ECOLE DE TECHNOLOGIE SUPERIEURE
UNIVERSITE DU QUEBEC

MEMOIRE PRESENTE A
L’ECOLE DE TECHNOLOGIE SUPERIEURE

COMME EXIGENCE PARTIELLE
A L’OBTENTION DE LA
MAITRISE EN GENIE ELECTRIQUE
M.Ing.

PAR
NESET SOZEN

STRUCTURE D’AGENTS EXPLORATEUR DE DONNEES

MONTREAL, LE 22 DECEMBRE 2006

© droits réservés de Neset Sozen

CE MEMOIRE A ETE EVALUE
PAR UN JURY COMPOSE DE :

M. Frangois Coallier, directeur de mémoire)
Département de génie logiciel et des TI a 1’Ecole de technologie supérieure

M. Oryal Tanir, codirecteur de mémoire
Bell Canada

M. Alain April, président du jury)
Département de génie logiciel et des TI a I’Ecole de technologie supérieure

IL A FAIT L’OBJET D’UNE SOUTENANCE DEVANT JURY ET PUBLIC
LE 28 NOVEMBRE 2006
A L’ECOLE DE TECHNOLOGIE SUPERIEURE

« STRUCTURE D’AGENTS EXPLORATEUR DE DONNEES »
Neset S6zen

SOMMAIRE

Beaucoup d’entreprises industrielles ont des bases de données ayant un contenu riche en
données, mais pauvre en savoir. Néanmoins, elles contiennent toujours de 1’information
cachée qui peut étre mise a jour et a une valeur marchande potentielle. L’exploration de
données (data mining), aussi dit fouille de données, permet d’extraire du savoir a partir
de grandes quantités de données en utilisant des méthodes tel que la classification
automatique (clustering), apprentissage automatique (classification), les réseaux de
neurones, etc.

Réaliser une application qui fait I’exploration de données d’une maniere efficace
requiere des ressources hautement qualifiées et la mettre en opération dans une
entreprise peut étre trés cofiteux. Automatiser le processus d’exploration de données
peut donc &tre une approche viable et abordable.

Une approche viable pour automatiser ce processus sera d’utiliser des agents, un type de
programmes. Ces agents peuvent réaliser un ensemble de tdches de maniére autonome et
indépendante et vont collectivement travailler pour résoudre des probleémes complexes
qui ne peuvent é&tre résolus par des programmes monolithiques.

Ce projet consiste donc a réaliser un systéme d’exploration de données automatisé en
utilisant des agents logiciels. Ce projet touche donc deux concepts fondamentaux :
I’exploration de données et les agents logiciels.

L’exploration de données est une méthode itérative pour extraire des corrélations & priori
inconnues a partir de grandes quantités de données, et ce, en utilisant des algorithmes
dits d’intelligences artificielles ou provenant du domaine de la statistique.

Les algorithmes utilisés peuvent étre catégorisés en deux groupes: les méthodes
supervisées et non-supervisées. Les méthodes supervisées servent surtout a faire des
prévisions futures a partir d’'un modele du systéme créé avec les données actuelles.

Avec ce type de méthode, il faut avoir des données étiquetées : entrée et sortie connue.
Par exemple, dans une entreprise la fouille de données sera utilisée dans le contexte
suivant : le lancement d’un nouveau produit sur le marché. Des algorithmes supervisés
seront utilisés pour prédire les clients potentiels en utilisant des données reliées a un
ancien produit similaire ol chaque client est catégorisé comme bon client ou mauvais
client pour ce produit. Les étiquettes sont « bon » et « mauvais ». Le modéle produit a

il

partir de ces données nous permettra de prédire la meilleure clientéle pour notre futur
produit.

Les méthodes non-supervisées servent surtout a décrire le systeme, on veut donc
comprendre le systeme. Avec ce type de méthode il n’y a pas de données étiquetées de
départ, conséquemment aucune directive a priori sur ce que nous cherchons.

Le processus de fouille de données est composé des 5 étapes décrites ci-dessous :

1. Définition du probléme : Cette étape consiste a établir 1’énoncé du probléme et
les objectifs a atteindre. Pour se faire, les connaissances et 1’expérience du
domaine spécifique sont utilisées. Des hypothéses sont formulées pour décider

comment mener le processus de « data mining ».

2. Compréhension des données : Durant cette étape, I’extraction des données et la
détection de sous-ensemble de données « intéressantes » seront réalisées.

3. Préparation des données : Cette étape a pour objectif de préparer les données
pour la prochaine étape. Typiquement, les données seront transformées pour
avoir des résultats optimums dans 1’étape suivante.

4. Estimer un modéle : A présent, un ensemble de méthodes et d’algorithmes sera
utilisé pour créer des modeles a partir des données préalablement préparées. De
plus, ces modeles seront vérifi€s pour s’assurer que les objectifs fixés dans la
premiére étape sont satisfaits.

5. Interpréter un modele : Dans cette derniére étape, les résultats seront présentés
au client dans une forme qui lui facilite la compréhension.

L’aspect itératif du processus fait que nous reviendrons a 1’étape précédente tant et aussi
longtemps qui nous ne sommes pas satisfaits des résultats de I’étape courante.

La méthodologie, employée pour créer notre systéme, s’est particuliérement inspirée de
Particle [2]. Dans cet article, I’auteur propose des lignes directrices pour automatiser le
processus de fouille de données. Globalement, ces directives peuvent se résumer ainsi :
« L’automatisation du processus d’exploration de données est réalisée en se concentrant
sur 1’aspect opérationnel de ce processus et sur le domaine spécifique du client. ». De ce
fait, le design du systéme d’explorateur de données était fait en deux phases. En premier
lieu, toutes étapes du processus de « data mining » décrites ci-haut sont scrutées a la
loupe pour proposer des solutions d’automatisation pour chacune des étapes. L’analyse
était faite en considérant les objectives suivantes :

il

e Utiliser les informations a priori spécifiques au domaine du client pour
automatiser le processus d’exploration de données

e Fixer les méthodes et les filtres, utilisés lors de I’estimation d’un modéle et lors
des étapes de préparation de données respectivement.

Ensuite, la structure du systéme sera développée en considérant les points suivants :

e Les attributs de qualités principales sont la modifiabilité et la flexibilité.
e Design est bas¢ sur JSR 73:JDM

e Les méthodes et les filtres utilisés pour I’exploration de données proviendront
des librairies WEKA

e Le systéme est bati sur la technologie des agents logiciels
o Le développement et le design sont réalisés avec la méthodologie PASSI
o Doit étre conforme aux standards FIPA
o Les agents seront créés en utilisant JADE

Le systeme d’exploration de données est destiné & extraire des connaissances a partir
d’ODM « Operational Data Mart » de Bell Canada et aucune hypothése a priori n’était
proposée sur ce qui sera cherché par le systétme. De plus, il n’y avait aucune autre
information que les données provenant d’ODM comme point de départ.
Conséquemment, 1’approche choisie pour mener 1’exploration de données était de type
descriptif en utilisant seulement des algorithmes non-supervisés. Une autre
problématique & laquelle nous faisions face était la malédiction de la dimensionnalité
causée par le grand nombre de dimension (nombre d’attributs utilisés pour représenter
une donnée dans une base de données) des données d’entrée. La malédiction de la
dimensionnalité est le fait que la demande en donnée augmente exponentiellement en
fonction du nombre de dimension des données d’entrée. Comme démontré dans le
document “Use of unsupervised clustering algorithm in high dimensional dataset”, dans
la section APPENDIX 2, les méthodes d’exploration de données classiques sont
inefficaces dans notre cas et il fallait opter pour des méthodes non supervisées efficaces
avec les données d’entrées de haut dimensionnalité d’attribut.

Ensuite, la mécanique opérationnelle de la deuxiéme étape de I’exploration de données a
été inspectée. La « compréhension des données » est réalisée par un processus a quatre
étapes :

v

e Identifier des attributs inappropriés et suspects

e Sélectionner la représentation d’attribut la plus appropriée
e Créer des attributs dérivés

e Choisir le sous-ensemble d’attributs optimaux

La troisiéme et la quatriéme étape du processus de « data mining » étaient considérées
de pair car « la préparation des données » et « estimer un modele » sont relatives a un
algorithme spécifique. La préparation des données consiste a choisir et a transformer les
données pour 1’algorithme d’exploration de données spécifique. Par exemple, pour
I’algorithme PART, «la préparation des données » consiste & sélectionner tous les
attributs de type numérique et a former un nouveau sous-ensemble de données qui sera
utilisé pour créer un modéle lors de I’étape d’« estimer un modele » car 1’algorithme
PART ne fonctionne qu’avec des données de type numérique. La quatriéme étape
comporte plusieurs tiches : batir un modeéle, appliquer un modele et tester un modéle.
Notre systeme ne supporte que les deux premieres taches, car pour tester un modele il
faut avoir de I’information a priori (un mode¢le de référence avec des données d’entrée et
les catégories ou classes correspondantes connues) dont nous ne possédons pas. Etant
donné que notre systéme est basé sur JDM, nous nous sommes grandement inspirés du
processus de « data mining » proposé par JDM pour établir les opérations a réaliser pour
batir et appliquer un mode¢le.

Une des conditions que nous nous sommes fixée pour I’étape « estimer un modele » était
d’utiliser un ensemble d’algorithmes préétablis. Lors de notre sélection des méthodes,
un ensemble de critéres ont été adressés pour choisir une méthode de fouille de données
destinée a étre utilisée dans notre systéme :

e Exigences en connaissance a priori et la stratégie spécifique au domaine pour
établir les exigences en connaissance & priori de la méthode d’exploration de
données

e Les méthodes non supervisées seulement

o Sensibilité de la méthode a la haute dimensionnalité des données d’entrée.

e Extensibilité des méthodes. (c.-a-d. introduire du parallélisme, étendre les calculs
sur plusieurs hotes)

e Complexité en temps d’exécution

Notre architecture est fagonnée par deux technologies (ou concepts) : les agents logiciels
et JDM. Généralement, tout systéme utilisant des agents est composé¢ de quatre
composantes abstraites : la couche plateforme « platform layer », le systeme de gestion
d’agents « agent management system », ’architecture agent « agent architecture » et la
couche domaine « domain layer ».

Domain Layer

Agent Architecture

Figure 1 Architecture générale d'application basée sur les agents logiciels.

La couche plateforme correspond a I’hdte sur lequel le systeme sera exécuté. Le
systeme de gestion d’agent fournit un environnement aux agents pour acceéder a la
plateforme et exister. L’architecture agent représente nos agents. La couche domaine
relate des aspects spécifiques au domaine.

JDM propose une architecture avec trois composantes logiques: 1’interface de
programmation d’application (Application Programming Interface “API”), le moteur de
« data mining » (Data Mining Engine “DME”) et le dépbt d’objet de « data mining »
(Mining Object Repository “MOR”). API est une abstraction permettant d’accéder aux
services fournis par DME. DME encapsule tous les services de « data mining ». MOR
contient tous objets d’exploration de données (les modéles, des statistiques, etc.) produit
par DME.

L’architecture résultante est montrée dans Figure 2.

vi

—

Agent Architecture

Figure 2 Architecture du systéme explorateur de données automatisé

Le systéme fonctionne sur la plateforme Java RMI. Nos agents sont implémentés avec la
librairie de JADE, conséquemment ce dernier sera sélectionné comme systeme de
gestion des agents. Etant donné que le domaine spécifique de notre projet est le « data
mining », la couche domaine est créée en se basant sur I’architecture proposée par JDM.

Lors de nos expérimentations, nous nous sommes surtout concentrés sur 1’impact de la
haute dimensionnalité des attributs des données sur les résultats. Pour se faire, trois
méthodes ont été choisies. K-means qui est une méthode de classification non-
supervisée classiques, fuzzy c-means qui est aussi une méthode de classification non-
supervisée dont chaque point appartient a une classe a un certain degré (a2 un certain
pourcentage) et PART « projective adaptive resonance theory » est un algorithme de
réseaux de neurones adapté pour la recherche dans les sous-espaces d’attribut. Nous
avons effectivement observé que la dimensionnalité des données d’entrée avait un
impact majeur sur la qualité des résultats, de plus la majorité des algorithmes classiques
ne sont pas adaptés pour extraire de 1’information a partir d’un ensemble de données de
haute dimensionnalité.

En conclusion, dans ce projet, toutes les fagades du processus d’exploration de données
sont explorées dans le but de ’automatiser en utilisant des agents autonomes. Lors de
notre investigation, il a été remarqué que les étapes de compréhension des données et
préparation des données consomment beaucoup de temps et elles ont un impact majeur
sur la qualité des résultats de recherche. De plus, lorsque des méthodes complexes et
hautement spécialisées qui sont utilisées, généralement leurs parameétres nécessitent
beaucoup d’ajustement et ils ne marchent qu’avec un type de donnée spécifique

vii

seulement. Par exemple, PART ne peut étre appliqué que sur des nombres naturels (c-a-
d N={0,1,2,3,...}) et les valeurs choisies pour les deux paramétres d’entrée qui sont
« parametre de vigilance » et « parametre de vigilance de distance » ont un impact sur la
grandeur (nombre d’attribut qui définisse le groupement) des groupements d’objet qui
peuvent étre trouvés. Donc, il sera plus rentable de se concentrer sur ces deux étapes
autant (méme plus) que sur les algorithmes de recherche utilisés lors de I’estimation de
modele. En ce qui concemne les algorithmes a utiliser pour faire 1’exploration de
données, nous faisions face a la malédiction de la dimensionnalité causée par le nombre
élevé que possédaient les données d’entrée. Pour résoudre ce probléme nous ne
pouvions utiliser les solutions classiques comme la réduction du nombre de dimension
des données d’origine car, ces méthodes de réduction nécessitent des informations a
priori sur les données d’origine. La seule option restant était d’utiliser des algorithmes
spécialement adaptés a des problemes comportant des données de hautes
dimensionnalités.

A 1a suite de notre analyse du processus de « data mining », nous avons débuté le design
du systeme basé sur les agents. Compte tenu de la complexité inhérente des systémes
basés sur les agents, un ensemble d’outils a été sélectionné pour simplifier le design et le
développement du systéme. La technologie des agents logiciels est un domaine tres
nouveau, conséquemment il est trés difficile de trouver les outils adéquats. A la suite
d’une recherche intensive et quelques essaies et erreurs, la méthodologie PASSI fut
choisie pour le design et le développement du systéme. PASSI est une méthode itérative
de design et développement de systéme multi-agents facile a utiliser et & comprendre.
Sa facilité est due a utilisation de la notation UML et le « toolkit » PTK qui est une
extension de Rational Rose qui implémente PASSI, ainsi qu’une panoplie de documents
et d’articles sur cette méthode. De la méme maniére, nous avons choisi la plateforme
JADE pour implémenter nos agents.

Compte tenu de la grande envergure du projet, 1’objectif principal de ce mémoire était de
faire un travail préparatoire pour des projets de recherches futures dans le domaine. Plus
d‘analyse et d’information a priori sont nécessaires pour avoir un systéme optimal. En
ce moment, les filtres utilisés lors de la préparation des données sont plutdt élémentaires.
11 faut aussi étudier la possibilité d’utiliser les algorithmes de classification hiérarchique
(hierarchical clustering), les méthodes d’exploration de données temporelles, les arbres
de recherche, ainsi que I’exploration de données en paralléle et distribuée. Il faut aussi
étudier les agents mobiles, ’impact de leur utilisation dans notre contexte. Les agents
mobiles sont des agents logiciels qui peuvent se déplacer d’un héte a un autre.

DATA CRAWLER AGENTS FRAMEWORK
Neset S6zen

ABSTRACT

This document presents the framework of agent-based automated data mining system
searching for knowledge in data with high dimensional feature space using unsupervised
methods. First, the data mining process was analyzed to establish all the operational
mechanics of the process. The impact of the high dimensionality of the data on
unsupervised methods (i.e. clustering methods) was also studied. Then, the agent-based
system was designed and developed with PASSI methodology and JADE platform.

ACKNOWLEDGEMENT

I am grateful to Department of Software and IT Engineering, Ecole de technologie
supérieure, where 1 did the entire research on data crawler agents framework and
specially to M. Frangois Coallier and M. Oryal Tanir for their support and assistance

during this project.

TABLE OF CONTENTS

Page

SOMMALIRE ettt ettt et ettt ettt st b e sbasnasrasseebesbeneas i
ABSTRACT ettt ettt ettt be s besbe st e sas e sbesaasbasanesnaansesneens viii
ACKNOWLEDGEMENTooootiiieieieeiisttete sttt ere st ssresenesse s essssessseaessnessessnens X
LIST OF TABLES ... oottt ettt et et et e e e st st e e sssesnassaesaava e s asseeneas xii
LIST OF FIGURES ...ttt ettt et e e s sa e sas e s st e e saesseens X1V
LIST OF ALGORITHMS ...ttt te st ee e stae st e ve b e s e sa e e enens Xvii
AC R ON Y M S et st e st st aba e seeenressreen Xviil
INTRODUCGTIONooiiiirierieneintiteitertetetestete e sae et eseestessestessessassessessasssssssaesssssssassansens 1
1.1 Data Mining COnCeptsceveeerreeieieiieieieiereiesressee e ee e ereesnessenes 2
1.1.1 What is Data MININE?ccccociiririienieiinieieeee et ae e enees 2
1.1.2 How to automate data mining process?cccceverervuerienervreseesieneenns 7

1.2 AZENtS TREOTIESconveenieiiriicteeieeieeteeteteetere e st vse et raens 8
1.2.1 What 1S an aeNt?cceeveviviieiiiiieeesere et etee s ese et e s e sesaeseens 8

1.3 Agents in data mining: Issues and benefits.........ccoceevvvevieeeceveennnnns 15
1.4 ODBJECLIVES ..eeueeniieiiieiieiiintesteseetesteeseesteessesssesaesaesseeneseesseetsessensseseeses 17
CHAPTER 1 STATE OF THE ARToooiiiriiieieieertetetetete et ae s 19
CHAPTER 2 METHODOLOGYooiitiieiirieieieierescsestesteae s snesaesesessesasesseresssesnens 24
2.1 PASSI Methodology Descriptionccceeeeverueseresenenenreeseeeeseenanns 25
2.1.1 System Requirements Modelcocvevvrveniencienennneneeeeeceeere e eneenns 27
2.1.2 Agent Society Modelccocvivueeuiieneniiciriieeeeeeeeee e 28
2.13 Agent Implementation Modelcccoviriinirniiinieiececeeeee s 28
2.1.4 Code MOdEL.......coiuiriiiiiiee ettt been 29
2.15 Deployment Modelccoccoiriiriiiiiviniiniiienteeeseneseese e eneeeees 29
CHAPTER 3 KNOWLEDGE REPRESENTATION.......ccecvvtirieirinieieeie et eeeeeae 30
3.1 RDF - Resource Description Frameworkcccccovevvieiiciciecnnenne. 31
CHAPTER 4 DATABASE ISSUES ...ttt eeee et en e b 32
CHAPTER 5 DATA MINING PROCESS ANALYSIS ..oooioiiieeeeeeeee e 33
5.1 Step 1 — Define the problemcocoeveeveeveeieinienieeeceeeee e 33
52 Step 2 — Understand the datacoccoceevevceeieevneeieeieiece e, 33
5.2.1 Identify inappropriate and suspicious attributesccccoeveeeeenen. 34
52.2 Select the most appropriate attribute representation.................c........ 36
523 Create derived attributescceceveecierreniireeiesectesiese e 36

524 Choose an optimal subset of attributescccceevereeeirecieeeceiieenen, 37

X1

53 Step 3 — Prepare the data...........ccoooieiiiiiinicniiiiicens 37
54 Step 4 — Estimate the model.........ccccoooerveiniiiiiniiiiii i 38
54.1 “Estimate the model” process flowccceoveveriiiiiiiicnnenniniiiinee. 38
542 DeciSIon TIEES ...c..ccvvcieriiieiiieicecterrc e 40
543 Ass0c1ation RUles........ooeiiiiiiiiiieccec s 40
544 CIUSEEIINE ...ee oottt sttt et s sbe et sb e e e e 40

55 Step5 - Interpret the model.........cocvevieieriniiniinieeccereeecr e 41
CHAPTER 6 DATA MINING METHODS SELECTIONc.c.covoieiiieniniiieninineeieneens 42
CHAPTER 7 DATA CRAWLER ARCHITECTUREcccoocvviminiceenenneneisiesieeeeenens 46
CHAPTER 8 EXPERIMENTS AND RESULTS.......ccottrtititeiiienieeeeeinieree st eenees 54
CONCLUSION AND FUTURE WORKccccotertiirieiiiiterenteienseseesteiressessessenessensnns 57
APPENDIX 1 Data crawler system requirements and specificationsco.c.... 62

APPENDIX 2 Use of unsupervised clustering algorithm in high dimensional
AALASEL ..ovveeeiiiiririree et e se et sae s 173

REFERENCES ettt s 236

Table 1
Table 11
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX
Table X
Table XI
Table XII
Table XIII
Table XIV
Table XV
Table XVI
Table XVII
Table XVIII
Table XIX
Table XX
Table XXI
Table XXII
Table XXIII
Table XXIV
Table XXV
Table XXVI
Table XXVII

LIST OF TABLES

Page
Several agent-based DM systems COMPATiSON.......c.ceceeveeeveereceneennns 21
Inappropriate attribULEScocoevivueirinreieerieeree e 34
SUSPICIOUS ALIIDULES.coveuvieieiriircreereeertee et 35
Inappropriate attribuLescccccvieueviriririnieiereeee et 91
Suspicious AttribULES.covrveeeririieirertee e 91
Distance between each Sroup........coccvccvvvierieenieeniiesienie e sveeeeeens 99
Coordinator agent's States..........ceecceeereeeriierneeeniieeeneeecreesseeeseeee e 139
Build task tracking data structure.........ccccooveevienirvnvienreenieseereeeenenn 140
Apply task tracking data StruCtUre.........ccocvvevrereeirsernieenerenreeens 141
Model setting data StUCLULEc.coervervrerrerreenieierenieeeererereeeenes 141
Data agents tracking table.........c.c.coveineiinincninncicnicreeenecenes 142
Miner agent tracking tablecovvivernrerenenieneieneniseeesaecseeees 142
GUIEVENLS ...ttt ebe s s sasne 144
Data agent States..........coveeiiireiiiireeeere e 159
Miner agent STALEScceveeeeeereriereererterieieeeeereeeeese e sseesessesseseens 166
clusters with high-dimensional subspacec..ceceeveevevirrcrennnes 201
Clusters with low-dimensional subspaceccccevueeveererevrecrveennnn. 202
Input clusters with Fuzzy c-means......c...coceceieriineerniienicicsesenns 204
5-dimensional data SEtSccccecviveerieiireerieete e 205
INPUt CIUSLELS ...ttt 214
Contingency table...........cocoiiviiiiieeeeeeer s 215
Contingency table..........ccooviiriiriiteeeteee e 216
INPUL CHUSEELS ..ottt et ae s e 217
Contingency table..........ccovrveerrrirerreieririneneteesesee e e seesens 218
Contingency table..........ccocevvieriininieieceeeeccterre e 219
INPUL CIUSEELS ..ot sve et e s 220

Input CIUuSters (CONL.)..ccoviriririiireieerrtee st et crae et e enne e 221

Table XXVIII
Table XXIX
Table XXX
Table XXXI
Table XXXII
Table XXXIII
Table XXXIV
Table XXXV
Table XXXVI
Table XXX VII
Table XXX VIII
Table XXXIX
Table XL
Table XLI
Table XLII
Table XLIII
Table XLIV
Table XLV

X1il

Contingency table........ccvveeveereerieeieiircie e e e aesenens 222
Contingency table.......cocevierurriiiieriereeneserrecresaeeesierreseessesseesseens 223
INPUL CIUSTETS veovvveiieeiiiireciiteiee sttt er e sr e sre e ea e saeassnas 224
Contingency table........coovveerieriiniiireeeeeeee e 225
INPUL CIUSLETS ...ttt n e st ean 226
ContiNgEnCy tabIe.......uecviriiiieiiiieieiieeie e eee e eeeeveeseeteeaeesneenreas 226
INPUL CIUSLETS ..neeiiiiiieieeireee ettt e e ae e s aaa b es 227
Contingency table......c.cceeverieierciinienieneeiere et 227
INPUL CIUSTETScvveriieiieierterit ettt ettt sttt ene 228
Contingency table...........cccviiieiierienenenieierereereeee et aens 228
INPUL CIUSLETS ..ottt 229
Contingency table..........ccovvvivievinieninieieceeeeeese e 230
INPUL CIUSTETS ..vviireeiiieiieiieeee ettt er e e br et e eaae e eaeas 231
Contingency table........coceverrieriiiniriierecveerre e 232
INPUL CIUSEETS ...uveeiieireriieriienee sttt sere sttt ebeseera e beesareenbees 233
Contingency table.........cocvvirireieiiriereeeeeee et enenees 233
INPUE CIUSLETS ...cvveeveierieteieietesee et e s saerees 234

Contingency table.........ccvevierierierierierieeece et 235

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27

LIST OF FIGURES

Page
Architecture générale d'application basée sur les agents logiciels........ v
Architecture du systéme explorateur de données automatisé vi
Data mining process’s input and output.......c..ceeceeiiecenienicenvenneenne. 2
A database HIUStration..........ccceeeevieveieiinieiincnereceeee et 3
Data MININE PrOCESS c.veevcvreriererirerieeisieeeiieesresesareseseressiessssaeessesssnseesas 6
Perceive-Reason-Act CYCIEccoeveerercieenienienerieeceeeenene e 8
Agent Formal Representationccocveveriinienenniieeneneeneieennenens 9
Agents, Roles and Architecture........c.ccoceevievieniernnnnnneeeereceeeeenen 11
Generic agent-based application architectureccocevcereeceereeneene 12
Agent SOCIEtY dIAGIaIM.....cvevveeveriieiereeeiereee ettt et e s saeesessesees 14
Genealogy of Agent-Oriented Methodologies [21]ccccovviveiniennene 23
The models and phases of PASSI methodology [21]....cccccvvvviveencnnee. 25
Agents implementation iterations [21].....ccccceecviriviiniiininiienie e 26
Data Access ObJect [20]......coiviirireererienirtenieeieeesiere e 32
Data understanding StEPS.........ccerrreverrireerienierienreneeesneserereessesseseennes 34
Estimate the model Stepccooouiieeeerieeeceeesee e 39
A Generic Agent-based System ArchiteCturecceveeeeeerenrenncne 46
The Data Crawler ArChiteCturecoccevevrererirrenineeienieniesiesteereseeeens 47
Context DIAZIaIMccvveveeeriieiirieiecieereereereeees ettt esesveenresseenseesnens 48
Domain DESCIIPLIONco.eeviererieiereeereenieniesesene e e sesesessessessesaennas 49
Agents Structure Definition Diagramcoccceeeveeveenncienenninenceneenne. 51
MOR Layered StrUCIUTEcoverueririeieeeeneeeeeereeteseseeestesaeeseeesesaees 59
Genealogy of Agent-Oriented Methodologies [21]ccceevieveeneeen. 66
The models and phases of PASSI methodology [21].....ccvevvevevenienee. 67
Agents implementation iterations [21].....cccceveevirvenencnrienenieeeeee 68
FIPA Reference Model [34].....cccveveiviniiniicereeieceeceevee e 74

FIPA-OS Components [34]......ccccvevereerrerirnierienreneniesereessessessessesesnes 75

Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57

XV

JADE Platforms and Container [47] -..cccccveeieeeiriinnrinieneesre s e 76
Data Access OBJECt [20]...cuiiiiriiieeieienieeetcieeeeeeeete e 78
A Generic Agent-based System Architectureccooeevvevervvieenenne. 80
The Data Crawler ArchiteCtureoccoceeeerenerenieneneceeccriesceene 82
Context DIAZIAMcoveviiiriniiieriieneretete et st seesre e sresne e 83
Data MININE PIOCESS ..vverevrerrrirrrrrieeriereiitreeeceieesreesstersereesssseessseesenees 84
Domain Description Diagramcccoeveeeiecivicrineceneneeneenenenienene. 85
The data mining process as a black boX..........cecuvvevceniinvnienieniecenennens 86
Data Understanding step diagramcocceoeeeeeeeveenenienneeneenieerenevenne 88
EDA PrOCESS StEPS....uutieeiiriiireiiierrrentieenreesieesrte et sreesssreesssanesenaees 89
Data Understanding ProcCessccccceveevierieriverirnencesniecresneseeeseeseenees 90
Data preparation step diagram...........cccceveeeeereererirrneesenrsresesenesennens 98
Data Preparation PLOCESS.cocviueveeererereieiereesceesessessessssesesenenenns 98
Estimate the model step diagramccccoceveveiervenininnneenenesenenene 100
General “estimate the model” Stepoceoeeevieerrecninniereeeceeee 101
Specific “estimate the model” phase........cccocveevriveeciineceeeeceeene, 104
Interpret the model step diagram...........cccecevverenennneieerenneeneenenens 104
Manage data mining process diagram..........cccecueeveeeeerrrruesnesiesseesenns 106
Agent identification diagram.........c.ccceeeevevrininienrenenneererneeeseeeene 109
Role Identification diagram............cccccveruevuenienerneeerecenennuenesnseennens 112
Task Specification Diagram of Coordinator Agentc.cccevenee. 114
Task Specification Diagram of Data Agentccccceeeeevrcvrecrennnns 115
Task Specification Diagram of Miner Agent..........c.cccoeeevveereerecnennnns 116
Domain Ontology Description Diagramccccoeceevveveervesresseennens 119
Communication Ontology Description Diagramc..ccoevvvvennee. 121
Roles Description DIiagramcooevieieveecieieieeeeceeeeeceee e 123
Multi-Agent Structure Definition diagram..........c.ccocevvvevrcvrerveeeennne. 127
Multi-Agent Behavior Description Diagramcccoceevveevevernennne. 128
Multi-Agent Behavior Description Diagram (cont.)..........ceeveneeenee. 129

Multi-Agent Behavior Description Diagram (cont.).........c.cccceeeeenee. 130

Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71

XVvi

Coordinator Agent Structure Definition.........cocceeceeveevenecsernrivennnnne 133
Data Agent Structure Definitioncocceveiirveeienniineeneeenneneenen 135
Miner Agent Structure Definitionc.ccccocvvvivniieinvinincienieeiennen. 136
Coordinator agent state diagramc.ccecceveeeveniieniernreereee e, 137
Error 10gging formatccoveverieiieniinieseeieeee e 157
Data agent state diagramccccevereeererceneniinninceeeiesesee e 158
Miner agent state d1agramcccovveeeverinenenieninenreeeee e 165
Deployment Configuration Diagram...........cccecevceerereerinieneerincnsnnnenns 172
Data mining process's inputs and outputsccceeeeeeveereevieereereennns 176
A database 111UStration...........cccevveiiriirieieneneeenee s 177
Data MINing PrOCESS ...cveververrerreiireeeetetertesearsessessesesseeesessesssesessens 179
Simplified ART architeCtureccevereeeeerirerreirerrereresesresteceeeeneas 186
PART ATCHItECIUTE. ... eeuvereiiriieiieiesiteietecetere ettt nes 187

Contingency table........coceverviiviriiieeereece e 199

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Algorithm 8
Algorithm 9
Algorithm 10
Algorithm 11

Algorithm 12

Algorithm 13
Algorithm 14
Algorithm 15
Algorithm 16
Algorithm 17
Algorithm 18
Algorithm 19
Algorithm 20
Algorithm 21
Algorithm 22
Algorithm 23
Algorithm 24
Algorithm 25
Algorithm 26

LIST OF ALGORITHMS

Page
Transformation selection to create derived attributesccccceueenee 37
Identifying inappropriate attributes........cocvevvereereerienenerrieneecereeeene 93
Selecting most appropriate representationoccecceveeeeerresreeseenneenne 96
Transformation selection to create derived attributes..........c.ccoceeueeee 97
Data preparation for PART algorithm..........ccceccevivirveienininenenneen 100
Model building SCENALIO.........cceruerriiereieirerieeirteer e 102
Apply building SCENATIOccceeieieririeereeee e e 103
Coordinator::onGuiEvent() method’s algorithm........cccccovcerrnnnee. 145
Coordinator::InitializeSystem::action() method's algorithm............. 147
Coordinator::Listener::action() method's algorithm...............ccoeunene. 148
Coordinator::Listener::handleDataAgentMsg method's
AlGOTIEIM ..ot 149
Coordinator::Listener::handleMinerAgentMsg() method's
ALGOTIERIM ..ottt 150
Coordinator::MineData:action() method's algorithm........................ 152
Coordinator::RequestData:action() method's algorithm 154

Coordinator::RequestBuildModel:action() method's algorithm........ 155
Coordinator::RequestApplyModel::action() method’s algorithm..... 156

Data::Listener:action() method's algorithm...........ccevveeveieriecennnne 160
Data::Listener::handleRawData() method’s algorithm..............c...... 161
Data::CollectData::action() method’s algorithm...........ccecvvrureeennens 162
Data::PreprocessData::action() method’s algorithmccoecveeeee 163
Data::InformDataReady::action() method’s algorithm..................... 164
Miner::Listener::action() method’s algorithm............ccccceeveriicenen. 167
Miner::InformMiningCompleted::action() method’s algorithm. 169
Synthetic data SENerator............ccceevveevirieniinieeiinieesieie s sve s 183
Detailed PART neural network algorithmccocevvienenriincnnenns 189

K-means clustering algorithmccceceevieveiierniiininniecceeesee e 195

DM

DDM
DMT
DCS
ODM
PRA
WEKA
JDM
JADE
PADMA
BODHI
JAM
PPML
KIF

RUP
00
AO
PASSI
PTK
UML
DAO

ACRONYMS

Data Mining

Knowledge Discovery

Distributed Data Mining

Data Mining Techniques

Data Crawler System

Operational Data Mart of Bell Canada
Perceive-Reason-Act

Waikato Environment for Knowledge Analysis
Java Data Mining

Java Agent Development Framework

Parallel Data Mining Agents

Beseizing Knowledge trough Distributed Heterogeneous Induction
Java Agents for Meta-Learning

Predictive Model Markup Language
Knowledge Interchange Format

Resource Description Framework

Rational Unified Process

Object oriented

Agent oriented

Process for Agent Societies Specification and Implementation
PASSI tool kit

Unified Model Language

Data Access Object

INTRODUCTION

Most Industrial company databases are rich in data but weak in knowledge. On the other
hand there is always a lot of hidden knowledge to be extracted. Potentially, the hidden
information and knowledge can be converted to an opportunity resulting in major
revenues. Knowledge Discovery (KD) is a process aimed at extraction of previously
unknown and implicit knowledge from large databases, which may potentially be of
added value for some given application [1]. KD process is accomplished by Data
Mining (DM) process using Data Mining Techniques (DMT). There are many DMT like
classification, clustering, etc. These techniques are described in more detail in further

paragraphs.

Implementing the data analysis technology and use of DMT efficiently requires highly
qualified resources and can be very costly to put into operation “in-house” data mining
systems or to subcontract the project to a third-party. Most of the time, the organizations
don’t have the resources available to afford these options. To automate the KD process

could be viable at a reduced cost [2].

A viable option for automating KD process, considering that in general during this
process we need to scale up with massive data sets, is agent-based applications. An
agent-based (or multi-agent) system is a system made up of several agents, working
collectively to resolve complex problem that will be difficult to achieve by a single
agent or system. An agent is a software program that realizes a set of tasks and has its

own execution thread.

This research project is about implementing an automated DM system using agents. In
this paper, we briefly review existing DM systems and frameworks and identify the
challenges to overcome in order to automate the DM process and present the architecture

of our system.

This paper is complemented by two other papers: “Data Crawler System Requirements
and Specifications” in APPENDIX 1, which contains the software requirements and
design details of the Data Crawler System (DCS) and “Use of clustering algorithms for
knowledge extraction from high dimensional dataset” in APPENDIX 2, which describes
an analysis made with several clustering methods in context of high dimensional data

where a strategy for selecting data mining methods is established.

1.1 Data Mining Concepts

Since our research project is about automating the data mining process, in this section
the data mining process itself is described in detail and the strategy to automate this

process is exposed.

1.1.1 What is Data Mining?

Data mining is an iterative process for discovering unknown knowledge from large
volumes of data by applying statistical and machine learning techniques. At a high

level, knowledge discovery and data mining process can be seen as follow:

Decision tables
Decision trees
Classification rules
Association rules
Clusters

Etc.

o Concepts
e Instances
e Atftributes

Figure 3 Data mining process’s input and output
P P

As shown in Figure 3, the inputs to the data mining process are instances, attributes and

concepts [8]. The instances are things that the DMTs will be applied on and the

attributes are characterization of each instance. For example, each row of the database

in Figure 4 corresponds to an instance and each column corresponds to an attribute.

1 32 F Suspense ~ Doctor

2 23 F Adventure Plumber

3 21 M Action Taxi driver
Figure 4 A database illustration

The concept [8] is what will be learned. For example, if the DMT is classification, the
expected outcome will be a set of classified instances and if the technique is decision
tree, the outcome will be association rules between attributes and not a class. In spite of

the learning scheme, what is learned is the concept.

These outcomes are knowledge. The knowledge is structural patterns in data, discovered
by machine learning methods (i.e. DMTs). The knowledge will have different
representation depending on the used DMT. If the used technique is a decision tree
construction algorithm the knowledge will be in the form of a decision tree and in case
of clustering methods, the knowledge will be represented by clusters. The concept of
knowledge and knowledge representation will be detailed in CHAPTER 3.

Descriptive DM vs. Predictive DM

There are two approaches (or objectives) for using data mining: prediction and
description. Prediction is about forecasting future data values. This type of data mining
will produce a model of the system based on the given data. The descriptive data mining
will produce hidden knowledge patterns without a preset hypothesis about what the

outcome may be. The goal is to gain an understanding of the system.

With a predictive approach, there is a question to answer, for example “what might be a
good promotion for our new product?”, “How much profit can be made for the next
quarter?”. With descriptive approach there is a valuable data with no prior directive for

what we are looking for.

Predictive approach is the most commonly used approach in the industry and also the
easier one because we already have some comprehension of the input data. For example,
the distribution of the data is known (normal distribution, Poisson distribution, etc.), the
number and the type of classes are known and there is a data set with target output (i.e.
classes, clusters, etc.) and so on. Therefore, we can predict the future using a model

produced with a given data set that has a priori information.

On the other hand, the descriptive approach is rarely used in the industry because it is
very complex to conduct and we can never be sure of the validity of the produced
models. To begin with, we don’t have any point of reference (i.e. a data set with target
output) to compare or to verify the quality of the produced models. Therefore, we can
never say if the produced model is poor or good. Also, the descriptive DMTs are very
complex to execute properly since it’s difficult to select the right values for the input
setting parameters for our domain of problem and mostly the DMTs are highly
specialized for a specific context or a specific type of data, which aren’t necessarily fully

compliant with our domain of problem.

Data Mining Techniques

DMTs are algorithms, machine learning methods or functions used to extract
knowledge. There are many DMTs, each of which falls into one of these following

categories [3]:

1. Classification — discovery of a predictive learning function that classifies a data

item into one of several predefined classes.

2. Regression — discovery of a predictive learning function, which maps a data item

to a real-value prediction variable.

3. Clustering — a common descriptive task in which one seeks to identify a finite set

of categories or clusters to describe the data.

4. Summarization — an additional descriptive task that involves methods for finding

a compact description for a set (or subset) of data.
5. Dependency Modeling — finding a local model that describes significant

dependencies between variables or between the values of a feature in a data set

or in a part of a data set.

6. Change and Deviation Detection — discovering the most significant changes in

the data set.

The DM techniques that will be used in our system will be discussed in section 5.4.

Data Mining Process

The steps of the knowledge discovery and data mining process, shown in Figure 5, are

described below.

V

» Define the problem

-
¥

Understand:Data

Y

k4

4

PrepareData =

4

Estimate the model

Y

¥

Interpret-the model (draw
some condusions’)

A

Figure 5 Data mining process

1. Define the problem: In this initial step a meaningful problem statement and the
objectives of the project are established. Domain-specific knowledge and
experience are usually necessary. In this step, a modeler usually specifies a set
of variables for the unknown dependency and, if possible, a general form of this
dependency as an initial hypothesis. There may be several hypotheses formulated
for a single problem at this stage. The first step requires the combined expertise

of an application domain and a data-mining model. [3]

2. Understand Data: This step is about data extraction and detection of

“interesting” data subsets.

3. Prepare data: During this step the final dataset is constructed. Common data

preparation tasks will be outlier detection and removal, scaling, encoding,

selecting features, etc. This step should be regarded as together with other data
mining steps. Hence, a good data preparation method with a prior1 knowledge

will provide optimal results from a data mining techniques.

4. Estimate the model: In this step, various data mining techniques and algorithms
are applied on data set prepared previously. And the verification of the DM
models to ensure that our model is robust and achieve the objectives specified

during the problem definition.

5. Interpret the model: In this final step, the results are presented to client (decision
maker). Since, the results are used to make decision; they should be
understandable in form of simple reports using organization templates and not

hundreds of meaningless numerical results.

Even most of the DM tasks (e.g. prepare data, building model, applying model, etc.) are
accomplished during step 3 and 4, a good understanding of the whole process is

important for any successful application [3].

1.1.2 How to automate data mining process?

Automating the data mining process is achieved by focusing on the operational aspects

of the data mining process and specific client domains [2].

Since, all data-based systems are designed within a particular application domain.
Domain-specific knowledge and a priori information are important to perform a

successful automated data mining system. Therefore, a priori information can be used to
automate each step of the data mining process in Figure 5. Therefore, by focusing on
client domains data understanding phase of DM process is performed with a minimal

human intervention and offering a fixed set of data mining technique and analysis

solutions allow templatizing the problem definition and deliverables. Moreover,
focusing on a particular problem domain gains the domain knowledge by increasing the

probability of successful solution delivery in the future.

1.2 Agents Theories

The agent field is very new and there are many definitions and concepts about it. The

definition of agents and related concepts used in this research project are based on [11].

1.2.1 What is an agent?

An agent is a software system that is situated in an environment and that operates in a

continuous Perceive-Reason-Act (PRA) cycle as illustrated in Figure 6.

) Reason .
(infer; select)
Perceive Act
(perceive) (act)

Figure 6 Perceive-Reason-Act Cycle

Accordingly, the agent receive some stimulus from the environment and this stimulus is
processed within the perceive component. Then, this newly acquired information is
combined with the existing knowledge and goals of the agent by the reasoning
component. Then, this component determines possible actions of the agent and the best

actions are selected and executed by the act component.

To be more concise and formal the agent is represented by the following 7-tuple where S

represents the environment:

agent = <D,T , A, perceive, infer,select,act>

where,

D = database that contain the agent’s acquired knowledge
T = a set of partitions of the environment S

A = aset of possible actions of the agents

perceive:S > T

infer :DxT — D

select :DxT —> A

act: AxS —> S

Figure 7 explains the information flow between each component of the agent.

Agent

Figure 7 Agent Formal Representation

Role
Role has several definitions and we will stick to the following “A role is the functional

or social part which an agent, embedded in a multi-agent environment, plays in a (joint)

10

process like problem solving, planning or learning” [12]. The major characteristics of a

role are the following:

o There exist mutual dependencies between roles. Some roles can only exist if
other roles do exist. For example, the role of a “teacher” only makes sense if the

corresponding role of (at least one) “student” exists as well.

e A member of a society can play several roles even at the same time. This

property is called role multiplicity and can lead to so-called role conflicts.

According to definitions above an agent can play several roles from a set of roles R. For
example, a person can be an engineer and a teacher at same time. Our previous 7-tuple

description of agent will be redefined according to concept of role as follow:

agent=<DUDr,T,Au4,perceiveu;7erceiver,iry’eruiry‘er;,selectUSelectr,aauactr> with r€ R

General Architecture

Agent architecture is defined as follow

Agent architecture is a structural model of the components that constitute
an agent as well as the interconnections of these components together with

a computational model that implements the basic capabilities of the agent.

The selection of a particular type of the architecture instead of another will have a huge
impact on the system. The following relation portrays the relation between agent, role

and architecture

agent = roles + architecture

11

This relation, according to the definitions above can be illustrated by a conceptual

representation as in Figure 8.

L

/’/ \\\
Task Task

Domain Part

Figure 8 Agents, Roles and Architecture

The architecture, enclosed in agent concept, contains perception and actuation
subsystem as well as the role interpreter. The architecture is domain independent. The
role interpreter links the architecture to the domain specific aspects of different roles

represented by a task tree.

The conceptual representation in Figure 8 will determines the basis structure of agent-

based applications. The generic application architecture is depicted in Figure 9.

12

Domain Layer

Agent
Layer

Figure 9 Generic agent-based application architecture

The architecture of a generic agent-based application is formed by three layers: platform

layer, agent layer and domain layer.

Platform Layer
It is the basis layer that hosts the application. In case of more complicated applications,

it may be spread over several platforms.

Agent Layer
This layer contains two major elements. The Agent Management System provides the
interface between the agent architecture and the hardware platform. It provides all

elements necessary for agents to exist and live. The Agent Architecture represents the

domain dependent roles of the agent.

Domain Layer

This layer implements the domain specific aspects of the system.

13

Systems of Agents

We have a multiagent system when several intelligent agents exist within the same
environment. The environment can be different depending on the agents. When we have
robotic agents it will be a physical environment, in case of software agents it will be a

runtime environment or virtual reality. A multiagent system can be formalized as follow

{S,(D, T, A, perceive, infer,select,act> }

i

where S is the environment and each 7-tuple represents a specific agent identified by i.

The main feature of multiagent systems is that a major part of the systems functionality
is not explicitly and globally specified, but it emerges from the interaction between
agents that constitute the system. Therefore, interaction is the main aspect of multiagent

systems. Interaction is defined as follow:

Interaction is the mutual adaptation of the behavior of agents while

preserving individual constraints.

This general definition of interaction is not limited to explicit communication or
message exchange as a predominant means in the multiagent literature. It will focus on
mutual adaptation, which means that the participating agents co-ordinate their behavior.
Also, the interaction definition will focus on balancing between social behavior
manifested in the mutual adaptation and the self-interest of agent. To get the best global
results from the system, it is important to have agents within a multiagent system with a
mix of self-interest and social regard that will value the performance of the entire society
and their individual performance.

Thus, social dimension is important in agent-based systems. The social structure of a

society determines how the entities within the society relate to each other. Before going

14

any further, we will use some definitions taken from sociology and organizational theory

to explain agent societies. Structure, society and social system are defined as follow:

A structure is a collection of entities that are connected in a non-random

manner

A society is a structured set of agents that agree on a minimal set of

acceptable behaviors

A social system is a society that implements a closed functional context with

respect to a common goal.

The definitions above are used to achieve a social dimension of an agent-based system.
The structural connections between agents in an agent society are shown in Figure 10

where each agent interacts with each other.

rEpONts tQ - - - vvv -

Share resources

Figure 10 Agent society diagram

15

1.3 Agents in data mining: Issues and benefits

Agent-based systems require a platform for agents to function and accomplish their
tasks. It will increase the complexity of the whole system. Therefore, we should ask our

selves if agents are the right technology for a given problem.

In knowledge discovery, we are trying to solve very complex problems where the
boundary of the problem domain isn’t properly defined (or not defined at all). Mostly,
the data mining techniques are used to define those boundaries by extracting meaningful
correlation within data. And, the key issues of an agent-based system are the permission
of incomplete knowledge about the problem domain and the possibility to build an
intelligent and dynamic system [15]. Therefore, the system can reason, perform tasks in
a goal driven way and react to a changing environment. Another advantage will be the
possible solution to the problem using distributed systems since each agent encapsulates

the behavior and the state. All these advantages are detailed in the following subsections.

Scalability of DM and dynamic data gathering

Our data mining system will be processing data from Bell ODM, which is a huge data
repository. Also several thousands of operational data is inputted to this database every
day. Processing all data from this data mart at once is practically impossible and scaling
up to this massive data set is a necessity. Therefore, we need to apportion the data
between agents. The use of agents will facilitate dynamic selection of sources and data
gathering. DM system will select and process data autonomously, without human
intervention. Also, we can scale up (or scale down) number of agents processing data if
required in future which is more difficult to accomplish with a static system without

agents.

16

Multi-strategy DM

As mentioned, we are doing descriptive data mining. A multi-strategy DM will be more
suitable as we need to apply multiple data mining techniques and in some case
combination of several techniques. As mentioned in [13], appropriate combination of
multiple data mining techniques may be more beneficial than applying just a particular
one. DM agents may learn in due course of their deliberative actions which one to
choose depending on the type of data retrieved and mining tasks to be pursued. Multi-

strategy DM is an argument in favor of using agents, as mentioned in [13].

Interactive DM

According to [13], pro-actively assisting agents drastically limits the amount a human
user has to supervise and interfere with the running data mining process, e.g., DM agents
may anticipate the individual limits of the potentially large search space and proper

intermediate results.

In [13], the authors treat the role of agents in distributed data mining (DDM). With
DDM, the data, instead of been centralized in a single repository, will be distributed over
several data source. Therefore, besides the issues of scalability, DDM is also challenged
with autonomy and privacy. The privacy is about the ensuring data security and
protecting sensitive information against invasion by outsiders, which is not a concern for
us because our data crawler system will be local and it will access directly a single data
repository which is Bell’s ODM. Autonomy is an issue when the DM agents are
considered as a modular extension of a data management system to deliberatively handle
the access to the data source in accordance with constraints on the required autonomy of
the system, data and model. Once again, autonomy too isn’t a concern because our

system is designed in accordance with Bell’s operational data. Our DM system will fit

17

the client’s data because in order to have an automated DM system we need to focus on

specific clients domains [2].

14 Objectives

In this section, the objectives of the system will be resumed. The main objective of this
research project is knowledge extraction from data coming from Operational Data Mart
(ODM) which is a large data repository administered and used by the Bell Business
Intelligence and Simulation team. The knowledge discovery should be accomplished
autonomously. There is no prior hypothesis on exploration, thus the selected approach is

descriptive data mining.

A secondary objective is to automate the data mining process using available domain
specific a priori information. Fixed sets of DM methods will be used for modeling phase
and filters for the data preprocessing phase. The designed system will be implemented
using the Java language and WEKA libraries for data mining methods and data
preparation filters. The agents that will perform the data mining process will be
implemented using JADE (Java Agent DEvelopment Framework). More details on

designed system are revealed in CHAPTER 8.

In our research project, computing time and responsiveness of the system is not an issue
since we are working on a data mart; the designed system will not be online. Here online
doesn’t mean that the system is connected to the net. It means that the system needs to
classify quickly in order to accomplish the right action. (e.g. systems that classify the

fruits in different boxes according to the classification result). Performance will be

considered during the design but it will not be the primary attribute of our system.

Flexibility and modifiability are primary attributes of our system considering that the

data crawler system is an academic project that will evolve and be improved eventually.

18

New components will be added or existing components will get changed. As we select
descriptive DM approach, the DMTs will be changed or adapted in order to perk up the
quality of the produced knowledge.

DM methods adapted to our client’s domain should be selected. Once again because of
the mined data characteristics and the selected data mining strategy (i.e. descriptive
approach) compelled by the lack of a priori information, in this project only

unsupervised DMTs that are proficient in high dimensionality can be used.

Our system should be compliant with FIPA standards.

CHAPTER 1

STATE OF THE ART

The common practice in this field is the automating of knowledge discovery and data
mining process by means of autonomous data crawlers or software agents. The most
prominent of agent-based DM systems are: PADMA [17], BODHI [18], Papyrus [19]
and JAM [20].

PADMA (PArallel Data Mining Agents), as its name suggests, is an agent-based parallel
data mining system where each agent performs data analysis locally. Then the local
models are collected and used in a second higher-level analysis to produce a global
model. The hierarchical clustering is used by the agents to classify unstructured text
document and to visualize web based information. The architecture of the system is

based on this clustering algorithm.

BODHI (Beseizing knOwledge through Distributed Heterogeneous Induction) System is
a distributed knowledge discovery system that exists to be used in context of collective
data mining within heterogeneous data sites. The system is implemented with Java to
prevent it being bound to a specific platform. It offers runtime environments (agent
stations where agents can live) and a message exchange system that supports mobile
agents. The data mining process is spread out across local agent stations and agents
moving between them. Each mobile agent will hold its state, data and knowledge. A
special purpose agent “facilitator” is responsible for initializing and coordinating the
DM tasks performed by the agents. The communication and the control flow between

agents also are coordinated by the facilitator agent.

JAM (Java Agents for Meta-Learning) is an agent-based system that use meta-learning

to do DM. The meta-learning is a technique that seeks to compute a global classifier

20

from large and inherently distributed databases. Several learning algorithms such as ID3,
CART [32], BAYES [31] and WPEBLS [33] can be applied on heterogeneous databases
by a learning agent that may be locally stored on a site (Datasite) or imported from other
peer sites that compose the system. JAM is a network of Datasites where JAM agents
and other objects (local database, learning and meta-learning agents, GUI interface, etc.)
reside on. Each Datasite’s learning agent builds classification models using a different
technique and the meta-learning agents builds meta-classifiers by combining multiple
models learned at different sites. Once the combination of classifiers is achieved, the
JAM system manages the execution of these modules to classify data sets of interest

located in any Datasite.

Papyrus is a designed over data clusters and meta-clusters. It supports predictive model
strategies including C4.5. Papyrus focus on doing data intensive computing locally.
Hence, mobile agents move data, intermediate results and models between clusters to
perform computation locally. Each cluster is represented by one distinctive node that is
an access and control point for the agents. The coordination of the overall clustering
task is achieved by a central root site or dispersed to the network of cluster access points.
PMML (Predictive Model Markup Language) is used by Papyrus to describe predictive

models and metadata, which facilitate their distribution and exchange.

All those agent-based systems represent a potential solution to our problem and they all
have advantages and disadvantages, which make them suitable or unsuitable to our case

as shown in Table 1.

21

Table I

Several agent-based DM systems comparison

Advantage: Even if PADMA is based on an unsupervised
e Hierarchical clustering algorithm algorithm: hierarchical clustering algorithm and it
Disadvantages: can only use this algorithm which is very limitative.
e Text mining only Also, it only does text mining,
e Only hierarchical clustering
algorithm
Advantages: BODHI propose a very interesting architecture and
e Distributed knowledge discovery collective data mining is a very interesting concept
o Collective data mining but it is based on supervised learning, which is in
e Good architecture contradiction with our descriptive approach (i.e.
e Java unsupervised learning). Also, the fact of several
Disadvantages: heterogeneous data sites is very different from our

o Supervised learning context where we have one huge data site.

e Several heterogeneous data sites
(different from our context: one
central data site)

Advantages: Use only supervised DMTs.
e Meta-learning
e Several DMTs
Disadvantages:
e Only supervised DMTs
e Distributed data sites

Advantages: Use only supervised DMTs..
e PMML
e Meta-clusters

Disadvantage:
e Predictive models only

First, in our research project a descriptive data mining strategy was selected and most
systems, in Table I, are designed for predictive data mining. Secondly, their design focus
on distributed data mining (DDM) and trying to resolve problems related to the aspect of
dispersion data through heterogeneous data sites which wasn’t our case since all input

data was located in a central database (ODM).

22

Our research project is mainly influenced by the article “Data Mining as an Automated
Service” [2], which proposes some strategies to automate the knowledge discovery and
data mining process. The author in this document considers the data mining process as a
service and the organization that want to use the KD as a client. The high-level goals of

the automated data mining services are determined as

1. Providing the client with a high quality, pertinent results.

2. Removing or minimizing the amount of human intervention into DM process to

produce high quality, pertinent results.

These goals are achieved by focusing on the problem domains (market verticals). In [2],
the required processes, issues and challenges in automating data mining are described.

The approach proposed by the author can be applied to resolve our problem.

Also, in “Automating Exploratory Data Analysis for Efficient Data Mining” [4] the
authors propose a number of approaches to automate the data understanding and data
preparation steps. In this document, some strategies are proposed for optimizing the
dataset before mining them with DMTs. Detecting inappropriate and suspicious
attributes, target dependency analysis, creating derived attributes are some of these
strategies. These approaches can be used in our research project too but they need to be

adapted to our context.

Agent-based system design and development

An agent-based system can be developed using common development methodology
such as RUP. Considering the complexity of the agent-based system, using agent-

oriented methodologies will make the development more straightforward.

23

Since agents are still a forefront issue, there are many methodologies proposed and all of
them have interesting features and capabilities. Most of them are still in beta version and
don’t have a widespread acceptance in the agent community. The following diagram

shows all existing agent-oriented methodologies and their relations to each other.

MAS-CommonKADS

(+AI/KE)
a
INGENIAS MaSE Tropos
MESSAGE Adelfe
AAll i
RAP / /cja' Agent OPEN
AOR RU OM{\-—-—-—F/FUSIOI’I OPEN/
PASSI! Prometheus

Figure 11 Genealogy of Agent-Oriented Methodologies [21]

Our goal in this project isn’t to test and review all existing agent-oriented (AO)
methodologies but to use one of them. After, testing few of them the PASSI
methodology was selected, because it was easily applicable and implemented in a toolkit
PTK which allows the design of an agent-based system using Rational Rose with the
methodology. Further details on PASSI methodology are found in section 2.1.

CHAPTER 2

METHODOLOGY

In this section the research project methodology used for the creation of the Data

Crawler System framework is described.

We propose to follow each of the five steps of the data mining process presented in
Figure 5. We also propose to automate each of them. The approaches to automate the
data understanding and data preparation steps of DM process found their basis in the
work presented in [4]. The proposed solutions in [4] are not used as in the document
since we needed to adopt them to our problem domain. Next, the model estimation step
is detailed as well as the selected data mining algorithms and how they were selected.
Finally, the model interpretation step is described. The following objectives are reflected

in our analysis to automate the data mining process:

e Automate the data mining process using domain specific a priori information
o Fix the set of DM techniques that will be used for the modeling phase and filters

for the data preprocessing phase

Once the data mining process is analyzed in order to automate it, the data mining system

is designed. The following objectives are reflected in the data mining system design

e The designed system will be implemented using the Java language

e Design is based on (or inspired by) JSR 73:JDM

e WEKA libraries for data mining methods and data preparation filters are used
o Primary attributes are flexibility and modifiability

e Use of agents technology to build and design the system

25

e Use a methodology specialized for developing agent-based system to facilitate
the design/development process
e Must be in compliance with FIPA standard

e Use of JADE software framework to construct agents

2.1 PASSI Methodology Description

The Data Crawler System is designed and developed following the PASSI methodology.

PASSI [40] (Process for Agent Societies Specification and Implementation) is a
methodology for designing and developing multi-agent systems, using a step-by-step
requirement-to-code process. It integrates the design models and concepts, using the
UML notation, from two dominant approaches in the agent community: OO software

engineering and artificial intelligence.

Initial
Requivements Next lteration
v
; S} ?Sim pie:memaﬁan

Model

{ Domain Req.

(Code
A _Production /-

" Deployment
.\ Configuration }

Deployment Model

1 ; Agent Sec:myﬁiud

Figure 12 The models and phases of PASSI methodology [21]

26

As shown in Figure 12, PASSI is composed of five process components also called

‘model’ and each model is composed of several work activities called ‘phases’.

PASSI is an iterative method such as Unified Process and other widely accepted
software engineering methodologies. The iterations are two types. The first is triggered
by new requirements e.g. iterations connecting models. The second takes place only
within the Agent Implementation Model every time a modification occurs and is
characterized by a double level iteration as shown in Figure 13. This model has two

views: multi-agent and single-agent views.

Multi-agent view is concerned with the agent society (the agents’ structure) in our target
system in terms of cooperation, tasks involved, and flow of events depicting cooperation
(behavior). Single agent view concerns with the structure of a single agent in terms of
attributes, methods, inner classes and behavior. The outer level of iteration (dashed
arrows) is used to represent the dependency between single-agent and multi-agent views.
The inner level of iteration, which is between Agent Structure Definition and Agent
Behavior Description, takes place in both views (multi-agent and single agent) and it

represents the dependency between the structure and the behavior of an agent.

Multi-Agent

Figure 13 Agents implementation iterations [21]

27

As shown in Figure 12, there is also a testing activity that is divided into two phases:
(single) agent test and social (multi-agent) test. In single agent test, the behavior of the
agents is verified based on the original requirements of the system related to the specific
agent. During the social test, the interaction between agents is verified against their

cooperation in solving problems.

The models and phases of PASSI are described in the following subsections.

2.1.1 System Requirements Model

This model, as its name suggests, describes the system requirements in terms of agency

and purpose and it is composed of four phases as follow:

e Domain Description
e Agent Identification
e Role Identification

e Task Specification

The Domain Description is a conventional UML use-case diagram that provides a
functional description of the system. The Agent Identification phase is represented by
stereotyped UML packages. The assignment of responsibilities to agents is done during
this step by grouping the functionalities, described previously in the use-case diagram,
and associating them with an agent. During the role identification, the responsibilities of

the precedent step are explored further through role-specific scenarios using a series of
sequence diagrams and the Task Specification phase spells out the capabilities of each

agent using activity diagrams.

28

2.1.2 Agent Society Model

This model describes the social interactions and dependency among agents that are

identified in the System Requirements Model and is composed of three phases as follow

¢ Ontology Description
¢ Role Description

e Protocol Description

The Ontology Description is composed of Domain Ontology Description and
Communication Ontology Description. The domain ontology tries to describe the
relevant entities and their relationships and rules within that domain using class
diagrams. Therefore, all our agents will talk the same language by means of using the
same domain ontology. In the Communication Ontology Description, the social
interactions of agents are described using class diagrams. Each agent can play more
than one role. The Role Description step involves of showing the roles played by the
agents, the tasks involved communication capabilities and inter-agent dependencies
using class diagrams. Plus the Protocol Description that uses sequence diagrams to
specify the set of rules of each communication protocol based on speech-act

performatives.

2.1.3 Agent Implementation Model

This model describes the agent architecture in terms of classes and methods. Unlike
object-oriented approach, there are two levels of abstraction: multi-agent level and

single-agent level. This model is composed of two phases as follow

e Agent Structure Definition

e Agent Behavior Description

29

The structure of the agent-based system is described using conventional class diagrams
and the behavior of the agents (multi-agent level and single-agent level) is described

using activity diagrams and state diagrams.

2.1.4 Code Model

This model is at code level and it requires the generation of code from the model using

the PASSI add-in and the completing of the code manually.

2.15 Deployment Model

This model describes the dissemination of the parts of the agent systems across hardware
processing units and their migration between processing units and it involves the

following phase:

e Deployment Configuration

The Deployment Configuration describes also any constraints on migration and mobility

in addition to the allocation of agents to the available processing units.

CHAPTER 3

KNOWLEDGE REPRESENTATION

Before elucidating the knowledge representation theory, we should try to clarify what
exactly knowledge is in our context of data mining. According to Webster's Dictionary
(Merriam-Webster Online) knowledge is “the fact or condition of knowing something
with familiarity gained through experience or association”. This definition has two parts.
First, we are talking about “fact” and “condition”. A fact will be such as “the sky is
blue” or “the sun is hot”. The second part for defining the knowledge is “experience”
and “association”. People gain knowledge through experience; a person put his hand in
fire and he gets his hand burned. He just acquired a new knowledge by experience: fire
burns. He can associate burning with fire. Since we described what knowledge is, how
are we going to represent it? A natural way of doing it for a person for example will be
to use a natural language like English. It is certainly not the best way to represent
knowledge for computers, because natural language is inherently ambiguous. For
example, two persons reading the same statement can disagree on its meaning.
Therefore, we need to use some formal languages and logic to represent knowledge such

as an artificial intelligence application.

As mentioned earlier, the main goal of the data mining process is to discover a priori
unknown correlation. Therefore, knowledge is the output of the data mining process, the
produced models. In our context of data mining, considering the intricateness of the
ODM’s operational data, the extracted knowledge will be much more complex than the
examples above. As a result, we need a very sophisticated language to represent

knowledge.

There are several languages to represent knowledge in the context of data mining. The

following are one of the must accepted knowledge representation languages: KIF [23]

31

(Knowledge Interchange Format), PMML [24] (Predictive Model Markup Language)

and RDF [25] (Resource Description Framework). In our research project, RDF will be

used to represent knowledge because it is the one that is supported by the JADE

platform, which will be used to implement our system.

31

RDF - Resource Description Framework

RDF [25] framework is based on an entity-relationship model and it is used to model

meta-data. It is the selected knowledge language used in PASSI to describe the domain

ontology. It is built on the rules below:

A Resource is anything that can have a URI;

A Property is a Resource that has a name and can be used as a property;

A Statement consists of the combination of a Resource, a Property, and a value.
These parts are known as the 'subject’, 'predicate’ and 'object’ of a Statement;

These abstract properties can be expressed in XML.

Plus, RDF is designed to have the following characteristics:

Independence: Since a Property is a resource, any independent organization (or
person) can invent them.

Interchange: Since RDF Statements can be converted into XML, they are easily
interchangeable.

Scalability: RDF statements are simple, composed of three elements (Resource,
Property, value), as a result they can be handled easily even the number of

statements getting larger in time.

CHAPTER 4

DATABASE ISSUES

For database issues, we will focus on accessing the databases. Instead of designing our
system for a specific database, Data Access Object (DAQO) [26] structure should be used

as shown in Figure 14.

BusinessObject Ohject
/ uses DatafAccessObje encapsulates DataSource

~ I
~
~) _]
~~.. Obtainsimodifies |
~
~ I
-~
™~ |
A
S W
TransferObject

createsiuses

Figure 14 Data Access Object [26]

Therefore, all access to the data source will be abstracted and encapsulated. Therefore,
the access mechanism required to work with the data source will be implemented by the
DAO which will completely hide data source implementation details, enables
transparency and easier migration, and will reduce code complexity in our system.

Further details can be found in [26].

CHAPTER S

DATA MINING PROCESS ANALYSIS

To automate the data mining process, all the steps (as shown in Figure 5) are examined
and a set of solutions is proposed for each step. The detailed outcome of the data mining
process automating can be found in section 4.1 of the document “Data Crawler System
Requirements and Specifications” in APPENDIX 1. In this section, the result of this

analysis will be summarized.

5.1 Step 1 — Define the problem

There is no a priori hypothesis on KD, as a result descriptive data mining is the selected
approach. The set of data mining methods should be predetermined following a set of

rules described in CHAPTER 6.

ODM has high dimensionality (it has more than 300 hundred variables “features™) and it
is a huge data repository (more than 1000 instance each day). As seen in document “Use
of clustering algorithms for knowledge extraction from high dimensional dataset”, we
are faced with the curse of dimensionality caused by the high dimensionality of ODM’s
data. Curse of dimensionality is the fact that the demand for a large number of data
samples grows exponentially with the dimensionality of the feature space. Therefore, the

selected data mining methods should not be affected by this predicament.

5.2 Step 2 — Understand the data

Data understanding is about data extraction, data quality measurement and detection of
interesting data subsets. This task is accomplished using a four step process [4]:

o Identifying inappropriate and suspicious attributes

34

e Selecting the most appropriate attribute representation
e Creating derived attributes

¢ Choosing an optimal subset of attributes

Identify inapproiate and
stspicious attributes

v
Select the most-appropriate
attribute representation

Create derived attribute

\
Choose an optimal subset of
attributes

Figure 15 Data understanding steps

5.2.1 Identify inappropriate and suspicious attributes

During the data understanding step all inappropriate attributes are removed.

Inappropriate attributes are described in Table II [4]:

Table II

Inappropriate attributes

| Only contains a single value
. | Has all missing values

Has a fraction of missing values larger than a specified threshold

-|{ Has a fraction or number of different values larger than a specified threshold.

35

More experimentation are necessary to establish a high-quality threshold for “near null”
and “many values”. At the moment in our research project, for “near null” and “many
values” the specified threshold in 100% which means that all “null” and key attributes

are rejected.

The suspicious attributes are described in Table III [4]:

Table II1

Suspicious attributes

Association and correlation with the target is greater than a specified

| threshold. These attributes are often unintentionally included and, without

| proper identification, they lead to artificially good models that do not

| generalize well.

- Poor Predictor | Association and correlation with the target is less than a specified threshold.
| These attributes do not contribute much by themselves in predicting the

target but combinations of these attributes may have increased predictive

power. Attribute selection is the ultimate way to decide whether they are

appropriate for further modeling

One values covers more than a specified fraction of all values

.| Have less than a specified number of distinct values.

| Have less than a specified number of distinct non-null cases.

The target attributes in the description of the first two types of suspicious attributes are
the selected attributes and the sources attributes are the original attributes sets. Removal
of some attributes can cause serious loss of details contained in the original attributes,
therefore we need to find a balance between this loss of information and efficiency of
the data mining methods. To select the best set of attributes, the loss of details can be

evaluated using association measures such as mutual information, chi-squared Cramer’s
V and Goodman-Kruskal index proposed in [4].

For the rest of suspicious attributes, further analysis with client (Bell Canada) domain

knowledge is necessary to take an action on identified suspicious attributes.

36

DM system should only identify the suspicious attributes without taking any further
action because removing those attributes will cause loss of information and the
association measures listed above can only minimize the loss of information and not

eliminate it.

5.2.2 Select the most appropriate attribute representation

After identifying and rejecting inappropriate attributes, the retained attributes are
processed to determine the most suitable representation. Outliers, missing values and
encoding are handled during this step. For example, the continuous attributes could
discretize (encoded by thresholding the original values into a small number of value
range). With categorical attributes, numerous categories could be merged together. The
association measures mentioned, in the precedent section, could be used to determine the

optimal encoding.

This step is not realized by DCS, as more domain knowledge is needed to establish

possible transformations for each attribute.

5.2.3 Create derived attributes

Attribute derivation is needed to increase the source attribute correlation with the target
attribute. It is accomplished by using univariant transformation such as exponent,
logarithm, quadratic function, inverse function, power function and square root. These
transformations are typically only beneficial to linear regression models. Consequently,
this step could be performed only to continuous attributes. The following algorithm is
proposed to derivate attributes even if this step will not be implemented in this initial

version.

37

for all transformations (quadratic, inverse,power, square,exp,log)
until current transformation is accepted
Compute correlation between source and target attributes;
Apply transformation;
Compute new_correlation between source and target attributes;
if new_correlation > correlation
Transformation accepted;
Derived attribute kept;
else
Transformation rejected;

Algorithm 1 Transformation selection to create derived attributes

This step cannot be realized by DCS because we don’t have any viable reference data set

with source and target attributes.

5.2.4 Choose an optimal subset of attributes

Optimal subset of attributes selection without significantly affecting the overall quality
of resultant model is for reducing computational time and memory requirements. As
mentioned in our objectives, computational time and memory are not an issue in this
project. Therefore, no more transformations will be applied on previously selected

attributes. This will also simplify the design.

There are two algorithms suggested in [4] for attribute selection: expectation of Kullback
Leibler distance (KL-distance) and Incomnsistency Rate (IR). Those two algorithms can

be used in future implementations.

5.3 Step 3 — Prepare the data

This step presents the activities needed to construct the final dataset for modeling. In our
case, this step prepares the dataset for DM methods used for modeling. The data should

be previously cleansed by the “understand the data” step.

38

For example, clustering algorithms of WEKA can only be applied to numerical or
categorical data. Other type of data such as string needs to be transformed to categorical

data otherwise they are excluded.

S.4 Step 4 — Estimate the model

During this phase, the DM algorithms are applied to the prepared dataset. Our goal of
applying KD on data from ODM is to get a better understanding of it. As a result, the
selected approach is descriptive data mining. And, the DM algorithms that produce
descriptive models are used. As mentioned during the precedent sections, use of a fixed
set of DM algorithms will allow us to automate this process. The following type of
descriptive DM algorithms could be used.

e Decision Trees

e Association Rules

e Clustering

This list isn’t exhaustive. For example, PART algorithm that we selected to study the
impact of high dimensionality was indeed a neural network algorithm adapted for

clustering.

5.4.1 “Estimate the model” process flow

The modeling process (and all our DM system) is designed using Common Warehouse
Metamodel (CWM) specification v1.1 chapter 12 and Java Specification Request 73:

Java Data Mining (JDM). The modeling involves a four-step process as shown in Figure
16:

39

Setting.up parameters for the
analysis

v

Build-a model

i

Testing the model

*
Applying the model

Figure 16 Estimate the model step

A brief description of each step is below:
o Setting up parameters for the analysis: During this step all parameters or inputs
that affect model building are set. The parameters or inputs values are
predetermined. A detailed analysis is necessary to identify the parameters for

each model.

® Build a model: A model is build. The model is a compressed representation of

input data and it contains the essential knowledge extracted from data.

o Test the model: Model testing estimates the accuracy of the model. It is

processed after model building. The inputs are the model and a data sample.

o Apply the model: Model applying is used to make predictions. Since we are
doing unsupervised data mining, apply will produce probability of assignment.
For example, with clustering, apply assigns a case to a cluster, with the

probability indicating how well the case fits with a given cluster.

40

5.4.2 Decision Trees

Decision tree is a hierarchical representation that can be used to determine the
classification of an object by testing its values for certain properties [6]. Besides the fact
that decision tree is a descriptive model, the tree’s hierarchical structures are easy to

understand and effectively explore the model.

5.4.3 Association Rules

Association rules (also called “market basket analysis”) are about finding relation
between objects such as X=>Y where X and Y are sets of items and “=>" is a relation.
For example, “if some one buy a chocolate is likely to buy a candy bar” is an association

rule. Those relations are useful for data explorations.

5.4.4 Clustering

Clustering aims to partition a given dataset into several groups with records similar to
each other. There are various clustering methods. Iterative, incremental and hierarchical
clustering are the most popular. In our project, incremental and hierarchical clustering

will be favored against Iterative clustering for several reasons.

First, hierarchical nature of the resulting model is easy to understand. And, these
methods are very flexible conceming the distance metric used to group the records,
making the hierarchical clustering methods more easily adaptable to a different problem:
more easy to automate the process. Another advantage of hierarchical clustering
methods is their computational complexity (even if we didn’t considered it as a

primordial objective) requiring either O(m?) memory or O(m’) time for m data points.

When the dimensionality is very high, as in our case, incremental clustering method

generates explicit knowledge structure that describes the clustering in a way that can be

41

visualized. For iterative algorithms this is possible only if the dimensionality is not too
high.

5.5 Step5 - Interpret the model

This step is realized by the user of the DM system. The problem of interpreting the
resultant models is very important since a user does not want hundreds of pages of
numeric results. It will be difficult to make a successful decision from data mining
results that are not presented in a way that is easy to understand to the user. For all these

reasons we decided to define this step explicitly.

This step is about the presentation of the resulting models in a format that will be easily
understandable by the user. The user of the system is the Bell Business Intelligence and
Simulation team. In our implementation we should focus on the adaptability of the
format to the user needs instead of using a static format, since user needs change over

time.

CHAPTER 6

DATA MINING METHODS SELECTION

In this section, instead of listing the selected DMTs we will explain the strategy for
selecting data mining methods for the Data Crawler System. The selection strategy is
the outcome of the analysis that we did during our methods selection process. The study
mostly focused on the impact of high dimensionality of the dataset on the quality of the
produced model with several clustering methods. This analysis is described in detail in
document “Use of unsupervised clustering algorithm in high dimensional dataset” in

APPENDIX 2.

Three clustering algorithms were used to conduct the analysis: PART algorithm, fuzzy
c-means and k-means. The clustering algorithms were selected because they are
unsupervised DMTs and descriptive data mining can be performed only with
unsupervised DMTs. Those DMTs were applied on synthetic data similar to data from
Bell’s ODM. The synthetic data was generated randomly. The data from Bell’s ODM
weren’t used because we don’t have any valuable prior knowledge on it and a reference

is needed to validate the produced clusters.

In high dimensional data set two points will be far apart from each other on few
dimensions only and on full dimensional space and on full dimensions the distance
between every pair of points will be almost the same. Therefore, as it has been
confirmed by our experimentation, most of the classical clustering methods will not be
efficient for mining data from Bell’s ODM because of the sparsity of data in high
dimensional space and all dimensions are used by these DMTs. As seen with k-means
and fuzzy c-means results, searching clusters in full dimensions can lead to erroneous
results. Subspace clustering methods are an excellent way of mining high dimesional

data.

43

Before deciding on a DMT several points should be considered. For example, fuzzy c-
means and k-means need the number of searched clusters to be specified. In our case

there isn’t enough prior knowledge to identify the number of searched clusters.

Therefore, the following criteria should be considered in selecting a method for our
system:

e Prior knowledge requirements and domain specific strategy of DM methods:
Prior knowledge requirements are the most important aspect to consider
for choosing a method for data mining because of our lack of knowledge
about data. For example, if the method to be selected requires any
knowledge related to clusters such as number of clusters or number of
dimensions (or the specific dimensions) that form the clusters or any
other information specifying the form of the clusters, the method should
be rejected.

Otherwise, the input parameters of the method should be identified and
the value of the input parameters should be defined according to our data.
The domain specific strategy of data mining methods is the establishment
of a strategy for defining the prior knowledge requirements of data

mining methods according to input data space.

e Unsupervised, Descriptive data mining methods:
The goal in building the data crawler system is to gain an understanding
of Bell’s operations by uncovering patterns and relationships in ODM. In
literature, this is know as descriptive data mining which produces new,
nontrivial information based on the available data set.
Unsupervised learning’s goal is to discover “natural” structure in the
input data and there is no notion of output during the learning process

compared to supervised learning where unknown dependencies are

44

estimated from known input-output samples. For example, with
classification analysis which is a supervised learning, the output is taken
from a set of known class but with clustering which is an unsupervised
learning, we don’t have a set of a briori known clusters.

Therefore, only unsupervised descriptive data mining methodologies such
as clustering analysis, association rules, or some artificial neural networks

such as PART algorithm will be used.

Sensibility to high dimensionality:

As shown in [27], in a high dimensional space, the distance between
every pair of points is almost the same for a broad variety of data
distributions and distance functions. For example, in such condition, we
can’t perform clustering in full space of all dimensions. The subspace
clustering which aims to find clusters formed in subspaces of the original
high dimensional space is a viable solution to the problem.

Therefore, we will opt for data mining methods that are not affected by

the high dimensionality of data.

Scalability:

Scalability of data mining methods isn’t a priority requirement because
our system isn’t online and the quality of the extracted knowledge is
more important than the responsiveness of the system. However, it is an
aspect to consider in design because there exist some methods which
offer a good balance between performance and output quality such as
MAFIA [28] clustering method. This algorithm uses an adaptive grid
based on the distribution of data to improve efficiency and cluster quality

and introduces parallelism to improve scalability.

Complexity (processing time):

45

Same as with scalability, the complexity isn’t a priority requirement but it
will be considered in design and during the selection of the data mining

methods the same way as scalability.

CHAPTER 7

DATA CRAWLER ARCHITECTURE

Most previous chapters contents are results of the literature survey; all tools and
concepts that are needed to build the data crawler system are presented, except the
CHAPTER 5 that resumes the analysis to automate the data mining process and the
CHAPTER 6 that portrays the results of the study conducted to select the DMTs for
DCS system. From here, the presented artifacts and works are outcomes of this current

project.

In this section, a high level architecture of the system is presented. Detailed information
on the Data Crawler System design and architecture can be found in the document “Data

Crawler System Requirements and Specifications” in APPENDIX 1.

The data crawler architecture is based on the generic agent application architecture

proposed in [11], as shown in Figure 17.

Domain Layer

Agent Architecture

Figure 17 A Generic Agent-based System Architecture

47

In Figure 17, the Platform Layer corresponds to the hosts where the target system will
run. The Agent Management System represents a crossing point between agents and the
platform and the Agent Architecture implements the runtime environment. The Domain

Layer relates the domain specific aspects.

I
Agent Architecture

Figure 18 The Data Crawler Architecture

JADE is selected as the Agent Management System, which will run on Java RMIL
Considering that data mining is our domain and the data mining aspect of our system is
designed using JSR-073: JDM [14], then the Domain Layer will be designed using the

data mining architecture proposed in [14].

The data mining aspect of the system can be realized by any data mining engine that

complies with JDM.

48

T Operational
\/ Data Mart

0

N o s 4
A \

User 0 T - '
Data Crawler System — O

Mining Object
Repository

Figure 19 Context Diagram

Essentially, the Data Crawler System (DCS) has three actors: user, Operational Data
Mart (ODM) and Mining Object Repository (MOR). User is the data mining clients;
people from Bell Business Intelligence and Simulation teams or managers who are in
decisional context. User should access DCS to visualize produced models and to request
for specific data mining tasks (e.g. applying a model produced by the DCS on data set
specified by the user). Operation Data Mart (ODM) is the database where all data to be
mined are picked up. The DCS should load data from ODM and should apply its data
mining technique on this data and should save the results (e.g. models, statistics, apply
results, etc.) and other mining objects (e.g. build tasks, build settings, algorithm setting,
etc.) to the Mining Object Repository (MOR).

The entire detailed functional description of DCS is given in Figure 20.

49

Identify inappropriate Select the most appropriate

attributes attribute representation
{fromDataAgert) /‘7 {fromDataAgent)
" <<indlude>> <<ir}dﬁ’de>>
A(. SO ______________ //
Operational Get Data from database - \"(
Data Mart (romDetatgent _»Data Understanding
t clude ’ // <<extend>>
T o -
B e / <<include>> . > e 3
' T <<include>> i g R T e T
R “ / T Select the appropriate data Select the appropriate data set
Manage Physical resources N / e set for the model for PART algorithm mode!
Manage data mining process Prepare Data (fromMinecAgert) (from MinerAgent)

(from CoordinaxrAgentf <include>>

//’ (trom CoordneiorAgent) y \{.\ (fromMinecAgent) <<extend>>
L inchude>> / <<include>> e
L X N <<incfude>> ;s ez .
- S e = :

P SN

Setting up parameters Setting up parameters for

R ! PART atgorithm
Initiatize System \ ,,,,, {lromMinecAgert) (romMinerAgant)
>
(from CocrdinakorAg snt) N —
> S e, <<extend>>
\\\«includs» e s
~ N SU
o \\\\ Build mode! Build mlode.l rf::)r PART
T N (fromMinerAgent) algorithm
N (fromMinerAgant)
.~7 Interprete Mode! A
_'/ P \ —— <<gxtend>>
// (from CoordinakrAgent) : L ‘“\,: S
_,/’/ <<incljde>> Apply model Apply model for PART
T . algorithm
o // o S (remMinerhgert) (from MinerAgent)
- -~ (' N
‘ Model Visualization
User R There s no direct connection ™
(from CoordnatrAgent) between “Estimate Model” and
"Interpret model” because ‘

interpretation is accomplished by !
the user while model estimation is
done by the system. i

Figure 20 Domain Description

The domain description is based on the data mining process as shown in Figure 5 and
the functional analysis to automate each step of the DM process is described in

CHAPTER 5.

The data mining process begin after the system initialization. Then, DCS get data from
ODM and realize “understand the data” step of the DM process and the results (cleansed
data) are saved to MOR. Then, the “estimate model” step starts, but “prepare data” step

will be started first, since it is considered as part of the “estimate model” step; this is

50

why there is no direct link between “manage data mining process” use case and “prepare

data” use case.

Once the “prepare data” step is finished, a model is build and the resulting model is
saved in MOR. Then, the user can interpret the produced model, by visualizing the

model and/or applying the model on other data.

DCS system should realize first three steps (“Understand data”, “Prepare data” and
“Estimate model”) of the DM process in loop as long as there is available data in ODM
and there is available resource (processing unit) as well. The last step “interpret model”

is realized by DCS on user requests.

Basically, three agents have been identified as shown in Figure 21:
e Data agent,
e Miner agent,

e Coordinator agent.

The diagram in Figure 21 shows the structure of each agent and their relation to each
other and the actors. Each agent is represented by a class and its tasks are shown as

operations.

Mining Object

detection of interesting data subsets.

data following user’s instructions.

Operational
Datz;;\Mart /7 Repository \
: / .
/
/ <<Agent>>
<<Agent>> MinerAgent
DataAgent omodel : Model
¢data : PhysicalDataSet otask : Task
¢data : LogicalData
*CollectData()
SListener() *BuildModel()
®preprocessData() *applyModel()
¥InformDataReady() *istener()
\ *InformMiningCompleted()
7
\
\ 7
<<Agent>>
CoordinatorAgent
d#logicalData : LogicalData
¢data : PhysicalData
S istener()
*RequestData()
¥InitializeSystem()
*RequestBuildModel()
*RequestApplyModel()
SMineData()
*HandleErrors()
*ShowModel()
$ShowApplyModelResults()
*GuiL.istener()
A
User
Figure 21 Agents Structure Definition Diagram

Data agent acquires data from ODM database and accomplishes the

51

"data

understanding” step which consist of data extraction and data quality measurement and

Miner agent will prepare the previously cleansed data for the data mining algorithm and

will produce a model that will be saved on MOR. This agent will also apply models on

52

The Coordinator agent has mainly four tasks:

1.

Physical resources management: In our context, the physical resources are the
host on which the agents run. Managing activity consists of deciding on which
node which agent will be executing. The resources management should be as

follow:

For each node, there should be only one Data agent and one Miner

agent executing.

There should be only one coordinator agent on the system. In our implementation
the physical resources management is implicit, which means that the coordinator
agent don’t take any particular actions to realize it. At the start-up, each agent is
created according to the rule above. The coordinator agent should activate or
deactivate the data and miner agents depending on the available jobs. At this
level the Physical resources management is too simple but eventually with more
complicated mining strategy or with limited resources, this separated

functionality will be important.

2. Data mining management: The data mining management consists sequentially of

e Requesting data agent to get and prepare data for mining,
e Requesting miner agent to prepare and mine the cleansed data and
e Keeping track of the data mining process within ODM’s data. All data

will be mined in sequence.

3. Error management: At this level it consists of logging the errors that occur.

4.

User interaction: It will allow users to visualize resulting models as described in

section 4.1.5 and apply models on user defined data set. Eventually, other type

53

of task could be integrated to the system that will facilitate the model

interpretation step.

CHAPTER 8

EXPERIMENTS AND RESULTS

The experimentation was mostly concentrated on the impact of the high dimensionality
of the data on the quality of the extracted knowledge. Detailed information on the
conducted analysis can be found in document “Use of unsupervised clustering algorithm
in high dimensional dataset” in APPENDIX 2. In this section the results are

summurized.

Three clustering algorithms were used: PART, Fuzzy c-means and k-means. PART [30]
is a subspace clustering method effective with high dimensional data sets. Fuzzy c-
means (FCM) is a procedure of clustering data wherein each data point belongs to a
cluster to a certain degree that is specified by a membership grade. This technique was
originally introduced by Jim Bezdek in 1981 [29]. The algorithm of k-means [31] is a

classical clustering method.

The PART algorithm requires two external parameters: vigilance parameter (p) and
distance vigilance parameter (¢). The distance vigilance parameter is related to the range
of the value of each attribute (distance between two points) and it was set to 10 because
same range of value for each point in synthetic data was used as in [30]. The vigilance
parameter indicates the number of dimension on which the distance between each point
is evaluated. For vigilance parameter, we should choose a value low enough to find
clusters of any size and high enough to eliminate the inherent randomness in data set
with high dimensionality. Usually, there isn’t correlation in large number of random data
points with large set of dimensions. After few preliminary experimentation to find the
best value for vigilance parameter, high dimensional subspace clusters (~270-

dimensional clusters) were best discovered with p=13 and low dimensional subspace

55

clusters (~10-dimensional clusters) were best discovered with p=3. In case of data set

with clusters varying within full range subspace p=6 gave the best results.

Thus, PART algorithm was successful in finding the exact number of clusters with their
exact entries when the clusters had high dimensional-subspace. Even the outliers were
found. However, when the input clusters had low dimensional-subspace, the accuracy of
the output clusters was majorly affected, because the value of the vigilance parameter
(0=3) wasn’t high enough to eliminate the randomness within the data set. The highest
accuracy that the output clusters had was 78%, most of the other clusters accuracy was
around 60%. When the input data set had clusters with dimensional size varying within
full range dimensional space, most clusters (9 of 10) were found with very high accuracy
(~100%). One cluster couldn’t be extracted because its center was very close to another

cluster and it had very low number of sample compared to other clusters.

With FCM the experimentation was conducted differently than PART algorithm because
it is known that PART is proficient with high dimensional data with subspace clusters
but it is not the case for FCM if it will be able to extract subspace clusters from high
dimensional data or not. Instead of applying FCM directly on high-dimensional data set,
the number of dimensions of the input data set and observed if the FCM was still able to

detect input clusters.

FCM could only find clusters defined in full-dimensional space. Full-dimensional space
means that if we have a data set with 4 dimensions (i.e. attributes), the clusters must be
defined using all the 4 dimensions otherwise FCM can’t detect them; FCM isn’t suitable
for extracting subspace clusters. Also, when input data set had 10 dimensions or higher

FCM wasn’t able to find the input clusters.

This experimentation also confirmed that k-means isn’t suitable for extracting subspace

clusters. Only 2 data sets of 5 dimensions were used with k-means algorithm. In the first

56

data set the clusters were defined using all dimensions and in the second data set the
dimensional size of the clusters varyied between 2 and 5. In case of data set formed with
different dimensional size clusters none of the input clusters were identified while with
data set containing full dimensional clusters most clusters were found but none existing
cluster coming from outlier data also was found and some clusters were identified as one

cluster.

One of the most valuable outputs of our experimentation was the establishment of a

strategy for selecting data mining methods for DCS as described in CHAPTER 6.

We were not successful in testing our agents doing data mining since we couldn’t find

any DME in accordance with JDM’s APIL

CONCLUSION AND FUTURE WORK

The most prominent difficulty that we faced during this project was the fact that data
preparation for applying DMTs was very difficult to realize with real data. The data set
given by Bell Canada contains several errors and typos even if it was cleansed before.
Most attributes had missing values, in some case missing values represent more 70% of
the total instances and some DMT can’t be used if input data set has missing values. The
data preparation step is as important as applying DMTs even more since the pruned data
set can affect the created model accuracy and validity. Also, the data preparation step is
a very time consuming step (~80% of the time allocated to DM process), it is more
valuable to automate the data understanding and data preparation phases than the model

estimation phase.

The selection of the DM methods was also another source of frustration since we
couldn’t build useful models by any DM methods because of several reasons. First, the
descriptive data mining approach, limited our selection of DM methods to unsupervised
DM methods. Another reason was that we were confronted with the curse of
dimensionality caused by the high dimension of the original dataset. A classical solution
to this problem is the reduction of the dimension of the original dataset. To do that, we
need to have some a priori information about the data, which we didn’t have. Therefore,
we need to select our DM methods from a set of methods that can deal with the curse of
dimensionality, such as PART algorithm. A DM methods selection strategy for DCS is
established as described in CHAPTER 6.

More analysis need to be done to optimize the quality of the pruned data, which requires
more implication of the client (Bell Canada). The points where the client can intervene
are detailed during the functional analysis of the data understanding step. Also we could
select several DM methods in accordance with the selection strategy established in

document “Use of clustering algorithms for knowledge extraction from high dimensional

58

dataset” and test them. The must prominent data mining techniques will be hierarchical
clustering, temporal data mining methods. Most features (data attributes) in ODM’s data
are date type (temporal type) and categorical type. Therefore, future studies with data

mining methods could be done with the temporal algorithms.

After analyzing the problem domain (data mining), we began designing the agent-based
system. We needed to select proper agent-based system designing and development
methodology and tools that will diminish (make it transparent to the developer), the
inherent complexity of the agent technology. Since the field of agent-based and
multiagent systems is still in its infancy, we couldn’t find appropriate tools and most of
the tools or methodologies are incomplete or not mature enough to be used. We began
our design with the MASSIVE [11] methodology, an academic project, but after using it,
this methodology revealed to be very difficult to apply in a real world project and its
documentation wasn’t easily understandable. Therefore we changed for the PASSI
methodology which was more straightforward and easily applicable thanks to the PTK
toolkit, which is an extension to Rational Rose software that implements the PASSI
methodology. We faced the same kind of difficulties during the selection of the agent
platform. After trying several agent development toolkits (ZEUS, FIPA-OS, JADE), we
ended with the JADE development platform.

In our design, all data mining logics are encapsulated into a DM engine in conformity
with the JDM specifications that agents accessed to realize their data mining tasks. This
greatly improves the modifiability of the system. Therefore, we could easily
update/modify/add the data mining algorithm or tasks without or use any data mining
engine from different vendors as long as they respect JDM API without affecting the
agents’ implementation. However, the only DM engine in accordance with JDM API
that has been found was the JDM implementation provided with JDM specifications.
This engine was made of stubs (empty methods that don’t contain any code or temporary

code to simulate some behavior) that we discovered later. Therefore, we couldn’t use it

59

in our project. There was also a JDM implementation provided by KXEN Inc. (as yet the
only one that exists that we know), but it wasn’t publicly available. As a result, we
couldn’t experiment the interaction of our agents with the DM engine. Considering the
complexity of a data mining engine, developing a DME of our own could be a great
project that will complement DCS framework. The lack of an available DME agent
made some questions not answered: Considering that the agents will be spread out
across several hosts and they connect to the DME to execute their DM tasks, the DME
can be implemented as a server and agents and the DME can have a client-server
relationship. But we could also implement it as a small component that the agents carry
out with them containing only the services that they needs (e.g. data agent will have a
DME that provides only services related to data preparation and the miner agent will
have a DME that provides only services related to model estimation related tasks). More

experimentation related to DME is needed to determine the best solution to our problem.

JDM leaves to the developer’s discretion how the DME and MOR are implemented as
long as they are in accordance with JDM API. The same type of questions as with DME
rises up when it come to MOR implementation. MOR can be implemented as a huge
database that contains all the mining objects and each agent accesses it through DME.

We can also implement it in a layered fashion.

Local MOR

v]

Main MOR

Figure 22 MOR Layered Structure

60

One layer could be local to the agent and every time an agent produces a mining object it
will be saved to the local layer of MOR. Then, the mining objects in local layer are
systematically saved to the main MOR. Main layer serves as a backup that every agent
can access and when an agent needs a mining object located in the main MOR then it
will be loaded to the local MOR. This approach could be more complex but also more
efficient. Therefore, more experimentation is necessary to study the effect of the
distributed aspect of the systems on the agents and MOR relations, MOR’s internal

structure and other predicament that could be engendered.

Mobile agents can be used to verify their impacts on data mining process and to have a
deeper understanding of the potential of using agents in data mining. Another facet that
could be further analyzed is the distributed data mining where the computation can be

spread out through several nodes.

The data mining process is an iterative process where every time the results of the
current step are not satisfactory we go back to the step before and iterate as long as the
results are acceptable. In our implementation, each step is considered being done once;
therefore the iterative aspect of the data mining process was neglected. To evaluate the
results of a step metrics are needed and they can’t be obtained without a priori
information. For example, to test the quality of a produced model, it should be compared
to a reference model. Considering that we were doing descriptive data mining without
any a priori information, it wasn’t possible to have any measures. Therefore, more study
with the implication of the client is necessary to establish some measures to evaluate
produced mining objects. Once we have the ability to evaluate the produced model, the
system could be improved to be more intelligent and dynamic. For example, when the
miner agent produce a model and inform the coordinator agent of its results, the
coordinator agent could refuse the produced model and reschedule the build model task

with modified input build setting parameters.

61

Another aspect of the system that could be improved over time is the GUI. The user

could have more control over the data mining process.

APPENDIX 1

Data crawler system requirements and specifications

63

1. INTRODUCTION

This document describes the software requirements and design details of the Data
Crawler System (DCS). The DCS is designed and developed using PASSI (Process for
Agent Societies Specification and Implementation) methodology, which is a step-by-

step requirement-to-code method.

1.1 Purpose

The purpose of DCS is to accomplish data mining autonomously, which will reduce the
complexity of applying data mining process, consequently will reduce inherent cost
related to the complexity. Considering that the success of a data mining system is caused
mainly by its adaptability to the client’s domain, our system should be easily extensible
and new data mining algorithms should be inserted into system with a small amount of
effort. To adapt the data mining algorithms to the client’s domain, the system should

provide tuning possibilities to the user.

The system should provide to the user the ability to see produced model by DCS, apply
those model on data specified by the user and compute some statistics on attributes.

This document also describes nonfunctional requirements, design constraints and other
aspects of the system necessary to provide a complete description of the Data Crawler

System.

1.2 Scope

This document covers all features of DCS system. Basically the system features are as
follow: the system should access Operational Data Mart (ODM) database and get a data

subset and should apply data mining algorithms on the data subset and save the resulting

64

models into Mining Object Repository (MOR). The system should show produced

model to the users and allow users to apply those models on user specified data.

1.3 Overview

Considering that the DCS system is designed and implemented using PASSI
methodology, the structure of this document will be mostly influenced by the structure
of the PASSI methodology. Before getting into PASSI models, an overall description of
the system is given followed by the architecture of the DCS. Then, the system
requirement model, Agent Society model, Agent Implementation model, Code Model

and Deployment model are presented. Finally, the interfaces of DCS are described.

2. OVERALL DESCRIPTIONS

In this section, design constraints and non-functional attributes not present in the design

constraints section are presented.

2.1 Design Constraints

In this section, all design constraints such as used software language, components,

development toolkits and class libraries are described.

2.1.1 Software Development Language and Libraries

The system is developed with Java programming language using Java Specification
Requirement (JSR) 73: Java Data Mining (JDM) v1.0, Java API for data mining
capabilities of the system and using Java Agent Development Framework (JADE) for
implementing the agent technology.

2.1.2 Agent Development Methods

Since agents are still a forefront issue, there are many methodologies proposed and all of
them have interesting features and capabilities. Most of them are still in beta version and
don’t have a widespread acceptance in the agent community. The following diagram

shows all existing agent-oriented methodologies and their relations to each other.

66

MAS-CommonKADS

(+A:I/KE)
INGENIAS MaSE Tropos
MESSAGE Adelfe
AAII
RAP / /sa Agent OPEN
AOR RUP\ a OF’EN/4
PASS] Prometheus

Figure 23 Genealogy of Agent-Oriented Methodologies [21]

Our goal in this project isn’t to test and review all existing agent-oriented (AO)
methodologies but to use one of them. In first place, we selected MASSIVE [11]
(Multi-Agent SystemS Iterative View Engineering) and begin developing our system
using this methodology (we couldn’t find any other methodology at the moment and we
thought this method was alone in its category). This method is based on a combination
of standard software engineering techniques and it features a product model to describe
the target system, a process model to construct the product model and an institutional

framework that supports learning and reuse over project boundaries.

This methodology is an academic project and it doesn’t have a widespread acceptance
and use (as we can observe it isn’t listed in the Figure 23). After using it, MASSIVE
methodology revealed to be very difficult to apply in a real world project and its
documentation wasn’t easily understandable. Therefore, we continued our research for

finding another agent-oriented methodology.

Therefore we found PASSI methodology, which was more easily applicable and

implemented in a toolkit PTK, which allows the design of an agent-based system using

67

Rational Rose with the methodology. PASSI is described in the section 2.1.2.1 and PTK

is described in section 2.1.3.1.

2.1.2.1 PASSI

PASSI {40] (Process for Agent Societies Specification and Implementation) is a
methodology for designing and developing multi-agent systems, using a step-by-step
requirement-to-code process. It integrates the design models and concepts, using the
UML notation, from two dominant approaches in the agent community: OO software

engineering and artificial intelligence.

Initial
Requirements Next Iteration

'1 Domsin Req. Y
Description |

, Agent

A Kentification

Role
\ Identification J

- Cude Mode!

Agent Test 1.

Cntxalog,v (/ Role ([)epk;ymém” ‘
| Deseription [escription) \ Configuration /.
0 Apent Sodiety Mogel | Deployment Model

Figure 24 The models and phases of PASSI methodology [21]

As shown in Figure 24, PASSI is composed of five process components also called

‘model’ and each model is composed of several work activities called ‘phases’.

68

PASSI is an iterative method such as Unified Process and other widely accepted
software engineering methodologies. The iterations are two types. The first is triggered

by new requirements e.g. iterations connecting models.

The second takes place only within the Agent Implementation Model every time a
modification occurs and is characterized by a double level iteration as shown in Figure
25. This model has two views: multi-agent and single-agent views. Multi-agent view is
concerned with the agent society (the agents’ structure) in our target system in terms of
cooperation, tasks involved, and flow of events depicting cooperation (behavior). Single
agent view concerns with the structure of a single agent in term of attributes, methods,
inner classes and behavior. The outer level of iteration (dashed arrows) is used to
represent the dependency between single-agent and multi-agent views. The inner level
of iteration, which is between Agent Structure Definition and Agent Behavior
Description, takes place in both views (multi-agent and single agent) and it represents

the dependency between the structure and the behavior of an agent.

Multi-Agent Single-Agent

Figure 25 Agents implementation iterations [21]

As shown in Figure 24, there is also a testing activity that is divided into two phases:
(single) agent test and social (multi-agent) test. In single agent test, the behavior of the

agents is verified based on the original requirements of the system related to the specific

69

agent. During the social test, the interaction between agents is verified against their

cooperation in solving problems.

The models and phases of PASSI are described in the following subsections

2.1.2.1.1 System Requirements Model

This model, as its name suggests, describes the system requirements in terms of agency
and purpose and it is composed of four phases as follow:

¢ Domain Description

e Agent Identification

e Role Identification

e Task Specification

The Domain Description is a conventional UML use-case diagram that provides a
functional description of the system. The Agent Identification phase is represented by
stereotyped UML packages. The assignment of responsibilities to agents is done during
this step by grouping the functionalities, described previously in the use-case diagram,
and associating them with an agent. During the role identification, the responsibilities of
the precedent step are explored further through role-specific scenarios using a series of
sequence diagrams and the Task Specification phase spells out the capabilities of each

agent using activity diagrams.

2.1.2.1.2 Agent Society Model

This model describes the social interactions and dependency among agents that are
identified in the System Requirements Model and is composed of three phases as follow:
e Ontology Description

e Role Description

70

e Protocol Description

The Ontology Description is composed of Domain Ontology Description and
Communication Ontology Description. The domain ontology tries to describe the
relevant entities and their relationships and rules within that domain using class
diagrams. Therefore, all our agents should talk the same language by means of using the
same domain ontology. In the Communication Ontology Description, the social
interactions of agents are described using class diagrams. Each agent can play more
than one role. The Role Description step involves of showing the roles played by the
agents, the tasks involved communication capabilities and inter-agent dependencies
using class diagrams. Plus the Protocol Description that uses sequence diagrams to
specify the set of rules of each communication protocol based on speech-act

performatives.

2.1.2.1.3 Agent Implementation Model

This model describes the agent architecture in terms of classes and methods. Unlike
object-oriented approach, there are two levels of abstraction: multi-agent level and
single-agent level. This model is composed of two phases as follows:

e Agent Structure Definition

e Agent Behavior Description

The structure of the agent-based system is described using conventional class diagrams
and the behavior of the agents (multi-agent level and single-agent level) is described

using activity diagrams and state diagrams.

71

2.1.2.1.4 Code Model

This model is at code level and it requires the generation of code from the model using

the PASSI add-in and the completing of the code manually.

2.1.2.1.5 Deployment Model

This model describes the dissemination of the parts of the agent systems across hardware
processing units and their migration between processing units and it involves the
following phase:

¢ Deployment Configuration

The Deployment Configuration describes also any constraints on migration and mobility

in addition to the allocation of agents to the available processing units.

2.1.3 Development toolkits

The data crawler system should be developed using the following toolkits
e PTK 1.2.0 (PASSI Tool Kit)
e JADE 3.3 (Java Agent DEvelopment Framework)

2.1.3.1 PASSI Tool Kit

PASSI Tool Kit (PTK) is a compilation of two tools that interacts with each other. The
first one is PASSI Add-in, which is an extension to Rational Rose software that
implements the PASSI methodology. Thus, the user can follow the PASSI’s phases

easily using automatic diagrams generation feature of the tool.

72

The second tool is Pattern Repository. It is an interface for managing a repository of
patterns. It supplies the repository of patterns and the user can pick up and integrate

patterns in their MAS being developed, using a search engine.

2.1.3.2 Agent Platform

Before getting in to Java Agent Development Framework (JADE), we will briefly
describe available agent development platforms and the taken approach for selecting it.
There exists panoply of agent platforms and toolkits [41]. They have different level of
maturity and quality. Therefore, we established a set of criteria for selecting the one that
is most suitable to our project. The agent platform was selected according to following
criteria:

o Standard compatibilities: The agent platform must be in conformity with FIPA
standards. FIPA (the Foundation for Intelligent Physical Agents) is an IEEE
Computer Society standards organization that promotes agent-based technology
and the interoperability of its standards with other technologies.

e Communication: The agent platform must support inter-platform messaging

e Usability and documentations: The documentation must be clear, easy to
understand and free of bugs. Also, there should be enough examples and
tutorials to run and test the platform.

o Availability: The agent platform must be publicly available.

e Development issues:

o The agent platform must be supported by PTK, used for designing and

developing our system.

o The agent platform must be coded in Java.
o The agent platform has an active development community
o The agent platform has a widespread acceptance in the agent

communities.

73

Our choice was narrowed on FIPA-OS and JADE, considering that PTK generates java
code from UML diagrams for those platforms only. We also evaluated ZEUS Agent
Building Toolkit which is an integrated development environment for creating multi-
agent systems. All those three agent platforms support FIPA standards and inter-

platform messaging and they are publicly available.

Like FIPA-OS and JADE, ZEUS provides support for development of FIPA compliant
agents. ZEUS provides a runtime environment, which facilitate applications to be
monitored and other tools like reports tool, statistics tool, control tool, society viewer
and agent viewer that make it an excellent agent development platform. However, the
documentation is very weak that make it difficult to run applications on it. Plus, it is not
supported by PASSI Add-in. Therefore, we will not provide any further details on this

platform.

2.1.3.2.1 FIPA-OS

FIPA-OS is a component-based toolkit enabling rapid development of FIPA compliant
agents. In Figure 26, the core components of the FIPA-OS are illustrated. The FIPA
Agents exist and operate within this normative framework provided by FIPA [36].
Combined with the Agent Life cycle, it establishes the logical and temporal contexts for

the creation, operation and retirement of Agents.

74

IFIPAOS Agert Framework !

Figure 26 FIPA Reference Model [34]

The Directory Facilitator (DF) and Agent Management System (AMS) are specific types
of agents, which support agent management. The DF provides "yellow pages" services
to other agents. The AMS provides agent lifecycle management for the platform. The
ACC supports interoperability both within and across different platforms. The Internal
Message Transport Protocols (MTPs) provides a message routing service for agents on a
particular platform which must be reliable, orderly and adhere to the requirements

specified by FIPA Specification XC00067- Agent Message Transport Service

Specification. [34]

The ACC, AMS, Internal MTPs and DF form what will be termed the Agent Platform
(AP). These are mandatory, normative components of the model. For further information
on the FIPA Agent Platform see FIPA XC00023 - Agent Management Specification. In
addition to the mandatory components of the FIPA Reference Model, the FIPA-OS

distribution includes an Agent Shell, an empty template for an agent. Multiple agents
can be produced from this template, which can then communicate with each other using

the FIPA-OS facilities. [34]

75

gant lmplsnﬁmmim

KEY

Mandatory
Componerit

Switchable
implementation
Optional
Component

Figure 27 FIPA-OS Components [34]

The available FIPA-OS components and their relationship with each other are shown in

Figure 27.

In first place we selected FIPA-OS as the agent development platform because it is very
well documented, it has several tutorials and it has much more features. It was
straightforward to install and run the platform, which offered us a graphical interface.
However, during our experimentation we had some difficulties to run an agent that we

implemented. To run our own agent was easier with JADE platform than FIPA-OS.

2.1.3.2.2 JADE

JADE [47] is a middleware enabling rapid development of multi-agent systems. It is
composed of following elements
o A runtime environment where JADE agents can “live” and that must be active on

a given host before one or more agents can be executed on that host.

76

o A library of classes that programmers have to/can use to develop their agents
o A suite of graphical tools that allows administrating and monitoring the activity

of running agents.

Each running instance of the JADE runtime environment is called Container and it can
contain several agents. The set of active containers form the Platform. A single special
Main Container must always be active in the platform and all others containers register
with it as soon as they start. The platform and containers relationships are illustrated in

Figure 28.

Figure 28 JADE Platforms and Container [47]

77

As a developer we don’t need to know how the JADE runtime environment works, but

just need to start it before executing our agents.

As shown in Figure 28, besides the ability to accept registrations from other containers,
a main container has two special agents that normal containers don’t have. Those two
special agents are started automatically when the main container is launched. Those
special types of agents are AMS (Agent Management System) and DF (Directory

Facilitator).

The AMS provides the naming services (i.e. ensures that each agent in the platform has a
unique name) and represents the authority in the platform (for instance it is possible to

create/kill agents on remote containers by requesting that to the AMS).

The DF provides a Yellow Pages service that an agent can use to find other agents

providing the services he requires in order to achieve his goals.

In our evaluation we witnessed and experimented how easy it was to create and run

agents on this platform compared to other two platforms (FIPA-OS and ZEUS).

2.14 Database

For database issues, instead of designing our system for a specific database, Data Access

Object (DAO) [26] structure as shown in Figure 29 should be used.

78

BusinessObject i
J Haes DataficcessObject encapsulates DataSource

~
~

~ . B
™~ ... Obtainsimodifies
~

-
~
~ |
~

~a W
TransferObject

|
~ I
I
I

creates/uses

Figure 29 Data Access Object [26]

Therefore, all access to the data source will be abstracted and encapsulated. The access
mechanism required to work with the data source will completely hide data source
implementation details, enables transparency and easier migration, and will reduce code

complexity in our system. Further details can be found in [26].

2.15 Standards Compliance

Data Crawler System should support OMG’s CWM specification chapter 12 — Data
Mining, JSR 73: JDM v1.0 and FIPA specifications.

2.2 Other non-functional specifications

DCS should be realized using open source product and legacy system (e.g. JADE,

WEKA, etc.) because of the academic nature of the project.

Flexibility and modifiability are primary attributes of our system. Considering that the
data crawler system is an academic project that will evolve and be improved eventually,
new components will be added or existing components will change. As we selected
descriptive DM approaches, the DM methods will be changed or adapted in order to
perk up the quality of the produced knowledge.

79

In our project, computing time and responsiveness of the system is not an issue since we
are working on a data mart; the designed system will not be online. Here online means
that the system needs to classify quickly in order to accomplish the right action. (e.g. a
system recognizes face of passing people in real-time to detect criminals in an airplane).
Performance will be considered during the design but it will not be the primary attribute

of our system.

3. ARCHITECTURE

The data crawler system conception is started based on the article [2], where the data
mining process is proposed as an automated service. An automated data mining system
is delivered by automating the operational aspects of the data mining process and by
focusing on the specific client domains. The first criterion is met by using the
autonomous agent to accomplish the data mining and JDM compliant data mining
engine (DME). The second criterion is met by adapting the data mining process to the

client domains as explained during the domain requirement description in section 4.1.

As a result, the system architecture is shaped by the agent technology and JDM proposed

architecture.

3.1 Generic agent-based system architecture

The data crawler architecture is based on the generic agent application architecture

proposed in [11], as shown in Figure 30.

Domain Layer

Agent Architecture

Figure 30 A Generic Agent-based System Architecture

&1

In Figure 30, the Platform Layer corresponds to the hosts where the target system will
run. The Agent Management System provides an interface for our agent to access the
platform and the Agent Architecture implements the runtime environment. The Domain

Layer relates the domain specific aspects.

Typically, Agent Management System and the Platform Layer are generic component
that can be obtained from existing vendors or providers. The Agent Architecture and the

Domain Layer are more specific to our problem therefore those are implemented.

3.2 JDM Architecture

JDM proposes architecture with three logical components: Application Programming
Interface (API), Data Mining Engine (DME) and Mining Object Repository (MOR).

The API is an abstraction over the DME that provides the data mining services. The API
let access to the DME. Therefore, an application developer that wants to use a specific

JDM implementation need only to know the API library.

DME holds all the data mining services that are provided.

MOR contains all the mining objects produced by DME. It is used by the DME to persist
data mining objects. JSR-73 don’t impose a particular representation, therefore MOR

could be in a file-based or in relation database form.

With this proposed architecture, we can easily change or upgrade our data mining

implementation of our system as long as we are in agreement with JDM APL

3.3 Data Crawler Architecture

82

The data crawler architecture is based on the generic agent-based system architecture

and JDM architecture as show in Figure 31.

—

Agent Architecture

Figure 31 The Data Crawler Architecture

JADE is selected as the Agent Management System, which will run on Java RML

Considering that the data mining is our domain and the data mining aspect of our system

is implemented using JSR-073: JDM, then Domain Layer should be implemented using

the data mining architecture proposed in [14].

4. SYSTEM REQUIREMENTS MODEL

This model will describe the system requirements in terms of agency and purpose and it
involves the following phases:

¢ Domain Requirements Description

o Agent Identification

¢ Roles Identification

e Task Specification

4.1 Domain Requirements Description

In this step, common UML use-case diagrams are used to provide a functional
description of the system. The following context diagram illustrates the actors

interacting with the system.

e '/ N
o

,,,,,,,,,,,,, Operational

O /7 /_v_—\\>/ Data Mart

Mining Object
Repository

Figure 32 Context Diagram

Essentially, the Data Crawler System (DCS) has three actors: user, Operational Data
Mart (ODM) and Mining Object Repository (MOR). User is the data mining clients;

people from Bell Business Intelligence and Simulation teams or managers who are in

84

decisional context. User should access DCS to visualize produced models and to request
for specific data mining tasks (e.g. applying a model produced by the DCS on data set
specified by the user). Operation Data Mart (ODM) is the database where all data to be
mined are picked up. The DCS should load data from ODM and should apply its data
mining technique on this data and should save the results (e.g. models, statistics, apply
results, etc.) and other mining objects (e.g. build tasks, build settings, algorithm setting,

etc.) to the Mining Object Repository (MOR).

The entire detailed functional description of DCS is presented in Figure 34. The domain

description is based on the data mining process as shown in Figure 33.

Y
Define the problem |-

Y

-
o §

¥

Data Understanding

¥

Y

A

Data Preparation |-

-t
Y

Estimate the model

Y

) 4

interpret the model{draw
some. conglusions)

A

Figure 33 Data mining process

The first step “Define the problem” is about stating the problem and establishing the
objectives of the project. It doesn’t have any functional requirements; consequently there
1s no use case in Figure 34 related to this step. Plus, the last step “Interpret the model” is
accomplished by the data mining clients and the functionalities related to this step is

about presenting the results only.

85

In Figure 34, other functionalities such as “initialize system” or “manage data mining
process” are also present. They are not related to the data mining process but to the

system itself.

Identify inappropriate Select the most appropriate

attributes attribute representation
(from Datargent) \ pa (fromDataAgert)

Operational GetData from database . P
Data Ma (from Detagert) _7Data Understanding
<<include/>>‘/ / (from Detadgent <<extend>>
7 -
o <<include>> s < ;
- J— /’/ / __________________ t
N - N / T Selectthe appropnate data Select the appropriate data set
Manage Physical resources e / R setfor the model for PART algorithm model
nage data mining process / Prepare Data {from MinerAgent) {from MinerAgert)
(from CoordinatorAgents <inctude>> %
g {from CoordinaterAgent) N (frcm MinecAgent) <<extend>>
7 qx "
P - \md\ <cinoludess <<include>> N ;o
N U . N
k Selhng up parameters Setting up parameters for
L - PART algorithm
Initialize System Eshmate Model “zcincluger> (from MinerAgent) (tromMinerAgent)
(from Coorcinaiorgent) (trem Mirertg \\ T <<extend>>
\\ \<\<-“C'ude>> e -
\ \ e
S T \ Bulld model Build model for PART
K) e T algorithm
Mining lee‘:' e \ (e Minecgent) (fromMinerAgent)
Repository _
-7 Interprete Model 3
/../ L <<gxtend>> R
P - {from CoordinatorAg ent) = 3
/,,/"/ <<inclide>> Applymodel Apply modet for PART
L R (from MinerAgent) algorithm
e I {from MinerAgent)
v ~
- Model Visualization
User

There is no direct connection
between "Estimate Model” and
“interpret model” because
interpretation is accomplished by
the user while model estimation is
done by the system.

{from CoordinatorAgent)

Figure 34 Domain Description Diagram

86

The rest of this section contains detailed analysis of each step of the data mining process
shown in Figure 33. The domain requirements that are in the description diagram

(Figure 34) are detailed in the following subsections.

4.1.1 Define the problem

In this initial step a meaningful problem statement and the objectives of the project are
established. This step doesn’t have any functional aspect, therefore it will not have any
functional implementation of this step but this first phase is important to have a global

understanding of the project and to establish non-functional requirement of the system.

As shown in Figure 35, the input to DCS is data obtained from Operational Data Mart.
ODM has high dimensionality (it has more than 300 hundred variables “features™) and it
is a huge data repository (more than 1000 instance each day). The output depends on the
DM method that is employed by the system; if we use a clustering method the output
will be clusters, if the employed method is a decision tree technique the output will be a

decision tree.

Knowledge
e (ODMdata set ¢ Decision trees
e C(Clusters

Figure 35 The data mining process as a black box

The main objective of the DCS is to extract unknown knowledge, possible interrelations
and causal effects of variables in the database. There is no a priori hypothesis on how
KD should be conducted; as a result descriptive data mining is the chosen approach. The
data mining system should produce descriptive models. Autonomy is the principal

characteristic of our system.

87

Systematically, DM system is supplied with data from ODM. The data supplying
mechanism should be part of the system. Once the data is received, the DM system
should perform each step of the data mining process shown in Figure 33. After
completing of all these steps, the results and other mining object produced by the system
are saved in MOR for future consultation by the users and next iteration should begin

with a new data set.

The set of data mining methods should be predetermined in order to facilitate the
automation of the DM process. We limit our self to unsupervised methods (descriptive
methods) efficient in high dimensional space because of the high number of “feature”

the input data has. PART algorithm may perhaps be a very good candidate.

Another aspect worth to mention is security. All operational data is about clients of Bell
Canada and ODM contains sensible information about clients, thus confidentiality could
an important point. DM system should extract and treat data autonomously without
human interference and the data access should be accomplished from inside of Bell
Canada. Therefore, security and privacy should not be a concern for us in this project

because sensible data stays inside Bell Canada all the time.

4.1.2 Data understanding

The data understanding step is shown in Figure 36.

88

Identify inappropriate Select the most appropriate

attributes attribute representation
(from DataAg... . (from DataAg...
<<inl$l‘5..|de>> <<include>>

Operaiional Data Get Data from database

Mart (from Detalg.. Data Understanding

(from DataAg...

Figure 36 Data Understanding step diagram

Before explaining in detail the data understanding, the “Get Data from database” use
case will be detailed. This use case represents the activity of getting data to be mined
from a data source most commonly a database. As mentioned during the “define the

problem” step, this activity should be part of the system too.

Data understanding is about data extraction, data quality measurement and detection of
interesting data subsets. This task should be accomplished using exploratory data
analysis (EDA) proposed in [4]. EDA is only applicable to numerical (float and integer)
type attributes and categorical type attributes. EDA is a four step process as shown in
Figure 37:

Identifying inappropriate and suspicious attributes
Selecting the most appropriate attribute representation
Creating derived attributes

Choosing an optimal subset of attributes

89

Identify inappropriate and
suspicious attributes

v
Selecting the most
appropriate-attribute
representation

¥

Creating derived-attribute

Choosing an.optimal subset
of attributes -

Figure 37 EDA process steps

The EDA method can not be used in our project as it is proposed in [4]. First of all, this
method aims to automate predictive data mining process and in our project we are doing
descriptive data mining which is very different. Considering that we have no prior
directive on what we are searching with descriptive data mining, we can’t tolerate any

assumptions on data.

Also, as recognized in [4], by reducing the number of attributes and transforming data
representation, we will not only contribute in computation time and memory
requirement reductions and/or easily understandable models we will also cause some
fatal loss of details contained in original data set. For that reason, the authors are
proposing three association measures to try to balance the loss of details against the

advantages of efficient data mining.

In descriptive data mining we can not allow any loss of information. Therefore, in our
design we are not encouraging the pruning occurring during the data understanding, but
in some evident case we can use it where there isn’t any loss of information; the loss of

information will mostly occurs with suspicious attribute.

90

However, the EDA process has great potential for the data crawler system even with its
incongruity to our type of data mining. Therefore, it will be used as a starting point in
designing the data understanding step by attuning it to the client context as shown in
Figure 38.

o Identify inappropriate attributes
e Selecting the most appropriate attribute representation

Identify inappropriate
attributes

v
Selecting the most
appropriate attribute
representation

Figure 38 Data Understanding Process

In the following subsections, all steps of the EDA process as proposed in [4] are
described in order to elucidate why some of them are not implemented and for future

improvement of the data crawler system.

4.1.2.1 Identifying inappropriate and suspicious attributes

During the data understanding all inappropriate attributes are removed. Inappropriate

attributes are described in Table IV [4]:

91

Table IV

Inappropriate attributes

| Only contains a single value

| Has all missing values
_ | Has a fraction of missing values larger than a specified threshold

. | Has a fraction or number of different values larger than a specified threshold.

More studies are necessary to establish a high-quality threshold for “near null” and
“many values”. At the moment in our project, for “near null” if missing values are
larger than 98% (which is an arbitrary choice) the attribute will be considered as a “near
null” attribute and for “many values” the specified threshold in 100% which means key

attributes are rejected.

The suspicious attributes are described in Table V [4]:

Table V

Suspicious attributes

| Association and correlation with the target is greater than a specified
.+ | threshold. These attributes are often unintentionally included and, without
proper identification, they lead to artificially good models that do not
generalize well.

Association and correlation with the target is less than a specified threshold.
| These attributes do not contribute much by themselves in predicting the
target but combinations of these attributes may have increased predictive
power. Attribute selection is the ultimate way to decide whether they are
appropriate for further modeling

| One values covers more than a specified fraction of all values

Have less than a specified number of distinct values.

Have less than a specified number of distinct non-null cases.

The target attributes in the description of the first two types of suspicious attributes are

the selected attributes and the sources attributes are the original attributes sets. Removal

92

of some attributes can cause serious loss of details contained in the original attributes,
therefore we need to find a balance between this loss of information and efficiency of
the data mining methods. To select the best set of attributes, the loss of details can be
evaluated using association measures. Since the goal is to automate this process, we
would like to have generic measures of association between the source and the target
attributes. In this purpose, three types of association measures are proposed in [4]:

mutual information, chi-squared Cramer’s V and Goodman-Kruskal index.

For the rest of suspicious attributes, further analysis with client (Bell Canada) domain
knowledge is necessary to determine the thresholds for identifying suspicious attributes.

In [4], authors are talking about narrowing potentially hundreds of thousands of
attributes down to a manageable subset, which is far from being our case. Also, as
mentioned above, these association measures are to minimize the loss of information and
will not to eliminate it. As a result, the DM system should not take care of suspicious

attributes.

But a module and a user interface should be foreseen in the design of the system for
future implementation to allow control over suspicious attributes if there is any change

in our data mining approach.

93

for all attributes until all attributes are passed through
Select the current_attribute;
if current_attribute contains only a single value
Set current_attribute as “CONSTANT”;

else if current_attribute has all missing value
Set current_attribute as “NULL”

else if 98% of current_attribute’s instance are missing value
Set current_attribute as “NEAR NULL”

else if 100% of current_attribute’s instance has different
value
Set current_attribute as “MANY VALUE”
Discard all attributes set as “MANY VALUE”

Algorithm 2 Identifying inappropriate attributes

Normally we should discard all attributes set as “CONSTANT”, “NULL”, “NEAR
NULL” and “MANY VALUE” but they won’t considering that we do the data mining
incrementally (i.e. each data mining technique is applied on a small part of the whole
dataset and we continue the data mining process using the same model produced earlier
with another data sample and we continue this way until all dataset mined). But our data
set is considered as infinite because the data (operational data from ODM) is growing
every day as long as the company exists. Therefore, we can not conclude that the whole
dataset is represented by a small part of it. For example, if the current data sample has an
attribute as CONSTANT, we can not conclude that this attribute is CONSTANT for

whole dataset because it could be the case for the current data sample only.

The "MANY VALUE" type attribute should be discarded because it represents the "key"
attributes.

94

4.1.2.2 Selecting the most appropriate attribute representation

After identifying and rejecting inappropriate attributes, the retained attributes are
processed to determine the most suitable representation. Outliers, missing values and
encoding are handled during this step. In [4], for encoding, authors are suggesting
discretizing for the numerical attributes by thresholding the original values into a small
number of value ranges and for the categorical attributes, they are suggesting to merge
together numerous categories similar to options in C4.5 [35]. The association measures,

mentioned in the precedent section, are used to determine the optimal encoding.

During our examination of the data sample from Bell’s ODM, we observed many
missing values and outliers. For example, the categorical attribute FLAG_MET, where
each instance has a value from the set [N, Y] (N for no and Y for yes), has instances
with value of ‘9’ which is probably a typo. In our implementation, no encoding can be
performed because it can cause major loss of details present inside the original
attributes. Considering the type of data mining strategy (descriptive) that we selected,
even infinitesimal loss of information can not be tolerated. As a result, only outliers and

missing values could be handled.

Also the data sample has many date type attribute. The date type will be considered as
numerical attribute type because it doesn’t have a standard representation, and must of
the time it can be represented by a numerical value (e.g. in Java Date object is
instantiated using a value of long type which represents the number of milliseconds that
have passed since January 1, 1970 00:00:00.000 GMT).

The following subsections describes the strategy taken for outliers and missing values.

95

4.1.2.2.1 Outliers

The outliers are data samples that are significantly different or that do not comply with

the remaining set of data.

For numerical attributes, we could use threshold values based on statistics to identify
outliers. But in order to do that we need to know the data distribution, which isn’t our
case. Also, our data set is considered as infinite consequently we can’t do any

assumptions on data distribution. The outliers with the numerical attributes should not
be handled.

For categorical attributes, a data sample that isn’t in the group of possible values is
considered as an outlier. A possible strategy will be to create a new category named
“OUTLIER” each instance having an outlier in an attribute will be set to “OUTLIER”
category. This approach can not be adopted because in some case, we could compute
the distance between each instance and by adding a new category we need to specify the
distance of the new “OUTLIER” category to other categories, which can distort the
values. Also, some data mining technique can handle outliers and missing values so we
don’t need to do it at this step of the mining process. The outliers with the categorical

attributes should not be handled.

4.1.2.2.2 Missing Values

The missing values are present within all type of attributes in ODM. Some data mining

methods can’t deal with them.

For numerical attributes, several strategies can be adopted. First, each missing value for
a particular attribute can be replaced by a reasonable, expected, default value established

following further analysis with the domain experts (Bell Canada) based on the domain

96

experience. We could also replace it by a mean value or a global constant value but by
doing this the original data sample will be modified. In the initial version of the system
no action is taken for the numerical type attributes. Moreover, some data mining

algorithm supports missing values in dataset.

For categorical attributes, same strategy as with numerical type can be adopted; replace
missing value by a possible default value based on the domain experience. For the same
reasons as with the numerical attributes, this strategy can not be selected. In the initial

version of the system no action is taken for the categorical type attributes.

No action should be taken for string type attributes because missing value can also be

considered as a value.

for all attributes until all attributes are passed through
Select the current_attribute;
if current_attribute_type == numerical
Do noting;

else if current_attribute_type == categorical
Do noting;

else if current_attribute type == string
Do noting;

Algorithm 3 Selecting most appropriate representation

4.1.2.3 Creating derived attributes

The attributes derivation is for increasing the source attribute correlation with the target
attribute. It is accomplished by using univariant transformation such as exponent,
logarithm, quadratic function, inverse function, power function and square root. These
transformations are typically only beneficial to linear regression models. Consequently,
this step is performed only to continuous attributes otherwise it is deactivated. The

Algorithm 4 can be used to derivate attributes

97

for all transformations (gquadratic, inverse,power,square,exp,log)
until current transformation is accepted
Compute correlation between source and target attributes;
Apply transformation;
Compute new_correlation between source and target attributes;
if new _correlation > correlation
Transformation accepted;
Derived attribute kept;
else
Transformation rejected;

Algorithm 4 Transformation selection to create derived attributes

The concept of correlation can be generalized to continuous-categorical couple [5] so

that these transforms can be expended to categorical attributes either.

In our project, the attribute derivation should be completely deactivated, considering that

we don’t have a viable reference dataset which has source and target attributes.

4.1.2.4 Choosing an optimal subset of attributes

Optimal subset of attributes selection without significantly affecting the overall quality
of resultant model is for reducing computational time and memory requirements.
Computational time and memory are not an issue to our project. Therefore, no more
transformations should be applied on previously selected attributes. This will simplify

our design too.

There are two algorithms suggested in [4] for attribute selection: expectation of Kullback
Leibler distance (KL-distance) and Inconsistency Rate (IR). Those two algorithms can

be used in future implementation if it is required.

98

4.1.3 Data preparation

Data preparation process is shown in Figure 39:

<<include>> il

Select the appropriate data Select the appropriate data set

—_— set for the model for PART algorithm model
Prepare Data (from MinerAg. .. (from MinerAg...

{from MinerAg. ..

Figure 39 Data preparation step diagram

This step is about all activities to construct the final dataset for modeling. In other
words, this step is for preparing the dataset selected during the data understanding phase

for the DM methods used for modeling.

For example, clustering algorithms usually can only be applied to numerical or
categorical data. Other type of data such as string need to be transformed to categorical
data otherwise they are excluded. The general data preparation process is shown in

Figure 40.

Select the
appropriate data
set

Transform

Figure 40 Data Preparation Process

Data preparation process is specific to a DM method. PART algorithm is selected to

show how data preparation step works and how it can be implemented. In subsection

99

4.1.3.1, the specific data preparation required for PART data mining method is

introduced.

4.1.3.1 PART Algorithm’s data preparation

PART algorithm can only be applied to attributes where we can calculate the distance
between each point such as numerical type attributes. Thus, string type variables should
not be mined using Part algorithm. However, it can be applied to categorical if there is

notion of distance between each category, otherwise, it can not.

For example, if we have a set of category such as [A, B, C, D, E] and the distance

between each group is as shown in Table VI then the PART algorithm can be applied.

Table VI

Distance between each group

PART algorithm can’t be used, if there is no concept of distance in each category.
Further analysis is required with client (Bell Canada) to determine which categorical

attribute has distance concept.

For the moment, only numerical data should be mined using PART algorithm.

100

No further transformation on the selected attributes is required, since only numerical

data are selected. Accordingly, the following simple algorithm (Algorithm 5) is used for
data preparation for PART method.

Select all numerical type attributes.
Create a new data subset with the selected attributes.

Algorithm 5 Data preparation for PART algorithm.

4.1.4 Estimate the model

Estimate the model process is shown in Figure 41:

<<includeii _______________ = (\ P e :)
("' """"""""" N Selectthe appropriate data Select the appropriate data set
N set for the model for PART algorithm model
Prepare Data (fromMinerAgent) (from MinerAgent)
{from MinerAgent) <<extend>>
¢ <<include>> .. - —
<<include>> g 4 \)
S =N -) // \\ ‘‘‘‘ s
,\' """""""" SN Setting up parameters Setting up parameters for
o -
e e - (fromMinerAgent) PART a lgorithm
Estimate Model <<iaclude>> (from MinerAgent)
. \~\\\
(fromMinerAgent) \\.\§ — <<extend>> . —
<<include>> v N - "\)
\ N - M -
Build model Build model for PART
\ (fromMinerAgent) algqnthm
(from MinerAgent)
\\
T <<extend>> T
{ < ()
‘\m‘ S -~ \\ _______ ¥
Apply model Apply model for PART
(from MinerAgent) algonthm
{from MinerAgent)

Figure 41 Estimate the model step diagram

101

During this phase, the DM algorithms are applied to the prepared dataset.

As shown in Figure 20, in our design the “prepare data” step is included in the “estimate
data” step because each data preparation phase is related to a DM method. For example,
if we are building a PART algorithm model we will necessarily prepare the data

according to this specific algorithm.

In this section, first the general process flow of the model estimation is described. Then,

a more precise description is given according to our project and the selected descriptive

DM method.

4.14.1 General “Estimate the model” process flow

The modeling process (and all our DM system) is designed in agreement with Java
Specification Request 73: Java Data Mining (JDM). The general modeling involves a

four-step process as shown in Figure 42:

Setting up parameters for the
analysis

Build a model

Testing the model

Applying the model

Figure 42 General “estimate the model” step

Detailed description of each step is below:

102

Setting up parameters for the analysis: During this step all parameters or inputs

that affect model building

are set. The parameters or inputs values are

predetermined. A detailed analysis is necessary to identify the parameters for

each model.

Build a model: A model is build. The model is a compressed representation of

input data and it contains the essential knowledge extracted from data.

The

model object is specified by JDM. The scenario for model building is described

in Algorithm 6:

Create a physical data object

A4

Create a build setting object

¥

Create a logical data instance.
based on-the physical data
Associate it with build setting

(Optionah
i

Create an algorithm settings object
Associate’it with. the build setting
(Optional

v

Create a build task and set the
physical data and build setting

A

Map-the-physical attributes:to
logical attributes

(Optionah

v

Execiite the build task

Algorithm 6 Model building scenario

103

e Test the model: Model testing estimates the accuracy of the model in predicting
the target of a supervised model. It is processed after model building. The inputs
are the model and a data sample.

Considering that the data crawler system is designed to do descriptive data

mining using unsupervised methods, the test task should not be implemented.

o Apply the model: Model applying is used to make predictions. For example, with
clustering, during the ”apply the model” step, a client can verify how well a data
set fits within a given cluster and the data crawler system can give a probability
indicating the accordance of the given data set to the selected cluster. The

scenario for applying a model is described in Algorithm 7.

Create a physical data-object for
the input.data

4
Specify the resultsof the apply

y
Create an apply task with the

input model‘and data; output
data and apply setting

¥
Execute the apply task

Algorithm 7 Apply building scenario

4.1.4.2 Specific “Estimate the model” process flow

The “estimate the model” phase should be implemented without the “test the model”

step as shown in Figure 43.

104

Setting up parameters for the
analysis

Build a model

Applying the model

Figure 43 Specific “estimate the model” phase

“Test a model” step is removed from our model because it can only be applied to
supervised methods (i.e. classification) and in DCS, we are only allowed to use

unsupervised methods.

4.1.5 Interpret the model

Interpret the model process is shown in Figure 44:

.~ Interprete Model
Mining Object (from Goorgeiorg..
Repository

Model Visualization

User (from CoordinatorAg. .

Figure 44 Interpret the model step diagram

This step will be accomplished mostly by the user of DM system. The problem of

interpreting the resultant models is very important since the user does not want hundreds

105

of pages of numeric results. This kind of results is not understandable and/or

interpretable and it will be difficult to make a successful decision.

This step should have two major functionalities:

o Allow visualization of produced models. The system should provide an
interface for users to visualize the produced models.

e Allow user to apply a model. The system should allow user to verify the
models that it is producing. Since, our main goal in creating this system is to
automate the data mining process and help user in there data mining tasks,
our system should inform the users when a specific situation (or event)
happens. Thus, the user should be able to set some parameters and as a result
the system should signal user when there is anomalies according to the set

parameters.

All the functionalities above should be grouped in a graphical user interface (GUI) to
facilitate the interaction of the user with the system. Another, functionality that isn’t
related to data mining but to the system itself is the ability to monitor the system
resource. Therefore, the user should be able to monitor the available resources such as
computing nodes, agents, in order to use them more proficiently. This functionality

should not be implemented but it could be interesting to implement it in future releases.

JDM offers possibility to compute attributes statistics to interpret models appropriately.
A task that computes statistics on physical data is provided by JDM. Therefore, this
functionality could be implemented according to statistics API package using the

compute statistics task, on a given physical data set.

Also, JDM 1.1 does not support data transformations and visualization functionalities; as
a result the “interpret the model” step is not supported by JDM. Therefore, the current

step will be implemented from scratch.

106

4.1.5.1 Model Visualization

The model visualization object is used to picture the content of a model. It should have
a model detail object as input. Considering that representation of each model is different
(specific to a particular algorithm), the visualization of each model also should be
different accordingly to the algorithm used in the model. Initially, the model will be

presented in a textual format; eventually graphical representation can be used.

4.1.6 System Related Functional Requirements

System related functional requirements are shown in Figure 45.

Manage Phy sical resources
sinclude>>

\\.‘ o

(from CoordnatorAg...

<<include>>

T Manage data mining process
T & (from CoordinatorAg...
Initialize Sy stem

{from CoordinatorAg ..

Figure 45 Manage data mining process diagram

There are three types of system related functional requirements:

¢ DM process management
e System initialization
e Resources management

All those functional requirements are described in the following subsections.

107

4.1.6.1 DM process Management

This use case is about keeping track of the mining process and others related activities

such as system initialization, resources management and errors management.

The DCS should keep track of the data that has been mined and with which available
DM methods. All produced models must be kept in a database (i.e. mining object
repository “MOR”) and made available to the user when requested. DCS must record
when fault occurs during the lifetime of the system and if possible take necessary actions

to recover or repair.

System initialization and resources management are described in the following sections.

4.1.6.2 System Initialization

During the system initialization, the following three tasks should be executed.
e Load resources information: physical resources (i.e. available host on which the
agents can be executed for data mining)
o Load Input data information: all information related to accessing database and to
tracking all the data mined and still to be mined
o Load data mining info: all information related to possible data mining algorithm
implemented in the system and where the DME and MOR are located and how to

access them.

The information can be stored in text files that are read during the initialization of the
system. Those load files should be updated during the lifespan of the system, thus they
could be used to restore the system states, reduce the lost of information if a failure

occurs or simply if the system had to be stopped.

108

4.1.6.3 Resources Management

The resources management consists of deciding on which node which agent will be

executing. The resources management should be done according to the following rule:

For each node, there should be only one Data agent and one Miner

agent executing.

There should be only one Coordinator agent on the system. At the start-up, each agent
should be created according to the rule above. More analysis and studies are necessary to

establish a more efficient resources management strategy.

4.2 Agent Identification

During the domain requirements description, the functional description of the system is
provided without getting into any discussion about agents. In this step, the separation of
responsibility concerns into agents is accomplished. This step is launched from the use
case diagrams of the previous step where each use-case instance is associated with an
agent. Each agent is represented by an UML package. Therefore, each package defines

the functionalities of a specific agent.

The selection of the use cases that will be part of an agent is done following the criteria
of functionality coherence and cohesion. For example, the data preparation activities of
the data mining process are divided between two agents: data agent and miner agent.
The Data agent realizes the data understanding step of the data mining process. It should
extract data and select an interesting subset of data. This subset of data isn’t yet bound
with a specific data mining algorithm, while the data preparation step of the data mining

process is specific to a data mining algorithm, thus this step should be accomplished by

109

the miner agent. Therefore, data understanding step should be associated to a different

agent than the agent that realizes the data preparation and estimate model steps.

oy
<<Agent>> .
‘ st e T
; s e) — \
Operational
Data Mart

Identify inappropriate . <cinchude>>

Get Data from database

(from 01-Don...}

attributes Ry
.. {from Datadg
o DuteAg.. <cinclude>s ™~ |
RN 4
O ; 1
e P <<Agent>>
Selact the most appropriate Data Understanding MinerAgent
attri bu!:mreul:iﬁmaﬂon from Dn::u) <<include>> <<extend>>
L i P el . L .
«°°'“"'E‘"‘°a'e» Prepare Data Select the appropriate data Select the appropriate data
i | . : set for the model set for PART algont...
<<Agent>> I A rom Minechg.. Irom MiecAg...
CoordinatorAgent \l <<include>>
Ja— l L L <<include>> — <<extend>>
- N i . e s s
{ A <Sinclude>> I <ccomminicate>> | e
Manage Physical resources Ty /-“"""' Estimate Model., Setting up parameters Semgi;g pTrav:;tersfor
e N . algorithm
from Cocxaoch, ___Manage data mining process /(' en M <W» o MiwiAg umuism
5sim:m§é:> {trom Cordratordg. - / \
e <<comimupicate>>; / b <<extond>> —
».\vé/ <«inclyde>> | s,)
Initialize System / R \‘_ Build modet Build mlode“lthfor PART
SN <<include>> . / . Ag. algorthm
(rom CoordialorAg.. - e N / \\\ {Trom MiwrAg. drom M.
Interprete Model Model Visuatization / T~ <<extend>>
(trom Coordralonag. trom CoordratceAp.. // T S
P
. A L
AN / Apply mode! Apply model for PART
{rom Minwag algorithm
. Cesm MiowAg

%
|
|

User
(from 01-Dorr...)

Mining Object
Repository
{from 01-Don...)

Figure 46

Agent identification diagram

Basically, three agents have been identified:

Data agent,

®
e Miner agent and
e Coordinator agent.

110

Data agent acquires data from ODM database and accomplishes the "data
understanding" step which consist of data extraction and data quality measurement and
detection of interesting data subsets as described in section 4.1.2. Miner agent should
prepare the previously cleansed data for the data mining algorithm and should produce a
model that will be saved on MOR. This agent should also apply models on data

following user’s instructions.

Coordinator agent has mainly three tasks:
1. Physical resources management: In our context, the physical resources are the
host on which the agents run. Managing activity consists of deciding on which
node which agent will be executing. The resources management should be as

follow:

For each node, there should be only one Data agent and one Miner

agent executing.

There should be only one coordinator agent on the system. In our implementation
the physical resources management is implicit, which means that the coordinator
agent will not take any particular actions to realize it. At the start-up, each agent
should be created according to the rule above. The coordinator agent should
activate or deactivate the data and miner agents depending on the available jobs.
At this level the Physical resources management is too simple but when we will
have more complicated mining strategy with limited resources then this

separated functionality will be important.

2. Data mining management: The data mining management consists sequentially of
e Requesting data agent to get and prepare data for mining,
e Requesting miner agent to prepare and mine the cleansed data and
e Keeping track of the data mining process within ODM’s data. All data

should be mined in sequence.

111

3. Error management: At this level it consists of logging the errors that occur.

4. User interaction: It should allow users to visualize resulting models as described
in section 4.1.5 and apply models on user defined data set. Eventually, other
type of task that facilitates the model interpretation could be integrated to the

system.

4.3 Roles Identification

This step consists of exploring each agent’s responsibilities through role specific
scenarios using sequence diagrams. Basically, all possible paths of the Agent
identification diagram involving inter-agent communication (path with
<<communicate>> stereotype) will be explored. A path corresponds to a scenario of an
interacting agent that will achieve a behavior of the system. Each agent can have more
than one role and each object in the sequence diagram is represented with the syntax:

<role name>:<agent name>.

112

f : Do v : - : .) . ' - Mdll
o[gesde] [P [Mg e e v | e
1: Requestf:orlnputDataSet Bmof_m !7
le 2: GetDataSet ‘ | :| | | | l
LIJ :(v 3: vaideDalaSet\ | | | | | |
l s 4: P;*E"pareDataSet | | | | I
| I | ! | | !
| | T | | | | |
‘ | | 5: Req L pecifi 'hmMininLA', ith I I |
’ | | ; | “d:|save model into MC%R l
f | | i i i _‘ﬁi : WantToViewMode|
l 1 Q z
| | | { T ‘| 8: GetMadel
| | [| | 7 9: ShowModel
| | | | | | I
i | | | | | v I
’ | | | | l 10|: WantToAppIyMod%l
‘ ! | | |) 11: RéquestForapplyModel
{ | | | 12j SaveAppIyModetReJults
|
]
| | | | i ¥
| | | | T .
l | | | | 1|]‘) 14: Sl:c Appl
l | | | | l [l :
	[1			

—
-

Figure 47 Role Identification diagram

Figure 47 shows the scenario of the data mining process. The scenario is described as
follow:

e The Manager requests DataReader to get a data subset from ODM.

e Given the data information and access information, DataReader acquires data
subset from ODM and provides it to DataUnderstanding which should cleanse
the data.

e Once the data is cleansed, the Manager should ask the DataMiner to mine the

cleansed data using a specific algorithm.

4.4

113

Once the data mining process is finished, the DataMiner should save the
resulting model into MOR and it should inform Manager of its current status.
Then, the Manager should give the DataMiner another job and so on.

The user asks the Modellnterpreter to view a model. Then the ModelInterpreter
gets the model from MOR and shows it.

The user asks the ModelInterpreter to apply a model on a specified data. Then
the Modellnterpreter requests Manager for applying a model on a specified data.
Given the model and data, the Manager request DataMiner to do apply model
task on the data.

Once the apply model task is finished, the DataMiner should save the apply
results into MOR and should inform the Manager that the apply model task is
completed and then the Manager informs the Modellnterpreter of the completion
that of the apply model task.

Once the apply model results are ready, the Modellnterpreter shows them.

Task Specification

In this section, the capabilities of each agent are specified using activity diagrams. The

relationship between activities means messages and communications between tasks of

the same agent. There are two columns in diagram, first one contains the tasks from

other agents interacting with the agent and the second one contains the tasks of the

agents describing its behavior.

The task specification of each agent is described in the following subsections.

4.4.1

Coordinator Agent

The task specification diagram of the Coordinator agent is shown in Figure 48.

114

/ DataAgentListener \ / RequestData
N 7 ‘ \

/ DataAgent.lnformDataReadf\ T ,/!

\ / T Il

- e T / |

““““ = Listener \< HandleErmors ™ ’

> J . /] |

//'// \j.?;;) 5

T ¢~ ShowApplyModel ™ f

- N |

e —— s
7/~ MinerAgent.inform N
MiningCompleted /'
/" RequestBuildModel

7~ MinerAgent Listener }

I RequestApplyModel

{

7 <<Extemal Age...
{ User.RequestForApplyModet 7}‘

/ <<Extemal Age... 3‘,_
\User.RequestForShowModel j

Figure 48 Task Specification Diagram of Coordinator Agent

The Coordinator agent is the one that initialize, start and manage the system. The

Listener task is used to pass incoming communications from other agents to the proper

task. MineData task is used to supervise the data mining process. The physical

resources management also is accomplished within this task. RequestData,

RequestApplyModel and RequestBuildModel tasks correspond to outgoing messages to
DataReader and DataMiner of the Roles Identification diagram in Figure 47.

115

InformMiningCompleted task informs Coordinator agent that the mining task is
completed. If the completed mining task is a build task then the Coordinator request
Miner agent to realize another build task. If the completed mining task is an apply task
then the Coordinator agent should call for ShowApplyModelResults task that will collect

the apply results from MOR and show them in the user interface.

The Coordinator agent should also interacts with the user. GUIListener task dispatches
the user requests to the proper tasks. User can do two requests: RequestForApplyModel
and RequestForShowModel. When user requests for an apply model, the Coordinator
agent call for MineData task that should call in his turn the RequestApplyModel task
after deciding which Miner agent should do the apply task. Then the
RequestApplyModel task should request Miner agent for applying a model on data both
identified by the user. ShowModel task should show a model in the user interface in

response to user request.

Finally, LogErrors task records all errors.

4.4.2 Data Agent

The task specification diagram of the Data agent is shown in Figure 49.

/~ CoordinatorAgent. W ./ CollectData
(\ RequestData),k Listener \/ s/ >

e

\

PreprocessData >

Figure 49 Task Specification Diagram of Data Agent

116

The Listener task should pass the incoming message from Coordinator agent to
CollectData task, which will collect data from a data source and call PreprocessData
task. The data source address and other information related to data to be collected are
given by the Coordinator agent. If an error happens during the data collecting,
InformDataReady task should be called and the Coordinator should be informed of the

CIrotr.

The data understanding step of the data mining process is realized with the
PreprocessData task. Thus, this task should be implemented according to section
4.1.2Then InformDataReady should inform Coordinator agent that the collecting and

preprocessing of the data is completed.

44.3 Miner Agent

The task specification diagram of the Miner agent is shown in Figure 50.

/" CoordinatorAgent. O —
(RequestBuiIdModel>' ________ —y(Listerer
O — T
/” CoordinatorAgentRequest >y o p'// d N
\ ApplyModel Y, /\ B ("’"KBBW’E&& N
\\
N
N
7/~ CoordinatorAgent. ™ - —
L Listonor b 3 € InformMiningCompleted >

Figure 50 Task Specification Diagram of Miner Agent

117

Just like the Data agent, Miner agent too should process the incoming messages and call
for proper task according to the Coordinator agent request. If build model is requested
then BuildModel task should be scheduled for execution otherwise if apply a model is
requested then ApplyModel task should be scheduled. Once the mining task (build or
apply) is finished, the Coordinator agent should be informed. If an error occurs during
the mining task, it should be communicated to the Coordinator agent too. BuildModel

and ApplyModel tasks are implemented according to section 5.4

All the information related to the pruned input data and the setting parameters of the
mining tasks (i.e. build setting, algorithm setting, clustering setting, etc.) are

communicated by the Coordinator agent.

118

5. AGENT SOCIETY MODEL

This model will describe the social interactions and dependencies among the agents and
it involves the following phases:

¢ Ontology Description

e Roles Description

e Protocols Description

5.1 Ontology Description

In this step the knowledge ascribed to individual agents and their communications are
described using class diagrams and OCL (Object Constraint Language) constraints. The
Ontology Description is composed of

e Domain Ontology Description and

e Communication Ontology Description

5.1.1 Domain Ontology Description

The domain ontology tries to outline the relevant entities and their relationships and
rules within that domain using class diagrams. Thus, the agents can have the same
understanding of their domain. The ontology is described in terms of

e concepts,

predicates,

actions and

their relationships.

Concepts are categories, entities of the domain, predicates are assertions on the

properties of concepts and actions are what are performed in the domains.

119

The domain ontology description diagram of the DCS is shown in Figure 51 below.

el

oRaceiver : unspacified = Mining Objact Repository

SN

®<<act>> prapare()

Logl

>
catAtidbute

RatibuteType ; AtirbuIST ypo

“atiibute
s R
i ®«haCatagory : CategorySet *
un-NuumlAunbuu
Visualize
@Acior unspeciiiad = Miring Objeci Repasitory
.~ |@Recsiver : unspecified = Ussr
//
<eaction>

{
1
i
|
i
1
i
!
!
i
i
i
!
1
!
1
}
!
i
i

<cconcept>> vy <eaction>>
BuildTask <<concept>> oM T sk Execuls
&inpulModeiNams ; Sting AppiyTask % TR = Mininig Objact Repasitary
<econcepto " e : ? " AU T
ybuitapstaname gg:i?‘q Fmodeitiame - Sing cung iog ealDaratiame - Suing P Mining Object Repository v
'xcel
@driver : Sirng ®buildSettingName : String BapplyDataMap : java.ulil Map F<cact>> axacule() - p
Bdbutt : Sting L. w0atabass @ouildDataMap : Jave.utll Map P b iy
&description : Steing 1. @validationDataMap : java.util Map T e T
&4ype : DataSaurceType &validationDateNams : Sting i ~ -~
\ LT e
i A g pplySeiling xceplion
“r“‘:‘” \[\ v Al java uiil Map erorCode : Int
= o [®emomessage : Sting
ATtor : unspecilied = Operational Data marl <cconcept -
oRacsiver : unspacifisd = Mining Objeci Repositary Tas e Lr\
Boxacitiontandle : ExscutionHandle .
. 1 <<concept>>
<<act>> l0ad] MiningAlgorithm
\\") / T T &name - String
= — SheRnyscalData / W -
PhyscaiAtibute o «cetagen o moncapivn i , f -
¥ - algonthmT
®attibuleDataT ype : AtitbuteCata¥ype ! / e +theApp) &..u," s g vee
e vatinibute +physicalDale ®ur - jave.net.URI / 1
I —— . / ~ |
v _M)-Fh/w{’ulbata / L
- 1l -
<<conCepl> <<aclions> i o
Allibite Prapara "
®oname - Siring @Acior : unspacifisd = Mining Object Rapositol
&description : String

«cconcepts

<sconcept>
BuildSatings

@ miningFunction : MiningFundicn
[RpoutiierT seatment : OullierT reaiment
q

funclion - MiningFunclion

8

l

<<concepts>
PART Settings
Beigma : Moat
0 :int
::ouillenl
ipha : fioat
QLP:‘m

&M il

<<concepl>»

&

&dataType | AtinbuleDataType
rank: int

&imporanceVatus : double

Figure 51

<<concapiv>
mu-n_____,ﬂ'_)'{' ! ModelDetai i«,“ .
=1 @aigorithm : MiningAlgorithm el o 1
1{®uiiqueldentifier : Sting
@puildDuration : Integer 1
Becact>> visualiza singeT- 21
Trangom A +dataStatistics <cconcept>>
Bactor : unspacified = Mining Object Repository <t T AttributeStatisticsSst
®Recelver : unspacilied = Mining Object Repository / i &tims - jave.ull Dets
. e i
S<<act>> transom() gnatue i
1
<<concepto>
SignatureAtiribute
®attiouteType : AltnbuleTyps

Int
Queight : double

<<concepl>>
ChusteringMode!

Bstaiisiics : UnivarianieStatistics

,
S 'u%
_____ 1 1.0
.
<<concepl>> fvroor <<concept>>
PARTModel i Clusier
®outliercluster - Cluster Wiudand -
i@caniroidCoordinate | double
t

The following three standard UML relationships are used:

specified in the W3C RDF specifications [43].

Domain Ontology Description Diagram

example, in Figure 51 the BuildTask is a generalization of Task concept.

Generalization permits the “generalize” relationship between two entities. For

Association models a logical relationship between two entities and allows the

specification of the role of the involved entities. For example, the Execute action
should execute a Task concept.

Aggregation is used to construct sets where their values can be restricted as

120

Our domain is data mining and all data mining aspect of our system is designed using
JSR-73. Therefore, the domain ontology description is created using JDM specification.
Some other aspects of DM described in JDM (such as test task, statistics, regression,
classification, etc.) are not present in Figure 51, since they will not be used in this initial
implementation and they will not complexify further our domain ontology description

unnecessarily.

5.1.2 Communication Ontology Description

The communication ontology is about representing the social interactions between
agents. The class diagrams are used to show all agents and all their interactions (lines

connecting agents).

In the FIPA standards, a communication consists of speech acts [44] and is grouped in
several interaction protocols that define the sequence of expected messages. A
communication is drawn from an initiator to a participant and defined using three
elements: protocol, language and ontology. Ontology is taken from the domain ontology
description. Language should be Resource Description Framework (RDF) language [46]
and the protocol should be FIPA standard protocols [45].

The communication ontology description of Data Crawler System is given in Figure 52.

<<Agent>>
DataAgent

&data : PhysicalDataSet

<<Communication>>

+DataReader

RequestinputDataSet
¢Ontology : Load
¢Language : RDF
. ¢Protocol : FIPARequest

121

<<Communication>>

RequestBuildModel
¢Ontology : Execute
sLanguage : RDF

#Protocol : FIPARequest

RequestinputDataSet ™ -

7

T R’\EEDESGBUI_'{QMOdeI
+Manager 0 ST T
| Aangger T ~<Datatiner e
<=Agent>> - T MinerAgent
CoordinatorAgent +Modelinterpreter RequestApplyModel +DataMiner ®model : Model
SlogicaiData : LogicalData ~ = Maske_ Task °
Sdata : PhysicalDataset / &data : PhysicalDataSet
%
<<Communication>>
RequestApplyModel

«Ontology : Execute
¢language : RDF
¢Protocol : FIPARequest

Figure 52 Communication Ontology Description Diagram

The attributes section of each class symbolizing an agent represents the knowledge of
this agent and those knowledge elements are from Domain Ontology Description. For
example, Data agent is aware of a PhysicalDataSet concept but doesn’t know what a

model or a task object is.

A common use with the “Request” communicative act is to request that the receiver
performs another communicative act [45]. Therefore, all the communication should be in
form of Request-Inform (where Coordinator will Request to Data agent to prepare data

and will Request Miner agent to mine data, others will inform the result of their actions).

122

5.1.2.1 Communication between Coordinator and Data agents

Coordinator agent requests data agent to load a data set. The load action should have the
URI (Unified Resource Identifier) of the input data and other information such as login

name and password if required depending on the data source.

The “prepare” action also should be realized by the data agent even it is not explicitly
requested by the Coordinator agent, since it make no sense to load a data set and not

prune it.

The “inform” communicative act should contain the state of the data agent.

5.1.2.2 Communication between Coordinator agent and Miner agent

Coordinator agent requests miner agent to execute a specific task (apply or build task).
In order to execute apply or build task, miner agent will need several information. The
execute action should have the following information: the type of the task, the name of

pruned data (the physical data set) that is stored in MOR and the setting parameters.

The “inform” communicative act should contain the state of the miner agent.

5.2 Roles Description

The Role Description step involves of showing the roles played by the agents, the tasks,
the communication capabilities and inter-agent dependencies using class diagrams. All
the rules that regulate the agent society and the domain in which the agent exists are

introduced in this section.

The Role Description is shown in Figure 53. Each package represents an agent and each

class represents a role that an agent plays. Each role is composed of several tasks that

123

define its behavior. In Figure 53, the tasks, that are composing a role, are located in the

operation section of a role class diagram.

DataAgent

CoofdinatorAgent

DataReader | Manager §
(from DataAgent) . (from CoordinatorAgent)
e . RequestinputDataSet : BN
$ColtecttData() B _ | %nitializeSystem()
SListener() SMineData()
YRequestData()
; =" ®RequestBuildModel()
<<senice>> .1 SListener()
[ROLE CHANGE] T ‘HandleEmr()
cleanseData o i
P / 5
DataUnderstanding <=~ i 7 [ROLE GHANGE]
(from DataAgent) o //
RequestBuildModel | 7 L
®PreprocessData()
QinformDataReady() <<servic§>/> (ﬁohfnog:;!'r;:;g/e\;ee;t)
estimateModel p
e ' © SGuilistener()
. o i SRequestApplyModel()
P -~ %ShowModel()
MIW/ - <<r<‘=,/s‘9uree‘>'>' ‘ShowAppIyModelResuMs()
D applyResults T oo
DataMiner P <<respufce>>
(from MinerAgent) = . P ;
I B - medel RequestApplyModel
SListener() & N
*ApplyModel()
®BuildModel()
®InformMiningCompleted()
Figure 53 Roles Description Diagram

There are several relationships possible between agent’s roles. The connections between

roles of the same agent, using dashed line with the name [ROLE CHANGE], represent

changes of role. It signifies the dependency between roles of a same agent. The second

type of relationships specified by solid lines represents a conversation between roles of

different agents. Those conversation relationships are the same as in the Communication

Ontology Description diagram, therefore the same relationships name will be used to

124

keep a certain level of consistency (this consistency is ensured by the PASSI Toolkit).
There is also two more type of relationships expressing the following type of
dependency:
e Service dependency, represented by a dashed line with the <<service>> name,
indicates that a role depends on another to bring about a goal
e Resource dependency, represented by a dashed line with the <<resource>> name,

indicates that a role depends on another for the availability of an entity.

In Figure 53, coordinator agent has two roles: manager and model interpreter. The
manager role is about controlling the data mining process by requesting some actions to
be realized by other agents (data and miner agents) and taking some actions itself in
response to other agents reply to the coordinator agent requests. The model interpreter
role is about interacting with the user. If user want to see a model produced by the
system then show it to user or if user want to apply a model (produced by the system) to
a data set then ask a miner agent to apply the model. Once the apply task is finished by

the miner agent then show the apply results to the user.

Data agent too has two roles: data reader and data understanding. Data reader role
simply collects the data and the data understanding role will cleanse the raw data for

miner agent to mine it eventually.

Miner agent has only one role which is data miner. This role is about preparing the

cleansed data and building a model or applying a model on the prepared data.

The coordinator agent depends on data agent for the accomplishing the data
understanding step of the data mining process which is represented by the service
dependency cleanseData. Also, it depends on miner agent for the model estimation
which is represented by the service dependency estimateModel. The model

interpretation can be done only we have the data mining results such as models and/or

125

apply results, which are represented by the resource dependencies applyResults and

model.

5.3 Protocols Description

Protocol Description uses sequence diagrams to specify the set of rules of each
communication protocol based on speech-act performatives. In our case, FIPA standard

protocols [45] are used. Therefore, we don’t need to specify a custom protocol for DCS.

126

6. AGENT IMPLEMENTATION MODEL

This model describes the agent architecture in terms of classes and methods. There is
two level of abstraction: multi-agent level and single-agent level. This model is
composed of two phases as follow:

e Agent Structure Definition

e Agent Behavior Description

The structure of the agent-based system is described using conventional class diagrams
and the behavior of the agents (multi-agent level and single-agent level) is described

using activity diagrams and state diagrams.

6.1 Multi-Agent Structure Definition

The multi-agent structure definition (MASD) is shown in Figure 54. Each class
symbolizes an agent identified during the Agent Identification phase and actors are
reported to illustrate the agent’s interactions with their environment. Attributes section
of each class represents the knowledge (which are discussed during the communication
ontology description) of the corresponding agent. The operations section illustrates the

tasks of the agent.

Operational Mining Object

Data} Mart 2 Repository
TN
/
7 <<Agent>>
<<Agent>> MinerAgent
DataAgent omodel : Mode!
¢data : PhysicalDataSet otask : Task
¢data : LogicalData
SCollectData()
SListener() %BuildModel()
®preprocessData() Sappiyviodel()
%InformDataReady() *Listener()

N

*InformMiningCompleted()

\

\

\ v

7
/
/
/

<<Agent>>
CoordinatorAgent

¢data : PhysicalData

¢logicalData : LogicalData

SListener()
*RequestData()
SnitializeSystem()
*RequestBuildModel()
®RequestApplyModel()
*MineData()
*HandleErrors()
*ShowModel()

*ShowApplyModelResults()

A

User

Figure 54 Multi-Agent Structure Definition diagram

127

For example, there is no direct interaction between data agent and miner agent and the

coordinator agent communicates with both agents. Only the coordinator agent interacts

with the user. All agents has access to MOR: data and miner agents write down mining

objects that they produce such as pruned data, models, etc. and coordinator agent get

those objects to show them to the user. Only data agent has access to ODM to get raw

data.

6.2

Muiti-Agent Behavior Description

128

Multi-agent behavior description of DCS (shown in Figure 55, Figure 56 and Figure 57)

illustrates the whole system behavior. The diagram is cut into 3 figures because it didn’t

fit into one page.

La:

__newTes

Requasala }

i / yrL M
Deta coltectOata /l_

Coordinotorhgant.Ming
Oaia buildModat

~
AN

Figure 55

o CoBIaSAGER R
—% Daia. RequesiData }

.......................

/7 "CodrdinaiorAgent.Re

_ newTask RequestApply

{ quesDatamction beewnd—.

. CoominaloAgent RequeaBAld
Model RequesBuitdModel)
Coardinsforgent Reques

BuildMode!.action —.

Modsl)

e dalaultTrandlion

oy CRRRRIGTAGRLE™
sdenerLigenar /

,
/
datguifTransti

et el

CoorhnatorAgeiLETwener
T~-hapcteMine;
-

Multi-Agent Behavior Description Diagram

The activity diagram shows the flow of events among agent’s tasks. Each swimlane (a

column in the diagram) represents an agent’s task class (i.e. <<agent>>.<<task>>). The

activities inside the swimlanes represent the methods of the related class.

129

" CoominaioAgentrgie >, il ‘ |
(J { (enerSuilidan ; 7 DataAgent U™
/ \ — H { enertivensr

Enom HandieErors
S /
{ {
H H J— _ H
“"CoorainalorAgani Handie H Ay i
pme (™ (S
- et AN
/oGO GO ™, i
{ ener.mauesViswiodel 1]
-------------- e “"‘"*‘amt‘;r\
< GoordinetorAgent Handie ™\ { enecouauesApsiymodel
EroniogEnone) S
i / CosmginatarAgant \/ i
#tian _memgaithaDaabase e \ ShowNadet.action :
S R ~ DaieAgem Lo,) .
S— ,
(nardieRaquidbuis ’(|w-con-aw.>
N

Y.
~
st “fm N / M-Mnucoum

 EooriasiciAgen: ShawhpriyMods
Q IResuita ShowApplyModatReatls)

s GoorfinatarAgent. ShawAgply
MedsiReasite actian

Figure 56 Multi-Agent Behavior Description Diagram (cont.)

As specified by the UML standards, the transitions signify an event (e.g. an incoming

message or a task conclusion) or an invocation of methods.

130

T CaleAGeRLP PR \
Data.ProprocesDate) \

v ., ;
/" BalaAgent Praprocas ™ /unAgnnUn mDataRe
- { sDela.action o ady.InformDataReady \
__________ \ /
““““ d oni
L |\ eady.action)
----- — R iy “MinatAgent Lisanar Fandi “"MinerAgent InformMiningCom ~\
m— i sReguesBuildMode! (vlc Gompleted /l

~~~~~~~ Loy MinetAgenL Listerer handl
. %/ sRequestApplyModel _\,

> Tiimathgert ntormMiningGompleted s
andinformApplyMods|Complaisd

Figure 57 Multi-Agent Behavior Description Diagram (cont.)

The system begin is started by the Coordinator agent. It should first initialize the system

with InitializeSystem task. Once the initialization is finished it should start all the cyclic
tasks (i.e. all the tasks that will execute forever during lifecycle of the agent), which are

MineData, Listener and GuilListener.

The MineData task should first execute collectData() method which should create the

RequestData task that will request that data agent prepare a data set for mining. Once



131

the data agent’s Listener task receive the request, it should be processed by the
handleRequestData() method and it should create CollectData task. The CollectData task
should try to get the raw data from the data source given by the coordinator agent, if the
raw data is collected successfully then the PreprocessData task is created and the
InformDataReady task is created to inform the coordinator agent that the data collecting
and preprocessing is accomplished successfully otherwise the InformDataReady task

should inform the failure.

Once the Listener task of the coordinator receives the message of the data agent
confirming that data understanding step is finished, it should process the message with
the handleDataAgentMsg() method. If an error occurred during the data understanding
step the HandleErrors task is created to log the error otherwise the MineData task

proceed with the data mining process.

After the end of the data understanding step, the MineData task should proceed with the
estimate model step of the data mining process by invoking buildModel() method to
create a model. This method should call RequestBuildModel task that should request
miner agent to build a model and save it to the MOR. When the Listener task of the
miner agent receive the request message, it should process it with the
handleRequestBuildModel() method. Afterward, the BuildModel task is invoked to build
the model and when the model is build the coordinator agent should be informed with

the InformMiningComleted task using sendInformBuildModelCompleted() method.

When the Listener task of the coordinator agent receive the message from the miner
agent informing that the build model task is finished, it should process the message with
the handleMinerAgentMsg(). If any error occurred during the build model process it
should be logged by the HandleErrors task. Otherwise, data agent should be requested to
collect another set of data and when the data is collected miner agent should be

requested to continue to build the model with new data set and so forth.



132

User requests are handled by the GuiListener task. The request to apply a model to a set
of data that is specified by the user is implemented by the requestApplyModel() method
and the request by the user to view a model is implemented by the requestViewModel()
method. The requestViewModel() method should execute the ShowModel task to get the
model detailed information from MOR and to show the model on GUI. The
requestApplyModel() method should inform the MineData task that a apply model task
should be executed. Then the applyModel() method should be invoked and it will add
RequestApplyModel task to the task execution scheduler. The RequestApplyModel task
should send a message to the miner agent to request him to apply a model. The message
is received by the Listener task of the miner agent and processed by the
handleRequestApplyModel() method. This method in its turn should call ApplyModel
task and when the execution of the task is finished it should inform the coordinator agent
by sending him a message. The nmessage is send with the
sendInformApplyModelCompleted() method of the InformMiningCompleted task. The
message is received by the Listener task of the coordinator agent and processed by the
handleMinerAgentMsg() method. If a error occurred during the apply model task it
should be logged with the logErrors() method of the HandleError task otherwise the
apply model results are gotten from MOR and shown on GUI with the
ShowApplyModelResults task. Then, the MineData task is informed that the apply
model task is completed, so it can use the available miner agent for another build model

task.

6.3 Single-Agent Structure Definition

In this section, the structure of each agent is described. The structure is composed of the
main agent class and the task classes. The main agent class and the task classes are

inherited from the agent class and task class of the selected agent platform, which is in



133

our case JADE. In JADE, the tasks are represented by the “behaviour” class. The classes

defined here correspond to the implementation of the system.

In our system, all tasks are inherited from two types of behaviour
jade.core.behaviours.OneShotBehaviour and jade.core.behaviours.CyclicBehaviour
classes. Both are extension of jade.core.behaviours.Behaviour class. All tasks that
execute only once should be extended from OneShotBehaviour class and the tasks that
must be executed forever (e.g. reactive tasks such the Listener task of the agents that
wait until a message is received and take action according to the message) should be

extended from CyclicBehaviour.

6.3.1 Coordinator Agent

Coordinator agent structure definition is shown in Figure 58.

CyclicBehaviour
(f(';:m%né) (from JADE)
’ <<Task>> <<Task>>
WJ Listener MineData
< ent>> e ot
CoordinatorAgent SListener() *MineData()
®m_codec : Codec Saction() ¥action()
@m_ontology : Ontology PhandieMinerAgentMsg() ScollectData()
m_dr';sf:lg en E::S‘?L\‘fon handieDataagentMsg() ;gzmlnﬁu)
Gm_minerAgents : AID] 0
Sload : Load <<Taskon _<<Task>>
Rydatasource : DataSource ShowApplyModeiResults InitializeSystem
&physicaldataset : PhysicalDataSet p—
Sphysicalattribute : PhysicatAttribute Saction) s OneStotBenavour | . Saction()
P4 ecute : Execute *ShowApplyModelResults() (from JADE) i zoadlnputoatalnfo()
task : Task loadResourcesinfo()
- VAV #loadDataMininginfo()
Psetup) <«Task>> | .~ a e ’ \-‘,\
FtakeDown() ShowModel e ~ «<Task>>
FPonGuiEvent() e / HandieErors
FgetNumberOModel() N S /
Models() action() S
S *ShowModel() L / Saction()
- <<Taske> :IDEE"UN()
eTaskon RequestData \ HandleEmors()
RequestBuildModel vactond) Tastos
action R Oata() RequestApplyMode
“SRequestBuildModel() Saction()
SRequestApplyModel()

Figure 58 Coordinator Agent Structure Definition



134

As we mentioned earlier, coordinator agent should interact with the user and JADE
platform support agents with a graphical user interface. Unlike the other two agents, the
CoordinatorAgent class should inherit from jade.core.GuiAgent, which is a GUI enabled

agent class and it is an extension of the jade.core.Agent class.

The coordinator agent should have two tasks that execute forever: Listener and
MineData. Listener task should wait for other agent’s message and should trigger proper
task in reponse to the message. MineData should execute the data mining process

incrementally by requesting other agents to do the work.

Also there is one time executed tasks. For example the InitializeSystem should be
executed once when the system starts. The request tasks e.g. RequestData,
RequestBuildModel and RequestApplyModel are executed when a request is made to
other agents. The show tasks e.g. ShowModel, ShowApplyModelResults are executed
when the user want to see data mining objects. The HandleErrors should take action

when an error occurs.

6.3.2 Data Agent

Data agent structure definition is shown in Figure 59.



135

OneShotBehaviour |
Agent (from JADE) CyclicBehaviour
{from JADE)
/ 3\
— 4
A | A
<<Agent>> !
DataAgent <<Tade> Il <<Tasge>
&logicaldata : LogicalData CollectData l PreprocessData
&logicalattribute : LogicalAttribute o P e
&m_state : int action() f, action(} <<Tade>
&m_dataSet : PhysicalDataSet SCollectData() ] ’PrepfocessDatag) Listener
&m_prunedDataSet : LogicalAttribute handleCSV() | SdentifyinappropriateAttr()
&m_inappropriateAttributes : int[] ®handleDatabase() 1‘ ¥SelectMostAppropriateAttr() *action()
&load : Load *handleARFF() i | ®SawePrunedData() *handleRawData()
&datasource : DataSource i
&physicaldataset : PhysicalDataSet <<Tage>
&physicalattribute : PhysicalAttribute InformDataReady
StakeDown() ®action()
setup() ®informDataReady

Figure 59 Data Agent Structure Definition

The data agent has four tasks. As for the coordinator agent, the Listener task should wait
for messages of the coordinator agents and process them. CollectData should get the
data from the specified data source. PreprocessData should perform the data
understanding step of the data mining process. InformDataReady should send a message

to Coordinator agent that it finished with data loading and preparing.

6.3.3 Miner Agent

Miner agent structure definition is shown in Figure 60.



136

Agent OneShotBehaviour CyclicBehaviour
(from JADE) (from JADE) {from JADE)
7 A
A 7 [‘A \:\ Les
/ AN
<<Agent>> <<Tase> <<Tasie>
MinerAgent ApplyModel BuildModel
&coordinatorAgent : AID
@m_codec : Codec ®ApplyModel() *BuildModel()
2m_ontology : Ontology Sgction() @action()
&m_state : int createApplyTask() &createBuildTask()
logicalattribute : LogicalAttribute PexecuteApply Task() &executeBuildTask()
&task : Task
®execute : Execute
<<Task>
StakeDown() InformMiningCompleted <<Tasie>
&setup() Listener
@initFactories() SinformMiningCompleted()
®action() SListener()
&sendinformBuildModelCompleted() ®action()
& sendinformApply ModelCompletedy() &handleRequestBuildMode!()
&handleRequestApplyModel()

Figure 60 Miner Agent Structure Definition

The miner agent too should have four tasks. Listener task for the incoming messages,
BuildModel to build a model, ApplyModel to apply a model on user specified data and
InformMiningCompleted to send a message to the coordinator agent that the current

mining task (build task or apply task) is accomplished.

6.4 Single-Agent Behavior Description

This section involves the implementation of methods introduced in the previous section
(Single-Agent Structure Definition). PASSI don’t limit us in describing the algorithm to
implement the method. Flow charts, state diagrams as well as semi-formal text

descriptions can be used to describe methods implementation.

The implementation details of the agents are in the following subsections.



137

6.4.1 Coordinator Agent Main Class

A JADE agent is created by extending jade.core.Agent class and implementing the
setup() method. In the setup() method, all the agent initializations should be done and
the tasks should be scheduled for execution. The initializations are typically setting of
the language, the ontology, and the registration with the DF agent (Directory Facilitator

is a special agent that provides a Yellow Page service) and other internal variables.

The coordinator agent state diagram s shown in Figure 61.

{

Waitforother <~ Mine )
agents

T hitialize |
; i\ ..................... ‘
/ \ .

A /
Ny /

| Show models/mining |
| results !

J

Figure 61 Coordinator agent state diagram

This state diagram doesn’t deal with the communication aspect of the coordinator agent
with other agents, rather it illustrates only the actions that the coordinator agent will

accomplish. All the communication aspects of the agents are described in the section
512



138

After the initialization of the agent and the system, the data mining process should begin
by scheduling the MineData task. The Listener and GuiListener (e.g. GuiListener is
already implemented within GuiAgent, therefore it is started automatically) tasks should
also be started. Therefore, the coordinator agent should be waiting for data and miner
agents’ messages and the GUI interface should be started for user requests. Besides the
data mining engine (DME) and mining object repository (MOR), which are used for the
data mining several data structures are used to keep track of the mining process. Those

data structure are detailed in subsection “6.4.1.1 Tracking data structures”.

Basically, the coordinator agents should request (by sending a message) data agent to
load and to prepare some raw data and save it into MOR and inform it back. This is
accomplished by the RequestData task. When coordinator agent receives the data agent
message informing him that the raw data is cleansed and saved into MOR successfully,
it should send data agent another message containing information for another cleansing
raw data job. The coordinator agent should also request a miner agent to build a model
using the cleansed data and save it to MOR. The request for building a model is
accomplished by the RequestBuildModel task. When coordinator agent receives a
message from the miner agent informing him that he finished its job, the coordinator
agent should send him another job and so forth. All messages send by other agents (data

and miner agents) are handled by the Listener task

The user interacts with the coordinator agent through the GUI using jade.gui.GuiEvent.
When the GuiListener receives an APPLY EVENT event, it should update the apply
tracking data structure and schedule the MineData task to apply the model on the raw
data that user specified. The apply model is realized by miner agent; therefore the
coordinator agent sends a message to the miner using RequestApplyModel task for that
purpose. Once the miner agent is finished with the apply model job, it sends back a
message to the coordinator agent then the coordinator agent shows the results of the

apply model on the GUI with the ShowApplyModelResults task. If coordinator agent



139

receives a SHOW MODEL EVENT event, it simply shows the model using
ShowModel task.

Whenever an error occurs while an agent realize its requested job, it should inform it to
the coordinator agent and the coordinator agent should log it with the HandleErrors task.

Further details on agent’s tasks are given in section 6.4.2.

The coordinator agent should be in only one of the states in Table VII.

Table VII

Coordinator agent's states

Description

The DCS system is active. v

The user requested to stop DCS therefore the data mining process

should stop and system shutdown process should begin.

6.4.1.1 Tracking data structures

The coordinator agent should use several data structure to carry out the data mining

process. There should be four data structures.

Build task tracking data structure

Apply task tracking data structure

Data agents tracking table

Miner agent tracking table



140

Build and apply tracking data structures should be saved in text files and when the

system is restarted, it should update its data structures according to those files.

Table VIII

Build task tracking data structure

Data Source r | Pruned:Data.

| BuildModel = -

b ' ’P‘ART Fre vou

del . jsité source. | Setting | ees

[t | prmed

pe. index ,indéx (yesio | de

| (option | (optio

L 1 (yes/ : rylmﬁ)e’f: : (yes/ model | hame
g : a1) . K &

naly

- {mno) name

Build task tracking data structure is composed of three parts: data source, pruned data
and build model. Data source section hold information related to data source such as the
name, the URL, the type, etc. Pruned data section is used to know if the data is loaded
and cleansed by the data agent. Pruned option informs us that the raw data is ready for
mining and pruned data name is the name of the pruned data in MOR. Build model
section is used to keep track of the model building. Therefore, in build model section for
each type of model that DCS system can build there should be five elements. For
example, in Table VIII for PART algorithm, build option is used to know if the model is
build or not build, model name is the name of the PART model saved in MOR, suite
option informs us if the model that is build is continuation of another model or it is a
new build (e.g. we can build a model with one data and continue building the same
model with another data or build a new model for every data). If the current model is the
continuation of another model, the source model name is the name of the model in MOR
from which the current model is build. Setting name is name of model setting object in
MOR.



141

Table IX
Apply task tracking data structure

Data Source

Apply Model

T

apply | Source | Sefting | Setung | Output

“(yes/ | model- | name parame: | name

ters

The apply task has priority on build task. The apply task tracking data structures is
updated every time the user request an apply task from the GUI It is composed of three
sections where the first two sections are similar to the Build task tracking data structure.
In the apply model section, the apply option informs us if the apply is done. Source
model name is the input model. The setting name is the name of the apply setting and
the setting parameters subsection contains all apply setting parameters. The output name

is the name of the output data.

Table X

Model setting data structure

. Nl;);"parameter's« -
15

' Parameters
P1;P2;...

The structure in Table X is used to store the model setting parameters. Every time, miner

agent builds a model it should use the setting information stored in this structure.



142

Table XI
Data agents tracking table

Available (yes/no)

Table XII

Miner agent tracking table

Available (yes/no)

Table XI and Table XII are used to know which agent is available for a data mining job.
Those tables are initialized by the InitializeSystem task and updated every time
coordinator agent requests a job to a data or miner agent and those agents finish their

job.

6.4.1.2 GUI Interface

When implementing a GUIL, which has its own thread to handle events generated by the
user with a multi agent system where each agent has their own execution thread can be
difficult to do. Therefore, JADE provides a mechanism to manage the user interactions
with the multi agent system, for that reason JADE includes GUI integrated agent class
jade.gui.GuiAgent. This mechanism is based on event passing (i.e. GUI and agent

communicate with each other by passing events).

The GUI is implemented by extending javax.Swing.JFrame class. In this document, we
won’t get into detail how a GUI works or implemented in Java programming language

instead the interaction between agent and GUI will be described.



143

A GUI has a built-in mechanism to handle event generated every time a user interact
with GUI by pressing a button or entering a value. This mechanism is implemented by
the actionPerformed() method of an ActionListener object. Every time a component of
the GUI registered with the ActionListener object is invoked, an ActionEvent is
generated and the actionPerformed() method is called to handle the ActionEvent. The

agent also can interact with GUI using this mechanism.

Therefore, GUI interface should implement ActionListener object and each component
of DCS’s GUI (DcsGui) should be registered using addActionListener() method. The

implementation details of the actionPerformed() method are given in section 6.4.1.2.1.

The mechanism described above allows a user or an agent to interact with the GUI but
what we also need is the inverse: the GUI to interact with the agent. To do that JADE
provided the abstract class GuiAgent. This class has two methods that allow a GUI to
communicate to an agent program: postGuiEvent() and onGuiEvent(). The
postGuiEvent() method is used to send an event (GuiEvent object) by GUI to the agent

and onGuiEvent() method handles the events received by the agent.

Therefore, the coordinator agent which has GUI should extend the GuiAgent class. In
the GUI implementation, GuiEvent object is created and posted to the agent with the
postGuiEvent() method. The onGuiEvent() method should be implemented according to
the section 6.4.1.2.2

Further details on GUI enabled agent implementation with JADE platform can be found
in [47].

The possible events in our implementation are described in Table XIII:



144

Table XIII
GUI Events

- Event - Deseription
QUIT EVENT
"REFRESH EVENT | This event is triggered fo refresh the list of model produced by DCS
e o | shown on GUL

| This event is triggered to end the DCS.

| This event is triggered to show a model selected from the list of model

shown on GUI.

' APPLY_EVENT | This event is triggered to apply a model selected from the list of model

| shown on GUI on a data set identified on the user interface.

L

6.4.1.2.1 actionPerformed()

This method is member of DcsGui object and should have an ActionEvent object as
parameter. It is implemented as several overlapping if-else condition (or a switch) where
each “if” condition verify the event type and process the corresponding event. For each
ActionEvent, and GuiEvent is send to the agent. A GuiEvent object has two mandatory
attributes and an optional list of parameters. The mandatory attributes are the source of

the event and the type of the event.

When the actionPerformed() method is invoked by QUIT EVENT or
REFRESH _EVENT ActionEvent (i.e. generated when the user click on “quit” button or
on “refresh” button) their corresponding GuiEvents are created and posted with the

postGuiEvent().

With the SHOW_MODEL_EVENT ActionEvent, the actionPerformed() method should
create a SHOW_MODEL_EVENT GuiEvent and add the name of the model selected by

the user as optional parameter to the GuiEvent before posting it.



145

With the APPLY EVENT ActionEvent, the actionPerformed() method should create an
APPLY_EVENT GuiEvent and add the following optional parameters:

input model,
input data

apply setting parameters (i.e. output data specifications) and
output data name.

Then the GuiEvent is posted.

6.4.1.2.2 onGuiEvent()

This method is member of the coordinator agent and it process the GuiEvent received by

this agent. The algorithm of onGuiEvent() method is shown in Algorithm 8.

event = QUIT_EVENT X event = APPLY_EVENT

f 1
E %HOW_MODEL_EVENT

v event=REFRESH_EVENT

; Extract apply task information
Set coordinator agents ™\
Extract model name K from event's parameters
( status to DM_STOPPED / (\ from-event's parameters>

<Update apply tracking

’ data structure

g -~ Proceed with data \
mining process /

Algorithm 8 Coordinator::onGuiEvent() method’s algorithm



146

If the event is QUIT EVENT then the coordinator agent state is changed to
DM_STOPPED. If the event is REFRESH_EVENT then the list of model shown on
GUI is refreshed by the RefreshModelList task. If the event is
SHOW_MODEL EVENT then the name of the selected model is retrieved from the
message and it is shown on GUI using ShowModel task. If the event is APPLY EVENT
then all optional parameters are extracted and the apply task tracking data structure is

updated and we proceed with the data mining process by calling the MineData task.

6.4.2 Coordinator Agent Tasks

The coordinator agent has the following ten tasks:

InitializeSystem task

Listener task

MineData task

RequestData task
RequestBuildModel task
RequestApplyModel task
HandleErrors task
ShowModel task
ShowApplyModelResults task

In JADE, each task implementation is an extension of Behaviour class and it must
implement the action() method. This method defines the operations that the task

performs when it is scheduled for execution.

6.4.2.1 InmitializeSystem task

This task should create and initialize the tracking data structures of the coordinator
agent. All the information that those structures contains are loaded from text files. This

task consists of one method:. action().



147

6.4.2.1.1 action()

The algorithm of InitializeSystem task’s action() method is shown in Algorithm 9.

" Load data mining ",
i tracking information /.*

/ Load agents id
from DF agent

) Createlu;)date the '
\_ tracking data structure

/Start data mining ",
' process ‘

A
{
@

Algorithm 9  Coordinator::InitializeSystem::action() method's algorithm

First build task tracking data structure is created and initialized by loading the
information from a text file. Afterward the data agent tracking table and miner agent
tracking table are created and updated, by getting the AID (JADE agent identifier) of all
miner and data agents available on the platform, registered with the DF. Then the

MineData task is scheduled for execution.

6.4.2.2 Listener task

This task receives the messages from data and miner agents and processes it. The

received message is “inform” communicative act and its content is described in section
5.1.2.



148

This task consists of three methods:

e action()
¢ handleDataAgentMsg()
¢ handleMinerAgentMsg()

6.4.2.2.1 action()

The algorithm of Listener task’s action() method is shown in Algorithm 10.

N

\
/—._—\
/- Receive \
\_ Message /
N /

sender==dataagent ¥ sender==miner agent
i .
‘\é/ \//
,// Process Data \\ // Process Miner
{ ) \ AgentMessage
N Agent Message y . g g Y,
e o
ANy e
. L
\\\ \\ // ,//,
™~ P \\_/’/
@

Algorithm 10 Coordinator::Listener::action() method's algorithm

This method should be implemented as an infinite loop (as well as the Listener’s task of
other agents). First, the received message’s content is extracted. If the sender is a data
agent then the message is processed by the “process data agent message” activity and if
the sender is miner agent then the message is processed by the “process miner agent
message” activity. The “process data agent message” activity is achieved by the

handleDafaAgentMsg() method and the “process miner agent message” activity is



149

achieved by the handleMinerAgentMsg () method both described in the following
sections 6.4.2.2.2 and 6.4.2.2.3.

6.4.2.2.2 handleDataAgentMsg()

The algorithm of Listener task’s handleDataAgentMsg() method is shown in Algorithm
11.

\\\%/
/~ Setagent status \
\ available ).

load action successful /J\ error during load action

.

/ \i/

Update data mining Tog Eror ™
\ tracking data structure /) \ )
\\ P /,,/————————/
\X\ d

7 Proceed with data
! mining process /
N 9p /

e’

i
i
|
Y
\
s
—

Algorithm 11 Coordinator::Listener::handleDataAgentMsg method's algorithm

First the data agent status is set to available by setting the available option to “yes” in
Table X1
Data agents tracking table. If the load action is completed properly then the pruned



150

option in pruned data section of the corresponding tracking data structure (i.e. if the data

is for a build task then the build task tracking data structure is updated) is set to “yes”. If
the load action isn’t accomplished properly then HandleError task is scheduled to log the

error. Then, we proceed with the data mining process using the MineData task.

6.4.2.2.3 handleMinerAgentMsg()

The algorithm of Listener task’s handleMinerAgentMsg() method is shown in Algorithm

12.

'

/Setagent status N\
J

} available

N

\,

error happened /[ og Error N

executed task successful/,../’z .
; e \ . /
| S
task == apply //‘)i(\\ task == build ,l"
A\ N/ /:
/~ Update apply tracking \‘ {/" Update data mining /”
\ data structure / \_ tracking data structure / /’
- o 7
v / /
/” Show apply ™ / /
\_ resuts / T
S \\\/ / ————————————————
N\ Y
hdata ™

7/ Proceed wit
\_ ‘mining process /

Algorithm 12 Coordinator::Listener::handleMinerAgentMsg() method's algorithm



151

First the miner agent status is set to available by setting the available option to “yes” in
Table XII

Miner agent tracking table. If the execute action is completed properly and the executed
task is an apply task then the apply option in apply model section of the apply task
tracking data structure is set to “yes” and ShowApplyModelResults task is scheduled to
show the apply results. If the build task is executed successfully then the build option in
build model section of the build task tracking data structure is set to “yes”. If an error
occurred during the execute task then HandleError task is scheduled to log the error.

Then, we proceed with the data mining process using the MineData task.

6.4.2.3 MineData task

The data mining process is realized by this task. This task should keep track of all data
mining activities realized by other agents (data/miner agents). This task consists of one
main method: action().

6.4.2.3.1 action()

The algorithm of MineData task’s action() method is shown in Algorithm 13.



/~ Waitforachangein

\_ tracking data structures /

152

available "data a&ent" && "raw data"
]

Ay
Ny

otherwise v
/" Requestload/prepare g

. e

available ”mineragefnt" && "pruned data”

P

otherwise

pruned data is fpr an "apply task” e

’l 4 ,//,/'/
/ Request execute Request execute prtd
build task ) apply task Y,

N A 7

e ; ”//,’,_ -
,,,,,,

{ 7
I ll’ 4,///"/
@

state == DM_STOPPED -~

"raw data” is for "apply task’/” Select the raw data ™\ / (\\ data structure

\ foran apply task /)
,,,,,, .

-
o

/all data and miner agents are availlable
/

/ /" Backup all fracking

R

/ Stop GUlinterface
/
i
d /Dmcvm e
. elote Coordinator
Oﬂfr e (\ agent >

e
L

-

-
o
-

Algorithm 13 Coordinator::MineData:action() method's algorithm

This method should be implemented as an infinite loop called (unblocked) every time

there is a change in the tracking data structures described in section 6.4.1.1Tracking data

structures. If the state of the coordinator agent is DM_STOPPED then it should initiate

the system stopping activities which are backing up all the tracking data structure by

saving them into text files, stopping the GUI and deleting the coordinator agent.

Otherwise, it should proceed with the data mining activities.

The apply task has priority over build task to improve the user responsiveness.

Therefore, if there is available data agent and raw data to be cleansed, the raw data for

an apply task should be selected first. Once the raw data that will be prepared by the data

agent is known, the data agent should be requested to load and prepare the raw data.



153

This action is accomplished by the RequestData task. This task should also update the

Data agents tracking table and the corresponding mining task tracking data structure. If
there is an available miner agent and pruned data then a mining task should be requested
using RequestApplyModel or RequestBuildModel. Once again, if there are ‘several
pruned data available, the pruned data related to an apply task should have priority over

pruned data for a build task.

With the build task, if a model to be built is continuation of another model, then before
requesting a build model, the source model must be ready even if the cleansed data is

available.

When there is more than one available data or miner agent then the first available agent

from the agent tracking table should be selected.

6.4.2.4 RequestData task

This task defines all the operations to send a request message to a data agent to load and
prepare a set of raw data for mining later. This task is scheduled from the MineData

task. This task consists of one method: action().
6.4.2.4.1 action()

The algorithm of RequestData task’s action() method is shown in Algorithm 14.



154

/ Prepare the content ™,
’\\ ofthe message |

.

\\E,i

/Fill the content of ™\
\  themessage /

/" Sendthe ™\
message  /

Algorithm 14 Coordinator::RequestData:action() method's algorithm

The message is prepared by setting the following parameters of the message:

sender: the AID (agent identifier) of the coordinator agent
receiver: the AID of the data agent

language: RDF is used in our implementation

ontology: DCSOntology as described in section 5.1.1.

o o o o

DCSOntology is implemented by extending the jade.content.onto.Ontology according to
Domain Ontology Description Diagram. In [48], it gives some information on how to

use and ontology.

Then, the content of the message is filled with the “load” action as defined in section
5.1.1.



155

6.4.2.5 RequestBuildModel task

This task defines all the operations to send a request message to a miner agent to build a
model from a pruned data set. This task is scheduled from the MineData task. This task
consists of one method: action().

6.4.2.5.1 action()

The algorithm of RequestBuildModel task’s action() method is shown in Algorithm 15.

/" Prepare the content ™
{

\ of the message )

/Fillthe content of ™\
\ the message

i
i
RE

Y
/" Sendthe ™\
_ message

S
®

Algorithm 15 Coordinator::RequestBuildModel:action() method's algorithm

The message is prepared by setting the following parameters of the message:

sender: the AID (agent identifier) of the coordinator agent
receiver: the AID of the miner agent

language: RDF is used in our implementation

ontology: DCSOntology as described in section 5.1.1.



156

Then, the content of the message is filled with the “execution” action with a “build task”

as defined in section 5.1.41.

6.4.2.6 RequestApplyModel task

This task defines all the operationé to send a request message to a miner agent to apply a
model on a pruned data set. This task is scheduled from the MineData task. This task

consists of one method: action().
6.4.2.6.1 action()

The algorithm of RequestApplyModel task’s action() method is shown in Algorithm 16.

v
/" Prepare the content ™
{ 1
\ ofthe message

/" Fill the content of ™,

the - message /ﬁ
N I

/ Sendthe \3
\_ message /

Algorithm 16 Coordinator::RequestApplyModel::action() method’s algorithm

The message is prepared by setting the following parameters of the message:

¢ sender: the AID (agent identifier) of the coordinator agent
e receiver: the AID of the miner agent
e language: RDF is used in our implementation



157

e ontology: DCSOntology as described in section 5.1.1.

Then, the content of the message is filled with the “execution” action with a “apply task”

as defined in section 5.1.1.

6.4.2.7 HandleErrors task

This task should handle the errors that happen during the data mining process. For now,
the only action taken by this task is to log errors into a text file. The format of the

logging is shown in Figure 62.

Error

Figure 62 Error logging format

This task is scheduled for execution from the Listener task and it consists of one method:

action().

6.4.2.8 ShowModel task

This task shows the model that is selected by the user on GUI First, the selected model
is retrieved from MOR and passed to the GUI. Then, it is shown on the GUI. This task is

triggered from the GUI and it consists of one method: action().

6.4.2.9 ShowApplyModelResults task

This task shows the apply task results that was requested by the user from GUIL When

the miner agent that executes the apply task has finished, it should send a message the



158

coordinator agent confirming the end of it apply task job. Then, the apply results are
retrieved from MOR by the coordinator agent and passed to the GUI. After that, they are
shown on the GUI. This task is triggered from the coordinator agent’s Listener task and

it consists of one method: action().

6.4.2.10 RefreshModelList task

This task should refresh the list of models shown on GUI. First, the name of all available
models are-retrieved from MOR and passed to the GUI. Then, they are shown on the
GUIL. This task is triggered from the GUI and it consists of one method: action().

6.4.3 Data Agent Main Class

The data agent state diagram is shown in Figure 63.

' ™
. Collect |
Data /_ N
T / \
.\\\ [’ \“‘:/
\l/ \\'> ............. bl \\I/ ...................
v [ Wait _ Created
Preprocess | } Eadhstetel ®
Data | . '

-
! o
-~

i
‘\L/ P

{ Save Pruned J

Data

Figure 63 Data agent state diagram

After the initialization of the agent, the Listener task should be scheduled and the agent

should be waiting for coordinator agent’s message. When the message is received and



159

extracted, the raw data shoﬁld be collected with the CollectData task from the data
source and cleansed with the PreprocessData task. Then, the cleansed data should be
saved in MOR and the data agent should pass to waiting mode after informing the
coordinator agent the end of its job. Further details on agent’s tasks are given in the

section 6.4.4.

The data agent should be in only one of the states in Table XIV.

Table XIV

Data agent states

| Description

1 The load and prepare ac‘:ﬁbns(;\re\' ﬁmshed aﬁd \\da’ta is saved

{ An error occurred during the data collecting task.

An error occurred during the data preprocessing task

| An error occurred during the data saving

The load and prepare actions are not finished

6.4.4 Data Agent Tasks

The data agent has the following four tasks: .

Listener task
CollectData task
PreprocessData task
InformDataReady task

6.4.4.1 Listener task

This task receives the messages from coordinator agent and processes it. The received
message 1s “request” communicative act and its content is a “load” action taken from

domain ontology.



160

This task consists of two methods:

e action()
e handleRawData()

6.4.4.1.1 action()

The algorithm of Listener task’s action() method is shown in Algorithm 17.

Receive Message The message should be ™

from Coordinator a Request type and the
] only message content
will be a "load" action.
v/ Eventually, other type of
> action or content could

N rocessed t00.
message is a "load” action be p

\
\

-

/Process load ™
\.__action /

7

Algorithm 17 Data::Listener:action() method's algorithm

First, the message received from the coordinator agent content is extracted. If the content
is a load action, then “process load action” activity is realized by the handleRawData()

method described in section 6.4.4.1.2.

6.4.4.1.2 handleRawData()



161

The algorithm of Listener task’s hadleRawData() method is shown in Algorithm 18.

|

1

,
N
\/

/~ Exfractmessage \
\ content )

,«/

\/
/ Getrawdata
‘-\ information

0 This is accomplished by the A\
) v - "CollectData" behaviour.
[ Comecttothe database _|Here, "CollectData"
\_ &gettherawdata 7 behaviour will be added to
) | ’ the execution scheduler
(x\]
N

Algorithm 18 Data::Listener::handleRawData() method’s algorithm

This method should extract the content of the received message and get the information
on the raw data. The information is the location of the raw data, the format (i.e. csv file
or database or any other format), etc. and it is represented by the “DataSource” concept
as shown in the domain ontology description. Then CollectData task is scheduled for

execution to collect the data.

6.4.4.2 CollectData task

This task should gather the raw data using the data source information. This task consists

of one method: action().



162

6.4.4.2.1 action()

The algorithm of CollectData task’s action() method is shown in Algorithm 19.

W

/ ‘getdata source ™\
\type and location /

¥ if data source type is a database

e
if data source typeis CSV T |
if data source type is ARFF
/ N4 /
Ve T ————

/~ read data from / read data from ./~ read data from > This is accomplished b

( , plished by

\_ Csvile ) \_ ARFFfile / |\ Database the "PreprocessData"

T — T behaviour.
\if - - -
o X . P
_________ S-S -
/” informthe & - =" preprocess \
\__emr / \ data
/ \\\ ////’
/ \\\l,/"\/f['/
/’ @1

This is accomplished
by the ;
"InformDataReady” i
behaviour with the !
corresponding error. ;

Algorithm 19 Data::CollectData::action() method’s algorithm

The format and the location of the raw data are obtained from the data source. If the raw
data is read properly then the data should be cleansed using the PreprocessData task
otherwise it should finish it processing and pass in wait mode after sending a message to

coordinator agent using InformDataReady task. The message should be an “inform”



163

communicative act and it should contain the type of error that occurred as specified in

section 5.1.2.1.

6.4.4.3 PreprocessData task

This task cleanses the data according to the section 4.1.2Data understanding. This task

consists of one method: action().
6.4.4.3.1 action()

The algorithm of PreprocessData task’s action() method is shown in Algorithm 20.

Identify inappropriate ™\

{ . )
\ attributes J

/" Select most appropriate ™\

j

‘\ attributes Y,

This is accomplished by
the "InformDataReady”"
behaviour. Fan error

/" Inform the end of N\ _ - — | occurs, it will be informed.
\ the "load" action ;

Algorithm 20 Data::PreprocessData::action() method’s algorithm



164

“Identify inappropriate attributes” and “Select most appropriate attributes” activities are
described in detail in sections 4.1.2.1and 4.1.2.2respectively. The pruned data should be
saved in MOR. The name of the pruned data is given by the coordinator agent and it is
contained in the initial message. The pruned data should be a PysicalDataSet concept
(see domain ontology description diagram). The end of the processing should be

informed to coordinator agent using InformDataReady task.

6.4.44 InformDataReady task

InformDataReady task should send a message to coordinator agent informing the end of

data agent processing. This task consists of one method: action().
6.4.4.4.1 action()

The algorithm of Listener task’s action() method is shown in Algorithm 21.

¢

a -set the sender

V/ -set the receiver
/ Pre?ire the content \— - — - —-set the language
\ of the message J/ -set the ontology

\ /
/Fill the content of
the message ;|

~— . _|the "state" of the agent
\ will be send
(/ﬁd—m—e—"\
\_message ‘
l/[
)
-

Algorithm 21 Data::InformDataReady::action() method’s algorithm



The message is prepared by setting the following parameters of the message:

sender: the AID (agent identifier) of the data agent
receiver: the AID of the coordinator agent

language: RDF is used in our implementation
ontology: DCSOntology as described in section 5.1.1.

165

Then, the content of the message is filled with the “state” of the agent and the message is

send.

6.4.5 Miner Agent Main Class

The miner agent state diagram is shown in Figure 64.

Build
Model | =
e - N
~ ~ / \
e ~. \I
o IR
Apply | [ wait Created @
Model |< <
P S
\\\ | ///// //
S )
Save |
Model |
Figure 64 Miner agent state diagram

The miner agent should accomplish two tasks: build model and apply model. Then, the

results of the mining task should be saved in MOR and the agent should wait for the next

request of the coordinator agent. Further details on agent’s tasks are given in section

6.4.6.



166

The miner agent should be in only one of the states in Table XV.

Table XV

Miner agent states

| Deseription

| The ap};ly or build task is sﬁcceséﬁiliy ébmpleted.

| . An error occurred during the build model task.

An error occurred during the apply model task

.| The apply or build task is not completed.

6.4.6 Miner Agent Tasks

The miner agent has the following four tasks:

Listener task

BuildModel task
ApplyModel task
InformMiningCompleted task

6.4.6.1 Listener task

This task receives messages from coordinator agent and processes it. The received
message is “request” communicative act and its content is an “execution” action taken

from domain ontology. This task consists of one method: action().

6.4.6.1.1 action()

The algorithm of Listener task’s action() method is shown in Algorithm 22.



167

®
v
/" Receive Message ™\  The message should be a
\ from Coordinator / | ' Request type and the only
d message content will be a
{"execute” action and with
édifferent possible tasks.
s

message content is a "execute” action

/
/“Process "execute"

action /)

"execute” act|on )

rd ) "execute” action
has a bund tpsk

a apply task

/" Process _\\ ~ Process N\
Apply Task /
/
/
/

Algorithm 22 Miner::Listener::action() method’s algorithm

First, the message received from the coordinator agent content is extracted. If the content
is a “execute” action, then the content of the “execute” action object is processed. If the
“execute” action has a build task then “Process Build Task™ is realized by the
BuildModel task, otherwise if the “execute” action has an apply task then “Process

Apply Task™ is realized by the ApplyModel task.



168

6.4.6.2 BuildModel task

This task builds a model following the algorithm “Model building scenario” in section
“5.4 Step 4 — Estimate the model”. Further details on how to build a model using JSR
73: JDM compliant DME can be found in document [14].

6.4.6.3 ApplyModel task

This task applies a model on data both specified from GUI by the user following the
“Algorithm 7 Apply building scenario” in section “5.4 Step 4 — Estimate the model”.
Further details on how to apply a model using JSR 73: JDM compliant DME can be

found in document [14].

6.4.6.4 InformMihingCompleted task

This task sends a message to the coordinator agent informing the end of miner agent

processing. This task consists of one method: action().
6.4.6.4.1 action()

The algorithm of InformMiningCompleted task’s action() method is shown in Algorithm
23,



169

. -set the sender BN

Y -set the receiver
(/ Prepa re the content Voo —i-setthe language

A\ of the message /7 g-set the ontology

-

7 Fill the content of N
\ the message

will be send

[/ Sendthe
\_ message /

\\ 7

7
( \!/;
Algorithm 23 Miner::InformMiningCompleted::action() method’s algorithm

The message is prepared by setting the following parameters of the message:

sender: the AID (agent identifier) of the miner agent
receiver: the AID of the coordinator agent

language: RDF is used in our implementation
ontology: DCSOntology as described in section 5.1.1.

Then, the content of the message is filled with the “state” of the agent and the message is

send.



170

7. CODE MODEL

This step consists of generating the code from the model using the PASSI add-in code
generation functionalities and manual completion of the source code. Therefore, we will

not include anything further in this section.



171

8. DEPLOYMENT MODEL

This section describes the distribution of the parts of the agent systems across hardware
processing units and their migration between processing units and it involves the
following phase:

e Deployment Configuration

The Deployment Configuration describes also any constraints on migration and mobility

in addition to the allocation of agents to the available processing units.

8.1 Deployment Configuration

In this system, only one coordinator agent should exist and at least one data agent and
one miner agent should exist. Moreover, only one data agent and miner agent should

resides on each node. Those constraints are chosen for simplification purpose.

No migration or mobility is allowed in this earliest implementation of the system for
simplification purpose, but eventually the mobility can be integrated easily since JADE
support this feature.

In Figure 65, there are two nodes (Node 2 and Node 3) where data and miner agents

reside to show that it is possible to have more than one data and miner agent each.



172

theDataLoader:Data
theDataMiner.Miner

]
]
]
j
]
)
i
1
]

Node 3 Vs theCoordinator.Coordinator

theDataLoader:Data
theDataMiner:Miner

Figure 65 Deployment Configuration Diagram



APPENDIX 2

Use of unsupervised clustering algorithm in high dimensional dataset



174

USE OF UNSUPERVISED CLUSTERING ALGORITHM IN HIGH
DIMENSIONAL DATASET

« UTILISATION DES ALGORITMES DE RESEAUX DE NE URONES DANS
L’EXTRACTION DE CONNAISSANCES NON-SUPERVISEE »

TECHNICAL REPORT

NESET SOZEN

Département de Génie Electrique

ECOLE DE TECHNOLOGIE SUPERIEURE
UNIVERSITE DU QUEBEC

MONTREAL, MAY 7, 2005



175

1. INTRODUCTION-

This dissertation concerned with experimenting on high dimensional data several
clustering methods such as Projective Adaptive Resonance Theory (PART) neural
network and Fuzzy c-means (FCM) algorithm. These clustering methods will be used
for knowledge extraction in context of Knowledge Discovery (KD). '

KD is a process aiming at the extraction of previously unknown and implicit knowledge
out of large databases which may potentially be of added value for some given
application [1]. KD is achieved by using various data mining techniques such as
classification, clustering, association, artificial neural networks, fuzzy logics, genetic

algorithms, etc.

In practice, implementing a data analysis technology and using of DM methods
efficiently requires highly qualified resources and it can be very costly to put into
operation “in-house” data mining system or to subcontract the project to a third-party.
Most of the time, the organization don’t have the resources available to effort those
options. Therefore, by using unsupervised data mining algorithms such as clustering
algorithms, the external intervention (i.e. human interactions) to the process should be

reduced to minimum.

The rest of this paper is organized as follow. In the next section, the concept of
knowledge discovery and data mining are briefly covered. The data sets are described in
section 3. In section 4, an overview of the selected approaches is given. Then, the
experimental protocol and the results with an analysis are presented. Last section

presents some further discussions and concluding remarks.



176

2. PROBLEM STATEMENT

The main goal of this study is to experiment some classical and specialized clustering
methods and observe how they react in context of high dimensional space. We are not
targeting to test or verify the algorithms itself but to verify their ﬁsability in our context.
Hence, best responding methods inbhigh dimensional space will be implemented in the
Data Crawler System (DCS) for extracting knowledge from Bell’s Operational Data
Mart (ODM). The knowledge extraction is an elementary task of data mining and/or

knowledge discovery.

Before going further in description of problematic, the following questions will be
answered: what exactly are data mining and knowledge discovery? More fundamental,

what is knowledge?

Data mining is an iterative process for discovering unknown knowledge from large
volume of data by applying statistical and machine learning techniques. At high level,
knowledge discovery and data mining process can be modeled as a process with inputs

and outputs as in Figure 66.

Decision tables
Decision trees
Classification rules
Association rules
Clusters

Etc.

Data;
e Instances
e  Attributes

Figure 66 Data mining process's inputs and outputs

The inputs to data mining process are instances and attributes. The instances are thing

that the DM techniques will be applied on and the attributes are characterization of each



177

instance. For example, each row of the database in Figure 67 corresponds to an instance

and each column corresponds to an attribute.

'"iff’Sek - . 'y = Dechipaion
F Suspense Doctor
F Adventure Plumber
M Action Taxi driver

Figure 67 A database illustration

In [8], authors propose the concept another input to data mining process. They describe
it as what will be leammed. For example, if the data mining technique is classification,
the expected outcome will be a set of classified instances and if the used technique is
decision tree, the outcome will be an association rules between attributes and not a class.

In spite of the learning scheme, what is learned is the concept.

These outcomes are knowledge. The knowledge is structural patterns and/or relations in
data discovered by machine learning methods. It will have different representation
depending on the used DM techniques. If the used technique is a decision tree
construction algorithm the knowledge will be in form of decision tree and in case of

clustering methods, the knowledge will be represented by clusters.

There are two approaches (or objectives) for using data mining: prediction and
description. Prediction is about forecasting future data values. This type of data mining
will produce model of the system based on the given data. The descriptive data mining
will produce hidden knowledge patterns without a preset hypothesis about what the
outcome may be. The goal is to gain an understanding of the system. With predictive
approach, there is a question to answer, for example “what might be a good promotion

for our new product?”, “How much profit can be made for the next quarter?”. With



178

descriptive approach there is a valuable data with no prior directive for what we are

looking for.

There are many DM techniques, each of which falls into one of these following

categories [3]:

1.

Classification — discovery of a predictive learning function that ‘classifies a data
item into one of several predefined classes.

Regression — discovery of a predictive learning function, which maps a data item
to a real-value prediction variable.

Clustering — a common descriptive task in which one seeks to identify a finite set
of categories or clusters to describe the data.

Summarization — an additional descriptive task that involves methods for finding
a compact description for a set (or subset) of data.

Dependency Modeling — finding a local model that describes significant
dependencies between variables or between the values of a feature in a data set
or in a part of a data set.

Change and Deviation Detection — discovering the most significant changes in

the data set.

The steps of the knowledge discovery and data mining process, shown in Figure 68, are

described below.



179

Y

Define the problem

A4

> Data Understanding

Y

Data Preparation. -

Y

> Estimate the model

Y

’ 'ln\t‘erb‘rﬁet the model{draw
some condusions.)

Figure 68 Data mining process

1‘. Define the problem: In this initial step a meaningful problem statement and the
objectives of the project are established. Domain-specific knowledge and
experience are usually necessary. In this step, a modeler usually specifies a set
of variables for the unknown dependency and, if possible, a general form of this
dependency as an initial hypothesis. There may be several hypotheses formulated
for a single problem at this stage. The first step requires the combined expertise

of an application domain and a data-mining model. [3]

2. Data understanding: This step is about data extraction and detection of

“interesting’ data subsets.

3. Data preparation: During this step the final dataset is constructed. Common

data preparation tasks will be outlier detection and removal, scaling, encoding,



180

selecting features, etc. This step should be regarded as together with other data
mining phases. Hence, a good data preparation method with a priori knowledge

will provide optimal results from a data mining techniques.

4. Estimate the model: In this step, various data mining techniques and algorithms
are applied on data set prepared previously. And the verification of the DM
models to ensure that our model is robust and achieve the objectives specified

during the problem definition.

5. Interpret the model: In this final step, the results are presented to client (decision
maker). Since, the results are used to make decision; they should be
understandable in form of simple reports using organization templates and not

hundreds of meaningless numerical results.

Therefore, clustering algorithms, like many other statistical learning methods, can be

used mainly at step 4 “estimate the model” of the data mining process.

In DCS project, there ish’t any prior hypothesis or knowledge about that data that will be
mined; therefore the selected approach will be descriptive. As a result, only
unsupervised data mining methods will be used in earliest version of DCS. This is the
main reason of studying clustering methods which is an unsupervised leaming

technique.

Subsequently, these clustering methods will be used to extract knowledge from Bell’s
ODM database. Each data entry in ODM database has near 300 features (dimensions).
With such a high dimensional data sets, one needs to overcome many technical

challenges.



181

A habitual approach to prevail over high dimensional data sets is feature reduction (or
feature transformation) which consists of forming a new set (with less features) of
feature from the original set using methods such as Principle Component Analysis
(PCA). However, this approach can not be used in our project because we are doing
descriptive data mining and lose of information, by transforming original data set, can

not be allowed.

Traditional clustering methods do not perform efficiently with high dimensional data
because of the curse of dimensionality. Curse of dimensionality is the fact that the
demand for a large number of data samples grows exponentially with the dimensionality
of the feature space. The fundamental reason for the curse of dimensionality is that high-
dimensional functions have the potential to be much more bcomplicated than low-

dimensional ones, and that those complications are harder to discern. [31]

Recent theoretical results [27] have shown that in a high dimensional space, the distance
between every pair of points is almost the same for a wide variety of data distributions
and distances functions. As a result, clustering in original space of all dimensions will

not give any conclusive results.

The concept of subspace clustering is motivated by inherent problems to curse of
dimensionality described above. The goal of subspace clustering is to find clusters

formed in subspaces of the original high dimensional space.



182

3. DATABASE AND FEATURE EXTRACTION

As mentioned earlier, eventually the studied clustering methods will be used on Bell’s
operational data. But we can not use directly these data sets to study selected methods
because we don’t have any prior knowledge about Bell’s data. Consequently, there isn’t
any reference to validate the correctness of the produced clusters directly from Bell’s

data. Therefore, we will first use synthetic data, for carrying out the tests.

In this section, Bell’s operational data and methods used to generate synthetic data will

be described.

3.1 Bell’s Operational Data

A data entry in ODM is composed of four types of attribute: numerical, date, string and
nominal (which can be composed of character or number, i.e. (true/false) or (1/0) ). The
data set has near 300 attributes. The original data set sample that we get from Bell,
which has been pruned by them, has 267 features including two key attributes and 24202
entries. After, removing all string and date type attributes and transforming all nominal

attributes composed with characters and numbers, we had data set with 180 dimensions.

3.2 Synthetic Data

The high dimensional synthetic data is generated using the method proposed by
Aggarwal et al. [50]. The data will be composed of numerical data only. At this level,

string and nominal type will not be considered for simplification reasons.

The points have coordinates in the ranges [0 100] and are either cluster points or
outliers. The Fouuie=5% 1is the percentage of data sets that are outliers and they are

distributed uniformly at random throughout the entire space.



183

Synthetic data generator program takes as input parameters the number of clusters k and
a Poisson parameter p that determines the number of dimensions in each cluster, as

shown in Algorithm 24.

1. Define anchor points around which the clusters will
be distributed and the dimensions assoclated with
each anchor point

2. Determine how many points will be associated to each
cluster

3. Generates the cluster points

- Algorithm 24 Synthetic data generator

3.2.1 Define anchor points

Anchor points are obtained by generating k uniformly distributed points in the d-
dimensional space. The anchor point for the i cluster is denoted by ci. The number of
dimensions associated with a cluster.is given by the realization of a Poisson random
variable with mean p. This number must be at least 2 and at most d. Once the number of
dimensions d; associated with cluster I is generated, the dimensions for each cluster are

chosen using the following technique:

The dimensions for the first cluster are chosen randomly. The dimensions
for the ith cluster are generated inductively by choosing min {d,._l,%}

dimensions from the (i-1)st cluster and generating the other dimensions

randomly.




184

This iterative technique is proposed to model the fact that different clusters frequently

share subsets of correlated dimensions.

3.2.2 Determine number of points

The number of points of each cluster is determined by generating k exponential random
variables with mean 1 and by assigning to each cluster a number of points proportional
to these realizations. More exactly, let r,r,...,rx be the realizations of k random
variables and let N, =N-(1-F,,.,) be the number of cluster points. Then the number

utlier

of points in cluster I is given by Nc-—*

N
-

i

3.2.3 Generate cluster points

The coordinates of the non-cluster dimensions are generated uniformly at random. For a
cluster dimension j, the coordinates of the points projected onto dimension j follow a
normal distribution with mean at the respective coordinate of anchor point and variance

is determined randomly as follow:

Fix a spread parameter r and choose a scale factor sje[l,s]

uniformly at random, where s is used defined. Then, the variance of

the normal distribution on dimension j is (s;; -r)?. Inour case, r=s=2.




185

4. OVERVIEW CLUSTERING METHODS

We used three clustering methods: Projective Adaptive Resonance Theory (PART)
algorithm, Fuzzy c-means (FCM) algorithm and k-means algorithm.

The paper [30] presents projective adaptive resonance theory (PART) neural network
developed by Cao and Wu. PART architecture is a variation Qf adaptive resonance
theory (ART). This method is revealed to be very effective in clustering data sets in high
dimensional spaces. Fuzzy c-means is a popular clustering method proposed by J. C.

Bezdek [29]. K-means is a classical statistical clustering method.

In this section each method will be described in details.

4.1 The PART algorithm

Traditional clustering methods do not work efficiently for high dimensional data sets
because of the sparsity of data. Recent theoretical results [7] have shown that in high
dimensional space, the distance between every pair of points is almost the same for a
wide variety of data distributions and distance functions. Therefore, it makes no sense
to talk about proximity or clustering on the original full space of all dimensions. We are
in presence of curse of dimensionality. A solution to this problem will be to subspace
clustering whose goal is to find clusters formed in subspaces of the original high

dimensional space.

Projective Adaptive Resonance Theory (PART) offers a solution to the challenging
problem of high-dimensional clustering problem. PART is a new neural network

architecture similar to adaptive resonance theory (ART).



186

ART network has two key parts: choice process and match process. Choice process
select the most likely cluster for an input pattern and if the chosen template cluster and
the input pattern are similar enough according to a predefined vigilance parameter p,
then the cluster’s template is updated according to the new input pattern. Otherwise, the
cluster is reset and the next most likely cluster is chosen. When no existing cluster

satisfies the match criterion, a new cluster is created.

Clustering Layer F2

Vigilance
and
Reset

Input Layer F1 :
t

Figure 69 Simplified ART architecture

The ART architecture is illustrated in Figure 69. It has an input processing part (F; layer,
also called comparison layer), a clustering part (F, layer) and a vigilance and reset
subsystem. F; layer and F; layer are connected to each other by bottom-up weight and
top-down weight respecﬁvely. F, layer follows winner-take-all paradigm and the node
with the largest input becomes the candidate to learn the input pattern. Whether the
candidate will learn the input pattern is decided by the vigilance and reset mechanism.

The latter controls the degree of similarity of patterns placed in the same node (cluster).

The advantage of ART is that the number of cluster is not determined by the user, thus
he can control the degree of similarity of patterns placed in the same cluster. ART
network looks for similarity of patterns in the full dimensional space and sometimes fails

to find patterns in the subspaces of higher dimensional space. Subspaces in which



187

clusters are formed can not be identified in advance because to find clusters in all
possible subspaces and compare the results to get an optimal partition of data set, we
have pass trough 2™-1 subspaces with a high dimension of m which is practically
unfeasible. To circumvent this problem a selective output signaling mechanism to ART
is introduced. This change to ART will constitute the new PART architecture as

illustrated in Figure 70.

Clustering Layer F2

Vigilance
and
Reset
Input Layer F1
Figure 70 PART Architecture
where
vi= Nodein F,; _ i=1,..m
vi= Node in F; j=m+l, .. m+n
x; = Activation of F; node v;
x; = Activation of F'; node v;

z;j = Bottom-up weight from v; to v
ziy = Top-down weight from v; to v;
hy = Selective output signal from v; to v; by a

similarity check between z;; and the signal fi(x;)



188

fi= Signal function

F; layer of PART is similar to ART architecture; it is a competitive layer which follows
the winner-take-all paradigm. The principal difference between ART and PART lies in
the functioning of F; layer. In PART, F; layer selectively sends signals to nodes in F;
layer. As a result, the node in F, is active relative to some F, nodes only and the

activation is determined by a similarity check.

4.1.1 Detailed PART algorithm

The following are the input parameters of PART algorithm.

PARAMETER PERMISSIBLE RANGE SAMPLE VALUE
L (constant) L>1 2
a (learning rate) 0<a<l 0.1
¢ (threshold) 0<¢< L 0
L-1+m
p (vigilance parameter) n/a
o (distance  vigilance n/a

parameter)




189

Detailed algorithm of PART neural network is as in Algorithm 25

0. Initialization:
0.1. Take the number of nodes in F; layer as the number of
dimensions of input data
0.2. Choose the number n of nodes in F, layer is much larger than
the expected number of clusters
0.3. Set the internal parameters L, a and ¢ and the maximum
iteration M.

0.4. Choose the external input parameters p and o.
1. Set all F, nodes as being noncommitted

2. For each data point in input data set, do step 2.1-2.6.

2.1. Compute h;; for all F; nodes v; and committed F, nodes vj. If
all F, nodes are noncommitted, go to Step 2.3.

2.2. Compute T; for all committed F; nodes vj.

2.3. Select the winning F, node v;. If no F, node can be selected
put the data point into outlier and then continue to do step
2.

2.4. If the winner is a committed node, compute r; otherwise go
to Step 2.6.

2.5. If r;y 2 p, go to step 2.6, otherwise reset the winner v; and
go back to Step 2.3.

2.6. Set the winner v, as the committed, and update the bottom-up
and top-down weights for winner node v;.

3. Repeat step 2, M times.

4. For each cluster (C; in F, layer, compute the associated dimension
set Dj .

Algorithm 25 Detailed PART neural network algorithm

Let A, ={l,...,m} denote the set of nodes in F; layer and A, ={m+1,..., p} denote the

set of committed nodes in F, layer.

4.1.1.1 F,; Activation and Computation of Selective Output Signals h;;

The signal function f; will be the identical function f,(x;)=x, and at an equilibrium

x, =1, and consequently f(x;)=1,, where [ ={I,---Im} 1s an input pattern with m



190

dimension. Therefore, the selective output signal h;; is computed by the following

formula
hy = h,(d(fi(%), 2 ) (2;) 120 ieh jeA,

with o being a distance vigilance parameter and £ a small threshold usually taken as 0

. and where o >0 and OSQ’SZ——{;— where L is a constant (L > I)
—1+m

and we take as d

d(a,b)= |a——b| forany a,bel]

and for a given constant c, A is given by

1, if &<c

hc((:>={0, Foeec

and I, is given by
| (&) =1-h(&).

Then, h;; will be

i

L b if |f(x)-z|<o and z;>¢
0, otherwise.

4.1.1.2 F, Activation and Selection of Winner

The bottom-up filter input T} to the committed F2 node vj is computed by

Tj=D) z;h;

il



191

with D =1 and the winner is selected according to the following rule

Let I = {Ty : F; node vy is committed and has not been reset on the
current trial},

then node vy is a winner either if I' #& and T, =maxI', or if ' = ¢ and

node vy is the next noncommitted node in F2 layer.

4.1.1.3 Vigilance and Reset
A winning F; node vy is reset if the matching degree r; defined by

v =Zh”

is less than a vigilance parameter p. Specifically, reset occurs if and only if

r,<p

where pe{l,2,...,m}. Otherwise, the winner passes the vigilance test and is ready to

learn the input pattern.

4.1.14 Learning

For the winner v; which has passed the vigilance test, its bottom-up weights z;; and its

top-down weights z; are updated following the rules below:

If v, 1s a committed winning F; node, then

R A
i ={ L-1+|X
0, if hy=0
2" =(1-a)zy’ +al,



192

where the learning rate is expressed by 0<oa<1 and [X [ denotes the number of elements

in the set X ={i:h, =1}. Therefore, r, =|X]|.

If v, is a non-committed F; node, then

new __ L

el
L-1+m

new __

zy =1,

4.1.1.5 Dimensions of Projected Clusters

Each committed F; node v; represents a projected cluster C;. The set D; of the associated
dimensions of the projected cluster C; is determined by I,(z;) according to the following

formula:
The dimension i € D; if and only if /, (zy) =1.

4.1.1.6 Outlier Node

- In the PART architecture, F, layer can have an unlimited number of nodes because it is
not bound by a maximum value. Due to the practical resource restriction, the number of
nodes in F; layer has to be limited. Besides, there are always some outlier data points
that are not clustered properly when applying clustering methods. Therefore, a special

node, called outlier node, will be added in PART module and all data that cannot be

clustered properly into F2 nodes will be put into this outlier node.



193

4.1.2 Assumptions

The success of PART algorithm relies on the assumptions that the model equations of
PART have a regular computational performance described by the following dynamical
béhaviors when a constant input is imposed during each learning trial:
e Winner-take-all paradigm: the F, node with the largest bottom-up filter input
becomes the winner and only this node is activated
e Selective output signals remain to be constants
e Synaptic weights are updated following specific formula

o Set of dimensions of a specific projected cluster is non-increasing in time

4.2 Fuzzy c-means algorithm

Fuzzy c-means (FCM) is a procedure of clustering data wherein each data point belongs
to a cluster to a certain degree that is specified by a membership grade. This technique
was originally introduced by Jim Bezdek in 1981 [29] and in our experimentation, we

will use the Matlab’s implementation of fuzzy c-means.

4.2.1  Detailed Fuzzy c-means algorithm

This clustering method partitions a set of object {x,,...,x,} <0 ° into c-(fuzzy) clusters

based on a computed minimizer of fuzzy within-group least squares functional

JnU,0) =3 YUz |x, ~v|

i=1 k=1

where
m>1 Fuzzification parameter
v,el?’ Prototype (or mean) of the i cluster

U, €[0,1] Degree to which datum x, belongs to the /™ cluster



194

V= [U,-,-] = [Vp- '-,Vc] e[ ¢ Matrix of cluster prototypes
U= [Uik] Partition matrix

”*”2 Euclidean or 2-norm squared
2

The set of all nondegenerate fuzzy c¢xn partition matrices for partitioning n data into ¢

clusters as

M,, ={UeD “"|\Vi,k:0<U, SI;ZU,-k =1;0<2Uik}
i=1 k=1

The most popular and effective method of optimizing the equation Jm(U, v) is fuzzy c-

mean algorithm, which alternates between optimizations of ., (U il u*) over U with v’
fixed and ., (UIU*) over v with U" fixed, producing a sequence {(U(’),U(’))}.

Specifically, the »+1st value of v =[v,,...,v,] is computed using the rth value of U in

the right-hand side of

Then the updated » +1 st value of v is used to calculate the »+1st value of U via
=L
diim—l)
-1

U, =
k [4 _—
-1)
>dy
=t

1

where dl.k="xk—vi”z>0 for i=1...,c and k=1,...,n



195

The FCM iteration is initialized using some UeM,, (or possibly vel ™) and

continues by alternating the updates in equation of v; and Uy, above until the difference

measured in any norm on 0“" (or 0"") in successive partition matrices (or v

matrices) is less than some prescribed tolerance ¢ .

4.3 K-means algorithm

This algorithm is based on the minimization of the performance index (J) defined by the
sum of the squared distances of all points of a cluster to its mean value:
Ne 2
J=2 2 |x-m
=1 XeS,
where Nc 1s number of points in the cluster’s domain,
X is the point to be classified

m is the mean value

The algorithm will have as input parameter the number of clusters and the means value

of each clusters. The algorithm of k-means clustering [31] will be as follow

Algorithm 1 (K-means clustering)
1begin initialize n, cu1,u2, . .. uc
2do classify n samples according to nearest u/

srecompute u/

4until no change in ui
sreturn u1,u2, . . . uc

send

Algorithm 26 K-means clustering algorithm



196

where n is the data sample to classify, ¢ is the number of cluster and the p is mean value.

Further detail on this method can be found in [31] or any classification pattern book.



197

5. EXPERIMENTAL PROTOCOL

The experimental protocol is as follow:

Analyze data sets from Bell’s ODM and generate similar synthetic data:

As mentioned earlier, our goal in doing this study is to determine a
strategy to find out the most appropriate data mining methods to analyze
data from Bell’s ODM. The most distinctive aspect of the ODM is the
high dimensionality. Also, the selected approach (descriptive data
mining) in extracting knowledge has a huge impact on the type of

methods too.

There are several obstacles to overcome. First, we don’t have any prior
knowledge about the data set and we should consider all possible
structures and correlations in data. The original data can’t be used to
experiment because it isn’t labeled. A data instance is labeled when we
know which class it 1s associated with and in our case we have no clues
even about the possible classes (or clusters) inherent in data set. Often in
high dimensional data, many dimensions are irrelevant and mask existing
clusters and the clusters aren’t in full dimension. Another obstacle that
the clustering algorithms have to face is the curse of dimensionality. The
subspace clustering theory arises as a solution to cluster high dimensional

data.

To simulate the Bell’s ODM, synthetic data set with clusters in different
subspace will be generated using the method described in section 3.2.
The data set will have 300 dimensions and 30000 entries. The value of
each input will be [0,100]. Since we don’t have any prior knowledge, we

will modify the size of the subspace (number of dimensions) of each



198

cluster in a data set and observe the ability of the methods to discover the
clusters. Three types of data set will be generated: \
e Clusters with high-dimensional subspace (between [250,
300[ dimensions)
e (Clusters with low-dimensional subspace (less than 15
dimensions)
o Clusters within full range subspace (between [2,300{

dimensions)

o Implement PART algorithm:

PART algorithm will be implemented using Java language. For others
two methods (fuzzy c-means and k-means), their Matlab implementation

will be used directly in our experimentation.

The PART algorithm was first implemented in Matlab énd worked well
on data with few dimensions but when we simulated it with higher
dimensions ( > 100 ) we couldn’t get any results due to resource
restriction with Matlab and long simulation time. We had memory
overload error with only 5000 entries. Therefore, we decided to
implement the PART algorithm using Java, where we have much more
control over resources than Matlab. Also, we can directly use the PART
implementation later during the implementation of the data crawler

system.

e  FExecute clustering algorithms on synthetic data and compare results:

With PART algorithm, a prior analysis is executed in order to determine
the external parameters ¢ and p. We took the same value as in document
[30] for parameter o because we used the same range of value for each

data entry. To determine the value of p, a prior execution with one



199

iteration only of the algorithm on each data set with p value varying from

2 to 15 was performed.

All algorithms are compared using a contingency table of input clusters

and output clusters as in Figure 71.

Figure 71 Contingency table

Each entry (i,j) denotes the number of data points that are common to

both output cluster i and the input cluster ;.



200

6. EXPERIMENTAL RESULTS

In this section, the experimental results are given and analyzed. The results are reported
with emphasis on the contingency table of input clusters and output clusters. The

complete results are annexed at the end of this document (section 9).

6.1 PART algorithm

As show in document [30], PART is a subspace clustering method effective in high
dimensional data sets and we would like use it for analyzing data from ODM. In order to
use this algorithm effectively, we need to set some external parameters: ¢ and p. The c
will be set to 10 as we are using same range of value for each point in synthetic data as
in [30]. The vigilance parameter p is directly related to the number of dimension on
which the cluster is defined. For example, p=1 means that two points are close to each
other with respect to at least 1 dimension. Therefore, a prior test is executed to determine
the most appropriate p value. For example, for high dimensional subspace clusters data
set (~270-dimensional clusters), the best results are get with p=13 and for low-
dimensional subspace clusters data set (~10-dimensional clusters), the best results are
get with p=6 and in case of the data set with clusters dimensions varying within full

range subspace p=3 gave the best results.

With the three data sets we studied the capability of PART algorithm for finding the

clusters depending on their dimensional size.

Clusters with high-dimensional subspace:

With p = 13, PART algorithm was successful in finding the exact number of clusters
with their exact entries. Even, all of the outliers are detected properly (1498 on 1500 are

detected). However, with p = 6, only 7 clusters were found where 4 of them were input



201

clusters and other 3 were combination of the input clusters. The 7 found clusters are as

in Table XVI.

Table XVI

Clusters with high-dimensional subspace

Output Cluster Input cluster
1

2

3-4

5-6

7-8

9

10

N QYD DN W~

Only input clusters 1, 2, 9 and 10 are found properly.

Clusters with low-dimensional subspace:

The PART algorithm is applied on this data set with p =6 and p = 3. With p =6, no
clusters were detected because the dimensional size of the clusters was too small and the
vigilance parameter of 6 was too high. The vigilance parameter indicates the number of

dimensions on which the distance between each point is evaluated.

With p = 3, we were able to detect input clusters 2, 3, 4, 5, 6, 7, 8 and 9. The input
clusters 1 and 10 could not be found because their dimensional size is 2 (which is less
than 3). Usually, there isn’t correlation in large number of random data points with large
set of dimensions. Therefore, we couldn’t use vigilance parameter value less than 3

because we need to select a p value high enough to eliminate the randomness in data set.



202

Another aspect to discuss is how accurate the input clusters are discovered by the PART

algorithm. The accuracy is computed as follow

x— y] where x= size of the output cluster
x

accuracy =100% -—(
y= size of the input cluster

Table XVII

Clusters with low-dimensional subspace

Output Cluster Accuracy (%)
2 59%
3 63%
4 62%
5 66%
6 78%
7
8
9

66%
77%
40%

Compared to results obtained with clusters with high-dimensional subspace with p = 13
where we had output clusters with near 100% accuracy, the highest accuracy is 78%.
This is due the fact that the vigilance parameter of p = 3 isn’t high enough to eliminate

the randomness.

Clusters within full range subspace:

With this test, we wanted to study the ability of PART algorithm to discover clusters

with different dimensional size in the same data set. In this data set, we have clusters



203

with 10-dimensional subspace as well as 275-dimensional subspace. This test is

conducted with vigilance parameter of p =13 and p = 6.

With p = 13, 8 clusters were found. These founded clusters correspond to the § inputs
clusters (1 to 8). PART algorithm considered data points from input clusters 9 and 10 as
outliers and these input clusters could not be detected. The fact that the input cluster 9 is
considered as an outlier is expected because this input cluster has 10-dimensional
subspace and 10 is less than the vigilance parameter value of 13, which means that two
points are considered close to each others with at least 13 dimensions. The input cluster
10 also could not be found even it has 30-dimensional subspace which is much higher
than 13.

With p = 6, 9 clusters were found. All input clusters were found except the input
clusters 7 and 8 were considered as one clusters. Both clusters were defined on high-
dimensional subspace (input cluster 7 is defined on 250 dimensions and clusters 8 is
defined on 275 dimens'ions) but the input cluster 7 had only 651 data points which
correspond to ~2% of total number of data points. We also computed the distance of the
centers of each cluster and we discovered that for 57 dimensions the distance value is
less than 10 which is the value of the distance vigilance parameter . Therefore, low
number of data points of input cluster 7 and the closeness of the center point of two

input clusters could explain this combination.

6.2 Fuzzy c-means algorithm

A slightly different strategy was adopted for this algorithm because with PART
algorithm we knew that it is designed and proven to be efficient for high dimensional
data with subspace clusters [30] but it is not the case for fuzzy c-means. Therefore,
instead of applying FCM directly on high-dimensional data sets(300 dimensions), we

progressively increased the number of dimensions of data sets and observed if the FCM



204

was still able to detect clusters. The number of clusters in input data sets was 10 and

number of input data was 10000 and we increased dimension of data set as follow: 5, 10,

20, 30, 50 and 75. We stopped at 75 because there was no change in the ability of FCM

to detect clusters. All results are in the section 9.2.

The following table represents all dimensions of the input clusters with 5-dimensional

data sets. First column represent the cluster id and the second all dimensions of the

clusters.

Table XVIII

Input clusters with Fuzzy c-means

Clusters

dimensions

o 0 0N A W N =

[o
=]

1,234
1,2

1,2,3
1,2,3
1,2,34
1,2,3,4,5
1,2
1,2,3,4
1,2,3,4
1,2

The following is a contingency table of input clusters and output clusters. As it can be

observed in Table XIX input clusters 5 and 6 are clustered properly while the rest of

clusters aren’t. Cluster 5 is found with 16.5% (1763-1472/1763) of error while cluster 6

with 9% of error.



Table XIX

5-dimensional data sets

= Clusters louttier] sum

4 4 3 4 5 6 7 8 9 10 , '
"0 24 0 8 0 0 0 0581 178 33 909
98 53 0 0 0 0 34 0 g3 53 321
63 5 0 1231472 0 20 0 of 8o 1763
0 33 26 0 0 0 0o o0 473 47 579
11 18 59 28 0 0 0 560 110 42| 831
10 32 22 156 0 0 29 0 702 258| 46| 1111
54 0 4 0 0 0 16 0 o0 398 36 553
50 0 113 0 0 17 0 746 439 100| 1465

o 0 9 o0 01191 0 o o0 100 9 1309
22 0 23 0 0 0310 571 0 184 49 1159
258 215 188 36714721191 420 57125892220]  500] 10000

205

It also worth to mention that input cluster 6 is defined on full-dimensional space and

only 4 of 5 dimensions are used to define cluster 5. Other input clusters defined using

only 4 dimensions such as input clusters 1, 8 and 9 could not be found. The clusters need

to be defined in full-dimension for FCM to identify them.

In 10 dimensional and higher data sets none of input clusters are properly classified.

Therefore, we can say that FCM isn’t suitable for extracting subspace clusters. Since,

even with only 5 features, FCM is only able to extract 20% (2 of 10 input clusters) of the
We didn’t

input clusters and the clusters must be defined using all dimensions.

experiment the impact of the number of input data set because of the poor results with

dimensionality.



206

6.3 K-means Algorithm

With k-means algorithm was executed only with two data sets of 5 dimensions; in the
first data set the clusters were defined on subspace with different dimensional size and in
the second data set all clusters were defined using all dimensions. Each data set had
10000 data points and 10 clusters. Only 5 dimensional data set were used because it was

enough to show that k-means isn’t suitable for clustering data with subspace clusters.

In case of data set formed with different dimensional size clusters none of the input
clusters were identified while with data set containing full dimensional clusters all input
clusters were discovered excepting input clusters 3 and 5 were found as one cluster.

Detailed results are in annex 0.



207

7. DISCUSSION

As we can observe from our results, most of the classical clustering methods aren’t
efficient for mining data from the Bell’s ODM because of the sparsity of data in high
dimensional space. Usually, for two points from such data sets, there will be few
dimensions on which the points are far apart from each other. As seen with k-means and
fuzzy c-means results, searching clusters with traditional clustering methods in full
dimensions can lead to erroneous results. Subspace clustering methods are an excellent

way of mining high dimensional data.

Another important aspect to take into account is the input parameters of clustering
methods. For example, k-means and fuzzy c-means need the number of searched
clusters to be specified. In our case we don’t have any prior knowledge and we are
doing descriptive data mining, thus we don’t have the slightest idea about the number of

searched clusters.

Besides knowing that in our data crawler system, we can’t use traditional clustering
methods such as k-means and fuzzy c-means and we should decide on subspace
clustering methods, another important output of this study is the establishment of a
strategy for selecting data mining methods for our system. The following criteria should
be considered in selecting a method for our system:

o Prior knowledge requirements and domain specific strategy of DM methods:
Prior knowledge requirements are the most important aspect to consider
for choosing a method for data mining because of our lack of knowledge
about data. For example, if the method to be selected requires any
knowledge related to clusters such as number of clusters or number of
dimensions (or the specific ‘dimensions) that form the clusters or any
other information specifying the form of the clusters, the method should

be rejected.



208

Otherwise, the input parameters of the method should be identified and
the value of the input parameters should be defined according to our data.
The domain specific strategy of data mining methods is the establishment
of a strategy for defining the prior knowledge requirements of data
mining methods according to input data space. For example, for the
PART algorithm we need to define two external parameters (vigilance
parameter (p) and distance vigilance parameter (c)) that control the size
of dimensions of the projected subspaces and the degree of similarity in a

specific dimension involved respectively.

Usually, there is no correlation in large number of random data points
with large set of dimensions. We observed that if we use smaller value
for p, we are able to discover clusters with few dimensions (number of
dimension is higher p value) but the cluster with many dimensions
couldn’t be extracted because of the inherent randomness in data. For
exampie, in case of data set with clusters within full range dimensional
subspace (see results in section 9.1.3) with p=6, we been able to discover
all input clusters except the input clusters 7 and 8 which had high
dimensional size (input cluster 7 was formed by 250 dimensions and
input cluster 8 W'as formed by 275 dimensions). Therefore, we should
choose p large enough to eliminate the randomness, but smaller than or

equal to the number of dimensions of any possible projected cluster.

The strategy for selecting the value of p will be as follow:

PART algorithm will be executed with four values of p
=[3,6, 9, 12]. As a result, four instances of PART

algorithm will mine the same data set.




209

In our experimentation the value of o was 10 which corresponds to
variation of +£10% (10/100 where 10 is the value of ¢ and 100 is the
difference between maximum and minimum value (100-0)) of the current
data entry from the compared cluster (F2 node). Therefore, if the
difference between the current data entry and the F2 node was less than
10% than the current data input was considered as being part of the F2

node (for more details see paragraph 4.1 or document [30]).

The strategy for selecting the value of ¢ will be as follow:

0;=0.10 maxi—mini| where i=1,...,m

In our experimentation, the value of o was equal for all dimensions
because all dimension had the same range of value but in the
implementation, there will be a different value for each dimension i
because each dimension doesn’t necessarily have the same range of
value. The value of 10% of total range is chosen arbitrarily based on our

experimentation.

e Unsupervised, Descriptive data mining methods::

The goal in building the data crawler system is to gain an understanding
of Bell’s operations by uncovering patterns and relationships in ODM. In
literature, this is know as descriptive data mining which produces new,
nontrivial information based on the available data set.

Unsupervised learning’s goal is to discover “natural” structure in the
input data and there is no notion of output during the learning process
compared to supervised learning where unknown dependencies are
estimated from known input-output samples. For example, with

classification analysis which is a supervised learning, the output is taken



210

from an set of known class but with clustering which is an unsupervised

learning, we don’t have a set of a priori known clusters.

Therefore, only unsupervised descriptive data mining methodologies such
as clustering analysis, association rules, or some artificial neural networks

such as PART algorithm will be used.

e Sensibility to high dimensionality:

As shown in [27], in a high dimensional space, the distance between
every pair of points is almost the same for a broad variety of data
distributions and distance functions. For example, in such condition, we
can’t perform clustering in full space of all dimensions. The subspace
clustering which aims to find clusters formed in subspaces of the original

high dimensional space is a viable solution to the problem.

Therefore, we will opt for data mining methods that are not affected by

the high dimensionality of data.

Scalability:

Scalability of data mining methods isn’t a priority requirement because
our system isn’t online and the quality of the extracted knowledge is
more important than the responsiveness of the system. However, it is an
aspect to consider in design because there exist some methods which
offer a good balance between performance and output quality such as
MAFIA [28] clustering method. This algorithm uses an adaptive grid
based on the distribution of data to improve efficiency and cluster quality

and introduces parallelism to improve scalability.

Complexity (processing time):



211

Same as with scalability, the complexity isn’t a priority requirement but it
will be considered in design and during the selection of the data mining

methods the same way as scalability.



212

8. CONCLUSION

This project was a good opportunity to understand the concept of subspace clustering
and the impact of large set of dimensions on output clusters. We observed that even
with only with 5-dimensional data sets traditional clustering methods wasn’t able to find
most of the initial subspace élusters. Therefore, subspace clustering methods which are
very efficient in finding clusters in different subspaces within a dataset, are preferred,

against classical clustering methods, to be used in data crawler system.

Unfortunately, during the implementation we faced up some obstacles. The first Matlab
implementation of PART neural network algorithm which behaved properly with low
dimensional and with fewer data sets but with higher dimensional size (>100
dimensions) and with number of instances more than 5000, we couldn’t get any results
because of memory overload. Therefore, we decided to implement PART algorithm
with Java programming language, which offers more flexibility in memory management.
Also, the simulation time was considerably reduced and the source code in Java can be

used later in the data crawler system implementation.

Our experimental procedure had some minor deficiency. For example, random entry for
each data input is better experimental practice than use of each data input sequentially as
we did. Also, we should compare the input-output clusters in basis of their dimensions
and their anchor point (center point). However, as mentioned earlier, our goal wasn’t to

test the methods itself but to study their possible use in our data crawler system.

.As shown in article [51], there are many other subspace clustering methods such as
MAFIA, CLTree, Cell-based Clustering Method (CBF), which don’t require prior
knowledge related to the output cluster’s form like PART algorithm. It will be
interesting to do further studying for implementing those methods in the data crawler

system.



213

9. ALL EXPERIMENTAL RESULTS

9.1 PART algorithm results

We had three types of data sets: data set with high-dimensional subspace clusters, data
with low-dimensional subspace clusters and data sets with cluster’s shbspace vary within

full range of dimension. The algorithm parameters are set as follow

PARAMETER VALUE
L (constdnt) 2

« (learning rate) 0.1

¢ (threshold) 0

p (vigilance parameter) 13-6-3

o (distance vigilance parameter) 10

M (number of iteration) 25

In order to make the results representation easier, clusters with less than 300 entries was

considered as an outlier, which corresponds to 1% of total number (30000).



9.1.1 Clusters with High-dimensional Subspace

The input clusters are as follow:

Clusters

Size

Table XX

Input Clusters

Dimensions

Points

214

1

10

289

261

281

284

282

249

290

270

288

288

All dimensions except for 33, 39, 54, 89, 102, 122, 129, 159,
209, 293,297

All dimensions except for 33, 57, 68, 82, 95, 97, 106, 118, 123,
129, 151, 161, 171, 177, 183, 189, 200, 201, 211, 219, 228, 232,
233, 237, 238, 239, 242, 244, 250, 252, 253, 257, 260, 263, 275,
280, 285, 298, 300

All dimensions except for 12, 42, 131, 137, 143, 162, 166, 172,
175,177, 210, 228, 242, 252, 264, 276, 283, 292, 298

All dimensions except for 56, 107, 145, 148, 151, 171, 190, 202,
221,232,247, 251, 255, 258, 274, 284

All dimensions except for 72, 85, 91, 126, 158, 168, 180, 183,
186, 191, 229, 243, 256, 260, 269, 280, 283, 291

All dimensions except for 36, 51, 54, 73, 92, 104, 112, 129, 147,
152, 158, 161, 163, 164, 168, 169, 172, 178, 181, 184, 186, 194,
203, 204, 205, 206, 208, 210, 212, 213, 217, 220, 221, 226, 227,
229, 236, 241, 246, 248, 249, 256, 264, 265, 271, 274, 275, 285,
290, 291, 300

All dimensions except for 64, 131, 140, 141, 155, 171, 176, 242,
246, 283

All dimensions except for 88, 91, 101, 106, 116, 125, 142, 153,
156, 166, 168, 174, 190, 191, 196, 237, 242, 247, 251, 254, 261,
262, 263, 268, 269, 272, 289, 290, 293, 296

All dimensions except for 104, 113, 121, 149, 176, 208, 211,
244,254,275, 277, 285

All dimensions except for 104, 138, 183, 195, 199, 203, 211,
235,242, 278, 290, 296

715

1970

2704

1186

1515

777

2133

3384

3723

10393



215

The following results are obtained when the external parameter p = 13.

Table XXI
Contingency table

itpl 7o oe b |
gy 0 0 0o 0 0 0 o o o 714
1 :52:: 01970 0 0 O O 0O 0 O 0 of 1970
3 - 0O 02704 0 O O O 0 O 0 of 2704
4 0O 0O 0118 0 O O 0 O 0 of 1186
" s 0 0 O 015155 0 0 O O 0 o 1515
6 0o 0 0 0 O0777 0O 0 O 0 0 777
7 0 0 0O 0O 0 02133 0 0 0 of 2133
8 0 0 0O 0O 0 0 03384 O 0 of 3384
9 | o 0 0o 0 0O 0 o0 03723 0 1| 3724
_ 10 0o 0 0 0 O O 0O O 010393 1 10394
outier | 1+ 0 0 0 0 0 0 O O 0| 1498 1499
! Sum 715 1970 2704 1186 1515 777 2133 3384 3723 10393| 1500 30000




216

The following results are obtained when the external parameter p = 6.

Table XXII

Contingency table

0o 0 o0 715

0 0 0 1970

0 025041186 0 0 0 0 O 3780

0O 0 0 01447 777 0 0 0O 2228

0 0 0 0 O 021193384 0 5503

O 0 0 0 0 0 0 03723 3723

7 | 0o 0o 0o 0o 0o o o o 01033 10396
outier | 0 0110 o0 68 o0 14 o0 o o 1408 1688
| 715 1970 2704 1186 1515 777 2133 3384 3723 10393] 1500 30000




9.1.2 Clusters with Low-dimensional subspace

The input clusters are as follow:

Table XXIII
Input Clusters
Clusters Size Dimensions Points

1 2 116,119 845
2 9 225,183,125,88,181,115,81,213,77, 3460
3 4 265,171,80,40 682
4 6 - 115,103,80,59,71,299 2251
5 7 78,103,85,106,126,167,240 3309
6 4 78,55,85,106 6407
7 11 114,55,63,106,155,225,50,88,97,249,52 1796
8 7 86,55,91,194,239,65,50 4043
9 6 86,55,39,7,134,65 1140
10 2 150,55 4566

217

The following results are obtained when the external parameters p = 6. When this test

was executed, we obtained 100 clusters (which was the maximum number of clusters

that we set as an input to limit used resources) where the cluster that had the highest

number of instances was 11. Therefore, to facilitate the readability of the contingency

table, all these clusters were considered as outliers.



218

Table XXIV

Contingency table

o o o o o o o o of
©O ©O ©O © © © © ©o © l‘i?

o 0o o 0o 00 o o o
© © ©o ©o o o o o of ;
©O o 0o o 0o o o o of

o ©o o 0o 0o o0 o o o§

O 0O 0O O O 0O O o o .
o ©o 0o o 0o © o o of s

© ©o 0o o o 0o 0o o o

O 0O 0o 0o o o o o o ol
O O 0O 0O 0o 0o o0 o o o
O 0 0O 0 0 0 0 0O o o

6 o0 o o 0 o o0 o0 O
8453460 682 2251 3309 6407 1796 4043 1140 4566/ 15001 29999
845 3460 682 2251 3309 6407 1796 4043 1140 4566| 1500, 29999




219

The following results are obtained when the external parameter p = 3.

Table XXV

Contingency table
3201 0 0 0 0 1 0 o 2 4 205
2 12428 0 0 0 0 0 0 1 of 452
1 0 01403 0 0 0 2 0 1 of 1416
5 12 6 62195 2 0 2 0 3 71 2238
1 17 5 10 04976 0 0 0 2 15 5026
11 15 5 17 20 431186 0 0 2 8 1307
3 22 5 15 21 68 83113 0 0 4 3259
3 19 2 9 12 0 0 0 45 6 2l 509
7 25 4 20 22213 34 0 0 0 of 334
4 7 5 11 15 0 0 0 33 367 2l 444
1 14 6 18 16 0 0 0 28 512 2l 597
1 16 4 12 10 0 0 O 33 649 of 734
4 27 3 13 30 0 0 o0 o 741 18 838
| 7991233 209 717 9681105 567 926 590 2280 1402 10796
8453460 682 2251 3309 6407 1796 4043 1140 4566| 1500] 29999




220

9.1.3 Clusters within full range subspaces

The input clusters are as follow:

Table XXVI
Input Clusters
Clusters Size dimensions Points
1 15 4,97,102,104,114,138,182,189,200,206,210,217,218,271,295 961
2 100 2,4,12,13,16,19,20,24,27,37,45,47,48,53,54,56,57,58,60,62,63, 2217

64,65,66,68,70,76,81,85,86,94,95,97,98,100,102,104,106,108,
114,118,119,122,123,125,129,140,147,150,151,158,167,174,175,
180,183,187,188,194,195,197,198,199,200,201,203,204,205,206,
207,210,213,217,221,224,226,227,228,231,233,236,239,242,244,
247,251,253,257,264,266,268,269,272,275,278,280,285,294,295,298
3 150  1,2,3,4,5,6,8,9,10,11,12,13,16,17,19,20,21,23,24,27,29,31,32,35,36,37, 1288

39,42,43,45,46,47,48,49,50,51,52,53,54,56,57,58,60,63,64,66,68,71,76,
77,80,81,82,83,84,85,86,88,89,90,92,93,97,98,99,102,104,105,107,108,
112,114,115,116,119,122,124,125,127,128,129,131,134,136,137,140,
141,142,144,147,148,150,151,152,153,159,162,164,166,168,170,174,

| 175,176,178,182,184,185,187,188,190,191,194,197,200,203,205,206,
208,212,213,217,219,220,222,225,228,232,234,237,238,242,244,251,
253,254,255,256,260,267,273,278,279,280,285,287,288,289,290,295

4 200 1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27, 5388

28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,
52,53,54,56,57,58,60,61,62,63,64,65,66,67,68,69,70,71,73,74,75,76,77,
78,79,80,82,83,85,86,88,89,90,92,93,94,96,98,101,102,107,108,109,110,
111,113,114,116,117,120,121,123,124,127,130,132,135,136,137,140,142,
144,146,149,150,151,156,157,160,161,162,164,165,167,170,171,172,173,
175,178,181,182,183,184,185,187,188,189,192,194,195,197,201,202,203,
207,209,210,211,213,214,216,217,220,221,222,225,227,230,233,234,237,
238,240,242,243,244,245,248,254,255,256,258,261,262,264,265,266,267,
268,269,271,273,274,276,278,280,282,283,284,285,286,287,288,289,291,
292,293,295,296,299



221

* Table XXVII

Input Clusters (cont.)

Clusters Size dimensions Points

5 50 1,2,3,6,7,9,10,11,12,14,17,19,22,27,29,31,32,34,35,41,43,45,47,49,51,52, 3810
56,57,59,60,66,68,71,75,81,84,90,92,93,121,128,133,191,199,207,225,
236,260,285,296

6 75 1,2,3,6,7,9,10,11,12,14,16,17,21,22,27,29,31,32,34,38,41,43,44,45, 4679
47,49,51,53,55,56,59,60,66,67,68,70,71,72,75,76,78,79,80,81,82,84,
89,99,112,117,121,125,126,128,129,143,146,152,165,168,189,199,
214,227,228,241,245,246,247,248,256,271,273,284,300

7 250  All dimensions except for 50, 54, 55, 56, 57, 62, 66, 70, 86, 88, 93, 95, 651
99, 104, 119, 120, 121, 123, 124, 126, 133, 150, 151, 159, 179, 180, 182,

186, 192, 194, 196, 213, 215, 219, 223, 224, 234, 240, 249, 258, 262, 263,
267, 269, 272, 273,274, 277, 287, 300

8 275 All dimensions except for 50, 59, 88, 99, 150, 169, 178, 180, 185, 202, 4255
208, 214, 215, 218, 219, 224, 233, 236, 244, 251, 255, 270, 274, 280, 294

9 10  2,10,21,22,31,58,79,110,129,173 1624

10 30 2,7,10,20,21,31,59,73,79,97,106,110,114,122,129,138,154,162,182, 3628
190,207,217,228,229,238,239,243,244,257,284



222

The following results are obtained when the external parameter p = 13.

Table XX VIII
Contingency table

[o29 0 o 0 0 0o o0 o o o
02216 0 0 0 0 0 0 1 0 0 2217
0 01288 0 0 0 0 0 0 0 0 1288
0 0 05388 0 0 0 0 1 0 Of 5389
0 0 0 03810 0 O 0 0 0 0 3810
0 0 0 0 04679 0 0 0 0 0 4679
0 0 0 0 0 0 651 0 0 0 0 651
0 0 0 0 0 0 04255 0 0 0 4255
32 1 0 0 0 0 0 01622 3628 1500 6783
| 9612217 1288 5388 3810 4679 651 4255 1624 3628 1500 30001




223

The following results are obtained when the external parameter p = 6.

Table XXIX
Contingency table

_ Clusters e
N e - —
| o211 0o o o o o 2 o o o =223
0 21287 0 0 0 0 0 0 0 0 1289
05124 0 0 0 0 0 0 1 5125
03797 0 0 0 0 0 1 3798
193 04605 0 0 0 0 0 4798
0 0 6494253 0 0 0 4902
0 0 0 0 01608 0 0 1608
0 0 0 0 0 0 3590 0 3591
71 13 74 2 0 16 38| 1498 1721
| 9612217 1288 5388 3810 4679 651 42551624 3628| 1500 30001




224

9.2 Fuzzy C-means results

The number of clusters in input data sets was 10 and number of input data was 10000
and we increased dimension of data set as follow: 5, 10, 20, 30, 50 and 75. Therefore,
we had 6 data sets in our test.

The input clusters and the results with 5S-dimensional data sets:

Table XXX

Input Clusters

Clusters  dimensions
1,2,3,4
1,2

1,23
1,23
1,2,3,4
1,2,3,4,5
1,2
1,234
1,234
1,2

o

O 0 NN NN A& W N

i
[—4



Table XXXI

Contingency table

~ loutiier| Sum
: O 88 0 0 0 058 178 38 909
98 53 0 0 0 0 3¢ o0 o0 83 53 321
| 63 5 0 1231472 0 20 O o 8o 1763
0 33 26 0 0 0 0 o0 473 471 579
~ 11 18 59 28 0 0 0 560 110 42| 831
| 10 32 22 15 0 0 29 0 702 255 46| 1111
54 0 49 0 0 0 16 0 0 398 36 553

50 0113 0 0 17 0 746 439 100| 1465

« O 0 9 0 01191 o0 0 0 100, 9 1309
10 | 2 0 23 0o o0 0310571 o0 184 49 1159
LSum 258 215 188 367 1472 1191 429 5712589 2220|  500] 10000

The input clusters and the results with 10-dimensional data sets:

225



226

Table XXXII

Input Clusters

Clusters  dimensions
1,2,3,
1,2
1,2,3
1,2,3
1,234
1,2
1,2,3
1,2,3
1,234
1,2

e 0 9 NNt R W N e

[y
]

Table XXXIII

Contingency table

jor| Sum

4 15 55 0 112
13 26 4 59 0 145 13| 284
5 12 0 13 0 30 1 o 74

65 221 91 266 433 704 75
27 276 4 414 550 964 69

6 17 0 23 0o 7 3 3 3 5 131
41 71 77 48 0 260 24 35 18 29| 610
187 406 263 88 01648 113 665 208 126 192 3896
| 22 25 1 29 0 62 5 0 6 10 4 164
16 1 6 4 0 30 2 0 6 1 5 71

| 3861070 446 957 9833969 303 672 378 336 500| 10000

49 77 99( 2080
56 86/ 132 2578

N~ © o o o o of




The input clusters and the results with 20-dimensional data sets:

Table XXXIV
Input Clusters
Clusters dimensions
1 1,2,3,4,5,6,7
2 1,2,34,5.6
3 1,2,3,4,5,6,7,8
4 1,2,3,4,5,6,7
5 1,2,3,4
6 1,2,3,4,5
7 1,2,3,4
8 1,2,3,4,5
9 1,2,3,4
10 1,2,3,4
Table XXXV
Contingency table

303

18

0 0 492

0 0 0 4 0 4

| 1851523 5 0 084 122 239 3918

l o o o 0 0 1 0 1

0 0 0 0 0 0 0 0

56 0 7 115 22 52 2 o 520 471 379

0 0 2 3 0 195 2 6| 255

0o 0 0 0 0 0 O 0 0 0 0

48 0 437 66 7 2042516 117 489 741 183 4808

| 21 0o 17 23 o 16 17 4 o 31 15 144
3331523 466 421 247 3842535 5602061 971| 500| 10001

227



The input clusters and the results with 30-dimensional data sets:

Table XXXVI

Input Clusters

Clusters  dimensions
1,2
1,2
1,2
1,2
1,2,3
1,2
1,2
1,2
1,2
1,2,3

O R N9 N N R W N

i
<

Table XXX VII

Contingency table

14 676
8 11 14 14 23 15 132 4 41 6 10 278
390 17 21 77 30 64 408 40 112 7| 43| 858
79 19 41 121 51 75 501 48 85 10| 56| 1086
6 48 18 34 13 60 316 5 86 18 28 632
31 5 19 40 43 38 245 10 16 20| 24| 491
6 234 50 89 17 50 445 56 320 11| 59 1337
64 58 67 76 79 78 593 22 152 32 70| 1291
43 25 4 45 29 58 389 34 115 19 41| 802
87 117 32 112 36 74 700 30 220 28] 84 1520

.| 375 895 280 687 377 6014405 3001354 226 500 10000

228



The input clusters and the results with 50-dimensional data sets:

Table XXXVIII
Input Clusters
Clusters  dimensions

1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34,35,36,37

| 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41

3 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 26,
27,28,29,30,31,32,33,34,35,36,37,38

4 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43

5 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37

6 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23.24,25 26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42

7 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23.24,25 26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47 48

8 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44.45

9 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46

10 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 24,25,26,

27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47 48

229



Table XXXIX

Contingency table

"~ Clusters

o | lc)ufﬁér
k788 10

Sum

O O O O O ol

| o o o
| 24915021379 446 714
1] o 0o o o 0o 0 o 0
92 0 0 3321791 47 0 01348 0
0o 0 0 0 0 0 0 0 0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

© ® N o o B o N =T/

0
0
0
0
0
0
364

136

O O O = O OoOf

6253

3746

341 15921379 7791791 154 469 9331348 714

500

10000

230



The input clusters and the results with 75-dimensional data sets:

Clusters

Table YXL

Input Clusters

Dimensions

231

1

10

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23.24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42, 43,4445 46,47 ,48
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 24 25,26,27,28,29,30,

31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23.24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,



232

Table XLI

Contingency table

S utlier| Sum
7 8 9 |

0 0o 0 0 o0 0
0 o 0 0 o0 0
0 0o 1 0 0 1
0 0 0 0 0 0 0
5 693 225 270 0 01797 196 3620
o 0o 0 o 0o o o o o o
0 0 720 210 1431201 698 0O 304 4248
o 0 0 0 o0 o0 o o o 213
o 0o 0 o o o o o o o
o o o o o o0 1 0o o o o 1

179962131 415 693 720 435 4151201 6981797 _ 500| 10001

93 K-means results

We didn’t experimented k-means clustering methods on 300-dimensional data sets
because only 5 dimensions is enough to show that k-means isn’t suitable for clustering
data with subspace clusters. The input clusters and results with 5-dimensional data sets

where each cluster have different subspaces are as follow:



233

Table XLII

Input Clusters

Clusters dimensions Points

1 1234 258

2 1,2 215

3 1,2,3 188

4 1,2,3 367

5 1,2,34 1472

6 1,2,3,4,5 1191

7 1,2 429

8 1,2,3,4 571

9 1,2,34 2589

10 1,2 2220

Table XLIII

Contingency table
_loutlier| sum
77 2 0 20725 0 22 0 0 0 35 8%
0 7 0 42 747 0 0 0 o0 44 840
0 48 24 0 0 O 0 0 643 48 763
0 30 80 0 0 O 0 0 595 58 763
019 0 0 0 0 O0 0 o0 518 39 576
0 7 02 0 0 64 0 0 0 111 478
0 59 0 0 0 O0 0136 0 52 1477
1l o 2 0 0 0 0122295 0 273 48 740
1181 24 20 0 0 0221276 0 0 33 764
0 17 55 0 01191 0 01223 191 32| 2709
| o o o0 0o 0o o o0 0 0 O 0 0
258 215 188 367 14721191 429 57125892220 500| 10000




234

The input clusters and the results with 5-dimensional data sets where each clusters have

the same subspaces are as follow:

Table XLIV

Input Clusters

Clusters dimensions Points
1 1,2,3,4,5 956
2 12345 476
3 1,2,34,5 740
4 1,2,34,5 1613
5 1,2,34,5 376
6 1,2,3,4,5 926
7 1,2,3,4,5 447
8 1,2,34,5 987
9 1,2,3,4,5 1242

10 1,2,34,5 1736



Table XLV
Contingency table
.. c*u‘d’ters . ,l@utlierl Sum
8 4 8 8 7 8B 9 10 !
01607 0 0 0 0 0 3 20 1630
0 o0 0o o o0 o0 o 182 182
0 0 0 0 0 O 0 39 515
740 0376 0 0 O 0 o 48 1164
0 0 0 0 0 0 0 o 35 991
0 0 0 0 0 01242 o0 95 1337
0O 0 0 O 097 0 o0 25 1012
0 0 0926 ©0 0 0 o 27 o953
0o 6 0 0 o0 0 01733 11| 1750
0 0 0 0447 0 0 o 18 465
| 0 0 0 0 O O 0 0O 0 0
y | 956 476 7401613 376 926 447 987 12421736] 500{ 9999

235



[1]

[2]

[3]

[7]

[8]
[9]
[10]
[11]

[12]

REFERENCES

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in
Knowledge Discovery and Data Mining. AAAI Press/MIT Press, 1996. '

Bradley, P.S. Data Mining as an Automated Service, p.1-13 Advances in
Knowledge Discovery and Data Mining: 7th Pacific-Asia Conference, PAKDD
2003. Proceedings, Editors: K.-Y. Whang, J. Jeon, K. Shim, J. Srivastava
(Eds.), Springer-Verlag Heidelberg, Seoul, Korea, April 30 - May 2, 2003

Kantardzic Mehmed, Data Mining: Concepts, Models, Methods, and
Algorithms, John Wiley & Sons, IEEE Press 2003

Becher Jonathan D., Berkhin Pavel, Edmund Freeman, Automating
Exploratory Data Analysis for Efficient Data Mining, KDD 2000, ACM,
Boston MA, 2000

Schurmann, J. Pattern Classification. A unified view of statistical and neural
approaches, John Wiley & Sons, New York, NY 1996

Zhengxin, Chen., Data Mining and Uncertain Reasoning: An_integrated
approach, New York, John Wiley& Sons, 2001

Agrawal, R. Srikant., Fast algorithms for mining association rules in large
databases, Proc International Conference on Very Large Databases, pp. 478-
499. Santiage, Chile: Morgan Kaufmann, Los Altos, CA, 1994

Witten, Ian H., Frank, Eibe. Data Mining: Practical machine learning tools
with Java implementations, San Francisco, Morgan Kaufmann, 2000

Padhraic Smyth. Clustering using Monte Carlo cross-validation, in Knowledge
Discovery and Data Mining, pages 126-133, 1996

Object Management Group (OMG), Common Warehouse Metamodel (CWM)
Specification, version 1.1, p.12-1, 12-114, http://www.omg.org/cwm/

Jurgen Lind, MASSIVE: Software Engineering for Multiagent Systems,
German Research Center for AI (DFKI), Saarbriicken, Germany, 1999

Wermer Eric, Cooperating agents: a_unified theory of communication and
social_structure, Morgan Kaufmann Series In Research Notes In Artificial
Intelligence: Distributed artificial intelligence: vol. 2 archive, San Francisco,
CA, US, 1990




(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

237

Klusch, Matthias., Lodi, Stefano., Moro, Gianluca, The role of agent in
Distributed Data Mining: Issues and Benefits, Proceedings of the IEEE/WIC
International Conference on Intelligent Agent Technology, IEEE Press 2003

Java Community Process, Java Specification Request 73: Java Data Mining
(JDM), version final, http://www.jcp.org/en/jsr/detail?id=73

Yuxiao Li, George Benwell, Peter Whigham, Nick Mulgan, An Agent-oriented
software engineering paradigm and _the design of a new generation of spatial
information system, SIRC 2000 — The 12th Annual Colloquium of the Spatial
Information Research Centre, University of Otago, Dunedin, New Zealand,
December 10-13th 2000

Paul Clements, Felix Bachmann, Leh Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, Judith Stafford, Documenting Software Architectures:
Views and Beyond, Addison Wesley, 2002

Kargupta, H., Hamzaoglu, 1., Stafford, B. Scalable, Distributed Data Mining
Using An Agent Based Architecture, Proceedings of Knowledge Discovery
And Data Mining. Eds: D. Heckerman, H. Mannila, D. Pregibon and R.
Uthurusamy. p. 211-214, AAAI Press, 1997

H. Kargupta, B. Park, D. Hershberger and E. Johnson, Collective data mining:
a new perspective toward distributed data mining, In H. Kargupta and P. Chan
(eds.) Advances in Distributed and Parallel Knowledge Discovery, AAAI Press
1999.

S. Bailey, R. Grossman, H. Sivakumar, and A. Turinsky. Papyrus: a system for
data mining over local and wide area clusters and super-clusters. In Proc.
Conference on Supercomputing, page 63. ACM Press, 1999

Salvatore Stolfo, Andreas L. Prodromidis, Shelley Tselepis, Wenke Lee, Wei
Fan, JAM: Java agents for Meta-Learning over Distributed Databases, in Proc.
KDD-97, PAGES 74-81, Newport Beach, California, USA, 1997.

Brian Henderson-Sellers and Paolo Giorgini, Agent-Oriented Methodologies,
Idea Group Publishing, 2005 '

Joseph P. Bigus, Jennifer Bigus, Constructing Intelligent Agents with Java: 4
Programmer's Guide to Smarter Applications, John Wiley & Sons, 1997

KIF web site, http://logic.stanford.edu/kif/kif. html

PMML web site, http://sourceforge.net/projects/pmml




238

[25] RDF web site, http://www.w3.org/RDF/

[26] Core J2EE Patterns — Data Access Object, http://java.sun.com/blueprints/
corej2eepatterns/Patterns/DataAccessObject.html

[27] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is ‘“nearest
neighbors” meaningful?, in Proc. 7" Int. Conf. Database Theory, 1999, pp.
217-235

[28] S. Goil, H. Nagesh, and A. Choudhary. Mafia: Efficient and scalable subspace
clustering for very large data sets, Technical Report CPDC-TR-9906-010,
Northwestern University, 2145 Sheridan Road, Evanston IL 60208, June 1999

[29] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Al,qorzthms
New York: Plenum, 1981.

[30] Yonggiang Cao and Jianhong Wu, Dynamics of Projective Adaptive Resonance
Theory Model: The Foundation of PART Algorithm, IEEE TRANSACTIONS
ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

[31] Duda, Richard O., Hart, Peter E., Hart, David G. Stork, Pattern Classification,
Second Edition, Wiley, 2000

[32] L.Breiman, J.H., R.A. Olshen, C.J. Stone. Classification and Regres.s;z'on Trees,
Wadsworth, Belmont, CA, 1984.

[33] S. Cost and S. Salzberg. A4 weighted nearest neighbor algorithm for learning
with symbolic features. Machine Learning, 10:57-78, 1993

[34] FIPA-OS toolkit, kttp.//fipa-os.sourceforge.net,

[35] Quinlan J.R. C4.5:Programs For Machine Learning, Morgan Kaufmann, San
Mateo, CA, 1993

[36] FIPA web site, ittp:/fipa.org

[37] Padhraic Smyth. Clustering using Monte Carlo cross-validation, in Knowledge
Discovery and Data Mining, pages 126-133, 1996

[38] Steven P. Fonseca, Martin L. Griss, Reed Letsinger, Agent Behavior
Architectures A MAS Framework Comparison, AAMAS'02, ACM, Bologne,
Italy, 2002

[39] Brian Henderson-Sellers and Paolo Giorgini, Agent-Oriented Methodologies,
Idea Group Publishing, 2005




[40]

(41]

[42]

[43]

[44]
[45]
[46]
[47]
[48]

(49]

[50]

[51]

239

PASSI web site, http://mozart.csai.unipa.it/passi/

Publicly Auvailable Agent Platform Implementations,
http://www.fipa.org/resources/livesystems.html

Core J2EE Patterns - Data Access Object,

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.htm
|

W3C. (1999). Resource Description Framework. (RDF), Model and Syntax
Specification. W3C Recommendation 22-02-1999. Available online
http.//www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Searle, J.R., Speech Acts. Cambridge University Press, 1969.

Communicative Act Library Specification. FIPA Document #FIPA00037.
Available online Attp.//www.fipa.org/specs/fipa00037/

Resource Description Framework (RDF) Schema Specification 1.0, World
Wide Web Consortium, 2004. Available online http:/www.w3.org/TR/rdf-
schema/

JADE Online documentation, http://jade.tilab.com/doc/

Jade Tutorial and Primer, hitp://www.iro.umontreal.ca/~vaucher/Agents/Jade/
Ontologies.htm

Kenneth J. McGarry, Stefan Wermter and John Maclntyre, Knowledge
Extraction from Radial Basis Function Networks and Multi-layer Perceptrons,
University of Sunderland, IEEE, Sunderland, England, 1999

C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park, Fast
algorithms for projected clustering, in Proc. SIGMOD’99, 1999, pp.61-72

Lance Parsons, Ehtesham Haque, Huan Liu, Subspace Clustering for High
Dimensional Data: A Review, SIGKDD Exploration, Volume 6, Issue 1 pp. 90-
105, 2004 '






