
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

MANUSCRIPT-BASED THESIS PRESENTED TO
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph.D.

BY
Wael KHREICH

TOWARDS ADAPTIVE ANOMALY DETECTION SYSTEMS USING BOOLEAN
COMBINATION OF HIDDEN MARKOV MODELS

MONTREAL, JULY 18, 2011

c© Copyright 2011 reserved by Wael Khreich

Wael Khreich, 2011

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS :

Mr. Éric Granger, Thesis Supervisor
Département de génie de la production automatisée at École de technologie supérieure

Mr. Robert Sabourin, Thesis Co-supervisor
Département de génie de la production automatisée at École de technologie supérieure

Mr. Ali Miri, Thesis Co-supervisor
School of Computer Science, Ryerson University, Toronto, Canada

Mr. Jean-Marc Robert, President of the Board of Examiners
Département de génie logiciel at École de technologie supérieure

Mr. Tony Wong, Examiner
Département de génie de la production automatisée at École de technologie supérieure

Mr. Qinghan Xiao, External examiner
Defence Research and Development Canada (DRDC), Ottawa

THIS THESIS WAS PRESENTED AND DEFENDED

BEFORE A BOARD OF EXAMINERS AND PUBLIC

ON JUNE, 21 2011

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

I would like to express sincere appreciation to Professor Éric Granger my research super-

visor for his worthwhile assistance, support, and guidance throughout this research work.

In particular, I would like to thank him for his protracted patience during those many

hours of stimulating discussion. In addition, the progress I have achieved in writing is

mostly due to his thorough and critical reviews of my manuscripts.

I would like to extend my heartfelt gratitude to my co-supervisor Professor Ali Miri

whose constant encouragement and valuable insights provided the perfect guidance that

I needed through those years of research. I am deeply indebted to Prof. Ali Miri, who

first believed in me and introduced me to Prof. Éric Granger and made possible the first

step of this PhD thesis.

I would like to express my sincere and special thanks to Professor Robert Sabourin my co-

director, for his support and instruction throughout this project. Each meeting with him

added invaluable aspects to the project and broadened my perspective. His stimulating

discussions and comments led to much of this work.

My gratitude also goes to members of my thesis committee: Prof. Jean-Marc Robert,

Prof. Tony Wong, and Prof. Qinghan Xiao for their time and their constructive com-

ments.

Thanks to all the wonderful people that I met at LIVIA and that made all this expe-

rience so satisfactory. Special thanks to Dominique Rivard, Eduardo Vellasques, Éric

Thibodeau, Luana Batista, Marcelo Kapp, Paulo Cavalin, Vincent Doré, and Youssouf

Chherawala.

Thanks to all my friends back home, who made me feel like I never left and provided

me with long-distance support. Thanks to my friends Joy Khoriaty, Toufic Khreich and

Myra Sader, for their moral support and help. Special thanks to Marc Hasrouny, Patrick

IV

Diab, Sam Khreiche, Roger Mehanna, and Julie Barakat who have supported me since I

came to Canada, and made me feel like home.

To my beloved wife Roula, thank you for being by my side, for putting up with all those

nights and weekends that I spent in front of my laptop, and for giving me endless support

and motivation to finish this thesis. Your being here was the best thing that could have

happened to me. Thank you.

Towards the end, gratitude goes to my loved mother and father back home for their

endless love and sacrifices, and for their sustained moral and financial support during

those years of research and throughout my whole life. You were always my source of

strength.

This research was supported in part by the Natural Sciences and Engineering Research

Council of Canada (NSERC), and le Fonds québécois de la recherche sur la nature et les

technologies (FQRNT). The author gratefully acknowledges their financial support.

TOWARDS ADAPTIVE ANOMALY DETECTION SYSTEMS USING
BOOLEAN COMBINATION OF HIDDEN MARKOV MODELS

Wael KHREICH

ABSTRACT

Anomaly detection monitors for significant deviations from normal system behavior. Hid-
den Markov Models (HMMs) have been successfully applied in many intrusion detection
applications, including anomaly detection from sequences of operating system calls. In
practice, anomaly detection systems (ADSs) based on HMMs typically generate false
alarms because they are designed using limited representative training data and prior
knowledge. However, since new data may become available over time, an important fea-
ture of an ADS is the ability to accommodate newly-acquired data incrementally, after
it has originally been trained and deployed for operations. Incremental re-estimation of
HMM parameters raises several challenges. HMM parameters should be updated from
new data without requiring access to the previously-learned training data, and without
corrupting previously-learned models of normal behavior. Standard techniques for train-
ing HMM parameters involve iterative batch learning, and hence must observe the entire
training data prior to updating HMM parameters. Given new training data, these tech-
niques must restart the training procedure using all (new and previously-accumulated)
data. Moreover, a single HMM system for incremental learning may not adequately
approximate the underlying data distribution of the normal process, due to the many
local maxima in the solution space. Ensemble methods have been shown to alleviate
knowledge corruption, by combining the outputs of classifiers trained independently on
successive blocks of data.

This thesis makes contributions at the HMM and decision levels towards improved ac-
curacy, efficiency and adaptability of HMM-based ADSs. It first presents a survey of
techniques found in literature that may be suitable for incremental learning of HMM
parameters, and assesses the challenges faced when these techniques are applied to in-
cremental learning scenarios in which the new training data is limited and abundant.
Consequently, An efficient alternative to the Forward-Backward algorithm is first pro-
posed to reduce the memory complexity without increasing the computational overhead
of HMM parameters estimation from fixed-size abundant data. Improved techniques for
incremental learning of HMM parameters are then proposed to accommodate new data
over time, while maintaining a high level of performance. However, knowledge corruption
caused by a single HMM with a fixed number of states remains an issue. To overcome
such limitations, this thesis presents an efficient system to accommodate new data using
a learn-and-combine approach at the decision level. When a new block of training data
becomes available, a new pool of base HMMs is generated from the data using a different
number of HMM states and random initializations. The responses from the newly-trained
HMMs are then combined to those of the previously-trained HMMs in receiver operat-

VI

ing characteristic (ROC) space using novel Boolean combination (BC) techniques. The
learn-and-combine approach allows to select a diversified ensemble of HMMs (EoHMMs)
from the pool, and adapts the Boolean fusion functions and thresholds for improved per-
formance, while it prunes redundant base HMMs. The proposed system is capable of
changing its desired operating point during operations, and this point can be adjusted
to changes in prior probabilities and costs of errors.

During simulations conducted for incremental learning from successive data blocks us-
ing both synthetic and real-world system call data sets, the proposed learn-and-combine
approach has been shown to achieve the highest level of accuracy than all related tech-
niques. In particular, it can sustain a significantly higher level of accuracy than when
the parameters of a single best HMM are re-estimated for each new block of data, using
the reference batch learning and the proposed incremental learning techniques. It also
outperforms static fusion techniques such as majority voting for combining the responses
of new and previously-generated pools of HMMs. Ensemble selection techniques have
been shown to form compact EoHMMs for operations, by selecting diverse and accurate
base HMMs from the pool while maintaining or improving the overall system accuracy.
Pruning has been shown to prevents pool sizes from increasing indefinitely with the num-
ber of data blocks acquired over time. Therefore, the storage space for accommodating
HMMs parameters and the computational costs of the selection techniques are reduced,
without negatively affecting the overall system performance. The proposed techniques
are general in that they can be employed to adapt HMM-based systems to new data,
within a wide range of application domains. More importantly, the proposed Boolean
combination techniques can be employed to combine diverse responses from any set of
crisp or soft one- or two-class classifiers trained on different data or features or trained
according to different parameters, or from different detectors trained on the same data.
In particular, they can be effectively applied when training data is limited and test data
is imbalanced.

Keywords: Intrusion Detection Systems, Anomaly Detection, Adaptive Systems, En-
semble of Classifiers, Information Fusion, Boolean Combination, Incremental Learning,
On-Line Learning, Hidden Markov Models, Receiver Operating Characteristics.

VERS DES SYSTÈMES ADAPTATIFS DE DÉTECTION D’ANOMALIES
UTILISANT DES COMBINAISONS BOOLÉENNES DE MODÈLES DE

MARKOV CACHÉS

Wael KHREICH

RÉSUMÉ

La détection d’anomalies permet de surveiller les déviations significatives du comporte-
ment normal d’un système. Les modèles de Markov cachés (MMCs) ont été utilisés avec
succès dans différentes applications de détection d’intrusions, en particulier la détection
d’anomalies à partir de séquences d’appels système. Dans la pratique, les systèmes de dé-
tection d’anomalies (SDAs) basés sur les MMCs génèrent typiquement de fausses alertes
étant donné qu’ils ont été conçu en utilisant des données d’apprentissage et des con-
naissances préalables limitées. Mais puisque de nouvelles données peuvent être acquises
avec le temps, les SDAs doivent s’adapter aux nouvelles données une fois qu’ils ont été
entraînés et mis en opération. La ré-estimation incrémentale des paramètres des MMCs
présente plusieurs défis à relever. Ces paramètres devront être ajustés selon l’information
fournie par les nouvelles données, sans réutiliser les données d’apprentissage antérieures et
sans compromettre les informations déjà acquises dans les modèles de comportement nor-
mal. Les techniques standards pour l’entraînement des paramètres des MMCs utilisent
l’apprentissage itératif en mode « batch » et doivent ainsi observer la totalité de la base
de données d’apprentissage avant d’ajuster les paramètres des MMCs. À l’acquisition de
nouvelles données, ces techniques devraient recommencer la procédure de l’apprentissage
en utilisant toutes les données accumulées. En outre, un système d’apprentissage incré-
mental basé sur un seul MMC n’a pas la capacité de fournir une bonne approximation
de la distribution sous-jacente du comportement normal du processus à cause du grand
nombre des maximums locaux. Les ensembles de classificateurs permettent de réduire
la corruption des connaissances acquises, en combinant les sorties des classificateurs in-
dépendamment entraînés sur des blocs de données successives.

Cette thèse apporte des contributions au niveau des MMCs ainsi qu’en regard de la dé-
cision des classificateurs dans le but d’améliorer la précision, l’efficacité et l’adaptabilité
des SDAs basés sur les MMCs. Elle présente en premier lieu une étude d’ensemble des
techniques qui peuvent être utilisées pour l’apprentissage incrémental des paramètres des
MMCs et évalue les défis rencontrés par ces techniques lors d’un apprentissage incrémen-
tal avec des données limitées ou abondantes. Par conséquent, une alternative efficace
à « l’algorithme avant-arrière » est proposée pour réduire la complexité de la mémoire
sans augmenter le coût computationnel de l’estimation des paramètres des MMCs, faite
à partir de données fixes. D’autre part, elle propose des améliorations aux techniques
d’apprentissage incrémental des paramètres des MMCs pour qu’elles s’adaptent à des
nouvelles données, tout en conservant un niveau de performance élevé. Cependant, le
problème de la corruption des connaissances acquises causée par l’utilisation d’un sys-

VIII

tème basé sur un seul MMC n’est toujours pas complètement résolu. Pour surmonter ces
problèmes, cette thèse présente un système efficace qui s’adapte aux nouvelles données,
en utilisant une approche apprentissage-combinaison au niveau décision. À l’arrivée d’un
nouveau bloc de données d’apprentissage, un ensemble de MMCs est généré en variant
le nombre d’états et l’initialisation aléatoire des paramètres. Les réponses des MMCs
entraînés sur les nouvelles données sont combinées avec celles des MMCs déjà entraînés
sur les données antérieures dans l’espace ROC (caractéristique de fonctionnement du
récepteur, receiver operating characteristic), en utilisant les techniques de combinaison
booléenne. L’approche apprentissage-combinaison proposée permet de sélectionner un
ensemble diversifié de MMCs et d’ajuster les fonctions booléennes et les seuils de déci-
sion, tout en éliminant les MMCs redondants. Pendant la phase d’opération, le système
proposé est capable de changer le point d’opération et celui-ci peut s’adapter au change-
ment des probabilités a priori et des coûts des erreurs.

Les résultats des simulations obtenus sur des bases de données réelles et synthétiques
montrent que l’approche apprentissage-combinaison proposée a atteint le taux le plus
élevé de précision en comparaison avec d’autres techniques d’apprentissage incrémental
à partir de blocs de données successives. En particulier, le système a démontré qu’il
pouvait maintenir un plus haut taux de précision que celui d’un système basé sur un seul
MMC entraîné selon le mode batch (utilisant tous les blocs de données cumulatifs) ou
qui adapte les paramètres du MMC selon la méthode incrémentale proposée (utilisant
des blocs de données successifs). De même, la précision du système proposé a surpassé
celle des techniques basées sur les fonctions de fusion classiques tel que le vote majori-
taire combinant les décisions des MMCs entraînés sur les anciens et les nouveaux blocs
de données. Les techniques de sélection d’ensembles du système proposé sont capables
de choisir un ensemble compact, en sélectionnant les MMCs générés, les plus précis et
les plus diversifiés, tout en conservant ou en améliorant la précision du système. La
technique d’élimination des modèles empêche l’augmentation de la taille du pool avec le
temps. Ceci permet de réduire l’espace de stockage des MMCs et le coût computationnel
des techniques de sélection, sans compromettre la performance globale du système. Les
techniques proposées sont générales et peuvent être utilisées dans diverses applications
pratiques qui nécessitent l’adaptation aux nouvelles données des systèmes basés sur les
MMCs. Qui plus est, les techniques de combinaison booléennes proposées sont capables
de combiner les réponses des classificateurs binaires ou probabilistes pour des problèmes à
une ou deux classes. Ceci inclut la combinaison du même type de classificateurs entraînés
sur différentes données ou caractéristiques ou selon différents paramètres, et la combi-
naison de différents classificateurs entraînés sur la même de données. En particulier, ces
techniques peuvent être efficaces dans des applications où les données d’apprentissage
sont limitées et les données de test sont non équilibrées.

Mots-clés : Systèmes de détection d’intrusions, détection d’anomalies, systèmes adap-
tatifs, ensembles de classificateurs, fusion de l’information, combinaison booléenne, ap-
prentissage incrémental, apprentissage en-ligne, modèles de Markov cachés, caractéris-
tique de fonctionnement du récepteur.

CONTENTS

Page

INTRODUCTION.. 1

CHAPTER 1 ANOMALY INTRUSION DETECTION SYSTEMS. 17
1.1 Overview of Intrusion Detection Systems . 17

1.1.1 Network-based IDS . 19
1.1.2 Host-based IDS . 20
1.1.3 Misuse Detection . 22
1.1.4 Anomaly Detection . 23

1.2 Host-based Anomaly Detection . 24
1.2.1 Privileged Processes . 25
1.2.2 System Calls . 27
1.2.3 Anomaly Detection using System Calls . 28

1.3 Anomaly Detection with HMMs. 29
1.3.1 HMM-based Anomaly Detection using System Calls 34

1.4 Data Sets . 37
1.4.1 University of New Mexico (UNM) Data Sets . 37
1.4.2 Synthetic Generator . 38

1.5 Evaluation of Intrusion Detection Systems . 42
1.5.1 Receiver Operating Characteristic (ROC) Analysis 43

1.6 Anomaly Detection Challenges . 46
1.6.1 Representative Data Assumption. 46
1.6.2 Unrepresentative Data . 48

CHAPTER 2 A SURVEY OF TECHNIQUES FOR INCREMENTAL LEARN-
ING OF HMM PARAMETERS . 53

2.1 Introduction. 54
2.2 Batch Learning of HMM Parameters . 59

2.2.1 Objective Functions:. 61
2.2.2 Optimization Techniques: . 65

2.2.2.1 Expectation-Maximization: . 66
2.2.2.2 Standard Numerical Optimization: . 68
2.2.2.3 Expectation-Maximization versus Gradient-based Techniques 71

2.3 On-Line Learning of HMM Parameters . 72
2.3.1 Minimum Model Divergence (MMD). 73
2.3.2 Maximum Likelihood Estimation (MLE) . 75

2.3.2.1 On-line Expectation-Maximization . 76
2.3.2.2 Numerical Optimization Methods: . 79
2.3.2.3 Recursive Maximum Likelihood Estimation (RMLE): 80

X

2.3.3 Minimum Prediction Error (MPE): . 87
2.4 An Analysis of the On-line Learning Algorithms. 91

2.4.1 Convergence Properties . 93
2.4.2 Time and Memory Complexity . 94

2.5 Guidelines for Incremental Learning of HMM Parameters . 99
2.5.1 Abundant Data Scenario . 100
2.5.2 Limited Data Scenario . 101

2.6 Conclusion . 105

CHAPTER 3 ITERATIVE BOOLEAN COMBINATION OF CLASSIFIERS
IN THE ROC SPACE: AN APPLICATION TO ANOMALY
DETECTION WITH HMMS .. 107

3.1 Introduction. 107
3.2 Anomaly Detection with HMMs. 112
3.3 Fusion of Detectors in the Receiver Operating Characteristic (ROC) Space . 113

3.3.1 Maximum Realizable ROC (MRROC) . 114
3.3.2 Repairing Concavities . 116
3.3.3 Conjunction and Disjunction Rules for Crisp Detectors 117
3.3.4 Conjunction and Disjunction Rules for Combining Soft Detectors . . . 119

3.4 A Boolean Combination (BCALL) Algorithm for Fusion of Detectors 121
3.4.1 Boolean Combination of Two ROC Curves . 121
3.4.2 Boolean Combination of Multiple ROC Curves . 124
3.4.3 Time and Memory Complexity . 126
3.4.4 Related Work on Classifiers Combinations . 128

3.5 Experimental Methodology . 130
3.5.1 University of New Mexico (UNM) Data . 131
3.5.2 Synthetic Data . 131
3.5.3 Experimental Protocol . 134

3.6 Simulation Results and Discussion . 136
3.6.1 An Illustrative Example with Synthetic Data . 136
3.6.2 Results with Synthetic and Real Data . 140

3.7 Conclusion . 149

CHAPTER 4 ADAPTIVE ROC-BASED ENSEMBLES OF HMMS AP-
PLIED TO ANOMALY DETECTION .. 153

4.1 Introduction. 154
4.2 Adaptive Anomaly Detection Systems . 159

4.2.1 Anomaly Detection Using HMMs . 159
4.2.2 Adaptation in Anomaly Detection . 161
4.2.3 Techniques for Incremental Learning of HMM Parameters 162
4.2.4 Incremental Learning with Ensembles of Classifiers. 165

4.3 Learn-and-Combine Approach Using Incremental Boolean Combination. . . . 170
4.3.1 Incremental Boolean Combination in the ROC Space 172
4.3.2 Model Management . 179

XI

4.3.2.1 Model Selection . 180
4.3.2.2 Model Pruning . 184

4.4 Experimental Methodology . 186
4.4.1 Data Sets . 186
4.4.2 Experimental Protocol . 188

4.5 Simulation Results. 191
4.5.1 Evaluation of the Learn-and-Combine Approach: . 192
4.5.2 Evaluation of Model Management Strategies: . 198

4.6 Conclusion . 205

CONCLUSIONS . 207

APPENDIX I ON THE MEMORY COMPLEXITY OF THE FORWARD
BACKWARD ALGORITHM .. 219

APPENDIX II A COMPARISON OF TECHNIQUES FOR ON-LINE IN-
CREMENTAL LEARNING OF HMM PARAMETERS IN
ANOMALY DETECTION .. 241

APPENDIX III INCREMENTAL LEARNING STRATEGY FOR UPDAT-
ING HMM PARAMETERS . 265

APPENDIX IV BOOLEAN FUNCTIONS AND ADDITIONAL RESULTS 271

APPENDIX V COMBINING HIDDEN MARKOV MODELS FOR IMPROVED
ANOMALY DETECTION .. 275

BIBLIOGRAPHY .. 289

XII

LIST OF TABLES

Page

Table 2.1 Time and memory complexity for some representative block-
wise algorithms used for on-line learning of a new sub-sequence
o1:T of length T . N is the number of HMM states and M is the
size of alphabet symbols . 95

Table 2.2 Time and memory complexity of some representative symbol-wise
algorithms used for on-line learning of new symbol oi. N is the
number of HMM states and M is the size of alphabet symbols 97

Table 3.1 Combination of conditionally independent detectors . 118

Table 3.2 Combination of conditionally dependent detectors . 119

Table 3.3 The maximum likelihood combination of detectors Ca and Cb
as proposed by Haker et al. (2005) . 120

Table 3.4 Worst-case time and memory complexity for the illustrative example . 139

XIV

LIST OF FIGURES

Page

Figure 0.1 Structure of the thesis . 14

Figure 1.1 High level architecture of an intrusion detection system. 18

Figure 1.2 Host-based IDSs run on each server or host systems, while
network-based IDS monitor network borders and DMZ.. 21

Figure 1.3 A high-level architecture of operating system, illustrating
system-call interface to kernel and generic types of system calls 28

Figure 1.4 Examples of Markov models with alphabet Σ = 8 symbols and
various CRE values, each used to generate a sequence of length
T = 50 observation symbols . 39

Figure 1.5 Synthetic normal and anomalous data generation according to
a Markov model with CRE = 0.3 and alphabet of size Σ = 8 symbols 40

Figure 1.6 Confusion matrix and ROC common measures. 44

Figure 1.7 Illustration of the fixed tpr and fpr values produced by a crisp
detector and the ROC curve generated by a soft detector (for
various decision thresholds T). Important regions in the ROC
space are annotated . 44

Figure 1.8 Illustration of normal process behavior when modeled with
unrepresentative training data. Normal rare events will be
considered as anomalous by the ADS, and hence trigger false alarms . 49

Figure 1.9 Illustration of changes in normal process behavior, due for
instance to application update or changes in user behavior, and
the resulting regions causing both false positive and negative errors . . 50

Figure 2.1 A generic incremental learning scenario where blocks of data
are used to update the classifier in an incremental fashion
over a period of time t. Let D1, . . . ,Dn+1 be the blocks of
training data available to the classifier at discrete instants in
time t1, . . . , tn+1. The classifier starts with initial hypothesis
h0 which constitutes the prior knowledge of the domain. Thus,
h0 gets updated to h1 on the basis of D1, and h1 gets updated
to h2 on the basis of data D2, and so forth (Caragea et al., 2001) 56

XVI

Figure 2.2 An illustration of the degeneration that may occur with batch
learning of a new block of data. Suppose that the dotted curve
represents the cost function associated with a system trained
on block D1, and that the plain curve represents the cost
function associated with a system trained on the cumulative
data D1

⋃
D2. Point (1) represents the optimum solution of

batch learning performed onD1, while point (4) is the optimum
solution for batch learning performed on D1

⋃
D2. If point (1)

is used as a starting point for incremental training onD2 (point
(2)), then it will become trapped in the local optimum at point (3) . . . 57

Figure 2.3 An illustration of an ergodic three states HMM with either
continuous or discrete output observations (left). A discrete
HMM with N states and M symbols transits between the
hidden states qt, and generates the observations ot (right) 59

Figure 2.4 Taxonomy of techniques for on-line learning of HMM parameters 73

Figure 2.5 An illustration of on-line learning (a) from an infinite stream
of observation symbols (oi) or sub-sequences (si) versus
batch learning (b) from accumulated sequences of observations
symbols (S1∪S2) or blocks of sub-sequences (D1∪D2) 92

Figure 2.6 An example of the time and memory complexity of a block-wise
(Mizuno et al. (2000)) versus symbol-wise (Florez-Larrahondo
et al. (2005)) algorithm for learning an observation sequence of
length T = 1000,000 with an output alphabet of size M = 50 symbols 98

Figure 2.7 The dotted curve represents the log-likelihood function
associated with and HMM (λ1) trained on block D1 over the
space of one model parameter λ. After training on D1, the on-
line algorithm estimates λ= λ1 (point (a)) and provides HMM
(λ1). The plain curve represents the log-likelihood function
associated with HMM (λ2) trained on block D2 over the same
optimization space . 103

Figure 3.1 Illustration of a fully connected three state HMM with a
discrete output observations (left). Illustration of a discrete
HMM with N states and M symbols switching between the
hidden states qt and generating the observations ot (right). The
state qt = i denotes that the state of the process at time t is Si 112

Figure 3.2 Illustration of the ROCCH (dashed line) applied to: (a) the
combination of two soft detectors (b) the repair of concavities
of an improper soft detector. For instance, in (a) the composite

XVII

detector Cc is realized by randomly selecting the responses from
Ca half of the time and the other half from Cb . 115

Figure 3.3 Examples of combination of two conditionally-independent
crisp detectors, Ca and Cb, using the AND and OR rules.
The performance of the their combination is shown superior
to that of the MRROC. The shaded regions are the expected
performance of combination when there is an interaction
between the detectors. 118

Figure 3.4 Block diagram of the system used for combining the responses
of two HMMs. It illustrates the combination of HMM responses
in the ROC space according to the BCALL technique 122

Figure 3.5 Illustration of data pre-processing for training, validation and testing133

Figure 3.6 Illustration of the steps involved for estimating HMM parameters . . . 135

Figure 3.7 Illustrative example that compares the AUC performance of
techniques for combination (top) and for repairing (bottom) of
ROC curves. The example is conducted on a system consisting
of two ergodic HMMs trained with N = 4 and N = 12 states,
on a block of 100 sequences, each of length DW = 4 symbols,
synthetically generated with Σ = 8 and CRE = 0.3 . 137

Figure 3.8 Results for synthetically generated data with Σ = 8 and
CRE = 0.3. Average AUC values obtained on the test sets
as a function of the number of training blocks (50 to 450
sequences) for a 3-HMM system each trained with a different
state (N = 4,8,12), and combined with the MRROC, BC and
IBC techniques. Average AUC performance is compared for
various detector windows sizes (DW = 2,4,6). Error bars are
standard deviations over ten replications . 144

Figure 3.9 Results for synthetically generated data with Σ = 50 and
CRE = 0.4. Average AUC values (left) and tpr values at fpr=
0.1 (right) obtained on the test sets as a function of the number
of training blocks (1000 to 5000 sequences) for a 3-HMM
system each trained with a different state (N = 40,50,60),
and combined with the MRROC and IBC techniques. The
performance is compared for various detector windows sizes
(DW = 2,4,6). Error bars are standard deviations over ten
replications . 145

XVIII

Figure 3.10 Results for sendmail data. AUC values (left) and tpr values
at fpr = 0.1 (right) obtained on the test sets as function of
the number of training blocks (100 to 1000 sequences) for
a 5-HMM system, each trained with a different state (N =
40,45,50,55,60), and combined with the MRROC and IBC
techniques. The performance is compared for various detector
windows sizes (DW = 2,4,6) . 146

Figure 3.11 Performance versus the number of training blocks achieved
after repairing concavities for synthetically generated data with
Σ = 8 and CRE = 0.3. Average AUCs (left) and tpr values at
fpr= 0.1 (right) on the test set for a μ-HMM where each HMM
is trained with different number of states (N = 4,8,12). HMMs
are combined with the MRROC technique and compared to the
performance of IBCALL and LCR repairing techniques, for
various training block sizes (50 to 450 sequences) and detector
windows sizes (DW = 4 and 6) . 148

Figure 4.1 An incremental learning scenario where blocks of data are
used to update the HMM parameters (λ) over a period of
time. Let D1,D2, ...,Dn be the blocks of training data available
to the HMM at discrete instants in time. The HMM starts
with an initial hypothesis h0 associated with the initial set of
parameters λ0, which constitutes the prior knowledge of the
domain. Thus, h0 and λ0 get updated to h1 and λ1 on the
basis of D1, then h1 and λ1 get updated to h2 and λ2 on the
basis of D2, and so forth . 163

Figure 4.2 An illustration of the decline in performance that may occur
with batch or on-line estimation of HMM parameters, when
learning is performed incrementally on successive blocks 166

Figure 4.3 Block diagram of the adaptive system proposed for incrBC
of HMMs, trained from newly-acquired blocks of data Dk,
according to the learn-and-combine approach. It allows for
an efficient management of the pool of HMMs and selection of
EoHMMs, decision thresholds, and Boolean functions 172

Figure 4.4 An illustration of the steps involved during the design phase of
the incrBC algorithm employed for incremental combination
from a pool of four HMMs P1 = {λ1

1, . . . ,λ
1
4}. Each HMM is

trained with different number of states and initializations on a
block (D1) of normal data synthetically generated with Σ = 8
and CRE = 0.3 using the BW algorithm (see Section 4.4 for

XIX

details on data generation and HMM training). At each step,
the example illustrates the update of the composite ROCCH
(CH) and the selection of the corresponding set (S) of decision
thresholds and Boolean functions for overall improved system
performance . 177

Figure 4.5 An illustration of the incrBC algorithm during the operational
phase. The example presents the set of decision thresholds
and Boolean functions that are activated given, for instance,
a maximum specified fpr of 10% for the system designed in
Figure 4.4. The operational point (cop) that corresponds to
fpr = 10% is located between the vertices c33 and c24 of the
composite ROCCH, which can be achieved by interpolation
of responses (Provost and Fawcett, 2001; Scott et al., 1998).
The desired cop is therefore realized by randomly taking the
responses from c33 with probability value of 0.85 and from c24
with probability value of 0.15 . The decision thresholds and
Boolean functions of c33 and c24 are then retrieved from S and
applied for operations . 178

Figure 4.6 A comparison of the composite ROCCH (CH) and AUC
performance achieved with the HMMs selected according to
the BCgreedy and BCsearch algorithms. Suppose that a new
pool of four HMMs P2 = {λ2

1, . . . ,λ
2
4} is generated from a new

block of training data (D2), and appended to the previously-
generated pool, P1 = {λ1

1, . . . ,λ
1
4}, in the example presented in

Section 4.3.1 (Figure 4.4). The incrBC algorithm combines
all available HMMs in P = {λ1

1, . . . ,λ
1
4,λ

2
1, . . . ,λ

2
4}, according

to their order of generation and storage, while BCgreedy and
BCsearch start by ranking the members of P according to AUC
values and then apply their ensemble selection strategies. 185

Figure 4.7 Overall steps involved to estimate HMM parameters and select
HMMs with the highest AUCH for each number of states from
the first block (D1) of normal data, using 10-FCV and ten
random initializations . 190

Figure 4.8 An illustration of HMM parameter estimation according
to each learning technique (BBW, BW, OBW, and
IBW) when subsequent blocks of observation sub-sequences
(D1,D2,D3, . . .) become available . 191

Figure 4.9 Results for synthetically generated data with Σ = 8 and
CRE = 0.3. The HMMs are trained according to each

XX

technique with N = 6 states for each block of data providing a
pool of size |P|= 1,2, . . . ,10 HMMs. Error bars are lower and
upper quartiles over ten replications . 193

Figure 4.10 Results for synthetically generated data with Σ = 8 and
CRE = 0.3. The HMMs are trained according to each
technique with nine different states (N = 4,5, . . . ,12) for each
block of data providing a pool of size |P|= 9,18, . . . ,90 HMMs.
Numbers above points are the state values that achieved the
highest average level of performance on each block. Error bars
are lower and upper quartiles over ten replications. 195

Figure 4.11 Results for synthetically generated data with Σ = 50 and
CRE = 0.4. The HMMs are trained according to each
technique with 20 different states (N = 5,10, . . . ,100) for each
block of data providing a pool of size |P| = 20,40, . . . ,200
HMMs. Numbers above points are the state values that
achieved the highest average level of performance on each
block. Error bars are lower and upper quartiles over ten replications 196

Figure 4.12 Results for sendmail data. The HMMs are trained according to
each technique with 20 different states (N = 5,10, . . . ,100) for
each block of data providing a pool of size |P|= 20,40, . . . ,200
HMMs. Numbers above points are the state values that
achieved the highest level of performance on each block 197

Figure 4.13 Ensemble selection results for synthetically generated data
with Σ = 50 and CRE = 0.4. These results are for the first
replication of Figure 4.11. For each block, the values on the
arrows represent the size of the EoHMMs (|E|) selected by each
technique from the pool of size |P|= 20,40, . . . ,200 HMMs 199

Figure 4.14 Representation of the HMMs selected in Figure 4.13a with
the presentation of each new block of data according to the
BCgreedy algorithm with tolerance = 0.01. HMMs trained on
different blocks are presented with a different symbol. |P| =
20,40, . . . ,200 HMMs indicated by the grid on the figure 199

Figure 4.15 Representation of the HMMs selected in Figure 4.13a with
the presentation of each new block of data according to the
BCsearch algorithm with tolerance = 0.01. HMMs trained on
different blocks are presented with a different symbol. |P| =
20,40, . . . ,200 HMMs indicated by the grid on the figure 200

XXI

Figure 4.16 Ensemble selection results for sendmail data of Figure 4.12.
For each block, the values on the arrows represent the size of
the EoHMMs (|E|) selected by each technique from P of size
|P|= 20,40, . . . ,200 HMMs . 201

Figure 4.17 Representation of the HMMs selected in Figure 4.16a with
the presentation of each new block of data according to the
BCgreedy algorithm with tolerance = 0.003. HMMs trained
on different blocks are presented with a different symbol.
|P|= 20,40, . . .200 HMMs indicated by the grid on the figure. 201

Figure 4.18 Representation of the HMMs selected in Figure 4.16a with
the presentation of each new block of data according to the
BCsearch algorithm with tolerance = 0.003. HMMs trained
on different blocks are presented with a different symbol.
|P|= 20,40, . . .200 HMMs indicated by the grid on the figure. 202

Figure 4.19 illustration of the impact on performance of pruning the pool
of HMMs in Figure 4.13a . 203

Figure 4.20 illustration of the impact on performance of pruning the pool
of HMMs in Figure 4.16a . 205

XXII

LIST OF ABBREVIATIONS

μ-HMMs Multiple Hidden Markov Models.

ADS Anomaly Detection System.

AS Anomaly Size.

AUC Area Under the ROC Curve.

AUCH Area under the ROC ROC Convex Hull.

BC Boolean Combination.

BCM Boolean Combination of Multiple Detectors.

BKS Behavior Knowledge Space.

BW Baum-Welch.

CIA Confidentiality, Integrity and Availability.

CRE Conditional Relative Entropy.

DMZ Demilitarized Zone.

DW Detector Window Size.

EFFBS Efficient Forward Filtering Backward Smoothing.

ELS Extended Least Squares.

EM Expectation-Maximization.

EoC Ensemble of Classifiers.

EoHMMs Ensemble of Hidden Markov Models.

FB Forward Backward.

XXIV

FFBS Forward Filtering Backward Smoothing.

FO Forward Only.

FSA Finite State Automaton.

GAM Generalized Alternating Minimization.

GD Gradient Descent.

GEM Generalized Expectation-Maximization.

HIDS Host-based Intrusion Detection System.

HMM Hidden Markov Model.

IBC Iterative Boolean Combination.

IBW Incremental Baum-Welch.

IDPS Intrusion Detection and Prevention System.

IDS Intrusion Detection System.

IPS Intrusion Prevention System.

KL Kullback-Leibler.

LAN local Area Network.

LT Life Time Expectancy of Models.

LCR Largest Concavity Repair.

MDI Minimum Discrimination Information.

MLE Maximum Likelihood Estimation.

MMD Minimum Model Divergence.

XXV

MMI Maximum Mutual Information.

MM Markov Model.

MMSE Minimum Mean Square Error.

MPE Minimum Prediction Error.

MRROC Maximum Realizable ROC.

NIDS Network-based Intrusion Detection System.

NIST National Institute of Standards and Technology.

ODE Ordinary Differential Equation.

OS Operating System.

RCLSE Recursive Conditioned Least Squares Estimator.

RIPPER Repeated Incremental Pruning to Produce Error Reduction.

ROCCH ROC Convex Hull.

ROC Receiver Operating Characteristic.

RPE Recursive Prediction Error.

RSPE Recursive State Prediction Error.

SSH Secure Shell.

SSL Secure Sockets Layer.

STIDE Sequence Time-Delay Embedding.

TIDE Time-Delay Embedding.

UNM University of New Mexico.

XXVI

VPN Virtual Private Network.

WMW Wilcoxon-Mann-Whitney.

acc Accuracy.

bf Boolean function.

err Error Rate.

fnr False Negative Rate.

fpr False Positive Rate.

setuid Set user identifier permission.

tnr True Negative Rate.

tpr True Positive Rate.

uid User identifiers.

LIST OF SYMBOLS

Δ Fixed positive lag in fixed-lag smoothing estimation.

Λ HMM parameter space.

Σ Alphabet size of Markov model generator (or of a process).

∇(Y)X Gradient of X with reference to Y.

αt(i) The forward variable. Unnormalized joint probability density of the
state i and the observations up to time t, given the HMM λ.

βt(i) The backward variable. Conditional probability density of the observa-
tions from time t+1 up to the last observation, given the state at time
t is i.

γτ |t(i) Conditional state density. Probability of being in state i at time τ given
the HMM λ and the observation sequence o1:t. It is a filtered state
densisty if τ = t; predictive state density if τ < t, and smoothed state
density if τ > t.

δi(j) Kronecker delta. It is equal to one if i= j and zero otherwise.

ε Small positive constant representing tolerance in error or accuracy mea-
sure values.

ε Output prediction error, ε= ot− ôt.
Et HMM output prediction error, Et = ot− ôt|t−1

ζ Gradient of state variable alpha w.r.t. HMM state transitions.

η Fixed learning rate.

ηt Time-varying learning rate.

λ HMM parameters, λ= (A,B,π).

λ̂ Estimated HMM parameters.

λ0 Initial estimation (or guess) of HMM parameters.

λ̂k Estimated HMM parameters at the k−th iteration.

λr Estimated HMM parameters from the r-th observation.

λt Estimated HMM parameters at time t.

μ Mean of output probability distribution of a continuous HMM.

XXVIII

ξτ |t(i, j) Conditional joint state density. Probability of being in state i at time
τ and transiting to state j at time τ + 1 given the HMM λ and the
observation sequence o1:t. It is a filtered joint state densisty if τ = t;
predictive joint state density if τ < t, and smoothed joint state density
if τ > t.

π Vector of initial state probability distribution.

π(i) Element of π. Probability of being in state i at time t= 0.

σt Variance of output probability distribution of a continuous HMM.

σt(i, j,k) Probability of having made a transition from state i to state j, at some
point in the past, and of ending up in state k at the current time t.

ς Gradient of state variable alpha w.r.t. HMM outputs.

ψt(i) Gradient of the prediction error cost function (J) w.r.t. HMM parame-
ters.

ω Decay function.

A Matrix of HMM state transition probability distribution.

AUCH0.1 Partial area under the ROC convex hull for the range of fpr = [0,0.1].

B Matrix of HMM state output probability distribution.

D Block of training data.

Dk Block of training data received at time t= k.

E[.] Expectation function.

E Selected ensemble of base HMMs from the pool.

Ek Selected ensemble of base HMMs after receiving the kth block of data.

I Number of iterations of the IBC algorithm.

J(λ) Prediction error cost function based on HMM (λ)

M Size of output alphabet (V) of a discrete HMM. The number of distinct
observable symbols.

N Number of HMM states.

N t,τijk(O) The probability of making at time t a transition from state i to j with
symbol Ot and to be in state k at time τ ≥ t.

O Sequence of observation symbols.

P Pool of base HMMs.

Pk Pool of base HMMs generated after receiving the kth block of data.

XXIX

S State space of HMM.

S Selected set of decision thresholds (from each base HMM) and Boolean
functions that most improves the overall ROC convex hull of Boolean
combination.

T Length of the observation sequence.

T Decision threshold.

T Test data set.

V Output alphabet of HMM. It can be either a continuous or discrete.

V Validation data set.

aij Element of A. Probability of being in state i at time t and going to state
j at time t+1.

aτij(ot) Probability to make a transition from state i to state j and to generate
the output ot at time τ .

bj(k) Element of B. Probability of emitting an observation symbol ok at state
j.

�T (λ) Log-likelihood of the observation sequence o1:T with regard to HMM
parameters (λ).

ot Observation symbol at time t.

o1:t Concise notation denoting the observation sub-sequence o1,o2, . . . ,ot.

ôt Output prediction at time t.

ôt|t−1 Output prediction at time t, conditioned on all previous output values.

qt State of HMM at time t. qt = i denotes that the state of the HMM at
time t is Si.

wt Gradient of the state prediction filter (γt|t−1) w.r.t. HMM parameters.

XXX

INTRODUCTION

Computers and network touch every facet of modern life. Our society is increasingly

dependent on interconnected information systems, offering more opportunities and chal-

lenges for computer criminals to break into these systems. Security attacks through

Internet have proliferated in recent years. Information security has therefore become a

critical issue for all – governments, organizations and individuals.

As systems become ever more complex, there are always exploitable weaknesses that are

inherent to all stages of system development life cycle (from design to deployment and

maintenance). Several security attacks have emerged because of vulnerabilities in pro-

tocol design. Programming errors are unavoidable, even for experienced programmers.

Developers often assume that their products will be used under expected conditions.

Many security vulnerabilities are also caused by system misconfiguration and misman-

agement. In fact, managing system security is a time-consuming and challenging task.

Different complex software components, including operating systems, firmware, and ap-

plications, must be configured securely, updated, and continuously monitored for security.

This requires a large amount of time, energy, and resources to keep up with the rapidly

evolving pace of threat sophistication.

Preventive security mechanisms such as firewalls, cryptography, access control and au-

thentication are deployed to stop unwanted or unauthorized activities before they actually

cause damage. These techniques provide a security perimeter but are insufficient to en-

sure reliable security. Firewalls are prone to misconfiguration, and can be circumvented

by redirecting traffic or using encrypted tunnels (Ingham and Forrest, 2005). With the

exception of one-time pad cipher, all cryptographic algorithms are theoretically vulner-

able to cryptanalytic attacks. Furthermore, viruses, worms, and other malicious code

may defeat crypto-systems by secretly recording and transmitting secret keys residing

in a computer memory. Regardless of the preventive security measures, incidents are

likely to happen. Insider threats are invisible to perimeter security mechanisms. At-

2

tacks perpetrated by insiders are very often more damaging because they understand the

organization business and have access privileges, which facilitate breaking into systems

and extracting or damaging critical information (Salem et al., 2008). Furthermore, social

engineering bypasses all prevention techniques and provides a direct access to systems.

In addition, organizational security policies typically attempt to maintain an appropri-

ate balance between security and usability, which makes it impossible for an operational

system to be completely secure.

Intrusion detection is the process of monitoring the events occurring in a computer system

or network and analyzing them for signs of intrusions, defined as attempts to compromise

the confidentiality, integrity and availability (CIA), or to bypass the security mechanisms

of a computer or network (Scarfone and Mell, 2007). It is more feasible to prevent some

attacks and detect the rest than to try to prevent everything. When perimeter security

fails, intrusion attempts must be detected as soon as possible to limit the damage and

take corrective measures, hence the need for an intrusion detection system (IDS) as a

second line of defense (McHugh et al., 2000). IDSs monitor computer or network systems

to detect unusual activities and notify the system administrator. In addition, IDSs should

also provide relevant information for post-attack forensics analysis, and should ideally

provide reactive countermeasures. Without an IDS, security administrators may have no

sign of many ongoing or previously-deployed attacks. For instance, attacks that are not

intended to damage or control a system, but instead to compromise the confidentiality

or integrity of the data (e.g., by extracting or altering sensitive information), would be

very difficult to detect. An IDS is not a stand-alone system, but rather a fundamental

technology that complements preventive techniques and other security mechanisms.

Since their inceptions in the 1980s (Anderson, 1980; Denning, 1986), IDSs have received

increasing research attention (Alessandri et al., 2001; Axelsson, 2000; Debar et al., 2000;

Estevez-Tapiador et al., 2004; Lazarevic et al., 2005; Scarfone and Mell, 2007; Tucker

et al., 2007). IDSs are classified based on their monitoring scope into host-based IDS

(HIDS) and network-based IDS (NIDS). HIDSs are designed to monitor the activities of

3

host systems, such as mail servers, web servers, or individual workstations. NIDSs mon-

itor the network traffic for multiple hosts by capturing and analyzing network packets.

HIDSs are typically more expensive to deploy and manage, and may consume system

resource, however they can detect insider attacks. NIDSs are easier to manage because

they are platform independent and typically installed on a designated system, but they

can only detect attacks which come through the network.

In general, intrusion detection methods are categorized into misuse and anomaly de-

tection. In misuse detection, known attack patterns are stored in a database and then

system activities are checked against these patterns. Such approach is also employed in

commercial anti-virus products. Misuse detection systems may provide a high level of

accuracy, but unable to detect novel attacks. In contrast, anomaly detection approaches

learn normal system behavior and detect significant deviations from this baseline behav-

ior. Anomaly detection systems (ADS) can detect novel attacks, but generate a pro-

hibitive number of false alarms due in large part to the difficulty in obtaining complete

descriptions of normal behavior.

Security events monitored for anomalies typically involve sequential and categorical

records (e.g., audit trails, application logs, system calls, network requests) that reflect

specific system activities and may indirectly reflect user behaviors. Hidden Markov Model

(HMM) is a doubly stochastic process for sequential data Theoretical and empirical re-

sults have shown that, given an adequate number of hidden states and a sufficiently rich

set of observations, HMMs are capable of representing probability distributions corre-

sponding to complex real-world phenomena (Bengio, 1999; Cappe et al., 2005; Ephraim

and Merhav, 2002; Ghahramani, 2001; Poritz, 1988; Rabiner, 1989; Smyth et al., 1997).

A well trained HMM provides a compact detector that captures the underlying structures

of the monitored system based on the temporal order of events generated during normal

operations. It then detects deviations from normal system behavior with high accuracy

and tolerance to noise. ADSs based on HMMs have been successfully applied to model

sequential security events occurring at different levels within a networking environment,

4

such as at the host level (Cho and Han, 2003; Hu, 2010; Lane and Brodley, 2003; Warren-

der et al., 1999; Yeung and Ding, 2003), network level (Gao et al., 2003; Ourston et al.,

2003; Tosun, 2005), and wireless level (Cardenas et al., 2003; Konorski, 2005).

Traditional host-based anomaly detection systems monitor for significant deviation in

operating system calls, as they provide a gateway between user and kernel mode (Forrest

et al., 1996). In particular, abnormal behavior of privileged processes (e.g., root and

setuid processes described in Section 1.2.1) is most dangerous, since these processes run

with elevated administrative privileges. Flaws in privileged processes are often exploited

to compromise system security. Various neural and statistical anomaly detectors have

been applied within ADSs to learn the normal behavior of privileged processes through

the system call sequences that are generated (Forrest et al., 2008; Warrender et al., 1999),

and then detect deviations from normal behavior as anomalous. Among these, techniques

based on discrete HMMs have been shown to produce a very high level of performance

(Du et al., 2004; Florez-Larrahondo et al., 2005; Gao et al., 2002, 2003; Hoang and Hu,

2004; Hu, 2010; Wang et al., 2010, 2004; Warrender et al., 1999; Zhang et al., 2003).

This thesis focuses on HMM-based anomaly detection techniques for monitoring the

deviations from normal behavior of privileged processes based on sequences of operating

system calls.

Motivation and Problem Statement

Ideally, anomaly detection systems should efficiently detect and report all accidental

or deliberate malicious activities – from insiders or outsiders, successful or unsuccessful,

known or novel, without raising false alarms. In this ideal situation, the output of an ADS

should also be readily usable, with no or limited user intervention. More importantly,

an ADS must accommodate newly-acquired data and adapt to changes in normal system

behavior over time, to maintain or improve its accuracy.

5

In practice, however, ADSs typically generate an excessive number of false alarms – a

major obstacle limiting their deployment in real-world applications. A false alarm (or

false positive) occurs when a normal event is misclassified as anomalous. False alarms

cause expensive disruption due to the need to investigate, and ascertain or refute. It is

often very difficult to determine the exact sequence of events that triggered an alarm.

Furthermore, frequent false alarms reduce the confidence in the system, and lead oper-

ators to undermine the credibility of future alarms. This issue is compounded further

when several IDSs are actively monitored by a single operator. In addition, when intru-

sion detection is coupled with active response capabilities1 (Ghorbani et al., 2010; Rash

et al., 2005; Stakhanova et al., 2007), frequent false alarms will affect the availability of

system resources, because of possible service disruptions.

False alarms are caused by several reasons, including poorly designed detectors, unrep-

resentative normal data for training, and limited data for validation and testing. Poorly

designed anomaly detectors can not precisely describe the typical behavior of the pro-

tected system, and hence normal events are misclassified as anomalous. Design issues

typically include inadequate assumptions about the real system behavior, inappropriate

model selection, and poor optimization of models parameters. For instance, the number

of HMM states may have a significant impact on the detection accuracy. Overfitting

is an important issue that leads to inaccurate predictions. It occurs when the training

process leads to memorization of noise in training data, providing models that are over-

specialized for the training data but perform poorly on unseen test data. In general,

complex HMMs (with large number of states) trained on limited amount of data are

more prone to overfitting.

Anomaly detectors based on HMMs require a representative amount of normal training

data. In practice, a limited amount of representative normal data is typically provided

for training, because the collection and analysis of training data is costly. The anomaly
1An IDS that actively responds to suspicious activities by, for instance, shutting systems down,

logging out users, or blocking network connections is often referred to as an intrusion prevention systems
(IPS) or an intrusion detection and prevention system (IDPS).

6

detector will therefore have an incomplete view of the normal process behavior, and

hence misclassify rare normal events as anomalous. Furthermore, substantial changes to

the monitored environment, reduce the reliability of the detector as the internal model

of normal behavior diverges with respect to the underlying data distribution, producing

both false positive and negative errors. Therefore, an ADS must be able to efficiently

accommodate newly-acquired data, after it has originally been trained and deployed for

operations, to maintain or improve system accuracy over time.

The incremental re-estimation of HMM parameters raises several challenges. Given

newly-acquired data for training, HMM parameters should be updated from new data

without requiring access to the previously-learned training data, and without corrupting

previously-acquired knowledge (i.e., models of normal behavior) (Grossberg, 1988; Po-

likar et al., 2001). Standard techniques for training HMM parameters involve iterative

batch learning, based either on the Baum-Welch (BW) algorithm (Baum et al., 1970), a

specialized expectation maximization (EM) technique (Dempster et al., 1977), or on nu-

merical optimization methods, such as the Gradient Descent (GD) algorithm (Levinson

et al., 1983). These techniques assume a fixed (finite) amount of training data available

throughout the training process. In either case, HMM parameters are estimated over

several training iterations, until the likelihood function is maximized over data samples.

Each training iteration requires applying the Forward-Backward (FB) algorithm (Baum,

1972; Baum et al., 1970; Chang and Hancock, 1966) on the entire training data to eval-

uate the likelihood value and estimate the state densities – the sufficient statistics for

updating HMM parameters.

To accommodate newly-acquired data, batch learning techniques must restart HMM

training from the start using all cumulative data, which is a resource intensive and time

consuming task. Over time, an increasingly large space is required for storing cumulative

training data, and HMM parameters estimation becomes prohibitively costly. In fact,

considering the HMM parameters obtained from previously-learned data as starting point

for training on newly-acquired data, may not allow for an optimization process that

7

escapes the local maximum associated with the previously-learned data. Being stuck in

local maxima leads to knowledge corruption and hence to a decline in system performance.

The time and memory complexity of BW or GD algorithm, for training an HMM with

N states, is O(N2T) and O(NT) respectively, for a sequence of length T symbols.

As an alternative, several on-line learning techniques have been proposed in literature

to re-estimate HMM parameters from an infinite stream of observation symbols or sub-

sequences. These algorithms re-estimate HMM parameters continuously upon observing

each new observation symbol (Florez-Larrahondo et al., 2005; Garg and Warmuth, 2003;

LeGland and Mevel, 1995, 1997; Mongillo and Deneve, 2008; Stiller and Radons, 1999)

or new observation sub-sequence, (Baldi and Chauvin, 1994; Cappe et al., 1998; Mizuno

et al., 2000; Ryden, 1997; Singer and Warmuth, 1996) typically without iteration. In

practice however, on-line learning using blocks comprising a limited number of observa-

tion sub-sequences yields a low level of performance as one pass over each block is not

sufficient to capture the phenomena.

A single classifier systems for incremental learning may approximate the underlying data

distribution inadequately. Indeed, incremental learning using a single HMM with a fixed

number of states may not capture a representative approximation of the normal process

behavior. Different HMMs trained with different number of states capture different

underlying structures of the training data. Furthermore, HMMs trained according to

different random initializations may lead the algorithm to converge to different solutions

in parameters space, due to the many local maxima of the likelihood function. Therefore,

a single HMM not provide a high level of performance over the entire detection space.

Ensemble methods have been recently employed to overcome the limitations faced with

a single classifier system (Dietterich, 2000; Kuncheva, 2004a; Polikar, 2006; Tulyakov

et al., 2008). Theoretical and empirical evidence have shown that combining the outputs

of several accurate and diverse classifiers is an effective technique for improving the over-

all system accuracy (Brown et al., 2005; Dietterich, 2000; Kittler, 1998; Kuncheva, 2004a;

8

Polikar, 2006; Rokach, 2010; Tulyakov et al., 2008). In general, designing an ensemble

of classifiers (EoC) involves generating a diverse pool of base classifiers (Breiman, 1996;

Freund and Schapire, 1996; Ho et al., 1994), selecting an accurate and diversified sub-

set of classifiers (Tsoumakas et al., 2009), and then combining their output predictions

(Kuncheva, 2004a; Tulyakov et al., 2008).

The combination of selected classifiers typically occurs at the score, rank or decision levels

(Kuncheva, 2004a; Tulyakov et al., 2008). Fusion at the score level typically requires nor-

malization of the scores before applying the fusion functions, such as sum, product, and

average (Kittler, 1998). Fusion at the rank level is mostly suitable for multi-class classi-

fication problems where the correct class is expected to appear in the top of the ranked

list (Ho et al., 1994; Van Erp and Schomaker, 2000). Fusion at the decision level exploits

the least amount of information since only class labels are considered. Majority voting

(Ruta and Gabrys, 2002), weighted majority voting (Ali and Pazzani, 1996; Littlestone

and Warmuth, 1994) are among the most representative decision-level fusing functions.

Combination of responses in the Receiver Operating Characteristic (ROC) space have

been recently investigated as alternative decision-level fusion techniques. The ROC con-

vex hull (ROCCH) or the maximum realizable ROC (MRROC) have been proposed to

combine detectors based on a simple interpolation between their responses (Provost and

Fawcett, 2001; Scott et al., 1998). Using Boolean conjunction or disjunction functions

to combine the responses of multiple soft detectors in the ROC space have shown and

improved performance over the MRROC (Haker et al., 2005; Tao and Veldhuis, 2008).

However, these techniques assume conditionally independent classifiers and convexity of

ROC curves (Haker et al., 2005; Tao and Veldhuis, 2008).

EoCs may be adapted for incremental learning by generating a new pool of classifiers as

each block of data becomes available, and combining the outputs with those of previously-

generated classifiers with some fusion technique (Kuncheva, 2004b). Most existing en-

semble techniques proposed for incremental learning aim at maximizing the system per-

formance through a single measure of accuracy (Chen and Chen, 2009; Muhlbaier et al.,

9

2004; Polikar et al., 2001). Furthermore, these techniques are mostly designed for two-

or multi-class classification tasks, and hence require labeled training data sets to compute

the errors committed by the base classifiers and update the weight distribution at each

iteration. In HMM-based ADSs, the HMM detector is a one-class classifier that is trained

using the normal system call data only. Moreover, an arbitrary and fixed threshold is

typically set on the output scores of base classifiers prior to combining their decisions.

This implicitly assumes fixed prior probabilities and misclassification costs. Nevertheless,

the effectiveness of an EoC strongly depends on the decision fusion strategies. Standard

techniques for fusion, such as voting, sum or averaging, assume independent classifiers

and do not consider class priors (Kittler, 1998; Kuncheva, 2002). However, these as-

sumptions are violated in anomaly detection applications, since detectors are typically

designed using limited representative training data. Furthermore, the prior class distribu-

tions and misclassification costs are imbalanced, and may vary over time. In addition the

correlation between classifiers decisions depends on the selection of decision thresholds.

Objectives and Contributions

This thesis addresses the challenges mentioned above and aims at improving the accuracy,

efficiency and adaptability of existing host-based anomaly detection systems based on

HMMs. A major objective of this thesis is to develop adaptive techniques for ADSs based

on HMMs that can maintain a high level of performance by efficiently adapting to newly-

acquired data over time to account for rare normal events and adapt to legitimate changes

in the monitored environments.

To address the objectives mentioned above, this thesis presents effective techniques for

adaptation of ADS based on HMMs. In response to new training data, these techniques

allow for incremental learning at the decision and detection levels. At the decision level,

this thesis presents a novel and general learn-and-combine approach based on Boolean

combination of detector responses in the ROC space. It also proposes improved tech-

niques for incremental learning of HMM parameters, which allow to accommodate new

10

data over time. In addition, this thesis attempts to provide an answer to the following

question: Given newly-acquired training data, is it best to adapt parameters of HMM

detectors trained on previously-acquired data, or to train new HMMs on newly-acquired

data and combine them with those trained on previously-acquired data?

This thesis presents the following key contributions:

At the HMM Level.

• A survey of techniques found in literature that are suitable for incremental learn-

ing of HMM parameters. These techniques are classified according to the objective

function, optimization technique, and target application, involving block-wise and

symbol-wise learning of parameters. Convergence properties of these techniques are

presented, along with an analysis of time and memory complexity. In addition, the

challenges faced when these techniques are applied to incremental learning is assessed

for scenarios in which the new training data is limited and abundant. As a result

of this survey, improved strategies for incremental learning of HMM parameters are

proposed. They are capable of maintaining or improving HMM accuracy over time,

by limiting corruption of previously-acquired knowledge, while reducing training time

and storage requirements. These incremental learning strategies provide efficient so-

lutions for HMM-based anomaly detectors, and can be applied to other application

domains.

• A novel variation of the Forward-Backward algorithm, called the Efficient Forward

Filtering Backward Smoothing (EFFBS). EFFBS reduces the memory complexity,

required for training an HMM with N states on a sequence of length T , from O(NT)

to O(N), without increasing the computational cost. EFFBS is useful when abundant

data (large T values) is provided for training HMM parameters.

• In depth investigation of the impact of several factors on HMM-based ADSs perfor-

mance of training set size, number of HMM states, detector window size, anomaly

size, and complexity and irregularity of the monitored process.

11

At the Decision Level.

• An efficient system is proposed for incremental learning of new blocks of training

data using a learn-and-combine approach. When a new block of training data be-

comes available, a new pool of HMMs is generated using different number of HMM

states and random initializations. The responses from the newly-trained HMMs are

then combined to those of the previously-trained HMMs in ROC space using a novel

incremental Boolean combination technique. The learn-and-combine approach allows

to select a diversified ensemble of HMMs (EoHMMs) from the pool, and adapts the

Boolean fusion functions and thresholds for improved performance, while it prunes

redundant base HMMs.

• Since the pool size grows indefinitely as new blocks of data become available over time,

employing specialized model management strategies is therefore a crucial aspect for

maintaining the efficiency of an adaptive ADS. When a new pool of HMM is generated

from a new block of data, the best EoHMMs is selected from the pool according to

the proposed model selection algorithms (BCgreedy or BCsearch), and then deployed

for operations. Less accurate and redundant HMMs that have not been selected for

some user-defined time interval are discarded from the pool.

• The proposed Boolean combination techniques includes:

– A new technique for Boolean combination (BC) of responses from two detectors

in ROC space.

– A new technique for cumulative Boolean combination of multiple detector (BCM)

responses. BCM combines the results of BC (from the first two detectors) with

the responses form the third detector, then with those of the fourth detector,

and so on until the last detector. When applied to incremental learning from

new data a variant of this algorithm is referred to as incrBC to emphasize its

incremental learning properties.

– A new iterative Boolean combination (IBC) technique. IBC recombines original

detector responses with the combination results of BCM over several iterations,

12

until the ROCCH stops improving (or a maximum number of iteration is per-

formed).

• These techniques apply all Boolean functions to combine detector responses corre-

sponding to each decision threshold (or each crisp detectors), and select the Boolean

functions and decision thresholds (or crisp detectors) that most improve the overall

ROCCH over that of original detectors. Since all Boolean functions are applied to ex-

plore the solution space, the proposed techniques require no prior assumptions about

conditional independence of detectors or convexity of ROC curves, and their time

complexity is linear with the number of soft detectors and quadratic with the number

of crisp detectors. Improving the ROCCH minimizes both false positive and nega-

tive errors over the entire range of operating conditions, separately from assumptions

about class distributions and error costs. More importantly, the overall composite

ROCCH is always retained for adjusting the desired operating point during opera-

tions, and hence accounting for changes in prior probabilities and costs of errors.

• The proposed Boolean combination techniques are general in the sense that they can

be employed to combine diverse responses of any set of crisp or soft one- or two-

class classifiers, within a wide range of application domains. This includes combining

the responses of the same detector trained on different data or features or trained

according to different parameters, or from different detectors trained on the same

data. In particular, they can be effectively applied when training data is limited and

test data is imbalanced.

Proof-of-concept simulations are applied to adaptive anomaly detection from system

call sequences. The experiments are conducted on both synthetically generated data and

sendmail data from the University of New Mexico (UNM) data sets2. They are conducted

using a wide range of training set sizes with various alphabet sizes and complexities, and

different anomaly sizes. The impact on performance of different techniques is assessed
2http://www.cs.unm.edu/~immsec/systemcalls.htm

13

through different ROC measures, such as the area under the curve (AUC), partial AUC,

and true positive rate (tpr) at a fixed false positive rate (fpr).

Organization of the Thesis

This manuscript-based thesis is structured into four chapters and five appendices. Fig-

ure 0.1, presents a schematic diagram of the thesis structure, and depicts the relationship

between chapters and appendices. As illustrated in Figure 0.1 and further described next,

most chapters (and appendices) consist of published (or submitted for publication) arti-

cles or papers in refereed scientific journals or conferences. The contents of each chapter is

almost the same as that of the published paper, with minor modifications for consistency

of notation throughout the thesis. Therefore, an overlap could not be avoided. Although

each chapter may be read independently, it is recommended to read the thesis sequen-

tially. However, readers unfamiliar with HMMs may benefit from reading Appendix I

and II, prior to reading Chapter 2. Appendix V may also provide good introduction to

Chapter 3. The rest of this thesis is structured as follows.

The first chapter provides an introduction to intrusion detection systems and their com-

ponents, describes the general and basic concepts related to IDS, and presents a overview

of relevant and related literature on host-based anomaly detection systems monitoring

privileged process behavior by using system call sequences. It then focuses on process

anomaly detection based on hidden Markov models. Both real and synthetic data sets

employed in this research are also presented and the methodology considered for eval-

uation of IDSs performance is described. This chapter ends with the challenges facing

process anomaly detection with HMMs.

Chapter 2 presents the survey of techniques found in literature that may be suitable

for incremental learning of HMM parameters, which has been accepted in Information

Sciences (Khreich et al., 2011a). Most techniques found in literature apply to on-line

learning of HMM parameters from an infinite data stream. In appendix II, representative

on-line techniques for training HMM parameters (from Chapter 2) are selected, extended

14

CHAPTER 0
Introduction

CHAPTER 1
Anomaly Detection with HMMs

CHAPTER 2
A Survey of Techniques for Incremental

Learning of HMM Parameters
(Accepted in INS)

CHAPTER 3
Iterative Boolean Combination of Classifiers

in the ROC Space: An Application to
Anomaly Detection with HMMs

(Published in PR)
(A general version appeared in ICPR10)

CHAPTER 4
Adaptive ROC-based Ensembles of

HMMs applied to Anomaly Detection
(Accepted in PR)

(A general version appeared in MSC11)

Appendix I
On the Memory Complexity
of the Forward-Backward

Algorithm
(Published in PRL)

Appendix II
A Comparison of Techniques

for On-line Incremental
Learning of HMM Parameters

in Anomaly Detection
(Appeared in CISDA09)

Appendix V
Combining Hidden Markov

Models for Improved
Anomaly Detection

(Appeared in ICC09)

CONCLUSIONS

Appendix IV
Boolean Functions and
Additional Results for

Chapter 3

Appendix III
Incremental Learning

Strategy

Figure 0.1 Structure of the thesis

to incremental learning, and compared to the original algorithms. Appendix II, appeared

in the IEEE international conference on computational intelligence for security and de-

fense applications (CISDA09) (Khreich et al., 2009a). Appendix III proposes strategies

for further improvement of incremental learning of HMM parameters. A variation of

these incremental learning strategies based on Baum-Welch algorithm (IBW) is applied

in Chapter 4, and compared with the novel learn-and-combine approach proposed. Al-

15

though on-line learning techniques provide efficient solutions for training HMMs parame-

ters from long observation sequences, they provide approximations to the smoothed state

densities computed with the FB algorithm. The Efficient Forward Filtering Backward

Smoothing (EFFBS) algorithm described in Appendix I, provides an exact alternative to

the FB algorithm, with a memory complexity that is independent of the sequence length.

This chapter has been published in Pattern Recognition Letters (Khreich et al., 2010c).

Chapter 3 describes the Boolean combination techniques proposed for efficient fusion of

responses from detectors in the ROC space. The performance obtained by combining the

responses of ADSs based on multiple HMMs, trained on fixed-size data sets, according

to the Boolean combination techniques is compared to that of related techniques. This

chapter has been published in Pattern Recognition (Khreich et al., 2010b). Further de-

tails about the Boolean functions and additional results are presented in Appendix IV.

A version of this chapter, which addresses the Boolean combination in the more general

decision-level fusion context, appeared in International Conference on Pattern Recogni-

tion (ICPR10) (Khreich et al., 2010a). The proposed Boolean combination techniques

have been also successfully applied to combine different biometric systems for iris recog-

nition (Gorodnichy et al., 2011). Appendix V presents an ADS with multiple-HMMs

combined according to the MRROC technique. This chapter appeared in the Interna-

tional Conference on Communications (ICC09) (Khreich et al., 2009b).

Chapter 4 presents a novel anomaly detection system based on the learn-and-combine

approach to accommodate newly-acquired system call data over time. It describes the

generation, selection and pruning of HMMs, as well as selection and adaptation of Boolean

functions and decision thresholds, when a new block of training data becomes available.

The performance of the proposed system is compared to that of the reference batch BW

(BBW), of on-line BW (OBW), and to the proposed incremental (IBW) described in Ap-

pendix III. This chapter has been accepted in Pattern Recognition (Khreich et al., 2011c).

A version of this chapter, addressing incremental Boolean combination in the more gen-

eral sense, has been also accepted in Multiple Classifier Systems (MSC11) (Khreich et al.,

16

2011b). Finally, a summary of contributions and discussion of key findings, followed by

recommendations for future extensions to this research are presented in the conclusions.

CHAPTER 1

ANOMALY INTRUSION DETECTION SYSTEMS

This chapter presents an introduction to intrusion detection systems (IDSs). It starts

with a general description of an IDS and its components, followed by an overview of com-

mon intrusion detection techniques in both host and network systems. It then focuses

on host-based anomaly detection techniques using system call sequences generated by

privileged processes. In particular, related work on HMM-based ADSs is presented and

discussed in greater details. Both real and synthetic data sets employed in this research

are presented next as well as the methodology considered for evaluation of IDSs perfor-

mance. This chapter ends with a discussion on the challenges facing process anomaly

detection with HMMs.

1.1 Overview of Intrusion Detection Systems

IDSs allow for the detection of successful or unsuccessful attempts to compromise sys-

tems security. An IDS is an important component of any security infrastructure that

complements other security mechanisms. As illustrated in Figure 1.1, an IDS consists of

four essential components: sensors, analysis engines, data repository, and management

and reporting modules.

An IDS monitors the activity of a target system through a data source, such as system

call traces, audit trails, or network packets. Relevant information from these data sources

are captured by IDSs sensors, synthesized as events, and forwarded to the analysis engine

for on-line analysis or to a repository for off-line analysis.

The analysis engine contains decision-making mechanisms to discriminate malicious events

from normal events. It may include anomaly, misuse, or hybrid detection approaches

(described next). Outputs from analysis engines include specific information regarding

manifestation of suspicious events. These information are stored in a repository for foren-

18

Intrusion detection systems
(IDS)Internet

Sensor

Severs Host PCs

Raw Data Data Repository

• Audit trails

IDS
Administrator

Management &
Reporting Module

• System calls
• Network trafic
• · · ·

Data Srouces

Events

Alerts

Figure 1.1 High level architecture of an intrusion detection system

sics analysis. A management and reporting module receives events that could indicate

an attack from the analysis engine, raises an alarm to notify human operators, and re-

ports the relevant information and the level of threat. The management module controls

operations of IDS components, such as tuning decision thresholds of the analysis engine

and updating the data repository.

The configuration of analysis engines, update of data repository, and response to alerts

are among the responsibilities of the IDS administrator. When alerts are raised, the

IDS administrator should prioritize and investigate incidents to refute or confirm that an

attack has actually occurred. If an intrusion attempt is confirmed, a response team should

react to limit the damage, and a forensic analysis team should investigate the cause of the

successful attack. An IDS may include a response module that undertake further actions

either to prevent an ongoing attack or to collect additional supporting information –

it is often referred to as intrusion prevention system (IPS) or intrusion detection and

prevention system (IDPS), (Ghorbani et al., 2010; Rash et al., 2005; Scarfone and Mell,

2007; Stakhanova et al., 2007).

19

IDSs are typically categorized depending on their monitoring scope (or location of the

sensors) into network-based and host-based intrusion detection systems. They are also

classified based on the detection methodology (employed by the analysis engine) into mis-

use and anomaly detection. More detailed taxonomies have been also developed, which

further classify IDSs according to their architecture (centralized or fully distributed),

behavior after attacks (passive or active), processing time (on-line or off-line), level of

inspection (stateless or state full), etc. (Alessandri et al., 2001; Axelsson, 2000; Debar

et al., 2000; Estevez-Tapiador et al., 2004; Lazarevic et al., 2005; Scarfone and Mell, 2007;

Tucker et al., 2007).

1.1.1 Network-based IDS

Network-based IDSs (NIDSs) monitor the network traffic for multiple hosts by capturing

and analyzing network packets for patterns of malicious activities. An NIDS is typically

a stand-alone device that can control a network of arbitrary size with a small number of

sensors (Lim and Jones, 2008). As illustrated in Figure 1.2, the sensors are often located

at critical network junctures, such as network borders, demilitarized zone (DMZ)1, or

inside the local network (Northcutt and Novak, 2002; Proctor, 2000). NIDSs capture

network traffic in promiscuous mode by connecting to a hub, network switch configured

for port mirroring2, or network tap3. Examples of open source NIDSs include Snort

(Roesch, 1999) and Bro (Paxson, 1999).

NIDSs are platform independent, easy to deploy, and can cover large networks without

consuming network or host resources. They are also able to detect unsuccessful attack

attempts. However, an NIDS can detect only attacks which come through the monitored
1Demilitarized zone is a network segment located between a secured local network and unsecured

external networks (Internet). DMZ usually contains servers that provide services to users on the external
network, such as web, mail, and DNS servers, which must be hardened systems. Two firewalls are
typically installed to form the DMZ.

2Port mirroring or spanning cross connects two or more ports on a network switch so that traffic can
be simultaneously sent to a network analyzer connected to another port.

3A network tap is a direct connection between a sensor and the physical network. It provides the
sensor with a copy of the data flowing across the network.

20

network links and has no visibility into individual systems, and hence unable to verify

attack results. Advances in technology such as high-speed networks, switched networks

and encrypted traffic have imposed several challenges on NIDSs. To inspect network

traffic, a NIDS must reconstruct network data streams from every host. For instance,

it must reassemble TCP/IP fragments and also take into account the variability in the

implementation of these network protocols among different platforms. This causes a

significant performance bottleneck and packet drop, especially with high-speed network

throughputs. In addition, traffic reconstruction may open new doors for attackers (Peng

et al., 2007; Ptacek and Newsham, 1998).

The migration from shared to switching environment has enhanced both network security

and performance, but also complicates the allocation of NIDSs sensors. In traditional

shared network, hubs were commonly used to connect segments of a local area network

(LAN). When a packet arrives at one port, it is copied to the other ports to be available

for all segments of the LAN. In switched networks messages are directly sent to the ulti-

mate recipient, without broadcast and collision information over the network. Switching

reduces the network traffic and makes it more difficult for intruders to sniff switched

traffic, however it presents additional challenges on the distribution of sensors, especially

if port spanning is not enabled on a switch. Enabling port spanning can also pose a risk

if the spanned port is accessible to intruders.

In addition, network communications are increasingly using encryption technologies such

as virtual private network (VPN), secure sockets layer (SSL), and secure shell (SSH) to

conceal plain text. Encryption also prevents NIDSs from accessing and analyzing the

content of network traffic. In fact, it is very difficult to analyze encrypted traffic until it

has been decrypted with specific a application on the target host.

1.1.2 Host-based IDS

Host-based IDSs (HIDSs) are designed to monitor the activity of a host system, such

as a mail server, web server, or an individual workstation. HIDSs identify intrusions by

21

Web
Server

Mail
Server

DNS
Server

Back-end
Firewall

Workstations

NIDSNIDS

Public Servers

DMZ

LAN

Front-end
Firewall

Local Servers

Internet

File
Server

DHCP
Server

DNS
Server

NIDS

NIDS

Figure 1.2 Host-based IDSs run on each server or host systems, while network-based
IDS monitor network borders and DMZ

analyzing operating system calls, audit trails, application logs, file-system modifications

(e.g., password files, access control lists, executable files), and other host activities and

state (De Boer and Pels, 2005; Vigna and Kruegel, 2005). HIDSs are typically software-

based systems which should be installed on every host of interest. In contrast with NIDSs,

most HIDSs have software-based sensors that are able to extract sensitive (decrypted)

information from a specific host at both kernel and user level, which make them more

versatile systems. Examples of HIDSs include OSSEC (Bray et al., 2008) and NIDES

(Anderson et al., 1995).

HIDSs are particularly effective at detecting insider attacks and verifying their success

or failure. They are able to inspect low-level local system activities such as file access

or modification time, changes to file permissions, or attempts to access privileged pro-

22

cesses or overwrite system executables; or to install new applications, Trojan horses4 or

backdoors5, or other attacks that may involve software integrity breaches.

Although HIDSs typically require no dedicated hardware, they have to be tailored for

a specific platform, and must be implemented on each individual machine. While this

is manageable in a small homogeneous network, it may impose deployment and man-

agement difficulties as the network becomes larger and more heterogeneous. HIDSs are

concerned only with individual systems and usually have limited view of network activ-

ity. Depending on the underlying detection methods, a HIDS can cause a significant

degradation in hosts performance. In addition, HIDSs are prone to tampering since they

are accessible to users.

1.1.3 Misuse Detection

Misuse detection approaches analyze host or network activity, looking for events that

match patterns of known attacks (signatures). First a reference database of attack sig-

natures is constructed, then monitored events from sensors data are compared against

this database for evidence of intrusions. Signature matching is the most commonly em-

ployed misuse detection technique. For instance, Snort is a well-known open source

signature-based network intrusion detection system (Roesch, 1999). Other misuse detec-

tion approaches include rule-based systems, state transition analysis, machine learning

and data mining techniques.

In rule-based techniques, a set of if-then-else implication rules is used to characterize at-

tacks (Lindqvist and Porras, 1999). Rule-based techniques are employed in various IDSs,

such as EMERALD (Porras and Neumann, 1997) and NIDES (Anderson et al., 1995).
4A Trojan horse is a malicious program that masquerades as a legitimate application or file. Users

are typically tricked into opening and executing it on their systems because it looks useful such as a
music or picture file in E-mail attachments. Trojan infections range from annoying (modifying desktop
appearance) to destructive (deleting files or changing information). Trojans are also commonly used to
create backdoors.

5A backdoor is a tool installed on a compromised system to give an attacker direct access at a later
date, without going through normal authentication or other security procedures. Typically, a backdoor
program listens on specific ports to interact with the attackers.

23

State transition6 techniques represent an attack as a minimal sequence of actions that an

intruder must perform to break into a system, e.g., STAT (Ilgun et al., 1995). Recently,

several machine learning and data mining techniques have been employed to extract at-

tack signatures from collected data which contains some known attacks (Brugger et al.,

2001; Helali, 2010; Lee et al., 2000).

Misuse detection systems provide a high level of detection accuracy without generating

an overwhelming number of false alarms, but unable to detect novel attacks. Attacks for

which signatures or rules have not been extracted yet, will go undetected. Signatures or

rules describing new attacks must therefore be constantly updated. However, some time

lag will inevitably occur before analyzing and incorporating patterns of newly deployed

attacks, and thus novel attacks will always do some damage (zero-day attack).

In general signature definition is a difficult task. Loosely defined signatures decrease

the detection accuracy and generate false alarms. However, by employing very specific

signatures, a slight variation of the attack may not be detected (polymorphic attack).

In practice, attackers attempt to deploy several variations of the same attack, and the

vulnerabilities can change throughout the life cycle of a system and from one system to

another. Therefore, the number of signatures or rules increases over time and may become

unmanageable. Despite these limitations, misuse detection is still the most commonly

applied approach in commercial IDS.

1.1.4 Anomaly Detection

Anomalies are patterns in data that do not conform to expected normal behavior.

Anomaly detectors identify anomalous behavior on a host or network, under the as-

sumption that attack patterns are typically different from those of normal behavior. An

anomaly detection system (ADS) constructs a profile of expected normal behavior by

using event data from users, processes, hosts,network connections, etc. These data sets
6States are used to characterize different snapshots of a system during the evolution of an attack,

while transitions are user actions associated with specific events.

24

are typically collected over a period of normal (attack-free) operation to build normal

profiles. During operation, an ADS attempts to detect sensor data events that deviate

significantly from the normal profile. These deviations are considered as anomalous ac-

tivities, however they are not necessarily malicious, since they may also correspond to

rare normal events, program errors, or changes in normal behavior.

Several anomaly detection approaches have been proposed in literature (Chandola et al.,

2009b), including statistical (Anderson et al., 1995; Markou and Singh, 2003a), rule-based

(Vaccaro and Liepins, 1989), neural (Debar et al., 1992; Markou and Singh, 2003b), and

machine learning approaches (Alanazi et al., 2010; Kumar et al., 2010; Ng, 2006; Tsai

et al., 2009).

Unlike misuse detection techniques, anomaly detection is capable of detecting novel at-

tacks. As discussed in Section , ADSs generate a large number of false alarms that would

not be tolerated by the operator, and may decrease his confidence in the system. These

alarms are not very instructive and require a costly and time-consuming investigation.

In fact, ADSs can only detect symptoms of attacks without specific knowledge of details.

However, anomaly detection remains an active intrusion detection research area.

1.2 Host-based Anomaly Detection

Host-based anomaly detection systems typically monitor the behavior of system pro-

cesses7 to determine whether a process is behaving normally or has been subverted by an

attack. In particular, abnormal behavior of privileged processes is most dangerous. At-

tacks exploiting vulnerabilities in privileged processes can lead to full system compromise.

In general, ADSs monitor events from variety of data sources, including log files created

by a process and audit trails generated by the operating system. While these sources

provide important security information, it is fairly easy to deploy attacks which do not

leave any traces in traditional logs or audit trails, and hence evade detection. Sequences

of system calls issued by a process to request kernel services, have been shown effec-
7A process is a program in execution.

25

tive in describing normal process behavior (Forrest et al., 1996). A substantial amount

of research have investigated various techniques for detecting anomalies in system call

sequences (Forrest et al., 2008; Warrender et al., 1999).

The remaining of this section provides a brief background on privileged processes and

system calls and then reviews system call-based approaches to process anomaly detection.

1.2.1 Privileged Processes

A privilege is a permission to perform an action. The fundamental principles of least

privilege and separation of privileges should be enforced on all subjects8 at every level of

the organization, for improved security, reliability, and accountability. According to the

principle of least privilege (or need-to-know), all subjects should only be given enough

privileges to perform their tasks (Saltzer and Schroeder, 1975). Ensuring least privilege

requires identifying a subject tasks, determining the minimum set of privileges required

to perform those tasks, and restricting the subject to a protection domain – a logical

boundary that controls or prevents direct access among entities with different levels of

privilege.

To enforce these principles, and control subjects’ access to objects9, modern computer

systems provide several layers of protection domains. Modern processor architectures

allow the operating system (OS) to run at different privilege levels (Silberschatz et al.,

2008). In a typical dual-mode operation, user applications run in non-privileged user

mode, while critical OS code runs in a privileged kernel mode and has access to system

data and hardware. In user mode, programs have limited access to system information,

and execute within their own virtual memory space.

In a multi-user operating system, two protection domains (user and kernel) are insuffi-

cient, since users need to share system objects and processes. For instance, in UNIX-like
8A subject is an active entity such as a user, administrator, process, or any other device that causes

information to flow among objects or changes the system state.
9An object is a passive entity that contains or receives data, such as a data file, directory, printer, or

other device.

26

OS, each user is associated with a protection domain. Each domain is a collection of

access rights, each of which is an ordered a pair <object-name, rights-set>. When a

user executes a program, the process runs in the protection domain associated with the

user. Typically, two user identifiers (uid) are employed within the kernel. The real uid

identifies the user who has created a process, and the effective uid allows a process to

gain or drop privileges temporarily. Likewise, users with similar privileges have the same

group identifier.

The root, or superuser, has the highest level of privilege (uid = 0); an absolute power

over a system. Users are granted different levels of privileges by the root according to the

organization’s security policy. In some cases users privileges are insufficient to complete

the required tasks. For example, if users are granted write access to the root-owned pass-

word file (/etc/passwd), they can alter other passwords; otherwise they cannot change

their own password. UNIX-like OS employ the set user identifier (setuid) permission,

which temporarily changes the effective uid of the process to that of the owner of the file,

whereas the real uid is left unchanged. Therefore, the process inherits the privileges of

the owner during the execution time of the required task, and then drops it. The setuid

scheme allows low-privilege users to execute higher-privilege processes. A similar idea

exists for groups.

Privileged processes and daemons10 running with setuid permissions have been the source

of endless security problems (Chen et al., 2002). Any process spawned by an elevated-

privileges process, runs with these privileges. Buffer overflows are the most common

attacks targeting privileged (root-owned) processes for escalation of privilege (AlephOne,

1996). Buffer overflow occurs when more data is written into the memory allocated to

a variable than was allocated at compile time. Buffer overflow attacks exploit improper

bounds checking on input data, to redirect program execution to arbitrary malicious

code. If successful, the attacker may spawn a root shell and take full control over the
10A process continuously running in the background often with root or setuid permission and provides

services from other processes.

27

system. Even though they have been reported for more than 15 years, buffer overflow

vulnerabilities are likely to persist (Foster et al., 2005).

1.2.2 System Calls

System calls provide an interface between user and kernel mode. Users requests are made

from applications or libraries11 to the kernel via a platform-dependent set of system calls.

A program that is not statically compiled will typically link to libraries at run-time to

dynamically load required functions. Applications or libraries must invoke system calls

to request kernel services, such as access to standard input/output, physical devices

and network resources. Every system call has a unique number (known by the kernel)

and a set of arguments. As illustrated in Figure 1.3, system calls are usually grouped

according to their services. Examples of system calls for file management include open(),

read(), write(), and close(). The length of a system call sequence generated by a

process depends on the complexity and execution time of the process. The OS gains

control upon a system call12, switches to kernel mode, performs the requested service,

and switches back to user mode (Silberschatz et al., 2008).

Manifestations of a wide variety of attacks, including buffer overflows, symbolic link,

decode and SYN floods may appear at the system call level and differ from normal

behavior of privileged processes, (Forrest et al., 1996; Hofmeyr et al., 1998; Kosoresow

and Hofmeyer, 1997; Somayaji, 2002; Warrender et al., 1999). Furthermore, after gaining

root privileges on a host, attackers will typically try to maintain administrative access

on the compromised host (Blunden, 2009; Mitnick and Simon, 2005), by for instance

installing backdoors and rootkits. Attackers will also attempt to distribute Trojan horses,

using for instance comprised email addresses or shared network folders, to compromise

other systems. These malicious activities may also invoke different sequences of system

calls than those generated during normal execution of a process.
11In general, libraries runs in user mode. However, some libraries (e.g., standard C library) could offer

a portion of system call interface.
12System calls require an architecture-specific control transfer, which is typically implemented through

a software interrupt or trap. Interrupts transfer control form user mode to the kernel mode and back.

28

root-owned processes user-level processes

U
se

r
m

o
d
e

cron syslog compiler

editor shell

shared system libraries

K
er

n
el

m
o
d
e

device
driver

IPCfile
system

device
driver

disk

sockets

TCP/IP

network

CPU scheduiling

H
ar

d
w

ar
e

I/O devices

virtual memory

passwd setuid

memory controllers

Process control:

• end, abort

• load, execute

• create/terminate process

• get/set process attributes

• wait for time

• wait/signal event

• allocate/free memoryprocess control, file management, device manipulation,
system calls

information maintenance, and communications.

File management:

• create/delete file

• open, close

• read, write, reposition

• get/set file attributes

Device manipulation:

• request/release device

• read, write, reposition

• get/set device attributes

• logically attach/detach
devices

Information maintenance:

• get/set time or date

• get/set system data

• get/set process, file, or
device attributes

Communications:

• create/delete commu-
nication connection

• send/receive messages

• transfer status infor-
mation

• attach/detach remote
devices

Types of system calls

interpreter

physical memory
device controllers

terminal

Figure 1.3 A high-level architecture of operating system, illustrating system-call
interface to kernel and generic types of system calls

1.2.3 Anomaly Detection using System Calls

Forrest et al. (1996) were the first to suggest that the temporal order of system calls

could be used to represent the normal behavior of a privileged process. They have col-

lected system call data sets from various privileged process at the University of New

Mexico (UNM) (as described in Section 1.4.1), and confirmed that short sub-sequences

of system calls are consistent with normal process operation, and unusual burst will oc-

cur during an attack. Their anomaly detection system, called Time-Delay Embedding

(TIDE), employed a sliding look-ahead window of a fixed length to record correlations

between pairs of system calls. These correlations were stored in a database of normal

patterns. During operations, the sliding window scheme is used to scan the system calls

generated by the monitored process for anomalies – sub-sequences that are not found

in the normal data. These anomalies were accumulated over the entire sequence and

an alarm was raised if the anomaly count exceeded a user-defined threshold. Sequence

time-delay embedding (STIDE) extended previous work by segmenting and enumerat-

ing system call sequences generated by a privileged process of interest into fixed-length

29

contiguous sub-sequences, using a fixed-size sliding window, shifted by one symbol (War-

render et al., 1999). During operations however, an anomaly score was defined as the

number of mismatches in a temporally local region. To reduce the number of false alarms,

a threshold was set for the anomaly score above which a sequence is considered as anoma-

lous. Hamming-distance between sub-sequences has been also employed as a measure of

anomalous behavior (Hofmeyr et al., 1998).

Several statistical and machine learning techniques, and other various extensions have

been investigated over the last two decades for detecting system call anomalies using

the UNM data sets Forrest et al. (2008). For instance, an inductive rule generator

called RIPPER (Repeated Incremental Pruning to Produce Error Reduction) (Cohen,

1995), has been used for analyzing sequences of system calls and extracting rules (Fan

et al., 2004). Finite state automata (FSA) have been proposed to model the system calls

language, using deterministic or nondeterministic automatons (Michael and Ghosh, 2002;

Sekar et al., 2001), or a call graph representation (Wagner and Dean, 2001). Lee and

Xiang (2001) evaluated information-theoretic measures such as entropy and information

cost. Application of machine learning techniques include neural network (Ghosh et al.,

1999), k-nearest neighbors (Liao and Vemuri, 2002), n-grams Marceau (2000), Bayesian

models (Kruegel et al., 2003), Markov models (Jha et al., 2001). Among these, techniques

based on discrete HMMs have been shown to produce a high level of accuracy (Du et al.,

2004; Florez-Larrahondo et al., 2005; Gao et al., 2002, 2003; Hoang and Hu, 2004; Hu,

2010; Wang et al., 2010, 2004; Warrender et al., 1999; Zhang et al., 2003). These HMM-

based techniques are detailed in the next section.

1.3 Anomaly Detection with HMMs

Hidden Markov model is a stochastic process determined by the two interrelated mech-

anisms – a latent Markov chain having a finite number of states, N , and a set of ob-

servation probability distributions, each one associated with a state. Starting from an

initial state Si ∈ {S1, ...,SN}, determined by the initial state probability distribution πi,

30

at each discrete-time instant, the process transits from state Si to state Sj according to

the transition probability distribution aij . The process then emits a symbol vk, from a

finite alphabet V = {v1, . . . ,vM} with M distinct observable symbols, according to the

discrete-output probability distribution bj(vk) of the current state Sj (Cappe et al., 2005;

Elliott, 1994; Ephraim and Merhav, 2002; Rabiner, 1989).

Let qt ∈ S denotes the state of the process at time t, where qt = i indicates that the state

is Si at time t. An observation sequence of length T is denoted by O = o1, . . . ,oT (or

more concisely by o1:T), where ot is the observation at time t. An HMM is commonly

parametrized by λ= (π,A,B), where

• π = {πi} denotes the vector of initial state probability distribution,

πi � P (q1 = i)1≤i≤N

• A= {aij} denotes the state transition probability distribution,

aij � P (qt+1 = j | qt = i)1≤i,j≤N

• B = {bj(k)} denotes the state output probability distribution,

bj(k) � P (ot = vk | qt = j)1≤j≤N,1≤k≤M

The matrices A and B, and the transpose of vector π (π′) are row stochastic, which

impose the following constraints:

N∑
j=1
aij = 1∀i,

M∑
k=1
bj(k) = 1∀j,

N∑
i=1
πi = 1, and aij , bj(k), πi ∈ [0,1], ∀i, j,k

The theory underlying HMMs rely on the following assumptions:

31

• The first order Markov property (or limited horizon): The conditional probability

distribution of current state depends only on previous state,

P (qt = j | q1, q2, . . . , qt−1) = P (qt = j | qt−1)

• Time-homogeneous (or time-invariant) assumption: The state transition probabilities

are independent of the actual time at which the transitions occur,

P (qt = j | qt−1) = aij , ∀t

• Output independence assumption: The output generated at the current time step t

depends solely on the current state qt (independent of previous outputs),

P (ot | q1, q2, . . . , qt) = P (ot | qt)

The success or failure of HMM application for pattern classification or recognition tasks

rely on these fundamental assumptions. If the patterns considered can be described by

stochastic processes without potentially violating these assumptions, then a well trained

HMM may provide successful results. In fact, theoretical and empirical results have

shown that, given an adequate number of states and a sufficiently rich set of data, HMMs

are capable of representing probability distributions corresponding to complex real-world

phenomena in terms of simple and compact models (Bengio, 1999; Bilmes, 2002). HMM

has been successfully applied in various practical applications. It has become a predomi-

nant methodology for design of automatic speech recognition systems (Bahl et al., 1982;

Huang and Hon, 2001; Rabiner, 1989). It has also been successfully applied to various

other fields, such as communication and control (Elliott, 1994; Hovland and McCar-

ragher, 1998), bioinformatics (Eddy, 1998; Krogh et al., 2001), computer vision (Brand

and Kettnaker, 2000; Rittscher et al., 2000).

The output observations of HMMs can be discrete or continuous, scalars or vectors. As

further detailed in Chapter 2, an HMM is termed discrete if the output alphabet is finite,

32

and continuous if the output alphabet is not necessarily finite, e.g., each state is governed

by a parametric density function. Although, a continuous signal may be quantized into

discrete observation, some applications, such as automatic speech recognition, attempt

to avoid the inherent quantization error by using continuous output HMMs (Huang and

Hon, 2001).

The transitions allowed between states and the number of states (or model order) deter-

mine the HMM topology. For instance, in ergodic (or fully connected) HMMs every state

can be reached in a single step from any other state of the model. Strict left-right HMMs

only allow self transition and transition from state Sn to Sn+1. An HMM that restricts

transition from only left to right (but allow skipping states), is called Bakis HMM. In

many real-world applications, the best topology is determined empirically. For exam-

ple, in HMM application to automatic speech recognition, left-right topologies, where

the state(s) represents a phoneme in a word, have been shown successful (Huang and

Hon, 2001; Rabiner, 1989). In general, when the states have no physical meaning ergodic

HMMs are employed.

In this thesis discrete-time finite-state HMMs are only considered, since they are repre-

sentative of the intended application. In fact the process behavior can be described by

finite set of hidden states, and there is only a finite alphabet of system calls. Further-

more, since the states have no physical representation, but only varied to best fit the

considered process, ergodic HMMs are only considered.

In general, HMMs can perform the following canonical functions (Rabiner, 1989):

Evaluation aims to compute the likelihood of an observation sequence o1:T given a

trained model λ, P (o1:T | λ). The likelihood is typically evaluated by using a fixed-

interval smoothing algorithm such as the Forward-Backward (FB) (Rabiner, 1989)

or the numerically more stable Forward-Filtering Backward-Smoothing (FFBS)

(Ephraim and Merhav, 2002). See Appendix I for further details.

33

Decoding aims to find the most likely state sequence S that best explains the observa-

tion sequence o1:T , given a trained HMM. The target is therefore to find the most

likely state sequence S that maximizes P (S | o1:T ,λ). The best state sequence is

commonly determined by the Viterbi algorithm (Forney, 2005; Viterbi, 1967).

Learning aims to estimate the HMM parameters λ to best fit the observed data. Given

a predefined topology and an observation sequence o1:T , the target is to find the

model λ that maximizes P (o1:T | λ). Unfortunately, there is no known analyti-

cal solution to the training problem. In practice, HMM parameters estimation is

frequently performed according to the maximum likelihood estimation (MLE) crite-

rion. MLE consists of maximizing the log-likelihood, logP (o1:T | λ), of the training

data over HMM parameters space. Unfortunately, since the log-likelihood depends

on missing information (the latent states), there is no known analytical solution

to the learning problem. In practice, iterative optimization techniques such as the

Baum-Welch (BW) algorithm (Baum et al., 1970), a special case of the Expectation-

Maximization (EM) (Dempster et al., 1977), or standard numerical optimization

methods such as gradient descent (Baldi and Chauvin, 1994; Levinson et al., 1983)

are often employed for this task. In either case, HMM parameters are estimated

over several training iterations, until the likelihood function is maximized over data

samples. Each training iteration typically involves observing all available training

data to evaluate the log-likelihood value and estimate the state densities by using

a fixed-interval smoothing algorithm.

Further details on the evaluation and parameter estimation of HMMs are presented in

Chapter 2 and Appendix I. Decoding is less relevant to the application, since the hidden

states have no physical. In fact, decoding the most likely state sequences (or uncovering

the hidden states) is most commonly applied for recognition tasks, such as in automatic

speech recognition (Bahl et al., 1982; Huang and Hon, 2001; Rabiner, 1989). For anomaly

detection applications, HMMs (detectors) are typically trained on normal data and then

employed to evaluate the test data, as described in the next section.

34

1.3.1 HMM-based Anomaly Detection using System Calls

In an effort to find the best technique for detecting anomalies in system call sequences

generated by privileged processes, Warrender et al. (1999) have conducted a comparative

benchmarking on UNM data sets (described in Section 1.4.1), using various techniques

including sequence matching, data mining, and HMMs. The authors trained an ergodic

HMM using BW algorithm on the normal system call sequences for each process in

the UNM data sets. The number of HMM states (N) was selected heuristically. It is

set roughly equal to the process alphabet size (Σ) – the number of unique system call

symbols used by the process. For instance, they selected N = 60 states for sendmail

process since its alphabet size Σ = 53 symbols. Each HMM is then tested on the entire

anomalous sequences, looking for unusual state transitions or symbol outputs according to

a predefined threshold. Their experimental results have shown that HMM-based anomaly

detectors produce the highest level of detection accuracy on average, compared to other

techniques at the expenses of expensive training resource requirements. Indeed, the

time complexity of BW algorithm per iteration scales linearly with the sequence length

and quadratically with the number of states. In addition, its memory complexity scales

linearly with both sequence length and number of states (see Section 2.2 and Appendix I,

for details).

Subsequent work addressed other variations of HMM training and testing techniques, as

well as various alarm raising strategies, for detecting system calls anomaly using UNM

data sets, in particular sendmail data sets. For instance, Wang et al. (2004) used BW

algorithm to train ergodic HMMs with a fixed number of states (N = 53) on sendmail

data, using different detector window sizes, DW , to assess the impact ofDW on detection

accuracy. The training sub-sequences are segmented from the original normal sequences

using an overlapping sliding window of size DW . Anomalous sub-sequences are then

labeled in comparison with normal the sub-sequences (of the same length) using STIDE.

The accuracy is measured by counting the number of anomalies in a test sequence that

are below a pre-specified threshold. Similarly, Du et al. (2004) trained HMM with fixed

35

number of states according to BW algorithm, and focused on the impact of DW on

detection accuracy. However they introduced the notion of relative probability to raise

alarms. This consists of computing the number of anomalous sub-sequences of length

DW contained in a larger sliding window around the tested sub-sequence. An alarm is

raised when the number of anomalies reaches an arbitrary threshold.

Gao et al. (2002) trained an ergodic HMM with N = 60 states using BW algorithm on the

normal sub-sequences and a subset of the anomalous sub-sequences. Remaining subsets

of anomalous sub-sequences, which are not included in training, are used for testing.

The author also focused on the impact of detector window size and that of neighboring

effects on detection accuracy. Zhang et al. (2003) proposed a detection method based

on a hierarchical HMM to overcome the training computational time and memory costs.

First, an HMM with a large number of states is trained on the entire data set, then

HMM transition sequences are used to train another HMM with a lower number of

states. The authors also applied this strategy to create profiles for both normal and

anomalous data sets. These two approaches are based on misuse detection rather than

an anomaly detection though.

Yeung and Ding (2003) compared ergodic and left-right HMM topologies using UNM

data sets. STIDE was used for labeling training and testing sub-sequences. HMMs

are trained according to BW algorithm on unique normal sub-sequences, using different

values of sub-sequence length DW and number of states N . For each DW , they used the

trained HMMs to compute the likelihood of all training sub-sequences and selected the

minimal likelihood values as decision thresholds. Results have shown that ergodic HMMs

outperform the left-right HMMs for a given number of states, and left-right HMMs have

shown high sensitivity to the sequence length.

Qiao et al. (2002) trained ergodic HMMs according to BW algorithm using sendmail data

sets and STIDE for labeling anomalous sub-sequences. However, a threshold is set on

state transition only to discriminate between normal and intrusion behavior. A different

36

number of states have been used, with a fixed detector window size. The author noted

the costly time and memory complexity with a large HMM state values.

Hoang and Hu (2004) proposed a combination technique at the detector level. It consists

of training an HMM for each sub-sequence of observation symbols segmented from the

entire sequence of observation, and then weight averaging the parameters of these HMMs

to produce the combined model. The author claimed that this strategy may be used to

incrementally combine ergodic HMMs. Although this technique may work for left-right

HMMs, it is not suitable for ergodic HMMs as their states are permuted with each

different training phase, and hence averaging parameters leads to knowledge corruption.

This have been confirmed empirically in Section II.5 of Appendix II.

Florez-Larrahondo et al. (2005) proposed an on-line algorithm based on BW for effi-

cient learning of HMM parameters from long sequence of observation (described in Sec-

tion 2.3.2.1). The algorithm allows to learn to reduce the time and memory complexity

in comparison to the traditional BW training. (Chen and Chen, 2009) employed this

on-line algorithm to train five ergodic HMMs with the same number of states as base

detectors in AdaBoost algorithm (Freund and Schapire, 1996) using fixed-sized data set.

AdaBoost requires a labeled training set comprising normal and anomalous examples

that can be weighted for importance. Therefore, the authors set an arbitrary threshold

on the log-likelihood output from HMMs trained on the normal system call behavior,

below which normal system call sequences are considered as anomalous. These HMMs

are then updated according to an on-line AdaBoost variant (Oza and Russell, 2001) from

new data. Threshold setting is shown to have a significant impact on the detection per-

formance of the EoHMMs (Chen and Chen, 2009). In fact, rare system call events are

normal, if they are considered anomalous during the design phase, they will generate

false alarms during the testing phase. These rare events may be suspicious if, during

operation, they occur in bursts over a short period of time.

37

A recent survey on HMM-based techniques for system call anomaly detection is provided

by Wang et al. (2010).

1.4 Data Sets

1.4.1 University of New Mexico (UNM) Data Sets

The UNM data sets13 are commonly used for benchmarking anomaly detections based

on system calls sequences (Warrender et al., 1999). Normal system call sequences gen-

erated by privileged processes during (secured) normal operation were collected. These

sequences are assumed attack-free and used for training the anomaly detectors. Different

kinds of attacks such as Trojan and backdoor intrusion, buffer overflows, symbolic link,

and decode attacks (Forrest et al., 1996; Hofmeyr et al., 1998; Kosoresow and Hofmeyer,

1997; Warrender et al., 1999) were launched against these processes, while collecting the

system call sequences. These intrusive sequences comprise both normal and anomalous

sub-sequences for testing, but specific labeling of these sub-sequences remains an issue.

In related work, intrusive sequences are usually labeled in comparison with normal se-

quences, using the STIDE matching technique. This labeling process considers STIDE

responses as the ground truth, and leads to a biased evaluation and comparison of tech-

niques, which depends on both training data size and detector window size. To confirm

the results on system calls data from real processes, the same labeling strategy is used

in this work. However fewer sequences are used to train the HMMs to alleviate the bias.

Therefore, for each DW , STIDE is first trained on all available normal data from UNM

sendmail (about 1.8 million system calls), and then used to label the corresponding sub-

sequences (AS =DW) from the ten sequences available for testing (about 6,755 system

calls). The resulting labeled sub-sequences are concatenated, then divided into blocks of

equal sizes, one for validation and the other for testing. During the experiments, smaller

blocks of normal data are used for training the HMMs as normal system call observations

are very redundant. In spite of labeling issues, redundant training data, and unrepresen-
13http://www.cs.unm.edu/~immsec/systemcalls.htm

38

tative test data, UNM sendmail data set is the mostly used in literature due to limited

publicly available system call data sets.

1.4.2 Synthetic Generator

The need to overcome issues encountered when using real-world data for anomaly-based

HIDS (incomplete data for training and labeling) has lead to the implementation of a

synthetic data generation platform for proof-of-concept simulations. It is intended to

provide normal data for training and labeled data (normal and anomalous) for testing.

This is done by simulating different processes with various complexities then injecting

anomalies in known locations. The data generator is based on the Conditional Relative

Entropy (CRE) of a source; it is closely related to the work of Florez-Larrahondo et al.

(2005); Maxion and Tan (2000); Tan and Maxion (2002, 2003, 2005); Tan et al. (2002).

The CRE is defined as the conditional entropy divided by the maximum entropy (Max-

Ent) of that source, which gives an irregularity index to the generated data. For two

random variables x and y the CRE is given by

CRE =
−∑x p(x)∑y p(y | x) logp(y | x)

MaxEnt
(1.1)

where for an alphabet of size Σ symbols, MaxEnt = −Σlog(1/Σ) is the entropy of a

theoretical source in which all symbols are equiprobale. It normalizes the conditional

entropy values between CRE = 0 (perfect regularity) and CRE = 1 (complete irregularity

or random). In a sequence of system calls, the conditional probability, p(y | x), represents

the probability of the next system call given the current one. It can be represented

as the columns and rows (respectively) of a Markov Model with the transition matrix

MM = {aij}, where aij = p(St+1 = j | St = i) is the transition probability from state i at

time t to state j at time t+1. Accordingly, for a specific alphabet size Σ and CRE value,

a Markov model is first constructed by fixing some state transition values and varying

other values, subject to ∑j aij = 1, to obtain the desired CRE (see Figure 1.4). The

resulting Markov matrix is then used as a generative model for normal data, as illustrated

39

MM(Σ=8,CRE=0.3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0003 0.0000 0.2365 0.2529 0.1364 0.2080 0.1450 0.0209
0.0003 0.0380 0.2630 0.2903 0.1865 0.1784 0.0435 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7 6 5 6 5 6 4 5 6 6 7 2 3 4 5 6 3 4 5 6 6 7 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 6 3 4 5 6 4 5 6
Example of a sequence of length T = 50 observation symbols generated from MM(Σ=8,CRE=0.3):

MM(Σ=8,CRE=0.0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

MM(Σ=8,CRE=1.0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8 7 1 6 3 6 1 7 6 6 3 3 7 4 6 2 6 3 4 5 6 8 2 8 4 2 6 3 3 8 6 1 3 2 1 6 1 3 2 1 8 4 4 2 2 7 6 4 5 1 2
Example of a sequence of length T = 50 observation symbols generated from MM(Σ=8,CRE=1.0):

8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1
Example of a sequence of length T = 50 observation symbols generated from MM(Σ=8,CRE=0.0):

Figure 1.4 Examples of Markov models with alphabet Σ = 8 symbols and various
CRE values, each used to generate a sequence of length T = 50 observation symbols

in Figure 1.5. Sampling starts with a uniform initial state probability distribution. At

each discrete time step, the process transits from state Si to Sj according to the state

probability distributions (aij), and outputs the value of new state (Sj), until the desired

sequence length is reached.

The same Markov model, MM , is also used for labeling injected anomalies as described

below. Let an anomalous event be defined as a surprising event which does not belong

to the process normal pattern. This type of event may be a foreign-symbol anomaly

40

sr: 6 3 6 1 7 6 6 3 3 7 4 6 2 6 3 4 5 6 8 2 8 · · ·

-7.2e+02
-1.4e+03
-7.2e+02
-7.1e+02
-6.8e+00
-7.1e+02

...

1
1
1
1
0
1
...

LL > T

Compare LL to the
threshold of normal sub-
sequences of length AS:
T = log(1

Σ (min(aij))AS−1)

T = log(1
8 × 0.00033) = −26.4

Compute the log-likelihood (LL) of
each sub-sequence (si), given the same
Markov generator used for normal data

generation (Σ = 8 and CRE = 0.3)

MM(Σ=8,CRE=1.0)

AS = 4

• Generate a random sequence of observation symbols (sr) of length Tr using a Markov
model with the same alphabet size Σ, and a CRE = 1 (uniform transition distribution)

Segment sr into
sub-sequences (si)
according to the

anomaly size (AS)

8 7 1 6 3 6 1 7 · · · LL = log
(
P (si | MM(Σ=8,CRE=0.3))

) Yes

No

1

(normal)0

(anomaly)

LLSub-Sequences LabelLL
6 3 6 1
3 6 1 7
6 1 7 6
1 7 6 6
7 6 6 3
6 6 3 3

...

s1:
s2:
s3:
s4:
s5:
s6:

...

sn: 7 6 5 6 5 6 4 5 6 6 7 2 3 4 5 6 3 4 5 6 6 · · ·MM(Σ=8,CRE=0.3)

7 6 5 6 5 6 4 5 · · · 7 6 5 6 5 6 4 5 · · ·
DW = 4 DW = 6

s1: 7 6 5 6
s2: 6 5 6 5
s3: 5 6 5 6

...

s1: 7 6 5 6 5 6
s2: 6 5 6 5 6 4
s3: 5 6 5 6 4 5

...

• Generate a normal sequence of observation symbols (sn) of length Tn for training using
a Markov model specified by an alphabet size (Σ) and CRE value.

• Segment sn into sub-sequences (si) according to the detector window size (DW)

(a) Generation of normal data for training

(b) Generation of anomalous data for validation and testing

Figure 1.5 Synthetic normal and anomalous data generation according to a Markov
model with CRE = 0.3 and alphabet of size Σ = 8 symbols

41

sequence that contains symbols not included in the process normal alphabet, a foreign

n-gram anomaly sequence that contains n-grams not present in the process normal data,

or a rare n-gram anomaly sequence that contains n-grams that are infrequent in the

process normal data and occurs in burst during the test14.

Generating training data consists of constructing Markov transition matrices for an alpha-

bet of size Σ symbols with the desired irregularity index (CRE) for the normal sequences

(see Figure 1.4). As illustrated in Figure 1.5a, the normal data sequence with the desired

length is then produced with the Markov model, and segmented using a sliding window

(shift one) of a fixed size DW . To produce the anomalous data, a random sequence is

generated using the same alphabet size Σ and a CRE = 1, which covers the entire nor-

mal and anomalous space. This random sequence is then segmented into sub-sequences

of a desired length using a sliding window with a fixed size of AS (see Figure 1.5b).

Then, the original generative Markov model is used to compute the likelihood of each

sub-sequence. If the likelihood is lower than a threshold it is labeled as anomaly. The

threshold is set to T = 1
Σ(min(aij))AS−1,∀i,j , the minimal positive value in the Markov

transition matrix to the power (AS− 1), which is the number of symbol transitions in

the sequence of size AS. This ensures that the anomalous sequences of size AS are not

associated with the process normal behavior, and hence foreign n-gram anomalies are

collected. The trivial case of foreign-symbol anomaly is disregarded since it is easy to

be detected. Rare n-gram anomalies are not considered since we seek to investigate the

performance at the detection level, and such kind of anomalies are accounted for at a

higher level by computing the frequency of rare events over a local region. Finally, to

create the testing data another normal sequence is generated, segmented and labeled as

normal. The collected anomalies of the same length are then injected into this sequence

at random according to a mixing ratio.
14This is in contrast with other work which consider rare event as anomalies. Rare events are normal,

however they may be suspicious if they occur in high frequency over a short period of time.

42

1.5 Evaluation of Intrusion Detection Systems

The evaluation of intrusion detection systems is an open research topic, which face sev-

eral challenges, including the lack of representative data and unified methodologies, and

the employment of inadequate metrics for evaluation. (Abouzakhar and Manson, 2004;

Gadelrab, 2008; Tucker et al., 2007). This thesis evaluates the proposed techniques for

system call anomaly detection based on their efficiency, adaptability, and accuracy.

The efficiency considers the costs involved during the design and operation phase of an

anomaly detection system. It considers the time and memory complexity required for

designing an ADS, including detectors training, validation, selection or combination, as

well as the space requirement for storing training data (e.g., batch technique) and for

storing selected or combined models. Impact on efficiency of training set sizes with various

alphabet sizes and complexities of monitored processes is also assessed. During operation,

the efficiency considers the time and memory complexity required to operate the ADS,

with one or multiple detectors, evaluate the likelihood of the input sub-sequences of

observations, and make a decision.

A fully adaptive ADS must have mechanisms to detect legitimate changes in normal

behaviors, collect data that reflect the changes, ensure the relevant data contain no

pattern of attacks, and update its internal detectors and decision thresholds to adapt for

the changes. The scope of this thesis is limited to adaptation at the detector and decision

level. The remaining tasks are still under the administrator’s scope of responsibility.

Therefore, the adaptability of an ADS is evaluated for its effectiveness in maintaining or

improving the overall system accuracy in response to new data. The accuracy of an ADS

is determined based on the receiver operating characteristic analysis, and should not be

confused with the accuracy measure (or inversely error rate), as described next.

43

1.5.1 Receiver Operating Characteristic (ROC) Analysis

This subsection provides relevant background details on ROC analysis, since it is heavily

used in this research for evaluation and combination of detectors.

Given a detector and a test sample, there are four possible outcomes described by means

of a confusion matrix, as illustrated in Figure 1.6. When a positive test sample (p) is

presented to the detector and predicted as positive (p̂) then it is counted as a true positive

(TP); if it is however predicted as negative (n̂) then it is counted as a false negative (FN).

On the other hand, a negative test sample (n) that is predicted as negative (n̂) is a true

negative (TN), while it is a false positive (FP) if predicted as positive (p̂). The true

positive rate (tpr) is therefore the proportion of positives correctly classified (as positives)

over the total number of positive samples in the test. The false positive rate (fpr) is

the proportion of negatives incorrectly classified (as positives) over the total number of

negative samples in the test. Similarly, the true negative rate (tnr) and false negative

rate (fnr) can be defined over the negative class however.

A crisp detector outputs only a class label (Y = 0 or Y = 1), while a soft detector

assigns scores or probabilities to the test samples (x), by the means of a scoring function

f : x→ R. Typically, the higher the score value, f(x), the more likely the prediction of

the positive event (Y = 1). A soft detector can be converted to a crisp one by setting

a threshold T on the score values. A sample x is classified as positive (Y = 1) if it is

assigned a score that is greater than or equal to T and negative (Y = 0) otherwise (see

Figure 1.6).

A ROC curve is a two-dimensional curve in which the tpr is plotted against the fpr. An

empirical ROC curve is typically obtained by connecting the observed (tpr,fpr) pairs

of a detector for each decision threshold T. ROC curves can be efficiently generated by

sorting the output scores of a detector, from the most likely to the least likely positive

value, and considering unique values as decision thresholds (Fawcett, 2006). A crisp

44

True Positive
(TP)

False Positive
(FP)

False Negative
(FN)

True Negative
(TN)

True Classp n

p̂

n̂

P
re

d
ic

te
d

C
la

ss

Pos = TP + FN Neg = FP + TN

tpr = TP
Pos

= TP
TP+FN

tnr = TN
Neg

= TN
FP+TN

= 1 − fprGood: correct detection Bad: Type I error

Good: correct rejectionBad: Type II error

(Total number of
actual positives)

(Total number of
actual negatives)

fpr = FP
Neg

= FP
FP+TN

fnr = FN
Pos

= FN
TP+FN

= 1 − tpr

acc = TP+TN
Pos+Neg

= 1 − err

AUC =
∑

ri−Pos(Pos+1)/2

Pos×Neg

ri is the rank of the ith positive example

Figure 1.6 Confusion matrix and ROC common measures

tnr

tpr

fprfnr

Predicted
negative (n̂)

Negative class
(normal)

Crisp detector
(data point)

Soft detector
(empirical ROC)

Perfect discrimination
(ROC heaven)

Always predicts
negative

Always predicts
positive

fpr

tnr

0
0.2 0.60.4 0.8 1

0.2

0.6

0.4

0.8

1

tp
r

f
n
r

Non-proper classifiers
(Negative responses may

be negated)

R
an

do
m

cl
as
sifi

er

Predicted
positive (p̂)

Decision threshold (T)

Crisp detector

Soft detectorx ≥ T
f(x)

n̂, (Y = 0)
p̂, (Y = 1)

x

Positive class
(anomalous)

score

n̂, (Y = 0)
p̂, (Y = 1)

More
aggressive

More con-
servative

AUC

Figure 1.7 Illustration of the fixed tpr and fpr values produced by a crisp detector
and the ROC curve generated by a soft detector (for various decision thresholds T).

Important regions in the ROC space are annotated

detector however produces a single point (or data point) defined by its (fpr, tpr) in the

ROC space (see Figure 1.7).

Given two operating points, say i and j, in the ROC space, i is defined as superior to j

if fpri ≤ fprj and tpri ≥ tprj . If one ROC curve I has all its points superior to those of

another curve J , then I dominates J . This means that the detector of I always has a

lower expected cost than that of J , over all possible class distributions and error costs .

45

If a ROC curve has tpri > fpri for all its points i then, it is a proper ROC curve. ROC

curves below the major diagonal can always be transformed into proper curves by using

a linear transformation or changing the meaning of positive and negative.

ROC curves allows to visualize the performance of detectors and select optimal opera-

tional points, without committing to a single decision threshold. It presents detectors

performance across the entire range of class distribution and error costs. For equal prior

probability and cost of errors, the optimal decision threshold (minimizing overall errors

and costs) corresponds to the vertex that is closest to the upper-left corner of the ROC

plane (also called ROC heaven). In many practical cases, where prior knowledge of

skewed class distributions or misclassification costs are available from the application do-

main, they should be considered while analyzing the ROC curve and selecting operational

thresholds, using iso-performance lines (Fawcett, 2006; Provost and Fawcett, 2001).

For imprecise class distribution, the area under the ROC curve (AUC) has been proposed

as more robust (global) measure for evaluation and selection of classifiers than accuracy

(acc) – or conversely error rate (err), (Bradley, 1997; Huang and Ling, 2005; Provost

et al., 1998). In fact, the acc depends on the decision threshold, and assume fixed dis-

tributions for both positive and negative classes. The AUC however is the average of

the tpr over all values of the fpr (independently of decision thresholds and prior class

distributions). It can be also interpreted in terms of class separation, as the fraction

of positive–negative pairs that are ranked correctly, (see Figure 1.7). The AUC eval-

uates how well a classifier is able to sort its predictions according to the confidence it

assigns to them. For instance, with an AUC = 1 all positives are ranked higher than

negatives indicating a perfect discrimination between classes. A random classifier has an

AUC = 0.5 that is both classes are ranked at random. For a crisp classifier, the AUC is

simply the area under the trapezoid and is calculated as the average of the tpr and fpr

values. For a soft classifier, the AUC may be estimated directly from the data either by

summing up the areas of the underlying trapezoids (Fawcett, 2004) or by means of the

Wilcoxon–Mann–Whitney (WMW) statistic (Hanley and McNeil, 1982).

46

In some cases ROC curves may cross, and hence detectors providing higher overall AUC

values may perform worse than those providing lower AUC values, in a specific region of

ROC space . In such cases, the partial area under the ROC curve (pAUC) (Walter, 2005),

for instance the area under between fpr = 0 and fpr = 0.1 (AUC0.1), could be useful for

comparing the specific regions of interest (Zhang et al., 2002). If the AUC (or the pAUC)

values are not significantly different, the shape of the curves might need to be looked at.

It may also be useful to look at the tpr for a fixed fpr of particular interest. However,

any attempt to summarize a ROC curve into a single number leads to information loss,

such as errors and costs trade-offs, which reduces the system adaptability.

1.6 Anomaly Detection Challenges

1.6.1 Representative Data Assumption

Most work found in related literature (described in Section 1.2.3 and 1.3.1) considers

static environments and assumes being provided with a sufficiently representative amount

of clean (attack-free) system call data for training the anomaly detectors. Even under

these ideal assumptions, anomaly detectors still face the following challenges.

Designing an HMM for anomaly detection involves estimating HMM parameters and the

number of hidden states, N , from the training data. The value of N has a considerable

impact not only on system accuracy but also on HMM training time and memory re-

quirements. In the literature on HMMs applied to anomaly detection (Du et al., 2004;

Gao et al., 2002; Hoang and Hu, 2004; Hu, 2010; Qiao et al., 2002; Warrender et al., 1999;

Zhang et al., 2003), the number of states is often chosen heuristically or empirically us-

ing validation data. In fact, HMMs trained with different number of states are able to

capture different underlying structures of data. Therefore, a single best HMM will not

provide a high level of performance over the entire detection space (see Appendix V).

An open issue, for all window based anomaly detection, is the selection of the operating

detector window size DW – the size of the sliding window used for testing. A small

47

DW value is always desirable since it allows faster detection and response, incurs less

processing overhead , as described in Appendix V. However, choosing the smallest DW

that has good discriminative abilities, depends on the anomaly size, AS, in the testing set.

The anomaly size is not known a priori, may vary considerably in real world application,

and could even be controlled by the attacker. In general, ADSs are designed to provide

accurate results for a particular window size and anomaly size. Discriminative or sequence

matching techniques, are only able to detect anomalies with sizes equal to that of the

detector window (AS = DW). In addition, they provide blind regions in the detection

space (Maxion and Tan, 2000; Tan and Maxion, 2002, 2003). These techniques will miss

an anomalous sequence that are larger that the detector window size (DW < AS) if all

of its sub-sequences (of size equal to that of DW) are normal. The detector window

will slide on these normal sub-sequences, without being able to discover that the whole

sequence is anomalous (Maxion and Tan, 2000; Tan and Maxion, 2002, 2003).

As a generative model, HMM is less sensitive to the detector window size and have no

blind regions since it computes the likelihood of each observation sequence. Although

not investigated in depth in this thesis, Chapter 3 and Appendix V, show that HMM

detection ability increases with the detector window size, since the likelihood of anoma-

lous sequences becomes smaller at a faster rate than normal ones, and hence easier to

detect. Once designed and trained, an HMM provides a compact model that does not

increase with the size of training data or detector window. In contrast, the dimension-

ality of the training sub-sequences space increases exponentially with DW , which makes

discriminative techniques prone to the curse of dimensionality. In addition, matching

techniques that are based on search procedure such as look-up tables in STIDE must

compare inputs to all normal training sub-sequences. The number of comparisons also

increases exponentially with the detector window size DW , while for HMM evaluation

the time complexity grows linearly with DW .

To eliminate the dependence on DW , HMM is typically trained on the entire sequence

of system call observations without segmentation (Lane, 2000; Warrender et al., 1999).

48

However, when learning from long sequences of observations the FB algorithm, employed

within standard BW (Baum et al., 1970) or Gradient-based algorithms (Baldi and Chau-

vin, 1994; Levinson et al., 1983) for estimation of HMM parameters, may become pro-

hibitively costly in terms of time and memory complexity (Lane, 2000; Warrender et al.,

1999). This has been also noted in other fields, such as bioinformatics (Krogh et al., 1994;

Meyer and Durbin, 2004) and robot navigation systems (Koenig and Simmons, 1996).

For a sequence of length T and an ergodic HMM with N states, the memory complexity

of the FB algorithm grows linearly with T and N , O(NT), and its time complexity grows

quadratically with N and linearly with T , O(N2T). The efficient forward filtering back-

ward smoothing (EFFBS) algorithm proposed in Appendix I, provides an alternative to

the FB algorithm, which a reduced memory complexity, O(N), i.e., independent of the

sequence length T .

Another issue with related anomaly detection techniques resides in their evaluation

methodology, in particular, the accuracy measure and arbitrary selection of decision

thresholds. Most techniques consider the number of anomalous sub-sequences found in

the test sequence as accuracy measure. A sub-sequence is considered as anomalous if

its likelihood value assigned by the HMM is below a given threshold. The thresholds

are typically selected according to the minimum likelihood value assigned by a trained

HMM to the normal sub-sequences. Consequently, this evaluation methodology accounts

only for one type of error, as it does not consider false negative errors. Furthermore,

setting the decision threshold at the tail of the normal distribution does not provide the

optimal (Bayes) decision, unless in trivial situations where the two distributions (normal

and anomalous) are linearly separable (see Figure 1.7).

1.6.2 Unrepresentative Data

In practice however, unrepresentative data is typically provided for training. Acquiring

a sufficient amount of clean data that represents the normal behavior of complex real-

world processes is a challenging task. Although abundant data can be collected from a

49

Normal Behavior

Modeled
Behavior

Rare Events
(false alarms)

Suspicious
Behavior

Figure 1.8 Illustration of normal process behavior when modeled with
unrepresentative training data. Normal rare events will be considered

as anomalous by the ADS, and hence trigger false alarms

constrained and overly secured environment,such as UNM data sets, this data still pro-

vide an incomplete view of the normal behavior of complex processes. This is due to the

trade-off between process functionality and the restrictions required to achieve a high

level of security, and hence “ascertain” that the collected data contains no attack pat-

terns. More representative data can be collected from an open environment, in which a

process is allowed to fully preform its intended functionality. However this data requires

a time-consuming investigation by human specialists for the presence of attacks. There-

fore, a limited amount of clean data is typically analyzed over time, and then provided

for training the anomaly detector. The anomaly detector will also have an incomplete

view of the normal process behavior. Incomplete view of the normal behavior leads to

misclassifying rare normal events as anomalous, as illustrated in Figure 1.8.

Since HIDSs are deployed on each host, it is more practical to start from a generic model

with limited view of normal behavior then update it, than to restart the whole training

procedure on each host. For example, the same process of interest may have different

settings and functionality on different hosts machines. It may be very costly to collect

and analyze training data from the same process on every host and train a new model

for each host. A less costly solution consists of training a generic HMM using normal

data corresponding to common settings, an then incrementally update each model with

50

Suspicious
Behavior

Old Normal
Behavior

Modeled
Behavior

New Normal
BehaviorFalse alarms

False negatives

Figure 1.9 Illustration of changes in normal process behavior, due for
instance to application update or changes in user behavior, and the

resulting regions causing both false positive and negative errors

the required normal data to better fit the process normal behavior and hence reduce

generation of false alarms.

Furthermore, the underlying data distribution of normal behavior may vary according to

changes in the monitored environment after the ADS has been deployed for operations.

For instance, an update to the code of the monitored process (e.g., to add newer func-

tionality, fix some security holes, etc.) could lead the underlying distribution of normal

behavior to drift. Normal behavior may also drift due to a change in the way users

interact with the process. Changes in user behavior may occur when they are assigned

new tasks or acquire new skills. Changes to the underlying normal distribution lead the

model to deviate, and generate both false positive and negative error as illustrated in

Figure 1.9. Accordingly, the model must be updated from new data to account from this

change.

As a part of an ADS, the system administrator plays a crucial role in providing new

data for training and validation of the detectors. When an alarm is raised, the suspicious

system call sub-sequences are logged and analyzed for evidence of an attack. If an intru-

sion attempt is confirmed, the corresponding anomalous system calls should be provided

to update the validation set. A response team should react to limit the damage, and a

forensic analysis team should investigate the cause of the successful attack. Otherwise,

51

the intrusion attempt is considered as a false alarm and these rare sub-sequences are

tagged as normal and employed to update the HMM detectors.

Therefore, an important feature of an ADS is the ability to accommodate newly-acquired

data incrementally, after it has originally been trained and deployed for operations.

Newly-acquired data allow to account for the incomplete view of normal process be-

havior and for possible changes that may occur over time. However, one major challenge

is the efficient integration of the newly-acquired data into the ADS without corrupting

the existing knowledge structure, and thereby degrading the performance.

52

CHAPTER 2

A SURVEY OF TECHNIQUES FOR INCREMENTAL LEARNING OF

HMM PARAMETERS∗

This chapter presents a survey of techniques found in literature that are suitable for

incremental learning of HMM parameters. These techniques are classified according to

the objective function, optimization technique, and target application, involving block-

wise and symbol-wise learning of parameters. Convergence properties of these techniques

are presented, along with an analysis of time and memory complexity. In addition, the

challenges faced when these techniques are applied to incremental learning is assessed

for scenarios in which the new training data is limited and abundant. While the con-

vergence rate and resource requirements are critical factors when incremental learning is

performed through one pass over abundant stream of data, effective stopping criteria and

management of validation set are important when learning is performed through several

iterations over limited data. In both cases managing the learning rate to integrate pre-

existing knowledge and new data is crucial for maintaining a high level of performance.

Finally, this chapter underscores the need for empirical benchmarking studies among

techniques presented in literature, and proposes several evaluation criteria based on non-

parametric statistical testing to facilitate the selection of techniques given a particular

application domain.

∗THIS CHAPTER IS ACCEPTED, UNDER REVISION, IN INFORMATION SCIENCES JOUR-
NAL, ON MAY 30, 2011, SUBMISSION NUMBER: INS-D-10-141

54

2.1 Introduction

The Hidden Markov Model (HMM) is a stochastic model for sequential data. It is a

stochastic process determined by the two interrelated mechanisms – a latent Markov chain

having a finite number of states, and a set of observation probability distributions, each

one associated with a state. At each discrete time instant, the process is assumed to be

in a state, and an observation is generated by the probability distribution corresponding

to the current state. The HMM is termed discrete if the output alphabet is finite, and

continuous if the output alphabet is not necessarily finite, e.g., each state is governed by

a parametric density function (Elliott, 1994; Ephraim and Merhav, 2002; Rabiner, 1989).

Theoretical and empirical results have shown that, given an adequate number of states

and a sufficiently rich set of data, HMMs are capable of representing probability distri-

butions corresponding to complex real-world phenomena in terms of simple and compact

models (Bengio, 1999; Bilmes, 2002). This is supported by the success of HMMs in vari-

ous practical applications, where it has become a predominant methodology for design of

automatic speech recognition systems (Bahl et al., 1982; Huang and Hon, 2001; Rabiner,

1989). It has also been successfully applied to various other fields, such as communication

and control (Elliott, 1994; Hovland and McCarragher, 1998), bioinformatics (Eddy, 1998;

Krogh et al., 2001), computer vision (Brand and Kettnaker, 2000; Rittscher et al., 2000),

and computer and network security (Cho and Han, 2003; Lane and Brodley, 2003; War-

render et al., 1999). For instance, in the area of computer and network security, a growing

number of HMM applications are found in intrusion detection systems (IDSs). HMMs

have been applied either to anomaly detection, to model normal patterns of behavior, or

in misuse detection, to model a predefined set of attacks. HMM applications in anomaly

and misuse detection have emerged in both main categories of IDS - host-based IDS (Cho

and Han, 2003; Lane and Brodley, 2003; Warrender et al., 1999; Yeung and Ding, 2003)

and network-based IDS (Gao et al., 2003; Tosun, 2005). Moreover, HMMs have recently

begun to emerge in wireless IDS applications (Cardenas et al., 2003; Konorski, 2005).

55

In many practical applications, the collection and analysis of training data is expensive

and time consuming. As a consequence, data for training an HMM is often limited in

practice, and may over time no longer be representative of the underlying data distri-

bution. However, the performance of a generative model like the HMM depends heavily

on the availability of an adequate amount of representative training data to estimate

its parameters, and in some cases its topology. In static environments, where the un-

derlying data distribution remains fixed, designing a HMM with a limited number of

training observations may significantly degrade performance. This is also the case when

new information emerges in dynamically-changing environments, where underlying data

distribution varies or drifts in time. A HMM that is trained using data sampled from the

environment will therefore incorporate some uncertainty with respect to the underlying

data distribution (Domingos, 2000).

It is common to acquire additional training data from the environment at some point in

time after a pattern classification system has originally been trained and deployed for

operations. Since limited training data is typically employed in practice, and underlying

data distribution are susceptible to change, a system based on HMMs should allow for

adaptation in response to new training data from the operational environment or other

sources (see Figure 2.1). The ability to efficiently adapt HMM parameters in response to

newly-acquired training data, through incremental learning, is therefore an undisputed

asset for sustaining a high level of performance. Indeed, refining a HMM to novelty

encountered in the environment may reduce its uncertainty with respect to the underlying

data distribution. However, incremental learning raises several issues. For one, HMM

parameters should be updated from new data without requiring access to the previously-

learned training data. In addition, parameters should be updated without corrupting

previously-acquired knowledge (Polikar et al., 2001).

Standard techniques for estimating HMM parameters involve batch learning, based ei-

ther on specialized Expectation-Maximization (EM) techniques (Dempster et al., 1977),

such as the Baum-Welch algorithm (Baum et al., 1970), or on numerical optimization

56

h0

D1

Classifier h1

D2

Classifier hn

Dn+1

Classifier hn+1

Figure 2.1 A generic incremental learning scenario where blocks of data are used to
update the classifier in an incremental fashion over a period of time t. Let

D1, . . . ,Dn+1 be the blocks of training data available to the classifier at discrete
instants in time t1, . . . , tn+1. The classifier starts with initial hypothesis h0 which

constitutes the prior knowledge of the domain. Thus, h0 gets updated to h1 on the
basis of D1, and h1 gets updated to h2 on the basis of data D2, and so forth

(Caragea et al., 2001)

techniques, such as the Gradient Descent algorithm (Levinson et al., 1983). In either

case, HMM parameters are estimated over several training iterations, until some ob-

jective function, e.g., maximum likelihood over some independent validation data, is

maximized. For a batch learning technique, a finite-length sequence O = o1,o2, . . . ,oT of

T training observations oi is assumed to be available throughout the training process.

Assuming that O is assembled into a block D of training data1, each training iteration

typically involves observing all subsequences in D prior to updating HMM parameters.

Given a new block D2 of training data, a HMM that has previously been trained on

D1 through batch learning cannot accommodate D2 without accumulating and storing

all training data in memory, and training from the start using all of the cumulative

data, D2
⋃
D1. Otherwise, the previously-acquired knowledge may be corrupted, thereby

compromising HMM performance. As illustrated in Figure 2.2, the HMM probabilities

to be optimized may become trapped in local optima of the new cost function associated

with D2
⋃
D1. In fact, probabilities estimated after training on D1 may not constitute

a good starting point for training on D2. Updating HMM parameters on all data using

some batch learning technique may therefore incur a significant cost in terms of processing

time and storage requirements. The time and memory complexity of standard techniques
1A block of training data is defined as a sequence of training observations that has been segmented

into overlapping or non-overlapping subsequences according to a user-defined window size.

57

C
os

t
fu

nc
ti

on

Optimization Space of
one Model Parameter

(1)

(2)

(3)

(4)

D1

D1

⋃
D2

Figure 2.2 An illustration of the degeneration that may occur with batch
learning of a new block of data. Suppose that the dotted curve

represents the cost function associated with a system trained on block
D1, and that the plain curve represents the cost function associated with
a system trained on the cumulative data D1

⋃
D2. Point (1) represents

the optimum solution of batch learning performed on D1, while point (4)
is the optimum solution for batch learning performed on D1

⋃
D2. If

point (1) is used as a starting point for incremental training on D2 (point
(2)), then it will become trapped in the local optimum at point (3)

grows linearly with the length, T , and number of training sequences R, and quadratically

with the number of HMM states, N .

As an alternative, several on-line learning techniques proposed in literature may be ap-

plied for incremental learning. These include techniques based on EM, numerical opti-

mization and recursive estimation, and assume the observation of stream of data. Some

of these techniques are designed to update HMM parameters at a symbol level (symbol-

wise), while others update parameters at a sequence level (block-wise). Techniques for

on-line symbol-wise learning, also referred to as as recursive or sequential estimation tech-

niques, are designed for situations in which training symbols are received one at a time,

and HMM parameters are re-estimated upon observing each new symbol. Techniques for

on-line block-wise learning are designed for situations in which training symbols are orga-

58

nized into a block of one or more sub-sequences, and HMM parameters are re-estimated

upon observing each new sub-sequence of symbols. In either case, HMM parameters

are updated from new training data, without requiring access to the previously-learned

training data, and potentially without corrupting previously acquired knowledge.

The main advantages of applying these techniques to incremental learning are the ability

to sustain a high level of performance, yet decrease the memory requirements, since there

is no need for storing the data from previous training phases. Furthermore, since training

is performed only on the new training sequences, and not on all accumulated data, on-line

learning would also lower time complexity needed to learn new data. Finally, incremental

learning may provide a powerful tool in a human-centric approach, where domain experts

may be called upon to gradually design and update HMMs as the operational environment

unfolds.

This chapter contains a survey of techniques that apply to incremental learning of HMM

parameters2. These techniques are classified according to objective function, optimiza-

tion technique, and target application that involve block-wise and symbol-wise learning

of parameters. An analysis of their convergence properties and of their time and memory

complexity is presented, and the applicability of these techniques is assessed for incre-

mental learning scenarios in which new data is either abundant or limited. Finally, the

advantages and shortcomings of these techniques are outlined, providing the key issues

and guidelines for their application in different learning scenarios.

This chapter is structured according to five sections. The next section briefly reviews the

batch learning techniques employed to estimate HMM parameters, and introduces the

formalism needed to support subsequent sections. Section 2.3 provides a taxonomy of

on-line learning techniques form literature that apply for incremental learning of HMM

parameters. An analysis of their convergence properties and resource requirements is
2A predefined topology and permissible transitions between the states (e.g., ergodic or temporal)

is assumed when learning HMM parameters. In many real-world applications, the best topology is
determined empirically. Although adapting HMM topologies, or jointly HMM parameters and topologies,
to new data may have a significant impact on performance, this issue is beyond the scope of the thesis.

59

S2

a11

S3S1
a33

a22

a31

a13

a21

a12
a23

a32

aij = P (qt+1 = j | qt = i)

1 2
0.0

3 4

0.5

1.0

vk

b2(k)

bj(k) = f(ot = v | qt = j)

−5
0.0

0 5

0.5

1.0

v

b2(v)

bj(k) = P (ot = vk | qt = j)

Continuous
output

Discrete
output

1 2 T

t
1

2

N

1

2

M
Observations

Hidden states

i

j

o1, o2, . . . , oT

q1, q2, . . . , qT

aij

k

bj(k)

Figure 2.3 An illustration of an ergodic three states HMM with either continuous or
discrete output observations (left). A discrete HMM with N states and M symbols

transits between the hidden states qt, and generates the observations ot (right)

provided in Section 2.4. Then, an analysis of their potential applicability in different

incremental learning scenarios is presented in Section 2.5. This chapter concludes with

a discussion of the main challenges to be addressed for incremental learning of HMM

parameters.

2.2 Batch Learning of HMM Parameters

A discrete-time finite-state HMM consists of N hidden states in the finite-state space

S = {S1, ...,SN} of the Markov process. Starting from an initial state Si, determined

by the initial state probability distribution πi, at each discrete-time instant, the process

transits from state Si to state Sj according to the transition probability distribution aij .

The process then emits a symbol v according to the output probability distribution bj(v)

of the current state Sj (see Figure 2.3). With a discrete HMM, the output bj(v) is finite,

and with a continuous HMM, the output alphabet is governed by a parametric density

function.

Let qt ∈ S denotes the state of the process at time t, where qt = i indicates that the state

is Si at time t. An observation sequence of length T is denoted by O = o1, . . . ,oT , where

60

ot is the observation at time t. The sub-sequence om,om+1, . . . ,on, n >m, by the concise

notation om:n. The HMM is then usually parametrized by λ= (π,A,B), where

• π = {πi} denotes the vector of initial state probability distribution, πi � P (q1 =

i)1≤i≤N

• A= {aij} denotes the state transition probability distribution, aij � P (qt+1 = j | qt =
i)1≤i,j≤N

• B = {bj(k)} denotes the state output probability distribution,

Aligned symbols with upper level text .

– bj(k) � P (ot = vk | qt = j)1≤j≤N,1≤k≤M for a finite and discrete alphabet V =

{v1,v2, . . . ,vM}, vk ∈RL with M distinct observable symbols.

– bj(v) � f(ot = v | qt = j)1≤j≤N for an infinite and continuous alphabet V = {v |
v ∈ RL}. For instance, if the observation density for each state in the HMM is

described by a univariate Gaussian distribution3 bj(ot) ∼N (μj ,σj), for a scalar

observation ot, with a mean μ and a variance σ2 then the state output density is

given by:

bj(ot | μj ,σj) = 1√
2πσj

exp
[
−(ot−μj)2

2σ2
j

]
(2.1)

For a finite-discrete HMM, both A, B and π′ (the transpose of vector π) are row stochas-

tic, which impose the following constraints:

N∑
j=1
aij = 1∀i,

M∑
k=1
bj(k) = 1∀j, and

N∑
i=1
πi = 1 (2.2)

aij , bj(k),πi ∈ [0,1], ∀ijk (2.3)

3It is usually termed as finite-state Markov chains in white Gaussian noise in control and communi-
cation community. It is also referred to as normal HMM.

61

For a continuous HMM, other constraints arise depending on the probability density

function (pdf) of the states. For example, in the Gaussian distribution case, (2.1), one

must ensure that the standard deviation is always positive, σj > 0, ∀j.

Given a HMM initialized according to the constraints described so far, there are three

tasks of interest – the evaluation, decoding, and training tasks (Rabiner, 1989). The rest

of this section focuses on batch learning techniques applied to address the third task, and

in particular estimating HMM parameters, along with the definitions needed for future

sections. For further details regarding the HMM, the reader is referred to the extensive

literature (Elliott, 1994; Ephraim and Merhav, 2002; Rabiner, 1989).

Standard techniques for estimating HMM parameters λ = (π,A,B) involve batch learn-

ing are based either on expectation-maximization or numerical optimization techniques.

With batch learning, a finite-length sequence O = o1,o2, ...,oT of T training observations

oi is assumed to be available throughout the training process. The parameters are esti-

mated over several training iterations, until some objective function is maximized. Each

training iteration involves observing all the observation symbols prior to updating HMM

parameters.

2.2.1 Objective Functions:

The estimation of HMM parameters is frequently performed according to the Maximum

Likelihood Estimation (MLE) criterion. Other criteria such as the maximum mutual

information (MMI), and minimum discrimination information (MDI) also be used for

estimating HMM parameters (Ephraim and Rabiner, 1990). However, the widespread use

of the MLE for HMM is a result of its attractive statistical properties – consistency and

asymptotic normality – proven under quite general conditions (Bickel et al., 1998; Leroux,

1992). MLE consists in maximizing the likelihood or equivalently the log-likelihood of

62

the training data with regard to the model parameters:

�T (λ) � logP (o1:T | λ) =
∑
S

logP (o1:T ,S | λ) =
∑
S

logP (o1:T | S,λ)P (S | λ) (2.4)

over the model parameter space Λ:

λ∗ = arg max
λ∈Λ

�T (λ) (2.5)

There is no known analytical solution to HMM parameters estimation since the log-

likelihood function (2.4) depends on the unknown probability values of the latent states,

S. In practice, iterative optimization procedures such as the expectation-maximization

or the standard numerical optimizations techniques, which are described in the following

sub-sections, are usually employed. In order to proceed iteratively any numerical opti-

mization procedure must also evaluate the log-likelihood function at any value. However,

a direct evaluation of the log-likelihood function (2.4) requires a summation over all

hidden state paths q1:T ∈ S, which has a prohibitively costly time complexity O(TNT).

Fortunately, there exists efficient recursive procedures for evaluating the log-likelihood

values as well as estimating the conditional state (2.6) and joint state (2.7) densities

associated with a given observation sequence o1:t:

γτ |t(i) � P (qτ = i | o1:t,λ) (2.6)

ξτ |t(i, j) � P (qτ = i, qτ+1 = j | o1:t,λ) (2.7)

in order to provide an optimal estimate, in the minimum mean square error (MMSE)

sense, for the unknown state q̂τ |t(i) frequency – the key problem for HMM parameters

estimation:

q̂τ |t(i) = E {qτ = i | o1:t}=
N∑
i=1
γτ |t(i) (2.8)

63

In estimation theory, this conditional estimation problem is called filtering if τ = t; pre-

diction if τ < t, and smoothing if τ > t. The smoothing problem is termed fixed-point

smoothing when computing the E {qτ | o1:t} for a fixed τ and increasing t = τ,τ + 1, . . .,

fixed-lag smoothing when computing the E {qτ | o1:t+Δ} for a fixed lag Δ> 0, and fixed-

interval smoothing when computing the E {qτ | o1:T} for all τ = 1,2, . . . t, . . . ,T .

The fixed-interval smoothing problem is therefore to find the best estimate of the states

at any time conditioned on the entire observations sequence, which is typically per-

formed in batch learning using the Forward-Backward (FB) (Baum, 1972; Baum et al.,

1970; Chang and Hancock, 1966) or the Forward-Filtering Backward-Smoothing (FFBS)

(Cappe and Moulines, 2005; Ephraim and Merhav, 2002) algorithms. Typically, fixed-

interval smoothing algorithms involve an estimation of the filtered state density, for

t= 1, . . . ,T :

γt|t(i) � P (qt = i | o1:t,λ) (2.9)

which provides the best estimate of the conditional distribution of states given the past

and present observations. It can be computed from the predictive state density (2.10),

which provides the best estimate of the conditional distribution of states given only the

past observations,

γt|t−1(i) � P (qt = i | o1:t−1,λ); γ1|0(i) = πi (2.10)

according to the following recursion:

γt|t(i) =
γt|t−1(i)bi(ot)∑N
j=1 γt|t−1(j)bj(ot)

(2.11)

The predictive state density (2.10) at time t+1 can be then computed from the filtered

state density (2.9) at time t:

γt+1|t(j) =
N∑
i=1
γt|t(i)aij (2.12)

64

Given an observation sequence o1:T , the log-likelihood is therefore evaluated with a time

complexity of O(N2T):

�T (λ) =
T∑
t=1

logP (ot | o1:t−1) =
T∑
t=1

log
N∑
i=1
bi(ot)γt|t−1(i) (2.13)

The predictive state density (2.10) is in fact a fixed-lag smoothing with one symbol

look-ahead (Δ = 1). In situations where some delay or latency between receiving the

observations and updating HMM parameters can be tolerated, incorporating more lag

provides stability and improved performance over filtering estimation (Anderson, 1999).

This is because the latter relies only on the information that is available at the current

time. Although they provide an approximation of the conditional state distributions,

both filtering and fixed-lag smoothing have been the core of several on-line learning

techniques, presented in Section 2.3, since their recursions can go on indefinitely in time

providing the state estimates without (or with a small fixed) delay. In addition, they

require a linear memory complexity O(N) that is independent of the observation length

T , while maintaining a low computational complexity O(N2T).

The backward recursion of the FFBS (or FB) algorithm exploits the filtered state esti-

mates in order to provide an exact smoothed estimate for the states, for t= T −1, . . . ,1:

γt|T (i) =
N∑
j=1
ξt|T (i, j) (2.14)

ξt|T (i, j) =
γt|t(i)aij∑N
i=1 γt|t(i)aij

γt+1|T (j) (2.15)

Although fixed-interval smoothing is the standard for batch learning, waiting until the

last observation before providing the state estimates incurs long delays as well as a large

memory complexity O(NT), to store the filtered state estimate for the entire observation

sequence (see Khreich et al. (2010c) for more details). These issues are prohibitive for

on-line learning.

65

A Forward Only (FO) fixed-interval smoothing algorithm has been proposed as an al-

ternative to reduce the memory requirement of the FB or FFBS algorithms (Churbanov

and Winters-Hilt, 2008; Elliott et al., 1995; Sivaprakasam and Shanmugan, 1995). The

basic idea is to directly propagate all smoothed information in the forward pass:

σt(i, j,k) �
t−1∑
τ=1
P (qτ = i, qτ+1 = j,qt = k | o1:t,λ),

which represents the probability of having made a transition from state Si to state Sj at

some point in the past (τ < t) and of ending up in state Sk at the current time t. At the

next time step, σt+1(i, j,k) can be recursively computed from σt(i, j,k) using:

σt(i, j,k) =
N∑
n=1
σt−1(i, j,n)ankbk(ot)+αt−1(i)aikbk(ot)δjk (2.16)

from which the smoothed state densities can be obtained, at time t, by marginalizing over

the states. The advantage of the FO algorithm is that it provides the exact smoothed

state estimate at each time step with the linear memory complexity O(N). However,

this is achieved at the expenses of increasing the time complexity to O(N4T) as can be

seen in the four-dimensional recursion (2.16). As described in Section 2.3, several authors

have proposed the FO algorithm for on-line learning of HMM parameters.

2.2.2 Optimization Techniques:

Maximum-likelihood (ML) parameter estimation in Hidden Markov Models (HMMs) can

be carried out using either the expectation maximization (EM) (Baum et al., 1970; Demp-

ster et al., 1977) or standard numerical optimization techniques (Nocedal and Wright,

2006; Zucchini and MacDonald, 2009). This section describes both estimation procedures

for HMMs.

66

2.2.2.1 Expectation-Maximization:

The EM is a general iterative method to find the MLE of the parameters of an underlying

distribution given a data set when the data is incomplete or has missing values. EM

alternates between computing an expectation of the likelihood (E-step) – by including the

latent variables as if they were observed – and a maximization of the expected likelihood

(M-step) found on the E-step. The parameters found in the M-step are then used to

initiate another iteration until a monotonic convergence to a stationary point of the

likelihood (Dempster et al., 1977).

In the context of HMM, the basic idea consists of optimizing an auxiliary Q-function

(also known as the intermediate quantity of EM):

QT (λ,λ(k)) = Eλ(k)

{
logP (o1:T , q1:T | λ) | o1:T ,λ

(k)
}

(2.17)

=
∑
q∈S
P (o1:T , q1:T | λ(k)) logP (o1:T , q1:T | λ)

which is the expected value of the complete-data log-likelihood. By assuming the proba-

bility values of the hidden states, the Q-function is therefore easier to optimize than the

incomplete-data log-likelihood (2.4). Nevertheless, it can be explicitly expressed in terms

of HMM parameters. For instance, for a discrete output HMM it has the following form:

QT (λ,λ(k)) =
N∑
i=1
γ

(k)
1|T (i) logπi+

T−1∑
t=1

N∑
i=1

N∑
j=1
ξ

(k)
t|T (i, j) logaij+

T∑
t=1

M∑
j=1
γ

(k)
t|T (j)δotvm logbj(m)

(2.18)

Each term on the right hand side can be maximized individually using Lagrange multi-

pliers subject to the relevant constraints (2.2). The solutions provide the same update

formulas as those provided with the Baum-Welch algorithm below, (2.19), (2.20) and

(2.21).

Starting with an initial guess λ(0), subsequent iterations, k = 1,2, . . ., of the EM consist

in:

67

E-step: computing the auxiliary function Q(λ,λ(k))

M-step: determining the model that maximizes Q, λ(k+1) = arg maxλQ(λ,λ(k))

If instead of maximizing Q, we find some λ(k+1) that increases the likelihood (partial

M-step) then it is called Generalized EM (GEM), which is also guaranteed to converge

(Wu, 1983) .

The Baum-Welch (BW) algorithm (Baum and Petrie, 1966; Baum et al., 1970) is a

specialized EM algorithm for estimating HMM parameters. Originally introduced to es-

timate the parameters when provided with a single discrete observations sequence (Baum

et al., 1970), it was later extended for multiple observation sequences (Levinson et al.,

1983; Li et al., 2000) and for continuous observations (Juang et al., 1986; Liporace, 1982).

Given a sequence o1:T of T observations, an HMM with N states, and an initial guess

λ(0), the BW algorithm proceeds as follows. During each iteration k, the FB or FF-BS

computes the expected number of state transitions and state emissions based on the

current model (E-step), and then re-estimated the model parameters (M-step) using:

π
(k+1)
i = γ(k)

1|T (i) = (expected frequency of state Si at t= 1) (2.19)

a
(k+1)
ij =

∑T−1
t=1 ξ

(k)
t|T (i, j)∑T−1

t=1 γ
(k)
t|T (i)

= expected #of trans. from Si→ Sj
expected #of trans. from Si

(2.20)

b
(k+1)
j (m) =

∑T
t=1 γ

(k)
t|T (j)δotvm∑T

t=1 γ
(k)
t|T (j)

= expected #of times in Sj observing vm
expected #of times in Sj

(2.21)

Each iteration of the E-step and M-step is guaranteed to increase the likelihood of the ob-

servations giving the new model until a convergence to a stationary point of the likelihood

(Baum, 1972; Baum et al., 1970; Dempster et al., 1977).

For a continuous HMM only the last term of (2.18) and hence (2.21) must be changed

according to the state parametric density. For instance, for an HMM with Gaussian state

68

densities (2.1), the state outputs update are given by:

μ̂j =
∑T
t=1 γt(j)ot∑T
t=1 γt(j)

, and σ̂2
j =

∑T
t=1 γt(j)(ot−μj)2∑T

t=1 γt(j)

For multiple independent observation sequences, Levinson et al. (1983) proposed averag-

ing the smoothed conditional densities, (2.14) and (2.14), over all observation sequences

in the E-step, then updating the model parameters (M-step). Li et al. (2000) propose

using a combinatorial method on individual observations probabilities, rather than their

product, to overcome the independence assumption. For both cases, re-estimating pa-

rameters with the standard EM requires accessing all of the sequences in the training

block during each iteration.

2.2.2.2 Standard Numerical Optimization:

While EM-based techniques indirectly optimize the log-likelihood function (2.4) through

the complete-data log-likelihood (2.17), standard numerical optimization methods work

directly with the log-likelihood function and its derivatives.

For instance, starting with an initial guess of the model λ0, first order methods such as

the gradient descent update the model at each iteration k using:

λ(k+1) = λ(k) +ηk∇λ�T (λ(k)) (2.22)

where the learning rate ηk decrease monotonically over training iterations to ensure that

the sequence �T (λ(k)) is non-decreasing. It is usually chosen as to maximize the objective

function in the search direction:

ηk = arg max
η≥0

�T [λ(k) +η∇λ(λ(k))] (2.23)

However due to its linear convergence rate, gradient descent methods could converge

slowly in large optimization spaces.

69

Second order methods guarantee a faster convergence. For instance, the Newton-Raphson

method updates the model at each iteration k using:

λ(k+1) = λ(k)−H−1(λ(k))∇λ�T (λ(k)) (2.24)

The convergence rate is at least quadratic at the convergence point, for which the Hessian

is negative definite. However, if the initial parameters are far from those of true model

parameters, the convergence is not guaranteed. A learning rate ηk similar to (2.23) can be

introduced to control the step length in the search direction. A polynomial interpolation

of �T (λ) along the line-segment between λ(k) and λ(k+1) is usually used in practice, since

it is often impossible to have an exact maximum of the line search. Nonetheless, the

Hessian H =∇2
λ�T (λ(k)) could be non-invertible or not negative semi-definite.

To avoid these issues, quasi-Newton methods use an adaptive matrixW (k) which provides

an approximation of the Hessian at each iteration:

λ(k+1) = λ(k) +ηkW (k)∇λ�T (λ(k)) (2.25)

where W (k) is negative definite to ensure that ascent direction is chosen. The numerical

issues associated with the matrix inversion are therefore avoided, while still exhibiting

the convergence rate of the Newton algorithms near the convergence point.

For a discrete HMM, the gradient of the log-likelihood ∇λ�T (λ(k)) can be computed using

the state conditional densities obtained from the fixed-interval smoothing algorithms

(2.14) and (2.15) as:

∂�T (λ(k))
∂aij

=
∑T−1
t=1 ξ

(k)
t|T (i, j)
aij

(2.26)

∂�T (λ(k))
∂bj(m) =

∑T
t=1 γ

(k)
t|T (j)δotvm
bj(m) (2.27)

70

An alternative computation can be achieved by using a recursive computation of the

gradient itself as described in sub-section 2.3.2.2. Once the gradient of the likelihood is

computed, the HMM parameters are then additively updated according to, for instance,

the first order (2.22) or second order (2.25) methods. For multiple independent observa-

tion sequences, the derivatives with reference to each model parameter (2.26) and (2.27)

must be accumulated and averaged over all observation sequences, prior to updating the

model parameters. The reader is referred to Cappe et al. (1998); Qin et al. (2000) for more

details on quasi-Newton, and to Turner (2008) on Levenberg–Marquardt optimizations

for HMMs.

Standard numerical optimization methods have to ensure parameter constraints, (2.2)

and (2.3), explicitly through either a constrained optimization or a re-parametrization

to reduce the problem to unconstrained optimization. Levinson et al. (1983) detail the

early implementation of a constrained optimization for HMM using Lagrange multipliers.

Among the unconstrained transformation is the soft-max parametrization proposed in

(Baldi and Chauvin, 1994), which maps the bounded space (a,b) to the unbounded space

(u,v):

aij = euij∑
k euik

and b(k) = evj(k)∑
z e
vj(z)

(2.28)

Other unconstrained parametrization consist of a projection of the model parameters

onto the constraints domain, such as a simplex or a sphere. The parametrization on a

simplex (Krishnamurthy and Moore, 1993; Slingsby, 1992)

= {aij ∈ R
N−1 :

N−1∑
j=1
aij ≤ 1, and aij ≥ 0} (2.29)

enforces the stochastic constraints (2.2) by updating all but one of the parameters in

each row, ali = 1−∑Nj �=li aij , 1≤ li ≤N . However, it does not ensure the positiveness of

the parameters (2.3). One improvement consists in using a restricted projection to the

71

space of positive matrices for some positive ε (Arapostathis and Marcus, 1990):

ε = {aij ∈ R
N−1 :

N−1∑
j=1
aij ≤ 1− ε, and aij ≥ ε} (2.30)

Alternatively, parametrization on a sphere adequately enforces both constraints (Collings

et al., 1994):

S
N−1 = {sij :

N∑
j=1
s2ij = 1} (2.31)

where aij = s2ij . This also has the advantage that the constraint manifold is differentiable

at all points.

2.2.2.3 Expectation-Maximization versus Gradient-based Techniques

For discrete output HMMs, the EM algorithm is generally easier to apply than gradient-

based technique since derivatives, Hessian inversion, line-search, etc., are not required.

It is numerically more robust against poor initialization values or when the model has

large number of parameters. It also has a monotonic convergence propriety which is not

maintained in gradient-based techniques, and ensures parameters constraints implicitly.

However the rate of convergence of the EM can be very slow, it is usually linear in the

neighborhood of a maximum (Dempster et al., 1977). This is comparable to gradient de-

scent but slower than the quadratic convergence that can be achieved with second order or

conjugate gradient techniques. Nevertheless, EM steps do not always involve closed-form

expressions in such cases the maximization has to be carried out numerically. Another

advantage of numerical optimization techniques is that they automatically yield an es-

timate of parameters variances (Cappe and Moulines, 2005; Zucchini and MacDonald,

2009). Since there is no clear advantage of one technique on the other, hybrid algorithms

have been proposed to take advantage from both techniques (Bulla and Berzel, 2008;

Lange, 1995).

Given a block of data with R independent sequences each of length T and an N state

HMM, the time an complexity per iteration for EM and gradient-based techniques are

72

O(RN2T) and their memory complexity is O(NT). This is because they both rely on

the fixed-interval smoothing algorithms (2.14) and (2.15) to compute the state densities

for the E-step or the gradient of the log-likelihood. The difference is basically related to

the internal procedures employed in gradient-based such as the line search, and to the

speed of convergence (see Cappe and Moulines (2005, Ch. 10) for more details).

2.3 On-Line Learning of HMM Parameters

Several on-line learning techniques from the literature may be applied to incremental

learning of HMM parameters from new training sequences. Figure 2.4 presents a tax-

onomy of techniques for on-line learning of HMM parameters, according to objective

function, optimization technique, and target application. As shown in the figure, they

fall in the categories of standard numerical optimization, expectation-maximization and

recursive estimation, with the objective of either maximizing the likelihood estimation

(MLE) criterion, minimizing the model divergence (MMD) of parameters penalized with

the MLE, or minimizing the output or state prediction error (MPE).

The target application implies a scenario for data organization and learning. Some tech-

niques have been designed for block-wise estimation of HMM parameters, while others for

symbol-wise estimation of parameters. Block-wise techniques are designed for scenarios

in which training symbols are organized into a block of sub-sequences and the HMM

re-estimates its parameters after observing each sub-sequence. In contrast, symbol-wise

techniques, also known as as recursive or sequential techniques, are designed for scenarios

in which training symbols are observed one at a time, from a stream of symbols, and the

HMM parameters are re-estimated upon observing each new symbol. The rest of this

section provides a survey of techniques for on-line learning of HMM parameters shown

in Figure 2.4.

73

Garg and
Warmuth

(2003)

Florez-
Larrahondo et

al. (2005)

LeGland and
Mevel (1995,

1997)

Krishnamurthy
and Moore

(1993)

Holst and
Lindgren (1991)
Slingsby (1992)

Collings and
Ryden (1998)

Collings et al.
(1994)

Ford and Moore
(1998)

Ford and Moore
(1998b)

LeGland and
Mevel (1997)

Stinger et al.
(2001)

Stiller and
Radons (1999)

Mongillo and
Deneve (2008)
Cappe (2009)

Sy
m

bo
l-
w

is
e

Singer and
Warmuth

(1996)

Ryden (1997,
1998)

Mizuno et al.
(2000)

Digalakis
(1999)

Cappe et al.
(1998)

Baldi and
Chauvin (1994)

B
lo

ck
-w

is
e

Standard Numerical
Optimization Expectation Maximization Recursive Estimation

Minimum Model
Divergence

Maximum Likelihood
Estimation

Minimum Prediction
Error

O
b
je

ct
iv

e
Fu

nc
ti

on
s

O
pt

im
iz

at
io

n
T
ec

hn
iq

ue
s

T
ar

ge
t

A
pp

lic
at

io
n

Figure 2.4 Taxonomy of techniques for on-line learning of HMM parameters

2.3.1 Minimum Model Divergence (MMD)

A dual cost function that maximizes the log-likelihood while minimizing the divergence

of model parameters, using an exponentiated gradient optimization framework (Kivinen

and Warmuth, 1997), is first proposed for the block-wise case (Singer and Warmuth,

1996), then extended to symbol-wise case (Garg and Warmuth, 2003).

Block-wise

Based on the exponentiated gradient framework (Kivinen and Warmuth, 1997), Singer

and Warmuth (1996) proposed an objective function for discrete HMMs that minimizes

the divergence between old and new HMM parameters penalized by the negative log-

74

likelihood of each sequence multiplied by a fixed positive learning rate (η > 0):

λ(k+1) = arg min
λ

(
KL(λ(k+1),λ(k))−η�T (λ(k+1))

)

where KL(λ(k+1),λ(k)) is the Kullback-Leibler (KL) divergence between the distributions

λ(k+1) and λ(k). KL is defined between two probability distributions Pλ0(o1:t) and Pλ(o1:t)

by

KLt(Pλ0 ‖ Pλ) = E
{

log Pλ0(o1:t)
Pλ(o1:t)

}
=
∑
t

Pλ0(o1:t) log Pλ0(o1:t)
Pλ(o1:t)

(2.32)

which is always non-negative and attains its global minimum at zero for Pλ→ Pλ(0) . Its

limit (t→∞) is Kullback-Leibler rate or relative entropy rate.

The model parameters are updated after processing each observation sequence:

a
(k+1)
ij = 1

Z1
a

(k)
ij exp

(
− η

ni(λ(k+1))
∂�T (λ(k+1))
∂aij

)
(2.33)

b
(k+1)
j (m) = 1

Z2
b
(k)
j (m)exp

(
− η

nj(λ(k+1))
∂�T (λ(k+1))
∂bj(m)

)
(2.34)

where Z1 and Z2 are normalization factors. The expected usage of state i, ni(λ(k)) =∑T
t=1 γt|T (i) can be computed using the filtering estimation (2.14), and the derivatives of

the log-likelihood are given by (2.26) and (2.27).

Symbol-wise

Garg and Warmuth (2003) extended the block-wise learning of Singer and Warmuth

(1996) to symbol-wise. The model divergence is however penalized by the negative of the

log-likelihood increment, i.e., log-likelihood of each new symbol given all previous ones.

At each time instant the model is updated using:

λt+1 = arg min
λ

(
KL(λt+1,λt)−η logP (ot+1 | o1:t,λt+1)

)

75

which can be decoupled into similar update, for both state transition and state output, as

with (2.33) and (2.34), respectively. The main difference resides however in the compu-

tation of the expected usage of state i – it is computed recursively based on each symbol

with ni(λt) =∑tτ=1 γτ |t(i), is the gradient of the log-likelihood increment. The recursive

formulas proposed to implement this computation are very similar to the recursive max-

imum likelihood estimation proposed by LeGland and Mevel (LeGland and Mevel, 1995,

1997) (see Section 2.3.2).

2.3.2 Maximum Likelihood Estimation (MLE)

The attractive asymptotic properties of the MLE in general, have prompted many at-

tempts to extend this objective function to on-line learning for different applications. In

particular, indirect maximization of log-likelihood, through the complete log-likelihood

(2.17), has been the basis for many on-line learning algorithms. Neal and Hinton (1998)

have proposed an “incremental” version of the EM algorithm to accelerate its convergence

on a finite training data set4. Assuming a fixed training data set is divided into n blocks,

each iteration of this algorithm performs a partial E-step (for a selected block) then up-

dates the model parameters (M-step), until a convergence criterion is met. The improved

convergence is attributed to exploiting new information more quickly, rather than wait-

ing for the complete data to be processed before updating the parameters (Gotoh et al.,

1998; Neal and Hinton, 1998). Many extensions to this algorithm have emerged for on-

line block-wise (Digalakis, 1999; Mizuno et al., 2000) or symbol-wise (Florez-Larrahondo

et al., 2005; Stenger et al., 2001; Stiller and Radons, 1999) learning.

Direct maximization of the log-likelihood function is first proposed for the block-wise

case using the GD algorithm (Baldi and Chauvin, 1994), and then using the quasi-

Newton algorithm (Cappe et al., 1998) for faster convergence. A recursive block-wise

estimation technique is also proposed for this optimization (Ryden, 1998, 1997). Finally,

extensions to the work of Titterington (1984) and Weinstein E. and Oppenheim (1990)
4In contrast, the incremental scenario considered in this chapter restricts accessing a block of data

once it has been processed.

76

for independent data has lead to a symbol-wise technique to optimize the complete data

likelihood (2.17) recursively, at each time step.

2.3.2.1 On-line Expectation-Maximization

An important property of the “incremental” version of EM resides in its flexibility (Neal

and Hinton, 1998). There is no constraints on how the data is divided into blocks.

The block might range from a single observation symbol to one or multiple sequence

of observations. In addition, one can choose to update the parameters by selecting

data blocks cyclically, or by any other scheme. Accordingly, several algorithms have

extended this approach to on-line learning of HMM parameters. As detailed next, this is

basically achieved by initializing the smoothed densities to zero, processing the training

data (symbol-wise or block-wise) sequentially, and updating the HMM after each symbol

or sequence.

Block-wise

Digalakis (1999) derived an on-line algorithm of EM to update the parameters of a

continuous HMM for automatic speech recognition, and showed faster convergence and

higher recognition rate over the batch algorithm. Similarly, Mizuno et al. (2000) proposed

a similar algorithm for a discrete HMM however. Given the initial model λ0, and after

processing each new sequence of observation of length T , the state densities are recursively

computed using:

T−1∑
t=1
ξ

(k+1)
t|T (i, j) = (1−ηk)

T−1∑
t=1
ξ

(k)
t|T (i, j)+ηk

T−1∑
t=1
ξ

(k+1)
t|T (i, j)

T∑
t=1
γ

(k+1)
t|T (j)δotm = (1−ηk)

T∑
t=1
γ

(k)
t|T (j)δotm+ηk

T∑
t=1
γ

(k+1)
t|T (j)δotm

and the model parameters are then directly updated using (2.20) and (2.21). The learning

rate ηk is proposed in polynomial form ηk = c(1
k)
d for some positive constants c and d.

77

Symbol-wise

Stiller and Radons (1999) introduced a recursive algorithm for non-stationary discrete

Mealy HMMs5, which is essentially based on the FO (2.16). The main idea is to recur-

sively update a tensorial quantity,

ξtijk(ot) =
t∑
τ=1
ατ−1
i a

τ−1
ij (oτ)βτ,tjk δotoτ (2.35)

which accounts for the weighted sum of transition probability from state Si to Sj (at

time τ), emitting symbol ot and being in state k at time t ≥ τ . The model parameters

(emission on arcs) are condensed in atij(ot) = P (qt = j,ot | qt−1 = i). The forward-vector

(ατ) and backward-matrix (βτ,t) are recursively computed by:

ατ = π
τ∏
r=1
a(r−1)(or) and βτ,t =

t∏
r=τ+1

ar−1(or)

Equation (2.35) can therefore be recursively computed as function of the old ξtijk(ot) and

the new symbol ot+1:

ξt+1
ijk (ot+1) =

∑
k̂

ξt
ijk̂

(ot)
∑
l ξ
t
k̂kl

(ot+1)∑
τ
∑
ĵ,l̂ ξ
t
iĵl̂

(oτ)
+ηtδotot+1δjk

∑
l,m

∑
τ
ξtlmi(oτ)

∑
k ξ
t
ijk(ot)∑

τ
∑
ĵ,k̂ ξ
t
ijk̂

(oτ)

where ηt is a time-varying learning rate. Finally, the model parameters (aτij) and the

probability of the system currently being in state k (ατk) can be estimated at any time

using:

atij(o) =
∑
k ξ
t
ijk(ot)∑

t
∑
ĵ,k̂ ξ
t
ijk̂

(ot)
and ατk =

∑
i,j
∑
t ξ
t
ijk(ot)∑

i,j,k̂

∑
t ξ
t
ijk̂

(ot)

This algorithm have been recently proposed for Moore HMMs (Mongillo and Deneve,

2008) and then generalized (Cappe, 2009).
5The emission is produced on transitions (Mealy model) while for all other algorithms presented the

output is produced on states (Moore model).

78

Stenger et al. (2001) approximated the fixed-interval smoothing, used in BW, by the

filtered state density (2.9) for updating the parameters of a continuous HMM from a

stream of data. Naturally, the filtered state density is recursively computed independently

of the sequence length. The model parameters are then updated, at each time step, by

atij =
∑t−2
τ=1 γt|τ (i)∑t−1
τ=1 γt|τ (i)

at−1
ij +

ξt−1|t(i, j)∑t−1
τ=1 γt|τ (i)

(2.36)

μti =
∑t−1
τ=1 γt|τ (i)∑t
τ=1 γt|τ (i)

μt−1
i +

γt|t(i)ot∑t
τ=1 γt|τ (i)[

σ2
i

]t
=
∑t−1
τ=1 γt|τ (i)∑t
τ=1 γt|τ (i)

[
σ2
i

]t−1
+
γt|t(i)(ot−μti)2∑t
τ=1 γt|τ (i)

An exponential forgetting is proposed to make old estimates receive less weight by tuning

a fixed learning rate.

Similarly, Florez-Larrahondo et al. (2005) proposed, for discrete HMM, using the predic-

tive state density (2.10) as a better approximation6. The model parameters are recur-

sively updated using an adaptation of Stenger’s recursion formulas for discrete HMMs

however. The transition update is the same as (2.36) with γt|τ replaced by γt+1|τ , while

the state output is given by:

bTj (k) =
∑t−1
τ=1 γt+1|τ (j)∑t
τ=1 γt+1|τ (j)

bT−1
j (k)+

γt+1|t(j)δ(oT ,vk)∑t
τ=1 γt+1|τ (j)

(2.37)

The author argued that there is no need to exponential forgetting and proposed post-

poning the first update of the parameters until some time t > 0 so that enough statistics

should have been collected to stabilize the re-estimation.
6This is equivalent to setting βt(i) =

∑N
j=1 aijbj(ot+1) in the FB algorithm.

79

2.3.2.2 Numerical Optimization Methods:

Block-wise

Based on the GD of the negative likelihood (2.22), Baldi and Chauvin (1994) have intro-

duced a block-wise algorithm for estimation of discrete HMM parameters, which related

to the Generalized EM (GEM). By using the soft-max parametrization, (2.28), and the

FF-BS algorithm, parameters are updated after each sequence as follows:

u
(k+1)
ij = u

(k)
ij +η∑Tt=1

(
ξt|T (i, j)−aijγt|T (i)

)
v

(k+1)
j (m) = v

(k+1)
j (m)+η∑Tt=1

(
γt|T (j)δotm− bj(m)γt|T (j)

)

This is typically referred to as stochastic gradient-based techniques (Bottou, 2004).

Based on the recursive maximum likelihood estimation of LeGland and Mevel (LeGland

and Mevel, 1995, 1997) presented below, Cappe et al. (1998) proposed a quasi-Newton

(2.25) faster convergent technique for maximizing the likelihood of a continuous HMM

with Gaussian output (2.1). Using the parametrization on a simplex (2.29) and re-

placing the standard deviation by its log (to ensure its positivity), the gradient of the

log-likelihood (2.13), can be computed recursively using:

∇λ�T (λ(k)) =
T∑
t=1

1
ct

N∑
i=1

[
γt|t−1(i)∇λ(k−1)bi(ot)+ bi(ot)∇λ(k−1)γt|t−1(i)

]
(2.38)

where ct =
∑N
k=1 bk(ot)γt|t−1(k) is a normalization factor. The gradient of the predictive

density is also computed recursively, with reference to the model parameters, using:

∂γt+1|t(j)
∂aij

= 1
ct

N∑
i=1

[(
aij−γt+1|t(j)

) ∂γt|t−1(i)
∂aij

+γt|t−1(i)
]

∇λbγt+1|t(j) = 1
ct

N∑
i=1

(
aij−γt+1|t(j)

)[
γt|t−1(i)∇λbbi(ot)+ bi(ot)∇λbγt|t−1(i)

]

80

and the gradient of the Gaussian output density (2.1), w.r.t. the mean and the standard

deviation, is given by

∇λbbi(ot) =
[
∂bi(ot)
∂μi
,
∂bi(ot)
∂σi

]′
=
⎡
⎣(ot−μi)
σ2
i

bi(ot),
1
σi

⎛
⎝((ot−μi)

σi

)2
−1
⎞
⎠bi(ot)

⎤
⎦
′

(2.39)

2.3.2.3 Recursive Maximum Likelihood Estimation (RMLE):

The general recursive estimator for the parameters of a stochastic process is of the form

(Benveniste et al., 1990; Ljung and Soderstrom, 1983):

λt+1 = λt+ηtH(ot+1,λt)−1h(ot+1,λt) (2.40)

where ηt is a sequence of small gains (constant or decreasing with t), H(ot+1,λt)−1 an

adaptive matrix, and h(ot+1,λt) is a score function. Both the adaptive matrix, H, and

the score function, h, determine the update of the parameter λt as a function of new

observations. The goal of the recursive procedures is to find the roots of a regression

function given the true parameters λ0: limt→∞E
{
H(ot+1,λt)−1h(ot+1,λt) | λ0

}
. In the

general case of incomplete data, the score is equal to the gradient of the log-likelihood

function h = ∇λ logP (ot+1 | λ). The adaptive matrix is equal to the incomplete data

observed information matrix H = ∇2
λ logP (o1:t+1 | λ), which ideally must be taken as

the incomplete data Fisher information matrix H =Eλ [h(ot+1 | λ)h′(ot+1 | λ)]. However,

for the incomplete data models, explicit form of the incomplete data Fisher information

matrix is rarely available. Titterington (1984, Eq. 9) proposed to use the complete data

Fisher information matrix instead H = E
[
−∇2
λt

logP (ot, qt | λ)
]
. He showed that it is

easy to compute and invert because it is always block-diagonal with respect to latent

data and model parameters. For several independent and identically distributed (i.i.d.)

incomplete data models, this recursion had proven to be consistent and asymptotically

81

normal (Titterington, 1984):

λt+1 = λt+
1
t+1

(
E
[
−∇2
λt logP (ot, qt | λ)

])−1∇λt logP (ot+1 | λt) (2.41)

This recursive learning algorithm is related to on-line estimation of parameters using

EM. It was also related to an EM iteration since it uses a recursive version of (2.17).

The efficiency and convergence is an issue with Titterington’s recursion (Ryden, 1998;

Wang and Zhao, 2006). In fact, for HMMs, the score function must consider the previous

observations:

h(ot+1 | λ) =∇λ logP (ot+1 | o1:t,λ) (2.42)

Another recursion using the relative entropy (2.32) as objective function, is proposed by

Weinstein E. and Oppenheim (1990, Eq. 4):

λ̂t+1 = λ̂t+ηth(ot+1 | λ̂t) (2.43)

where the gain ηt satisfies:

lim
t→∞ηt = 0;

∞∑
t=1
ηt =∞;

∞∑
t=1
η2t ≤∞ (2.44)

It was suggested that h may be calculated from the complete data using

h(ot+1 | λ̂t) = Eλ {∇ logP (ot+1, qt+1 | λ) | ot+1}

and is shown to be consistent in the strong sense and in the mean-square sense for

stationary ergodic processes that satisfy some regularity conditions. However, some of

these conditions do not hold for HMM (Ryden, 1998, 1997).

82

Block-wise

The idea proposed by Ryden (Ryden, 1998, 1997) is to consider successive blocks of

m observations taken from data stream, on = {o(n−1)m+1, . . . ,onm}, as independent of

each other, while the Markov dependence is only maintained within the observations of

each block. This assumption reduces the extraction of information from all the previous

observations to a data-segment of length m. Although it gives an approximation of the

MLE – a less efficient maximum pseudo-likelihood – the presented technique is easier to

apply in practice. Using a projection PG on the simplex (2.30),
ε, for some ε > 0, at

each iteration, the recursion is given (without matrix inversion)

λ̂n+1 = PG

(
λ̂n+ηnh(on+1 | λ̂n)

)
(2.45)

where h(on+1 | λ̂n) = ∇λn logP (on+1 | λn) and ηn = η0n−ρ for some positive constant

η0 and ρ ∈ (1
2 ,1]. It was shown to converge almost surely to the set of Kuhn-Tucker

points for minimizing the relative entropy KLm(λ0 ‖ λ) defined in (2.32), which attains

its global minimum at λ̂n → λ0 provided that the HMM is identifiable (Leroux, 1992;

Ryden, 1994), hence the requirement m≥ 2.

Symbol-wise

Holst and Lindgren (1991, Eq. 16) proposed a similar recursion to (2.41) for estimating

the parameter of an HMM however. They used the conditional expectation over (qt−1, qt)

given o1:t, which can be efficiently calculated using a forward recursion. It is guided by

H−1
t = 1

t

t∑
τ=1
h(ot | λ̂t−1)h′(ot | λ̂t−1)

83

which is different from the score function (2.42). The adaptive matrix is suggested by an

empirical estimate to the incomplete data information matrix given by

H−1
t = 1

t

t∑
τ=1
h(ot | λ̂t−1)h′(ot | λ̂t−1)

which can be computed recursively without matrix inversion using:

Ht =
t

t−1

(
Ht−1−

Ht−1hth′tHt−1
t−1+h′tHt−1ht

)

Ryden (1997) argued that the recursion of Holst and Lindgren aims at local minimization

of the relative entropy rate (2.32) between λ0 and λ̂t. Moreover, he showed that if

λ̂t+1→ λ0, then
√
t
(
λ̂t+1−λ0

)
is asymptotically normal with zero mean and covariance

matrix given by the inverse of this expectation limt→∞E
{
h(ot+1,λ0)h′(ot+1,λ0)

}
.

Slingsby (1992) and Krishnamurthy and Moore (1993) derived an on-line algorithm for

HMM based on the recursive version of the EM (2.41) proposed in (Titterington, 1984;

Weinstein E. and Oppenheim, 1990). This technique applies a two step procedure, similar

to EM, as each observation symbol arrives:

E-step: Recursively computes the complete data likelihood

Qt+1(λ,λt) = Eλ [logP (ot+1, qt+1 | λ) | o1:t+1,λt] =
t+1∑
τ=1
Qτ (λ,λt) (2.46)

M-step: Estimates λt+1 = argmaxλQt+1(Λt,λ)

where Qτ (λ,λt) is defined in (2.17). The model is updated using:

λt+1 = λt+
[
∇2
λtQt+1(λ,λt)

]−1∇λtQt+1(λ,λt)

Since each term of (2.46) depends on only one of the model parameters, ∇2
λt
Qt+1(λ,λt) is

a block diagonal matrix for each of the model parameters. A projection into the constraint

84

domain along with the application of smoothing (fixed-lag or more conveniently sawtooth-

lag) and forgetting show, through empirical experiments, a convergence to the correct

model.

Slingsby (1992) presented the parameters update for a discrete HMM using a projection

on a simplex (2.29):

a
(t+1)
ij = a(t)ij + 1

d
(i)
j

⎛
⎝g(i)j −

∑N
h=1 g

(i)
h /d

(i)
h∑N

h=1 1/d(i)h

⎞
⎠ (2.47)

where

d
(i)
j =

∑t+1
τ=1 ξτ (i, j)
â2ij

; g(i)j = ξt+1(i, j)
âij

(2.48)

b
(t+1)
j (k) = b(t)j (k)− bj(ot+1)

(
γt+1(j)∑t+1

τ=1 γτ (j)δ(ot+1,k)

)⎛⎜⎜⎜⎝
bj(k)2∑t+1

τ=1 γτ (j)δ(ot+1,k)∑M
p=1

(
bj(p)2∑t+1

τ=1 γτ (j)δ(ot+1,p)

)
⎞
⎟⎟⎟⎠ ;

k �= ot+1

b
(t+1)
j (k) = 1−

M∑
p�=k
b
(t+1)
j (p); k = ot+1

Krishnamurthy and Moore (1993) focused on continuous HMM with Gaussian output

(2.1). The state transitions update is the same as (2.48) and (2.47), and the state output

update is given by:

μ
(t+1)
i = μ(t)

i +
γt+1(i)

(
ot+1−μ(t)

i

)
∑t+1
τ=1 γτ |t+1(i)

[
σ2
w

](t+1)
=
[
σ2
w

](t)
+

∑N
i=1 γt+1(i)

(
ot+1−μ(t)

i

)2
−
[
σ2
w

](t)
t+1

Since the parameters positiveness is not maintained with the simplex parametrization,

the projection on a sphere (2.31) as detailed in (Collings et al., 1994) solves this issue.

85

Now

d
(i)
j =

t+1∑
τ=1

[
2ξτ (i, j)
s2ij

+2γt+1(i)
]

; g(i)j = 2ξt+1(i, j)
sij

−2γt+1(i)sij

and the transition parameters update is given by

s
(t+1)
ij = s(t)ij +

g
(i)
j

d
(i)
j

, aij = s2ij

LeGland and Mevel (1995, 1997) suggested and proved the convergence and the asymp-

totic normality of the RMLE (and the RCLSE described in the next section) without

any stationary assumption using the geometric ergodicity and the exponential forgetting

of their prediction filter and its gradient. This approach is based on the observation that

the log likelihood can be expressed as an additive function of an extended Markov chain,

i.e., as sum of terms depending on the observations and the state predictive filter (2.10):

�τ (λ) =
τ∑
t=1

log
N∑
i=1
bi(ot)γt|t−1(i)

Taking the gradient of the log-likelihood increment gives the score: (as a function of the

extended Markov chain Zt = F (ot,γt|t−1,wt))

h(Zt | λ) =∇λ�τ (λ) = 1
ct

N∑
i=1

[
γt|t−1(i)∇λbi(ot)+ bi(ot)wit

]

where ct = ∑N
k=1 bk(ot)γt|t−1(k) is a normalization factor, and wit = ∇λγt|t−1(i) is the

gradient of the state prediction filter, which can be also computed recursively using:

wit+1 =R1(ot,γt|t−1,λ)wit+Ri2(ot,γt|t−1,λ) (2.49)

86

where

R1(ot,γt|t−1,λ) =
N∑
i=1

N∑
j=1
aij

⎡
⎣1−
γt|t−1(i)∑Nk=1 bk(ot)

ct

⎤
⎦ bi(ot)
ct

Ri2(ot,γt|t−1,λ) =
N∑
j=1
aij

⎡
⎣1−
bi(ot)

∑N
k=1 γt|t−1(k)
ct

⎤
⎦ γt|t−1(i)
ct
∇λbi(ot)+

γt|t−1(i)bi(ot)
ct

N∑
j=1
∇λaij

The parameters update is then done for each row i using:

λ̂it+1 = Pε

(
λ̂it+ηt+1h(Zit | λ)

)

where, ηt = 1
t , and Pε is the projection on the simplex (2.30),
ε, for some ε > 0.

The update can be decoupled into transition and state output probabilities as follow (R1

does not change). For transition probabilities, ∇λbi(ot) are zeros, accordingly h and R2

reduces to:

h(Zt | λ) = 1
ct

N∑
i=1
bi(ot)wt(i)

Ri2(ot,γt|t−1,λ) =
γt|t−1(i)bi(ot)

ct

N∑
j=1
∇λaij

where, ∇λaij = 1 at position i, j and zero otherwise. For discrete state outputs,

h(Zt | λ) =

⎧⎪⎪⎨
⎪⎪⎩

1
ct

∑N
i=1
[
γt|t−1(i)∇λbi(ot)+ bi(ot)wit

]
; if ot = vk

1
ct

∑N
i=1
[
bi(ot)wit

]
; if ot �= vk

Ri2(ot,γt|t−1,λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑N
j=1aij

[
1− bi(ot)

∑N
k=1 γt|t−1(k)
ct

]
γt|t−1(i)
ct
∇λbi(ot), if ot = vk

0 if ot �= vk

87

For the Gaussian state outputs (2.1):

h(Zt | λ) = 1
ct

N∑
i=1

[
γt|t−1(i)∇λbbi(ot)+ bi(ot)wit

]

Ri2(ot,γt|t−1,λ) =
N∑
j=1
aij

⎡
⎣1−
bi(ot)

∑N
k=1 γt|t−1(k)
ct

⎤
⎦ γt|t−1(i)
ct
∇λbbi(ot)

where ∇λbbi(ot) is given by (2.39).

Collings and Ryden (1998) proposed a similar RMLE approach, for continuous HMM

with Gaussian output (2.1). The difference consists of using the sphere parametrization

(2.31), instead of the simplex used in (LeGland and Mevel, 1995, 1997). The gradient

of the transition probabilities and the recursive computation of the gradient of the state

predictive density should be now taken w.r.t. the projected parameters sij (aij = s2ij).

Although for different purpose, these derivations are very similar to (2.50) and (2.51)

presented next.

2.3.3 Minimum Prediction Error (MPE):

Minimizing the output or state prediction error is also considered as alternative objective

function. It consists in measuring the error of HMM output prediction (Collings et al.,

1994; LeGland and Mevel, 1997) or of HMM filtered state (Ford and Moore, 1998a,b),

and then providing an updated estimate of HMM parameters with each new observation

symbol.

Recursive Prediction Error (RPE) is first proposed for continuous range Gauss-Markov

process (Ljung, 1977), and for a general recursive stochastic gradient algorithm (Ara-

postathis and Marcus, 1990). RPE extends the concept of least squares from linear to

non linear functions. It locates the locale minimum of the prediction error cost function

J(λ) and provides an updated estimate of the model with each new observation. It is

formulated by considering the minimum variance of the prediction error based on the

88

best model estimate at the time

λ̂= arg min
λ

{
J(λ) = 1

2E [ot− ôt]2
}

where ôt is the output prediction. The expectation of the off-line minimum variance, for

an observation sequence of length T , is approximated by its time average:

JT (λ) = 1
2T

T∑
t=1

[ot− ôt]2

which is commonly minimized with the Gauss-Newton method – a simplified Newton

method specialized to the nonlinear least square problem – where each pass k through

the data the model is updated using:

λ̂(k+1) = λ̂(k)−ηt
⎡
⎣ 1
T

T∑
t=1
ψλ(k)ψ

′
λ(k)

⎤
⎦
−1⎡
⎣ 1
T

T∑
t=1
ψλ(k)ελ(k)

⎤
⎦

where ψλ(k) = ∇λ(k)JT (λ) and ελ(k) = ot− ôt. An on-line version of the Gauss-Newton

method is also possible if the gradient, and the inverse of the empirical information

matrix, can be built up recursively, at each time instant, as new observation arrive. A

general practical implementation is given by Ljung and Soderstrom (1983).

Collings et al. (1994) extended the RPE for continuous HMM (known variance is as-

sumed). The model is updated at each time step using:

λ̂t+1 = Ps

(
λ̂t+ηt+1R

−1
t+1ψ

′
t+1Et+1

)

where ηt is a gain sequence satisfying (2.44) and Rt is the adaptive matrix which is

computed by:

Rt+1 =Rt+ηt+1(ψt+1ψ
′
t+1−Rt)

89

or alternatively, to avoid matrix inversion, R−1
t could be computed as

R−1
t+1 = 1

1−ηt+1

(
R−1
t −

ηt+1R
−1
t ψt+1ψ′t+1R

−1
t

(1−ηt+1)+ηt+1ψ′t+1R
−1
t ψt+1

)

However, now for the HMM case, the output error is given by

Et = ot− ôt|t−1

where, the output prediction, ôt|t−1 = E [ot | o1:t−1,λt], is conditioned on previous val-

ues and given by (using the unnormalized state variable αt(i) of the Forward-Backward

algorithm)

ôt|t−1 =
∑N
i=1
∑N
j=1aijαt−1(i)bj(ot)∑N
i=1αt−1(i)

In addition, a projection on the sphere, Ps, is made at each time step to ensure model

constrains (2.31). Accordingly, the gradient of the output error is given by:

ψt = [−∇λε̂t]′ =
[
∇μj ôt|t−1,∇sij ôt|t−1

]′

which can be also computed recursively:

∇μj ôt+1|t =
∑N
i=1aijαt(i)+∑Ni=1aijςt(i)bj(ot)∑N

i=1αt−1(i)
−
∑N
i=1aijαt(i)ςt(i)bj(ot)∑N

i=1α
2
t−1(i)

∇sij ôt+1|t =
2∑Ni=1 sijαt(i)

(
μj−

∑N
i=1
∑N
j=1 s

2
ijbj(ot)

)
+∑Ni=1aijζt(i, j)bj(ot)∑N

i=1α
2
t−1(i)

−
∑N
i=1aijαt(i)ζt(i, j)bj(ot)∑N

i=1α
2
t−1(i)

(2.50)

where ςt(j) =∇μjαt(j) and ζt(j,m,n) =∇sijαt(j) are given by the following recursion:

ςt+1(j) =
N∑
i=1
aijςt(j)bj(ot+1)+ ot+1− bj(ot)

σ2
w

N∑
i=1
aijαt(i)bj(ot+1)

ζt+1(i, j) =
N∑
i=1
aijζt(i, j)bj(ot+1)−2sijαt(i)

N∑
j=1
bj(ot+1)s2ij+2αt(i)sijbj(ot+1) (2.51)

90

The authors did not study the convergence properties of the algorithm, but through

simulations. Later, a convergence problem for this algorithm has been noted when the

variance error is small (low noise condition), as explained in (Collings and Ryden, 1998,

Sec. 5) and (Ford and Moore, 1998b, Sec. 3-C).

Ford and Moore (1998a) proposed an ELS (extended least squares) and RPE schemes in

cases where the transition probabilities are assumed known, which exploit filtered state

estimates. These schemes have been extended to the recursive state prediction error

(RSPE) algorithm (Ford and Moore, 1998b), where the state transition probabilities are

now estimated. Local convergence analysis, for the RSPE, is shown using the ordinary

differential equation (ODE) approach developed for the RPE methods. The objective

function is given (as a function of the filtered state error) by:

λ̂= arg min
λ

⎧⎪⎨
⎪⎩Jt(λ) = 1

2

τ∑
t=1

⎡
⎣γt|t(i)−

N∑
i=1
γt−1|t−1(i)aij

⎤
⎦

2⎫⎪⎬
⎪⎭

and the model is updated, for each row i, using:

λ̂it = λ̂it−1 +
[
Hit
]−1
wit

[
Hit
]−1

=
[
Hit−1

]−1
+γt−1|t−1(i)

where H−1
t is an approximation to the second derivative of wt, and

wit =
∂Jt(λ)
∂aij

can be computed recursively, similar to (2.49).

In addition to the RMLE described previously, LeGland and Mevel (1997) proved the

convergence of the recursive conditioned least squares estimator (RCLSE), which is a

generalization of the RPE approach (Collings et al., 1994). A similar objective function

91

is used:

Jτ (λ) = 1
2τ

τ∑
t=1

[
ot− ôt|t−1,λ

]2

where the output prediction given by

ôt|t−1 =
N∑
j=1
bj(ot)γt|t−1(j)

is based on the state predictive density. Accordingly, its gradients (wit) can be computed

recursively using the previously described recursions (2.49) according to each case. The

model update for transition probabilities is given, for each row i, by

λ̂it+1 = Pε

⎛
⎝λ̂it+ηt+1

⎡
⎣μi(ot− N∑

j=1
μjγt|t−1(j))

⎤
⎦wit

⎞
⎠

and for the continuous state outputs by

λ̂it+1 = Pε

⎛
⎝λ̂it+ηt+1

⎛
⎝ N∑
i=1

⎡
⎣μi(ot− N∑

j=1
μjγt|t−1(j))

⎤
⎦wit +

N∑
i=1

⎡
⎣∇iμi(ot− N∑

j=1
μjγt|t−1(j))

⎤
⎦γt|t−1(i)

⎞
⎠
⎞
⎠

As for the discrete state outputs, the algorithm is only applicable for finite alphabet. In

this case, the same formulas apply, however with μi =
∑T
t=1 otbi(ot) and of course using

the gradient recursion (2.49) for the discrete case.

2.4 An Analysis of the On-line Learning Algorithms

Algorithms for on-line learning of HMM parameters are mostly designed to learn ob-

servations from a source generating an infinite amount of data. For instance, these

algorithms can be employed to re-estimate HMM parameters from a large number of

sub-sequences (e.g., speech sentences), or a stream of symbols (e.g., signal in a noisy

communication channel). Block-wise techniques re-estimate HMM parameters after ob-

serving each sub-sequence, while symbol-wise techniques re-estimate HMM parameters

92

Block-wiseSymbol-wise

λ1

λ2

λ0

λr

λ1

λ2

o1

o2

λr or

λ0

Sub-sequences of
observations

Stream of
observations

s1

s2

sr

(a) On-line learning

Block-wiseSymbol-wise

o1

oT

oT

λ0

Two blocks of R
sub-sequences

Two sequences of T
observation symbols

s1

sR

sR

λ(k)

λ

λ(k)

λ

o1 s1

D
1
∪

D
2

S
1
∪

S
2

λ0

(b) Batch learning

Figure 2.5 An illustration of on-line learning (a) from an infinite stream of
observation symbols (oi) or sub-sequences (si) versus batch learning (b) from

accumulated sequences of observations symbols (S1∪S2) or blocks of sub-sequences
(D1∪D2)

upon observing each new symbol (Figure 2.5 (a)). The objective is to optimize HMM

parameters to fit the source generating the data through one observation of the data.

In contrast, batch learning algorithms re-estimate HMM parameters upon observing all

accumulated sequences or blocks of sub-sequences of observations (Figure 2.5 (b)). Batch

learning algorithms optimize HMM parameters to fit the accumulated data over several

iterations.

On-line learning is challenging since algorithms must converge rapidly to the true model

with minimum resource requirements. It is assumed that the true generative model

resides within the HMM parameters space. Finding recursive formulas to update the

HMM parameter is necessary for on-line learning but not sufficient. Statistical properties

such as consistency and asymptotic normality must be proven to ensure the convergence

of an on-line learning algorithm. This section provides an analysis of the convergence

properties and of the computational complexity of the on-line algorithms presented in

Section 2.3.

93

2.4.1 Convergence Properties

The extension of the batch EM to an incremental EM version using a partial data for

the E-step followed by a direct update of the model parameters in the M-step, is a well

known technique to overcome the resource requirements when processing a large fixed-

size data set (Hathaway, 1986). Neal and Hinton (1998) showed that this EM variant

gives non-increasing divergence, and that local minima in divergence are local maxima

in likelihood. However, as argued by Gunawardana and Byrne (2005), this is insufficient

to conclude that it converges to local maxima in the likelihood. They showed that this

incremental EM variant is not in fact an EM procedure and hence the standard GEM

convergence results (Wu, 1983) do not apply. This is because the E-step is modified to

use summary statistics from the posterior distributions of previous estimates. By using

the Generalized Alternating Minimization (GAM) procedure in an information geomet-

ric framework, Gunawardana and Byrne (2005) provided a convergence analysis which

proves that the incremental EM converges to stationary points in likelihood, although

not monotonically.

The authors could find no proof of convergence for on-line EM-based algorithms when

HMM parameters estimation is performed from infinite amount of data, for both block-

wise (Digalakis, 1999; Mizuno et al., 2000) and symbol-wise (Cappe, 2009; Florez-Larrahondo

et al., 2005; Mongillo and Deneve, 2008; Stenger et al., 2001; Stiller and Radons, 1999)

techniques. Furthermore, statistical analysis such as consistency and asymptotic nor-

mality are not provided. Although the rate of convergence is not studied analytically,

applying stochastic techniques in literature such as averaging (Polyak, 1991) has been

shown to help improve convergence properties (Cappe, 2009). Among the block-wise

algorithms, the gradient-based algorithm proposed by Cappe et al. (1998) should achieve

the fastest convergence rate since it is based on a quasi-Newton method (second order

approximation), while the others should have similar slower convergence rate. Similarly,

for the recursive EM symbol-wise algorithms (Krishnamurthy and Moore, 1993; Slingsby,

94

1992) since the complete likelihood is optimized by a second order method, although no

proof of convergence is provided.

Among the methods based on RMLE, Ryden (1998, 1997) provided convergence analysis

for his block-wise RMLE. He proved the consistency by using the classical result of

Kushner and Clark (1978). Independently, LeGland and Mevel (1995, 1997) proved the

convergence and asymptotic normality of their symbol-wise RMLE, under the assumption

that the transition probability matrix is primitive, yet without any stationary assumption.

This is accomplished by using the geometric ergodicity and the exponential forgetting of

the predictive filter and its gradient. Krishnamurthy and Yin (2002) extended the RMLE

results of LeGland and Mevel (1997) to auto-regressive models with Markov regime,

and added results on convergence, rate of convergence, model averaging, and parameter

tracking. In particular, they showed that the above assumption can be relaxed to the

condition in which the transition probability matrix is aperiodic and irreducible. The

authors also suggested using the iterate averaging (Polyak, 1991), as well as observation

averaging for faster convergence and lower variances.

RPE based techniques were first extended and applied for recursive estimation of HMM

parameters due to their quadratic convergence rate (although asymptotically sub-optimal).

This convergence speed comes at the expenses of an increased complexity, and as discov-

ered later, the RPE algorithm proposed by Collings et al. (1994) suffers from numerical

issues. Local convergence analysis is only shown for the RSPE (Ford and Moore, 1998a)

using the ordinary differential equation. Finally, similar to the RMLE, LeGland and

Mevel (1997) also proved the convergence of the RCLSE.

2.4.2 Time and Memory Complexity

The time complexity of an algorithm, can be analytically defined as the sum of the worst-

case running times Time{p} for each operation p required to re-estimate HMM parameters

95

Table 2.1 Time and memory complexity for some representative block-wise
algorithms used for on-line learning of a new sub-sequence o1:T of length T . N is

the number of HMM states and M is the size of alphabet symbols

Algo. Step # Multiplications # Divisions # Exp Memory

Baldi
and
Chau-
vin
(1998)

γ and ξ 6N2T + 3NT −6N2−N N2T + 3NT −N2−N NT +N2 + 2N

A 2N2 N2 N2 2N2

B 2NM MN NM 2NM

Total 6N2T + 3NT −4N2

+2NM −N N2T + 3NT +MN −N N2 +NM NT + 3N2 + 2NM + 2N

Cappe
et al.
(1998),
quasi-
Newton
based

∇�and

γt 5N2T + 2NT 3N2T +NT N(N2 +NM)

A 2N2 N2 2N2

B 2N N 2N

Total 5N2T + 2NT + 2N2

+2N
4N2T +NT + 2N

+N 2N3 + 2N2

Mizuno
et al.
(2000)

γ and ξ 6N2T + 3NT −6N2−N N2T + 3NT −N2−N NT +N2 + 2N

A N2 N2 N2

B NM NM NM

Total 6N2T + 3NT −5N2

+NM −N
N2T + 3NT
+NM −N NT + 2N2 +NM + 2N

based on new training sequence (block-wise) or new observation (symbol-wise):

Time=
∑
p
Time{p} =

∑
p
tpnp

where tp is the constant time needed to execute an operation p (e.g., multiplication, divi-

sion, etc.), and np is the number of times this operation is executed. The growth rate is

then obtained by making the key parameters (T and N) of the worst-case time complexity

tend to ∞. For simplicity, only most costly type of operation is considered – multiplica-

tion, division, and exponent. Time complexity is independent from the convergence time,

which varies among different algorithms as discussed in Section 2.4.1. Memory complex-

ity is estimated as the number of 32 bit registers needed during learning process to store

temporary variables. The worst-case memory space required for estimation of sufficient

statistics such as conditional distributions of states and gradients of the log-likelihood is

considered.

96

Tables 2.1 and 2.2 present a breakdown of time and memory complexity for some represen-

tative algorithms. Table 2.1 compares the complexity of block-wise algorithms applied to

on-line learning of an observation sequence o1:T of length T and then updating the model

parameters. Block-wise techniques typically employ a fixed-lag smoothing approach for

estimating HMM states upon receiving each sub-sequence. In general, all these algorithms

have the same time complexity, O(N2T). However, EM-based block-wise techniques (Di-

galakis, 1999; Mizuno et al., 2000) are easier to implement than gradient-based (Baldi

and Chauvin, 1994; Cappe et al., 1998; Singer and Warmuth, 1996) and RMLE (Ryden,

1998, 1997) techniques. EM-based techniques maintain the parameters constraints (2.2)

and (2.3) implicitly, and do not employ derivatives and projections of the gradient fil-

ter. Accordingly, they require fewer computations to update the HMM parameters upon

receiving an observation symbol (see Table 2.1). Although, block-wise algorithms have

the same memory complexity of O(NT), the memory requirements of the algorithm pro-

posed by Cappe et al. (1998) is independent of the sequence length T . This is due to the

recursion on the gradient itself and could be useful when T is large. However, it requires

additional time complexity due to an internally employed line search technique.

Table 2.2 compares the complexity of symbol-wise algorithms for on-line learning from a

stream of observation symbols ot. The time complexity is based on the learning of one

observation. Therefore, it must be multiplied by the length, T , of a finite observation

sequence for comparison with block-wise techniques. Algorithms that requires more

than N2 computational complexity per time step may become less attractive when the

number of HMM states N is large. As for block-wise techniques, EM-based symbol-

wise filtering and prediction techniques (Florez-Larrahondo et al., 2005; Stenger et al.,

2001) are generally easier to implement than gradient-based (Collings and Ryden, 1998;

Garg and Warmuth, 2003; LeGland and Mevel, 1995, 1997) and minimum prediction

error (Collings et al., 1994; Ford and Moore, 1998a,b) techniques. On the other hand,

although EM-based smoothing techniques (Cappe, 2009; Mongillo and Deneve, 2008;

Stiller and Radons, 1999) have been shown to provide more accurate states estimate

97

Table 2.2 Time and memory complexity of some representative symbol-wise algorithms
used for on-line learning of new symbol oi. N is the number of HMM states and M is the

size of alphabet symbols

Algorithms Step # Multiplications # Divisions Memory

Stiller and Radons (1999),
smoothing-based approach

ξtijk(ot) N4 +N2 2N3 2N3M

A= {aij(ot)} – N2M N2M

Total N4 +N2 2N3 +N2M 2N3M +N2M

Florez-Larrahondo et al.
(2005),
prediction-based approach

γ and ξ 5N2 +N N2 +N N2 + 3N

A N2 2N2 N2

B NM 2NM NM

Total 6N2 +NM +N 3N2 + 2NM +N 2N2 +NM + 3N

Slingsby (1992)

d, g,γ 6N2 +N 2N2 +N 2N2 +N

A N2 N2 + 2N N2

B NM + 3N NM + 2N NM

Total 7N2 +NM + 4N 3N2 +NM + 5N 3N2 +NM +N

Legland and Mevel (1995)

R1 and R2 N3 +N2M N2 +NM N2 +NM + 4N

A N2 2N2 N2

B NM 2NM NM

Total N3 +N2(M + 1) +NM 3N2 + 3NM 2N2 + 2NM + 4N

Collings et al. (1994)

R−1
t ,ψt,Et

N4 + 4N3 +N3+5N2 +

5M2 + 3NM
3N2 +M2 +M N2 +NM + 2N

A – (only N2 additions) – N2

B – (only NM additions) – NM

Total
N4 + 4N3 +N3+5N2 +

5M2 + 3NM
3N2 +M2 +M 2N2 + 2NM + 4N

than filtering and prediction (Anderson, 1999), their time complexity per observation is

O(N4), which makes them less attractive when the number of HMM states N is large.

In general the memory requirement of symbol-wise techniques is independent of T , since

the HMM re-estimation is either based the current symbol (filtering) or on small finite

predictions – one symbol look-ahead or a larger fixed-lag smoothing.

Block-wise algorithms typically require fewer computations than symbol-wise algorithms

when learning from a large observation sequence, at the expenses of an increased memory

requirements. This is mainly due to fewer update of HMM parameters that is required

with block-wise learning algorithms. Figure 2.6 illustrates the time and memory com-

plexity required by the EM-based symbol-wise prediction algorithm proposed by Florez-

98

Larrahondo et al. (2005) versus its block-wise fixed-lag smoothing counterpart proposed

by Mizuno et al. (2000), when learning an observation sequence of length T = 1000,000

symbols, with an output alphabet of sizeM = 50 symbols. While symbol-wise algorithms

can be directly employed to learn such sequence of observations, block-wise algorithms re-

quire segmenting the sequence into non-overlapping sub-sequences using a sliding window

of size W , which is also the fixed-lag value.

0 2 4 6 8 10
x 105

0

1

2

3

4

5 x 108

T

N
um

be
r o

f M
ul

tip
lic

at
io

ns

Florez
Mizuno (W= 5)
Mizuno (W= 10)
Mizuno (W= 50)

(a) N = 5 states

0 2 4 6 8 10
x 105

0

1

2

3

4

5

6

7 x 1010

T

N
um

be
r o

f M
ul

tip
lic

at
io

ns
Florez
Mizuno (W= 5)
Mizuno (W= 10)
Mizuno (W= 50)

(b) N = 100 states

0 20 40 60 80 100
0

1

2

3

4

5

6

7 x 1010

N

N
um

be
r o

f M
ul

tip
lic

at
io

ns

Florez
Mizuno (W= 5)
Mizuno (W= 10)
Mizuno (W= 50)

(c) T = 1000,000 symbols

0 200 400 600 800 1000
0

1

2

3

4

5

6 x 104

W (window size)

M
em

or
y

C
om

pl
ex

ity

Florez
Mizuno

(d) T = 1000,000 symbols

Figure 2.6 An example of the time and memory complexity of a block-wise (Mizuno
et al. (2000)) versus symbol-wise (Florez-Larrahondo et al. (2005)) algorithm for

learning an observation sequence of length T = 1000,000 with an output alphabet of
size M = 50 symbols

As shown in Figure 2.6 (a), (b) and (c), block-wise algorithms are more time efficient

with smaller number of states N and smaller window sizes W . While symbol-wise algo-

99

rithms require T updates of HMM parameters, block-wise algorithms require about T
W

updates when learning the same observation sequence. When the N value increases the

computational time of block-wise algorithms may approach that of symbol-wise for large

window sizes. In such cases, the computational time of parameters update is dominated

by that of state densities which scales quadratically with N and linearly with W. There-

fore, for a given N value, smaller window sizes should be favored since they reduce the

time complexity for block-wise learning from a large observation sequence. The memory

complexity is also decreased linearly with the window size as shown in Figure 2.6 (d). In-

creasing the fixed-lag value W may yield a more accurate local estimate of HMM states,

and hence improves algorithms stability. If memory constraints are an issue, block-wise

techniques that employ recursions on the gradient itself (Cappe et al., 1998) should be

favored since their memory complexity are independent of W . When the application

imposes stricter constraints on the memory space, symbol-wise algorithms should be em-

ployed. The strategy for selecting a value for W is thereby an additional issue to address

with block-wise techniques.

2.5 Guidelines for Incremental Learning of HMM Parameters

The target application implies a scenario for data organization and learning. Depending

on the application, incremental learning may be performed on an abundant or limited

amount of new data. In addition, this data may be organized into a block of observation

sub-sequences or into one long observation sequence. Within the incremental learning

scenario (Figure 2.1), HMM parameters should be re-estimated using the newly-acquired

training data, without corrupting the previously acquired knowledge, and therefore de-

grading the system performance. One of the key issues is optimizing HMM parameters

such that contributions of new data and pre-existing knowledge is balanced. The choice

of user-defined parameters (e.g., learning rate and sub-sequence length) have a signif-

icant impact on HMM performance. The rest of this section provides guidelines and

underscores challenges faced when applying on-line techniques to supervised incremental

learning of new training data, when the data is either abundant or limited.

100

2.5.1 Abundant Data Scenario

Under the abundant data scenario, it is assumed that a long sequence of training ob-

servations becomes available to update HMM parameters through incremental learning.

A more complete view of phenomena is therefore presented to the learning algorithm.

As stated previously, symbol-wise algorithms can be directly employed to learn such se-

quences, one observation at a time, while block-wise algorithms require buffering some

amount of data using for instance a sliding window according to a user-defined buffer

size W .

When learning is performed in a static environment from a large sequence of observations,

one view of the data is typically sufficient to capture the underlying structure by exploit-

ing patterns redundancy. This is because the abundant data provide a more complete

view of phenomena. Resource constraints would be another reason behind restricting

the iterative learning procedure to one pass. Therefore, the convergence properties of

an on-line algorithm must be known to determine the speed and limits of convergence

behavior. As described in Section 2.4.1, when the true model is contained in the set

of solutions, some algorithms are shown to be consistent and asymptotically normal by

properly choosing a monotonically decreasing learning rate ηt and by applying Polyak-

Ruppert averaging (Polyak, 1991). For on-line learning in static environment, decreasing

step-sizes are essential conditions of convergence. Fixed step-sizes may yield the conver-

gence of algorithms to oscillate around their limiting values with variance proportional

to the step-size. However, some novelty criteria on the new data should be employed to

reset the monotonically decreased learning rate when provided with a new sequence of

observations.

In contrast, when learning is performed in dynamically-changing environments, the no-

tion of optimality is no longer valid because the on-line algorithm should forget past

knowledge and adapt rapidly to the newly acquired information. Tracking non-stationary

environments and handling slow drift is typically achieved by choosing a fixed learn-

101

ing rate η. For abrupt drift however, a data driven learning rate is required to detect

changes and adapt the step-sizes according to the incoming data (Schraudolph, 1999;

Stiller, 2003).

In both static and dynamically-changing environments, algorithms with low time and

memory complexity are favored to learn the long sequence of observations. As discussed

in Section 2.4.2, symbol-wise algorithms that requires more than N2 time complexity

upon receiving each symbol are less attractive, especially when the number of HMM

states N is large. For block-wise algorithms, smaller window sizes W are favored for

reducing both time and memory complexity. However, the stability of algorithms must

also be considered when selecting the window size.

Some issues that require further investigation when adapting the HMM parameters from

abundant data. Empirical benchmarking studies of these techniques could offer further

insight on trade-offs for selecting algorithms and user-defined parameters for an appli-

cation domain. For instance, the performance of techniques based on MLE (such as

EM and gradient based) should be compared versus those based on MMD, and recursive

techniques for MPE. An interesting comparison would also involve symbol-wise versus

block-wise and filtering versus fixed-lag smoothing. Significant improvement, accuracy,

speed and stability of convergence, computing resources, and amount of training data re-

quired to reach or maintain a given level of performance should be among the evaluation

criteria. To this end, it is recommended to conduct non-parametric tests for statistical

comparisons of multiple classifiers over multiple data sets (Demšar, 2006; García and Her-

rera, 2008). In addition to assessing the strength and weakness of each algorithm, such

comparison may lead to efficient hybrid on-line algorithms that require fewer resources

(see Section 2.2.2.3).

2.5.2 Limited Data Scenario

Under the limited data scenario, it is assumed that a short sequence of observations

becomes available to update the HMM parameters, providing therefore a limited view of

102

phenomena. For block-wise algorithms the sequence is typically segmented into shorter

sub-sequences using a sliding window with a user-defined window size W . In contrast

to the abundant data case, when provided with limited data, several iterations over the

new sequence or block of observations are required to re-estimate HMM parameters.

This local optimization raises additional challenges. Specialized strategies are needed

for managing the learning rate which, at each iteration must balance integration of pre-

existing knowledge of the HMM and the newly-acquired training data. In addition, the

learning technique may become trapped in local maxima on the cost function on the

parameter space.

To illustrate the difficulty, assume that the training block D2, which contains one or

multiple sub-sequences, becomes available after a HMM has been previously trained

on a block D1 and deployed for operations. After training on D1, the HMM has a

parameter settings of λ1. An on-line algorithm that optimizes, for instance, the log-

likelihood function requires re-estimating the HMM parameters over several iterations

until this function is maximized for D2. The plain curve in Figure 2.7 represents the

log-likelihood function of an HMM(λ1) that was previously learned D1, and then has

incrementally learned D2 over the space of on HMM parameter (λ). Since λ1 is the only

information at hand from previous data D1, the training process starts from HMM(λ1).

Optimization of HMM parameters depends on the shape and position of the log-likelihood

function of HMM(λ2) with respect to that of HMM(λ1). For instance, if λ1 was selected

according to point (a) in Figure 2.7, then the optimization will probably lead to point

(d), which degrades HMM performance. If λ1 was selected as point (b), the optimization

would probably lead to a better solution (f). In contrast, training a new HMM(λ2) on

D2 by starting from the start on different initializations may lead to point (g) which,

depending on the new data, may yield higher log-likelihood than all previous models.

Combinations of HMM(λ1) and HMM(λ2) at the classifier level may however provide

improved performance in such cases.

103

L
og

-L
ik

el
ih

oo
d

Optimization Space of
one Model Parameter (λ)

(a)

(c)

(d)

HMM (λ1)
HMM (λ2)

(b)

(e)

(f)
(g)

Figure 2.7 The dotted curve represents the log-likelihood function
associated with and HMM (λ1) trained on block D1 over the space of
one model parameter λ. After training on D1, the on-line algorithm

estimates λ= λ1 (point (a)) and provides HMM (λ1). The plain curve
represents the log-likelihood function associated with HMM (λ2)

trained on block D2 over the same optimization space

Typical procedures for unbiased performance estimation should be employed. This in-

volves stopping the training iterations when the log-likelihood of an HMM on independent

validation data no longer improves. Using the hold-out or cross-validation procedures re-

duces the effects of overfitting. HMM parameters that yield the maximum log-likelihood

value on other validation data are then selected, which guarantees generalization perfor-

mance during operations.

When the situation allows, some proportion of a new training data should be dedicated to

validation. This would provide a better the stopping criterion and improve the generaliza-

tion capabilities of the classification system. In order to perform such validation, a set of

observations must be stored and updated over time in a fixed-sized buffer. Managing this

validation set over time depends on the application environment and should be selected

and maintained according to some relevant selection criteria (e.g., some information-

theoretic criteria). For instance, in dynamically-changing environments, older validation

104

data should be discarded and replaced with new observations data that is more repre-

sentative of the underlying data distribution. In static or cycle-stationary environments,

older data should be discarded in a first-in-first-out manner.

A potential advantage of applying the on-line learning techniques over batch learning

techniques to limited data scenario resides in their added stochasticity, which stems

from the rapid re-estimation of HMM parameters. This may aid escaping local maxima

during the early adaptation to newly provided data. Managing the internal learning rate,

associated with each sub-sequence or observation symbol, is therefore different for limited

data than for abundant data. In general, employing a fixed learning rate along with the

validation strategies described above would maintaining the level of performance in both

static and dynamically-changing environments. However, more insights are required in

this regard to determine if applying a monotonically decreasing or auto-adaptive learning

rates at the iteration, sequence, or symbol levels are beneficial for escaping local maxima

and hence improving the performance.

The resource requirements for the on-line algorithms when learning from limited data

are comparable to that of when learning from abundant data scenario and presented in

Section 2.4.2 except for abundant data T is much bigger. The only difference is that the

complexity presented for both block and symbol wise techniques must be multiplied by

the number of training iterations, which varies according to the algorithm employed, val-

idation strategy and stopping criteria, and training data. Learning from limited data is

less restrictive to memory and time complexity than learning from abundant data. There-

fore, even the most compute-intensive symbol-wise algorithms – requiring O(N4) time

complexity upon receiving each symbol – or block-wise algorithms – requiring O(N4T)

time and O(NT) memory complexity upon receiving each sub-sequence – can be afforded

as long as they improve or maintain the HMM performance. In limited data scenario,

escaping local maxima, managing learning rates and stopping criteria may be critical

factors for selecting an on-line algorithm than minimizing the resource requirements. Fi-

nally, as for the abundant data scenario, applying the on-line learning techniques from

105

this survey to adapt HMM parameters to limited new data requires comparative bench-

marking and statistical testing at the objective functions, optimization techniques and

algorithms (symbol-wise versus block-wise) levels, and according to various user-defined

parameters (learning rate and window size).

2.6 Conclusion

This chapter present a survey of techniques found in literature that are suitable for

incremental learning of HMM parameters. These include on-line learning algorithms

that have been initially proposed for learning from a long training sequence, or block

of sub-sequences. In this chapter, these techniques are categorized according to the

objective functions, optimization techniques and target application. Some techniques

are designed to update HMM parameters upon receiving a new symbol (symbol-wise),

while others update the parameters upon receiving a sequence (block-wise). Convergence

properties of these techniques are presented, along with an analysis of their time and

memory complexity. In addition, the challenges faced when these techniques are applied

to incremental learning is assessed for scenarios in which the new training data is limited

and abundant.

When the new training data is abundant (scenario 1), the HMM parameters should be

re-estimated to fit the source generating the data through one pass over a sequence of

observations. When new data corresponds to a long sequence or block of sub-sequences

generated from a stationary source (static environment), these techniques must employ a

specialized strategy to manage the learning rate such that new data and existing knowl-

edge are integrated without compromising the HMM performance. This includes resetting

a monotonically decreasing learning rate when provided with new data or employing an

auto-adaptive learning rate. Rapid convergence with limited resource requirements are

other major factors in such cases. However few learning algorithms have been provided

with a proof of convergence or other relevant statistical properties. Another important

issue is the ability to operate in dynamically-changing environments. In such cases, some

106

novelty criteria on the new data should be employed to detect changes and trigger adap-

tation by resting a monotonically decreasing learning rate or fine-tuning an auto-adaptive

learning rate.

When the new training data is limited (scenario 2), HMM parameters should be re-

estimated over several iterations due to the limited view of phenomena. Therefore, HMM

parameters should be able to escape local maxima of the cost function associated with

the new data. Given the limited data, early stopping criteria through hold-out or cross

validation must be considered when learning the new block of data to reduce the effects of

overfitting. Accumulating and updating representative validation data set over time must

be considered. However, this requires investigating some selection criteria for maintaining

the most informative sequences of observations and discarding less relevant ones. Another

major challenge resides in adapting the current operational HMM to the newly-acquired

data without corrupting existing knowledge. One possible solution involves using an

adaptive learning rate which, at each iteration, controls the weight given to the current

HMM with reference to the new information. This learning rate should preferably be

inferred from the data.

Finally, this chapter underscores the need for comparative benchmarking studies of these

on-line algorithms for incremental learning in both abundant and limited data scenarios.

Some interesting comparative studies, evaluation criteria and statistical testing methods

are suggested for selecting an algorithm for a particular situation. Knowledge corruption

and performance degradation may arise because incremental learning of new data is

initiated from a pre-existing HMM. One promising solution involves combining HMMs at

either classification or response levels. In such cases, new HMMs would be trained using

the newly-acquired data, and combined with those trained on the previously-acquired

data.

Next chapter describes the novel decision-level Boolean combination technique proposed

for efficient fusion of the responses from multiple classifiers in the ROC space.

CHAPTER 3

ITERATIVE BOOLEAN COMBINATION OF CLASSIFIERS IN THE

ROC SPACE: AN APPLICATION TO ANOMALY DETECTION WITH

HMMS∗

In this chapter, a novel Iterative Boolean Combination (IBC) technique is proposed for

efficient fusion of the responses from multiple classifiers in the ROC space. It applies

all Boolean functions to combine the ROC curves corresponding to multiple classifiers,

requires no prior assumptions, and its time complexity is linear with the number of clas-

sifiers. The results of computer simulations conducted on both synthetic and real-world

Host-Based intrusion detection data indicate that the IBC of responses from multiple

HMMs can achieve a significantly higher level of performance than the Boolean con-

junction and disjunction combinations, especially when training data is limited and im-

balanced. The proposed IBC is general in that it can be employed to combine diverse

responses of any crisp or soft one- or two-class classifiers, and for wide range of application

domains.

3.1 Introduction

Intrusion Detection Systems (IDS) is used to identify, assess, and report unauthorized

computer or network activities. Host-Based IDSs (HIDS) are designed to monitor the

activities of a host system and state, while network-based IDSs (NIDS) monitor the

network traffic for multiple hosts. HIDSs and NIDSs have been designed to perform

misuse detection and anomaly detection. Anomaly-based intrusion detection allows to

detect novel attacks for which the signatures have not yet been extracted (Chandola

et al., 2009a). In practice, anomaly detectors will typically generate false alarms due in

large part to the limited data used for training, and to the complexity of underlying data
∗THIS CHAPTER IS PUBLISHED AS AN ARTICLE IN PATTERN RECOGNITION JOURNAL,

DOI: 10.1016/J.PATCOG.2010.03.006

108

distributions that may change dynamically over time. Since it is very difficult to collect

and label representative data to design and validate an Anomaly Detection Systems

(ADS), its internal model of normal behavior will tend to diverge from the underlying

data distribution.

In HIDSs applied to anomaly detection, operating system events are usually monitored.

Since system calls are the gateway between user and kernel mode, traditional host-based

anomaly detection systems monitor deviation in system call sequences. Forrest et al.

(1996) confirmed that short sequences of system calls are consistent with normal oper-

ation, and unusual burst will occur during an attack. Their anomaly detection system,

called Sequence Time-Delay Embedding (STIDE), is based on look-up tables of memo-

rized normal sequences. During operations, STIDE must compare each input sequence

to all “normal” training sequences. The number of comparisons increases exponentially

with the detector window size. Moreover, STIDE is often used for design and validation

of other state-of-the-art detectors. Various neural and statistical detectors have been

applied to learn the normal process behavior through system call sequences (Warrender

et al., 1999). Among these, techniques based on discrete Hidden Markov Models (HMMs)

(Rabiner, 1989) have been shown to produce a very high level of performance (Warren-

der et al., 1999). A well trained HMM is able to capture the underlying structure of

the monitored application and detect deviations from “normal” system call sequences.

Once trained, an HMM provides a fast and compact detector, with tolerance to noise

and uncertainty.

Designing an HMM for anomaly detection involves estimating HMM parameters and

order (number of hidden states, N) from the training data. The value of N has a con-

siderable impact not only on the detection rate but also on the training time. In the

literature on HMMs applied to anomaly detection (Gao et al., 2002; Hoang and Hu,

2004; Warrender et al., 1999), the number of states is often chosen heuristically or em-

109

pirically using validation data1. In addition, HMMs are designed to provide accurate

results for a particular window size and anomaly size. Therefore, a single best HMM will

not provide a high level of performance over the entire detection space. In a previous

work (Khreich et al., 2009b), the authors proposed a multiple-HMM (μ-HMM) approach,

where each HMM is trained using a different number of hidden states. During opera-

tions, each HMM outputs a probability that the HMM produced the input sequence.

HMM responses are combined in the Receiver Operating Characteristics (ROC) space

according to the Maximum Realizable ROC (MRROC) technique (Scott et al., 1998).

This technique is robust in imprecise environments where for instance prior probabilities

and/or classification costs may change (Provost and Fawcett, 1997), and can be always

applied in practice without any assumption of independence between detectors (Scott

et al., 1998). Results have shown that this μ-HMMs approach can provide a significant

increase in performance over a single best HMM and STIDE (Khreich et al., 2009b).

Boolean functions – especially the conjunction AND and disjunction OR operations –

have recently been investigated to combine crisp or soft detectors within the ROC space.

Successful applications for such combination include machine learning (Barreno et al.,

2008; Fawcett, 2004), biometrics (Tao and Veldhuis, 2008), bio-informatics (Haker et al.,

2005; Langdon and Buxton, 2001), automatic target recognition (Hill et al., 2003; Ox-

ley et al., 2007). Boolean Combination (BC) based on conjunction or disjunction has

been shown to improve performance over the MRROC in many applications, yet requires

idealistic assumptions in which the detectors are conditionally independent and their

respective ROC curves are smooth and proper. In contrast, applying all Boolean func-

tions, using an exhaustive brute-force search to determine optimal combinations leads to

an exponential explosion of combinations, which is prohibitive even for a small number

of crisp detectors (Barreno et al., 2008).
1This is also the case in many other applications of ergodic HMMs. However, recently nonparametric

Bayesian approaches have been proposed to overcome HMMs order selection (Beal et al., 2002; Gael
et al., 2008).

110

In practice, neural and statistical classifiers are typically trained with limited amount

of representative data, and class distributions are often complex and imbalanced, which

leads to concavities on empirical ROC curves, and to poor performance. This issue is

especially critical in binary classification problems, such as anomaly detection, where

samples from the positive class2 are inherently rare, and are costly to analyze. In such

cases the ROC curve typically comprises large concavities. Some authors have argued

that ROC curves can be simply repaired using the ROCCH prior to the conjunction or

disjunction combinations (Haker et al., 2005). However this technique is inefficient, since

the ROCCH selects thresholds of the locally superior points and discard the rest. This

leads to a loss of diverse information which could be used to improve performance.

In this chapter, the problem of ROC-based combination is addressed in the general case,

where detectors are trained with limited and imbalanced training data. An Iterative

Boolean Combination (IBCALL)3 technique is proposed to efficiently combine the re-

sponses from multiple detectors in the ROC space. In contrast with most techniques in

literature, where only the AND or OR are investigated, the IBCALL exploits all Boolean

functions applied to the ROC curves, and it does not require any prior assumption re-

garding the independence of the detectors and the convexity of ROC curves. At each

iteration, the IBCALL selects the combinations that improve the ROCCH and recom-

bines them with the original ROC curves until the ROCCH ceases to improve. Although

it seeks a sub-optimal set of combinations, the IBCALL is very efficient in practice and

does not suffer from the exponential explosion (Barreno et al., 2008), and it provides

a higher level of performance than related techniques in literature (Haker et al., 2005;

Scott et al., 1998; Tao and Veldhuis, 2008). The IBCALL technique can be applied when

training data is limited and test data is heavily imbalanced. Another advantage of the

proposed technique is its ability to repair the concavities in the ROC curve when applied

to combine the responses of the same ROC curve. The IBCALL is general in the sense
2The positive or target class is typically the class of interest for the detection problem. For anomaly

detection, the target class corresponds to the intrusive or abnormal class.
3The subscript “ALL” is used to emphasize that the IBC technique employs all Boolean functions.

111

that can be applied to combine the responses of any soft, crisp, or hybrid detector in

the ROC space, whether the corresponding curves result from the same detector trained

on different data or trained according to different parameters, or from different detectors

trained on the same data.

During computer simulations, multiple HMMs are applied to anomaly detection based on

system calls. The performance obtained by combining the responses of μ-HMMs in ROC

space with the proposed IBCALL technique is compared to that of MRROC fusion (Scott

et al., 1998), to that of the conjunction (BCAND) and disjunction (BCOR) combinations

(Haker et al., 2005; Tao and Veldhuis, 2008), and to that of STIDE (for reference). To

investigate the effect of repairing the concavities of the ROC curves on the combinations,

each ROC curve is first repaired using the IBCALL technique, and then all curves are

combined with the MRROC. This is also compared to the Largest Concavity Repair

(LCR) proposed in (Flach and Wu, 2005). The impact on performance of using different

training set sizes, detector window sizes and anomaly sizes is assessed through the area

under the curve (AUC) (Hanley and McNeil, 1982), partial AUC (Walter, 2005), and true

positive rate (tpr) at a fixed false positive rate (fpr). The experiments are conducted on

both synthetically generated data and sendmail data from the University of New Mexico

(UNM) data sets.

The rest of this chapter is organized as follows. The next section describes the applica-

tion of discrete HMMs in anomaly-based HIDS. In Section 3.3, existing techniques for

combination of detectors in the ROC space are presented. The proposed technique for It-

erative Boolean Combination of detector responses is presented in Section 3.4. Section 3.5

presents the experimental methodology (data sets, evaluation methods and performance

metrics) used for proof-of-concept computer simulations. Finally, simulation results are

presented and discussed in Section 3.6.

112

3.2 Anomaly Detection with HMMs

A discrete-time finite-state HMM is a stochastic process determined by the two interre-

lated mechanisms – a latent Markov chain having a finite number of states, and a set of

observation probability distributions, each one associated with a state. At each discrete

time instant, the process is assumed to be in a state, and an observation is generated

by the probability distribution corresponding to the current state. HMM parameters are

usually trained using the Baum-Welch (BW) algorithm (Baum et al., 1970) – a special-

ized expectation maximization technique to estimate the parameters of the model from

the training data. Theoretical and empirical results have shown that, given an adequate

number of states and a sufficiently rich set of observations, HMMs are capable of rep-

resenting probability distributions corresponding to complex real-world phenomena in

terms of simple and compact models, with tolerance to noise and uncertainty. For fur-

ther details regarding HMM the reader is referred to the extensive literature (Ephraim

and Merhav, 2002; Rabiner, 1989).

S2

a11

S3S1
a33

a22

a31

a13

a21

a12

a23

a32

aij = P (qt+1 = j | qt = i)

1 2
0

M

1

vk

b2(k)

bj(k) = P (ot = vk | qt = j)

Discrete output distributions

1 2 T

t

1 2

N

1

2

M
Observations

Hidden states

i

j

o1, o2, . . . , oT

q1, q2, . . . , qT

aij

k

bj(k)

1 2
0

M

1
b1(k)

1 2
0

M

1
vk

b3(k)

Hidden states distributions

Figure 3.1 Illustration of a fully connected three state HMM with a discrete output
observations (left). Illustration of a discrete HMM with N states and M symbols
switching between the hidden states qt and generating the observations ot (right).

The state qt = i denotes that the state of the process at time t is Si

Formally, a discrete-time finite-state HMM consists of N hidden states in the finite-

state space S = {S1,S2, ...,SN} of the Markov process. Starting from an initial state Si,

113

determined by the initial state probability distribution πi, at each discrete-time instant,

the process transits from state Si to state Sj according to the transition probability

distribution aij (1 ≤ i, j ≤ N). As illustrated in Figure 3.1, the process then emits a

symbol v according to the output probability distribution bj(v), which may be discrete

or continuous, of the current state Sj . The model is therefore parametrized by the

set λ = (π,A,B), where vector π = {πi} is initial state probability distribution, matrix

A = {aij} denotes the state transition probability distribution, and matrix B = {bj(k)}
is the state output probability distribution.

Estimating the parameters of a HMM requires the specification of its order (i.e., the

number of hidden states N). The value of N may have a significant impact on both

detection performance and training time. The time and memory complexity of BW

training is O(N2T) and O(NT) respectively, for a sequence of length T symbols. In

the literature on HMMs applied to anomaly detection (Gao et al., 2002; Hoang and Hu,

2004; Warrender et al., 1999), the number of states is often overlooked and typically

chosen heuristically. In addition, a single “best” HMM will not provide a high level of

performance over the entire detection space. A multiple-HMMs (μ-HMMs) approach,

where each HMM is trained using a different number of hidden states, and where HMM

responses are combined according to the MRROC has significantly improved performance

over a single best HMM and STIDE (Khreich et al., 2009b).

3.3 Fusion of Detectors in the Receiver Operating Characteristic (ROC)

Space

A crisp detector (e.g., STIDE) outputs only a class label and produces a single operational

data point in the ROC plane. In contrast, a soft detector (e.g., HMM) assigns scores or

probabilities to the input samples, which can be converted to a crisp detector by setting

a threshold on the scores. Given a detector and a set of test samples, the true positive

rate (tpr) is the proportion of positives correctly classified over the total number of

positive samples. The false positive rate (fpr) is the proportion of negatives incorrectly

114

classified (as positives) over the total number of negative samples. A ROC curve is a

two-dimensional curve in which the tpr is plotted against the fpr. A parametric ROC

curve typically assumes that a pair of normal distributions underlies the data (Hanley,

1988; Metz, 1978) and increases monotonically with the fpr. In practice, an empirical

ROC curve may be obtained by connecting the observed (tpr,fpr) pairs of detectors,

therefore it makes minimal assumptions (Fawcett, 2004). Given two operating points,

say i and j, in the ROC space, i is defined as superior to j if fpri ≤ fprj and tpri ≥ tprj .
If one ROC curve has all its points superior to those of another curve, it dominates the

latter. If a ROC curve has tpri > fpri for all its points i then, it is a proper ROC curve.

Finally, the area under the ROC curve (AUC) is the fraction of positive–negative pairs

that are ranked correctly (see Section 3.5.3).

The rest of this section provides an overview of techniques in literature for combining

detectors and repairing curves within the ROC space. It includes the stochastic inter-

polation of the Maximum Realizable ROC (MRROC) or ROCCH, and the conjunction

and disjunction rules for combining crisp and soft detectors.

3.3.1 Maximum Realizable ROC (MRROC)

Given that the underlying distributions are generally considered fixed, a parametric ROC

curve will always be proper and convex. In practice, an ROC plot is a step-like func-

tion which approaches a true curve as the number of samples approaches infinity. An

empirical ROC curve is therefore not necessarily convex and proper as illustrated in Fig-

ure 3.2. Concavities indicate local performance that is worse than random behavior.

These concavities occur with unequal variances between classes, with large skew in the

data, or when the classifier is unable to capture the modality of the data (e.g., classifying

multimodal data with a linear classifier).

As shown in Figure 3.2, the ROCCH of an empirical ROC is the piece-wise outer envelope

connecting only the superior points of an ROC with straight lines. The ROCCH of a single

crisp detector connects its resulting point to the (0,0) and (1,1) points. The ROCCH

115

is also applicable to multiple detectors which may be crisp or soft. If one detector has

a dominant ROC curve over fpr values, its convex hull constitutes the overall ROCCH.

When there is no clear dominance among multiple detectors across different regions of

the ROC space, the ROCCH corresponds to the envelope connecting the superior points

in each region (Figure 3.2a). The ROCCH formulation has been proven to be robust

in imprecise environments (Provost and Fawcett, 1997). As environmental conditions

change, such as prior probabilities and/or costs of errors, only the portion of interest will

change, not the hull itself. This change of conditions may lead to shifting the optimal

operating point to another threshold or classifier on the convex hull.

fpr

tnr

0 0.2 0.60.4 0.8 1
0

0.2

0.6

0.4

0.8

1

tp
r

f
n
r

Cc

Class 2Class 1

Ca

Cb

(a) Proper ROC curve
fpr

tnr

0 0.2 0.60.4 0.8 1
0

0.2

0.6

0.4

0.8

1
tp

r

f
n
r

Class 2
Class 1

Cc

Cb

(b) Improper ROC curve

Figure 3.2 Illustration of the ROCCH (dashed line) applied to: (a) the combination
of two soft detectors (b) the repair of concavities of an improper soft detector. For

instance, in (a) the composite detector Cc is realized by randomly selecting the
responses from Ca half of the time and the other half from Cb

The ROCCH is useful for combining detectors. The idea is based on a simple interpolation

between the corresponding detectors (Provost and Fawcett, 2001; Scott et al., 1998). In

practice, this is achieved by randomly alternating detectors responses proportionately

between the two corresponding vertices of the line segment on the convex hull where the

desired operational point lies. This approach has been called the maximum realizable

116

ROC (MRROC) by Scott et al. (1998) since it represents a system that is equal to,

or better than, all the existing systems for all Neyman-Pearson criteria. Hereafter, the

acronyms ROCCH and MRROC will be used interchangeably. The performance of the

composite detector Cc can be readily set to any point along the line segment, connecting

Ca and Cb, simply by varying the desired fprc and thus the ratio between the number

of times one detector is used relative to the other.

The MRROC considers only the responses of detectors that lie on the facet of the

ROCCH, since they are potentially “optimal”, and discards the responses not touching

the ROCCH (Provost and Fawcett, 1997; Scott et al., 1998). However, this may degrade

the performance due to loss of information since inferior detectors are not exploited for

decisions. Indeed, these detectors may contain valuable diverse information. As detailed

next, some combination techniques have been proposed in literature to improve upon the

ROCCH.

3.3.2 Repairing Concavities

Repairing concavities is useful in itself for situations with only one detector with some

concavities in its ROC curve. Repairing these concavities could be useful to improve the

performance. The MRROC may be used to repair the ROC concavities by discretizing

and interpolating between thresholds of superior points. Flach and Wu proposed a tech-

nique for largest concavity repairing (LCR) (Flach and Wu, 2005). It consists of inverting

the largest concavity section with reference to the mid point of the local line segment on

the ROCCH. The intuition is that points underneath the ROCCH can be mirrored in

the same way negative classifiers (under the ascending diagonal) can be inverted. The

LCR consist in determining the two thresholds on the ROCCH, limiting the section to

be inverted, and then in negating the responses with reference to the mid point of the

corresponding line segment of the ROCCH. In some cases the LCR may provide a higher

level of performance than the MRROC.

117

3.3.3 Conjunction and Disjunction Rules for Crisp Detectors

The Boolean conjunction (AND) and disjunction (OR) fusion functions were first intro-

duced for combining crisp detectors (Daugman, 2000). Other authors such as Fawcett

(2004) have noted that it is sometimes possible to find nonlinear combinations of detectors

which produce an ROC exceeding their convex hulls.

As illustrated in Figure 3.3, the conjunction rule decreases the fpr at the expenses of

decreasing the tpr, thus providing a more conservative performance than each of the

original detectors. Analogously, the disjunction rule increases the tpr at the expenses

of increasing the fpr, providing a more aggressive performance that each of the original

detectors. When these fusions are considered alone – outside the ROC space – their

achieved performance may not be of considerable interest as advocated by Daugman

(2000). However, depending on detector interaction, within the ROC space, these fusion

rules may produce a new convex hull that is superior than that of existing detectors alone.

In addition, the new MRROC curve provides the flexibility of choosing any operating

point which lies on its hull by interpolating between the relevant vertices as described

previously.

The conditional independence assumption among the detectors simplifies the computa-

tion. In this cases, the combination rules depend only on the true and false positive rates.

Let (tpra,fpra) and (tprb,fprb) be the true positive and false positive rates of detectors

Ca and Cb, respectively. Under the conditional assumption, the performance of the com-

posite crisp detectors Cc is given in Table 3.1 (Black and Craig, 2002; Fawcett, 2004).

These formulas stem from the conditional independence of probability. For instance, the

probability that both detectors correctly classify a positive test sample is given by:

P11|1 = Pr(Ca = 1,Cb = 1 | 1) = Pr(Ca = 1 | 1)Pr(Cb = 1 | 1) = tpratprb.

118

fpr

tnr

0 0.2 0.60.4 0.8 1
0

0.2

0.6

0.4

0.8

1

tp
r

f
n
r

Ca ∧ Cb

Ca ∨ Cb

Ca

Cb

MRROC

Figure 3.3 Examples of combination of two conditionally-independent crisp
detectors, Ca and Cb, using the AND and OR rules. The performance of

the their combination is shown superior to that of the MRROC. The
shaded regions are the expected performance of combination when there is

an interaction between the detectors

Table 3.1 Combination of conditionally independent detectors

P11|1 = tpratprb P11|0 = fprafprb
P10|1 = (1− tpra)tprb P10|0 = (1−fpra)fprb
P01|1 = tpra(1− tprb) P01|0 = fpra(1−fprb)
P00|1 = (1− tpra)(1− tpra) P00|0 = (1−fpra)(1−fprb)

As mentioned, this assumption is violated in most real-world applications. In the more

realistic conditionally dependent case, the performance of the composite crisp detectors

Cc is given in Table 3.2. The performance now depends on the positive (P11|1) and

negative (P00|0) correlations between detectors (Black and Craig, 2002). That is, the joint

distributions of both detectors are required, and the performance can now be anywhere

in the shaded regions of Figure 3.3.

An attempt to characterize this dependence is given by Venkataramani and Kumar

(2006), where the correlation coefficient between the detector scores is shown to be use-

ful for predicting the “best” decision fusion rule, as well as for evaluating the quality of

119

Table 3.2 Combination of conditionally dependent detectors

tpratprb < P11|1 <min(tpra, tprb)
P10|1 = tpra−P11|1
P01|1 = tprb−P11|1
P00|1 = 1− tpra− tpra+P11|1
(1−fpra)(1−fprb)< P00|0 <min(1−fpra,1−fprb)
P10|0 = (1−fprb)−P00|0
P01|0 = (1−fpra)−P00|0
P11|0 = fpra+fprb−1+P00|0

detectors. More recently, in order to avoid the restrictive conditional assumption among

detectors, the combination rules were extended to include all Boolean functions (Bar-

reno et al., 2008). By ranking these combinations according to their likelihood ratios,

the optimal rules can be obtained. However, due to the doubly exponential explosion

of combinations – for n detectors there is 2n possible outputs resulting in 22n possible

combinations – the proposed global search for the optimal rules is impractical.

3.3.4 Conjunction and Disjunction Rules for Combining Soft Detectors

Several authors have proposed the application of the Boolean AND and OR fusion func-

tions to combine soft detectors. For a pair-wise combination, the fusion function is

applied to each threshold on the first ROC curve with respect to each threshold on of

the second curve. The optimum threshold, as well as the combination function, is then

found according to the Neyman-Person test (Neyman and Pearson, 1933). That is for

each value of the fpr, the point which has the maximum tpr value is selected, along with

the corresponding thresholds and Boolean function to be used during operations.

Haker et al. (2005) proposed to apply the AND and OR functions to combine a pair

of soft detectors under the assumption of conditional independence between detectors

(Table 3.1), and when both detectors are proper and convex. The authors proposed a

set of “maximum likelihood combination” rules (see Table 3.3) to select the combination

rules or original detectors to be employed. For instance, the AND rule is selected if

120

Table 3.3 The maximum likelihood combination of detectors Ca and Cb
as proposed by Haker et al. (2005)

Ca Cb Selection rules for Cc
1 1 tpratprb ≥ fprafprb
1 0 tpra(1− tprb)≥ fpra(1−fprb)
0 1 (1− tpra)tprb ≥ (1−fpra)fprb
0 0 (1− tpra)(1− tprb)≥ (1−fpra)(1−fprb)

the first condition (Ca = 1,Cb = 1 in Table 3.3) is exclusively true, while the OR rule

is selected when the first three conditions are true. Otherwise one of the individual

detectors is selected. This selection may however discard important combinations since

for two thresholds several combination rules may emerge. For example, by computing

these theoretical conditions for the ROC curves shown in Figure 3.3, one can observe that

the first and third conditions are verified in Table 3.3, hence only Cb is considered for

these two points. However, as shown in Figure 3.3, both the AND and OR combination

improve the performance over the original detectors.

Tao and Veldhuis (2008) applied and compared AND versus OR Boolean function sepa-

rately for combining multiple ROC curves using a pair-wise combination. They showed

that the OR rule emerges most of the time in their biometrics application. Oxley et al.

(2007) proved that, under the independence assumption between detectors, a Boolean

algebra of families of classification systems is isomorphic to a Boolean algebra of ROC

curves. Shen (2008) tried to characterize the effect of correlation on the AND and OR

combination rules, using a bivariate normal model. He showed that discrimination power

is higher when the correlation is of opposite sign.

Most research has addressed the problem of Boolean combinations under the assumption

of smooth, convex and proper ROC curves. Such curves results from a parametric models,

or when the data is abundant for both classes. In the ideal case, when both conditional

independence and convexity assumptions are fulfilled, the AND and OR combinations

are proven to be optimal, providing a higher level of performance than the original ROC

curves (Barreno et al., 2008; Thomopoulos et al., 1989; Varshney, 1997). When provided

121

with limited and imbalanced data for training and validation, the ROC curves may

be improper and large concavities will appear. When either one of the assumptions is

violated, the performance of these combinations will be sub-optimal. In contrast to crisp

detectors, the correlation between soft detector decisions also depends on the thresholds

selection. At different thresholds on two ROC curves the conditional independence may

be violated and different type of correlations may be introduced.

3.4 A Boolean Combination (BCALL) Algorithm for Fusion of Detectors

3.4.1 Boolean Combination of Two ROC Curves

In this chapter, a general technique for Boolean combination (BCALL) is proposed for

fusion of detector responses in the ROC space. In particular, this algorithm can exploit

information from the ROC curves when detectors are trained from limited and imbalanced

data. In this case, the ROC curves typically comprise concavities and are not necessarily

proper. Figure 3.4 presents the block diagram of a system that combines the responses

of two HMMs in the ROC space according to the BCALL technique. It involves fusing

responses of detectors using all Boolean functions, prior to applying the MRROC. In

contrast with most work in literature, where either AND or OR functions are applied,

the BCALL technique takes advantage of all Boolean functions applied to the ROC curves

and selects those that improve the ROCCH.

The main steps of BCALL are presented in Algorithm 3.1. The BCALL technique inputs a

pair of ROC curves defined by their decision thresholds, Ta and Tb, and the labels for the

validation set. Using each of the ten Boolean functions (refer to IV.1), BCALL fuses the

responses of each threshold from the first curve (Rai) with the responses of each threshold

from the second (Rbi)4. Responses of the fused thresholds are then mapped to points

(fpr, tpr) in the ROC space. The thresholds of points that exceeded the original ROCCH
4For each ROC curve, the matrix of responses associated with the thresholds can be directly input

to Algorithm 3.1 instead of converting each threshold to corresponding responses at line 8 and 10.
Although it is not useful for combining two curves and it increases the memory requirements, the matrix
of responses is needed to recombine resulting responses with another curve as in the following algorithms.

122

O = o1:T

Input Boolean Combination
(BCALL)

≥ T∗
global

HMM2

(λ2)
Pr(O | λ2)

HMM1

(λ1)
Pr(O | λ1)

fpr
0 0.2 0.60.4 0.8 1

0

0.2

0.6

0.4

0.8

1

tp
r

Emerging BCALL pts
Original MRROC

MRROC after BCALL

ROC curve of λ1

ROC curve of λ2

S∗
global p̂, (Y = 1)

n̂, (Y = 0)

Figure 3.4 Block diagram of the system used for combining the responses of two
HMMs. It illustrates the combination of HMM responses in the ROC space

according to the BCALL technique

of original curves are then stored along with their corresponding Boolean functions. The

ROCCH is then updated to include the new emerging points. When the algorithm

stops, the final ROCCH is the new MRROC in the Newman-Pearson sense. The outputs

are the vertices of the final ROCCH, where each point is the results of two thresholds

from the ROC curves fused with the corresponding Boolean function. These thresholds

and Boolean functions form the elements of S∗global, and are stored and applied during

operations, as illustrated in Figure 3.4.

The BCALL technique makes no assumptions regarding the independence of the detec-

tors. Instead of fusing the points of ROC curves under the independence assumptions

(Table 3.1), this techniques directly fuses the responses of each decision threshold, ac-

counting for both independent and dependent cases. In fact, by applying all Boolean

functions to combine the responses for each threshold (line 11 of Algorithm 3.1), it im-

plicitly accounts for the effects of correlation (see Table 3.2). This is due to the direct

fusion of responses, which considers the joint conditional probabilities of each detector

at each threshold. Furthermore, the BCALL always provides a level of performance that

123

Algorithm 3.1: BCALL(Ta,Tb, labels): Boolean combination of two ROC curves
Input: Thresholds of ROC curves, Ta and Tb, and labels (of validation set)
Output: ROCCH and fused responses (Rab) of combined curves, where each point is the

result of two fused thresholds along with the corresponding Boolean function
(bf)

let m← number of distinct thresholds in Ta1

let n← number of distinct thresholds in Tb2

Allocate F an array of size: [2,m×n] // holds temporary results of fusions3

BooleanFunctions←{a∧ b,¬a∧ b,a∧¬b,¬(a∧ b),a∨ b,¬a∨ b,a∨ ¬b,¬(a∨ b),a⊕ b,a≡ b}4

Compute ROCCHold of the original curves5

foreach bf ∈BooleanFunctions do6

for i= 1, . . . ,m do7

Ra← (Ta ≥ Tai) // converting threshold of 1st ROC to responses8

for j = 1, . . . ,n do9

Rb← (Tb ≥ Tbj) // converting threshold of 2nd ROC to responses10

Rc← bf(Ra,Rb) // combined responses with bf11

Compute (tpr,fpr) using Rc and labels12

Push (tpr,fpr) onto F13

Compute ROCCHnew of F14

Store thresholds and corresponding Boolean functions that exeeded the ROCCHold,15

S∗global← (Tax ,Tby , bf) // to be used during operations
Store the responses of these emerging points into R // to be used with BCMALL16

and IBCALL
ROCCHnew←ROCCHold // Update ROCCH17

Return ROCCHnew,R,S∗global18

is equivalent or higher than that of the MRROC of the original ROC curves. In the

worst-case scenario, when the responses of detectors do not provide diverse information,

or when the shape of the ROC curve on the validation set differs significantly from that

of the test set, the BCALL is lower bounded by the MRROC of the original curves.

Including all Boolean functions accommodates for the concavities in the curves. Indeed,

AND and OR rules will not provide improvements for the inferior points that correspond

to concavities and make for an improper ROC curve, or points that are close to the

diagonal line in the ROC space. Other Boolean functions, for instance those that exploit

negations of responses, may however emerge. The BCALL technique can therefore be

applied even when training and validation data are limited and heavily imbalanced,

124

to combine the decisions of any soft, crisp, or hybrid detectors in the ROC space. This

includes combining the responses of the same detector trained on different data or features

or trained according to different parameters, or from different detectors trained on the

same data, etc.

3.4.2 Boolean Combination of Multiple ROC Curves

Different strategies may be implemented for combining multi-ROC curves. A commonly

proposed strategy for a cumulative combination of ROC curves is to start by any pair

of the ROC curves then combine the resulting responses with the third, then with the

fourth and so on, until the last ROC curve (Pepe and Thompson, 2000; Tao and Veldhuis,

2008). As described in Algorithm 3.2, the thresholds (T1 and T2) of first two ROC curves

are initially combined with the BCALL technique. Then, their combined responses (R1)

are directly input into line 8 of Algorithm 3.1 and combined with the thresholds of the

third ROC curve (T3). A pair-wise combination of ROC curves is another alternative, in

which the BCALL technique is applied to each pair of ROC curves, and then the MRROC

is then applied to the resulting combinations. Both strategies have been investigated

and typically lead to comparable results. However, the time and memory complexity

associated with the cumulative strategy can be considerably lower than for the pair-wise

one. This is due to the number of permutations required in the pair-wise combinations.

In additions, the pair-wise strategy requires combining all thresholds for each two curves,

while combining the resulting responses with a new curve is less demanding since the

number of selected responses is typically much lower than the number of thresholds. The

reader is referred to Subsection 3.4.3 for additional details. The cumulative strategy for

Boolean Combination of Multiple ROC curves (BCMALL) described in Algorithm 3.2 is

adopted in this chapter.

Further improvements in performance may be achieved by re-combining the output re-

sponses of combinations resulting from the BCALL (or BCMALL) with those of the

original ROC curves over several iterations. A novel Iterative Boolean Combination

125

Algorithm 3.2: BCMALL(T1, . . . ,TK , labels): Cummulative combination of multiple ROC
curves based on BCALL

Input: Thresholds of K ROC curves [T1, . . . ,TK] and labels
Output: ROCCH of combined curves where each point is the result of the combination of

combinations
[ROCCH1,R1] =BCALL(T1,T2, labels) // combine the first two ROC curves1

for k = 3, . . . ,K do2

// combine the responses of the previous combination with those of the
following ROC curve
[ROCCHk−1,Rk−1] =BCALL(Rk−2,Tk, labels)3

Return ROCCHK−1,RK−1 and the stored tree of the selected responses/thresholds4

fusions along with their corresponding fusion functions

(IBCALL) is presented in Algorithm 3.3 and allows for combination that maximize the

AUC of K ROC curves by re-combining the previously selected thresholds and fusion

functions with those of the original ROC curves. During the first iteration, the ROC

curves of two or more detectors are combined using the BCALL or BCMALL. This

defines a potential direction for further improvement in performance within the combi-

nation space. Then, the IBCALL proceeds in this direction by re-considering information

from the original curves over several iterations. The iterative procedure accounts for po-

tential combinations that may have been disregarded during the first iteration, and are

mostly useful when provided with limited and imbalanced training data. The iterative

procedure stops when there are no further improvements between the AUC of old and

new ROCCHs or a maximum number of iterations are performed. This stopping criteria

can be controlled by tolerating a small difference between the old and new AUC values

(ε = AUC(ROCCHNEW)−AUC(ROCCHOLD)), or by applying a statistical test for

significance when working with several replications. Although sub-optimal, the IBCALL
algorithm overcomes the impractical exponential explosion in computational complexity

associated with the brute-force strategy suggested by Barreno et al. (2008) (see Subsec-

tion 3.4.3).

Note that the IBCALL can also be applied to repair ROC concavities. In such scenar-

ios, the same thresholds, say Ta, of the ROC curve to be repaired are input twice into

the IBCALL algorithm, i.e., IBCALL(Ta,Ta, labels), and iterates until the AUC stops

126

Algorithm 3.3: IBCALL(T1, . . . ,TK , labels): Iterative Boolean combination based on
BCALL or BCALL

Input: Thresholds of K ROC curves [T1, . . . ,TK] and labels
Output: ROCCH of combined curves where each point is the result of the combination of

combinations through several iterations
[ROCCHOLD,ROLD] =BCM([T1,T2, . . . ,TK], labels)1

while (AUC(ROCCHNEW)≥AUC(ROCCHOLD)+ ε) or2

(numberIterations≤maxIter) do
[ROCCHNEW ,RNEW] =BC(ROLD, [T1,T2, . . . ,TK], labels)3

return ROCCHNEW ,RNEW and the stored tree of the selected responses fusions along4

with their corresponding fusion functions

improving. After applying the IBCALL to a ROC curve the diverse information from

the inferior points are taken into consideration in view improving the performance. The

resulting MRROC curve is guaranteed to be proper and convex. In the worst-case sce-

nario, the repaired is lower bounded by the ROCCH. Finally, the IBCALL repairs the

concavities in a complementary way to LCR (Flach and Wu, 2005), therefore applying

both techniques may yield even higher level of performance as presented in Section 3.6.

3.4.3 Time and Memory Complexity

Given a pair of detectors, Ca and Cb, having respectively na and nb distinct thresholds on

their ROC curves. During the design of the IBCALL system, the worst-case time required

for fusion using BCALL is the time required for computing all ten Boolean functions to

combine those thresholds, i.e., 10×nb×nb. The worst-case time complexity is O(nanb)

Boolean operations. The worst-case memory requirements is an array of floating point

registers of size 2×nb×nb for storing the temporary results (tpr,fpr) of each Boolean

function (denoted by F in Algorithm 3.1). Therefore, the worst-case memory complexity

is O(nanb).

When the number of distinct thresholds becomes very large, these thresholds can be

sampled (or histogrammed) into a smaller number of bins before applying the algorithm

to reduce both time and memory complexity. Nevertheless, in scenarios with limited and

127

imbalanced data, which is the main focus of this work, the number of distinct thresholds

is typically small. The BCALL is very efficient in these cases.

When the BCMALL is applied to combine the response of several ROC curves of K

detectors, the worst-case time can be roughly stated as K times that of the BCALL
algorithm. However, after combining the first two ROC curves, the number of emerging

responses on the ROCCH, is typically very small with respect to the number of thresholds

on each ROC curve. Let nmax be the largest number of thresholds among the K ROC

curves to be combined. When K grows, it is conservative to consider the worst-case

time complexity of the order of O(n2
max +K.nmax) Boolean operations. The worst-

case time complexity for combining K detectors with IBCALL is that of the BCMALL
multiplied with the number of iterations (I), O(I(n2

max +K.nmax)). The worst-case

memory complexity for both BCMALL and IBCALL is O(nmaxnmax). This is limited to

the memory required for combining the first two ROC curves with the BCALL algorithm.

As a comparative example, consider two soft detectors Ca and Cb with their ROC curves

having respectively a small number of distinct thresholds na = 100 and nb = 50. Since

each threshold on the ROC curve of a soft detector is a crisp detector, the total number of

crisp detectors is therefore n= na+nb= 150. The brute-force search for optimal combina-

tion of crisp detector is 22n and can be reduced to 2n as proposed by Barreno et al. (2008).

The exhaustive optimal search requires a prohibitively large number, 2150 ≈ 1.4× 1045,

of Boolean computationsauthors stated that for only n= 40 detectors the computational

time would require about a year and a half (Barreno et al., 2008).5,000 Boolean compu-

tations with BCALL and I × 10,200 ≈ 106 Boolean computations with IBCALL, where

the number of iterations I is typically less than ten. Although the IBCALL algorithm

is efficient, its time and memory complexity can be always reduced using the sampling

technique, on the account of a small loss in the combination performance.

In contrast, during operations the system will be using one vertex or interpolating be-

tween two vertices on the final convex hull provided by IBCALL according to a specific

128

false alarm rate. Each vertex has its own set of Boolean combination functions, which

may be derived from all (or a subset of) K detectors that have been considered during

the design phase. In practice, the computational overhead of these Boolean functions is

lower than that of operating the required number of detectors. Therefore, the worst-case

time and memory complexity is limited to operating the K detectors. When there are

design constraints on the number of operational detectors K, they must be considered

during the design phase. A larger set of detectors K >K could be first employed to re-

alize an upper bound for analyzing the system performance. Then, the best subset of K

detectors that limits the decrease of performance with reference to the upper bound can

be selected for operations. This trade-off between the number of operational detectors

and required performance can be a time consuming task. However since it is conducted

during the design phase, various subsets selection and parallel processing techniques can

be employed for a more efficient search.

3.4.4 Related Work on Classifiers Combinations

Classifiers can be combined at various levels and categorized according to pre- and post-

classification levels (Kuncheva, 2004a; Tulyakov et al., 2008). In pre-classification com-

bination occurs at the sensor (or raw data) and feature levels, while post-classification

combination occurs at the score, rank and decision levels. Pre-classification fusions meth-

ods are based on the generation of ensemble of classifiers (EoC), each trained on different

data sets or subsets obtained by using techniques such as data-splitting, cross-validation,

bagging (Breiman, 1996), and boosting (Freund and Schapire, 1996). This can be also

obtained by constructing classifiers that are trained on different features subsets, for in-

stance ensemble generation methods such as the random subspace method (Ho, 1998).

Static ensemble selection attempts to select the “best” classifiers from the pool based on

various diversity measures (Brown et al., 2005; Kuncheva and Whitaker, 2003), prior to

combining their results. An alternative approach consists in combining the outputs of

classifiers and then selecting the best performing ensemble evaluated on an independent

validation set (Banfield et al., 2003; Ruta and Gabrys, 2005). The later approach has

129

proven to be more reliable than the diversity-based approach (Kuncheva and Whitaker,

2003; Ruta and Gabrys, 2005). However, since combination is performed before selection

its success depends on the chosen method(s) of combination, which may be sub-optimal.

In post-classification phase, whether the EoC is inherent to the problem at hand, gener-

ated or selected, classifier responses must be combined using a fusion function. Fusion at

the score level is more prevalent in literature (Kittler, 1998). Normalization of the scores

is typically required, which may not be a trivial task. Fusion functions may be static

(e.g., sum, product, min, max, average, majority vote, etc.), adaptive (e.g., weighted av-

erage, weighted vote, etc.) or trainable (also known as stacked or meta-classifier), where

another classifier is trained on classifier responses and then used as combiner (Roli et al.,

2002; Wolpert, 1992). This trainable approach may introduce overfitting and requires

an independent validation set for tuning the combiner parameters. Fusion at the rank

level is mostly suitable for multi-class classification problems, where the correct class is

expected to appear in the top of the ranked list. Logistic regression and Borda count (Ho

et al., 1994; Van Erp and Schomaker, 2000) are among the fusion methods at this level.

Rank-level methods simplify the combiner design since normalization is not required.

Fusion at the decision level exploits the least amount of information since only class labels

are input to the combiner. Compared to the other fusion methods, it is less investigated

in literature. The simple majority voting rule (Ruta and Gabrys, 2002) and behavior-

knowledge-space (BKS) (Raudys and Roli, 2003) are the two most representative decision-

level fusion methods. One issue that appears with decision level fusion is the possibility

of ties. The number of classifiers must therefore be greater than the number of classes.

BKS can be only applied to low dimensional problems. Moreover, in order to have

an accurate probability estimation, it requires a large number of training samples and

another independent database to design the combination rules.

The proposed IBC in this chapter provides an efficient technique which exploit all

Boolean combinations as well as the MRROC interpolation for an improved performance.

130

Combination of responses within the ROC space does not require neither re-training of

dichotomizers nor normalization of scores. This is because ROC curves are invariant to

monotonic transformation of classification thresholds (Fawcett, 2004). These advantages

allow the IBC technique to be directly applied at either the score or the decision levels.

Bayesian learning approaches have been proposed to estimate HMM parameters by inte-

grating over the parameters rather than optimizing. For instance, variational Bayesian

learning has been proposed with a suitable prior for all variables to estimate an ensemble

of HMMs with the same order, each trained on a different subset of the data, to ap-

proximate the entire posterior probability distribution (MacKay, 1997). Nonparametric

Bayesian learning have also been proposed for estimating HMMs order and other param-

eters from the training data (Beal et al., 2002). Starting with a large order, the HMM

parameters and the number of states are integrated out with reference to their posterior

probabilities. As the method converges to a solution, redundant states are eliminated

which yields to automatic order selection. These can been considered as pre-classification

combinations of HMMs. HMMs with the same orders are trained and combined using

different subsets of the data or HMMs with the different orders are trained and combined

on the same data. Comparing the performance of these techniques to that of the IBC

would be an interesting future work. Note however that the proposed IBC is a general

post-classification combination technique at the response level. It can be used to combine

the results of these Bayesian approaches, as well as the results of any other technique,

for improved performance.

3.5 Experimental Methodology

The experiments are conducted on both synthetically generated data and sendmail data

from the University of New Mexico (UNM) data sets5.
5http://www.cs.unm.edu/~immsec/systemcalls.htm

131

3.5.1 University of New Mexico (UNM) Data

The UNM data sets are commonly used for benchmarking anomaly detections based on

system calls sequences (Warrender et al., 1999). In related work, intrusive sequences

are usually labeled by comparing normal sequences, using STIDE matching technique.

This labeling process considers STIDE responses as the ground truth, and leads to a

biased evaluation and comparison of techniques, which depends on both training data

size and detector window size. To confirm the results on system calls data from real

processes, the same labeling strategy is used in this work. However fewer sequences are

used to train the HMMs and STIDE to alleviate the bias. Therefore, STIDE is first

trained on all the available normal data according to different window sizes, and then

used to label the corresponding sub-sequences from the ten sequences available for testing.

The resulting labeled sub-sequences of the same size are concatenated, then divided into

blocks of equal sizes, one for validation and the other for testing. During the experiments,

smaller blocks of normal data (100 to 1,000 symbols) are used for training the HMMs and

STIDE. In addition to the labeling issue, the normal sendmail data is very redundant and

anomalous sub-sequences in the testing data are very limited. Nevertheless, due to the

limited publicly available system call data, sendmail data is the mostly used in literature.

3.5.2 Synthetic Data

The need to overcome issues encountered when using real-world data for anomaly-based

HIDS (incomplete data for training and labeling) has lead to the implementation of a

synthetic data generation platform for proof-of-concept simulations. It is intended to

provide normal data for training and labeled data (normal and anomalous) for testing.

This is done by simulating different processes with various complexities then injecting

anomalies in known locations. The data generator is based on the Conditional Relative

Entropy (CRE) of a source; it is closely related to the work of Tan and Maxion (Tan and

Maxion, 2003). The CRE is defined as the conditional entropy divided by the maximum

entropy (MaxEnt) of that source, which gives an irregularity index to the generated data.

132

For two random variables x and y the CRE is given by CRE = −
∑
x p(x)

∑
y p(y|x) logp(y|x)

MaxEnt ,

where for an alphabet of size Σ symbols, MaxEnt = −Σlog(1/Σ) is the entropy of a

theoretical source in which all symbols are equiprobale. It normalizes the conditional

entropy values between CRE = 0 (perfect regularity) and CRE = 1 (complete irregularity

or random). In a sequence of system calls, the conditional probability, p(y | x), represents

the probability of the next system call given the current one. It can be represented

as the columns and rows (respectively) of a Markov Model with the transition matrix

MM = {aij}, where aij = p(St+1 = j | St = i) is the transition probability from state i

at time t to state j at time t+ 1. Accordingly, for a specific alphabet size Σ and CRE

value, a Markov chain is first constructed, then used as a generative model for normal

data. This Markov chain is also used for labeling injected anomalies as described below.

Let an anomalous event be defined as a surprising event which does not belong to the

process normal pattern. This type of event may be a foreign-symbol anomaly sequence

that contains symbols not included in the process normal alphabet, a foreign n-gram

anomaly sequence that contains n-grams not present in the process normal data, or a

rare n-gram anomaly sequence that contains n-grams that are infrequent in the process

normal data and occurs in burst during the test6.

Generating training data consists of constructing Markov transition matrices for an al-

phabet of size Σ symbols with the desired irregularity index (CRE) for the normal

sequences. The normal data sequence with the desired length is then produced with the

Markov chain, and segmented using a sliding window (shift one) of a fixed size, DW .

To produce the anomalous data, a random sequence (CRE = 1) is generated, using the

same alphabet size Σ, and segmented into sub-sequences of a desired length using a slid-

ing window with a fixed size of AS. Then, the original generative Markov chain is used to

compute the likelihood of each sub-sequence. If the likelihood is lower than a threshold it

is labeled as anomaly. The threshold is set to (min(aij))AS−1,∀i,j , the minimal value in

the Markov transition matrix to the power (AS−1), which is the number of symbol tran-
6This is in contrast with other work which consider rare event as anomalies. Rare events are normal,

however they may be suspicious if they occurs in high frequency over a short period of time.

133

sitions in the sequence of size AS. This ensures that the anomalous sequences of size AS

are not associated with the process normal behavior, and hence foreign n-gram anomalies

are collected. The trivial case of foreign-symbol anomaly is disregarded since it is easy

to be detected. Rare n-gram anomalies are not considered since we seek to investigate

the performance at the detection level, and such kind of anomalies are accounted for at

a higher level by computing the frequency of rare events over a local region. Finally, to

create the testing data another normal sequence is generated, segmented and labeled as

normal. The collected anomalies of the same length are then injected into this sequence

at random according to a mixing ratio.

Figure 3.5 illustrates the data pre-processing for training, validating and testing using

the UNM sendmail data or the generated data. The only difference is the ground truth

for labeling, which is all the available normal data for sendmail and the generator itself

for the synthetic data.

O = o1, . . . , oT Sliding Window
of Size DWNormal sequence

of system calls

DW

Sliding Window
of Size ASMixed sequence

of system calls

AS

T
ra

in
V

a
li
d
a
ti

o
n

N
o
rm

a
l
S
u
b
-s

e
q
u
e
n
c
e
s

V
a
li
d
a
ti

o
n

T
es

t

O = o1, . . . , oT

L
a
b
e
le

d
su

b
-s

e
q
u
e
n
c
e
s

n
o
rm

a
l
o
r

a
n
o
m

a
lo

u
s

Figure 3.5 Illustration of data pre-processing for training, validation and testing

134

The experiments conducted in this chapter using the data generator simulate a small

process and a more complex process, with Σ = {8,50} symbols, and CRE = {0.3,0.4},
respectively. The sizes of injected anomalies are assumed equal to the detector window

sizes AS = DW = {2,4,6}. For both scenarios, the presented results are for validation

and test sets that comprise 75% of normal and 25% of anomalous data.

3.5.3 Experimental Protocol

Figure 3.6 illustrates the steps involved for estimating HMM parameters. For each de-

tector window set of size DW , different discrete-time ergodic HMMs are trained with

various number of hidden states N = [Nmin, . . . ,Nmax]. The number of symbols is taken

equal to the process alphabet size. The iterative Baum-Welch algorithm is used to esti-

mate HMM parameters (Baum et al., 1970) using the training data, which only comprises

normal sequences. To reduce overfitting effects, the evaluation of the log-likelihood, us-

ing the Forward algorithm (Baum et al., 1970), on an independent validation set also

comprising only normal sequences is used as a stopping criterion. The training process

is repeated ten times using a different random initialization to avoid local minima. The

log-likelihood of a second validation set comprising normal and anomalous sequences is

then evaluated by each HMM, which provides ten ROC curves. Finally, the model that

gives the highest area under its convex hull is selected, which results an HMM for each N

value. When working with the synthetic data, this procedure is replicated ten times with

different training, validation and testing sets, and the results are averaged and presented

along with the standard deviations to provide a statistical confidence intervals.

The performance obtained by fusion of μ-HMMs in ROC space with the proposed BCALL
technique is compared to that of MRROC fusion of the original models, and to that of

the conjunction (BCAND) and disjunction (BCOR) combinations (Haker et al., 2005; Tao

and Veldhuis, 2008). This is also compared to the performance of the IBCALL technique

applied to combine the μ-HMMs through several iterations. In addition, the performance

of STIDE is shown as reference. To investigate the effect of repairing the concavities in

135

DW
For N =

Nmin, . . . , Nmax

Forward algo.
(evaluation) # iterations

lo
g
-l
ik

el
ih

o
o
d Train

Val1

Best

Restart the training
10 times from different
random initializations

λ1
N

λ10
N

Baum-Welch
(training)

AS

fpr

tp
r λNmin

λNmax

Highest AUCH
value over the 10
initializations

T
ra

in
V

a
li
d
a
ti

o
n

N
o
rm

a
l
su

b
-s

e
q
u
e
n
c
e
s

V
a
li
d
a
ti

o
n

L
a
b
e
le

d
su

b
-s

e
q
u
e
n
c
e
s

Figure 3.6 Illustration of the steps involved for estimating HMM parameters

ROC curves, each ROC curve is first repaired using the IBCALL and LCR (Flach and

Wu, 2005) techniques, and then all curves are combined with the MRROC technique.

The area under the ROC curve (AUC), has been proposed as more robust scalar summary

of classifiers performance than accuracy (Bradley, 1997; Huang and Ling, 2005; Provost

and Fawcett, 2001). The AUC assesses the ranking in terms of class separation, i.e.,

evaluates how well a classifier is able to sort its predictions according to the confidence

it assigns to them. For instance, with an AUC = 1 all positives are ranked higher than

negatives indicating a perfect discrimination between classes. A random classifier has an

AUC = 0.5 that is both classes are ranked at random. For a crisp classifier, the AUC

is simply the area under the trapezoid and is calculated as the average of the tpr and

fpr values. For a soft classifier, the AUC may be estimated directly from the data either

by summing up the areas of the underlying trapezoids (Fawcett, 2004) or by means of

the Wilcoxon–Mann–Whitney (WMW) statistic (Hanley and McNeil, 1982). When the

ROC curves cross, It is possible for a high-AUC classifier to perform worse in a specific

136

region of ROC space than a low-AUC classifier. In such case, the partial area under the

ROC curve (pAUC) (Walter, 2005) could be useful for comparing the specific regions of

interest (Zhang et al., 2002). If the AUCs (or the pAUCs) are not significantly different,

the shape of the curves might need to be looked at. It may also be useful to look at

the tpr for a fixed fpr of particular interest. Since the MRROC can be applied to any

ROC curve, the performance measures in all experiments are taken with reference to the

ROCCH. This includes the area under the convex hull (AUCH), the partial area under

the convex hull for the range of fpr= [0,0.1] (AUCH0.1), and the tpr at a fixed fpr= 0.1.

3.6 Simulation Results and Discussion

3.6.1 An Illustrative Example with Synthetic Data

Figure 3.7 presents an example of the impact on performance obtained after applying

different techniques for combining and repairing ROC curves: MRROC, BC and IBC.

The training, validation and testing data are generated synthetically as described in

Section 3.5.2, with an alphabet of size Σ = 8 symbols and with a CRE = 0.3. The

training and validation of the ergodic HMMs is carried out according to the methodology

described in Section 3.5. A block of data of size 100 sequences, each of size DW = 4, is

used to train HMMs, and another validation block of the same size is used to implement

a stopping criterion. Each validation and test set is comprised of 200 sequences, each of

size AS = 4. In both cases, the ratio of normal to anomalous sequences is four to one.

For improved visibility, Figure 3.7 only shows the combinations of two HMMs, each one

trained with different number of states, N = 4 and 12. The ROC curves for the two

HMMs along with their MRROC are presented for the validation (Figure 3.7a) and test

(Figure 3.7b) data sets. The performance of STIDE is also shown for reference. To

visualize the impact on performance of combining with AND and OR Boolean functions

separately (Haker et al., 2005; Tao and Veldhuis, 2008), Figures 3.7a and b show the

results with BCAND and BCOR along with BCALL and IBCALL. In Figures 3.7c and

137

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Tr
ue

 p
os

iti
ve

 ra
te

STIDE : auc=0.545
λN=4 : auc=0.712

λN=12 : auc=0.708

MRROC : auc=0.780
BCAND : auc=0.802

BCOR : auc=0.812

BCALL : auc=0.826

IBCALL : auc=0.932

XOR

(a) Combinations using the validation set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate
Tr

ue
 p

os
iti

ve
 ra

te

STIDE : auc=0.550
λN=4 :auc=0.705

λN=12 :auc=0.728

MRROC : auc=0.798
BCAND : auc=0.806

BCOR : auc=0.819

BCALL : auc=0.827

IBCALL : auc=0.927

(b) Combinations using the test set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Tr
ue

 p
os

iti
ve

 ra
te

STIDE : auc=0.545
λN=4 : auc=0.712

λN=12 : auc=0.708

MRROC : auc=0.780
LCR(N=4) : auc=0.799
IBCALL(N=4) : auc=0.837

LCR(N=12) : auc=0.810
IBCALL(N=12) : auc=0.858

MRROC(LCR,IBC): auc=0.865

(c) Repairing using the validation set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Tr
ue

 p
os

iti
ve

 ra
te

STIDE : auc=0.550
λN=4 : auc=0.705

λN=12 : auc=0.728

MRROC : auc=0.798
LCR(N=4) : auc=0.783
IBCALL(N=4) : auc=0.809

LCR(N=12) : auc=0.833
IBCALL(N=12) : auc=0.872

MRROC(LCR,IBC): auc=0.872

(d) Repairing using the test set.

Figure 3.7 Illustrative example that compares the AUC performance of techniques
for combination (top) and for repairing (bottom) of ROC curves. The example is
conducted on a system consisting of two ergodic HMMs trained with N = 4 and
N = 12 states, on a block of 100 sequences, each of length DW = 4 symbols,

synthetically generated with Σ = 8 and CRE = 0.3

d, IBCALL, and LCR (Flach and Wu, 2005) are applied to repair each ROC curve, and

the resulting curves are then combined with the MRROC technique.

138

As expected, STIDE performs poorly since the data provided for training is limited and

the database memorized by STIDE only comprises a fraction of the normal behavior.

This contrasts with the generalization capabilities of HMMs. As shown in Figures 3.7a

or b, the improvement in AUC performance achieved by applying BCAND and BCOR
is modest. This is also seen when comparing their tpr values at an operating point of,

for instance, fpr = 0.1 with respect to the MRROC of the original ROC curves. Indeed,

these AND and OR Boolean functions are unable to exploit information in inferior points.

In this case, the BCALL does not provide a considerably higher level of performance than

the BCAND and BCOR, this is not typically the case, but was deliberately selected for

this example. However, as shown in Figure 3.7a, two additional combination rules have

emerged from the XOR Boolean function with BCALL. Diverse information from the

emerging combination rules (resulting, in this case, from AND, OR and XOR Boolean

functions) serve as a guide, within the combination space, to a further performance

improvement with the IBCALL technique. Indeed, after seven iterations, IBCALL is

able to achieve a considerably higher level of performance by recombining emerging rules

from each iteration with the original curves. IBCALL iterative procedure repeatedly

selects diverse information and accounts for potential combinations that may have been

disregarded during previous iterations.

In this example, the validation set is comprised of 200 sequences and the ROC curves

of both HMMs (λN=4 and λN=12) contain the same number of unique thresholds7, 200.

The worst-case time complexity involved with BCALL is the time required to compute all

ten Boolean functions for each combination of thresholds, i.e., 10×200×200 = 400,000

Boolean operations. The worst-case memory complexity is an array of floating point

registers of size 2×200×200 = 80,000, holding the temporary results (tpr,fpr) of each

Boolean function. This consists the first iteration of IBCALL and results in nine emerging

combinations (or points on the ROCCH) as shown in Figure 3.7a. The time complexity of

the second iteration is reduced to the time required for computing 10×9× (200+200) =
7In many cases, the number of unique thresholds could be lower than the number of samples in the

validation set.

139

Table 3.4 Worst-case time and memory complexity for the illustrative example

Number of iterations 1 2 3 4 5 6 7
Number of emerging points 9 10 10 11 10 9 6

Time complexity 400,000 36,000 40,000 40,000 44,000 40,000 36,000
Memory complexity 80,000 3,600 4,000 4,000 4,400 4,000 3,600

36,000 Boolean operations, and the memory complexity is reduced to 2×1,800 = 3,600

floating point registers. As shown in Table 3.4, the time and memory complexity of

successive iterations are reduced by order of magnitude compared to the first iteration.

However, as shown in Figure 3.7a, the level of performance is significantly improved due

to these low cost iterations. During operations, the number of Boolean combinations

varies with the selected operational point, however it is upper-bounded by the number of

iterations. For instance, in this example a maximum of seven Boolean functions must be

applied to HMMs response to achieve the desired performance as in Figure 3.7b. The time

complexity of these Boolean combinations is negligible compared to that of computing

the log-likelihood of the test sequences with HMM.

When using the IBCALL technique to repair the ROC curve belonging to the HMM

trained with N = 12 states, the resulting curve IBCALL(N = 12) dominates other ROC

curves on the test set. This is because its test set performance exceeds its expected

validation set performance, while the expected IBCALL(N = 4) performance decreases on

the validation set. Similarly, the expected validation performance of the LCR technique

can be largely different from that of the test set as shown for LCR(N = 12) curve. In

general, the performance of both repairing techniques is less robust to variances between

validation and test sets, since repairing relies on the shape of one ROC curve. In contrast,

combining several ROC curves according to IBCALL technique is more robust to such

variance since the interactions among all ROC curves are considered.

A closer look at ROC-based repairing techniques shows that IBCALL and LCR are

complimentary. For instance, ROC curves repaired for λN=4, IBCALL(N = 4) and

LCR(N = 4), cross in both validation and test sets. In general, IBCALL performs

140

well when the concavities are located in the bottom-left or in the top-right corners of

the ROC space. IBCALL exploits the asymmetry in the ROC curve shape caused by an

imbalanced variances at the head or tail of class distributions. The LCR technique is

efficient for repairing concavities that are located close to non-major diagonal, since it

only considers the shape of the ROC curve when negating the responses of the largest

concavity. A higher level of AUC performance can therefore be achieved by using the

MRROC to combine ROC curves repaired using the IBCALL and LCR techniques.

The attempt to combine the responses of the ROC curves repaired with the IBCALL or

LCR techniques using IBCALL, was not successful due to the low level of robustness of

the repairing techniques. Combination are based on the few points that define repaired

ROC curve points on the validation set, which may be in different locations on the test

set. In contrast, the direct combination of ROC curves according to BCALL or IBCALL
techniques starts with existing thresholds on the validation set. Although ROC curves

thresholds may change on the test set, these algorithms proceed by using neighboring

thresholds.

3.6.2 Results with Synthetic and Real Data

Figure 3.8 shows the average AUC performance on the test sets versus the number of

training blocks of a μ-HMM system where each HMM is trained with a different number

of states (N = 4,8,10). Results are produced for synthetically generated data with Σ = 8

and CRE = 0.3, and for various training set sizes (50 to 450 symbols) and detector

window sizes (DW = 2,4,6). The performance of the composite system obtained with the

MRROC combination for the original HMM ROC curves, is compared to those obtained

with the BCAND, BCOR, BCALL8 and IBCALL techniques. The AUC performance of

STIDE is also shown for reference. The reader is referred to Section IV.2 of Appendix IV

for additional supporting results – AUCH0.1 and tpr values at fpr = 0.1.
8For simplicity, BCALL is also used to indicate BCMALL when combining multiple ROC curves.

141

As shown in these figures, the BCALL can significantly improve the AUC over the MR-

ROC in all the presented cases. The performance of the MRROC approaches that of

BCALL technique when the training data becomes abundant for the problem at hand, or

when test cases are easily detected (e.g., when classes are well separated). For example,

this is shown in Figure 3.8a when the training block size grows beyond 150 sequences,

even STIDE is able to achieve a high level of performance on this simple scenario (that

is rarely encountered in real-world applications).

Although the BCAND and BCOR fusion were able to increase the performance over the

MRROC, their performances is often significantly lower than that of the BCALL, as

shown in Figure 3.8c and d. The significant increase in performance achieved with the

BCOR supports prior conclusion by Tao and Veldhuis (Tao and Veldhuis, 2008). The

authors recommend using the OR Boolean fusion for detecting outliers in biometrics

applications. However, this may not hold true when the number of positive samples is

very limited.

The IBCALL technique provides the highest level of performance over all the range of

conducted experiments. Since it includes the BCALL in its first iteration, the performance

of IBCALL is lower bounded by that of the BCALL. Results indicate that IBCALL is

most suitable for cases in which data are limited and imbalanced, as shown in the first

blocks of Figures 3.8b, d, and f, (see additional results in Section IV.2 of Appendix IV).

The performance of IBCALL improves significantly over that of the BCALL. This is due

to the iterative nature of the IBCALL that is able to repeatedly exploit the information

residing in the inferior points, and hence select better combinations.

When the number of blocks for training is limited, the performance of the IBCALL
technique is higher than other combination techniques. In such cases, each HMM trained

with a different order provides diverse information by capturing different data structure,

which allows to increase the performance of IBCALL. When the amount training data

becomes abundant, the HMMs tend to achieve the same performance with less diversity in

142

their responses, which degrades the performance achieved by IBCALL. With the increase

of detector window size9, the likelihood of anomalous sequences becomes smaller at a

faster rate than normal ones, and hence increases HMM detection rate (Khreich et al.,

2009b). As a consequence, HMMs responses become less diverse yielding to a decrease of

IBCALL performance. The impact of DW on performance is illustrated with the second

and more complex scenario below.

Since the IBCALL technique incorporates all combinations employed within the BCALL
technique, only results of IBCALL are compared to those of MRROC, IBCAND and

IBCOR for the second synthetic scenario (Σ = 50,CRE = 0.4) and for sendmail data.

Figure 3.9 confirms the results of Figure 3.8 on the second synthetic and more complex

scenario, where Σ = 50 and CRE = 0.4. Again the IBCALL technique provides higher

level of performance than the MRROC, IBCAND and IBCOR techniques. In this sce-

nario, although the results of the AND and OR Boolean combinations were allowed to it-

erate until convergence, their achieved performances are still significantly lower than that

of the IBCALL, as shown in Figure 3.9. This demonstrates the impact on performance

of employing and iterating all Boolean functions until convergence. The performance

gain is best illustrated for the first five training blocks (1000 to 3000 sequences), where

the HMMs trained with different orders provide IBCALL with diverse responses for a

significantly improved performance. Increasing the number of training blocks however

increases the detection capabilities of the HMMs and reduces the diversity in their re-

sponses, which decreases the level of performance achieved with the IBCALL technique.

As discussed previously, HMM detection ability increases with the detector window size

(or anomaly size) which reduces the diversity in the μ-HMMs system. This negatively

affects the performance achieved by the IBCALL technique as shown in Figure 3.9.

This is also confirmed on the sendmail data in Figure 3.10. Note however that with

sendmail, the training data is very redundant and the test samples are very limited.
9For simplicity, the detector window size, DW , is assumed equal to the anomaly size, AS.

143

Even STIDE performance was moderate with only up to 1000 training sequences, out

of the available 1.5 million sequences used for labeling. Nevertheless, the difference

in performance between validation and test sets, not shown for improved visibility, is

significantly large where the limited test samples are split in half for testing and half for

validation. Although the IBCALL is able to increase the performance, this increase is not

as prominent as in the synthetic cases. This is mainly due to redundancy in the training

data, where the HMMs trained with different number of states were not able to capture

enough diversity in the underlying data structure. Effective combination technique must

exploit diverse and complimentary information to improve systems performance.

144

50 100 150 200 250 300 350 400 450

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

STIDE
MRROC
BC

AND

BC
OR

BC
ALL

(a) BC (DW = 2)

50 100 150 200 250 300 350 400 450

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks
A

U
C

H

STIDE
MRROC
IBC

AND

IBC
OR

IBC
ALL

(b) IBC (DW = 2)

50 100 150 200 250 300 350 400 450

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

(c) BC (DW = 4)

50 100 150 200 250 300 350 400 450

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

(d) IBC (DW = 4)

50 100 150 200 250 300 350 400 450

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

(e) BC (DW = 6)

50 100 150 200 250 300 350 400 450

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

(f) IBC (DW = 6)

Figure 3.8 Results for synthetically generated data with Σ = 8 and CRE = 0.3. Average
AUC values obtained on the test sets as a function of the number of training blocks (50 to
450 sequences) for a 3-HMM system each trained with a different state (N = 4,8,12), and

combined with the MRROC, BC and IBC techniques. Average AUC performance is
compared for various detector windows sizes (DW = 2,4,6). Error bars are standard

deviations over ten replications

145

1000 1500 2000 2500 3000 3500 4000 4500 5000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

STIDE
MRROC
IBC

AND

IBC
OR

IBC
ALL

(a) DW=2

1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

STIDE

MRROC
IBC

AND

IBC
OR

IBC
ALL

(b) DW=2

1000 1500 2000 2500 3000 3500 4000 4500 5000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

(c) DW=4

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

(d) DW=4

1000 1500 2000 2500 3000 3500 4000 4500 5000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

(e) DW=6

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

(f) DW=6

Figure 3.9 Results for synthetically generated data with Σ = 50 and CRE = 0.4. Average
AUC values (left) and tpr values at fpr = 0.1 (right) obtained on the test sets as a

function of the number of training blocks (1000 to 5000 sequences) for a 3-HMM system
each trained with a different state (N = 40,50,60), and combined with the MRROC and
IBC techniques. The performance is compared for various detector windows sizes

(DW = 2,4,6). Error bars are standard deviations over ten replications

146

100 200 300 400 500 600 700 800 900 1000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

number of sequences in training blocks

A
U

C
H

STIDE
MRROC
IBC

AND

IBC
OR

IBC
ALL

(a) DW=2

100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of sequences in training blocks
tp

r a
t f

pr
=0

.1

STIDE
MRROC
IBC

AND
IBC

OR
IBC

ALL

(b) DW=2

100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

(c) DW=4

100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

(d) DW=4

100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

(e) DW=6

100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

(f) DW=6

Figure 3.10 Results for sendmail data. AUC values (left) and tpr values at
fpr = 0.1 (right) obtained on the test sets as function of the number of training

blocks (100 to 1000 sequences) for a 5-HMM system, each trained with a different
state (N = 40,45,50,55,60), and combined with the MRROC and IBC techniques.

The performance is compared for various detector windows sizes (DW = 2,4,6)

147

Overall, the AUCs tend to increase to a comparable level as the number of training blocks

increases. With a sufficient amount of training data, all HMMs are capable of achieving

an equal level of performance, however with less diverse and complimentary information.

On the other hand, the IBCALL performance will outperform others for small training

set and detector window sizes. When the number of blocks for training is limited, the

performance of the IBCALL technique is higher than other combination techniques. In

such scenarios, each HMM trained with a different number of states is a able to capture

different underlying structures of data. These HMMs provide diverse information, which

allows to increase the performance of IBCALL. This holds true for different detector

window sizes (DW), although the impact of combinations on performance degrades with

the increase of DW values. HMMs are more capable of detecting larger anomalies,

providing therefore less diverse responses to the IBCALL technique.

Increasing the number of HMMs trained with different orders (N) in the μ -HMM system

has a significant impact on the performance achieved with the IBCALL technique due

to the added diversity among the combined HMMs. Since diversity measures and the

creation of diverse ensembles are not yet well defined in literature (Brown et al., 2005;

Dos Santos et al., 2008), one can simply combine the responses of HMMs trained using

a wide range of states to have an upper bound on performance. This is feasible in short

period of time due to the efficiency of IBCALL. During operations however, simplified

combination rules and fewer HMMs may be favored for speed constraints on the detection

system. In such cases, the number of HMMs involved in the μ-HMM system can be

reduced by selecting a subset of N values that does not significantly affect the upper

bound achieved on performance (as described in Section 3.4.3). Training different HMMs

on different subsets of the data provides other sources of diversity. Future work involves

combining the responses of HMMs trained with different orders on different subsets of

the data according to the IBCALL technique.

Finally, Figure 3.11 shows results for repairing concavities using the first synthetically

generated scenario (Σ = 8,CRE = 0.3). The μ-HMM system is trained with three dif-

148

ferent states (N = 4,8,12), for various training set sizes and detector window sizes, and

combined with the MRROC technique. Then, the IBCALL and LCR techniques are

applied to repair the concavities presented in each ROC curve associated with an HMM.

The repaired ROC curves are then combined according to the MRROC. In addition, the

results of IBCALL and LCR techniques are also combined with the MRROC.

50 100 150 200 250 300 350 400 450

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

STIDE

MRROC

LCR
IBC

ALL

MRROC(IBC
ALL

,LCR)

(a) DW=4

50 100 150 200 250 300 350 400 450
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

STIDE

MRROC

LCR

IBC
ALL

MRROC(IBC
ALL

,LCR)

(b) DW=4

50 100 150 200 250 300 350 400 450

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

A
U

C
H

(c) DW=6

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

(d) DW=6

Figure 3.11 Performance versus the number of training blocks achieved after
repairing concavities for synthetically generated data with Σ = 8 and CRE = 0.3.

Average AUCs (left) and tpr values at fpr = 0.1 (right) on the test set for a
μ-HMM where each HMM is trained with different number of states (N = 4,8,12).

HMMs are combined with the MRROC technique and compared to the
performance of IBCALL and LCR repairing techniques, for various training block

sizes (50 to 450 sequences) and detector windows sizes (DW = 4 and 6)

149

Figure 3.11 shows that each of the repairing techniques, IBCALL and LCR, is able

to exceed the MRROC of the original curves at the first blocks. This is because in

such cases the ROC curves comprise large concavities due to the limited training data.

However, when the amount of training data increases, IBCALL and LCR are not able

to provide a higher performance than the MRROC of the original curves unless their

responses are themselves combined with the MRROC technique. This noticeable increase

in performance, achieved by combining the repaired curves according to IBCALL and

LCR with the MRROC, clearly indicates the complementarity of both techniques as

discussed in Section 3.6.1.

However, the performance achieved by combining the repaired curves according to IBCALL
and LCR with the MRROC is still lower than that of combining the original ROC curves

using IBCALL, as presented in Figures 3.8d and f. Nevertheless, in results not shown

in this chapter, repairing with the IBCALL and LCR techniques have shown lack of ro-

bustness to changes between the validation and test sets (as discussed in Section 3.6.1).

In addition, repairing relies on large ROC concavities and they are not designed to im-

prove the performance when the ROC curve comprises small concavities, but represent a

poor performance (e.g., parallel to the diagonal of chance). In contrast, combining ROC

curves using the IBCALL may allow to exploit this information to increase performance.

In practice, when a ROC curve of a detector presents concavities, performance could be

improved by combining the responses of both repairing techniques, IBCALL and LCR,

using the MRROC fusion. Otherwise, the IBCALL could be directly applied to combine

the responses of several ROC curves and provide a higher level of performance than other

techniques.

3.7 Conclusion

This chapter presents an Iterative Boolean Combination (IBC) technique for efficient

fusion of the responses from multiple classifiers in the ROC space. The IBC efficiently

exploits all Boolean functions applied to the ROC curves and requires no prior assump-

150

tions about conditional independence of detectors or convexity of ROC curves. Although

it seeks a sub-optimal set of combinations, the IBC is very efficient in practice and it

provides a higher level of performance than related ROC-based combination techniques,

especially when training data is limited and test data is heavily imbalanced. Its time

complexity is linear with the number of classifiers while, the memory requirement is in-

dependent of the number of classifier, which allows for a large number of combinations.

The proposed IBC is general in that it can be employed to combine diverse responses of

any crisp or soft one- or two-class classifiers, within a wide range of application domains.

This includes combining the responses of the same classifier trained on different data or

features or trained according to different parameters, or from different classifiers trained

on the same data, etc. It is also useful for repairing the concavities in a ROC curve.

During simulations conducted on both synthetic and real HIDS data sets, the IBC has

been applied to combine the responses a of multiple-HMM system, where each HMM is

trained using a different number of states, and capturing different temporal structures of

the data. Results indicate that the IBC significantly improves the overall system perfor-

mance over a wide range of training set sizes with various alphabet sizes and complexities

of monitored processes, and according to different anomaly sizes, without a significant

computational and storage overhead. Results have shown that, even with one iteration,

the IBC technique always increases system performance over the MRROC fusion, and

over the Boolean conjunction and disjunction combinations. When the IBC is allowed

to iterate until convergence, the system performance improves significantly and the time

and memory complexity required for each iteration are reduced by an order of magni-

tude with reference to the first iteration. The performance gain, especially when provided

with limited training data, is due to the ability of the IBC technique to exploit diverse

information residing in inferior points on the ROC curves, which are disregarded by the

other techniques. In addition, repairing the concavities in a ROC curve using the IBC

technique can yield higher level of performance than with the MRROC technique alone.

The impact on performance of repairing the concavities is shown to be comparable and

151

complementary to an existing repairing technique that relies on inverting the largest con-

cavity section. Therefore, combining the results of both repairing techniques according

to the MRROC fusion yields a higher level of performance than applying each repairing

technique alone.

In this chapter, the proposed ROC-based iterative Boolean combination technique is ap-

plied for fusion of responses from HMMs trained on fixed-size data sets. In next chapter,

an adaptive system is proposed for incremental learning of new data over time using a

learn-and-combine approach based on the proposed Boolean combination techniques.

152

CHAPTER 4

ADAPTIVE ROC-BASED ENSEMBLES OF HMMS APPLIED TO

ANOMALY DETECTION∗

In this chapter, an efficient system is proposed to accommodate new data using a learn-

and-combine approach. When a new block of training data becomes available, a new

pool of base HMMs is generated from the data using a different number of HMM states

and random initializations. The responses from the newly-trained HMMs are then com-

bined to those of the previously-trained HMMs in receiver operating characteristic (ROC)

space using a novel incremental Boolean combination technique. The learn-and-combine

approach allows to select a diversified ensemble of HMMs (EoHMMs) from the pool, and

adapts the Boolean fusion functions and thresholds for improved performance, while it

prunes redundant base HMMs. The proposed system is capable of changing its desired

operating point during operations, and this point can be adjusted to changes in prior

probabilities and costs of errors. Computer simulations conducted on synthetic and real-

world host-based intrusion detection data indicate that the proposed system can achieve

a higher level of performance than when parameters of a single best HMM are estimated,

at each learning stage, using reference batch and incremental learning techniques. It also

outperforms the static fusion functions (e.g., majority voting) for combining the new pool

of HMMs with previously-generated HMMs. Over time, the proposed ensemble selection

techniques have shown to form compact EoHMMs for operations, while maintaining or

improving the overall system accuracy. Pruning has allowed to limit the pool size from

increasing indefinitely, reducing thereby the storage space for accommodating HMMs

parameters without negatively affecting the overall EoHMMs performance. Although

applied for HMM-based ADSs, the proposed approach is general and can be employed

for a wide range of classifiers and detection applications.
∗THIS CHAPTER IS ACCEPTED, IN PRESS, IN PATTERN RECOGNITION JOURNAL, ON

JULY 5, 2011, SUBMISSION NUMBER: PR-D-10-01131

154

4.1 Introduction

Anomaly detection systems (ADSs) detect intrusions by monitoring for significant devia-

tions from normal system behavior. Traditional host-based ADSs monitor for significant

deviation in normal operating system calls – the gateway between user and kernel mode.

ADSs designed with discrete hidden Markov models (HMMs) have been shown to pro-

duce a high level of accuracy (Hoang and Hu, 2004; Warrender et al., 1999). A well

trained HMM provides a compact detector that captures the underlying structure of a

process based on the temporal order of system calls, and detects deviations from normal

system call sequences with high accuracy and tolerance to noise.

An ADS allows to detect novel attacks, however will typically generate false alarms due in

large part to the limited amount of representative data (Chandola et al., 2009a). Because

the collection and analysis of training data to design and validate an ADS is costly, the

anomaly detector will have an incomplete view of the normal process behavior, and hence

misclassify rare normal events as anomalous. Substantial changes to the monitored envi-

ronment, such as application upgrade or changes in users behavior, reduce the reliability

of the detector as the internal model of normal behavior diverges with respect to the

underlying data distribution. Since new training data may become available over time,

an ADS should accommodate newly-acquired data, after it has originally been trained

and deployed for operations, in order to maintain or improve system performance.

The incremental re-estimation of HMM parameters is a common approach to accommo-

date new data, although it raises several challenges. Parameters should be updated from

new data without requiring access to the previous training data, and without corrupting

previously-learned models of normal behavior (Grossberg, 1988; Polikar et al., 2001).

Standard techniques for estimating HMM parameters involve iterative batch learning

algorithms (Baum et al., 1970; Levinson et al., 1983), and hence require observing the

entire training data prior to updating HMM parameters. Given new training data, these

techniques can be costly since they involve restarting the HMM training using all cu-

155

mulative training data. Alternatively, several efficient on-line learning techniques have

been proposed to re-estimate HMM parameters continuously upon observing each new

observation symbol or new observation sub-sequence from an infinite data stream (Florez-

Larrahondo et al., 2005; Mizuno et al., 2000). In practice however, on-line learning using

blocks comprising limited amount of data yields a low level of performance as one pass

over each block is not sufficient to capture the phenomena (Khreich et al., 2009a). It is

also possible to adapt on-line learning techniques for incremental learning over several

passes of each block, although it requires strategies to manage the learning rate (Khreich

et al., 2009a). Moreover, using a single HMM with a fixed number of states for incre-

mental learning may not capture a representative approximation of the underlying data

distribution due to the many local maxima in the solution space.

Ensemble methods have been recently employed to overcome the limitations faced with

a single classifier system (Dietterich, 2000; Kuncheva, 2004a; Polikar, 2006; Tulyakov

et al., 2008). Theoretical and empirical evidence have shown that combining the outputs

of several accurate and diverse classifiers is an effective technique for improving the

overall system accuracy (Brown et al., 2005; Dietterich, 2000; Kittler, 1998; Kuncheva,

2004a; Polikar, 2006; Rokach, 2010; Tulyakov et al., 2008). In general, designing an

ensemble of classifiers involves generating a diverse pool of base classifiers (Breiman,

1996; Freund and Schapire, 1996; Ho et al., 1994), selecting an accurate and diversified

subset of classifiers (Tsoumakas et al., 2009), and then combining their output predictions

(Kuncheva, 2004a; Tulyakov et al., 2008). Most existing ensemble techniques aim at

maximizing the overall ensemble accuracy, which assumes fixed prior probabilities and

fixed misclassification costs. In many real world applications, like anomaly detection,

prior class distributions are highly imbalanced and misclassification costs may vary over

time. Nevertheless, common techniques used for fusion, such as voting, sum or averaging,

assume independent classifiers and do not consider class priors (Kittler, 1998; Kuncheva,

2002). This chapter focuses on HMM-based systems applied to anomaly detection, and

156

in particular on the efficient adaptation of ensembles of HMMs (EoHMMs) over time, in

response to new data.

The receiver operating characteristic (ROC) curve is commonly used for evaluating the

performance of detectors at different operating points, without committing to a single

decision threshold (Fawcett, 2004). ROC analysis is robust to imprecise class distributions

and misclassification costs (Provost and Fawcett, 2001). In a previous work, the authors

proposed a ROC-based iterative Boolean combination (IBC) technique for fusion of

responses from any crisp or soft detector trained on fixed-size data sets (Khreich et al.,

2010b). The IBC algorithm inputs all generated classifiers, and combines their responses

in the ROC space by applying all Boolean functions, over several iterations until the ROC

convex hull (ROCCH) stops improving. IBC was applied to combine the responses from a

multiple-HMM ADS, where each HMM is trained through batch learning using the same

data but with different number of states and initializations. Results have shown that

detection accuracy improves significantly, especially when training data are limited and

class distributions are imbalanced (Khreich et al., 2010b). The IBC is a general decision-

level fusion technique in the ROC space that aims at improving ensembles accuracy,

when learning is performed from a fixed-size set of limited training data. However, IBC

does not allow to efficiently adapt a fusion function over time when new data becomes

available, since it requires a fixed number of classifiers.

In contrast, this chapter presents a new ROC-based system to efficiently adapt EoHMMs

over time, from new training data, according to a learn-and-combine approach. Given

new training data, a new pool of HMMs is generated from newly-acquired data using

different HMM states and initializations. The responses from these newly-trained HMMs

are then combined with those of the previously-trained HMMs in ROC space using the

incremental Boolean combination (incrBC) technique. IncrBC extends on IBC in that

Boolean fusion of HMMs may be adapted for new data, without multiple iterations.

However, system efficiency and scalability remain a serious issue. On its own, incrBC

allows to discard previously-learned data, yet it retains all previously-generated HMMs in

157

the pool. Over time, the pool size would therefore grow indefinitely, yielding unnecessarily

high memory requirements, and increasingly complex Boolean fusion rules. Operating

ever-growing EoHMMs would increase computational and memory complexity.

To overcome these limitations, specialized algorithms are proposed for memory manage-

ment. First, ensemble selection algorithms are proposed to efficiently select diversified

EoHMMs from the pool, and to adapt the Boolean fusion functions and decision thresh-

olds to improve overall system performance. The proposed system may employ one of two

ensemble selection algorithms, called BCgreedy and BCsearch, that are adapted to benefit

from the monotonicity in incrBC accuracy, for a reduced complexity. Both algorithms

feature rank- and search-based selection strategies to optimize ROOCH of combinations,

and hence maximize the area under the ROCCH (AUCH). Both algorithms preserve the

ROCCH of combination which allows visualizing the expected performance over the entire

ROC space, and adapting to changes in operating conditions during system operations,

such as tolerated false alarm rate, prior probabilities and costs of errors. Most existing

techniques for adapting ensembles of classifiers require restarting the training, selection,

combination, and optimization procedures to account for such a change in operating

conditions. Finally, to address the potentially growing memory requirements over time,

the proposed system integrates a memory management strategy to prune less relevant

HMMs from the pool.

For a proof-of-concept validation, this system is applied to adaptive anomaly detection

from system call sequences. The experiments are conducted on both synthetically gen-

erated data and sendmail data from the University of New Mexico (UNM) data sets1

(Warrender et al., 1999). UNM data sets are still commonly used in literature (Forrest

et al., 2008; Kershaw et al., 2011) due to limited publicly available system call data sets.

In fact labeling real system call sequences is a challenging task, which depends on detector

window size. To overcome issues encountered when using real-world system call data for

anomaly-based HIDS, the experimental results are complemented with synthetically gen-
1http://www.cs.unm.edu/~immsec/systemcalls.htm

158

erated data. The synthetic data generator is based on the Conditional Relative Entropy

(CRE), and is closely related to the work of Tan and Maxion (Tan and Maxion, 2003). It

allows simulating different processes with various complexities and provides the desired

amount of normal data for training and labeled data (normal and anomalous) for testing.

For both real and synthetic data sets, the data are organized into several blocks that are

assumed to have been acquired over time. The new data allow to account for rare events,

and adapt to changes in monitored environments such as application updates or changes

in user behavior over time. The performance of the proposed system is compared to that

of the reference batch BW (BBW) trained on all cumulative data, of on-line BW (OBW)

(Mizuno et al., 2000), and of an algorithm for incremental learning of HMM parameters

based on BW (IBW) BW (IBW) (Khreich et al., 2009a) described in Appendix III. The

performance of the median and majority vote fusion functions, combining outputs from

the previously-generated pool of HMMs, are also presented. Accuracy is assessed using

the area under the ROC curve (AUC) (Hanley and McNeil, 1982) and the true positive

rate (tpr) achieved at a fixed false positive rate (fpr) value.

The rest of this chapter is organized as follows. The next section briefly reviews the

HMM, as it applies to adaptive ADS from system call sequences. It also reviews tech-

niques for incremental learning of HMM parameters, and for designing multiple classifiers

systems. Section 4.3 describes the proposed ROC-based system for efficient adaptation

of EoHMM from new data according to the learn-and-combine approach, including new

techniques for Boolean combination and model management. Section 4.4 presents the

experimental methodology (data sets, evaluation methods and performance metrics) used

for proof-of-concept computer simulations. Simulation results are presented and discussed

in Section 4.5.

159

4.2 Adaptive Anomaly Detection Systems

4.2.1 Anomaly Detection Using HMMs

HMMs have been shown successful in detecting anomalies in sequences of operating

system calls (Chen and Chen, 2009; Hoang and Hu, 2004; Khreich et al., 2009b; Tan and

Maxion, 2003; Warrender et al., 1999). A discrete-time finite-state HMM is a stochastic

process determined by the two interrelated mechanisms – a latent Markov chain having

a finite number of states, N , and a set of observation probability distributions, each one

associated with a state. Starting from an initial state Si ∈ {S1, ...,SN}, determined by

the initial state probability distribution πi, at each discrete-time instant, the process

transits from state Si to state Sj according to the transition probability distribution

aij . The process then emits a symbol vk, from a finite alphabet V = {v1, . . . ,vM} with

M distinct observable symbols, according to the discrete-output probability distribution

bj(vk) of the current state Sj . An HMM is commonly parametrized by λ = (π,A,B),

where the vector π = {πi} is the initial state probability distribution, matrix A= {aij} is

the state transition probability distribution, and matrix B = {bj(vk)} is the state output

probability distribution, (1≤ i, j ≤N and 1≤ k ≤M).

HMMs can perform three canonical functions, evaluation, decoding and learning (Ra-

biner, 1989). Evaluation aims to compute the likelihood of an observation sequence o1:T

given a trained model λ, P (o1:T | λ). The likelihood is typically evaluated by using a

fixed-interval smoothing algorithm such as the Forward-Backward (FB) (Rabiner, 1989)

or the numerically more stable Forward-Filtering Backward-Smoothing (FFBS) (Ephraim

and Merhav, 2002). Decoding means finding the most likely state sequence S that best

explains a given observation sequence o1:T (i.e, maximize P (S | o1:T ,λ)). The best state

sequence is commonly determined by the Viterbi algorithm. Learning aims to estimate

the HMM parameters λ to best fit the observed batch of data o1:T . HMM parameters esti-

mation is frequently performed according to the maximum likelihood estimation (MLE)

criterion. MLE consists of maximizing the log-likelihood, logP (o1:T | λ), of the train-

160

ing data over HMM parameters space. Unfortunately, since the log-likelihood depends

on missing information (the latent states), there is no known analytical solution to the

learning problem. In practice, iterative optimization techniques such as the Baum-Welch

(BW) algorithm (Baum et al., 1970), a special case of the Expectation-Maximization

(EM) (Dempster et al., 1977), or standard numerical optimization methods such as gra-

dient descent (Baldi and Chauvin, 1994; Levinson et al., 1983) are often employed for

this task. In either case, HMM parameters are estimated over several training iterations,

until the likelihood function is maximized over data samples. Each training iteration typ-

ically involves observing all available training data to evaluate the log-likelihood value

and estimate the state densities by using a fixed-interval smoothing algorithm.

Anomaly detection creates a profile that describes normal behaviors. Events that devi-

ate significantly from this profile are considered anomalous. In computer and network

security, legitimate system call sequences generated during the normal execution of a

privileged process are typically employed in host-based ADSs (Chandola et al., 2009a;

Warrender et al., 1999). As stochastic models for temporal data, HMMs provide com-

pact detectors that are able to capture probability distributions corresponding to complex

real-world phenomena, with tolerance to noise and uncertainty. Given a sufficiently large

training set of legitimate system call observations, an ergodic2 HMM trained according

to the BW or gradient-based algorithms, is able to capture the underlying structure of

the monitored process (Hoang and Hu, 2004; Warrender et al., 1999). During operations,

system calls sequences generated by the monitored process are evaluated with the trained

HMM, according to the FB or FFBS algorithms, which should assign significantly lower

likelihood values to anomalous sequences than to normal ones. By setting a decision

threshold on the likelihood values, monitored sequences can be classified as normal or

anomalous.
2An HMM with an ergodic or fully connected topology is typically employed in situations where the

hidden states have no physical meaning such as modeling a process behavior using its generated system
calls.

161

Estimating the parameters of a HMM requires the specification of the number of hidden

states. Although it is a critical parameter for HMM performance, this number is often

chosen heuristically or empirically, by selecting the single value that provides the best

performance on training data (Chen and Chen, 2009; Hoang and Hu, 2004; Warrender

et al., 1999). Using a single HMM with a pre-specified number of states may have limited

capabilities to capture the underlying structure of the data. HMMs trained with a fixed-

size training data and with a different number of states and initializations have been

shown to provided a higher level of performance in host-based ADSs (Khreich et al.,

2009b).

4.2.2 Adaptation in Anomaly Detection

The design of accurate detectors for ADS requires the collection of a sufficient amount of

representative data. In practice however, it is very difficult to collect, analyze and label

comprehensive data sets for reasons that range from technical to ethical. Limited normal

data are typically provided for training HMM-based detectors, and limited labeled data

are also provided for validation of an ADS. Furthermore, the underlying data distribution

of normal behaviors may vary according to gradual, systematic, or abrupt changes in the

monitored environment such as an application update or changes in users behavior. The

ability to incrementally adapt HMM parameters in response to newly-acquired training

data from the operational environment or other sources is therefore an undisputed asset

for sustaining a high level of performance. Indeed, refining a HMM to novelty encoun-

tered in the environment may reduce its uncertainty with respect to the underlying data

distribution.

Assume that an HMM-based ADS is a priori trained, optimized and validated off-line

using a finite set of system call data, to provide an acceptable level of performance

in terms of false and true positive rates. During operations, monitoring a centralized

server, for instance, the system is susceptible to produce a higher false alarms rate than

tolerated by the system administrator. This is largely due to the limited amount data

162

that is available for training. The anomaly detector will have an incomplete view of the

normal process behavior, and rare events will be mistakenly considered as anomalous.

The HMM detector should be refined incrementally on some additional normal data when

it becomes available, to better fit the normal behavior of process in consideration. Such

situations may also occur when trying to implement an HMM-based ADS specialized

for monitoring a specific process, but on different hosts machines with different settings

and functionality. Generic models that are trained using data corresponding to common

settings, could be set into operation then incrementally refined to fit the normal process

behavior on each host. Otherwise, training data must be collected and analyzed from

the same process on every host.

As a part of an ADS, the system administrator plays a crucial role in providing new data

for training and validation of the detectors. By accommodating new data and refining

its detection boundaries ADSs motivate the administrator to interact more positively

and build confidence in the system responses over time. When an alarm is raised, the

suspicious system call sub-sequences are logged and analyzed for evidence of an attack.

If an intrusion attempt is confirmed, the corresponding anomalous system calls should

be provided to update the validation set (V). A response team should react to limit

the damage, and a forensic analysis team should investigate the cause of the successful

attack. Otherwise, the intrusion attempt is considered as a false alarm and these rare

sub-sequences are tagged as normal and employed to update the HMM detectors. One

challenge is the efficient integration of the newly-acquired data into the ADS without

corrupting the existing knowledge structure, and thereby degrading the performance.

4.2.3 Techniques for Incremental Learning of HMM Parameters

Incremental learning refers to the ability of an algorithm to learn from new data after

a classifier has already been trained from previous data and deployed for operations.

As illustrated in Figure 4.1, once a new block of data becomes available, incremental

learning produces a new hypothesis (i.e., decision rule) that depends only on the previous

163

HMM1

(λ1)
h1h0

D1

HMM2

(λ2)
h2

D2

hn−1
HMMn

(λn)
hn

Dn

Time1 2 n

Figure 4.1 An incremental learning scenario where blocks of data are used to
update the HMM parameters (λ) over a period of time. Let D1,D2, ...,Dn be

the blocks of training data available to the HMM at discrete instants in
time. The HMM starts with an initial hypothesis h0 associated with the
initial set of parameters λ0, which constitutes the prior knowledge of the

domain. Thus, h0 and λ0 get updated to h1 and λ1 on the basis of D1, then
h1 and λ1 get updated to h2 and λ2 on the basis of D2, and so forth

hypothesis and the current training data (Polikar et al., 2001). Incremental learning

allows to decrease the memory requirements needed to learn the new data, since there

is no need to store and access previously-learned data. Furthermore, since training is

performed only on new training blocks, and not on all accumulated data, incremental

learning would also lower the time complexity needed to learn new data.

The main challenge of incremental learning is the ability to sustain a high level of perfor-

mance without corrupting previously-learned knowledge (Grossberg, 1988; Polikar et al.,

2001). In fact, considering the HMM parameters obtained using a batch learning tech-

nique on a first block of sub-sequences as starting point for training the HMM on a

second newly-acquired block, may not allow the optimization process to escape the local

maximum associated with the first block. Remaining trapped in local maxima leads to

knowledge corruption and hence to a decline in system performance (see Figure 4.2).

Several on-line learning techniques have been proposed in literature to re-estimate HMM

parameters from a continuous stream of symbols. The objective is to optimize HMM

parameters to fit the source generating the data through one observation of the data.

These techniques are typically designed to reduce the training time and memory com-

plexity and to accelerate the convergence when the learning scenario involves very long

stream of data. These techniques are derived from their batch counterparts, and in-

164

clude, for instance, EM-based (Florez-Larrahondo et al., 2005; Mizuno et al., 2000) and

gradient-based (Baldi and Chauvin, 1994; LeGland and Mevel, 1997) techniques. How-

ever, the key difference is that the on-line optimization and update of HMM parameters

are continuously performed upon observing each new sub-sequence (Baldi and Chauvin,

1994; Mizuno et al., 2000) or new symbol (Florez-Larrahondo et al., 2005; LeGland and

Mevel, 1997) of observation, with no iterations.

In practice however, when an on-line learning technique is applied to incremental learning

of a finite data set, one pass over the sub-sequences within a new training block is

insufficient to capture the phenomena. In addition, the convergence properties of these

on-line algorithms no longer hold when provided with limited amount of data. Several

iterations over the new block of observations are therefore required to better fit the

HMM parameters to the newly-acquired data, and hence provide an operational model

with acceptable performance. When several iterations are allowed, on-line algorithms

may attain a local maximum on the log-likelihood function associated with the current

block of data, and must overcome the same issue of remaining trapped in the previous

local maximum (see Figure 4.2).

A potential advantage of applying on-line learning over batch learning techniques to

incremental learning resides in their added stochasticity, which stems from the rapid re-

estimation of HMM parameters after each sub-sequence or symbol of observations. This

may aid escaping local maxima during the early adaptation to newly provided blocks of

data. In addition, a fixed or monotonically decreasing learning rate is typically employed

in these algorithms to integrate pre-existing knowledge of the HMM and the newly-

acquired information associated with each sub-sequence or observation symbol. This

may alleviate knowledge corruption.

Figure 4.2 illustrates the decline in performance that may occur with batch or on-line

algorithms during incremental update of one HMM parameter. The values λ∗1, λ∗2, and

λ∗12 correspond to the optimal values of parameters after learning D1,D2 and D1∪D2,

165

respectively. Assume that the training block D2, which contains one or multiple sub-

sequences, becomes available after an HMM(λ1) has been previously trained on a block

D1 and deployed for operations. An incremental algorithm that optimizes, for instance,

the log-likelihood function must re-estimate the HMM parameters over several iterations

until this function is maximized for D2. The optimization of HMM parameters depends

on the shape and position of the log-likelihood function of HMM(λ2) with respect to

that of HMM(λ1). When an incremental learning technique is employed to train on D2

alone, λ∗1 is the starting point for re-estimating the HMM. If the log-likelihood function of

HMM(λ2) has some local maxima in the proximity of λ∗1, the optimization may remain

trapped in these maxima, and hence does not accommodate D2, providing a similar

model parameter. If λ∗1 was selected according to point (a), the optimization will become

trapped in the local maximum at point (c) instead of approaching λ∗12. This leads to

a knowledge corruption, and a decline in HMM performance. In contrast, training a

new HMM(λ2) on D2 from the start using different initializations may lead to point (d).

As described in subsequent sections, combination of responses from two HMMs selected

according to λ∗1 and λ∗2 exploits their complementary information for a higher overall

level of performance.

4.2.4 Incremental Learning with Ensembles of Classifiers

Multiple classifier systems (MCSs) are based on the combination of several accurate and

diverse base classifiers to improve the overall system accuracy (Brown et al., 2005; Di-

etterich, 2000; Kittler, 1998; Kuncheva, 2004a). MCSs have been employed to overcome

the limitations faced with a single classifier system (Dietterich, 2000; Kuncheva, 2004a;

Polikar, 2006; Tulyakov et al., 2008). According to the no-free-lunch theorem (Wolpert

and Macready, 1997), no algorithm is best for all possible problems. Classifiers may con-

verge to different local optima according to different initializations or different parameter

values. Different classifiers can have different domains of expertise or perceptions of the

same problem. Therefore, combining the predictions of an ensemble of classifiers (EoC)

reduces the risk of selecting a single classifier with poor generalization performance.

166

L
og

-L
ik

el
ih

oo
d

Optimization Space of
one Model Parameter (λ)

(a)

(b)

(c)

HMM(λ1) trained on D1

HMM(λ2) trained on D2

λ∗
1 λ∗

2

HMM(λ12) trained on D1 ∪ D2

λ∗
12

(d)

Figure 4.2 An illustration of the decline in performance that may occur
with batch or on-line estimation of HMM parameters, when learning is

performed incrementally on successive blocks

Furthermore, base classifiers may commit different errors providing an EoC with com-

plementary information that increase system performance. EoCs provide an alternative

solution for incremental learning by combining classifiers trained on each block of data

as it becomes available, instead of selecting and updating a single classifier.

In general, the design of EoCs involves generating a diversified pool of base classifiers,

selecting a subset of members from that pool, and then combining their output predictions

such that the overall accuracy and reliability is improved. A pool can be composed of

either homogeneous or heterogeneous classifiers. Homogeneous classifiers are generated

by the same classifier trained using different manipulations of parameters, training data

(Breiman, 1996; Freund and Schapire, 1996), or input features (Ho, 1998). Heterogeneous

classifiers are generated by training different classifiers on the same data set.

The combination of selected classifiers typically occurs at the score, rank or decision

levels (Kuncheva, 2004a; Tulyakov et al., 2008), and may be static (e.g., sum, prod-

uct, majority voting, etc.), adaptive (e.g., weighted average, weighted voting, etc.) or

trainable (also known as stacked or meta-classifier). Fusion at the score level is most

167

prevalent in literature (Kittler, 1998). Normalization of the scores is typically required

before applying static or adaptive fusion functions, which may not be a trivial task for

heterogeneous classifiers. Trainable approaches, where a global meta-classifier is trained

for fusion on classifiers responses (Kittler, 1998; Roli et al., 2002; Ruta and Gabrys, 2005;

Wolpert, 1992), are prone to overfitting and require a large independent validation set for

estimating the parameters of the combining classifier (Roli et al., 2002; Wolpert, 1992).

Fusion at the rank level is mostly suitable for multi-class classification problems, where

the correct class is expected to appear in the top of the ranked list (Ho et al., 1994;

Van Erp and Schomaker, 2000). Fusion at the decision level exploits the least amount

of information since only class labels are input to the combiner. Compared to the other

fusion methods, it is less investigated in literature. Majority voting (Ruta and Gabrys,

2002), weighted majority voting (Ali and Pazzani, 1996; Littlestone and Warmuth, 1994)

and behavior-knowledge-space (BKS) methods (Raudys and Roli, 2003) are the most

representative decision-level fusing methods. One issue that appears with decision level

fusion is the possibility of ties. The number of base classifiers must therefore be greater

than the number of output classes. BKS only applies to low dimensional problems. More-

over, in order to have an accurate probability estimation, it requires a large independent

training and validation set to design the combination rules.

EoCs may be adapted for incremental learning by generating a new pool of classifiers as

each block of data becomes available, and combining the outputs with those of previously-

generated classifiers with some fusion technique (Kuncheva, 2004b). The main advantage

of using EoCs to implement a learn-and-combine approach is the possibility of avoiding

knowledge corruption as classifiers are trained from the start on a new block of data.

For instance, the adaptive boosting methods employed in AdaBoost (Freund and Schapire,

1996) have been extended for incremental learning from new blocks of data in Learn++

(Polikar et al., 2001). Given a fixed-size training set, AdaBoost iteratively generates a

sequence of weak classifiers each focusing on training observations that have been mis-

classified by the previous classifier. This is achieved by updating a weight distribution

168

over the entire training set according to the performance of the previously-generated clas-

sifier. At each iteration, AdaBoost increases the weights of wrongly classified training

observations and decreases those of correctly classified observations, such that the new

classifier focuses on hard-to-classify observations. The final output is a weighted majority

voting of all generated classifiers.

By contrast, Learn++ generates a number of base classifiers for each block of data that

becomes available. The weight distribution is updated according to the performance

of all previously-generated classifiers, which allows to accommodate previously unseen

classes (Polikar et al., 2001). The outputs are then combined through weighted majority

voting to obtain the final classification. Improvements proposed for this algorithm essen-

tially differ by the combination functions and weight distribution update. In particular,

Learn++ variant for imbalanced data (Muhlbaier et al., 2004) employs a class condi-

tional weight factor for updating classifiers weight and accounting for class imbalance.

This factor is the ratio of the number of observations from a particular class used for

training a classifier, to the number of observations from the same class used for training

all other previously-generated classifiers.

An on-line version of bagging and boosting ensembles have been proposed for learning

from labeled streams of data (Oza and Russell, 2001). The bootstrap sampling and

weight distribution update that are employed for fixed-sized data sets are now simulated

according to Poisson distribution for data streams. For on-line AdaBoost algorithm, the

ensemble is composed of a fixed number of classifiers. Each new observation is presented

sequentially to the ensemble members. A classifier is trained on this observation k times,

where k is drawn from a Poisson distribution parametrized by the observation weight.

When an observation is misclassified its weight increases and hence will be presented more

often to the following classifier in the ensemble. The final output is the weighted majority

vote over all the base classifiers. However, on-line bagging and boosting techniques

consider learning continuously from labeled streams of data.

169

The techniques described above are designed for two- or multi-class classification and

hence require labeled training data sets to compute the errors committed by the base

classifiers and update the weight distribution at each iteration. In HMM-based ADSs,

the HMM detector is a one-class classifier that is trained using the normal system call

data only as described in Sections 4.2.1 and 4.2.2. Therefore, they are not suitable

for ADSs using system call sequences. Some authors however, adopt these techniques

by considering that rare normal system call sequences are anomalous. For instance,

an EoHMMs based on discrete AdaBoost and its on-line version has been applied for

anomaly detection (Chen and Chen, 2009). With this method, an arbitrary threshold is

set according to the log-likelihood output from HMMs trained on the normal system call

behavior, below which normal system call sequences are considered as anomalous. Five

HMMs are trained with the same number of states on fixed-sized data, and then employed

as base detectors in AdaBoost algorithm. When new data becomes available, these

HMMs are updated according to an on-line AdaBoost variant (Oza and Russell, 2001).

Threshold setting is shown to have a significant impact on the detection performance of

the EoHMMs (Chen and Chen, 2009). In fact, rare system call events are normal, if they

are considered anomalous during the design phase, they will generate false alarms during

the testing phase. These rare events may be suspicious if, during operation, they occur

in bursts over a short period of time.

Another specific combination technique for HMMs consists of weight averaging the pa-

rameters of an HMM trained on a newly-acquired block of data with those of a previously-

trained HMMs (Hoang and Hu, 2004). Although this technique may work for left-right

HMMs, it is not suitable for ergodic HMMs as their states are permuted with each dif-

ferent training phase, and hence averaging parameters leads to knowledge corruption.

Furthermore, it is restricted to combining HMMs with the same number of states.

For one- or two-class classification problems, Boolean combination of classifier responses

in the ROC space provides several advantages over related fusion techniques (Khreich

et al., 2010b; Tao and Veldhuis, 2008). It does not require any prior assumption regard-

170

ing the independence of classifiers, in contrast with other fusion functions such as sum,

product or averaging that are based on the independence of classifiers (Kittler, 1998;

Kuncheva, 2002). In addition, normalization of heterogeneous classifiers output scores

is not required, because ROC curves are invariant to monotonic transformation of clas-

sification thresholds (Fawcett, 2004). Boolean combination techniques may therefore be

applied to combine the responses from any crisp or soft homogeneous or heterogeneous

classifiers, or from classifiers trained on different data. Most existing ensemble tech-

niques, especially those proposed for incremental learning, aim at maximizing the system

performance through a single measure of accuracy. This implicitly assumes fixed prior

probabilities and misclassification costs. Furthermore, an arbitrary and fixed threshold

is typically set (implicitly or explicitly) on the output scores of soft classifiers of an en-

semble prior to taking a majority voting decision. In anomaly detection however, prior

class distributions are highly imbalanced and misclassification costs are different and

both may change over time. As detailed in Section 4.3.1, Boolean combination in the

ROC space aims at maximizing the overall convex hull of combinations overall classifiers

decision thresholds, which allows to adapt to changes in prior probabilities and cost of

errors during system operation.

4.3 Learn-and-Combine Approach Using Incremental Boolean Combination

In this section, an adaptive system is proposed for incremental learning of new data over

time using a learn-and-combine approach. As new blocks of data become available, the

system learn new HMMs to evolve a pool of classifiers, and performs incremental Boolean

combination (incrBC) of a diversified subset of HMM responses in the ROC space. This

is achieved by selecting the HMMs, decision thresholds, and Boolean functions such that

the overall EoHMMs performance is maximized.

The main components of the system are illustrated in Figure 4.3 and described in Algo-

rithm 4.1. When a new block of normal training sub-sequences (Dk) becomes available,

a new pool of base HMMs (Pk) is generated according to different number of states and

171

random initializations. (Further details on HMMs training and validation are given in

Section 4.4.2.) Pk is then appended to the previously-generated pool of base HMMs

P = {P1,P2, . . . ,Pk−1}∪Pk, and Dk is discarded. The model management module, de-

scribed in Section 4.3.2, performs model selection and pruning. The selection module

forms the EoHMMs (Ek) considered for operations, by selecting HMMs from the pool

P that most improve the overall system performance according to one of two proposed

model selection algorithms, BCgreedy and BCsearch (see Algorithm 4.3 and 4.4), both of

which depend on the incremental Boolean combination module. The pruning module con-

trols the size of the pool by discarding less accurate HMMs that have not been selected

for some user-defined time interval. To form and EoHMMs, the incremental Boolean

combination module combines the responses from the selected HMMs in the ROC space

using all Boolean functions according to the incrBC algorithm (see Algorithm 4.2 in

Section 4.3.1). The incrBC algorithm also selects and stores the set (S) of decision

thresholds (from each base HMM of the EoHMMs) and Boolean functions that most

improves the overall EoHMMs performance. The HMMs that form the EoHMMs, Ek,

and the set of decision thresholds and Boolean functions, S, are used during operations.

A set of validation data (V) comprised of normal and anomalous sub-sequences, is re-

quired during the design phase for selection of HMMs, decision thresholds, and Boolean

functions. It is managed and input by the system administrator as discussed in Sec-

tion 4.2.2. When manifestations of novel attacks are discovered, relevant anomalous sub-

sequences are then stored to update the validation set. The HMMs, decision thresholds,

and Boolean combinations must then be re-selected to accommodate the new informa-

tion. Furthermore, the system administrator ensures that the blocks of training data

provided for updating the pool of HMMs are clean from intrusions. He is also respon-

sible for selecting and tuning the model management algorithms to trade-off the size of

the pool and EoHMMs against overall system accuracy.

The proposed approach inherits all desirable properties of Boolean combination in the

ROC space as detailed in the following sections. It covers the whole performance range of

172

New block
of normal
training

data

Discard old
training

data

D1

Generation of
pool of HMMs

Dk

Dk−1

Pk: new pool
of HMMs

...

Pk−1 = {λk−1
1 , . . . , λk−1

L }

P :
previously-generated

pool of HMMs

V

Model Management

• incrBC algorithm

Incremental Boolean
Combination

HMM
parameter
estimation

Validation data set
(normal & anomalous)

Attack-free training
data

Forensic information on past
intrusion

Tuning parameters

Ek : EoHMMs

Ek =
{
λi

l ∈ P}1≤i≤k

1≤l≤L

⎧⎪⎨
⎪⎩

λk
1
...

λk
L

⎫⎪⎬
⎪⎭

System administrator

P1 = {λ1
1, . . . , λ

1
L}

O
p
er

at
io

n
al

p
h
as

e

Model Pruning

• Discard HMMs with
low accuracy that are
infrequently selected by
BCgreedy or BCsearch

• BCsearch algo.
• BCgreedy algo.

Model Selection

S : set of decision
thresholds (λi

l, tj)
and Boolean

functions (bf)

S =
{(

λi
l, tj

)
, bf

}
,

λi
l ∈ Ek

D
es

ig
n

p
h
as

e
Figure 4.3 Block diagram of the adaptive system proposed for incrBC of HMMs,

trained from newly-acquired blocks of data Dk, according to the learn-and-combine
approach. It allows for an efficient management of the pool of HMMs and selection

of EoHMMs, decision thresholds, and Boolean functions

false and true positive rates, which allows for a flexible selection of the desired operating

performance. As conditions change, such as prior probabilities and costs of errors, the

overall convex hull of combinations does not change; only the portion of interest. This

change shifts the optimal operating point to another vertex on the composite convex

hull. The corresponding HMMs are then activated, and their responses are combined

according to different decision thresholds and Boolean functions.

4.3.1 Incremental Boolean Combination in the ROC Space

The incremental Boolean combination (incrBC) technique summarized in this section

has been proposed by the authors (Khreich et al., 2010a,b) to combine the responses from

models trained with different number of states and initialization on a fixed-size data set.

In the learn-and-combine approach for incremental learning, it is adapted to combine the

173

Algorithm 4.1: Learn-and-combine approach using incremental Boolean combination
input : Training data blocks D1,D2, . . . ,DK that become available over time (normal

sub-sequences) Labeled validation data set V (normal and anomalous
sub-sequences)

output: Selected HMMs to form the EoHMMs (Ek) of size |Ek| Selected set (S) of
decision thresholds (λil, tj) and Boolean functions, each of size 2 to |Ek| detector

select selection_algo ∈ {BCgreedy,BCsearch} ; // choose the model selection1

algorithm
set counti← 0, ∀λil ∈ P ; // counter for unselected HMMs over time2

set LT ; // lifetime expectancy of models in the pool3

foreach Dk do4

train new pool of HMMs, Pk = {λk1, . . . ,λkL} ; // use different no. states and5

initializations
P ←P ∪Pk ; // add the new pool to previously-learned pools6

switch selection_algo do7

case BCgreedy8

Ek =BCgreedy(P,V) ; // use greedy selection9

(Algorithm 4.3)

case BCsearch10

Ek =BCsearch(P,V) ; // use incremental search11

(Algorithm 4.4)

// both algorithms call the incrBC algorithm (Algorithm 3.1) for
selecting and storing the set of best decision thresholds and Boolean
functions, S = {(λil, tj), bf}, λil ∈ Ek
count(λil)← count(λil)+1, ∀λil ∈ P\Ek ; // increment counter for unselected12

HMMs

if k > LT then13

prune λil : count(λil)> LT ; // discard HMMs that are not selected for LT14

blocks from P

return Ek and S15

responses of HMMs trained with different number of states and initialization, however

using new data blocks that are acquired over time.

A crisp detector outputs a class label while a soft detector assigns scores or probabilities

to the input samples, which can be converted to a crisp detector by setting a decision

threshold on the scores. Given the responses of a crisp detector on a validation set, the

true positive rate (tpr) is the proportion of positives correctly classified over the total

number of positive samples. The false positive rate (fpr) is the proportion of negatives

174

incorrectly classified over the total number of negative samples. A ROC curve is a plot

of tpr against fpr. A crisp detector produces a single data point in the ROC plane,

while a soft detector produces a ROC curve by varying the decision thresholds. For

equal priors and cost of errors, the optimal decision threshold (minimizing overall costs)

corresponds to the vertex that is closest to the upper-left corner of the ROC plane.

Given two operating points, say a and b, in the ROC space, a is defined as superior to b

if fpra ≤ fprb and tpra ≥ tprb. If one ROC curve has all its points superior to those of

another curve, it dominates the latter. If a ROC curve has tprx > fprx for all its points

x then, it is a proper ROC curve.

In practice, the number of decision thresholds is the number of distinct score values

assigned by a soft detector to the validation samples. This number also corresponds to the

number of resulting crisp detectors and to the number of vertices on the empirical ROC

plot. In fact, an empirical ROC plot is obtained by connecting the observed (tpr,fpr)

pairs of a soft detector at each decision threshold. With a finite number of decision

thresholds, an empirical ROC plot is a step-like function which approaches a true curve

as the number of samples, and hence the number of decision thresholds, approaches

infinity. Therefore, it is not necessarily convex and proper. Concavities indicate local

performance that is worse than random behavior and may provide diverse information.

The convex hull of an empirical ROC plot (ROCCH) is the smallest convex set contain-

ing its vertices, i.e., the piece-wise outer envelope connecting only its superior points.

It may be used to combining detectors based on a simple interpolation between their

responses (Provost and Fawcett, 2001; Scott et al., 1998). This approach has been called

the maximum realizable ROC (MRROC) (Scott et al., 1998) since it represents a system

that is equal to, or better than, all the existing systems for all Neyman-Pearson criteria

(Neyman and Pearson, 1933). However, the MRROC discards responses from inferior

detectors which may provide diverse information for an improved performance. Using

Boolean conjunction and disjunction functions to combine the responses of multiple soft

detectors in the ROC space have shown and improved performance over the MRROC

175

(Haker et al., 2005; Tao and Veldhuis, 2008). However, these techniques assume that

the detectors are conditionally independent, and their of ROC curves are convex. These

assumptions are violated in most real-world applications, especially when detectors are

designed using limited and imbalanced training data. Furthermore, the correlation be-

tween soft detector decisions also depends on the threshold selections.

The incrBC technique applies all Boolean functions to combine the responses of multiple

crisp or soft detectors, requires no prior assumptions, and selects the thresholds and

Boolean functions that improve the MRROC (Khreich et al., 2010b). By applying all

Boolean functions to combine the responses of detectors at each corresponding decision

threshold, the incrBC technique implicitly accounts for the effects of correlation among

detectors and accommodates for the concavities in the ROC curves. Indeed, AND and OR

rules will not provide improvements for the inferior points that correspond to concavities.

Other Boolean functions, for instance those that exploit negations of responses, may

however emerge (see Figure 4.4).

The main steps of incrBC are presented in Algorithm 3.1. Given a pool of K HMMs

P = {λ1,λ2, . . . ,λK} having nk, (k= 1, . . . ,K), distinct decision thresholds on a validation

set (V), the incrBC algorithm starts by combining the responses of the first two HMMs

in the pool. Each of the ten Boolean functions is applied to combine the responses of

each decision threshold from the first HMM (λ1, ti), i = 1, . . . ,n1, with the responses of

each decision threshold from the second HMM (λ2, tj), j = 1, . . . ,n2. The fused responses

are then mapped to points (fpr, tpr) in the ROC space and their ROCCH is computed.

Then, incrBC selects the emerging vertices which are superior to the ROCCH of original

HMMs, stores the set (S) of selected decision thresholds from each HMM and Boolean

functions, and updates the ROCCH to include the new emerging vertices. The responses

of previously emerging vertices, resulting from the first two HMMs, are then combined

with the responses of the third HMM and so on, until the last HMM. The incrBC

algorithm outputs the final composite ROCCH for visualization and selection of operating

points (see Figure 4.4). It also stores the selected set of decision thresholds and Boolean

176

Algorithm 4.2: incrBC(λ1,λ2, . . . ,λK ,V): Incremental Boolean combination of HMMs in
ROC space

input : K HMMs (λ1,λ2, . . . ,λK) and a validation set V of size |V|
output: ROCCH of combined HMMs where each vertex is the result of 2 to K combination of

crisp detectors. Each combination selects the best decision thresholds from different
HMMs (λi, tj) and the best Boolean function, which are stored in the set (S)

nk← no. decision thresholds of λk using V ; // no. vertices on ROC(λk) or no. crisp1
detectors
BooleanFunctions←{a∧ b,¬a∧ b,a∧¬b,¬(a∧ b),a∨ b,¬a∨ b,a∨ ¬b,¬(a∨ b),a⊕ b,a≡ b}2

// combine responses from the first two HMMs
compute ROCCH1 of the first two HMMs (λ1 and λ2)3
allocate F an array of size: [2,n1×n2] ; // temporary storage of combination results4
foreach bf ∈BooleanFunctions do5

for i← 1 to n1 do6
R1← (λ1, ti) ; // responses of λ1 at decision threshold ti using V7
for j← 1 to n2 do8
R2← (λ2, tj) ; // responses of λ2 at decision threshold tj using V9
Rc← bf(R1,R2) ; // combine responses using current Boolean function10
compute (tpr,fpr) of Rc using V ; // map combined responses to ROC space (1 pt)11
push (tpr,fpr) onto F12

compute ROCCH2 of all ROC points in F13
nev← number of emerging vertices ; // no. vertices of ROCCH2 superior to ROCCH114
S2←{(λ1, ti),(λ2, tj), bf} // set of selected decision thresholds from each HMM and15
Boolean functions for emerging vertices

// combine responses of each successive HMM with the previously-combined responses
for k← 3 to K do16

allocate F of size: [2,nk×nev]17
foreach bf ∈BooleanFunctions do18

for i← 1 to nev do19
Ri← Sk−1(i) ; // responses from previous combinations20
for j← 1 to nk do21
Rk← (λk, tj)22
Rc← bf(Ri,Rk)23
compute (tpr,fpr) of Rc using V24
push (tpr,fpr) onto F25

compute ROCCHk of all ROC points in F26
nev← number of emerging vertices ; // no. vertices of ROCCHk superior to ROCCHk−127
Sk←{Sk−1(i),(λk, tj), bf} // set of selected subset from previous combinations,28
decision thresholds from the newly-selected HMM, and Boolean functions for
emerging vertices

store Sk, 2≤ k ≤K29
return ROCCHK30

functions (S = {(λi, tj), bf},2 ≤ i ≤ K;1 ≤ j ≤ ni), for each vertex on the composite

ROCCH to be applied during operations.

177

λ1
3

λ1
4

Operational phase

V

Validation
set

Design phase

S2

S3

S4

Final composite ROCCH S = {S2 ∪ S3 ∪ S4}

c33 =
(
c22 ∨ (λ1

4, t3)
)

c32 =
(
c22 ∨ (λ1

4, t2)
)

c31 =
(¬c23 ∧ (λ1

4, t1)
)

c34 = c24

c24 =
(
c17 ∧ (λ1

3, t3)
)

c22 =
(
c12 ∨ (λ1

3, t1)
)

c23 =
(
c13 ∨ (λ1

3, t2)
)

c11 =
(¬(λ1

1, t1) ∧ (λ1
2, t2)

)

c13 =
(
(λ1

1, t2) ∨ (λ1
2, t1)

)

c16 =
(¬(λ1

1, t3) ∨ (λ1
2, t3)

)
c17 =

(
(λ1

1, t4) ∨ (λ1
2, t4)

)

c12 =
(¬(λ1

1, t1) ∧ (λ1
2, t5)

)
tp

r

(λ1
1, t1)

(λ1
2, t1)

(λ1
1, t2)

(λ1
2, t5)

c13

c14
c15

c16

(λ1
1, t5)(λ1

2, t3)

c18

(λ1
1, t4)

(λ1
2, t4)

c17

c11

c12

(λ1
2, t2)

0 1

0

1

fpr0.5

0.
5

c: emerging vertices

c18 =
(
(λ1

1, t5) ∨ (λ1
2, t6)

)

(λ1
1, t3)

(λ1
2, t6)

λ1
1, auc=0.660

λ1
2, auc=0.715

auc=0.831

(λ, t): decision thresholds from λ

c11
c12

c13

c14
c15

c16

c18

c17
c24

c25

c23

c21

c22

(λ1
3, t3)

(λ1
3, t1)

c26

(λ1
3, t2)

0 1

0

1

fpr

tp
r

0.5

0.
5

c18
c24

c25

c21
(λ1

4, t3)

c26

c22

c23c31

c32

c33

(λ1
4, t1)

(λ1
4, t2)

0 1

0

1

fpr

tp
r

0.5

0.
5

λ1
3, auc=0.735

auc=0.890

P1=

λ1
1

λ1
2

CH2,

CH3,

λ1
4, auc=0.707

auc=0.897CH4,

All Boolean functions

tp
r

0 1

0

1

0.5

0
.5

λ1
1

λ1
2

BC(λ1
1, λ1

2)

Each Boolean function

λ1
1 ⊕ λ1

2

¬λ1
1 ∨ λ1

2

λ1
1 ∨ ¬λ1

2

λ1
1 ∧ λ1

2

λ1
1 ∧ ¬λ1

2

λ1
1 ≡ λ1

2

¬λ1
1 ∨ ¬λ1

2

λ1
1 ∨ λ1

2

¬λ1 ∧ ¬λ2

¬λ1
1 ∧ λ1

2

fpr

Original
ROCCH
(CH1)

Composite ROCCH
(CH2)

incrBC(λ1
1, λ1

2)

incrBC(CH2, λ1
3)

incrBC(CH3, λ1
4)

incrBC(λ1
1, λ1

2)

Figure 4.4 An illustration of the steps involved during the design phase of the
incrBC algorithm employed for incremental combination from a pool of four

HMMs P1 = {λ1
1, . . . ,λ

1
4}. Each HMM is trained with different number of states and

initializations on a block (D1) of normal data synthetically generated with Σ = 8
and CRE = 0.3 using the BW algorithm (see Section 4.4 for details on data

generation and HMM training). At each step, the example illustrates the update of
the composite ROCCH (CH) and the selection of the corresponding set (S) of

decision thresholds and Boolean functions for overall improved system performance

During the operation phases applied to incremental learning, the system uses one ver-

tex or the interpolation between a pair of vertices on the facets of the final composite

ROCCH, depending on the desired false alarm rate. Given a tolerable fpr value, the

178

c18

c24

c25
c26

c31

c32

fpr=10%

λ1
4

λ1
3

λ1
1

λ1
2

(λ1
1, t1)

(λ1
2, t5)

(λ1
1, t4)

(λ1
2, t4)(λ1

3, t3)

(λ1
3, t1)

(λ1
4, t3)

0 1

0

1

fpr

tp
r

0.5

0.
5

c33

cop

Final composite ROCCH

cop

Operational phase

Design phase

0.85 × c33 = 0.85 × (((¬(λ1
1, t1) ∧ (λ1

2, t5)
) ∨ (λ1

3, t1)
) ∨ (λ1

4, t3)
)

0.15 × c24 = 0.15 × ((
(λ1

1, t4) ∨ (λ1
2, t4)

) ∧ (λ1
3, t3)

)
S

T

Test set
(λ1

1, t1)

(λ1
2, t5)

(λ1
3, t1)

(λ1
4, t3)

(λ1
1, t4)

(λ1
2, t4)

(λ1
3, t3)

0: normal

1: anomaly

85% of
the time

15% of
the time

(λ1
4, t2)

Figure 4.5 An illustration of the incrBC algorithm during the operational phase.
The example presents the set of decision thresholds and Boolean functions that are

activated given, for instance, a maximum specified fpr of 10% for the system
designed in Figure 4.4. The operational point (cop) that corresponds to fpr = 10%
is located between the vertices c33 and c24 of the composite ROCCH, which can be

achieved by interpolation of responses (Provost and Fawcett, 2001; Scott et al.,
1998). The desired cop is therefore realized by randomly taking the responses from
c33 with probability value of 0.85 and from c24 with probability value of 0.15 . The
decision thresholds and Boolean functions of c33 and c24 are then retrieved from S

and applied for operations

corresponding vertex or pair of vertices (which form an edge intersecting the vertical

line at the specified fpr value) are first located on the ROCCH. The decision thresholds

and Boolean functions, which have been derived and stored during the design phase, are

then extracted and applied during the operational phase (see Figure 4.5). When the

operational conditions change, the optimal operating point can be shifted during oper-

ations to adapt for the changes by activating a different set of decision thresholds and

Boolean functions. If, for instance, c32 (in Figure 4.5) has become the optimal operat-

ing point because of a different cost of errors or a different tolerance in fpr, then cop
can be shifted during operation to c32 =

(((
¬(λ1

1, t1)∧ (λ1
2, t5)

)
∨ (λ1

3, t1)
)
∨ (λ1

4, t2)
)
. The

activated decision thresholds and Boolean functions are then updated accordingly.

During the design phase, the worst-case time and memory complexity for incrBC of a

pool of K HMMs are O(Kn1n2) Boolean operations and O(n1n2) floating point registers,

where nk is the number of distinct decision thresholds of λk on a validation set V . They

179

can be roughly stated as functions of n1 and n2, because the number of emerging vertices

(nev) from each successive combination of the remaining HMMs is typically lower than n1

and n2. During operations, the computational overhead of the activated set of Boolean

functions is lower than that of operating the required number of HMMs. Therefore, the

worst-case time and memory complexity is limited to operating the K HMMs.

By selecting crisp detectors from all available HMMs in the pool, the incrBC algorithm

yields to unnecessarily high computational and storage cost when the pool size grows as

new blocks of data become available. In addition, HMMs are combined according to the

order in which they are stored in the pool. An HMM trained on new data block may

capture different underlying data structure and could replace several previously-selected

HMMs. Model management strategies are therefore required to manage system resources.

4.3.2 Model Management

When batch learning is performed on a fixed-size data set, a fixed number of classifiers

is typically generated. In this case, model management consists in selecting the most

accurate and diverse base classifiers from the pool and, if necessary, pruning less relevant

classifiers from the pool to reduce computational costs. The selected classifiers form

an ensemble to be applied during system operations. Therefore, ensemble selection and

pruning are commonly used interchangeably in related literature (Tsoumakas et al., 2009).

When learning is performed incrementally, the pool size grows as new blocks of data

become available over time. Different ensemble selection and pruning mechanisms are

therefore required. Ensemble selection is performed at each learning stage, when a new

pool of classifiers is generated from a new block of data, and selected classifiers are

deployed for operations. It involves applying some optimization criteria for selection

the of the best ensemble of classifiers from all base classifiers in the pool. Pruning

involves discarding less relevant members of the pool from future combination according

to different criteria. Discarding all unselected classifiers from the pool at each learning

stage decreases the system performance as described in Section 4.3.2.2.

180

4.3.2.1 Model Selection

Ensemble selection techniques are employed to choose a compact ensemble from a large

pool of classifiers to increase accuracy and reduce the computational and storage costs

of systems deployed during operation. A brute-force search for the optimal ensemble of

classifiers results in a combinatorial complexity explosion: the search space comprises

2K possible ensembles for a pool of K classifiers. Therefore, ensemble selection attempts

to select the best ensemble of classifiers from the pool based on different optimization

criteria and selection strategies (Tsoumakas et al., 2009; Ulaş et al., 2009). Typical opti-

mization criteria are ensemble accuracy (Ulaş et al., 2009), cross-entropy (Caruana et al.,

2004), and ROC-based measures (Rokach et al., 2006). Although there is no universal

consensus about the definition and efficiency of diversity measures (Brown et al., 2005),

certain approaches have shown promising results (Banfield et al., 2003; Margineantu and

Dietterich, 1997; Partalas et al., 2008; Rokach et al., 2006). The selection strategies in-

clude ranking-based techniques in which the pool members are ordered according to an

evaluation measure on a validation set, and the top classifiers are then selected to form an

ensemble (Martinez-Munoz et al., 2009). Search-based ensemble selection is an alterna-

tive approach which consists in combining the outputs of classifiers and then selecting the

best performing ensemble evaluated on an independent validation set. A heuristic search

in the space of all possible ensembles is typically performed, while evaluating the collec-

tive merit of selected members (Banfield et al., 2003; Caruana et al., 2004; Margineantu

and Dietterich, 1997; Ruta and Gabrys, 2005). Typically, the selection procedure stops

when a user-defined maximum number of classifiers is reached (Caruana et al., 2004) or

when remaining classifiers provide no further improvement to the ensemble (Ruta and

Gabrys, 2005; Ulaş et al., 2009).

Many ensemble selection approaches have been considered for cost-insensitive applica-

tions with sufficient amount of training data. Few approaches consider cost-sensitive

and limited training data (Fan et al., 2002; Rokach et al., 2006), which are prevalent in

anomaly detection applications. Although the performance measures employed in these

181

cost-sensitive approaches consider the cost of errors and class imbalance, they are ei-

ther computed at a specific decision threshold or averaged over all decision thresholds.

Any change in the operating conditions, such as prior probabilities, cost of errors, and

tolerable fpr values, requires reconsidering the combination and selection process.

The proposed ensemble selection algorithms (BCgreedy and BCsearch), described below,

employ both rank- and search-based selection strategies to optimize the area under the

ROCCH (AUCH). Before applying their selection strategies, they rank all available pool

members in decreasing order of AUCH performance on a validation set. In contrast

with existing techniques, the proposed selection algorithms exploit the monotonicity of

the incrBC algorithm for an early stopping criterion. As show in line 15 and 28 of

Algorithm 3.1, incrBC is bound below by the previous ROCCH, and hence guarantees

a monotonic improvement in AUCH performance. Furthermore, both algorithms allow

for adaptation to changes in prior probabilities and costs of errors by simply shifting

the desired operational point, which activates different HMMs, decision thresholds and

Boolean functions.

As described in Algorithm 4.3, the BCgreedy algorithm employs a greedy search within

the pool of HMMs. First, the HMMs in the pool are ranked in decreasing order of

their AUCH performance on a validation set and the best HMM is selected. Then, the

algorithm starts a cumulative combination of successive HMMs one at the time, selecting

only those that improve the AUCH performance, of a cumulative EoHMMs, over a user-

defined tolerance value. The algorithms stops when the last HMM in the pool is reached.

The worst-case time complexity of this algorithm is O(K logK) for sorting, followed by

O(K) for scanning down the ensemble, resulting in O(K logK) time complexity w.r.t.

the number of Boolean combination of incrBC (see Section 4.3.1).

As described in Algorithm 4.4, the BCsearch algorithm employs an incremental selective

search strategy. It also ranks all HMMs in decreasing order of their AUCH performance

on a validation set and selects the HMM with the largest AUCH value. Then, it combines

182

the selected HMM with each of the remaining HMMs in the pool. The HMM that most

improves the AUCH performance of the EoHMMs, is then selected. The cumulative

EoHMMs are then combined with each of the remaining HMMs in the pool, and the

HMM that provides the largest AUCH improvement to the EoHMMs is selected, and

so on. The algorithm stops when the AUCH improvement of the remaining HMMs is

lower than a user-defined tolerance value, or when all HMMs in the original ensemble

are selected. The worst-case time complexity of this selection algorithm is O(K2) w.r.t.

the number of Boolean operation of incrBC (see Section 4.3.1). However, this is only

attained for a zero tolerance value for which the algorithm selects all models with the

Algorithm 4.3: BCgreedy(P,V): Boolean combination with a greedy selection
input : Pool of HMMs P = {λ1,λ2, . . . ,λK} and a validation set V
output: EoHMMs (E) from the pool P
set tol ; // tolerated improvement in AUCH values1

j← 12

foreach λk ∈ P do3

compute ROC curves and their ROCCHk, using V4

sort HMMs (λ1, . . . ,λK) in descending order of their AUCH(ROCCHk) values5

λj = arg maxk{AUCH(ROCCHk) : λk ∈ P}6

E← λj ; // select HMM with the largest AUCH value7

Sj ← λj ;8

for k← 2 to K do9

ROCCHk = incrBC ((Sj ,λk),V)10

if AUC(ROCCHk)≥AUC(ROCCHj)+ tol) then11

j← j+112

E← E∪λk ; // select the kth HMM13

ROCCHj ←ROCCHk ; // update the convex hull14

if k = 2 then15

Sj ←{(λj , ti),(λk, ti′), bf}16

// set of selected decision thresholds from each HMM and Boolean
functions; derived from incrBC for emerging vertices

else17

Sj ←{Sj−1(i),(λk, ti′), bf}18

// set of selected subset from previous combinations, decision
thresholds from the newly-selected HMM, and Boolean functions;
derived from incrBC for emerging vertices

store Sj , 2≤ j ≤K19

return E20

183

optimum order for combination. In practice, however, depending on the value of the

tolerance, the selected number of models k <K and also the computational time, can be

traded-off as desired.

Algorithm 4.4: BCsearch(P,V): Boolean combination with an incremental selective search
input : Pool of HMMs P = {λ1,λ2, . . . ,λK} and a validation set V
output: EoHMMs (E) from the pool P
set tol ; // tolerated improvement in AUCH values1

foreach λk ∈ P do2

compute ROC curves and their ROCCHk, using V3

sort HMMs (λ1, . . . ,λK) in descending order of their AUCH(ROCCHk) values4

λ1 = arg maxk{AUCH(ROCCHk) : λk ∈ P}5

E← λ1 ; // select HMM with the largest AUCH value6

foreach λk ∈ P\E do // remaining HMMs in P7

ROCCHk=incrBC ((λ1,λk),V)8

λ2 = arg maxk{AUCH(ROCCHk) : λk ∈ P\E}9

E← E∪λ2 ; // select HMM that provides the largest AUCH improvement to E10

ROCCH1←ROCCH2 ; // update the convex hull11

S2←{(λ1, ti),(λ2, ti′), bf} // Set of selected decision thresholds from each12

HMM and Boolean functions; derived from incrBC for emerging vertices
j← 313

repeat14

foreach λk ∈ P\E do15

ROCCHk=incrBC ((Sj−1,λk),V)16

λj = arg maxk{AUCH(ROCCHk) : λk ∈ P\E}17

E← E∪λj18

ROCCHj−1←ROCCHj19

Sj ←{Sj−1(i),(λj , ti′), bf} // Set of selected subset from previous20

combinations, decision thresholds from the newly-selected HMM, and
Boolean functions; derived from incrBC for emerging vertices
j← j+121

until AUCH(ROCCHj)≤AUCH(ROCCHj−1)+ tol ; // no further improvement22

store Sj , 2≤ j ≤K23

return E24

For both ensemble selection algorithms the AUCH improvement is the only user-defined

parameters. If desired, it is also possible to impose a maximum number of HMMs as

a stopping criterion. The performance measure employed to guide the search is not

restricted to AUCH. Other measures such as the partial AUCH or the true positive rate

at a required false positive rate, can be also employed for a region-specific performance.

184

Although these performance measures summarize the ROC space with a single value to

guide the search for potential ensemble members, the final composite ROCCH is always

stored for visualization of the whole range of performance and adaptation of the operating

point to environmental changes.

Figure 4.6 presents an example illustrating the level of performance achieved by incrBC,
BCgreedy, and BCsearch algorithms. In Figure 4.6, all algorithms achieve a compara-
ble ROCCH and AUC performance. However, as shown in the legends, the size of the
EoHMMs obtained by BCsearch is four HMMs compared to seven HMMs selected by
BCgreedy from the pool of eight HMMs, which are all combined by incrBC. For compar-
ison, the selected set of decision thresholds and Boolean functions for the vertices denoted
by C1 and C2 on the ROCCHs of Figure 4.6 are shown below for each algorithms:

incrBC

⎧⎪⎨
⎪⎩
C1 =

((((((
((λ1

1, t1)∨ (λ1
2, t1))∧¬(λ1

3, t1)
)
∨ (λ1

4, t1)
)
∨ (λ2

1, t2)
)
∨ (λ2

2, t2)
)
∧ (λ2

3, t2)
)
∧ (λ2

4, t2)
)

C2 =
((((((

((λ1
1, t1)∨ (λ1

2, t1))∧¬(λ1
3, t1)

)
∨ (λ1

4, t1)
)
∨ (λ2

1, t2)
)
∨ (λ2

2, t2)
)
∧ (λ2

3, t2)
)
∧ (λ2

4, t2)
)

BCgreedy

⎧⎪⎨
⎪⎩
C1 =

(((((
(¬(λ2

3, t1)∧ (λ2
4, t1))∨ (λ1

3, t1)
)
∨¬(λ2

2, t1)
)
∧ (λ1

2, t1)
)
∧¬(λ2

1, t1)
)
∨ (λ1

1, t1)
)

C2 =
(((((

(¬(λ2
3, t1)∧ (λ2

4, t1))∨ (λ1
3, t1)

)
∨¬(λ2

2, t1)
)
∧ (λ1

2, t1)
)
∨ (λ2

1, t2)
)
∨ (λ1

1, t2)
)

BCsearch

⎧⎪⎨
⎪⎩
C1 =

((
(¬(λ2

3, t1)∧ (λ2
2, t1))∨ (λ1

3, t1)
)
∨ (λ2

1, t1)
)

C2 =
((

(¬(λ2
3, t1)∧ (λ2

2, t1))∨ (λ1
3, t2)

)
∨ (λ2

1, t2)
)

This example demonstrates the efficiency of the proposed ensemble selection techniques

in forming compact EoHMMs by exploiting the new information provided from newly-

acquired data while maintaining a high level of performance. More extensive simulations

and detailed discussions are presented in Section 4.5.

4.3.2.2 Model Pruning

Pruning less relevant models is essential to restrict the pool size with incremental learning

from growing indefinitely as new blocks of data become available. As described in the

previous subsection, BCgreedy and BCsearch algorithms are designed to form the most

compact EoHMMs from a pool P of HMMs. According to the learn-and-combine ap-

proach new pools of HMMs are accumulated from successive blocks of data. When the

185

number of data blocks increases over time, an increasingly large storage space is required

(λ2
3, t1)

0 .5 1

0

.5

1

(λ1
4, t1)

(λ2
2, t1)

(λ2
4, t1)

(λ1
1, t1)

(λ2
1, t1)

(λ1
3, t1)

tp
r

tpr

λ1
2, auc = 0.715

λ1
1, auc = 0.660

λ1
3, auc = 0.735

λ1
4, auc = 0.707

λ2
1, auc = 0.684

λ2
2, auc = 0.719

λ2
4, auc = 0.748

λ2
3, auc = 0.749

auc = 0.897
auc = 0.953

(λ1
2, t1)

incrBC(P) incrBC(P1)

(λ2
1, t2)

(λ2
2, t2) (λ2

3, t2)
(λ2

4, t2)

C2

C1

CH1,
CH,

(a) incrBC
0 .5 1

0

.5

1

tp
r

tpr

λ2
3, auc = 0.749

λ2
4, auc = 0.748

λ1
3, auc = 0.735

λ2
2, auc = 0.719

λ1
2, auc = 0.715

λ2
1, auc = 0.684

λ1
1, auc = 0.660

auc = 0.950

(λ2
3, t1)

(λ1
1, t1)

(λ2
1, t1)

(λ1
3, t1)

(λ2
4, t1)

(λ1
2, t1) (λ2

2, t1)C1

C2

(λ2
1, t2)

(λ1
1, t2)

CH,

BCgreedy(P)

(b) BCgreedy

0 .5 1

0

.5

1

tp
r

tpr

(λ2
1, t1)

(λ2
3, t1)

(λ1
3, t1)

(λ1
3, t2)

(λ2
1, t2)

(λ2
2, t1)

C1

C2

λ2
3, auc = 0.749

λ2
2, auc = 0.719

λ1
3, auc = 0.735

λ2
1, auc = 0.684

auc = 0.950CH,

BCsearch(P)

(c) BCsearch

Figure 4.6 A comparison of the composite ROCCH (CH) and AUC performance achieved
with the HMMs selected according to the BCgreedy and BCsearch algorithms. Suppose

that a new pool of four HMMs P2 = {λ2
1, . . . ,λ

2
4} is generated from a new block of training

data (D2), and appended to the previously-generated pool, P1 = {λ1
1, . . . ,λ

1
4}, in the

example presented in Section 4.3.1 (Figure 4.4). The incrBC algorithm combines all
available HMMs in P = {λ1

1, . . . ,λ
1
4,λ

2
1, . . . ,λ

2
4}, according to their order of generation and

storage, while BCgreedy and BCsearch start by ranking the members of P according to
AUC values and then apply their ensemble selection strategies

186

for storing these HMMs. In addition, the time complexity of BCgreedy and BCsearch
algorithms also increases over time. Discarding unselected classifiers immediately from

the pool yields to knowledge corruption and hence to a decline system performance. Al-

though these classifiers did not provide any improvement to the cumulative EoHMMs,

they may provide diverse information to the newly-generated pool of HMMs, which have

different view of the data, to increase system performance. One solution to this issue

is to discard repeatedly unselected HMMs over time. A counter is therefore assigned

to each HMM in the pool indicating the number of blocks for which an HMM was not

selected as an ensemble member (see Algorithm 4.1). An HMM is then pruned from the

pool, according to a user-defined life time (LT) expectancy value of unselected models.

For instance, with an LT = 3 all HMMs that have not been selected after receiving three

blocks of data, as indicated by their counters, are discarded from the pool.

4.4 Experimental Methodology

4.4.1 Data Sets

The experiments are conducted on both synthetically generated data and sendmail data

from the University of New Mexico (UNM) data sets3. The UNM data sets are commonly

used for benchmarking anomaly detections based on system calls sequences (Warrender

et al., 1999). In related work, intrusive sequences are usually labeled by comparing normal

sequences, using the Sequence Time-Delay Embedding (STIDE) matching technique.

This labeling process considers STIDE responses as the ground truth, and leads to a

biased evaluation and comparison of techniques, which depends on both training data

size and detector window size. To confirm the results on system calls data from real

processes, the same labeling strategy is used in this work. However fewer sequences are

used to train the HMMs to alleviate the bias. Therefore, STIDE is first trained on all the

available normal data, and then used to label the corresponding sub-sequences from the

ten sequences available for testing. The resulting labeled sub-sequences are concatenated,
3http://www.cs.unm.edu/~immsec/systemcalls.htm

187

then divided into blocks of equal sizes, one for validation and the other for testing. During

the experiments, smaller blocks of normal data (100 to 1,000 sub-sequences) are used for

training the HMMs as normal system call observations are very redundant. In spite of

labeling issues, redundant training data, and unrepresentative test data, UNM sendmail

data set is the mostly used in literature due to limited publicly available system call data

sets.

The need to overcome issues encountered when using real-world data for anomaly-based

HIDS (incomplete data for training and labeling) has lead to the implementation of a

synthetic data generation platform for proof-of-concept simulations. It is intended to

provide normal data for training and labeled data (normal and anomalous) for testing.

This is done by simulating different processes with various complexities then injecting

anomalies in known locations. The data generator is based on the Conditional Relative

Entropy (CRE) of a source; it is closely related to the work of Tan and Maxion (Tan and

Maxion, 2003). The CRE is defined as the conditional entropy divided by the maximum

entropy (MaxEnt) of that source, which gives an irregularity index to the generated data.

For two random variables x and y the CRE is given by CRE = −
∑
x p(x)

∑
y p(y|x) logp(y|x)

MaxEnt ,

where for an alphabet of size Σ symbols, MaxEnt = −Σlog(1/Σ) is the entropy of a

theoretical source in which all symbols are equiprobale. It normalizes the conditional

entropy values between CRE = 0 (perfect regularity) and CRE = 1 (complete irregularity

or random). In a sequence of system calls, the conditional probability, p(y | x), represents

the probability of the next system call given the current one. It can be represented

as the columns and rows (respectively) of a Markov Model with the transition matrix

M = {aij}, where aij = p(St+1 = j | St = i) is the transition probability from state i at

time t to state j at time t+ 1. Accordingly, for a specific alphabet size Σ and CRE

value, a Markov chain is first constructed, then used as a generative model for normal

data. This Markov chain is also used for labeling injected anomalies as described below.

Let an anomalous event be defined as a surprising event which does not belong to the

process normal pattern. This type of event may be a foreign-symbol anomaly sequence

188

that contains symbols not included in the process normal alphabet, a foreign n-gram

anomaly sequence that contains n-grams not present in the process normal data, or a

rare n-gram anomaly sequence that contains n-grams that are infrequent in the process

normal data and occurs in burst during the test4.

Generating training data consists of constructing Markov transition matrices for an al-

phabet of size Σ symbols with the desired irregularity index (CRE) for the normal

sequences. The normal data sequence with the desired length is then produced with the

Markov chain, and segmented using a sliding window (shift one) of a fixed size, DW .

To produce the anomalous data, a random sequence (CRE = 1) is generated, using the

same alphabet size Σ, and segmented into sub-sequences of a desired length using a slid-

ing window with a fixed size of AS. Then, the original generative Markov chain is used to

compute the likelihood of each sub-sequence. If the likelihood is lower than a threshold it

is labeled as anomaly. The threshold is set to (min(aij))AS−1,∀i,j , the minimal value in

the Markov transition matrix to the power (AS−1), which is the number of symbol tran-

sitions in the sequence of size AS. This ensures that the anomalous sequences of size AS

are not associated with the process normal behavior, and hence foreign n-gram anomalies

are collected. The trivial case of foreign-symbol anomaly is disregarded since it is easy

to be detected. Rare n-gram anomalies are not considered since we seek to investigate

the performance at the detection level, and such kind of anomalies are accounted for at

a higher level by computing the frequency of rare events over a local region. Finally, to

create the testing data another normal sequence is generated, segmented and labeled as

normal. The collected anomalies of the same length are then injected into this sequence

at random according to a mixing ratio.

4.4.2 Experimental Protocol

The experiments conducted in this chapter using the data generator simulate a simple

process, with Σ = 8 and CRE = 0.3 and a more complex process, with Σ = 50 and
4This is in contrast with other work which consider rare event as anomalies. Rare events are normal,

however they may be suspicious if they occur in high frequency over a short period of time.

189

CRE = 0.4. The sizes of injected anomalies are assumed equal to the detector window

sizes AS =DW = 4. For both scenarios, the presented results are for validation and test

sets that comprise 75% of normal and 25% of anomalous data. Although not show in this

chapter, various experiments have been conducted using different values of AS and DW ,

and different ratios of normal to anomalous data. These experiments produced similar

results and hence the discussion presented in the next section hold.

Figure 4.7 illustrates the steps involved for estimating HMM parameters. Given the first

block of training data D1, different discrete-time ergodic HMMs are trained with various

number of hidden states N = [Nmin, . . . ,Nmax] using the 10-fold cross validation (10-

FCV). The training block D1, which only comprises normal sub-sequences, is randomly

partitioned into K = 10 sub-blocks of equal size. For each fold k, each of the learning

techniques described below is used to estimate HMM parameters using K−1 sub-blocks.

The Forward algorithm is then used to evaluate the log-likelihood on the remaining

sub-block, which is used as a stopping criterion to reduce the overfitting effects. The

training process is repeated ten times using a different random initialization to avoid

local maxima, which provides 100 ROC curves for each N value. Finally, the model that

gives the highest area under its convex hull on a validation set (V) comprising normal

and anomalous sub-sequences is selected, which results an HMM for each N value.

Figure 4.8 presents HMM parameter estimation according to each learning technique

from successive blocks of data for each N value. When the second training block D2 be-

comes available, the batch Baum-Welch (BBW) algorithm discards the previously learned

HMMs and restarts the training procedure with all cumulative data (D1∪D2), while the

Baum-Welch (BW) algorithm restarts the training using D2 only providing HMMs for

incremental combination according to the incrBC algorithm. The on-line BW (OBW)

and incremental BW (IBW) algorithms resume the training from the previously-learned

HMMs (λ1
N) using only the current block (D2). The OBW algorithm re-estimates HMM

parameters based on each sub-sequence without iterations, while the IBW algorithm re-

iterates on D2 and integrates the new information with previously-learned model at each

190

λk,1
N

λk,10
N

fpr

tp
r

λNmin

λNmax

Highest AUCH
value over the
10 × 10 cross-
validations and
initializations

1
0
-f
o
ld

c
ro

ss
v
a
li
d
a
ti

o
n Stopping

criterion

Best HMMs

Temporary
HMMs

Validation set (V)

Normal & anomalous
sub-sequences

D1: Normal
sub-sequences

DW

AS

For k = 1, . . . 10
folds

For i = 1, . . . , 10
random initializations

For N = Nmin, . . . , Nmax

Evaluate on
remaining fold

(Forward algorithm)

BBW, BW, OBW, IBW

Train on k − 1 folds:

iterations

lo
g
-l
ik

el
ih

o
o
d Train

Valid.

Best

Figure 4.7 Overall steps involved to estimate HMM parameters and select HMMs
with the highest AUCH for each number of states from the first block (D1) of

normal data, using 10-FCV and ten random initializations

iteration, until the stopping criteria are met (see Appendix III and Khreich et al., 2009a).

The area under the ROC curve (AUC), has been largely suggested as a robust scalar

summary of classifiers performance (Huang and Ling, 2005; Provost and Fawcett, 2001).

The AUC assesses ranking in terms of class separation – it evaluates how well a classifier

is able to sort its predictions according to the confidence they are assigned. For instance,

with an AUC = 1 all positives are ranked higher than negatives indicating a perfect

discrimination between classes. A random classifier has an AUC = 0.5 that is both

classes are ranked at random. If the AUC or the partial AUC (Walter, 2005) are not

significantly different, the shape of the curves might need to be looked at. It may also

be useful to observe the tpr for a fixed fpr of particular interest. Since the MRROC

191

D1Normal data blocks: D2 Time

Validation
set

Normal
&

Anomalous

V
λ0

N BBW

λ1
N

BBW

λ(iter)

D1

λ(iter)

D1 ∪ D2
λ2

N

λ0
N

BW BW

λ(iter)

D1

λ(iter)

D2

λ0
N

λ1
N

λ0
N

OBW OBWλ0
N

λ1
N

D1 D2

λ(iter)

IBW

D1

IBW

λ(iter)

D2

λ0
N

λ1
N

λ2
N

λ2
N

λ2
N

Figure 4.8 An illustration of HMM parameter estimation according to each learning
technique (BBW, BW, OBW, and IBW) when subsequent blocks of observation

sub-sequences (D1,D2,D3, . . .) become available

can be applied to any ROC curve, the performance in all experiments are measured with

reference to the ROCCH, including the area under the convex hull (AUCH) and the tpr

at fpr = 0.1. When working with the synthetic data, the whole procedure is replicated

ten times with different training, validation and testing sets, and the median results

are presented along with the lower and upper quartiles to provide statistical confidence

intervals.

4.5 Simulation Results

The first subsection presents the performance of the proposed learn-and-combine ap-

proach for incremental learning of new data without employing a model management

strategy. In this case, a pool of HMMs for a new block of training data is combined

with all previously-generated HMMs according to the incrBC algorithm. The second

192

subsection shows the impact on performance of the ensemble selection algorithms and of

the pruning strategies for limiting the pool size.

4.5.1 Evaluation of the Learn-and-Combine Approach:

A. HMMs Trained with a Fixed Number of States on Successive Blocks of

Data.

The first experiment involves ergodic HMMs trained with N = 6 states on ten blocks of

data. The training, validation and testing data are generated synthetically as described

in Section 4.4.1, with Σ = 8 and CRE = 0.3. Each training block Dk (k = 1, . . . ,10)

comprises 50 normal sub-sequences, each of size DW = 4. Each validation (V) and

test (T) set comprises 200 sub-sequences, each of size AS = 4. In both data sets, the

ratio of normal to anomalous sub-sequences is 4 : 1. The training and validation of

HMMs follow the methodology described in Section 4.4.2. For each block Dk, a pool

Pk is obtained by applying the BW algorithm to Dk using 10-FCV and ten different

random initializations, and selecting the HMM (λkN=6) that gives the highest AUCH on

V (see Figure 4.7). Pk is then appended to a pool P (P ←P ∪Pk). After receiving the

last block of data, the pool P =
{
λ1
N=6, . . . ,λ

10
N=6

}
of size |P| = 10 HMMs is provided

for incremental combination according to the incrBC algorithm. The reference BBW

follows the same training procedure but with cumulative blocks of data, and both OBW

and IBW algorithms resume the training from the previously-learned HMMs using only

the current block of data (see Figure 4.8). Figure 4.9 compares the median AUCH

performance (Figure 4.9a) and the median tpr values at fpr = 0.1 (Figure 4.9b) as well

as their lower and upper quartiles over ten replications for each learning technique. The

performance obtained with BBW, OBW and IBW algorithms are compared to that of the

incrBC algorithm combining the responses of the HMMs in P , incrementally, over the

ten blocks of data. The performance achieved by combining the outputs of the HMMs in

P , over the ten blocks of data, with the static median (MED) and majority vote (VOTE)

fusion functions are also provided for reference.

193

A
U
C
H

Number of training blocks
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a)

Number of training blocks

tp
r

at
f
p
r

=
0.

1

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)
BBW OBW IBW MEDall N V OTEall NincrBC

Figure 4.9 Results for synthetically generated data with Σ = 8 and CRE = 0.3. The
HMMs are trained according to each technique with N = 6 states for each block of

data providing a pool of size |P|= 1,2, . . . ,10 HMMs. Error bars are lower and
upper quartiles over ten replications

As shown in Figure 4.9, the learn-and-combine approach using the incrBC algorithm

provides the highest level of performance (with the lowest variances) among all incre-

mental learning techniques over the whole range of results. Performance is significantly

higher than that of the reference BBW, especially when provided with limited training

data, as shown in the performance achieved with the first few blocks. The level of perfor-

mance provided by the static MED and VOTE combiners is lower (with higher variances)

versus other techniques, and oscillates around their initial values. Not surprisingly, the

OBW algorithm has achieved the worst level of performance as one pass over a limited

data is insufficient to capture its underlying structure. In contrast, the IBW algorithm

has provided a higher level of performance than that of OBW as it iterates over each

block and employs a fixed learning rate to integrate the newly-acquired information into

HMM parameters at each iteration (see Appendix III).

194

B. HMMs Trained with Different Number of States on Successive Blocks of

Data.

In order to investigate the effects of the number of states on the performance of each

technique, the previous experiment is conducted with a number of states ranging from

N = 4 to 12. For each N value, a pool PN is obtained by applying the BW algorithm

to each block Dk using 10-FCV and ten different random initializations, and selecting

the HMM (λkN) that gives the highest AUCH on V (see Figure 4.7 and 4.8). After

receiving the last block of data, nine pools are generated, a pool PN =
{
λ1
N , . . . ,λ

10
N

}
for each state value N = 4, . . . ,12, each of size |PN | = 10 HMMs. The responses of

HMMs in each pool PN are incrementally combined using the incrBC algorithm over

each block. The number of states that achieved the highest average level of performance

on each block of data is selected. The same procedure is also applied for BBW, OBW

and IBW algorithms (see Figure 4.7 and 4.8). In addition, the learn-and-combine ap-

proach is employed to incrementally combine the HMMs trained using the whole range

of states over the ten blocks. The nine pools are therefore concatenated into one pool

P =
{
λ1
N=4, . . .λ

1
N=12; . . . ;λ10

N=4, . . .λ
10
N=12

}
of size |P| = 90 HMMs, and incrementally

combined according to the incrBC algorithm over all the successive blocks (incrBCallN).

The HMMs in P are also combined according to the median (MEDallN) and majority

vote (V OTEallN) functions for comparison. Figure 4.10 presents the median results of

the experiments as well as their lower and upper quartiles over ten replications for each

learning technique. For BBW, OBW, IBW, and incrBC technique, the number of states

that achieved the highest average level of performance on each block of data is indicated

with each median value.

As shown in Figure 4.10, the best number of states varies from one block to the next

and different among all techniques. Therefore, combination of HMMs each trained with

different number of states and random initializations may increase the ensemble diversity

and improve system performance. This is clearly seen in the performance achieved with

incrBCallN , which is significantly higher than all other techniques. The previous obser-

195

vations hold true for the remaining techniques. In fact, to obtain the number of states

which provides the best performance for each learning techniques on each data block,

the HMMs are trained and evaluated with each N values according to different random

initializations. Instead of selecting the single “best” HMM from the pool, incrBCallN
combines all HMMs with a minimal overhead. As expected, the level of performance

achieved by the learning algorithms increases when provided with more training blocks.

Although incrBC and incrBCallN algorithms are still capable of achieving the highest

level of performance, the increased performance over other techniques is relatively lower,

as the combined HMMs become more positively correlated.

A
U
C
H

Number of training blocks

610988666

6

8

12101099
10

106
8

8

1110
68

6
9

1199

8

12
10

4

7

12

74
4

411

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0.5

0.6

0.7

0.8

0.9

1

(a)

Number of training blocks

6109676
66

6

6

tp
r

at
f
p
r

=
0.

1
11

9676
76

6

8

6

1010
9109

9
9

99

6

11
4

10
7

127114
4

7

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0

0.2

0.4

0.6

0.8

1

(b)
BBW OBW IBW incrBC incrBCall N MEDall N V OTEall N

Figure 4.10 Results for synthetically generated data with Σ = 8 and CRE = 0.3.
The HMMs are trained according to each technique with nine different states

(N = 4,5, . . . ,12) for each block of data providing a pool of size |P|= 9,18, . . . ,90
HMMs. Numbers above points are the state values that achieved the highest
average level of performance on each block. Error bars are lower and upper

quartiles over ten replications

The previous results are also confirmed on the more complex synthetic data in Figure 4.11

and on sendmail data in Figure 4.12. The training and validation of the ergodic HMMs

with 20 different number of states (N = 5,10, . . . ,100), is carried out according to the

methodology described in Section 4.4. For each of the ten data blocks, 20 HMMs are

196

generated and appended to the pool, which gives a pool of size |P| = 20,40, . . . ,200

HMMs. For each replication of the synthetic data, the training is conducted on ten

successive blocks each comprising 500 sub-sequences of length DW = 4 symbols, the

validation set V comprises 2,000 sub-sequences and the test set T comprises 5,000 sub-

sequences. For sendmail data, the training is conducted on ten successive blocks each

comprising 100 sub-sequences of lengthDW = 4 symbols, each V and T comprise 450 sub-

sequences. In both cases, the anomaly size is AS = 4 symbols and the ratio of normal

to anomalous sequences is 4 : 1. Again, the incremental learn-and-combine approach

provides a significantly higher level of performance than the BBW, OBW, IBW, MED

and VOTE techniques.

V OTEall N

MEDall N

incrBCall N

incrBC

IBW

OBW

BBW

A
U
C
H

Number of training blocks

9090

75
7575

95
90

95

95

35

65
100

50
2540

20

25

55

50

35

80
95

6585
95

30

65
65

35

35
75606550555555

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

0.5

0.6

0.7

0.8

0.9

1

(a)

Number of training blocks

95
65

7090
90

90
90

95

5

35

tp
r

at
f
p
r

=
0.

1 50

25

4525

25

20
25

35
20

35

80

85
85

85

3030

25
30

35

35 806055555555

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

Figure 4.11 Results for synthetically generated data with Σ = 50 and CRE = 0.4.
The HMMs are trained according to each technique with 20 different states

(N = 5,10, . . . ,100) for each block of data providing a pool of size
|P|= 20,40, . . . ,200 HMMs. Numbers above points are the state values that

achieved the highest average level of performance on each block. Error bars are
lower and upper quartiles over ten replications

The level of performance achieved by applying the learn-and-combine approach to HMMs

trained on each newly-acquired block of data always provide the highest overall accuracy.

In particular, the results have shown that it provides a higher level of performance than

197

A
U
C
H

Number of training blocks

35353535

100

50

15

5
5

5

70
505595

75

15

205

60

5

30

404040

100

206020

95

5

25

5
10

10

5

10

15

5
5

10

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a)

V OTEall N

MEDallN

incrBCallN

incrBC

IBW

OBW

BBW

Number of training blocks

100
253045

45
40

45

75
5

50

tp
r

at
f
p
r

=
0.

1

35

408060

85

570595

50

40
4040

3555

80

100

95

80

50

5

5
15

5

5

5

35
15

1025

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Figure 4.12 Results for sendmail data. The HMMs are trained according to each
technique with 20 different states (N = 5,10, . . . ,100) for each block of data

providing a pool of size |P|= 20,40, . . . ,200 HMMs. Numbers above points are the
state values that achieved the highest level of performance on each block

the reference BBW, especially when provided with limited data. This stems from the

capabilities of the incrBC algorithm in effectively exploiting the diverse and comple-

mentary information provided from the pool of HMMs trained with different number of

states and different initializations, and from the newly-acquired data. In fact, BW train-

ing optimizes HMM parameters locally, which results in converging to different local

maxima. Furthermore, HMMs trained with a different number of states allow for captur-

ing different structures of the underlying data. In addition, the newly-acquired blocks of

training data provide different views of the true underlying distribution. According to the

bias-variance decomposition (Breiman, 1996; Domingos, 2000), segmenting the training

data introduces bias and decreases the generalization ability of the individual classifiers.

However, this increases the variances among classifiers trained on each data block. An

increased generalization ability is therefore achieved by combining the outputs of those

classifiers and hence improved level of performance.

198

The MED and VOTE fusion functions have shown incapable of increasing the level of

performance compared to the incrBC technique. This reflects their inabilities to ef-

fectively exploit the information provided from the validation set. The MED function

directly combines HMMs likelihood values for each sub-sequence in the test, while VOTE

considers the crisp decisions from HMMs at optimal operating thresholds or equivalently

at equal error rates. In contrast, the incrBC algorithm applies ten Boolean functions to

the crisp decisions provided by each threshold from the first HMM to those provided by

the second HMM, and then selects the decision thresholds and Boolean functions that

improve the overall ROCCH of the validation set V . Shifting the decision thresholds

for each HMM in the ensemble before combining their responses has shown to largely

increase the diversity of the ensemble. The incrBC algorithm is effectively designed

to take advantage from these threshold-based complementary information and to select

those that most improve the level of performance.

4.5.2 Evaluation of Model Management Strategies:

A. Model Selection.

In the previously conducted experiments, using the synthetic (Σ = 50 and CRE = 0.4)

and sendmail data sets, the pool P comprised 20 HMMs for each data block (an HMM

for each number of states N = 5,10, . . . ,100), yielding a pool of size |P| = 200 HMMs

after receiving the ten blocks of data. This is also the size of the EoHMMs (|E| =
20,40, . . . ,200 HMMs), since for each block Dk, all available HMMs in P were selected

and incrementally combined according to the learn-and-combine approach (incrBCallN).

Figure 4.13 presents the results of the combined EoHMMs previously considered using

the synthetically generated data with Σ = 50 and CRE = 0.4. These results belong to

the first replication of Figure 4.11. AUCH performance of the incrBCallN that combines

all available HMMs from the pool is compared to that of the proposed ensemble selection

algorithms, BCgreedy (Algorithm 4.3) and BCsearch (Algorithm 4.4). For each block,

the size of the EoHMMs selected according to each technique is shown on the respective

199

curves of the figure. The performance of the BBW, with the selected (best) state value

at each block, is also shown for reference.

BCsearch

BCgreedy

incrBCall N

BBW

A
U
C
H

Number of training blocks

200
↓180

↓

160
↓

140
↓

120
↓

100
↓80

↓

60
↓40

↓

20
↓

7
↘

7
↘6

↘

7
↘

7
↘

7
↘8

↘6
↘

7
↘

3
↘

N=65

N=50
N=10

N=25N=35

N=55
N=40

N=50

N=15

N=45

12↖14↖13↖12↖13↖14↖

12↖14↖
13↖

10↖

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) tolerance= 0.01

BCsearch

BCgreedy

incrBCall N

BBW

A
U
C
H

Number of training blocks

22
↘

20
↘

23
↘

21
↘

21
↘

21
↘

21
↘

23
↘

19
↘

12
↘

N=65

N=50
N=10

N=25N=35

N=55
N=40

N=50

N=15

N=45

60↖
64↖57↖55↖56↖47↖

41↖43↖
30↖

18↖

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) tolerance= 0.001

Figure 4.13 Ensemble selection results for synthetically generated data with Σ = 50
and CRE = 0.4. These results are for the first replication of Figure 4.11. For each
block, the values on the arrows represent the size of the EoHMMs (|E|) selected by

each technique from the pool of size |P|= 20,40, . . . ,200 HMMs

D1

N = 5
N = 10
N = 15
N = 20
N = 25
N = 30
N = 35
N = 40
N = 45
N = 50
N = 55
N = 60
N = 65
N = 70
N = 75
N = 80
N = 85
N = 90
N = 95

N = 100

D2 D3 D4

λ
D

1
λ

D
2

D5

λ
D

1

λ
D

1
λ

D
2

λ
D

3

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5

D6 D7

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

9

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

9
λ

D
1
0

D8 D9 D10D10

�

�

� � �

�
�

�

�

�

�

�

�

�

�

��

�

�

Figure 4.14 Representation of the HMMs selected in Figure 4.13a with the
presentation of each new block of data according to the BCgreedy algorithm with
tolerance= 0.01. HMMs trained on different blocks are presented with a different

symbol. |P|= 20,40, . . . ,200 HMMs indicated by the grid on the figure

200

D1

N = 5
N = 10
N = 15
N = 20
N = 25
N = 30
N = 35
N = 40
N = 45
N = 50
N = 55
N = 60
N = 65
N = 70
N = 75
N = 80
N = 85
N = 90
N = 95

N = 100

D2 D3 D4
λ

D
1

λ
D

2
D5

λ
D

1

λ
D

1
λ

D
2

λ
D

3

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5

D6 D7

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

9

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

9
λ

D
1
0

D8 D9 D10D10

�

�

�

�

�

�

Figure 4.15 Representation of the HMMs selected in Figure 4.13a with the
presentation of each new block of data according to the BCsearch algorithm with
tolerance= 0.01. HMMs trained on different blocks are presented with a different

symbol. |P|= 20,40, . . . ,200 HMMs indicated by the grid on the figure

Figure 4.13a, presents the results of the BCgreedy and BCsearch algorithms for a tolerated

improvement value of 0.01 between the AUCH values. Both BCgreedy and BCsearch are

capable of maintaining a slightly lower level of AUCH performance than that of the

incrBCallN algorithm. However, for each block, the size of the selected EoHMMs (|E|)
is largely reduced compared with the original pool size (|P|= 20,40, . . . ,200 HMMs). The

BCgreedy algorithm selects ensembles of sizes |E| = 10 to 14 HMMs (see Figure 4.14),

while BCsearch selects ensembles of sizes |E| = 3 to 8 HMMs (see Figure 4.15). When

the number of blocks increases, the number of the selected HMMs according to both

algorithms remains almost stable. In particular, at the 10th block of data, BCgreedy selects

an ensemble of size |E| = 12 HMMs, while BCsearch selects an ensemble of size |E| = 7

from the generated pool of size |P| = 200 HMMs, and even provides a slight increase

in AUCH performance over that of incrBCallN . This indicates that both BCgreedy and

BCsearch are effective in exploiting the complimentary information provided from the

new blocks of data.

As expected, the incremental search strategy employed within the BCsearch algorithm

is most effective for reducing the ensemble sizes while maintaining or improving the

overall performance. The selection strategy employed withing the BCgreedy algorithm

201

BCsearch

BCgreedy

incrBCall N

BBW

A
U
C
H

Number of training blocks

200

↓

180

↓

160

↓

140

↓
120

↓
100

↓80

↓60

↓
40

↓

20

↓

12
↘9

↘
8
↘

8
↘

9
↘8

↘9
↘10

↘8
↘

5
↘

N=70
N=50N=55N=95

N=75

N=15

N=20N= 5N=60

N= 5

21
↖

20
↖

21
↖

19
↖

16
↖

18
↖

16
↖

12
↖

10
↖

7
↖

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) tolerance= 0.003

BCsearch

BCgreedy

incrBCall N

BBW

A
U
C
H

Number of training blocks

31
↘

32
↘

32
↘

33
↘

22
↘18

↘20
↘21

↘19
↘

12
↘

N=70
N=50N=55N=95

N=75

N=15

N=20N= 5N=60

N= 5

84
↖

78
↖

64
↖

63
↖

47
↖

45
↖

38
↖

32
↖

27
↖

18
↖

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) tolerance= 0.0001

Figure 4.16 Ensemble selection results for sendmail data of Figure 4.12. For each
block, the values on the arrows represent the size of the EoHMMs (|E|) selected by

each technique from P of size |P|= 20,40, . . . ,200 HMMs

D1

N = 5
N = 10
N = 15
N = 20
N = 25
N = 30
N = 35
N = 40
N = 45
N = 50
N = 55
N = 60
N = 65
N = 70
N = 75
N = 80
N = 85
N = 90
N = 95

N = 100

D2 D3 D4

λ
D

1
λ

D
2

D5

λ
D

1

λ
D

1
λ

D
2

λ
D

3

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5

D6 D7

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

9

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

9
λ

D
1
0

D8 D9 D10D10

�
�

�

�

�

�
�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�
�

�

�
�
�

�

�

�

�

�

�
�

�

�
�

�

�
�
�

�

�

Figure 4.17 Representation of the HMMs selected in Figure 4.16a with the
presentation of each new block of data according to the BCgreedy algorithm with
tolerance= 0.003. HMMs trained on different blocks are presented with a different

symbol. |P|= 20,40, . . .200 HMMs indicated by the grid on the figure

is more conservative than that of the BCsearch (see Figure 4.14 and 4.15). BCgreedy
tends to select and conserve older models due to its linear scanning and selection, while

the incremental search strategy of BCsearch exploits further information by exploring

the benefit achieved after combining each new HMM with the cumulative EoHMMs. In

202

D1

N = 5
N = 10
N = 15
N = 20
N = 25
N = 30
N = 35
N = 40
N = 45
N = 50
N = 55
N = 60
N = 65
N = 70
N = 75
N = 80
N = 85
N = 90
N = 95

N = 100

D2 D3 D4
λ

D
1

λ
D

2
D5

λ
D

1

λ
D

1
λ

D
2

λ
D

3

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5

D6 D7

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

9

λ
D

4

λ
D

1
λ

D
2

λ
D

3

λ
D

5
λ

D
6

λ
D

7
λ

D
8

λ
D

9
λ

D
1
0

D8 D9 D10D10

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�
�

�
�

�

Figure 4.18 Representation of the HMMs selected in Figure 4.16a with the
presentation of each new block of data according to the BCsearch algorithm with
tolerance= 0.003. HMMs trained on different blocks are presented with a different

symbol. |P|= 20,40, . . .200 HMMs indicated by the grid on the figure

fact, the order in which the models are selected in BCsearch assures the best ensemble

performance up to the tolerance value. Therefore, as illustrated in Figure 4.13b, with

lower tolerance values, the level of performance achieved by BCsearch is higher than that

of BCgreedy and incrBCallN algorithms. In this case, the size of the EoHMMs selected

according to BCsearch is on average about half of that selected by BCgreedy, over the

ten blocks. However, this comes at the cost of efficiency, where BCsearch may be an

order of magnitude more computationally expensive than BCgreedy (see Section 4.3.2).

These selection results are also confirmed on sendmail data as shown in Figure 4.16,

and detailed in Figure 4.17 and Figure 4.18 for BCgreedy and BCsearch algorithms. In

practice, when efficiency is important, BCgreedy should be considered as it scans the

ordered list of detectors once. Otherwise, BCsearch has shown to be more effective in

selecting detectors that contribute the most to an improved performance of the ensemble.

B. Model Pruning.

Previous experiments have shown that BCgreedy and BCsearch algorithms are effective

in maintaining a high level of performance by selecting relatively small sized EoHMMs

from the entire pool of previously-generated HMMs. In practice, however, the size of the

203

pool must be restricted from increasing indefinitely with the number of data blocks. The

impact on performance of the pruning strategy proposed in Section 4.3.2 is now evaluated

for BCgreedy and BCsearch algorithms according to various life time (LT) expectancy

values. In the following results, an HMM is pruned if it is not selected for an LT

corresponding to 1,3 or 5 data blocks. The reference results of previous experiments,

conducted without pruning HMMs from the pool, are shown with an LT =∞.

Figure 4.19 illustrates the impact on accuracy of pruning the pool of HMMs in Fig-

ure 4.13a (synthetic data with Σ = 50 and CRE = 0.4), while Figure 4.20 illustrates the

impact of pruning the pool of HMMs in Figure 4.16a (sendmail data). The size of the se-

BCgreedy(LT = 5)

BCgreedy(LT = 3)

BCgreedy(LT = 1)

BCgreedy(LT =∞)

incrBCallN

BBW

Number of training blocks
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(a) BCgreedy

BCsearch(LT = 5)

BCsearch(LT = 3)

BCsearch(LT = 1)

BCsearch(LT =∞)

incrBCallN

BBW

Number of training blocks
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(b) BCsearch

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
BCgreedy(LT =∞)

|E| 10 13 14 12 14 13 12 13 14 12
|P| 20 40 60 80 100 120 140 160 180 200

BCgreedy(LT = 1)
|E| 7 7 7 7 10 10 7 7 8 8
|P| 20 22 24 28 25 25 25 26 26 26

BCgreedy(LT = 3)
|E| 7 7 9 9 9 9 9 9 10 10
|P| 20 40 53 61 55 54 53 56 58 57

BCgreedy(LT = 5)
|E| 7 7 9 9 10 10 8 8 13 13
|P| 20 40 60 80 94 104 99 97 95 94

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
BCsearch(LT =∞)

|E| 3 7 6 8 7 7 7 6 7 7
|P| 20 40 60 80 100 120 140 160 180 200

BCsearch(LT = 1)
|E| 6 6 7 7 3 3 7 7 3 3
|P| 20 22 24 23 25 23 25 25 24 25

BCsearch(LT = 3)
|E| 6 6 7 7 7 7 3 3 7 7
|P| 20 40 52 57 49 50 50 46 47 52

Bsearch(LT = 5)
|E| 6 6 7 7 7 7 8 8 8 8
|P| 20 40 60 80 92 97 92 93 94 92

Figure 4.19 illustration of the impact on performance of pruning the pool of HMMs
in Figure 4.13a

204

lected EoHMMs (|E|) and of the pool (|P|) are presented below the figures for each block

of data. The performance of the BBW algorithm and that of incrBCallN , combining all

HMMs without any pruning, are also shown for reference. As shown in Figure 4.19,

the level of performance achieved with BCgreedy and BCsearch algorithms is decreased

for LT = 1 compared to that achieved with LT =∞. This aggressive pruning strategy

eliminates all HMMs that have not been selected as ensemble members during the pre-

vious incremental learning stage, which may lead to knowledge corruption, and hence

degrades the system performance. In fact, the discarded HMMs may have complemen-

tary information with respect to the newly-generated HMMs from new block of data.

Early elimination of this information limits the search space for future combinations.

The impact on performance of pruning depends on the variability of the data and the

block size. As shown in Figure 4.20, the decline in performance with BCgreedy(LT = 1)

and BCsearch(LT = 1) is relatively small for sendmail data, which incorporates more

redundancy than the synthetically-generated data.

The performance achieved with a delayed pruning of HMMs approaches that of retaining

all generated HMMs in the pool for larger LT values. As shown in Figures 4.19 and 4.20,

the performance achieved by pruning the HMMs that have not been selected for LT = 3

and 5 blocks according to BCgreedy and BCsearch algorithms is comparable to that of

BCgreedy(LT =∞) and BCsearch(LT =∞), respectively. For fixed tolerance and LT

values, BCsearch is capable of selecting smaller EoHMMs and further reducing the size of

the pool than BCgreedy algorithm. The results show that BCsearch limits the size of pool

to about LT +1 times the averaged number of generated HMMs from new blocks, while

BCgreedy upper bound on pool size is slightly higher. For instance, with LT = 5 we need

a storage that accommodates parameters of about 100 HMMs. A fixed-size pool may be

obtained by adaptively changing the tolerance and LT values upon receiving a new block

of data. In HMM-based ADSs, the system administrator must set these parameters to

optimize the system performance, while reducing the size of the selected EoHMMs and

of the pool of HMMs for reduced time and memory requirements.

205

BCgreedy(LT = 5)

BCgreedy(LT = 3)

BCgreedy(LT = 1)

BCgreedy(LT =∞)

incrBCallN

BBW

Number of training blocks
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) BCgreedy

BCsearch(LT = 5)

BCsearch(LT = 3)

BCsearch(LT = 1)

BCsearch(LT =∞)

incrBCallN

BBW

Number of training blocks
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) BCsearch

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
BCgreedy(LT =∞)

|E| 7 10 12 16 18 16 19 21 20 21
|P| 20 40 60 80 100 120 140 160 180 200

BCgreedy(LT = 1)
|E| 7 7 10 10 9 9 15 15 17 17
|P| 20 27 30 31 38 37 43 40 40 42

BCgreedy(LT = 3)
|E| 7 7 10 10 12 12 16 16 18 18
|P| 20 40 47 59 57 62 60 66 70 66

BCgreedy(LT = 5)
|E| 7 7 10 10 12 12 16 16 18 18
|P| 20 40 60 80 87 100 98 104 102 110

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
BCsearch(LT =∞)

|E| 5 8 10 9 8 9 8 8 9 12
|P| 20 40 60 80 100 120 140 160 180 200

BCsearch(LT = 1)
|E| 5 5 10 10 3 3 8 8 9 9
|P| 20 25 30 26 29 30 31 31 30 31

BCsearch(LT = 3)
|E| 5 5 8 8 8 8 9 9 8 8
|P| 20 40 46 53 55 56 55 54 54 52

Bsearch(LT = 5)
|E| 5 5 8 8 10 10 9 9 8 8
|P| 20 40 60 80 86 97 101 99 95 92

Figure 4.20 illustration of the impact on performance of pruning the pool of HMMs
in Figure 4.16a

4.6 Conclusion

This chapter presents a ROC-based system to efficiently adapt EoHMMs over time, from

new training data, according to a learn-and-combine approach. When a new block of

data becomes available, a pool of base HMMs is generated and combined to a global pool

comprising previously-generated pools. The base HMMs are trained from each new data

block with different number of states and initializations, which allows to capture different

underlying structures of the data and hence increases diversity among pool members.

The responses from these newly-trained HMMs are then combined with those of the

previously-trained HMMs in ROC space using a novel incremental Boolean combination

206

(incrBC) technique. On its own, incrBC allows to maintain or improve system accuracy,

yet it retains all previously-generated HMMs in the pool.

Specialized model management algorithms are proposed to limit the computational and

memory complexity from increasing indefinitely with the incrBC of new HMMs. First,

the proposed system selects a diversified EoHMMs from the pool according to one of

two ensemble selection algorithms, called BCgreedy and BCsearch, that are adapted to

benefit from the monotonicity in incrBC accuracy, for a reduced complexity. Decision

thresholds from selected HMMs and Boolean fusion functions are then adapted to improve

overall system performance. Finally, redundant and inaccurate base HMMs, which have

not been selected for some user-defined time interval, are pruned from the pool. Since

the overall composite ROC convex hull is retained, the proposed system is capable of

changing its desired operating point during operations, and hence accounts for changes

in operating conditions, such as tolerated false alarm rate, prior probabilities, and costs

of errors. Most existing techniques for adapting ensembles of classifiers require restarting

the training, selection, and combination procedures to account for such a change.

During simulations conducted on both synthetic and real-world HIDS data, the proposed

system has been shown to achieve a higher level of accuracy than when parameters of

a single best HMM are estimated, at each learning stage, using reference batch and

incremental learning techniques. It also outperforms the learn-and-combine approaches

using static fusion functions (e.g., majority voting) for combining newly- and previously-

generated pools of HMMs. The proposed ensemble selection algorithms have been shown

to provide compact and diverse EoHMMs for operations, and hence simplified Boolean

fusion rules, while maintaining or improving the overall system accuracy. The employed

pruning strategy has been shown to limit the ever-growing pool size, thereby reducing

the storage space for accommodating HMMs parameters and the computational costs for

the selection algorithms, without negatively affecting the overall system performance.

CONCLUSIONS

Anomaly detection approaches first learn normal system behavior, and then attempt to

detect significant deviations from this baseline behavior during operations. Anomaly de-

tection is an active and challenging research area. It has been motivated by numerous

real-world applications such as fraud detection in electronic commerce, anomaly detection

in control systems and medical image analysis, and target detection in military systems.

In computer and network security applications, anomaly detection complements mis-

use detection techniques for improved intrusion detection systems. Network traffic and

protocols, operating systems and host events, as well as user behavior (e.g., keystroke

dynamics) can be monitored for anomaly detection. Although capable of detecting novel

attacks, ADSs suffer from excessive false alarms and degradation in performance, be-

cause they are typically designed using unrepresentative training and validation data

with limited prior knowledge about their distributions, and because they face complex

environments that change during operations.

Providing representative data for designing ADSs that monitor computer or network

events is particularly difficult in today’s internetworked environments. An HMM detector

employed within an intrusion detection system can not be directly trained from data

generated by a process of interest. These data may include patterns of attacks that will

be missed by the ADS during operations. As described in Section 1.6.2, unrepresentative

normal data is typically provided for training, whether the amount of data is abundant

(collected from overly secured environments with restricted functionalities) or limited

(collected from unconstrained environments which require significant time and effort to

identify existing attacks). The anomaly detector will therefore have an incomplete view

of the normal process behavior, and hence rare normal events will be misclassified as

anomalous. Therefore, ADSs should be able to efficiently accommodate new data, to

account for rare normal events and adapt to changes in normal behaviors that may occur

over time.

208

Contributions and Discussion

This thesis presents novel approaches at the HMM and decision levels for improving

the accuracy, efficiency and adaptability of HMM-based ADSs. To sustain a high level

of performance, an HMM should be capable to incrementally update its parameters in

response to new data that may become available after a it has already been trained on

previous data, and deployed for operation. However, the incremental re-estimation of

HMM parameters raises several challenges. HMM parameters should be updated from

new data without requiring access to the previously-learned training data, and without

corrupting previously-acquired knowledge (Grossberg, 1988; Polikar et al., 2001), i.e.,

previously-learned models of normal behavior. As described in Chapter 2 and Appendix I,

standard techniques for estimating HMM parameters involve batch iterative learning,

which require a finite amount of training data throughout the training process. The HMM

parameters are estimated over several training iterations, where each iteration requires

processing the entire training data, until some objective function is maximized. To avoid

knowledge corruption, learning new data with these techniques require a cumulative

storage of training data over time, and increasingly large time and memory complexity

for re-estimation of HMM parameters from the start using all accumulated data. This

may represent a very costly solution in practice.

Chapter 2 presents a survey and detailed analysis of on-line learning techniques that

have been proposed in literature to estimate HMM parameters from an infinite stream of

observation symbols or sub-sequences of observation symbols. They assume being pro-

vided with a complete representation of normal system behavior through the stream of

generated observations over time, and focus on issues such as efficiency and convergence

rate. Therefore, these algorithms update HMM parameters continuously upon observing

each new observation symbol or new observation sub-sequence, and typically employ a

learning rate to control model stability and accelerate the rate of convergence. When

provided with unrepresentative data for training, these on-line learning techniques yield

a low level of performance as one pass over the data is not sufficient to capture normal

209

system behavior. This have been addressed analytically in Chapter 2, and confirmed em-

pirically in Appendix II. When the previously-learned model is considered as a starting

point for incremental learning from successive data blocks, both batch and on-line learn-

ing algorithms lead to a decline in system performance caused by the plasticity-stability

dilemma. In fact these algorithms may remain trapped in local optima of the likelihood

function associated with previously-learned data and would not be able to accommodate

the newly-acquired information. Otherwise, they will adapt completely to the new data,

thereby corrupting the previously-acquired knowledge.

Appendix II extends some on-line learning techniques for HMM parameters to incremen-

tal learning, by allowing them to iterate over each block of data and by resetting their

internal learning rates when a new block is presented. These learning rates are employed

to integrate the information from each new symbol or sub-sequences of observation with

the previously-learned model. Evaluation results for detecting system call anomalies,

have shown that the extended techniques for incremental learning can provide a higher

level of detection accuracy than that of the original on-line learning algorithms, as de-

scribed in Appendix II. However, optimizing the internal learning rates employed within

these algorithms to trade off plasticity against stability remains a challenging task. This

is because all previously learned information contained within the current model should

be balanced with new information contained in a symbol or sub-sequence of observation.

Appendix III presents an improved incremental learning strategy, which consists of em-

ploying an additional (global) learning rate at the iteration level. This aims at delaying

the integration of newly-acquired information with the previously-learned model until at

least on iteration over the new block of data is performed by the new model. Further-

more, the previously-learned model is kept in memory and weight-balanced with the new

model over each iteration. This incremental learning strategy is general in that it can

be applied to any batch of on-line learning algorithm. When limited amount of data is

provided for training within each new block, batch EM-based algorithms may provide

easier solutions, as no internal learning rate is required and monotonic convergence to

210

a local maximum of the likelihood function is guaranteed. However, when a new block

comprising abundant amount of data is provided for incremental learning, on-line algo-

rithms may be employed due to their reduced storage requirements. An optimization of

their internal learning rates is yet required to ensure convergence to a local maximum of

the likelihood function, although not guaranteed.

The EFFBS algorithm proposed in Appendix I provides an alternative solution, which

allow standard batch learning techniques to efficiently estimate HMM parameters from

abundant data. In practice, the EFFBS algorithm requires fewer resources than the tra-

ditional FB algorithm, yet provides the same results. The memory complexity of FB

O(NT) is reduced to O(N) with EFFBS, which is independent of the observation se-

quence length T , but only depends on number of HMM states N . Although EFFBS by

itself does not provide an incremental solution for estimation HMM parameters, it can be

employed within the BW algorithm according to the incremental learning strategy, when

the new block comprises abundant training data. This allows to take advantage of the

monotonic convergence over each iteration of the BW algorithm, without any internal

learning rate. EFFBS may also be useful in batch learning scenarios, where segment-

ing a long sequence of observation into smaller training sub-sequences is not desirable.

Segmenting long sequences adds another variable to the problem at hand – the best

sub-sequence length to be employed, and may raise dependence (or independence) issues

between segmented sub-sequences. As discussed in Section 2.2.2.1, training an HMM

with multiple sub-sequences assumes their conditional independence (Levinson et al.,

1983), or otherwise requires a costly combinatorial techniques Li et al. (2000) to over-

come the independence assumption. Training HMM parameters on the entire sequence of

system call observations eliminates the issue of sub-sequence length selection during the

design phase, and allow to use a desired detector window size for operations (Lane, 2000;

Warrender et al., 1999). The issue of learning form long sequences of observations has

been also raised in other fields, such as robot navigation systems (Koenig and Simmons,

1996), and bioinformatics (Lam and Meyer, 2010).

211

Designing an HMM for anomaly detection involves estimating HMM parameters and the

number of hidden states, N , from the training data. The value of N and the initial guess

of HMM parameters have a considerable impact not only on system accuracy but also on

HMM training time and memory requirements, yet overlooked in most related worked as

described in Section 1.6. In fact, HMMs trained with different number of states are able

to capture different underlying structures of data. Different initializations may lead the

algorithm to converge to different solutions in the parameters space due to the many local

maxima of the likelihood function. Therefore, a single best HMM will not provide a high

level of performance over the entire detection space. Appendix V empirically confirms the

impact of N on performance of HMM-based anomaly detectors using different fixed-size

synthetic HIDS data sets. A multiple-HMMs approach is therefore proposed, where each

HMM is trained using a different number of hidden states, and where HMM responses

are combined in the ROC space according to the MRROC technique (Scott et al., 1998).

Results indicate that this approach provides a higher level of performance than a single

best HMM and STIDE matching techniques , over a wide range of training set sizes with

various alphabet sizes and irregularity indices, and different anomaly sizes.

Chapter 3 presents a novel iterative Boolean combination (IBC) technique for efficient

fusion of the responses from multiple classifiers in the ROC space. The IBC efficiently

exploits all Boolean functions applied to the ROC curves and therefore requires no prior

assumptions about conditional independence of detectors or convexity of ROC curves.

During simulations conducted on fixed-size synthetic and real HIDS data sets, the IBC

has been also applied to combine the responses a of multiple-HMM system, where each

HMM is trained using a different number of states and initializations. Results have shown

that, even with one iteration, the IBC technique always increases system performance

over related ROC-based combination techniques, such as the MRROC fusion, and the

Boolean conjunction or disjunction fusion functions, without a significant computational

and storage overhead. In fact, the time complexity of IBC is linear with the number

of classifiers while its memory requirement is independent of the number of classifiers,

212

which allows for a large number of combinations. When the IBC is allowed to iterate

until convergence, the performance improves significantly while the time and memory

complexity required for each iteration are reduced by an order of magnitude with refer-

ence to the first iteration. The performance gain, especially when provided with limited

training data, is due to the ability of the IBC technique to exploit diverse information

residing in inferior points on the ROC curves, which are disregarded by the other tech-

niques. IBC has been also shown useful for repairing the concavities in a ROC curve.

The proposed IBC is general in that it can be employed to combine diverse responses of

any crisp or soft detectors, within a wide range of application domains. For instance, it

has been successfully applied to combine the responses from different biometric systems

(trained on the same fixed-size data) for iris recognition (Gorodnichy et al., 2011).

Similar to batch learning form fixed-size data sets, a single HMM system for incremental

learning from successive blocks of data may not approximate the underlying data distri-

bution adequately. Chapter 4 presents an adaptive system for incremental learning of

new data over time using a learn-and-combine approach based on the proposed Boolean

combination techniques. When a new block of training data becomes available, a new

pool of HMMs is generated using different number of HMM states and random initializa-

tions. The responses from the newly-trained HMMs are then incrementally combined to

those of the previously-trained HMMs in ROC space using the proposed Boolean com-

bination techniques. Since the pool size grows indefinitely as new blocks of data become

available over time, employing specialized model management strategies is therefore a

crucial aspect for maintaining the efficiency of an adaptive ADS. The proposed ensemble

selection techniques have been shown to form compact EoHMMs by selecting diverse and

accurate base HMMs from the pool, while maintaining or improving the overall system

accuracy. The proposed pruning strategy has been shown to limit the pool size from in-

creasing indefinitely with the number of data blocks, reducing thereby the storage space

for accommodating HMMs parameters and the computational costs of the selection al-

gorithms, without negatively affecting the overall system performance. The proposed

213

system is capable of changing its desired operating point during operations, and this

point can be adjusted to changes in prior probabilities and costs of errors.

During simulations conducted for incremental learning from on successive blocks of syn-

thetic and real-world HIDS data, the proposed learn-and-combine approach has been

shown to achieve the highest level of accuracy than all related techniques presented in

Chapter 4. In particular, it has been shown to achieve higher level of accuracy than when

parameters of a single best HMM are estimated, at each learning stage, using reference

batch (BBW) and the proposed incremental learning techniques (IBW).

The results of this thesis provide an answer to the main research question: Given

newly-acquired training data, is it best to adapt parameters of HMM detectors trained

on previously-acquired data, or to train new HMMs on newly-acquired data and com-

bine them with those trained on previously-acquired data? Adapting parameters of a

previously-trained (single) HMM to newly-acquired training data according to IBW pro-

vide an efficient solution, which can limit existing knowledge corruption, and maintain or

improve the detection accuracy over time. However, the corruption of existing knowledge

caused by the large number of local maxima in the solution space remains an issue. This

is illustrated in the large variances of the results achieved with the IBW algorithm, and

in the lower level of detection accuracy compared to that of BBW (see Section 4.5).

In this thesis, a learn-and-combine has been proposed whereby a new HMM is trained

on newly-acquired data and its responses are combined with those trained on previously-

acquired data using incremental Boolean combination in ROC space. This approach has

been shown to provide the overall highest level of accuracy over time, especially when

training data is limited (see Section 4.5). In contrast, existing techniques for combining

HMMs have been shown shown unable to maintain system accuracy over time. For

instance, the combination of these (previously- and newly-trained) HMMs at the detector

level by using model averaging or weighted averaging (Hoang and Hu, 2004), have been

shown inadequate for ergodic HMMs and lead to knowledge corruption, as presented in

214

Section II.5. Similarly, combining the outputs of these HMMs using traditional fusion

techniques at the score-level (such as median) or decision-level (e.g., majority vote), have

been shown to provide poor detection accuracy over time (see Section 4.5). The learn-

and-combine approach may require more resources than IBW since several HMMs are

employed during operations. Depending on the operation requirements, higher tolerance

values can be imposed on the model selection algorithms to reduce the number of selected

HMMs for operations, and hence trade-off accuracy with efficiency. Finally, the learn-

and-combine approach provide a general and versatile solution for adapting and selecting

HMMs over time. In particular, HMMs that are incrementally updated according to

IBW can be also combined according to the learn-and-combine approach.

Several techniques have been applied to learn the normal process behavior using sys-

tem call sequences (Forrest et al., 2008). It is outside the scope of this thesis to com-

pare with every possible approach. In particular, different experimental protocols (data

pre-processing, detector window size, detector training, etc.) and different evaluation

techniques (anomaly definition and labeling) have been employed during the conducted

experiments. Therefore, comparison, in this thesis have been limited to classical se-

quence matching techniques, HMM batch and incremental techniques, and all related

fusion techniques.

Future work

Several works have discussed the possibility of evading system call based IDSs by dis-

guising anomalous sub-sequences within the normal process behavior. Mimicry attacks

(Krügel et al., 2005; Parampalli et al., 2008; Tandon and Chan, 2006; Wagner and Soto,

2002) rely on crafting code that can generate malicious system call sequences that are

considered legitimate by anomaly detection model. For instance, changing foreign system

calls required for the attack to equivalent system calls used by the original process (Tan

et al., 2002). In essence, mimicry attacks illustrate possible disadvantages of using the

system call temporal order only as features. Therefore, some authors proposed including

215

system call arguments additional features (Cho and Han, 2003; Tandon and Chan, 2006).

The applicability of mimicry attacks and their variants in practice, and the techniques

to detect these attacks are addressed by Forrest et al. (2008). The proof-of-concept sim-

ulations conducted in this thesis considered the order of system calls only, for simplicity

and availability of UNM datasets. However, including feature vectors to train HMM is a

direct extension and does not affect the proposed incremental learning strategy nor the

EFFBS algorithm. In reality there are many different types of intrusions, and different

features and detectors are therefore needed.

A hybrid intrusion detection system combines two or more types of IDSs for improved

accuracy. A hybrid IDS attempts to provide a more comprehensive system that may

address the limitations of each IDS type. For instance, anomaly detection techniques may

provide useful information to define signatures for misuse detectors, yielding an improved

classification of attacks. On the other hand, misuse detection systems provide precise

and descriptive alarms; while anomaly detection can only detect symptoms of attacks

without specific knowledge of details. A hybrid IDS can have both host and network

sensors and thus detects both host-based and network-based attacks. Furthermore, a

HIDS may complement a NIDS as a verification system, to confirm for instance whether

the suspicious network traffic has resulted in a successful attack or not.

In this research, the proposed Boolean combination techniques are applied to combine

responses from the same one-class classifiers (HMMs) trained on the same data and using

the same features, however according to different hyperparameters and initializations.

Future work involves applying these techniques to combine various detection techniques

employed within a hybrid IDS. For instance, to combine the response from the same

detectors trained using different feature sets and also to combine the responses from

different detectors (e.g., using supervised, unsupervised, generative, and discriminative

approaches) trained on the same data. Investigation of diversity measures and impact

of correlations within the ROC space is an important future direction. This may yield

216

further insight into the design of classifier ensembles that contribute toward efficient and

accurate combinations.

The robustness of the learn-and-combine approach depends on maintaining a represen-

tative validation set over time, for selection of HMMs, decision thresholds and Boolean

functions. The proposed ADS adopts a human-centric approach, which relies on the

system administrator to update the validation set with recent and most informative

anomalous sub-sequences. Future work involves investigating techniques such as active

learning to reduce labeling and selection costs. The presented results are for validation

and test sets that comprised moderate skew (up to 75% of normal and 25% of anomalous

data). Another future investigation would be to assess the impact on system performance

of heavily imbalanced data.

Another important issue is the ability to operate in dynamically-changing environments.

In such cases, some novelty criteria on the new data should be employed to detect changes

and trigger adaptation by resting a monotonically decreasing learning rate or fine-tuning

an auto-adaptive learning rate. It may be useful to investigate whether the on-line

algorithms for estimation of HMM parameters, which are surveyed in Chapter 2, can be

employed to detect changes in normal behaviors over time.

Although not explored in this thesis, the proposed learn-and-combine approach can han-

dle concept drift in changing environments, which is typically attributed to changes in

prior, class-conditional, or posterior probability distribution of classes (Kuncheva, 2004b).

As designed, the learn-and-combine approach allows to account for changes in class prior

probabilities. Recent techniques for on-line estimation of evolving class priors (Zhang and

Zhou, 2010) can, thereby, be directly employed in the proposed system, for a dynamic

selection of the best ensemble of classifiers and for adaptation of decision thresholds and

Boolean fusion functions. Other types of drift can be accounted for by updating training

data and ensemble members, replacing inaccurate classifiers, and adding new features

(Kuncheva, 2004b). The learn-and-combine approach is designed to select and combine

217

output decisions from different homogeneous or heterogeneous, crisp or soft detectors,

which are trained on different data or features using on-line or batch learning techniques.

Another interesting future work is to evaluate the ability of the learn-and-combine ap-

proach to adapt to concept drift and evolving priors in various detection applications

with dynamically changing environments.

218

APPENDIX I

ON THE MEMORY COMPLEXITY OF THE FORWARD BACKWARD

ALGORITHM∗

Abstract

The Forward-Backward (FB) algorithm forms the basis for estimation of Hidden Markov

Model (HMM) parameters using the Baum-Welch technique. It is however known to

be prohibitively costly when estimation is performed from long observation sequences.

Several alternatives have been proposed in literature to reduce the memory complexity

of FB at the expense of increased time complexity. In this paper, a novel variation of the

FB algorithm – called the Efficient Forward Filtering Backward Smoothing (EFFBS) – is

proposed to reduce the memory complexity without the computational overhead. Given

an HMM with N states and an observation sequence of length T , both FB and EFFBS

algorithms have the same time complexity, O(N2T). Nevertheless, FB has a memory

complexity of O(NT), while EFFBS has a memory complexity that is independent of T ,

O(N). EFFBS requires fewer resources than FB, yet provides the same results.

I.1 Introduction

Hidden Markov Model (HMM) is a stochastic model for sequential data. Provided with

an adequate number of states and sufficient set of data, HMMs are capable of represent-

ing probability distributions corresponding to complex real-world phenomena in term of

simple and compact models. The forward-backward (FB) algorithm is a dynamic pro-

gramming technique that forms the basis for estimation of HMM parameters. Given a

finite sequence of training data, it efficiently evaluates the likelihood of this data given an

HMM, and computes the smoothed conditional state probability densities – the sufficient

statistics – for updating HMM parameters according to the Baum-Welch (BW) algorithm
∗This chapter is published as an article in Pattern Recognition Letters journal,

DOI:10.1016/j.patrec.2009.09.023

220

(Baum, 1972; Baum et al., 1970). BW is an iterative expectation maximization (EM)

technique specialized for batch learning of HMM parameters via maximum likelihood

estimation.

The FB algorithm is usually attributed to Baum (1972); Baum et al. (1970), although it

was discovered earlier by Chang and Hancock (1966) and then re-discovered in different

areas in the literature (Ephraim and Merhav, 2002). Despite suffering from numerical

instability, the FB remains more famous than its numerically stable counterpart; the

Forward Filtering Backward Smoothing (FFBS)1 algorithm (Ott, 1967; Raviv, 1967). As

a part of the BW algorithm, the FB algorithm has been employed in various applications

such as signal processing, bioinformatics and computer security, (Cappe, 2001).

When learning from long sequences of observations the FB algorithm may be prohibitively

costly in terms of time and memory complexity. This is the case, for example, of anomaly

detection in computer security (Lane, 2000; Warrender et al., 1999), protein sequence

alignment (Krogh et al., 1994) and gene-finding (Meyer and Durbin, 2004) in bioinfor-

matics, and robot navigation systems (Koenig and Simmons, 1996). For a sequence of

length T and an ergodic HMM with N states, the memory complexity of the FB algo-

rithm grows linearly with T and N , O(NT), and its time complexity grows quadratically

with N and linearly with T , O(N2T) 2. For a detailed analysis of complexity the reader

is referred to Table AI.1 (Section I.3). When T is very large, the memory complexity

may exceed the resources available for the training process, causing overflow from internal

system memory to disk storage.

Several alternatives have been proposed in literature trying to reduce the memory com-

plexity of the FB algorithm or, ideally, to eliminate its dependence on the sequence

length T . Although there is an overlap between these approaches and some have been

re-discovered, due to the wide range of HMMs applications, they can be divided into
1FFBS is also referred to in literature as α−γ and disturbance smoothing algorithm.
2If the HMM is not fully connected, the time complexity reduces to O(NQmaxT), where Qmax is the

maximum number of states that any state is connected to.

221

two main types. The first type performs exact computations of the state densities us-

ing fixed-interval smoothing (similar to FB and FFBS), such as the checkpointing and

forward-only algorithms. However, as detailed in section I.3, the memory complexity of

the former algorithm still depends on T , while the latter eliminates this dependency at

the expenses of a significant increase in time complexity, O(N4T).

Although outside the scope of this paper, there are approximations to the FB algorithm.

Such techniques include approximating the backward variables of the FB algorithm using

a sliding time-window on the training sequence (Koenig and Simmons, 1996), or slicing

the sequence into several shorter ones that are assumed independent, and then apply-

ing the FB on each sub-sequence (Wang et al., 2004; Yeung and Ding, 2003). Other

solutions involve performing on-line learning techniques on a finite data however (Florez-

Larrahondo et al., 2005; LeGland and Mevel, 1997). These techniques are not explored

because they provide approximations to the smoothed state densities, and hence lead

to different HMMs. In addition, their theoretical convergence properties are based on

infinite data sequence (T →∞).

A novel modification to the FFBS called Efficient Forward Filtering Backward Smoothing

(EFFBS) is proposed, such that its memory complexity is independent of T , without

incurring a considerable computational overhead. In contrast with the FB, it employs

the inverse of HMM transition matrix to compute the smoothed state densities without

any approximations. A detailed complexity analysis indicates that the EFFBS is more

efficient than existing approaches when learning of HMM parameters form long sequences

of training data.

This paper is organized as follows. In Section I.2, the estimation of HMM parameters

using the FB and the Baum-Welch algorithms is presented. Section I.3 reviews techniques

in literature that addressed the problem of reducing the memory complexity of the FB

algorithm, and accesses their impact on the time complexity. The new EFFBS algorithm

is presented in Section I.4, along with a complexity analysis and case study.

222

I.2 Estimation of HMM Parameters

The Hidden Markov Model (HMM) is a stochastic model for sequential data. A discrete-

time finite-state HMM is a stochastic process determined by the two interrelated mecha-

nisms – a latent Markov chain having a finite number of states, and a set of observation

probability distributions, each one associated with a state. At each discrete time instant,

the process is assumed to be in a state, and an observation is generated by the proba-

bility distribution corresponding to the current state. The model is termed discrete (or

finite-alphabet) if the output alphabet is finite. It is termed continuous (or general) if

the output alphabet is not necessarily finite e.g., the state is governed by a parametric

density function, such as Gaussian, Poisson, etc. For further details regarding HMM the

reader is referred to the extensive literature (Ephraim and Merhav, 2002; Rabiner, 1989).

Formally, a discrete-time finite-state HMM consists of N hidden states in the finite-

state space S = {S1,S2, ...,SN} of the Markov process. Starting from an initial state Si,

determined by the initial state probability distribution πi, at each discrete-time instant,

the process transits from state Si to state Sj according to the transition probability

distribution aij (1 ≤ i, j ≤ N). As illustrated in Figure AI.1, the process then emits a

symbol v according to the output probability distribution bj(v), which may be discrete

or continuous, of the current state Sj . The model is therefore parametrized by the

set λ = (π,A,B), where vector π = {πi} is initial state probability distribution, matrix

A = {aij} denotes the state transition probability distribution, and matrix B = {bj(k)}
is the state output probability distribution.

I.2.1 Baum-Welch Algorithm:

The Baum-Welch (BW) algorithm (Baum and Petrie, 1966; Baum et al., 1970) is an

Expectation-Maximization (EM) algorithm (Dempster et al., 1977) specialized for esti-

mating HMM parameters. It is an iterative algorithm that adjusts HMM parameters to

best fit the observed data, o1:T = {o1,o2, . . . ,oT}. This is typically achieved by maximiz-

223

S2

a11

S3S1
a33

a22

a31

a13

a21

a12
a23

a32

aij = P (qt+1 = j | qt = i)

1 2
0.0

3 4

0.5

1.0

vk

b2(k)

bj(k) = f(ot = v | qt = j)

−5
0.0

0 5

0.5

1.0

v

b2(v)

bj(k) = P (ot = vk | qt = j)

Continuous
output

Discrete
output

1 2 T

t
1

2

N

1

2

M
Observations

Hidden states

i

j

o1, o2, . . . , oT

q1, q2, . . . , qT

aij

k

bj(k)

Figure AI.1 Illustration of a fully connected (ergodic) three states HMM with either
a continuous or discrete output observations (left). Illustration of a discrete HMM

with N states and M symbols switching between the hidden states qt and
generating the observations ot (right). qt ∈ S denotes the state of the process at

time t with qt = i means that the state at time t is Si

ing the log-likelihood, �T (λ) � logP (o1:T | λ) of the training data over HMM parameters

space (Λ):

λ∗ = argmaxλ∈Λ�T (λ) (I.1)

The subscripts (.)t|T in formulas (II.5) to (II.8) are used to stress the fact that these are

smoothed probability estimates. That is, computed from the whole sequence of observa-

tions during batch learning.

During each iteration, the E-step computes the sufficient statistics, i.e., the smoothed a

posteriori conditional state density:

γt|T (i) � P (qt = i | o1:T ,λ) (I.2)

and the smoothed a posteriori conditional joint state density 3:

ξt|T (i, j) � P (qt = i, qt+1 = j | o1:T ,λ) (I.3)
3To facilitate reading, the terms a posteriori and conditional will be omitted whenever it is clear from

the context

224

which are then used, in the M-step, to re-estimate the model parameters:

π
(k+1)
i = γ(k)

1|T (i)

a
(k+1)
ij =

∑T−1
t=1 ξ

(k)
t|T (i, j)∑T−1

t=1 γ
(k)
t|T (i)

b
(k+1)
j (m) =

∑T
t=1 γ

(k)
t|T (j)δotvm∑T

t=1 γ
(k)
t|T (j)

(I.4)

The Kronecker delta δij is equal to one if i= j and zero otherwise.

Starting with an initial guess of the HMM parameters, λ0, each iteration k, of the E- and

M-step is guaranteed to increase the likelihood of the observations giving the new model

until a convergence to a stationary point of the likelihood is reached (Baum, 1972; Baum

et al., 1970).

The objective of the E-step is therefore to compute an estimate q̂t|τ of an HMM’s hidden

state at any time t given the observation history o1:τ . The optimal estimate q̂t|τ in the

minimum mean square error (MMSE) sense of the state qt of the HMM at any time t,

given the observation is the conditional expectation of the state qt given o1:τ (Li and

Evans, 1992; Shue et al., 1998):

q̂t|τ = E(qt | o1:τ) =
N∑
i=1
γt|τ (i) (I.5)

In estimation theory, this conditional estimation problem is called filtering if t= τ ; predic-

tion if t > τ , and smoothing if t < τ . Figure AI.2 provides an illustration of these estima-

tion problems. The smoothing problem is termed fixed-lag smoothing when computing

the E(qt | o1:t+Δ) for a fixed-lag Δ > 0, and fixed-interval smoothing when computing

the E(qt | o1:T) for all t= 1,2, . . . ,T .

For batch learning, the state estimate is typically performed using fixed-interval smooth-

ing algorithms (as described in Subsections I.2.2 and I.2.3). Since it incorporates more

225

evidence, fixed-interval smoothing provides better estimate of the states than filtering.

This is because the latter relies only on the information that is available at the time.

o1, o2,Filtering

o1, o2,Prediction

qt

h

o1, o2,
Fixed-lag
smoothing Δ

. . .

, oτ. . .

. . .

o1, o2,
Fixed-interval

smoothing
, oT. . .

, oτ

, oτ, oτ

qt

qt

qt

Figure AI.2 Illustration of the filtering, prediction and smoothing
estimation problems. Shaded boxes represent the observation history
(already observed), while the arrows represent the time at which we

would like to compute the state estimates

I.2.2 Forward-Backward (FB)

The Forward-Backward (Baum, 1972; Baum et al., 1970; Chang and Hancock, 1966) is

the most commonly used algorithm for computing the smoothed state densities of Eqs.

(II.5) and (II.6). Its forward pass computes the joint probability of the state at time t

and the observations up to time t:

αt(i) � P (qt = i,o1:t | λ), (I.6)

using the following recursion, for t= 1,2, . . . ,T and j = 1, . . . ,N :

αt+1(j) =
⎡
⎣ N∑
i=1
αt(i)aij

⎤
⎦bj(ot+1) (I.7)

226

Similarly, the backward path computes the probability of the observations from time t+1

up to T given the state at time t,

βt(i) � P (ot+1:T | qt = i,λ), (I.8)

according to the reversed recursion, for t= T −1, . . . ,1 and i= 1, . . . ,N :

βt(i) =
N∑
j=1
aijbj(ot+1)βt+1(j) (I.9)

Then, both smoothed state and joint state densities of Eqs. (II.5) and (II.6) – the

sufficient statistics for HMM parameters update – are directly obtained:

γt|T (i) = αt(i)βt(i)∑N
k=1αt(k)βt(k)

(I.10)

ξt|T (i, j) = αt(i)aijbj(ot+1)βt+1(j)∑N
k=1

∑N
l=1αt(k)aklbl(ot+1)βt+1(l)

(I.11)

By definition, the elements of α are not probability measures unless normalized, that is

why they are usually called the α-variables. Due to this issue, the FB algorithm is not

stable and susceptible to underflow when applied to a long sequence of observation. In

Levinson et al. (1983) and Rabiner (1989) the authors suggest scaling the α-variables by

their summation at each time:

ᾱt(i) = αt(i)∑
iαt(i)

= P (qt = i,o1:tλ)
P (o1:tλ)

= P (qt = i | o1:t,λ) (I.12)

making for a filtered state estimate. This of course requires scaling the beta β values,

which have no an intuitive probabilistic meaning, with the same quantities (refer to

Algorithm AI.1 and AI.2). Other solutions involves working with extended exponential

and extended logarithm functions (Mann, 2006).

I.2.3 Forward Filtering Backward Smoothing (FFBS)

227

Algorithm AI.1: Forward-Scaled(o1:T ,λ)
Output: αt(i) � P (qt = i,o1:t | λ), �T (λ) and scale()
for i= 1, . . . ,N do // Initialization1

α1(i)← πibi(o1)2

scale(1)←∑Ni=1α1(i)3

for i= 1, . . . ,N do4

α1(i)← α1(i)/scale(1)5

for t= 1, . . .T −1 do // Induction6

for j = 1, . . . ,N do7

αt+1(j)←∑Ni=1αt(i)aijbj(ot+1)8

scale(t+1)←∑Ni=1αt+1(i)9

for i= 1, . . . ,N do10

αt+1(i)← αt+1(i)/scale(t+1)11

for t= 1, . . .T do // Evaluation12

�T (λ)← �T (λ)+ log(scale(t))13

Algorithm AI.2: Backward-Scaled (o1:T ,λ,scale())
Output: βt(i) � P (ot+1:T | qt = i,λ)
for i= 1, . . . ,N do // Initialization1

βT (i)← 12

for t= T −1, . . . ,1 do // Induction3

for i= 1, . . . ,N do4

βt(i)←
∑N
j=1 aijbj(ot+1)βt+1(j)
scale(t+1)5

As highlighted in literature (Devĳver, 1985; Ephraim and Merhav, 2002; Cappe and

Moulines 2005), the FFBS is a lesser known but numerically stable alternative algo-

rithm to FB, which has been proposed in Askar and Derin (1981); Lindgren (1978); Ott

(1967); Raviv (1967). In addition, the FFBS is probabilistically more meaningful since

it propagates probability densities in its forward and backward passes.

During the forward pass, the algorithm splits the state density estimates into predictive

(I.13) and filtered (I.14) state densities:

γt|t−1(i) � P (qt = i | o1:t−1,λ) (I.13)

γt|t(i) � P (qt = i | o1:t,λ) (I.14)

228

The initial predictive state density is the the initial probability distribution, γ1|0(i) = πi.

For t= 1, . . . ,T , the filtered state density at time t is computed from the predictive state

density at time t−1,

γt|t(i) =
γt|t−1(i)bi(ot)∑N
j=1 γt|t−1(j)bj(ot)

(I.15)

and then, the predictive state density at time t+ 1 is computed from the filtered state

density at time t:

γt+1|t(j) =
N∑
i=1
γt|t(i)aij (I.16)

Both the filtered and one-step prediction density, follow from a combination of the Bayes’

rule of conditional probability and the Markov property.

Algorithm AI.3: Forward-Filtering(o1:T ,λ)
Output: γt|t(i) = P (qt = i | o1:t,λ) and �T (λ)
for i= 1, . . . ,N do // Initialization1

γ1|0(i) = πi2

for t= 1, . . .T −1 do // Induction3

for i= 1, . . . ,N do4

γt|t(i)←
γt|t−1(i)bi(ot)∑N
j=1 γt|t−1(j)bj(ot)5

for j = 1, . . . ,N do6

γt+1|t(j)←
∑N
i=1 γt|t(i)aij7

for t= 1, . . .T do // Evaluation8

�T (λ)← �T (λ)+ log
∑N
i=1 bi(ot)γt|t−1(i)9

Algorithm AI.4: Backward-Smoothing (γT |T ,λ)
Output: γt|T (i) = P (qt = i | o1:T) and ξt|T (i, j) = P (qt = i,qt+1 = j | o1:T)
γT |T ← input // Initialization1

for t= T −1, . . . ,1 do // Induction2

for i= 1, . . . ,N do3

for j = 1, . . . ,N do4

ξt|T (i, j)← γt|t(i)aij∑N
i=1 γt|t(i)aij

γt+1|T (j)
5

γt|T (i)←∑Nj=1 ξt|T (i, j)6

229

Backward recursion, leads directly to the required smoothed densities by solely using

the filtered and predictive state densities (Askar and Derin, 1981; Lindgren, 1978) for

t= T −1, . . . ,1:

ξt|T (i, j) =
γt|t(i)aij∑N
i=1 γt|t(i)aij

γt+1|T (j) (I.17)

γt|T (i) =
N∑
j=1
ξt|T (i, j) (I.18)

In contrast with the FB algorithm, the backward pass of the FFBS does not require

access to the observations. In addition, since it is propagating probabilities densities, in

both forward and backward passes, the algorithm is numerically stable. In the forward

pass, the filtered state density can be also computed in the same way as the normalized

ᾱ-variables (I.12), since after the normalization ᾱ becomes the state filter. When the

forward pass is completed at time T , γT |T is the only smoothed state density, while

all previous ones are filtered and predictive state estimates. The reader is referred to

Algorithm AI.3 and AI.4 for further details on the FFBS.

I.3 Complexity of Fixed-Interval Smoothing Algorithms

This section presents a detailed analysis of the time and memory complexity for the FB

and FFBS algorithms. It also presents the complexity of the checkpointing and forward

only algorithms. These algorithms have been proposed to reduce the memory complexity

of FB at the expense of time complexity.

The time complexity is defined as the sum of the worst-case running time for each op-

eration (e.g., multiplication, division and addition) required to process an input. The

growth rate is then obtained by making the parameters of the worst-case complexity tend

to ∞. Memory complexity is estimated as the number of 32 bit registers needed during

learning process to store variables. Only the worst-case memory space required during

processing phase is considered.

230

I.3.1 FB and FFBS Algorithms

The main bottleneck for both FB and FFBS algorithms occurs during the induction

phase. In the ergodic case, the time complexity per iteration is O(N2T) as shown in

(I.7) for the FB algorithm (see also lines 6-11 of Algorithm AI.1), and in (I.15) and (I.16)

for the FFBS algorithm (see also lines 3-7 Algorithm AI.3).

In addition, as presented in Figure AI.3, the filtered state densities (Eqs. (I.7) for FB,

and (I.15) and (I.16) for FFBS) computed at each time step of the forward pass, must

be loaded into the memory in order to compute smoothed state densities (Eqs. (II.5)

and (II.6)) in the backward pass. The bottleneck in terms of memory storage, for both

algorithms, is therefore the size of the matrix of N ×T floating-points values.

A memory complexity of O(N2T) is often attributed to FB and FFBS algorithms in the

literature. In such analysis, memory is assigned to ξt|T (i, j) which requires T matrices

of N ×N floating points. However, as shown in the transition update Equation (II.8),

only the summation over time is required; hence only one matrix of N2 floating points is

required for storing ∑Tt=1 ξt|T (i, j). In addition, the N floating point values required for

storing the filtered state estimate, γt|t, (i.e., N2 +N), are also unavoidable.

Table AI.1 details an analysis of the worst-case time and memory complexity for the

FB and FFBS algorithms processing an observation sequence o1:T of length T . Time

complexity represents the worst-case number of operations required for one iteration of

BW. A BW iteration involves computing one forward and one backward pass with o1:T .

Memory complexity is the worst-case number of 32 bit words needed to store the required

temporary variables in RAM. Analysis shows that the FFBS algorithm requires slightly

fewer computations (3N2T +NT multiplications, 2NT divisions and 3NT additions)

than the FB algorithm. It can be also seen that both algorithms require the same

amount of storage: an array of NT +N2 +N floating point values.

231

State

Time

S1

o1 oTo2

Si

ot

SN

P (q1 = i | o1)

P (q1 = 1 | o1)

P (q1 = N | o1)

P (q2 = i | o1:2)

P (q2 = 1 | o1:2)

P (q2 = N | o1:2)

P (qt = i | o1:t)

P (qt = 1 | o1:t)

P (qt = N | o1:t)

P (qT = i | o1:T)

P (qT = 1 | o1:T)

P (qT = N | o1:T)

ᾱ1 ᾱ2 ᾱt ᾱT

γ1|1 γ2|2 γt|t γT |T

F
or

w
ar

d
P
as

s

Time

βT

ξT |T

γT |T

ξT |T

γT |T

βT−1

ξT−1|T

γT−1|T

ξT−1|T

γT−1|T

oT−1

P (qT = i | o1:T)

P (qT = 1 | o1:T)

P (qT = N | o1:T)

ᾱT−1

γT−1|T−1

o1 oTo2 ot oT−1

γ2|1 γ3|2 γt+1|t γT |T−1

FB:
FFBS:

FB:

FFBS:
γT |T−1γ1|T γ2|T γt|Tγ2|T γ3|T γt+1|T

βt

ξt|T

γt|T
β2

ξ2|T

γ2|T
β1

ξ1|T

γ1|T

ξt|Tξ2|Tξ1|TB
ac

k
w

ar
d

P
as

s

Figure AI.3 An illustration of the values that require storage during the forward
and backward passes of the FB and FFBS algorithms. During the forward pass the

filtered state densities at each time step (N ×T floating-points values) must be
stored into the internal system memory, to be then used to compute the smoothed

state densities during the backward pass

Table AI.1 Worst-case time and memory complexity analysis for the FB and FFBS
for processing an observation sequence o1:T of length T with an N state HMM. The

scaling procedure as described in Rabiner (1989) and shown in
Algorithms AI.1 and AI.2 is taken into consideration with the FB algorithm

Computations Time Memory
Multiplications # Divisions # Additions

Forward-Backward (FB)
αt N2T +NT −N2 NT −N N2T −N2 +N NT
βt 2N2T −2N2 NT N2T −NT −N2 +N –∑T
t γt|T NT NT NT −T N∑T−1
t=1 ξt|T 3N2T −3N2 N2T −N2 N2T −NT −N2 +N N2

Total 6N2T +2NT −6N2 N2T +3NT −N2−N 3N2T +NT −3N2 +3N −T NT +N2 +N
Forward Filtering Backward Smoothing (FFBS)

γt|t N2T +NT −N2 NT N2T −N2 +N NT

βt – – N2T −NT −N2 +N –∑T
t γt|T – – NT −T N∑T−1
t=1 ξt|T 2N2T −2N2 N2T −N2 N2T −NT −N2 +N N2

Total 3N2T +NT −3N2 N2T +NT −N2 3N2T +NT −3N2 +3N −T NT +N2 +N

With both FB and FFBS algorithms a memory problem stems from its linear scaling with

the length of the observation sequence T . Applications that require estimating HMM

232

parameters from a long sequence will require long training times and large amounts of

memory, which may be prohibitive for the training process.

As described next, some alternatives for computation of exact smoothed density have

been proposed to alleviate this issue. However, these alternatives are either still partially

dependent on the sequence length T , or increase the computational time by orders of

magnitude to achieve a constant memory complexity.

I.3.2 Checkpointing Algorithm

The checkpointing algorithm stores only some reference columns or checkpoints, instead

of storing the whole matrix of filtered state densities (Grice et al., 1997; Tarnas and

Hughey, 1998). Therefore, it divides the input sequence into
√
T sub-sequences. While

performing the forward pass, it only stores the first column of the forward variables for

each sub-sequences. Then, during the backward pass, the forward values for each sub-

sequence are sequentially recomputed, beginning with their corresponding checkpoints.

Its implementation reduces the memory complexity to O(N
√
T), yet increases the time

complexity to O(N2(2T −
√
T)). The memory requirement can be therefore traded-off

against the time complexity.

I.3.3 Forward Only Algorithm

A direct propagation of the smoothed densities in forward-only manner is an alternative

that has been proposed in the communication field (Elliott et al., 1995; Narciso, 1993;

Sivaprakasam and Shanmugan, 1995) and re-discovered in bioinformatics (Churbanov

and Winters-Hilt, 2008; Miklos and Meyer, 2005). The basic idea is to directly propagate

all smoothed information in the forward pass

σt(i, j,k) �
t−1∑
τ=1
P (qτ = i, qτ+1 = j,qt = k | o1:t,λ),

233

which represents the probability of having made a transition from state Si to state Sj at

some point in the past (τ < t) and of ending up in state Sk at the current time t. At the

next time step, σt+1(i, j,k) can be recursively computed from σt(i, j,k) using:

σt(i, j,k) =
N∑
n=1
σt−1(i, j,n)ankbk(ot)+αt−1(i)aikbk(ot)δjk (I.19)

from which the smoothed state densities can be obtained, at time T , by marginalizing

over the states.

By eliminating the backward pass, the memory complexity becomes O(N2 +N), which

is independent T . However, it is achieved at the expenses of increasing the time com-

plexity to O(N4T) as can be seen in the four-dimensional recursion (I.19). Due to this

computational overhead for training, this forward-only approach has not gained much

popularity in practical applications.

I.4 Efficient Forward Filtering Backward Smoothing (EFFBS) Algorithm

In this section a novel and efficient alternative that is able to compute the exact smoothed

densities with a memory complexity that is independent of T , and without increasing

time complexity is described. The proposed alternative – termed the Efficient Forward

Filtering Backward Smoothing (EFFBS) – is an extension of the FFBS algorithm. It

exploits the facts that a backward pass of the FFBS algorithm does not require any access

to the observations and that the smoothed state densities are recursively computed from

each other in a backward pass.

Instead of storing all the predictive and filtered state densities (see Eqs. (I.13) and (I.14))

for each time step t = 1, . . . ,T , the EFFBS recursively recomputes their values starting

from the end of the sequence. Accordingly, the memory complexity of the algorithm

becomes independent of the sequence length. That is, by storing only the last values of

γT |T and γT |T−1 from the forward pass, the previously-computed filtered and predictive

234

densities can be recomputed recursively, in parallel with the smoothed densities (refer to

Algorithm AI.5).

Let the notations � and (÷) be the term-by-term multiplication and division of two

vectors, respectively. Eqs. (I.14) and (I.16) can be written as:

γt|t =

[
γt|t−1� bt

]
∥∥∥γt|t∥∥∥1

(I.20)

γt|t−1 = A′γt−1|t−1 (I.21)

where bt = [b1(ot), . . . bN (ot)]′, ‖.‖1 is the usual 1-norm of a vector (column sum) and the

prime superscript denotes matrix transpose. The backward pass of the EFFBS algorithm

starts by using only the column-vector filtered state estimate of the last observation, γT |T ,

resulting from the forward pass. Then, for t= T −1, . . .1, γt|t−1 is recomputed from γt|t
using:

γt|t−1 =

[
γt|t(÷)bt

]
∥∥∥γt|t−1

∥∥∥
1

(I.22)

from which, the filtered state estimate can be recomputed by

γt−1|t−1 =
[
A′
]−1
γt|t−1 (I.23)

This step requires the inverse of the transposed transition matrix [A′]−1 to solve N linear

equations with N unknowns. The only necessary condition is the nonsingularity of the

transition matrix A to be invertible. This is a weak assumption that has been used

in most of the studies that addressed the statistical properties of HMMs (c.f. Ephraim

and Merhav, 2002). In particular, it holds true in applications that use fully connected

HMMs, where the elements of the transition matrix are positives (i.e., irreducible and

aperiodic).

I.4.1 Complexity Analysis of the EFFBS Algorithm

235

Algorithm AI.5: EFFBS(o1:T ,λ): Efficient Forward Filtering Backward Smoothing
Output: γt|T (i) = P (qt = i | o1:T) and ξt|T (i, j) = P (qt = i,qt+1 = j | o1:T)
// Forward Filtering: the filtered, γt|t, and predictive, γt+1|t, state
densities are column vectors of length N. Their values are recursively
computed, however they are not stored at each time step, t, but recomputed
in the backward pass to reduce the memory complexity.
for i= 1, . . . ,N do // Initialization1

γ1|0(i) = πi2

for t= 1, . . .T −1 do // Induction3

for i= 1, . . . ,N do4

γt|t(i)←
γt|t−1(i)bi(ot)∑N
k=1 γt|t−1(k)bk(ot)5

for j = 1, . . . ,N do6

γt+1|t(j)←
∑N
i=1 γt|t(i)aij7

for t= 1, . . .T do // Evaluation8

�T (λ)← �T (λ)+ log
∑N
i=1 bi(ot)γt|t−1(i)9

// Backward Smoothing: the last values of the filtered, γT |T, and
predictive, γT |T−1, state densities are now used to recompute their previous
values.
A= a−1 // matrix inversion only once per iteration10

for t= T −1, . . . ,1 do // Induction11

for i= 1, . . . ,N do12

γt|t(i) =
∑N
k=1Akiγt+1|t(k)13

γt|t−1(i) = γt|t(i)/bi(ot)∑N
k=1 γt|t(k)/bk(ot)14

for j = 1, . . . ,N do15

ξt|T (i, j)← γt|t(i)aij∑N
i=1 γt|t(i)aij

γt+1|T (j)
16

γt|T (i)←∑Nj=1 ξt|T (i, j)17

In order to compute the smoothed densities in a constant memory complexity, the EFFBS

algorithm must recompute γt|t and γt|t−1 values in its backward pass, instead of stor-

ing them, which requires twice the effort of the forward pass computation. This re-

computation however takes about the same amount of time required for computing the

β values in the backward pass of the FB algorithm.

Table AI.2 presents a worst-case analysis of time and memory complexity for the EFFBS.

The proposed algorithm is comparable to both FB and FFBS algorithms (see Table AI.1)

in terms of computational time, with an overhead of about N2T +NT multiplications

236

Table AI.2 Worst-case Time and Memory Complexity of the EFFBS Algorithm for
Processing an Observation Sequence o1:T of Length T with an N State Ergodic

HMM

Computation Time Memory
Multiplications # Divisions # Additions

γT |T N2T +NT −N2 NT N2T −N2 +N N

γt|t and γt|t−1 N2T +NT −N2 NT N2T −N2 +N 2N
A−1 N3

3 + N
2

2 − N3 – N3

3 + N
2

2 − 5N
6 N2∑T

t γt|T – – N2T −NT −N2 +N N∑T−1
t=1 ξt|T 2N2T −2N2 N2T −N2 N2T −NT −N2 +N N2

Total
4N2T +2NT+
N3

3 − 7N2

2 − N2
N2T +2NT −N2 4N2T −2NT+

N3

3 − 7N2

2 + 19N
6

N2 +5N

Table AI.3 Time and Memory Complexity of the EFFBS
Versus Other Approaches (Processing an Observation Sequence
o1:T of Length T , for an Ergodic HMM with N States)

Algorithm Time Memory
FB O(N2T) O(NT)

FFBS O(N2T) O(NT)
Checkpointing O(N2(2T −

√
T)) O(N

√
T)

Forward-Only O(N4T) O(N)
EFFBS O(N2T) O(N)

and additions. An additional computational time is required for the inversion of the

transition matrix, which is computed only once for each iteration. The classical Gauss-

Jordan elimination, may be used for instance to achieve this task in O(N3). Faster

algorithms for matrix inversion could be also used. For instance, inversion based on

Coppersmith–Winograd algorithm (Coppersmith and Winograd, 1990) is O(N2.376).

The EFFBS only requires two column vectors of N floating point values on top of the

unavoidable memory requirements (N2 +N) of the smoothed densities. In addition, a

matrix of N2 floating point values is required for storing the inverse of the transposed

transition matrix [A′]−1. Table AI.3 compares the time and memory complexities of

existing fixed-interval smoothing algorithms for computing the state densities to the

proposed EFFBS algorithm.

237

I.4.2 Case Study in Host-Based Anomaly Detection

Intrusion Detection Systems (IDSs) are used to identify, assess, and report unauthorized

computer or network activities. Host-based IDSs (HIDSs) are designed to monitor the

host system activities and state, while network-based IDSs monitor network traffic for

multiple hosts. In either case, IDSs have been designed to perform misuse detection –

looking for events that match patterns corresponding to known attacks – and anomaly

detection – detecting significant deviations from normal system behavior.

Operating system events are usually monitored in HIDSs for anomaly detection. Since

system calls are the gateway between user and kernel mode, early host-based anomaly

detection systems monitor deviation in system call sequences. Various detection tech-

niques have been proposed to learn the normal process behavior through system call

sequences (Warrender et al., 1999). Among these, techniques based on discrete Hidden

Markov Models (HMMs) have been shown to shown to provide high level of performance

(Warrender et al., 1999).

The primary advantage of anomaly-based IDS is the ability to detect novel attacks for

which the signatures have not yet been extracted. However, anomaly detectors will

typically generate false alarms mainly due to incomplete data for training. A crucial

step to design an anomaly-based IDS is to acquire sufficient amount of data for training.

Therefore, a large stream of system call data is usually collected from a process under

normal operation in a secured environment. This data is then provided for training the

parameters of an ergodic HMM to fit the normal behavior of the monitored process.

A well trained HMM should be able to capture the underlying structure of the monitored

application using the temporal order of system calls generated by the process. Once

trained, a normal sequence presented to HMM should produce a higher likelihood value

than for a sequence that does not belong to the normal process pattern or language.

According to a decision threshold the HMM-based Anomaly Detection System (ADS) is

able to discriminate between the normal and anomalous system call sequences.

238

The sufficient amount of training data depends on the complexity of the process and is

very difficult to be quantified a priori. Therefore, the larger the sequence of system calls

provided for training, the better the discrimination capabilities of the HMM-based ADS

and the fewer the rate of false alarms. In practice however, the memory complexity of

the FB (or FFBS) algorithm could be be prohibitively costly when learning is performed

for a large sequence of system calls, as previously described. In their experimental work

on training HMM for anomaly detection using large sequences of system calls, Warrender

et al. (1999) state:

On our largest data set, HMM training took approximately two months, while
the other methods took a few hours each. For all but the smallest data sets,
HMM training times were measured in days, as compared to minutes for the
other methods.

This is because the required memory complexity for training the HMM with the FB

algorithm exceeds the resources available, causing overflows from internal system memory,

e.g., Random-Access Memory (RAM), to disk storage. Accessing paged memory data on

a typical disk drive is approximately one million time slower than accessing data in the

RAM.

For example, if an ergodic HMM with N = 50 states must be trained using an observation

sequence of length T = 100×106 system calls collected from a complex process. The time

complexity per iteration of the FFBS algorithm (see Table AI.1):

Time{FFBS} = 75.5×1010 MUL+25.5×1010 DIV+75.5×1010 ADD

is comparable to that of the EFFBS algorithm (see Table AI.2):

Time{EFFBS} = 101×1010 MUL+26×1010 DIV+99×1010 ADD

239

However, the amount of memory required by the EFFBS algorithm is 0.01 MB, which

is negligible compared to the 20,000 MB (or 20 GB) required by the FFBS algorithm.

Therefore, the EFFBS algorithm could form a practical approach for designing low-

footprint intrusion detection systems.

I.5 Conclusion

This paper considered the memory problem of the Forward-Backward algorithm when

trained with a long observation sequence. This is an interesting problem facing various

HMM applications - ranging from computer security to robotic navigation systems and

bioinformatics. To alleviate this issue, an Efficient Forward Filtering Backward Smooth-

ing (EFFBS) algorithm is proposed to render the memory complexity independent of

the sequence length, without incurring any considerable computational overhead and

without any approximations. A detailed complexity analysis has shown that the pro-

posed algorithm is more efficient than existing solutions in terms of both memory and

computational requirements.

240

APPENDIX II

A COMPARISON OF TECHNIQUES FOR ON-LINE INCREMENTAL

LEARNING OF HMM PARAMETERS IN ANOMALY DETECTION∗

Abstract

Hidden Markov Models (HMMs) have been shown to provide a high level performance

for detecting anomalies in intrusion detection systems. Since incomplete training data

is always employed in practice, and environments being monitored are susceptible to

changes, a system for anomaly detection should update its HMM parameters in response

to new training data from the environment. Several techniques have been proposed in

literature for on-line learning of HMM parameters. However, the theoretical convergence

of these algorithms is based on an infinite stream of data for optimal performances.

When learning sequences with a finite length, incremental versions of these algorithms

can improve discrimination by allowing for convergence over several training iterations.

In this paper, the performance of these techniques is compared for learning new sequences

of training data in host-based intrusion detection. The discrimination of HMMs trained

with different techniques is assessed from data corresponding to sequences of system

calls to the operating system kernel. In addition, the resource requirements are assessed

through an analysis of time and memory complexity. Results suggest that the techniques

for incremental learning of HMM parameters can provide a higher level of discrimination

than those for on-line learning, yet require significantly fewer resources than with batch

training. Incremental learning techniques may provide a promising solution for adaptive

intrusion detection systems.

∗This chapter is published in proceedings of the second IEEE international conference on Computa-
tional Intelligence for Security and Defense Applications (CISDA09)

242

II.1 Introduction

Intrusion Detection Systems (IDSs) are used to identify, assess, and report unauthorized

computer or network activities. Host-based IDSs (HIDSs) are designed to monitor the

host system activities and state, while network-based IDSs monitor network traffic for

multiple hosts. In either case, IDSs have been designed to perform misuse detection –

looking for events that match patterns corresponding to known attacks – and anomaly

detection – detecting significant deviations from normal system behavior.

Operating system events are usually monitored in HIDSs for anomaly detection. Since

system calls are the gateway between user and kernel mode, early host-based anomaly de-

tection systems monitor deviation in system call sequences (Forrest et al., 1996). Various

detection techniques have been proposed to learn the normal process behavior through

system call sequences (Warrender et al., 1999). Among these, techniques based on dis-

crete Hidden Markov Models (HMMs) have been shown to shown to provide high level

of performance (Warrender et al., 1999).

HMM is stochastic process for sequential data (Rabiner, 1989). Given an adequate

amount of system call training data, HMM-based anomaly detectors can efficiently model

the normal process behavior. A well trained HMM should be able to capture the un-

derlying structure of the monitored application using the temporal order of system calls

generated by the process. Once trained, an HMM provides a compact model, with tol-

erance to noise and uncertainty, which allows a fast evaluation during operations1. A

normal sequence presented to HMM should produce a higher likelihood value than for a

sequence that does not belong to the normal process pattern or language. Their ability to

discriminate between normal and malicious sequences have been discussed in literature

(Gao et al., 2002; Hoang et al., 2003; Wang et al., 2004). The effects on performance of
1In contrast, matching techniques that are based on look-up tables, e.g., STIDE (sequence time-delay

embedding) must compare inputs to all normal training sequences. The number of comparisons increases
exponentially with the detector window size DW , while for HMM evaluation the time complexity grows
linearly with DW .

243

the training set size, irregularity of the process, anomaly types, and number of hidden

states of HMM were recently investigated in Khreich et al. (2009b).

The primary advantage of anomaly-based IDS is the ability to detect novel attacks for

which the signatures have not yet been extracted. However, anomaly detectors will

typically generate false alarms mainly due to incomplete data for training, poor modeling,

and difficulty in obtaining representative labeled data for validation. In practice, it is

very difficult to acquire (collect and label) comprehensive data sets to design a HIDS

for anomaly detection. Therefore, a major requirement for an anomaly detection system

(ADS) is the ability to accommodate new data without the need to restart the training

process with all accumulated data.

Most research found in literature for HMM-based anomaly detection using system calls

assume being provided with a sufficient amount of data. Furthermore, the monitored

process is not static – changes in the environment may occur, such as application update.

This is also the case when fine tuning a base model to a specific host platform. Therefore,

HMM parameters should be refined incrementally over time by accommodating newly

acquired training data, to better fit the normal process behavior.

Standard techniques for training HMM parameters involve batch learning, based either

on the Baum-Welch (BW) algorithm (Baum et al., 1970), a specialized expectation maxi-

mization (EM) technique (Dempster et al., 1977), or on numerical optimization methods,

such as the Gradient Descent (GD) algorithm (Levinson et al., 1983). Both approaches

are iterative algorithms for maximizing the likelihood estimate (MLE) of the data. For

a batch learning technique, the data sequence is assumed to be finite. Each training

iteration of BW or GD involves observing all subsequences in the presented block2 for

training prior to updating HMM parameters. Successive iterations continues until some

stopping criterion is achieved (e.g., likelihood drop on a validation set). Given a new
2A block of data is defined as a sequence of system call observations that has been segmented into

overlapping subsequences according to a user-defined window size.

244

block of data, an HMM trained with BW or GD must be trained from start using all

cumulative training data.

As an alternative, incremental algorithm updates the HMM parameters after each subse-

quence, yet is allowed to perform several iterations over all subsequences within the block

(refer to Figure AII.1). Some desirable characteristics for incremental learning include

the ability to update HMM parameters from new training data, without requiring ac-

cess to the previously-learned training data and without corrupting previously acquired

knowledge (Polikar et al., 2001).

In contrast, for an on-line learning technique, the data sequence is assumed to be infinite.

Such techniques update HMM parameters after observing each subsequence, with no

iterations. User-defined hyper-parameters remain constant or they are allowed to degrade

monotonically over time. Given a new block, an HMM that performs on-line learning

continues the training seamlessly. In practice when learning sequences with finite length,

on-line learning may lead to poor performance.

Several techniques have been proposed in literature for different real-world applications.

Among these, on-line learning techniques are based on the current sequence of observa-

tions for optimizing the objective function (commonly the MLE), and updating the HMM

parameters. As with batch learning, they can also be divided into EM-based (Mizuno

et al., 2000) and gradient-based (Baldi and Chauvin, 1994; Ryden, 1998; Singer and War-

muth, 1996) learning techniques. These on-line techniques are extended in this work to

incremental learning by allowing them to iterate over each block of data and by resetting

the learning rates when a new block is presented. Another solution consists of learning

an HMM for each new block of data then merging it with old ones using weight-averaging

(Hoang and Hu, 2004).

The objectives of this paper are to compare the techniques for on-line and incremental

learning of HMMs parameters when applied for anomaly HIDS application using system

calls sequences. A synthetic generator of normal data plus injection of anomaly has been

245

utilized to avoid various drawbacks encountered when experimenting with real data.

The receiver operating characteristics (ROC) curves and the area under the ROC curve

(AUC) are used as a measure of performance (Fawcett, 2006). Analytical comparison of

convergence time and resources requirements are also provided and discussed.

The rest of this paper is organized as follows. The next section discusses the importance

of incremental update for anomaly detection. Section II.3 presents techniques for batch,

on-line and incremental learning for HMM parameters. The experimental methodology

in II.4 describes data generation, evaluation methods and performance metrics. Finally,

simulation results are discussed in II.5.

II.2 Incremental Learning in Anomaly Detection System

An crucial step to design an ADS is to acquire sufficient amount of data for training.

In practice however, it is very difficult to collect, analyze and label comprehensive data

sets due to many reasons that range from technical to ethical. In addition, even in the

simplest scenario where no change in the environment is assumed, characterizing the

sufficient amount of data required for building an efficient ADS is not a trivial task. In

practice, limited data is always provided for training, and the computer environment is

always susceptible to dynamic changes. This work focuses on providing solutions to the

limited data problem as described with the following practical scenarios.

Given some amount of normal system call data for training, an ADS based on HMM could

be trained, optimized and validated off-line to provide some acceptable performance

in terms of false and true positive rates. However, during operations, monitoring a

centralized server for instance, the system is susceptible to produce a higher rate of false

alarms than expected and tolerated by the system administrator. This is largely due

to the limited data that is the provided for training. The anomaly detector will have a

limited view of the normal process behavior, and rare events will be mistakenly considered

as anomalous. Accordingly, the HMM detector should be refined, i.e., trained on some

246

additional normal data when it becomes available, to better fit the normal behavior of

process in consideration.

As a part of the detection system, the system administrator plays an important role for

providing such new data. When an alarm is raised the suspicious system call subsequences

are logged and the system administrator starts an investigation into other evidence of an

attack. If an intrusion attempt is detected the response team will act to limit the damage,

and the forensic analysis team try to find the cause of the successful attack. Otherwise, it

is considered as a false alarm and the logged subsequences (which are possibly rare events)

are tagged as normal and collected for updating the HMM detector. One challenge is

the efficient integration of this newly-acquired data into the ADS without corrupting the

existing knowledge structure, and thereby degrading the performance.

II.3 Techniques for Learning HMM Parameters

A discrete-time finite-state HMM is a stochastic process determined by the two interre-

lated mechanisms. A latent Markov chain having comprising N states in the finite-state

space S = {S1,S2, ...,SN}, and a set of observation discrete probability distributions bj(v),

each one associated with a state (Ephraim and Merhav, 2002; Rabiner, 1989). Starting

from an initial state Si, determined by the initial state probability distribution πi, at

each discrete-time instant, the process transits from state Si to state Sj according to the

transition probability distribution aij (1 ≤ i, j ≤ N). The process then emits a symbol

v according to the output probability distribution bj(v) of the current state Sj . The

model is therefore parametrized by the set λ= (π,A,B), where vector π = {πi} is initial

state probability distribution, matrix A = {aij} denotes the state transition probability

distribution, and matrix B = {bj(k)} is the state output probability distribution. Both

A, B, and π′ are row stochastic, which impose the following constraints:

N∑
j=1
aij = 1∀i,

M∑
k=1
bj(k) = 1∀j, and

N∑
i=1
πi = 1 (II.1)

247

aij , bj(k), and πi ∈ [0,1], ∀ijk (II.2)

II.3.1 Batch Learning

The target in HMM parameters learning is to train the model λ to best fit the observed

batch of data o1:T . The estimation of HMM parameters is frequently performed according

to the maximum likelihood estimation (MLE) criterion3. MLE consists of maximizing

the log-likelihood

�T (λ) � logPr(o1:T | λ) (II.3)

of the training data over HMM parameters space (Λ):

λ∗ = argmaxλ∈Λ�T (λ) (II.4)

Unfortunately, since the log-likelihood depends on missing information (the latent states),

there is no known analytical solution to the training problem. In practice, iterative op-

timization techniques (briefly described below) such as the Baum-Welch algorithm, a

special case of the Expectation-Maximization (EM), or alternatively the standard nu-

merical optimization methods such as gradient descent are usually used for this task.

In either case, the optimization requires the evaluation of the log-likelihood value (II.3)

at each iteration, and the estimation of the conditional state densities. That is, the

smoothed a posteriori conditional state density:

γt(i) � Pr(qt = i | o1:T ,λ) (II.5)

and the smoothed a posteriori conditional joint state density:

ξt(i, j) � Pr(qt = i, qt+1 = j | o1:T ,λ) (II.6)
3Other criteria such as the maximum mutual information (MMI), and minimum discrimination in-

formation (MDI) could be also used for estimating HMM parameters. However, the widespread usage of
the MLE for HMM is due to its attractive statistical properties – consistency and asymptotic normality
– proved under quite general conditions.

248

The Forward-Backward (FB) (Rabiner, 1989) or the numerically more stable Forward-

Filtering Backward-Smoothing (FFBS) (Ephraim and Merhav, 2002) algorithms are typ-

ically used for computing the log-likelihood value (II.3) and the smoothed state densities

of Eqs. (II.5) and (II.6).

The Baum-Welch (BW) algorithm (Baum et al., 1970) is an Expectation-Maximization

(EM) algorithm (Dempster et al., 1977) specialized for estimating HMM parameters.

Instead of a direct maximization of the log-likelihood (II.3) BW optimizes the auxiliary

Q-function:

QT (λ,λ(k)) =
∑
q∈S

Pr(o1:T , q1:T | λ(k)) logPr(o1:T , q1:T | λ) (II.7)

which is the expected value of the complete-data log-likelihood and hence easier to be

optimized. This is done by alternating between the expectation step (E-step) and max-

imization step (M-step). The E-step uses the FB or FFBS algorithms to compute the

state densities (Eqs. II.5 and II.6) which are then used, in the M-step to re-estimate the

model parameters:

π
(k+1)
i = γ

(k)
1 (i)

a
(k+1)
ij =

∑T−1
t=1 ξ

(k)
t (i, j)∑T−1

t=1 γt(i)
(II.8)

b
(k+1)
j (m) =

∑T
t=1 γ

(k)
t (j)δotvm∑T
t=1 γt(j)

The Kronecker delta δij is equal to one if i= j and zero otherwise. Starting with an initial

guess of the HMM parameters, λ0, each iteration k, of the E- and M-step is guaranteed

to increase the likelihood of the observations giving the new model until a convergence

to a stationary point of the likelihood is reached (Baum et al., 1970).

In contrast, standard numerical optimization methods work directly with the log-likelihood

function (II.3) and its derivatives. Starting with an initial guess of HMM parameters λ0,

249

the gradient descent (GD) updates the model at each iteration k using:

λ(k+1) = λ(k) +ηk∇λ�T (λ(k)) (II.9)

where the learning rate ηk could be fixed, or adjusted at each iteration. One way of com-

puting the gradient of the likelihood ∇λ�T (λ(k)) is by using the values of the conditional

densities (Eqs. II.5 and II.6) obtained from the FB or FFBS algorithms:

∂�T (λ(k))
∂aij

=
∑T−1
t=1 ξt(i, j)
aij

(II.10)

∂�T (λ(k))
∂bj(m) =

∑T
t=1 γt(j)δotvm
bj(m) (II.11)

However, with the numerical optimization methods HMM parameters are not guaranteed

to stay within their space limits. As described next, the parameters constraints (Eqs. II.1

and II.2) must therefore be imposed explicitly through a re-parametrization, to reduce

the problem to unconstrained optimization.

Since, at each iteration, both BW and GD algorithms rely on the fixed-interval smoothing

algorithms (FB or FFBS) to compute the state conditional densities, they are therefore

performing a batch learning approach. This is because these fixed-interval smoothing

algorithms require an access to the end of sequence in order to compute the smoothed

densities. Similarly, when learning from a block of multiple subsequences, each iteration

of the BW and GD requires the averaged smoothed densities over all the subsequences

in the block. Therefore, the block must have a finite number of subsequences, and all

the subsequences are visited at each iteration. Consequently, when provided with a new

block of subsequences the training process must be restarted using the accumulated (old

and new) data to accommodate the new data.

II.3.2 On-line and Incremental Learning

250

Figure AII.1 presents an illustration of the batch, on-line, and incremental learning ap-

proaches when provided with subsequent blocks each comprises R observation subse-

quences. When the first block (D1) is presented, all algorithms start with the same

initial guess of HMM parameters (λ0). At each iteration k, batch algorithms update

the model parameters using the averaged state densities (Eqs. II.5 and II.6) over all

the subsequences in the block until stopping criteria are met, then the first operational

model (λ1) is produced. On-line algorithms directly update the model parameters using

the stated densities based on each subsequence and output λ1 upon reaching the last

subsequence in the block. This constitutes one iteration of the incremental algorithms

which then re-iterate until reaching the stopping criteria before producing λ1.

When the second block (D2) is presented, batch algorithms restart the training proce-

dure, using all accumulated training data (D1 ∪D2). The on-line algorithms however

resumes training from the previous model (λ1) using only the current block (D2) with-

out iterations, while the incremental algorithms will re-iterate on D2 until the stopping

criteria are met.

On-line learning techniques for HMM parameters can be broadly divided into EM-based

(Mizuno et al., 2000) or gradient-based (Baldi and Chauvin, 1994; Ryden, 1998; Singer

and Warmuth, 1996) optimization of the log-likelihood function. These techniques are

essentially derived from their batch counterparts, however the key difference is that the

optimization and the HMM update are based on the currently presented subsequence

of observations without iterations. EM-based techniques employ an indirect maximiza-

tion of log-likelihood, through the complete log-likelihood (II.7), in which the E-step

is performed on each subsequence of observation and then the model parameters are

updated (Mizuno et al., 2000). Gradient-based techniques however directly maximize

the log-likelihood function (II.3) and then update HMM parameters after processing

each subsequence of observation. Several gradient-based optimization algorithms have

been proposed, such as the GD algorithm (Baldi and Chauvin, 1994), the exponentiated

251

D1

λ(k)

λ1

λ2

λR

λ(k)

λ0

λ1

λ2

λR

Batch On-line Incremental

λ1 λ1 λ1

D2

λ(k)

λ2

D1

∪
D2

D2

λ(k)

D2

λ2λ2

λ0 λ0

λ0

Data Blocks

s
(1)
1

s
(1)
2

s
(1)
R

s
(2)
1

s
(2)
2

s
(2)
R

Figure AII.1 Illustration of batch, on-line, and incremental learning
approaches when learning from subsequent blocks (D1,D2, . . .) of R

observation subsequences, provided at different time intervals

gradient framework which also minimizes the model parameters divergence (Singer and

Warmuth, 1996), and the recursive estimation technique (Ryden, 1998).

The on-line learning technique proposed by Mizuno et al. (2000) is based on the BW

algorithm, however applies a decayed accumulation of the state densities and a direct

update of the model parameters after each subsequence of observations (Mizuno et al.,

2000). Starting with an initial model λ0, the conditional state densities are recursively

computed after processing each subsequence (r) of observations of length T by:

T−1∑
t=1
ξr+1
t (i, j) = (1−ηr)

T−1∑
t=1
ξrt (i, j)+ηr

T−1∑
t=1
ξr+1
t (i, j) (II.12)

T∑
t=1
γr+1
t (j)δotk = (1−ηr)

T∑
t=1
γrt (j)δotk+ηr

T∑
t=1
γr+1
t (j)δotk (II.13)

252

and the model parameters are then directly updated using (II.8). The learning rate ηk
is proposed in polynomial form ηr = c(1

r)
d for some positive constants c and d.

Based on the GD (II.9) of the negative likelihood, the on-line algorithm for HMM parame-

ters estimations introduced by Baldi and Chauvin (1994) employs a softmax parametriza-

tion to transform the constraint optimization into an unconstrained one. This is achieved

by mapping the bounded space (a,b) to the unbounded space (u,v):

aij = euij∑
k euik

and bj(k) = evj(k)∑
z e
vj(z)

(II.14)

The transformed parameters are then updated, after each subsequence of observations,

as follows:

ur+1
ij = urij+η

T∑
t=1

(
ξr+1
t (i, j)−aijγr+1

t (i)
)

(II.15)

vr+1
j (k) = vrj (k)+η

T∑
t=1

(
γr+1
t (j)δotk− bj(k)γr+1

t (j)
)

(II.16)

The objective function proposed by Singer and Warmuth (1996) minimizes the divergence

between the old and new model parameters penalized by the negative log-likelihood of

each subsequence multiplied by a fixed positive learning rate (η > 0):

λr+1 = argmin
λ

(
KL(λr+1,λr)−η�T (λr+1)

)
(II.17)

The Kullback-Leibler (KL) divergence (or relative entropy) is defined between two prob-

ability distributions Pλ(k)(o1:t) and Pλ(o1:t) by:

KL(Pλr ‖ Pλ) =
∑
t

Pr
λr

(o1:t) log Prλr(o1:t)
Prλ(o1:t)

(II.18)

KL is always non-negative and attains its global minimum at zero for Prλ→ Prλr . This

optimization is based on the exponentiated gradient framework, therefore the parameters

253

constraints are respected implicitly. After processing each subsequence of observations,

the model parameters are updated using the conditional state densities and the deriva-

tives of the log-likelihood ((II.10) and (II.11)):

ar+1
ij = 1

Z1
arije

(
− η∑T

t=1 γ
r+1
t (i)

∂�T (λr+1)
∂aij

)
(II.19)

br+1
j (k) = 1

Z2
brj(k)e

(
− η∑T

t=1 γ
r+1
t (j)

∂�T (λr+1)
∂bj(k)

)
(II.20)

where Z1 and Z2 are normalization factors.

The idea proposed by Ryden (1998) is to consider successive subsequences of T observa-

tions taken from a data stream, or = {o(r−1)T+1, . . . ,orT}, as independent of each other.

This assumption reduces the extraction of information from all the previous observations

to a data-segment of length T . In fact, this has been considered implicitly with all the

above techniques that process multiple subsequences of T observations. To enforce pa-

rameters stochastic constraints (II.1), a projection (PG) on a simplex is suggested, which

updates all but one of the parameters in each row of the matrices. At each iteration, the

recursion is given (without matrix inversion)

λr+1 = PG (λr+ηrh(or+1 | λr)) (II.21)

where h(or+1 | λr) = ∇λr logPr(or+1 | λr) and ηr = η0r−ρ for some positive constant

η0 and ρ ∈ (1
2 ,1]. It was shown to converge almost surely to the set of Kuhn–Tucker

points for minimizing the Kullback-Leibler divergenceKLk(λr ‖ λ(true)) defined in (II.18).

KL attains its global minimum at λr→ λ(true), provided that the HMM is identifiable,

therefore the subsequence must contains at least two symbols (T ≥ 2).

On-line learning algorithms are therefore proposed for situations where a long (ideally

infinite) sequences of observation are provided for training. In this paper however, these

techniques are applied in an incremental fashion, where algorithms are allowed to con-

254

verge over several iterations of each new training block. However, when a new block is

provided all learning rates are reset.

II.4 Experimental Methodology

The University of New Mexico (UNM) data sets are commonly used for benchmarking

ADS based on system calls sequences. Normal data are collected from a monitored

process in a secured environment, while testing data are the collection of the system

calls when this process is under attack (Warrender et al., 1999). Since it is very difficult

to isolate the manifestation of an attack at the system call level, the UNM test sets

are not labeled. Therefore, in related work, intrusive sequences are usually labeled in

comparison with the normal subsequences, (e.g., using STIDE). This labeling process

leads to a biased evaluation of techniques, which depends on both training data size and

detector window size.

The need to overcome issues encountered when using real-world data for anomaly-based

HIDS (incomplete data for training, and labeled data) has lead to the implementation of

a synthetic data generation platform for proof-of-concept simulations. It is intended to

provide normal data for training and labeled data (normal and anomalous) for testing.

This is done by simulating different processes with various complexities then injecting

anomalies in known locations.

Inspired by the work of Tan and Maxion (Maxion and Tan, 2000; Tan and Maxion, 2003),

the data generator is based on the Conditional Relative Entropy (CRE) of a source. It

is defined as the conditional entropy divided by the maximum entropy (MaxEnt) of that

source, which gives an irregularity index to the generated data. For two random variables

x and y the CRE can be computed by:

CRE =
−∑x p(x)∑y p(y | x) logp(y | x)

MaxEnt
(II.22)

255

where for an alphabet of size Σ symbols, MaxEnt = −Σlog(1/Σ) is the entropy of a

theoretical source in which all symbols are equiprobale. It normalizes the conditional en-

tropy values between CRE = 0 (perfect regularity) and CRE = 1 (complete irregularity

or random). In a subsequence of system calls, the conditional probability, p(y | x), repre-

sents the probability of the next system call given the current one. It can be represented

as the columns and rows (respectively) of a Markov Model with the transition matrix

M = {aij}, where aij = p(St+1 = j | St = i) is the transition probability from state i at

time t to state j at time t+1. Accordingly, for a specific alphabet size Σ and CRE value,

a Markov chain is first constructed, then used as a generative model for normal data.

This Markov chain is also used for labeling injected anomalies as described below. Let

an anomalous event be defined as a surprising event which does not belong to the process

normal pattern. This type of event may be a foreign-symbol anomaly subsequence that

contains symbols not included in the process normal alphabet, a foreign n-gram anomaly

subsequence that contains n-grams not present in the process normal data, or a rare

n-gram anomaly subsequence that contains n-grams that are infrequent in the process

normal data and occurs in burst during the test4.

Generating training data consists of constructing Markov transition matrices for an al-

phabet of size Σ symbols with the desired irregularity index (CRE) for the normal

sequences. The normal data sequence with the desired length is then produced with the

Markov chain, and segmented using a sliding window (shift one) of a fixed size, DW .

To produce the anomalous data, a random sequence (CRE = 1) is generated, using the

same alphabet size Σ, and segmented into subsequences of a desired length using a sliding

window with a fixed size of AS. Then, the original generative Markov chain is used to

compute the likelihood of each subsequence. If the likelihood is lower than a threshold

it is labeled as anomaly. The threshold is set to (min(aij))AS−1,∀i,j , the minimal value

in the Markov transition matrix to the power (AS− 1), which is the number of symbol

transitions in the subsequence of size AS. This ensures that the anomalous subsequences
4This is in contrast with other work which consider rare event as anomalies. Rare events are normal,

however they may be suspicious if they occurs in high frequency over a short period of time.

256

of size AS are not associated with the process normal behavior, and hence foreign n-gram

anomalies are collected. The trivial case of foreign-symbol anomaly is disregarded since

it is easy to be detected. Rare n-gram anomalies are not considered since we seek to

investigate the performance at the detection level, and such kind of anomalies are ac-

counted for at a higher level by computing the frequency of rare events over a local region.

Finally, to create the testing data another normal sequence is generated, segmented and

labeled as normal. The collected anomalies of the same length are then injected into

those subsequences at random according to a mixing ratio.

In the presented experiments, a normal data sequence of length 1,600 symbols is produced

using a Markov model with an irregularity index CRE = 0.4, and segmented using a

sliding window of a fixed size, DW = 8 (Khreich et al., 2009b). The data are then

divided into 10 blocks, Di, for i = 1, . . .10, each comprises R = 20 subsequences. A test

set of 400 subsequences each of size AS = 8 is prepared as described above. It comprises

75% of normal and 25% of anomalous data. Each block of the normal data Di is divided

into blocks of equal size – one is used for training (Dtraini) and the other for validation

(Dvalidi), which is used to reduce the overfitting effects (hold-out validation).

For batch algorithms (BW-batch and GD-batch), successive blocks for training are ac-

cumulated and training is restarted each time a new block is presented. That is, the

HMMs are first trained and validated on the first block of data (Dtrain1 ,Dvalid1). The

training is then restarted, by re-initializing the models at random, and performing the

batch algorithms using the accumulated blocks of data (Dtrain1 ∪Dtrain2 ,Dvalid1 ∪Dvalid2),

and so on. In contrast, the incremental algorithms resume training by starting with the

corresponding models produced from the previous block and by using the presented block

only (Dtraini ,Dvalidi). The stopping criterion for the batch and the incremental algorithms

is set to a maximum of 100 iterations or to when the log-likelihood remains constant for

at least 10 iterations for the validation data. On-line learning algorithms are not allowed

to iterate on successive blocks of data. In this case, all learning rates are optimized and

reset with the presentation of each new block. In all cases, the algorithms are applied to

257

an ergodic (fully connected) HMM with eight hidden states (N = 8), and are initialized

with the same random model. For each algorithm, the model that produced the highest

log-likelihood value on the validation data is selected for testing.

The log-likelihood of the test data (normal + anomalous) are then evaluated using the

forward algorithm. By sorting the test subsequences decreasing by these log-likelihood

values, and updating the true positive rate (tpr) and the false positive rate (fpr) while

moving down the list, results in a Receiver Operating Characteristics (ROC) curves

(Fawcett, 2006). The ROC curve depicts the trade-off between the tpr – the number

of anomalous subsequences correctly detected over the total number of anomalous sub-

sequences – and the fpr – the number of normal subsequences detected as anomalous

over the total number of normal subsequences in the test set. The Area Under the ROC

Curve (AUC) is used as a measure of performance. AUC = 1 means a perfect separa-

tion between normal and anomalous (tpr = 100%,fpr = 0%), while AUC = 0.5 means a

random classification.

This procedure is replicated ten times with different training, validation and testing sets,

and the resulting AUCs are averaged and presented along with their standard deviations

(error bars). Although not show in this paper, various experiments have been conducted

using different values of N , CRE, DW and Σ. These experiments produced similar

results and hence the below discussion hold.

258

II.5 Results

The EM-based algorithm (Mizuno (Mizuno et al., 2000)), and the gradient-based ones

(Baldi (Baldi and Chauvin, 1994), Singer (Singer and Warmuth, 1996), and Ryden (Ry-

den, 1998)) are first applied in an on-line learning approach as originally proposed by the

authors. Figure AII.2 presents the average AUC achieved for on-line techniques for each

block of training data. The results of the batch BW and GD algorithms are presented

for reference.

The performances of the on-line algorithms tend to be equivalent with the increase of

data. This is also confirmed by the statistical tests, conducted at the final block of

data as shown in Figure AII.4. However, at the beginning, when few blocks of data

0 2 4 6 8 10 12
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Blocks

A
U

C

BW(batch)
GD(batch)
Mizuno
Baldi
Singer
Ryden

Figure AII.2 Average AUC of on-line learning techniques vs the amount of training
data that are used to train an ergodic HMM with N = 8

259

are presented, the EM-based algorithm performs better than gradient-based ones. Due

to one view of the data, on-line algorithms require a large amount of data to achieve

good performance. Theoretically, an infinite amount of data is assumed when trying

to prove the convergence of such on-line algorithms. Among the presented techniques,

only Ryden provided convergence analysis and proof of consistency (Ryden, 1998). The

average performances of the batch algorithms are equivalent and increase with the number

of blocks. This is expected, since the batch algorithms are allowed to iterate on the

accumulated data, they have therefore a global (backward) view.

Figure AII.3 presents the averaged AUC achieved by incremental techniques for each

block of training data. The average AUC of the incremental algorithms are lower than the

performance of batch and higher than that of the on-line ones. In fact, these algorithms

have a local view of the presented data. Although they are allowed to learn the new

data through several iterations, there is a loss of information form the previously learned

data. This is usually controlled with the decaying learning rate, which assigns a weight

to the past information with reference to the future data contribution.

Among the incremental algorithms, statistical testing shows that Baldi’s algorithm (Baldi

and Chauvin, 1994) achieved slightly superior performance than the others as shown in

Figure AII.4. This is possibly related to the short length of training subsequences (DW =

8). The other incremental algorithms may require larger subsequences to accumulate

enough information from each one before updating the model parameters. For instance,

Ryden (1998) suggests using a minimum subsequence length of DW = 20.

However, the stochastic nature of the incremental algorithms allows them to escape local

minima. This important characteristic can be shown when both batch and incremental

algorithms are trained on the same data. For instance, this is illustrated when learning

the first block in Figure AII.3. It can be seen that incremental algorithms are capable

of producing superior results to their batch counterparts. Therefore, they may be used

as an alternative for batch training, especially that they converge faster than the batch

260

0 2 4 6 8 10 12
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Blocks

A
U

C

BW(batch)
GD(batch)
Mizuno
Baldi
Singer
Ryden
BW(ib)
Hoang

Figure AII.3 Average AUC of incremental learning techniques vs the amount of
training data that are used to train an ergodic HMM with N = 8

algorithms since they update the model after each subsequence and hence exploit new

information faster.

Figure AII.3 also presents the results of the BW incremental batch, BW(ib) for reference.

That is, when learning D1, BW is initialized with a random HMM and the algorithm is

applied until it converges. For the subsequent block D2, BW is then initialized with λ1.

The performance of BW(ib) indicates data corruption since it is prone to get stuck in

a local minimum from the previous block. Interestingly, this straightforward EM-based

solutions produced similar results to Mizuno (Mizuno et al., 2000). This indicates that

the learning rates employed by the latter during the experiments may be better optimized

to escape local minima.

261

In addition, Figure AII.3 includes another incremental approach based on learning an

HMM for each new block of data then merging it with old ones using weight-averaging

(Hoang and Hu, 2004). This learn and merge approach performed statistically worse than

most of the incremental techniques as shown in Figure AII.4. This is due to averaging

ergodic HMMs since the states order may be mixed up between the HMM trained on the

first block and that trained on the second block of data.

0 20 40 60 80 100 120

Hoang
BW(ib)

Ryden(IL)
Singer(IL)
Baldi(IL)

Mizuno(IL)
Ryden(OL)
Singer(OL)
Baldi(OL)

Mizuno(OL)
GD
BW

Figure AII.4 Kruskall-Wallis (one-way analysis of variance) statistical test for
batch, on-line (OL) and incremental learning (IL) algorithms after processing the

final block D10 of data

Table AII.1 compares the time and memory complexity of EM-based and gradient-based

algorithms each processing a subsequence of T observations and then updating the model

parameters. This represents the core operations required by all learning approaches.

Time complexity represents the worst-case number of operations required for one iter-

ation of EM-based and gradient-based algorithms. For both algorithms one iteration

involves computing one forward and one backward pass with o1:T . Memory complexity

is the worst-case number of 32 bit words needed by the algorithms to store the required

temporary variables in RAM. Since both algorithms rely on the FB or FFBS to com-

pute the state conditional densities (Eqs. II.5 and II.6), therefore they require about

the same computational time complexity, O(N2T), and the same memory requirements,

262

O(NT). The additional computation time required by the gradient-based algorithms

while updating HMM parameters stems from the re-parametrization (Section 3).

Table AII.1 Worst-case time and memory complexity analysis for EM- and
gradient-based algorithms each processing a subsequence of T observations, with an
N state HMM states and an alphabet of size Σ =M symbols. This represents the

core operations required by batch, on-line and incremental algorithms, the
differences stem from iterating until convergence

Algo. Estimation Time Memory
Multiplications # Divisions # Exponentiation

EM-
based

State Prob. (Eqs. II.5 & II.6) 6N2T +3NT −6N2−N N2T +3NT −N2−N NT +N2 +2N
Transition Prob. (A) N2 N2 N2

Emission Prob. (B) NM NM NM

Total 6N2T +3NT −5N2

+NM −N N2T +3NT +MN −N NT +2N2 +NM +2N

Grad-
based

State Prob. (Eqs. II.5 & II.6) 6N2T +3NT −6N2−N N2T +3NT −N2−N NT +N2 +2N
Transition Prob. (A) N2 N2 N2 N2

Emission Prob. (B) NM MN NM NM

Total 6N2T +3NT −5N2

+NM −N N2T +3NT +MN −N N2 +NM NT +2N2 +NM +2N

For a block of R subsequences, batch learning involves R times the computations of the

state densities whereas only one update of the parameters is performed at each iteration.

On the other hand, the on-line algorithms perform R times the computation of state

densities and R times the update of the model, without iterating however. On-line

algorithms are therefore the fastest in learning HMM parameters. At each iteration, the

incremental algorithms require the same computational time need by the on-line ones.

Accordingly, the incremental techniques require more computational time per iteration

than the batch counterparts, however fewer iterations are required to converge. The

memory complexity of the on-line algorithms is constant in time, O(NT), and also for

the incremental ones though it is R times greater. However, for batch algorithms this

value scales linearly with the number of the accumulated subsequences.

II.6 Conclusion

In this paper, the performance of several techniques is compared for on-line incremental

learning of HMM parameters as new sequences of training data becomes available. These

techniques are considered for updating host-based intrusion detection systems from sys-

263

tem calls to the OS kernel, but apply to other HMM-based detection systems that face

the challenges associated with limited training data and environmental changes. Results

have shown that techniques for incremental learning of HMM parameters can provide

a higher level of discrimination than those for on-line learning, yet require significantly

fewer resources than with batch training. Incremental learning techniques may provide

a promising solution for adaptive intrusion detection systems. Future work includes

in-depth investigation of the learning rates effects on performances, which are sensitive

parameters especially for gradient-based techniques. Comparing these techniques with

models combinations at the training level or responses fusion at the decision level is also

an interesting direction to explore.

264

APPENDIX III

INCREMENTAL LEARNING STRATEGY FOR UPDATING HMM

PARAMETERS

This Appendix presents an effective strategy to overcome the challenges faced when HMM

parameters must be incrementally updated from a newly-acquired data.

Incremental learning refers to the ability of an algorithm to learn from new data that

may become available after a classifier (or a model) has already been generated from a

previously available data set. Incremental learning produces a sequence of hypotheses, for

a sequence of training data sets, where the current hypothesis describes all data that have

been seen thus far, but depends only on previous hypotheses and the current training

data (Grossberg, 1988; Polikar et al., 2001). Incremental learning leads to a reduced

storage requirement since there is no need for storing the data from previous training

phases, after adapting HMM parameters. Furthermore, since training is performed only

on the newly-acquired data, and not on all accumulated data, incremental learning would

also lower the time and memory complexity required by the algorithm employed to train

an HMM from new data.

However, incremental learning is typically faced with the stability-plasticity dilemma,

which refers the problem of learning new information incrementally, yet overcoming the

problem of catastrophic forgetting (Grossberg, 1988; Polikar et al., 2001). To sustain a

high level of of generalization during future operations, HMM parameters should therefore

be updated from new data without corrupting previously-acquired knowledge and with-

out being subject to catastrophic forgetting. When new training data become available,

standard batch techniques for estimating HMM parameters must restart the training

procedure using all cumulative training data, as described in Chapter 2. Alternatively,

the on-line learning techniques proposed in literature and surveyed in Chapter 2 assume

infinite data sequence, and update HMM parameters continuously upon observing each

266

new sub-sequence or new symbol of observation. They typically employ some (fixed or

decreasing) internal learning rate or decay function between the successive updates of

HMM parameters, to help stabilizing the algorithm and adapt to the newly acquired

information. In practice, both batch and on-line learning techniques lead to knowledge

corruption when performed incrementally to update HMM parameters.

Figure AIII.1 illustrates the challenges caused by the stability-plasticity dilemma, when

a batch or on-line learning algorithm is performed incrementally to update one HMM

parameter. Assume that the training block D2, which contains one or multiple sub-

sequences, becomes available after an HMM(λ1) has been previously trained on a block

D1 and deployed for operations. An incremental algorithm that optimizes, for instance,

the log-likelihood function requires re-estimating the HMM parameters over several it-

erations until this function is maximized for D2. The dotted curve in Figure AIII.1

represents the log-likelihood function of an HMM(λ1) that has previously learned D1,

while the plain curve represents the log-likelihood function associated with HMM(λ2)

that has incrementally learned D2 over the space of one model parameter (λ). Since λ1

is the only information at hand from previous data D1, the incremental training process

starts from HMM(λ1).

The optimization of HMM parameters depends on the log-likelihood function of HMM(λ2)

with respect to that of HMM(λ1). If the log-likelihood function of HMM(λ2) has some

local maxima in the proximity of that of HMM(λ1), the optimization of λ2 may remain

trapped in these local maxima and would not be able to accommodate the newly-acquired

information from D2. In this case, the model stability is privileged and its ability to learn

new information becomes limited. For instance, if λ1 was selected according to point (a)

in Figure AIII.1, the optimization will probably lead to point (d), providing the same

model parameters (λ2 ≈ λ1). When HMM parameters remain trapped in the proximity

of the same local maxima and old information is mostly conserved, the performance of

HMM will decline over time. On the other hand, if the HMM parameters (λ2) were able

to escape the local maximum found by λ1, λ2 will be completely adapted to D2, thereby

267

corrupting the previously-acquired knowledge, and compromising HMM performance. In

this case, the plasticity of the model is privileged and its adaptability leads to a catas-

trophic forgetting. For instance, If λ1 was selected as point (b), the optimization will

lead to a better (g) or worse (e) solution on the log-likelihood function associated with

D2 alone.

The log-likelihood function depends on other factors than the starting point (λ1), such

as the size and regularity of newly-acquired data D2 with respect to previously-learned

data D1, as well as on the learning algorithm. Given the same starting point λ1, and

assuming that a batch or on-line algorithm is employed to incrementally update HMM

parameters from the same block of dataD2. In general, batch algorithms tend to privilege

stability, while on-line algorithms tend to privilege plasticity. In fact, starting from λ1,

one iteration of a batch algorithm requires accumulating the sufficient statistic – the

conditional state and joint state densities required to update HMM parameters, over

L
og

-L
ik

el
ih

oo
d

Optimization Space of
one Model Parameter (λ)

(a)

(c)

(d)

HMM (λ1)
HMM (λ2)

(b)

(e)

(f)

(g)

(h)
Stability

λ2 remains trapped in the
proximity of previous local

maxima, and hence unable to
accommodate new information

provided by D2

Plasticity
λ2 adapts completely to the
new information provided by
D2, and hence corrupts the

previously-acquired knowledge
from D1

Figure AIII.1 An illustration of the degeneration that may occur with batch or
on-line estimation of HMM parameters, when learning is performed incrementally

on successive blocks data, each comprising unrepresentative amount of data
providing incomplete view of phenomena

268

the entire sequence or sub-sequences in D2, prior to updating λ1. On the other hand,

given the initial model parameters λ1, a typical iteration of on-line algorithms involves a

sequence of updates to λ1 based on each observed symbol or each observed sub-sequence

in D2, until the last symbol or sub-sequence is reached. This added stochasticity induced

by the early updates of HMM parameters according to on-line algorithms force the HMM

(λ1) to escape previous local maxima, and to achieve a faster and complete adaptation to

D2. However, the previously-acquired knowledge of the model may be compromised with

the first few symbols or sub-sequences of D2, leading thereby to a catastrophic forgetting.

In our previous work, described in Appendix II, some representative on-line learning

techniques for HMM parameters are extended to incremental learning, by allowing them

to iterate over each block of data and by resetting their internal learning rates when

a new block is presented. The learning rates are employed to integrate the information

from each new symbol or sub-sequences of observation with the previously-learned model.

Although they have been shown to improve accuracy over time, optimizing the internal

learning rates employed within these algorithms to trade off plasticity against stability is

a challenging task. For one, information form all previously learned data contained within

the current model should be balanced with new information contained in a symbol or sub-

sequence of observation. Furthermore, model selection and stopping criteria become very

difficult, because these on-line algorithms do not guarantee a monotonic improvement of

the log-likelihood value at each update of parameters.

To alleviate these issues, the incremental learning strategy proposed in this appendix

consists of employing a (global) learning rate at the iteration level. This aims at delaying

the integration of newly-acquired information with the previously-learned model until at

least on iteration over the new block of data is performed by the new model. In addition,

the previously-learned model is kept in memory and weight-balanced with the new model

over each iteration.

269

Assume that the HMM parameters (λDn) obtained from the nth data block Dn must

be updated to accommodate the newly-acquired data from Dn+1. The learning process

of λ′Dn+1 starts from λDn . At each iteration (iter), the parameters of the new HMM

(λ′Dn+1) are weight-balanced with those of previously-trained HMM (λDn) and the new

model parameters, which are iteratively updated from Dn+1 (λ(iter)
Dn+1

), according to a

learning rate η:

λ′Dn+1 ← ηλDn+(1−η)λ(iter)
Dn+1

(III.1)

Several advantages are provided by retaining the previous model λDn in memory during

the current learning stage, and employing the learning rate η to reintegrate pre-existing

knowledge from λDn and the newly-acquired information from successive iterations of

λ
(iter)
Dn+1

over Dn+1. For one, the previously-acquired knowledge contained in λDn is no

longer susceptible to be compromised by the insufficient information provided by the

first symbol or sub-sequence of observation from Dn+1. The internal learning rates of

on-line algorithms can be now optimize based on new data to stabilize the algorithm

and ensure its converge smooth convergence, without worrying about corrupting λDn . In

addition, monitoring the improvement of log-likelihood values of the new data given the

updated model parameters at each iteration becomes more tractable, which facilitates

both stopping criteria of algorithms and selection of models for operations.

This incremental learning strategy is general in that it can be applied to any batch of on-

line learning algorithm. The iterative procedure provided by Eq. III.1 does not specify the

algorithm for local learning from the new block of data Dn+1. Therefore, updating λ(iter)
Dn+1

is not restricted to on-line algorithms, other techniques such as batch learning algorithms

for estimating HMM parameters can be also applied. Algorithm selection depends on

the size and regularity of the data. When limited amount of data is provided for training

within each new block, batch algorithms provide easier solution, as no internal learning

rate is employed. However when abundant yet unrepresentative data is provided on-line

algorithms may be employed due to their reduced storage requirements. However, an

270

effort is still required for optimizing the internal learning rates of these on-line algorithms

to ensure convergence. In this case, the EFFBS algorithm proposed in Appendix I

provides an alternative efficient solution, which requires no learning rate optimization.

In general, employing a fixed user-defined learning rate along with a validation strategy

would maintaining the level of performance in static or slowly changing environments.

As described in Section 2.5, various validation strategies may be employed, to reduce the

overfitting effects and improve the generalization performance during operations. For

instance, such as hold-out or cross-validation procedures, or when applicable accumulat-

ing and updating representative validation data set over time. However, this requires

investigating some selection criteria for maintaining the most informative sequences of

observations and discarding less relevant one. Other strategies for an automatic update

of the learning rate based upon the magnitude of the performance change, during the

incremental training and validation can be also applied (Kuncheva and Plumpton, 2008).

A version of this incremental learning strategy called incremental BW (IBW), has been

applied in the proof-of-concept simulations conducted in Section 4.4. IBW employs the

BW algorithm to update HMM parameters at each iteration, and uses a fixed learning

rate η optimized during the first learning stage, with a 10-fold cross validation procedure

for model selection.

APPENDIX IV

BOOLEAN FUNCTIONS AND ADDITIONAL RESULTS

IV.1 Boolean Functions

Figure AIV.1 presents all the distinct Boolean functions on two variables. Table (a) shows

the four Boolean operations that depend on one variable (the inputs and their negations)

along with the two constant operations (always positive and always negatives). Table (b)

represents the ten operations that take on two variables. The first four are obtained from

conjunction with some subset of its inputs negated. Similarly for the next four which are

obtained from disjunction however. The last two (the XOR and its negation, EQV) are

obtained with a “checkerboard” truth table. In general, for two inputs variables (n= 2)

with two possible binary outputs, there are 22n = 16 distinct Boolean operations, whereas

ten are effectively used for combining.

Ca Cb

Ca ∧ Cb Ca ∨ Cb Ca ⊕ Cb¬(Ca ∧ Cb) ¬(Ca ∨ Cb) ¬(Ca ⊕ Cb)

¬Ca ¬Cb

¬Ca ∧ Cb Ca ∧ ¬Cb ¬Ca ∨ Cb Ca ∨ ¬Cb

De Morgan’s laws:One Zero

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

1

1

1

1

0

0

0

0

Constant
operations

Depend on one
variable

¬ = NOT

∧ = AND

∨ = OR

⊕ = XOR

IMP = Implication

EQV = Equivalence

Ca Cb

1

1

1

1

1

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

1

1

0

1

0

1

1

1

0

1

1

0

1

1

1

0

0

0

0

1

1

0

1

0

0

1

AND NAND OR NORCa IMP Cb Cb IMP Ca XOR EQV

¬(Ca ∧ Cb) = ¬Ca ∨ ¬Cb

¬(Ca ∨ Cb) = ¬Ca ∧ ¬Cb

Operations with a
”checkerboard” truth

table

Called minterms: they represent the four
miminum classes

Called maxterms: they represent the four
maximum classes

(a)

(b)

Symbols:

Figure AIV.1 All distinct Boolean operations on two variables

272

IV.2 Additional Results

Figures AIV.2 and AIV.3 present the average performance in terms of the partial area

under the convex hull for the range of fpr = [0,0.1] (AUCH0.1), and the tpr at a fixed

fpr = 0.1, respectively. These additional results are provided for a μ-HMM with three

HMMs, each one trained with a different number of states (N = 4,8,12), and using the

synthetically generated data with Σ = 8 and CRE = 0.3. These results complement those

shown in Figure 3.8 (Section 3.6.2).

273

50 100 150 200 250 300 350 400 450

0.4

0.5

0.6

0.7

0.8

0.9

1

number of seuqences in training blocks

A
U

C
H 0.

1

STIDE
MRROC
BC

AND

BC
OR

BC
ALL

(a) BC (DW = 2)

50 100 150 200 250 300 350 400 450

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sequences in training blocks

A
U

C
H 0.

1

STIDE
MRROC
IBC

AND

IBC
OR

IBC
ALL

(b) IBC (DW = 2)

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sequences in training blocks

A
U

C
H 0.

1

(c) BC (DW = 4)

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sequences in training blocks

A
U

C
H 0.

1

(d) IBC (DW = 4)

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of sequences in training blocks

A
U

C
H 0.

1

(e) BC (DW = 6)

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of sequences in training blocks

A
U

C
H 0.

1

(f) IBC (DW = 6)

Figure AIV.2 Results for synthetically generated data with Σ = 8 and CRE = 0.3.
Average AUCH0.1 values obtained on the test sets as a function of the number of
training blocks (50 to 450 sequences) for a 3-HMM system, each trained with a
different state (N = 4,8,12), and combined with the MRROC, BC and IBC

techniques. Results are compared for various detector windows sizes (DW = 2,4,6).
Error bars are standard deviations over ten replications

274

50 100 150 200 250 300 350 400 450

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

STIDE
MRROC
BC

AND

BC
OR

BC
ALL

(a) BC

50 100 150 200 250 300 350 400 450

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of sequences in training blocks
tp

r a
t f

pr
=0

.1

STIDE
MRROC
IBC

AND

IBC
OR

IBC
ALL

(b) IBC

50 100 150 200 250 300 350 400 450
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

(c) BC

50 100 150 200 250 300 350 400 450
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

(d) IBC

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

(e) BC

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of sequences in training blocks

tp
r a

t f
pr

=0
.1

(f) IBC

Figure AIV.3 Results for synthetically generated data with Σ = 8 and CRE = 0.3.
Average tpr values at fpr = 0.1 obtained on the test sets as a function of the

number of training blocks (50 to 450 sequences) for a 3-HMM system, each trained
with a different state (N = 4,8,12), and combined with the MRROC, BC and IBC
techniques. Results are compared for various detector windows sizes (DW = 2,4,6).

Error bars are standard deviations over ten replications

APPENDIX V

COMBINING HIDDEN MARKOV MODELS FOR IMPROVED

ANOMALY DETECTION ∗

Abstract

In host-based intrusion detection systems (HIDS), anomaly detection involves monitoring

for significant deviations from normal system behavior. Hidden Markov Models (HMMs)

have been shown to provide a high level performance for detecting anomalies in sequences

of system calls to the operating system kernel. Although the number of hidden states is a

critical parameter for HMM performance, it is often chosen heuristically or empirically, by

selecting the single value that provides the best performance on training data. However,

this single best HMM does not typically provide a high level of performance over the

entire detection space. This paper presents a multiple-HMMs approach, where each

HMM is trained using a different number of hidden states, and where HMM responses

are combined in the Receiver Operating Characteristics (ROC) space according to the

Maximum Realizable ROC (MRROC) technique. The performance of this approach is

compared favorably to that of a single best HMM and to a traditional sequence matching

technique called STIDE, using different synthetic HIDS data sets. Results indicate that

this approach provides a higher level of performance over a wide range of training set

sizes with various alphabet sizes and irregularity indices, and different anomaly sizes,

without a significant computational and storage overhead.

∗This chapter is published in International Conference on Communications (ICC09)

276

V.1 Introduction

Intrusion Detection Systems (IDS) is used to identify, assess, and report unauthorized

computer or network activities. Host-based IDSs (HIDS) are designed to monitor the

host system activities and state, while network-based IDSs monitor network traffic for

multiple hosts. In either case, IDSs have been designed to perform misuse detection

(looking for events that match patterns corresponding to known attacks) and anomaly

detection (detecting significant deviations from normal system behavior). In a HIDS for

anomaly detection, operating system events are usually monitored. Since system calls

are the gateway between user and kernel mode, most traditional host-based anomaly

detection systems monitor deviation in system call sequences.

In general, anomaly detection systems seek to detect novel attacks, yet will typically

generate false alarms mainly due to incomplete data for training, poor modeling, and

difficulty in obtaining representative labeled data for validation. In practice, it is very

difficult to acquire (collect and label) comprehensive data sets to design a HIDS for

anomaly detection. Forrest et al. (1996) confirmed that short sequences of system calls

are consistent with normal operation, and unusual burst will occur during an attack.

Their anomaly detection system, called Sequence Time-Delay Embedding (STIDE), is

based on segmenting and enumerating the training data into fixed-length contiguous

sequences, using a fixed-size sliding window, shifted by one symbol. During operations,

the sliding window scheme is used to scan the data for anomalies – sequences that are

not found in the normal data.

Various anomaly detection techniques have been applied to learn the normal process be-

havior through system call sequences (Warrender et al., 1999). Among these, techniques

based on discrete Hidden Markov Models (HMMs) (Rabiner, 1989) have been shown to

produce slightly superior results, at the expense of training resource requirements. Esti-

mating the parameters of an HMM requires the choice of the number of hidden states.

In the literature on HMMs applied to anomaly detection (Gao et al., 2002; Hoang and

277

Hu, 2004; Hoang et al., 2003; Wang et al., 2004), the impact of the number of states

on performance is often overlooked. It is typically chosen heuristically or empirically

by selecting the number of states that provides the best performance on training data.

Given incomplete training data, types of anomalies, and detector window (DW) sizes, a

single “best” HMM does not provide a high level of performance over the entire detection

space.

For a given data set, a multiple-HMMs (μ-HMMs) approach, where each model is trained

using a different number of hidden states, allows to outperform any single best HMM. The

responses of these HMMs are combined in the receiver operating characteristics (ROC)

space, using the Maximum Realizable ROC (MRROC). This approach allows selecting

operational HMMs independently from prior and class distributions, and cost contexts.

Although the MRROC fusion has been applied to combine responses of different classifiers

in fields such as medical diagnostics and image segmentation (Scott et al., 1998), it has

never appeared in HIDS literature. In particular, it has never been proposed in HMM

application to anomaly detection due to the overlooked impact on performance of the

number of HMM states, and to its expensive training resource requirements, which are

emphasized in this work. However, other fusion techniques such as weighted voting has

been applied to combine HMMs trained on different features (Choy and Cho, 2000).

The objective of this paper consists in comparing the performance of μ-HMMs combined

through the MRROC fusion, to that of a single best HMM and STIDE for detecting

anomalies in system calls sequences. The impact on performance of using different train-

ing set sizes, anomaly sizes, and complexities of the monitored processes is assessed using

ROC analysis (Fawcett, 2006). To this end, a synthetic simulator for normal data gen-

eration and anomaly injection has been constructed to overcome the issues encountered

when experimenting with real data.

The rest of this paper is organized as follows. The next section describes the application

of HMMs in anomaly-based HIDS. In Section V.3, the proposed μ-HMMs approach is

278

presented. Then, the experimental methodology in Section V.4 describes data generation,

evaluation methods and performance metrics. Finally, simulation results are presented

and discussed in Section V.5.

V.2 Anomaly Detection with HMM

A discrete-time finite-state HMM is a stochastic process determined by the two interre-

lated mechanisms – a latent Markov chain having a finite number of states, and a set of

observation probability distributions, each one associated with a state. At each discrete

time instant, the process is assumed to be in a state, and an observation is generated

by the probability distribution corresponding to the current state. HMMs are usually

trained using the Baum-Welch algorithm (Baum et al., 1970) – a specialized expectation

maximization technique to estimate the parameters of the model from the training data.

Theoretical and empirical results have shown that, given an adequate number of states

and a sufficiently rich set of observations, HMMs are capable of representing probability

distributions corresponding to complex real-world phenomena in terms of simple and

compact models. Given the trained model, the Forward algorithm (Baum et al., 1970)

can be used to evaluate the likelihood of the test sequence. For further details regarding

HMM the reader is referred to the extensive literature e.g., Rabiner (1989).

Estimating the parameters of a HMM requires the specification of the number of hidden

states (N). Warrender et al. (1999) present the first application to anomaly-based HIDS

with the University of New Mexico (UNM) data sets1. The authors trained an ergodic

HMM on the normal data sequence for each process of the UNM data set. The number

of states was selected heuristically. It is set roughly equal to the alphabet size – the

number of unique system call symbols used by the process. Each HMM is then tested on

the anomalous sequences, looking for unusual state transitions and/or symbol outputs

according to a predefined threshold. Compared to other techniques, HMM produced

slightly superior results in terms of average detection and false alarm rate, at the expenses
1http://www.cs.unm.edu/~immsec/systemcalls.htm

279

of expensive training resource requirements. Indeed, the time complexity of the Baum-

Welch algorithm per iteration scales linearly with the sequence length and quadratically

with the number of states. In addition, its memory complexity scales linearly with both

sequence length and number of states.

Subsequent applications of HMMs to anomaly-based HIDS, e.g., (Gao et al., 2002; Hoang

and Hu, 2004; Hoang et al., 2003; Wang et al., 2004), follow Warrender et al. (1999) in

choosing the number of HMM states without further optimization. The authors in (Yeung

and Ding, 2003) are among few who tried to investigate the effect of the number of states

and the detector window size on the performance using UNM data sets. However only

unique contiguous sequences are used for HMM training, which might affect the model

parameters. Furthermore, as explained in Section V.4, the data sets are labeled using

the STIDE matching technique which makes it as the ground truth for other classifiers.

V.3 Selection and Fusion of HMMs in the ROC Space

The ROC curve displays a trade-off between true detection (or true positive) rate and

false alarm (or false positive) rate for all thresholds. In our context, the true detection

rate is the number of anomalous sequences correctly detected over the total number of

anomalous sequences, and the false alarm rate is the number of normal sequences detected

as anomalous over the total number of normal sequences in the test set.

ROC analysis provides a useful tool for combining classifiers given a set of one- or two-

class classifiers using the MRROC (Scott et al., 1998). The MRROC is a fusion technique

that uses randomized decision rules and provides an overall classification system whose

curve is the convex hull over all existing detection and false alarm rates. In contrast with

traditional ROCs where only operational thresholds change when moving along the curve,

the MRROC points may also change other model parameters or even switch models. All

operating points on the MRROC are achievable in practice, using an exhaustive search,

and are theoretically proved by application of the realizable classifier theory (Scott et al.,

280

1998). The procedure is to create from two existing classifiers Ca and Cb a composite one

Cc whose performance in terms of its ROC, lies on the line segment connecting Ca and

Cb. This is done by interpolating the responses of the existing classifiers as follows. Let

(tpra,fpra) and (tprb,fprb) be the true positive and false positive rates of the existing

classifiers Ca and Cb, and (tprc,fprc) those of the desired composite classifier Cc. The

output of Cc for any input O = {o1, . . . ,oT} from the test set, is a random variable that

selects the output of Ca or Cb with probability:

Pr(Cc = Cb) = fprc−fpra
fprb−fpra

(V.1)

Pr(Cc = Ca) = 1−Pr(Cc = Cb)

Instead of training the HMM with an arbitrary chosen number of states, our approach

consists in training several HMMs over a range of n= [Nmin,Nmax] values and combine

their decisions in the ROC space using the MRROC. HMMs trained with various number

of states capture different temporal structures of the data. As illustrated in Figure AV.1,

for a desired operational system Cc the fusion is done by switching at random between

the responses of neighboring models Ca and Cb on the convex hull curve according to

eq. (V.1). This combination leads to the realization of the virtual desired model Cc,

which is able to achieve in the least a higher performance than any existing models.

Since only the HMMs touching the MRROC are potentially optimal, no others need be

retained. In addition, this approach allows visualizing systems’ performance and selecting

operational HMMs independently from both prior and class distributions as well as cost

contexts (Fawcett, 2006). As conditions change, the MRROC does not change; only

the portion of interest will. This change is accounted for by shifting the operational

system to another point on the facets of the MRROC. In contrast with the commonly

used anomaly index measure in related work, this approach also permits to use the Area

Under the ROC Curve (AUC), which has been proved an effective evaluation measure

in contexts with variable misclassification costs or skewed data (Fürnkranz and Flach,

2003).

281

HMM1

HMMn

O

Input λ1

λn

0 1

.2

.6

.4

.8

1

Ca

Cc

Cb

ROC
Fusion Cc superior to

Ca and Cb

Disregarded
HMM

MRROC

Output

.2 .6.4 .8 1

1

Ca

Cc

Cb

Disregarded
HMM

MRROC

Pr(O | λi)

tp
r

fpr

Figure AV.1 Illustration of the μ-HMMs using the MRROC fusion. For a
particular operational system, the combined model may achieve a higher

performance than any existing one. Models below the MRROC are disregarded

The time and memory complexity required for Baum-Welch training of n different HMMs

for the μ-HMMs is comparable to that of training an HMM over a range of n different N

values, and selecting the single best HMM (i.e., O(n.N.DW 2)). During operations, the

worst-case time complexity of the Forward-Backward algorithm to evaluate a sequence

of data (for a given detection and false alarm rate) with the μ-HMMs solution is two

times of the single best HMM solution (i.e., O(N.DW 2)). For a specific detection and

false alarm rate, the MRROC requires in the worst-case the responses of two HMMs to

interpolate between two convex hull facets in the ROC space. The worst-case memory

complexity required to store HMM parameters may be significantly higher than that of a

single best HMM. However, HMMs with a ROC curve that does not touch the MRROC

are suboptimal and may be discarded.

282

V.4 Experimental Methodology

The UNM data sets are commonly used for benchmarking anomaly detections based on

system calls sequences. Normal data are collected from the monitored process in a secured

environment, while testing data are the collection of the system calls when this process is

under attack (Warrender et al., 1999). Since it is very difficult to isolate the manifestation

of an attack at the system call level, the UNM test sets are not labeled. Therefore, in

related work, intrusive sequences are usually labeled by comparing normal sequences,

using STIDE matching technique. This labeling process considers STIDE response the

ground truth, and leads to a biased evaluation and comparison of techniques, which

depends on both training data size and detector window size.

The need to overcome issues encountered when using real-world data for anomaly-based

HIDS (incomplete data for training, and labeled data) has lead to the implementation of

a synthetic data generation platform for proof-of-concept simulations. It is intended to

provide normal data for training and labeled data (normal and anomalous) for testing.

This is done by simulating different processes with various complexities then injecting

anomalies in known locations.

Inspired by the work of Tan and Maxion (Maxion and Tan, 2000; Tan and Maxion,

2002, 2003), the data generator is based on the Conditional Relative Entropy (CRE)

of a source. It is defined as the conditional entropy divided by the maximum entropy

(MaxEnt) of that source, which gives an irregularity index to the generated data. For

two random variables x and y the CRE can be computed by:

CRE =
−∑x p(x)∑y p(y | x) logp(y | x)

MaxEnt

where for an alphabet of size Σ symbols, MaxEnt = −Σlog(1/Σ) is the entropy of a

theoretical source in which all symbols are equiprobale. It normalizes the conditional

entropy values between CRE = 0 (perfect regularity) and CRE = 1 (complete irregularity

or random). In a sequence of system calls, the conditional probability, p(y | x), represents

283

the probability of the next system call given the current one. It can be represented

as the columns and rows (respectively) of a Markov Model with the transition matrix

M = {aij}, where aij = p(St+1 = j | St = i) is the transition probability from state i at

time t to state j at time t+ 1. Accordingly, for a specific alphabet size Σ and CRE

value, a Markov chain is first constructed, then used as a generative model for normal

data. This Markov chain is also used for labeling injected anomalies as described below.

Let an anomalous event be defined as a surprising event which does not belong to the

process normal pattern. This type of event may be a foreign-symbol anomaly sequence

that contains symbols not included in the process normal alphabet, a foreign n-gram

anomaly sequence that contains n-grams not present in the process normal data, or a

rare n-gram anomaly sequence that contains n-grams that are infrequent in the process

normal data and occurs in burst during the test2.

Generating training data consists of constructing Markov transition matrices for an al-

phabet of size Σ symbols with the desired irregularity index (CRE) for the normal

sequences. The normal data sequence with the desired length is then produced with the

Markov chain, and segmented using a sliding window (shift one) of a fixed size, DW .

To produce the anomalous data, a random sequence (CRE = 1) is generated, using the

same alphabet size Σ, and segmented into sub-sequences of a desired length using a slid-

ing window with a fixed size of AS. Then, the original generative Markov chain is used to

compute the likelihood of each sub-sequence. If the likelihood is lower than a threshold it

is labeled as anomaly. The threshold is set to (min(aij))AS−1,∀i,j , the minimal value in

the Markov transition matrix to the power (AS−1), which is the number of symbol tran-

sitions in the sequence of size AS. This ensures that the anomalous sequences of size AS

are not associated with the process normal behavior, and hence foreign n-gram anomalies

are collected. The trivial case of foreign-symbol anomaly is disregarded since it is easy

to be detected. Rare n-gram anomalies are not considered since we seek to investigate

the performance at the detection level, and such kind of anomalies are accounted for at
2This is in contrast with other work which consider rare event as anomalies. Rare events are normal,

however they may be suspicious if they occurs in high frequency over a short period of time.

284

a higher level by computing the frequency of rare events over a local region. Finally, to

create the testing data another normal sequence is generated, segmented and labeled as

normal. The collected anomalies of the same length are then injected into this sequence

at random according to a mixing ratio.

The experiments conducted in this paper cover a wide range of the parameters space:

Σ = 8−50 symbols, training set size = 100−1000,000 symbols and CRE = 0.3−0.8, to

approach as much as possible to real-world processes (Lee and Xiang, 2001). The sizes of

injected anomalies are assumed equal to the detector window sizesAS=DW = {2,4,6,8},
and different normal/anomalous ratios are considered for the test phase.

For each training set of size DW , different discrete-time ergodic HMMs are trained with

various number of hidden states N . The number of symbols is taken equal to the process

alphabet size. The iterative Baum-Welch algorithm is used to estimate HMM parameters

(Baum et al., 1970). To reduce overfitting effects, the evaluation of the log-likelihood on

an independent validation set is used as a stopping criterion. The training process is

repeated ten times using a different random initialization to avoid local minima. Finally,

the model that gives the highest log-likelihood value on validation data is selected. This

procedure is replicated ten times with different training, validation and testing sets, and

the results are averaged and presented along with the standard deviations.

After training an HMM, the log-likelihood of a test sub-sequences is evaluated using

the forward algorithm (Rabiner, 1989). By sweeping all the decision thresholds, HMM

evaluation results in an ROC curve for each value of N . In contrast, STIDE testing

consists of comparing the test sub-sequences with its normal database, which gives a

point in the ROC space. It should be noted that since in this paper, the detector window

size is always considered equal to the anomaly size (DW = AS), STIDE detection rate

is always 100% and only the false alarm rate varies. This is due to its blind regions –

STIDE only misses anomalous sequences that are larger that the detector window size

(DW <AS) and have all of its sub-sequences in STIDE normal database. The window

285

will slide on its sub-sequences that are all normal, without being able to discover that

the whole sequence is anomalous (Maxion and Tan, 2000; Tan and Maxion, 2002, 2003).

V.5 Simulation Results

Due to space limitations only a limited number of results are presented. First, the

results of a simpler scenario are illustrated in Figure AV.2 and AV.3, and then those

of a more complex scenario are shown in Figure AV.4. The simpler scenario involves

a relatively simple case with a small alphabet size Σ = 8 and a low irregularity index

CRE = 0.3, while for the more complex scenario Σ = 50 symbols and the CRE = 0.4.

For both scenarios, the presented results are for test sets that comprise 75% of normal

and 25% of anomalous data. However, these results are consistent throughout the range

of experiments not shown in this paper.

The ROC curves in Figure AV.2 show the impact of using different training set and

anomaly sizes on the performance of STIDE and HMM, where HMMs are trained with

different numbers of states N . Results in this figure indicate that the AUC of HMM

grow with the training set size. As illustrated in Figure AV.2c, when the anomaly size

increases, the search space grows exponentially (according to ΣAS) which also expands

both anomalous and normal partitions of the space. For instance, for Σ = 8 and AS = 2

the space of combinations comprises 82 = 64 sequences, part of which is normal and the

rest anomalous (depending on the CRE the data). By changing the anomaly size to

AS = 8 the combinations grows to 88 = 16,777,216 sequences, which imposes a much

larger amount of training data for STIDE to memorize the normal space. The storage

capacity and detection time associated with STIDE increases considerably. Accordingly,

for a fixed training set size, the performance of STIDE is significantly degraded with the

increase of the anomaly size. Nevertheless, any normal sequence that was not collected

during training will be classified as anomaly, triggering false alarms in operational mode.

This problem is usually mitigated by introducing an anomaly counter or index in local

286

regions according to an arbitrary threshold, which may however be exploited by an

adversary.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

D
et

ec
tio

n
ra

te

HMM: N= 4, AUC=0.845
HMM: N= 5, AUC=0.901
HMM: N= 6, AUC=0.902
HMM: N= 7, AUC=0.967
HMM: N= 8, AUC=0.938
HMM: N= 9, AUC=0.934
HMM: N=10, AUC=0.940
HMM: N=11, AUC=0.963
HMM: N=12, AUC=0.971
HMM: MRROC,AUC=0.984
STIDE

(a) Training Set Size = 100 symbols,
DW =AS = 2 symbols

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

D
et

ec
tio

n
ra

te

HMM: N= 4, AUC=0.814
HMM: N= 5, AUC=0.890
HMM: N= 6, AUC=0.952
HMM: N= 7, AUC=0.938
HMM: N= 8, AUC=0.937
HMM: N= 9, AUC=0.984
HMM: N=10, AUC=0.966
HMM: N=11, AUC=0.971
HMM: N=12, AUC=0.977
HMM: MRROC,AUC=0.993
STIDE

(b) Training Set Size = 300 symbols,
DW =AS = 2 symbols

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

D
et

ec
tio

n
ra

te

HMM: N= 4, AUC=0.991
HMM: N= 5, AUC=0.998
HMM: N= 6, AUC=0.979
HMM: N= 7, AUC=0.995
HMM: N= 8, AUC=0.997
HMM: N= 9, AUC=0.989
HMM: N=10, AUC=0.997
HMM: N=11, AUC=0.997
HMM: N=12, AUC=0.997
HMM: MRROC,AUC=0.999
STIDE

(c) Training Set Size = 100 symbols,
DW =AS = 8 symbols

Figure AV.2 Illustration of the effect of training set sizes and anomaly sizes on the
performance of STIDE, HMM with and the μ-HMMs using MRROC for the simple

scenario. The HMMs were trained for a numbers of states N ∈ [4,12]

287

In contrast, even when an HMM is trained on a relatively small data set, its discrimi-

nation capabilities increases with the anomaly size. This is due to the HMM abilities to

capture dependencies in temporal patterns and to generalize in the case of unknown test

sequences. Indeed, when evaluating the likelihood Pr(O | HMM), an HMM computes

the product of probabilities (over states transitions and emissions) for symbols in the

sequence presented for testing. Anomalous sequences should lead to significantly lower

likelihood values than normal ones with a well trained HMM. Therefore, with the increase

of the anomaly size, the likelihood of anomalous sequences becomes smaller at a faster

rate than normal ones, and hence increases HMM detection rate.

100 200 300 400 500
0.8

0.85

0.9

0.95

1

 Training Data Set Size

 A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 (A
U

C
)

(a) Detector Window Size, DW = 2

100 200 300 400 500

0.98

0.985

0.99

0.995

1

 Training Data Set Size

 A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 (A
U

C
)

N=4
N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12
MRROC

(b) Detector Window Size, DW = 4

Figure AV.3 μ-HMMs vs HMM performance evaluation using the AUC for various
training set sizes, DW and N (Σ = 8 and CRE = 0.3)

The impact of the number of HMM states N on performance is rarely addressed in the

HIDS applications. Figures AV.2 and AV.3 illustrates this effect on AUC measures versus

different amounts of training data and different detector window sizes DW . It can be

seen that the value of N that provides the best performance depends on the training

data set size and DW . More importantly, the common practice (in most application to

HMMs for anomaly-based HIDS) of selecting the number of states equal to the alphabet

size (e.g., N = Σ = 8 in Figure AV.3), does not provide a high level of performance over

288

the wide range of training set sizes and DW values. This effect is further illustrated in

Figure AV.4 with the average AUC values (over ten independent replications) for the

more complex scenario.

2000 4000 6000 8000 10000
0.4

0.5

0.6

0.7

0.8

0.9

1

 Training Data Set Size

 A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 (A
U

C
)

N=40
N=45
N=50
N=55
N=60
MRROC

(a) Detector Window Size, DW = 2

2000 4000 6000 8000 10000

0.4

0.5

0.6

0.7

0.8

0.9

1

 Training Data Set Size

 A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 (A
U

C
)

(b) Detector Window Size, DW = 4

2000 4000 6000 8000 10000

0.5

0.6

0.7

0.8

0.9

1

 Training Data Set Size

 A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 (A
U

C
)

(c) Detector Window Size, DW = 6

2000 4000 6000 8000 10000

0.4

0.5

0.6

0.7

0.8

0.9

1

 Training Data Set Size

 A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

 (A
U

C
)

(d) Detector Window Size, DW = 8

Figure AV.4 Average AUC of single HMMs and the μ-HMMs with MRROC
combination for various training set sizes, DW and N values (Σ = 50 and

CRE = 0.4). Error bars are standard deviations

The optimal number of states does not exist over the whole range of detection space to

design a “single best” HMM. Combining the responses of μ-HMMs with the MRROC

fusion is shown to achieve the highest over all performance over anyone of the HMMs

alone. Furthermore, the resulting convex hull (from the MRROC combination) provides

a smoother curve than any existing single model. The operational system may therefore

289

be changed according to the desired detection and false alarm rate without compromis-

ing the performance. In fact, moving along the convex hull curve allows switching to

another model or interpolating the responses of two models. In contrast, as illustrated in

Figure AV.2a and b, using a single HMM typically results a staircase-shaped ROC curve

and this effect is even worse in real-world cases since the anomalies are relatively rare

with reference to normal data.

Finally, in contrast with STIDE, HMM and the μ-HMMs are capable of detecting dif-

ferent anomaly sizes with the same detector window size. This impact along with the

combination of HMMs trained with different window sizes is being characterized and will

appear in future work.

V.6 Conclusion

This paper presents a multiple-HMMs approach, where each HMM is trained using a

different number of hidden states capturing different temporal structures of the data.

The HMM responses are then combined in the ROC space according to the MRROC

technique. Results have shown that the overall performance of the proposed μ-HMMs

approach increased considerably over a single best HMM and STIDE. In addition, this

combination provides a smooth convex hull for composite operational systems without

significantly increasing the computational overhead. Future work also involves charac-

terizing the performance of the μ-HMMs approach using for instance the UNM data and

observing the impact of combining HMMs trained with different window sizes to detect

various anomaly sizes.

290

BIBLIOGRAPHY

Abouzakhar N. and Manson G.A., 2004. Evaluation of intelligent intrusion detection
models. International Journal of Digital Evidence, volume 3.

Alanazi Hamdan O., Noor Rafidah Md, Zaidan B. B., and Zaidan A. A., February 2010.
Intrusion detection system: Overview. Journal of Computing, 2(2):130–133.

AlephOne, November 1996. Smashing the stack for fun and profit. Online. Phrack
Magazine, 7(14). URL http://www.phrack.com/issues.html?issue=49&id=14.
Accessed December 10, 2010.

Alessandri Dominique, Cachin Christian, Dacier Marc, Deak Oliver, Julisch Klaus, Ran-
dell Brian, Riordan James, Tscharner Andreas, Wespi Andreas, and Wüest Candid,
September 2001. Towards a taxonomy of intrusion detection systems and attacks.
Malicious- and Accidental-Fault Tolerance for Internet Applications, MAFTIA De-
liverable D3 EU Project IST-1999-11583, IBM, Zurich, Switzerland.

Ali Kamal M. and Pazzani Michael J., 1996. Error reduction through learning multiple
descriptions. Machine Learning, 24:173–202.

Anderson B.D.O., 1999. From Wiener to hidden Markov models. IEEE Control Systems
Magazine, 19(3):41–51. ISSN 0272-1708.

Anderson Debra, Frivold Thane, and Valdes Alfonso, May 1995. Next-generation intru-
sion detection expert system (nides): A summary. Technical Report SRI-CSL-95-
07, Computer Science Laboratory, SRI International.

Anderson James P., April 1980. Computer security threat monitoring and surveillance.
Technical Report 79F26400, James P. Anderson Co., Fort Washington.

Arapostathis Aristotle and Marcus Steven I., 1990. Analysis of an identication algorithm
arising in the adaptive estimation of Markov chains. Mathematics of Control,
Signals and Systems, 3(1):1–29.

Askar M. and Derin H., 1981. A recursive algorithm for the bayes solution of the smooth-
ing problem. IEEE Transactions on Automatic Control, 26(2):558–561.

Axelsson Stefan, March 2000. Intrusion detection systems: A survey and taxonomy.
Technical Report 99–15, Chalmers University.

Bahl Lalit R., Jelinek Frederick, and Mercer Robert L., 1982. A maximum likelihood
approach to continuous speech recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-5, 2:179–190.

Baldi Pierre and Chauvin Yves, 1994. Smooth on-line learning algorithms for hidden
Markov models. Neural Computation, 6(2):307–318. ISSN 0899-7667.

292

Banfield Robert, Hall Lawrence, Bowyer Kevin, and Kegelmeyer W., 2003. A new ensem-
ble diversity measure applied to thinning ensembles. Multiple Classifier Systems,
2709:306–316.

Barreno Marco, Cardenas Alvaro, and Tygar Doug, January 2008. Optimal ROC for
a combination of classifiers. Advances in Neural Information Processing Systems
(NIPS), 20.

Baum Leonard E., 1972. An inequality and associated maximization technique in sta-
tistical estimation for probalistic functions of Markov processes. Inequalities, III:
New York: Academic. (Proc. 3rd Symp., Univ. Calif., Los Angeles, Calif., 1969;
dedicated to the memory of Theodore S. Motzkin).

Baum Leonard E. and Petrie Ted, 1966. Statistical inference for probabilistic functions
of finite state Markov chains. Annals of Mathematical Statistics, 37:1554–1563.

Baum Leonard E., Petrie G. Soules, and Weiss N., 1970. A maximization technique
occuring in the statistical analysis of probabilistic functions of Markov chains. The
Annals of Mathematical Statistics, 41(1):164–171.

Beal Matthew J., Ghahramani Zoubin, and Rasmussen Carl E., 2002. The infinite Hidden
Markov Model. Advances in Neural Information Processing Systems (NIPS), 14.

Bengio Y., 1999. Markovian models for sequential data. Neural Computing Surveys, 2:
129–162. ISSN 1093-7609.

Benveniste Albert, Priouret Pierre, and Métivier Michel, 1990. Adaptive algorithms and
stochastic approximations. Springer-Verlag New York, Inc., New York, NY, USA.
ISBN 0-387-52894-6.

Bickel Peter J., Ritov Yaacov, and Ryden Tobias, 1998. Asymptotic normality of the
maximum-likelihood estimator for general hidden Markov models. Annal of Statis-
tics, 26(4):1614–1635.

Bilmes Jeff A., 2002. What HMMs can do. Technical Report UWEETR-2002-0003, Dept
of EE, University of Washington Seattle WA.

Black Michael A. and Craig Bruce A., 2002. Estimating disease prevalence in the absence
of a gold standard. Statistics in Medicine, 21(18):2653–2669.

Blunden Bill, 2009. The Rootkit Arsenal: Escape and Evasion in the Dark Corners of
the System. Wordware Publishing.

Bottou Léon, 2004. Stochastic learning. Bousquet Olivier and von Luxburg Ulrike,
editors, Advanced Lectures on Machine Learning, number LNAI 3176 in Lecture
Notes in Artificial Intelligence, pages 146–168. Springer Verlag, Berlin.

293

Bradley Andrew P., 1997. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30(7):1145–1159.

Brand M. and Kettnaker V., 2000. Discovery and segmentation of activities in video.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):844–851.

Bray Rory, Cid Daniel, and Hay Andrew, March 2008. OSSEC Host-Based Intrusion
Detection Guide. SYNGRESS.

Breiman Leo, August 1996. Bagging predictors. Machine Learning, 24(2):123–140.

Brown G., Wyatt J., Harris R., and Yao X., March 2005. Diversity creation methods: A
survey and categorisation. Journal of Information Fusion, 6(1):5–20.

Brugger S. T., Kelley M., Sumikawa K., and Wakumoto S., April 2001. Data mining for
security information: A survey. Technical Report UCRL-JC-143464, U.S. Depart-
ment of Energy, Lawrence Livermore National Laboratory., Philadelphia, PA.

Bulla Jan and Berzel Andreas, January 2008. Computational issues in parameter es-
timation for stationary hidden Markov models. Computational Statistics, 23(1):
1–18.

Cappe O., 2009. Online EM algorithm for hidden Markov models. preprint.

Cappe O. and Moulines E., 2005. Recursive computation of the score and observed infor-
mation matrix in hidden Markov models. IEEE/SP 13th Workshop on Statistical
Signal Processing, pages 703–708.

Cappe O., Buchoux V., and Moulines E., 1998. Quasi-Newton method for maximum
likelihood estimation of hidden Markov models. Proceedings of the 1998 IEEE
International Conference onAcoustics, Speech, and Signal Processing, ICASSP98,
volume 4, pages 2265–2268.

Cappe Olivier, March 12 2001. Ten years of HMMs. Available online:
http://www.tsi.enst.fr/ cappe/docs/hmmbib.html. Accessed December 10, 2010.

Cappe Olivier, Moulines Eric, and Ryden Tobias, 2005. Inference in Hidden Markov
Models. Series in Statistics. Springer-Verlag, New-York.

Caragea D., Silvescu A.., and Honavar V., 2001. Towards a theoretical framework for
analysis and synthesis of agents that learn from distributed dynamic data sources.
Emerging Neural Architectures Based on Neuroscience, pages 547–559. Springer-
Verlag.

Cardenas Alvaro A., Ramezani Vahid, and Baras John S., 2003. HMM sequential hypoth-
esis tests for intrusion detection in MANETs. Technical Report ISR TR 2003-47,
Department of Electrical and Computer Engineering and Institute for Systems
Research University of Maryland College Park, MD, 20740 USA.

294

Caruana Rich, Niculescu-Mizil Alexandru, Crew Geoff, and Ksikes Alex, 2004. Ensemble
selection from libraries of models. ICML ’04: Proceedings of the twenty-first in-
ternational conference on Machine learning, page 18, New York, NY, USA, 2004.
ACM. ISBN 1-58113-828-5.

Chandola Varun, Banerjee Arindam, and Kumar Vipin, 2009a. Anomaly detection for
discrete sequences: A survey. Technical Report TR 09-015, University of Min-
nesota, Department of Computer Science and Engineering.

Chandola Varun, Banerjee Arindam, and Kumar Vipin, July 2009b. Anomaly detection:
A survey. ACM Comput. Surv., 41:15:1–15:58. ISSN 0360-0300.

Chang R. and Hancock J., 1966. On receiver structures for channels having memory.
IEEE Transactions on Information Theory, 12(4):463–468. ISSN 0018-9448.

Chen Hao, Wagner David, and Dean Drew, 2002. Setuid demystified. USENIX Security
Symposium, pages 171–190.

Chen Yu-Shu and Chen Yi-Ming, 2009. Combining incremental hidden Markov model and
Adaboost algorithm for anomaly intrusion detection. CSI-KDD ’09: Proceedings
of the ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics,
pages 3–9, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-669-4.

Cho Sung-Bae and Han Sang-Jun, 2003. Two sophisticated techniques to improve hmm-
based intrusion detection systems. Vigna Giovanni, Kruegel Christopher, and Jons-
son Erland, editors, Recent Advances in Intrusion Detection, volume 2820 of Lecture
Notes in Computer Science, pages 207–219. Springer Berlin / Heidelberg.

Choy Jongho and Cho Sung-Bae, 2000. Intrusion detection by combining multiple HMMs.
PRICAI 2000 Topics in Artificial Intelligence, 1886:829–829.

Churbanov Alexander and Winters-Hilt Stephen, 2008. Implementing EM and viterbi
algorithms for hidden Markov model in linear memory. BMC Bioinformatics, 9
(224):–.

Cohen William W., July 1995. Fast effective rule induction. Prieditis Armand and
Russell Stuart, editors, Proceeding of the 12th International Conference on Machine
Learning, pages 115–123, Tahoe City, CA, July 1995. Morgan Kaufmann. ISBN
1-55860-377-8.

Collings Iain B., Krishnamurthy Vikram., and Moore Jhon B., December 1994. On-line
identication of hidden Markov models via recursive prediction error techniques.
IEEE Transactions on Signal Processing, 42(12):3535–3539.

Collings I.B. and Ryden T., 1998. A new maximum likelihood gradient algorithm for
on-line hidden Markov model identification. Proceedings of the 1998 IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, ICASSP98,
volume 4, pages 2261–2264.

295

Coppersmith D. and Winograd S., 1990. Matrix multiplication via arithmetic progres-
sions. J. Symbolic Comput., 9:251–280.

Daugman John, 2000. Biometric decision landscapes. Technical Report UCAM-CL-TR-
482, Universtity of Cambridge, UK.

De Boer Pieter and Pels Martin, 2005. Host-based intrusion detection systems. Technical
Report 1.10, Faculty of Science, Informatics Institute, University of Amsterdam.

Debar H., Becker M., and Siboni D., May 1992. A neural network component for an
intrusion detection system. IEEE Computer Society Symposium on Research in
Security and Privacy, pages 240–250.

Debar Herve, Dacier Marc, and Wespi Andreas, 2000. Revised taxonomy for intrusion-
detection systems. Annales des Telecommunications, 55(7):361–378. ISSN 0003-
4347.

Dempster A.P., Laird N., and Rubin D.B., 1977. Maximum likelihood estimation from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38.

Demšar Janez, 2006. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30. ISSN 1532-4435.

Denning Dorothy E., May 1986. An Intrusion Detection Model. Proceedings of the
Seventh IEEE Symposium on Security and Privacy, pages 119–131.

Devĳver P., 1985. Baum’s forward-backward algorithm revisited. Pattern Recognition
Letters, 3:369–373.

Dietterich Thomas, 2000. Ensemble methods in machine learning. Multiple Classifier
Systems, 1857:1–15.

Digalakis Vassilios V., 1999. Online adaptation of hidden Markov models using incremen-
tal estimation algorithms. IEEE Transactions on Speech and Audio Processing, 7
(3):253–261. ISSN 1063-6676.

Domingos Pedro, 2000. A unified bias-variance decomposition and its applications. 17th
International Conference on Machine Learning, pages 231–238. Morgan Kaufmann.

Dos Santos E. M, Sabourin R., and Maupin P., July 2008. Pareto analysis for the
selection of classifier ensembles. Genetic and Evolutionary Computation Conference
(GECCO), pages 681–688, Atlanta, GA, USA, July 2008.

Du Ye, Wang Huiqiang, and Pang Yonggang, 2004. A hidden Markov models-based
anomaly intrusion detection method. Proceedings of the World Congress on Intel-
ligent Control and Automation (WCICA), volume 5, pages 4348–4351, Hangzhou,
China, 2004.

296

Eddy S. R., 1998. Profile hidden Markov models. Bioinformatics, 14(9):755–763.

Elliott Robert J., 1994. Exact adaptive filters for Markov chains observed in gaussian
noise. Automatica, 30(9):1399–1408. ISSN 0005-1098.

Elliott Robert J., Aggoun Lakhdar, and Moore John B., 1995. Hidden Markov Models:
Estimation and Control. Springer-Verlag.

Ephraim Y. and Merhav N., 2002. Hidden Markov processes. IEEE Transactions on
Information Theory, 48(6):1518–1569.

Ephraim Y. and Rabiner L.R., September 1990. On the relations between modeling
approaches for information sources [speech recognition]. IEEE Transactions on
Information Theory, 36(2):372–380.

Estevez-Tapiador Juan M., Garcia-Teodoro Pedro, and Diaz-Verdejo Jesus E., 2004.
Anomaly detection methods in wired networks: A survey and taxonomy. Com-
puter Communications, 27(16):1569–1584. ISSN 0140-3664.

Fan W., Miller M., Stolfo S., Lee W., and Chan P., 2004. Using artificial anomalies
to detect unknown and known network intrusions. Knowledge and Information
Systems, 6:507–527. ISSN 0219-1377.

Fan Wei, Chu Fang, Wang Haixun, and Yu Philip S., 2002. Pruning and dynamic
scheduling of cost-sensitive ensembles. Eighteenth national conference on Artificial
intelligence, pages 146–151, Menlo Park, CA, USA, 2002. American Association
for Artificial Intelligence. ISBN 0-262-51129-0.

Fawcett Tom, 2004. ROC graphs: Notes and practical considerations for researchers.
Technical Report HPL-2003-4, HP Laboratories, Palo Alto, CA, USA.

Fawcett Tom, 2006. An introduction to ROC analysis. Pattern Recognition Letter, 27
(8):861–874. ISSN 0167-8655.

Flach Peter A. and Wu Shaomin, August 2005. Repairing concavities in ROC curves.
Proceedings of the 19th International Joint Conference on Artificial Intelligence,
pages 702–707. ĲCAI.

Florez-Larrahondo German, Bridges Susan, and Hansen Eric A., 2005. Incremental es-
timation of discrete hidden Markov models based on a new backward procedure.
Proceedings of the National Conference on Artificial Intelligence, 2:758–763.

Ford J.J. and Moore J.B., 1998a. Adaptive estimation of HMM transition probabilities.
IEEE Transactions on Signal Processing (USA), 46(5):1374–85. ISSN 1053-587X.

Ford J.J. and Moore J.B., 1998b. On adaptive HMM state estimation. IEEE Transactions
on Signal Processing (USA), 46(2):475–86. ISSN 1053-587X.

297

Forney G. David, March 2005. The viterbi algorithm: A personal history. Viterbi Con-
ference, University of Southern California, Los Angeles.

Forrest S., Hofmeyr S., and Somayaji A., December 2008. The evolution of system-
call monitoring. Computer Security Applications Conference, 2008. ACSAC 2008.
Annual, pages 418–430.

Forrest Stephanie, Hofmeyr Steven A., Somayaji Anil, and Longstaff Thomas A., 1996.
A sense of self for Unix processes. Proceedings of the 1996 IEEE Symposium on
Research in Security and Privacy, pages 120–128.

Foster James C., Osipov Vitaly, Bhalla Nish, and Heinen Niels, 2005. Buffer Overflow
Attacks: Detect, Exploit, Prevent. Syngress. ISBN 1-932266-67-4.

Freund Yoav and Schapire Robert E., 1996. Experiments with a new boosting algorithm.
ICML 96, pages 148–156.

Fürnkranz Johannes and Flach Peter, 2003. An analysis of rule evaluation metrics.
Proceedings of the 20th International Conference on Machine Learning, volume 1,
pages 202–209.

Gadelrab Mohammed El-Sayed, December 2008. Evaluation of Intrusion Detection Sys-
tems. PhD thesis, Université Toulouse III – Paul Sabatier.

Gael Jurgen Van, Saatci Yunus, Teh Yee Whye, and Ghahramani Zoubin, 2008. Beam
sampling for the infinite Hidden Markov Model. Proceedings of the 25th interna-
tional conference on Machine learning, pages 1088–1095, Helsinki, Finland, 2008.
ACM.

Gao Bo, Ma Hui-Ye, and Yang Yu-Hang, 2002. HMMs (Hidden Markov Models) based on
anomaly intrusion detection method. Proceedings of 2002 International Conference
on Machine Learning and Cybernetics, 1:381–385.

Gao Fei, Sun Jizhou, and Wei Zunce, 2003. The prediction role of hidden Markov model in
intrusion detection. Canadian Conference on Electrical and Computer Engineering,
volume 2, pages 893–896, Montreal, Canada, 2003.

García Salvador and Herrera Francisco, December 2008. An extension on “statistical
comparisons of classifiers over multiple data sets” for all pairwise comparisons.
Journal of Machine Learning Research, 9:2677–2694.

Garg Ashutosh and Warmuth Manfred K., September 2003. Inline updates for HMMs.
EUROSPEECH-2003, pages 1005–1008.

Ghahramani Z., 2001. An introduction to hidden Markov models and Bayesian networks.
International Journal of Pattern Recognition and Artificial Intelligence, 15(1):9–42.
ISSN 0218-0014.

298

Ghorbani Ali A., Lu Wei, Tavallaee Mahbod, Ghorbani Ali A., Lu Wei, and Taval-
laee Mahbod, 2010. Intrusion response. Jajodia Sushil, editor, Network Intrusion
Detection and Prevention, volume 47 of Advances in Information Security, pages
185–198. Springer US. ISBN 978-0-387-88771-5.

Ghosh Anup K., Schwartzbard Aaron, and Schatz Michael, 1999. Learning program
behavior profiles for intrusion detection. Proceedings of the Workshop on Intru-
sion Detection and Network Monitoring, pages 51–62, Berkeley, CA, USA, 1999.
USENIX Association. ISBN 1-880446-37-5.

Gorodnichy Dmitry O., Dubrofsky Elan, Hoshino Richard, Khreich Wael, Granger Eric,
and Sabourin Robert, April 2011. Exploring the upper bound performance limit
of iris biometrics using score calibration and fusion. (SSCI) CIBIM - 2011 IEEE
Workshop on Computational Intelligence in Biometrics and Identity Management,
Paris, France, April 2011.

Gotoh Yoshihiko, Hochberg Michael M., and Silverman Harvey F., 1998. Efficient training
algorithms for HMM’s using incremental estimation. IEEE Transactions on Speech
and Audio Processing, 6(6):539–548. ISSN 1063-6676.

Grice JA., Hughey R., and Speck D., 1997. Reduced space sequence alignment. CABIOS,
13(1):45–53.

Grossberg Stephen, 1988. Nonlinear neural networks: principles, mechanisms and archi-
tectures. Neural Networks, 1:17–61.

Gunawardana Asela and Byrne William, 2005. Convergence theorems for generalized
alternating minimization procedures. Journal of Machine Learning Research, 6:
2049–2073. ISSN 1533-7928.

Haker Steven, Wells William M., Warfield Simon K., Talos Ion-Florin, Bhagwat Jui G.,
Goldberg-Zimring Daniel, Mian Asim, Ohno-Machado Lucila, and Zou Kelly H.,
2005. Combining classifiers using their receiver operating characteristics and max-
imum likelihood estimation. Medical Image Computing and Computer-Assisted
Intervention (MICCAI), 3749:506–514.

Hanley JA and McNeil BJ, 1982. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1):29–36.

Hanley James A., 1988. The robustness of the “binormal” assumptions used in fitting
ROC curves. Medical Decision Making, 8(3):197–203.

Hathaway R. J., 1986. Another interpretation of the EM algorithm for mixture distribu-
tions. Statistics and Probability Letters, 4:53–56.

Helali Rasha G. Mohammed, 2010. Data mining based network intrusion detection sys-
tem: A survey. Sobh Tarek, Elleithy Khaled, and Mahmood Ausif, editors, Novel

299

Algorithms and Techniques in Telecommunications and Networking, pages 501–505.
Springer Netherlands. ISBN 978-90-481-3662-9.

Hill J.M., Oxley M.E., and Bauer K.W., 2003. Receiver operating characteristic curves
and fusion of multiple classifiers. Proceedings of the 6th International Confenrence
on Information Fusion, volume 2, pages 815–822.

Ho Tin Kam, 1998. The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844. ISSN
0162-8828.

Ho Tin Kam, Hull J.J., and Srihari S.N., 1994. Decision combination in multiple classifier
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1):
66–75. ISSN 0162-8828.

Hoang X.D. and Hu J., 2004. An efficient Hidden Markov Model training scheme for
anomaly intrusion detection of server applications based on system calls. IEEE
International Conference on Networks, ICON, volume 2, pages 470–474, Singapore,
2004.

Hoang Xuan Dau, Hu Jiankun, and Bertok Peter, 2003. A multi-layer model for anomaly
intrusion detection. IEEE International Conference on Networks, ICON, volume 1,
pages 531–536.

Hofmeyr Steven A., Forrest Stephanie, and Somayaji Anil, 1998. Intrusion detection
using sequences of system calls. Journal of Computer Security, 6(3):151–180.

Holst Ulla and Lindgren Georg, 1991. Recursive estimation in mixture models with
Markov regime. IEEE Transactions on Information Theory, 37(6):1683–1690.

Hovland Geir E. and McCarragher Brenan J., 1998. Hidden Markov models as a process
monitor in robotic assembly. International Journal of Robotics Research, 17(2):
153–168. ISSN 0278-3649.

Hu Jiankun, 2010. Host-based anomaly intrusion detection. Stavroulakis Peter and
Stamp Mark, editors, Handbook of Information and Communication Security, pages
235–255. Springer Berlin Heidelberg. ISBN 978-3-642-04117-4.

Huang Jin and Ling C.X., 2005. Using AUC and accuracy in evaluating learning algo-
rithms. IEEE Transactions on Knowledge and Data Engineering, 17(3):299–310.
ISSN 1041-4347.

Huang Xuedong and Hon Hsiao-Wuen, 2001. Spoken Language Processing: A Guide to
Theory, Algorithm, and System Development. Prentice Hall PTR, Upper Saddle
River, NJ, USA. ISBN 0130226165. Foreword By-Raj Reddy.

300

Ilgun Koral, Kemmerer R. A., and Porras Phillip A., March 1995. State transition anal-
ysis: A rule-based intrusion detection approach. IEEE Transactions on Software
Engineering, 21:181–199. ISSN 0098-5589.

Ingham Kenneth and Forrest Stephanie, 2005. Network firewalls. Vemuri V. Rao and
Sreeharirao V., editors, Enhancing Computer Security with Smart Technology,
pages 9–35. CRC Press.

Jha S., Tan K., and Maxion R.A., 2001. Markov chains, classifiers, and intrusion detec-
tion. Proceedings of the Computer Security Foundations Workshop, pages 206–219.

Juang Bing-Hwang, Levinson S., and Sondhi M., 1986. Maximum likelihood estimation
for multivariate mixture observations of Markov chains (corresp.). IEEE Transac-
tions on Information Theory, 32(2):307–309. ISSN 0018-9448.

Kershaw David, Gao Qigang, and Wang Hai, 2011. Anomaly-based network intrusion
detection using outlier subspace analysis: A case study. Butz Cory and Lingras
Pawan, editors, Advances in Artificial Intelligence, volume 6657 of Lecture Notes
in Computer Science, pages 234–239. Springer Berlin / Heidelberg.

Khreich Wael, Granger Eric, Miri Ali, and Sabourin Robert, 2009a. A comparison of
techniques for on-line incremental learning of HMM parameters in anomaly detec-
tion. Proceedings of the Second IEEE international conference on computational
intelligence for security and defense applications (CISDA09), pages 1–8, Ottawa,
Canada, 2009a. ISBN 978-1-4244-3763-4.

Khreich Wael, Granger Eric, Sabourin Robert, and Miri Ali, 2009b. Combining Hidden
Markov Models for anomaly detection. International Conference on Communica-
tions (ICC09), pages 1–6, Dresden, Germany, 2009b.

Khreich Wael, Granger Eric, Miri Ali, and Sabourin Robert, 2010a. Boolean combina-
tion of classifiers in the ROC space. 20th International Conference on Pattern
Recognition (ICPR10), pages 4299–4303, Istanbul, Turkey, 2010a.

Khreich Wael, Granger Eric, Miri Ali, and Sabourin Robert, July 2010b. Iterative
Boolean combination of classifiers in the ROC space: An application to anomaly
detection with HMMs. Pattern Recognition, 43(8):2732–2752. ISSN 0031-3203.

Khreich Wael, Granger Eric, Miri Ali, and Sabourin Robert, 2010c. On the memory
complexity of the forward-backward algorithm. Pattern Recognition Letters, 31(2):
91–99. ISSN 0167-8655.

Khreich Wael, Granger Eric, Miri Ali, and Sabourin Robert, 2011a. A survey of tech-
niques for incremental learning of HMM parameters. Information Sciences. Ac-
cepted.

301

Khreich Wael, Granger Eric, Miri Ali, and Sabourin Robert, 2011b. Incremental Boolean
combination of classifiers. 10th International Workshop on Multiple Classifier Sys-
tems (MCS11), pages 340–349, Naples, Italy, 2011b.

Khreich Wael, Granger Eric, Miri Ali, and Sabourin Robert, 2011c. Adaptive ROC-
based ensembles of HMMs applied to anomaly detection. Pattern Recognition.
ISSN 0031-3203. Accepted.

Kittler J., March 1998. Combining classifiers: A theoretical framework. Pattern Analysis
& Applications, 1(1):18–27.

Kivinen Jyrki and Warmuth Manfred K., 1997. Exponentiated gradient versus gradient
descent for linear predictors. Information and Computation, 132(1):1–63. ISSN
0890-5401.

Koenig Sven and Simmons Reid G., 1996. Unsupervised learning of probabilistic models
for robot navigation. Proceedings - IEEE International Conference on Robotics
and Automation, 3:2301–2308. ISSN 1050-4729.

Konorski J., 2005. Solvability of a Markovian model of an IEEE802.11 LAN under a back-
off attack. 13th IEEE International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems, pages 491–8, Atlanta,GA,USA,
2005.

Kosoresow A.P. and Hofmeyer S.A., 1997. Intrusion detection via system call traces.
IEEE Software, 14(5):35–42. ISSN 0740-7459.

Krishnamurthy V. and Moore J.B., 1993. On-line estimation of hidden Markov model
parameters based on the Kullback-leibler information measure. IEEE Transactions
on Signal Processing, [see also IEEE Transactions on Acoustics, Speech, and Signal
Processing], 41(8):2557–2573. ISSN 1053-587X.

Krishnamurthy V. and Yin George Gang, 2002. Recursive algorithms for estimation
of hidden Markov models and autoregressive models with Markov regime. IEEE
Transactions on Information Theory, 48(2):458–476. ISSN 0018-9448.

Krogh A., Brown M., Mian I. S., Sjolander K., and Haussler D., February 1994. Hidden
Markov-models in computational biology applications to protein modeling. JOUR-
NAL OF MOLECULAR BIOLOGY, 235(5):1501–1531.

Krogh A., Larsson B., von Heĳne G., and Sonnhammer E. L. L., January 2001. Predicting
transmembrane protein topology with a hidden Markov model: Application to
complete genomes. Journal of Molecular Biology, 305(3):567–580.

Kruegel Christopher, Mutz Darren, Robertson William, and Valeur Fredrik, 2003.
Bayesian event classification for intrusion detection. Proceedings of the 19th Annual
Computer Security Applications Conference, ACSAC ’03, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-2041-3.

302

Krügel Christopher, Kirda E., Mutz D., Robertson W., and Vigna G., 2005. Automating
mimicry attacks using static binary analysis. Proceedings of the 14th USENIX
Security Symposium, pages 161–176, Baltimore, MD, USA, 2005.

Kumar Gulshan, Kumar Krishan, and Sachdeva Monika, 2010. The use of artificial in-
telligence based techniques for intrusion detection: a review. Artificial Intelligence
Review, 34:369–387. ISSN 0269-2821.

Kuncheva Ludmila and Plumpton Catrin, 2008. Adaptive learning rate for online linear
discriminant classifiers. Joint IAPR International Workshops on Structural and
Syntactic Pattern Recognition and Statistical Techniques in Pattern Recognition
S+SSPR, pages 510–519, Orlando, Florida, USA, 2008.

Kuncheva Ludmila I., 2002. A theoretical study on six classifier fusion strategies. IEEE
Trans. Pattern Anal. Mach. Intell., 24(2):281–286. ISSN 0162–8828.

Kuncheva Ludmila I., 2004a. Combining Pattern Classifiers: Methods and Algorithms.
Wiley, Hoboken, NJ.

Kuncheva Ludmila I., 2004b. Classifier ensembles for changing environments. Multi-
ple Classifier Systems, volume 3077, pages 1–15, Cagliari, Italy, 2004b. Springer-
Verlag, LNCS.

Kuncheva Ludmila I. and Whitaker Christopher J., May 2003. Measures of diversity in
classifier ensembles and their relationship with the ensemble accuracy. Machine
Learning, 51(2):181–207.

Kushner H.J. and Clark D.S., 1978. Stochastic Approximation for Constrained and Un-
constrained Systems, volume 26. Springer-Verlag, New York.

Lam Tin and Meyer Irmtraud, 2010. Efficient algorithms for training the parameters
of hidden markov models using stochastic expectation maximization (em) training
and viterbi training. Algorithms for Molecular Biology, 5(1):38. ISSN 1748-7188.

Lane Terran and Brodley Carla E., 2003. An empirical study of two approaches to
sequence learning for anomaly detection. Machine Learning, 51(1):73–107.

Lane Terran D., 2000. Machine learning techniques for the computer security domain of
anomaly detection. PhD thesis, Purdue University, W. Lafayette, IN.

Langdon William B. and Buxton Bernard F., 2001. Evolving receiver operating charac-
teristics for data fusion. EuroGP ’01: Proceedings of the 4th European Conference
on Genetic Programming, pages 87–96, London, UK, 2001. Springer-Verlag.

Lange Kenneth, 1995. A gradient algorithm locally equivalent to the EM algorithm.
Journal of the Royal Statistical Society, Series B, 57(2):425–437.

303

Lazarevic Aleksandar, Kumar Vipin, and Srivastava Jaideep, 2005. Intrusion detection:
A survey. Kumar Vipin, Srivastava Jaideep, and Lazarevic Aleksandar, editors,
Managing Cyber Threats, volume 5 of Massive Computing, pages 19–78. Springer
US. ISBN 978-0-387-24230-9.

Lee Wenke and Xiang Dong, 2001. Information-theoretic measures for anomaly detection.
Proceedings of the 2001 IEEE Symposium on Security and Privacy, pages 130–143.

Lee Wenke, Stolfo Salvatore J., and Mok Kui W., 2000. Adaptive intrusion detection: A
data mining approach. Artificial Intelligence Review, 14:533–567. ISSN 0269-2821.

LeGland F. and Mevel L., December 1995. Recursive identication of HMM’s with obser-
vations in a finite set. Proceedings of the 34th IEEE Conference on Decision and
Control, pages 216–221, New Orleans, December 1995.

LeGland F. and Mevel L., December 1997. Recursive estimation in hidden Markov mod-
els. Proceedings of the 36th IEEE Conference on Decision and Control, volume 4,
pages 3468–3473, San Diego, CA, December 1997.

Leroux B.G., 1992. Maximum-likelihood estimation for hidden Markov models. Stochastic
Processes and its Applications, 40:127–143.

Levinson S. E., Rabiner L. R., and Sondhi M. M., 1983. An introduction to the application
of the theory of probabilistic functions of a Markov process to automatic speech
recognition. Bell System Technical Journal, 62:1035–1074.

Li Xiaolin, Parizeau M., and Plamondon R., 2000. Training hidden Markov models with
multiple observations–A combinatorial method. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(4):371–377. ISSN 0162-8828.

Li Z. and Evans R.J., 1992. Optimal filtering, prediction and smoothing of hidden
Markov models. Proceedings of the 31st IEEE Conference on Decision and Control,
volume 4, pages 3299–3304.

Liao Yihua and Vemuri V. Rao, 2002. Use of k-nearest neighbor classifier for intrusion
detection. Computers & Security, 21(5):439–448. ISSN 0167-4048.

Lim S.Y. and Jones A., August 2008. Network anomaly detection system: The state of
art of network behaviour analysis. International Conference on Convergence and
Hybrid Information Technology, ICHIT08, pages 459–465.

Lindgren G., 1978. Markov regime models for mixed distributions and switching regres-
sions. Scandinavian Journal of Statistics, 5:81–91.

Lindqvist Ulf and Porras Phillip A., 1999. Detecting computer and network misuse
through the production-based expert system toolset (p-best). Proceedings of the
1999 IEEE Symposium on Security and Privacy, pages 146–161.

304

Liporace L., 1982. Maximum likelihood estimation for multivariate observations of
Markov sources. IEEE Transactions on Information Theory, 28(5):729–734.

Littlestone N. and Warmuth M. K., 1994. The weighted majority algorithm. Information
and Computation, 108(2):212–261. ISSN 0890-5401.

Ljung L., 1977. Analysis of recursive stochastic algorithms. IEEE Transactions on
Automatic Control, 22(4):551–575.

Ljung Lennart and Soderstrom Torsten, 1983. Theory and Practice of Recursive Identi-
fication. MIT Press, Boston.

MacKay D., 1997. Ensemble learning for hidden Markov models. Technical report,
Cavendish Laboratory, Cambridge, UK.

Mann Tobias P., February 2006. Numerically stable hidden markov Model implementa-
tion. An HMM scaling tutorial.

Marceau Carla, 2000. Characterizing the behavior of a program using multiple-length
n-grams. Proceedings of the 2000 workshop on New security paradigms NSPW ’00,
pages 101–110, New York, NY, USA, 2000. ACM Press. ISBN 1-58113-260-3.

Margineantu Dragos D. and Dietterich Thomas G., 1997. Pruning adaptive boosting.
ICML, pages 211–218.

Markou Markos and Singh Sameer, 2003a. Novelty detection: a review part 1: statistical
approaches. Signal Process., 83(12):2481–2497. ISSN 0165-1684.

Markou Markos and Singh Sameer, 2003b. Novelty detection: a review part 2: neural
network based approaches. Signal Process., 83(12):2499–2521. ISSN 0165-1684.

Martinez-Munoz Gonzalo, Hernandez-Lobato D., and Suraez Alberto, feb. 2009. An
analysis of ensemble pruning techniques based on ordered aggregation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 31(2):245–259. ISSN
0162-8828.

Maxion R.A. and Tan K.M.C., 2000. Benchmarking anomaly-based detection systems.
Proceedings of the 2000 International Conference on Dependable Systems and Net-
works, pages 623–630.

McHugh J., Christie A., and Allen J., September/October 2000. Defending yourself: the
role of intrusion detection systems. IEEE Software, 17(5):42–51. ISSN 0740-7459.

Metz C.E., 1978. Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8:
283–298.

Meyer Irmtraud M. and Durbin Richard, 2004. Gene structure conservation aids simi-
larity based gene prediction. Nucleic Acids Research, 32(2):776–783.

305

Michael C. C. and Ghosh Anup, August 2002. Simple, state-based approaches to program-
based anomaly detection. ACM Trans. Information System Security, 5:203–237.
ISSN 1094-9224.

Miklos Istvan and Meyer Irmtraud M., 2005. A linear memory algorithm for baum-welch
training. BMC Bioinformatics, 6:231.

Mitnick Kevin D. and Simon William L., 2005. The Art of Intrusion: The Real Stories
Behind the Exploits of Hackers, Intruders and Deceivers. Wiley.

Mizuno J., Watanabe T., Ueki K., Amano K., Takimoto E., and Maruoka A., 2000.
On-line estimation of hidden Markov model parameters. Proceedings of Third In-
ternational Conference on Discovery Science, DS 2000, 1967:155–169.

Mongillo Gianluigi and Deneve Sophie, 2008. Online learning with hidden Markov models.
Neural Computation, 20(7):1706–1716.

Muhlbaier M., Topalis A., and Polikar R., July 2004. Incremental learning from un-
balanced data. Proc. of the Internaltional Joint Conference on Neural Networks
(ĲCNN), pages 1057–1062, Budapest, Hungary, July 2004.

Narciso Tan Lau, 1993. Adaptive channel/code matching. PhD thesis, University of
Southern California, California, United States.

Neal R. M. and Hinton G. E., 1998. A new view of the EM algorithm that justifies
incremental, sparse and other variants. Jordan M. I., editor, Learning in Graphical
Models, pages 355–368. Kluwer Academic Publishers.

Neyman J. and Pearson E. S., 1933. On the problem of the most efficient tests of
statistical hypotheses. Royal Society of London Philosophical Transactions Series
A, 231:289–337.

Ng Brenda, October 2006. Survey of anomaly detection methods. Technical Report
UCRL-TR-225264, Lawrence Livermore National Laboratory, Livermore, CA.

Nocedal Jorge and Wright Stephen J., 2006. Numerical Optimization. Springer Series in
Operations Research and Financial Engineering. Springer, 2nd edition.

Northcutt Stephen and Novak Judy, 2002. Network Intrusion Detection: An Analyst’s
Handbook. New Riders Publishing, Thousand Oaks, CA, USA, 3rd edition. ISBN
0735712654.

Ott G., 1967. Compact encoding of stationary markov sources. Information Theory,
IEEE Transactions on, 13(1):82–86. ISSN 0018-9448.

Ourston D., Matzner S., Stump W., and Hopkins B., January 2003. Applications of
hidden Markov models to detecting multi-stage network attacks. Proceedings of
the 36th Annual Hawaii International Conference on System Sciences.

306

Oxley M.E., Thorsen S.N., and Schubert C.M., 2007. A Boolean Algebra of receiver oper-
ating characteristic curves. 10th International Conference on Information Fusion,
pages 1–8.

Oza Nikunj C. and Russell Stuart, January 2001. Online bagging and boosting. Jaakkola
Tommi and Richardson Thomas, editors, Eighth International Workshop on Arti-
ficial Intelligence and Statistics, pages 105–112, Key West, Florida. USA, January
2001. Morgan Kaufmann.

Parampalli Chetan, Sekar R., and Johnson Rob, 2008. A practical mimicry attack against
powerful system-call monitors. Proceedings of the 2008 ACM symposium on In-
formation, computer and communications security, ASIACCS ’08, pages 156–167,
New York, NY, USA, 2008. ACM. ISBN 978-1-59593-979-1.

Partalas Ioannis, Tsoumakas Grigorios, and Vlahavas Ioannis, 2008. Focused ensemble
selection: A diversity-based method for greedy ensemble selection. Proceeding of
the 2008 conference on ECAI 2008, pages 117–121, Amsterdam, The Netherlands,
The Netherlands, 2008. IOS Press. ISBN 978-1-58603-891-5.

Paxson Vern, December 1999. Bro: A system for detecting network intruders in real-time.
Computer Networks, 31:2435–2463. ISSN 1389-1286.

Peng Tao, Leckie Christopher, and Ramamohanarao Kotagiri, April 2007. Survey of
network-based defense mechanisms countering the DoS and DDoS problems. ACM
Computing Surveys (CSUR), 39(1):1–42. ISSN 0360-0300.

Pepe Margaret Sullivan and Thompson Mary Lou, 2000. Combining diagnostic test
results to increase accuracy. Biostat, 1(2):123–140.

Polikar R., Upda L., Upda S.S., and Honavar V., 2001. Learn++: An incremental
learning algorithm for supervised neural networks. IEEE Transactions on Systems,
Man and Cybernetics, Part C, 31(4):497–508.

Polikar Robi, 2006. Ensemble based systems in decision making. IEEE Circuits and
Systems Magazine, 6(3):21–45.

Polyak B. T., 1991. New method of stochastic approximation type. Automation Remote
Contr., 7:937–946.

Poritz A.B., 1988. Hidden Markov models: a guided tour. International Conference on
Acoustics, Speech, and Signal Processing ICASSP-88., volume 1, pages 7–13.

Porras Phillip A. and Neumann Peter G., 1997. EMERALD: Event monitoring enabling
responses to anomalous live disturbances. In Proceedings of the 20th National
Information Systems Security Conference, pages 353–365.

Proctor Paul E., 2000. Practical Intrusion Detection Handbook. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition. ISBN 0130259608.

307

Provost Foster and Fawcett Tom, 1997. Analysis and visualization of classifier perfor-
mance: Comparison under imprecise class and cost distributions. In Proceedings
of the Third International Conference on Knowledge Discovery and Data Mining,
pages 43–48, Menlo Park, CA, 1997. AAAI Press.

Provost Foster J. and Fawcett Tom, 2001. Robust classification for imprecise environ-
ments. Machine Learning, 42(3):203–231.

Provost Foster J., Fawcett Tom, and Kohavi Ron, 1998. The case against accuracy
estimation for comparing induction algorithms. Proceedings of the Fifteenth In-
ternational Conference on Machine Learning, pages 445–453. Morgan Kaufmann
Publishers Inc.

Ptacek Thomas H. and Newsham Timothy N., 1998. Insertion, evasion, and denial of
service: Eluding network intrusion detection. Technical Report T2R-0Y6, Secure
Networks, Calgary, Canada.

Qiao Y., Xin X.W., Bin Y., and Ge S., 2002. Anomaly intrusion detection method based
on HMM. Electronics Letters, 38(13):663–664.

Qin Feng, Auerbach Anthony, and Sachs Frederick, 2000. A direct optimization approach
to hidden markov modeling for single channel kinetics. Biophysical Journal, 79(4):
1915–1927.

Rabiner L., 1989. A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286.

Rash Michael, Orebaugh Angela D., Clark Graham, Pinkard Becky, and Babbin Jake,
2005. Intrusion Prevention and Active Response: Deployment Network and Host
IPS. Syngress.

Raudys Å arunas and Roli Fabio, 2003. The behavior knowledge space fusion method:
Analysis of generalization error and strategies for performance improvement. Mul-
tiple Classifier Systems, 2709:55–64.

Raviv J., 1967. Decision making in markov chains applied to the problem of pattern
recognition. Information Theory, IEEE Transactions on, 13(4):536–551. ISSN
0018-9448.

Rittscher Jens, Kato Jien, Joga Sébastien, and Blake Andrew, 2000. A probabilis-
tic background model for tracking. Proceedings of the 6th European Conference on
Computer Vision-Part II, ECCV00, pages 336–350, London, UK, 2000. Springer-
Verlag. ISBN 3-540-67686-4.

Roesch Martin, 1999. Snort–lightweight intrusion detection for networks. 13th Systems
Administration Conference (LISA), pages 229–238.

308

Rokach L., Maimon O., and Arbel R., 2006. Selective voting–getting more for less in sen-
sor fusion. International Journal of Pattern Recognition and Artificial Intelligence,
20(3):329–350.

Rokach Lior, February 2010. Ensemble-based classifiers. Artificial Intelligence Review,
33(1):1–39.

Roli F., Fumera G., and Kittler J., 2002. Fixed and trained combiners for fusion of
imbalanced pattern classifiers. Information Fusion, 2002. Proceedings of the Fifth
International Conference on, volume 1, pages 278–284 vol.1.

Ruta Dymitr and Gabrys Bogdan, October 2002. A theoretical analysis of the limits of
majority voting errors for multiple classifier systems. Pattern Analysis & Applica-
tions, 5(4):333–350.

Ruta Dymitr and Gabrys Bogdan, March 2005. Classifier selection for majority voting.
Information Fusion, 6(1):63–81. ISSN 1566-2535.

Ryden T., 1998. Asymptotic efficient recursive estimation for incomplete data models
using the observed information. Metrika, 44:119–145.

Ryden Tobias, 1994. Consistent and asymptotically normal parameter estimates for
hidden Markov models. Annals of Statistics, 22(4):1884–1895.

Ryden Tobias, February 1997. On recursive estimation for hidden Markov models.
Stochastic Processes and their Applications, 66(1):79–96.

Salem Malek Ben, Hershkop Shlomo, and Stolfo Salvatore J., 2008. A survey of insider
attack detection research. Jajodia Sushil, Stolfo Salvatore J., Bellovin Steven M.,
Keromytis Angelos D., Hershkop Shlomo, Smith Sean W., and Sinclair Sara, ed-
itors, Insider Attack and Cyber Security, volume 39 of Advances in Information
Security, pages 69–90. Springer US. ISBN 978-0-387-77322-3.

Saltzer J.H. and Schroeder M.D., September 1975. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278 –1308. ISSN 0018-9219.

Scarfone Karen and Mell Peter, February 2007. Guide to intrusion detection and pre-
vention systems (IDPS). Recommendations of the National Institute of Standards
and Technology sp800-94, NIST, Technology Administration, Department of Com-
merce, USA, 2007.

Schraudolph N.N., 1999. Local gain adaptation in stochastic gradient descent. Ninth In-
ternational Conference on Artificial Neural Networks, ICANN99, volume 2, pages
569–574.

Scott M. J. J., Niranjan M., and Prager R. W, September 1998. Realisable classifiers:
Improving operating performance on variable cost problems. Lewis Paul H. and

309

Nixon Mark S., editors, Proceedings of the Ninth British Machine Vision Confer-
ence, volume 1, pages 304–315, University of Southampton, UK, September 1998.

Sekar R., Bendre M., Dhurjati D., and Bollineni P., 2001. A fast automaton-based
method for detecting anomalous program behaviors. IEEE Symposium on Security
and Privacy, Los Alamitos, CA, USA, 2001. IEEE Computer Society.

Shen Changyu, 2008. On the principles of believe the positive and believe the negative
for diagnosis using two continuous tests. Journal of Data Science, 6:189–205.

Shue L., Anderson D.O., and Dey S., 1998. Exponential stability of filters and smoothers
for hidden markov models. Signal Processing, IEEE Transactions on, 46(8):2180–
2194. ISSN 1053-587X.

Silberschatz Avi, Galvin Peter Baer, and Gagne Greg, July 2008. Operating System
Concepts. John Wiley & Sons.

Singer Yoram and Warmuth Manfred K., 1996. Training algorithms for hidden Markov
models using entropy based distance functions. Neural Information Processing
Systems, pages 641–647.

Sivaprakasam S. and Shanmugan Sam K., 1995. A forward-only recursion based HMM for
modeling burst errors in digital channels. Global Telecommunications Conference,
1995. GLOBECOM ’95., IEEE, volume 2, pages 1054–1058.

Slingsby P.L., 1992. Recursive parameter estimation for arbitrary hidden Markov models.
IFAC Adavptive Systems in Control and Signal Processing, Grenoble, France, 1992.

Smyth Padhraic, Heckerman David, and Jordan Michael, 1997. Probabilistic indepen-
dence networks for hidden Markov probability models. Neural Computation, 9:
227–269.

Somayaji Anil B., July 2002. Operating System Stability and Security through Process
Homeostasis. PhD thesis, University of New Mexico.

Stakhanova Natalia, Basu Samik, and Wong Johnny, 2007. A taxonomy of intrusion
response systems. International Journal of Information and Computer Security, 1
(1/2):169–184.

Stenger B., Ramesh V., Paragios N., Coetzee F., and Buhmann J.M., 2001. Topology
free hidden Markov models: Application to background modeling. Proceedings of
the IEEE International Conference on Computer Vision, 1:294–301.

Stiller J.C., 2003. Adaptive online learning of generative stochastic models. Complexity
(USA), 8(4):95–101. ISSN 1076-2787.

Stiller J.C. and Radons G., 1999. Online estimation of hidden Markov models. IEEE
Signal Processing Letters (USA), 6(8):213–15. ISSN 1070-9908.

310

Tan K.M.C. and Maxion R.A., 2002. "Why 6?" Defining the operational limits of stide,
an anomaly-based intrusion detector. IEEE Symposium on Security and Privacy,
pages 188–201.

Tan K.M.C. and Maxion R.A., 2003. Determining the operational limits of an anomaly-
based intrusion detector. IEEE Journal on Selected Areas in Communications, 21
(1):96–110.

Tan K.M.C. and Maxion R.A., 2005. The effects of algorithmic diversity on anomaly
detector performance. International Conference on Dependable Systems and Net-
works (DSN), pages 216–225.

Tan Kymie M. C., Killourhy Kevin S., and Maxion Roy A., October 2002. Undermining
an anomaly-based intrusion detection system using common exploits. Proceed-
ings of the 5th international conference on Recent advances in intrusion detection,
volume 2516 of RAID’02, pages 54–73, Berlin, Heidelberg, October 2002. Springer-
Verlag.

Tandon G. and Chan P., 2006. On the learning of useful system call attributes for host-
based anomaly detection. International Journal on Artificial Intelligence Tools, 15
(6):875–892.

Tao Qian and Veldhuis Raymond, 2008. Threshold-optimized decision-level fusion and
its application to biometrics. Pattern Recognition, 41(5):852–867. ISSN 0031-3203.

Tarnas Christopher and Hughey Richard, 1998. Reduced space hidden markov model
training. Bioinformatics, 14:401–406.

Thomopoulos S.C.A., Viswanathan R., and Bougoulias D.K., 1989. Optimal distributed
decision fusion. IEEE Transactions on Aerospace and Electronic Systems, 25(5):
761–765.

Titterington D. M., 1984. Recursive parameter estimation using incomplete data. Journal
of the Royal Statistical Society, Series B (Methodological), 46(2):257–267.

Tosun Umut, 2005. Hidden Markov models to analyze user behaviour in network traffic.
Technical report, Bilkent University 06800 Bilkent, Ankara, Turkey.

Tsai Chih-Fong, Hsu Yu-Feng, Lin Chia-Ying, and Lin Wei-Yang, December 2009. Intru-
sion detection by machine learning: A review. Expert Systems with Applications,
36(10):11994–12000. ISSN 0957-4174.

Tsoumakas Grigorios, Partalas Ioannis, and Vlahavas Ioannis, 2009. An ensemble pruning
primer. Applications of Supervised and Unsupervised Ensemble Methods, 245:1–13.

Tucker C.J., Furnell S.M., Ghita B.V., and Brooke P.J., 2007. A new taxonomy for
comparing intrusion detection systems. Internet Research, 17:88–98.

311

Tulyakov Sergey, Jaeger Stefan, Govindaraju Venu, and Doermann David, 2008. Review
of classifier combination methods. Simone Marinai Hiromichi Fujisawa, editor,
Studies in Computational Intelligence: Machine Learning in Document Analysis
and Recognition, pages 361–386. Springer.

Turner Rolf, 2008. Direct maximization of the likelihood of a hidden Markov model.
Computational Statistics and Data Analysis, 52(9):4147–4160. ISSN 0167-9473.

Ulaş Aydin, Semerci Murat, Yildiz Olcay Taner, and Alpaydin Ethem, 2009. Incremental
construction of classifier and discriminant ensembles. Information Sciences, 179
(9):1298–1318.

Vaccaro H.S. and Liepins G.E., May 1989. Detection of anomalous computer session
activity. IEEE Symposium on Security and Privacy, pages 280–289.

Van Erp Merĳn and Schomaker Lambert, 2000. Variants of the borda count method
for combining ranked classifier hypotheses. Seventh International Workshop on
Frontiers in Handwriting Recognition, Amsterdam, 2000.

Varshney P. K., 1997. Distributed detection and data fusion. Springer-Verlag, New York.

Venkataramani Krithika and Kumar B., 2006. Role of statistical dependence between
classifier scores in determining the best decision fusion rule for improved biometric
verification. Multimedia Content Representation, Classification and Security, 4105:
489–496.

Vigna G. and Kruegel C., December 2005. Host-based intrusion detection systems. Big-
doli H., editor, Handbook of Information Security, volume III. Wiley.

Viterbi A. J., April 1967. Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm. IEEE Transactions on Infromation Theory, IT-13:
260–269.

Wagner David and Dean Drew, 2001. Intrusion detection via static analysis. Proceedings
of the 2001 IEEE Symposium on Security and Privacy, Washington, DC, USA,
2001. IEEE Computer Society.

Wagner David and Soto Paolo, 2002. Mimicry attacks on host-based intrusion detection
systems. Proceedings of the 9th ACM conference on Computer and communications
security, pages 255–264, Washington, DC, United States, 2002.

Walter S. D., 2005. The partial area under the summary ROC curve. Statistics in
Medicine, 24(13):2025–2040.

Wang Panhong, Shi Liang, Wang Beizhan, Wu Yuanqin, and Liu Yangbin, August 2010.
Survey on HMM based anomaly intrusion detection using system calls. Computer
Science and Education (ICCSE), 2010 5th International Conference on, pages 102–
105.

312

Wang Shaojun and Zhao Yunxin, December 2006. Almost sure convergence of Tittering-
ton’s recursive estimator for mixture models. Statistics and Probability Letters, 76
(18):2001–2006.

Wang Wei, Guan Xiao-Hong, and Zhang Xiang-Liang, 2004. Modeling program be-
haviors by Hidden Markov Models for intrusion detection. Proceedings of 2004
International Conference on Machine Learning and Cybernetics, 5:2830–2835.

Warrender Christina, Forrest Stephanie, and Pearlmutter Barak, 1999. Detecting in-
trusions using system calls: Alternative data models. Proceedings of the IEEE
Computer Society Symposium on Research in Security and Privacy, pages 133–45,
Oakland, CA, USA, 1999.

Weinstein E. M. Feder and Oppenheim A. V., 1990. Sequential algorithms for parameter
estimation based on the Kullback-Leibler information measure. IEEE Transactions
on Acoustics Speech and Signal Processing, 38(9):1652–1654.

Wolpert David H., 1992. Stacked generalization. Neural Networks, 5:241–259.

Wolpert D.H. and Macready W.G., apr 1997. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67–82. ISSN 1089-778X.

Wu C. F. Jeff, March 1983. On the convergence properties of the EM algorithm. Annals
of Statistics, 11(1):95–103.

Yeung Dit-Yan and Ding Yuxin, 2003. Host-based intrusion detection using dynamic and
static behavioral models. Pattern Recognition, 36(1):229–243.

Zhang Dong D., Zhou Xia-Hua, Freeman Jr. Daniel H., and Freeman Jean L., 2002. A
non-parametric method for the comparison of partial areas under ROC curves and
its application to large health care data sets. Statistics in Medicine, 21(5):701–715.

Zhang Xiaoqiang, Fan Pingzhi, and Zhu Zhongliang, 2003. A new anomaly detection
method based on hierarchical HMM. Parallel and Distributed Computing, Appli-
cations and Technologies, 2003. PDCAT’2003. Proceedings of the Fourth Interna-
tional Conference on, pages 249–252.

Zhang Zhihao and Zhou Jie, September 2010. Transfer estimation of evolving class priors
in data stream classification. Pattern Recognition, 43(9):3151–3161. ISSN 0031-
3203.

Zucchini Walter and MacDonald Iain, 2009. Hidden Markov and Other Models for
Discrete-valued Time Series: An Introduction Using R. Monographs on statistics
and applied probability, 110. Chapman & Hall.

