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ÉTALONNAGE D’UN ROBOT SÉRIEL AVEC UN SYSTÈME DE LASER DE 
POURSUITE 

 
Albert NUBIOLA 

 
RÉSUMÉ 

 
La performance en positionnement d’un robot industriel ABB IRB 1600-6/1.45 a été étudiée 
avec un système de laser de poursuite (« laser tracker »). En faisant l’analyse axe par axe, on 
trouve que les axes 2, 3 et 6 ont un comportement non géométrique. Un modèle à 34 
paramètres d’erreur a été utilisé pour modéliser le robot réel. Ce modèle d’erreur tient en 
compte les défauts géométriques de fabrication ainsi que quatre paramètres d’erreur 
concernant la rigidité (provenant des axes 2 et 3) et quatre autres paramètres d’erreur pour 
modéliser le comportement non linéaire du sixième axe avec une série de Fourier de 
deuxième ordre. L’algorithme d’optimisation non linéaire Nelder-Mead a été utilisé pour 
trouver les paramètres d’erreur qui correspondent aux mesures prises du robot. 
 
Une fois les 34 paramètres identifiés, on ne peut pas appliquer une solution algébrique pour 
calculer la cinématique inverse du modèle à 34 paramètres d’erreur. On propose une solution 
numérique itérative à la cinématique inverse. Au maximum trois itérations sont nécessaires 
pour obtenir les angles des moteurs correspondants à une pose de l’outil. 
 
Pour comparer la précision entre le modèle nominal et le modèle corrigé (à 34 paramètres 
d’erreur) on a fait des tests similaires à ceux proposés dans la norme ISO 9283. La validation 
de l’amélioration de la précision absolue est faite avec de nombreuses mesures. Pour le 
modèle à 34 paramètres, l’erreur de position moyenne/maximale est réduite de 0.979 mm / 
2.326 mm à seulement 0.329 mm / 0.916 mm (vérification faite avec environ 1000 mesures 
arbitraires), avec une charge de l’outil de 6 kg (soit, le maximum), pour huit points sur l’outil 
et pour tout l’espace de travail du robot (ou presque, car il y avait quelques obstacles proches 
du robot à éviter). 
 
On a fait des analyses avec l’erreur attendue, qui permettent de « prévalider » les modèles 
sans devoir prendre plus de mesures. On trouve que cette « prévalidation » est proche à la 
validation réelle. 
 
 
Mots-clés : étalonnage robotique, laser tracker, erreur de position, erreur d’orientation, 
cinématique inverse, paramètres d’erreur, optimisation, IRB1600-6/1.45, ISO 9283. 
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 CALIBRATION OF A SERIAL ROBOT USING A LASER TRACKER 
 

Albert NUBIOLA 
 

ABSTRACT 

 
The positioning performance of an industrial robot ABB IRB 1600-6/1.45 has been studied 
with a laser tracker. Performing some axis-by-axis analyses, we found that axes 2, 3 and 6 
have a non-geometrical behavior. A 34-parameter model was used to represent the real robot. 
This error model takes into account the geometrical errors due to fabrication as well as four 
error parameters related to stiffness (in axes 2 and 3) and four other error parameters used to 
fit a second-order Fourier series to the non-linear behavior of axis 6. The Nelder-Mead non 
linear optimization technique was used to find the error parameters that best fit the measures 
acquired with the laser tracker. 
 
An algebraic solution for the inverse kinematics is not possible for the 34-parameter model. 
We therefore propose a numerical and iterative inverse algorithm to recalculate the robot 
targets into so-called fake targets. No more than three iterations are needed to accurately 
obtain the joint angles corresponding to a given pose of the end-effector. 
 
Similar tests to the ones proposed by the ISO 9283 norm are performed to compare the 
accuracy of the nominal and improved robot models. The validation of the accuracy is done 
with a large number of measures. For the 34-parameter model the mean / maximum position 
errors are reduced from 0.979 mm / 2.326 mm to 0.329 mm / 0.916 mm (verification 
performed with around 1000 measurements), at a 6 kg payload, for eight points on the end-
effector and for the complete robot workspace (or almost complete, since we had to avoid 
some obstacles). 
 
Analyses were performed with the expected errors. They allow to “pre-validate” the models 
without having to take extra measurements. It was found that this pre-validation is very close 
to the real validation. 
 
 
Keywords: robot calibration, laser tracker, position error, orientation error, inverse 
kinematics, error parameters, optimization, IRB1600-6/1.45, ISO 9283. 
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INTRODUCTION 

 

Nowadays, two measures are commonly used for describing the positioning performance of 

industrial robots: repeatability and accuracy. 

 

Loosely speaking, pose repeatability is the ability of a robot to repeatedly return to the same 

pose. In robotics, repeatability, as defined in ISO 9283 and used by all industrial robot 

manufacturers, actually refers to unidirectional repeatability only, i.e., the ability to return to 

the same pose from the same direction, thus minimizing the effect of backlash. 

Multidirectional repeatability can be twice the unidirectional repeatability or even worse. 

 

Repeatability can be improved by either using direct-drive motors (as in some SCARA 

robots), high-precision gear trains (as in most Staübli robots) or by placing high-resolution 

encoders at the output of the gear trains. All of these solutions, however, considerably raise 

the manufacturing cost of an industrial robot. 

 

Loosely speaking, volumetric (also called absolute) accuracy is the ability of the robot to 

attain a command pose with respect to a fixed reference frame. Since identifying such a 

reference frame is not always simple, accuracy is most typically tested in relative 

measurements, e.g., distance accuracy is the ability of the robot to displace its tool center 

point (TCP) a prescribed distance. 

 

Accuracy is obviously affected by the same factors as multidirectional repeatability; actually 

it is lower bounded by the multidirectional repeatability of the robot. Accuracy is influenced 

mostly by geometric inaccuracies and elasticity, present in both the links and the 

transmissions. Fortunately, these two types of errors can be modeled to some extent in a 

process known as robot calibration (Abderrahim et al., 2007). 

 

The demand for industrial robots having better repeatability and higher volumetric accuracy 

has been constantly growing in the past decade, especially in the aerospace sector (Summers, 
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2005). Today, most industrial robot manufacturers and a few service providers (such as 

Dynalog in the USA) offer robot calibration services. Furthermore, most industrial 

manufacturers now adopt the ISO 9283 norm, which was not the case a decade ago 

(Greenway, 2000; Schröer, 1999). Nevertheless, the only upfront information regarding the 

positioning performance of an industrial robot continues to be a single measure specified as 

“positioning performance according to ISO 9283”, which actually refers to the average 

unidirectional position repeatability and accuracy at five poses obtained from thirty cycles. A 

few additional performance measures might sometimes be obtained from the robot 

manufacturer (e.g., found in the product manual of the robot), such as linear path 

repeatability and linear path accuracy, but even this information is highly insufficient and 

impossible to use for comparison purposes. 

 

The absolute accuracy of a given robot is virtually never specified by its manufacturer. The 

accuracy of a robot is not important as long as poses of the robot end-effector are manually 

taught. In this case we only want the robot to be repeatable. However, in offline 

programming the accuracy becomes an important issue since positions are defined in a 

virtual space from an absolute or relative coordinate system. There are also some industrial 

applications where a robot is used as a measurement system; in this case, the accuracy of the 

robot is the accuracy of the measurement system. 

 

Improvement of the robot accuracy requires a study of the direct kinematic model. Using the 

nominal kinematic model of a robot and adding error parameters we can find a mathematical 

model that represents the robot better than the nominal kinematic model. This improved 

model must reduce position and orientation errors, i.e., improve the robot accuracy. 

 

In this thesis, we propose different mathematical models which take into account different 

combinations of error parameters to represent the positioning behavior of the robot. These 

calibration methods are applied and tested on an ABB IRB 1600-6/1.45 industrial robot using 

a Faro laser tracker. The main objective of this project is to improve the accuracy of our 

robot. 
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As summarized by (Andrew Liou et al., 1993; Karan and Vukobratovic, 1994) there are five 

factors that cause robot errors: environmental (such as temperature or the warm-up process), 

parametric (for example, kinematic parameter variation due to manufacturing and assembly 

errors, influence of dynamic parameters, friction and other nonlinearities, including 

hysteresis and backlash), measurement (resolution and discretisation of joint position 

sensors), computational (computer round-off and steady-state control errors) and application 

(such as installation errors). 

 

Although robot calibration has been studied for more than two decades, the theory remains 

quite the same as in the early 1980s (Barker, 1983). What is different nowadays is that robots 

are built better (i.e., their repeatability is greater) and the sources of errors (with respect to 

their nominal models) are somewhat different. Measurement equipment is also better, i.e., 

more accurate, though certainly not much more affordable. The mathematical models that 

used to work for robots a decade or two ago are no longer optimal for today’s robots. 

Furthermore, the accuracy required today in some potential robot applications is much higher 

than a decade ago.  

 

Robot calibration can be divided into several categories and subcategories: absolute and 

relative calibration, open-loop and closed loop calibration, with or without feedback, etc.  

1. Absolute vs. relative calibration 

An absolute calibration takes into account where the robot base is placed whereas a relative 

calibration disregards the actual location of the robot base. In other words, if we want more 

than one robot to share the same coordinate system they need to be “absolute” calibrated to 

agree with the same “absolute” reference frame (also called world frame). A relative 

calibration is of interest when we are positioning the robot relatively to a local frame (also 

called object or user frame), so we need a tool, such as a touch probe, which allows us to 

locate objects in the robot working space. An absolute calibration needs six more parameters 

than a relative calibration because we need to represent the relative frame with respect to an 

absolute frame. 
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2. Open-loop vs. closed-loop calibration 

Whenever we use a measurement system to directly measure the pose of the robot tool, such 

as a laser tracker, we apply an open-loop calibration. We can find several methods used for 

measuring robot position as the measuring technology has improved a lot in the past two 

decades. 

 

Some examples of open-loop methods are acoustic sensors (Stone and Sanderson, 1987), 

visual systems such as cameras (Meng and Zhuang, 2001; Puskorius and Feldkamp, 1987), 

coordinate measuring machines (CMM) (Driels et al., 1993; Lightcap et al., 2008; Mooring 

and Padavala, 1989) and, of course, laser tracking systems (Shirinzadeh, 1998). There has 

also been some research work that allows a laser tracking system to identify the 6 parameters 

of the tool pose (Vincze et al., 1994). 

 

On the other hand, a closed-loop method is used if the robot tool is constrained to lie on a 

reference object of precisely known geometry. This method only needs a switch such as a 

touch probe to detect the contact with an obstacle. When the robot is placed at the contact 

position the joint values given by the encoders are registered. 

 

One example of closed-loop calibration is the MasterCal commercial product from American 

Robot, where the constraints are the diameter of two spheres and the distance between their 

centers. Other examples are the use of planar constraints (Ikits and Hollerbach, 1997), or 

point constraints (Meggiolaro et al., 2000) or (Houde, 2006). 

3. Thesis organisation 

This project is organized into seven chapters. Chapter 1 presents a literature review on robot 

calibration. Chapter 2 defines the project objectives and methodology. Chapter 3 describes a 

preliminary kinematic robot calibration performed by moving each axis individually. It also 

presents the theory of the full kinematic calibration making reference to the work done before 

using Sklar’s method (Mooring et al, 1991, p. 177). Once the robot is calibrated, we need to 



5 

set the base frame and the tool frame to establish a relationship with the external world. 

Chapter 3 also specifies how to establish an arbitrary and/or absolute base and proposes two 

tool calibrations: one in case we do not know the end-effector’s geometry and another in case 

we perfectly know this geometry (e.g., by measuring the end-effector on a CMM). 

 

Chapter 4 discusses the axis-by-axis tests performed to the robot. These tests are based on 

axis identification and angle offset analysis for each joint of the robot, i.e., level 2 calibration. 

In this chapter, we find that the 6th axis has a peculiar non-linear behavior and that the robot 

arm weight is high enough to affect the linearity of axes 2 and 3. 

 

Chapter 5 describes the kinematic and non-kinematic error models proposed in this thesis. 

We show how the compliances of axes 2 and 3 are modeled and how the motion pattern of 

axis 6 is fitted to a second order Fourier function. 

 

Chapter 6 shows the nominal inverse kinematics and a slightly novel method to iteratively 

find the inverse kinematic solution of a fully calibrated and generic 6-revolute-axes serial 

robot. 

 

In Chapter 7 we show all tests we performed to reach satisfactory calibration results. We 

describe a generic calibration procedure which corresponds to 120 measurements detailing 

the measurement acquisition, calibration method and verification tests. 

 





 

CHAPTER 1  
 

LITERATURE REVIEW 

In this chapter we describe the generic calibration methods established in the literature, more 

precisely the robot calibration process, the three levels of robot calibration, the kinematic 

representation used for calibrated robots and the optimization methods used for parameter 

identification. We also mention the most relevant commercial solutions for robot calibration 

and some recent robot calibration results reported in literature. 

 

The kinematic representation allows modeling the robot with parameters that define the 

geometry of the robot. Once we obtain a model to represent the behavior of the robot it is 

necessary to find a way to calculate the inverse kinematics for a given pose. 

1.1 Robot calibration process 

A typical robot calibration process consists of four sequential steps (Roth et al, 1987): 

modeling, measurement, identification and correction. The modeling step consists of 

representing the real robot through its direct kinematics equations. It is the mathematical 

model that takes into account the various error parameters. Data from the real robot allows 

generating the equations that the identification algorithm will use to find an improved robot 

model, better than the nominal kinematic model. 

 

We could divide a full and complete robot calibration solution in three main steps: tool 

calibration, robot calibration and inverse kinematics computation. 

1.2 Tool calibration 

We may usually calibrate the tool at the same time as the robot is being calibrated. However, 

a separate tool calibration must be taken into account when the tool which we want to be 

precisely positioned is not the one that we use during calibration. 
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1.3 Robot calibration 

By robot calibration researchers usually mean finding a new direct kinematics model that can 

represent the real robot better than the nominal model. The nominal model is the one used in 

the robot controller, and for robots with so-called inline wrists (the axes 4, 5 and 6 intersect 

at one point), the inverse kinematics of the nominal model are relatively simple and can be 

solved analytically. A robot calibration implies error parameters inserted to design 

parameters (nominal model) that represent the real source of errors. These parameters are 

called error parameters which must be found by the calibration method. 

 

Although optimization algorithms are not primordial when calibrating a robot they can be 

very helpful improving precision if they are used appropriately. Some optimization 

algorithms are described in Section 1.6. 

 

A robot calibration can be divided into three levels. The calibration method will be defined 

depending on which real error factor it represents and how many error parameters it uses. As 

explained in (Mooring et al., 1991), there are three levels of robot calibration. 

1.3.1 Level-1 models 

A level-1 calibration is also known as a “joint level” calibration. The purpose is to correctly 

define the relationship between the desired joint position (θd) and the real joint position (θr). 

In a nominal model we consider θr=θd, but in real life we have a complex relationship

f ( )r dθ θ= . This relationship may be difficult to find but we can reach good approximations 

with linear functions. The most basic one would be:  1 0r dk kθ θ= +  (1.1) 
where ݇଴ is the offset constant and is close to zero whereas ݇ଵ is the proportionality constant. 
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1.3.2 Level-2 models 

A level-2 calibration is defined as the entire robot kinematic calibration. That means that 

some (or all) of the geometric design parameters are changed. Distance and angle offsets are 

added as error parameters to the robot’s nominal design. At the same time, a level-2 model 

can include a level-1 model to calibrate the joints. 

 

When an entire kinematic calibration is needed we can identify the robot’s joint axes and 

extract the kinematic parameters placing frames that relate each joint axis with the next one. 

The calibration needs the “virtual” joint axes all in the same absolute reference frame and the 

geometry of the tool (end-effector) referred to the robot’s tool frame. To extract the virtual 

axes we must set all robot joints at 0º, and each joint has to be moved one by one taking 

measures by intervals (Mooring et al, 1991, p. 177). A circle that minimizes the sum of error 

squares can fit these points. From this circle we can extract the axis. 

 

This idea was developed independently by several researchers. Once we have the virtual 

robot axes there are two basic methods to extract the kinematic parameters: Stone’s method 

and Sklar’s method (Mooring et al, 1991, p. 177). Stone’s method (Stone., 1986) finds the 

kinematic model known as “S-model” (6 parameters per joint) and Sklar’s method finds the 

DH representation of the robot placing the frames at the appropriate place. Both methods are 

explained and compared in (Mooring et al., 1991). 

1.3.3 Level-3 models 

The level-3 calibration takes into account the non-geometrical error sources. Non-

geometrical sources of errors can be stiffness, friction, backlash, dynamical parameters, etc. 

Level-3 calibration is usually combined with a level-2 and level-1 calibration. Most common 

robot calibrations include a full kinematic calibration (level-2) and sometimes a few 

parameters describing the stiffness of the robot’s arm (level-3). 
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1.4 Kinematic modeling 

For a nominal kinematic modeling, the best-known four-parameter representation is the one 

given by Denavit-Hartenberg (Denavit and Hartenberg, 1955). This so-called DH notation is 

widely used in robotics. 

 

There is also a very similar and well-known representation commonly referred to as Denavit-

Hartenberg Modified (DHM) notation which is the notation defined by Craig (1986). The 

main difference between the last two representation methods remains on the order of the 

geometrical transformations. Both make a translation and rotation over the X and Z axis (one 

translation and one rotation each). The DH notation starts with the X axis while the DHM 

notation starts with the Z axis (translation and rotation around the same axis can be alternated 

with no final effect). For a detailed review of the direct kinematic modeling, see (Craig, 

1986; Paul, 1981; Slotine and Asada, 1992). 

 

The DH notation has been used by several researchers for robot calibration, such as Wu 

(1984) or Ma et al. (1994). However, this representation introduces singularity problems 

when two consecutive axes are parallel or almost parallel (Hayati, 1983). The CPC model 

eliminates this problem (Zhuang and Roth, 1992) by representing the relationship between 

each link with three translations and one rotation instead of two translations and two 

rotations. 

 

Other types of representations have also been used. There is five-parameter representation for 

prismatic joints (Hayati and Mirmirani, 1985) or even six parameter representation (Stone., 

1986), but if we insert more than four parameters the calibration problem becomes 

redundant. 

1.5 Inverse kinematics computation 

We should normally describe how we are going to solve the inverse kinematics of the 

calibrated robot. There are many inverse kinematics solutions but not all of them are suitable 
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to all robot calibration methods. Depending on which type of calibration we use we will need 

one or another inverse kinematics solution. Inverse kinematics calculation can be divided in 

two main types: algebraic and iterative. 

1.5.1 Algebraic 

We should usually try to find an algebraic solution from our direct kinematics model. 

However, as we add error parameters to our basic kinematic model, the simplifications that 

we can usually do on a nominal model can no longer be done. 

1.5.2 Iterative 

When an algebraic solution cannot be found, an iterative method must be applied. This 

numerical method approaches to the solution at each iteration. Industrial robots often have 

path motion planners that divide a trajectory into a large quantity of points, and inverse 

kinematics must be applied to each point of the path. 

 

Any of the optimization methods previously described for robot calibration could be used, 

however, better optimization methods exist as the problem is more specific. In the worst case 

we have to find as many parameters as the number of joints that the robot has. 

 

The iterative (or numerical) methods can be divided into two types (Chen and Parker, 1994; 

Wang and Chen, 1991): (1) Newton-Raphson and predictor-corrector-type algorithms, and 

(2) optimization techniques by formulating a scalar cost function. 

 

Examples of the first type can be found in (Angeles, 1985) who uses Newton-Raphson 

method and in (Goldenberg et al., 1987) or (Tsai and Orin, 1987) who use a predictor-

corrector-type algorithm. The problems of these methods appear when the Jacobian matrix is 

singular. 



12 

Examples of the second type can be found in (Chen and Parker, 1994; Goldenberg et al., 

1987; Goldenberg and Lawrence, 1985; Wang and Chen, 1991). These predictor-corrector-

type algorithms are numerically more stable since the Jacobian matrix is not used. 

1.6 Optimization algorithms 

Once we have defined a model (kinematic or non-kinematic) we must find the error 

parameters by measures taken from the real robot. The optimization algorithm which is 

suitable for most types of robot calibration is nonlinear and unconstrained. Different methods 

and algorithms have been developed, such as the CPC error model (Complete and 

Parametrically Continuous). It establishes an error model with a minimum number of 

parameters (Motta and McMaster, 1999; Zhuang and Roth, 1992). 

 

Plenty of algorithms, more precisely the genetic algorithm (Wang, 2009), represent small 

variations of direct kinematic parameters and the end-effector error is represented by a fitness 

function. At every generation, a population of parameters is created and brings a better 

solution to replace the existing solution. This technique does not need complex calculations 

like the inverse of the Jacobian matrix. 

 

Other alternatives for robot calibration have been tested, like Taguchi method (Karan and 

Vukobratovic, 1994) or (Judd and Knasinski, 2002). The work (Zhuang and Roth, 2002), for 

example, uses different methods (similar to the CPC model) to identify the unknown 

parameters. 

 

All optimization methods can be mainly classified into two types: line-search methods and 

trust-region methods. We can also mention an optimization method that differs from the first 

two types: the Nelder-Mead method.  
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1.6.1 Line-search methods 

There are various line-search methods. They differ by the way they compute the line search 

direction. We can find the following line-search methods: Newton’s method, gradient 

descent method and Quasi-Newton method (Bonnans and Lemaréchal, 2006). 

 

Newton’s method is also known as Newton-Raphson method. Newton algorithms are 

implemented in Matlab’s optimization toolbox in the functions fsolve, fminunc and 

lsqcurvefit. 

1.6.2 Trust-region method 

The trust-region method is also known as restricted step method. It handles the case when the 

Jacobian matrix is singular and is useful when the initial guess is far from a local minimum. 

This method approximates the objective function with a simpler function in the neighborhood 

of the solution at each iteration. 

 

Trust region methods are dual to line search methods. The first one chooses a step size before 

a search direction while the second one chooses a search direction and then a step size. 

1.6.3 Nelder-Mead 

This optimization algorithm was proposed by John Nelder and Roger Mead (Nelder and 

Mead, 1965). It is also called simplex method (a non linear method that is different from the 

known linear simplex method). It evaluates the objective function over a polytope in the 

parameter space. If we have two parameters, the polytope is a triangle as we are in a 2D 

plane. If there are n-dimensions, we have an (n+1)-sided polytope. 

 

The algorithm compares these n+1 points and deletes the worst one. The worst point is 

replaced by its reflection through the remaining points in the polytope. This algorithm is 
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simple and does not need gradient information but it takes time to achieve a solution when 

we have more than six variables. This method is also implemented in Matlab’s optimization 

toolbox, in the function fminsearch. 

1.7 Commercial solutions for robot calibration 

Most robot manufacturers offer calibration as an option. For example, in the case of ABB 

Robotics, most (but not all) of its robots can be calibrated at the factory with the CalibWare 

software for about C$2,000, using a Leica laser tracker, a single SMR (Spherically-mounted 

reflector) and around 40 error parameters. However, ABB does not offer an on-site 

calibration service, unlike KUKA. ABB also has a tool to improve resolver offsets due to 

motor exchange and maintenance: the calibration pendulum. 

 

As an example, L-3 MAS Canada at Mirabel use Motoman industrial robots and have them 

calibrated on-site by Motoman, who use a third-party calibration software (from Dynalog). 

Similarly, Messier-Dowty at Mirabel use three KUKA industrial robots and have them 

calibrated on-site by KUKA. 

1.7.1 Dynalog 

Dynalog is a Detroit-based privately held company founded in 1990 by Dr. Pierre De Smet, 

then professor at Wayne State University. Dynalog is by far the most renowned expert in 

robot calibration. While the company offers several products improving the accuracy of 

industrial robots, the two of greatest interest are the CompuGauge hardware and the DynaCal 

software. The first is a 3D (x, y ,z) measurement device based on four string encoders that 

intersect at one point. Dynalog claims that the volumetric accuracy of the CompuGauge 

measurement device is 0.150 mm and its repeatability is 0.020 mm inside a cubic working 

volume of side 1.5 m. The price of this device is at least US$9,000, but while not expensive, 

the device is quite bulky and difficult to install. 
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DynaCal is software for robot calibration that accepts measurement data from the 

CompuGauge device or from any other precision 3D or 6D measurement device. The 

software and here adapters for fixing SMRs are sold to industry for more than US$40,000. 

While all demonstrations of DynaCal show the use of a laser tracker and a single SMR, it 

seems that DynaCal can also work with three SMRs, thus calibrating the complete pose of 

the end-effector. 

 

Dynalog also has a specific patented product to calibrate robots that is going to be used for 

piece inspections (De Smet, 2001). Dynalog offers a complete robot library which makes it 

possible to calibrate any robot from any brand. 

1.7.2 Nikon Metrology 

Metris International Holding was purchased by Nikon in 2009 to create Nikon Metrology. 

Metris, a market leader for CMM based laser scanning, was founded in 1995 and is 

headquartered in Belgium. In 2005, Metris acquired Belgium-based Krypton, which was 

specializing in robot calibration since 1989. 

 

Nikon Metrology offers a large number of metrology systems, but the two that are of 

particular interest to us are the K-Series Optical CMM and the ROCAL software. The first 

one is basically a three-camera system that measures the spatial coordinates of up to 256 

infrared LEDs (thus, it can provide 6D measurements). The volumetric accuracy of the K-

Series Optical CMM is better than 0.090 mm which is close to the laser tracker accuracy and 

certainly sufficient for robot calibration. Its price is about C$80,000. 

 

ROCAL is software for robot calibration, very similar to Dynalog’s DynaCal. It seems that 

some of the differences are a better integration with some robot brands (KUKA, Mitsubishi 

and COMAU) and the software’s incompatibility with measurement devices other than the 

K-Series Optical CMM. The software also relies on complete pose measurement data. 
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1.7.3 Teconsult 

Teconsult is a Germany based university spin-off offering a unique 3D optional measurement 

device called ROSY and the robot calibration software that goes with it. Teconsult was 

founded by Prof. Lukas Beyer in 1999. ROSY is a measuring tool based on a videometric 

principle with two digital CCD cameras. Two cameras are used in order to get a more 

uniform volumetric accuracy. The tool is attached to the robot flange and is used to measure, 

with respect to the robot flange frame, the spatial position of the center of a small white 

ceramic ball that is fixed with respect to the robot’s base. The ROSY device itself is 

calibrated on a CMM before shipment. 

 

The calibration procedure consists of reorienting the tool and measuring the position of the 

ball for 40 different poses (Beyer and Wulfsberg, 2004), for a single location of the ceramic 

ball. According to reference (Beyer and Wulfsberg, 2004) the volumetric accuracy of ROSY 

is ±0.020 mm inside a spherical measurement range of ±2 mm. However, ROSY is offered in 

several different sizes, and there is no information whether that volumetric accuracy is for a 

small or for a large ROSY device. 

 

ROSY is rather bulky and requires removal of the end-effector from the robot. Furthermore, 

it requires several relatively thick cables to be run along the robot arm. A complete ROSY 

system for tool, base and robot calibration is about €17,500 (US$21,000). However, it seems 

that Teconsult does not offer any means to calculate the inverse kinematics. 

1.7.4 Wiest AG 

Wiest is another Germany based university spin-off offering another unique 3D optical 

measurement device called LaserLAB and the robot calibration software that goes with it. 

Wiest AG was founded by Dr. Ulrich Wiest who has been working in the field of robot 

calibration since 1996 (he obtained his doctoral degree in 2001). 
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LaserLAB is patent-pending (Wiest, 2003) and consists of five small-range one-dimensional 

laser distance sensors mounted to a common frame and with their lasers intersecting at a 

common point. A ball is attached to the end-effector of the robot while the LaserLAB device 

is stationary. By measuring the five distances to the ball (when the center of the ball is 

approximately at the lasers intersecting point), the spatial coordinate of the center of the ball 

with respect to the LaserLAB are determined. The repeatability of the LaserLAB is 

±0.020 mm, while its volumetric accuracy is better than ±0.100 mm (typically ±0.035 mm), 

inside a measurement range of 39.5 mm × 38.5 mm × 36.5 mm. 

 

One disadvantage of the LaserLAB is the high likelihood of the sphere colliding with the 

measurement device while the robot is re-oriented. Furthermore, the only way to measure 

with a wide range of robot configurations is to use extension rods of different lengths at the 

end of which a sphere is mounted, rendering that solution practically inconvenient and 

therefore realistically inaccurate. 

1.7.5 American Robot Corporation 

American Robot Corporation (ARC) is a US company based in Pittsburg, Pennsylvania. 

ARC was established in 1982 and is a manufacturer of industrial robot controllers, industrial 

robots, and automation systems. It has three major product lines, the Universal Robot 

Controller, the Merlin articulated six axis robot, and the Gantry 3000 modular gantry robot. 

ARC also offers a robot calibration software called MasterCal, which makes use of a 

standard touch probe attached to the flange of a robot and two fixed precision balls separated 

by a precisely known distance. 

 

The MasterCal calibration procedure was invented and patented by Mr. Wally Hoppe 

(Hoppe, 2008), a Group Leader and Senior Research Engineer at the University of Dayton 

Research Institute in Ohio, USA. The basic concept for Mr. Hoppe’s calibration method is an 

extension of (Meggiolaro et al., 2000), where a single ball-in-socket mechanism was used. 

Mr. Hoppe’s institution had a huge military contract for robot inspection of aircraft engines 
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and this is how he ended up devising a robot calibration method (he no longer works in 

robotics). In the course of the patent application, he eventually came across some inventions 

that are pretty close to this one, although he worked with his lawyer to demonstrate that they 

do not infringe. The closest method to his invention is by ABB (Snell, 1997). That method 

uses a single large-diameter precision ball of known diameter and a touch probe. Another 

very close invention is (Knoll and Kovacs, 2001), which is very general and does not give a 

lot of detail. 

1.8 Recent calibration results reported in the literature 

Recent research has been mainly focused on level-2 and level-3 calibrations. An example of 

a level-3 calibration using a stiffness model is (Lightcap et al., 2008), that applies a torsional 

spring model to represent the flexibility of the harmonic drives by physically meaningful 

parameters, this model takes into account the flexibility caused by the end-effector. The 

model improves the mean / maximum values from 1.77 mm / 4.0 mm to 0.55 mm / 0.92 mm 

for a Mitsubishi PA10-6CE when loaded at 44 N (validated with only ten measurements on a 

CMM). This method is more simple than the one proposed in (Khalil and Besnard, 2002) as 

it does not need the computation of the generalized Jacobian. Also (Caenen and Angue, 

1990) represented the angular deformation caused by gravity force. A similar method exists 

dealing with joint angle dependent errors (Jang et al., 2001).  

 

An example of kinematic calibration is given in (Ye et al., 2006), where an absolute 

calibration was performed to an IRB 2400/L with a Faro Xi laser tracker. The mean position 

error is reduced from 0.963 mm to 0.470 mm for twenty measurements (maximum values are 

not given, the area of calibration is not given either). 

 

Another example of absolute calibration with a laser tracker is (Newman et al., 2000). Using 

a Motoman P8 robot, the 27 error parameters from their kinematic model are identified by 

measuring 367 targets moving each axis separately. The kinematic model that gave best 

results (for a validation of 21 measurements) corresponds to a “circle-point” algorithm that 

improves the RMS error from 3.595 mm to 2.524 mm. 
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We can finally mention the work performed by (Bai et al., 2003) that uses a modified CPC 

model (MCPC) (Zhuang et al., 1993) to improve the kinematics of a PUMA 560 with 30 

error parameters and a laser tracker measure system. Using 25 measures for parameter 

identification and 15 measures for verification they reach a mean position error of 0.1 mm, 

however, when they use a CMM they find that the same position error is 0.4-0.5 mm. The 

CPC model avoids the singularities associated with parallel axes. 

 

Other examples of stiffness kinematic models that do not use meaningful parameters are 

(Jang et al., 2001; Meggiolaro et al., 2005). As explained by Lightcap et al. (2008), it is 

better to use meaningful parameters to be able to extrapolate to unknown charges. 

 

In the IRB 1600 product documentation, it is stated that the typical mean/maximum 

positioning accuracy is 0.300 /0.650 mm. We know from Dr. Torgny Brogardh, that this is 

validated for one tool target (apparently the same target used for calibration). However, we 

do not have more information regarding the validation procedure, such as the number of 

measurement poses. 

 





 

CHAPTER 2  
 

OBJECTIVES AND METHODOLOGY 

This section describes the objectives of this project and the methodology followed. 

2.1 Thesis objectives 

The main objective of this project is to establish a robust and efficient calibration method for 

our ABB IRB 1600 industrial robot. Another objective is to investigate and compare the 

performance of several level-1, level-2 and level-3 calibration methods. No dynamic 

calibration will be taken into account. 

 

The calibration methods proposed will be compared to the nominal model, which will 

include the calibration of the robot base and the end-effector. The calibration of the base is 

taken into account in the nominal model since we are not able to measure the robot base, so 

the results are more favorable for the robot manufacturer. The calibration of the tool is also 

taken into account since we do not have the exact measures of the tool with respect to the 

tool flange of the robot. 

  

Once the robot parameters are identified, we need to modify the original desired targets 

(poses) into so-called “fake” targets. To do so, we need to use an iterative inverse kinematics 

algorithm based on the new direct robot model to calculate the corrected joint values for the 

desired end-effector pose. 

 

Once we have an improved model of the robot and the procedure to generate the fake targets 

is established, we will be able to validate our model. To validate our models we are going to 

use a large number of measures in contrast to other researchers. Many researchers and 

companies usually use from 50 to 100 measures to find a calibrated model and no more than 

50 measures to validate the model found. In this case it is not possible to have a good 



22 

estimation of the maximum error value found with the new model. However, we will use 

about 1000 measures to validate our models. 

 

We will also validate our models with at least three points from the tool (most validation tests 

will be performed with eight tool-point measurements). So if we improve the position error 

of at least three tool-points (which are not in the same line), this will mean that we also 

improve the orientation errors. In addition, tests for evaluating the improvement of the 

orientation errors will also be performed. 

2.2 Methodology 

All calibration models will be tested with an ABB IRB 1600-6/1.45 robot and using a Faro 

ION laser tracker as a measurement system. They are both controlled by a PC running 

Matlab and an Ethernet local area network (LAN). 

 

A laser tracker is relatively simple to use and can quasi-continuously (typically every 

millisecond) measure the position of a single SMR or even measure the complete pose in 

static mode (by measuring the positions of three SMRs, however, using ADM only), in the 

entire workspace of an industrial robot. Unfortunately, laser trackers are excessively 

expensive ($100K or more) and very sensitive to air turbulences. Furthermore, their 

volumetric accuracy and repeatability is much worse than that of two high-precision single-

axis measurement instruments commonly used for machine tool calibration: the laser 

interferometer system and the telescoping bar. These are, however, not described in the ISO 

guide and are rarely used in conjunction with industrial robots. 

 

The mathematic representation chosen to model the kinematics of the robot is the one defined 

by Craig (Craig, 1986) and also known as the DHM notation (Denavit Hartenberg Modified). 

Using the methods explained by Mooring et al (1991, p. 177) and adapting the kinematic 

parameter extraction to the DHM notation we can find the kinematic model of a robot. In 

addition we consider some additional error parameters representing the behavior of the 6th 

axis and the stiffness of the robot. 
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An end-effector was manufactured to hold nine spherically-mounted reflectors (SMRs). This 

end-effector allows a wide range of poses in which at least one (or three) SMR are visible by 

the laser tracker. The weight of this end-effector is 3 kg (holding all SMRs). Extra weight can 

be added by up to eight steel discs (each disc weights 375 g), so the maximum end-effector 

weight is 6 kg. 





 

CHAPTER 3  
 

KINEMATIC CALIBRATION 

This chapter describes the first step of our robot calibration study, namely, what we can 

loosely refer to as preliminary robot calibration. Basically, we directly identify each of the 

six robot axes by rotating the joints one by one. 

 

The base frame should normally be measured directly, by measuring the mounting pattern on 

the bottom of the robot’s base. However, once the robot is installed, this can only be done if 

the robot was mounted using the guide holes on a precise base plate with, for example, three 

tooling balls (the location of the centers of which are precisely known with respect to the 

robot’s base mounting pattern). In our case, and in most industrial installations, such a 

precise mounting base plate is not used. Similarly, yet this is much simpler, the geometry of 

the tool can be measured exactly on a CMM (i.e., the location of the TCP with respect to the 

flange reference frame, i.e., tool0 for an ABB robot). However, this is not always done in 

practice. Hence, we find the optimal base and tool reference frames through two separate 

calibration processes. 

 

Finally, when the kinematic parameters (concerning the base, the robot geometry and the 

tool) have been found, we can add other error parameters that do not correspond to geometric 

errors, as explained in Chapter 5. 

3.1 Kinematic parameter extraction from identified joint axes 

A complete and full kinematic calibration is explained, which neither needs special computer 

power nor iterations to minimize an error function. The procedure is similar to other 

procedures explained by Mooring et al. (1991, p.177), who made an extraction of kinematic 

parameter from joint axes for a DH model (Sklar method) and for an S-model (Stone 

method). The calibration needs the “virtual” joint axes all in the same absolute reference and 

the dimensions of the used tool referred to the robot’s tool frame. 
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If the errors in the real robot were due only to kinematic errors, with this entire kinematic 

calibration we can extract the real geometric links of the robot obtaining an error equivalent 

to the noise measurement. That’s what we found by simulating the method explained in this 

chapter. In simulation, if the measurement noise is forced to zero, the position error is zero. 

3.1.1 Method to find the axis of each joint 

Starting from the home configuration in which all robot joints are at 0º, each joint has to be 

moved one by one in equal increments, each time measuring the position of the TCP. A circle 

that minimizes the sum of all error squares can be fitted to these points for each axis. From 

this circle we can extract the robot axis. 

 

 
axis 1 (-40º, 0º, 40º) axis 2 (-40º, 0º, 40º) 

 
axis 3 (-40º, 0º, 40º) 

 
axis 4 (-40º, 0º, 40º) axis 5 (-40º, 0º, 40º) axis 6 (-40º, 0º, 40º) 

Figure 3.1 Axis-by-axis rotation for identification 
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Although we need to fit a number of points in 3D space to a circle, for which many 

algorithms exist, they all require an initial estimate for the center and the plane of that circle. 

This initial estimate can be obtained analytically from any three points, ideally equally 

distanced along the circle. 

 

Let the coordinates of three points P1, P2, and P3, be denoted by the vectors p1, p2, and p3, 

respectively. Also let the unit vector that is normal to the plane (that contains these three 

points) be denoted by vaxis: 

 ( ) ( )
( ) ( )

1 2 3 2
axis

1 2 3 2

− × −
=

− × −
p p p p

v
p p p p

 (3.1) 
It can be easily shown that the coordinates x, y, and z, of the center of the circle are the 

solution of the following system of linear equations (representing three planes passing 

through the center of the circle, the first also passing through all three points, the second also 

normal to line p1p2 and the third also normal to p3p2): 
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where pc=[x,y,z]T. A different solution is explained in (Schneider and Eberly, 2003, Section 

13-10). 

 

Once the initial estimate for vaxis and pc is found, we can use the Gauss-Newton least-squares 

fitting method (Gander et al., 1994). 

3.1.2 Placing the link frames 

Once we find the axes of all joints, the next step is to place the frame of each joint i with the 

information of the axis i and the axis i+1. All frames must be referenced to the same absolute 
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coordinate system, which can be the base frame of the measure system (a particular case for 

the robot’s base and for parallel axis is explained below). 

 

To make all transformations suitable to a DHM representation we will use the information 

between two consecutive axes (like the common normal line, its distance or the angle 

between two axes). Figure 3.2 shows two consecutive axes and the common normal line that 

connects them (dotted line). To place the frame i we must follow next steps if a DHM 

notation is used. 

 

Figure 3.2 Placing frame i 

We will always place first the vector zi in the direction of the ith axis. The origin is at the 

intersection between the ith axis and the common normal line (or the intersection of both axes 

if they intersect). The component xi is found by 1i i i+= ×x z z , which corresponds to the 

common normal vector if the two axis are not coincident. Finally, we have that i i i= ×y z x . 

 

In this way it is possible to make a DHM representation suitable between two consecutive 

frames. This happens because only with a translation and rotation around the common 

normal line (vector xi) we can make the transformation from zi to zi+1. After that, it is 

possible to make a rotation and translation around the zi+1 axis to place the origin, xi+1 and 

yi+1 axis of the frame i+1 where necessary according to axis i+2. 
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However, a DHM representation will not be possible from an arbitrary base frame F0 because 

its z vector will never be perfectly perpendicular to the base plane xy (F0 has its z vector in 

the same direction as the first axis, see Section 3.2). 

3.1.3 Dealing with parallel axes 

When we have two parallel axes we can use a threshold tolerance to consider those axes 

parallel or not. In other words, two axes will never be parallel because there is an alignment 

angle error. If this error is considerable we can use the method described before to place the 

frames. 

 

If the alignment error is very small it is possible to force both axes to be parallel. That means 

that the center point of each axis is kept but we apply the same direction for both of axes. In 

this case, the center is the origin of the new frame. 

 

In the case where the alignment error is very small but we do not force the axes to be parallel, 

if we use the DHM model, a small variation of parameters can result into big kinematic 

changes. In this case it is important to take into account that the CPC model can be more 

suitable than the DH or DHM models since this problem is attenuated. 

3.1.4 Error parameters needed for a full calibration 

As described before, all link transformations can suit a DHM representation except for the 

first one, which needs two extra error parameters if we consider an arbitrary base. So we 

have six parameters for the first joint and four parameters for the other five joints which 

make 26 error parameters to determine. If we want a relative calibration we can skip the first 

six parameters of the base frame. 
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Finding those parameters is direct once we have identified the axes of the robot, finding the 

axes may take a few seconds if there are a lot of points that define each axis. No 

computational power is needed and the solution can be obtained directly. 

 

We mentioned that 26 parameters are required to complete the robot calibration. However, in 

this robot calibration the end-effector is represented by a DHM transformation, so only two 

parameters are taken into account for the position of the TCP relative to the end-effector due 

to the kinematic representation chosen (which only takes into account 4 parameters per link). 

In this case, if we want to consider the TCP as part of the calibration process we must add 

one error parameter (because to define a position with respect to a frame we need 3 

parameters). Summarizing, a total of 27 error parameters are needed for a complete kinematic 

calibration for the position the TCP with respect to an arbitrary base. This corresponds to the 

minimality justification from Bernhardt and Albright (1993, p.163). 

3.1.5 Homogeneous transformation 

Sometimes we will need to represent a homogeneous transformation in its six descriptive 

parameters. A 4×4 homogeneous transformation matrix can hold up to six parameters. Here 

we show one method to extract these six parameters. This transformation is represented by a 

translation along the xi, yi and zi axes followed by rotations about the xi, yi and zi axes 

consecutively:  ( ) ( ) ( ) ( )Trans , , Rot , Rot , Rot ,j
i i i i i i ix y z α β γ=A x y z , (3.5) 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

c( )c( ) c( )s( ) s( )

s s c c( )s( ) s s s c( )c( ) s( )c( )

c s c s( )s( ) c s s s( )c( ) c( )c( )

0 0 0 1

i i i i i i

i i i i i i i i i i i i ij
i

i i i i i i i i i i i i i

x

y

z

β γ β γ β
α β γ α γ α β γ α γ α β
α β γ α γ α β γ α γ α β

− 
 + − + − =
 − + +
 
 

A . (3.6) 
It is possible to extract the original parameters {xi, yi, zi, αi, βi, γi} if we have the generic j

iA  

transformation matrix. The translation {xi, yi, zi} can be directly obtained. Angles can be 
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obtained proceeding with next steps, imposing the cosine positive for βi to obtain values 

closer to zero: 

 ( )2
1,3atan2 1 sin (, )j j

i i iβ = + −A A  (3.7) 
Once we obtain ߚ௜, ߙ௜ and ߛ௜ are completely defined: 

 
( )

2,3 3,3atan2 ,
cos( ) cos

j j
i i

i
i i

α
β β

 −
=   

 

A A  (3.8) 
 1,2 1,1atan2 ,

cos( ) cos( )

j j
i i

i
i i

γ
β β

 −
=   

 

A A  (3.9) 
Obviously, this generic representation can suit a DHM representation but not vice versa.  

3.2 Base frame definition 

In robotics, the xy base plane is placed perpendicularly to the first axis (z0 is placed along the 

first robot axis). This plane will never be exactly the same as the “tangible” reference plane 

(the plane of the base mount) since we are looking for a geometrical error. Consider Figure 

3.3, where the first frame F1 is placed as explained before and errors are exaggerated. 

 

The definition of the base is important if we want to calibrate the robot for a specific, 

physical and measurable frame (see the comparison between an absolute and a relative 

calibration in the introduction). We could call FB the real base frame (composed by {xB, yB, 

zB}) and F0 the nominal base frame (composed by {x0, y0, z0}). The first one is tangible but 

the second one is not. It is possible to find the second one by the information of the first and 

second axes and the nominal parameters. 
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Figure 3.3 Position of the nominal and real robot base frame 

In the case where we consider the base frame as the “official” tangible base frame, provided 

by the manufacturer, F0 and FB should be very close. If the first and second axis were exactly 

in its nominal position (so there are no errors for the first and second axis), frames F0 and FB 

(nominal and real robot base frame respectively) would be exactly the same. The real base 

frame FB is found by measurements on the robot base plane (which is the same as xByB 

plane) and has the origin on the intersection of this plane with the first axis line. zB is 

perpendicular to the robot’s real floor plane and xB and yB can be placed arbitrarily on the 

floor plane. 

 

The nominal base frame F0 is found by a translation along −z1 of the nominal distance d1 

from the F1 frame (no error parameters are included in this step):  1 0 1Trans(0,0, )d=F F  (3.10) 
In this way we can compare the relationship between FB and F0. 
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 0
0 B B=F H F  (3.11)  0

B 4I≅H  (3.12) 
Ideally, 0

BH  should be equal to the identity matrix. However, with errors it can hold up to six 

parameters for a geometrical transformation. If our base frame definition is important (in 

other words, if the link between FB and F0 is important) we must use those six parameters. 

Otherwise, we have six parameters to place this FB frame wherever we want or we can force 

those six error parameters to be zero (then, F0 and FB are coincident). 

 

To have an idea, if we consider that the robot base is the nominal base F0 for the ABB IRB 

1600-6/1.45 robot, we find a maximum position error of 2.1 mm for 337 measurements. 

However, if we consider that the real robot base FB has its origin placed at the intersection of 

the tangible robot base plane xy with the 1st axis, zB perpendicular to this plane and xB 

through the projection of x0 to the floor plane, we get errors up to 15 mm for the same 337 

measures. 

3.3 Finding the base from three points 

Usually we will not be able to measure the exact position of the robot’s base. We must find 

some characteristic points on the floor plane where the robot is placed. We describe here one 

method to find the origin pB and xB, yB, zB axis of the robot base from the 3 points shown in 

Figure 3.4. 

 

Figure 3.4 Three points that determine the base frame 
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These three points are: 

1. The first one on the axis ±xB. 

2. The second one on the axis ±xB, this one must be on the direction of +xB in comparison to 

the first point. 

3. The third one on the axis +yB. 

From the figure we can obtain xB,  yB,  zB :  2 2 1= −v p p  (3.13)  3 3 1= −v p p  (3.14) 
 2

B
2

= v
x

v
 (3.15) 

 2 3
B

2 3

×=
×

v v

v v
z  (3.16) 

 B B B= ×y z x  (3.17) 
Finally, to find the origin pB we can project the point p3 on the line p1+tv2 (Schneider and 

Eberly, 2003): 

 ( )2
0

2
T

1
T

3

2

t
−

=
v p p

v v
 (3.18) 

 B 1 0 2t= +p p v  (3.19) 
3.4 End-effector calibration 

An end-effector was manufactured to hold all of our nine spherically-mounted reflectors 

(SMRs), namely five 1.5-inch and four 0.5-inch SMRs. This end-effector increases the range 

of poses in which at least three SMRs are visible by the laser tracker, thus allowing 

measurements of the complete pose of the robot end-effector. 
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In this section we explain two methods to calibrate the tool: one that can always be used and 

does not need the exact dimensions of the tool and another one that we can use if we have the 

exact dimensions of the tool. For our tests we used the one that does not need the exact 

dimensions of the tool. 

3.4.1 End-effector design 

The dimensions of the designed tool are 200×200×100 mm. It is made of aluminum and 

weighs 1.8 kg, without any of the possible attachments. Five 1.5-inch SMR targets can be 

added in the front side and four 0.5-inch SMR targets in the back side. These nine targets 

with their magnetic mounts (also called nests) weigh a total of 1.2 kg. 

 

Figure 3.5 End-effector used for holding the nine SMRs 

Extra weight can be added by attaching steel discs. Each disc weighs 375 g and we can add 

up to eight discs (up to 3 kg can be added, which makes 6 kg the maximum payload). With 

all nine SMRs and eight steel discs attached, the center of gravity of the tool is at 75 mm 

along the Z direction with respect to the robot tool frame tool0.  

1.5 inch SMR Target 

375g steel disc 

0.5 inch SMR Target 
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3.4.2 End-effector calibration for unknown dimensions 

To perform the end-effector calibration we must find the 6th frame according to the 

calibration method used. For an arbitrary position of the end-effector (all five 1.5” SMRs 

must be visible by the laser tracker at this position) we must identify the 5th and 6th axis by 

moving them independently and taking at least three measures per axis, as shown in Figure 

3.6. 

 

Figure 3.6 Identifying 5th and 6th axes 

Once we have identified the 5th and 6th axes we must find their common normal line (dotted 

line in Figure 3.7), and we will impose that x6 has the same direction as this common normal 

line. Ideally, those two axes should intersect but in real life there will always be an error so 

we will be able to find this common normal line. We have then:  6 6 5= ×x z z  (3.20)  6 6 6= ×y z x  (3.21) 
With this information we can virtually find the frame represented as 6’ (see Figure 3.7) 

placing the origin at the intersection between the common normal line and the 6th axis (errors 

are exaggerated in the figure). At this point we do not have enough information to place the 
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real 6th frame which corresponds to the tool0 of the robot. But this information is not 

necessary as we found the end-effector referenced to a frame which is similar but not the 6th 

frame. In the case where we know the exact dimensions of the tool, the method is explained 

in the next section. 

 

Figure 3.7 Placing the 6th frame 

Once the 6th frame is virtually placed we can translate it by the nominal distance through the 

z6 direction to obtain a good approximation of the real 6th frame. Then we can take the 

measures of all targets. All measures must work on the same arbitrary and absolute base. 

Taking abs
it  as one target measure and abs

6F  as the tool reference frame we can find the 

coordinates of this target referenced to the 6th frame. So once abs
it  and abs

6F are known by 

measures with the laser tracker we can find 6F
it : 
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 [ ]abs , , ,1
T

i i i ix y z=t  (3.22) 
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F  (3.23) 
 6 abs 1 abs

6( )  F
i i

−=t F t  (3.24) 
3.4.3 End-effector calibration for known dimensions 

This method is useful if we need to use different tools in the same robot. In this case we must 

know the exact dimensions of all the tools that we are going to use in the robot. Using one of 

these tools with an SMR target we can calibrate the position of the robot tool frame. 

 

To find the exact position of the last frame (or robot tool frame, F6 for a 6-DOF robot) we 

must know the exact dimensions of the end-effector that we are using to take measures. If 

this is not the case, the method explained in the previous section should be used. If the 

dimensions of the tool are known we just need one measurement pT to place the last frame. 

 

Figure 3.8 Geometry to find the 6th frame 
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From the figure we can say that ( )6
TCP 6 Trans 0,0, Rot( , )c β=A F z  if TCP 6=z z . So by finding 

the robot TCP frame we can find the 6th frame. The robot end-effector frame is found as 

follows:  TCP 6=z z  (3.25)  1 1 T= −v p p  (3.26)  2 2 T= −v p p  (3.27)  TCP 1 2= ×y v v  (3.28)  TCP TCP TCP= ×x y z  (3.29) 
where p1 and p2 are two arbitrary points on the 6th axis (6th axis is known from circle 

movements). We know β as we know the position of the point pT in F6 coordinates:  atan2( , )b aβ =  (3.30) 
3.4.4 Experimental values 

Using the calibration methodology explained in Section 3.4.2 we can compare the 

coordinates of the nine targets of the tool that was used. To identify the axis we moved the 5th 

and 6th axis independently from −90º to 90º by steps of 30º. Table 3.1 shows the xyz 

coordinates of the CAD design and they are compared with the real values obtained by 

measures with the laser tracker. 
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Table 3.1 xyz coordinates of the 9 targets (CAD + real points) 

Target 
xCAD 

(mm) 
yCAD 
(mm) 

zCAD 
(mm) 

xReal 
(mm) 

yReal 
(mm) 

zReal 
(mm) 

Error 
(mm) 

1 −87.300 87.300 109.480 −87.370 87.202 110.020 0.553 
2 84.300 84.300 109.480 84.419 84.260 109.928 0.465 
3 85.800 −85.800 109.480 85.990 −85.788 109.959 0.515 
4 −86.300 −86.300 109.480 −86.207 -86.339 110.039 0.568 
5 −59.500 59.500 56.800 −59.465 59.477 57.489 0.690 
6 63.500 63.500 56.800 63.460 63.527 57.407 0.609 
7 62.000 −62.000 56.800 62.071 −61.982 57.408 0.612 
8 −63.000 −63.000 56.800 −62.918 −63.055 57.454 0.661 
9 0.000 0.000 109.480 0.049 −0.032 109.974 0.497 

3.5 Kinematic parameter optimization 

Once we obtain a first geometrical approach of the real parameters we try to improve those 

parameters by computing a minimization of an objective function. This objective function is 

the result of the maximum error of all desired points. In this step we may incorporate 6 

additional error variables (k1,... ,k6) so that each motor has a linear model error, with offset 

and proportional constants:  0,'i i i ikθ θ θ= +  (3.31) 
It is not needed to incorporate new error variables for θ0,i because we already have θi from 

DHM table that describes this offset angle error. So now the error model can have up to 

26+6=32 variables:  0 1 2 3 4 5
BASE 1 2 3 4 5 6 TCP( ) =H q A A A A A A A A  (3.32) 

 [ ]T

1 2 3 4 5 6     θ θ θ θ θ θ=q  (3.33) 
where  ( ) ( ) ( ) ( )1

0,Rot , Trans , 0,0 Rot , Trans 0, 0,i
i i i i i i i ia k dα θ θ− = = +A F x z  (3.34) 

Actually we could see that the error parameters needed are 5 for each link plus 2 extra for the 

base definition (6×5+2=32). The objective error function for n measures is: 
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 ( )( )arg min max=
T

T E         1 j n≤ ≤  (3.35) 
where E is the vector of errors Ej between the measured position 

T

, , ,, ,j j x j y j zp p p =  p  and 

the position given by the direct kinematic model for the same joints qj, and T is the vector 

containing the error parameters. Taking into account that Hj=H(qj), we can represent the 

error for one point:  2 2 2
, ,1,4 , ,2,4 , ,3,4( ) ( ) ( )j j x j j y j j z jE p H p H p H= − + − + −  (3.36) 

In this function we have n points, so the objective function is the maximum error of all tested 

measures. 

 





 

CHAPTER 4  
 

ANALYSES OF THE BEHAVIOR OF EACH JOINT 

In this section we study the behavior of each individual joint by rotating it and measuring the 

TCP with a laser tracker (Figure 4.1). We will see that this behavior is not linear, especially 

for joints 2, 3 and 6.  

 

Figure 4.1 shows the installation that was used for measuring the positioning performance of 

an ABB IRB1600-6/1.45 robot with a Faro laser tracker ION (ADM option only). According 

to the specifications, the typical accuracy of this laser tracker when measuring the length of a 

2.3 m horizontal scale bar distanced at 2 m is 22 μm. According to our own tests, the largest 

error when measuring the length of a 1 m horizontal scale bar distanced at 2.7 m is 22 μm, 

but when the bar is vertically oriented, the error is 50 μm. According to our tests, the tracker 

is more precise when the scale bar is distanced at 5 m. Unfortunately, however, our 

installation does not allow us to place the laser tracker farther from the robot. 

 

Figure 4.1 The IRB 1600 robot of which the positioning performance was analyzed using 
a Faro laser tracker 
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All measurements were performed at temperatures varying between 22°C and 23°C. During 

all measurements, the laser tracker was never displaced from its location shown in Figure 

4.1, in order to avoid the accumulation of errors. All results shown in this chapter correspond 

to measures taken with the target number 1 (see Table 3.1). This target is going to be 

considered as the TCP in this chapter. 

 

The laser tracker and the robot are controlled by Matlab via Ethernet LAN. The position 

commands sent to the robot are the joint values (i.e., we send the joints for each position and 

use the instruction MoveAbsJ, which corresponds to a joint movement in the RAPID 

programming language). 

4.1 Axis error analysis 

Moving the joints one by one and taking measures at the end-effector, a frame is placed on 

each point of the circle to analyze the error. This frame has the x axis in the radius direction, 

the y axis in the tangential direction of the circle and the z axis in the circle axis direction 

(shown in Figure 4.3). Errors are called as “deltas” (Δx, Δy, Δz and Δθ for the angle). We 

have imposed a “zero” reference for the angle 0º. For this point Δθ=Δy=0 (there may be an 

error in x and z direction). 

 

Figure 4.2 Axis error analysis 
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The ranges and steps used for the axis analysis are shown in Table 4.1: 

Table 4.1 Range of motion for each joint 

Joint Range in degrees Step in degrees 
1 [−40, 40] & [40, −40] 10 
2 [−50, 50] & [50, −50] 1 
3 [−50, 50] & [50, −50] 1 
4 [−150, 150] & [150, −150] 30 
5 [−90, 90] & [90, −90] 30 
6 [−180, 180] & [180, −180] 20 

 

Figure 4.3 Position and angular errors at the TCP when moving each joint one by one 

Firstly, it is important to note that the radial and axial errors observed at the TCP were very 

small (Δx and Δz maximum errors were about 0.050 mm). In other words, the total error 
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presented in Figure 4.3(a) is mainly due to the tangential errors, i.e., is proportional to the 

angular errors Δθi. 

 

We can see that joints 2 and 6 lead to large TCP errors. The error for joint 2 may be due to 

the stiffness effect (as well as error for joint 3, which however seems to be less important), 

and more specifically to the preloading effect. It is quite possible that the gravity effect on 

joint 2, when all joints are at zero degrees, is virtually zero (i.e., close to the static 

equilibrium). Displacing joint 2 from zero degrees, suddenly changes the torsional effect due 

to the weight of the robot arm. We cannot, however, explain why the error is not similar in 

both sides of motion. The curve corresponding to axis 2 is not as smooth as the other ones 

due to noise measurement, since we took a measurement every degree. 

 

The error for joint 6 is probably due to the gear train that runs inside the robot arm.  

4.2 Detailed analysis of joint 6 

Taking a closer look at the 6th axis, five tests have been performed to study its behavior. The 

robot has been moved to five different configurations for joints 1 to 5 as shown in Table 4.2. 

Table 4.2 Tests for 6th axis analysis 

Test θ1 (º) θ2 (º) θ3 (º) θ4 (º) θ5 (º) θ6 range (º) θ6 step (º) 
1 0 0 0 0 0 [−400; 400] & [400; −400] 20 
2 45 −45 45 200 45 [−400; 400] & [400; −400] 20 
3 0 45 −45 −100 −45 [−400; 400] & [400; −400] 20 
4 20 45 −45 −199 90 [−400; 400] & [400; −400] 20 
5 45 −30 20 100 10 [−400; 400] & [400; −400] 5 
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Figure 4.4 Position representation for each of the five tests. 

Results for tests 1 to 5 are shown in Figure 4.5. 

 

Figure 4.5 Joint 6 angle errors 
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Firstly, it can be clearly seen that there is a backlash of about 0.05°. Secondly, it can be seen 

that the shape of the curves in all five tests are nearly identical. Finally, it can be seen that the 

non-linear shape is cyclic and repeats every full rotation.  

4.3 Detailed analysis of the 2nd axis 

The second axis behavior is similar to the third axis and it is due to the flexibility of the 

robot. Because of this flexibility we will end up adding “stiffness parameters”, which try to 

explain this behavior. 

4.3.1 Effect of the tool weight 

A first series of tests have been performed to evaluate the effect of the tool weight at the end-

effector. The robot arm was fully extended and the coordinates of six points along this arm 

were measured with our laser tracker, as shown in Figure 4.6 and Figure 4.7. Joint 3 is kept 

constant at −90º and joint 2 varies from −90º to 90º and back from 90º to −90º by steps of 

10º. 
 

 

Figure 4.6 Moving axis 2 to evaluate stiffness 
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Figure 4.7 Picture of the real measurement points 

If the robot links were perfectly stiff, each measurement point would describe a perfect circle 

as joint 2 rotates. When we fit a circle to each series of points and find the corresponding axis 

as described in Section 4.1, we obtain the following results: 

Measure 1 

Measure 2

Measure 3

Measure 4

Measure 5

Measure 6
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Figure 4.8 Stiffness effect with fully extended arm and a payload of 1.8 kg 

 

Figure 4.9 Stiffness effect with fully extended arm and a payload of 4.8 kg 
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Table 4.3 describes the peak effect of adding 3 kg at the end-effector (errors in all directions 

are taken into account although Δx and Δz are very small compared to Δy). As we can see, the 

peak displacement is around 0.3 mm. This value is very small compared to the 1.297 mm 

(and more) that the robot displaces due to its own weight. 

Table 4.3 Maximum TCP errors 

Angle θ3 
(º) 

Max. with 1.8 kg 
(mm) 

Max. with 4.8 kg 
(mm) 

Difference 
(mm) 

−90 2.134 2.426 0.292 
90 1.297 1.607 0.310 

 

We can say that the weight added at the end-effector will not be significant compared to the 

weight of the robot arm (the bodies moved when joint 2 rotates), which weighs 

approximately 50 kg. 

4.3.2 Robot arm stiffness effect 

Table 4.4 shows the joints used for other stiffness tests (the step increment is 1º). The tool 

weight is 1.8 kg. 

Table 4.4 Tests for stiffness analysis 

test θ1 (º) θ2 range (º) θ3 (º) θ4 (º) θ5 (º) θ6 (º) θ2 step (º) 
1 0 [−50,50] & [50, −50] 30 0 10 0 1 
2 0 [−50,50] & [50, −50] 0 0 10 0 1 
3 0 [−50,50] & [50, −50] −30 0 10 0 1 
4 0 [−50,50] & [50, −50] −60 0 10 0 1 
5 0 [−50,50] & [50, −50] −90 0 10 0 1 
6 45 [−50,50] & [50, −50] 0 0 10 0 1 

 

Results for these tests are shown in Figure 4.10. The reference of the zero error has been 

imposed at the angle of 0º. The error shown is the equivalent angle error for joint 2 (as it 

cumulates the error for joint 3 also). 
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Figure 4.10 Equivalent θ2 error 
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CHAPTER 5  
 

ERROR MODELS 

An important step of the calibration process consists of choosing the appropriate error model 

that describes the direct kinematics of our robot. In this section we first explain the DHM 

representation used and we show the nominal direct kinematics of our robot ABB IRB 1600. 

Based on the study performed in Chapter 4, we demonstrate that joints 2 and 3 should be 

modeled as compliant, while a second order Fourier series should be used to model the 

motion pattern of joint 6. These two particularities are taken into account in a 34-parameter 

model. 

 

We consider that the nominal kinematic model contains a tool and base calibration. We also 

show all the five kinematic error models that have been taken into account for our calibration 

tests, which correspond to 6 error parameters (nominal), 11, 16, 26 and 34 error parameters. 

Only the last one takes into account the non linear errors from axis 2, 3 and 6. 

5.1 Nominal direct kinematics 

The used kinematic representation is the one defined by Craig (also known as Denavit 

Hartenberg Modified (Craig, 1986)), which corresponds to a rotation plus translation through 

the x axis followed by a rotation plus translation through the z axis (rotation and translation 

along the same axis can be interchanged).  ( ) ( ) ( ) ( )1 Rot , ·Trans ,0,0 ·Rot , ·Trans 0,0,i
i i i i ia dα θ− =A x z  (5.1) 

 ( ) ( )
( )

1

c( ) s( ) 0

s c( ) c ( ) s( ) s( )

s s( ) c( ) ( ) c( ) c( )

0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

a

c d

s d

θ θ
θ α θ α α α
θ α θ α α α

−

− 
 − − =
 
 
 

A  (5.2) 
It will be useful to know the original DHM parameters of a generic 1i

i
−A  transformation. The 

geometrical transformation must correspond to a DHM transformation:  
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 1
1,4

i
i ia −= A  (5.3) 

 ( )1 1
2,3 3,3t 2 ,a an i i

i i iα − −= −A A  (5.4) 
 ( )1 1

1,2 1,1t 2 ,a an i i
i i iθ − −= −A A  (5.5) 

 ( ) 1
2,4 3,4

2 1 2)abs ( )(i i
i i id − −= +A A  (5.6) 

 ( ) ( )1
3,4sgn sgn( )i

i i id c α−= A  (5.7) 
Table 5.1 corresponds to the DHM parameters according to the frames placed in Figure 5.1. 

Table 5.1 Nominal DHM parameters for the ABB IRB 1600 robot 

i αi (º) ai (mm) θi (º) di (mm) 
1 0 0 θ1 486.5 
2 −90 150 θ2−90 0 
3 0 700 θ3 0 
4 −90 0 θ4 600 
5 90 0 θ5 0 
6 −90 0 θ6+180 65 

 



55 

F4

F5

F0

F1 F2

F3 F6

x0

y2

x6

x3 x4

x5

z6

600 65

700

486.5

150
y4 z4

y5

z5

z1 x2

z0

y3

 

Figure 5.1 Frames corresponding to the DHM notation for the ABB IRB 1600 robot 

5.2 Axis 6 model 

Using the information found from the tests performed in Section 4.2 we tried to fit these data 

into a second order Fourier series. We used the results obtained from the fifth test represented 

in Figure 4.5 (we used the two way curves) to find the best fit of a Fourier series function. 

Using the “Curve Fitting Tool” from Matlab we obtain the fit shown in Figure 5.2. We used a 

Fourier function because the error is cyclic and the pattern is repeated every 360 degres. 
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Figure 5.2 Fourier series fit for the nonlinear motion pattern of joint 6 

The equation for this second order Fourier fit is:  ( ) ( ) ( ) ( ) ( )0 1 1 2 2cos sin cos 2 i 2s nF x a a x b x a x b xω ω ω ω= + + + +  (5.8) 
The obtained coefficients are shown in Table 3.3. 

Table 5.2 Coefficients of the Fourier fit 

Parameter Value 
a0 0.00198 
a1 −0.000373 
b1 −0.000750 
a2 −0.000956 
b2 −0.000244 
ω 1.001 

 

It may be interesting to see that ω is very close to 1. We will arbitrarily impose that ω is 

constant and equal to 1. The parameter a0 is already considered in our kinematic calibration. 
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5.3 Stiffness model 

A model that has 4 error parameters is used to fit the stiffness behavior of the serial robot. 

This method only takes into account the deformation of the arm (joints 2 and 3). These 4 

parameter correspond to the maximum deflection when the arm is extended, the center of 

gravity of joint 2 and 3 and the relation between masses of joints 2 and 3. 

 

Figure 5.3 Robot arm representation 

We can directly say from Figure 5.3: 
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 1 G1 2sin( )d L θ=  (5.9) 
 2 G 2 2 3sin

2
d L

πθ θ = + + 
 

 (5.10) 
 ( )'

2 1 2 2sind L dθ= +  (5.11) 
According to Figure 5.3, the torque of joints 2 and 3 that are applied to the robot are:  2 1 1 2 2'T F d F d= +  (5.12)  3 2 2T F d=  (5.13) 
Using a new parameter m as the relationship between the two masses (m=F1/F2) and 

considering that the variation of angle is proportional (with constant k) to the torque 

supported by the robot at each joint we can represent next equations:  ( )2 2 1 1 2'kT kF d mdδθ = = +  (5.14)  3 3 1 2kT mkF dδθ = =  (5.15) 
If we consider the worst case of stiffness (where torque is maximum for joints 2 and 3) we 

can guess the product kF1 if we know the displacement of the end effector for this position. 

 

Figure 5.4 Estimating ΔL 

ΔL is the displacement of the end-effector on the case limit (joint 2 is 90º and joint 3 is −90º). 

If errors are small we can write the next equivalences (since 1sin( ) sin ( )x x x−≅ ≅  when x is 

small): 
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 ( )1 2 eqsin( )L L L δθΔ ≅ +  (5.16) 
Using δθ3’ as a function of δθ3 and using equations (5.14) and (5.15) (we took into account 

the case where t2=90 and e3=−90), we obtain: 

 ( ) ( )2 31 2
eq 2 1 G1 1 G2 G2

1 2 1 2

sin
sin

L L
kF L m L L m L

L L L L

δθ
δθ δθ −  

≅ + ≅ + + + + + 

 
 
 

 (5.17) 
Finally, combining equations (5.16) and (5.17) we can find kF1 as a function of ∆L: 

 
( )

1

1 2
1

2
G1 1 G2 G2

1 2

sin
L

L L
kF

L
L m L L m L

L L

−  Δ
 + ≅

+ + +
+

 (5.18) 
In this way, the variables LG1, LG2, m and ΔL, define the 4 error parameters of the stiffness 

model. L1 and L2 are known as they are the arm lengths. A good guess of these parameters 

could be:  1m ≈  (5.19) 
 1

G1 2

L
L ≈  (5.20) 

 2
G2 2

L
L ≈  (5.21) 

 1.5LΔ ≈  (5.22) 
ΔL has been established according to the results on Table 4.3. With a simulation on Matlab 

we can predict the behavior of the equivalent θ2 error (θeq) used in (5.19) as shown in Figure 

5.5: 
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Figure 5.5 Equivalent θ2 error 

We can make other guesses so that this figure looks similar to Figure 4.10. For example, 

randomly trying some combinations, we obtained a good approximation of the real test using 

the parameters ΔL=1.8, LG1=300, LG2=900 and m=2. We also forced the zero reference error 

at 0º. We obtain the results shown in Figure 5.6: 

 

Figure 5.6 Equivalent θ2 error for a different combination of parameters 
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Although it may not have as much physical sense as the first parameters, this last 

combination may give better results. 

5.4 Direct kinematic models 

Five different direct kinematic models have been tested to our ABB IRB 1600. The first one 

is just a calibration of the robot base and tool (considered as the nominal kinematics). The 

second one takes into account the joint calibration (level-1 calibration). The third one 

considers joint calibration plus an adjustment of some distances. The fourth one is an entire 

kinematic calibration (level-2). Finally, the fifth calibration method takes into account a 

complete kinematic calibration plus an adjustment of stiffness and 6th axis errors. 

5.4.1 Nominal model 

Only the robot base and the tool are calibrated. This model adds no error parameters to the 

robot. Actually there are 6 error parameters that determine the base plus 3 parameters 

positioning each tool target (considering that we do not measure orientation). Inverse 

kinematics can be directly obtained with the algebraic algorithm. 

Table 5.3 Nominal robot model 

i αi (º) ai (mm) θi (º) di (mm) 
1 0 0 θ1 486.5 
2 −90 150 θ2−90 0 
3 0 700 θ3 0 
4 −90 0 θ4 600 
5 90 0 θ5 0 
6 −90 0 θ6+180 65 

5.4.2 11-parameter model 

Robot base, tool and offset angles of the motors are calibrated. This model is the same as the 

first one but it adds 5 error parameter to the robot calibration (the six offsets of the 6 motors). 
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The offset of the first motor is expressed as a robot base rotation, so actually it is already 

considered in the first calibration (nominal). Inverse kinematics can be directly obtained with 

the algebraic algorithm. This model represents a level-1 calibration. 

Table 5.4 Robot model for 11 parameters  

i αi (º) ai (mm) θi (º) di (mm) 
1 0 0 θ1 486.5 
2 −90 150 θ2−90+δθ2 0 
3 0 700 θ3+δθ3 0 
4 −90 0 θ4+δθ4 600 
5 90 0 θ5+δθ5 0 
6 −90 0 θ6+180+δθ6 65 

5.4.3 16-parameter model 

Robot base, tool, offset angles and some distances are calibrated. This method is the same as 

the second one but five geometrical distances are added as error parameters. Those distances 

are chosen so that inverse kinematics can be directly obtained with the algebraic algorithm. 

Those distances are a2, a3, a4, d4 and d6. 

Table 5.5 Robot model for 16 parameters 

i αi (º) ai (mm) θi (º) di (mm) 
1 0 0 θ1 486.5 
2 −90 150+δa2 θ2−90+δθ2 0 
3 0 700+δa3 θ3+δθ3 0 
4 −90 δa4 θ4+δθ4 600+δd4 
5 90 0 θ5+δθ5 0 
6 −90 0 θ6+180+δθ6 65+δd6 

5.4.4 Kinematic calibration 

This model corresponds to a level-2 calibration of the robot (26 parameters). Robot base and 

tool calibration are also taken into account. We often used the full kinematic model to 



63 

compare results. The error parameters for the geometrical models are directly obtained from 

the axis calibration explained in Section 3.1. Inverse kinematics must be calculated by a 

numerical and iterative method (three iterations are enough in most cases). This model will 

be referred to as a full kinematic model (or entire kinematic model), which is the result of an 

entire kinematic calibration. 

Table 5.6 Full robot kinematic model 

i αi (º) ai (mm) θi (º) di (mm) 
1 0 0 θ1 486.5 
2 −90+δα2 150+δa2 θ2−90+δθ2 δd2 
3 δα3 700+δa3 θ3+δθ3 δd3 
4 −90+δα4 δa4 θ4+δθ4 600+δd4 
5 90+δα5 δa5 θ5+δθ5 δd5 
6 −90+δα6 δa6 θ6+180+δθ6 65+δd6 

5.4.5 34-parameter model 

This model corresponds to a complete kinematic calibration of the robot (26 error 

parameters). It also takes into account the stiffness effect of the robot arm with 4 more 

parameters for joints 2 and 3 (as explained in Section 5.3). In addition it reduces the errors of 

6th axis with 4 extra error parameters. Inverse kinematics must be calculated by a numerical 

and iterative method (three iterations are enough in most cases). This model corresponds to a 

level-3 calibration. 

Table 5.7 Robot model for 34 parameters 

i αi (º) ai (mm) θi (º) di (mm) 
1 0 0 θ1 486.5 
2 −90+δα2 150+δa2 θ2−90+δfθ2(θ2,θ3,δp23) δd2 
3 δα3 700+δa3 θ3+δfθ3(θ2,θ3,δp23) δd3 
4 −90+δα4 δa4 θ4+δθ4 600+δd4 
5 90+δα5 δa5 θ5+δθ5 δd5 
6 −90+ δα6 δa6 θ6+180+δfθ6(θ6,δp6) 65+δd6 
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The 4 parameters concerning the 6th axis errors correspond to the parameters represented in 

Table 5.2. We considered that the parameters that correspond to the joint 6 model are 

δp6={a0, a1, b1, a2, b2} The parameter ω is arbitrarily forced to 1 and the parameter a0 was 

already taken into account in the previous models as δθ6. 

The 4 parameters concerning the stiffness are inserted as δfθ2(θ2,θ3,δp23) and δfθ3(θ2,θ3,δp23) 

because they are a function that depends on the arm position (θ2 and θ3) and the four stiffness 

error parameters: δp23={ΔL, LG1, LG2, m} as explained in Section 5.3. 

 



 

CHAPTER 6  
 

INVERSE KINEMATICS 

The computation of the inverse kinematics is useful once we have obtained a calibrated 

model of our robot. To validate the model that we found we need to change our real targets 

into fake targets using the inverse kinematics, so that the position of the robot is improved. In 

other words, we need to change the joints of a desired position into a different (but close) set 

of joints so that error for that position is improved. 

 

The nominal inverse kinematics may be analytical, but to compute the inverse kinematics of 

a calibrated robot we may need a numerical method. The method used to compute the 

improved inverse kinematics is iterative and it approaches to the solution at each iteration. 

Joints are called as [ ]1 2 3 4 5 6, , , , , 
T

q q q q q q=q . 

6.1 Nominal inverse kinematics 

The nominal inverse kinematics for the ABB IRB 1600-6/1.45, as well as many other 

industrial robots, is analytical. 

6.1.1 Finding q1, q2 and q3 

Taking into account that the direct kinematics is represented as follows: 

 0 0 1 2 3 4 5
6 1 2 3 4 5 6

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p

n o a p

 
 
 = = =
 
 
 

X T A A A A A A  (6.1) 
We can find the position of the origin of the 4th frame using one of the two next equations: 
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 0 0
0 0 1 2 3 4 5 1 4 4,origin
4 1 2 3 4 5 6 ( )

0 0 0 1
−  

= = =  
 

R p
T A A A A X A A  (6.2) 

 0 0 1 2 3
4,origin 1 2 3 4

6

0 0

0 0
 

0

1 1

d

   
   
   = =
   −
   
   

p A A A A X  (6.3) 
We can find q1, q2 and q3 from: 

 4

4

4

1 2 3 2 4 23 4 23 6
0
4,origin 1 2 3 2 4 23 4 23 6

1 3 2 4 23 4 23 6

c ( s c s )

s ( s c s )

c s c

x x x

y y y

z zz

p a a d a p d a

p a a d a p d a

d a d a p d ap

  + + + −   
     = = + + + = −     
     + − + −    

p  (6.4) 
Combining the two first equations from (6.4), solution for q1 is direct considering that the 

term a2+a3s2+d4c23+a4s23 is different from zero: 

 1 1

6 6

c s

x x y yp d a p d a
=

− −
 (6.5) 

There are two solutions for q1:  1,1 6 6atan2( , )y y x xq p d a p d a= − −  (6.6)  1,2 6 6atan2( , )y y x xq p d a p d a= − + − +  (6.7) 
We find here the so-called alignment singularity when py=d6ay and px=d6ax, which means 

that the term a2+a3s2+d4c23+a4s23 is zero, so this singularity is the only case where we cannot 

apply the equation (6.5). 

 

If q1 is known, solution for ݍଷ can be obtained from next two equations:  
4 41 1 2 3 2 4 23 4 23c s s c sx yp p a a d a+ − = + +  (6.8)  

43 2 4 23 4 23 1c s c za d a p d− + = −  (6.9) 
Squaring the above two equations, adding them, and simplifying we have that 
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 ( ) ( )
4 4 4

2 22 2 2
3 4 4 3 4 3 4 3 3 1 1 1 22 2 c c sz x ya d a a d s a a p d p p a+ + − + = − + + −  (6.10) 

So c3 and s3 are linearly dependent 

 3
3

s
c

A B

C

+=  (6.11) 
Where C is a constant which can be zero or different to zero:  ( ) ( )

4 4 4

2 2 2 2 2
1 1 1 2 3 4 4z x yA p d c p s p a a d a= − + + − − − −  (6.12)  3 42B a d=  (6.13)  4 32C a a=  (6.14) 

6.1.2 Case with C=0 

If C=0 it means that a4 is zero (a3 could also be zero but in this case it would not be useful to 

have the 3rd axis). That is the case of robot ABB IRB 1600-6/1.45, s3 can be directly obtained 

(B is a constant different to 0): 

 3s
A

B
= −  (6.15) 

There are two solutions for q3:  2
3,1 3 3atan2(s , 1 s )q = −  (6.16) 

 2
3,2 3 3atan2(s , 1 s )q = − −  (6.17) 

6.1.3 Case with C≠0 

In the case where C≠0 there is the line (6.11) intersecting the circle 2 2
3 3s c 1+ =  (working in 

the plane xy, where x=s3 and y=c3). 
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Figure 6.1 Solutions for q3 

Two solutions can be found: 

 2
2 3
3

s
s 1

A B

C

+ + = 
 

 (6.18) 
 2 2

2
3 32 2 2

2
1 s s 1 0

B AB A

C C C

 
+ + + − = 

 
 (6.19) 

 
1,2

2 2 2 2

2 4 2 2

3 2

2

1 1

s
1

AB A B B A
C C C C

B
C

  
− ± + + −  

  =
+

 (6.20) 
In the case where the absolute value of s3 is bigger than one, the pose is not reachable 

because it is too far from the robot. In the case where the value of s3 is exactly one, we find 

the so-called elbow singularity. 

 

Once we obtained s3: 
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 3,1
3,1 3,1

s
atan2 s ,

A B
q

C

+ 
=  

 
 (6.21) 

 3,2
3,2 3,2

s
atan2 s ,

A B
q

C

+ 
=  

 
 (6.22) 

Finally, q2 can be obtained from (6.8) and (6.9). Rewriting these equations: 

( ) ( )2 2s 6.8 c 6.9+ : 3 4 3 4 3 1 2 2 2a d s a c k s k c− + = +  (6.23) 
( ) ( )2 2c 6.8 s 6.9− : 4 3 4 3 2 1 2 2d c a s c k s k+ = −  (6.24) 

Where:  
4 41 1 1 2c sx yk p p a= + −  (6.25)  

42 1zk p d= −  (6.26) 
Joint q2 is completely defined as we have 2 lineal equations (q3 is known): 

 3 4 3 4 31 2 2

4 3 4 32 1 2

s cs

c sc

a d ak k

d ak k

− +    
=      +−     

 (6.27) 
 ( )2 2 2atan2 s ,cq =  (6.28) 
6.1.4 Finding q4, q5 and q6 

To find last three joints we must use 3
6R : 

 ( )
3 3

13 0 1 2 3 4 5 6 6,origin
6 1 2 3 4 5 6

0 0 0 1

−  
= = =  

 

R p
T A A A X A A A  (6.29) 

where 
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 1,1 1,2 1,3 4 5
3
6 2,1 2,2 2,3 5 6 5 6 5

3,1 3,2 3,3 4 5

* * c s

s c s s c

* * s s

r r r

r r r

r r r

  − 
   = = −   
     

R  (6.30) 
We omitted the expressions marked with * as they are not of interest. We obtain two 

solutions for q5:  2
5,1 2,3 2,3atan2( 1 , )q r r= −  (6.31) 

 2
5,2 2,3 2,3atan2( 1 , )q r r= − −  (6.32) 

Once q5 is found, q4 and q6 are completely defined if q5≠0: 

 3,3 1,3
4

5 5

atan2( , )
s s

r r
q

−
=  (6.33) 

 2,2 2,1
6

5 5

atan2( , )
s s

r r
q

−
=  (6.34) 

If we are always working in the range of [−180, 180] there are 2×2×1×2×1×1=8 solutions. If 

this range is extended there can be more solutions. 

6.1.5 Wrist singularity (q5=0) 

We will often find the wrist singularity (where q5=0, here there is a possible solution 

simplifying (6.30)): 

 1,1 1,2 1,3 4 6 4 6
3
6 2,1 2,2 2,3

3,1 3,2 3,3 4 6 4 6

c c s s * 0

0 0 1

c s s c * 0

r r r

r r r

r r r

  − + 
   = =   
   +  

R  (6.35) 
We can completely find q6 if q4 is known (we have 1 DOF so we can impose q4=0) 
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 2 2
4 1,1 4 3,1 4 6 4 6 6s c s s c s sr r+ = + =  (6.36)  4 3,1 4 1,1 6s c cr r− =  (6.37)  6 6 6atan2(s ,c )q =  (6.38) 

6.2 Iterative inverse calculation 

The iterative inverse calculation is useful when the nominal inverse kinematics cannot be 

applied. Here we explain a numeric and iterative method that it approaches to the final 

solution at each iteration. This method does not need the computation of the jacobian nor 

derivatives of any kind. It only needs the complete direct model and the nominal inverse 

kinematics solution. We used this inverse instead of other existing ones (such as (Chen and 

Parker, 1994)) because we experimentally found that we obtained good results. 

 

The expression T6 is defined as the nominal direct kinematics:  0 1 2 3 4 5
6 1 2 3 4 5 6=T A A A A A A  (6.39) 

Taking TR6 as the “real” direct model (the model that takes into account all errors and is 

closer to the real robot):  0 2 3 4 5
R6 ,1 , ,3 ,

1
,5 ,62 4R R R R R R=T A A A A A A  (6.40) 

If we want to find the inverse solution for the pose H which represents the 6th frame with 

respect to the robot base frame “0”, we must proceed with next steps for iteration i from 1 to 

n (we take Hfake,0=H and Haprox,0=H so that at first iteration Hfake,1=H): 

1. 1
fake, fake, 1 aprox, 1( )i i i

−
− −=H H H H . 

2. qaprox,i is the nominal inverse kinematics solution for Hfake,i. 

3. We take aprox , 6 aprox ,( )i i=H TR q . 

4. If the error between Haprox,i and H is smaller than the desired error we take qaprox,i as the 

real inverse kinematics solution for H, otherwise we keep iterating. 
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The block diagram of this algorithm is shown in Figure 6.2. 

 

Figure 6.2 Block diagram of the algorithm 

 

Figure 6.3 Iterative inverse kinematics representation for iteration i 
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The used error function takes into account the distance error and the orientation error 

(Schneider and Eberly, 2003): 

  1,1  2,2  3,32 2 2 1 1
 cos

2
e e e

e e e

r r r
E x y z k − + + − 

= + + +  
 

 (6.41) 
Considering that for one pose the joints are qi, the complete transformation error is: 

 ( )( ) 1 e,3 3
e 6 R6 ( )  

0 0 0 1

e

e

e

x

y

z
− ×

 
 
 = =
 
 
 

R
H T q T q  (6.42) 

For most tests we took k=180/π so that we give the same importance to 1 mm and 1º (cos−1 

gives back the angle in radians). 

 

There is no theoretical proof that this method is always convergent. To experimentally test 

the convergence we used 2000 random poses to numerically compute the inverse kinematics 

with three different models. These three models are chosen so that the maximum errors 

compared to the nominal model are 1.176, 2.425 and 3.881 mm respectively, according to 

Table 6.1. The second model corresponds to one of the best kinematic models found in 

Chapter 7. 
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Table 6.1 Stabilization of the iterative inverse kinematics 

 
Iteration 1 2 3 

Error µ σ max µ σ max µ σ max 

Model 
1 

Position 
error (mm) 

0.588 0.088 1.176 0.001 0.001 0.017 0.000 0.000 0.000

Angle error 
(º) 

0.049 0.012 0.118 0.000 0.000 0.003 0.000 0.000 0.000

Model 
2 

Position 
error (mm) 

0.925 0.245 2.425 0.002 0.001 0.026 0.000 0.000 0.001

Angle error 
(º) 

0.120 0.028 0.279 0.000 0.000 0.008 0.000 0.000 0.000

Model 
3 

Position 
error (mm) 

1.558 0.417 3.881 0.005 0.004 0.097 0.000 0.000 0.004

Angle error 
(º) 

0.120 0.028 0.279 0.000 0.001 0.023 0.000 0.000 0.000

 

As seen in Table 6.1, for the three models used the error was really small after 3 iterations. 

For 4 iterations and more all errors were smaller than 5×10-4 mm (or 5×10-4º).  

 



 

CHAPTER 7  
 

CALIBRATION METHODS 

In this chapter we describe the calibration method by which we obtained best results for our 

working conditions. The method was applied to the ABB IRB 1600-6/1.45 robot with a Faro 

laser tracker measure system. Although many calibration tests have been performed we show 

here the most relevant ones. 

 

We can divide a full calibration in three main steps: we must first take measurements of the 

robot’s position at a number of different poses, then we must run an optimization procedure 

that finds the error parameters for which the position errors at the measurement poses would 

have been minimum, finally, we must verify the accuracy of the calibrated robot at various 

other poses. 

 

The variables that must be taken into account to reach the best calibration may vary 

depending on every robot. We can consider variables the stabilization time needed by the 

robot to take a measurement, the design of the tool, the number of targets used, the number of 

measures needed for calibration or the first guess of the error parameters to start iterations. 

7.1 Procedure for taking measurements 

To take the position measurements we must take into account three factors: 

• We must establish an arbitrary base in the working space fixed with respect to the robot. 

It is important to do that in case the laser tracker has to be moved between measurements 

or in case we want to perform an absolute calibration. Otherwise, this base is not 

necessary. The base is a frame that must be measured by three points as described in 

Section 3.3. 

• It is important to let the robot stabilize for a couple of seconds before taking a 

measurement. Even if the robot seems to be stopped there are vibrations that add noise to 

the measurement system. Appendix V shows the stabilization time needed for the robot 
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used. It is found that the robot is fully stabilized after two seconds. For our tests we used 

four seconds of wait time to take the measurements. 

• For a laser tracker, the angular accuracy tests (suggested accuracy tests by the Faro 

software) must be between the specified limits. It is strongly recommended to verify this 

before taking any measurements and after warming up the laser tracker. 

 

Once these three aspects are clear we can proceed with the measurement procedure. This 

procedure consists of seven steps: 

1. Initialization of the laser tracker measurement system: this step allows the laser tracker 

to warm-up. It takes around 15 minutes. 

2. Warm-up of the robot during one hour. While the robot is being warmed up we can run 

the angular accuracy tests to check the precision of the laser tracker and proceed with 

compensation if the laser tracker needs it. 

3. Measure an arbitrary base by three points as described before in this section. 

4. Tool calibration: the procedure explained in Section 3.4.2 must be followed in this step if 

the dimensions of the tool are not known. Even if the dimensions of the tool are known 

at a high precision it is recommended to perform this tool calibration to compare both 

results. This step takes from 5 to 15 minutes depending on the number of targets that we 

want to use (in our case we used the eight corner targets described in Section 3.4.4). 

5. Measurement of the two first axes to find the robot base: six measurements are needed 

(three measurements per axis). To predict the position of the target it is useful to know 

the position of the robot base referenced to an arbitrary base. In this way, using the 

nominal direct kinematics the positions of the targets are known with the nominal 

accuracy. If the nominal error is around 2 mm the laser tracker finds immediately the 

target without having to launch the search algorithm or having to change the position of 

the SMR. 

6. Measurement of 18 points describing each of the six axes: this step needs an operator 

close to the robot to reorient the targets so that at each position one SMR target can be 

seen by the laser tracker. This step takes from five to ten minutes. 
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7. Measurement of 102 random points: fifty percent of these points must be in the desired 

working zone of the robot and the other fifty percent must cover the complete workspace 

of the robot. The orientation of the tool for these points is chosen so that one target can 

always be seen by the laser tracker without having to reorient the SMR. We can measure 

at a rate of 360 points per hour, waiting 4 seconds by measurement and moving the robot 

at 500 mm/s with slow accelerations. This procedure can be done in 17 minutes. If it is 

the first time that we calibrate the robot it is better to take more measures to deeply 

analyze the behavior of the robot and eliminate useless error parameters if necessary. 

Such as the model for the 6th axis. 

 

It is very useful to develop an application that controls the robot and the laser tracker at the 

same time as the procedure of taking measures is much faster. Otherwise, the 7th step may 

take longer and can be dangerous for an operator. In our case we controlled the robot and the 

laser tracker with Matlab. 

7.2 Points needed for calibration 

We mentioned a minimum of 120 measurements, plus 6 measurements to find the robot base 

(recommendable as the procedure is much faster) plus 3 points to localisate the base (optional 

if the laser tracker does not have to be moved) plus the points needed to calibrate the tool, if 

needed (which corresponds to a minimum of 6+n, where n is the number of targets that the 

tool has). 

 

If it is the first time that we calibrate a new kind of robot it is much better to take more points 

so that we have more information of its behavior. For example, if we take more points that 

describe each of the axis we can make an axis analysis as described in Section 4.1 and shown 

in Figure 4.3. If we do so, we can decide if a stiffness model and/or a 6th axis model is 

necessary to calibrate the robot (as described in Sections 4.3 and 4.2 respectively). It would 

also be useful to obtain the first guess to start iterations. We can do all these if we take 

around 158 measurements of the axis instead of the 18 measurements that we mentioned. In 

this case we would need a total of 240 measurements. 
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In addition, if it is the first time we calibrate a robot, to be able to make a pre-validation of 

the kinematic model obtained from optimisation before testing the model on the robot (as 

explained in Section 7.6) it is recommended to take more measurements all over the robot 

working space. 

 

Although we tested different combinations (concerning the number of measurements) to 

obtain a good direct kinematic model we explain a combination based on 120 measures. Best 

results were obtained when we used 120 measurements or more. 

 

The combination of the 120 measurements is divided in three groups of points: 

• The 18 measurements from axes identification. Keeping all axis at zero degrees, every 

axis is moved one by one at the positions: −30, 0 and 30º. These 18 points are used for 

axes identification as well as for an entire kinematic calibration and objective function 

minimisation. These measurements correspond to the positions shown in Figure 3.1. 

• The “ISO cube” points: 52 measurements which correspond to the largest cube allowable 

in the frontal robot working space (as specified in ISO 9283:1998). The orientation of the 

tool is chosen so that the laser tracker can always see at least one SMR target. Robot 

configuration is not restrained. We found that for the ABB IRB 1600-6/1.45 this cube has 

edge length of 650 mm. 

• The “all robot range” measurements: 50 measurements inside the whole workspace of the 

robot (limited by the obstacles close to the robot as well as the visibility of the target by 

the laser tracker). Same as before, the orientation is chosen so that the laser tracker can 

always see at least one SMR target. Robot configuration is not restricted, so each joint 

can achieve any position in its full joint range. In our case, because of the obstacles, we 

restricted the Z value (referenced in the robot base) to be higher than 700 mm in the front 

side (X≥150 mm) and 1100 mm in the back side (X<150 mm). 
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Figure 7.1 Random ISO cube points (left) and all range points (right) with respect to the 
robot and laser tracker. 

Even if we only want to be precise on a specific area we realized that it is better to take 

measurements all over the robot space and include it in the optimization procedure. 

7.3 Calibration procedure 

Having decided which direct kinematic model we are going to use, we must make the model 

suitable to the measured points to find the best fit for all these measurements. The error 

parameters that include the kinematic model are also commonly called robot’s signature or 

birth certificate. 

 

The direct kinematic model used must be applied according to the accuracy specifications 

needed. If the model is more complex (it has more error parameters) the inverse kinematics 

computation becomes more complex. Some robot companies may let the user modify some 

of the nominal distances and it will still compute the inverse kinematics even for the path of a 

linear or circular movement. In other cases we may need an external filter (software) that 

changes our targets into fake targets. For example, in some cases we may need maximum 

path accuracy so we can use a simpler model before using a more complex model that only 

allows improvement of the accuracy at the start and end poses of the path.  
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The optimization problem to find the error parameters is solved as explained in Section 3.5. 

As described in that section, the algorithm used to iterate to solve the optimization problem is 

the Nelder-Mead method. The objective function is the maximum position error of all used 

measures for tools number one, two and three (according to Section 3.4.4). The robot models 

used are described in Section 5.4. The most complete model is the 34-parameter model. To 

obtain the error parameters for this model, before starting the optimization algorithm we used 

as a first guess the error parameters obtained from the kinematic calibration, which 

corresponds to a model found by the 18 measurements taken moving one axis at a time (the 

extraction of the these kinematic parameters is explained in Section 3.1). 

 

We tried other objective functions instead of the minimization of the maximum error, like 

least-squares optimization or mean optimization. Although we may improve the mean and 

standard deviation errors a little, the maximum error values are much worse. Although we 

also tried proportional error parameters for the encoders (as described in equation (3.31)) we 

realized that they did not improve the precision, so they have not been taken into account. 

7.4 Verification procedure 

Once we have found one or more kinematic models that try to improve the nominal direct 

kinematics we are ready to test the real accuracy. It is at this point that the iterative inverse 

kinematics is important to create fake targets. 

 

We must test the accuracy of a direct kinematic model in the area where we want to be 

precise and with the conditions that we are going to use (different payloads, different tools, 

etc.). 

 

If we use more points in Section 7.2, the statistics found should look more similar to the 

expected values (using the method explained in Section 7.6). 
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In our case we proceeded with many different verification procedures using different models 

found in Section 7.3, we also often used the expected error values to predict how good a 

kinematic model would be. Results are shown in Section 7.7. 

7.5 Error vs. iterations 

When the optimization algorithm iterates to find the minimum value for the objective 

function it is supposed to find an equivalent or better combination of error parameters at the 

end of each iteration. 

 

During a complete minimization procedure we looked at the evolution of the expected error 

for three different groups of points: 

1. The first group of 140 points was used by the objective function: 54 points correspond to 

the robot axis, 46 random points correspond to the ISO cube area and 40 random points 

correspond to all the range of the robot (except for the obstacles). 

2. The second group corresponds to 20 random points in the ISO cube area. These points 

are different from the 46 taken on the first group. 

3. The third group corresponds to 20 random points in all the range of the robot (except for 

the obstacles). These points are different from the 40 taken on the first group. 

 

During 2000 iterations minimizing the objective function with a direct kinematic model 

composed by 34 parameters we stored the expected error for the two extra groups of points 

every ten iterations. 
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Figure 7.2 Evolution of calibration step 

As seen in Figure 7.2, while the objective function tends to improve every time, the other two 

groups of points have a different behavior through the whole iteration. For example, the 

group of the all robot range points (green line) reaches its minimum between 300 and 500 

iterations after the algorithm started. Between 500 and 1500 iterations the robot model gets 

worse for these points as the objective function improves. 

 

The blue point corresponds to the minimum taking into account all observations. Although 

we probably could have obtained better robot kinematic models treating this information we 

considered the result after 2000 iterations. 

 

This information tells us that there is a local minimum for the first group of points that does 

not correspond to the local minimum for the other groups of points. To avoid similar results 

we should use the observability matrix and improve the optimization method. 
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7.6 Expected error vs. real position error 

Considering T6 as the nominal direct kinematics analytical expression:  0 1 2 3 4 5
6 1 2 3 4 5 6( ) =T A A A A A Aq  (7.1) 

If we take TR6 as the found (and improved) direct model, which takes into account the robot 

errors:  0 1 2 3 4 5
R 6 1 2 3 4 5 6( ) R R R R R R=T q A A A A A A  (7.2) 

For a given position of the robot [ ]A 1 2 3 4 5 6, , , , , 
T

q q q q q q=q  we can have the measured point 

(real position for Aq ), the nominal kinematics position result ( 6 A( )T q ) and the real direct 

model position result ( R6 A( )T q ). As shown in Figure 7.3. 

  

Figure 7.3 Analysis of the expected error 

The expected error (improved) is the distance between the measured point and the real direct 

kinematics for Aq . 
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Ideally, for this given Aq  position we should calculate the iterative inverse of 6 A( )T q  

obtaining another point B A≅q q  that should bring the robot to a position close to the 

measured point. Errors have been exaggerated in the Figure. In next equation 1
R 6

−T  

represents the inverse of the direct representation A6 ( )T q :  [ ]1
B R6 6 A A( )−= ≅q T T q q  (7.3) 

This is the way we must do if we want to quickly evaluate the precision of a found direct 

kinematics model. We do not need to take other measurements (like in this case it would be ࢗB) if we have a lot of measurements to test with (since the measurements used to validate 

the model must be different from the ones used for the minimization of the objective 

function). 

7.7 Verification results 

We performed a complete study of our robot considering a lot of tests with the expected 

errors. We did that to decide how many measurements we needed to stablish a calibration 

method and to see if the effect of taking random points had any influence on the final results. 

We also wanted to proove that the expected error was similar to the error found when the 

verification was performed. 

 

Taking into account the three groups of points mentioned in Section 7.2 to calibrate the 

robot, we took 158 measurements from moving each axis individually: 17 measurements 

from each of the first five axis (each axis is moved from −40 to +40º and back to −40º by 

steps of 10º keeping all other axis at 0º) and 73 measurements from the 6th axis (which is 

moved from −180 to +180º and back to −180º by steps of 10º). From these 158 

measurements we performed an analisys as we did in Section 4.2. We found the following 

error parameters from the 6th axis analisys, that we used as first guess to start the 

optimization algorithm (when using the 34-parameter model): a1=−2.802×10-4 , 

b1=−7.081×10-4 , a2=−9.494×10-4 , b2=−3.080×10-4 which are similar to the parameters 
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already found in Table 5.2. Arbitrarily we considered ω=1, and the parameter a0 is already 

considered by the parameter δθ6 so we did not take it into account. 

 

For the second and third groups of points mentioned in Section 7.2 we took 1000 

measurements per tool point. As we have eight tool points (or SMR targets) we took 8000 

measurements for the area of the ISO cube and other 8000 measures for all robot range. We 

took the measurement twice: without extra charge and with extra 3 kg (the final payload was 

3 kg and 6 kg respectively). After the test we realised that 48 measurements were not visible 

for the cube ISO group of points and 286 measures were not visible for the all robot range 

group of points. 

 

With all these 32000 measurements (plus 158 measurements from axis identification), 

everytime we wanted to perform an optimisation test we picked random points that 

corresponded to a tool weigh of 3 kg (without extra charge) and for tool targets 1, 2 and 3, 

what makes a bit less than 6000 measurements as some targets cannot be seen. We evaluated 

the expected error for all those 32000 points (with and without extra charge, for all 8 tool 

targets). Several optimization tests were performed, here we show the two most relevant 

ones. 

 

We will often show the error value obtained from adding the mean plus three times sigma, 

which statistically corresponds to the maximum error for the 99.73% of the observations. All 

errors correspond to an absolute calibration unless otherwise specified. Sections 7.7.3.6 and 

7.7.3.7 offer better results if we want to perform a relative calibration. All measurements 

were taken after the robot was stabilized for four seconds and at a robot speed of 500 mm/s. 

7.7.1 Results from nominal kinematics model 

Before giving any improved kinematic model we show here the expected nominal error for 

the 8000 measurements taken, wich correspond to the first calibration method (only the base 

and the tool are calibrated). As shown in Table 7.1 the worst position error is 2.326 mm. 
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Table 7.1 Expected position error for the nominal kinematic model for 8 targets. 

 
Tool 
load 

µ 
(mm) 

σ 
(mm) 

max 
(mm) 

µ+3σ (mm) 
(99.73% CI) 

Errors for ISO cube area 
3 kg 

1.004 0.167 1.890 1.505 
Errors for all range area 0.961 0.214 2.268 1.604 
Errors for ISO cube area 

6 kg 
0.970 0.155 1.963 1.434 

Errors for all range area 0.979 0.222 2.326 1.643 
 

These results are the reference to compare all other models, so other models found should be 

better than the nominal position errors shown here. 

7.7.2 Results from entire kinematic calibration model 

We tried four different kinematic calibrations (using the 26-parameter model that takes into 

account the geometric error parameters), using from 18 measurements (3 per axis) to 158 

measurements (17 for axes one to five and 73 for axis six). Since the points are measured 

with the first target (which corresponds to the target 1 from table Table 3.1) we also show the 

position errors for the case of just one target (target one). 

Table 7.2 Expected position error for the kinematic calibration model (3 kg). 

Target 1 All 8 targets 
Number of 
points used 

area 
µ 

(mm) 
σ 

(mm) 
max 
(mm) 

µ 
(mm) 

σ 
(mm) 

max 
(mm) 

18 points 

IS
O

 c
ub

e 0.452 0.269 2.312 0.416 0.262 2.459 
54 points 0.528 0.307 2.434 0.467 0.303 2.637 
102 points 0.544 0.309 2.509 0.479 0.305 2.713 
158 points 0.549 0.308 2.507 0.482 0.304 2.726 
18 points 

A
ll

 r
an

ge
 0.741 0.315 2.575 0.736 0.304 2.738 

54 points 0.836 0.336 2.740 0.815 0.325 2.963 
102 points 0.844 0.342 2.794 0.825 0.328 3.032 
158 points 0.847 0.342 2.810 0.826 0.328 3.041 

 

Taking a look at Table 7.2 we can say that the best kinematic calibration is obtained when we 

use 18 measurements. As we increase the number of measurements the position error is 
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worse for the kinematic calibration. Comparing these results with the nominal values we can 

see that the mean is always improved (mainly for the area of the ISO cube, as the axis points 

are mostly in this area) but maximum values are worse. Table 7.3 shows the expected errors 

for 6 kg of payload and for the full kinematic calibration from 18 measurements (or points). 

Table 7.3 Expected position error for the kinematic model (6 kg). 

 Target 1 All 8 targets 
Number of 
points used 

Area 
µ 

(mm) 
σ 

(mm) 
max 
(mm) 

µ 
(mm) 

σ 
(mm) 

max 
(mm) 

18 points 
ISO cube 0.480 0.296 2.461 0.396 0.279 2.624 
All range 0.795 0.344 2.813 0.773 0.322 2.818 

 

Even if the full kinematic calibration was performed with only one target and 3 kg of 

payload, we can see that the error for the other seven targets is similar, so we can say that the 

mean of the orientation errors is also improved. 

7.7.3 Optimisation test results from 80 to 1000 identification measurements 

We first tried to optimizate different combinations from the three groups of points (axis 

points, ISO cube points and all range points). We always used 18 points or more from axis 

analisys so that it was possible to find a first kinematic model as a first guess to start 

iterations (which gave better results). Considering the axis measurements and adding more 

measurements to the optimization algorithm (a total ranging from 80 to 1000 measurements 

was tested). We combined adding measurements only from the ISO cube, only from all robot 

range and from both groups of measurements. With this test we found that it is better to 

combine both groups of points even if we only want to be precise in a specific area (like the 

ISO cube). 
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7.7.3.1 Results for the 34-parameter model 

When we used the 34-parameter model, the objective function (maximum error for the 

minimized measurements) ranged between 0.5 mm and 1.0 mm. The expected error for the 

8000 ISO cube points was between 0.7 mm and 1.6 mm and the expected error for the 8000 

all range points was between 0.85 mm and 1.60 mm. 

 

One of the best kinematic models found in this test corresponds to 200 measurements (54 

measurements for a first full kinematic calibration plus 76 measurements from the ISO cube 

area plus 70 measurements from all range area). The result of the objective function was 

0.586 mm. Some information concerning the expected values from the four groups of 8000 

measurements is given in Table 7.4 and Table 7.5 (first table with 3 kg of payload and 

second table with 6 kg of payload), we also performed a verification with 1000 

measurements for each case (for targets from 1 to 8, what means 125 measurements per 

target), so a total of 4000 measurements were taken for a first verification (a few 

measurements could not be visible). Finally, we also performed a verification using the same 

8000 measurements that we used to obtain the expected error for the case of 3 kg payload. 
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Table 7.4 Position errors for a 34-parameter calibration from 200 identification 
measurements (3 kg) 

Area ISO cube All range 
Error (mm) µ σ max µ+3σ µ σ max µ+3σ 

Expected from 8000 
measures 

0.272 0.065 0.714 0.466 0.321 0.072 0.858 0.538 

Found from 1000 
measures 

0.277 0.063 0.647 0.466 0.329 0.070 0.703 0.539 

Found from the 
8000 measures 

0.286 0.072 0.793 0.502 0.345 0.079 0.927 0.582 

Table 7.5 Position errors for a 34-parameter calibration from 200 identification 
measurements (6 kg) 

Area ISO cube All range 
Error (mm) µ σ max µ+3σ µ σ max µ+3σ 

Expected from 8000 
measures 

0.288 0.070 0.851 0.497 0.353 0.096 1.056 0.641 

Found from 1000 
measures 

0.270 0.067 0.658 0.471 0.346 0.085 0.798 0.601 

 

First of all, we can see that the expected error values correspond to the validation error 

values. We can also see that if we take more points a much greater maximum value is found. 

However, if we use the statistic indicator of the 99.73% confidence interval (µ+3σ) we find a 

maximum value of 0.601 mm from 1000 measurements and an expected maximum value of 

0.641 mm from 8000 measurements, for 6 kg of payload (maximum load) for the 99.73% of 

the observations. 

 

On the other hand, if we are working in the ISO cube area with 3 kg of payload we will find a 

maximum value of 0.502 mm for the 99.73% of the observations. 

7.7.3.2 Results for the 11-parameter model 

We performed the same expected error tests for the 11-parameter and 16-parameter models. 

We realised that the 11-parameter model is considerably better than the nominal but the 16-

parameter model does not improve the 11-parameter model. So we only validated the 11-
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parameter model obtaining the results shown in Table 7.6 and Table 7.7 (the best expected 

error was found from a calibration made with 400 measurements). 

Table 7.6 Position errors for a 11-parameter calibration from 400 identification 
measurements (3 kg) 

Area ISO cube All range 
Error (mm) µ σ max µ+3σ µ σ max µ+3σ 

Expected from 8000 
measures 

0.580 0.149 1.550 1.026 0.813 0.173 1.762 1.330 

Found from 1000 
measures 

0.589 0.148 1.483 1.033 0.794 0.173 1.727 1.313 

Table 7.7 Position errors for a 11-parameter calibration from 400 identification 
measurements (6 kg) 

Area ISO cube All range 
Error (mm) µ σ max µ+3σ µ σ max µ+3σ 

Expected from 8000 
measures 

0.619 0.147 1.522 1.060 0.858 0.188 2.035 1.423 

Found from 1000 
measures 

0.636 0.155 1.467 1.101 0.849 0.188 1.928 1.413 

 

We can see that in all cases the position error is better than the nominal error. 

7.7.3.3 Graphics of the errors found 

The following graphics show each measurement error found for the tables in Sections 7.7.3.1 

and 7.7.3.2. For each of the four cases we combined the 3 kg and 6 kg tool charges with the 

ISO cube area and all robot range area. We plot the 1000 found position errors for the 

nominal model, the 11-parameter model and the 34-parameter model. 
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Figure 7.4 Position error in ISO cube area (3 kg) 

 

Figure 7.5 Position error in all robot range area (3 kg) 
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Figure 7.6 Position error in ISO cube area (6 kg) 

 

Figure 7.7 Position error in all robot range area (6 kg) 
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All of these values correspond to an absolute and arbitrary base (absolute calibration), but if 

the position of the base is not important we can perform a relative calibration. 

7.7.3.4 Position and orientation errors from ISO 9283 tests 

The norm ISO 9283 establishes some procedures to test the accuracy and repeatability of a 

robot. However, the tests proposed are not complete enough to have an idea of how accurate 

a robot is. In addition, the localisation of the robot base is not specified and the dimensions of 

the tool that we should use are not clear enough. 

 

We show here the ISO 9283 accuracy results (described in Section “7.2.1: Pose accuracy” in 

the ISO norm) for four different kinematic models: the three models shown in Section 7.7.3.3 

(nominal, 11-parameter and 28-parameter) and the full kinematic model (directly obtained 

from a kinematic calibration by axis). To measure the pose for each position we used the 

targets 1, 2 and 3 from the tool described in Section 3.4.1, payload was 3 kg. In the Annex I 

(where repeatability results are shown) it is specified how the five measurements from the 

ISO cube are taken in 30 cycles. 

Table 7.8 ISO 9283 position and orientation errors for the four models (3 kg) 

 Position errors (mm) Orientation errors (º) 
Model mean max mean max 

Nominal 0.964 1.122 0.103 0.18 
11-parameter 0.559 0.62 0.107 0.165 

Kinematic 0.288 0.458 0.103 0.183 
34-parameter 0.316 0.371 0.077 0.154 

 

Mean and maximum position errors are shown in the previous Table. We also show in Figure 

7.8 all position and orientation errors by point ID and by cycle. 
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Figure 7.8 ISO 9283 position errors reduced to the 6th axis (3 kg) 

 

Figure 7.9 ISO 9283 orientation errors (3 kg) 
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As we can see, the position and orientation errors obtained here are much better than the ones 

shown previously, since there are just five positions being measured. We can even see that 

the mean position error of a full kinematic calibration is better than the 34-parameter model. 

So ISO 9283 accuracy tests are not enough to validate a good model. 

7.7.3.5 Orientation error analisys 

In the previous section (concerning the ISO 9283) we introduced the orientation errors. We 

performed another pose test for each of the four models shown in the previous section 

measuring 1000 poses. Payload is 3 kg. Here we show the position and orientation errors. 

The position errors are reduced to the 6th axis, so the errors of the first axis are only reflected 

as orientation errors. 

Table 7.9 Position and orientation errors found for the four models (3 kg) 

 Position errors (mm) Orientation errors (º) 
Model µ σ max µ+3σ µ σ max µ+3σ 

Nominal 0.969 0.078 1.241 1.204 0.108 0.022 0.229 0.174 
11-parameter 0.428 0.086 0.96 0.685 0.109 0.015 0.178 0.154 

Kinematic 0.237 0.075 0.98 0.463 0.103 0.024 0.232 0.176 
34-parameter 0.223 0.043 0.451 0.351 0.082 0.020 0.166 0.141 
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Figure 7.10 Position errors reduced to the 6th axis for the four models (3 kg) 

 

Figure 7.11 Orientation errors for the four models (3 kg) 
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We can clearly see that if we measure the position on the 6th axis, position error results are 

much better. We can also see that maximum orientation errors are worse for the kinematic 

model than for the nominal model. We can also see that the 11-parameter model and the 

kinematic model have one common pose which has a much worse position than all other 

measurements (points number 1342 and 2342). 

7.7.3.6 Relative analyses from a virtual frame 

Until now we only gave absolute calibration position errors. Here we show the results 

concerning the same 34-parameter model (found in Section 7.7.3) if we only want to be 

precise in a small area. We choosed a sphere of diameter 400 mm centered in the position 

{X=845.7 mm; Y=200 mm; Z=965.7 mm } with respect to the robot base frame, as shown in 

Figure 7.12. Robot configuration is chosen so that it is the closest one to the figure (robot at 

the “zero” position). 

 

Figure 7.12 Position of the 434 sphere points chosen for relative analysis 

We took 434 measurements with any of our eight targets (for each measurement a random 

target is chosen) and with 3 kg of payload. We calculated the mean position vector (the mean 

coordinate errors for all measured points), which was {δx=0.018 mm; δy=−0.117 mm; 

δz=0.020 mm } with respect to the robot base frame. Statistics are shown in Table 7.10. 
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Table 7.10 Relative position errors (from virtual frame, 3 kg) 

Model µ (mm) σ (mm) max (mm) µ+3σ (mm) 
34-parameter 0.179 0.048 0.462 0.323 

 

Figure 7.13 shows the dispersion of errors. 

 

Figure 7.13 Relative position errors from a virtual frame (3 kg) 
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Table 7.11 Relative position errors (from 3 targets, 3 kg) 

Model µ (mm) σ (mm) max (mm) µ+3σ (mm) 
34-parameter 0.257 0.052 0.502 0.412 

 

Figure 7.14 shows the dispersion of errors. 

 

Figure 7.14 Relative position errors from 3 targets (3 kg) 
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procedures with 80, 120 and 180 measurements (using the same 34-parameter model). All 

measurements are taken randomly and the identification measurements used in one procedure 

are not used in another procedure. 

 

The verification is performed by pose measurements (from tool targets 1, 2 and 3). The 

payload is 3 kg. We show position and orientation errors for each of these three 34-parameter 

procedures found plus the 34-parameter results obtained in Section 7.7.3 (the test performed 

with the 34-parameter procedure in Section 7.7.3.5 is repeated from different identification 

measurements). Statistics obtained are shown in Table 7.12. 

Table 7.12 Position and orientation errors for the 34-parameter procedures (3 kg) 

Procedure from: 
Position errors (mm) Orientation errors (º) 

µ σ max µ+3σ µ σ max µ+3σ 
80 measures 0.345 0.056 0.568 0.512 0.090 0.023 0.185 0.157 
120 measures 0.291 0.043 0.472 0.419 0.097 0.018 0.171 0.150 
180 measures 0.292 0.043 0.474 0.422 0.081 0.019 0.164 0.138 
200 measures 0.292 0.040 0.453 0.412 0.080 0.021 0.174 0.144 

 

The history of all position and orientation errors is shown in Figure 7.15 and Figure 7.16. 
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Figure 7.15 Position errors reduced to the 6th axis for the four 34-parameter 
procedures (3 kg) 

 

Figure 7.16 Orientation errors for the four 34-parameter procedures (3 kg) 
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We can see that for the first three calibration procedures we obtain similar results. Although 

taking more points may be more reliable, taking a look at these figures we see that even from 

a calibration of 80 measurements we obtain satisfactory results. 

7.7.5 Worst random 34-parameter procedures from 80, 120, 180 and 200 

measurements 

Since we did not perform any observability analysis to choose the position measurements we 

wanted to see if the random effect had any influence on the final results. We generated 20 

different combinations of identification measurement groups: five combinations of a total of 

80 measurements, five combinations of a total of 120 measurements, etc. 

 

For each of the four groups (80, 120, 180 and 200 measurements) we tried five 34-parameter 

procedures using different groups of measurements, obtaining a total of 20 different 

procedures. For each of the 34-parameter procedures tried we evaluated the maximum 

expected error for the ISO cube and for all robot range area (8000 points each, for all 8 tool 

targets and with 3 kg payload), as we did in Section 7.7.1. 

 

Here we show the procedures that gave the worst results from these expected errors. We also 

show the procedure that gave best results from all the 20 procedures. Finally, we also give 

the objective function error value obtained for each  procedure. 
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Table 7.13 Worst expected errors from pose measurements for the 34-parameter 
procedures (3 kg) 

P
ro

ce
du

re
 

Number 
of 

measures 

Max. error 
expected for the 
ISO cube area 

(mm) 

Max. error 
expected for all 
robot range area 

(mm) 

Objective 
function 

(mm) 
Observations: 

A 80 0.952 1.152 0.533 
Worst of the 80 

measurement procedures

B 120 0.7 0.837 0.438 
Best of all the 20 

procedures 

C 120 0.683 0.945 0.508 
Worst of the 120 

measurement procedures

D 180 0.894 0.996 0.546 
Worst of the 180 

measurement procedures

E 200 0.837 1.211 0.555 
Worst of all the 20 

procedures 
 

Looking at Table 7.13 we can see that there is some correlation between the objective 

function and the worst expected errors. 

 

We validated these procedures with two types of tests: with 1000 pose measurements each in 

the ISO cube area at 3 kg of payload and with other 1000 measurements for all range area at 

6 kg of payload. 

7.7.5.1 Validation in the all range area (6 kg) 

With the same analysis that we performed in Section 7.7.3, we show the position error 

statistics found from measuring 1000 points for the five mentioned procedures. We used the 

same 1000 positions for each of the procedures, using the eight targets of the tool (125 

positions per tool target). 
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Table 7.14 Position statistics for the five 34-parameter procedures chosen (6 kg) 

Procedure µ (mm) σ (mm) max (mm) µ+3σ (mm) 
A 0.421 0.108 1.132 0.745 
B 0.329 0.088 0.916 0.592 
C 0.357 0.102 1.084 0.661 
D 0.423 0.109 1.056 0.749 
E 0.421 0.108 1.093 0.745 

 

The history of all position error measurements is shown in Figure 7.17. 

 

Figure 7.17 Position errors for the five 34-parameter procedures chosen (6 kg) 
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7.7.5.2 Validation from pose measurements in the ISO cube area (3 kg) 

Once again, with the same analysis that we performed in Section 7.7.3, we show the position 

error statistics found from measuring 1000 poses for the five mentioned procedures. We used 

the same 1000 poses for each of the procedures, using the first three targets of the tool to 

generate the pose. 

Table 7.15 Position statistics reduced to the 6th axis for the five 34-parameter 
procedures (3 kg) 

Procedure µ (mm) σ (mm) max (mm) µ+3σ (mm)
A 0.174 0.038 0.351 0.289 
B 0.202 0.041 0.379 0.326 
C 0.220 0.040 0.401 0.341 
D 0.231 0.044 0.410 0.364 
E 0.371 0.045 0.610 0.505 

Table 7.16 Orientation statistics for the five 34-parameter procedures (3 kg) 

Procedure µ (º) σ (º) max (º) µ+3σ (º) 
A 0.102 0.021 0.200 0.166 
B 0.108 0.026 0.222 0.185 
C 0.111 0.027 0.241 0.192 
D 0.089 0.022 0.201 0.156 
E 0.091 0.025 0.194 0.166 

 

The history of all position error measurements reduced to the 6th axis and orientation errors 

are shown in Figure 7.18 and Figure 7.19. 
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Figure 7.18 Position errors reduced to the 6th axis for the five 34-parameter 
procedures (3 kg) 

 

Figure 7.19 Orientation errors for the five 34-parameter procedures (3 kg) 
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Results obtained from pose measurements are different from the expected values as we 

divided the final error measurement in position errors reduced on the 6th axis and orientation 

errors. However, concerning these results, we find that the procedure obtained from 80 

measurements (procedure A) is much better than expected. We also find that the position 

error for the procedure E is much worse than the other procedures (compared to results 

obtained in Section 7.7.5.1), but orientation errors are better. 

 





 

CONCLUSION 

 

It was demonstrated that the proposed 34-parameter model, and the procedure for identifying 

the 34 parameters of that model, lead to improving the accuracy of the ABB IRB 1600-6/1.45 

robot in terms of mean and maximum position errors, throughout the robot workspace. Also, 

it was shown that the proposed iterative inverse kinematics solution scheme for the 34-

parameter model works flawlessly. This solution scheme is the core of the software filter 

required for replacing the desired poses into so-called “fake targets”. 

 

When stating the positioning performance of an industrial robot, it is imperative to specify 

the coordinates of the measurement points (with respect to the robot flange reference frame), 

since position errors are significantly dependent on the choice of measurement point (due to 

the lever effect). Ideally, this measurement point should not lie on axis 6 of the robot, and 

should represent the location of the tip of a commonly used tool. In this project, the eight 

targets (i.e., the centers of the eight SMRs) on the robot end-effector were approximately 

110 mm away from the 6th axis, and about 100 mm away from the plane of the robot flange. 

  

When stating the absolute accuracy of an industrial robot, it is also important to specify the 

exact location of the base reference frame used in the nominal kinematic model and in the 

34-parameter model, and how this frame can be measured. In the case of our robot, we chose 

the base frame as explained in Section 3.2 (from kinematic calibration using the information 

of the first two axes). Thus, for the nominal model (i.e., before robot calibration), the 

mean/maximum position error values are 0.961 mm / 2.268 mm for 8000 measurements, 

throughout the whole workspace, and with a 3-kg payload (as shown in Table 7.1). 

 

For the 34-parameter model (at 3-kg payload), if each of the eight targets is considered, the 

mean/maximum position errors are reduced to 0.329 mm / 0.703 mm, respectively, for 1000 

measurements throughout the whole workspace, or 125 measurements for each of the eight 

targets. 
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If we limit the workspace to the ISO cube only, for the same 34-parameter model (at 3-kg 

payload), if each of the eight targets is considered, the mean/maximum position errors are 

further reduced to 0.277 mm / 0.647 mm, respectively, for 1000 measurements inside the ISO 

cube, or 125 measurements for each of the eight targets, as shown in Table 7.4. 

 

Recall that in the identification phase, we only measure the coordinates of targets 1, 2 and 3, 

for validation we use all of our 8 targets. However, the position error found for targets 4 to 8 

is very similar to targets 1, 2 and 3. 

 

Regarding the orientation errors, in Section 7.7.3.5, we find that mean/maximum orientation 

error values, measured using the reference frame defined by targets 1, 2 and 3, are improved 

from 0.108º / 0.229º (using the nominal model) to 0.082º / 0.166º (using the 34-parameter 

model), at a 3-kg payload, in the ISO cube. This relatively small improvement is due to the 

fact that the objective function used in the calibration process takes into account only the 

position errors. 

 

Although the robot calibration was performed with a 3-kg payload, we obtained satisfactory 

results for validation tests at a 6-kg payload (the maximum one), with the maximum 

deflection due to the extra 3 kg being only about 0.3 mm (as shown in Table 4.3). In Section 

7.7.5.1, we find that for the 34-parameter model the mean/maximum position error values are 

0.329 mm / 0.916 mm for 1000 measurements (125 measurements for each of the eight 

targets), throughout the whole workspace at a 6-kg payload. 

 

We can see that the full analysis that we performed to our robot (computing the expected 

errors for the 8000 measurements and more) allowed us to find good results. However, if we 

do not perform this huge analysis, results turn out to be around 0.1 mm worse concerning the 

mean values and 0.2 mm worse concerning the maximum and 99.73% CI values (as found in 

Section 7.7.5.1). On the other hand, if we look at the pose results obtained (in Section 

7.7.5.2), where we divided the end-effector position error in the error reduced on the 6th axis 

and orientation error, we find that the best procedure was not the expected one. This is 
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because the objective function takes into account the error position at the tool target. 

Otherwise, if we had taken into account the reduced position error on the 6th axis in our 

objective function we may have obtained other expected values. 

 

As for the various models that were tested, although the 34-parameter model led to best 

accuracy results, the second best model was surprisingly the simple 11-parameter model 

(which takes into account only the joints offsets). In both of these models, optimization is 

used in identifying the error parameters. In the 26-parameter model, no optimization is used 

and the parameters are identified directly by rotating the axes of the robot, one by one. 

Indeed, this so-called kinematic (or direct) calibration is even less effective than the 

calibration based on a simple 11-parameter model, and while the former improves a lot the 

mean values for the ISO cube area position error results, the maximum error values are much 

worse compared to the nominal model. Therefore, this direct calibration technique is hardly 

of any use for today’s industrial robots. 

 

We did not try the end-effector calibration explained in Section 3.4.3 because to apply this 

method we need to dismount the end-effector from the robot to measure it in a CMM and we 

realized that there is a lot of play between the robot tool flange and the end-effector (due to 

mechanical tolerances). 

 

The use of constant motor slope (݇௜ in equation 3.37) error parameters was also tested but 

was not retained as it slightly improves the precision locally but gives worse results outside 

the studied range. 

 

Finally, all the stiffness models that we can propose, as well as potential models that consider 

backlash, can be improved a lot if we know the real applied torque to each motor and the 

inverse kinematics can be computed in real time. The torque is proportional to the applied 

current. We can find this measurement somewhere in the robot control feedback. If we can 

access to torque measurements we can store the torque applied to each joint at each 

measurement. In this way it would be much easier to analyze the stiffness of the robot. 





 

ANNEX I  
 

POSITION REPEATABILITY OF THE ABB IRB 1600-6/1.45 

The repeatability of the ABB IRB 6/1.45 robot has been measured by a Faro laser tracker 

ION. The laser tracker repeatability was found to be between 5 µm and 8 µm at µ+3σ 

(Annex III). The robot repeatability is measured at each of the five poses of the inclined 

plane defined in ISO 9283 as the plane a. The dimensions of this cube are 650×650×650 mm. 

Starting from P1, the cycle P5→ P4→ P3→ P2→ P1 is repeated 30 times taking measurements 

at each point of the cycle. Each valid measurement is the mean of 500 measurements for the 

laser tracker, taken during 500 ms (the laser tracker measures at a sample rate of 1000 Hz). 

 

Only one target is measured at each position (orientation is not measured). But the measured 

target is at a distance of 120 mm from the 6th axis, so orientation repeatability affects the 

position repeatability. Payload was 2 kg. 

 

In accordance to ISO 9283:1998, repeatability is defined as 
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In the case of the laser tracker, where 3D measurements are performed, the position 

repeatability formula defined in Section 7.2.2 of the ISO 9283 (1998) is used. 

 

Surprisingly, the robot repeatability at each of the five poses was found to be the same for 

both approach TCP speeds (100 mm/s or up to 5000 mm/s). The repeatability was found to 

be between 17 µm and 25 µm for poses P1 (despite its closeness to a wrist singularity), P4 and 

P5, and between 30 µm and 37 µm for poses P2 and P3, in which the robot is even more 

stretched. Our test results slightly exceed the 20 µm repeatability quoted in the product 

specification that comes with our IRB1600-6/1.45 industrial robot. However, neither the 

measurement point, nor the five poses, nor the warm-up procedure, nor the laser tracker 
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model and its location with respect to the robot are the same as those used in the tests 

performed by ABB, so no direct comparison is possible. 

 

The five points used to test the repeatability (which correspond to the five ISO 9283 robot 

points for the cube a), correspond to next robot joints: 

Table A I-1 Robot joints for the five positions 

Position θ1 (º) θ2 (º) θ3 (º) θ4 (º) θ5 (º) θ6 (º) 
P1 0 −14 −14 0 0 0 
P2 17.690 18.084 −46.521 −33.814 33.095 29.298 
P3 −17.690 18.084 −46.521 33.814 33.095 29.298 
P4 −41.374 −24.789 47.145 −66.643 −46.052 58.108 
P5 41.373 −24.788 47.145 66.643 −46.052 58.108 

 

For each test the mean repeatability error, maximum repeatability error and the sigma values 

are extracted. It is also shown in the Table the 99.73% within confidence interval which 

corresponds to the average error plus three times sigma. Table A I-2 shows the unidirectional 

repeatability error found with a linear movement so that the laser tracker never loses the 

target. Also, before taking the measurements, we let the robot stabilize for 4 seconds. 

Table A I-2 Unidirectional repeatability statistics for the five tested points 

Position Mean error (mm) Max error (mm) µ+3σ (99.73% CI) 
P1 0.009 0.021 0.022 
P2 0.014 0.034 0.035 
P3 0.015 0.034 0.035 
P4 0.01 0.02 0.023 
P5 0.012 0.027 0.032 

 

If we repeat the test but we change the cyclical order to a random order, without linear 

movement (the laser tracker looses the target most of times) and without waiting any time for 

the robot to stabilize (actually the robot is stopped for at least 0.5 seconds before taking the 

measurements, which is the time for the laser tracker to detect the presence of the target). We 

obtain the values shown in Table A I-3. 
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Table A I-3 Repeatability statistics for the five tested points in worse conditions 

Position Mean error (mm) Max. error (mm) µ+3σ (99.73% CI) 
P1 0.052 0.112 0.162 
P2 0.028 0.049 0.066 
P3 0.045 0.105 0.115 
P4 0.022 0.034 0.043 
P5 0.023 0.048 0.052 

 
 





 

ANNEX II  
 

FARO ION LASER TRACKER ACCURACY 

The accuracy of the laser tracker has been tested in a robot cell area with an INVAR bar of 

nominal distance 1050.688 mm. The measured targets are 1.5” SMR laser tracker spherical 

targets. 

 

During the test the temperature was between 23.1 and 23.9 ºC. The pressure was between 

767.8 and 768.2 mm Hg and the relative humidity between 21.8 % and 23.2 %. 

 

The robot has been moved to 12 different positions. At each position the robot stops and 

takes 30 distance measurements. For each measurement the laser tracker makes the average 

of 500 measurements at a sample rate of 1000 Hz, so 500 ms are needed for each 

measurement. The laser tracker starts measuring 5 seconds after the robot reaches the desired 

position, after two minutes the robot activates the brakes (same state as an emergency stop 

state) for energy saving. That happens exactly after 15 or 16 distance measurements, the 

robot is supposed to be more stable in this state. 

 

Position measurements are taken cyclically from one side of the bar to the other side of the 

bar, for each pair a distance measurement is calculated from these two points. The distance 

error is calculated as the measured error minus the nominal error. Distance error 

measurements are sequentially displayed, so the 30 measurements for the first robot position 

are sorted from 1 to 30, the 30 measurements for the second robot position are sorted from 31 

to 60, etc. 
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Figure A II-1 Distance error for all 360 distance measures 

As we can see in this Figure, the effect of the brakes is very small (comparing the first 15 

first points versus the last 15 points of each cycle test). Therefore, the stability that the robot 
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Table A II-1: Robot joint values for each position of the test 

Test θ1 (º) θ2 (º) θ3 (º) θ4 (º) θ5 (º) θ6 (º) 
1 −25 0 0 0 0 0 
2 −25 0 0 0 45 0 
3 −25 0 0 0 −45 0 
4 0 0 −90 0 0 −45 
5 −25 0 −90 0 45 −10 
6 −45 0 −90 0 −45 10 
7 0 −15 −60 −30 75 5 
8 0 15 −120 −30 −75 5 
9 110 0 0 0 0 180 
10 110 0 0 0 45 180 
11 110 0 0 0 −45 180 
12 80 0 0 0 −90 220 

 

Figure A II-2: Representation of the 12 position tests for measuring the INVAR distance





 

ANNEX III  
 

FARO ION LASER TRACKER REPEATABILITY 

To prove the laser tracker repeatability we used similar tests to the ISO 9283:1998 that are 

applied to robots. One target is measured 50 times and the error of each measurement is 

considered as the distance between each measurement and the mean of all 50 measurements. 

Each valid measurement is the mean of 500 measurements for the laser tracker, taken during 

500 ms (the laser tracker measures at a sample rate of 1000 Hz). 

 

Between every measurement the laser tracker is moved to a random position where there is 

no target, after it is moved back to a close position (but not exact) from the known target of 

the first measurement. This position is close enough so that the laser tracker is capable of 

finding the target without executing its search algorithm. The Faro laser tracker ION is 

capable of doing that always that the guessed position is not farther than 1.5-2 mm from the 

real target. 

 

The test is repeated five times for five different points in a robot cell working space. The 

robot is stopped in the “emergency-stop” mode during the test. These five positions 

correspond to the five ISO 9283 robot points (plane a), which correspond to next points 

referenced on the laser tracker coordinate system (given values are the mean of the 50 

measurements for each point): 

Table A III-1 Mean laser tracker coordinates for each test 

Position X (mm) Y (mm) Z (mm) 
P1 1568.937 753.352 −234.817 
P2 1184.504 700.874 31.782 
P3 1512.934 1135.976 36.515 
P4 1952.791 806.731 −502.204 
P5 1625.478 372.956 −505.890 
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For each test the mean error, maximum error and sigma values are extracted. It is also shown 

in the Table the 99.73% within confidence interval which corresponds to the average plus 

three times sigma. 

Table A III-2 Statistics for the five repeatability tests 

Position Mean error (mm) Max. error (mm) σ (mm) µ+3σ (99.73% CI) 
P1 0.002 0.004 0.001 0.005 
P2 0.001 0.006 0.001 0.004 
P3 0.002 0.005 0.001 0.005 
P4 0.003 0.007 0.002 0.008 
P5 0.002 0.007 0.001 0.006 

 

Figure A III-1 shows the 50 error measurements for each of the five tests. 

 

Figure A III-1  Measurement error for each of the five tests 
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ANNEX IV  
 

FARO ION LASER TRACKER 24-HOUR TEST 

To prove the laser tracker measurement stability through time we took measurements during 

24 hours to a fixed target. Next figures show the measurement noise of taking measurements 

to a fixed target in space (a 1.5” SMR target, mounted on a robot tool). During 26 hours and 

38 minutes a measurement has been taken every 17 seconds (exact cycle time varies from 15 

to 20 seconds), making a total of 5871 measurements where we saved time, position, 

temperature, pressure and humidity. Each saved position measurement is the mean of 500 

measurements for the laser tracker, taken during 500 ms (the laser tracker measures at a 

sample rate of 1000 Hz). Test started the 12th of December 2010 at 15h 50min and 43 

seconds and ended the next day at 18h 28 min and 4 seconds. The test was performed at local 

A-3569 in the École de Technologie Supérieure, Montréal. 

 

Between measurements the laser tracker is moved to a random position where there is no 

target, after it is moved back to a close position (but not exact) from the known target of the 

first measurement. This position is close enough so that the laser tracker is capable of finding 

the target without executing its search algorithm. The laser tracker Faro ION is capable of 

doing that always that the guessed position is not farther than 1.5-2mm from the real target. 

 

The position error is calculated as the distance of each measurement to the mean of all 

measurements. As seen in the Figures there is no correlation between position error and 

temperature, pressure or humidity. 

 

The mean position coordinates are {X=1586.937; Y=517.974; Z= −216.203}  mm referenced 

to laser tracker coordinate system. The mean and maximum error values are 0.012 mm and 

0.038 mm respectively. Standard deviation of error is 0.005 mm. 
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Figure A IV-1  Evolution of error 

 

Figure A IV-2  Evolution of temperature 
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Figure A IV-3  Evolution of pressure 

 

Figure A IV-4  Evolution of humidity 
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Matlab code used for tests 

 
% Taking XYZ measurement of the present target 
PREF = FARO_Take_Measure; 
% Opening file to store data 
fid = fopen('HISTORY.txt','w'); 
for i=1:n 
    % Moving laser tracker at a random position 
    randalpha = (rand)*5; 
    randbeta = (rand*2-1)*5; 
    point = [1000 0 0 1]'; 
    movepoint = rotx(randbeta*pi/180)*roty(randalpha*pi/180)*point; 
    randmove = movepoint(1:3)'; 
    FARO_Move_XYZ(randmove); 
    % Moving laser tracker 1.5mm close from the real target 
    randvect = (rand(1,3)*2-1)*(1.5/sqrt(3)); 
    FARO_Move_XYZ(PREF+randvect); 
    % Taking measurement 
    p=FARO_Take_Measure;  
    % Taking environment measurements 
    temp = FARO_Weather_Conditions; 
    % Taking computer time 
    timei = clock; 
    % Storing data to file 
    fprintf(fid, '%4.5f %3.0f %3.0f %3.0f %3.0f %3.3f %3.5f %3.5f %3.5f 
%3.5f %3.5f %3.5f\n', timei, temp.temperature,temp.pressure,temp.humidity, 
p); 
    pause(10); 
end 
% Closing file 
fclose(fid); 
 



 

ANNEX V  
 

ABB IRB 1600-6/1.45 POSITION STABILIZATION TIME 

To measure the ABB robot stabilization time the robot was moved linearly from the ISO 

point P2 to P1 three times at maximal speed as described on ISO 9283 (Section 7.4). Payload 

was 2.5 kg. 

 

The error is calculated as the distance between every point and a “final-target” point. This 

final-target point is considered as the mean of 100 measurements after 10 seconds of 

stabilization. 

 

Measurements are taken as fast as possible from the Faro ION laser tracker. The laser tracker 

spends 1 ms to take each measurement but the average time for treating the data and 

transferring this measurement to Matlab is around 40 ms. 

 

The laser tracker starts measuring as the robot starts moving from point P2 to P1 and stops 

measuring after 20 seconds that the robot reached the point P1. The time to execute this path 

is known (but can have small variations). The zero-time (used to plot graphics) is considered 

as the start moving instant plus the mean path time of 10 paths. 
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Figure A V-1 Stabilization error 
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ANNEX VI  
 

CIRCLE PATH ACCURACY TESTS WITH A TELESCOPIC BALLBAR 

Three circular path tests have been performed to an ABB IRB 1600-1.45/6 robot with a 

telescopic ballbar to prove the improvement of precision. The measurement instrument is a 

QC20-W telescopic ballbar by Renishaw with Bluetooth wireless technology. It consists of a 

wireless telescoping ballbar, ballbar extensions, a tool cup, two measuring balls and a pivot 

assembly. The tool cup is mounted on the robot end-effector. The base of the pivot assembly 

is magnetic and is solidly attached to a heavy steel table. The ballbar sensor accuracy (at 

20°C) is ±0.5 μm and the measuring range is merely ±1.0 mm (which is probably too small 

for large non-calibrated industrial robots). 

 

The same end-effector, weighing approximately 2 kg, was used in all ballbar tests. Circular 

tests were performed in clockwise (CW) and counterclockwise (CCW) direction at radius of 

150 mm, 300 mm and 400 mm, and at the constant feedrate of 50 mm/s (i.e., TCP linear 

speeds). The coordinates of the measurement point (i.e., the center of the tool cup) with 

respect to the flange reference frame is approximately {0 mm, 65 mm, 149 mm}. 

 

Before starting a telescoping ballbar test, the robot was warmed up by repeating the actual 

circular trajectory during one hour (from cold start). 

 

Graphics and tables are shown for each of the three tests. The position of the center of these 

three tests describing the end-effector with respect to the robot base frame (i.e., wobj0) are 

approximately {808.234 mm, −56.311 mm, 1011.205 mm} which correspond to {−3.984º, 

5.733483º, 4.519º, −0.017º, 79.885º, −273.988º} in the robot joint space. 

 

For the first test the circle radius is 300 mm as shown in Figure A VI−3. For the second test 

the circle radius is 400 mm and the tool is inclined 8º as shown in Figure A VI−6. For the 

third test the circle radius is 150 mm and the tool is inclined 45º as shown in Figure A VI−9. 
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When the path of the circle has to be calculated we must choose a number of arcs to 

discretize the circle for the improved path. For the first test the circle is divided in 6 arcs. For 

the third test the circle is divided in 32 arcs (which correspond to a division each 30 mm of 

path or less). For the second test a comparison is made between 6 arcs and 84 arcs (which 

correspond to a division each 30 mm of path or less). 

 

For the nominal path (calculated with nominal kinematics) the discretization of the path does 

not affect the final result so the full 360 º circle path is divided in two arcs of 180º. 

 

As we can see in next results, the error of the improved model gives better results. Also, as 

shown in Figure A IV−4, the effect of dividing the circle in smaller arcs gives better results 

although the final result is not so much better. 

 

We can also see that always that there is a local maximum or minimum for one joint axis 

(which means that the joint changes direction) a perturbation is produced in the circle path, 

probably due to backlash. 
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Test 1: 300 mm radius 
 

 

Figure A VI-1  300 mm circular path (CW left, CCW right) 

 

Figure A VI-2  Joint history simulation for the 300 mm-circle path 
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Table A VI-1 Local minimum and maximum values for all joints 

id Circle path 
angle (º) 

Joint value 
(º) 

Joint 
(axis number) 

Local 
min/max 

1 18.7 −19.2 1 min 
2 19.3 -0.1 4 min 
3 44.7 79.6 5 min 
4 93.3 −8.2 2 min 
5 93.3 18.1 3 max 
6 93.3 80.3 5 max 
7 141.3 79.6 5 min 
8 167.3 11.8 1 max 
9 167.3 0.0 4 max 
10 273.3 31.0 2 max 
11 273.3 −29.9 3 min 
12 273.3 89.1 5 max 

 

 

Figure A VI-3  Representation of 300mm circle path 
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Test 2: 400 mm circle radius / 8 degrees 
 

 

Figure A VI-4: 400 mm circular path (CW left, CCW right) 

 

Figure A VI-5  Joint history simulation for the 400 mm-circle path 
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Table A VI-2 Local minimum and maximum values for all joints 

id Circle path 
angle (º) 

Joint value 
(º) 

Joint 
(axis number) 

Local 
min/max 

1 26.5 −27.2 1 min 
2 28.0 4.0 4 max 
3 55.0 78.6 5 min 
4 93.0 −18.3 2 min 
5 93.0 25.0 3 max 
6 93.0 79.4 5 max 
7 131.5 78.6 5 min 
8 158.5 −4.0 4 min 
9 159.5 19.8 1 max 
10 273.0 43.4 2 max 
11 273.0 −51.5 3 min 
12 273.0 102.2 5 max 

 

 

Figure A VI-6  Representation of 400mm circle path 
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Test 3: 150 mm circle radius / 45 degrees 
 

 

Figure A VI-7  150 mm circular path (CW left, CCW right) 

 

Figure A VI-8  Joint history simulation for the 150 mm-circle path 
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Table A VI-3 Local minimum and maximum values for all joints 

id Circle path 
angle (º) 

Joint value 
(º) 

Joint 
(axis number) 

Local 
min/max 

1 13.2 −15.0 1 min 
2 17.2 22.7 4 max 
3 92.6 −3.0 2 min 
4 92.6 12.7 3 max 
5 92.6 58.0 5 min 
6 166.8 −22.8 4 min 
7 170.7 7.6 1 max 
8 272.6 25.2 2 max 
9 272.6 −21.8 3 min 
10 272.6 109.3 5 max 

 

 

Figure A VI-9  Representation of 150 mm circle path 
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