
 

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
UNIVERSITÉ DU QUÉBEC 

 
 
 
 
 

MANUSCRIPT-BASED THESIS PRESENTED TO 
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 

 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR 
THE DEGREE OF DOCTOR OF PHILOSOPHY 

Ph.D. 
 
 
 
 
 

BY 
Clément CHION 

 
 
 
 
 

AN AGENT-BASED MODEL FOR THE SUSTAINABLE MANAGEMENT OF 
NAVIGATION ACTIVITIES IN THE SAINT LAWRENCE ESTUARY 

 
 
 
 
 

MONTREAL, MAY 5 2011 
 

 Clément Chion, 2011 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Cette licence Creative Commons signifie qu’il est permis de diffuser, d’imprimer ou de sauvegarder sur un 

autre support une partie ou la totalité de cette œuvre à condition de mentionner l’auteur, que ces utilisations 

soient faites à des fins non commerciales et que le contenu de l’œuvre n’ait pas été modifié. 

 



 

BOARD OF EXAMINERS 

 
THIS THESIS HAS BEEN EVALUATED 

 
BY THE FOLLOWING BOARD OF EXAMINERS 

 
 
 
 
 
 
Mr. Jacques-André Landry, Thesis Supervisor 
Département de génie de la production automatisée à l’École de technologie supérieure 
 
 
Ms. Lael Parrott, Thesis Co-supervisor 
Département de Géographie à l’Université de Montréal 
 
 
Mr Robert Hausler, President of the Board of Examiners 
Département de génie de la construction à l’École de technologie supérieure 
 
 
Mr Robert Sabourin, Examiner 
Département de génie de la production automatisée à l’École de technologie supérieure 
 
 
Mr. Arnaud Banos, External Examiner 
Research Scientist at Géographie-Cités-UMR 8504, Paris 
 
 
 
 
 
 

THIS THESIS WAS PRESENTED AND DEFENDED 
 

BEFORE A BOARD OF EXAMINERS AND MEMBERS OF THE PUBLIC 
 

APRIL 29 2011 
 

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 





 

FOREWORD 

 

When I decided to engage in my PhD project, I had thankfully no idea about what was lying 

ahead. At approximately the same time, I decided to practice seriously for long-distance runs. 

I had the brilliant feeling that training for long-distance races would lead me to improve 

some skills also needed to complete a PhD, including endurance, mental strength, 

perseverance, humility, toughness, and love for pasta. In fact, a marathon is a breeze! 

Running is a lonesome experience with performance on race day relying on one’s own 

preparation and pre-race meal. My PhD had the added social dimension, if not a true human 

experience of success depending on communication abilities, tact, extreme patience (I was 

not equipped with this one), regular questioning, and psychological resilience. Eventually, 

the value of the gained experience has no parallel. 

 

Despite not having anticipated all these differences with a PhD when I started my physical 

workout, after a few years I discovered another similitude between these two kinds of races, 

worth mentioning. At approximately ¾ of the race, hitting a wall while running out of vital 

resources (food in one case, money to buy food in the other), a demon came whispering to 

me “What are you doing here?” During a marathon, you are lucky if a roadside spectator, 

noticing you are whiter than your T-shirt and understanding you are probably about to faint, 

in which case he would feel guilty, starts cheering, allowing you to limp away. On the other 

hand, when the completion of your PhD appears to be within the realm of fiction, relatives 

and friends come into play to support and carry you until you cross the finish line. 

 

To conclude this foreword, which appears to be the only section without red-penciling, I 

would like to mention several principles that have been driving me all along this five-year 

project. These can be seen as a personal code of conduct. I tried to stimulate the collaboration 

between researchers, promoting the sharing of high-quality data for the benefit of knowledge 

discovery. I also tried to bridge the gap between some isolated research areas since I strongly 

believe in multidisciplinarity (which may sound like a cliché or obviousness for someone 

studying complex systems but is far from easy in practice). In the context of an applied 
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project, I paid a lot of attention to the concrete needs and constraints of project partners, 

while trying to generalize my contributions and make them useful to a larger community of 

researchers. Finally, I exerted much effort and awareness to be collaborative and transparent 

in all situations, sharing unpublished analyses with researchers to reduce the delays inherent 

to the scientific publication process and promote knowledge diffusion. Not claiming that I’ve 

always succeeded in sticking to these principles, I certainly tried with all my might and will 

continue to keep them in mind as a line of conduct. 
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UN SYSTÈME MULTI-AGENTS POUR FAVORISER L’UTILISATION DURABLE 
DE L’ESTUAIRE DU SAINT-LAURENT PAR LES ACTIVITÉS DE NAVIGATION 

 
Clément CHION 

 
RÉSUMÉ 

 
Les gestionnaires de ressources naturelles dans les aires protégées se doivent d’encadrer les 
activités humaines susceptibles de menacer la santé et/ou l’intégrité des écosystèmes à 
protéger. Ces systèmes physiques où des humains interagissent avec des ressources naturelles 
sont appelés systèmes socio-écologiques (SSE) et possèdent les caractéristiques de systèmes 
complexes adaptatifs (p. ex. coévolution). L’investigation du SSE constitué des activités de 
navigation et des baleines interagissant dans le parc marin du Saguenay–Saint-Laurent 
(PMSSL) et la zone de protection marine Estuaire du Saint-Laurent au Québec, Canada, ainsi 
que sa représentation sous forme d’un système multi-agents sont présentées dans cette thèse. 
Le simulateur implémenté, appelé 3MTSim (pour Marine Mammal and Maritime Traffic 
Simulator), est conçu pour aider les gestionnaires des aires marines protégées dans leur 
objectif de réduire la fréquence et l’intensité des cooccurrences bateau-baleine dans le Saint-
Laurent et incidemment les risques de collision.  
 
Les connaissances extraites des analyses de données (relatives aux activités de navigation à 
moteur et à voile), existantes ou recueillies dans le cadre de ce projet, ont justifié de 
concentrer l’effort de modélisation sur les excursions commerciales (incluant les excursions 
d’observation de baleines), les navires de la marine marchande et les paquebots de croisière. 
Les analyses ont permis pour la première fois de dresser un portrait complet des activités de 
navigation sur l’ensemble de la région où les baleines se rassemblent en grand nombre 
pendant la saison estivale. Entre autres résultats, une analyse quantitative a abouti sur une 
estimation précise du temps total de navigation dans chaque écosystème marin de la région. 
Cette étude a permis d’identifier les zones utilisées intensivement par les activités de 
navigation, telles que l’embouchure de la rivière Saguenay et le secteur au large de Les 
Escoumins. 
 
Plusieurs campagnes d’acquisition de données menées dans le cadre de ce projet ont permis 
d’identifier des facteurs (p. ex. abondance et distribution des espèces de baleines, lacunes de 
gestion, décisions des compagnies et des capitaines) favorisant une dynamique collective des 
« croisières aux baleines » indésirable, tant du point de vue de la conservation que de 
l’expérience des visiteurs du PMSSL. La rationalité limitée a été choisie comme cadre 
conceptuel pour étudier la prise de décision des capitaines, et plus généralement comprendre 
la dynamique du SSE des « croisières aux baleines » au complet. L’éventail des stratégies 
utilisées par les capitaines de « croisières aux baleines » a été décrit et les résultats de cette 
investigation vont conduire à un ensemble de recommandations relatives à la gestion durable 
de ces activités à l’intérieur et aux alentours du PMSSL. 
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Les résultats des investigations de terrain et de l’analyse des données sur la navigation ont 
alimenté le processus de construction du modèle, incluant une représentation explicite de la 
prise de décision des capitaines de « croisières aux baleines ». Les analyses ont démontré que 
les navires de la marine marchande et les paquebots de croisière suivent des routes 
prévisibles avec peu de variabilité. Par conséquent, une approche de modélisation complexe 
basée sur le comportement des pilotes a été écartée au profit d’une approche statistique, 
justifiée par la quantité importante de données historiques de grande qualité disponibles pour 
ces deux composantes. 
 
L’approche de modélisation par patrons (« pattern-oriented modelling ») s’est avérée 
performante pour sélectionner un modèle valide des excursions d’observation des baleines 
lorsque couplé à un modèle à l’échelle de l’individu des mouvements de baleines. Les 
simulations effectuées ont confirmé que les capitaines d’excursion privilégient l’observation 
de quelques rares espèces de rorquals (p. ex. baleines à bosse), boudant l’espèce la plus 
abondante, à savoir le petit rorqual. Par conséquent, des simulations ont été effectuées avec 
3MTSim visant à quantifier l’impact d’un changement de stratégie décisionnelle des 
capitaines d’excursions, tant sur la nature de l’exposition des baleines aux bateaux (intérêt 
pour la conservation) que sur le contenu des excursions (intérêt commercial). Les résultats 
ont montré que des capitaines virtuels soucieux d’éviter les zones d’observation 
surencombrées et/ou cherchant à augmenter la diversité des espèces observées entraînait des 
gains statistiquement significatifs relativement aux aspects de conservation sans affecter les 
caractéristiques importantes des excursions. Enfin, les bonnes performances du modèle des 
déplacements de bateaux assurent une utilisation sécuritaire de 3MTSim comme un outil 
d’aide à la décision pour la gestion, dans la mesure où ses limites sont comprises et 
considérées dans l’interprétation des résultats. 
 
 
Mots-clés : système multi-agents, trafic maritime, système socio-écologique, aires marines 
protégées, conservation, mammifères marins, fleuve Saint-Laurent, rationalité limitée, prise 
de décision, modélisation orientée par patrons, interactions bateau-baleine. 
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NAVIGATION ACTIVITIES IN THE SAINT LAWRENCE ESTUARY 

 
Clément CHION 

 
ABSTRACT 

 
Natural resource managers of protected areas are concerned with the management of human 
activities potentially harmful to ecosystems’ health and/or integrity. These systems where 
human interact with natural resources are called social-ecological systems (SES) and possess 
the characteristics of complex adaptive systems (e.g. co-evolution). The SES of navigation 
activities and whales interacting within the Saguenay–St. Lawrence Marine Park (SSLMP) 
and the projected St. Lawrence Estuary Marine Protected Area in Quebec, Canada, has been 
investigated and modelled using the agent-based modelling (ABM) technology: The resulting 
Marine Mammal and Maritime Traffic Simulator (3MTSim) is designed to support marine 
protected area managers in their effort to reduce the frequency and intensity of boat-whale 
co-occurrences within the St Lawrence Estuary and mitigate the risks of vessel strikes. This 
dissertation presents the building process of the 3MTSim’s boat ABM.  
 
The knowledge extracted from analyses of gathered and collected data relative to all forms of 
sailing and motorized navigation supported the decision to first focus on the modelling of 
commercial excursions (including whale-watching trips), cargo ships, and cruise liners. Data 
analyses allowed, for the first time, to draw a comprehensive portrait of navigation activities 
throughout the region where whales congregate in great numbers during the summer season. 
Among others, a quantitative analysis led to an accurate estimate of the total navigation time 
within each separate ecosystem of the region. This study identified areas intensively used by 
maritime traffic such as the mouth of the Saguenay River and offshore Les Escoumins.  
 
Several field campaigns carried out in the context of this project allowed to link some 
undesirable collective patterns of whale-watching excursions (regarding both whale 
conservation and SSLMP visitors’ experience) with contextual factors including whale 
species’ abundance and distribution, management gaps, and companies and captains’ 
decisions. The bounded rationality framework was chosen to investigate captains’ decision 
making and more generally the dynamics of the whole whale-watching SES. A portrait of the 
decision strategies followed by whale-watching captains has been drawn. The results will 
lead to a set of recommendations regarding the sustainable management of whale-watching 
excursions in and around the SSLMP. 
 
Results from field investigations and data analyses have fed the model building process, 
including an explicit representation of the whale-watching captains’ decision making. Data 
analyses revealed that cargo ships and ocean liners tend to follow predictable routes with low 
variability. Consequently, a complex behavioural modelling approach was deemed 
unnecessary in favour of a statistical approach, justified by the large volume of high-quality 
historical data available for both components.  
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The pattern-oriented modelling approach proved appropriate for selecting a valid model of 
whale-watching excursions. Model simulations confirmed that whale-watching captains do 
favour the observation of a few rare rorqual species (e.g. humpback whales), leaving aside 
the most abundant one, namely the minke whales. Therefore, 3MTSim was run to quantify 
the impact that whale-watching captains changing their decision strategy could have on both 
whale exposure to boats (conservation concern) and excursion content (commercial concern). 
It was found that captains willing to avoid crowded observation sites and/or seeking to 
increase the diversity of species observed could have statistically significant benefits 
regarding conservation issues without affecting important features of their excursions. 
Finally, the convincing performance of the 3MTSim’s boat ABM ensures its safe use as a 
decision-support tool for management insofar as model limitations are understood and 
accounted for in the results and discussion. 
 
 
Keywords: agent-based model, maritime traffic, social-ecological system, marine protected 
area, conservation, marine mammals, St. Lawrence river, bounded rationality, decision 
making, pattern-oriented modelling, boat-whale interactions. 
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INTRODUCTION 

0.1 Context 

0.1.1 Human impact on ecosystems 

Whether it be on the ground, underwater, or up in the air, humans have colonized all 

dimensions of our living environment (Vitousek et al., 1997). Human expansion comes with 

a variety of problems for ecosystems exposed to anthropogenic activities. Deforestation, 

overfishing, and overgrazing are some of the visible consequences of human over-

consumption or mismanagement of natural resources observed worldwide (Dietz, Ostrom 

and Stern, 2003; Halpern et al., 2008; Rapport, Costanza and McMichael, 1998; Vitousek et 

al., 1997). 

  

The human impact on ecosystems is easily detectable in the case of harvest activities (e.g. 

clearcutting in forestry). However, some apparently non-consumptive activities have proved 

to have insidious impacts on ecosystems in the long-term, invisible in the short-term. Widely 

known examples of such long-term costs include watercourse slow poisoning by poorly 

treated wastewater, ozone layer depletion caused by aerosols, and global warming induced by 

greenhouse gas emissions. At a more local scale, this is also the case of negative impacts of 

human-wildlife interactions, either deliberate (e.g. wildlife viewing activities) or fortuitous 

(e.g. roadkills). Effects of repeated interaction between human beings and wildlife have 

proved deleterious for numerous exposed populations (e.g. Bejder et al., 2006; Bugoni, 

Krause and Petry, 2001; Forman and Alexander, 1998; Wilson et al., 2006) leading some 

conservation biologists to argue that human disturbance should be considered a part of the 

predation risk (Frid and Dill, 2002). 

  

The context of the present project is precisely related to the study of human-wildlife 

interaction, specifically the case of boat-whale encounters within the St Lawrence River 

Estuary and the Saguenay River in Québec, Canada. Thereafter, details about this specific 

issue are considered. 
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0.1.2 Boat-whale interactions 

Human impact on marine ecosystems is occurring worldwide in many forms (Halpern et al., 

2008). In this section, the issue of boat-whale fortuitous (i.e. collisions and noise) and 

deliberate (i.e. whale-watching) interactions potentially harmful to marine ecosystems are 

discussed. 

 

0.1.2.1 Collisions 

Ship strikes are the first type of interactions that come to mind due to their visible, dramatic 

outcomes (Jensen and Silber, 2004; Laist et al., 2001). Accurately quantifying the number of 

collisions with whales and the impact at the population level is challenging. Ship strikes are 

not systematically reported or even noticed by mariners and several factors certainly lead to 

an underestimation of these events (Laist et al., 2001). For instance, 40% of the endangered 

North Atlantic right whale (Eubalaena glacialis) mortality is attributable to collisions with 

boats, with a detection rate of carcasses as low as 17% for this population (Kraus et al., 

2005). This suggests that ship strikes are more common than previously thought, which could 

compromise the long-term recovery of some exposed endangered whale populations (Kraus 

et al., 2005; Laist et al., 2001). Serious and lethal injuries mostly imply ships longer than 

80 m (Laist et al., 2001), with approximately 80% of mortality at speeds greater than 15 

knots (Vanderlaan and Taggart, 2007). Among the 11 whale species involved in collisions, 

the most reported are fin (Balaenoptera physalus), right, and humpback whales (Megaptera 

novaeangliae), although several biases apply to this portrait (Laist et al., 2001). 

 

Mitigation measures to decrease the risk of lethal injuries have been proposed (Vanderlaan 

and Taggart, 2007) and successfully implemented worldwide to reduce human induced 

mortality of the North Atlantic right whales (Vanderlaan and Taggart, 2009) and other 

marine mammal populations (e.g. Laist and Shaw, 2006). Ongoing scientific efforts occur in 

several regions to better characterize the collision issue and address it through mitigation 

measures (e.g. Betz et al., 2010; Panigada and Leaper, (in press); Williams and O'Hara, 

2010). The recent holding of a workshop dedicated to the reduction of the risk of collisions 
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between vessels and cetaceans (International Whaling Commission and ACCOBAMS, 2010) 

along with the guidance document recently published by IMO to minimize the risk of ship 

strikes (International Maritime Organization (IMO), 2009) demonstrate the importance of 

this issue worldwide. 

 

0.1.2.2 Noise 

Collisions do not represent the only navigation-related deleterious side effect on whale 

populations. Ship noise, one of the top-most contributors in background ocean noise with 

seismic exploration and sonars (Nowacek et al., 2007), is also a stressor for marine wildlife. 

Noise is of special concern for cetaceans that strongly rely on sound for communication and 

echolocation (Weilgart, 2007). Typically, large mysticetes (i.e. baleen whales such as blue, 

fin, minke, and humpback whales) use low frequencies (infrasonics) ranging from 10 to 

2000 Hz, whereas odontocetes (i.e. tooth whales such as belugas and sperm whales) use mid 

to high frequencies ranging from 1 to 150 kHz (Richardson et al., 1995). 

 

Boat noise is mostly generated by propellers and by hull vibration induced by inside 

machinery. Noise frequencies mostly depend on the size of the boat with the general rule that 

larger (resp. smaller) boats produce more sounds in low (resp. high) frequencies (Richardson 

et al., 1995). 

 

The response of whales to noise falls into three categories (Nowacek et al., 2007): 

1) Behavioural: change in surfacing, diving, and heading patterns, as well as 

abandonment/disruption of an activity. 

2) Acoustic: change of type or timing of vocalization, masking effect. 

3) Physiological: increased stress level, change in heart rate, temporary and permanent 

threshold shifts (i.e. hearing damage). 

 

Whale exposure to noise has been shown to be related to other long-term effects such as 

stranding and habitat abandonment in some cases (Weilgart, 2007). 



4 

Whale-watching activities have also been associated with noise disturbance. Erbe (2002) 

studied the impact of whale-watching proximity to killer whales and found that a zodiac with 

twin 150-hp engines (low-average power) at 51 km/h (~27.5 knots) in a calm sea is audible at 

16 km underwater and has the potential to mask whale calls at up to 14 km, inducing 

behavioural changes at 200 m and provoking temporary and in some cases permanent 

hearing damages after sufficiently long expositions. Despite evidence that noise can cause 

major damage to whales, it is not yet possible to establish acceptable levels of noise exposure 

for each of the 84 species of whales (Nowacek et al., 2007), of interest for management 

purpose. 

 

0.1.2.3 Whale-watching 

According to Hoyt (2007), “Whale watching is defined as tours by boat or air or from land, 

with some commercial aspect, to see or listen to any of the 84 species of whale, dolphin, or 

porpoise”. Whereas the first commercial whale-watching excursions can be traced back to 

1955 in San Diego, its dramatic rise coincides with the post-1986 moratorium on commercial 

whaling by the International Whaling Commission (IWC). From an economic point of view,  

whale-watching is a non-consumptive alternative to whaling bringing in more than 

US$1.25 billion a year to more than 500 local communities of some 87 countries all around 

the world, getting more than 10 million tourists closer to marine mammals (Hoyt, 2001; 

2007). A study requested by the Australian government, released in 2009, concluded that 

“whales are worth more alive than dead” (Syneca Consulting Pty Ltd, 2009). 

 

Despite the interesting nature of whale-watching as an alternative to commercial whaling, 

two decades of research have begun to reveal the hidden cost of this non-consumptive 

activity (Baker and Herman, 1989; Lusseau and Bejder, 2007). Although short-term 

behavioural changes (e.g. change in diving pattern) have been noticed in targeted marine 

mammal populations in many places all around the world due to whale-watching (e.g. 

Constantine, Brunton and Dennis, 2004; Corkeron, 1995), establishing a link between short-

term individual effects and long-term population-wide impact is challenging (Corkeron, 
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2004). However, several researches already came up with conclusions of long-term 

deleterious effects of boat-based whale-watching activities on targeted populations (Bejder et 

al., 2006; Lusseau, Slooten and Currey, 2006; Williams, Lusseau and Hammond, 2006). 

Long-term effects on marine mammal populations include habitat abandonment (Lusseau, 

Slooten and Currey, 2006), changes in the whales’ energetic budget (Williams, Lusseau and 

Hammond, 2006), and decrease in their reproductive success (Bejder et al., 2006). These 

results have crucial implications: Sustainability of whale-watching can no longer be taken for 

granted and management efforts must be done to identify and minimize its impact (e.g. whale 

disturbance) while maximizing its benefits (e.g. tourist educative experience, payoff for local 

communities) (Higham, Bejder and Lusseau, 2009; Hoyt, 2007). 

 

0.1.3 Study area 

0.1.3.1 Portrait 

The study area encompasses the portion of the St Lawrence River Estuary from Baie-Saint-

Paul to Betsiamites on the North shore, and from Saint-Roch-des-Aulnaies to Métis-sur-Mer 

on the South shore along with the Saguenay Fjord (cf. Figure 0.1). An exceptional 

oceanographic phenomenon occurs in the region: The upwelling of cold salty water driven by 

tides in the Laurentian channel meets with the fresh and warmer waters from the Saguenay 

River at its mouth, between Tadoussac and Baie-Sainte-Catherine (Simard, Lavoie and 

Saucier, 2002). This favours the primary productivity of plankton, leading to high 

concentrations of pelagic fish (e.g. capelin) and euphosiids (e.g. krill), making it an attractive 

summer feeding ground for marine mammals (Simard and Lavoie, 1999; Simard, Lavoie and 

Saucier, 2002). 

 

This region is an important habitat for several whale species of critical status according to the 

Committee on the Status of Endangered Wildlife in Canada (COSEWIC): The resident St. 

Lawrence beluga (Delphinapterus leucas) is “threatened” (COSEWIC, 2010), and the 

migratory species North Atlantic blue whale (Balaenoptera musculus) and fin whale 

(Balaenoptera physalus) are respectively listed “endangered” (Beauchamp et al., 2009) and 
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of “special concern” (COSEWIC, 2010). In total, up to 13 marine mammal species can be 

found in the St. Lawrence Estuary which is known to be a summer feeding ground for 

migratory species (Saguenay–St. Lawrence Marine Park, 2010). Apart from the blue, fin, and 

beluga whales, two whale species, namely the minke whale (Balaenoptera acutorostrata) 

and humpback whale (Megaptera novaeangliae), complete the list of the regular visitors: The 

present study is solely concerned with these five species. Therefore, the generic term whales 

used in the context of this project will refer to any or all of these five species, if no other 

mention. Several species of seals, porpoises and dolphins add to the impressive biodiversity 

of marine mammals present in the area but will not be considered in the current project, 

either because navigation does not represent an identified threat to them or because of a lack 

of data. 

 

 

Figure 0.1  Study area. 
Map produced in collaboration with Samuel Turgeon (Univ. de Montréal) 
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The St. Lawrence River is a major commercial seaway linking the Atlantic Ocean with the 

Great Lakes with approximately 6000 ships taking this route every year, thus passing through 

the study area. During the summer season (May to October) when whales are abundant in the 

Estuary, some 23 000 ferry trips, 13 000 commercial excursions, 9200 pleasure craft outings, 

and 3100 shipping trips take place in the study area for a total of more than 51 000 

movements in locations where whale mostly congregate (see Chion et al., 2009 in 

APPENDIX I for a complete description). The region attracts more than 1 million tourists a 

year (Gosselin and Priskin, 2009; Gosselin, 2006), being considered by specialists as one of 

the best places in the world to observe whales in the wild (Scarapaci, Parsons and Lück, 

2008). 

 

Added to other environmental issues such as water pollution (e.g. Lebeuf et al., 2004; 

Martineau et al., 2002; Michaud and Pelletier, 2006), maritime traffic is posing serious 

threats to the conservation of marine ecosystems. To address the urgent need to protect the 

St. Lawrence beluga whale population now reduced to approximately 1000 individuals, a 

long process of public pressure followed by consultations by Parks Canada and Parcs Québec 

led to the creation of the Saguenay–St. Lawrence Marine Park (SSLMP) in 1998. This 

national park is jointly managed by the governments of Canada (jurisdiction related to body 

of water) and of Quebec (jurisdiction related to lands) (Guénette and Alder, 2007), and 

covers more than 1245 km2 (Figure 0.1). In 2002, based on scientific studies (Michaud and 

Giard, 1997; 1998), the first version of the Marine Activities in the Saguenay–St. Lawrence 

Marine Park Regulations was adopted with law enforcement by a team of park wardens 

(Parks Canada, 2002). In 2004, the Department of Fisheries and Oceans (DFO) identified a 

6000 km2 area buffering the SSLMP as a priority for the establishment of a Marine Protected 

Area (MPA) (Savaria et al., 2003; Tecsult Environnement Inc., 2000) under the Oceans Act 

(Oceans Act, 1996). The establishment of the proposed St. Lawrence Estuary Marine 

Protected Area (SLEMPA), identified in Figure 0.1, is still a work in progress. 
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0.1.3.2 A social-ecological system 

The complex system composed of boats, whales, and institutions in the study area falls into 

the category of social-ecological systems (SESs) (Ostrom, 2009) sometimes referred to as 

coupled human and natural systems (CHAN) (Liu et al., 2007) or human-environment 

systems (Clarke, 2002). This section presents the concepts related to the study of SESs along 

with a description of the studied system according to Ostrom’s framework (Ostrom, 2007; 

2009). 

 

Figure 0.2 is an illustration of the core components that make up SESs, after Ostrom’s 

general framework developed to study the sustainability issue of such systems (Ostrom, 

2009). In the rest of this dissertation, the SES of navigation, whales, and related institutions 

in both the SSLMP and the SLEMPA will be labelled the 3MT-SES standing for marine 

mammal and maritime traffic social-ecological system. 

 

 

Figure 0.2  Core subsystems in a social-ecological system. 
Reproduced from Ostrom (2009) 
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Using the terminology presented in Figure 0.2, the 3MT-SES can be described as follows: 

• Resource system (RS): Two contiguous MPAs (SSLMP + SLEMPA). 

• Resource units (RU): Marine mammals including the five whales species of interest (cf. 

section 0.1.3). 

• Governance systems (GS): Parks Canada and Fisheries and Oceans Canada federal 

institutions propose the regulations (after public consultations) and ensure law 

enforcement over the body of water. 

• Users (U): All navigation activities interacting with whales either deliberately (i.e. whale-

watching activities, commercial or private) or fortuitously (e.g. shipping industry, ferries, 

service boats…). Fishing activities, whether recreational or commercial, are marginal in 

the area so they are not considered in this study. 

 

These four subsystems affect and can be affected by smaller and larger socioeconomic and 

political settings (S) and ecosystems (ECO). The following examples for the 3MT-SES can 

be given: 

• S: For instance whale-watching tourism demand can be influenced by the international 

economic context (e.g. the 2008 economic crisis). National-level laws (e.g. Oceans Act), 

fundamental principles (e.g. free-enterprise principle), and government guidelines (e.g. in 

2007, due to poaching issues in Northern national parks, all Parks Canada’s wardens and 

rangers were temporarily relieved of law enforcement duties) can also interfere with 

(favour or impede) conservation efforts at the local level. 

• ECO: The downstream Gulf of St. Lawrence ecosystem is directly connected to the 

Estuary. All whales present in the area went through the Gulf at one point in time. Some 

of the whale’s preys found in the Estuary (e.g. krill) partly come from the Gulf’s primary 

productivity, influencing in turn the abundance of whale species feeding on them (e.g. 

blue whale). Moreover, since many whale species feeding in the area are migratory, the 

recovery of certain stocks may have an impact on the number of individuals visiting the 

region. For instance, the recovery of the North Atlantic humpback whale population 

coincides with an increase in the number of observations of this species in the area since 

the early 2000’s (Stevick et al., 2003). 
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The four subsystems (RS, RU, GS, and U) are interconnected with each other via such 

interactions (I) as, for instance, whale disturbance by boats, information exchange between 

whale-watching captains, or water use conflict between shipping and whale-watching 

industries. Outcomes (O) either social (e.g. mariners’ compliance level to the regulations) or 

ecological (e.g. collisions with whales) resulting from these interactions can be measured or 

tracked to a certain extent. 

 

There exist numerous feedback loops that can affect the dynamics of SESs, identified in 

Figure 0.2 by unidirectional arrows stemming from O towards the four subsystems. For 

instance, the recurrence of undesirable behaviours (O) from whale-watching captains (U) in 

the 1990’s partly contributed to the justification of the SSLMP creation in 1998 (GS) and to 

regulations in 2002 (Parks Canada, 2002) to limit abuses. Resource-wise, habitat 

abandonment could hypothetically be observed in whale populations exposed to disturbance 

if energetic costs would reveal greater than the energetic benefits drawn from foraging preys 

in the area. The complex set of feedback loops driving the dynamics of an SES must be 

understood to diagnose correctly some undesirable outcomes (Liu et al., 2007). 

 

0.1.3.3 Special concerns 

Both SSLMP and SLEMPA aim to ensure the conservation of marine mammals including 

their habitat. Several sources of concern have been identified in relation with the maritime 

traffic in the area. The threatened St. Lawrence beluga (~1000 individuals) and endangered 

Northwest Atlantic blue whale (~250 mature individuals) populations do not show any sign 

of recovery despite 30 years of conservation efforts (Beauchamp et al., 2009; Hammill et al., 

2007). It is challenging and perhaps futile to try identifying a sole factor responsible for the 

stagnation or decrease in whale populations since cumulative impacts apply. Noise, 

collisions, entanglement in fishing gears, and water pollution are commonly identified as 

major threats for the St Lawrence whales (Beauchamp et al., 2009; Hammill et al., 2007; 

Savaria et al., 2003). 
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Currently, the only speed restricted area within the study region is 25 knots in the SSLMP 

(no limit elsewhere). However, at 25 knots, any collision would be lethal for a struck whale 

(Vanderlaan and Taggart, 2007). In the St. Lawrence Estuary, at least 46 collisions (including 

non-lethal) have been recorded (reports and carcass necropsies) between 1993 and 2009 

(Parks Canada, Group for Research and Education on Marine Mammals-GREMM, Réseau 

québécois d'urgences pour les mammifères marins-RQUMM, unpublished data) with an 

average of approximately 3 detected collisions a year: Fin whales account for 43% of the 

collisions, beluga whales for 23%, with 28% for the other rorqual species altogether. 

Moreover, collision scars have been observed on at least 5% of the individual blue whales 

observed in the St Lawrence waters (Beauchamp et al., 2009). Since evidence suggest that 

these data reflect only a fraction of all collision events, mitigation measures are needed to 

protect whale populations for which the loss of any individual is critical to their recovery 

(Beauchamp et al., 2009; Kraus et al., 2005) and to prevent healthy populations from 

becoming impacted critically. 

 

Regarding the St. Lawrence beluga, whereas specialists consider that a major factor 

explaining the lack of recovery in the population is related to their polluted habitat (16% 

primary cause of death due to carcinoma vs. 6% for collisions) (Hammill et al., 2007, p. 6), 

they agree that collisions, boat noise and disturbance are actual threats that must be mitigated 

(Demers, Bouchard and Beauchamp, 2010). However, several studies have highlighted the 

need to mitigate whale disturbance by boats in the St. Lawrence (Lesage et al., 1999; 

Michaud and Giard, 1997; 1998). Other studies on anthropogenic noise within the St. 

Lawrence led to the identification of zones where whales are subject to high levels of such 

noise (Simard, Lepage and Gervaise, 2010; Simard, Roy and Gervaise, 2008). Despite the 

regulations enforced by the SSLMP wardens (Parks Canada, 2002), the high number of 

whale-watching excursions in the region (Chion et al., 2009; Michaud et al., 1997) and the 

frequency of their close encounters with belugas are adding to the list of stressors exerted on 

targeted populations (Beauchamp et al., 2009). 
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In summary, large ship strikes seem to occur mainly with large whales (rorquals) and to a 

lesser extent with belugas (possibly due to the difficulty to detect them) in the study area. 

Detected collisions with belugas have been reported mostly for small commercial fast-

moving vessels in areas where they congregate. Marine protected area managers from both 

Parks Canada Agency and DFO came to the conclusion that, whether or not collisions affect 

belugas in a major way, the number of co-occurrences should be reduced and boat speed 

lowered to decrease whale exposure, whatever the species. They expressed some needs 

regarding the management of navigation activities, detailed thereafter. 

 

0.1.3.4 Management needs 

Canadian marine protected areas (MPAs) function under the adaptive management paradigm 

obliging managers to update their policy according to the most recent scientific 

advancements and knowledge. Incidentally, SSLMP managers are updating the 2002 

regulations on marine activities at sea (Parks Canada, 2002), with the revised version 

expected in 2012. For their part, SLEMPA managers aim to gain a better understanding of 

the risk of ship strikes with marine mammals within the proposed MPA, in preparation of 

their upcoming policymaking agenda. 

 

These management concerns have resulted in the following four explicit needs expressed by 

the managers of both MPAs: 

1) Assess the effects of increased whale-watching boat traffic, particularly expanding the 

capacity of the Tadoussac marina, at the mouth of the Saguenay. 

2) Assess the effects of rerouting maritime shipping vessels to the southern channel (i.e. 

southeast of Île Rouge) in the St. Lawrence so as to avoid the SSLMP area where 

rorquals congregate in large numbers to feed. 

3) Assess the effects of the proposed zoning plan on traffic in the SSLMP and on the 

collisions potential between boats and whales. 

4) Evaluate the effects of different shipping vessel speed scenarios and changes in maritime 

traffic lanes on the probability of collisions with whales. 
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For each of these four questions, several scenarios need to be tested; therefore the tool 

developed in this project should offer this functionality. Moreover, to assess correctly the 

performance of alternative management scenarios, some metrics need to be developed to 

facilitate comparisons. According to the concerns expressed about whale conservation, the 

exposure of whales to boats in the area must be measurable. Whale exposure to boat is 

illustrated in Figure 0.3 with the concept of spatiotemporal co-occurrence between a boat and 

a whale (co-occurrence and encounter will be used interchangeably to refer to this concept). 

Several variables can be tracked to characterize such interactions in space and time, including 

the following: 

• Type of boat involved in the encounter. 

• Whale species involved in the encounter. 

• Minimal distance between the boat and the whale during the encounter. 

• Boat speed at the minimal distance during the encounter. 

• Duration of the encounter closer than a given distance. 

• Localization of the encounter. 

• Overall risk of whale mortality in case a collision occurs (by species). 

• Overall number or/and total time of encounters. 

• Distribution of encounter durations by whale individual. 
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Figure 0.3  Illustration of the concept of boat-whale spatiotemporal co-occurrence (or 
encounter) at a distance d < dref , with dref a reference distance fixed for a given analysis. 

 

Therefore, the development of a spatially-explicit simulator of boat and whale movements 

and interactions has been proposed to address the needs expressed by MPA managers. The 

present thesis is part of this modelling endeavour. 

 

0.2 Thesis goal 

SESs can be modelled using the agent-based modelling (ABM) technique (Bonabeau, 2002; 

Janssen and Ostrom, 2006b; Parrott, 2008). A prototype of whale-watching activities in the 

SSLMP was developed using this approach prior to the current project (Anwar et al., 2007). 

This prototype was a proof of concept addressing the issue of cooperative vs non-cooperative 

behaviour of whale-watching captains with related impacts on whales. The prototype was not 
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based on behavioural data either for whales or for captains, nor was it validated: hence, it 

could not be used to address the above-mentioned management needs. 

 

Incidentally, the ultimate purpose of this thesis project is to implement a spatially explicit 

agent-based model (ABM) of the critical maritime traffic components coupled with an 

individual-based model (IBM) of the St. Lawrence whales (Lamontagne, 2009), suitable to 

support MPA managers by shedding light on the four aforementioned issues (section 0.1.3.4). 

The larger project of which this work is a part is named the Marine Mammals and Maritime 

Traffic Simulator (3MTSim) project, described in CHAPTER 1.  

 

The development of any simulation model (such as an ABM) of a real system dedicated to a 

real-life application is much more than programming (Sargent, 2005). It requires acquiring an 

in-depth understanding of the system to be modelled as illustrated by the modelling process 

in Figure 0.4. 

 

 

Figure 0.4  Overview of the modelling process. 
Reproduced from Sargent (2005) 
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The development of the ABM of boat movements presented thereafter followed the process 

presented in Figure 0.4 (Sargent, 2005). Valid data lie at the center of the modelling process. 

 

Analyses of valid data about the system to model (i.e. the 3MT-SES) lead to the development 

of a conceptual model that must be valid (i.e. relying on reasonable theories and 

assumptions). Then, the model can be implemented from the conceptual model according to 

a set of specifications. Model verification must lead to the correspondence between the 

conceptual model and the effective computerized model. Finally, the operational validity 

related to the modelling purpose is checked through analyses made on the simulation results. 

An overview of the problematic and methodology associated with these different steps is 

presented thereafter with an in-depth discussion in section 1.3 (in CHAPTER 1). 

 

0.3 ABM problematic and methodology 

Several challenges underlie the building process of an ABM dedicated to the management of 

a SES. These challenges belong to one of the following three broad categories: 

1) Build a valid model. 

2) Ensure model acceptance and trust by the future end-users.  

3) Technology transfer. 

 

Each of these issues must be dealt with appropriately to give the model/simulator the 

opportunity to be used for management purposes. Conversely, a failure to tackle one of them 

may jeopardize the final application of the model. A description of general objectives and 

methodology to follow in order to tackle these issues is presented in Table 0.1. The specific 

challenges and the methodology followed to build the 3MTSim’s boat model are discussed 

later on in section 1.3 (CHAPTER 1). 
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Table 0.1 Overview of the objective and methodology relative to the building process of a 
model useful for management 

 

Problematic  Objectives (challenges) Methodology 

Building a valid 

model 

UNDERSTAND THE SYSTEM • Identify key people and 
institutions. 

• Gather existing knowledge 
about the studied system. 

• Gather existing and available 
data. 

• Conduct appropriate analyses. 
• Identify missing data, plan 

field campaigns complying 
with ethical rules, and extract 
needed knowledge. 

1) Gain an in-depth understanding 
of the system’s dynamics. 

2) Elicit major interactions 
between system’s entities, 
driving the dynamics. 

3) Identify important factors 
affecting the system’s 
dynamics. 

IMPLEMENT THE MODEL • Ensure that the level of 
complexity induced by the 
conceptual model is 
manageable (appropriate level 
of abstraction). 

• Identify patterns of the 
system’s dynamics through 
data analysis. 

1) Build a valid conceptual model 
Acquire modelling skills. 

2) Represent adequately human 
decision making in the model. 

3) Use an appropriate validation 
framework. 

Ensuring model 

acceptance by 

the future end-

users 

1) Work in collaboration to 
develop a common 
understanding of the system’s 
dynamics.  

2) Stimulate end-users’ active 
participation in modelling 
decisions (including interface). 

3) Ensure that end-users’ needs are 
well understood and accounted 
for. 

• Communication and 
agreement of the concepts 
underlying the model (through 
regular meetings). 

• Communication and 
transparency about model’s 
limitations. 

• Avoid modelling’s technical 
details and jargon. 

• Share a common vocabulary. 

Technology 

transfer 

DELIVER A USABLE SOFTWARE • Favour a cross-platform 
programming language (e.g. 
Java, Lisp). 

• Clean all unnecessary details 
from the model’s interface. 

• Use a versioning system to 
facilitate the management of 
model updates. 

• Organize training sessions 
with end-users. 

1) Design a user-friendly and 
ergonomic model interface. 

2) Ensure cross-platform 
compatibility on basic operating 
systems. 

3) Build easily runnable installers. 
4) Maintenance and debugging. 
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Some of the challenges presented in Table 0.1 must be tackled simultaneously during the 

whole process. The first objective is to build a valid model able to address managers’ needs. 

As previously discussed, data play a prominent role in the modelling process (cf. Figure 0.4). 

Collaborations for data sharing may take a while to be effective and should not be taken for 

granted until an agreement has been reached. Most of time, available data have not been 

collected for modelling purposes. Moreover, there could be some issues never investigated so 

far but crucial to address the management needs. Consequently, additional data may have to 

be collected in the field to meet this need. Once a fairly good understanding of the target 

system has been gained via data analyses, a conceptual model can be built followed by the 

programming phase. 

 

The best model could be useless if managers do not feel comfortable with the idea of using it. 

This highlights the importance of information sharing with end-users during regular 

meetings. The degree of end-users’ involvement in the modelling process will have an impact 

on their willingness to use it.   

 

Finally, if the model is to be hosted on the end-users’ systems, attention should be paid to 

technology transfer early in the process. Some software-related aspects such as the 

compatibility with various operating systems, visualization aesthetics, and a user-friendly and 

ergonomic interface could be necessary. 

 

0.4 Outline 

The 3MTSim simulator has been jointly developed by Philippe Lamontagne (whale model) 

(Lamontagne, 2009) and the author, Clément Chion, (boat model) with the contribution of 

several professors and students from École de techonologie supérieure (Montréal), Université 

de Montréal, University of Calgary, and non-academic partners: An updated list of 

contributors can be found in (Parrott, 2010). This manuscript-based thesis dissertation 

presents the key steps leading to the implementation of the 3MTSim’s boat model as part of 

the 3MTSim project, fully described in CHAPTER 1. This dissertation is organized as 
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follows. CHAPTER 1 is a description of the 3MTSim project with a focus on the 3MTSim 

simulator itself.  CHAPTER 1 also presents the specific objectives, problematic, 

methodology, and contributions relative to the work presented within this dissertation. 

CHAPTER 2 is a literature review on agent-based modelling (ABM) and human decision 

making in cognitive sciences. The integration of cognitive science results for ABM building 

is one of the challenging tasks addressed in this work. CHAPTER 3 (manuscript submitted to 

the peer-reviewed journal Ecology and Society) presents an in-depth analysis of the social-

ecological system of whale-watching activities in the SSLMP using an original framework, 

namely bounded rationality. More details on maritime traffic in the SSLMP region can be 

found in APPENDIX I (report submitted to Parks Canada). CHAPTER 4 (to be submitted to 

the peer-reviewed journal Journal of Cognitive Engineering and Decision making) presents 

some key elements of whale-watching captains’ decision making resulting from an interview 

campaign led in 2007; these findings served to fuel both the whale-watching model 

development and its validation (cf. CHAPTER 6). CHAPTER 5 (conditional acceptance 

subject to revisions in the peer-reviewed journal International Journal of Geographic 

Information Science) presents an original path-planning algorithm called RayBaPP (standing 

for Ray-Based Path-Planning algorithm) developed to solve the pathfinding problem of 

captain agents. RayBaPP is a faster and more capable alternative to the classical A* (Hart, 

Nilsson and Raphael, 1968) that was used within the prototype ABM (Anwar et al., 2007). 

CHAPTER 6 (accepted in the peer-reviewed journal Ecological Modelling) presents the 

selection process of a valid model of whale-watching excursions based on the comparison of 

patterns (real vs. simulated). CHAPTER 7 (accepted for publication in the peer-reviewed 

book entitled Whale-watching, Sustainable Tourism, and Ecological Management) is an 

example of how the 3MTSim simulator can be used. CHAPTER 8 presents the details 

relative to the building of the shipping model. Finally, a conclusion and a description of 

limitations and future works end this dissertation. 

 





 

CHAPTER 1 
 
 

THE 3MTSIM PROJECT 

This chapter is aimed at giving a description of the global 3MTSim project of which the work 

presented in this dissertation is an important component. Since the work presented in this 

dissertation is entirely related to the 3MTSim project, the specific problematic and 

methodology underlying this thesis along with author’s contributions to the 3MTSim project 

are also presented herein. 

 

1.1 Partners and contributors 

The 3MTSim project has been partially funded by the NSERC strategic project program 

(2006-2009). It is a collaborative project mainly involving the following institutions: 

• Three universities in charge of developing the simulator: 

1. École de technologie supérieure (Montreal). 

2. Université de Montréal. 

3. University of Calgary. 

• Two federal department/agency, for whom the simulator is designed for management 

purposes, interchangeably referred to as partners and end-users: 

1. The Canadian department of Fisheries and Oceans (DFO): In charge of the proposed 

St. Lawrence Estuary marine protected area (SLE-MPA) whose limits are given in 

Figure 0.1. 

2. Parks Canada agency: Managing the Saguenay–St. Lawrence marine park (SSLMP) 

whose limits are given in Figure 0.1. 

• Two non-governmental organizations (NGOs) interested in the simulator and data 

analysis are also referred to as partners and end-users: 

1. The Group for research and education on marine mammals (GREMM): The GREMM 

“is dedicated to scientific research on the St. Lawrence marine mammals and 

education for the conservation of the marine environment”. 
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2. The Mériscope Marine Science Centre: The Mériscope “is a registered non-profit 

organization dedicated to research on marine mammals and conservation of the 

marine environment”. Its goal “is to promote field research and education in marine 

science and to raise public awareness about the effects of climate change and other 

human impacts on the marine environment”. 

 

For the complete up-to-date list of people and institutions involved in the 3MTSim project 

along with their detailed contributions, visit the website at the following URL: 

http://www.geog.umontreal.ca/syscomplex/3MTSim/.  

 

1.2 General description 

1.2.1 Deliverables 

The acronym 3MTSim, standing for marine mammals and maritime traffic simulator, is the 

name of the whole system presented in Figure 1.1. The 3MTSim system encompasses two 

main components and additional sub-components delivered to partners, which are: 

1) A spatially explicit ABM of maritime traffic and marine mammals’ movements occurring 

in the study area called the 3MTSim simulator or 3MTSim (global) model. It was 

implemented using Java 1.5 with Repast Simphony ABM libraries. 

2) A georeferenced database (topmost box in Figure 1.1) integrating the available and 

acquired data on maritime traffic, whale movements, and spatial characteristics of the 

environment (e.g. bathymetry). This geospatial database served for the 3MTSim model 

calibration and validation, along with various additional analyses. It was set up using the 

ArcGIS’s Personal GeoDatabase (.mdb) database structure. 

 

Additionally, two post-treatment sub-components were also built to process 3MTSim model 

output: 

1) A toolbox designed for ArcGIS software v.9.2 called 3MTSim ArcToolbox: This toolbox 

encompasses several functionalities to map model’s raw output, compute densities, and 
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create histograms relative to whales, boats, and their co-occurrences (cf. Figure 0.3). It 

was implemented using Python 2.4. 

2) A java-based stand-alone module for data visualization and basic analyses. 

 

For the sake of clarity, it is important to mention that the term 3MTSim alone refers to the 

global model (i.e. 3MTSim simulator). 

 

 

Figure 1.1  The 3MTSim system. 
Reproduced from Parrott et al. (2010) 
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1.2.2 Data 

As for any ABM dedicated to management, data are the cornerstone of the 3MTSim project. 

They are summarised in Table 1.1. Only the main datasets related to maritime traffic are 

discussed thereafter. For a further description, the interested reader will be referred to 

(Parrott et al., 2010). 

 

Table 1.1 Summary of data used in the 3MTSim project. 
Adapted from (Parrott et al., 2010) 

 

Description Year Source 
ENVIRONMENTAL DATA 

> Bathymetric and navigational charts  - 
Canadian Hydrographic 
Service 

MARINE MAMMAL DATA 

> 32 000 marine mammal sightings from 
whale watching boats (AOM database) 

1994-09 
GREMM, Parks Canada, 
DFO 

> 80 whales (fin, blue and beluga) tracked by 
VHF (~ 380 hours) 

1994- 08 
GREMM, Parks Canada, 
DFO 

> 140 focal follows (fin, blue, minke & 
humpback whales) tracked from land based 
stations (~100 hours of tracking for 
individuals followed for more than 30 
minutes) 

2008-09 
C.C.A. Martins (Ph.D 
candidate,  

> Areas of high residency (AHR) of the St. 
Lawrence beluga whales 

2001-05 
GREMM, modified from 
(Lemieux Lefebvre, 2009) 

> 547 baleen whales sightings from transect 
surveys 

2006-09 
GREMM, Parks Canada, 
DFO 

> Marine mammal habitat limits (from the 
Fish Habitat Management Information 
System) 

- DFO 

MARITIME TRAFFIC DATA 

> AOM database: 2100 whale-watching 
excursions tracked by GPS (1-minute 
resolution) with contents sampling 
including the nature of activities (10-minute 
resolution) 

1994-09 
GREMM, Parks Canada, 
DFO 
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Description Year Source 

> Monitoring of arrival/departure from the 
Baie-Sainte-Catherine quay 

2007 Parks Canada 

> PREVISION_INNAV database: Predicted 
trips of maritime traffic 

2003-07 Canadian Coast Guard 

> AIS_INNAV database: Real-time 
automatic information system tracking of 
maritime traffic (1-minute resolution) 

2007 Canadian Coast Guard 

> Seven semi-structured interviews with 
whale watching captains (following an 
excursion with the interviewee) 

2007 
Clément Chion (thesis 
author) 

> One semi-structured interview with two St. 
Lawrence pilots (commercial shipping) 

2008 
Clément Chion (thesis 
author) 

> Interviews and patrols with park wardens 2008-09 
Clément Chion (thesis 
author) 

> 15 hours of VHF radio monitoring 2008 
Clément Chion (thesis 
author) 

> AOM-transect dataset (15 excursions of 
small boats departing from Tadoussac): a 
systematic sampling of marine mammal 
observation integrated within the AOM 
protocol. 

2009 
GREMM, Parks Canada, 
DFO 

> 180 questionnaires filled out by pleasure 
craft captains  

2006 
Daniel Gosselin (Parks 
Canada) 

> 26 track sticks (GPS coordinates with a 1-
minute resolution) of pleasure craft 
excursions 

2006 
Daniel Gosselin (Parks 
Canada) 

 

1.2.2.1 Maritime traffic 

Information about maritime traffic in Canadian waters is managed by the Canadian Coast 

Guard (CCG) via the INNAV system (Information on Navigation System). INNAV is a 

powerful integrated system that centralizes and archives real-time (e.g. radar) and prevision 

data about ship trips in Canadian waters. As illustrated in Figure 1.2, INNAV classifies 

vessels in 14 broad classes (first code letter in Figure 1.2) for a total of 78 subcategories, 

according to their main activity at sea. Two separate datasets extracted from INNAV’s 

archives were available: 
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1) The PREVISION dataset: This dataset contains all planned trips of ships greater than 

20 meters in transit in Canadian waters. The CCG has created a mesh of control points 

covering all Canadian waters, including ports, anchorages, and numerous key offshore 

locations. For each planned ship trip in the PREVISION dataset, the estimated time of 

arrival (ETA) and estimated time of departure (ETD) at each control point lying on the 

planned course along with boat activity (e.g. cargo unloading, transiting upbound) at 

these points are available; ETA and ETD at each mesh point are updated up to 6 hours 

before ship passage near the next CCG’s Marine Communication and Traffic Services 

(MCTS) centre on its route. Information such as the ship ID, company, type, size, 

maximum speed, draught, and cargo are also available in the PREVISION dataset. This 

dataset will be referred to as PREVISION_INNAV. 

2) Automatic Identification System (AIS) dataset: AIS system transmits data about the 

equipped ship to all AIS receivers at a given detection distance on every minute. CCG’s 

INNAV system receives these data and keeps them archived for 3 months, or more upon 

request (Daniel-André Delisle, INNAV manager, CCG, personal communication). Since 

May 2005, most ships (over 500 ton gross tonnage for non-international trips, and 150 

ton gross tonnage carrying at least 12 passengers or over 300 ton gross tonnage for 

international trips) navigating in Canadian waters have to be equipped with AIS 

transponders. AIS data contain such dynamic information as ship position with related 

time and speed at a 1-minute resolution, along with static information including the ship 

ID, company, type, cargo, length, draught, port of departure, and country flag transmitted 

every 10 minutes. This dataset will be referred to as AIS_INNAV.  

 

PREVISION_INNAV is an almost exhaustive count of the ship trips throughout the study 

area, from 2002 to 2007. AIS_INNAV is not exhaustive but contains the great majority of 

shipping-related trajectories in the St. Lawrence part of the study area, from March to 

November 2007. However, data are virtually absent in the Saguenay Fjord since the AIS 

signal is blocked by steep cliffs along the river. This is not a major flaw since the narrowness 

of the navigation corridor in the Saguenay induces a low spatial variability of ship routes. 

Moreover, ship speeds are estimated in the PREVISION_INNAV. 
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These two datasets were extensively used to draw an accurate portrait of navigation activities 

within the St. Lawrence Estuary (cf. APPENDIX I) and build the shipping model component 

of the 3MTSim simulator (cf. CHAPTER 8). 

 

 

Figure 1.2  INNAV list of codes used for vessel type. 
 

1.2.2.2 Commercial excursions 

Commercial excursions are mostly dedicated to whale-watching in the study area. These 

activities have been monitored since the mid-80s via the ongoing AOM project (Michaud et 

al., 1997). The current protocol used by the AOM monitoring program is in place since 1994. 

An overall description is given below. See (Michaud et al., 1997) for further details about the 

AOM protocol. 
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Each excursion is tracked by GPS (including position, speed, and bearing) with a 1-minute 

resolution. Additionally, the excursion content is sampled with a 10-minute resolution, with 

recordings including the following features: 

• Excursion activity: This mainly includes travelling, observing a pod of whale, observing 

landscape feature, observing pinnipeds or birds. 

• Species observed: This includes targeted animals (focal) and surrounding ones. 

• Number of animals by species in the surrounding (within 400m and 2000m). 

• Number of boats by category in the surrounding (within 400m and 2000m). 

• Visibility (distance) and sea state (wave height). 

• Comments relative to specific events. 

 

These data have been extensively analyzed during the investigation phase of the 3MT-SES 

(CHAPTER 3) and the building of the whale-watching model (CHAPTER 6). 

 

1.2.2.3 Ferries 

Data about ferry trips come from companies’ schedules available online, and from the 

INNAV system (cf. section 1.2.2.1). 

 

1.2.2.4 Yachting 

Among the major navigation activities in the area (with commercial excursions, maritime 

traffic, and ferries), yachting is the least monitored with few spatiotemporal data. The source 

of data available for the 3MTSim project comes from a survey conducted in 2007 by the firm 

SOM1 and Parks Canada (Gosselin, 2006). This survey was aimed at estimating the number 

of visitors in the SSLMP, thus including a special part dedicated to boater visitors (Gosselin 

et al., 2007). Pleasure crafts’ owners were joined in marinas where they were asked to fill in 

                                                 
 
1 http://www.som.ca/ 
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a questionnaire on their sailing habits. They were also proposed to use a track stick (similar 

to a GPS recorder) during there next outing. In total, 26 track sticks have been matched with 

a filled questionnaire. 

 

1.2.2.5 Data acquisition campaigns 

Several field campaigns were carried out to gain an understanding of human decisions 

underlying the navigation’s spatiotemporal patterns. Semi-structured interviews were always 

favoured since this format allows flexibility during the interview, along with the setting of a 

relaxed atmosphere. Finally, the monitoring of the public VHF radio channel allowed 

validating hypotheses regarding information sharing between boat operators. Additional 

shore- and boat-based (~30 excursions) observations with reports were made to construct and 

validate hypotheses. 

 

Seven interviews (for a total of 7 hours and 51 minutes) were conducted in summer 2007 

with whale-watching captains from seven different companies (out of nine approached) 

covering the main ports of the SSLMP with the goal of understanding how they make 

decisions at sea. All but one interview was conducted right after having taken part in an 

excursion operated by the interviewed captain: This gave the opportunity to clarify some 

abstract questions with concrete events having occurred during the excursion. After profiling 

questions (e.g. name, experience as a whale-watching captain, past companies), the main 

topics discussed during the interview were relative to goals and objectives, excursion 

planning, interactions with other boats, attitude in relation to the regulations, and influence of 

several factors such as weather conditions, species context (abundance and distribution), boat 

operated, and excursion time and duration.  

 

Regarding the maritime traffic (mostly shipping and cruise ships), as described later in 

section 8.1 (CHAPTER 8), expert pilots are in charge of large ships’ safe navigation 

upstream Les Escoumins (cf. Figure 0.1). In 2008, a 2-hour interview was then conducted 

with two pilots from the Corporation of Lower St. Lawrence Pilots (CLSLP) to understand 
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the key aspects of their decision making process along with the rules governing their 

interaction with boats and whales in the area. 

 

1.3 Problematic and methodology relative to the 3MTSim project 

According to the thesis goal stated in section 0.2, the problem entity (or system in Figure 0.4) 

to be modelled here is the 3MT-SES, so the development of the boat model has been fuelled 

by the literature on SESs (e.g. Janssen and Ostrom, 2006b). The problematic of this study 

along with the methodology followed to carry out the development of the ABM of boat 

movements are presented below. 

 

The simulator of maritime traffic to be built is the boat model subpart of the global 3MTSim 

simulator. An overview of the 3MTSim simulator is given in Figure 1.1 (dotted box in the 

middle). The boat model is connected to an IBM of whale movements (whale model in 

Figure 1.1) developed by Philippe Lamontagne (2009). As previously mentioned, the 

3MTSim model is spatially explicit, thus containing a representation of the environment 

structured in layers of information, similar to a Geographic Information System (GIS). In its 

current form, only boats react to whale presence but whales’ reaction to boats is expected to 

be introduced in the model at a subsequent development stage according to new data 

availability (Cristiane Albuquerque Martins, personal communication). 

 

The actual problematic of this project is to move from a proof of concept to an ABM that 

could be an informative tool for management issues. To do so, an ABM must be empirically 

based on accurate data (Janssen and Ostrom, 2006a). Adequate data must be used at different 

stages during the development of the maritime traffic simulator, as illustrated in Figure 0.4. 

In summary, data are necessary to: 

• Guide the modelling choices related to ABM implementation and calibration. 

• Elicit the critical drivers of system’s dynamics with suitable analyses. 

• Represent relevant human decisions. 

• Account for the determinants of critical human agents’ decisions. 
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• Elicit agents’ decision processes that produce observed outcomes, where relevant. 

• Validate the simulation outcomes with patterns (i.e. non-random variations of the 

system’s variables characterizing some aspect of its dynamics). 

 

According to the general modelling process presented in Figure 0.4, intermediary steps 

(along with challenges) leading to the building of the 3MTSim’s boat ABM are discussed 

below. 

 

1.3.1 Gathering maritime traffic data 

The maritime traffic in the study area has been classified into eight categories of activity, 

namely 1) commercial shipping of goods also called shipping (e.g. tankers, bulk carriers); 2) 

commercial cruise boats carrying passengers who spend at least one night onboard (e.g. The 

Queen Mary 2 ocean liner); 3) commercial excursions with no overnight stay (i.e. whale-

watching excursions and coastal tours); 4) private yachting; 5) service boats (e.g. coast guard, 

pilot boats, dredge, research); 6) ferries; 7) kayaks; and 8) other rare activities (e.g. 

commercial fishing, military). 

 

Spatiotemporal data are crucial to quantify maritime traffic and understand the patterns of 

use in space and time. No comprehensive database previously existed on maritime traffic in 

the region so that it had to be set up jointly with Samuel Turgeon, a research assistant in 

geography at Université de Montréal. Data were widespread among researchers and 

institutions so the first step was to locate them for acquisition either by collaboration or 

purchasing. 

 

1.3.2 Characterization of navigation activities 

This step is aimed at drawing an accurate portrait of the maritime traffic in the study area. 

For each navigation component, the characterization step encompasses the quantification of 

trips along with the identification of spatial patterns of use and temporal variability. Given 

the lack of data for the SLEMPA area and the predominance of documented boat-whale co-
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occurrences (cf. Figure 0.3) in the SSLMP, the investigation was mostly focused on this later 

area (cf. APPENDIX I). 

 

1.3.3 Conceptual models 

Model conceptualization is a mandatory step in modelling (cf. Figure 0.4). Given the results 

of maritime traffic data analyses and the availability of resources (time and money) for a 

field campaign dedicated to knowledge acquisition on navigation in the area, some 

conceptual choices had to be made in accordance with the MPAs management priorities (cf. 

section 0.1.3.4). Practically, the focus has been placed on three major components 

representing different modelling challenges, namely 1) commercial shipping; 2) commercial 

cruise boats; and 3) commercial excursions, including two distinct categories namely whale-

watching and coastal tours. A specific conceptual model is built for each of these 

components. Other components of the regional maritime traffic will be added in a subsequent 

phase of development, beyond the scope of the work presented herein. 

 

Analyses made on PREVISION_INNAV and AIS_INNAV 2007 datasets revealed little 

spatiotemporal variability for commercial shipping and cruises, as presented in APPENDIX 

I. Consequently, the modelling approach for these two components has been chosen to be 

purely statistical, as detailed later in CHAPTER 8. 

 

For commercial excursions in the SSLMP, the analyses revealed an important spatiotemporal 

variability for whale-watching trips as a result of the captains’ complex decision making 

processes (cf. APPENDIX I). It justified the need for an alternative modelling approach to 

that followed for the commercial shipping model. Therefore, a behavioural modelling 

approach based on captains’ decisions was chosen for the whale-watching category of 

commercial excursions (cf. CHAPTER 6). Commercial excursions devoted to coastal tours 

and landscape viewing revealed to be mostly planned trips with predictable spatiotemporal 

patterns. Consequently, the modelling approach for landscape viewing excursions is similar 

to that of shipping and cruise boats. 
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1.3.4 Elicitation of captains’ decision making 

The spatiotemporal dynamics of maritime traffic is the footprint of boat operators’ decision 

processes and outcomes. As mentioned in the previous paragraph, information about the 

decision making process of whale-watching captains is needed to build an accurate model of 

these excursions. To do so, as discussed in section 1.2.2.5, a survey campaign has been 

prepared following these steps: 

1) Define the key elements of the survey. This step includes the identification of the targeted 

population, the choice of the survey method, the justification of the approach, and the 

building of the survey material, in compliance with the goals of the campaign and the 

state-of-the-art in survey research. 

2) Ensure that the survey campaign complies with the rules of ethics in research. 

Preparation of an application for approval of the fieldwork campaign by both Research 

Ethics Committees of ÉTS and U. Montréal (cf. APPENDIX II). 

3) Plan the survey. This includes all the logistic from planning of the fieldwork in the 

region, to making contact with the target population by mail. 

4) Conduct the survey. Once authorizations are obtained from Universities and contacts with 

the population have been established successfully, the survey is ready to start. 

5) Interview transcription and analyses of verbatim. Qualitative analyses can finally be 

performed to extract the knowledge for which the field campaign was designed. 

 

Pilots from the CLSLP had to be met as well and an interview was obtained in summer 2008, 

following exactly the same process as for whale-watching captains.  

 

1.3.5 Dynamics of the 3MT-SES 

Whale-watching captains operating excursions in the study area are part of the 3MT-SES. 

Their decisions and actions at sea both affect and are affected by the other components of the 

system they are a part of. An in-depth investigation of the 3MT-SES components and their 

relations driving the observed dynamics is thus necessary to understand key elements of 

captains’ decisions and model them adequately. 
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On the other hand, pilots from the CLSLP in charge of shipping have the priority in the 

majority of interactions at sea. Consequently, they rarely need to change their behaviour in 

reaction to smaller boats. Interaction rules with other ships are regulated by the International 

Regulations for Preventing Collisions at Sea 1972 (COLREGS) (International Maritime 

Organization (IMO), 1972). 

 

1.3.6 Model implementation 

The technical specifications about model implementation are summarized below: 

• The model is implemented in Java language (1.5) as it enables cross-platform 

programming. 

• The Repast Simphony libraries (Argonne National Laboratory, 2008) are used to 

implement the ABM since performance for supporting spatially explicit models are good 

(Railsback, Lytinen and Jackson, 2006) and repast developers are actively providing 

online supports to a growing community of users (Argonne National Laboratory, 2008). 

The somewhat steep learning curve (i.e. initially low then increasing without bound) of 

Repast Simphony is counterbalanced by the high modelling flexibility. 

• Eclipse is used as the software development environment (SDE) as it already comprises 

an integrated development environment (IDE) and can come bundled with Repast 

Simphony libraries. 

• The ABM of maritime traffic must be merged with the IBM of whale movements 

developed by Philippe Lamontagne (2009) in a similar environment 

(Java 1.5+Eclipse+Repast). 

• The global simulator 3MTSim should ideally be executable on a standard desktop. 

 

1.3.7 Model verification 

Verification is part of the developer’s job. This step is aimed at verifying that the code 

actually produces what it is intended to, according to the valid conceptual model (Sargent, 

2005). It is a continuous process, which is done simultaneously as the code is growing. This 



35 

is referred to as Computerized model verification within the modelling process illustrated in 

Figure 0.4 (Sargent, 2005). 

 

1.3.8 Model validation 

Validating an ABM is a challenging task (Janssen and Ostrom, 2006a). Data validity lies at 

the center of the modelling process (cf. Figure 0.4): It is defined as “ensuring that the data 

necessary for model building, evaluation and testing, and conducting the model experiments 

to solve the problem are adequate and correct” (Sargent, 2005). However, data are rarely 

perfect and flaws need to be identified to take the best advantage of available datasets. 

 

Validation can take other forms. For instance, it was decided to put some important 

knowledge implemented within the model to the test of partner judgment, when their 

expertise was relevant (e.g. phase 3 in Table 4.1). This has the dual benefit of validating 

important model components while reinforcing end-users’ trust in the model. 

 

1.3.9 Model testing 

Although the completion of simulations relevant for management is beyond the scope of this 

thesis, an application of the simulator is proposed in CHAPTER 7. The model’s suitability to 

perform analyses for which it was built are also presented in (Parrott et al., 2010). 

 

1.4 Contributions to the 3MTSim project 

The author’s contributions to the 3MTSim project can be broadly split into technical, 

organizational, and communicational accounts. 

 

The main technical contributions of the author to the 3MTSim project are mostly related to 

the stages leading to the implementation of the 3MTSim’s boat ABM and the delivery of 

debugged system to end-users: 
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• Acquire the relevant knowledge to build an accurate model of boats (field campaigns, 

data identification, collection, and analyses). 

• Implementation of the 3MTSim’s boat ABM. 

• Finishing touches to the global 3MTSim simulator, including overall debugging. 

• Finishing of the post-processing 3MTSim ArcToolbox developed by Philippe 

Lamontagne. 

• Delivery of the 3MTSim simulator in the form of a software: This includes all stages 

leading to the building of the installers with compatibility ensured for Windows 7, 

Windows XP, and Mac OS X operating systems.  

• Delivery of the debugged version of the 3MTSim ArcToolbox. 

 

Contributions related to organization/coordination within the “team” of contributors include: 

• Coordination of the technical work. 

• Supervision of several students in their work related to the 3MTSim project. 

 

Finally, communication played a crucial role in this project, particularly with partners which 

had to be kept informed on a regular basis of advancements. This also includes public 

lectures to inform local people of the ongoing 3MTSim project: 

• Coordination of regular meetings between partners and collaborators. 

• Ensure partners’ implication.  

• Stimulate the data sharing effort.  

• Scientific and public communications.  

 

1.5 Description of the 3MTSim simulator 

1.5.1 Visualization modes 

Two visualization modes are currently available in the 3MTSim model: 

1) 3D visualization mode (cf. Figure 1.3). 

2) NASA World Wind embedded visualization mode (cf. Figure 1.4). 
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Visualization proved to be useful during model development where it allowed identifying 

flagrant bugs. It was also useful for communication purposes.  

 

 

Figure 1.3  Snapshot of the 3D visualization mode  
showing 3MTSim agents and environment. 

 

 

Figure 1.4  Snapshot of the NASA World Wind based visualization mode  
showing agents and environment. 
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1.5.2 Model parameters 

3MTSim’s users have access to various parameters related to the management needs 

identified in section 0.1.3.4. These parameters are accessible via the parameters panel in 

3MTSim’s interface (cf. Figure 1.5). The following list of parameters is available to end-

users: 

• Maximum duration of an observation. 

• Homeport for each company. 

• A map of speed limits for each component of the maritime traffic. 

• A map of restricted areas (zoning) for each component of the maritime traffic. 

• Start date of the simulation. 

• Duration of the simulation run. 

• Number of individuals for each whale species in a given simulation run. 

• Distribution map for each whale species in a given simulation run. 

 

 

Figure 1.5  Snapshot showing the parameters panel (red box)  
within the 3MTSim’s interface. 
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1.5.3 Post-treatment modules 

The 3MTSim simulator returns ASCII files that need to be analyzed using some post-

treatment modules. A first version of the 3MTSim ArcToolbox has been developed by 

Philippe Lamontagne after his master thesis. This toolbox is developed in Python with 

database operations processed with the AWK (originally UNIX-based) data-driven 

programming language. Debugging and finishing of the 3MTSim ArcToolbox have been 

carried out before its final delivery to end-users (cf. section 1.4). The interface of the 

3MTSim ArcToolbox is shown in Figure 1.6. Data post-processing functionalities include: 

• Maps of boat distribution by component or aggregated. 

• Maps of whale distribution by component or aggregated. 

• Maps of boat-whale co-occurrences for different distances and boat speeds. 

• Map of whale observations. 

• Histogram of the distribution for several variables of interest (duration of observation 

sequences, duration of whale exposure at different distances,…). 

 

 

Figure 1.6  Interface of the 3MTSim ArcToolbox. 
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Some concrete illustrations of 3MTSim’s post-treatment modules’ capabilities are presented 

in CHAPTER 7, with more findable in (Parrott et al., 2010). 

 

The stand-alone visualization module has been developed in Java as part of Botao Zhens’s 

Master thesis at the University of Calgary. All relevant information about this module can be 

found in (Zhens et al., to be submitted in February 2011). 

 

 

 



 

CHAPTER 2 
 
 

LITERATURE REVIEW 

2.1 Agent-based modelling 

Agent-based modelling (ABM) is a simulation technique suitable to model complex systems 

made of autonomous entities (Bonabeau, 2002). The underpinning postulate is that the 

dynamics of the whole system to be modelled is an emergent property of interactions and 

decisions made by the components that make it up, without the intervention of centralized 

control. Accordingly, ABM focuses on the representation of agents’ decisions and 

interactions and is labelled a bottom-up modelling approach. First, an overview of the 

historical milestones and terminology of the bottom-up modelling paradigm will be given. 

Then, the notion of software agents and the agreed properties of ABMs are presented. After 

an overview of ABM’s applications, the section endswith a discussion on the current 

challenges of this modelling paradigm. 

 

2.1.1 History and terminology 

One can trace back the idea to model a system in a disaggregated manner to Boltzmann’s 

contribution to the kinetic theory of gases in which it is postulated that gas macroscopic 

properties (e.g. temperature, pressure, volume) are the resultant of the microscopic molecular 

composition and motion (Boltzmann, 1909). Some people attribute ABM’s roots to the 

1940’s with John von Neumann’s cellular automata (von Neumann, 1947; von Neumann and 

Burks, 1966). Other influential contributors should also be cited when referring to the early 

developments of disaggregated modelling. First of all, John Conway’s cellular automaton 

called Game of Life, or simply Life (Gardner, 1970), became famous by illustrating how 

complex patterns can emerge at the macroscopic level from a limited number of simple rules. 

In this game, each cell of a 2D lattice can have two states, alive or dead. The state of each 

cell evolves deterministically at each discrete time step (birth, survival, or death) by 

following four simple rules solely based on the neighbour cells’ state. The emergence of a 
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variety of spatiotemporal patterns has been paralleled with some fundamental biological 

patterns of living systems (e.g. Beer, 2004) and other natural phenomena (e.g. Bak, Chen and 

Creutz, 1989). 

 

Schelling (Schelling, 1971) developed a cellular automaton-based model in an effort to study  

the issue of racial segregation in the United States of America’s cities. He showed how a 

systematic local preference (even weak) for some “similar” neighbours can lead to the 

observed racial segregation in space at the global (city) level. 

 

Axelrod (Axelrod and Hamilton, 1981) studied the importance of the cooperation strategy in 

human relations with his famous experimental tournament on the two-players iterated 

prisoner’s dilemma problem (IPD). In this IPD tournament, he asked contenders to devise 

computer programs of the strategy to play at each round of the game. Interestingly, the most 

rewarding strategy called tit for tat, proposed by Anatol Rapoport, was also the simplest one 

(Axelrod and Hamilton, 1981). This strategy is simply to cooperate on the first round and 

then imitate his opponent’s previous strategy on each subsequent round. Axelrod developed 

numerous agent-based models to study the questions of cooperation and altruism, culture 

dissemination, and other topics related to political and social sciences (Axelrod, 1997). 

 

It was not until the late 1980’s that the paradigm of disaggregated modelling took a place of 

choice in the research agenda, notably in ecology (Huston, DeAngelis and Post, 1988) where 

this paradigm took the name of individual-based modelling (IBM) (Grimm, 1999). The 

growing accessibility of powerful computers made possible the resurgence of the 

disaggregated paradigm (Marty Anderies, 2000), challenging the dominance of classical 

aggregated ecological models  (Lotka, 1925; Volterra, 1931). 

 

Many fields concurrently built on the disaggregated paradigm in their own way and only the 

most significant will be mentioned thereafter. Artificial life (A-life) (C. Langton (ed.), 1989) 

evolved simulation models to explain the origin of such essential biological phenomena as 

multicellularity, cellular self-organization, and the evolution of the genetic code (Bedau, 
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2003). Distributed artificial intelligence (DAI), a subfield of artificial intelligence (AI), 

focuses both on the collective resolution of problems by cooperating entities (distributed 

problem solving, DPS) and the study of autonomous agents and their individual functions 

within a system of interacting entities (multiagent systems–MAS– or multiagent-based 

simulation–MABS) (Hewitt and Inman, 1991; Stone and Veloso, 2000; Wooldridge and 

Jennings, 1997). The development of ABMs in social sciences built on DAI. An overview of 

ABM and social simulation history in social sciences can be found in (Macy and Willer, 

2002).  

 

Inspired by developments in DAI and A-life, environmental scientists developed ABMs 

under a great variety of names (Hare and Deadman, 2004) such as multiagent-based 

simulation (MABS), agent-based simulation modelling (ABSM), agent-based social 

simulation (ABSS), multi-agent simulation (MAS), agent-based simulation (ABS), or else 

individual-based configuration modelling (IBCM). All these terms coined by different groups 

of researchers are variations of the same broader concept of disaggregated modelling. This 

lack of consensus about terminology seems to reflect a non-mature technology still trying to 

get its bearings. For the sake of clarity, we will use agent-based model (ABM) as a general 

term to refer to these models. Recent developments have revealed a growing acceptance of 

ABM as the general term used to designate disaggregate models. The term IBM will be 

sometimes used to refer to ecological models representing non-human entities. 

 

Following this presentation of the bottom-up paradigm’s history and terminology, the notion 

of software agent underpinning any development in ABM is now discussed. 

 

2.1.2 Agent 

The central component of any ABM is the agent. In this section I focus exclusively on the 

notion of software agents, leaving aside the various meanings the agency concept bears in 

many fields (e.g. sociology, psychology, economics, or politics). Philosophical discussions 

about human agency can be found in the seminal work of Albert Bandura (1989; 2001). 
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Many definitions of what a software agent or autonomous agent is, or should be, have been 

proposed so far. Instead of enumerating all the variations on the theme of software agent, I 

will simply reuse the definition stemming from Franklin and Graesser’s comprehensive 

review (1997) who define an autonomous agent as “a system situated within and a part of an 

environment that senses that environment and acts on it, over time, in pursuit of its own 

agenda and so as to effect what it senses in the future”. 

 

Synthesizing agents’ properties found in (Bousquet and Le Page, 2004; Ferber, 1999; Hare 

and Deadman, 2004; Jennings, Sycara and Wooldridge, 1998; Russell and Norvig, 1995; 

Stone and Veloso, 2000; Wooldridge, 1999; Wooldridge and Jennings, 1997) software agents 

should have the following properties: 

• Autonomy: Control over its actions. 

• Orientation toward a goal. 

• Perception: Ability to get information. 

• Communication: Ability to pass on information. 

• Cognition: Ability to process information. 

• Action: Ability to modify the state of the world (of other agents, itself and/or of the 

environment). 

 

Franklin and Graesser (1997) made a review on agents and proposed a series of properties 

reused by several researchers (e.g. Jiang and Gimblett, 2002). According to this review, to 

differentiate agents from a generic program, an agent must possess some of the above 

characteristics: 

• Reactivity. 

• Autonomy. 

• Orientation toward a goal. 

• Continuously active across time. 

• Communicative ability. 

• Learning and/or adaptation ability. 

• Mobility. 
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• Flexibility in actions. 

• Character (exhibit some form of personality and emotional state). 

 

Each of these properties can be more or less developed depending on the problem at hand. 

For instance, the cognition of an agent can be as simple as reactions to stimuli (Camazine et 

al., 2001) or a more elaborated information-processing algorithms (Manson, 2006). This 

skeleton of a typical software agent can be enhanced by additional properties if necessary 

such as memory (Bennett and Tang, 2006) and adaptation and learning abilities (Weiss, 

1996). For the modelling of humans, emotions (Prietula and Carley, 2001), belief, desire, and 

intention (BDI) (Dia, 2002; Rao and Georgeff, 1995), and negotiation skills (Courdier et al., 

2002) are sometimes also explicitly considered as software agents’ properties. In summary, 

as long as an entity’s property appears to be worth accounting for modelling purpose, if 

sufficient knowledge is available this property should therefore be included in the 

corresponding agent’s description. 

 

2.1.3 ABM properties 

Bonabeau (2002) gives the three following reasons to use ABM instead of alternative 

modelling tools: 

1) ABM captures emergent phenomena. 

2) ABM provides a natural description of a system. 

3) ABM is flexible. 

 

According to Goldstone and Janssen (2005), ABMs possess the four following 

characteristics: 

1) Computational description at the agent level: This characterises bottom-up modelling 

where the system’s dynamics results from the description of agents and their interactions. 

2) Stigmergic interactions: Stigmergy is a form of indirect communication between agents 

who modify their common environment and act upon it as a function of the past 

modifications (from all agents and external factors). 
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3) Autonomy of agents: Agents are autonomous and generally have their own goals, desires, 

beliefs and other psychological traits driving their actions. They can change their 

behaviour during a simulation through such processes as learning or adaptation. 

4) Spatially distributed populations of agents: Most of ABMs consist of agents spatially 

distributed within a 2D or 3D representation of an environment. 

 

Macy and Willer (2002) talking about applications in sociology attribute three similar 

properties to ABMs as Goldstone and Janssen (2005), but substituted the notion of spatiality 

for the assumption that agents must follow simple rules. This difference is inherent to the 

domains of application where the goals pursued are somewhat distinct.  

 

According to Bousquet and Le Page (2004), a meaningful definition of ABMs (referred to as 

MAS in their review) for ecology and environmental sciences can be drawn from Ferber 

(1999), and is illustrated in Figure 2.1. Accordingly, an ABM must be composed of: 

• An environment E (usually space). 

• A set of objects O situated in E. 

• A set of agents A (subset of O) which are active entities of the ABM. 

• A set of relations R between objects (including agents). 

• A set of operations Op that can be performed by agents. 

• A set of operators (rules) designating the modifications induced by agents’ actions. 

 

As stated earlier, a software agent is situated within an environment (Franklin and Graesser, 

1997). Accordingly, an ABM must include some representation of agents’ environment, 

implicit or explicit. In its simplest form, an agent’s environment is made of another agent 

with which it interacts as for the two-players IPD game (Axelrod and Hamilton, 1981). 

However, in many ABMs the environment is more elaborated with its own explicit 

representation (Parker et al., 2003). 
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Figure 2.1  Components and properties of an ABM.  
Adapted from Ferber (1999) 

 

2.1.4 Applications 

Brown and Xie (2006) make the distinction between two broad classes of ABMs (involving 

software agents only) according to their purpose:  

1) Representational mode: In such ABMs, each agent must behave in a similar manner as a 

real entity (e.g. human, animal, institution, cell…). The ultimate purpose of these ABMs 

is generally to support decision makers in the resolution of complex problems related to 

the management of the modelled system, by means of simulations. 

2) Instrumental mode: Here, the goal is to support a software user by reducing the cognitive 

and/or attention demand associated to certain tasks to be performed. Tasks processed by 

such agents can be the partial resolution of subproblems, real-time identification of 

missing information, and information search and retrieval (common in online 

applications). An example of such an ABM is proposed by Sengupta and Benett (2003) 

with the DIGME agent-based environment: this spatial decision support system assists 

the user to locate and retrieve spatial data and analytical models distributed on Internet, 

and transforms these spatial data for input in analytical models via the use of a GIS 

software.  
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Bousquet and Le Page (2004, p. 314) make the same distinction by simply distinguishing 

multi-agent simulations (representational) from other applications involving software agents 

(instrumental) such as in telecommunications and network management applications (e.g. 

Bieszczad, Pagurek and White, 1998). 

 

Models belonging to the representational mode can be dedicated to address real-world issues 

or to explore theoretical questions. The maritime traffic simulator to build unarguably 

belongs to this class since it is devoted to simulations for management purpose. 

Consequently, the forthcoming section will focus on ABM of social-ecological systems 

devoted to support natural resource management. A brief discussion is proposed about the 

abundant literature on ABM relating to theoretical questions. 

 

2.1.4.1 Theoretical use 

The use of ABMs is not restricted to real-world applications. Numerous ABMs have been 

developed to address theoretical questions in various domains such as sociology (Axtell, 

Epstein and Young, 1999; Macy and Willer, 2002), computational economics (Testfatsion, 

2006), organization theory (Prietula, Carley and Glasser, 1998), politics (Cederman, 2001), 

and psychology (Smith and Conrey, 2007). The vast number of studies using ABM to 

address theoretical issues will not be discussed further owing to the applied nature of the 

project presented in this dissertation. Rather, ABM applications involving human-nature 

interactions are discussed thereafter. 

 

2.1.4.2 Management of human activities in SESs 

ABMs have been applied to support the management of SESs mainly to mitigate human 

impact on natural resources (Bah et al., 2005; Becu et al., 2003; Mathevet et al., 2003) or to 

increase the satisfaction of parks visitors (Gimblett, Richards and Itami, 2002). The first 

domain where ABMs have been widely used is the study of land-use and land-cover change 

(LUCC) (Matthews et al., 2007; Parker et al., 2003). Generally, ABMs for the study of 
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LUCC aim to elicit how contextual factors (environmental and institutional) influence 

landowners’ decisions regarding the exploitation of their land properties (Deadman et al., 

2004) with the consequences on the environment (Manson and Evans, 2007). Many of these 

models involve farmers and agricultural systems (e.g. Berger, 2001; Manson, 2005). Reviews 

of ABMs use in LUCC studies can be found in (Matthews et al., 2007; Parker et al., 2003). 

 

Fisheries management is also a field where ABMs are frequently used. Many of these ABMs 

have been developed to explore the effects of fishermen’s strategy on the exploited resource 

(BenDor, Scheffran and Hannon, 2009; Cabral et al., 2010; Dreyfus-Leon, 1999). Some of 

these models are designed to support the establishment of management policies dedicated to 

the conservation of fish stocks (Little et al., 2008; Little et al., 2009). 

 

Gimblett and colleagues were pioneers in applying the ABM technology to support the 

management of recreational use, including parks (Gimblett, 2002; Gimblett, Richards and 

Itami, 2002; Gimblett, Durnota and Itami, 1996; Itami and Gimblett, 2001; Itami et al., 2003; 

Roberts, Stallman and Bieri, 2002). The RBSim simulator has been developed to support the 

management of the Broken Arrow Canyon park near Sedona, Arizona. Numerous ABMs 

have been adapted from RBSim for the management of other terrestrial parks in the United 

States of America (Cole, 2005). Among these models, one can cite the GCRTSim which 

simulates river trips along the Colorado River (Roberts, Stallman and Bieri, 2002). 

 

ABMs have also been used extensively in pedestrian modelling (Jiang, 1999; Torrens, 2007; 

Zhu and Timmermans, 2010b) and crowd behaviour (Pan et al., 2007). These models usually 

involve human agents moving within urban environments with no direct link with any natural 

resource. However, the kind of decisions made by these agents is similar to that of human 

agents within 3MTSim (repeated spatial decisions with short time interval). Consequently, 

despite the absence of a natural resource to manage, the study of these models is relevant for 

the building of 3MTSim’s agents.  
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Additionally, without being exhaustive, one can mention other ABM applications such as 

water management (Becu et al., 2003; Schlüter and Pahl-Wostl, 2007), management of lake 

eutrophication (Janssen and Carpenter, 1999), urban planning (Baynes and Heckbert, 2009), 

the study of urban development and its implication on the surrounding environment 

(Monticino et al., 2007), management of hunting activities (Bousquet, 2001; Mathevet et al., 

2003), and the development of management strategy to reduce the number of moose-vehicle 

interactions in the province of Quebec, Canada (Grosman et al., 2009).  

 

Reviewing ABMs of human-nature interactions developed for management purposes, it 

appears clearly that the involvement of stakeholders early in the building process is a key for 

a model’s eventual use as a decision-support tool (Voinov and Bousquet, 2010). However, 

the participation of stakeholders during the whole process does not guarantee model 

utilization: A sine qua non is some form of model validation implying an accurate 

reproduction of humans’ decision making within the software agents (Janssen and Ostrom, 

2006a; Manson, 2002). These challenges are discussed within the next section. 

 

2.1.5 Challenges in ABM 

2.1.5.1 Representation of human decision making 

The most widespread theory underlying the representation of agents’ decision making under 

uncertainty is certainly the expected utility theory (EUT). For a good presentation of the 

EUT, the reader may refer to (Baron, 2004). Let us consider a decision problem where an 

option A yields X with a probability p1 and Y with a probability p2, the expected utility of the 

option A is (p1·X + p2·Y). Therefore, in problems where the yielded return should be the 

highest, according to EUT, the decision maker needs to compare the expected utilities of all 

candidate options and choose the most rewarding one. Despite the mathematical convenience 

of EUT and other optimization methods, increasing evidence from applied psychology in 

real-world settings has demonstrated that humans’ decision outcomes are rarely well 

described by what the theory of optimal choice is prescribing (e.g. Deadman and Schlager, 
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2002, p. 143; Kahneman, Slovic and Tversky, 1982; Klein, 2001; Tversky and Kahneman, 

1981). Consequently, following researchers in psychology, ABM developers have begun to 

explore alternative theories to better represent humans’ cognitive processes and decision 

outcomes.  

 

Jager and colleagues proposed the consumat model (Jager et al., 2000). In this model, an 

agent uses one of the four following behavioural strategies (cognitive processes) to make 

decisions, depending on the level of satisfaction expected and the uncertainty of the decision 

task: 

1) Deliberation: the level of need satisfaction is low and the degree of uncertainty is low. 

2) Social comparison: the level of need satisfaction is low and the degree of uncertainty is 

high. 

3) Imitation: the level of need satisfaction is high and the degree of uncertainty is high. 

4) Repetition: the level of need satisfaction is high and the degree of uncertainty is low. 

 

The consumat model is interesting in that it is an alternative to classical models of Homo 

economicus (i.e. rational agents considered in economics) whose sole cognitive capability is 

the deliberation process, often assuming the maximization of expected utility from the EUT. 

 

ABMs are widely used to model land-use/land cover change, particularly in agriculture (see 

Parker et al., 2003, for a review). In these models, agents (typically households, farmers) 

make decisions about what to grow on each plot of land, on a yearly basis. The most 

commonly used theories underlying the representation of such decisions are the rational 

choice theory and a variant called the perfect rationality (Berger, 2001; Manson, 2006). 

Models such as statistical regression and maximization of expected utility are frequently 

used, with the assumption that agents have perfect cognitive abilities and have access to 

complete information (Myers and Papageoregiou, 1991). Manson explored genetic 

programming to determine the importance of a set of contextual factors in landowners’ 

decision about land use in the Yucatan, Mexico (Manson, 2005). Using multiple years of data 

about land use and contextual factors (environmental and institutional), Manson fitted 
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regression models based on historical data (training dataset) and tested them on data not used 

for the training stage. Manson later claimed that the genetic programming approach 

developed to represent agents’ decision making matches the precepts underpinning the 

bounded rationality theory (Manson, 2006).  

 

In LUCITA, a model of land-use/land-cover change in the Altamira region, Brazil, 

developers used non-evolving genetic algorithms to represent the decision of households 

(Lim et al., 2002). The classifier system took into account labour force and capital 

availability to make a decision. 

 

Itami used a fuzzy approach to model hikers’ decisions arriving at trail junctions (Itami, 

2002). Park visitors were divided into distinct groups with their own preferences. Using the 

analytical hierarchy process (AHP) (Saaty, 1987; Saaty, 1995), agents compute a score for 

each candidate trail according to a set of weightings which characterizes the group they 

belong to. Accordingly, agents from different groups can make different decisions, but agents 

within a given group will behave the same way. 

 

The GCRTSim simulator represents the dynamics of rafting trips along the Colorado River 

(Roberts, Stallman and Bieri, 2002). The decision making of rafting guides is modelled using 

a hybrid approach involving expert knowledge and fuzzy logic among others; however, few 

details are available on this approach. The tendency to give only limited details or fuzzy 

information about the decision making models of human agents is frequent in the ABM 

literature. 

 

Urban pedestrian modelling is another field where ABMs have been used extensively in 

recent years (e.g. Benenson and Torrens, 2004). Here again, the most widely used theory 

used to represent human agents’ decision making is the rational choice theory with agents 

assumed to be utility-maximizers (Zhu and Timmermans, 2010b). However, similarly as for 

models of land-use/land cover change, new paradigms are now penetrating the field 

competing with the classical models. Zhu and Timmermans (2010a) used heuristics from the 
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bounded rationality literature to model the go-home decision of pedestrians shopping in the 

city center of Beijing, China. They also proposed a framework in an effort to overcome three 

shortcomings of decision heuristics in bounded rationality, namely: 

1) Dynamic selection of cues for decision; 

2) Explicit modelling of the heuristic selection mechanism. 

3) Modelling of individual differences (preferences). 

 

The work conducted by Zhu and Timmermans (2010a; 2010b) appears to be one of the most 

advanced studies in terms of identifying and proposing solutions to the weaknesses of the 

bounded rationality theory for ABM. 

 

2.1.5.2 Model verification and validation 

Verification and validation are key steps for models devoted to aid decision makers (Sargent, 

2005). In particular, they are mandatory steps in the building process of ABMs, notably in 

the context of SESs (Janssen and Ostrom, 2006a).  

 

Manson defines model verification as the step where the software model is tested to ensure 

that the underlying programs are working normally (Manson, 2002). According to Manson 

(2002), model validation comes in two varieties which are: 

1) Structural validation: the extent to which the model implemented represents the 

conceptual model. This is what Sargent (Sargent, 2005) called computerized model 

verification (cf. Figure 0.4). 

2) Outcome validation: the extent to which model outcomes match representative 

observations of the real system. This is what Sargent (Sargent, 2005) called operational 

validation (cf. Figure 0.4). 

 

It is not clear how structural validation and model verification refer to different concepts. On 

the other hand, Sargent (2005) proposes a preliminary step called conceptual model 
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validation, which refers to the validation of theories used to conceptualize the target system 

(cf. Figure 0.4). 

 

A valid model should ideally satisfy the following criteria, all related to verification and 

validation (Kwasnicki, 1999): 

• Correctness: Match between structure and outcomes of the model and the target system. 

This relates directly to the concept of validation. 

• Consistency: Match between the conceptual model and its implemented version. It also 

refers to the relevance of the theories underlying the conceptual model. This relates 

directly to the verification step. 

• Universality: Model’s ability to be applicable in contexts different from those defined by 

the calibration data. This concept is related to generalization. 

• Simplicity: The simplest model should be preferred, all other things being equal. 

However, there is a trade-off between a useless oversimplified and an intractable 

overcomplexified model, called “the Medawar Zone” by some agent-based modellers 

(Grimm et al., 2005). 

• Novelty: Model’s ability to create new knowledge about the system represented. 

 

Valid data (i.e. adequate quality, representative sampling, and meet modellers’ needs) are the 

centerpiece of all verification/validation stages (Sargent, 2005). This idea of solid data on 

which any simulation model should be grounded is also highlighted by Janssen and Ostrom 

in the particular case of ABMs representing SESs (Janssen and Ostrom, 2006a). 

 

Relying on representative observations of the target system, Grimm et al. (2005) proposed 

the pattern-oriented modelling (POM) approach to build valid models. Patterns are defined as 

“observations of any kind showing non-random structure and therefore containing 

information on the mechanisms from which they emerge” (Grimm et al., 2005). Using the 

POM approach and comparing model outputs with a set of observed patterns, a modeller can: 

1) Determine an appropriate model structure. This is related to the notion of structural 

validation. 
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2) Choose among alternative theories. This is equivalent to model selection. 

3) Choose values for the model’s parameters. This can be referred to model calibration. 

 

For the validation of spatial phenomena, there are several pitfalls that should be avoided 

(Parker et al., 2003). Among them, the choice of the spatial resolution used for spatial 

comparison must be consistent with the resolution at which the model operates and data 

spatial resolution. Authors also mention the spatial autocorrelation issue and the required 

adequacy between the assumptions underpinning the verification/validation process and 

system’s complexity. Abrupt changes observed in the system’s behaviour should be 

explained by the conceptual framework implemented in the model, rather than linked to some 

model artefact. Finally, a great challenge lies in the validation of so-called abstract outcomes 

stemming from human interaction (e.g. trust, learning) since they are difficult to measure. 

 

2.2 Insight into human decision making in cognitive psychology 

Modelling human decision-making is central to ABMs involving human-nature interaction. 

Therefore, this second part of this literature review is an overview of the main streams of 

thought about human decision making in cognitive psychology. 

 

2.2.1 Formalism 

In this section, the focus is on multi-alternative/multi-attribute decision problems P. An 

alternative S, candidate solution of P, is characterized by a set of attributes {ai}, also referred 

to as cues. The validity vi of cue ai, related to a decision problem P is defined by equation 

(2.1) below. 
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Where Ri represents the number of right (correct) inferences and Wi, the number of wrong 

(incorrect) inferences considering the cue ai only. 
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2.2.2 Human decision making 

A decisions is often referred to as a judgment about what to do (Baron, 2004). Decision 

making refers to the cognitive mental process resulting in the choice of a course of action.  

 

2.2.3 Metaphors of the mind 

Most cognitive psychology researchers of the last decades have focused on a widely accepted 

conception of the mind as a computer-like information-processing system. Newel and Simon 

(1972) were the pioneer of the new paradigm called the information-processing model of 

mind (Gigerenzer, 2000, p.31-47). This metaphor of the computer dates back to the early 

60’s cognitive revolution in the American psychology; it succeeded to the Enlightenment’ 

view of rationality (i.e. intelligence) as a combinatorial calculus assuming homo economicus 

inhabited by a homunculus or demon. The acceptance of this theory of mind is observable in 

the computer science vocabulary used by cognitive scientists such as encoding, retrieval, 

storage, executive processes, algorithms and computational cost. The previously accepted 

metaphor of mind was the mind as an “intuitive statistician”, stemming from the emergence 

and acceptance of another scientific tool, inferential statistics (Gigerenzer, 2000, p. 6-14). 

Brunswik was the first to coin the term “intuitive statistician” to describe cognitive processes 

in the mid 40’s (Brunswik, 1943), but his vision only came to be accepted after inferential 

statistics had entered the field of psychology as a widely accepted analytic tool in the 60’s 

(Gigerenzer, 2000).  

 

2.2.4 Normative and descriptive models of decision making 

The study of judgment and decision making is traditionally concerned with the comparison 

of judgments to standard rules coming from what are called normative theories (Baron, 

2004). Normative theories for cognition aim to tell us how we ideally should or ought to 

reason, make judgments and decisions (Over, 2004). Theories such as formal logic, 

probability theory, utility theory (Baron, 2004), statistics, and decision theory are supposed to 

dictate the rules that we should follow in order to act in a rational way. In contrast, 
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descriptive theories try to describe how people actually think. Discrepancies between 

descriptive results and the projections of normative theories are sometimes taken as the basis 

to conclude that people’s reasoning is fallacious or biased (Kahneman, Slovic and Tversky, 

1982). But the real question risen by Over (2004) could be summed up like this: “To what 

extent do normative rules really serve people’s objectives in specific contexts?”  

 

A third class of models are called the prescriptive rules (e.g. Baron, 2004). Prescriptive rules 

are sets of procedures that can be used to improve the compliance of observed behaviours 

with the normative theories when these theories can help us achieve our goals. According to 

Over (2004), Research in cognitive psychology and in judgment and decision making should 

not only tell us how close, or far apart, the outcomes of normative and descriptive models can 

be in human thought and decision making. It should also find prescriptions for transparent 

representations that enable people to be consistent with normative theories. 

 

According to Over (2004), whether a theory, or one of its rules, is truly “normative” or 

relevant in some contexts depends on the definition of rationality. Since the study of decision 

making requires a definition of rationality, the next section presents the instrumental 

rationality, presupposed in most studies in judgment and decision making (Over, 2004). 

 

2.2.5 Instrumental rationality 

The definition of rationality used in this dissertation is the instrumental rationality, 

underpinning the works of such researchers as Herbert Alexander Simon (Simon, 1983), and 

Gerd Gigerenzer. In this view, rationality is seen as an instrument that helps us to achieve our 

goals. This perception of rationality can be traced back to Hume (1978) who wrote that 

“Reason is, and ought to be the slave of the passions, and can never pretend to any other 

office than to serve and obey them”.  

 

According to Over (2004, p. 5), “Instrumental rationality is presupposed in almost all 

discussions in cognitive psychology about normative rules and their proper application”.  
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Rational action is a primary notion, from which rational belief and rational inference are 

derived (Over, 2004). People have goals as a result of their subjective desires, which are 

expressed in preferences that vary from person to person. According to Simon (1983, p. 7-8), 

the father of bounded rationality, “Reason is wholly instrumental. It cannot tell us where to 

go; at best it can tell us how to get there. It is a gun for hire that can be employed in the 

service of any goal we have, good or bad”. Accordingly, reason cannot tell us to prefer an 

objective or another, but can help us to derive a relevant course of action to achieve our 

current goal. Baron (2000, p. 53) defined rational thinking as: 

“…whatever kind of thinking best helps people to achieve their goals. If it should turn out 

that following the rules of logic leads to eternal happiness, then it is “rational thinking” to 

follow the rules of logic (assuming that we all want eternal happiness). If it should turn out, 

on the other hand, that carefully violating the laws of logic at every turn leads to eternal 

happiness, then it is these violations that should be called rational.” 

 

Having defined what rationality is standing for in this dissertation, the next section proposes 

an overview of alternative theories of human rationality.  

 

2.2.6 Alternative theories of human rationality 

According to Gigerenzer and Selten (2001a), the different visions of rationality can be split 

into two streams of thought, perfect rationality and bounded rationality, as illustrated in 

Figure 2.2. 
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Figure 2.2  Different views of rationality. 
Reproduced from Gigerenzer (2001, p. 39) 

 

Models of “perfect rationality” are referred to as demons in Figure 2.2. From the two streams 

of thought, four different views of rationality are currently considered by researchers on 

decision making. These four paradigms (bottom of Figure 2.2) are described below: 

1) Unbounded Rationality: This is the classical view of rationality with no consideration on 

time and computation limitations. Theories such as the maximization of expected utility 

or Bayesian calculation provide models currently used by advocates of this vision of 

human rationality.  

2) Optimization under constraints: Similar to unbounded rationality but it is considered that 

the information search is limited by a stopping rule (i.e. stop when the searching cost 

exceeds the benefits that could be yield by continuing the search). 

3) Satisficing: This has been proposed by Simon (1955) and belongs to the bounded 

rationality stream of thought. Satisficing consists of searching for alternatives until one 

satisfies some levels of requirement. 

4) Fast and frugal heuristics: These heuristics consist of searching for cues to decide 

between alternatives (Gigerenzer and Todd, 1999). These heuristics are different from 

those proposed in the prospect theory (Kahneman and Tversky, 1979). Whereas the 

prospect theory describes heuristics as imperfect and humans’ weaknesses (usually 

demonstrated in well controlled laboratory experiments), fast and frugal heuristics are 

described as adaptive shortcuts evolved by humans to deal with the real-world 

complexity (Gigerenzer and Selten, 2001b). 
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Gary Klein, a renowned researcher working on decision making in natural settings (e.g. 

experts), described the models of perfect rationality as fictions (Klein, 2001). In most real-

world settings, it is virtually impossible to assess whether or not a choice is optimal because 

of time pressure, uncertainty or ill-defined goals (Klein, 2001, p. 103). 

 

Whereas the perfect rationality paradigm has proved to perform poorly to describe human 

reasoning, researchers mostly agree that it provides acceptable normative models in 

situations where resources are not bounded. The distinction between normative models (how 

people should make decisions) and descriptive models (how people do make decisions) has 

been addressed by many researchers (Baron, 2004; Over, 2004; Wu, Zhang and Gonzalez, 

2004) and was shortly discussed previously.  

 

The emergence of bounded rationality as a direct alternative to classical decision theories 

motivates the presentation of models associated with this theory, the subject of the next 

section. 

 

2.2.7 Models of bounded rationality: Cognitive heuristics 

Logic, probability, and heuristics correspond to three periods in the history of the 

development of decision theories (Gigerenzer, 2008). The laws of Logic depict the mind as 

an “intuitive logician” focusing on truth preservation. This is the theory underlying most of 

Piaget’s work (e.g. Inhelder and Piaget, 1999) and still advocated by contemporary cognitive 

scientists (e.g. Rips, 1994). The paradigm of the “intuitive statistician” underpinned by the 

laws of probability succeeded to the “intuitive logician”. Finally, with the cognitive 

revolution, the emergence of the computer metaphor of the mind came with its new models 

describing human decision making. Cognitive heuristics were first described as a way to 

explain the discrepancies observed between what was still considered the normative laws of 

decision making and what was actually observed (Kahneman, Slovic and Tversky, 1982). 

Recent developments of some researchers have been challenging this negative view of 

cognitive heuristics as imperfect and fallacious mechanisms of the mind (e.g. Gigerenzer and 
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Todd, 1999). Several researchers in bounded rationality have been claiming that the decision 

maker has at his disposal a collection of heuristics in an adaptive toolbox (Gigerenzer and 

Selten, 2001a). This Darwinian-inspired theory claims that the heuristics contained within 

this adaptive toolbox may have been evolved through past experiences to solve real-world 

problems where decisions must generally be made in situations of time pressure, given 

incomplete information and bounded computational abilities. 

 

Gigerenzer (2004) defines a model of cognitive heuristic as “a rule whose purpose is to 

describe the actual process – not merely the outcome – of problem solving”. Heuristics 

exploit evolved capacities and structures of the environment, are distinct from as-if 

optimization models, and are simple compared to the learned capacities of the organism.  

 

Several models of cognitive heuristic with their domain of application are now described. 

They can all be used to represent decisions in multi-attribute/multi-alternative problems and 

are all considered to be part of the adaptive toolbox proposed by researchers in bounded 

rationality from the Max Planck Institute (Gigerenzer, 2008).  

 

The first well-known model of cognitive heuristic is the satisficing heuristic (Simon, 1955). 

Using satisficing, a decision maker selects the first alternative whose cues values satisfy 

given expectation levels (cf. APPENDIX VII). This heuristic is alternative-based, selective, 

and noncompensatory (all attributes do not have the same importance). It is an alternative to 

the optimization theory for high-stake decisions with no optimal solution.  

 

The recognition heuristic (Goldstein and Gigerenzer, 2002) is defined as follows: “if one of 

two objects is recognized and the other is not, then infer that the recognized object has the 

higher value with respect to the criterion”. The recognition is alternative-based, selective, and 

performs when the ignorance is correlated with the criterion considered. An instance of a 

decision problem where this heuristic works well is the case where someone is asked to tell 

which one of two cities in a given country has the largest population. If the decision maker 
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knows only one of the two cities, he is expected to choose the known city, since the 

probability is low to ignore a populated city. 

 

The lexicographic heuristic, also known as the take-the-best heuristic (Gigerenzer and 

Goldstein, 1996) starts by assessing the cue validities (i.e. to which extent a given cue value 

is correlated to a good decision). This step is a learning phase evolved with experiences by 

decision makers. After having ordered cues in decreasing order of their validity, a decision is 

made by comparing cue values of each alternative. This heuristic performs well in 

noncompensatory environments (Gigerenzer, 2004, p. 77) when cue validities vary highly, 

information is scarce, and redundancy is moderate to high (Gigerenzer, 2008). This heuristic 

is described in APPENDIX VII. 

 

The minimalist heuristic is similar to the lexicographic heuristic, except that cues are picked 

randomly, with no regard on their validity. This approach is compensatory contrary to the 

lexicographic heuristic. It is used when time is extremely limited by considering cues as they 

come making the best of it (Martignon, 2001). 

 

Other heuristics can be related to social behaviours. For instance, such imitation heuristics as 

do-what-others-do, do-what-the-majority-do, and do-what-the-successful-do are commonly 

considered to belong to the adaptive toolbox of decision strategies (Gigerenzer, 2008).  

 

Some heuristics are considered to be part of the adaptive toolbox while not being frugal. For 

instance the Dawes’ rule (also known as tallying) is a unit-weight linear model which simply 

computes the sum of binary cues favourable to the expected outcome (Dawes, 1979). This 

strategy performs well in environments where cue validities vary little (i.e. compensatory 

environments) with a low cue redundancy. This heuristic is described in APPENDIX VII. 

 

Advocates of the adaptive toolbox claim that their heuristics are faster, more frugal and more 

psychologically plausible than their counterparts from the rational choice theory. However, 
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such researchers as Newell oppose two major criticisms to the fast and frugal heuristic and 

adaptive toolbox theories (Newell, 2005): 

1) The correct ordering of cues according to their validity (e.g. in the lexicographic 

heuristic) is not that fast and frugal since it presupposed a lot of processing.  

2) The System 1 which is supposed to host those heuristics has supposedly a parallel 

architecture (Evans, 2008), meaning that it can process a lot of information 

simultaneously, making speed and amount of information unrelated (Chater, 2000). The 

interested reader may refer to (Evans, 2008; Sloman, 1996) to gain an insight into the 

various theories of dual-processing accounts of the human mind’s functioning.  

 

Moreover, Lee and Cummins (2004) highlight the fact that the frequentist approach used to 

compute cues’ validity does not accurately account for the major importance of a cue that 

gave 150/150 times the good choice on all pairwise comparisons, over a cue that gave 1/1 

time the good one (other cases being unable to discriminate). They both have a validity of 1 

and would be considered equally by the lexicographic heuristic. 

 

A vigorous debate is still underway between cognitive psychologists aiming to impose their 

decision models and theories as the main stream of thought (e.g. Lee and Cummins, 2004; 

Newell, 2005; Todd and Gigerenzer, 2000). A common strategy used by researchers is to 

consider others’ performing models as instances of their own theory (Lee and Cummins, 

2004; Newell, 2005). However, it is important to keep in mind that researchers usually admit 

that no unique theory is able to provide the best models for all decision problems 

(Gigerenzer, 2008, p. 20). Even regarding low-level theories of the mind, by relying on 

heuristics in general, we can more or less implicitly conform to the normative rules of logic, 

probability theory, or decision theory. But this does not mean that we are explicitly following 

those rules. There is a distinction between implicitly conforming to, or complying with, rules 

and explicitly following them (Smith, Langston and Nisbett, 1992). 
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2.2.8 Experts and professional decision making 

There is a separation that has recently been drawn between on one hand the study of 

mechanisms involved in everyday’s decision making and those of professionals in action. 

Traditionally, the study aiming at identify basic mechanisms underlying common decisions 

has been occurring in controlled setting (laboratories), with puzzles and problems sometimes 

designed to highlight failure in human judgment (Kahneman, Slovic and Tversky, 1982). 

Opposed to this approach, for more than 25 years, researchers have studied more deeply 

human decision making in action, giving birth to the field called Naturalistic Decision 

Making (NDM) (Endsley et al., 2007; Klein, 2008). 

 

There are eight factors commonly accepted as standards to characterize decision making in 

naturalistic settings (Montgomery, Lipshitz and Brehmer, 2005): 

1) Ill-constructed problems. 

2) Uncertain dynamic environments. 

3) Shifting, ill-defined, or competing goals. 

4) Action/feedback loops. 

5) Time stress. 

6) High stakes. 

7) Multiple players. 

8) Organizational goals and norms. 

 

NDM researchers have proposed models and theories to describe cognitive mechanisms 

involved into real-world related decision making. Among them, one can mention 

macrognition (Klein et al., 2003), recognition-primed decision model (Klein et al., 1993), 

situation awareness (Endsley, 1995; Wickens, 2008), or mental models (Rouse and Morris, 

1986). Although these theories have not been deeply explored for 3MTSim development, 

they provide research avenues both to investigate and model professionals’ and experts’ 

decision making. 
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• Writing of the manuscript. 

 

3.2 Abstract 

Understanding the dynamics of social-ecological systems (SESs) for natural resource 

management is a challenging task which requires a broad range of competences from natural, 

social, and management sciences. Ostrom proposed a framework (Ostrom, 2009) to study 

SESs’ sustainability. Re-using this framework, we propose an approach to investigate SESs’ 

dynamics through the resource user’s standpoint, based on the bounded rationality concept 

from Cognitive Sciences. Bounded rationality portrays humans’ decisions as being 

determined by the combined effects of the problem’s structure to deal with and the actor’s 

cognitive limitations. The case study presented is related to wildlife-watching tourism, which 

is non-consumptive by nature but may threaten the targeted animals. We used the bounded 

rationality approach to investigate the SES of whale-watching excursions in the St. Lawrence 

Estuary, Canada. Excursions are the key link connecting the social and ecological 

subsystems. We focused our investigation on whale-watching captains’ decisions since the 

dynamics of excursions are the footprints of these decisions. We started by identifying a set 

of critical patterns of whale-watching activities. Then, relying on analyses of multiple 

sources of data, we went backward through the causal chain of relations to identify 

mechanisms leading to potentially adverse decisions by captains. Our investigation revealed 

several relations between the core subsystems identified in Ostrom’s framework, which could 

be considered to mitigate the identified issues. We showed that merging the bounded 

rationality concept with Ostrom’s general framework can be insightful to support the 

sustainable management of SESs when resource users have little incentive to self-regulate. 

Interestingly, the bounded rationality concept taken as an investigation framework naturally 

fosters the unification of social and natural sciences for the study of SESs. 

 

3.3 Introduction 

Natural resource misuse is threatening a variety of ecosystems worldwide (Vitousek et al., 

1997). Elinor Ostrom (2009) proposed a general framework to analyze the sustainability of 
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social-ecological systems (SESs). This framework (cf. Figure 3.1) identifies four first-level 

core subsystems (RS, RU, GS, and U) in interaction (I) producing a set of outcomes (O) with 

possible feedback effects, that may affect or be affected by other related socioeconomic, 

political (S), and ecological (ECO) settings. Each first-level subsystem is composed of 

multiple second-level variables such as the size of the resource system or the number of users 

(Ostrom, 2009). 

 

 

Figure 3.1  Ostrom’s general framework for the analysis of SESs’ sustainability. 
Reproduced from Ostrom (2007) 

 

Ostrom’s general framework is an effort toward the development of an interdisciplinary 

approach to diagnose problems within SESs and propose adapted governance arrangements 

(Ostrom, 2007). There exist examples of SESs where resource users have developed self-

organized systems of governance to ensure the sustainability of their practice (Berkes et al., 

2006; Dietz, Ostrom and Stern, 2003; Ostrom, 1990; 2009; Ostrom et al., 1999). An example 

is the self-design of fishing rules by lobstermen in Maine. Following a critical drop in lobster 

stocks, co-management involving the small community of lobster fishers allowed to reach the 

goals set by government scientists leading to the population recovery (Wilson et al., 1994; 

Wilson, Yan and Wilson, 2007). In other contexts, however, the implication of external 
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management institutions in designing rules is required to restrict users’ practices and avoid 

the Tragedy of the Commons (Hardin, 1968). For instance, the Community Natural Resource 

Management (CNRM) approach implemented in some nature reserves including Kenya and 

Nepal proved to focus mainly on socioeconomic benefits for local communities, failing to 

address adequately biodiversity protection (Kellert et al., 2000). For SESs in which the 

achievement of sustainable practices is out of reach through users’ self-regulation, resorting 

to top-down management does not guarantee the achievement of sustainability. Drawing on 

Ostrom’s general framework and terminology (Ostrom, 2009), we propose an approach to 

identify the mechanisms leading to the deterioration of a natural resource by users’ practices 

and ultimately support managing institutions in their conservation efforts. 

 

Since users are the last link of the chain in any SES who act directly upon resource units, 

understanding their decision process can provide avenues to reduce negative impacts on 

ecosystems. Accordingly, the proposed approach is centered on the resource end-users, 

focusing on their interactions with the subsystems making up the whole SES they are part of 

(Ostrom, 2009). This approach is an extension of the bounded rationality concept drawn from 

the branch of cognitive psychology studying human decision making proposed by Simon 

(1990). According to Simon, considered the founding father of bounded rationality, human 

rational behavior is shaped by a scissors whose two blades are the structure of the task 

environment and the computational capabilities of the actor (Simon, 1990, p.7). 

 

The widely used rational choice theory of human decision making postulates that a demonic 

homunculus located in the human brain ensures the delivery of optimal answers to complex 

real-life problems, complying with the normative rules of Logic, Bayesian reasoning or 

maximization of expected utility (Gigerenzer, 2001). Conversely, bounded rationality claims 

that, when a decision problem is complex, humans facing choices rarely use optimization 

procedures (i.e. find the best solution, assuming that one exists) but rather rely on a collection 

of heuristics that satisfice (i.e. find a good-enough solution) (Gigerenzer, 2008). These 

heuristics evolve through past experiences to provide the decision-maker with satisfying 

solutions according to his goal, expectations, limited cognitive abilities, and partial 
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understanding of the complexity of the decision task at hand (Simon, 1955). We illustrate the 

concept of bounded rationality in Figure 3.2, showing the role it can play in analyzing an 

SES. The figure conceptualizes how the behaviours (i.e. decisions and actions) of natural 

resource users (e.g. fishermen) are simplified responses (but functional according to their 

goals) coarsely adapted to the complexity of the subsystems’ characteristics they interact 

with (e.g. fish location, market demand, fishing quotas). Starting from critical patterns of use 

(i.e. outcomes) at the SES level, the bounded rationality approach is proposed as a general 

investigation canvas to backtrack the causal chain of relations down to the root causes. Given 

that interpreting the dynamics of complex SESs is challenging, we argue that the bounded 

rationality approach can be integrated into Ostrom’s general framework to support such an 

investigation process. 

 

In this article, focusing on resource users, we illustrate the suitability of the bounded 

rationality lens to complement Ostrom’s framework (Ostrom, 2009) in the effort to identify 

the mechanisms that lead users to degrade ecosystems. To do so, we use the case study of the 

whale-watching SES in the Saguenay–Saint Lawrence Marine Park (SSLMP) in Québec, 

Canada. Thus, our work is in line with the idea to study SESs in light of human decisions 

(Beratan, 2007). We place the focus at the closest level to the natural resource, referred to as 

the micro-level in the terminology on the sustainable management of whale-watching 

activities (Higham, Bejder and Lusseau, 2009). 
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Figure 3.2  A conceptualization of bounded rationality applied to the study of SESs centered 
on natural resource users (U). This schema symbolizes the coarse adaptation of users (U) to 
the complex decision task defined by external subsystems (RU+RS+S+GS), producing the 
observed outcomes (O). The terminology used for the description of SES’s subsystems is 

drawn from Ostrom (2009). 
 

After a description of the studied SES, we detail our methodology. After an identification of 

critical issues associated with whale-watching activities, re-using the terminology presented 

in Figure 3.1 we apply the bounded rationality lens on the investigated SES and follow the 

trail from the known issues back to the causal interactions and characteristics of the 

constituent subsystems. We finish with a discussion of the results and general implications 

for the study of SESs. 
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3.4 Case study 

Our case study is focused on whale-watching excursions operating in a marine park situated 

in the St. Lawrence estuary located in Québec, Canada. The estuary is an important summer 

feeding ground for up to 13 marine mammal species. One threatened resident population 

(COSEWIC, 2010), the St. Lawrence beluga (Delphinapterus leucas) inhabits this ecosystem 

with several migratory species including the endangered blue whale (Balaenoptera 

musculus), the fin whale (Balaenoptera physalus) listed as ‘of special concern’ under the 

Canadian species at risk act (COSEWIC, 2010), the humpback whale (Megaptera 

novaeangliae), and the minke whale (Balaenoptera acutorostrata). The regular presence of 

marine mammals have made the area renowned as one of the best places in the world for 

whale-watching (Scarapaci, Parsons and Lück, 2008). From May to October, around 10 000 

commercial excursions get tourists closer to the whales, mainly between Tadoussac and Les 

Escoumins (Chion et al., 2009). Added to this are about 40 000 kayak-based visit-days and 

9000 trips of private pleasure crafts mainly concentrated within the Saguenay River, 

encompassing key habitats for the threatened beluga whale population (Michaud, 1993; 

Pippard, 1985). 

 

In response to a long process of public pressure and subsequent consultations, Parks Canada 

(government of Canada) and Parcs Québec (government of Quebec) created the Saguenay–

St. Lawrence Marine Park (SSLMP) in 1998 (Guénette and Alder, 2007), an area covering 

more than 1245 km2 (Figure 3.3). In 2002, the Marine Activities in the Saguenay–St. 

Lawrence Marine Park Regulations was adopted, to be enforced by the Parks Canada team of 

wardens (Parks Canada, 2002). In 2004, the Department of Fisheries and Oceans (DFO) 

proposed a 6000 km2 St. Lawrence Estuary Marine Protected Area project under the Oceans 

Act (Oceans Act, 1996), a proposal still in progress. Both marine protected areas aim to 

ensure marine mammal conservation including the protection of their habitat. Accordingly, 

the management of human activities including whale-watching is among their priorities. 
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Figure 3.3  Study area. The toponyms in bold are towns serviced by whale-watching 

companies. The triplet (a;b;c) under toponyms stands for the number of  
a: companies; b: commercial excursion permits;  

and c: active boats in 2010. 
 

In 2010, twelve operators were authorized to commercialize whale-watching excursions in 

the SSLMP for a total of 59 permits (Parks Canada, 2002). Forty-one boats operated in 2010 

with capacities extending from 7 up to 800 passengers (cf. Figure 3.3). They generated an 

economic impact of US$ 98 million in 2009 (Gosselin and Priskin, 2009). While being a 

non-consumptive alternative to whaling and a potentially good way to increase the greater 

public’s awareness of the importance of conserving marine ecosystems, a growing number of 
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studies report on the negative impacts of whale-watching activities on targeted marine 

mammals populations. Short-term behavioural impacts include noise disturbance (Erbe, 

2002), change in respiratory patterns (Stamation et al., 2010), activity budget (Michaud and 

Giard, 1998), vocalization behaviour (Lesage et al., 1999), or reduction in resting and 

socialization (Constantine, Brunton and Dennis, 2004; Lusseau, 2004). Long-term biological 

impacts include increase in energetic demand (Williams, Lusseau and Hammond, 2006), 

decrease in reproduction rates (Bejder et al., 2006), and area avoidance (Lusseau, 2004). 

From the perspective of a precautionary approach, the ecological cost of whale-watching 

must be mitigated to satisfy standards of ecotourism and achieve sustainability (Corkeron, 

2004; Hoyt, 2007; Lien, 2001). Our motivation is thus to better understand the SSLMP 

social-ecological system (SES) so that ways to reduce the pressure exerted by whale-

watching excursions on the targeted marine mammals can be found. 

 
Natural resource management in Canada must involve the implication and consensus of all 

stakeholders. While more and more legislations try to impose the ecosystem-based 

management balancing the three spheres of sustainable management (social, ecological, and 

economic), the private sector’s interests often prevail when the precautionary principle 

cannot be supported by scientific evidence (Higham, Bejder and Lusseau, 2009). 

Consequently, in the St. Lawrence Estuary, regulations based on the precautionary principle 

and/or worldwide examples (jurisprudence or precedents) are very difficult to implement if 

they are potentially interfering with the touristic demand. In this context, we argue that 

efforts to reduce human impact on the ecosystem may be effective if they operate at the 

bottom-most level of the excursion by directly influencing the critical decisions of captains at 

sea. 

 
The SES of whale-watching activities in the St. Lawrence Estuary has a complex structure 

characterized by heterogeneous interconnected stakeholders (Figure 3.4).  
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Figure 3.4  Overview of the major stakeholders and their interactions in the social-ecological 
system of whale-watching in and around the Saguenay–Saint Lawrence Marine Park 

(SSLMP). 
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Whale-watching companies respond to tourism demand by offering trips within the marine 

park. Only accredited companies can operate commercial excursions. Park managers partly 

rely on universities and NGOs for scientific research and consulting, supporting them in the 

creation of regulations regarding observation activities, enforced by park wardens. The 

emergence of such an interconnected human and institution system results from the regular 

presence of marine mammals (i.e. natural resource) in the area. Whale-watching excursions 

thus serve as the key link connecting the social and ecological subsystems in the estuary. 

Their observed dynamics is the footprint of captains’ decisions at sea resulting from these 

interactions. These important decisions include 1) whether to explore space or exploit the 

knowledge of where whales are currently being observed; 2) which whale to target in 

exploitation mode; 3) where to search when in exploration mode; 4) when to interrupt an 

observation sequence of a given pod of whales; and 5) whether or not to diversify excursion 

activities (e.g. lighthouse viewing, coastal touring) to enrich visitors’ experience. 

Understanding how captains address these specific decision problems and how their decision 

outcomes relate to exposure of whales to human activities are subsequently addressed 

following the bounded rationality framework. 

 
3.5 Methods 

Following Simon’s scissors metaphor of bounded rationality (Simon, 1990) conceptualized 

in Figure 3.2, the dynamics of whale-watching excursions in the SSLMP is the footprint of a 

captain’s sequence of decisions that reflects his cognitive adaptation (cognitive blade) to 

achieve his goals in a given task environment (environmental blade). In Figure 3.4, the 

environmental blade is described by a set of interconnected ecological, social, economical, 

and legal factors, with captains and their cognitive blade lying at the crossroad of these 

subsystems. Re-using Ostrom’s terminology, the different interconnected subsystems of our 

case study are identified in Table 3.1.  
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Table 3.1 Description of the SSLMP whale-watching SES using Ostrom’s terminology 
(Ostrom 2009) 

 

Ostrom’s terminology of SESs SSLMP case study 

Social, economic, and political settings (S) cf. top box in Figure 3.4 

Users (U) Whale-watching captains 

Resource unit (RU) Whales 

Resource system (RS) Saguenay-St Lawrence Marine Park  

Governance system (GS) Parks Canada and Dept. of Fisheries and 
Oceans 

Interactions (I) cf. links in Figure 3.4 

Outcomes (O) Issues of whale-watching excursions 

 

Our methodology involved three phases: 

1) Phase 1: Identify excursions’ key characteristics, elicit important features of whales’ 

movement patterns and use of the study area, and draw hypotheses about captains’ 

decision processes through quantitative analyses of available excursions datasets, and 

qualitative analysis of collected observational data. 

2) Phase 2: Characterize captains’ decision process (cognitive blade) with qualitative 

analyses of semi-structured interviews and observations, and establish a link with 

contextual factors (environmental blade). 

3) Phase 3: Validation of the results with park wardens and expert scientists. 

 

Whale-watching activities have been extensively studied in the SSLMP for more than 16 

years via the ongoing AOM2 monitoring program funded by Parks Canada and Fisheries and 

Oceans Canada and led by an NGO, the Group for Research and Education on Marine 

Mammals (GREMM) (Michaud et al., 1997). AOM data are fully described in (Michaud et 

                                                 
 
2 AOM: Activités d’Observation en Mer (Observation activities at sea) 
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al., 1997). Statistical and spatial analyses were conducted on this database to describe 

excursions’ dynamics and identify their key features. This process allowed the elicitation of 

hypotheses about the mechanisms driving captains’ decision making responsible for observed 

excursions’ dynamics. Since this database could only give limited insights into captain’s 

choices and behaviours, additional data were collected. Onboard observations made during 

30 outings with all operators offering excursions in the area gave us a rich point of view from 

inside the system. Patrols and interviews with park wardens and scientific outings with 

GREMM researchers were also conducted. Finally, we completed this first phase by 

compiling knowledge about the dynamics of whale species in the area. 

 

Relying on the knowledge extracted from the first phase, we conducted an interview 

campaign with whale-watching captains to start the second phase. We chose the semi-

structured interview format for its flexibility in exploring avenues not initially foreseen by 

the interviewer. Conversational interviews are suitable to the creation of an informal and 

relaxed atmosphere, priceless in the context of the project. Seven interviews (~8 hours) were 

conducted in 2007. All but one interview was conducted right after the interviewer took part 

in an excursion with the captain. In line with the Critical Decision Method (Klein, 

Calderwood and MacGregor, 1989), this approach allows the interviewer to refer to real 

events to clarify some questions and go further into detail about decision processes and 

motivation. Captains rely heavily on VHF radio communication as a medium for passing on 

information about whale locations. We thus monitored the public “whale channel” for a total 

of 10 hours spread over seven days to characterize the nature and analyze the content of 

information flowing through it. We completed this second phase of investigation by 

conducting qualitative analyses over the transcribed data (Paillé and Mucchelli, 2003; 

Silverman, 2005). 

 

Finally, we validated the extracted knowledge about captains’ behaviours with park wardens. 

Marine mammal specialists were also involved to validate information extracted about 

whales’ dynamics. More details on data collection and analyses are presented in the 

appendices.  
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3.6 Results 

3.6.1 Outcomes (O): Dynamics of users (U)’ activities and critical issues for the 
resource (RU)  

We carried out several specific analyses and develop indices from the AOM database for the 

purpose of this study. Here we report on the results of analyses about the dynamics of whale-

watching excursions, presented in APPENDIX III. In the SSLMP area, 98.89 % of mid-day 

whale-watching motorboat excursions observed at least one whale from 1994 to 2009. The 

abundance and reliable presence of whales in relatively easily accessible areas make this high 

success possible. This supports some cetacean-watching specialists’ claims that the SSLMP 

area is one of the best regions worldwide to observe whales (Scarapaci, Parsons and Lück, 

2008), which explains the high tourist demand. 

 

Four migratory rorqual species, namely blue, fin, humpback, and minke whales, along with 

the resident beluga population account for more than 98% of the targeted animals for 

observations. The discrepancy between species’ relative abundances and their contribution to 

total observations highlights a ranking in their attractiveness for observation (statistically 

significant, alpha=2%). This ranking is confirmed by the distributions of boat numbers in the 

vicinity of the targeted pods. Humpback whales generate the greatest boat aggregations, 

followed by fin, blue and minke whales. Blue whales tend to concentrate in the eastern end of 

the SSLMP, far from Tadoussac, the busiest port (cf. Figure 3.3). When blue whales have 

been observed in the vicinity of Tadoussac, boat concentrations were significantly higher 

than values presented for the whole area. 

 

Although high aggregations of boats are frequently observed in the SSLMP, excursions 

departing from the four main ports first try to keep their activities close to their respective 

homeport (cf. APPENDIX III). However, some situations (e.g. attractive species spatially 

clustered, captains’ limited search effort), generated locally high aggregations of boats, 

which proved to be detrimental for exposed whales in the SSLMP (Michaud and Giard, 

1998). 
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For mid-day excursions (from 10:00AM to 4:00PM), a whale-watching vessel is alone with 

the targeted pod during only 14.5% of total observation time, whereas 21.9% of this time 

there are at least 10 boats surrounding within 2 km (~55% of which lie within 400m), 

exceeding most of the levels enforced or recommended by worldwide regulations and 

guidelines (Carlson, 2010). For zodiac-based excursions from Tadoussac, our analyses show 

that 80% of the time, an observation sequence begins with other boats already observing the 

targeted pod. Boats taking their turn to observe the same pod is undesirable for targeted 

whales since this implies that they are continuously exposed for long periods of time without 

respite (pers. comm. C. C. A. Martins); this is also undesirable for tourists’ visiting 

experience (Giroul, Ouellet and Soubrier, 2000) and the whale-watching industry’s image, 

but is favoured by the busy excursion timetable (cf. Figure III.1 in APPENDIX III). 

 

Finally, increasing the time allocated to other activities such as sea floor viewing and coastal 

tours has been highly encouraged by park managers to highlight the unique beauty of the 

region while decreasing the pressure exerted on whales. Despite improvements, except for 

companies totally dedicated to landscape viewing or some excursions onboard large boats, 

the proportion of these activities remains low especially for small vessels. 

 

In summary, three issues (not totally independent) have been identified to increase whale 

exposure to boats, namely 1) large aggregations of boats around whales; 2) the ranking in 

species value for observation, the most valuable being the most spectacular (incidentally the 

scarcest); and 3) long-lasting continuous observations of the same pods by boats following 

one after another. We now present some major interactions underpinning these issues. 

 

3.6.2 Interactions (I): Elicitation of users (U)’ interactions with subsystems 
contributing to critical outcomes (O) 

Following the bounded rationality approach, we describe both the task environment and 

cognitive blades from the whale-watching captain’s standpoint in order to identify the 

mechanisms favouring the three abovementioned issues related to whale exposure. 
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3.6.2.1 The task environment blade 

Resource units (RU) and resource system (RS) dynamics: Whale species’ dynamics 

Analyses have been carried out on the AOM database (Michaud et al., 1997) and indices 

developed for the purpose of this study. Here we present the summary of analyses on the 

spatiotemporal patterns of whale species’ dynamics detailed in APPENDIX IV. The SSLMP 

area is a summer feeding ground for the migratory fin, minke, blue and humpback whales, 

whereas the St Lawrence beluga population is resident. From mid-June to the end of 

September, fin, minke, and beluga whales have almost always been present in the SSLMP 

area since the AOM monitoring program has been in place (1994). Conversely, blue and 

humpback whales’ summer residence have proved to be unpredictable in the area, being 

present 55.4% and 63.9% of the time respectively. 

 

The abundance of the four rorqual species in the area is highly variable across different time 

scales. From year to year, species’ abundance can vary a lot depending on changes in prey 

availability in the region (Giard et al., 2001). Sudden changes in abundance may also occur 

on a day-to-day basis: the home range of these foraging whale populations being 

considerably larger than the SSLMP area, their abundance is contingent upon the density of 

their preys whose short-term spatiotemporal dynamics is largely driven by complex 

oceanographic phenomena (Simard and Lavoie, 1999; Simard, Lavoie and Saucier, 2002). 

On average, the minke whale is unarguably the most abundant rorqual species, followed by 

fin, humpback, and blue whales. 

 

When present in the area, minke, fin, and to a lesser extent humpback whales’ spatiotemporal 

residency tends to be stable (thus predictable) from day to day. Despite the fact that blue 

whales display little spatiotemporal stability and are relatively scarce, their spouts can be 

located up to four times farther than those of the smaller minke whales, making this species 

easy to detect in favourable weather conditions. 
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Whales’ surface behaviour is a determinant for observation and is variable among species 

(and individuals). Surfacing whales mostly show the top of their head and their back. Only 

humpback and few individual blue whales do “fluke-up dives” on a regular basis. Fin and 

beluga whales are highly gregarious whereas minke are mostly solitary. In the presence of 

boats, humpback and fin whales rarely exhibit long-distance fleeing behaviours compared to 

blue whales, known to be harder to approach. Minke and humpback whales occasionally 

breach out of the surface, offering a dramatic show for observers. However, spectacular 

surface displays tend to be exceptions in such feeding grounds as the SSLMP region. 

 

Governance System (GS) and social, economic, and political setting (S) 

A set of constraints are exerted on whale-watching captains. These constraints may affect 

captains’ subgoals, strategies and thus decision outcomes. The main constraints are the 

regulations (Parks Canada, 2002), the guidelines coming from their company (e.g. minimize 

fuel consumption; reimbursement of unsuccessful excursions), the competitive context (e.g. 

show at least the same whales as if not more than direct concurrent operators’ excursion), the 

characteristics of the product sold (e.g. duration of the excursion, discovery of landscape and 

historical features), and mechanical limitations (e.g. boat speed, large deck boats’ ability to 

reach offshore areas that small boats will avoid in heavy sea, maneuverability, deck height). 

 

Implicit ethical and social rules apply within the small whale-watching captains’ community, 

due to their repeated interactions during the season. This is sometimes observed for such 

decisions as restricting observation duration when several boats target the same pod. Another 

cooperative behaviour is observed when captains summarize the knowledge about whales’ 

current locations on the VHF radio to inform departing excursions. 

 

Generally speaking, the enforcement by park wardens of the current regulations on marine 

wildlife observation (Parks Canada, 2002) is constrained by the low ratio patrol/whale-

watching fleet (2/41), with whale-watching excursions spreading over the whole park.  
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3.6.2.2 Users (U): Captains’ cognitive blade 

In this section we synthesize the key features extracted from the analyses of the multiple data 

sources presented earlier. We only detail elements of captains’ decision making directly 

related to critical whale exposure. 

 

Our investigation centered on whale-watching captains revealed several key features of their 

decisions at sea. Several collective strategies have been evolved by captains to ensure they 

keep track of attractive whales throughout the day. A fundamental mechanism underlying 

excursion dynamics is the total cooperation between captains who help each other by passing 

on information about whale locations on the open VHF radio “whale channel”, no matter the 

company. Cooperation also occurs when captains having explored some areas without 

success report it to advise other captains to search for whales elsewhere. The uncertainty 

about whale location could virtually affect anybody anytime, thus justifying cooperation in 

the community. Moreover, this apparent socioeconomic paradox (i.e. captain cooperation in a 

context of competition between companies) is rewarding on the long-run for the numerous 

captains who conduct several excursions a day, since cooperation ensures that their task of 

locating whales will get easier as the day goes on. Some captains even claimed in interviews 

that “After 10 AM, all large rorquals (i.e most attractive species, namely humpback, fin and 

blue whales) are located in the SSLMP”, suggesting the efficacy of this collective strategy. 

 

In a context of heavy competition where 54.7% of whale-watching tourists select a company 

on the spot by word of mouth (Giroul, Ouellet and Soubrier, 2000), some operators have a 

refund (or raincheck) policy in case of empty-handed excursions, to avoid negative 

comments from unsatisfied tourists. The pressure of success is on captains to satisfy onboard 

tourists’ expectations. This context of heavy competition between companies favors at least 

two phenomena: 1) risk aversion (fear of failure) pushes captains to prefer the convenient 

exploitation of discovered whales over the more risky space exploration in search of new 

ones (illustrated earlier); and 2) captains try to show at least the same whales as competing 
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companies, leading to boats following one after another around a limited number of targeted 

pods. 

 

As illustrated earlier, all species are not equally attractive to captains. In interview, some 

captains revealed that they believe tourists want to witness spectacular whale displays. The 

vast majority of companies’ advertising material exhibits pictures or movies of whales 

showing their tail fluke, shaping tourists’ expectations. However, this behaviour tends to be 

exceptional in the region and mostly seen in the humpback whale and in rare blue whales, 

namely the two scarcest species in the region. Images of whales breaching out of the water 

are also used to attract tourists although this behaviour is even rarer than fluke-up dives, 

observed mostly in humpback and minke whales. Consequently, to run the chance to be 

consistent with the content of advertising material, captains will tend to overly observe 

humpback whales when present in the area. Fin whales are gigantic animals (2nd largest 

animal ever lived on Earth after the blue whale), occasionally hunting in large groups, and 

present on a regular basis in the region making them excellent candidates for observation. 

Blue whales being hard to approach, mostly distributed far from busy ports, and subject to a 

400-meter minimal observation distance (Parks Canada, 2002), they are not the first choice 

for captains. Minke whales are fast, small and abundant relative to other rorqual species, and 

observable from the shore making them less attractive despite their spectacular surface 

behaviours. Finally, endangered beluga whales are also subject to a 400-meter minimal 

observation distance (Parks Canada, 2002) so that they are observed mostly 

opportunistically. These are some of the reasons why few whales attract many boats. The 

summary of the mechanisms responsible for critical whale exposure to boats is given in 

Table 3.2 and discussed thereafter along with their broader implications. 
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Table 3.2 Mechanisms favoring the three issues of whale exposure to whale-watching boats and their links with subsystems. For 
U, we differentiate captains from companies 

 

Critical issue Underlying mechanisms 

Subsystem 

U 
RU S GS RS

captain company

(1) 

High boat 

aggregations 

o No restriction on the number of daily departures/permit + busy 
timetable 

 x   x  

o High proportion of small boats (<48 passengers) in the whale-
watching fleet 

 x   x  

o High tourist demand   x x  x 

o Cooperation and information sharing between captains (non-rival 
activity) 

x     x 

o Existence of numerous collective strategies to facilitate whale 
observation 

x      

o Exploitation of discovered whales prevails upon space exploration 
(more risky) 

x      

o Attractive (dramatic) species are scarce   x   x 

o Dramatic species tend to aggregate close to busy ports   x   x 

o Companies tend to homogenize excursion content (competition)  x  x   

o Permissive regulation (no restriction on boat number at d > 400 m of 
a whale) 

    x  

o Lack of awareness of collective and cumulative effects of whale 
exposure 

x x   x  

o Ignorance that visitors dislike boat aggregations (conflicting with the 
feeling of wilderness experience) 

x x     

o Difficult navigational conditions are frequent      x 

84
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Critical issue Underlying mechanisms 

Subsystem 

U 
RU S GS RS

captain company

 

 

 

(2) 

Unbalanced 

species 

attractiveness 

o Search for dramatic behaviours (competition) x x  x   

o Fashionable species (herding effect, social convergence) x      

o Competition between companies  x  x   

o Tourist expectations influenced by advertisement material (e.g. 
pictures of dramatic whale displays) 

 x   x  

o Abundant species (e.g. Minke whales) can be observed from the 
shore, decreasing their observation value offshore. 

  x   x 

o Humpback whales species display spatiotemporal stability 
(predictability) 

  x   x 

o Rare naturalist guides onboard small boats to mitigate the quest for 
dramatic behaviours. 

 x  x x  

(3) 

Long-lasting 

continuous 

observations 

o Captains’ inexperience (low retention rate)  x x     

o Ignorance of visitors’ satisfaction criteria (prone to increase boat 
aggregations) 

x x     

o Permissive regulation (max 60 minutes on the same observation site)     x  

o Risk aversion of captains x      

o Busy timetable of excursions (captains take their turns on 
observation sites) 

 x     

(1)+(2)+(3) 

o Lack of activity diversification x x     

o No guide of good practices for whale-watching captains x x     85
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Critical issue Underlying mechanisms 

Subsystem 

U 
RU S GS RS

captain company

o Weak social recognition for the whale-watching captain profession  x  x x  

o Not enough information/interpretation provided to visitors before, 
during, and after the excursion 

 x   x  

o Tourists are mostly passive and uninvolved during excursion (few 
activities related to conservation onboard small boats) 

 x   x  
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3.7 Discussion 

Whale selection is often well explained by a one-reason decision making process based 

solely on the species attribute, humpback, fin, and blue whales being the most valuable in the 

eyes of captains. The repetition of long-lasting observation sequences by boats following one 

after another around these attractive whales throughout the day increases the chances for a 

captain to witness dramatic behaviours on the long-run. However, this results in large 

aggregations of boats around a few targeted whales in the region. This could potentially lead 

to the tarnishing of the whale-watching industry’s image (Finkler and Higham, 2004; Giroul, 

Ouellet and Soubrier, 2000) while being harmful for overly targeted whales (Michaud and 

Giard, 1997; 1998).  

 

Large aggregations of boats around fashionable species is a feature of convergent social 

behaviour called herding (Raafat, Chater and Frith, 2009). Herd behaviour is self-reinforced 

by captains’ risk aversion. In addition to putting excessive pressure on few animals, this 

collective behaviour decreases both the captain’s job interest (stagnation of the pool of 

discovered whales) and visitors’ experience (risk of a “boat-watching” experience). This 

emergent herd behaviour is a self-defeating strategy (Batten, 2007) in the sense that carried 

to extremes, captains losing the only discovered whale will not have any alternative to 

exploit. Whether large aggregations of boats around attractive species are due to real visitors’ 

preferences, captains’ preferences, misunderstanding of tourists’ expectations, or a 

combination of these reasons, captains’ herd behaviour could ultimately turn out to be a self-

defeating strategy for the local whale-watching industry as a whole. 

 

Members of small communities must share a common representation of the system in which 

they operate to cooperate effectively and achieve their goals (Hoc and Carlier, 2002; Salas et 

al., 1995). We argue that misconceptions can remain strongly anchored in a local mindset; all 

the more if they conveniently justify that any change is unnecessary. This is the case when 

some captains deny or minimize the fact that their activities disturb whales despite scientific 

evidence. This is also the case for captains who believe that a good excursion should 
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necessarily contain the observation of spectacular displays. The fact that most of companies 

exhibit whale tails on their advertising material reinforces and justifies the quest for 

spectacular behaviours in this direction by influencing visitors’ expectations. However, only 

some animals from the least abundant species occasionally do fluke-up dives, making them 

overly observed when present in the area. The presence of the sought-after humpback whales 

in easily accessible areas reinforces their exaggerated attractiveness, promoting in turn large 

aggregations of boats in their surroundings.  

 

Finally, analyses revealed that captains tend to overly exploit existing information rather than 

exploring the space for new whales. Risk aversion and the prevalence of inexperienced 

captains (due to low employee retention) certainly contribute to explain this preference for 

less risky strategies, which ultimately favours large aggregations of boats and extended 

presence on the observation sites. 

 

The regulatory body carries the burden of proof to assess the long-term effects of whale-

watching activities on targeted populations. We therefore believe that intervening with 

captains to increase their awareness is a major lever that can be used to mitigate ecological 

(whale disturbance) and social (visitors’ experience) costs of whale-watching activities and 

achieve sustainability. The guarantee to meet and maintain the standards of sustainability for 

the SSLMP whale-watching SES requires a synergy between natural resource managers, 

NGOs, researchers, and the tourism industry. The undergoing development of a guide of 

good practices for whale-watching activities is precisely an effort in this direction. 

Agreement on a common vision, transparency in decisions, regular exchanges of information, 

and acknowledgment of past mistakes are necessary to ensure the success of such an 

approach. 

 

Tourists’ fidelity to a destination is an objective of sustainable whale-watching (Hoyt, 2007), 

contributing to the prosperity of local tourism. This is all the more true for the SSLMP where 

approximately half of the visitors come from the province of Québec. This loyalty is 

contingent upon the post-experience satisfaction of tourists’ expectations (del Bosque and 
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San Martin, 2008; Okello and Yerian, 2009). Therefore, a failure in providing an educative 

and wilderness experience desired by visitors (Giroul, Ouellet and Soubrier, 2000) could 

likely make them reluctant to repeat an experience in the region, and prone to spread 

unfavourable comments by word of mouth. The local emergence of alternative whale-

watching destinations in the surrounding region should stimulate the industry to meet 

ecotourism standards in demand, a sector growing three times faster than the whole tourism 

industry (The International Ecotourism Society, 2006; Wearing and Neil, 2009). The quest 

for true sustainable whale-watching in the St Lawrence Estuary should be paid careful 

attention in order for local stakeholders not to miss the boat. 

 

3.8 Conclusion 

For SESs where the precautionary principle can hardly compete with the free-enterprise 

principle, focusing on the closest level of the human-nature interface might be a key to 

improving natural resource management en route towards sustainability. In the present case 

study, relying on Ostrom’s general framework (Ostrom, 2009), we showed how the bounded 

rationality concept can allow to connect undesirable outcomes at the SES level with some of 

its subsystems’ interactions by focusing on the bottom-most level of the system, the users. 

From a philosophical standpoint, observing SESs through the bounded rationality lens forces 

the unification of the all too distinct social and ecological spheres of scientific research (Liu 

et al., 2007; Norgaard, 2008; Ostrom, 2009). 

 

According to the classification of ecosystem goods and services proposed in Brown et al. 

(2007) and Costanza (2008), we presented a SES where users are non-consumptively 

exploiting an exclusive ecosystem where commercial whale-watching is subject to restricted 

permits. However, the studied SES can switch from a non-rival (mostly uncongested activity 

in a vast territory) to a rival status when the number of boats around the observed whales 

increases due to the scarcity of attractive species and herd effect in captains behaviour. We 

believe that the switch to a rival system (i.e. numerous boats surrounding the same pod of 

whales) can be deleterious both for the ecological and social components of the system. 
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The social system of users (whale-watching captains and companies) proved to be reluctant 

to change. Ostrom argues that self-organization of users is rare when no scarcity (feedback 

on past actions) is observed due to bad practices (Ostrom, 2009). Accordingly, several 

elements can be put forward to explain the resistance to change observed in our system, 

mostly related to the absence of feedback-related negative effects of bad practices in the past. 

First of all, the consequences of cumulative whale exposure to boats are very hard to assess 

(Corkeron, 2004; Higham, Bejder and Lusseau, 2009). Second, establishing any causal effect 

between whale disturbance, species abundance, and the number of whale-watching tourists is 

in the realm of speculation. For example, the number of whale-watching tourists has 

decreased by ~20% between 2001 and 2005 (D. Gosselin, personal communications), 

coinciding with an overall decrease in whale abundance revealed by interviewed captains and 

local scientists. From 2005 to 2009, the number of whale-watching tourists has stagnated, 

coinciding with an apparent increase in whale abundance. However, even if the effect of bad 

practices would lead some whales to abandon the St Lawrence Estuary habitat, and if there 

could be some causal effect between whale abundance and tourist frequentation, the causal 

relation would be hard to elicit so as to convince operators to change their practices using 

economic arguments. Thirdly, a great proportion of whale-watching tourists are first-time 

participants (Giroul, Ouellet and Soubrier, 2000) so that many do not have any reference on 

what a sustainable whale-watching experience is, restraining them from providing post-

experience constructive positive or negative feedbacks to operators. In the broader context of 

non-consumptive activities where some private companies are in competition, if 

unsustainable practices do not lead to significant negative economic consequences by 

feedback (i.e. scarcity), there is only little incentive for users to self-organize and call into 

question their practices (Ostrom, 2009). In such contexts, bounded rationality can be a 

powerful framework to guide an in-depth investigation of users’ activities and draw 

recommendations regarding management agencies, private companies, and end-user training. 

Interestingly, the bounded rationality concept taken as an investigation framework naturally 

fosters the unification of social and natural sciences for the study of SESs. 

 



 

CHAPTER 4 
 
 

ELEMENTS OF WHALE-WATCHING CAPTAINS’ DECISION MAKING: 
COLLECTIVE STRATEGIES AND DECISION HEURISTICS 

The bounded rationality theory underlies all the results presented thereafter. As discussed in 

CHAPTER 3, the spatiotemporal dynamics of whale-watching excursions in the SSLMP is 

the footprint of captains’ decisions at sea. According to the bounded rationality theory, 

captains’ decision making processes can be seen as simple heuristics evolved across time and 

past experiences to fit the requirements of the complex task environment given such 

cognitive bounds as memory (Ebbinghaus, 1964) and computation limitations (Simon, 1990), 

as schematized in Figure 3.2. Captains’ decisions which have been studied are related to the 

problem of localization and observation of whales. 

 

An important characteristic of the SSLMP whale-watching system is that captains often make 

decisions as part of a collective. As a matter of fact, most of time several excursions are 

simultaneously active and captains can take advantage of this situation in various ways in 

order to locate and observe whales. Thus, the present chapter presents the knowledge 

acquired about whale-watching captains’ decision making processes and outcomes, both 

individual and collective, related to the problem of localizing and observing whales during 

excursions. In CHAPTER 3, the focus was solely on captains’ decisions leading to 

undesirable outcomes (cf. section 3.6.2.2). In this chapter, all the captains’ decision heuristics 

and collective strategies elicited during field campaigns are presented. Whale-watching 

excursions have been investigated both quantitatively with spatial and statistical analyses, 

and qualitatively through various observations made on captains. The next section presents 

an overview of these investigations. The rest of this chapter is an in-depth description of 

individual and collective decision making strategies used by captains to observe whales. 
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4.1 Summary of field campaigns and data analyses 

The data used to study whale-watching captains’ decision making processes are given in 

Table 4.1 in the column ‘data source’. 
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Table 4.1 Summary of data collection, analyses, and extracted knowledge about whale-watching captains’ decision making 
 

 93
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The field campaigns, which have been described in sections 1.2.2.5 and 1.3.4, were approved 

by Parks Canada (permit #SAGMP-2007-1203) and by both Research Ethics Committees of 

École de technologie supérieure and Université de Montréal (cf. APPENDIX II). 

 

An overview of information extracted from the different datasets is given in Table 4.1. This 

knowledge has been used to fuel the development of several modules of the 3MTSim’s 

whale-watching excursion component (cf. Figure 6.2). Elements of whale-watching captains’ 

cognition intervening in their decision making process are presented in the next section. 

 

4.2 Whale-watching captains’ cognition 

The main components that have been identified to influence captains’ decisions at sea are 

presented in Figure 4.1. Figure 4.1 is not an exhaustive description of all interleaved 

contextual, environmental, and psychological factors, mechanisms, and relationships between 

them leading to the observed behaviours; it is rather a summary of influential and salient 

elements identified as major drivers of captains’ decisions after the field campaigns. These 

elements are described thereafter. 

 

According to the bounded rationality theory, the captains’ decision making system is a 

functional (non-optimal) adaptation to the task environment structure and its inherent 

uncertainty that must be dealt with to achieve their goals (cf. Figure 3.2). Beliefs about 

tourists’ expectations, knowledge acquired by past experiences, and captains’ own 

preferences define their desires of achievement and fears about what to avoid in the broad 

sense. The information about which whales are currently or have been recently seen defines 

captains’ expectations of what can and should be observed during the current excursion. In 

order to satisfy their desires and avoid their fears, according to the possible future courses of 

actions, captains derive goals and pursue them (explicitly or implicitly) by implementing 

collective strategies or using cognitive heuristics that have proved successful in the past. 
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In this section we present the knowledge extracted from observations, interviews and 

analyses of VHF monitoring about the way captains make decisions to locate and observe 

whales. Figure 4.1 presents our conceptualization of this process. 

 

 

Figure 4.1  Conceptual model of factors influencing whale-watching captains’ decisions 
relative to the task of whale localization. Dark grey boxes relate to the external  

environment, whereas light grey boxes relate to the captain’s inner  
environment including his sensory and cognitive abilities. 
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4.2.1 External factors 

These factors have already been presented in the previous chapter in section 3.6.2.1. 

 

4.2.2 Information 

Information is crucial for any relevant decision to be made. The Information System 

described on top of Figure 4.1 is the interface between the state of the environment and the 

captains’ representation of it (incomplete by nature). 

 

4.2.2.1 Sensory system 

The best tool available to captains to locate whales in normal weather conditions is vision. 

Surfacing whales can be located either via direct visual cues (e.g. tail, back) or indirect clues 

(e.g. blow condensing in the air up to 8-meters high, sound made by the blow useful to locate 

whales on foggy days). Another indirect indicator of whales’ underwater presence is the 

aggregation of sea birds feeding at the water surface. Sea birds and whales have some preys 

in common so that they can be observed simultaneously in food-rich areas. Surface current 

fronts are also sometimes used by captains as a proxy to locate whales. The visual detection 

distance varies according to whale species and weather conditions (i.e. visibility, sea state, 

wind). Table 4.2 presents an overview of detection distances as a function of whale species 

and weather conditions (Sarah Duquette, GREMM, personal communication). 
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Table 4.2 Approximate species-dependant detection distance under ideal and average 
weather conditions (Sarah Duquette, GREMM, personal communication) 

 

 Detection distance to the naked eye (meters) 
Target species Ideal weather conditions Average weather conditions

Minke whale 2000 1500 

Fin whale 4500-5000 3000 

Blue whale 6000 4000-4500 

Humpback whale 4500-5000 3000 

Beluga 3000 1500-2000 

 

4.2.2.2 Communication 

As soon as some whales are observed within the marine park, communication via the radio 

VHF channel becomes the main vehicle for information flow between captains. Somehow 

paradoxically, despite a strong competition between whale-watching operators (i.e. 

companies), captains extensively cooperate at sea, regardless of their company. Some 

captains carry out specific roles in the communication systems such as hubs (very 

informative with any captain) and relays (regularly summarizing the available information). 

Given that the territory cannot be entirely explored by a sole captain during an excursion and 

that whales can occupy virtually any location in the area, nobody has the assurance to locate 

whales easily day after day. Consequently, cooperation is the best alternative on the long run 

to minimize the risk of coming back empty-handed from an excursion. 

 

4.2.2.3 Memory system 

Whatever the whale context, captains can only capture some signals of it. Historical states of 

whales’ dynamics experienced by captains play an important role since they make up the 

base of knowledge stored on different memory systems, spanning from the short-term 
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working memory accessed for rapid decisions to the long-term memory shaping hard-coded 

patterns considered as the bases of expertise.  

 

In the absence of up-to-date information about the whales’ setting (i.e. species’ abundance 

and distribution), memory provides input to chose which locations to favour for space 

exploration. Particularly, over a short period of time (typically a few hours), past locations of 

observed whales are usually efficient clues to predict with a meaningful probability areas 

where whale species can be found. Whales’ preys are pelagic fish and plankton species 

whose distribution is related to tide cycles. Due to the bathymetry of the area, at high tide 

preys tend to congregate and be trapped in features of the underwater relief, attracting pods 

of predating whales in these food-rich zones. Conversely, at low tides, preys tend to disperse, 

causing whales to spread in a less predictable way. Several captains rely on this pattern 

which is particularly valid for the fin whale. 

 

Four different types of memory have been found to have an impact on captains’ decisions: 

1) Long-term memory: Shapes captains’ individual experience. It mostly allows captains to 

develop causal links between contextual and historical factors and most likely whale 

locations, and to make correct inferences in critical situations. 

2) Past-excursions memory: Characterizes the recent context (past day at most) giving the 

broad picture of the likely species abundance and distribution. This memory tends to be a 

shared by the captains’ community owing to their cooperative behaviour. It mostly 

influences the choice of spatial locations to explore first. 

3) Excursion memory: Keeps track of the areas explored (successfully or not) and 

observation made so far in the excursion. It mostly influences the decision of species to 

observe (e.g. captains willing to maximize the diversity of observed species).  

4) Short-term memory: Keeps track of whales detected opportunistically during the 

excursion while already engaged in an activity (e.g. a fin whale surfacing nearby while 

observing a humpback). It mostly influences the decision of the next whale to observe. 
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Memory and sensory systems supply the cognitive system with information. The next section 

describes elements of captains’ cognitive system found to influence their decisions at sea. 

 

4.2.3 Cognitive system 

Beliefs (including expectation) and knowledge have an impact on desires and fears. Desires 

and fears are emotional and motivational states which play an important role in goal selection 

(Bratman, 1988; Rao and Georgeff, 1995). Preferences as well have an impact on goals 

(Over, 2004). Whereas discovering how these emotional and psychological features precisely 

articulate to generate observed decisions is beyond the scope of this work, their identification 

is insightful to understand excursions dynamics. 

 

4.2.3.1 Beliefs and knowledge 

Beliefs are distinguished from knowledge to account for the fundamental difference between 

unfounded ideas (sometimes self-reinforced misconceptions within small communities) and 

solid knowledge based on evidence (learned by experience or scientifically based). 

 

Several captains believe that they do not have any negative impact when observing whales. 

Other captains claim that whale-watching is better than whaling arguing that whales must 

adapt to their presence. Frequently encountered beliefs are that a successful excursion (i.e. 

meeting onboard tourists’ expectations) must absolutely contain the observation of whales’ 

dramatic behaviours or at least fluke-up dives, and close encounters. 

 

Some operators occasionally record animals’ positions into their GPS and infer their most 

probable location across time. Inevitably, past observations are stored unconsciously within 

captains’ memory, creating their knowledge base. Experienced captains apparently are 

efficient at locating whales in the absence of current information, making them good 

candidates for the risky early morning excursions. 
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4.2.3.2 Desires, fears and preferences 

Unequivocally, what captains declare desiring the most is to satisfy onboard tourists. 

Accordingly, they derive and implement goals to satisfy this desire, according to their beliefs. 

Their predominant fear is to come back empty-handed from their excursion because dealing 

with unsatisfied tourists is unpleasant. Moreover, some operators adopt a refund policy for 

such excursions putting pressure on captains’ shoulders. However, captains frequently 

conduct several excursions a day. Most of the time tourists do not formulate explicit requests 

or desires, relying entirely on the captain’s experience. In such contexts, captains’ personal 

preferences can play an important role in decision making. For instance, from a captain’s 

perspective, the decision to observe the occasionally spectacular humpback whale during his 

four daily excursions increases his chance of witnessing a dramatic behaviour, even if the 

overall probability of such an event is very low in the area. Captains’ preferences can also 

lead to decisions that may reduce their impact on whales, for instance captains may 

deliberately avoid crowded areas, preferring to observe whales alone. 

 

4.2.3.3 Expectations 

Captains have expectations about which whales they could observe based on the current and 

recent context of observations made in and around the marine park. If a given species has not 

been seen for weeks in the area, nobody will expect nor struggle to observe it. Conversely, 

species that are currently observed by excursions at a given moment have an impact on 

expectations of the captains who communicate on the VHF radio. In a context of 

competition, captains departing from the same port try to homogenize their excursions’ 

content (in terms of species observed) to avoid the spread by word of mouth of unsatisfied 

tourists’ comments. Additionally, captains from the same company leading simultaneous 

excursions also try to observe the same species in order to avoid disappointments emerging 

from discussions on the way back to the quay. 
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4.2.3.4 Goals and subgoals 

In addition to ensuring that passengers have a safe and enjoyable experience, the main goal 

of a whale-watching captain is to locate and observe whales. The derivation of goals and 

subgoals to satisfy their main desire (i.e. satisfy onboard tourists) stems from captains’ 

beliefs and knowledge regarding tourists’ expectations. Captains sometimes make their 

decisions of which species to observe by surveying tourists’ preferences, opting for the 

majority’s choice. Some captains try to achieve more elaborated goals than simply showing 

whales. Several criteria can affect the quality of an excursion such as the number of observed 

species, the size of whales’ pods (large groups are more dramatic), or the whale’s behaviour 

(e.g. breaching, tail slapping, and fluke-up dives). These subgoals pursued by some captains 

can be influenced by their own preference system (personal values, personal interest, and 

experience of what tourists have shown to appreciate in the past) and by internal rules 

imposed by their company. Observations suggest that experienced captains tend to plan their 

excursion and to pursue more elaborate goals compared to younger captains who appear to be 

more reactive and opportunistic. 

 

4.2.3.5 Decision making system: heuristics and strategies to deal with uncertainty 

Quantitative statistical analyses along with qualitative observations and interviews revealed 

several individual heuristics and collective strategies developed by captains to tackle the 

uncertainty of whales’ locations. Thereafter, individual heuristics refer to mostly unconscious 

cognitive functions shaped by experience and learning, and collective strategies relate to 

deliberate plans of action followed by captains acting in coordination. Both heuristics and 

strategies presented here are used to solve the whale localization/observation problem. 

 

The socio-economic paradox of cooperation between captains from companies in 

competition is an example of a collective adaptation evolved to tackle the uncertainty related 

to the localization of whales. Put in general terms, we elicited four categories of decision 
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mechanisms employed by captains which are the use of 1) rigid predetermined blueprints, 2) 

exploration heuristics, 3) exploitation heuristics, and 4) coordinated collective strategies.  

 

An excursion is a commercial product so that some companies (mostly owners of large boats) 

integrate activities other than whale-watching to diversify their offer (e.g. lighthouse 

viewing, coastal tour, submarine camera). To conduct these excursions in a timely fashion, 

captains often rely on predetermined spatial blueprints where there is very little leeway for 

improvisation. 

 

Two categories of heuristics can be used by captains: exploration or exploitation. 

Exploration relates to the action of mining space, searching for whales without any certainty 

of making an observation. Conversely, exploitation characterizes the behaviour of taking 

advantage of the available information on current observations to pick a pod to target. 

Individually, exploration is risky but may lead to high-quality observations (no other boats 

around the whale); collectively, exploitation leads to the stagnation of discovered whales, 

limiting the value of excursions’ content (stagnation of the pool of potential observations). 

Exploration is guided by past observations, with the priority given to the closest areas where 

favourite species have recently been observed. Typically, captains operating the first 

excursions of the day use this heuristic that can be called the go-to-most-recent-and-close-

rewarding-area heuristic, suggesting a trade-off between recent and close along with an 

interpretation of what rewarding means for a given captain. Some experienced captains tend 

to explore more often than other captains, aware of the advantage of observing a whale with 

no other boat around. When several excursions start simultaneously in an area where no 

whales have been discovered, captains tend to coordinate their exploration effort and spread 

over the space (minimizing the detection distance overlap between search areas) to increase 

their chance of detecting whales. 

 

Although there are counter-examples, captains operating large boats tend to exploit existing 

information and rarely take the risk of exploring. Two reasons can be put forward to explain 

this fact: 1) the risk of making hundreds of customers unsatisfied due to an unsuccessful 
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risky exploration must be avoided at all costs; and 2) most large boats are not very 

manoeuvrable, are slower than small vessels and consume more fuel, so exploring the area 

with such boats is economically suboptimal. Conversely, small vessels are fast and numerous 

in different parts of the marine park. The two reasons stated above for large vessels can be 

reused to explain why this strategy is viable for small ones. Accordingly, excursions onboard 

large boats are always scheduled after the departure of some small vessels’ excursions, 

allowing them to take advantage of small vessels’ searching effort. However, when attractive 

whales are far from a large boat’s homeport, the captain may decide to explore a closer area 

because if his inability to exploit the discovered observation sites. 

 

Knowledge exploitation can be done using several heuristics. Captains can use the satisficing 

heuristic (Simon, 1955) by choosing to observe the first whale whose “important” attributes 

(e.g. location and species) satisfy given thresholds. Most of time, captains face a multi-

alternative/multi-attribute decision problem. Exploitation heuristics used in such cases rely 

on comparison rules applied on available attributes relative to each alternative to choose from 

such as take-the-best (Gigerenzer and Goldstein, 1996) or tallying (Payne, Bettman and 

Johnson, 1993) heuristics. Finally, in the case of captains conducting several excursions a 

day, when the spatiotemporal dynamics of whales is known to be stable in the area, some 

captains simply repeat the pattern of a previous successful excursion, thus applying the 

repeat-previous-successful-excursion heuristic. This strategy is not cognitively demanding 

and can be rewarding if the environmental context remains stable. 

 

Individually, the pressure of the first observation of an excursion on a captain can be high. In 

cases where the company reimburses customers if no whales are observed during the 

excursion, or in critical context (e.g. when whales are scarce, hard to access, or hard to 

detect), a captain tends to individually satisfy himself with almost any species for his first 

observation, regardless of what his preferences and expectations are prescribing. That is to 

say, a captain willing to make his first observation at all costs will choose any whale easily 

visible, whatever the species or the conditions of observation, thus using a satisficing 

heuristic (Simon, 1955). 
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Most observed collective strategies are related to exploitation, except for coordinated 

exploration where captains explore areas not overlapping with other captains. Imitation is 

observed when a captain simply makes the same decisions as another, applying the follow-

this-captain rule. This dynamics mainly occurs within a given company when inexperienced 

captains follow more experienced ones. This strategy can also be used when whales are in 

low abundance or hard to locate (e.g. due to weather conditions).  

 

To keep track of “interesting whales” (i.e. species with a high observational value) over time 

and avoid the need to locate a whale again in successive excursions, captains sometimes 

adopt what we called the collective flag strategy; to perform it, at least one boat has to stay 

around a whale (or group of whales) of particular interest until a new boat has arrived to 

observe it. Doing so, captains maximize the chance that whales remain easily observable 

throughout the day. This strategy can be labelled the do-not-leave-a-pod-if-alone rule. 

 

Finally, the swap strategy allows captains to control the number of boats around observed 

whales, in order to take advantage of the distance privilege defined in the regulation (Parks 

Canada, 2002), allowing boats to get closer to whales when there are strictly less than five 

boats on an observation site. This strategy is typically used by two captains who coordinate 

to simultaneously swap their observation site, leaving unchanged the number of boats on 

each observation site; it is observed almost exclusively in the presence of patrolling wardens. 

This strategy can be labelled the swap-pod-with-another-captain strategy. 

 

4.3 Conclusion and future works 

Captains use several strategies and decision heuristics to achieve the task of locating and 

observing whales. Those presented in this chapter were revealed by a combination of 

investigations including interviews, observations, and data analyses. One of the most 

important characteristic that appeared to drive the whale-watching excursions’ dynamics is 

the active information sharing between operating captains and their overall cooperation. To a 

certain extent, their organization at sea could be regarded as a group of entities working in 
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collaboration to discover a variety of whales while trying to reduce collectively the effort 

allocated to this task. Captains demonstrate a form of collective intelligence in the space 

search process while sharing a collective memory of past observations, with certain 

specialization: For instance, small boats which are fast can explore remote areas to find new 

whales while large boats which tend to be slower serve as a flag to keep track of the 

discovered whales. 

 

There remain several open questions to draw an accurate portrait of captains’ decisions 

underlying the observed dynamics of whale-watching excursions. These questions can be 

formulated as follows: 

1) Some strategies and heuristics used by captains have been linked to some combinations 

of contextual factors. However, further investigations could be led to improve our 

understanding of how internal (e.g. captain’s values, preferences, experience) and 

external factors (e.g. number of boats at sea, whale species’ abundance and distribution, 

company’s guideline) combine to trigger specific behaviours. 

2) The decision to stop an observation has been barely investigated. Basically, the minimum 

duration of an observation was found to be the time needed to observe two respiratory 

sequences of the focal animal whereas the maximum duration tends to be the maximum 

authorized according to the Regulations, that is 60 minutes (Parks Canada, 2002): 

Eliciting the factors affecting the time allocated to an observation is critical to understand 

the variability in the distribution of durations found in data and improve the description 

of excursions’ dynamics. 

 

 





 

CHAPTER 5 
 
 

RAYBAPP––A RAY-BASED PATH-PLANNING ALGORITHM FOR 
AUTONOMOUS MOBILE OBJECTS IN LARGE 2D RASTER-BASED 

ENVIRONMENTS 

Following the presentation of the results of investigations conducted on the 3MT-SES, this 

chapter presents a path-planning algorithm developed to reproduce realistic movements of 

boat agents within 3MTSim. 
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• Writing of the manuscript. 
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5.2 Abstract 

We present RayBaPP, an original path-planning algorithm designed to allow autonomous 

agents to find their route within large raster environments with binary states. In agent-based 

models, classical graph-search algorithms are commonly used for path-planning or 

pathfinding purposes. Thus, we compared the performance of RayBaPP with the classical A* 

and Dijkstra graph traversal algorithms in several environments for which we varied both 

structure and dimension. Regarding computational speed, we found that RayBaPP is the 

fastest to return a solution whatever the environment‘s structure and dimension, 

outperforming A* by up to 1000 times and Dijkstra by up to 109 times. The relative speed 

improvement was greatest for large environments with simple obstacles. On the basis of 

memory usage, no algorithm was found to considerably outperform the two others, except in 

obstacle-free environments for which RayBaPP requires a very low amount of memory, 

whatever the spatial extent. Complexity wise, A* was the least demanding algorithm and 

RayBaPP’s relative performance tended to decrease with the environment’s structural 

complexity. Next, we tested RayBaPP’s capability to produce realistic routes in a spatially 

explicit agent-based model of marine traffic. For this application, the environment is a 

1983x2205 raster with two states (navigable versus obstacle). Realism was assessed by 

means of two metrics which are 1) the one-way distance, and 2) the length of the simulated 

trajectory compared to the real reference trajectory. Since Dijkstra proved to be unable to 

deal with large environments in a tractable time, we compared RayBaPP with A* 

implemented with the Manhattan distance heuristic, known to be the fastest to compute. We 

found that RayBaPP outperforms A* in terms of realism for an application involving agents 

familiar with their environment. For modelling applications where users have to deal with 

large environments, covering extended geographical areas for example, the use of a fast 

processing path-planning algorithm is crucial to satisfy common modelling constraints (e.g. 

numerous agents acting simultaneously, numerous simulations to run). We believe that the 

lack of efficient path-planning algorithms able to deal with large environments can deter 

modellers from building agent-based models coupled with growingly available fine-scale 

geographical information. When the environment can be defined with binary cells, graph-
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search algorithms are uselessly too powerful to tackle the path-planning problem, unlike 

dedicated algorithms such as RayBaPP which are specifically designed for this kind of 

situation. 

 

5.3 Introduction 

Spatially-explicit agent-based models (SEABMs) can represent autonomous mobile objects 

also called agents that move across an explicit representation of a physical environment. 

Here, we define an autonomous mobile object or autonomous agent as an entity being 

situated in, and part of, an environment, sensing and acting on that environment over time, 

with the goal of satisfying its own objectives. Different kinds of representations exist for 

agent’s environments, the most commonly used being networks (Gimblett, Durnota and 

Itami, 1996; Roberts, Stallman and Bieri, 2002) and 2D-grids (Anwar et al., 2007; Torrens, 

2007). Recent advances in spatial data collection tools (e.g. satellite imagery, LIDAR, sonar) 

coupled with the growing number of data-sharing programs have democratized the use of 

fine-scale geographical data describing physical environments. For modellers, this is an 

opportunity to model spatial processes occurring across large raster environments. In such 

cases, autonomous agents (e.g. boat captains (Anwar et al., 2007), elk (Bennett and Tang, 

2006), or pedestrians (Torrens, 2007)) need to find their routes through a possibly large 

amount of cells. 

 

In the video game industry, path-planning is known to be one of the most resource-

consuming computational tasks (Botea, Müller and Scaeffer, 2004; Graham, McCabe and 

Sheridan, 2003). The same is true for SEABMs where an accurate representation of agents’ 

movements must be achieved. Modellers intending to build SEABMs require the use of 

efficient and fast-processing path-planning algorithms, which is a challenging task if the 

following model characteristics are encountered: 1) the model has a small temporal grain 

(i.e. fine-scale resolution) along with large temporal extent (i.e. simulation over large periods 

of time); 2) the model has a small spatial grain (i.e. fine-scale resolution) along with a large 

spatial extent (i.e. large environment); and/or 3) numerous (typically hundreds) autonomous 
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agents move simultaneously. Additionally, critical simulation constraints include: 1) large 

number of simulations (numerous alternate candidate modules for calibration, replications for 

model performance assessment, or scenarios for model application) need to be run; 2) the 

realism of agents’ movements matters; 3) environment can potentially be dynamic, making 

pre-processing of the environment undesirable; and/or 4) real-time visualization must be 

fluid, potentially on a standard workstation. If any of these cases applies, it is imperative to 

have a computationally efficient path-planning module to model agent movements. 

 

In this article we propose a path-planning algorithm based on a geometrical approach called 

RayBaPP. We use the term path-planning in lieu of pathfinding to describe the mechanism of 

totally computing an agent’s path prior to any movement. RayBaPP is intended to find a 

short and smooth path across a large raster-based environment made of binary-state cells 

(passable cells vs. obstacle cells) faster than classical methods so as to satisfy the above 

mentioned simulation constraints when the above mentioned model characteristics are met. 

We focus on applications where the environment is familiar to the agents and we can thus 

take advantage of their knowledge to anticipate obstacle avoidance during the route planning 

step. We do not deal with collision avoidance mechanisms between agents; this particular 

problem could be tackled by a higher-level pathfinding module that would re-compute a new 

local avoidance path in case of collision risk detection (Mors, Belle and Witteveen, 2009; 

Silver, 2005). This kind of problem is known as cooperative pathfinding. 

 

We first introduce the classical algorithms used for path-planning. Then, we present the 

proposed RayBaPP algorithm. In order to assess RayBaPP’s performance (speed, memory 

and complexity), we present the results of a benchmark led on classical environments (e.g. 

U-shape obstacle, spiral) with classical algorithms (A* and Dijkstra). We illustrate the use of 

RayBaPP by presenting an application where it has been successfully implemented within a 

SEABM. We finish with a general discussion about RayBaPP’s strengths and limitations 

along with suggestions for potential improvements. 
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5.4 Classical algorithms used for pathfinding 

Dijskstra (Dijkstra, 1971) and A* (Hart, Nilsson and Raphael, 1968) are graph traversal 

algorithms frequently adapted to the solving of pathfinding problems in 2D-environments. 

They are optimal (quasi-optimal for A* used with an admissible heuristic, that is a rule 

overestimating the distance to destination) and ensure the user to find a solution if one exists. 

They are particularly powerful when the cost associated with cell traversal is not uniform 

(e.g. for an agent moving with a car, using a tarred road cell is faster than using a gravel road 

cell, affecting their respective traversal cost). Moreover, transforming a 2D-grid into a graph 

is very simple and can be done during the algorithm execution. Unfortunately, these 

algorithms tend to be very time-consuming, which is particularly critical when used on large 

environments. This poses problems when one has to deal with the above-mentioned 

simulation constraints requiring fast-processing pathfinding. 

 

Both Dijkstra and A* are local graph search algorithms. Dijkstra works with two lists open 

and close and proceeds by expanding the least costly node at each iteration. The action of 

expanding a node consists in inserting in open each node connected to the one being 

developed as a triplet made of 1) the connected node, 2) the cumulative cost to get to this 

node, and a pointer to the parent node (i.e. the node being expanded). Note the two following 

cases: 1) if a node is already in close (i.e. already expanded), it is not considered anymore. If 

a node is already in open, if its newly computed cumulative cost is lesser than the old one, 

the old cost is replaced with the new one and the parent node is updated. Once a node has 

been expanded, it is removed from open and placed into close as a triplet (i.e. with its 

associated cost and its parent node). The next node to be expanded is the one with the lowest 

cost in open. The search stops when open is empty and the least cost path is found by tracing 

back the parent node, starting from the destination to the origin. A* is very similar to Dijkstra 

with modifications allowing a faster convergence. A* prioritizes the expansion of nodes that 

bring the search closer to the destination, using an underestimation of the distance to 

destination called an admissible heuristic (e.g. distance as the crow flies). By accounting for 

the distance to destination in the search process, A* ensures a more rapid convergence by 
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leaving aside from the expansion process the nodes that keep the search away from the 

destination. 

 

In numerous multi-agent applications including pedestrian simulation or video games, 

programmers use classical powerful and resource-consuming graph-search algorithms such 

as Dijkstra, A*, and its variants (HPA*, D*, LRA*, CA*) to solve spatial pathfinding 

problems in binary environments (e.g. (Anwar et al., 2007; Kumar et al., 2004; Peng, Ruihua 

and Xiaolei, 2007)). Variants of A* along with a great amount of simplification tricks such as 

navigation meshes (O'neill, 2004) have been proposed to improve performance, especially 

computational time and memory requirement. Handling a binary environment (i.e. cell’s 

crossing cost is solely related to the distance), a programmer willing to use A* or its variants 

without any simplification of the environment must consider it as a specific instance of a 

graph where the costs associated with a cell-to-cell displacement are calculated as follows: 

• Straight displacements (in the 4-cell Von Neumann neighbourhood) have a cost of 1 unit. 

• Diagonal displacements have a cost of √2 units. 

 

Regarding the realism of generated trajectories, A* and its variants do not allow taking 

advantage of the a priori knowledge that some modelled agents may have about the structure 

of the whole environment (e.g. pedestrians walking in their home town (Torrens, 2007), 

commercial boat captains navigating several times a day in the same area (Anwar et al., 

2007), or animals moving within their familiar living environment (Bennett and Tang, 

2006)). Local graph-search algorithms act as if an agent could only check the status of its 

closest neighbourhood, forcing it to turn back if its past decision had led it toward a dead-end 

location. We propose a geometrical algorithm called RayBaPP which addresses the problem 

of computational time in large environments as well as the issue of trajectory realism in 

familiar environments.  
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5.5 Ray-Based Path-planning algorithm (RayBaPP) 

RayBaPP algorithm, standing for Ray-Based Path-Planning, is a purely geometrical approach 

that aims at finding a short and straight path within large familiar environments, faster than 

classical algorithms. It is not a graph-traversal algorithm and thus cannot be used to find a 

least-cost path within a graph. Its application is restricted to 2D rasters with binary states 

cells (passable vs. obstacle). 

 

5.5.1 General principles of RayBaPP 

Overall, the construction of the planned trajectory with RayBaPP is divided into 2 steps: 

 

1) Creation of a coarse waypoints list Lw between origin O and destination D cells. 

2) Smoothing of Lw to get rid of superfluous waypoints. 

 

Once the waypoints list has been found, the agent must then interpolate its new position at 

each time step during the simulation run. 

 

RayBaPP is inspired by the ray tracing method in 3D graphics. The general concept is to cast 

a ray between two points, say from O to D and see what happens. If the ray can reach the 

target D without striking any obstacle, this means that the straight line (shortest path between 

O and D) can be followed by the agent without having recourse to any intermediary 

waypoint. Thus, the returned path is composed of only 2 points, O and D, and the agent will 

have to interpolate its position according to its speed along the straight line joining O to D. 

 

On the other hand, if the ray cast from O to D crosses some obstacle, we must give the agent 

the capability to find the relevant intermediary waypoints in order to plan its route. The 

geometric approach that we propose is detailed in the next subsection. This approach allows 

the agent to determine a list of intermediary waypoints to reach its final destination; however, 

some of these points may prove superfluous, especially if they force the agent to change its 
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heading uselessly. A smoothing algorithm is employed to deal with this issue as described 

below. 

 

5.5.2 Creation of a coarse waypoints list 

As stated by Torrens (Torrens, 2007), “people use waypoints to develop a general sense of 

how to get somewhere”. Accordingly, the purpose of this first step is to build a list of points 

containing at least all the key locations that will shape the skeleton of the final trajectory. 

First, we present the general concept with an example. Figure 5.1 illustrates the geometric 

concept of how the algorithm generates the coarse waypoints list Lw. 

 

Typically, moving agents probe a raster where a cells’ value is stored (passable vs. obstacle). 

In Figure 5.1, the agent starts at location O and wishes to move to D. The way RayBaPP 

converges to the solution path is entirely described in the caption of Figure 5.1.  

 

During the first step of the algorithm, the action “cast a ray” is called several times. This 

basic operation is executed using the well-known Bresenham’s algorithm (Bresenham 1965) 

which is easily available in its very optimized form. Drawing a line between two points is 

analogous to ray tracing except that rays do not bounce when they hit an obstacle, but instead 

go through the obstacle keeping track of the entering (e.g., A and C, Figure 5.1) and exiting 

points (e.g., B and E, Figure 5.1). The pseudo-code of this first step is available in 

APPENDIX V. 
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Figure 5.1  Example (sketch) of the creation of the coarse waypoints list. Starting from point 
O, the agent’s goal is to reach D avoiding the grey dotted area (non passable zones). A first 
ray is cast from O to D (thin black dashed line) keeping track of the first segment [AB] that 

crosses the obstacle (thick plain line). From the midpoint of [AB] a ray is cast 
perpendicularly in each direction (thick dashed line), and only the attainable  

point P1 is recorded since no passable point is found in the alternate direction.  
Then P1 is inserted in a waypoints list Lw between O and D. Then from P1 the  
same procedure is repeated between P1 and D and P2 is found and introduced  

within Lw between P1 and D. Finally, the ray cast between P2 and D crosses the  
obstacle between F and G, giving two alternate points P4 and P3 and therefore  
two alternate paths Lw={O;P1;P2;P3;D} and Lw’={O;P1;P2;P4;D}. Since Lw is  
complete and allows the agent to join O to D, the algorithm stops and returns  

Lw as the final coarse waypoints list of the planned trajectory. 
 

5.5.3 Smoothing the coarse path 

In some situations, unneeded points can be generated during the creation of the coarse 

waypoints list. A waypoint is nonessential if its previous and subsequent points in the 

waypoints list Lw can be linked together with a straight line without crossing any obstacle. In 

such a case, this point must be removed from Lw. In the example drawn in a continuous space 

and presented in Figure 5.1, smoothing would be useful if a ray cast between O and P2 would 

not cross any obstacle. In this case, P1 would be removed from Lw. This smoothing algorithm 
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is very simple and consists once again in several calls of the optimized Bresenham’s 

algorithm. The pseudo-code of the smoothing algorithm is given in APPENDIX VI. 

 

After calling this smoothing function, the list of waypoints is reduced to its shortest form, 

ensuring that the trajectory has a minimum number of heading changes for the moving agent. 

 

5.5.4 Position interpolation during the simulation 

The previous two steps allow any agent to determine the list of locations it will go through to 

reach its destination; this is a planning stage which occurs prior to any move. In the context 

of a discrete-time simulation, the agent will have to calculate its new position at each time 

step depending on its velocity. If the destination changes during the movement (due to any 

event), the agent will have to refresh its waypoints list Lw by calling the path-planning 

algorithm and the smoothing function again. 

 

5.5.5 Optimization of the solution path search 

Despite its apparent simplicity, the driving concept of RayBaPP can lead to complications if 

the search process is not carefully examined. Two strategies were used to adjust the search 

process in order to ensure it will unfold successfully. They are detailed below. 

 

5.5.5.1 Removal of useless candidate paths to prevent their exponential growth 

The structure of the RayBaPP algorithm may lead the search to produce a huge number of 

candidate paths in the case of complex environments. Indeed, each obstacle encountered 

generates a sub-problem to be solved leading to the production of up to two new concurrent 

paths (cf. Figure 5.1 with P3 and P4). In a more complex environment, this can lead to a 

demanding computational effort, as the search must be performed among an exponentially 

growing number of candidate paths. To avoid this problem, we considered that each time a 

cast ray crosses an obstacle, it creates a sub-problem of the same kind as the general problem. 
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Therefore, each time a specific sub-problem has been resolved, all concurrent paths that had 

been generated to solve that specific sub-problem can be removed from the set of candidate 

paths. Consequently, only the candidate paths generated and grown to deal with unsolved 

sub-problems co-exist in the dynamic set of concurrent candidate paths. This strategy proved 

successful in all of our experiments. 

 

5.5.5.2 Best-first search approach to promote the shortest paths 

The set of candidate concurrent paths is sorted by length at each new path creation. This way, 

the first path selected to be processed by the main “while” loop of the RayBaPP algorithm 

(see APPENDIX V) is always the shortest (in total distance) in the list. The best-first search 

ensures that priority is given to plausible paths since aberrant concurrent paths tend to grow 

rapidly in terms of their total length. More importantly, this strategy promotes the shortest 

path, which is the most likely to be selected by an agent moving into a familiar environment. 

 

5.6 Results and discussion 

5.6.1 Methods 

We designed a benchmark test in order to compare RayBaPP’s performance with classical 

graph-search algorithms, namely A* and Dijkstra. The A* algorithm is implemented with the 

Manhattan distance heuristic (admissible), known as the fastest to compute (Patel, 2001). 

Implementations of A* and Dijkstra used the lightest data structure in Java, namely 

Hashmap. A complete description of these algorithms can be found in LaValle ((LaValle, 

2006); also available online3). 

 

We varied two environmental characteristics, namely 1) structure: no obstacle, square-

shaped obstacles (cf. Figure 5.5), U-shape (cf. 

                                                 
 
3 http://planning.cs.uiuc.edu/ 
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Figure 5.6), spiral (cf. Figure 5.7); and 2) dimension (from 10*10 up to 2000*2000 grids) in 

order to assess the influence of these parameters on algorithm performance 

 

For each algorithm, the observed computational variables are total processing time 

(milliseconds), memory requirement to complete the search (Kilobytes) and search effort 

(number of cells explored during the search process). We end our assessment by visually 

comparing output paths in order to highlight differences between the algorithms. RayBaPP’s 

smoothing step is considered in all tests. 

 

All experiments have been conducted on a computer equipped with a standard processor 

Intel® Core™ 2 Duo CPU T7300 @ 2.00GHz. 

 

5.6.2 Computational results 

5.6.2.1 Computational time 

Figure 5.2 illustrates the fact that RayBaPP is almost always faster than A* and Dijkstra, 

whatever the environment’s structure and dimension and Dijkstra is always the slowest. In 

large environments, RayBaPP’s gain over A* in terms of processing time ranges from 

approximately 10 times for the spiral to up to 1000 times for obstacle-free paths. Overall, we 

observe that the simpler the structure of the environment, the greater RayBaPP outperforms 

Dijkstra and A* in terms of convergence time. 
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Figure 5.2  Computational time in milliseconds (ms) for different environment structures and 
dimensions. Time assessment accuracy is approximate for durations less than 1 ms. 

 

5.6.2.2 Memory requirement 

As illustrated by Figure 5.3, Disjkstra’s search process is the greediest whereas A* and 

RayBaPP are generally the most efficient in terms of memory usage. In the obstacle-free 

environment, RayBaPP greatly outperforms both A* and Dijkstra whereas as the complexity 

of the environment increases, A* and RayBaPP tend to perform similarly. Relative 

performances of algorithms tend to be constant as the environment’s dimension increases, 

some fluctuations and inconsistencies being possibly related to java’s memory allocation 

management.  
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Figure 5.3  Memory requirement for different environment structures and dimensions. The 
memory is computed as the difference between the maximum and minimum free memory 

available during the path search process. 
 

5.6.2.3 Spatial exploration 

The spatial exploration process is characterized by the number of cells probed by the 

algorithms during the search. In Figure 5.4, we observe that A* is the most efficient in terms 

of spatial exploration, regardless of the environment’s structure and dimension. As the 

environment’s complexity varies from obstacle-free to spiral, RayBaPP shifts from being the 

most efficient to the greediest algorithm relative to A* and Dijkstra in terms of spatial 

exploration. RayBaPP’s extensive search is partly due to the smoothing stage (cf. section 

5.5.3 and APPENDIX VI), inexistent for A* and Dijkstra algorithms. 
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Figure 5.4  Number of cells explored during the path search for different environment 
structures and dimensions. 

 

5.6.3 Spatial results 

Only the results with obstacles are shown since trajectories in the obstacle-free environment 

are straightforward lines linking together origin and destination. It should be noted that the 

trajectories’ shapes generated by the three algorithms are independent of the environment’s 

dimension. 

 

5.6.3.1 Square-shaped obstacles 

Figure 5.3 illustrates the differences between trajectories returned by the three tested 

algorithms. For situations where agents move across a familiar environment, the trajectory 

generated by RayBaPP is intuitively the most realistic. A common default displayed both by 

A* and Dijkstra is their tendency to generate routes that stick to obstacles when skirting 
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around them. In terms of distance traveled, all three algorithms tend to perform equally well 

on this spatial configuration. 

 

 
Figure 5.5  RayBaPP (left), A* (center) and Dijkstra (right) trajectories returned for an 

environment with square-shaped obstacles. Obstacles are white, traversable cells  
are black and the output path is grey. 

 

5.6.3.2 U-shaped obstacle 

Figure 5.6 does not show major differences between the output of the three algorithms for a 

U-shaped obstacle. However, an artefact appears in A*’s route since some oscillations 

emerge on the upper part of the path; this artefact could be discarded by using an alternate 

heuristic such as the Euclidian distance, at the expense of processing time. 

 

 
Figure 5.6  RayBaPP (left), A* (center) and Dijkstra (right) trajectories returned  

for a U-shaped environment. Obstacles are white, traversable cells are black 
 and the output path is grey. 
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5.6.3.3 Spiral 

Finally, results for the spiral environment are shown in Figure 5.7. Here again, we notice that 

RayBaPP heads more rapidly towards the obstacle’s corner than A* and Dijkstra that tend to 

stick to obstacle’ borders, resulting in a longer path. This advantage presented by RayBaPP is 

partly due to the smoothing step which tends to remove unnecessary waypoints from the 

output path. 

 

 
 

Figure 5.7  RayBaPP (left), A* (center) and Dijkstra (right) trajectories returned for a spiral 
environment. Obstacles are white, traversable cells are black and the output path is grey. 

 

5.6.4 Discussion 

5.6.4.1 Algorithms performance 

For the great majority of tested environmental configurations, RayBaPP solved the problem 

faster than A* and Dijkstra. Because of its search mechanism based on systematic ray-

casting, RayBaPP tends to explore more cells than A*, but almost always less than Dijkstra. 

However, since RayBaPP does not systematically compute the cost for each evaluated cell 

(contrary to A* and Dijkstra), its computational time remains far below that of its 

competitors. 
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Even if Dijkstra is designed to return the optimal least-cost path, it does so at the expense of 

speed and memory usage, making it the greediest of the tested algorithms, regardless of the 

environment. Within large environments, under such constraints as those presented in the 

introduction, one cannot consider using Dijsktra unless considerable computational power is 

available. Alternatively, A* used with an admissible heuristic guarantees that a quasi-optimal 

path be returned in a more tractable time. 

 

5.6.4.2 Path shape 

For all three algorithms, the shape of the returned path was found to be independent of 

environment dimension. By visual inspection, we see that RayBaPP produces straighter paths 

than both A* and Dijkstra. RayBaPP’s output paths tend to be more plausible from what we 

intuitively expect from an agent moving into a familiar environment since obstacle avoidance 

is anticipated by RayBaPP, which is consistent with the searching strategy. Moreover, 

contrary to RayBaPP, A* and Dijkstra tend to produce paths that stick to obstacles when 

skirting around them.  

 

5.6.4.3 General points 

The three algorithms displayed some asymmetry in the resolution of the path-planning 

problems. In some situations, finding a path between an origin and a destination location can 

be much harder than the reverse problem (from destination to origin). Most notably, in the 

spiral environment, going out from the inside proved much more difficult than reaching the 

center from the outside for RayBaPP, whereas the opposite was true for A* and Dijkstra.  

 

5.6.4.4 RayBaPP limitations and potential improvements 

RayBaPP is most efficient in environments with large spatial extents and few obstacles.  For 

environments with a complex obstacle geometry, several improvements can be specified to 

allow RayBaPP to converge more rapidly. First of all, as proposed in (Chen et al., 2006), one 
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can identify and compute obstacle geometry in order to extract the skirting path when the 

search process crosses its border. Another solution for some environments could be to build 

the minimum polygon convex hull containing the origin, the destination, and the obstacles 

lying between the two points. However, to pursue the convex hull approach, one has to solve 

the problem emerging from obstacles whose convex hull would overlap, potentially blocking 

off the opening to destination. 

 

An artefact of RayBaPP’s search is that when a ray is cast in a specific direction, depending 

on the nature of the environment, the ray may reach an isolated non-obstacle area, 

disconnected from the main zone (e.g., donut-shape obstacle); in that case, the algorithm 

could fail to find its way out of this isolated area. There are two simple ways to overcome 

this problem involving pre-processing. One can either compute a pre-treatment on the raster 

containing the spatial information, in order to remove all the problematical cells (cells that 

achieve the criterion of reachable cells but are disconnected from the true spatial domain of 

agents). Another way is to add a binary layer of information where reachable cells that are 

connected to the main agent’s spatial domain are identified and assigned a specific value. 

Doing so requires the RayBaPP algorithm to query two layers (the basic DEM and the 

supplementary layer) in order to conclude that a given location is or is not reachable. Another 

efficient solution without any pre-processing step is to set a threshold value corresponding to 

the maximum number of iterations that should never be exceeded when attempting to solve a 

given sub-problem during the first step of RayBaPP after the discovery of a new waypoint. 

Reaching this threshold means that RayBaPP has failed to solve the sub-problem in a 

reasonable number of tries, between a previously found point and its following one in the 

waypoints list. We are then allowed to conclude that this point is not connected to the 

navigable area and the search for another navigable point must be resumed to replace this 

isolated one. The iteration threshold value depends on the structure of the environment. 

 

Finally, in its present form, RayBaPP stops its search process as soon as the first solution 

path has been found. For many reasons, this path may not be the fittest one. Modifications to 

the path-search stopping rule could be brought to RayBaPP to allow the discovery of more 
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than one solution and use a specific criterion to pick the best one according to a given 

context. 

 

5.7 Example application of RayBaPP 

The application project consisted in the creation of a SEABM called 3MTSim which 

represents interactions between marine mammals and maritime traffic in the St. Lawrence 

Estuary, Québec, Canada (Parrott et al., (submitted)). This model is intended to be used by 

marine protected area (MPA) managers as a decision-support system for the management of 

navigation in the MPAs of the region. For additional information on the 3MTSIM project, we 

refer the interested reader to the project website 

(http://www.geog.umontreal.ca/syscomplex/3MTSim/index.htm).  

 

3MTSim represents the movements of four types of boats and five species of marine 

mammals. There can be up to 1200 autonomous agents moving simultaneously in the 

environment represented by a 2205×1983 raster.  

 

5.7.1 Datasets 

We used 3 different databases containing spatiotemporal trajectories of boats. For ferries and 

cargo ships, the database was supplied by the Canadian Coast Guard. These data come from 

the INNAV system (http://www.innav.gc.ca) that acquires and stores information about ships 

navigating in Canadian waters (e.g., position, time, speed, ship type). For commercial whale 

watching excursions, the database was provided by the GREMM (Group for Research and 

Education on Marine Mammals, http://www.gremm.org). Finally, the database of yacht 

trajectories was provided by Parks Canada (http://www.pc.gc.ca); these data were acquired as 

part of a project aiming at quantifying the number of visitors and characterizing their visits 

within the Saguenay–St. Lawrence Marine Park. All datasets were acquired between 2005 

and 2007 with a temporal resolution of 1 minute. 
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5.7.2 Experiments 

Since the Dijkstra algorithm has proved not to be suitable for path-planning in large 

environments, we assess RayBaPP and A*’s ability to reproduce some real boat trajectories 

given the origin and destination. In this experiment, performance concerns realism and this 

has been tested by comparing both the length and the shape of the trajectories returned by 

RayBaPP and A* with the real one. 

 

In order to compare the relative capabilities of the RayBaPP and A* algorithms to produce 

realistic trajectories, we selected a number of prototypical trajectories representative of 

moves observed within the study area, for each category of power-operated boats (cf. Figure 

5.8). All trajectories are polylines linearly extrapolated from actual sets of GPS positions 

sampled at each minute. We selected trajectories that satisfy the following constraints: 

1) Origin and destination are clearly derivable from a visual study of trajectory. The 

operator’s purpose can be almost undoubtedly deducted from trajectory shape, given the 

knowledge of both local constraints and boat characteristics (mainly draught, speed and 

activity). 

2) No major event disrupted the normal route (i.e. speed remained almost constant during 

the movement, and turning angles remained close to 0 in the absence of obstacle 

avoidance). 
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Figure 5.8  The six maps above present real boat trajectories (black thick lines) extracted 

from one of the three independent datasets at hand. For each real trajectory, the 
corresponding one returned by A* is plotted with a black thin line whereas a  

dashed line represents the one produced by RayBaPP. The binary back 
ground is white when navigable, and grey otherwise (the threshold value  

is chosen according to the draught of the vessel). 
 

A good knowledge of landscape attractions in the region supported the interpretation of 

trajectories and the identification of captain’s intentions with a reasonable degree of 

confidence. The selection of trajectories presenting only one intention (going from actual 

location O to a destination D) was important in our case. In our application, we need to call a 
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path-planning module immediately after an agent has picked a destination (via a decision-

making module). We propose two measures to assess the goodness-of-fit of simulated 

trajectories with the corresponding real one: 

1) Trajectory length: this is simply computed by summing the length of the segments 

formed by each two consecutive GPS points that compose the whole trajectory. 

2) Trajectory similarity: this is assessed using an approximation of the average of the two 

one-way-distances (OWD) between the simulated and the real trajectories (see (Lin and 

Su, 2008) for a complete description of the OWD). For a given real trajectory Tr , both A* 

(TA*) and RayBaPP (TRayBaPP) simulated trajectories start and finish at the same locations 

O and D. Consequently, each pair of polylines {Tr; Tsim}(sim=A* or RayBaPP) defines a closed 

polygon. We then approximate the distance drsim between two trajectories as the 

polygon area divided by the average of the two trajectories’ lengths (cf. equation (5.3)). 

 

The OWD Dowd(T1, T2) between two trajectories T1 and T2 proposed in (Lin and Su, 2008) is 

given in equation (5.1). 
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This definition suggests that the distance Dowd(T1, T2) is different from Dowd(T2, T1) since the 

lengths of the two trajectories are different (affecting the first factor), and since their shapes 

are different (affecting mainly the integral part). Our simplification is that both integrals are 

equal and can be approximated by the area between the two trajectories. This is supported by 

the fact that the two trajectories start and finish at the same points, and that their shapes 

should not be too dissimilar in most cases.  
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Consequently, the definition of the average OWD given in equation (5.2) can be 

approximated by a new definition of the modified average OWD proposed in equation (5.3), 

stemming from the previously stated assumptions. 

 

 
][

||||

||||~
)T,(TpolygonArea

TT2

TT
)T,(TD 21

21

21
21owd ⋅

⋅⋅
+=  (5.3) 

 

5.7.3 Results and discussion 

Fourteen real trajectories were selected from the three datasets to take into account all 

categories of power-operated boats namely small (less than 50 places) and large cruise boats, 

private yachts, cargo ships and ferries. For simplicity, only six of the trajectories are 

presented here. Data storage, analysis and cartography were carried out using ESRI software 

ArcMap version 9.2. Figure 5.8 presents the six real trajectories with the corresponding A* 

and RayBaPP simulated ones. The simulated agent’s environment is a 2205×1983 grid, 

where navigable cells have a connectivity of 8 nearest neighbours. 

 

The first observation from Figure 5.8 is the systematic spatial proximity between RayBaPP 

simulated trajectories and real boat routes, whatever the boat type. On the other hand, A* 

trajectories are characterized by space exploration, which was predictable since this 

pathfinding algorithm does not take advantage of the a priori knowledge that agents have 

about the structure of the environment (bathymetry here). This results in the generation of 

trajectories that follow the coastline or navigational borders. 

 

Regarding the length of the simulated trajectories, in 5/6 cases, RayBaPP simulated 

trajectories were the shortest or the closest in length to the real reference trajectory (1/6 in 

both cases for A*) (Table 5.1). Simulated trajectories generated by RayBaPP tend to slightly 

underestimate real length. 
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Table 5.1 Summary of A* and RayBaPP performances for the six selected trajectories shown 
in Figure 5.8. The values in bold identify the algorithm that produced the most realistic 

trajectory in terms of total length, whereas underlined values  
identify the shortest simulated trajectory 

 

Boat type 
Trajectory length (m) Average OWD (m)

Real Astar RayBaPP Astar RayBaPP

Yacht (a) 24472.98 26214.93 24025.53 1010.07 262.71 

Small cruising boat (b) 25239.33 24553.41 24660.64 371.41 224.65 

Bulk carrier ship (c) 111801.16 110765.30 108268.15 3209.21 578.42 

Ferry (d) 26570.65 28613.20 25393.49 1738.73 383.34 

Large cruising boat (e) 41179.64 43900.21 40657.06 479.90 284.98 

Small cruising boat (f) 10377.08 11443.86 10481.49 508.24 166.33 

 

The estimation of the average OWD presented in Table 5.1 shows the superiority of 

RayBaPP over A*. For the six selected trajectories, RayBaPP produced the most spatially 

similar trajectory in 6/6 cases with an average OWD of 316 meters, while A* produced 

trajectories with an average OWD of approximately 1220 meters. Obviously, these values 

could vary according to the tested trajectories; however, what is noticeable is that RayBaPP 

produces the most similar trajectories both in terms of length and closeness to the reference 

trajectory in comparison to A*. These results are confirmed by additional tests conducted 

over another subset of trajectories (not presented here). 

 

The addition of environmental information related to the surface currents would certainly 

reduce these values since currents may account for most of the variability not explainable by 

deliberate captains’ decisions. 

 

Obviously, the A* trajectories could be smoothed to produce more realistic shapes. However, 

considering the large number of waypoints stored by this algorithm (in fact all connected 

cells that lead from the origin to the destination), such an exercise could result in a critical 
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computation cost since hundreds of agents may potentially call the algorithm at each time 

step. This is not desirable for the purposes of our application. 

 

5.8 Conclusion 

Developers of spatially explicit agent-based models (SEABM) in some respects face the 

same challenges as video game developers. In dealing with the representation of autonomous 

agents’ behaviour in large environments, decision-making related to path-planning remains a 

critical issue, both in terms of realism of followed routes and in computational demands. We 

argue that despite the greater availability of fine-scale geographical data for large areas, the 

lack of dedicated path-planning algorithms able to deal with large environments in a tractable 

time impedes the development of SEABMs involving numerous autonomous mobile objects 

without using a simplified version of the agents’ space. 

 

We illustrated the ability of RayBaPP to reproduce real-world boat trajectories. For the tested 

application we demonstrated that RayBaPP produced trajectories similar to the real one 

observed, both in terms of shape and length, outperforming A* on those criteria. 

 

In several applications, the problem of finding the “best” path between two given locations 

can be approached as a simple geometrical problem where a good path is simply the shortest 

one in terms of distance traveled, with no regard to other factors (kind of surface, dangerous 

area…). For such applications, the use of graph-traversal algorithms such as A* and Dijkstra 

proved to be computationally inefficient in the context of constraints commonly encountered 

in spatially explicit agent-based modelling. In order to deal with the constraint of fast path 

computation within large environments, we proposed the RayBaPP algorithm which proved 

to be faster than both A* and Dijkstra for all tested environment structures and dimensions. 

For long-distance obstacle-free movements (greater than 1000 cells), RayBaPP converges 

more than 1000 times faster than A* and one billion times faster than Dijkstra for the same 

result. Thus, for applications where the environment is large and made of obstacle-free areas, 

RaybaPP is an appropriate computationally efficient solution. 



 

CHAPTER 6 
 
 

ELICITING COGNITIVE PROCESSES UNDERLYING PATTERNS OF HUMAN-
WILDLIFE INTERACTIONS FOR AGENT-BASED MODELLING 

Using the knowledge extracted from the field campaign presented in CHAPTER 3 and 

CHAPTER 4, and the path-planning algorithm presented in CHAPTER 5, this chapter 

presents the approach followed to select a valid model of whale-watching captains’ decision 

making process in 3MTSim. 

 

6.1 Manuscript submission information 

This article has been submitted to the journal Ecological Modelling. Its status when this 

dissertation was submitted was ‘accepted after minor revision’. The ordered list of authors 

who contributed to this manuscript is: 

1) Clément Chion, M. Eng., (thesis author). 

2) Philippe Lamontagne, M. Eng. 

3) Samuel Turgeon, Research assistant in geography at Université de Montréal.  

4) Jacques-André Landry, Ph.D., Professor in the Department of Automated Production 

Engineering, École de technologie supérieure. 

5) Lael Parrott, Ph.D., Associate Professor and Director of the Complex Systems Laboratory 

in the Department of Geography, Université de Montréal. 

6) Danielle Marceau, Ph.D., Professor in the Department of Geomatics Engineering, 

University of Calgary. 

7) Cristiane C. A. Martins, M. Sc., Université de Montréal.  

8) Robert Michaud, M. Sc., President of the GREMM. 

9) Nadia Ménard, M. Sc., Ecosystem scientist in the SSLMP, Parks Canada. 

10) Guy Cantin M. Sc., Oceans conservation, Fisheries and Oceans Canada. 

11) Suzan Dionne, Expert in marine ecosystem management, Parks Canada. 

 

Thesis author’s main contributions to this work include the following: 
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• Elaboration of the methodology. 

• Model programming. 

• Results analyses. 

• Writing of the manuscript. 

 

6.2 Abstract 

Integrating humans in our perception of ecosystems is of critical importance to adequately 

protect natural resources. This poses the challenge of understanding human decision making 

in the context of decisions potentially threatening nature’s integrity. In this study, we 

developed a spatially explicit agent-based model that simulates commercial whale-watching 

vessel movements based on a representation of the captains’ decision making process when 

observing marine mammals in and around the Saguenay–St. Lawrence Marine Park in 

Québec, Canada. We focus here on the human part of the global model, the submodel of 

whale movements having been developed and validated independently. Following the 

pattern-oriented modelling approach (POM), we selected and validated a whale-watching 

captains’ decision making model based on a set of primary patterns. Three models of 

cognitive heuristics (satisficing, tallying and Take The Best) along with a null model 

(random choice) were tested to represent the captains’ decision making process. These 

concurrent decision making models were built upon knowledge extracted from data collected 

during field investigations, including interviews with whale-watching captains and park 

wardens, onboard and shore-based observations, and analyses of a multi-year dataset of 

sampled whale-watching excursions. Model selection is performed by statistically comparing 

simulated and real patterns of boat trajectories (excursion length), spatial hotspots (kernel 

home range 50%), and excursion content (species observed, time allocated to different 

activities). The selection process revealed that the Take The Best heuristic was the best 

performing model. We used the distribution of the number of whale-watching boats in the 

vicinity (2000 m) of each vessel as a secondary pattern to validate the ability of each decision 

making model to reproduce real observations. Given the prevalence of the species attribute in 

the choice of which whale to observe, the Take The Best heuristic’s ability to deal with non-
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compensatory information partly explains its overall best performance. Moreover, 

implementation of communication abilities between modelled captains led to the emergence 

of persistent observation sites in the park, which is a well-known collective spatiotemporal 

characteristic of the whale-watching industry; thus validating the fundamental assumption 

that cooperation is an important mechanism behind the pattern of whale-watching boat 

dynamics. The relatively good performance of the satisficing and tallying heuristics supports 

both field evidence and literature on bounded rationality in that humans likely use collections 

of heuristics (adaptive toolbox) to solve decision problems in different contexts. The POM 

strategy appears suitable to build up an informative ABM regarding the management of 

human activities in a natural environment so that further developments will be assessed 

following the same approach. 

 

6.3 Introduction 

The degradation of ecosystems, including the marine environment, is a reality all around the 

world (Dietz, Ostrom and Stern, 2003; Halpern et al., 2008; Rapport, Costanza and 

McMichael, 1998; Vitousek et al., 1997; York, Rosa and Dietz, 2003). The consequences of 

natural resource depletion such as overfishing (Jackson et al., 2001), or pasture overgrazing 

(Gilles and Jamtgaard, 2008) are generally measurable so that specific management policies 

can be set out. Conversely, impacts of non-consumptive human activities on ecosystems such 

as wildlife disturbance by encroachment upon natural habitats and wildlife-watching tourism 

can be more difficult to detect for several reasons. The monitoring of impacted populations is 

hard or expensive (e.g. species with large home ranges), cumulative biological impacts are 

only observable over long time scales (e.g. animals with a long life span), and 

disentanglement of mixed effects coming from multiple sources of disturbance is 

challenging, making the identification of the major threat intractable (e.g. pollution in the 

food chain plus habitat loss plus habitat degradation plus climate change plus…). Therefore, 

it can be challenging to draw on a precautionary approach for efficient policy-making 

regarding the impacts of such non-consumptive activities’ on ecosystems (Duffus and 

Dearden, 1993). 
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Canada’s protected areas, including marine parks, function under the ecosystem-based 

management paradigm (Guénette and Alder, 2007). Accordingly, managers have the mandate 

to keep intact ecosystems of species naturally occurring in their limits (Parks Canada, 2009). 

In the context of wildlife-watching tourism in Canada, understanding the complex 

interactions between humans and animals is key to preserving the integrity of ecosystems 

over the long-term (Musiani et al., 2010). Accordingly, ecologists, biologists, and managers 

involved in the management of human activities for wildlife conservation will benefit from 

understanding users’ decisions underlying human-wildlife interactions. Whale-watching is a 

mature branch of the tourism industry in Canada (Hoyt, 2001). It has the potential to create 

greater awareness about marine ecosystems amongst the general public while offering an 

economically viable alternative to whaling (Corkeron, 2004). However, long-term biological 

impacts on targeted populations are beginning to be demonstrated for this non-consumptive 

anthropogenic activity (Bejder et al., 2006; Lusseau, 2004; Williams, Lusseau and 

Hammond, 2006). The pressure exerted by whale-watching vessels on targeted animals is an 

ecological cost that should be mitigated to satisfy ecotourism standards and achieve 

sustainability (Corkeron, 2004; Hoyt, 2007; Lien, 2001). 

 

Social-ecological systems (SESs), also known as coupled human and natural systems (Liu et 

al., 2007), can be studied as complex systems (New England Complex System Institute, 

2010) insofar as global dynamics emerges from a set of interactions occurring locally 

between heterogeneous components (e.g. humans, institutions, and animal 

populations)(Janssen and Ostrom, 2006a; 2006b). Therefore, a whale-watching system 

involving whale species, whale-watching companies, governmental agencies (e.g. marine 

park) and NGOs is a typical example of a complex SES. Agent-based models (ABMs) are 

particularly well suited to account for the specificity of complex systems making them a tool 

of choice for their study (Marceau, 2008; Parrott, 2008). ABMs have been extensively used 

over the past decade to deal with various natural resource management related issues such as 

agriculture in the Yucatan region of Mexico (Manson, 2005), fishing activities on the Great 

Barrier Reef in Australia (Little et al., 2004), sailing activities on the Colorado River 

(Roberts, Stallman and Bieri, 2002), water management in Thailand (Becu et al., 2003), or 
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pasture management in the Sahel (Bah et al., 2005). ABMs may help to provide a deeper 

insight into such systems’ dynamics under variable circumstances, such as changing 

environmental conditions, climate change (Janssen and de Vries, 1998; Patt and Siebenhüner, 

2005), or different management policies (Gimblett, 2002; Ligmann-Zielinska and Jankowski, 

2007). However, sufficient empirical data and knowledge about components (attributes and 

interactions) are crucial for an ABM to go beyond a simple “proof of concept” (Janssen and 

Ostrom, 2006a). In the context of natural resource management, validated ABMs can be seen 

as virtual laboratories to test hypotheses with the aim of avoiding the Tragedy of the 

Commons (Hardin, 1968). 

 

Ecology has been contributing significantly to the development of disaggregated models 

called individual-based models (IBMs) (Grimm, 1999; Grimm and Railsback, 2005; Hudson, 

1994), widely used to represent species’ population dynamics at the individual level (Grimm, 

1999). Ecologists have also been making efforts to build standard protocols both for the 

development of IBMs, with the pattern-oriented modelling (POM) approach (Grimm et al., 

2005; Wiegand et al., 2003) and their description, with the Overview-Design concept-Details 

(ODD) protocol (Grimm et al., 2006; Grimm et al., 2010). These protocols have been further 

extended to address the case of ABMs where human beings are involved (Grimm et al., 

2010; Polhill et al., 2008). Both the concepts of ODD and POM are reused later in this study. 

 

Modellers building human-centered ABMs for management purposes must tackle numerous 

challenges (Bonabeau, 2002; Janssen and Ostrom, 2006a). In this article, we focus on two of 

them, namely: 1) the accurate representation of humans’ complex behaviours and decisions; 

and 2) the selection of a valid model grounded on empirical data. The case study presented 

here is the implementation of a spatially explicit ABM of whale-watching tours and whale 

movements in and around the Saguenay–Saint-Lawrence Marine Park, in Québec, Canada 

referred to as the Marine Mammal and Maritime Traffic Simulator (3MTSim). This region is 

known as one of the best places in the world for the observation of marine mammals 

(Scarapaci, Parsons and Lück, 2008). The study of human decision making is a major focus 

for cognitive science research. Our work is a contribution to bridge a gap between the recent 
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theories and models developed by cognitive scientists and the representation of humans’ 

decision making in ABMs. After a description of the study area, we give an overview of the 

global simulator 3MTSim. Thereafter, we focus exclusively on the human part of the whale-

watching submodel of 3MTSim, described following the ODD protocol. We present 

simulation experiments carried out following the POM approach to fit an accurate model of 

whale-watching captains’ decision making. We finish with a discussion of the results in light 

of the existing literature before concluding.  

 

6.4 Material and methods 

6.4.1 Study area 

The St. Lawrence Estuary located in Québec, Canada is the world’s largest estuary. The 

study area, which extends over more than 7000 km2, from Betsiamites to Baie-Saint-Paul on 

the North shore, and from Métis-sur-Mer to Saint-Roch-des-Aulnaies on the South shore, 

including a large portion of the Saguenay River (cf. Figure 6.1), is centered around the 

Saguenay–St. Lawrence Marine Park. It is an unavoidable transit area for more than 5000 

cargo ships that annually convey merchandise between the Atlantic Ocean and the Great 

Lakes (Chion et al., 2009). The estuary also contains several ferry routes crossing the river in 

the transversal direction, as well as some secondary routes linking islands to the mainland, 

totaling more than 40 000 trips per year. Due to extraordinary oceanographic phenomena 

with the highly productive St. Lawrence ecosystem, zooplankton and forage fish are 

concentrated in an area of the estuary located in proximity to the mouth of the Saguenay 

River; thus making the area a summer feeding ground for up to 13 marine mammal species. 

The relative predictability of marine mammals in a small area and easy access has made it 

renowned as one of the best areas in the world for whale-watching (Scarapaci, Parsons and 

Lück, 2008) where a major marine tourism industry was developed as of the late 1980’s. One 

threatened resident population (COSEWIC, 2010), the St. Lawrence beluga whale 

(Delphinapterus leucas), populates this ecosystem with several migratory species from the 

Atlantic Ocean including the endangered blue whale (Balaenoptera musculus) and the 

finback whale (Balaenoptera physalus) listed as special concern by the Committee on the 
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Status of Endangered Wildlife in Canada. Abundance of marine mammals in this region 

attracts about 1 million visitors/year (Gosselin, 2006), roughly half of which practice 

activities at sea such as commercial whale-watching excursions, scenery viewing aboard 

cruise ships, pleasure boating or kayaking. From May to October, more than 10 000 

commercial excursions get tourists closer to large marine mammals mainly between 

Tadoussac and Les Escoumins (Chion et al., 2009). In addition to this mature whale-

watching industry, there are about 9000 trips per season of private pleasure crafts mainly 

concentrated within the narrow Saguenay River (Gosselin et al., 2007), a portion of which 

represents a critical habitat for the resident population of threatened beluga whales (Pippard, 

1985). 

 

 

Figure 6.1  Study area. 
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In order to deal with the urgent need to protect the beluga whale population subject to such 

intensive anthropogenic activities occurring throughout the St. Lawrence watershed, 

following a long process of public pressure and subsequent consultations led by Parks 

Canada and Parcs Québec, the governments of Canada and of Québec created the Saguenay–

St. Lawrence Marine Park (marine park hereafter) in 1998 (Guénette and Alder, 2007), 

covering more than 1245 km2 (cf. Figure 6.1). Amongst the numerous studies initiated in the 

context of one of Canada’s first marine protected areas’ establishment, a multi-year research 

and monitoring program (1994-ongoing) was launched to study whale distribution and the 

interactions between whale-watching boats and whales in the park (Michaud et al., 1997). In 

2002, the first version of the Marine Activities in the Saguenay–St. Lawrence Marine Park 

Regulations was adopted to be enforced by the team of park wardens (Parks Canada, 2002). 

In 2004, the Department of Fisheries and Oceans proposed the 6000 km2 St. Lawrence 

Estuary Marine Protected Area (MPA) project under the Ocean Act (Oceans Act, 1996), a 

proposal still in progress. Both marine protected areas aim to ensure marine mammal 

conservation including the protection of their habitat. Functioning under the adaptive 

management paradigm, protected area managers must regularly update their policy according 

to the most recent scientific advancements and new knowledge. Incidentally, marine park 

managers are in the process of updating the current regulation while MPA managers aim to 

gain a better understanding of the risk of ship strikes on marine mammals within the 

proposed MPA. In support of these management goals, we have developed 3MTSim, a 

spatially explicit simulator of whale–boat interactions over the whole extent of the marine 

park and adjacent MPA. An overview of 3MTSim is given thereafter. 

 

6.4.2 The Marine Mammal and Maritime Traffic Simulator (3MTSim) 

The simulator named 3MTSim puts together an IBM of five whale species, along with an 

ABM of five types of boats; both the IBM and ABM are spatially explicit and the 

environment is a mix of spatial and static components (Parrott et al., 2010). Before 

describing the whale-watching ABM, we present an overview of 3MTSim’s submodels, 

illustrated by Figure 6.2. 
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Figure 6.2  Simulator overview. 3MTSim is made of three distinct blocks that are an 
individual-based model (IBM) of whale movements, a geographical information  
system (GIS) of the physical environment, and an agent-based model (ABM) of  
boat movements guided by operators’ decision making; the boat model itself is  

made of five submodels, the whale-watching ABM being the one described here. 
 

6.4.2.1 Environment: Geographical Information System (GIS)-based model 

The environment model has the layered structure of a Geographical Information System 

(GIS). It is made of a digital elevation model of the bathymetry including islands and shoals, 

critical information contained within navigational charts (e.g. ports, speed limits, navigation 

channels for cargo ships), landscape features of touristic value and whale species’ 

distribution maps (Michaud et al., 2008). The environmental model also includes non-spatial 

characteristics such as tide cycles (dynamic) and visibility extent (fixed for a simulation). 

These retained environmental attributes stem from a selection process made according to 

field observations, data analyses and expert consultations. Attributes that have proved to play 

a driving role in whales’ and boats’ spatial dynamics were kept in the model. 

 

6.4.2.2 Whale movements: Individual-Based Model (IBM) 

The whale model is a spatially explicit IBM of the five most targeted species found in the 

study area, namely the beluga, blue, minke, finback, and humpback whales. It has been 
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developed and calibrated following the POM approach (Grimm et al., 2005; Wiegand et al., 

2003). The IBM was built upon several datasets (Michaud and Giard, 1997; 1998; Michaud 

et al., 2008) from which knowledge and rules about whale movements were extracted 

(Lamontagne, 2009). Eventually, simulated whales reproduce accurately 95% of the real 

movement patterns characterized by movement parameters (turning angle, travelled distance, 

and speed), aggregation size (i.e. number of whales in a 400 m radius), and spatial 

distribution over the study area (kernel home range). A limitation of the current whale model 

is the absence of whale’s response to the presence of boats; however, this response behaviour 

is likely to affect only whale’s small-scale movements (unpublished data), certainly beyond 

the scope of our accuracy expectancies. Another limitation is that the distribution, movement, 

and abundance of preys (e.g. krill, capelin) are not represented within the whale model 

despite their major role in marine mammals’ spatial dynamics in the study area; the 

unavailability of data about preys explains this choice. Moreover, since the goal of the global 

model is not to investigate nor explain anything about whales’ dynamics, the great amount of 

data at hand describing whales’ distribution, movement, and aggregation patterns sufficed to 

overcome this limitation and accurately reproduce the best of our knowledge about their 

spatiotemporal displacements within the study area. 

 

6.4.2.3 Boat movements: Agent-Based Model (ABM) 

The boat model is made of five main submodels dedicated to the five main categories of 

navigational activities within the study area (around 98% of total boat traffic in terms of time 

at sea). Each submodel is grounded on original data collected in the field, including 

interviews with boat captains, ship pilots, park wardens and other local experts, onboard and 

shore-based observations, radio VHF monitoring and analyses of multiple datasets on boat 

and whale presence and activities in the study area. The processes of selection and validation 

of the ABM representing whale-watching activities will be described in the rest of this 

article. The POM approach is used for determining an adequate representation of the whale-

watching captains’ decision making. 
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6.4.3 Description of the whale-watching ABM with the ODD protocol 

The ABM of whale-watching activities in the marine park is described following the ODD 

protocol (Grimm et al., 2006) which consists of seven elements. The first three provide an 

overview, the fourth element explains general concepts underlying the model’s design, and 

the remaining three elements provide details. 

 

6.4.3.1 Overview 

Purpose 

The model is aimed at simulating whale-watching excursions’ dynamics according to 

whales’ distribution and abundance over short time periods in the St. Lawrence Estuary 

covering the Saguenay–St. Lawrence Marine Park and the proposed St. Lawrence Estuary 

Marine Protected Area in Quebec, Canada. The main purpose of the model is to test 

alternative scenarios of regulations for whale-watching activities in order to support the 

marine park managers in the process of updating the current regulation on whale-watching 

activities in the marine park. The model is also intended to guide the identification of zones 

with high risks of ship strikes and to support discussions during multipartite meetings 

involving local stakeholders. 

 

A secondary purpose is to generate simulated data that quantify several aspects of the 

interactions between boats and whales that are difficult (or intractable) to collect exhaustively 

in the field. These data include for instance the cumulative exposure of an individual whale 

to fast-moving boats, or the frequency of whale/boat encounters at a certain distance for a 

given period of time. 

 

Finally, 3MTSim can be used as an educative tool available to the public in interpretation 

centers.  
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State variables and scales 

The whale-watching ABM contains two kinds of spatially-explicit entities: captain agents 

operating whale-watching excursions and whale individuals (IBM). Although whales are 

individual entities, since the whale IBM has been fully developed and validated 

independently, whales are considered as biotic elements of the whale-watching excursions’ 

environment. 

 

Whale-watching excursions are created according to companies’ schedules. Twelve distinct 

companies offer whale-watching trips in the marine park. Boats can be of either of three 

categories, depending on their passenger capacity (type 1: ≤12; type 2: >12 and ≤48; type 3: 

>48). Other real boats’ static variables introduced in the model are the maximum speed and 

cruising speed. 

 

Individual captains at sea have the following attributes: captain ID, company ID, excursion 

ID, homeport, position, speed, boat ID, goal, activity, excursion clock, excursion memory. 

All captain agents and boats are created at the beginning of the simulation and their instances 

remain active during the whole simulation duration. Excursions have a planned duration and 

the remaining time is updated as long as the simulation is running. The remaining time in the 

excursion affects the decisions made by the captain. 

 

The temporal resolution is 1 minute since it is the sampling interval of most of the data used 

to develop the model. The spatial resolution of the GIS model (environment) is 100m×100m; 

this was chosen according to spatial data accuracy. However, an entity’s position (whale or 

boat) is continuous so that it can occupy any location within a 100m×100m cell. Finally, the 

model extent covers exactly the entire surface of both the marine park and the MPA. 

 

The whale-watching ABM's environment is spatially explicit and can be decomposed into an 

abiotic and a biotic part:  
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1) Spatial abiotic characteristics of the environment are the bathymetry, the location of 

attractive features, and zoning management restrictions (speed). Non-spatial abiotic 

characteristics are the visibility extent, tide, date, and time. Spatial characteristics are 

structured within a GIS. The date and time controls both the schedule of excursion 

departures and tide dynamics. 

2) The biotic elements of the environment are the whales. Whale movements are described 

by an autonomous IBM developed following the POM approach (Lamontagne, 2009). 

This model simulates the 3D movements of five different species (cf. Figure 6.2). It 

reproduces real diving cycles, social aggregation, movement parameters (speed, turning 

angles and travelled distance), and spatial distribution, with no regard to population 

dynamics (irrelevant considering the model purpose and time scale). 

 

Process overview and scheduling 

A typical simulation lasts from a few days up to 6 months (i.e. the duration of a touristic 

season). The model proceeds in 1-minute time steps. The goal of the model, as stated before, 

is to explore the impact of regulations in terms of whales’ cumulative exposure to boats 

during the summer (migratory species mostly occupy the study area from May to October). 

Accordingly, longer simulations which are common in the study of population dynamics are 

not justified here. 

 

As shown in Figure 6.3, first of all a whale-watching captain agent in an excursion starts by 

updating his information about the environment. This encompasses a visual update of its 

neighbourhood according to the visual extent (whales visible at the surface), an update of the 

remaining time in the excursion, a memory update of its own past actions (observations) and 

the collective memory of past observations, and a list of whales currently under observation 

obtained by mimicking the VHF communication channel used by captains. Once the 

information is up-to-date, the captain updates its goal to pursue. Whale-watching captain 

agents have four different goals which are 1) observe whale; 2) observe a landscape feature; 

3) go to an alternate port to embark or disembark tourists; and 4) go back to the homeport. 



146 

The adoption of a specific goal by a captain is driven by transition rules, as a function of the 

remaining time and the location of whales. 

 

 

Figure 6.3  Conceptual model of whale-watching captains’ sensing-objective-decision-action 
process. This Figure shows the sequence of operations performed by each whale-watching 

captain at each time step during the simulation. 
 

If the current action (e.g. follow a given whale to observe it) has changed (e.g. go back to 

homeport), then the captain has to select a new goal to which is attached a corresponding 

destination. On the contrary, if the action has not changed (e.g. follow a given whale), then 

the captain has to check whether its destination has changed. The planned trajectory is 

updated via a path-planning algorithm developed for the model (Chion et al., 2010a). Once 

the planned trajectory is computed, the boat’s speed is updated before executing the move if 

any. 

 

The scheduling is basic since at each time step, each captain goes through the whole process 

described in Figure 6.3. At each time step, information about the state-of-the-world is kept in 

memory; doing so, each captain agent updates its internal status according to the same 

information, thus reproducing simultaneous behaviours despite the serial nature of the 
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updating process. Moreover, the order in which captains’ actions are updated is shuffled at 

each time step. 

 

6.4.3.2 Design concepts 

Emergence 

When a captain agent’s goal is to observe whales (the main goal of whale-watching 

excursions) its expectations, in terms of which species to observe during the excursion, are an 

emergent property of the system; actually, because of competition between whale-watching 

companies, captains try to observe at least the same whale species as those observed by the 

other active captains (Chion et al., 2010b) (cf. CHAPTER 3). Other emergent properties of 

the system (patterns) are 1) the average distance travelled by boats as a function of their 

homeport, labelled “length”; 2) the proportion of time spent in different activities (whale 

observation, landscape feature observation, and travelling/searching), labelled “activity”; 3) 

the percentage of time spent in observation of each species, labelled “species”; 4) the spatial 

hotspots of residence, labelled “home range”; 5) the group size distribution of whale-

watching boats around observed whales, labelled “boat density”, and 6) the appearance of 

persistent observation sites resulting from several whale-watching boats around a group of 

whales. The first four quantitative properties are incidentally the primary patterns used in the 

selection step of the POM process described in the next section. The fifth quantitative 

property characterizes whale-watching collective behaviour; it is the secondary pattern used 

to validate the selected model. The last emergent property is used as a qualitative secondary 

pattern since it reproduces a well-known characteristic of the whale-watching boats’ 

spatiotemporal dynamics. 
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Adaptation 

Communication between captains and constant updates of observed whales’ spatial 

distributions allows them to adapt their expectations that drive their subsequent decisions of 

which species to observe. 

 

Fitness  

In our model, whale-watching captain’s expectations emerge from observations made by 

other captains from the same port. In general, competition pushes captains from different 

companies to observe at least the same species, especially the attractive ones (humpback, fin, 

and blue whales). For excursions leaving simultaneously from the same port, the pressure for 

matching each other’s observations is even stronger. Actually, when tourists embark 

simultaneously on different boats, they may complain on the way back if they did not see as 

many species as people on other boats. 

 

Prediction 

Captain agents use historical knowledge on whale distribution (collective memory) to predict 

where to head in the area to increase their chance of observation. This simple prediction 

heuristic was revealed during interviews with whale-watching captains, and subsequently 

validated by studying the data on whale and boat locations. 

 

Sensing 

Whale-watching captain agents are aware of other agents (whales or other boats) lying within 

their surroundings, in the limit of the visibility extent. Captains have the capability to 

communicate and share information about whale locations. This capability is modelled via a 

blackboard approach where all captains have access to the information on all current 

observations. In the real system, captains communicate with each other via VHF radio 

channel; the regulations of marine activities (Parks Canada, 2002) forces captains to share all 
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their observations; moreover, cooperation is the best strategy in such a collectivity of workers 

where the resource (i.e. whales) can be scarce, dynamic, and uncertain. Captains are 

professionals who have a good knowledge of the environment’s structure (navigable areas, 

landscape features of touristic value). Accordingly we modelled them as completely aware of 

where to navigate safely and optimally.  

 

Finally, captain agents have four kinds of memory which are 1) memory of past observation 

sites in the area up to one day in the past (collective memory); 2) memory of the current 

excursion's visited locations to avoid exploring unsuccessfully the same spots (individual 

memory); 3) memory of whales observed during the excursion to avoid observing twice the 

same whale, which is forbidden by the regulation (individual memory); and 4) visible 

memory of surrounding whales that could have been sighted but not observed for any reason 

(e.g. the captain was already observing a whale) (individual memory). 

 

Interaction 

The main interaction is the communication between whale-watching captains. A second type 

of interactions is dictated by the regulation on the maximum number of boats on an 

observation site at a given distance from a group of whales. 

 

Interactions between components of the maritime traffic exist although they do not have any 

major impact on large-scale spatiotemporal dynamics. For this reason, we separately 

developed the different submodels of the maritime traffic and did not take into account 

interactions between those components.  

 

Stochasticity 

Whale-watching captains are used to making decisions under uncertainty since whale 

locations are not perfectly predictable. Consequently, stochasticity is introduced in the model 

to describe whale movements that in turn affect the movements of whale-watching boats. 
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Stochasticity is generated by the algorithm driving whales’ movement in the IBM 

(Lamontagne, 2009). 

 

Collectives 

Captains are regrouped by ports and by companies. Captains coming from the same port will 

provide each other with more relevant information than those coming from remote ports, 

since they will tend to operate within the same area. 

 

In a more general sense, a whale-watching captains’ community is a concrete example of 

collective intelligence. Captains may follow one of two strategies when pursuing the goal to 

observe whales. If no excursion is currently observing whales, and there are no visible 

whales in the surroundings, then a captain cannot exploit any information helping him to 

make an observation. In this case, captains need to explore the space searching for whales. 

Locations explored in priority are those where recent observations have been made, with 

preference given to the nearest spots. Field observations revealed that the less risky 

exploitation strategy was the dominant one, thus explaining the choice to give priority to 

exploitation over exploration in captains’ decision process within the whale-watching ABM.  

 

The exploitation strategy relies heavily on cooperation and information sharing between 

captains. Despite the heavy competition between companies, captains have a real advantage 

to share information in order to minimize the risk of coming back empty-handed on the long 

run (i.e. several excursions). According to field observations, total cooperation amongst 

captains is the norm; this is reproduced in the model. 
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Observation 

The model has been developed in Java 1.6 with the Repast libraries4. The data are collected 

within the runtime of Repast for calibration, validation and analysis purposes. The calibration 

and validation phases are presented in the following section. 

 

6.4.3.3 Details 

Initialization 

At the beginning of a simulation, for each species the number of whales is input and 

individuals are distributed within the environment according to probabilities derived from 

their known spatial distribution maps. The simulation starts at the date specified by the user. 

 

At the beginning of the simulation, captains start without any knowledge about the system, 

which is obviously not true in reality. Consequently, there exists a transient state of less than 

one day that should be omitted for data analysis. For the analyses presented thereafter, the 

first day was systematically removed. 

 

Input 

In addition to the bathymetric map and visibility extent value, three inputs are necessary for 

any simulation to be run, namely 1) the scenario of whales’ abundance (integers) and spatial 

distribution (maps) for each species; 2) the schedule of excursions as a function of the 

seasonal period drawn from companies’ historical schedules; and 3) the management policies 

(regulations, speed limitations, area closures).  

 

                                                 
 

4 http://repast.sourceforge.net/ 
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Submodels 

The submodel of whale movements has been fully described by Lamontagne (2009). It has 

been discussed within the global overview of the simulator 3MTSim at the beginning of this 

article. 

 

The tidal cycles affecting the feeding and aggregation behaviour of certain whale species are 

reproduced within the model. At flood tide, large concentrations of plankton and small 

pelagic fish, which make up the diet of some large cetaceans, tend to concentrate along 

bathymetric features. As a consequence, marine mammals tend to congregate at these prey 

concentrations, increasing locally whale group size. 

 

6.4.4 Model selection and validation: Pattern-oriented modelling (POM) 

The POM approach for the selection and validation of the whale-watching ABM is presented 

in this section; four candidate models of multi-alternative/multi-attribute decision-making 

have been tested. 

 

6.4.4.1 POM process 

In this section we detail the different steps of the POM process, illustrated in Figure 6.4. 
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Figure 6.4  POM approach for the selection and validation of the whale-watching ABM. 
 

Dataset 

The dataset is made of whale observation locations, GPS tracks of the excursions (at 1 

minute interval), weather conditions (waves, visibility) and excursion contents (at every 10 

minutes) such as whale observations (species, group size), and boat density. See (Michaud et 

al., 1997) for more details on the data collection protocol. From this dataset, both whale 

scenario and whale-watching excursion patterns were extracted as illustrated in the upper part 

of Figure 6.4.  

 

Whale scenario 

The current implementation of the model does not allow varying whales’ abundance and 

spatial distribution during a simulation run; both are inputs of the model fixed by the user 

prior to each run. Consequently, for selection and validation purposes, we extracted a whale 

scenario (cf. upper part of Figure 6.4) from the dataset where the context of species present in 

the area was constant, and where the spatial distribution of whales exhibited a minimal level 

of uniformity. We picked the period from July 1st to 25th in 2007. For this period, abundance 

in the area was estimated at 25 minke whales, [1 to 8] fin whales and [1 to 3] humpback 
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whales. Values were validated with the analysis of transect data gathered during that period. 

Beluga whales were exceptionally removed from these simulations. Currently, within the 

limits of the marine park, any observation directed towards this species is illegal from a 

distance less than 400 m. This restriction decreases their interest value according to whale-

watching captains; therefore, captains tend to avoid belugas most of the time, which despite 

their relatively high abundance within the study area compared to other species, makes them 

almost absent from the dataset as a target species. 

 

Subset of excursions 

For the selected period of 25 days in July 2007, a subset of 30 excursions (with an average 

duration of 2h30) is available (cf. Figure 6.4, upper part). These excursions originated from 

three different homeports from the north shore of the St. Lawrence River, namely Tadoussac, 

Bergeronnes, and Les Escoumins. Also, two different boat types were sampled, which are 

large boats (>48 passengers) and small boats (≤12 passengers). Therefore, subsequent pattern 

analyses were disaggregated according to the homeport and boat type. 

 

Pattern choice  

A pattern can be defined as any display of order above random variation (Grimm and 

Railsback, 2005). POM is a process that explores a space of plausible modelling alternatives 

by comparing simulated patterns with real ones (cf. figure 1 in (Wiegand et al., 2003)). As 

much as possible, patterns should represent important features of the studied system and not 

be redundant. A set of primary patterns extracted from field investigations are used to assess 

the performances of candidate models and select the best-performing one. Then, secondary 

patterns outputted by the simulations of the best model are used to validate the model 

selection according to its ability to reproduce a reliable dynamics.  

 

A total of five different quantitative patterns were extracted to characterize whale-watching 

excursions. These patterns have been previously detailed in the ODD protocol (Design 

Concept/Emergence). 
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Alternative models tested 

We tested four different models, differing according to the captain agents’ decision making 

models (lower left part of Figure 6.4). The satisficing, tallying, and Take The Best models of 

cognitive heuristics are fully described in APPENDIX VII, whereas the fourth one, random 

choice, was taken as the reference decision making model (i.e. null model). These heuristics 

are used when a captain, in the exploitation mode, needs to pick a whale to observe among a 

set of candidates. All decision making models are presented in Table 6.1. 

 

The set of attributes used for the Take The Best and tallying heuristics were elicited for the 

most part during interviews with whale-watching captains. Only those cues (attributes) that 

appear major in decisions (as determined through observations and interviews) were retained 

for the satisficing heuristic. The Take The Best heuristic processes non-compensatory 

information, so retained cues were ordered according to their importance in the final 

decision. On the contrary, tallying exploits compensatory information since all cues have the 

same weight in the decision process.  
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Table 6.1 Details of the tested decision making models 
 

Decision making models Cues (attributes) 

Take The Best 

1. Select whale species absent from the current context of 

observations. 

2. Select whales from species never observed in this 

excursion. 

3. Select whales from the most attractive species (blue, 

fin, and humpback whales). 

4. Select whales which are about to be lost (last boats 

about to stop observing them). 

5. Select whales observed by less than 4 boats (limit for 

the distance privilege according to the marine park 

regulations). 

6. Select whales that leave enough time for at least one 

subsequent observation. 

7. Select the closest whale in case of a tie. 

Tallying Same as Take The Best, without ordering. 

Satisficing 

The whale is from an attractive species. 

OR 

The whale is about to be lost from the pool of discovered 

whales. 

OR 

The whale belongs to a new species regarding the current 

context of all excursions. 

OR 

The whale increases the diversity of species observed in 

the excursion. 

Random Choice is made randomly among candidate whales. 
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For a given simulation, all captain agents make decisions with the same decision making 

model. Since a captains’ context (e.g. surrounding whales, expectations) and constraints (e.g. 

boat speed, excursion duration) are different, decision outputs will differ despite the 

similitude of their decision making model. 

 

Comparison of patterns 

The metrics used to compare the five quantitative simulated and observed patterns depend on 

the nature of the patterns. For the patterns of activity, species and boat density, the 

cumulative distributions were compared using Kolmogorov-Smirnov statistics (KS) to 

determine whether they come from the same population. The error is given by [(1-KS) × 

100]. The values were computed in R (R Development Core Team, 2009). 

 

For the excursion length pattern, since we do not have enough observations to consider data 

dispersion, we compare the average excursion length (by port and boat type) with the 

Normalized Mean Absolute Error (NMAE). The values were computed in R.  

 

Finally, for the spatial distribution (home range pattern), since the number of observations is 

small compared to the simulated data, we estimated the home range (50% core area) based on 

kernel density maps. The percentage of overlapping area between observed and simulated 

hotspots for each homeport is the metric used for selection; consequently, the error is given 

by (100 - %overlap). This test was conducted in ArcGis 9.2 using a Python script. 

 

Model selection and validation 

Model selection was conducted on the set of four primary patterns, keeping the boat density 

as a secondary pattern for the validation phase (see section 2.3.2.1 for description). This 

pattern characterizes a strictly collective phenomenon since each density value implicitly 

contains information about several whale-watching captains’ decisions. This choice was also 

made since the number of boats around whales is considered an important variable for 

managers of the area. So, instead of forcing a model to fit this important pattern (with a risk 
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of overfitting), confidence in the model is greater with this pattern reproduced based on other 

system’s characteristics. 

 

We used “global ranking” to select the best model. This is simply the sum of the ranks 

computed according to the statistically significant difference between the results generated 

by the concurrent decision making model for each pattern. 

 

6.4.4.2 Simulation experiments 

The simulations are based on a 3½-week scenario of whales’ distribution and abundance, 

extracted from real data (described in the whale scenario). To cope with the uncertainty on 

the exact species abundances for that period, we conducted 45 simulations with variable 

combinations of abundances for each of the three present species, picked within their 

confidence intervals, for each decision making model; thus 180 simulations were performed. 

The results of these simulations are described below. 

 

6.5 Results 

Figure 6.5 presents the error (%) of the four tested models for each primary pattern, as 

discussed above, and Table 6.2 summarizes these results for the primary patterns. For each 

pattern, a ranking of the four models was made according to the statistical significance of the 

pairwise difference between model results. 
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Figure 6.5  Performance of the four decision making models on the set of primary patterns 
for the ABM selection process. For each pattern, the error (%) is based on a metric (KS 

statistics for activity and species, NMAE for length, and % overlap for home range). 
 

 

Table 6.2 “Global ranking” approach for the selection of the best-performing decision 
making model 

 

 Primary patterns 
 
 Global ranking 

(∑) Decision Making  
Models 

Length Activity Species
Home 
Range 

 

Take The Best 1 1 2 1  5 

Tallying 3 1 3 1  8 

Satisficing 1 4 1 4  10 

Random 4 1 4 1  10 

 

Simulations revealed that Take The Best outperformed the other decision making models on 

the selected set of primary patterns, followed by the tallying heuristic. Given the non-

compensatory nature of information processed by the captains at sea (the species attribute 

being the most important one in the decision), Take The Best corresponds closely with 

captains’ decision making process. The decision making model determines which whale a 

captain agent will observe, explaining that the most affected pattern is the species that is 

directly related to that decision. The species pattern is also the pattern with the greatest error 

for all decision making models except for satisficing. It appeared that too much weight was 

given to the observation of minke whales in the four models as compared to other attractive 

species (fin and humpback whales). One reason could be that virtual captains have been 
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programmed to comply with the regulations (Parks Canada, 2002), allowing a maximum of 

60 minutes in observation of the same whale during an excursion. In reality, the time spent in 

observation of a minke whale rarely reaches 60 minutes when more attractive species (even 

already observed) are accessible. Accounting for this species-dependant reality in specific 

contexts would certainly lead to an improvement of the results obtained along the species 

pattern. 

 

Spatially, Take The Best appears to produce a good spatial match with real observations 

(Figure 6.6). The discrepancies in hotspot areas at the mouth of the Saguenay River can be 

partially explained by the fact that GPS tracks of excursions departing from Tadoussac going 

to Baie-Sainte-Catherine begin recording data when leaving Baie-Sainte-Catherine, therefore 

missing this portion of the route. These systematic breaks in the recording protocol tend to 

stretch hotspots over a larger surface in this area. Moreover, let us note that the number of 

real observations (30 excursions) is quite low compared to the number of simulated 

excursions. Consequently, the risk of giving too much weight to an outlier excursion in the 

real observations is relatively high. Conversely, the kernel computed for model outputs is 

based on all available simulated excursions (several hundred) having the same characteristics 

as the real ones (same ports, boat types and departure times); consequently, the risk of 

outliers distorting the results is very small since we consider all the outputted data. This 

partially explains why the dispersion of spatial home range in the simulated excursions 

(Figure 6.6, right) is lower than the one in real observations (Figure 6.6, left).  
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Figure 6.6  Comparison between the real whale-watching spatial distribution (left) and the 
aggregated outputs of 45 replications of the whale-watching model with the Take The Best 
decision making heuristic (right). The whales’ distribution and abundance scenario is from 
July 1st to 25th in 2007. The kernel is created with a 3 km radius and a resolution of 1 km, 
based on GPS tracking of real excursions (left) and model output (right), with a 1-minute 

resolution. 
 

Regarding secondary patterns, Table 6.3 presents a summary of models’ performance along 

the quantitative boat density pattern around observed whales for the four decision making 

models. Both the KS statistic and NMAE are computed for each of the three homeports 

(Tadoussac, Bergeronnes, and Les Escoumins). We observe that Take The Best performs 

relatively well at reproducing this pattern but is outperformed by satisficing. Unlike other 

decision making models, Take The Best’s performance regarding the boat density pattern 

(KS and NMAE) is rather similar for the three major ports.  
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Table 6.3 Decision making models’ performance on the boat density pattern (Kolmogorov-
Smirnov statistics, KS; Normalized Mean Absolute Error, NMAE). Values in boldface 

indicate the best performance amongst models 
 

Decision Making 
Models 

Boat density (secondary pattern) 

Port 1 Port 2 Port 3 

NMAE 
 (%) 

KS 
NMAE

 (%) 
KS 

NMAE 
 (%) 

KS 

Random 15 0.14 29 0.26 17 0.17 

Take The Best 17 0.14 15 0.14 12 0.14 

Tallying 15 0.13 19 0.19 7 0.12 

Satisficing 6 0.08 15 0.15 12 0.14 

 

Figure 6.7 displays a well-known secondary pattern emerging from simulations 

(independently of the decision making model), called observation sites in the real system. By 

exploiting the existing information about the current locations of whales, whale-watching 

captains congregate in space and time, creating local temporary hotspots circled in black in 

the Figure 6.7. The emergence of this secondary pattern confirms the importance of 

cooperation via VHF radio communication between captains in the whale-watching 

excursions’ dynamics. 
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Figure 6.7  Emergent observation sites (circled in black) for a 1-day simulation with  
Take The Best. This secondary pattern is consistent with field observations. 

 

6.6 Discussion 

Modelling human decisions in ABMs is challenging (Janssen and Ostrom, 2006a). Many 

modellers have opted for the Expected Utility Theory for such a task (e.g. Berger, 2001; 

Little et al., 2009; Monticino et al., 2007). However, for more than three decades, 

psychologists have been demonstrating that the Expected Utility Theory can merely be used 

as a suitable normative model of human decisions but by no means as a descriptive model 

(Kahneman and Tversky, 1979). Considering the systematic violations and inconsistencies of 

this theory, we chose to resort to models of heuristics based on a bounded view of rationality 

to describe the way humans process information to output decisions. 

 

Simulations revealed that the Take The Best heuristic outperformed the three other tested 

models regarding the decision of which whale to observe. This suggests that whale-watching 

captains tend to use non-compensatory strategies, emphasizing attributes related to the whale 

species. However, with an exception for the reference (null) model of decision making 
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(random choice), which is almost systematically dominated, the differences between the 

three cognitive heuristics are not clear-cut enough to completely eliminate tallying and 

satisficing. In reality, humans likely have at their disposal a collection of heuristics (adaptive 

toolbox) that they choose from according to their past success in solving different classes of 

problems(Gigerenzer and Selten, 2001a; Gigerenzer, 2008). Accordingly, interviews led with 

whale-watching captains revealed that when whales’ abundance is scarce in the area, they 

tend to go observing “whatever they can find” to “save their excursion”. In such 

circumstances, captains tend to use a satisficing heuristic with a very low level of 

expectation, picking the first observable whale regardless of its species. Other known 

heuristics such as repetition or imitation (Gigerenzer, 2008; Jager et al., 2000) have been 

identified in the field. Regarding repetition, captains conducting several excursions a day 

tend to repeat their previously successful sequence of decisions when the whale context 

remains stable. Imitation-wise, we regularly observe some young captains following more 

experienced ones during simultaneous excursions, thus imitating all their decisions.  

 

Lastly, the good performance of the three tested cognitive heuristics compared to the null 

model validates 1) the identification of relevant factors (cues) intervening in decisions, and 2) 

other mechanisms implemented in the model such as cooperation via communication, the use 

of collective memory in space exploration, and the prevalence of current knowledge 

exploitation over space exploration to observe whales. 

 

In the current implementation of the model, all captains from companies behave the same 

way when the goal pursued is to observe whales. However, it appears that all whale-watching 

companies do not have exactly the same philosophy nor ethics regarding their activities at 

sea, neither do they put the same constraints on captains (e.g. maximizing diversity of 

observations, minimizing fuel consumption). An accurate portrait of whale-watching 

companies would allow to take into account this relevant characteristic to refine the model. 

 

As stated earlier, Gigerenzer and colleagues claim that people adapt their strategy depending 

on the structure of the decision problem at hand, referring to the collection of available 
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heuristics as an adaptive toolbox (Gigerenzer and Selten, 2001a). Accordingly, since the 

context of whale species’ accessibility (abundance and distribution) directly affects the ease 

of observing whales (and thus the structure of the problem to be solved), a special 

investigation of how this context influences captains’ strategy would be valuable. Moreover, 

further investigation of captains’ ethical values, preferences, and subgoals are needed to 

discover whether captains belong to natural classes according to their observed behaviours 

(Berger, 2001; Cabral et al., 2010; Mathevet et al., 2003; Musiani et al., 2010). This could 

translate into different cue ordering using the Take The Best strategy, selecting different 

heuristics facing the same situations, or pursuing different subgoals (e.g. avoid boat 

aggregations, favour the observation of diverse species). Some researchers developing ABMs 

for pedestrian simulations have begun to address some shortcomings of bounded rationality 

models such as the description of the process leading to the selection of attributes used in 

decisions, heuristic choice to solve a given decision problem and how context influences it 

(ecological rationality), and how individual differences influence heuristic selection (Zhu and 

Timmermans, 2010a; 2010b). This kind of approach show promise for making models of 

bounded rationality competitive compared to classical theories.  

 

In addition, there are some well-known experienced whale-watching captains in the 

collectivity. Field observations suggested that these experts tend to operate like explorers 

rather than followers. They have the capacity to anticipate other captains’ collective 

behaviour (e.g. herd effect around very attractive species such as the humpback whale) and 

conduct their excursion in accordance. These captains are important drivers of the system 

dynamics and a different modelling approach based on situation awareness (Endsley, 1995) 

or naturalistic decision making (Klein, 2008) could be more effective than a heuristic-based 

approach. 

 

6.7 Conclusion 

Two challenging tasks for the building of ABMs involving humans are the representation of 

humans’ decision making, and the selection of a valid model based on empirical data. We 
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presented the pattern-oriented selection process of an ABM of whale-watching activities 

within the St. Lawrence Estuary in Québec, Canada. ABM has proven to be a suitable tool to 

synthesize existing knowledge about the whale-watching SES under study. Its 

implementation has also motivated the collection of new data to better understand these 

activities. In an effort to bridge the gap between recent developments in cognitive sciences 

and ABM, we investigated the literature on the bounded rationality paradigm to build 

plausible decision making models. Models of heuristics from bounded rationality proposed 

by cognitive scientists managed to faithfully reproduce whale-watching captains’ decisions at 

sea. Simulations following the POM approach revealed that the Take The Best heuristic 

generally outperformed other tested decision making representations, suggesting that captains 

deal with non-compensatory information when they seek to observe whales (mostly 

grounding their decisions on the whale species attribute). However, the relatively good 

performance of the satisficing and tallying heuristics shed light on the likelihood that 

captains use different decision strategies in different situations, which is consistent with 

results in cognitive science (Gigerenzer and Selten, 2001a). These good results also confirm 

that the collective mechanisms (e.g. cooperation via communication, memory) implemented 

in the model are important drivers of the system’s dynamics and suggest that they have been 

adequately accounted for. However, more developments are needed to address such open 

questions as “how to select the correct heuristic in a given context?” and “how does 

individual difference drive both attribute and heuristic selection?”. These questions highlight 

the need to collect additional data to deepen our understanding of context-dependant strategy 

selection, elicit how individual differences influence observed behaviours, and also to 

characterize the role of experience on expert whale-watching captains. Since POM offered a 

robust framework for comparing model performances, upcoming field investigations leading 

to the refinement of decision making models will be tested and compared reusing this 

approach. 
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CHAPTER 7 
 
 

INSIGHTS FROM AGENT-BASED MODELLING TO SIMULATE WHALE-
WATCHING TOURS: INFLUENCE OF CAPTAINS’ STRATEGY ON WHALE 

EXPOSURE AND EXCURSION CONTENTS 

This chapter presents an example of application of the model of whale-watching excursions 

whose simulation results have been presented in CHAPTER 6. Since the decision making 

process of whale-watching captains has been modelled explicitly in 3MTSim, the application 

presented thereafter describes an example of the kind of knowledge which can be drawn from 

the model’s simulations. 

 

7.1 Manuscript submission information 

This article has been submitted for a review process to be published as chapter of the 

forthcoming book entitled Whale-Watching, Sustainable Tourism and Ecological 

Management, edited by James Higham, Lars Bejder, and David Lusseau to be published by 

Cambridge University Press (Cambridge, UK). Its status when this dissertation was 

submitted was ‘submitted’. The ordered list of authors who contributed to this manuscript is: 

1) Clément Chion, M. Eng., (thesis author). 

2) Jacques-André Landry, Ph.D., Professor in the Department of Automated Production 

Engineering, École de technologie supérieure. 

3) Lael Parrott, Ph.D., Associate Professor and Director of the Complex Systems Laboratory 

in the Department of Geography, Université de Montréal. 

4) Danielle Marceau, Ph.D., Professor in the Department of Geomatics Engineering, 

University of Calgary. 

5) Philippe Lamontagne, M. Eng. 

6) Samuel Turgeon, Research assistant in geography at Université de Montréal. 

7) Robert Michaud, M. Sc., President of the GREMM. 

8) Cristiane Albuquerque Martins, M. Sc., Université de Montréal. 

9) Nadia Ménard, M. Sc., Ecosystem scientist in the SSLMP, Parks Canada. 
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10) Guy Cantin M. Sc., Oceans conservation, Fisheries and Oceans Canada. 

11) Suzan Dionne, Expert in marine ecosystem management, Parks Canada. 

 

Clément Chion, Jacques-André Landry, Lael Parrott, Danielle Marceau, Philippe 

Lamontagne, Samuel Turgeon, Robert Michaud, Cristiane C. Albuquerque Martins, Nadia 

Ménard, Guy Cantin, Suzan Dionne. 

 

Thesis author’s main contributions to this work include the following: 

• Elaboration of the methodology. 

• Model programming. 

• Simulations. 

• Result analyses. 

• Writing of the manuscript. 

 

7.2 Introduction 

Multi-agent models can bear several names depending on the field they were initially 

developed in (e.g. agent-based model in social science, individual-based model in ecology). 

Agent- and individual-based models (ABMs and IBMs) are becoming tools of choice to 

simulate complex social-ecological systems (Bennett and McGinnis, 2008; Gimblett, 2002; 

Monticino et al., 2007). The recent development of dedicated programming platforms and 

libraries has also contributed to the expansion of multi-agent models coupled with GIS-based 

environments (Railsback, Lytinen and Jackson, 2006). Such models have been applied in a 

wide variety of natural resource management contexts where heterogeneous actors interact, 

including rangeland management in arid zones (Gross et al., 2006), management of water use 

and access in river basins (Schlüter and Pahl-Wostl, 2007), control of irrigation channels 

(van Oel et al., 2010), agriculture management (Manson, 2005), and forest clearing for 

agriculture (Moreno et al., 2007). ABMs have also been used to support national parks and 

recreation areas managers by simulating visitor movements to predict over-crowded areas 
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along vehicular routes and hiking trails (Itami et al., 2003), or along riverside rest areas and 

attraction sites for rafting trips on the Colorado River (Roberts, Stallman and Bieri, 2002). 

 

ABMs of social-ecological systems where natural resource management is at stake are 

frequently used to explore outcomes of what-if scenarios of policy rules (Gimblett, Richards 

and Itami, 2002). Apart from testing policy rules, such models involving humans can also be 

used to explore the effects of alternative behaviours on the status of the natural resource. In 

this study, we developed a spatially explicit multi-agent model named 3MTSim (Marine 

Mammals and Maritime Traffic Simulator) to investigate whale-watching activities in the 

Saint-Lawrence Estuary and the Saguenay River, Québec, Canada. Whale-watching activities 

in this area have increased dramatically since the 1990’s, raising concerns about the impact 

of intensive navigation on targeted whale populations, some of which were, and still are, 

endangered or threatened. Public pressure on governments led to the creation of the 

Saguenay–Saint-Lawrence Marine Park (referred to as park later) in 1998 (Guénette and 

Alder, 2007) whose limits are shown in Figure 7.1. The implementation of regulations on 

marine activities followed in 2002 (Parks Canada, 2002), with law enforcement ensured by 

Parks Canada wardens. On top of a series of rules regulating observation activities (e.g. 

maximum observation duration), the regulations also fixed at 59 the maximum number of 

permits for commercial boats operating in the park (53 dedicated to whale-watching) (Parks 

Canada, 2002). Whale-watching activities in the park area rely on the relatively predictable 

presence of several whale species, five of which represent 98.5% of the total number of 

observations (Michaud et al., 2008). In 2007, we estimated that approximately 13 000 

commercial excursions went to sea, 80% of which were dedicated to whale-watching within 

the park (Chion et al., 2009). The proposed Saint Lawrence Estuary Marine Protected Area 

(MPA), managed by Fisheries and Oceans Canada, is expected to extend the protection of 

marine ecosystems beyond the park limits (Figure 7.1). Since whale-watching activities are 

significantly less dense and abundant in the MPA than in the park, we decided to focus our 

study on park’s excursions only. 
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3MTSim combines an ABM of navigation activities with an IBM of whale movements into a 

GIS-based representation of the geographic area. An asset of 3MTSim is that it allows the 

collection of exhaustive data of phenomena difficult or expensive to sample in the real 

system, such as the total time of exposure for each individual whale to observation boats. 

Major components of local marine activities are considered in 3MTSim with a special focus 

on whale-watching excursions. A great deal of effort was made to understand whale-

watching captains’ decision making in order to reproduce realistically their behaviour in 

3MTSim. Whale-watching excursions data analysis and investigation of captains’ decision-

making processes through cognitive interviews revealed that they often do favour sure 

observations of potentially dramatic species (Chion et al., 2010b). Captains achieve sure 

observations mainly by exploiting the knowledge of current observations made by other 

whale-watching boats; a high level of cooperation at sea being the fundamental behavioural 

mechanism allowing the flow of information via the radio VHF communication channel. 

Potentially dramatic species are those well known for their spectacular displays (e.g. 

humpback whales’ breaches or tail-slapping, fin whales hunting in large groups) or having 

notable characteristics (e.g. blue whale is the largest animal ever on Earth, adult belugas are 

all white). Similarly, a vast collection of multiplatform observation data (enumerated later) 

was used to simulate the movements and distribution of the whales. 

 

 

Figure 7.1  The study area encompassing the Saguenay–Saint-Lawrence Marine Park  
and the projected Saint-Lawrence Estuary marine protected area. 
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In this chapter, we investigate the effect of different captains’ decision making strategies on 

targeted whale’s exposure to observation vessels. Our investigation is aimed at demonstrating 

the feasibility of using an ABM for advisory purposes. After an overview of 3MTSim, we 

use the model to explore how alternative decision-making strategies, which could be 

suggested to whale-watching captains via a code of conduct or training sessions, might 

decrease whales’ exposure to boats. We then discuss some lessons and insights that can be 

learned about the dynamics of whale-watching excursions using multi-agent modelling. 

 

7.3  Overview of 3MTSim 

3MTSim was developed as a decision-support tool for marine protected area managers. It 

integrates features dedicated to test the potential effects of alternative zoning and regulation 

plans (e.g., introducing speed limits, altering shipping routes, adding restricted access zones) 

on the patterns of traffic in and around the park and thus on the characteristics of whale-

vessel encounters (e.g. rate, location). An overview of the model and its functionality is 

provided in (Parrott et al., 2010).  

 

The model combines a raster-based spatial environment (GIS) with an individual-based 

model (IBM) of whale movements and an agent-based model (ABM) of boats. During 

simulation runs, the movement of each individual whale and each boat is determined by 

algorithms and rules calibrated to reproduce observed patterns of behaviours (Grimm et al., 

2005). Simulations are run for short periods of time, based on existing environmental 

conditions and known scenarios of whale abundances and patterns of habitat selection. The 

time step currently used for simulations is 1 minute. 

 

7.3.1 Spatial environment 

The spatial environment of 3MTSim is represented by raster data stored in an embedded GIS. 

The bathymetry is considered in the displacement and diving routines of whales, as well as 

for navigation. The state of the tide is modelled according to a simple daily cycle that selects 

the tide condition (flood, high, ebb, and low tide) according to the date and time of day. 
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While weather conditions are not explicitly modelled, visibility extent is represented by a 

single parameter for the whole area. This value remains constant for the duration of a 

simulation, mainly affecting whale-watching captains’ ability to locate whales in their 

vicinity. 

 

7.3.2 Whale individuals 

The IBM of whale movements is described in detail in (Lamontagne, 2009). It includes the 

five most common species in the estuary: beluga (Delphinapterus leucas), minke 

(Balaenoptera acutorostrata), fin (Balaenoptera physalus), humpback (Megaptera 

novaeangliae), and blue whales (Balaenoptera musculus). Since insufficient data were 

available on whales’ food sources and on individuals’ activity budgets, no attempt was made 

to devise a behavioural model. Instead, movement patterns were extracted from: 

• Tracking VHF data: 80 tracks for more than 380 hours, for beluga (Lemieux Lefebvre, 

2009), fin and blue whales (Giard and Michaud, 1997; Michaud and Giard, 1997; 1998). 

• Land-based theodolite tracks of the four rorqual species: 140 focal follows with ~100 

hours of tracking of individuals followed for more than 30 min (C. C. A. Martins, 

unpublished data). 

 

Spatial distribution and aggregation patterns were derived from: 

• Sightings made from research vessels: ~550 baleen whales sightings from transect 

surveys (Groupe de recherche et d’éducation sur les mammifères marins (GREMM), 

2007). 

• Sightings made from whale-watching vessels: 32 000 marine mammal sightings from 

more than 2 100 sampled whale-watching excursions (Michaud et al., 1997; Michaud et 

al., 2008). 

 

The model combines a simple diving routine with a displacement algorithm to determine 

each individual whale's depth, direction and speed at each time step. Diving and surface 

sequences durations are randomly selected from an empirically derived Weibull distribution 
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computed for each species from land-based tracking data. The diving routine uses a simple 

deterministic function to calculate the amount of remaining oxygen as a function of the 

whale’s depth and diving time; thus forcing the whale to surface regularly for breathing. 

Several displacement algorithms were implemented and tested, starting from a simple 

random walk and increasing in complexity to include residence indexes (Turchin, 1998) and 

social interaction between whales (Couzin et al., 2005). The ability of each algorithm to 

successfully match the (often conflicting) patterns for each species was assessed. The 

algorithm MMNB (for “minimization of the mean normalized bias”), a modification of the 

correlated random walk (Turchin, 1998), proved the most successful at reproducing the 

desired patterns, and is currently implemented in the model. For each species, MMNB 

randomly selects an individual’s speed and move duration from the empirical distribution and 

then adjusts the turning angle to reduce the normalized mean difference between the real and 

simulated group size (animal density within a 2km radius), turning angle and spatial 

distribution patterns (Lamontagne, 2009). 

 

7.3.3 Whale-watching boat captain agents 

Whale-watching excursions are challenging to model. Their dynamics, which is driven by 

captains’ decisions, is highly dependent on several factors such as whales’ spatiotemporal 

distribution, species’ abundance, and contextual factors (e.g. regulations, current 

observations made by concurrent companies, companies’ guidelines and directions). These 

boat captains are goal-oriented and have to find a way to achieve their goal in a dynamic 

environment. Interviews with boat captains and park wardens conducted after excursions at 

sea, as well as VHF radio monitoring, revealed a number of attributes of their decision 

making, and were included in the model. In particular, whale-watching boat captains: 1) take 

advantage of information on the most recent observations to explore space when no other 

information is available; 2) share information about whale locations; 3) give priority to more 

dramatic species such as the humpback whale; 4) try to adjust the content of their excursion 

according to that of their direct competitors; and 5) must respect navigational limits related to 
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currents and bathymetry. In the model, at each time step the virtual captain agents follow a 

series of steps from information acquisition to movement execution (Figure 7.2). 

 

 

Figure 7.2  Sequence of actions (from top to bottom) that each captain agent goes through at 
each time step during the simulation. 

 

A whale-watching captains’ main objective is to observe whales during an excursion 

(although some also have sub-objectives related to sightseeing, for example). In the model, 

excursions leave port according to planned schedules. Captains navigate using a path-

planning algorithm to select the shortest path to their destination. Captains choose which 

whale to observe using a cognitive heuristic decision-making module (Chion et al., in 

revision) according to their preferences and constraints. The captains must make use of 

existing information (either from current data on whale locations if available, or retrieving 
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from the memory of previous day’s observations) to select where to head their excursion to 

observe whales. This type of decision is rapid, based on limited information, with no optimal 

universal solution, and is repeated several times during an excursion. We assume, therefore, 

that the captains are operating in a context of bounded rationality, where they will select what 

appears to be the best choice given currently available information and the contextual setting 

both in time (e.g. what species they have already observed during the excursion will affect 

their choice of the next pod to target) and in space. The validation of the whale-watching 

vessel captain model is described in further detail in (Chion et al., in revision). 

 

Other whale-watching captains’ cognitive and sensory capabilities are implemented within 

the model. Past observations are aggregated in a collective spatial memory according to a 

simple clustering algorithm that groups those past observations in clusters where the 

maximum pairwise distance does not exceed the visibility extent. This approach was chosen 

to represent the way captains aggregate past unique observations in broader regions where 

the action took place, rather than in precise locations where each given observation occurred. 

 

The distance of whale detection by a captain’s visual module is species dependant. For each 

species, the detection distance was calibrated using the knowledge of observers working at 

counting whales on the Saint-Lawrence during sea-based transects. 

 

7.4  Methods 

7.4.1 Rules considered by whale-watching captains to choose a whale to observe  

Our investigation of whale-watching captains’ decision making revealed several notable 

characteristics and mechanisms which were subsequently implemented within the model 

(Figure 7.2). The following decision rules were elicited from field work mainly consisting in 

1) 7 semi-structured interviews (~10 hours) conducted with whale-watching captains after an 

excursion, 2) 15 hours of VHF radio monitoring, and 3) observations made during 30 

excursions onboard all boats and ports in the park area. Extracted decision rules serve as the 

reference model for whale-watching captains’ decision making about which pod to target for 
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observation. Within the sequence of actions detailed in Figure 7.2, these rules intervene at the 

step “update decision”, when the goal is “observing whales” and a new pod of whales has to 

be targeted among a set of candidate animals. Given a set of candidate whales, the captain 

agent jumps to the next rule until only one whale remains in the list. Rules are ranked as 

follows: 

1) Captains try to find species that are not currently observed by any captain at sea. If such a 

species appears opportunistically in their surroundings, the captain will target it. This will 

give the captain an edge over his competitors. 

2) Captains favour species not already observed in their own excursion that have been 

observed in other excursions. 

3) Captains prioritize the whales belonging to the overall top-ranking species in their 

decision (i.e. humpback, fin and blue whales). In fact, species’ attractiveness is not the 

same for all species. When present in the area, data from sampled excursions show that 

humpback whales are responsible for the largest aggregations of boats followed by the 

fin, blue, minke, and beluga whales (all pairwise differences statistically significant). 

Several characteristics have an impact on species’ attractiveness, such as their potential 

spectacular displays, ease of observation (no fleeing behaviour), predictability of 

individual distribution, core habitat areas (e.g. proximity from departure ports), 

abundance, and species-specific regulations. 

4) Captains prefer whales that are about to be lost from the pool of discovered ones (i.e. no 

boat observing them anymore). This is all the more true for individuals from species 

standing high in the preference ranking such as humpback whales. 

5) The next criterion is the preference for whales with the lowest number of boats in their 

surrounding. Some captains, often those with more experience, give a higher priority to 

non-crowded sites. 

6) Captains favour observations allowing subsequent observations in the area. This ability to 

anticipate and build an excursion in advance and adjust it as a function of upcoming 

information is expected to be more prevalent with experienced captains. 

7) In case of a tie between candidate whales, captains will break the tie by choosing the 

closest whale. 
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We followed a naturalistic decision making approach to investigate captains’ decisions in 

action (Klein, 2008; Klein, Calderwood and MacGregor, 1989) and modelled it following the 

bounded rationality framework (Gigerenzer and Selten, 2001a; Simon, 1957). Being aware 

that all captains neither have the same experience nor the same values, using a single model 

to represent all captains’ decision processes is a current limitation of the model. However, the 

validation process proved that this approach allowed the faithful reproduction of some key 

individual (total length, activity budget, and contribution of species in observations) and 

collective (core areas of activity and boat aggregations) patterns of excursions (Chion et al., 

in revision). This suggests that from the collective perspective, which is of particular interest, 

individual differences influence less critically the global dynamics than individual 

similarities (e.g. overall preference ranking for given species) and shared collective 

mechanisms (e.g. cooperation via communication, prevalence of knowledge exploitation over 

space exploration). 

 

The rules described above were implemented as cues within the take-the-best heuristic 

structure (Gigerenzer and Goldstein, 1996) that has proved to best reproduce excursion 

patterns (Chion et al., in revision) amongst several cognitive heuristics taken from the 

bounded rationality literature (Gigerenzer and Selten, 2001a). The prevalence of a non-

compensatory heuristic such as take-the-best over compensatory ones (e.g. Tallying) suggests 

that whales’ characteristics do not have the same weight in captains’ decisions. 

 

7.4.2 Alternative decision making strategies 

To study how the decision-making process of captains can influence the dynamics of whale-

watching excursions and ultimately affect the global dynamics of the system, we 

implemented two alternative decision making strategies in 3MTSim that virtual captains 

follow when deciding which whale to observe. Our objective is to foresee how such 

alternative behaviours could affect both whales’ exposure and excursions’ dynamics and 

content. This type of application could lead to a series of recommendations passed on to 

captains during seasonal training sessions. The simulations run with each alternative decision 
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making model (DMM) aim at demonstrating the feasibility of such a utilization of ABM for 

advisory purposes. 

 

We present hereafter the two alternative DMMs that were implemented and tested within 

3MTSim. Rules contained within the two alternative models were implemented within the 

take-the-best heuristic structure. The alternatives are expected to mitigate whales’ exposure 

without significantly affecting observation activities (e.g. time spent in observation). 

 

7.4.2.1 Preference for less crowded observation sites (DMM-1) 

The idea of this DMM is to favour whales with fewer boats in observation. Taking into 

account this criterion in the process of selecting whales to observe is expected to decrease the 

aggregation of boats on observation sites, which is a goal pursued by parks managers 

regarding the management of whale-watching activities. Captains using this decision strategy 

will apply the following rules: 

1) Captains try to find species that are not currently observed by any captain at sea. If such a 

species is visible in their surroundings, it will be targeted.  

2) Captains favour species not already observed in their own excursion.  

3) Captains will pick the observation site with the fewest boats on it, with a coordination 

mechanism allowing captains to account for others’ intentions (i.e. captains heading to 

observe a whale but not currently observing it).  

4) In case of a tie, captains will chose the closest site regardless of species. 

 

7.4.2.2 No preference ranking of whale species (DMM-2) 

This DMM gives the same weight to all species in captains’ selection process of which pod 

of whales to target. The idea to test this DMM comes from an issue noticed repeatedly in the 

past, when some whales belonging to scarce species attract numerous boats in their vicinity, 

via a domino effect. Captains using this decision strategy will consider the cues as follows: 
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1) Captains try to find species that are not currently observed by any captain at sea. If such a 

species appears in their surroundings, it will be targeted.  

2) Captains favour species not already observed in their own excursion.  

3) Captains will not ground their decision based on a species preference ranking. 

4) In case of a tie, captains will pick the closest whale between remaining candidates. 

 

7.4.3 Design of experiment and simulation parameters 

For the reference model and both alternative DMMs described above, we ran 10 replications 

of a 1-week simulation. We fixed the number of runs to 10 by monitoring the inter-runs’ 

variability. 

 

The data from the first day of each simulation (transient state) were systematically discarded 

to keep only the model’s steady state. The visibility parameter was set to 4 km for all 

simulations. The period of the year simulated is the peak tourist season (between mid-July 

and mid-August); this is the most critical time of the year in terms of the number of boats at 

sea. Excursion schedules and zodiac departures reach a peak at this time of the year in 

response to the maximum touristic demand. 

 

All simulations were run with the same whale species’ abundance and spatial distribution 

settings (Table 7.1). Except for belugas, abundances were selected to reflect the approximate 

proportion of each species compared to the others, as observed during recent seasons. For 

belugas, since they are often excluded from observation activities due to the minimum 

observation distance restriction (400 meters), we lowered their number (from ~1000 in the 

real system to 100) to speed up simulations. 
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Table 7.1 Whale species’ setting used for simulations 
 

Species Abundance Years of spatial distribution 
data used 

Minke 40 2007 

Fin 20 2007 

Blue 3 2007 

Humpback 3 2007 

Beluga 100 1994-2007 

 

7.4.4 Variables observed 

In order to assess the impact of a given DMM strategy on the system, we observed several 

variables output by the model during the simulations. We distinguish variables characterizing 

the impact on whales’ exposure from those impacting excursions’ dynamics. 

 

7.4.4.1 Variables characterizing whales’ exposure to whale-watching boats 

We chose four variables to characterize whale exposure to observation boats. We made the 

distinction between individuals, species, and overall exposure.  

• Exposure of individual whales: 

o Percentage of individual whales observed. This variable provides insight on the 

proportion of individual whales that have been exposed to observation activities. 

o Duration of continuous sequences of observation. This variable allows monitoring the 

duration of the continuous sequences of observation that animals are subject to. For 

instance, if two boats observe the same whale during 30 minutes successively (the 

first boat leaving when the other arrives), the duration of the continuous observation 

sequence will be 60 minutes. 

• Exposure of species: 

o Species’ contribution to observation activities. This variable tells us the contribution 

of each species to the budget of all whale-watching activities. 
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o Overall exposure of whales present in the area: 

o Time spent in observation activity. This variable allows computing the total time 

whale-watching boats have been observing whales. 

 

We are aware that some of these variables should be regarded cautiously since the level of 

knowledge introduced in the model may not be sufficient to consider them with high 

confidence. For instance, the percentage of individuals observed partially depends on the 

spatial location of individual whales; however, in reality some specific individuals may 

display some site fidelity, which is not fully known nor modelled within 3MTSim. 

 

7.4.4.2 Variables characterizing excursions’ dynamics 

Modifying a captain’s strategy affects excursions’ dynamics. We monitor changes by 

recording and analyzing the following variables: 

• Success of the excursions. This variable informs us about the percentage of excursions 

that made at least one observation during the outing. 

• Time spent in observation activity.  

• Proportion of time boats are alone with the targeted pod. This variable is an indicator of 

the quality of observations. Since the large number of boats at sea is one of top-most 

sources of concern about whales’ protection and the most negative element experienced 

by whale-watching tourists during their excursion (see (Giroul, Ouellet and Soubrier, 

2000), p. 53-54), it can be reasonably inferred that decreasing boat concentrations would 

contribute to the enhancement of the visitors’ experience. 

• Boat aggregations around observed pods of whales. This is a critical variable for 

managers who wish to decrease boat aggregations at sea. 

 

More variables could be added to this analysis framework. However, the set of variables 

presented above are intended to give an insight into 3MTSim’s capability to monitor effects 

induced by captains’ changes of behaviour. 
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7.5  Results and discussion 

We now present and discuss the simulation results for both alternative models (DMM-1 and 

DMM-2) and compare them to the reference model’s outputs characterizing the current 

situation at sea. 

 

7.5.1 Whale exposure 

Simulations revealed that DMM-1 and DMM-2 both increase the total number of individual 

whales observed during a day compared to the current situation (modelled by the reference 

DMM). The strategy where captains favour observation sites with fewer boats leads to a 15% 

increase in the number of individuals observed whereas the strategy where no preference 

ranking of species exists leads to a 1.5% increase in the number of observed individuals 

(Table 7.2). These relative increases are significant with both p-values < 0.01 (Wilcoxon rank 

sum test). 

 

We compared the distributions of the duration of observation sequences produced by DMM-

1 and DMM-2 (cf. Figure 7.3). Neither DMM-1 nor DMM-2 affected this metric 

significantly compared to the reference model (Wilcoxon rank sum test). This is a consistent 

result since the rule that controls the decision to leave the observation site remained the same 

for all tested models (a function of the number of the targeted whale’s surfaces observed, the 

maximum time allowed by the marine park regulations for observing the same pod, the 

presence of other whales observable in the vicinity, and the remaining time in the excursion).  

 

Table 7.2 Increase in the total number of individual whales observed each simulated day  
for both alternative DMM in comparison to the reference model 

 

DMM-1 (compared to reference) DMM-2 (compared to reference) 

+15% +1.5% 
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Several ways could be envisioned to reduce the duration of observation sequences in the real 

system: giving incentives to explore space to search for new whales instead of taking 

advantage of discovered whales; reducing the maximum authorized time in observation of 

the same pod (currently 60 minutes); or giving incentives to diversify activities at sea leading 

to more time spent discovering landscape features (e.g. lighthouse, sand dunes). Such 

strategies could be tested in the model to predict the effects on the duration of observation 

sequences. 

 

 

Figure 7.3  Boxplots of observation sequence durations for the three tested DMMs.  
No statistical difference was noticed between the distributions. 

 

Table 7.3 shows the repartition of observation effort on the four rorqual species. Both DMM-

1 and DMM-2 led to a significant reduction of the proportion of time devoted to humpback 

whales observation. Attractiveness of this species is particularly high in the area for several 

reasons including its occasional spectacular behaviours, stability of individual locations, and 

core habitat located in the vicinity of main ports of excursion departure. In contrast, despite 
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having the same abundance in simulation runs (3), blue whales always account for a smaller 

part of observation, especially because their home range is located more downstream, farther 

from the most active homeports. 

 

Table 7.3 Contribution of each species to overall observation of activities 
 

 Minke whale Fin whale Blue whale Humpback whale 

Reference model 33% 31% 4% 32% 

DMM-1 44% 36% 4% 16% 

DMM-2 34% 38% 8% 20% 

 

7.5.2 Excursion dynamics 

The percentage of empty-handed excursions is similar for all tested models at approximately 

3%. Again this is consistent since for all simulations captains favour (when possible) 

exploitation of discovered whales rather than the more risky exploration of space. 

Consequently the success rate is not affected. 

 

Conversely, we found a slight change in the total amount of observation activities. Both 

DMM-1 and DMM-2 strategies lead to more observations than the reference model (Table 

7.4). 

 

Table 7.4 Average and standard deviation of proportion of time  
spent in observation during excursions 

 

Reference model DMM-1 DMM-2 

49% +/- 2 % 54% +/- 1% 53% +/- 2% 

 

The increase in time spent in observation is due to the fact that captains promote 

opportunistic observations for both DMM-1 and DMM-2. In the case of DMM-1, this is due 

to the fact that a whale surfacing opportunistically in the vicinity can be the best choice since 
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there is no boat observing it. In the case of DMM-2, since the species is no longer a criterion 

for whale selection, whales surfacing in the vicinity of a boat will have more chance to be 

selected for observation. Observing close whales opportunistically reduces the travel time 

needed to reach a more distant site, thus explaining the increase in observation activities. 

 

Reducing boat aggregations around pods of whales is positive both for whales and visitors’ 

experience. Table 7.5 shows the proportion of time one or two boats are observing the same 

pod simultaneously. As expected, using the DMM-1 strategy, captains significantly increase 

by ~11% the proportion of time they spend alone or with only another boat observing a pod 

when compared to the reference model. In contrast, DMM-2 does not affect those metrics 

significantly. Let us point out that these figures take into account all excursions in a day, 

including early and late excursions where most of observations occur alone since few boats 

are at sea at these times (compared to busier mid-day schedules).  

 

Table 7.5 Proportion of the total observation time an excursion is alone (1)  
or with another boat (2) observing a pod 

 

 Reference Model DMM-1 DMM-2 

1-Alone with the pod 26.3% 32.2% 25.7% 

2-Two boats observing 
the same pod 

22.8% 27.7% 23.6% 

Sum (1+2) 49.1% 59.9% 49.3% 

 

 

Figure 7.4 shows the boxplots of the boat number distributions on observation sites. Only 

DMM-1 significantly reduces boat densities around whales, including median and maxima 

(Wilcoxon rank sum test). 
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Figure 7.4  Boxplots representing the number of boats on observation sites  
for each tested DMM. 

 

7.6  Conclusion 

Our goal was to provide insights on the use of multi-agent modelling to better understand the 

nature of interactions between whale-watching excursions and whales. 3MTSim is a spatially 

explicit multi-agent model representing whale movements and navigation activities within 

the Saint-Lawrence Estuary, Québec, Canada. This model was primarily developed to test 

alternative navigation-related management scenarios, including observation activities. Since 

the whale-watching captains’ decision process was modelled in detail, 3MTSim can also be 

used to predict outcomes from changes in captains’ strategies to locate and observe whales, 

which was presented here. 

 

Currently, whale-watching captains mostly ground their decisions on which whale to observe 

based on species, proximity, and competitor excursions’ content. We demonstrated that 
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taking into account other criteria such as boat aggregation could help to decrease the overall 

density of boats in the vicinity of whales, without affecting some excursion’s performance 

(e.g. time spent in observation). Additional decision strategies can be expected to improve 

the situation at sea. For instance, captains could engage in more space exploration (by 

opposition to the currently widespread exploitation of discovered whales) or else could 

systematically present some landscape or historical features as part of their excursion instead 

of overly focusing on whale observation. 

 

By testing alternative decision strategies that could be followed by captains, it is possible to 

devise a set of recommendations that park managers could communicate to whale-watching 

captains during training sessions. As a decision-support tool, 3MTSim has the advantage of 

being able to illustrate the whole picture of the collective impact of navigation and 

observation activities on whales. Appreciation of their collective impact on targeted whales 

was particularly absent from captains’ discourses during interviews, suggesting that multi-

agent models could also help in providing further captain awareness at this level. 

 

As new knowledge about the system’s dynamics becomes available, it is possible to integrate 

it in the multi-agent model. Future improvements expected are a model of noise emission (by 

boats) and 3D propagation in the area, whales’ reaction to the presence of boats, along with 

captains’ individual differences (e.g. values, preferences). Finally, other variables could be 

observed to achieve a more complete impact analysis such as spatial variations of boat-whale 

co-occurrences, or whales’ cumulative exposure to noise sources. 
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CHAPTER 8 
 
 

THE SHIPPING MODEL 

After the presentation of the work related to the development of the component of 3MTSim 

related to whale-watching excursions, this chapter is devoted to the development and 

validation of the shipping model (cf. Figure 6.2). The term shipping refers to all maritime 

activities conducted by boats carrying commercial goods or passengers with overnight stays, 

thus excluding most of ferry trips and commercial excursions (e.g. whale-watching 

excursions). 

 

Most geospatial analyses were carried out with the technical support of Samuel Turgeon, 

research assistant in geography at Université de Montréal. 

 

8.1 Compulsory pilotage 

Any ship registered in Canada measuring over 80 meters in length and weighing over 3300 

tons gross tonnage, as well as any ship not registered in Canada measuring over 35 meters in 

length are subject to compulsory pilotage in the St Lawrence waters upstream of Les 

Escoumins including the Saguenay River (cf. Figure 0.1) referred to as the pilotage District 

No. 2 (Department of Justice Canada, 2010). Since the great majority of ships with 

commercial cargos exceed these limits, almost all ship transits are assisted by experts pilots. 

In the District covering the study area, pilotage service is provided by the Corporation of 

Lower St. Lawrence Pilots (CLSLP). Ship transits in the study area are ensured by expert 

pilots thus contributing to the low level of spatial variability observed in their trajectories (cf. 

APPENDIX I). 

 

8.2 Data 

The databases used to develop the shipping model are PREVISION_INNAV and 

AIS_INNAV, fully described in section 1.2.2.1. 
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8.3 Shipping model description 

8.3.1 General characteristics of 3MTSim 

The following characteristics stand for all submodels of 3MTSim (Figure 1.1): 

• Spatial extent: The model area is given in Figure 8.1. It encompasses the study area 

described in Figure 0.1. 

 

Figure 8.1  Model area. 
 

• Spatial resolution: continuous for agent position; 100m×100m for environment 

information (e.g. bathymetry). 

• Temporal extent: May to October (i.e. period of whale presence in the study area). 
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• Temporal resolution: 1 minute. This was chosen since most of spatiotemporal datasets 

have a temporal resolution of 1 minute. 

 

The conceptual model of shipping activities is now presented following Sargent’s modelling 

process illustrated in Figure 0.4 (Sargent, 2005). 

 

8.3.2 Ship interactions with other agents 

In 2008, an interview was conducted with two expert pilots from the CLSLP to gain 

knowledge about their decision making process in the study area. Information extracted from 

this interview and those conducted with whale-watching captains, along with personal 

observations revealed several interaction patterns between ships and their environment.  

 

First of all, encounters between ships (e.g. overtaking, head-on situation) are regulated by the 

International Maritime Organisation (IMO) with the Collision Avoidance Regulations 

(COLREGS) (1972). Considering the low (and local) impact of such avoidance behaviours 

on ship trajectories, in order to keep model complexity as low as possible and stay in the 

Medawar zone (Grimm et al., 2005), no collision avoidance module have been implemented 

in the current version of the shipping model. 

 

Commercial ships tend to get the priority over other activities at sea. Given their low 

manoeuvrability, any smaller boat (e.g. excursions boats, yachts) should give way in the area. 

From a ship’s wheelhouse, the detection of a small boat on the path might be too late for an 

avoidance manoeuvre. As a matter of fact, commanding officers operating large ships only 

engage in such manoeuvres in case of an emergency which tends to be exception. Some 

informal arrangements exist between whale-watching companies and the CLSLP, leading 

some pilots to deliberately anticipate the avoidance of whale observation areas. However, not 

all pilots respect this rule, nor does it apply in all situations. Considering that the spatial 

impact on ship trajectories induced by such local avoidance is very low, this occasional 
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behaviour is ignored in the current version of the shipping model with presumably minor 

impact on the model results. 

 

Finally, avoidance behaviour towards whales is not considered since no data exist about such 

pilots’ behaviours. In the same way as for the avoidance of smaller boats, this modelling 

simplification does not affect model applicability since collision events between whales and 

ships are not explicitly simulated within 3MTSim (due to a lack of understanding of the very 

circumstances leading to ship strikes); only statistics related to boat-whale spatiotemporal 

encounters (concept illustrated in Figure 0.3) are computed from 3MTSim’s output.  

 

8.3.3 Conceptual model 

PREVISION_INNAV is an almost exhaustive count of commercial trips transiting in the area 

so it gives a reliable statistical portrait of ship trips’ characteristics (ship type, cargo, 

maximum speed, length, and draught) along with their temporal variability in 2007. 

AIS_INNAV is not complete but represents a significant part of the ship trips in the area in 

2007. Consequently, the model was developed based on 2007 historical data. Two thousand 

seven was also taken as the reference year to build the model of commercial excursions (cf. 

CHAPTER 6) so that this choice is consistent for these two submodels. 

 

Given the great quality of the data at hand and the spatial regularity of ship trips (cf. 

APPENDIX I), the chosen modelling approach was a purely statistical one based on 2007 

PREVISION_INNAV and AIS_INNAV historical datasets. Before the presentation of the 

shipping model dynamics in the next section, some details about the Monte-Carlo approach 

are given since the stochastic selection of most of simulated ship trips’ parameters from 

historical data rely on it. 

 

To be consistent with Philippe Lamontagne’s whale model implemented in 3MTSim 

(Lamontagne, 2009), the definition of the Monte-Carlo method used to develop the shipping 

model is similar to that proposed by Judson (1994) in the context of IBM: The Monte-Carlo 
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method refers to the use of a probability distribution of a variable X and a random number 

generator used to draw values from X’s distribution stochastically.  

 

Practically, let us consider a continuous variable X, its known cumulative distribution 

function cdfx, and a random number generator that draws values vi uniformly on the interval 

[0,1). The stochastic selection of Xi following cdfx given vi is given by Xi=cdfx
-1(vi) with cdfx

-1 

the inverse function of cdfx, as illustrated in Figure 8.2. 

 

 

Figure 8.2  Monte-Carlo method for the stochastic selection of values from a continuous 
variable X given its cumulative distribution function cdfx, and a  

random number vi uniformly drawn on [0,1). 
 

All parameters (discussed in the next section) of the 3MTSim’s ship trips agents are discrete 

because only the finite set of values appearing in INNAV datasets are considered. 

Consequently a discrete version of the Monte-Carlo method is needed, illustrated in Figure 

8.3.  
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Figure 8.3  Monte-Carlo method for the stochastic selection of values from a discrete 
variable X given its cumulative histogram hist_cumulx, and a  

random number vi uniformly drawn on [0,1). 
 

Using this discrete version of the Monte-Carlo method on successive random draws, each 

discrete value of X={X1, X2,…, Xn} is selected with a probability P(Xi) given by equation 

(8.1), using notations of Figure 8.3. 

 

 )vv()(Xfrequency)P(X
ii min_Xmax_Xii −==  (8.1) 

 

Now that the general conceptual model has been set, the shipping model dynamics is 

presented.  

 

8.3.4 Shipping model dynamics 

The flowchart of the shipping model presented in Figure 8.4 is detailed step by step 

thereafter. 
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Figure 8.4  Flowchart of the shipping model dynamics. 
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The overall dynamics of the shipping model is divided into a pre-simulation and a simulation 

phase as described in Figure 8.4. During the pre-simulation phase (top part of Figure 8.4), six 

steps (the numbering 1 to 6 in Figure 8.4 is reused below) are necessary to create a planned 

ship trip S in the model space, detailed below.  

 

1) First, at each time step (1-minute) during a simulation, a new ship trip S is instantiated at 

one of the three borders (upstream and downstream the St. Lawrence, and the north-west 

end of the Saguenay fjord) with a probability P1
m defined by equation (8.2). 

 

 

m month in minutesofNumber

mmonthintripsshipofNumber
Pm

1 =  (8.2) 

 

Given that there exists a non-random seasonal variability in the number of ship trips in 

transit in the area (cf. figure 1 in APPENDIX I), P1
m varies monthly.  

 

2) Once S has been instantiated, re-using the CCG’s INNAV class codes (Figure 1.2), one of 

the five commercial classes CS={M,MP,T,B,H} is attributed to S with a probability Pc
m 

defined by equation (8.3).  

 

 

m month in tripsshipofNumber

mmonthinc class vessel fromtripsofNumber
Pm

c =  (8.3) 

 

The description of the five vessel class codes designing commercial trips retained for the 

shipping model purposes is given below:  

• Merchant ships (M): All commercial ships carrying solid cargoes (e.g. bulk carriers, 

containers). 

• Merchant ships for passengers (MP): National and international cruise boats (e.g. 

ocean liners). 

• Tankers (T): All commercial ships carrying fluid cargoes (e.g. chemicals, oil, LNG). 

• Barges (B): All barges including self-propelled. 
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• Tugs (H): Tugboats. 

 

The remaining categories were not considered because 1) they do not designate 

commercial shipping or cruising activities (A, C, D, I, S, W); 2) the number of their trips 

is marginal in the area (F, O, U); or 3) they are already (or will be) accounted for in 

another submodel (MF, MW, Y). Any of the classes left aside could be added to 3MTSim 

as a new component of the boat submodel (cf. Figure 6.2) if its inclusion would become 

justified. Discrete values of ship classes are selected using the discrete version of the 

Monte-Carlo method described in Figure 8.3. 

 

3) Three static characteristics were retained to characterize a ship: 

• Ship length l (in meters): given in PREVISION_INNAV. 

• Ship draught d (in meters): given in PREVISION_INNAV. 

• Ship maximum speed in the study area Vmax (in knots): extracted from AIS_INNAV. 

 

For each ship trip S having transited in the area from May to October 2007, the triplet 

T=[l, d, Vmax] was recorded to calculate the frequency of occurrence of each triplet. The 

probability P3
T of selecting the triplet T appearing nT times given the total number of ship 

trips is determined using the following basic formula (8.4):  

 

 

tripsshipofnumberTotal

n
P TT =3  (8.4) 

 

No evidence of monthly variation in triplet values was found so this probability was not 

made monthly. Triplets T are selected using the discrete version of the Monte-Carlo 

method described in Figure 8.3. 

 

4) For each trip transiting in the study area, the planned sequence of INNAV waypoints 

Swp_PREVISION was extracted from PREVISION_INNAV. For a given S, Swp_PREVISION 

represents the skeleton of its planned trajectory, starting and finishing at a model terminal 



200 

(i.e. one of the three model space borders or any ports, excluding anchorage areas). After 

a pre-processing step to get rid of incomplete and aberrant sequences, the correct 

sequences were compiled and their frequencies computed. The selection of a Swp_PREVISION 

is given by a probability P4
PREV following the exact same procedure as for triplet T (i.e. 

discrete version of the Monte-Carlo method).  

 

5) For each INNAV waypoint wpPREVISION in the sequence Swp_PREVISION , a corresponding 

real position Pwp is attributed according to the real spatial variability around this point in 

AIS_INNAV (only for trips planning to go through wpPREVISION). To do so, an algorithm 

was built to extract the closest points from a ship trip’s AIS trajectory to the set of 

wpPREVISION contained in its sequence Swp_PREVISION , such as illustrated in Figure 8.5 with 

the simple case of two trip trajectories and two INNAV waypoints.  

 

 

Figure 8.5  Extraction procedure of the closest AIS points to PREVISION waypoints. 
 

Therefore, for each waypoint wpPREVISION of the INNAV spatial mesh (hundreds of points), 

the set of all corresponding AIS_INNAV points from ship trips containing it in their 
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sequence is mapped on a 100m×100m grid such as described in Figure 8.5. The proportion of 

AIS points falling into each grid cell thus determines the probability of selecting the cell’s 

centre as the corresponding Pwp for a given ship trip containing wpPREVISION in its sequence 

Swp_PREVISION. The new sequence of real waypoints Pwp that the ship trip is planned to go 

through is labelled Swp_AIS. 

 

6) To finish the pre-simulation phase, a complete planned trajectory needs to be computed 

using the path-planning algorithm RayBaPP described in CHAPTER 5. During the 

simulation a ship agent needs to go through all waypoints in Swp_AIS successively, without 

colliding with any obstacle in between (i.e. islands, shoals, or mainland). Since there is 

no assurance that joining in straight line each waypoint would allow such a collision-free 

outcome, additional waypoints Pwp_RayBaPP computed by the RayBaPP algorithm (cf. 

CHAPTER 5) may need to be inserted into Swp_AIS, resulting in the final planned 

trajectory Traj. 

 

During the simulation, at each time step (i.e. model tick) the status of each ship trip S is 

updated (in random order), according to the bottom part of the flowchart presented in Figure 

8.4. Accordingly, the first action is to check whether S has reached the final destination of its 

planned trajectory Traj: if yes, S is suppressed from the model’s list of active agents. If S is 

still active after its last move (previous tick) then its current speed must be updated. For this 

purpose, the following two maps (1000m×1000m resolution) have been computed: 

• Mvaverage: Each cell value is the average of all AIS point speeds divided by ship’s 

maximal speed in the study area, Vmax. Therefore, each cell value is in the range [0,1] 

and represents the average percentage of maximum speed of ships having gone through it 

in AIS_INNAV.  

• Mvstd: Each cell value is the standard deviation associated to the distribution of ships’ 

percentage of maximum speed going through it, according to AIS_INNAV. 

 

Before computing these maps, the normality of these relative speed distributions has been 

verified in a randomly selected set of cells. 
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Therefore, the actual speed of S is updated according to the values contained in both maps 

Mvaverage and Mvstd at current S position (xs, ys), using a random number drawn from the 

Gaussian distribution (mean µ = Mvaverage(xs, ys) and standard deviation σ = Mvstd (xs, ys)): a 

new percentage of maximum speed value is then output and multiplied by Vmax to get S actual 

speed V. Therefore, S can execute its movement by linearly interpolating its new position 

based on V, its current position (xs, ys), and the next waypoints to reach in Traj. This 

terminates the description of the dynamics of ship trip agents implemented in the current 

version of 3MTSim. The next section is devoted to the validation of the shipping model. 

 

8.4 Model validation 

Several validation steps were carried out to assess model performance. Performance was 

assessed on 2440 simulated trips against 2007 historical data. Three validation steps are 

presented below. First, static characteristics (class code, and triplet T) are validated, along 

with the frequency of their transits. Second, the spatial characteristics of the trips generated 

are compared with real data. Finally, ship speed during transit is analysed and validated. 

 

8.4.1 Static attributes and transit frequency verification 

8.4.1.1 Total number of trips instantiated 

The first step is to validate the correct use of P1
m. For the 4-month period June to September, 

2440 ship trips were instantiated whereas 2412 real trips transited in the region during this 

period (~1% difference). The monthly variability was also reproduced adequately. 
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8.4.1.2 Number of trips by month and vessel type (frequency) 

 
Figure 8.6  Proportion of trips from each class for the four months (simulation vs. reality). 

 
Figure 8.6 illustrates the good match between the real flow of ships in the study area and the 

simulated ones. This validates the correct use of the probability Pc
m. 

 

8.4.1.3 Ships’ characteristics 

The objective here is to validate that the ship trips modelled have statistically the same 

characteristics (triplet T) as the real ones. This is equivalent to validating the correct use of 

the probability P3
T.  

 

Here only the results of the Vmax attribute vessel class code M and T (80% of the ship trips in 

the area) are given in order to alleviate this section. Results for the other characteristics of the 

triplet (l, d) are exactly similar as for Vmax. 
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Figure 8.7  Results for the Vmax attribute of ship trips for classes M and T only,  

for the June to September period. 
 

Figure 8.7 shows a good match between real and simulated ship characteristics. 

 

8.4.2 Spatial validation 

In this section, we assess the spatial validity of the ship trip model for different resolutions. 

This step is performed by using trajectories computed from points (AIS for real observations, 

and 3MTSim output for simulations). Overall performances are presented first. Then, the 

spatial variability of the error is mapped and discussed. Finally, a special analysis is 

conducted in order to assess the shipping model’s spatial accuracy as a function of the spatial 

resolution.  

 

8.4.2.1 Overall performance 

The overall spatial performance is assessed using the Jaccard index J. This simple index 

measures the similarity between two sets A and B by dividing the size of their intersection by 

the size of their union, as given by equation (8.5). The value returned by J is in the range 

[0,1]. 

 

BA

BA
BAJ

∪
∩

=),(  (8.5) 
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We propose a spatialised version of the Jaccard index for two polygons where the numerator 

in equation (8.5) is the area of polygons intersection divided by the area of their union.  

 

We computed the density of trajectory for both real and simulated data, and extracted the 

polygons covering 75% of core activities. For the home ranges 75%, the Jaccard index 

between simulated and real observations is J = 0.69. In the next section, we propose a spatial 

analysis and discuss the nature of the errors. 

 

8.4.2.2 Error map 

Figure 8.8 shows the kernel density computed from real observations and model output.  

 

 

Figure 8.8  Comparison between the kernel density of real observations of maritime traffic 
(left) and model output (right). Results are presented qualitatively but the colour scale 

established from density values is the same for both maps. 
 

Observed and real densities of densities are similar over most of the model area and the error 

map is presented in Figure 8.9. 
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Figure 8.9  Error map computed from name maps. 
 

Regions of high spatial error are located in the section downstream from Les Escoumins 

where ships sail mostly in straight line. In this area, a local offset may propagate and increase 

the overall error. The sources of error are discussed in the last section of this chapter. 

 

8.4.3 Speed validation 

Speed analyses were conducted at a 1000m×1000m resolution, which is the resolution of the 

input speed maps Mvaverage and Mvstd. First the overall performances are presented, followed 

by the spatial repartition of error. 
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8.4.3.1 Overall performance 

Two error measures are used to assess model ability to reproduce ship speeds. They are the 

Normalized Mean Absolute Error (NMAE), and the Normalized Mean Error (NME) given by 

equations (8.6) and (8.7). 

 

 

real
i

real
i

sim
i

X

XX
  NMAE

−=  (8.6) 

 

 

real
i

real
i

sim
i

X

XX
NME

−=  (8.7) 

 

The overall error has been computed for all model cells, and also weighted to account for the 

number of points in cells. The results are given in Table 8.1. 

 

Table 8.1 Overall NMAE and NME for ships’ speed values, for model’s cells only or 
weighted by the number of points in cells 

 

 Cells Points 

NMAE 8.5% 7% 

NME -7% -7% 

 

 

8.4.3.2 Histogram of errors 

Figure 8.10 shows that more than 70% of model cells have an NMAE on ship speed lower 

than 10%. To account for the variable number of points in each cell, Figure 8.11 shows that 

these 70% of model’s spatial cells represent around 80% of the total number of points 

(observed and simulated). Finally, Figure 8.12 shows simulated speeds tend to underestimate 

real ships’ speed since most of the cells’ NME is negative. 
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Figure 8.10  Histogram of NMAE for the 1000m×1000m cells. 
 

 

Figure 8.11  Histogram of NMAE weighted by the number of points in each cell. 
 

 

Figure 8.12  Histogram of NME for the 1000m×1000m cells.  
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8.4.3.3 Error map 

Figure 8.13 illustrates the spatial distribution of ship speed error. The largest speed errors are 

mostly found in areas where the traffic density is low. 

 

 

Figure 8.13  Error map (NME) for ship speed (1000m×1000m cells). 
 

8.5 Discussion and future work 

The results of the shipping model validation process revealed an overall ability of the model 

to match the key features of maritime traffic in the area (cf. Figure 8.6, Figure 8.7, Figure 

8.8, and Table 8.1). Simulated ship characteristics (i.e. triplet T) along with simulated speeds 

gave good performance. Model improvement lies in reducing the spatial error. Eliciting the 

sources of error is key to improving for the ship model. Consequently, the following 

discussion explores the sources of spatial discrepancy between the real and simulated 

trajectories. 
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The first source of spatial mismatch elicited is due to a weakness in the AIS_INNAV dataset 

which contains only 21% of tug trips (type H). Since this component represents up to 15% of 

ship trips in the area, the underrepresentation of some highly occurring sequences lead to 

biased real trajectories. Consequently, the real trajectories available should be weighted to 

represent the frequency of INNAV sequences in the AIS_INNAV dataset to adequately 

match the real observations. Whereas this source of error is the most important for H type 

ships, it is also true for other ship types which are not completely accounted for. 

 

Another source of spatial error inherent to the modelling approach is that the points in Swp_AIS 

(cf. Figure 8.4) are attributed independently for a given sequence Swp_PREVISION, whereas they 

are spatially correlated in reality. In the real system, ships that pass north of a given 

wpPREVISION_i will tend to pass north of the next INNAV waypoint wpPREVISION_i+1. Since this 

spatial correlation is not accounted for in the model (each point is drawn independently with 

a probability determined by overall spatial variation around the INNAV waypoint), the 

resulting simulated trajectories will tend deviate from real ones. 

 

Finally, spatial errors due to ships sailing too close from the shore have been noticed at 

several locations over the model area. No criterion has been set in the RayBaPP algorithm to 

keep the ship at a minimal distance from obstacles when computing intermediary points in 

Traj. Since the minimal distance from the coast is location-dependant, a solution to solve this 

problem is to add waypoints (in addition to INNAV wpPREVISION) in the regions where the 

spatial error is affected by this phenomenon. 

 

Reducing the spatial discrepancy by above-mentioned adjustments will also have an impact 

on speed results (spatially). Although this impact is expected to be minor, this will need to be 

verified following the same procedure as presented. In its present form, simulated ship 

speeds tend to slightly underestimate real ship speeds. Therefore, the duration of ship 

residency in the area is slightly overestimated and the risk of lethal collision with whales, 

which depends on ship speed (Vanderlaan and Taggart, 2007), is underestimated; these 

considerations should be accounted for when using the model for management purposes.



 

CONCLUSION 

The building process of the 3MTSim’s boat agent-based model (ABM) involved several data 

campaigns (cf. section 1.2.2.5 and APPENDIX II) and analyses (e.g. APPENDIX I, 

APPENDIX III, APPENDIX IV) that provided new knowledge about the 3MT-SES. In some 

way, this building process can be considered to be at least as important as the model itself, 

having fostered the investigation of some important aspects of the real system left aside so 

far. To conclude the work presented in this dissertation, a summary of the contributions and 

how they link to the problematic enunciated in section 1.3 is proposed. 

 

Summary of the contributions 

• Development of a novel ABM dedicated to natural resource management involving 

agents moving in a spatially explicit environment along relatively unconstrained paths. 

This is one of the first ABM of boats, and among the most detailed and well validated 

models dedicated to decision-support in marine protected areas. 

• Portrait (quantitative, spatial, and temporal) of the maritime traffic in the SSLMP where 

whales mostly congregate (APPENDIX I). This first exhaustive study of navigation 

activities in the region is of particular interest for local scientists and for model 

parameterization. The study report (Chion et al., 2009) served as a reference in the 

building process of the new SSLMP 2010-2017 management plan (Foisy, Désaulniers 

and Balej, 2010). 

• Introduction of an original investigation framework to study the dynamics of social-

ecological systems (CHAPTER 3). This framework fosters the unification of both natural 

and social sciences to investigate SESs’ sustainability. Whereas this contribution is 

relevant for researchers working on SESs, the results of its application on to the 3MT-

SES are insightful for local MPA managers. 

• Elicitation of whale-watching captains’ main strategies (individual and collective) used to 

locate and observe whales (CHAPTER 4). This investigation proved informative for local 

managers, while representing an original application for researchers on naturalistic 

decision making (Klein, 2008). 
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• Development of an original path-planning algorithm RayBaPP, functional for 3MTSim 

simulator’s requirements, and significantly faster than classical algorithms on large 

environments. RayBaPP proved to produce realistic boat trajectories, and allows a real-

time visualization of simulations with rare slow-downs (CHAPTER 5). This contribution 

is particularly interesting for the growing number of agent-based modellers dealing with 

mobile agents moving along unconstraint paths across large environments. 

• Application of the pattern-oriented modelling framework to elicit the nature of whale-

watching captains’ dominant decision making process (CHAPTER 6). POM allowed to 

select a valid model of captains’ decision-making, thus confirming the non-compensatory 

nature the whale location/observation problem, and to validate the assumption that 

cooperation and communication were major drivers of the dynamics of whale-watching 

excursions. This contribution is of interest for the community of SES modellers, 

concerned with both challenges of representing human decision making in ABMs and by 

the model selection/validation issue. 

• Application of the whale-watching submodel presented in CHAPTER 7 to explore 

impacts of captains’ decisions. This is a relevant contribution for the whale-watching 

community, including researchers, managers, and policy-makers. It shows some expected 

consequences (regarding both whale conservation and excursions’ content) of alternative 

whale-watching captains behaviours. Results could be useful to advise captains during 

their regular training sessions in order to reduce the intensity of whale exposure to boats. 

 

Link between the problematic and the results 

The problematic of this project was to move from a proof of concept (Anwar et al., 2007) to 

an ABM that could be informative to address the management issues expressed by SSLMP 

and SLEMPA managers (cf. section 0.1.3.4). In summary, the road toward this goal has been 

mostly covered and the convincing performance of the 3MTSim ensures its safe use as a 

management tool insofar as model limitations are understood and accounted for in the 

interpretation of results. A collaborative work with MPA managers and other stakeholders is 

in progress to complete the final steps by the end of 2011. The involvement of stakeholders 

during the whole building process of 3MTSim with frequent consultations and transparency 
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about important modelling choices certainly contributed to the interest and trust expressed by 

MPA managers regarding the simulator. 

 

The challenge of building a suitable validation framework for 3MTSim has been met (cf. 

CHAPTER 6). The challenge of understanding and representing captains’ complex decision 

making processes and outcomes has been cleared (cf. CHAPTER 3 and CHAPTER 4) even if 

it could still be improved via additional investigations, as discussed in the next chapter. 

Describing and modelling human behaviour is one of the daunting tasks that a modeller must 

tackle when dealing with ABM and SESs (Janssen and Ostrom, 2006a; 2006b). The choice to 

ground the investigation and modelling of captains’ decision making on recently emerged 

cognitive science theories was ambitious and necessitated a large amount of work upstream. 

Despite the demanding nature of this approach and the shortcomings of the bounded 

rationality theory compared to well-established decision theories (i.e. expected utility 

theory), the direction of this research is believed to be a promising one and the contribution 

presented in this dissertation will contribute to the dissemination of the bounded rationality 

paradigm in ABM. 

 
 

 





 

FUTURE WORK 

A lot of work has been done to build 3MTSim from scratch en route toward a decision 

support tool devoted to the management of navigation activities in the study area (Figure 

0.1). In order to refine the 3MTSim simulator for management purposes, both the whale and 

boat submodels (cf. Figure 1.1) can be enhanced. The discussion below identifies areas for 

improvement regarding the 3MTSim’s boat ABM only. 

 

Whale-watching excursions model 

Whale-watching captains face several decision problems during their excursion, two of 

which are recurrent and determinant in the study of whale-watching dynamics, namely the 

“locate-and-observe-whale” and the “stop-an-observation” problems. The first one has been 

investigated in the field and knowledge has been elicited through data analyses (cf. 

CHAPTER 3, CHAPTER 4, and CHAPTER 6) but the later has only been touched upon.  

• The “locate and observe whale” problem: Our understanding of contextual circumstances 

favouring the use of identified strategies by whale-watching captains, along with the 

individual variability among captains could be deepened. Habituation, bandwagon effect, 

use of individual heuristics or collective strategies, along with captains’ preferences, 

experience, knowledge, and values are known to influence the choice of a given course of 

action: A complete portrait could be drawn. 

• The “stop-an-observation” problem: No investigation has been made on this decision 

problem which is determinant regarding excursions dynamics. Data analyses showed that 

the minimum duration of a given observation by an excursion boat (i.e. time spent 

observing the same pod of whales) is two surfacing sequences from the focal animal. The 

maximum duration of a given observation has been considered to be the maximum 

permitted in the Regulations (Parks Canada, 2002), which is 60 minutes. However, the 

variability of the observation duration should be understood by studying this specific 

decision problem in order to improve the whale-watching model. 
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Whatever the decision problem, the duration of an observation is expected to depend on 

several contextual factors such as: 

• Whale context factors: the availability of other whales in the vicinity, abundance and 

distribution of species.  

• Excursion factors: the remaining time in the excursion, species and size of the pods 

observed so far in the excursion, products (additional activities such as coastal tours) sold 

to onboard tourists. 

• Observation site factors: the number of boats observing the same pod, the attractiveness 

of the targeted pod. 

• Captain related factors: experience, preferences, knowledge and beliefs, information 

available to the captain at the time of the decision. 

• Weather factors: visibility, sea state. 

 

Finally, a role-playing game (Barreteau, Bousquet and Attonaty, 2001) could be built to 

complete the data-driven validation made with POM (cf. CHAPTER 6) and the validation of 

captains’ decision strategies carried out with the park warden (cf. CHAPTER 4). 

 

Shipping model 

For the shipping model, areas for improvement have been proposed in section 8.5. 

 

Other components of the 3MTSim’s boat ABM 

Two components are planned to be integrated to the 3MTSim simulator to account for the 

great majority of motorized maritime traffic in the study area. These components are the 

ferry and the pleasure craft activities. Although they are not necessary to address the current 

management needs (cf. section 0.1.3.4), they could prove useful for future uses of the model 

(e.g. assessment of the underwater boat noise).  

 

1) Ferry model: Several ferry lines are in operation throughout the study area. All the lines 

operate according to a preset schedule available online. The routes followed by each ferry 

line display very low variability (cf. APPENDIX I) and ferries tend to be given the 
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priority by other boats, except with cargo ships. Consequently, the modelling of ferry 

movements does not present particular challenges. 

 

2) Pleasure craft model: Few spatiotemporal trajectories (26) of pleasure crafts are available 

in the SSLMP but they appeared to represent fairly well the characteristics of pleasure 

trips revealed by 186 questionnaires filled out by boaters (cf. APPENDIX I). In the 

SSLMP, yachting activities are mainly concentrated within the Saguenay River (72% of 

the total time at sea), and in the Upper Estuary of the St. Lawrence (24% of time). 

Yachting activities appear to be marginal in the SLEMPA. Additional knowledge should 

be gained on boaters’ motivations and behaviours in order to build an accurate model of 

this component that could be useful for further possible management needs. 

 

Finally, the case of pilot boats (used to transport pilots between land and ships they are 

piloting) has been left aside in most modelling discussions. However, in the area offshore Les 

Escoumins, which is one of the busiest in terms of traffic density (cf. APPENDIX I), they 

account for a significant part of total movements. In this sensitive area where several whale 

species congregate (including the endangered blue whale), their contribution to overall 

disturbance and risk of collisions with whales should not be overlooked. 

 

 

 





 

APPENDIX I 
 
 

PORTRAIT DE LA NAVIGATION DANS LE PARC MARIN DU SAGUENAY–
SAINT-LAURENT––CARACTÉRISATION DES ACTIVITÉS SANS 

PRÉLÈVEMENT DE RESSOURCES ENTRE LE  
1ER MAI ET LE 31 OCTOBRE 2007 

An Acrobat PDF version of this report with all colour figures is available online via the 

following hyperlink (date of last access, February 20, 2011): 

http://www.geog.umontreal.ca/syscomplex/docs/Rapport%20sur%20le%20trafic%20maritim

e%20dans%20le%20PMSSL%20en%202007_Chion%20et%20al_version%20finale.pdf 
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APPENDIX II 
 
 

APPROVAL OF THE SURVEY CAMPAIGN BY ETHICS COMMITTEES 
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APPENDIX III 
 
 

WHALE-WATCHING EXCURSIONS’ DYNAMICS 

1 Whale-watching companies’ potential activities 

As illustrated by Figure III.1, the maximum potential of activity can bring more than 40 

whale-watching boats at sea simultaneously, mostly small zodiac-type boats. Another 

important thing to be noticed is the potential uninterrupted daily presence of active whale-

watching boats, from 6:00AM to 8:00PM. 

 

 

 
Figure III.1  Maximum number of whale-watching boats potentially active in the SSLMP 

during the peak of the touristic season, based on operators’ schedules (2007)  
and size of authorized fleet. 

 

2 Success in observing whales 

High success rate: 98.89% of the sampled whale-watching excursions have observed marine 

mammals, regardless of visibility conditions. What partly explains this high success rate is 
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the fact that fin and minke whales are reliable visitors in the region, and that their location is 

often predictable from past days’ observations (Table IV.1, Figure IV.3, and Figure IV.4 in 

APPENDIX IV).  

 

3 Species relative attractiveness for observation  

Five whale species have been accounting for more than 98% of animals targeted for 

observation (in time) onboard excursions for more than 16 years, with great inter-annual 

variability. Figure III.2 represents the contribution of each species to total observations. They 

are an average of over 16 years of sampling (1994-2009), weighted according to excursions 

by port in 2007 to reduce the bias relative to the unbalanced port-wise sampling effort. 

 

 

Figure III.2  Species’ contribution to observations made by whale-watching excursions for 

the [1994-2009] period. 

 

 



313 

 

Figure III.3  Discrepancy between (a) rorqual species relative abundance (unpublished results 
from transect data analyses, GREMM and Cristiane Albuquerque Martins) and (b) their 

relative contribution in boat-based observations (AOM data), highlighting  
whale-watching captains’ preferences. 

 

The 2005-2009 period is characterized by a regular presence of humpback whales in the area. 

A species’ relative contribution to total observations cannot be inferred from its relative 

abundance, as shown in Figure III.3. This mainly reflects captain’s preferences. 

 

This preference ranking is driven by a combination of interleaved phenomena including 

species attractiveness (potential spectacular displays), ease of observation (e.g. accessibility, 

fleeing behaviour at the approach of boats, respiratory/diving patterns, distance of 

localization), and species-specific regulatory rules (Parks Canada, 2002) such as a 400-

meters minimum approach distance from blue and beluga whales compared to 100 m from 

other species (200 m if more than 4 boats in observation). 

 

4 Spatial patterns of activity relative to homeport 

Table III.1 shows that the overlap between the core areas of activity for excursions departing 

from different homeports is very low. A spatialized form of the Jaccard similarity index 

(pairwise ratio of the union area divided by the intersection area) was calculated to highlight 

the relative separateness of core areas of activities for excursions departing from adjacent 
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homeports. This index is the highest for Bergeronnes and Tadoussac but remains relatively 

low (approximately 15%). This highlights the captains’ inclination to operate their excursions 

close to their homeport. 

 

Table III.1 Jaccard index between core areas (50% of the densest areas of activity) of 
excursions operating from Tadoussac, Bergeronnes, Les Escoumins, and Saint-Siméon. 

Based on BOI extracted from AOM data, 1994-2008 
 

 Tadoussac Bergeronnes Escoumins Saint-Siméon 

Tadoussac 1 0.10 0 0.01 

Bergeronnes 0.10 1 0.16 0.007 

Escoumins 0 0.16 1 0 

Saint-Siméon 0.01 0.007 0 1 

 

 

5 Boat aggregation in the vicinity of whales by species 

The average number of boats within 2 km around an observed whale is 6.34 boats. Only for 

14.5% of the total observation time, the observing vessel is alone with the pod. 21.9% of the 

time, there are at least 10 boats surrounding the targeted whale within 2 km (55% of which 

lie within a distance of 400 m). 

 

Figure III.4 illustrates clearly the ranking in whale attractiveness when present in the area. 

All distributions are significantly different from each other, with the lowest pairwise p-value 

being p=0.012 between minke and blue whales. Humpback whales are the most popular, 

followed closely by fin, blue, minke, belugas and other species. However, blue whales tend 

to congregate downstream, far from busy ports, biasing the distribution of Figure III.4 toward 

low values compared to fin or humpback whales. Further investigations are in progress to 

disentangle all mixed factors influencing boat aggregations (Michaud et al., (in prep.))  
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Figure III.4  Distribution of the number of boats within a 2000 meter vicinity of targeted 
species. The distributions are extracted for observations in the SSLMP, from 1994 to 2009. 

 

 

6 Other activities 

Other discovering activities (e.g. lighthouse, landscape viewing) have been highly 

encouraged in the past, in order to highlight the unique beauty of the region while decreasing 

the pressure exerted on whales. Despite improvements in this area for large whale-watching 

boats (11.5% of excursion time, mainly in the Saguenay), except for companies totally 

dedicated to landscape viewing, the percentage of these activities remains very low (5.3% of 

total excursion time), especially for excursions made onboard small vessels (3.3% of 

excursion time). 

 

 

 



 

APPENDIX IV 
 
 

SPATIOTEMPORAL PATTERNS OF WHALE SPECIES’ DYNAMICS 

Here we give some descriptive elements of whale species’ spatiotemporal dynamics. 

Eliciting the factors influencing this dynamics is beyond the scope of this article and is 

currently under investigation by several researchers in marine mammal ecology.  

 

1 Temporal presence of whale species in the SSLMP region 

As illustrated by Table IV.1, minke and fin whales can be considered as safe bets for the 

whale-watching industry since their presence in the area is highly reliable. On the contrary, 

the presence of blue whales and humpback whales in the area is more variable. The scarcity 

of these two species, combined with some dramatic attributes (e.g., the blue whale is the 

biggest animal having ever lived on Earth and humpback whales occasionally display 

spectacular behaviours such as fluke-up dives, tail-slapping or breaches) can make them 

attractive for whale-watching in certain contexts. 

 

Table IV.1 Presence rate of the main whale species in the area of the SSLMP (mid-June to 
the end of September). Average on ~2100 excursions sampled from 1994 to 2009  

(AOM database) 
 

Species Presence 

Minke whale 

Fin whale 

Beluga whale 

Humpback whale

Blue whale 

~100% 

~100% 

~100% 

63.9% 

55.4% 
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2 Inter- and intra-annual variability of species’ abundance 

Species’ abundance is variable on different time scales, mainly in response to their prey 

distribution locally and downstream in the Gulf (Coakes et al., 2005). Figure IV.1 illustrates 

the inter-annual variability of abundance for the three largest whale species from 2005 to 

2009. Abundance partly determines the accessibility of a species for observation (along with 

spatial distribution). 

 

 

Figure IV.1  Species’ inter-annual variability in abundance (attractive species only). The 
abundance index is a relative measure of rorqual abundance, extracted from the AOM 

database. 
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Figure IV.2  Fluctuations of fin whale’s abundance in 2009 in the SSLMP region. 
 

Figure IV.2 illustrates the intra-annual variability in species abundance. This example 

displays a sudden drop in fin whales abundance at the end of July 2009. This kind of event is 

frequent in the region where whales’ presence is largely driven by preys’ availability such as 

krill, plankton, and capelin, themselves highly dependent on oceanographic phenomena (e.g. 

tidal currents, wind, and primary productivity). 

 

3 Short-term spatiotemporal stability of species in the region 

From day to day during the summer season, we observe that for fin, minke and humpback 

species, the minimum distance between sightings is significantly lower than for 2-day or 

greater lags; in combination with the low median distances from day to day (<1.5 km), these 

analyses highlight the relatively high foreseeable nature of each species' locations over time. 

This is not true for blue whales whose dynamics is more uncertain even over short periods of 

time. 

 



319 

 

Figure IV.3  Distribution of distances between two observations of fin whales,  
for 1- to 7-day lags. 

 

 

Figure IV.4  Distribution of distances between two observations of minke whales,  
for 1- to 7-day lags. 

 

 

Figure IV.5  Distribution of distances between two observations of humpback whales,  
for 1- to 7-day lags. 
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Figure IV.6  Distribution of distances between two observations of blue whales,  
for 1- to 7-day lags. 

 

We can observe in Figure IV.3 and Figure IV.4 that the uncertainty about the spatial 

locations of fin and minke whales increases with time lag, along with the median distance. 

For these species, the closest distance between two observations is significantly lower from 

day to day than with a 2-day lag (p-value<0.01). This trend is less clear for humpback whales 

and totally absent for blue whales. However, for humpback whales, the distances remain at a 

low level (75% of the distances < 4000m) whereas values are significantly higher for blue 

whales (75% of the distances < 12000m). 

 

This with their relatively high abundance partly explains why the whale-watching industry 

relies heavily on these two species. Whale-watching activities developed in the early 90’s 

based on fin whales and attractive whales such as blue whales. However, during lean periods 

when star species are absent, activities can be based almost exclusively on the reliable minke 

whales. 

 

Conversely, Figure IV.6 and Table IV.1 illustrate the reasons why the blue whale cannot be a 

reliable resource single-handedly for whale-watching activities, even for companies 

operating from ports located close to their observed distribution. 

 



 

APPENDIX V 
 
 

PSEUDO-CODE OF THE RAYBAPP ALGORITHM 

 

 

 

 

Initialization 
Add Origin point and the Destination point in a list of points  PATH  
Create a list of paths LIST_OF_CONCURRENT_PATHS 
Add PATH in LIST_OF_CONCURRENT_PATHS 
Take the first path in LIST_OF_CONCURRENT_PATHS  PATH 

End Initialization 
 
While PATH is not navigable 

Do 
Find the list of points corresponding to the first non-navigable segment in PATH  [A, B] 
Take the last navigable point before A in PATH  L 
Take the next navigable point after B in PATH  N 
Take the first navigable point (if exists) to the right at 90° of [A, B] midpointP1 
Insert p1 in a copy of PATH between N and L  NEWPATH1 
 
If NEWPATH1 is navigable 

Return NEWPATH1 
End if 
 
Else 

Add NEWPATH1in LIST_OF_CONCURRENT_PATHS 
Sort LIST_OF_CONCURRENT_PATHS with shortest paths first 

End Else 
 
Take the first navigable point (if exists) to the left at 90° of [A, B] midpoint P2 
Insert p2 in a copy of PATH between N and L  NEWPATH2 
 
If NEWPATH2 is navigable 

Return NEWPATH2 
End If 
 
Else 

Add NEWPATH2 in LIST_OF_CONCURRENT_PATHS 
Sort LIST_OF_CONCURRENT_PATHS with shortest paths first 

End Else 
 
Delete PATH from LIST_OF_CONCURRENT_PATHS 
Take the first path in LIST_OF_CONCURRENT_PATHS  PATH 

End Do 
End While 
 
Return PATH 





 

APPENDIX VI 
 
 

PSEUDO-CODE OF THE SMOOTHING FUNCTION 

 

 

 

Initialization  
Take the list of points to be smoothed  PATH 
Initialize a boolean to true  IS_POINT_REMOVED 

End Initialization 
While IS_POINT_REMOVED is true 

Do 
Set IS_POINT_REMOVED to false 
For (int i=1; i+1< size of PATH; i++) 

Take the ith point in PATH  X 
For (int k = i+2; k<size of PATH; k++) 

Take the kth point in PATH  Y 
If segment [X, Y] is navigable 

Remove i+1th point in PATH 
Set IS_POINT_REMOVED to true 

End If 
End For 

End For 
End Do 

End While 
Return PATH 



 

APPENDIX VII 
 
 

BOUNDED RATIONALITY AND COGNITIVE HEURISTICS 

We describe some key concepts from cognitive psychology that were used both for the 

investigation and the description phase of whale-watching captains in the whale-watching 

ABM. 

 

1 Principle 

Understanding human decision making is a challenging task (Janssen and Ostrom, 2006a). 

For several decades, cognitive scientists have been developing theories and models to 

describe underlying processes producing outcomes of humans facing decision problems. 

Recently, the bounded rationality theory has started to compete with the classical homo 

economicus view as the mainstream view of rationality (Chase et al., 1998). Classical 

theories used to consider humans as perfect problem solvers, conveniently allowing the use 

of well-established logical and statistical theories to explain human decisions (e.g. 

maximization of expected utility). However, facing an accumulation of evidence that humans 

regularly derive from models prescribed by classical theories (Kahneman et al., 1982), 

cognitive scientists turned towards alternative theories. Drawing on Simon’s pioneering work 

(Simon, 1955; Simon, 1982), the bounded rationality paradigm is establishing itself as a 

major conceptual framework for the descriptive study of human decision making (Chase et 

al., 1998). 

 

Describing bounded rationality, Simon compares human rationality to a pair of scissors 

whose two blades are the structure of the decision task and the computational capabilities of 

the decision maker (Simon, 1990). Accordingly, humans dealing with complex decision 

problems where an optimal solution (assuming one exists) is unreachable use shortcuts and 

exploit decision environment patterns to reach a satisficing solution (Simon, 1957). In that 

sense, human rationality is described as bounded. 
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2 Cognitive heuristics for decision making 

When facing multi-alternative/multi-attribute decision problems, bounded rationality (Simon, 

1957) provides descriptive approaches to decision making in lieu of the classical view of the 

fully rational man whose decisions are driven by the normative laws of logic and probability, 

by the axioms of expected utility, and by Bayesian statistics (Gigerenzer and Selten, 2001). 

Following the idea of its founding father Herbert Alexander Simon, Gigerenzer and 

colleagues have been working to discover models of heuristics of decision making while 

coping with incomplete information and limited computational capabilities (Gigerenzer and 

Goldstein, 1996; Gigerenzer and Todd, 1999; Gigerenzer and Selten, 2001). These simple 

models of humans’ decision making processes are named fast and frugal heuristics 

(Gigerenzer and Todd, 1999; Gigerenzer, 2004). Despite their simplicity, these cognitive 

heuristics tend to perform as well as more complex models in representing human decision 

making in certain circumstances of multi-alternative/multi-attribute problems (Brighton, 

2006). Among these heuristics, the most popular are satisficing (Simon, 1955); tallying 

(Dawes, 1979); the recognition heuristic (Goldstein and Gigerenzer, 1999; Goldstein and 

Gigerenzer, 2002); and Take The Best (Gigerenzer and Goldstein, 1996). Heuristics tested in 

this study are described below. 

 

2.1 Formalism 

Let us define a multi-alternative/multi-attribute decision problem P that a decision maker 

must solve. The set of candidate alternatives Ai potentially solving P is defined as Sp={A1, 

A2,…}. Each candidate alternative Ai is defined by a set of attributes Ai={ai
1, ai

2,…}. 

According to Gigerenzer, a model of cognitive heuristic H can be defined as “a rule whose 

purpose is to describe the actual process – not merely the outcome – of problem solving” 

(Gigerenzer, 2004). Here, we describe the three cognitive heuristics (drawn from the 

literature on bounded rationality) tested to model whale-watching captains’ decision making. 

The interested reader can find more about these heuristics in (Gigerenzer and Selten, 2001). 



326 

2.2 Satisficing 

The satisficing heuristic (Simon, 1955) supports the observation that when dealing with a 

complex, ill-defined problem, humans cannot find optimal solutions. Particularly, when the 

information search is costly and decisions must be made in a timely fashion, the decision 

maker cannot spend time searching for all candidate alternatives. Accordingly, it suffices that 

a candidate alternative satisfies a predetermined level of requirement (regarding its attributes) 

for it to be selected. The satisficing heuristic’s flowchart is given in Figure VII.1. 

 

 

Figure VII.1  Flowchart of the satisficing heuristic. 
 

2.3 Tallying 

The tallying heuristic (Dawes, 1979) is a simple linear model related to important concepts in 

information theory (Gigerenzer and Goldstein, 1996; Martignon, 2001). In decision problems 

where information is abundant and where alternative attributes are compensatory (no 

attribute is necessarily more important than the others), simple models like the tallying 

heuristic can perform well. Each alternative attribute has a value of 1 if it favours the 

selection of an alternative and 0 otherwise. For each alternative, a score is computed which is 
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simply the sum of all attribute’s values. The alternative with the highest score is selected by 

the decision maker. The choice is made at random in case of a tie. The tallying heuristic’s 

flowchart is given in Figure VII.2. 

 

 

Figure VII.2  Flowchart of the tallying heuristic. 
 

2.4 Take The Best 

The Take The Best heuristic (Gigerenzer and Goldstein, 1996) allows the decision maker to 

exploit the non-compensatory nature of a given decision problem. Cues are ordered 

according to their ecological validity (Gigerenzer and Goldstein, 1996), that is in decreasing 

order of the frequency with which they correctly predict the decision. An adequate cue order 

results from the decision-maker’s learning process based on feedback from previous 

experiences in similar decision contexts (Dieckmann and Todd, 2004). Alternatives are then 
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compared with each other along ordered cues, keeping only the best ones at each step. The 

choice is made at random in case of a tie when no more attributes are known. This heuristic 

is frugal in that it can deliver a decision (choice) without going through all cues. The Take 

The Best heuristic’s flowchart is given in Figure VII.3. 

 

 

Figure VII.3  Flowchart of the Take The Best heuristic. 
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