^4$$
(4.35)

Le facteur K_t est obtenu à l'aide de la table pour une plaque mince trouée en flexion. Cette table se retrouve dans l'ouvrage de J. E. Shigley et C. R. Mischke [25]. La valeur du facteur de concentration de contraintes est de 1.65 (K_t = 1.65).

Pour évaluer ce type de contrainte avec l'application de la photoélasticité, il faut se référer à l'équation 4.12 de la section 4.3 où la preuve mathématique a été faite. Avec une nouvelle terminologie, cette équation s'écrit maintenant comme :

$$\sigma_{I_{-}coull_{-}exp} = \frac{E_{\star}}{(1+V_{\star})} \cdot f \cdot O_{I} \cdot C_{B}$$
(4.36)

Le tableau XIX indique toutes les valeurs numériques des constantes nécessaires pour évaluer la contrainte de flexion sur la plaque décrite par l'équation 4.36. Elles proviennent des équations 4.13 à 4.15.

Tableau XIX

Constantes pour évaluer la contrainte de flexion

I,	t,	1*	E.	Ε,	E*	C8	f	ν,
3.073 mm	6.223 mm	0.496	2.5 GPa	70 GPa	0.036	0.804	625 µc	0.3

La figure 34 montre un des essais effectués avec une déflexion de 2.54 mm. En regardant à gauche et à droite du trou, on remarque clairement les deux régions où il y a concentration de contraintes. Le point de lecture doit s'effectuer à la position des deux marques blanches et à l'intérieur de ces régions. Les cinq essais de déflexion sur cette plaque ont été photographiés et se retrouvent à l'annexe 4.

Le tableau suivant résume et compare les résultats obtenus par l'application de la photoélasticité avec la théorie sur une plaque mince percée en flexion. Il est important de noter que l'interprétation de l'ordre de frange sur cet essai a été beaucoup plus difficile que les deux essais précédents à cause d'une zone de lecture réduite.

Tableau XX

Déflection	Charge N	σ _{cm}	0,	σ _{f eqp} MPa	Erreur
2.54	15.73	46.50	1.50	40.59	-13%
3.81	23.59	69.75	2.34	63.32	-9%
5.08	31.46	93.00	3,00	81.17	-139
6.35	39.32	116.25	3.70	100.11	-14%
7,62	47.18	139,50	4,40	119.05	-15%

Photoélasticimétrie d'une plaque percée en flexion

Les données du tableau XX indiquent une corrélation entre la théorie et l'application de la photoélasticité. Cependant, il faut remarquer que la valeur de la contrainte expérimentale est toujours inférieure à celle de la théorie. Cet écart est causé par la localisation du point de lecture ; la valeur maximale de la contrainte se situe exactement sur le contour du trou, ce qui rend la lecture de la contrainte difficile avec la photoélasticité. Il est simplement impossible d'avoir une précision parfaite sur l'épaisseur des franges et c'est pour cela que les valeurs expérimentales sont inférieures à la théorie. Par contre, l'erreur relative des essais est toujours inférieure ou égale à 15%. De plus, l'erreur relative moyenne est de 12.8%. Il est donc permis de croire que l'application de la photoélasticité est une méthode de mesure expérimentale de précision adéquate ou suffisante dans le cas d'un essai avec concentration de contraintes. Lors de la mesure expérimentale de la contrainte dynamique sur des roues d'engrenage cylindriques, il faut s'attendre à obtenir une contrainte de flexion en tension représentative mais inférieure à la contrainte théorique.

4.6.4 Essai 4 : plaque trouée en flexion

Cet essai a aussi pour but de vérifier la précision de l'application de la photoélasticité lorsque la contrainte étudiée se situe dans une région où il y a concentration de contraintes. Comme dans l'essai précédent, une plaque trouée a été employée. La seule différence avec l'essai précédent est au niveau du trou. La plaque mince et le matériel photoélastique ont été percés séparément et collés par la suite. Ceci a pour but de vérifier le comportement du matériel photoélastique, car dans le cas de la mesure de la contrainte dynamique sur des roues d'engrenage cylindriques, ce dernier a été usiné et collé par la suite.

Figure 35 Plaque mince en flexion avec un trou collé

Il faut maintenant évaluer la contrainte théorique de la plaque en flexion pour ensuite la comparer avec les résultats obtenus de la photoélasticité. La plaque mince possède une section de largeur *b* par une épaisseur *t*_s. Le point de mesure est à une distance de *L* de la charge appliquée. Le tableau suivant donne les dimensions exactes.

Tableau XXI

Valeur numérique des constantes géométrique de la plaque

Constante	L	b	Ι,	O ma
Valeur	190.500 mm	24.409 mm	6.248 mm	7.938 mm

La contrainte au niveau du trou collé de la plaque est obtenue avec l'équation suivante :

$$\sigma_{T_{coun4_bhos}} = K_{t} \frac{M \cdot c}{I}$$
(4.37)

Où :

$$M = ch \arg e \cdot L \qquad (4.38)$$

$$c = \frac{l_s}{2} = 3.112 \text{ mm}$$
 (4.39)

$$I = \frac{(b - \phi_{max}) \cdot I_s^3}{12} = 334.864 \text{ mm}^4$$
(4.40)

Le facteur K_i est obtenu à l'aide de la table pour une plaque mince trouée en flexion. Cette table se retrouve dans l'ouvrage de J. E. Shigley et C. R. Mischke [25]. La valeur du facteur de concentration de contraintes est de 1.65 (K_i = 1.65). Pour évaluer ce type de contrainte avec l'application de la photoélasticité, il faut se référer à l'équation 4.12 de la section 4.3 où la preuve mathématique a été faite. Avec une nouvelle terminologie, cette équation s'écrit maintenant comme :

$$\sigma_{\gamma_{-}, com4_cop} = \frac{E_{c}}{(1+v_{c})} \cdot f \cdot O_{\gamma} \cdot C_{R}$$
(4.41)

Le tableau XXII indique toutes les valeurs numériques des constantes nécessaires pour évaluer la contrainte de flexion sur la plaque décrite par l'équation 4.41. Elles proviennent des équations 4.13 à 4.15.

Tableau XXII

Constantes pour évaluer la contrainte de flexion

<i>t</i> ,	<i>t</i> .	11	E.	E.	E÷	C_{β}	1	T_{i}
3.073 mm	6.248 mm	0.494	2.5 GPa	70 GPa	0.036	0.804	625 µc	0.3

La figure 36 montre l'essai avec 2.54 mm de déflexion. En regardant à gauche et à droite du trou, on remarque les deux régions où il y a concentration de contraintes. On remarque aussi certaines anomalies. Si l'on regarde l'essai dans son ensemble, il y a un manque de symétrie par rapport à l'axe longitudinal de la plaque. Il y a aussi certaines déformations quant à la dispersion des franges en comparant avec l'essai précédent (voir la figure 34). Le champ de contraintes est perturbé dans les zones de contraintes maximales.

Comme pour l'essai précédent, le point de lecture doit s'effectuer à la position des deux marques blanches et à l'intérieur des régions où il y a concentration de contraintes. Les cinq essais de flexion sur cette plaque ont été photographiés et se retrouvent à l'annexe 4. Le tableau XXIII résume et compare les résultats obtenus par l'application de la photoélasticité avec la théorie sur une plaque mince en flexion. Il est important de noter que l'interprétation de l'ordre de frange sur cet essai a entrainé le même niveau de difficulté que l'essai précédent à cause de la zone de lecture très réduite.

Tableau XXIII

Photoélasticimétrie d'une plaque trouée en flexion

Déflection mm	Charge N	σ _{fritei} . MPa	O _f	σ _{f eq} MPa	Erreur relative
2.54	15.92	46.69	1.40	37.82	-19%
3.81	23.88	70.04	2.20	59.51	-15%
5.08	31.84	93.38	2.90	78.45	-16%
6.35	39.80	116.73	3.60	97.39	-17%
7.62	47.76	140.07	4.30	116.32	-17%

En comparant les résultats expérimentaux obtenus pour cet essai avec ceux de l'essai précédent, il y a une moins bonne corrélation entre la théorie et l'application de la photoélasticité. Toujours en comparaison avec l'essai précédent, la valeur de la contrainte expérimentale est encore une fois inférieure à celle de la théorie et ce, pour les mêmes raisons évoquées dans l'analyse à la section 4.6.3. Pour l'essai 4, l'erreur relative des essais est toujours inférieure ou égale à 19%. De plus, l'erreur relative moyenne est de 16.8%. Ce qui retient surtout l'attention pour cet essai, c'est l'apparition de perturbations importantes dans le champ de contraintes (dispersion des franges sur le matériel photoélastique à la figure 36). En regardant cette plaque de plus près, deux différences ont été remarquées par rapport à la plaque percée de la section 4.5.3. Premièrement, le trou du matériel photoélastique est décentré de quelques millièmes de pouce par rapport à celui de la plaque malgré les précautions importantes prises lors de l'assemblage. Deuxièmement, la colle qui joint le matériel photoclastique et la plaque s'est rétractée durant son durcissement. En combinant ces deux aspects, on obtient un trou non-uniforme entre la plaque et le matériel. La figure suivante illustre ce phénomène.

Figure 37 Différences sur la plaque mince trouée

Comme il a été dit précédemment, il y a seulement deux différences entre la plaque de l'essai 3 et celle de l'essai 4. Ces différences sont les seules causes pouvant expliquer les perturbations du champ de contraintes observées lors de l'essai 4 (voir la figure 51 et l'annexe 4). Il est permis de croire que l'application de la photoélasticité est une méthode de mesure expérimentale acceptable dans le cas d'un essai avec concentration de contraintes où la plaque mince et le matériel photoélastique ont été usinés séparément et collés par la suite. Lors de la mesure expérimentale de la contrainte dynamique sur des roues d'engrenage cylindriques, il faut s'attendre à obtenir une contrainte de flexion en tension représentative mais inférieure à la contrainte réelle. Il faut aussi s'attendre à obtenir des déformations quant à la dispersion des franges sur le matériel photoélastique. Par contre, le niveau d'erreur introduit demeure à vérifier.

4.7 Conclusion

Ce chapitre a traité, en premier lieu, de l'application générale de la photoélasticité. Les fondements de la méthode ainsi que l'interprétation et la mesure des franges photoélastiques y sont définis. Par la suite, il a traité d'essais expérimentaux statiques sur des plaques minces afin de représenter les conditions retrouvées sur des dents de roues d'engrenage soumises à une charge. Les quatre essais réalisés ont donné des résultats permettant de mettre en perspective la précision de la méthode dans le cas des engrenages, que ce soit en statique ou en chargement dynamique. Avec les roues d'engrenage, il faudra s'attendre à une erreur sur la lecture pouvant être importante.

CHAPITRE 5

ESSAIS EXPÉRIMENTAUX ET ANALYSE DES RÉSULTATS

5.1 Introduction

Dans ce chapitre, il est question des essais expérimentaux ainsi que de l'analyse des résultats provenant de la photoélasticité. De manière plus précise, les ordres de frange des différents essais ont été extraits pour établir les valeurs du facteur dynamique $K_{c}^{+}_{eqp}$ et les valeurs de la contrainte de flexion en tension σ_{f-eqp} . Cependant, les essais expérimentaux n'ont pas été concluants. L'analyse dans ce chapitre traite donc des différents phénomènes observés expliquant ainsi l'échec des essais.

5.2 Photoélasticimétrie

Lorsque la méthode de la photoélasticité est appliquée, des franges apparaissent si l'échantillon testé est soumis à une charge. Dans le cas des roues d'engrenage pendant l'engrènement, ce sont les dents qui sont soumises à des charges. Des franges vont apparaître à trois endroits précis :

- à la position du contact;
- b. en pied de dent du coté flexion positive;
- c. en pied de dent du coté flexion négative.

Il faut maintenant vérifier comment le matériel photoélastique réagira au chargement. La première vérification se fait avec deux roues d'engrenages composées uniquement de matériel photoélastique de type PSM-1. Cette première vérification est montrée à la figure suivante.

Figure 38 Contrainte de contact et contraintes de flexion

La figure 38 illustre bien les trois contraintes en présence. L'intensité de la contrainte de contact est la plus grande des trois. La contrainte de flexion en compression arrive au deuxième rang suivie de la contrainte de flexion en tension. Cependant, il s'agit d'un essai statique n'impliquant que deux roues d'engrenage faites seulement de matériel photoélastique. Le contact entre les deux roues est plastique sur plastique. Par contre, pour les essais expérimentaux, le contact est métal sur métal, ce qui veut dire que le matériel photoélastique collé sur les roues d'engrenage testées ne sera jamais en contact pendant l'engrènement. Ceci a pour but d'éviter des erreurs de lecture provenant d'un contact indésirable.

La deuxième vérification se fait maintenant avec deux roues d'engrenages en acier pour lesquelles le matériel photoélastique de type PSM-1 a été collé sur l'une d'entre elle. Cette deuxième vérification est montrée à la figure suivante.

charge II?

Figure 39 Contrainte de flexion en tension

La figure 39 montre la présence de la contrainte de flexion en tension mais ne montre pas la contrainte de flexion en compression ni la contrainte de contact. En faisant une comparaison avec les résultats obtenus au chapitre précédent, on peut conclure que l'erreur sur la lecture de la contrainte de flexion en compression est très grande mais qu'il est possible de travailler seulement avec la contrainte de flexion en tension pour obtenir son amplitude et dégager les différentes valeurs du facteur dynamique. La contrainte de contact est par ailleurs complètement absente.

La seule difficulté lors de l'application de la photoélasticité est de déterminer correctement l'ordre de frange. Dans le cadre de la mesure de la contrainte dynamique des engrenages cylindrique, l'ordre de frange a été déterminé par une approche comparative à l'aide d'un appareil de calibration (Figure 40) en utilisant la méthode de Tardy (voir l'annexe 1). En d'autres mots, l'ordre de frange est évalué en comparant les photographies des essais expérimentaux avec un échantillon en flexion sur l'appareil de calibration. Pour chaque essai, il fallait localiser la contrainte maximale et identifier visuellement la couleur associée à l'ordre de frange. Par la suite, il fallait retrouver cette même couleur sur l'échantillon en flexion pour en dégager l'ordre de frange.

Figure 40 Montage de l'appareil de calibration pour la photoélasticité

À l'aide des différentes photos prises durant les essais, il devrait être possible de déterminer les valeurs du facteur dynamique expérimental K_i^+ _{esp} ainsi que les valeurs de la contrainte de flexion en tension $\sigma_{f,esp}$.

Le facteur dynamique expérimental doit être obtenu en faisant un rapport mathématique de la valeur de l'ordre de frange dynamique sur la valeur de l'ordre de frange statique. L'ordre de frange dynamique est obtenu lorsque les roues d'engrenage sont en mouvement de rotation et en appliquant un couple donné. L'ordre de frange statique est obtenu lorsque les roues d'engrenage sont au repos et en appliquant le même couple.

Figure 41 Ordre de frange statique et dynamique sur une roue d'engrenage

La figure 41 montre l'ordre de frange statique et dynamique de l'essai expérimental $P_aA\psi 20^{\circ}F\psi_2N34T275\omega500$ où la charge appliquée est représentée par une flèche blanche. Les photos montrent des contraintes sans lien avec l'aspect habituel des contraintes dans un engrenage en prise. Une comparaison des figures 38 et 41 illustre la divergence. Néanmoins, il existe une différence appréciable entre l'ordre de frange statique et dynamique. Cette différence permet une évaluation du facteur dynamique. Il va sans dire que le facteur dynamique tiré de la comparaison des images de la figure 41 ne conduira pas à l'évaluation du facteur habituel d'accroissement de la contrainte, mais plutôt à l'estimation de l'effet dynamique sur l'ensemble des phénomènes présents dans cette mesure, et affectant le champ de contraintes observé.

Le facteur dynamique de la figure 41 est établi par le rapport de l'ordre de frange dynamique sur l'ordre de frange statique:

$$K'_{resp} = \frac{O_1 dynamique}{O_1 statique} = \frac{0.85}{0.74} = 1.15$$
(5.1)

Pour obtenir la contrainte du coté tension $\sigma_{f exp}$, il faut utiliser l'ordre de frange dynamique adéquat dans l'équation suivante :

$$\sigma_{r \exp} = \frac{E_s}{(1+V_s)} \cdot f \cdot O_r \cdot C_{ps}$$
(5.2)

Où :

$$C_{\mu\nu} = 1 + E^{\pm} t^{\pm}$$
(5.3)

$$E^{\otimes} = \frac{E_{\odot}}{E_{\odot}}$$
(5.4)

$$t^{\otimes} = \frac{t_c}{t_s}$$
(5.5)

Les équations (5.2) à (5.5) sont exactement les mêmes que les équations (4.17) à (4.19) et l'équation (4.31). Cependant, la contrainte de flexion exprimée par l'équation (4.31) s'écrit comme :

$$(\sigma_1 - \sigma_2) = (\sigma_1 - \sigma_2) = \frac{E_1}{(1 + v_1)} \cdot f \cdot O_1 \cdot C_p,$$
(5.6)

Dans le cas des plaques décrites au chapitre précédent, la première contrainte principale σ_1 est équivalente à la contrainte suivant l'axe longitudinal de la plaque σ_3 . Il en est de même pour la deuxième contrainte principale σ_2 qui est équivalente à la contrainte σ_3 qui est perpendiculaire à l'axe longitudinal de la plaque, mais dans le plan de la plaque. Étant donné la localisation du point de mesure près du bord de la plaque, la contrainte σ_2 ou σ_3 était nulle. L'équation (5.6) devient ainsi :

$$\sigma_1 = \sigma_y = \sigma_{f_{-const2}}}}}}}}}(5.7)}$$

Dans le cas de la contrainte de flexion en tension sur la dent d'une roue d'engrenage, l'équation (5.2) s'écrit aussi comme l'équation (5.6) :

$$(\sigma_1 - \sigma_2) = \frac{E_s}{(1 + v_s)} \cdot f \cdot O_1 \cdot C_{ps}$$
(5.8)

En comparaison avec l'équation (5.6), les axes des contraintes principales (σ_1 et σ_2) ne coïncident pas avec les contraintes σ_3 et σ_3 du repère cartésien. Cependant, l'une des deux contraintes principales possède une valeur nulle au point de lecture. La façon la plus efficace d'illustrer ce cas est d'utiliser un modèle d'éléments finis à deux dimensions. Celui-ci permettra de vérifier l'amplitude des contraintes principales.

Un modèle à une dent a donc été choisi. La dent possède un pas diamétral de 4 po⁴, une largeur de face d'un demi-pouce. La roue d'engrenage initiale possède 24 dents. Le couple appliqué est de 275 Nm, ce qui résulte en une charge tangentielle (W^4) de 1732.3 N et une charge radiale (W^4) de 630,5 N appliquées en sommet de dent. Les deux figures suivantes illustrent le modèle.

Figure 42 Modèle complet et vue agrandie

Le modèle est traité avec le logiciel ANSYS pour en extraire les deux contraintes principales. L'équation de la contrainte de flexion de l'AGMA correspond à la contrainte principale du coté tension. Avec une charge appliquée en sommet de dent, elle s'écrit comme :

$$\sigma_{\gamma} = W^{\gamma} \cdot \frac{P_{\sigma}}{F} \cdot \frac{1}{J} = 86.3 \text{ MPa}$$
(5.9)

La figure 43 montre les champs associés à la première contrainte principale (σ_I) du coté en tension. Elle possède une amplitude maximale de 113.79 MPa. Il est important de noter que la localisation de la contrainte maximale (σ_I) est plus basse que le point de rencontre entre la développante de cercle et la trochoïde de cône. Il faut aussi noter que son amplitude est plus grande que celle de la norme. Le modèle de la dent utilisé est une représentation exacte de la roue d'engrenage $P_{\alpha}A\psi 0^{\alpha}FI/_{2}N2A$. Cette dent a été taillée avec un couteau usé, donc hors-norme. Ce couteau a ainsi produit un congé dont la courbure est inférieure à la courbure standard provoquant une concentration de contrainte plus importante.

Figure 43 Champ de contraintes associés à σ_1

La figure 44 montre les champs associés à la contrainte principale minimale (σ_2) du coté en tension. Elle possède une amplitude maximale de 0.24 MPa où se situe la valeur maximale de la première contrainte principale.

Figure 44 Champ de contraintes associés à σ_2

Étant donné la localisation du point de mesure qui est sur le contour du profil et les résultats obtenus avec l'analyse par éléments finis, il peut être considéré que la contrainte σ_2 est nulle où σ_1 est maximum. L'équation (5.8) devient maintenant :

$$\sigma_1 = \sigma_{f \exp} = \frac{E_s}{(1+v_s)} \cdot f \cdot O_f \cdot C_p$$
(5.10)

Le tableau suivant indique maintenant toutes les valeurs numériques des constantes nécessaires de l'équation (5.10) pour évaluer la contrainte de flexion en tension sur une dent d'engrenage. Les valeurs numériques du tableau XIV sont valables pour tous les essais expérimentaux associés à la mesure de la contrainte dynamique des engrenages cylindriques.

Tableau XXIV

Valeur numérique des constantes pour les engrenages

<i>I</i> ,	1,	t*	E,	Ε,	E^{\pm}	Cp.	1	V_{n}
0.121**	0.5**	0.242	2.5 GPa	207 GPa	0.012	1.003	625 µc	0.3

5.3 Essais expérimentaux

Lors de chaque montage, une séquence d'opération a été établie pour éviter des erreurs de manipulation. Voici donc la démarche à suivre pour la mesure de la contrainte dynamique des engrenages cylindriques avec l'application de la photoélasticité :

- a. installer les roues d'engrenage adéquates sur les arbres;
- b. brancher l'instrumentation pour les jauges de torsion;
- c. ajuster l'entraxe des arbres pour obtenir le rapport de conduite spécifié;
- d. graisser les roues d'engrenage pour avoir une bonne lubrification;
- positionner et ajuster le polariscope ainsi que l'appareil photo numérique;
- f. ajuster le couple à 275 Nm en mode statique et prendre une photo;
- g. ajuster le couple à 300 Nm en mode statique et prendre une photo;
- h. allumer le moteur du banc d'essais et ajuster la vitesse de rotation à 500 tr/min ainsi que le couple à 275 Nm;
- vérifier la stabilité de la vitesse de rotation et du couple appliqué et prendre plusieurs photos;
- arrêter le moteur et laisser refroidir les roues d'engrenage;

- k. allumer le moteur du banc d'essai et ajuster la vitesse de rotation à 500 tr/min ainsi que le couple à 300 Nm;
- vérifier la stabilité de la vitesse de rotation et du couple appliqué et prendre plusieurs photos;
- m. arrêter le moteur et laisser refroidir les roues d'engrenage:
- allumer le moteur du banc d'essai et ajuster la vitesse de rotation à 1000 tr/min ainsi que le couple à 275 Nm;
- vérifier la stabilité de la vitesse de rotation et du couple appliqué et prendre plusieurs photos;
- p. arrêter le moteur et laisser refroidir les roues d'engrenage:
- q. allumer le moteur du banc d'essai et ajuster la vitesse de rotation à 1000 tr/min ainsi que le couple à 300 Nm;
- r, vérifier la stabilité de la vitesse de rotation et du couple appliqué et prendre plusieurs photos;
 - s. arrêter le moteur et laisser refroidir les roues d'engrenage;
 - débrancher l'instrumentation pour les jauges de torsion:
 - démonter les roues d'engrenage sur les arbres.

Une fois que tous les essais ont été effectués, les photographies numériques sont identifiées et classées pour en faire l'analyse.

5.3.1 Essais expérimentaux sur la roue d'engrenage Pa4y0°F1/2N24

Les essais effectués sur cette roue n'ont rien donné de tangible. Le premier essai effectué pour un couple de 275 Nm et une vitesse de rotation de 500 RPM a produit des mesures. Cependant, lors de la variation du couple et de la vitesse de rotation, le montage s'est mis à vibrer à cause d'une mauvaise lubrification. Ceci a entrainé une usure prématurée des dents sur les roues d'engrenage. Beaucoup de chaleur s'en est dégagée contaminant le matériel photoélastique et rendant ainsi le reste des essais inutilisable.

Figure 45 Effet de la chaleur sur le matériel photoélastique

La chaleur est très néfaste sur le matériel photoélastique car elle y introduit des franges permanentes. L'effet de la chaleur cause une dilatation de la roue d'engrenage dont l'effet est maximal au rayon de racine comme montré à la figure 45. De plus, la contrainte de flexion se retrouve à peu près au même endroit ce qui rend les mesures par la méthode de la photoélasticité très difficiles.

Pour conclure sur les essais expérimentaux effectués sur cette roue d'engrenage, la photoélasticité détecte une contrainte du coté habituel de flexion positive mais ne détecte pas la contrainte de flexion en compression ni la contrainte de contact. De plus, la contrainte de flexion positive (tension) n'est pas bien localisée par rapport à la réalité. L'analyse de ces résultats est faite à la section 5.4 de ce chapitre.

5.3.2 Essais expérimentaux sur la roue d'engrenage Pa4w0°F1/2N34

Les essais effectués sur cette roue se sont bien déroulés mais les résultats obtenus ont été difficiles à interpréter. Le matériel photoélastique était moins sensible que sur la roue précédente. Les franges apparaissaient difficilement et étaient perturbées par la dilatation causé par la chaleur. La figure suivante montre la dilatation qui masque la contrainte de flexion.

Figure 46 Effet de la chaleur sur le matériel photoélastique

La figure 46 illustre deux scénarios. L'image de gauche est la roue d'engrenage durant un essai. Elle est donc chargée et en mouvement. L'image de droite est la même roue d'engrenage après les essais. Elle est arrêtée et n'a aucune charge appliquée. L'effet dynamique sur les franges est difficile à voir sur l'image de gauche.

Pour conclure sur les essais expérimentaux effectués sur cette roue d'engrenage, la photoélasticité détecte une contrainte du coté de la flexion positive, mais ne détecte pas la contrainte de flexion en compression. De plus, la contrainte du coté de la flexion positive n'est pas bien localisée par rapport à la réalité. L'analyse de ces résultats est faite à la section 5.4.

5.3.3 Essais expérimentaux sur la roue d'engrenage Pa4w20°F1/2N24

Les essais effectués sur cette roue se sont bien déroulés mais les résultats obtenus ont été difficiles à interpréter. Le matériel photoélastique affichait une bonne sensibilité comme en témoigne l'image de gauche de la figure 47. Cependant, l'effet de la chaleur engendrée par l'engrènement des roues d'engrenage s'est fait sentir avec la progression des essais. Ceci a donc amené une juxtaposition de franges comme en témoigne l'image de droite de la figure 47.

Figure 47 Effet combiné du couple et de la chaleur sur le PSM-1

Pour conclure sur les essais expérimentaux effectués sur cette roue d'engrenage, la photoélasticité détecte une contrainte du coté de la flexion positive mais ne détecte pas la contrainte de flexion en compression ou la contrainte de contact. De plus, la contrainte du coté habituel de la tension n'est pas bien localisée par rapport à la réalité. L'analyse de ces résultats est faite à la section 5.4.

5.3.4 Essais expérimentaux sur la roue d'engrenage Pa4w20°F1/2N34

Les essais effectués sur cette roue se sont bien déroulés, mais les résultats obtenus ont été très difficile à interpréter. Le matériel photoélastique affichait une très grande sensibilité. Cependant, l'effet de la chaleur engendrée par l'engrènement des roues d'engrenage s'est fait sentir très rapidement avec la progression des essais. Ceci a donc amené une juxtaposition de franges comme en témoigne l'image la figure 48. Contrairement à la figure 47, l'effet de la chaleur a été beaucoup plus néfaste.

Figure 48 Effet combiné du couple et de la chaleur sur le PSM-1

Pour conclure sur les essais expérimentaux effectués sur cette roue d'engrenage, la photoélasticité détecte une contrainte de flexion positive mais ne détecte pas la contrainte de flexion en compression ou la contrainte de contact. De plus, la contrainte de flexion positive n'est pas bien localisée par rapport à la réalité. L'analyse de ces résultats est faite à la section 5.4 de ce chapitre.

5.3.5 Résultats expérimentaux

La première étape à suivre pour la mesure de la contrainte dynamique des engrenages cylindriques est de calculer le facteur dynamique K_c ' ainsi que la contrainte de flexion σ_l selon la norme de l'AGMA, car ce sont les deux paramètres qui peuvent être vérifiés et mesurés expérimentalement. Le tableau suivant donne les valeurs de ces deux paramètres pour tous les essais expérimentaux dictés par le plan d'expériences.

Tableau XXV

Paire d'engrenage étudiée	W'(N)	<i>K</i> .,	<i>K</i> , '	- K,	K _e	$K_{\overline{n}}$	J	$\sigma_l(MPa)$
P_400°FUN24T275co500	1732.28	-t	1.560	1.036	1.229	-t	0,341	125.176
P_ApprF(_N24T275@1000	1732.28	1	1.793	1.036	1.229	1	0.341	143.799
P_4@0°F':N24T300w500	1889,76	1	1.560	1.036	1,229	1	0.341	136,556
P.490°F1:\247300@1000	1889,76	1	1.793	1.036	1.229	1	0.341	156,872
P_AptrE1:N34T275w500	1237.35	1	2.222	1.039	1.229	1	0.385	113,071
P2490°F55N34T27501000	1237.35	1	2.776	1.039	1.229	1	0.385	141.236
P _d 4\u00f900FU3N34T300\u00f00	1349,83	1	2.222	1.039	1.229	1	0,385	123.350
P_490°F%N34T300w1000	1349,83	1	2.776	1.039	1.229	1.	0.385	154.076
P_4\u00c0207E2N24T275w500	1627.81	1	2.297	1.036	1.229	1	0.497	111.593
P _{st} 4 \u00c020°F1/sN24T275\u00fte01000	1627,81	1	2,900	1,036	1.229	1	0,497	140,876
P_Hy20°F%N24T300w500	1775.80	1	2.297	1.036	1.229	1	0.497	121.737
P_1920°F%N24T300@1000	1775,80	1	2.900	1.036	1.229	1	0.497	153.683
P_Ay20°F%N34T275es500	1162.72	1	2.264	1.039	1.229	1	0,590	66,375
P_4w20°F%N34T275@1000	1162.72	-1	2,837	1.039	1.229	1	0.590	83,184
P_Ay20°F\%N34T300w500	1268,43	1	2.264	1.039	1.229	1	0.590	72.409
P_Ay20°FU:N34T300@1000	1268,43	1	2.837	1.039	1.229	1	0,590	90,747
P_6\u00f7_N24T275\u00f6500	2598,43	1	1,458	1,014	1.229	1	0.341	257.437

Contraintes de flexion théoriques selon l'AGMA

Paire d'engrenage étudiée	W(N)	<i>K.</i> ,	K.	<i>K</i> ,	Ka	Ks	1	$\sigma_t(MPd)$
P_dw0"Ft:N24T275w1000	2598.43	1	1.647	1.014	1.229	1	0.341	290.916
P.640TF N2473006500	2834.65	1	1,458	1.014	1.229	1	0,341	280,840
P_6w0°F(:N24T300w1000	2834.65	1	1.647	1.014	1.229	1	0.341	317.363
P fup FP N377275er500	1709,49	1	2.030	1.017	1.229	1	0,395	204,312
P.640"F92N37T275@1000	1709,49	1	2.493	1.017	1.229	1	0.395	250.868
P.5.90°FUN37T300o500	1864,90	1	2,030	1,017	1.229	1	0.395	222.885
P.5.90°F ⁺ :N37T300es1000	1864.90	1	2,493	1.017	1.229	1	0,395	273,674
P_6w20°FV:N371275ei500	1606,40	1	1.714	1.017	1.229	1	0,615	97,844
P_6w20°F%N37T275co1000	1606,40	1	2,016	1.017	1.229	1	0.615	115,145
P_ftq20°FUN37T300ea500	1752,43	1	1.714	1.017	1.229	1	0.615	106.739
P_fow20°FUN37T300es1000	1752.43	1	2.016	1.017	1.229	1	0.615	125.613
P_Au207FCsN24T275cs500	2441.72	1	1.847	1.014	1.229	1	0,499	196,791
P_6.w20°F%N24T275es1000	2441.72	1	2.223	1.014	1.229	1	0,499	236,934
P_6.920°FVN24T300co500	2663,70	1	1.847	1.014	1.229	1	0,499	214.681
P_6w20°F%N24T300w1000	2663,70	1	2.223	1.014	1.229	1	0,499	258,474

Tableau XXV (suite)

La première colonne du tableau XXIV donne tous les paramètres étudiés. Elle indique le pas diamétral, l'angle d'hélice, la largeur de face, le nombre de dents, le couple ainsi que la vitesse de rotation. Il est à noter que le tableau complet se retrouve à l'annexe 5.

Le tableau suivant présente maintenant les résultats de la photoélasticité appliquée à la mesure de la contrainte dynamique des engrenages cylindriques. Il indique les valeurs de l'ordre de frange statique et dynamique, les valeurs du facteur dynamique expérimental et les valeurs de la contrainte évaluée du coté flexion positive. La valeur est mesurée à la position de contrainte maximale malgré le fait que cette position soit complètement erronée par rapport à ce à quoi l'on pouvait s'attendre. Toutes les photos des essais expérimentaux sont disponibles à l'annexe 6.

Tableau XXVI

Paire d'engrenage étudiée	O ₁ statique	O, dynamique	K	$\sigma_{t \to q}(MPa)$
P_ApprFi_N24T275@500	0.40	0.75	1.88	74.86
P,4wrFi2N24T275@1000	0.40	N/D	N/D	N/D
P.A.W/FF1:N24T300w500	0.45	N/D	N/D	N/D
P.4 WTFI:N24T300@1000	0.45	N/D	N/D	N/D
P.AptrF1:N34T275:0500	0.45	0,60	1.33	59.89
P.A. 90°F%N34T275@1000	0,45	0.70	1.56	69.87
P_4\$CFT:N34T3000500	0.50	0.72	1.44	71,87
P_AWTE:N34T300es1000	0.50	0,80	1.60	79.85
P,4\u00fev20'FV2N24T275@500	0,70	0,88	1.26	\$7,84
P.4 \u00c0207F1:N24T275\u0000	0.70	1.05	1.50	104.81
P_4w20*F%N24T300@500	0,86	1.10	1.28	109.80
P_4y20°F5N24T300@1000	0.86	1.20	1,40	119.78
P.A. w20'F/ N34T275w500	0.74	1,00	1.35	99.82
P,Ay20'F%N34T275@1000	0.74	1.20	1.62	119.78
P_Ay20*F!:N34T300w500	0.82	1.20	1.46	119.78
P_Ay20°F%N34T300w1000	0.82	1,40	1.71	139.74

Résultats expérimentaux

Il est important de remarquer que seulement les roues d'engrenage avec un pas diamétral de 4 po⁻¹ ont été étudiées. En fait, les essais expérimentaux ont été arrêtés. Deux raisons ont motivé l'arrêt de l'expérimentation. La première raison s'appuie sur l'absence de la contrainte de flexion en compression pour tous les essais. La deuxième raison est la mauvaise localisation de la contrainte de flexion positive pour tous les essais. À ce stade des essais expérimentaux, il semblait inutile de poursuivre.

5.4 Analyse des résultats

Maintenant que des résultats partiels sont présentés, une analyse peut être faite pour expliquer les différents phénomènes présents dans les mesures de photoélasticimétrie. La première étape consiste à vérifier les écarts relatifs entre les valeurs théoriques et les résultats expérimentaux portant sur le facteur dynamique K_x^- et la contrainte de flexion positive σ_b .

Tableau XXVII

Paire d'engrenage étudiée	K. dec	K. '	1 K. *	σ_{fexp} (MPa)	$\sigma_{f \ min}$ (MPa)	$E \sigma_t$
P_490'F' N24T275@500	1.560	1.88	20,15%	125.176	74.86	-40%
P_AWCF1:N24T275@1000	1.793	N/D	N/D	143,799	N/D	N/D
P_4\$00'F1:N24T300:0500	1,560	N/D	N/D	136,556	N/D	N/D
P_4w0°F1_N24T300@1000	1.793	N/D	N/D	156,872	N/D	N/D
P_Ay0°F%N34T275co500	2.222	1.33	-40.00%	113.071	59.89	-47%
P,440°F%N34T275co1000	2.776	1.56	-43,96%	141,236	69,87	-51%
PA40°F(N34T300@500	2.222	1.44	-35.20%	123,350	71.87	-42%
P_Aw0°F%N34T300w1000	2.776	1,60	-42,36%	154,076	79.85	-48%
P,Aw20°F ¹ :N24T275:0500	2.297	1.26	-45.27%	87.84	97,82	-21%
P,Aw20°F%N24T275@1000	2,900	1.50	-48.27%	104,81	109,80	-26%
P,4 @20*F%N24T300@500	2.297	1.28	-44.31%	109.80	119,78	-10%
P_J4920*F52N24T300m1000	2.900	1,40	-51.88%	119.78	129.76	-224
P.4920*FV:N34T275@500	2.264	1.15	49.269	66.375	84,85	28%
P_Ay20°FUN34T275@1000	2.837	1.62	42,84%	\$3,184	119.78	44'i
P_Au20°F%N34T300co500	2.264	1.46	-35,35%	72.409	119.78	65%
P_4w20°F%N34T300@1000	2.837	1.71	-39,82%	90,747	139,74	54%

Écart relatifs de K_1 et de σ_l

En regardant les écarts relatifs du facteur dynamique εK_{τ} et de la contrainte de flexion positive $\varepsilon \sigma_f$, il est important de remarquer la divergence entre la théorie et les valeurs expérimentales. Du coté du facteur dynamique, l'écart relatif moyen se situe à environ 41 %. Du coté de la contrainte de flexion en tension, l'écart relatif moyen se situe à environ 38 %.

5.4.1 Analyse de la contrainte de flexion en tension

Après une analyse complète des photos portant sur les essais expérimentaux, les contraintes de flexion en tension sont jugées invalides à cause de leur mauvaise localisation. La figure suivante est un bel exemple montrant la position erronée de la contrainte de flexion en tension.

charge II*

En comparant la figure 49 avec la figure 38, il est évident que la position de la contrainte de flexion positive est erronée. Du coté de la photoélasticité, cette positon indique qu'il y a une contrainte, mais que cette dernière n'est pas la contrainte de flexion. Les valeurs obtenues après l'analyse sont donc inutilisables.

La mauvaise position de la contrainte du coté de la flexion positive peut s'expliquer de la manière suivante. Lors de la préparation des échantillons, il faut coller le matériel photoélastique sur les roues d'engrenage avec une colle de type résine-durcisseur. Tout le processus pour coller le matériel photoélastique s'est fait à la main. De manière plus précise, le processus peut se décrire comme suit :

- nettoyer les surfaces des roues d'engrenage;
- b. mélanger de la résine avec le durcisseur pendant 10 minutes;
- c. étendre uniformément la colle sur la surface des roues d'engrenage et éviter la formation de bulles d'air;
- d. déposer et positionner le matériel photoélastique sur les roues d'engrenage;
- e. appliquer de la pression sur le matériel photoélastique:
- f. laisser sécher la colle pour qu'elle durcisse pendant 24 heures;
- g. inspecter les roues d'engrenage et enlever l'excédent de colle.

Les étapes à suivre semblent très simples mais elles sont beaucoup plus complexes à exécuter. Par exemple :

- mélanger la résine n'assure pas nécessairement un mélange homogène;
- b. étendre la colle à la main sur la surface des roues d'engrenage implique que cette dernière ne sera pas répandue uniformément;
- placer le matériel photoélastique sur les roues d'engrenage implique nécessairement une erreur de positionnement;
- appliquer de la pression sur le matériel photoélastique n'assure pas un parallélisme parfait entre les deux surfaces collées;
- e. laisser sécher la colle pendant 24 heures affecte le positionnement du matériel photoélastique et engendre des contraintes résiduelles à certains endroits.

Par ailleurs, après la période de 24 heures de séchage, un phénomène de récession s'est produit sur le contour du profil des dents. La colle a rétrécie et créée une concavité sur tout le contour extérieur. La figure 50 illustre deux sections d'échantillons. Celui de gauche est un schéma idéal où aucune concavité n'apparaît après que le matériel photoélastique ait été collé. Celui de droite est un schéma illustrant la situation réelle.

Figure 50 Vue en coupe de la colle sur le contour du profil

Il est permis de croire que la concavité est en bonne partie responsable de la mauvaise localisation de la contrainte de flexion en tension. La position réelle de la contrainte de flexion en tension se trouve près du contour du profil de la dent. Cependant, la photoélasticité ne permet pas de la détecter correctement probablement à cause de la concavité introduite par la colle. La photoélasticité donne donc une valeur réduite de la contrainte de flexion en tension selon la profondeur de la concavité dans la colle le long du profil de la dent et selon le taux de réussite du collage entre le matériel photoélastique et la roue d'engrenage. Bien que l'effet était moins important, le même phénomène a été observé avec la plaque percée à la section 4.6.4.

Le phénomène de retrait pourrait être évité en collant le matériel photoélastique avant le taillage des roues d'engrenage. Par contre, cette façon de faire conduirait à une détérioration de ce matériau lors de l'usinage, ce qui pourrait ainsi introduire des perturbations tout aussi nuisibles à la lecture des contraintes.

5.4.2 Analyse de la contrainte de flexion en compression

L'absence générale de la contrainte de flexion en compression peut s'expliquer par la combinaison de deux phénomènes (section 4.6.2) : le premier est le même que celui décrit à la section précédente pour expliquer la mauvaise localisation de la contrainte de flexion en tension. Il s'agit de la profondeur de la concavité dans la colle le long du profil de la dent. Le deuxième phénomène s'explique par l'hypothèse d'un flambage du matériel photoélastique en pied de dent. La flexion de la dent se fait dans le plan du matériel photoélastique. L'essai au chapitre 4 sur une plaque en flexion dans son plan permettait d'entrevoir ce phénomène. La figure 51 illustre schématiquement le phénomène de flambage durant les essais expérimentaux.

Figure 51 Flambage du matériel photoélastique sur une roue d'engrenage

Le matériel photoélastique ne se comprime pas sur lui-même pour créer la contrainte de flexion en compression. Plutôt il flambe, ce qui annule l'effet de la contrainte de flexion en compression par une superposition de tension en surface (voir figure 51). La zone du matériel photoélastique qui flambe ne serait ainsi plus contrainte, d'où l'absence de frange dans le matériel photoélastique. Cependant, durant certains essais expérimentaux.

la contrainte de compression pouvait apparaître, en étant assez bien localisée. Toutefois, l'ordre de frange affiché était presque impossible à déterminer en raison de l'effet de la chaleur. La figure suivante en est un exemple.

Figure 52 Contrainte de flexion en compression

5.4.3 Analyse de la contrainte de contact

En premier lieu, la contrainte de contact est une contrainte de surface localisée au point de contact. Ce point de contact se déplace le long du profil pendant l'engrènement lorsque les deux surfaces en contact roulent et glissent l'une sur l'autre. L'absence générale de la contrainte de contact peut s'expliquer par la combinaison de deux phénomènes. Le premier est le même phénomène de rétraction de la colle décrit aux sections précédentes pour expliquer la mauvaise localisation de la contrainte de flexion
en tension et en compression. Il s'agit de la profondeur de la concavité dans la colle le long du profil de la dent. Le deuxième phénomène s'explique par l'engrènement des roues d'engrenage. Durant l'engrènement, le contact entre les roues d'engrenage s'effectuait métal sur métal. Le matériel photoélastique n'était jamais en contact pendant l'engrènement en raison de la précision d'agencement entre profil de dent métal et profil de dent plastique. La figure 53 montre le type de contact obtenu durant les essais expérimentaux.

Figure 53 Type de contact durant les essais expérimentaux

Etant donné que le matériel photoélastique n'entrait pas dans la zone de contact et qu'il y avait une concavité dans la colle entre le matériel et la roue d'engrenage, il est donc compréhensible que la photoélasticité ne puisse détecter la contrainte de contact. Cependant, la contrainte de contact pouvait s'observer à certaines occasions. Particulièrement, elle apparaissait sur les roues d'engrenage hélicoïdales. La figure suivante illustre bien l'effet de la contrainte de contact.

Figure 54 Contrainte de contact sur des roues d'engrenage hélicoïdales

En étudiant les photographies de plus près, il a été noté qu'il ne s'agissait pas de la contrainte de contact mais plutôt de l'effet de l'écrasement du matériel photoélastique combiné à de la chaleur. Ceci peut être expliqué par la géométrie obtenue en collant le matériel photoélastique sur les roues d'engrenage hélicoïdales. La figure 55 illustre cette géométrie particulière.

Figure 55 Géométrie particulière des roues d'engrenage hélicoïdales

Sur la figure 55, le changement de l'angle d'hélice est très visible. Le matériel photoélastique utilisé pour les roues d'engrenage hélicoïdales a été taillé comme des roues d'engrenage à denture droite.

point d'écrasement

Figure 56 Point d'écrasement du matériel photoélastique

La figure 56 montre le point d'écrasement entre les deux roues d'engrenage hélicoïdales à l'engrènement.

5.4.4 Analyse du facteur dynamique expérimental Kr⁺ exp

Comme il a été mentionné à la section 5.2, le facteur dynamique expérimental a été obtenu en faisant un rapport mathématique de la valeur de l'ordre de frange dynamique sur la valeur de l'ordre de frange statique. Pour ce faire, la photoélasticité devait montrer l'apparition de franges dans une même région pour tous les essais expérimentaux. Dans le cadre de la mesure de la contrainte dynamique des engrenages cylindriques, seule la région de la contrainte de flexion en tension répondait à ce critère, malgré que le champ de contraintes ne soit pas représentative de la réalité. Le facteur dynamique expérimental a donc été calculé avec les ordres de frange statiques et dynamiques provenant de la région où se situe la contrainte de tension maximale. Les résultats ont été présentés aux tableaux XV et XVI. Même si la contrainte de flexion en tension a été jugée invalide, il y avait présence d'un effet dynamique entre l'ordre de frange statique et l'ordre de frange dynamique. C'est pour cette raison que le facteur dynamique expérimental a été calculé. D'après les résultats obtenus, deux conclusions sont à retenir : le facteur expérimental calculé est un facteur dynamique, mais n'est en aucun cas lié au facteur dynamique établi par la norme de l'AGMA. Ce facteur dynamique correspond plutôt à l'effet du mouvement sur les diverses sources d'erreur déjà mentionnées.

5.5 Conclusion

La photoélasticité appliquée à la mesure de la contrainte dynamique des engrenages cylindriques a permis de détecter seulement l'ordre de frange associé à une contrainte du coté tension. Cependant, la localisation et l'ordre de ces franges étaient affectés et non représentatifs des champs de contraintes normaux. Ceci a conduit à des résultats expérimentaux invalides. L'échec au niveau des essais peut s'expliquer par l'effet combiné de la chaleur générée à l'engrènement et du comportement de la colle entre le matériel photoélastique et les roues d'engrenage. Bien que ces effets étaient prévisibles, à la suite des mesures réalisées sur des plaques, leur importance réelle ne pouvait être estimée avant les premiers essais dynamiques sur les engrenages cylindriques.

CONCLUSION

Une revue de la littérature a été effectuée pour situer le projet de recherche par rapport aux différentes études et travaux dans le domaine des engrenages droits et hélicoïdaux. Elle a démontré que deux avenues étaient possibles pour la mesure expérimentale de la contrainte dynamique des engrenages cylindriques. La première s'appuie sur la méthode de la photoélasticité, alors que la deuxième fait appel à des mesures par jauges de déformation et accéléromètres en torsion.

L'étude présentée dans ce document proposait l'application de la photoélasticité à la mesure de la contrainte dynamique des engrenages cylindriques. Cette étude a été basée sur un plan d'expérience double comportant chacun deux volets. Le plan d'expérience a été conçu pour accommoder deux types de mesure expérimentale permettant ainsi une éventuelle comparaison entre les deux. Le premier volet concerne l'analyse expérimentale à l'aide de la photoélasticité alors que le deuxième couvre l'analyse expérimentale à l'aide de mesures directes par jauges de déformation et accéléromètres en torsion. Donc, pour la mesure de la contrainte dynamique des engrenages cylindriques par l'application de la photoélasticité, le premier volet du plan d'expérience double a été étudié.

Le volet du plan d'expérience conçu pour l'application de la photoélasticité à la mesure de la contrainte dynamique des engrenages couvre l'effet d'une variation des paramètres suivants :

- a. le pas diamétral ($P_d = 4 po^{-1} et 6 po^{-1}$);
- b. l'angle d'hélice ($\psi = 0^{\circ} et 20^{\circ}$);
- c. la largeur de face ($F = \frac{1}{2} po et 3 po$);
- d. le nombre de dents (N = 24-25 avec N = 34-35 et N = 24-25 avec N = 37-38);
- e. le couple transmis (T = 275 Nm et 300 Nm);
- Ia vitesse de rotation (ω = 500 tr/min et 1000 tr/min).

Un banc d'essai a, par la suite, été utilisé afin de recevoir les roues d'engrenage tenant compte des différents facteurs considérés dans le plan d'expérience. Le banc d'essai est composé principalement de deux arbres en rotation. Un des arbres est entrainé par un moteur électrique avec lequel la vitesse de rotation peut être ajustée. Le deuxième arbre est jumelé à un dynamomètre mécanique sur lequel différents couples sont appliqués. Les roues d'engrenage déterminées par le plan d'expérience sont attachées à l'une des extrémités des arbres. Dans ces engrenages, une roue agit comme le pignon et l'autre comme la roue. La roue possède une dent de plus que le pignon afin d'obtenir un engrènement de toutes les dents du pignon avec toutes les dents de la roue. À l'autre extrémité des arbres, des roues d'engrenage similaires sont utilisées. Cependant, les roues possèdent trois fois plus de dents, afin d'éviter une superposition de signaux lors de mesures vibratoires par accéléromètres. Finalement, l'espacement entre les arbres est ajustable, ceci afin de recevoir toutes les roues d'engrenage du dans le plan d'expérience.

Les roues d'engrenage ont été usinées selon les spécifications du plan d'expérience. Par la suite, elles ont été mesurées afin de connaître leur grade de qualité. La contrainte de tension en flexion selon la norme de l'AGMA pouvait être calculée et servir de point de comparaison à la mesure expérimentale.

Les essais expérimentaux, ainsi que l'analyse des résultats provenant de la photoélasticité ont été réalisés. De manière plus précise, les ordres de frange des différents essais ont été extraits pour établir les valeurs d'un facteur dynamique et les valeurs d'une contrainte mesurée du coté positif. Cependant, les essais expérimentaux n'ont pas été concluants. Seulement les roues d'engrenage avec un pas de 4 po⁻¹ ont été étudiées. Les tests ont été arrêtés pour deux raisons : l'absence de la contrainte de flexion en compression pour tous les essais et la mauvaise localisation de la contrainte de flexion en tension pour tous les essais.

La photoélasticité appliquée à la mesure de la contrainte dynamique des engrenages cylindriques a permis de détecter seulement l'ordre de frange associé une contrainte localisée du coté de la flexion en tension. Cependant, la localisation et l'ordre de ces franges étaient erronés. Ceci a donc conduit à des résultats expérimentaux invalides. L'échec des essais peut s'expliquer par l'effet de la chaleur générée à l'engrènement combiné au comportement de la colle entre le matériel photoélastique et les roues d'engrenage.

En conclusion, la méthode de la photoélasticité avec du matériel collé n'est pas applicable à la mesure de contraintes sur des engrenages en mouvement. Cette approche ne devrait pas davantage être utilisée pour des applications susceptibles de dégager de la chaleur.

RECOMMANDATIONS

Cette section discute des mesures correctives à apporter pour la deuxième campagne de mesure expérimentale traitant du même sujet, mais utilisant les accéléromètres et les jauges de déformation.

Dans le cadre de la deuxième campagne de mesure, deux aspects devront être traités pour obtenir des résultats expérimentaux significatifs. Le premier aspect porte sur les jauges de déformation. Il s'agit de les coller comme il a été expliqué au deuxième chapitre.

Le deuxième aspect porte sur les accéléromètres. Avant d'effectuer les essais, il est primordial d'éliminer toutes sources de débalancement autres que celles provenant des roues d'engrenage. Dans le cas des roues d'engrenage minces, il faudra absolument enlever le matériel photoélastique ainsi que la colle. Il faudra aussi vérifier que les deux collets avec leurs clavettes respectives tenant les roues d'engrenage sont bien balancés. La figure suivante montre les collets avec leurs clavettes sur le banc d'essai.

clavettes

Figure 57 Collets avec leurs clavettes

Durant les essais expérimentaux avec la photoélasticité, un débalancement a été remarqué au niveau des roues d'engrenage. Ce débalancement est causé principalement par une excentricité cumulée dans les jeux associés au montage des roues d'engrenage. La figure suivante montre où se trouvent les jeux causant l'excentricité.

Figure 58 Jeux causant l'excentricité

Il faudra donc éliminer cette excentricité cumulée pour ne pas introduire des vibrations indésirables pendant les essais expérimentaux avec les accéléromètres. Le tableau suivant indique les valeurs de l'excentricité cumulée selon les différentes roues d'engrenage qui ont été testées avec la méthode de la photoélasticité. Cette excentricité a été mesurée en sommet de dent à l'aide d'un vernier de hauteur et d'un indicateur à cadrant. Les colonnes du centre indiquent la valeur initiale du faux-rond pour chacune des roues d'engrenage afin de permettre une comparaison avec l'excentricité cumulée.

Tableau XXVIII

Paire d'engrenage étudiée	V _{rT pignon}	Vet maie	Excentricité cumulée
P_D4 \u00ff V2N24 ET P_D4 \u00ff V2N25	0.00331 "	0.01420 "	0.025 "
PD4WIFF N34 ET PD4WIFF N35	0.00555 "	0.00496 "	0.010 "
P_04w20'FV2N24 ET P114w20'FV2N25	0.00236 "	0.00465."	0.008 "
PD4 420°F1/N34 ET PU4 420°F1/N35	0.00602 "	0.00504 "	0.004 "

Excentricité cumulée des roues d'engrenage étudiées

Le dernier point à corriger sur le banc d'essai est le positionnement du support à accéléromètres sur l'arbre instrumenté. Ce dernier est décentré car il est retenu incorrectement. La pièce qui retient le tout est positionnée sur les filets de l'arbre instrumenté, ce qui est une erreur. Ce débalancement n'a toutefois pas influencé les essais expérimentaux avec la photoélasticité mais doit être corrigé pour l'utilisation des accéléromètres. La figure suivante montre le problème.

Figure 59 Support à accéléromètres

La qualité première du support à accéléromètre est la facilité d'installation au montage entre les essais expérimentaux. Il faudra trouver une solution afin de conserver cette qualité tout en éliminant l'excentricité rattachée au support à accéléromètres.

ANNEXE 1

Application générale de la photoélasticité

Description, assemblage et montage du polariscope

Le polariscope de la série 030 est un instrument optique de précision qui permet de mesurer quantitativement les contraintes et les déformations. Il le fait grâce à la méthode PhotoStress® à partir de la réflexion photoélastique [26]. La figure suivante en est une représentation schématique.

Figure 60 Représentation schématique du polariscope (Adapté de Photolastic Division measurement group, Inc., 1992)

Voici maintenant les étapes à suivre pour l'assemblage et le montage du polariscope. La première étape consiste à retirer la tête du polariscope, la lampe ainsi que la poigné de la boîte de rangement. La deuxième étape consiste à nettoyer les surfaces optiques avec un chiffon doux et de l'alcool. La troisième étape consiste à vérifier que l'ampoule est installée dans la lampe. La quatrième étape consiste à ajuster le voltage de la lampe en utilisant l'information donnée à la figure 61.

VOLTAGE	BLK WIRE FROM	WHT WIRE FROM	BLK JUMPER		W JUM	HT	
	SWITCH	SWITCH	FROM	10	FROM	10	
100	A 0	A 100	A 0	80	A100	8100	
115	A O	A115	A O	80	A115	8115	
130	A 0	A130	A O	80	A130	8130	
200	A O	8100	A100	80	-	-	
230	A O	8115	A115	80	-	-	
260	A 0	8130	A 130	80	-	-	
			-	A			

Figure 61 Tension d'opération pour la lampe (Adapté de Photolastic Division measurement group, Inc., 1992)

La cinquième étape consiste à assembler la lampe avec la tête du polariscope pour ensuite le monter sur le trépied. Il s'assurer de serrer la vis pour le maintenir en place. Cette étape est illustrée à la figure suivante.

Figure 62 Assemblage du polariscope (Adapté de Photolastic Division measurement group, Inc., 1992)

Une fois la lampe branchée dans une prise de courant, le polariscope est prêt à être utilisé. Il faut ensuite aligner le centre du trépied perpendiculairement au plan de l'échantillon qui va être étudié. Ensuite, il faut ajuster le faisceau lumineux vers le point d'étude de l'échantillon.

Figure 63 Tête du polariscope (Adapté de Photolastic Division measurement group, Inc., 1992)

La figure précédente nous montre la tête du polariscope. L'analyse de la photoélasticité se fait avec la partie droite du polariscope. Elle est composée de trois anneaux concentriques. Le plus grand des trois est stationnaire. Celui du milieu possède des échelles graduées. Le plus petit des trois est le compensateur comme son nom l'indique. De plus, elle possède trois boutons de réglage soit le bouton « B », « H » et « C ». La position du bouton « B » détermine si l'on veut mesurer la direction ou l'amplitude des contraintes principales. La position du bouton « H » détermine l'angle du polariseur. La position du bouton « C » sert seulement pour compter les fractions de franges par la méthode de Tardy. Dans tous les autres cas, les marques « G » doivent être alignées avec le 0 et le 100 de l'anneau intermédiaire.

Interprétation des franges photoélastiques

Lorsqu'un échantillon recouvert d'un enduit photoélastique est soumis à une charge, des franges isochromatiques apparaissent. Elles sont visibles seulement lorsqu'on regarde l'échantillon au travers du polariseur. Plus la charge est élevée, plus le nombre de franges augmente. De plus, les franges vont toujours se concentrer aux endroits où les contraintes sont plus importantes. Ceci est démontré à la figure suivante.

Figure 64 Exemples de génération de franges (Adapté de Photolastic Division measurement group, Inc., 1992)

Il y a deux manières de compter les franges lorsqu'elles apparaissent. On peut soit les compter par nombre ou les compter par ordre. Pour le calcul des contraintes et des déformations, il faut connaître l'ordre des franges. L'ordre des franges observé sur l'enduit photoélastique est proportionnel à l'écart entre les déformations de l'enduit et de l'échantillon. Cette dernière affirmation peut s'écrire sous forme d'équation comme :

$$\gamma_{12} = \mathcal{E}_1 - \mathcal{E}_2 = f \cdot O_1 \tag{A1.1}$$

Il est cependant préférable de travailler avec les équations de contraintes. Elles sont définies comme :

$$\sigma_1 - \sigma_2 = \frac{E}{(1 - \nu)} \cdot f \cdot O_1 \tag{A1.2}$$

$$\tau_{\max} = \frac{1}{2} \cdot \left(\frac{E}{(1-\nu)}\right) \cdot f \cdot O_{\gamma} \tag{A1.3}$$

Donc en appliquant une source de lumière blanche, les franges photoélastiques apparaissent en une série de bandes continues de couleur différentes. Ces bandes ont la forme d'une boucle fermée ou d'une ligne courbée. Chaque bande possède une couleur unique qui est reliée directement à la valeur de l'ordre de frange (O_i). Les couleurs de bandes apparaissent toujours dans la même séquence ce qui rend possible d'associer une valeur à O_i (ordre de frange). Ce phénomène est démontré sur les figures 65 et 66.

Figure 65 Séquence de franges sur une poutre encastrée (Adapté de Photolastic Division measurement group, Inc., 1992)

Figure 66 Séquence de frange sur un spécimen en flexion biaxiale (Adapté de Photolastic Division measurement group, Inc., 1992)

Le polariscope de la série 030 est un instrument à champ noir. Lorsqu'aucune charge n'est appliquée. l'échantillon apparaît noir. Quand on applique la charge graduellement, le gris commence à apparaître suivi du blanc et quand le violet disparaît, le jaune apparaît. Avec plus de charge, le bleu cède sa place pour de l'orange et le vert pour du rouge. Par la suite, le jaune tourne au mauve suivi de la disparition de l'orange pour un bleu plus riche. La frange mauve est très sensible aux déformations ce qui lui mérite le titre de teinte de passage et donc possède un ordre de frange égal à un ($O_f = 1$). La figure suivante indique plusieurs valeurs d'ordre de frange associées à leur couleur respective.

Color	Approximate Relative Retardation nm	Fringe Order Or	Strain' µ€
BLACK	. 0	0	0
GRAY	160	0.28	265
WHITE	260	0.45	425
PALE YELLOW	345	0.60	570
ORANGE	460	0.80	760
DULL RED	520	0.90	855
PURPLE (TINT OF PASSAGE)	575	1.00	950
DEEP BLUE	620	1.08	1025
DLUE-GREEN	700	1 22	1160
GREEN-YELLOW	800	1.39	1320
ORANGE	935	1.63	1550
ROSE RED	1050	1.82	1730
PURPLE (TINT OF PASSAGE)	1150	2.00	1900
GREEN	1350	2.35	2230
GREEN-YELLOW	1440	2.50	2380
RED	1520	2.65	2520
RED/GREEN TRANSITION	1730	3.00	2850
GREEN	1800	3 10	.2950
PINK	2100	3.65	3470
PINK/GREEN TRANSITION	2300	4 00	3800
GREEN	2400	4.15	3940
* Type PS-1 photoelastic plastic,	0.080" (2 mm) thick, f	= 950 µc/fringe (refl	ection)

Figure 67 Caractéristiques des franges isochromatiques (Adapté de Photolastic Division measurement group, Inc., 1992)

Mesure directionnelle des déformations principales

Lorsque l'on veut obtenir une plus grande précision sur la valeur de l'ordre de frange, on utilise une des trois méthodes suivantes :

- a. méthode de la balance nulle (null-balance compensation method);
- b. méthode de Tardy (Tardy compensation method);
- c. méthode d'incidence oblique (oblique incidence method).

Cependant, ces trois méthodes nécessitent un alignement optique du polariscope par rapport aux directions des contraintes et déformation principales de l'échantillon.

Figure 68 Schématisation des déformations sur un échantillon (Adapté de Photolastic Division measurement group, Inc., 1992) Voici maintenant la démarche à suivre :

- a. ajuster et positionner le polariscope en fonction de la zone d'étude désirée sur l'échantillon;
- b. choisir un axe de référence sur l'échantillon;
- orienter le polariscope de manière à ce que son axe de symétrie soit parallèle à l'axe de référence sur l'échantillon. De plus, l'index de direction du polariscope doit être à 0 degré;

Figure 69 Orientation du polariscope (Adapté de Photolastic Division measurement group, Inc., 1992)

- d. vérifier à l'aide du polariscope que l'échantillon soit de couleur noire uniformément répartie sur toute sa surface. Il faut cependant que le compensateur soit à la position zéro et que le bouton « B » soit à la position « M ». Si l'échantillon n'est pas noir, consultez la partie COR du guide d'instruction pour des mesures correctives;
- appliquer la charge de manière incrémentielle tout en regardant les franges isochromatiques apparaître. À l'aide d'un crayon gras, marquer les endroits où les

mesures vont être prises. Aussi, vérifier s'il y a des endroits où les franges sont d'ordre zéro;

- f. mettre le bouton « B » à la position « D »;
- g. différentier les franges isocliniques des franges isochromatiques. Il faut simplement déplacer le bouton « H » en va-et-vient de plus ou moins 20°. En déplaçant le bouton « H » de cette manière, les franges isocliniques vont se déplacer tandis que les franges isochromatiques vont être stationnaires;
- h. remettre le bouton « H » à sa position initiale. Ajuster le polariseur de manière à ce que la frange isoclinique noire passe par les marques faites à l'étape 5. Raffiner l'ajustement pour que la partie la plus noire soit sur les marques.

Figure 70 Orientation schématisée du polariscope (Adapté de Photolastic Division measurement group, Inc., 1992)

Figure 71 Orientation du polariscope (Adapté de Photolastic Division measurement group, Inc., 1992)

Une fois que l'alignement optique du polariscope a été complété, il est maintenant possible d'appliquer une des trois méthodes mentionnées au début de cette section.

Mesure de l'ordre de frange

La méthode de la balance nulle fonctionne de manière à introduire dans le passage de la lumière vers le polariscope une variable à réfraction double calibrée et de signe opposé au champ induit par l'enduit photoélastique.

Figure 72 Analogie avec une balance mécanique (Adapté de Photolastic Division measurement group, Inc., 1992)

Voici maintenant les étapes à suivre pour utiliser la méthode de la balance nulle :

attacher le compensateur au polariscope et vérifier que son échelle est bien à zéro;

Figure 73 Compensateur pour la méthode de la balance nulle (Adapté de Photolastic Division measurement group, Inc., 1992)

Figure 74 Positionnement du compensateur sur le polariscope (Adapté de Photolastic Division measurement group, Inc., 1992)

- b. déplacer le bouton « B » à la position « D ». Regarder l'échantillon avec le polariscope sans toutefois utiliser la lentille du compensateur et ajuster le bouton « H » pour qu'une frange isoclinique passe par le point d'étude;
- c. déplacer le bouton « B » à la position « M ». En observant l'échantillon avec la lentille du compensateur, tourner le bouton de contrôle dans le sens anti-horaire pour qu'une frange isochromatique d'ordre zéro passe par le point désiré. Cette manipulation peut être vue à la figure suivante;

Figure 75 Manipulation du polariscope avec le compensateur (Adapté de Photolastic Division measurement group, Inc., 1992)

 d. prendre la lecture du compteur digital sur le compensateur et référez-vous à la figure suivante pour obtenir l'ordre de frange.

Figure 76 Abaque de calibration pour le compensateur (Adapté de Photolastic Division measurement group, Inc., 1992)

Pour mieux utiliser cette méthode, lire la section NBC du guide d'instruction [26]. Il s'agit ici d'instructions sommaires. La méthode de Tardy est une approche simple, rapide et efficace pour obtenir la partie fractionnaire de l'ordre de frange.

Voici maintenant les étapes à suivre pour utiliser la méthode de Tardy :

 a. placer le bouton « B » à la position « M » et examiner l'échantillon. À l'aide d'un crayon gras, inscrire l'ordre sur chacune des franges (0, 1, 2, 3, etc.);

Figure 77 Point de mesure entre deux ordres de frange (Adapté de Photolastic Division measurement group, Inc., 1992)

- b. identifier le ou les points de mesure sur l'échantillon et faire une mince croix dessus;
- c. déplacer le bouton « B » à la position « D »;
- d. déplacer le bouton « H » en va-et-vient de plus ou moins 20°. En déplaçant le bouton « H » de cette manière, les franges isocliniques vont se déplacer tandis que les franges isochromatiques vont être stationnaires. Ajuster le polariseur de manière à ce que la frange isoclinique noire passe par les croix faites à l'étape 2. Raffiner l'ajustement pour que la partie la plus noire soit sur les marques. Barrer le bouton « H » à cette position;

- e. placer le bouton « B » à la position « M »;
- f. tourner le bouton « C » dans le sens horaire pour qu'une frange isochromatique passe par le point de mesure désiré. Prendre la lecture de la fraction r sur l'échelle du compensateur;
- f. établir l'ordre de frange en utilisant les relations suivantes :
 - $O_i = n + r$ si la frange d'ordre inférieur se déplace;
 - $O_I = -(n + I r)$ si la frange d'ordre supérieur se déplace:
- g. calculer les contraintes et les déformations avec les formules vues dans la deuxième section.

Pour mieux utiliser cette méthode, lire la section TDC du guide d'instruction [26]. Il s'agit ici d'instructions sommaires.

La méthode d'incidence oblique est une méthode fréquemment utilisée dans le domaine de la photoélasticité. Comme son nom l'indique, elle utilise le principe des angles d'incidences pour établir l'ordre de frange. La méthode ne peut pas vraiment se résumer car elle est très détaillée et chacun de ses détails sont importants. Les deux figures suivantes montrent une schématisation de son fonctionnement ainsi qu'un montage du polariscope.

Figure 78 Schématisation du système optique (Adapté de Photolastic Division measurement group, Inc., 1992)

Figure 79 Montage du polariscope (Adapté de Photolastic Division measurement group, Inc., 1992)

Pour bien comprendre et utiliser cette méthode à son plein potentiel. lire très attentivement la section SPS du guide d'instruction [26].

Instructions spécialisées

Pour les instructions et recommandations pour faire adhérer une feuille photoélastique à un échantillon de surface plane, référez-vous au bulletin IB-223-F [26]. Pour les instructions et recommandations pour adhérer un enduit photoélastique à un échantillon de surface complexe, référez-vous au bulletin IB-221-C [26]. Pour les instructions et recommandations pour la calibration d'une couche photoélastique à un échantillon de surface quelconque, référez-vous au bulletin TN-701 [26]. Pour les instructions et recommandations pour le choix des différents types de matériaux photoélastiques, référez-vous au bulletin S-116 [26].

ANNEXE 2

Fiches techniques des roues d'engrenage

Gear Spacing	ress as 17[346743) BC 200 W menter X at 20120.512.0120 DOL Warm W M M M M M M M M M M M M M M M M M M	Taoth to cooth total actualities to hits	· · · · · · · · · · · · · · · · · · ·		2003.1 Left and the first state from the first state from the set of the set	New Track Special stress is max 0.6 6.5 6.5 Region of a stress rs 1.1 1.1 1.4 4.5 Region of a stress rs 3.5 3.5 3.5 3.5 4.5 Region of a stress rs 3.5 3.5 3.5 5 5 Region of a stress max or	Journel of the first state of the state
Gear Profile/Lead	April (MATE/A) Tell (MATE/A) Tel			Accel 10 11 11 Topeth 1 10 10 10 me May 1.2 Acceleration (collarity) Scenewalue Ons Acceleration (collarity) Scenewalue Ons Y 3.3 me May 1.2 Acceleration (collarity) Scenewalue Ons Acceleration (collarity) Y 3.3 me May 1.2 Acceleration (collarity) Scenewalue Ons Collarity) Y 3.3 me May 1.2 Acceleration (collarity) Scenewalue Ons Collarity) Y 3.3 me May 1.2 Acceleration (collarity) Scenewalue Ons Acceleration (collarity) Y 3.3 me May 1.2 Acceleration (collarity) Scenewalue Acceleration (collarity) Y 3.3 me May 1.2 Acceleration (collarity) Scenewalue Acceleration (collarity) Y 3.3			in in<

acing	35 35 (here 32 06 2004 (here) at 2 (here) 2 (here) 2 (here) at 300 (00) at 300 (here) at 300 (00) at 300 (00) a		i accurdative py lafe		Table 1 de la consta	according to a second			A Loss exist state Ris line 9/3 Kin, Midlin exist state state A N N dial dial A 9/3 K N dial dial A 9/3 K N dial dial dial A 1 4 4 dial d		W 1.751 [a] Mass to the rot a state at a 191 [a]
Gear Spi	must see all device the second	26913	footh to tooth to	1 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 364. 		1 100 k 1	ten 1.0 Tetra municipation of the second sec		2001 State of an art
	Active T. 95 2174 21 449 2000 21 44 20 21 449 2000 21 44 20 21 75 17 2006 21 44 21 75 75 17 2006 21 44 21 17 21 75 17 21 21 21 21 21 21 21 21 21 21 21 21 21 2					1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	0	-1-2-2			2.6 2.8 2.5 2.5
ofile/Lead	(arritan (k) a. (1) (arr) (arr) (arr) (arr) (arr) (arr) (arr) (arr) (arr) (arr) (arr) (arr) (+ +		- 22:5		10 6 4 12 6 5 2 6 6 7	A A A A A A A A A A A A A A A A A A A	***** \$ * }	*		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gear Pr	Verse per alte va Martin 257 20 Valgena	++++	1	11/		g g g d g g b 10 10 g g b 10 10 10.6 g g 10 10 16.4 16.4 10 10 10	10ft			2017 - 1 2017 - 1 2017 - 1	-10.1

Gear Spacing	PAGE 14/0 VAL 10/0 C 00/0 11/02 20/1	The local special fraction of the local state of th		Toth to touth total menomilative Pp. Left		The first of the second of the light		Totals to footh tailab without all the Ty to ale		All Tests must fine Legit wild Legit wild <thlegit th="" wild<=""> Legit wild Legit wild</thlegit>	Rub cat If I have a life	22.1 b 12.1 5.27 [of Theoret (work) and - 1.45
	12 70 70 71 10 11 12 10 20 11 11 10 10 10 10 11 10 10 10 10 11 10 10 10 10 11 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10	100-1	1964		and a second sec		alsee Ten Daalitek V a.a. 2 2 2 9 4 5 2 2 0 4 5 2 2 0 5 3 2 2 0 5 5 2 2 0 5 5 2 2 0 5 5 2 2 5 5 5 2 2 5 5 5 2 2 5 5 5 2 2 5 5 5 5	2.1 O	2 2 1 me	A the set of the frame of the set	and 1	a 1.0 V 423 4 200.3 1 2.00.3 1 7.0 1 7.0 1 2.00.3 1 2.00.4 1 2.00.4
Gear Profile/Lead	John 200 VA Sweetser 27 56 60 20 VA Sweetser 27 28 20 20 VA Sweetser 26 27 20 20 VA Sweetser 22 27 10	and and is a 4.222fla in her tells orde - 52° 52° 52° 50° become	3 Y =± # #			$F \neq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	actics: Qualitity (Francischen Qualitit) 2 - 11.1 - 12.0 0 - 24.0 - 12.0 0 - 24.0 - 12.1 0 - 24.0 - 12.1 0 - 24.0 - 12.2 - 24 - 25.0 - 2					16 1 1 1001 1 1001 1 1 1001 1 1 10001 1 10001 1 1001 1 1001 1 1001 1 100
	Produce STREATTERS The STREATTERS Priore in Stream Part Adv P.	and and Uniquest	+		1	and the second s	Act.vala Mater 10.6 Act.vala Mater 10.6 Act.vala	Top Dial Link	1		•	813 N. 191

Gear Spacing	Note Note <th< th=""><th>Total accumutative To Table to track accumutative To Table</th><th>The second se</th><th>Trets to tools total accenticity JP 11.91</th><th>96 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 120 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4)</th><th>1 1</th></th<>	Total accumutative To Table to track accumutative To Table	The second se	Trets to tools total accenticity JP 11.91	96 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 120 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4) 120 (4) 100 (4) 100 (4) 100 (4) 100 (4)	1 1
pe	13 0es. 12 05 203 14 per main. 101 per per per la pe	NERSONAL NERSONAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		
rofile/Le	an at tents an at tents ten - parts tr ten - parts tr ten - parts tr ten - parts at parts ten - parts at parts tent - parts at parts at parts at parts tent - parts at parts at parts at parts at parts tent - parts at p	55 58 23 H 4 H	Tauth for value On	TIN . FI	8 8 8 	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Gear P	Table 201 201 201 201 201 201 201 201 201 201		a and a and a second	10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10 10.10		
	Roup in \$27533 State 1990 State 2000 State 2000 St	t other	1	Total In Jama In Jama In Jama Contention Total	ANGED:	10643 1 1 1 1 1 1 1 1 1 1 1 1 1

1	100	1			2-	
	1100 P	4			and the second	F
		1	1	Alda.	100 100 100 100 100 100 100 100 100 100	
	and 1	4 A	-	A I	27	- under
Rin	Series of		1) human	A COMPANY	see when	
node	the start of the s		times -	total	101111 1011111111111111111111111111111	9
Do	International and		1	to toot	100	
2	C/10	-		t inter	5 .	E
	00 197	1	C	1	A A A A A A A A A A A A A A A A A A A	
	11400 III		d .	1	ra Mer finne gestag fina rake finan des time	
	Annual Control of Cont	1	1	40	1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N	- and
	19:41 8:19:10 8:19:10 8:19:10 10 10 10 10 10 10 10 10 10 10 10 10 1			0		
	An Mark	testa	AL CONTRACT	A THERE	123.55	
	Transi Ja Para Mana Angen Ja Angen Ja Mana Ja Mana Ja	No.	1	: ~t:=	amore	007-04 20
pp	38 6. 17/10 401-60* 601-60* 2844-0 441-9*	Arrest	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- weve	minim	
e/Le	20 1118		teth	1.1		the second
0111	A list of the list		70.			1 2 20
d d	24 <u>14 2 3 4 7 7</u>	122	Carlos Carlos	: -t-s		A
Gear	101 284	1207	110 00 100 000 000 000 000 000 000 000	: -+×	-	23-19-19
	THE REAL	VZVA	an a	and the	2025	10.7 0
	57 B B B B B B B B B B B B B B B B B B B	Prese and a second	9/ 1	the second se		
	STREADINES FOR ANY		2.1			c.

Gear Spacing	Instant All (All (All (All (All (All (All (All	1 30013 1 30013 1 3014 1
Gear Profile/Lead	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

ir Spacing	And the second s	testà trio, debessiative sp. Lett		is to took species is a light	inter structure is right	The state The state <thte state<="" th=""> <thte state<="" th=""> <thte< th=""><th>Ruroot Sit</th></thte<></thte></thte>	Ruroot Sit
Ge	(1) (1) <td>25.4 1.001</td> <td>Land Land</td> <td></td> <td></td> <td>20012 20012 and 01 total browning the most finder from the transformer and the</td> <td></td>	25.4 1.001	Land Land			20012 20012 and 01 total browning the most finder from the transformer and the	
11e/Lead	Mr 25 26m 12 14 200 mm 25	大大大		$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{i$	a 15 6 2 8 8 25.1 25.5 6 10 10 10 10 10 10 10 10 10 10 10 10 10	fraint <u>service</u> 6	Tooth 1 11 14 14
Gear Prof:	mp. mp. <td>12</td> <td></td> <td>200 24 24 24 24 24 24 24 24 24 24 24 24 24</td> <td>an 23 11 12 12 12 12 12 12 12 12 12 12 12 12</td> <td></td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	12		200 24 24 24 24 24 24 24 24 24 24 24 24 24	an 23 11 12 12 12 12 12 12 12 12 12 12 12 12		1 1 1 1 1 1 1 1 1 1 1 1 1 1

Gear Spacing	313 111 <th></th> <th>Additional and the solid transferrentiative for 14/1.</th> <th></th> <th></th> <th>Bit of the first Bit of the first Pair of the first Pair of the first as the first we want of the first while first we want of the first<</th> <th></th>		Additional and the solid transferrentiative for 14/1.			Bit of the first Bit of the first Pair of the first Pair of the first as the first we want of the first while first we want of the first<	
ead	35 terr 12.15.26 25 terr 13.15.26 2471 terr 13.15 2162.452 2140.45			1 21 22 22 22 22 22 22 22 22 22 22 22 22	 		
ar Profile/L	2011 Via Queens	and the factor		a r r toth Condity Non-ralar O VIA	and the second	i I North	
Ge	Les ATLEATTAN ent 1. Roundent der Ersten 1995 . Aunnen 1995 . Aunnen 1995	The second secon		000 25 25 25 25 25 25 25 25 25 25 25 25 25			

Gear Spacing	reg me. #110407129 PBC 200 Wh. Optionary JC. Series 31,12 2004 13:43 reg me. Britecal Gaar Series 12, 20 Discretion 27 Communication -127202000 reg me. Brite 62P 317 20 reg me. Britecal Gaar reg me. Br	2001; 2001; Tooth to tooth tokal accumulative Fp laft	100-1 Thorn to rooth spacing fp right	2906.1 2001.1 2001.1 Tooth to tooth total accomplative Pp 11ght	$ \begin{bmatrix} 5016 \\ 10013 \\ 10013 \\ 10014 \\ 10$	28te 28te 28te 28.0 1 200.1 NK 2.125 (in)/Neas tooth nor - 5 200.1 NK 2.125 (in)/Neas tooth nor - 5
Profile/Lead	Quertation QC All Description All Description All All Description All All <t< th=""><th></th><th></th><th>recthing a state of the state o</th><th></th><th>Tooth 1 14 15 14 15 14 15 14 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15</th></t<>			recthing a state of the state o		Tooth 1 14 15 14 15 14 15 14 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15
Gear F	Top in . 37(949712) 985 206 13 Top: 981491 0 0 12 Top: 981 10 001 2001 10 10 10 10 10 10 10 10 10 10			36 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 12<		in 7 7 7 5 Mation 26 14 1 1 1 Antion 26 14 1 1 1 1 Antion 26 14 1

Gear Spacing	mag m. ST04407433 BMC 260 VM America 30 acts. 11.16.2804 17.25 Ter Sper dear ter Sper dear ter Sper dear ter Sper dear ter Sper dear ter Sper dear ter Spec dear te	200.1 200.1 Tooth to tooth total accumulative Pp laft	290/13 200/13 Tooth to tooth species it right	236.1 236.1 Jooth to tooth total accumulative Pp right] 341e	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ran-cut Fri	254:e 260.1 er 1.72714n1 [Mease-Gooth norm - 1 260.1 for ten bases for ten bases for ten bases for ten bases
Gear Profile/Lead	13 PMC 203 VA Description 24 Inter 11, 16, 2014 12.124 Description Description 24 Inter 11, 16, 2014 12.124 Description Description 24 Inter 11, 16, 2014 12.124 Description 4 1/1m Inter 11, 16, 2014 12.124 Description 4 1/1m Inter 11, 16, 2014 12.124 Description 4 1/1m Inter 11, 10, 10, 10, 10, 10, 10, 10, 10, 10,	++++++++++++++++++++++++++++++++++++++		17 9 1 Tooth 1 9 1 r1.wlwftel Quality fee wite Qua Ant value [te] Quality fee wite Qua Ant value [te] Quality fee wite Qua r0.5 2.5 2.5 2.5 2.5 2.5 2.5 10.6 10.7 10.7 1.6 2.5 2.6 2.5 12.6 10.2 10.2 10.2 10.2 10.4 9.6 1.6 1att 12.6 10.7 10.7 9.3 9.4 0.4 1.6 1.6		8 1		27 9 1 Tooth 1 9 17 Y </th
	fread in ST(640).T open in State transing in State transing in State transing in State transing in State Activation in Activation	te st te vazer.a	10 00 11	Area tong Mara tong Mara tu Prene tu Qrane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4		Note that the second se

ANNEXE 3

Calculs pour obtenir le grade de qualité des roues d'engrenage

Extrapolation de la tolérance sur le profil des roues d'engrenage

Tableau XXIX

Q, de la tolérance sur le profil pour un engrenage P,4 WTN24

Grade de qualité (Q_1)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	85.6	67.7	52.7	40.2	30.1	22.1
Tolérance normalisée (0.0001 po) équation (3.2)	116.7	83.4	59.6	42.5	30.4	21.7

Tableau XXX

Q_i de la tolérance sur le profil pour un engrenage $P_d 4 \psi O'' N25$

Grade de qualité (Q_V)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	76.1	60.9	48.8	37.2	28.4	21.2
Tolérance normalisée (0.0001 po) équation (3.2)	117.5	83.9	59.9	42.8	30.6	21.8

Tableau XXXI

Grade de qualité (Q_1)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	80.4	64.3	50.7	39.3	29.9	22.3
Tolérance normalisée (0.0001 po) équation (3.2)	123.2	88.0	62.8	44.9	32.1	22.9

Q_v de la tolérance sur le profil pour un engrenage $P_d 4 \psi O^o N34$

Tableau XXXII

Q, de la tolérance sur le profil pour un engrenage Pa4 \u0040035

Grade de qualité (Q_V)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	80.1	64.1	50.5	39.2	29.8	22.3
Tolérance normalisée (0.0001 po) équation (3.2)	123.7	88.4	63.1	45.1	32.2	23.0

Tableau XXXIII

Q_i de la tolérance sur le profil pour un engrenage $P_d + \psi 20^o N 24$

Grade de qualité (Q_1)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	77	61.6	48.6	37.6	28.6	21.4
Tolérance normalisée (0.0001 po) équation (3.2)	117.8	84.2	60.1	42.9	30.7	21.9

Tableau XXXIV

Grade de qualité (Q_1)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	77	61.6	48.6	37.6	28.6	21.4
Tolérance normalisée (0.0001 po) équation (3.2)	118.6	84.7	60.5	43.2	30.9	22.0

Q_{τ} de la tolérance sur le profil pour un engrenage $P_{a}4\psi 20^{\circ}N25$

Tableau XXXV

Q, de la tolérance sur le profil pour un engrenage Pa4 w20°N34

Grade de qualité (Q_1)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	81	64.8	51.5	39.6	30.1	22.5
Tolérance normalisée (0.0001 po) équation (3.2)	124.3	88.8	63.4	45.3	32.4	23.1

Tableau XXXVI

Q₁ de la tolérance sur le profil pour un engrenage P_d4 \u00c020°N35

Grade de qualité (Q_v)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	81.4	65.1	51.3	39.8	30.3	22.6
Tolérance normalisée (0.0001 po) équation (3.2)	124.9	89.2	63.7	45.5	32.5	23.2

Tableau XXXVII

Grade de qualité (Q_1)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	60.3	48,8	37.9	29.4	22.3	16.6
Tolérance normalisée (0.0001 po) équation (3.2)	91.9	65.7	46.9	33.5	23.9	17.1

Q, de la tolérance sur le profil pour un engrenage P.6 \u00f607N24

Tableau XXXVIII

Q, de la tolérance sur le profil pour un engrenage P_6 \u00ft00"N25

Grade de qualité (Q_v)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	59.0	47.3	37.4	29.1	22.2	16.7
Tolérance normalisée (0.0001 po) équation (3.2)	92.5	66.1	47.2	33.7	24.1	17.2

Tableau XXXIX

Q, de la tolérance sur le profil pour un engrenage P_6 \u00c007N37

Grade de qualité (Q_1)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	61.9	49.7	39,3	30.6	23.4	17.6
Tolérance normalisée (0.0001 po) équation (3.2)	98.3	70.2	50.1	35.8	25.6	18.3

Tableau XL

Grade de qualité (Q_t)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	62.8	50.4	39.9	31.0	23.7	17.8
Tolérance normalisée (0.0001 po) équation (3.2)	98.7	70.5	50.3	36.0	25.7	18.3

Q, de la tolérance sur le profil pour un engrenage P_6 \u00c00N38

Tableau XLI

Q_1 de la tolérance sur le profil pour un engrenage $P_d 6 \psi 20^o N24$

Grade de qualité (Q_{λ})	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	59.0	47.3	37.4	29.1	22.2	16.7
Tolérance normalisée (0.0001 po) équation (3.2)	92.8	66.3	47.4	33.8	24.2	17.3

Tableau XLII

Q, de la tolérance sur le profil pour un engrenage P_6 w20°N25

Grade de qualité (Q_3)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	59.9	48.1	38.0	29.5	22.5	16.9
Tolérance normalisée (0.0001 po) équation (3.2)	93.4	66.7	47.6	34.0	24.3	17.4

Tableau XLIII

Grade de qualité (Q_x)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	64.6	51.7	40.8	31.6	24.1	18.0
Tolérance normalisée (0.0001 po) équation (3.2)	99.2	70.9	50.6	36.2	25.8	18.4

Q_v de la tolérance sur le profil pour un engrenage P_a6 \u00c020°N37

Tableau XLIV

Q, de la tolérance sur le profil pour un engrenage P_6 \u00c020°N38

Grade de qualité (Q_V)	2	3	4	5	6	7
Tolérance du profil (0.0001 po) équation (3.3)	65.7	52.5	41.3	31.9	24.2	18.0
Tolérance normalisée (0.0001 po) équation (3.2)	99.6	71.2	50.8	36.3	25.9	18.5

Extrapolation de la tolérance sur l'angle d'inclinaison des roues d'engrenage

Tableau XLV

Q_r de la tolérance sur l'angle d'inclinaison (F = 0.5 po)

Grade de qualité (Q1)	2	3	4	5	6	7
Tolérance de l'angle d'inclinaison (0.0001 po) équation (3.6)	14.06	11.99	10.17	8.56	7.16	5.94
Tolérance normalisée (0.0001 po) équation (3.4 et 3.5)	14.10	12.04	10.21	8.60	7.19	5.96

Tableau XLVI

Q_v de la tolérance sur l'angle d'inclinaison (F = 3.0 po)

Grade de qualité (Q_1)	2	3	4	5	6	7
Tolérance de l'angle d'inclinaison (0.0001 po) équation (3.6)	31.08	26.55	22.52	18.97	15.85	13.14
Tolérance normalisée (0.0001 po) équation (3.4 et 3.5)	31.10	26.56	22.53	18.97	15.85	13.14

Grade de qualité des roues d'engrenage

P_6w20°F%N37

P_6\u00ft20°F1/:N38

Tableau XLVII

Engrenage $Q_V V_{eT}$ Q_1 roue QiVo Q. Vor $Q_V \pm V_{PA}$ P.4007FLN24 × P.A \$07F' :N25 P.4 60'F' :N34 P.400'F1:N35 P_4w20"F1:N24 S. P_Ay20"F1:N25 P.400'F':N34 P.4007FUN35 х P.600'F1:N24 P.600'F1:N25 P.6007F1:N37 P.600°F1:N38 \mathbf{S} P_6w20°F1/2N24 P_6w20°F%N25

Q_v des roues d'engrenage (F = 0.5 po)
Tableau XLVIII

Engrenage	$Q_1 V_0$	$Q_V V_{VT}$	$Q_V \neq V_{PA}$	$Q_V V_{eT}$	Q_1 roue	
P_4&0°F3N24	6	6	8	8	6	
P_4@07F3X25	6	7	8	8	6	
P ₂ 4w07F3N34	5	6	6	6	5	
P_Ap07F3X35	7	4	8	6	4	
P_4\p20'F3N24	5	6	7	10	5	
P_24 \u00fty20°F3N25	5	<u>0</u>	7	7	0	
P_4907F3X34	5	5	9	10	5	
P_A907F3N35	6	3	7	6	3	
P.6407F3N24	6	5	8	8	5	
P_6907F3N25	6	<u>0</u>	6	5	0	
P_690°F3N37	6	<u>0</u>	8	7	0	
P_6407F3N38	6	1	7	5	1	
P.6.w207F3N24	4	<u>0</u>	7	7	0	
P.6.w20"F3N25	6	<u>0</u>	9	8	0	
P.6.920°F3N37	7	1	6	-4	I	
P_6.w20°F3N38	6	6	8	6	6	

Q_i des roues d'engrenage (F = 3.0 po)

ANNEXE 4

Photographies numériques des essais expérimentaux statiques

Figure 80 Essai 1 à 2.54 mm de déflexion

Figure 81 Essai 1 à 3.81 mm de déflexion

Figure 82 Essai 1 à 5.08 mm de déflexion

Figure 83 Essai 1 à 6.35 mm de déflexion

Figure 84 Essai 1 à 7.62 mm de déflexion

Figure 85 Essai 2 à 2.54 mm de déflexion

Figure 87 Essai 2 à 5.08 mm de déflexion

Figure 88 Essai 2 à 6.35 mm de déflexion

Figure 89 Essai 2 à 7.62 mm de déflexion

Figure 91 Essai 3 à 3.81 mm de déflexion

Figure 93 Essai 3 à 6.35 mm de déflexion

Figure 95 Essai 4 à 2.54 mm de déflexion

Figure 97 Essai 4 à 5.08 mm de déflexion

ANNEXE 5

Contraintes de flexion théoriques selon l'AGMA

Tableau XLIX

Contraintes de flexion théoriques selon l'AGMA

Paire d'engrenage étudié	W(N)	K.,	K,	K,	K.	K_h	J	$\sigma_j(MPa)$
P_s1y0°F%N24T275ea500	1732.28	1	1,560	1.036	1.229	1	0,341	125.176
P_App@FUsN24T275co1000	1732.28	1	1.793	1.036	1.229	1	0.341	143,799
P_HypTFLN24T300co500	1889.76	1	1.560	1.036	1.229	1	0.341	136,556
P_490'F\:N241300is1000	1889,76	1	1,793	1.036	1.229	1	0,341	156.872
P_4w0°F%N34T275(9500	1237.35	T	1.353	1.039	1.229	1	0,385	68,855
P_AW07F\:N347275cs1000	1237.35	1	1,490	1.039	1.229	1	0.385	75,795
P_AppTF1N34T300w500	1349.83	1	1.353	1,039	1.229	I.	0,385	75.114
P,4907F1:N34T30001000	1349,83	1	1.490	1.039	1.229	1	0,385	82.685
P_A w20'F1:N247275w500	1627.81	1	1.241	1.036	1.229	1	0,497	60,291
P,4 \u00ftet2N241275@1000	1627,81	1	1.333	1.036	1.229	1	0,497	64.760
P_Ap20°F1:N24T3006500	1775,80	1	1.241	1.036	1.229	1	0,497	65,772
P,Ay207F1:N24T300w1000	1775,80	1	1.333	1,036	1.229	L	0,497	70,647
P_4y20'F/_N\$4T2750500	1162,72	1	1,455	1,039	1.229	1	0,590	42.677
P_4y20°FU:N34T275or1000	1162.72	1	1.635	1.039	1,229	1	0.590	47.941
P_Ay20°F%N34T300eo500	1268,43	1	1.455	1.039	1.229	1	0,590	46.556
P_Ay20*FUN34T300@1000	1268,43	1	1.635	1.039	1.229	T	0.590	52.300
P_640°F%N24127560500	2598.43	1	1.193	1.014	1.229	1	0.341	210.723
P_640°F%N24T275m1000	2598,43	1	1.268	1.014	1.229	1	0.341	223.923
P.6407F%N24T3006500	2834.65	1	1.193	1.014	1.229	1	0.341	229,879
P_6\v07F#N24T300\Q1000	2834,65	1	1.268	1.014	1.229	1	0.341	244.280
P.0.90°F!:N37T275Ω500	1709,49	1	1.303	1.017	1.229	1	0.395	131.156
P_6y0°F%N37T275Ω1000	1709,49	1	1.421	1.017	1.229	1	0.395	143.032
P_640°F%N37T300Q500	1864.90	1	1.303	1.017	1.229	1	0.395	143.079
P_640°FV:N37T300Q1000	1864,90	1	1.421	1.017	1.229	Ĩ	0.395	156.035
P_6w20°FMN37T275Q500	1606.40	1	1.244	1,017	1.229	1	0.615	71.041
P.6w20*F%N37T27591000	1606.40	1	1.337	1.017	1.229	1	0.615	76,357

Tableau XLIX (suite)

Paire d'engrenage étudié	$W^{i}(X)$	K.	K.	<i>K</i> .	K.	Ky	1	$\sigma_i (MP_{i1i})$
P_6w207F1:N37T300@1000	1752.43	1	1.337	1.017	1.229	1	0.615	83.298
P.p.w207F N247275rs500	2441.72	1	1.199	1.014	1.229	1	0,499	127.765
P_6#20°F%N24T275ex1000	2441.72	1	1.276	1.014	1.229	1	0,499	135,955
P_6w20°F'_N24T300cs500	2663,70	1	1.199	1.014	1.229	1	0.499	139,380
P_6 920°F*:N24T300es1000	2663,70	1	1.276	1,014	1.229	1	0,499	148,315
P.4 00°F3N24T275e2500	1732.28	1	1.374	1.140	1.287	1	0,341	21,162
P_4\$0°F3N24T27Sea1000	1732.28	1	1.522	1.140	1.287	1	0.341	23,446
P.49073324130062500	1889.76	1	1.374	1,140	1.287	1	0.341	23,086
P_4\$00F3N24T300es1000	1889.76	1	1.522	1.140	1.287	I	0.341	25.578
P_400°F3N34T275ex500	1237.35	1	1.667	1.143	1.287	1	0.385	16.292
Pg4@TF3N3JT275m1000	1237.35	1	1.943	1.143	1.287	1	0.385	18.992
P.4007F3N34T3006a500	1349.83	1	1.667	1.143	1.287	1	0.385	17.773
P-140713X341300e-1000	1349,83	1	1,943	1,143	1.287	1	0,385	20,719
P # 9207F3N241275cs500	1627.81	1	2.297	1,140	1.287	1	0.493	21,606
P # w2077.3X241275es1000	1627.81	1	2.900	1,140	1.287	1	0.493	27.275
P_1y207F3N24T300er500	1775.80	1	2.297	1.140	1.287	1	0.493	23.570
PA\$207F3N24T300ka1000	1775.80	1	2.90X)	1.140	1,287	1	0,493	29.755
P.A.920°F3N34T275(9500	1162.72	Э.	2.264	1.143	1.287	1	0.593	12.689
PAQ20°F3N34T275co1000	1162.72	1	2,837	1,143	1.287	1	0.593	15,903
P_Ay20°F3N34T300ca500	1268,43	1.	2.264	1.143	1.287	1.	0.593	13,843
PAQ20733347300e01000	1268,43	1	2.837	1.143	1.287	T	0.593	17.349
P.6907F3N24127502500	2598,43	1	1.376	1.116	1.312	1	0.341	47.591
P/np07F3N24T275Q1000	2598,43	1	1.529	1,116	1,312	1	0.341	52.879
P_6\$07F3N24T300\2500	2834.65	1	1.376	1,116	1.312	1	0.341	51,918
P_0.p0*F3N24T300Q1000	2834.65	1	1.529	1,116	1.312	1	0.341	57,686
P_6&0"F3N37T275Ω500	1709.49	1.	2.273	1.119	1.287	1	0.395	43.927
P_6w0*F3N37T275Q1000	1709,49	1	2,863	1.119	1.287	1	0.395	55,345
P.fay0°F3N37T300Ω500	1864,90	1	2.273	1.119	1.287	1	0,395	47.921
P_640°F3N37T300Q1000	1864.90	1	2.863	3,119	1.287	1	0.395	60.377

Paire d'engrenage étudié	W(N)	<i>K.</i> .	K. '	<i>K</i> ,	K_{m}	K_B	J	$\sigma_f(MPa)$
P_6\u00c020°F3N24T275\u00c0500	2441.72	1	2.041	1,116	1,308	1	0,495	42.818
P_6\u00f620°F3N24T275\u00f61000	2441.72	1	2.518	1,116	1,308	1	0,495	52.829
P_6\u00f820°F3N24T300\u00c500	2663,70	1	2.041	1.116	1,308	1	0.495	46,711
P_6\u00f820°F3N24T300\u00f2000	2663.70	1	2.518	1.116	1,308	1	0,495	57.632
P_6\u00f820°F3N37T275\u00f9500	1606,40	1	2.065	1.119	1.287	1	0,610	22.836
P_fsq20°F3N37T275@1000	1606,40	1	2.544	1.119	1.287	1	0,610	28,133
P_6q20°F3N37T300c9500	1752.43	1	2.065	1.119	1.287	1	0.610	24.912
P.6w20°F3N37T300w1000	1752,43	1	2.544	1.119	1.287	1	0,610	30,691

Tableau XLIX (suite)

ANNEXE 6

Photographies numériques des essais expérimentaux

Figure 100 P.440°F1/2N24T275co0

Figure 101 P_d4\u004200F1/2N24T300\u00fc0

Figure 103 P_d4\u0076909F1\2N24T275\01000

Figure 104 P.440°F1/2N24T300w500

Figure 105 P_4w0°F1/2N24T300w1000

Figure 107 P_d4\u007690°F1/2N34T300\u00f60

Figure 109 Pa4w0"F1/2N34T275co1000

Figure 110 Pe440°F1/2N34T300w500

Figure 111 Pat4\u004900F1/2N34T300\u00f601000

Figure 113 P_d4\u00c020°F1/2N24T300\u00f60

Figure 114 P_d4w20°F1/2N24T27500500

Figure 115 P_d4\u00c020°F1/2N24T275\u00f61000

Figure 116 Pa4w20°F1/2N24T300w500

Figure 117 P_d4\u03c620°F\u03c62N24T300\u03c61000

Figure 119 P_4w20°F1/2N34T300w0

Figure 120 Po4w20°F1/2N34T275w500

Figure 121 P_4\u00c020°F1\u00c2N34T275\u00c01000

Figure 122 P_d4w20°F1/2N34T300(9500

Figure 123 P_d4\u03c620^F1/2N34T300\u03c61000

BIBLIOGRAPHIE

- T. J. Dolan et E. L. Broghamer. A photoelastic study of the stresses in gear tooth fillet. University of Illinois Bull, 1942, 335.
- [2] I. M. Allison et E. J. Hearn. A new look at the bending strength of gear teeth. Exp. Mech., 1980, p 217-226.
- [3] Wang, Ming-Jong. A new photoelastic investigation of the dynamic bending stress of spur gears. *Journal of Mechanical Design, Transactions of the ASME*, v 125, n 2, June, 2003, p 365-372.
- [4] B. Rebbechi, B. D. Forrester, F. B. Oswald et D. P. Townsend, Comparison between theoretical prediction and experimental measurement of the dynamic behavior of spur gears. *American Society of Mechanical Engineers, Design Engineering Division (Publication) DE*, v 43 pt 2, *Advancing Power Transmission Into the 21st Century*, 1992, p 431-438.
- [5] F. B. Oswald, D. P. Townsend, B. Rebbechi et H. H. Lin. Dynamic forces in spur gears - measurement, prediction, and code validation. *American Society of Mechanical Engineers, Design Engineering Division (Publication) DE*, v 88, 1996, p 9-15.
 - [6] B. Rebbechi, F. B. Oswald et D. P. Townsend. Measurement of gear tooth dynamic friction. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, v 88, 1996, p 355-363.
 - [7] Y. Ogawa, S. Matsumura, H. Houjoh, T. Sato et K. Umezawa. Rotational vibration of a spur gear pair considering tooth helix deviation (Development of simulator and verification). JSME International Journal. Series C: Mechanical Systems, Machine Elements and Manufacturing, v 43, n 2, Jun, 2000, p 423-431.
- [8] J.-H. Kuang et A.-D. Lin. Theoretical aspects of torque responses in spur gearing due to mesh stiffness variation. *Mechanical Systems and Signal Processing*, v 17, n 2, March, 2003, p 255-271.
- [9] S. C. Mohanty. Dynamic load and contact stress analysis of high contact ratio spur gears. *Journal of the Aeronautical Society of India*, v 53, n 1, 2001, p. 44-51.

- [10] F. Choy, G. Xu, V. Polyshchuk, J. J. Zakrajsek et D. P. Townsend. Effect of gear tooth imperfection on dynamics of gear transmission systems. *International Journal of Turbo and Jet Engines*, v 16, n 3, 1999, p. 161-176.
 - [11] F. Choy, G. Xu et V. Polyshchuk. Dynamic Analysis and Experimental Correlation of a Gear Transmission System. *International Journal of Turbo and Jet Engines*, v 12, n 4, 1995, p. 269-282.
 - [12] S. S. Rao et K. Y. Yoon. Minimization of transmission error in helical gears. Proceedings of the Institution of Mechanical Engineers -C- Journal of Mechanical Engineering Science, v 215, n 4, 2001, p. 447-460.
 - [13] J. D. Smith. Modeling the dynamics of misaligned helical gears with loss of contact, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, v 212, n 3, 1998, p 217-224.
 - [14] P. K. Mahanta et L. Nayak. Non-Hertzian approach to predict pressure distribution in gear tooth contact problem. *Journal of Scientific and Industrial Research*, v 59, n 5, 2000, p 400-406.
- [15] Y. C. Chen et C. B. Tsay. Contact ratios and transmission errors of a helical gear set with involute-teeth pinion and modified-circular-arc-teeth gear. JSME International Journal - Series C - Mechanical Systems Machine Elements and Manufacturing, v 44, n 3, 2001, p 867-874.
- [16] J. Perret-Liaudet et J. Sabot. On some nonlinear dynamic behaviours of gears. Mécanique Industrielle et Matériaux, v 51, n 4, 1988, p. 170-172.
 - [17] D. Dennin et F. Pfeiffer. Dynamic contact loads of spur and helical gears. ZAMM - Zeitschrift fur Angewandte Mathematik und Mechanik, v 76, n 5, pt. supplement, 1996, p. 117-118.
 - [18] K. Lee. Analysis of the dynamic contact between rotating spur gears by finite element and multi-body dynamics techniques. *Proceedings of the Institution of Mechanical Engineers -C- Jnl of Mechanical Engin Science*, v 215, n 4, 2001, p 423-436.
 - [19] L. D. MacLennan. An analytical method to determine the influence of shape deviation on load distribution and mesh stiffness for spur gears. *Proceedings of* the Institution of Mechanical Engineers -C- Jul of Mechanical Engin Science, v 216, n 10, 2002, p 1005-1016.

- [21] M. H. Arafa et M. M. Megahed. Evaluation of spur gear mesh compliance using the finite element method. *Institution of Mechanical Engineers -C- Jul of Mechanical Engin Science*, v 213, n 6, 1999, p 569-580.
- [22] R. G. Parker, S. M. Vijayakar et T. Imajo. Non-linear dynamic response of a spur gear pair: modelling and experimental comparisons. *Journal of Sound and Vibration*, v 237, n 3, 2000, p. 435-456.
- [23] S. H. Choi, J. Glienicke, D. C. Han et K. Urlichs. Dynamic gear loads due to coupled lateral, torsional and axial vibrations in a helical geared system. *Journal* of Vibration and Acoustics. Transactions of the ASME, v 121, n 2, Apr, 1999, p 141-148.
- [24] M. Kubur, A. Kahraman, D.M. Zini et K. Kienzle. Dynamic Analysis of a Multi-Shaft Helical Gear Transmission by Finite Elements: Model and Experiment. *Journal of Vibration and Acoustics, Transactions of the ASME*, v 126, n 3, July, 2004, p 398-406.
- [25] J. E. Shigley et C. R. Mischke. Mechanical engineering design. sixth edition. McGraw-Hill, 2001, p. 831-990.
- [26] Photolastic Division measuring group, inc. Strain measurement with the 030series reflection polariscope. Operating instructions and technical manual, 1992.
- [27] ANSI/AGMA 2000-A88. Tolerances an measuring methods for unassembled spur and helical gears (including metric equivalents). Gear classification and inspection handbook, 2000, p. 1-46.
- [28] R. Bouzidi. Projet de photoélasticité. Cours de mécanique des milieux continus. Université de Nantes, Octobre 2004, p. 1-16.
- [29] P. Robert et A. Rey. Le Grand Robert de la langue française, dictionnaire alphabétique et analogique de la langue française, deuxième édition, 1989, tome I p. 384, tome II p. 3 et 597 et tome V p. 763.
- [30] A. Kuske et G. Robertson. Photoelastic stress analysis. J. Wiley & Sons. 1974, p. 86-274.