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IMPLEMENTATION AND VALIDATION OF A METHOD FOR COMPUTING THE 
INDUCED DRAG OF MULTIPLE LIFTING SURFACES AIRCRAFTS 

 
Antoine MOREAU 

 
ABSTRACT 

 
The objective of this research is to implement and validate a method to compute the induced 
drag of multiple lifting surfaces aircraft configurations. The lifting line theory serves as a 
fundamental basis to calculate the induced drag. It was used by Laurendeau to develop a 
methodology to solve for the minimum induced drag lift distribution of three lifting surfaces 
aircrafts; equations that were used as a starting point for this work. Implementation is made 
such that non-planar wing and user-defined spanload distributions could be analyzed. A 
curve-fitting methodology is developed to adapt mathematics to the input spanload 
distribution, and a correction is applied to the induced drag results so that the lift over the 
fuselage is taken into account. Minimum induced drag lift distribution is also obtained as per 
Laurendeau’s methodology. Results for wing-body-winglet configurations show good 
concordance with computational fluid dynamics (CFD) with a precision of more or less two 
drag counts. This shows that a lifting line approach, once corrected for the fuselage effect 
and dihedral, can provide accurate induced drag results. However, due to the absence of 
proper comparative data for two and three lifting surfaces aircraft configurations, an in-depth 
validation remains to be done for such aircraft designs. To do so, an approach to obtain the 
Oswald efficiency factor from Euler CFD results is proposed. 
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INTRODUCTION 

The quest for fuel efficient aircraft has led many researchers to orient their work on weight 

and drag reduction. As of today, the aerospace industry is likely to be reaching a state of 

maturation (ref. 51 to 54, ref. 74), which brings the problem of fuel consumption to the front 

line. Airliners have already started to adopt radical cost-cutting strategies to maintain their 

market position. While some investigations focus mainly on the potential gain of changing 

the aircraft configuration, lift will always remain a requirement to keep a fixed-wing aircraft 

in the air. Therefore, the lift-induced drag is a physical constraint in the design that engineers 

will have to deal with, since it can be minimized but not eliminated, no matter what the 

aircraft configuration is. 

 

In 1921, the German engineer Ludwig Prandtl published the so called “Prandtl Lifting-Line 

Theory” (ref. 89) which linked the spanwise lift distribution of a finite wing to its respective 

induced drag. The fundamentals of this theory served as foundation for scientific research 

throughout the decades, leading to a large pool of works and publications on the subject. 

Using Prandtl’s fundamental concepts, Kroo (ref. 32) developed a methodology to solve for 

the minimum induced drag spanloading of a 2 lifting surfaces system. This methodology was 

later extended by Laurendeau (ref. 108) for application on 3 lifting surfaces configurations.  

 

Research Objectives and Limitations 

In this present work, Laurendeau’s equations (ref. 108) for the induced drag of a 3 lifting 

surfaces system serve as a starting point for the research. The objective of this work consists 

in computing the induced drag of an aircraft by implementing the latest method into a 

computer program, to adapt it so that a non-planar wing may be analyzed (while remain ing 

conscious that the solution is computed using a planar theory), to implement a correction to 

the resulting drag value so that the lift generated by the fuselage is taken into account and to 

validate the results with various literature and computational fluid dynamics (CFD) results. 
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Although a lot of research was made on the relative performances of 1, 2 and 3 lifting 

surfaces configurations, it is not in the scope of this work to evaluate the aerodynamic 

potential of such designs, as the primary objective remains a validation exercise of the theory 

and results. However, it was considered relevant to make a literature survey of the 

conclusions obtained by various authors. 

 

Methodology 

This research was performed in collaboration with Bombardier Aerospace’s Advanced 

Aerodynamics department. Their support in knowledge and validation tools was essential for 

the progression of this work, which followed the following steps: 

 

1. A literature survey on the induced drag of multiple lifting surfaces aircrafts 

configurations and on the evolution of the computation of spanwise lift distribution; 

2. A detailed review of the theory used throughout this work; 

3. A description of the implementation of the theory into a computer program; 

4. A validation of the induced drag results by comparing with CFD and literature; 

5. A discussion on the accuracy and limitations of the method; 

6. Conclusions and recommendations. 

 

Before starting to implement Laurendeau’s method into a computer program, an investigation 

was performed to evaluate the robustness of the equations developed in his work (ref. 108). 

This was done in order to make sure that no mathematical or typographical errors could have 

slipped through correction. 

 

The theory was implemented into a Matlab computer program called “LLT” and was first 

validated by comparing the drag results with a Bombardier in-house Multhopp (ref. 114) and 

non-linear vortex sheet (ref. 19) code named “CDI”. It was later compared to Euler and 

Navier-Stokes CFD solutions obtained from a Bombardier’s in-house code named “FANSC” 
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(ref. 83). Results show good concordance between theory and CFD, with an error of ±2 drag 

counts (1 count : Cd = .0001) for a single wing with dihedral, winglets and fuselage.  

 

For multiple lifting surfaces configurations, LLT results were not validated since a robust 

source of comparison was not available. However, an investigation was performed about the 

validity of the minimum induced drag spanload for conventional two lifting surfaces 

configurations. Results have shown a good similitude with Iglesias and Mason’s results (ref. 

109) for minimum induced drag lift distribution. However, on a real production aircraft, the 

lift distribution tends to have a more triangular shape than the minimum drag spanload. The 

reasons for this situation are clarified in this work. 

 



 

CHAPITRE 1  
 

REVIEW OF THE LITTERATURE 

1.1 Past Research on Multiple Lifting Surfaces Aircraft Configurations 

A significant amount of research has been done on the induced drag and performances of 

one, two or three lifting surfaces aircrafts. The Wright Brothers started it all over 110 years 

ago; exercising what is now seen by some as a remarkable prescience: they put the pitch 

control surface of their aircraft at the front! One can suppose that to them, it would have 

seemed illogical when flying close to the ground to move part of the airplane down to make 

the rest of it move up. Where they right? Burns discusses the origin and resurrection of 

aircrafts with foreplanes in reference (ref. 71). However, at that time, Prandtl’s Lifting line 

theory (ref. 89) and Munk’s Biplane theory (ref. 100) were not yet available for the Wright 

brothers to understand completely the mutual interference in downwash velocities that occurs 

between two lifting surfaces. In his work, Munk explains how, when multiple lifting surfaces 

are located relatively close one to each other, the downwash induced by each surface affects 

all the other surfaces nearby. Using Munk’s approach, Prandtl developed the equations for 

the induced drag of multiplanes. The developments of both Munk and Prandtl’s equations are 

described in the “Theory” chapter of this work. 

 

In 1978, Laitone (ref. 33) published a work in which he used Prandtl and Munk’s theories to 

show that the minimum induced drag of a classical tail-aft aircraft was obtained when the lift 

on the tail was slightly positive. Such results were confirmed by Laurendeau (ref. 108). 

However, a trimmed aircraft using such concept would inherit a negative longitudinal 

stability. What is interesting in this conclusion is that it is actually possible for a designer to 

reduce the induced drag of a multiple lifting surfaces aircraft by properly distributing the lift 

on multiple wings. Starting from this concept, several authors started publishing results about 

the induced drag of multiplanes. Which configuration is the best? Canard? Tail-aft? Three 

surfaces? Summarizing all the available literature on this subject would represent an 
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exhaustive work and could constitute an entire thesis in itself. Nevertheless, I deemed 

appropriate to introduce the subject by a rapid overview of some results. 

 

In reference (ref. 27), Kendall shows that a three-surfaces configuration can attain the 

minimum induced drag flight condition over a practical range of c.g. location while 

conserving a positive static stability, which confers this type of aircrafts a 10% higher cruise 

efficiency than a conventional tail-aft configuration. He also concludes that the pure canard is 

unstable at minimum induced drag center of gravity (c.g.) location. To attain stable flight 

conditions, the surface lift required to trim a canard configuration is more penalizing than on 

the tail-aft configuration.  

 

However, Butler indicates a trend in (ref. 66) showing that for some applications where 

varying static stability is considered, the induced drag difference between three surfaces, tail-

aft and canard may not be as significant as theory seems to indicate. These results are 

summarized in (ref. 30) by Kendall, which discusses this aspect more completely and 

concludes that a stable three-surfaces configuration can reach a potential induced drag saving 

up to 7% relative to a tail-aft design, and 15% relative to a stable canard. He also shows that 

a three-lifting-surfaces airplane configuration can fly at the minimum induced drag condition 

with varying c.g. location and be inherently stable, but that wind-tunnel tests were required to 

verify the theory.  

 

Such tests were conducted one year later by Ostowari (ref. 20) on a Learjet-like model using 

tail-aft, canard and 3 lifting surfaces configurations in transonic flight conditions. He 

concluded that 3 surfaces have better lift and high-lift drag characteristics, but higher cruise 

drag. The induced drag in cruise flight is the highest for the canard and lowest for the tail-aft. 

He also states that a smaller stagger between the canard and the wing leads to better 

aerodynamics and stability characteristics, and a decrease in span of the canard surface gives 

better cruise drag and longitudinal stability characteristics. One could keep on going like this 

for dozens of pages but I consider more important in this study to state certain conceptual 

advantages of the three lifting surfaces configuration.  
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A true advantage of canard or three surfaces configurations is only revealed if the wing can 

be moved aft far enough so that it doesn’t have to pass over or under the passenger’s cabin. 

This gives an interesting option to the designers: to select a wing height more centered on the 

fuselage, allowing the main spar to go straight through the body. Such median wing allows 

for a reduction of the weight and drag of the wing-body junction and reinforces the rear 

pressure bulkhead. Depending of the aircraft configuration, it may also offer the opportunity 

to relocate the engines from the pylons to the wings, allowing for more weight savings. 

Another design option of a median wing is that the main landing gear can retract into the 

fuselage without the need for a belly fearing. The Piaggio P-180 Avanti is a good example of 

the use of multiple lifting surfaces to seek various design advantages. Reference (ref. 11) is a 

good source of information about the design of this aircraft.  

 

 Figure 1.1 Piaggio P-180 Avanti 
Taken from « X-Plane » open source flight simulator 
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Other advantages of the canard and three lifting surfaces configurations have been found in 

the review of the literature: 

 

1. A 3 surfaces configuration can set or change its static margin at any time by changing 

the ratio of the lift between the canard and the stabilizer. Therefore, the CG position 

can change significantly during the flight without influencing aircraft’s behavior; 

2. A 3 surfaces configuration can maintain minimum induced drag for all the duration of 

the flight; 

3. On a canard aircraft, the canard can be designed to stall before the main wing, which 

greatly smoothes the stalls, or even prevents the main wing from stalling. 



9 

1.2 History of Spanload 

The circulation theory of lift was one of the two major developments that energized 

theoretical aerodynamics at the beginning of the twentieth century. The second one being the 

development of the boundary layer concept around 1903 by Ludwing Prandtl, which allows 

calculation of the viscous drag. This same scientist published in 1921 (ref. 89) the so called 

“Prandtl Lifting-Line Theory”, which is a by-product of the circulation theory. This new 

model linked together the spanwise distribution of lift (spanload) and the induced drag of a 

finite wing. Throughout the ages, various scientists and practicing aerodynamicists have 

articulated their work around this method to improve aircraft performances, as it is still used 

in today’s industry. The following chapter underlines a few of the major breakthroughs that 

emerged from the development of this fundamental approach, as it is also the source of the 

theory used in this work. 

 

In his work, Prandtl obtained a general solution to calculate the induced drag of a finite wing. 

He concluded that an elliptical spanload would minimize lift-induced drag. The following 

figures were taken from his report. 

 

    

 

(a)                    (b)        

                 

Figure 1.2 Prandtl’s « vortex ribbons » (a) and ideal elliptical spanloading (b) 
Taken from reference 89 (1921, p. 27 and 29) 
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The original theory developed by Prandtl was extended to multiple airfoils by Marx Munk in 

1922 (ref. 100) and became what is referred to as “The Biplane Theory”. In his work, Munk 

introduced the fact that two lifting surfaces will interfere within each others, as one wing will 

be affected by the downwash of the other one. Therefore, he divided the induced drag 

equation for two lifting surfaces into four terms: two terms for the individual drag of each 

surface, and two more for their mutual interference. Finally, he proved that the mutual drag 

terms are equal. He also applied his theoretical methodology to assess the effect of sweep 

angle on spanloading in reference (ref. 93) in 1923. A year later, Prandtl published “Induced 

Drag of Multiplanes” (ref. 92), in which he applied the theory developed by Munk to systems 

of two and three elliptically loaded lifting surfaces. The resulting solution was a simple, 

lightweight equation using sigma (σ) factors that allowed designers to quickly estimate the 

induced drag on any two or three wings aircraft configuration. At this point, it seemed 

understood and accepted that an elliptical lift distribution could minimize the induced drag of 

a lifting surface. The downwash of an ideal spanloading could be defined as a Y = C 

function. However, the design of an aircraft is a compromise between multiple disciplines, 

and Prandtl noted in his work that the structural weight associated with the elliptical 

spanloading (see spanload “a” on next figure) was not necessarily the optimum distribution. 

He proposed in 1932 (ref. 35) a solution to obtain the ideal spanloading of a wing with a 

constrained root bending moment. His conclusions were that the ideal wing would have a 

22% increase in span with an 11% induced drag reduction. As for the ideal spanloading, its 

shape was more triangular than elliptical (b and c). 

 

 

 

 

 

 

 

Figure 1.3 Prandtl’s ideal spanload for a constrained root bending moment 
Taken from reference 35 (2006, p. 7) 
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During and after World War II, from 1940 to 1955, the Horten brothers used Prandtl’s latest 

spanload work to develop their flying wings designs. They introduced concepts such as the 

induced thrust at tips and the “Mitteleffekt” (ref. 35). They eventually solved for an ideal 

spanload constrained for root bending moment and stability requirements, which is referred 

to as the “Bell Shaped” spanload. 

 

 

Figure 1.4 Horten brother’s “Bell Shaped” spanloading for flying wing 
Taken from reference 35 (2006, p. 8) 

 

In 1950, Jones published a work (ref. 101) in which he solved for an ideal spanloading with 

constraints on lift and bending moment. However, his calculation of the root bending 

moment is less general than Prandtl’s. He concluded that a 15% reduction of induced drag 

was possible with a 15% increase in span as compared to an elliptically loaded wing of equal 

lift and bending moment. Just like Prandtl, the resulting spanload is more triangular. 

Nevertheless, even if the drag reductions predictions differ from Prandtl to Jones, one can 

notice an obvious similarity in the spanload shapes. 
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Figure 1.5 Jones’s ideal spanloading with constrained root bending moment 
Taken from reference 101 (1950, p.14) 

 

In 1967, Lundry (ref. 34) performed an 

investigation to solve for the minimum 

induced drag spanloading while 

constraining the lift and span of a swept 

wing to achieve zero pitching moment. 

This work was, in most point, very 

similar to the Horten’s work, with the 

fundamental difference that Lundry was 

trying to quantify the drag penalty of 

trimming the aircraft by shaping the 

spanload. It is however very interesting 

to see that he obtained the same “bell 

shaped” distribution that the Horten’s. 

 

Figure 1.6 Lundry’s ideal spanloading 
Taken from reference 34 (1967, p. 2)
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The work done by Prandtl, Horten, Jones and Lundry introduced a new dimension in 

spanload optimization, as the ideal downwash distribution was now defined as a Y = BX + C 

function. Several years later, in 1975, Klein and Viswanathan (ref. 65) performed an 

investigation to solve for the ideal spanload of a wing with constrained structural weight, 

including bending moments and shear stresses. They concluded that a 7% reduction of 

induced drag was possible with a 16% increase in span compared with an elliptically loaded 

wing of equal weight. 

 

 

Figure 1.7 Klein and Viswanathan’s ideal spanload for constrained wing weight 
Taken from reference 65 (1975, p. 3) 

 

This work defined the ideal downwash distribution as a parabolic function Y = AX2 + BX + 

C. For the reader who would like to seek more details about the approaches mentioned 

herein, Jones published a summary in 1979 (ref. 35). Up until this time, most of the research 

done on spanloading was focused on the assessment of ideal lift distribution over a single 

planar wing. In 1980, Jones and Lasinski (ref. 103) obtained an analytical solution for the 

ideal spanload of wings with winglets by constraining the area under the bending moment 

curve; the same approach used by Prandlt. They observed that for an ideal wing shape, 
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similar reductions of induced drag can be achieved by either horizontal or vertical tip 

extensions.  

 

 

 

Figure 1.8 Jones and Lasinski’s drag reduction with winglets 
Taken from reference 103 (1980, p. 21) 

 

At this point, the lift distribution optimization was now assessing non-planar lifting surfaces. 

However, since the foundation of the solution was still based on Prandtl’s lifting line theory, 

the induced drag was computed in a planar manner. During the same period of time, Kroo 

proposed a method in (ref. 26) that allowed to solve for the ideal spanload distribution that 

minimizes the induced drag of any biplane configuration. His approach was based on 

Prandtl’s work “Induced Drag of Multiplanes” cited previously. By considering an elliptical 

lift distribution over the second lifting surface (canard or tail), the minimum drag spanload 

over the wing can be obtained. He also proposed a general equation very similar to the one 



15 

published by Prandtl in 1924, with the simple addition of sigma* (σ*) factors, which can be 

calculated or extracted from graphics. No structural calculations were included into this 

work. 

 

Kroo’s method was later extended to three lifting surfaces configurations by Laurendeau in 

1990 (ref. 108). The same assumption of elliptical spanloading on the secondary and tertiary 

surfaces was used. The method allows to solve for the minimum induced drag spanloading 

over the wing and new sigma* (σ*) factors are determined. Laurendeau’s approach offers an 

analytical solution for the induced drag of multiple lifting surfaces aircrafts that seems 

appropriate for actual needs. However, since it is based on the lifting-line theory, the drag 

calculation is done like if the wing was planar, without consideration for the sweep or 

dihedral. Even so, recent literature let believe that fairly good accuracy can be expected from 

it. To mention a few, the following authors have used linear and non-linear lifting-line 

approaches (NL-LLT) in their work for various applications and managed to obtain 

satisfactory precision for conceptual design purposes. 

 

Chi (ref. 88) uses numerical lifting-line for icing simulation and compares with CFD. He 

obtains results that are within 2-5% error. Cheng (ref. 84) applies the same method on 

forward-swept wings (FSW) and concludes that such wings performances can be properly 

estimated using simple correlations with aft-swept wings (ASW). Owens (ref. 85) 

investigates numerical NL-LLT as a tool to be used for aircraft design and obtains good 

results according to data. In ref (ref. 86), Funk implemented a similar approach into a six 

degree-of-freedom (6-DOF) model to simulate stall departure of a Cessna. Results compare 

well to flight data on general aviation aircraft. Ariyur (ref. 87) uses numerical lifting-line to 

model ground effect and compares with a Gulfstream V. Results are satisfactory and the 

author suggests ways to improve accuracy. 

 

This concludes the review of the literature for this work. All theoretical bases employed for 

the development Laurendeau’s method and LLT software are detailed next. 
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CHAPITRE 2  
 

THEORY 

2.1 The Biot-Savart Law and Kutta-Joukowski Principle 

Before starting any development on Prandtl’s lifting-line theory, it seems appropriate to 

quickly introduce the two fundamental principles on which it is based: the Biot-Savart law 

and the Kutta-Joukowski principle. 

 

The Biot-Savart law is used to calculate the velocity “V” at a given point “P” located at a 

certain distance “r” from a segment “dl” located on an infinite vortex filament of strength 

“Γ”. To make an analogy with electromagnetism, the vortex filament would be an electric 

wire carrying an electrical current “Γ” and the resulting magnetic field at point “P” would 

represent the velocity induced by this filament. For application to aerodynamic, the Biot-

Savart law goes as following: 

34

dl r
V

rπ
∞

−∞

Γ ×=       (2.1) 

This fundamental principle applies for any vortex filament. However, the lifting-line theory 

uses only semi-infinite straight filaments as illustrated on the next figure.  

 

 

Figure 2.1 Velocity induced at point P by a semi-infinite straight vortex filament 
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The application of Biot-Savart law to this simplified system reduces to: 

 

0

20 / 2

sin
sin

4 4 4
V dl d

r h hπ

θ θ θ
π π π

∞Γ Γ Γ= = − =     (2.2) 

 

Thus, the velocity induced at a given point “P” by a semi-infinite, straight vortex filament at 

a perpendicular distance “h” from “P” is simply Γ/4πh.  

 

The second fundamental principle used by Prandtl is the Kutta-Joukowski principle. This 

principle defines lift force “L” as a function of the strength “Γ” of a vortex filament, or 

circulation. 

L Vρ= Γ       (2.3) 

 

This result underscores the importance of the concept of circulation, as it links together the 

strength of a vortex to the generation of lift. Its fundamental meaning is that the lift per unit 

span is directly proportional to the circulation around the body. Now that the basics are well 

established, the lifting-line theory can be developed. 

 

2.2 Prandtl’s Lifting Line Theory 

Prandtl had understood that the very low pressures over a finite wing would force the air to 

roll around the tip, pushing the flow over the wing to move inboard, and similarly, forcing 

the air under the wing to move outward. The resulting difference in spanwise velocity causes 

the air to roll up into a several streamwise vortices, influencing the lift force along the span. 

 

 

Figure 2.2 Streamwise vortices and spanwise lift force distribution 
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In his lifting-line theory, Prandtl modeled these streamwise vortices using Biot-Savart law as 

vortex model, and linked vortices from both sides of the plane together with a bound vortex 

of equal strength; creating what is called a horseshoe vortex. The figure below illustrates a 

single horseshoe vortex on a finite wing. 

 

 

 

Figure 2.3 Single horseshoe vortex over a finite wing 

 

Using Biot-Savart law, the velocity at point P at a given spanwise coordinate “y” on a wing 

of span “b” induced by the free-trailing vortices can be calculated as following. 

 

( ) ( ) ( )2 2
( )

4 / 2 4 / 2 4 / 2

b
y

b y b y b y
ω

π π π
Γ Γ Γ= − − = −

+ − −
   (2.4) 

 

This downward velocity “ω(y)” induced at point “P” by the trailing vortices is called 

downwash, and changes the local effective angle of attack of this particular wing section. The 

lift force generated at this coordinate is therefore diminished and inclined backward. Thus, 

the local effective lift of this wing section has a component of force parallel to the 

undisturbed freestream flow. This drag force is a consequence of generating lift on a finite 

wing and is called induced drag, or vortex drag. 

-Γ

-b/2 

b/2 

Γ

Point P at any y coordinate 
along bound vortex 

Bound vortex 
ω(y) 
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Figure 2.4 Induced flow over a wing section 

 

To determine the spanwise lift distribution and the induced drag of a complete finite wing, 

Prandtl superposed an infinite number of horseshoe vortices along the lifting line. Each of 

these vortices has a vanishingly small strength “dΓ” corresponding to an infinitesimally short 

segment of the lifting line “dy”. Let us single out a segment “dy” located at “y” having a 

circulation “Γ(y)” and a change of circulation along the segment “dΓ”. Therefore: 

 

d dy
y

∂ΓΓ =
∂

      (2.5) 

 

Substituting the latest into (2.2), the downwash variation induced by this segment on any 

point P located arbitrary at a coordinate y0 along the lifting line is: 

 

( )
( )0

/

4

y dy

y y
ω

π
∂Γ ∂

∂ = −
−

      (2.6) 

 

To compute the total velocity induced at the spanwise coordinate y0 by the entire trailing 

vortex sheet, equation (2.6) is integrated from one tip to the other.  
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( )
0

0

/1
( )

4

s

s

y y
y

y y
ω

π −

∂Γ ∂ ∂
= −

−      (2.7) 

 

Note that the integration boundaries for the tips are not defined as b/2 and –b/2, as they have 

been replaced to take into account the dihedral angle and winglets. The integration is then 

performed as a line integral along the wingspan, like if a non-planar wing was unfolded into 

an equivalent planar surface. 

 

 

Figure 2.5 Induced velocity at point P by superposition of horseshoe vortices along a lifting 
line representing a non-planar lifting surface 

 

From (2.7), the local downwash angle ε(y0) can be obtained from trigonometry. 

 

1 0 0
0

( ) ( )
( ) tan

y y
y

V V

ω ωε −  = ≈ − 
 

    (2.8) 

 

Where V is the freestream velocity. From figure 2.5, the local induced drag at point P located 

at coordinate y0 from the center of the wing follows. 

 

0 0 0( ) ( )sin( ( ))Di y L y yε=      (2.9) 

-b/2 

b/2 

-s 

s 

P

Circulation distribution Γ(y) 
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 In (2.9), the local lift L(y0) at point P is obtained from the Kutta-Joukowski principle (2.3). 

The substitution of this principle into (2.9) reduces to: 

 

0 0 0( ) ( ) ( )Di y y yρω= Γ     (2.10) 

 

By integrating (2.3) and (2.10) over the entire unfolded span, the wing’s total lift force and 

corresponding induced drag can be obtained. 

 

   ( )
s

s
L V y dyρ

−
= Γ      (2.11) 

( ) ( )
s

s
Di y y dyρω

−
= Γ     (2.12) 

 

Prandtl extended his research to solve for the circulation distribution that would minimize the 

induced drag of a finite wing: the elliptical spanloading. However, there is no need to detail 

this part of his work as it is not used for further development in this report. The 

demonstration of this solution is frequently detailed in books such as the ones published by 

Anderson (ref. 110) or Bertin (ref. 111). The only relevant equation for this work concerning 

the elliptical lift distribution is the following, concluding this section on the lifting-line 

theory. 

 

     
2

2Elliptical

L
Di

qbπ
=      (2.13) 

 

2.3 Munk’s Biplane Theorem 

Munk used Prandtl’s lifting-line theory and the Biot-Savart law to assess the fundamental 

principles related to systems of multiple lifting surfaces. The details of his approach are 

available in (ref. 100). However, for the purpose of this work, it does not seem necessary to 

go through the whole theoretical process as only the conclusions will be used for further 

developments. 
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Using the Biot-Savart law, Munk obtained a solution for the downwash velocity induced on a 

given wing element by a second wing. The following figure illustrates in a visual manner the 

influence of the circulation over a wing influencing the downwash velocity on another 

nearby lifting surface.  

 

Figure 2.6 Mutually induced downwash velocities on two lifting surfaces 

 

Recalling Prandtl’s equation (2.10), the induced drag at a point y, located on wing 2, 

generated by wing 1 is quantified as following: 

 

 12 12 2( ) ( ) ( )Di y y yρω= Γ     (2.14) 

 

He also understood that if the circulation around wing 1 had influence over the second wing, 

then the circulation around the second wing would also influence the first one.  

 

21 21 1( ) ( ) ( )Di y y yρω= Γ     (2.15) 

 

The integration of these equations, in the same way done by Prandtl from (2.10) to (2.12), 

allows defining the total drag of the system as a summation of four terms. 

 

      1 12 21 2systemDi Di Di Di Di= + + +     (2.16) 
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A proper assessment of the mutual downwash velocities ω12 and ω21, which are not constant 

along the span, is required to obtain a solution. Throughout his developments, Munk stated 

two fundamental theorems that will be of assistance in what follows. 

 

“Any system, as regard its total induced drag, is equivalent to a simpler system 

having the same front view, in which the centers of pressure of all the constituent 

wing surfaces, while maintaining the same lift distribution, are shifted into one and 

the same plane, at right angles to the direction of flight.” (M. Munk, ref. 100). 

 

“In an unstaggered wing system, the drag D12, induced by wing1 on wing 2, equals 

the drag D21 induced by wing 2 on wing 1.” (M. Munk, ref. 100). 

 

From these theorems, equation (2.16) may be simplified. 

 

1 2system mutualDi Di Di Di= + +      (2.17) 

 

Where Dimutual is the double of the interference drag induced by a single wing to another.  

 

           1 12 2 1 21 22 2systemDi Di Di Di Di Di Di= + + = + +         (2.18) 

 

2.4 Prandtl’s Equation for Multiplanes 

As mentioned in the previous section, to properly evaluate the total induced drag of a system 

containing multiple lifting surfaces, it is necessary to have an appropriate calculation of the 

spanwise downwash velocity profile ωxx(y) of the wings. To assess that, Prandtl (ref. 92) 

used a graphic representing the spanwise downwash velocities (here called “z”) induced by a 

flat plate for several vertical distances (gap “G”), expressed as a fraction of the span (b1). 
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Figure 2.7 Spanwise downwash velocities ω(y) for various gaps 
Taken from reference 92 (1965, p. 20) 

 

This flat plate analysis was originally proposed by Munk and the test results were performed 

by Wr. K. Fohlhausen. To simplify the use these curve, equation (2.14) is adapted using the 

Kutta-Joukowski principle and the term ρΓ2 is replaced by δL2/V. The interference drag can 

be obtained by integrating from tip to tip according to lifting-line theory (2.12). 

 

12
12 2

( )
( )

s

s

y
Di L y

V

ω δ
−

= −     (2.19) 

 

Prandtl makes a final adaptation to the ω12(y) term, since both wings 1 and 2 might not have 

the same span and lift.  
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1
12 2

1

2
( ) ( )

L
y z y

Vb
ω

π
=      (2.20) 

 

The z(y) term is directly obtained from the preceding figure, and the drag induced by wing 1 

on wing 2 can now be calculated by solving the integration (2.19). This integral was 

evaluated at the time using planimetry for various span ratios b2/b1 and different values of 

the gap G/b1 on the assumption the lift distribution over wing 2 is elliptical. The result makes 

use of an interference factor “σ” which can be obtained graphically. 

 

1 2
12 21

1 2

2
2 2mutual

L L
Di Di Di

qb b

σ
π

= = =     (2.21) 

 

The total induced drag of any biplane configuration can now be obtained by the substitution 

of (2.21) and (2.13) into (2.17). This relation is known as The Biplane Equation. 

 

2 2
1 1 2 2

2 2
1 1 2 2

2
Biplane

L L L L
Di

qb qb b qb

σ
π π π

= + +     (2.22) 

 

The biplane equation was reworked in 1980 by Laitone (ref. 28), who added Oswald 

efficiency factor “e” to each terms of (2.22). It was later extended to three lifting surfaces 

configurations by Kendall in 1985 (ref. 27). The resulting induced drag for the system is: 

 

     
22 2

3 2 32 3 1 3 131 1 2 12 2
2 2 2

1 1 2 2 3 2 3 1 3

2 22
Triplane

L L L L LL L L L
Di

qb qb b qb qb b qb qb b

σ σσ
π π π π π π

= + + + + +   (2.23) 

 

The sigma (σ) factors required to use these equations can be obtained from the following 

figure where the x axis is the span ratio b/bwing and r is the vertical gap between each lifting 

surfaces expressed as r = 2Gap/ bwing. 
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Figure 2.8 Prandtl’s interference factor σ 
Taken from reference 92 (1965, p. 20) 

 

Of course, using this approach means that we recognize and accept Prandtl’s methodology, 

which considers elliptical lift distribution over all lifting surfaces, which is not always the 

case.  

 

In order to be able to compute the induced drag of non-elliptical lift distribution, the 

following chapter introduces an approach to define analytically any spanload distribution 

over a wing so that it can be used in the methods defined earlier. 
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2.5 Technique for General Spanwise Circulation Distribution 

The technique for general spanwise circulation distribution consists in representing the 

circulation by a Fourier sine-series composed on “n” terms. A detailed development of the 

method is available in Anderson (ref. 110) and Bertin (ref. 111). Figure 2.9 represents the 

behavior of the circulation distribution as the Fourier series is modified. 

 

Γ

0 π
π/2

A1 sin (θ)

(3θ)+A3 sinA1 sin (θ)

(θ)A1 sin +A3 sin(3θ) (5θ)+A5 sin

 

 

Figure 2.9 Circulation distribution represented by Fourier series 

 

As illustrated on the figure above, adding terms to the series increases the “flexibility” of the 

curve. If only one term is considered, the distribution is elliptical. By altering the An Fourier 

coefficients, it is possible, if the series is composed of a sufficient amount of terms, to model 

about any shape of spanwise circulation distribution over a wing. Only odd terms (1,3,5…) 

are used to model the spanloading since they assure a symmetrical behavior of the curve 

from one tip to the other. However, since Fourier series are simpler to use in a polar 

coordinate system, it is convenient to replace the Cartesian spanwise coordinates (y) by the 

equivalent polar (θ) coordinate. Consider the transformation: 

 

cos( )y s θ= −      (2.24) 
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In the latest equation, one must remember that the “s” variable represents the “unfolded” 

spanwise coordinate as illustrated in figure 2.5. Any circulation distribution over a wing can 

be defined by the following Fourier series with n = 1, 3, 5 and θ being the spanwise location. 

 

  
1

( ) 4 sin( )
N

nsV A nθ θΓ =      (2.25) 

 

The lift force corresponding to this distribution can be obtained by applying the coordinate 

system transformation (2.24) to the lift equation (2.11) defined in the lifting-line theory, and 

by substituting (2.25) into it. 

 

2 2

0
( ) 4 sin( )sin( )

s

ns
odd

L V y dy V s A n d
π

ρ ρ θ θ θ
−

= Γ =     (2.26) 

 

The same approach is repeated with (2.12) for the induced drag calculation. 

 

2 2

0
( ) ( ) 4 sin( ) sin( )

s

n ns
odd odd

Di y y dy V s nA n A n d
π

ρω ρ θ θ θ
−

= Γ =      (2.27) 

 

These two integrals can be solved and reduced to very simple relations. 

 

  2
14L qs Aπ=       (2.28) 
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2
1

n

odd

AL
Di n

qb Aπ
 

=  
 

      (2.29) 

 

Therefore, the lift generated by a given Fourier distribution over a wing can be computed 

from the A1 coefficient only. As for the induced drag, there is an obvious similarity with 

Prandtl’s elliptical spanload equation (2.13), with the only addition of the summation term. 

The following section details how Fourier distributions can be used into Prandtl’s equation 

for multiplanes.  
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2.6 Kroo’s Method 

Kroo proposed in 1982 (ref. 26) a method to solve for the minimum induced drag spanload 

over a wing influenced by a secondary elliptically loaded lifting surface. Summarizing his 

approach, the Fourier series technique explained in the previous section was used to define 

the circulation distribution over the primary wing. To describe the downwash velocities ω12 

induced by a secondary lifting surface on the wing, an analytical methodology given by von 

Kármán and Burgers (ref. 112) was applied. The induced drag equation for a biplane (2.22) 

was then rewritten to accommodate the non-elliptical loading on the wing. By derivation of 

this newly adapted formulation, the Fourier coefficients An that define the minimum induced 

drag spanloading were obtained by the derivation δDi / δAn = 0.  

 

Once again, the key in this solution is to properly evaluate the downwash velocities induced 

by one wing on another. The method proposed by von Kármán and Burgers is a mathematical 

representation that approaches the velocity fields used by Prandtl on Figure 2.7. To clarify 

the upcoming developments and the ones that will follow in further sections, the reader may 

consider indices 1 and 3 to represent the secondary lifting surfaces (canard or stabilizer) as 

indices 2 refers to the main wing. The local downwash velocity induced on a given segment 

of the main wing by a secondary lifting surface is defined as following. 

 

12

2
01

1 Re
1

ω ξ
ω ξ

 
 = −
 − 

    (2.30) 

 

In this equation, the local induced downwash velocities ω12 on the wing are expressed as a 

ratio of the ω01, which represents the downwash velocity at the root of the secondary lifting 

surface. The term ξ is obtained from: 

 

 
1 1

2 2y h
i

b b
ξ = +       (2.31) 
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where b1 is the span of the secondary lifting surface, h the vertical separation between the 

wings and y the spanwise coordinate on the main wing. The term ω01 can be expressed by: 

 

2
01 2

2

L V

qb
ω

π
=       (2.32) 

 

From these equations, the downwash velocities mutually induced between two lifting 

surfaces can be obtained. The figure below illustrates these velocities for various vertical 

gaps between a wing and a secondary lifting surface of span b1 = 0.625 b2, which is exactly 

the same figure used by Prandtl (see Figure 2.7), with the only difference that he quantified 

the gap as a function b1. 

 
 

 

Figure 2.10 Induced downwash velocities on surfaces 1 and 2 for various vertical gaps 

 

Secondary wing on main wing 
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Gap = b2/2 

Main wing on secondary wing 



31 

Recalling (2.17), the total induced drag of the system is the summation of the individual drag 

of each lifting surface and the mutual drag resulting from their interference. The drag of the 

main wing and the secondary lifting surface are calculated respectively using (2.29) and 

(2.13). The mutual drag is twice the drag induced by one wing on the other and is calculated 

by solving (2.12). 

 

12 12 22 2 ( ) ( )
s

mutual s
Di Di y y dyρ ω

−
= = Γ    (2.33) 

 

The circulation distribution over the wing Γ2(y) is defined by Fourier series in polar 

coordinates and the downwash velocity field ω12 is obtained from von Kármán and Burgers 

equations. By substituting these terms into the integration, we have: 

 

20
1 2 12

2 2
2 01 1

4
sin( )n

mutual
odd

AL L
Di n d

qb Aπ

ω θ θ
π ω

   
=    

  
    (2.34) 

 

The coordinate system transformation (2.24) can be reversed by posing:  

 

cos
y

y
s

θ= =
−

     (2.35) 

 

The total drag of the system is therefore defined by: 

 

2 2
1 1 2 1 2 2

2 2
1 1 2 2

2
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L L L L
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qb qb b qb

σ σ
π π π

= + +      (2.36) 

with 
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 
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      (2.37) 
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and 

1
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12( )
010

sin (cos )nI n y d y
ω
ω

−   =     
     (2.39) 

 

Therefore, the induced drag of a biplane, for which the circulation distribution over the wing 

is defined by several Fourier coefficients An, can be obtained. Kroo proposes a method to 

solve for the An coefficients that will minimise the induced drag of the system by derivation 

of (2.36).  

 

0
n

Di

A

∂ =
∂

     (2.40) 

 

The An coefficients for minimum induced drag can be isolated from the solution of this 

derivation. 
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4
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= −      (2.41) 

 

The A1 coefficient determines the lift of the wing and is obtained from (2.28). By substitution 

of this latest equation into (2.37) and (2.38), the sigma (σ) factors for minimum induced drag 

are obtained. Equation (2.36) can finally be reduced to: 
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The σ factor obtained by Kroo is the same as Prandtl’s interference factor illustrated in figure 

2.8. However, its calculation is now completely analytical, which saves us the trouble of 

having to rely on planimetry! As for the σ* factor, its use in conceptual design allows to 

quickly assess the minimum induced drag achievable by any biplane configuration. The 

following figure illustrates the σ (blue curves) and σ* (red curves) interference factors in 

function of the gap between the wings and the ratio of their span. 

 

 

Figure 2.11 Prandtl and Kroo interference factors 

 

This concludes the theory behind Kroo’s method. The last theoretical concept required for 

the future developments of this work is introduced in the following section. 
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2.7 Laurendeau’s Method 

Laurendeau proposed in 1990 (ref. 108) an extension to the method developed by Kroo by 

adding a third lifting surface to the system. This third wing is considered elliptically loaded, 

which is the same assumption used by Kroo for his secondary lifting surface. By derivation 

of the induced drag equation for the complete system, the An coefficients defining the 

minimum induced drag spanloading of any three lifting surfaces configuration can be solved, 

and the corresponding σ factors are obtained. 

 

Recalling Prandtl, the total induced drag of a system composed of multiple lifting surfaces 

will contain one term for the induced drag of each individual wing, and one mutual drag term 

for each pair of wings. For a three lifting surface configuration, the induced drag equation 

will therefore be composed of six terms as showed in (2.23).  

 

   1 2 3 12 32 13TriplaneDi Di Di Di Di Di Di= + + + + +    (2.45) 

 

Once again, indices 2 refer to the main wing, as indices 1 and 3 are used for the canard and 

stabilizer. In this latest expression, the terms Di1 and Di3 are evaluated using (2.13) since 

both surfaces are elliptically loaded. As for the drag of the main wing, it is obtained using 

(2.29), which is exactly the same thing as using (2.13) multiplied by the σ2 factor described 

by (2.37). The mutual drag terms Di12 and Di32 are assessed in the exact same way as in the 

previous section. Recall the integration (2.34), the equation for the mutual drag of any 

secondary surface k interfering with the primary wing is defined as following. 

 

2 2
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2 k k
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k

L L
Di

qb b

σ
π

=      (2.46) 

 

Where σk2 is obtained from (2.38). The only missing term is the mutual interference drag 

between the two secondary surfaces. Relation (2.46) can be reworked to allow the calculation 

of Di13. 
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=       (2.47) 

 

To obtain the σ13 factor, the development of equation (2.38) is applied to elliptically loaded 

surfaces only and reduces to; 

 

13
13

1 3

4

( / )

I

b b
σ

π
=       (2.48) 

 

with 

1
113

13
010

sin(cos )I y d y
ω
ω

− 
=  

 
                  (2.49) 

      13

2
01

1 Re
1

ω ξ
ω ξ

 
 = −
 − 

     (2.50) 

3 13

1 1

2 2y h
i

b b
ξ = +        (2.51) 

 

Regrouping all six terms, equation (2.45) can be rewritten. 

 

22 2
3 2 32 3 1 3 131 1 2 12 2 2

2 2 2
1 1 2 2 3 2 3 1 3

2 22
Triplane

L L L L LL L L L
Di

qb qb b qb qb b qb qb b

σ σσ σ
π π π π π π

= + + + + +      (2.52) 

 

Following Kroo’s approach, Laurendeau applies derivation (2.40) to obtain the An 

coefficients corresponding to the minimum induced drag of the system. 

 

( ) ( )1 2 12( ) 3 2 32( )

2 2
1 1 2 3 2

/ /
4 4

( / ) ( / )
n nn

L L I L L IA

A n b b n b bπ π
   

= − −   
   

               (2.53) 
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This result is then inserted into the calculation of the multiples σ factors. Equation (2.52) is 

modified to include Kroo’s  σ* factors for minimum induced drag. 

 

2 * *2 * 2
3 2 32 3 3 1 3 131 1 1 2 12 2

2 2 2
1 1 2 2 3 2 3 1 3

2 22
TriplaneMin

L L L L LL L L L
Di

qb qb b qb qb b qb qb b

σ σ σσ σ
π π π π π π

= + + + + +       (2.54) 

 

In this last relation, the σ factors are Prandtl’s interference factors and are obtained using 

(2.43). As for the σk* factors, they can be obtained from (2.44) and Laurendeau proposes a 

solution for the σ13* factor, expressing the interference between the canard and stabilizer. 
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σ

π
= −       (2.57) 

2
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3 2
33 2

16
1

( / )

N
nI

b b n
σ

π
= −       (2.58) 

12( ) 32( )* 13
13 2 2

31 3 1 3 2

4 16

( / ) (( ) / )

N
n nI II

b b b b b n
σ

π π
= −     (2.59) 

 

 

This concludes the overview of the theory used throughout this work. The following sections 

of this chapter are meant to verify the robustness of Kroo’s and Laurendeau’s equations. 
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2.8 Theory Robustness 

2.8.1 The “Zero - Gap” Cases 

The use of Prandtl’s equations for the analysis of multiple lifting surfaces aircrafts results to 

a numerical problem: the Biot-Savart law, on which Prandtl’s theory is based-on, has a 

singularity in the center of a vortex; singularity that occurs at the tip of a lifting surface. In 

the case of a multiplane with no stagger between lifting surfaces, a mathematical 

discontinuity occurs at the tip of each lifting surfaces having a smaller span than the main 

wing. Recalling figure 2.10, a “zero-gap” configuration results in a mutually induced 

downwash tending to infinity at the tip of the shortest lifting surface. This is due to the fact 

that a singularity occurs in the calculation of the induced downwash velocity defined by 

(2.30) : 

 

12

2
01

1 Re
1

ω ξ
ω ξ

 
 = −
 − 

    (2.60) 

 

In this equation, the value of ζ equals zero for zero-gap cases, which results in an infinite 

downwash velocity and numerical error. Therefore, in the implementation of the “LLT” 

program, a special case was added for zero-gap conditions, replacing ζ = 0 by ζ = 10-7. This 

small induced imperfection has shown not to provoke any computation errors up-to seven 

digits after zero and insures robustness of the computational process. 

 

The singularity in Biot-Savart equation also induces a computational difficulty in the 

calculation of the σ and σ* factors for near-zero gap conditions. The exact solution of 

integration (2.39) has been solved into the following interference factors: 

 

σ   = b1/b2                 (2.61) 

σ* = (b1/b2)
2                   (2.62) 
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In order to attain such results numerically and assuming a linear discretisation of the span, 

one should consider using 1000 wing section cuts semi-spanwise to solve the (2.39) 

integration numerically and obtain proper computation of the σ and σ* factors to within 10-7. 

 

2.8.2 Interchangeability Front - Rear 

This validation test is made to make sure that Kroo’s and Laurendeau’s equations are correct 

and that no typological errors have slipped through correction. As a first experiment, the 

interchangeability of wings 1 and 2 in the equations is investigated. Since the induced drag 

calculation is done independently of the depth of each lifting surface, the drag result should 

not vary when wing’s identification number is changed in the equation.  
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=

 

Figure 2.12 Validation of Front-to-Rear Interchangeability in the Equations 

 

Subsequent to a mathematical verification, it was determined that the equations are robust 

and consistent in term of front-to-rear interchangeability as long as the main wing has a 

larger span than the two other lifting surfaces. Consequently, one should clearly predetermine 

the numerical indices relating to each lifting surfaces. For the remaining part of this work, the 

indices “2” will represent the main wing, having the largest span. The wingspan of the other 

lifting surfaces is therefore expressed as a fraction of the main span. In no case wings number 

1 and 3 can have a larger wingspan than wing number 2, since the fundamental theory 

concerning the mutual downwash equations will no longer be functioning. 
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2.8.3 Interchangeability Top - Bottom 

In the same train of thought than for the previous section, the top-to-bottom 

interchangeability of the equations was investigated. Once again, induced drag results should 

not vary with the identification of the lifting surfaces since the aircraft configuration is the 

same. 

 

?
==

?
h  

h  

h  

32

12

31

h  
h  

h  

13

23

12 23

31

21

h  

h  
h  

 

 

Figure 2.13 Validation of Top-to-Bottom Interchangeability in the Equations 

  

An analytical verification shows that the equations are robust and consistent as long as the 

value of the gaps between various lifting surfaces are positive and expressed as a fraction of 

the main wingspan. Therefore, if one supposes an aircraft having a reference wingspan of 

100 feet, a tailspan of 30 feet and a stagger height of 20 feet, the aircraft definition for use in 

the equations goes as following: 

 

2

12 1 2

12 12 2

1

/ 0.3

2 / 0.4

b

b b b

h h b

=

= =

= =

 

 

The theory is now ready to be implemented into a computer program.  
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CHAPITRE 3  
 

IMPLEMENTATION 

3.1 Software Description 

In order to asses the induced drag of multiple lifting surfaces aircraft configurations, the 

various theories summarized in the previous chapter were implemented into a program called 

LLT. The software was written in Matlab and can compute the induced drag of any one, two 

or three lifting surfaces configuration in less than 0.10 seconds on an average dual-core PC. 

The necessary inputs and resulting outputs are described below. 

 

LLT inputs: 

• An input file, in text format, containing various geometry and lift coefficients for the 

canard, stabilizer and wing;  

• If specified by the user, a spanload file, in text format, detailing the discretisation of the 

wing. It contains the height and spanwise coordinates for every wing element and the 

related adimensionalized normal force coefficient. 

 

LLT Internal Operations: 

• Calculation of the An coefficients corresponding to the input spanload distribution; 

• Induced drag calculation for the main wing with winglets; 

• Correction of the main wing’s induced drag to include the fuselage effect; 

• Calculation of the total induced drag of the aircraft. 

 

LLT Outputs: 

• Exports an induced drag report in text format; 

• Displays a figure of the various lift distributions; 

• Writes a spanload sheet for the minimum induced drag spanloading. 
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breal

3.2 Main Wing Induced Drag Calculation 

As a first step to the development of LLT, the induced drag of a single wing-winglet-body 

was implemented. The dihedral and spanload distribution are defined by the coordinates in 

the spanload sheet; coordinates that are expressed in the non-planar “η” coordinate system. 

Let us pose the following axis systems, which will be used throughout the implementation.  
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Figure 3.1 Coordinate systems 
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According to the lifting line theory, the induced drag of a circulation distribution given by a 

spanload sheet, without considering the fuselage, can be calculated from : 

 

2 2

/ 2
( ) ( ) 8 sin( ) sin( )

s

s s n s n s ss
Di y y ds V s nA n A n d

π

π
ρω ρ θ θ θ

−
= Γ =     (3.1) 

 

To solve this, the normal force coefficients 
_

/yCn c c⋅  given for various span locations by the 

spanload sheet have to be converted into the “s” planar coordinate system. The length “ds” of 

a spanwise element “I” in the “s” coordinate system can be defined by: 

 

( ) ( ) ( )2 2
( 1) ( ) ( 1) ( )ds i Y i Y i Z i Z i= + − + + −

   (3.2)
 

or also 

( ) ( )
( 1) ( )

cos ( )

Z i Z i
ds i

iδ
+ −=

    (3.3)
 

 

and ( )iδ  being the dihedral of this wing element.  

 

Once the spanload sheet data’s have been converted to a planar coordinate system, the 

corresponding An Fourier coefficients can be obtained by curve-fitting a Fourier series over 

the data. Section 3.2.3 proposes an approach to curve-fit a spanload distribution over input 

data. However, before this can be done, some adjustments need to be made on the input 

spanload data concerning the fuselage and the wing tip. As it can be observed on figure 3.2, 

the data obtained from a spanload sheet is incomplete over the fuselage and tip regions.  
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Figure 3.2 Spanload definition by imported and created data points 

 

These missing data points are due to the fact that the spanload sheets are generated from 

several cut planes over the wing on a CFD solution (red points). Therefore, the extrapolated 

tip loads and exact tip coordinate “s” are unknown, and some realistic data points (green 

points) need to be added over the fuselage and the tip regions before proceeding to curve-

fitting the Fourier series. 

 

 

3.2.1 Adding Fuselage Data Points 

The missing data over the fuselage 

was created by using a 2nd order 

polynomial following an approach 

developped by Bombardier 

Aerospace. Figure 3.3 gives a visual 

examble of the created fuselage data 

points using this methodology. The 

equation 3.4 defines these points. 

 

 

 

Figure 3.3 Fuselage data completion 
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_
2( / ) ys s sCn c c Ay By C× = + +      (3.4) 

    

Bombardier’s methodology allows to determine the value of the A, B and C coefficients so 

that the missing lift data over the fuselage represents accurately what it should normally be. 

This methodology was developped through CFD and wind-tunel testing. 

   

In most cases, this 2nd order approach 

allows generating fuselage lift data that is 

very close to the expected values. However, 

in some irregular cases, a small error can be 

observed between generated lift data and 

what should be obtained by an equivalent 

Fourier distribution. Usually, this error is 

observed when the lift distribution is 

constituted of a double curvature, close to 

the fuselage, which is often the case for 

canard configuration. 

 

 

3.2.2 Adding Tip Data Points 

Completing the missing data over the tip was much more complicated than for the fuselage. 

This is due to two major causes. First: the exact location of the wing tip “s” is unknown from 

the spanload sheet and has to be estimated. The precision of the “s” span is of primary 

importance, as it has a great influence on the precision of the drag results. Second: the quality 

of the fit over the generated data needs to be as realistic as possible. Depending on how much 

points are created, the fitting of the Fourier curve in the tip region will not be the same. This 

is also more of a problem since the spanload datas seam to be less consistant approaching 

wingtip. Since the variation of circulation ( )/ y dy∂Γ ∂  is large in this region, a slight 

variation in the curve-fitting changes the drag results by several drag counts. The method to 

Figure 3.4 Fuselage data error 

Fourier

Polynomial
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complete the missing tip data needs to be robust, so that the drag solution can be trusted 

without hesitation. However, in this case, robustness usualy means reduced precision. A 

compromise between precision and robustness has to be made. Five different approaches 

were investigated individualy and in various combinaitions. 

 

A linear extension of the slope between 

the last two data points was experiemented 

in case 1. This approach showed very poor 

precision, as a very small variation of the 

slope would influence greatly the s span. 

Also, some cases have been seen where 

the slope was positive, which caused result 

divergence. To counter that effect, a 2nd 

order polynomial was used in case 2 to 

force the slope to near infinity at s. The 

drag results obtained from this method 

were excellent in some cases, and poor in 

others, as the quality of the curve-fitting 

was case-dependant. Since robustness of 

the resutls could not be taken for granted, 

this solution was put aside and a third 

approach was experimented in case 3. The 

idea here consists in simply duplicating 

many times the last spanload data point to 

increase its weight, while approximating s 

span to the value of the last data point. 

Drag results were average, within 2 drag 

counts of the exact solution, with great 

robustness.  

Γ

s
y  = s

Case 1: Linear extension

Case 2: Double Slope

y  = s
s

Γ

Figure 3.7 Tip data : Last point duplication 

Figure 3.5 Tip data : Linear extension 

Figure 3.6 Tip data : Double slope 

Γ

s
y  = s

Case 3: Repeat Last Point

x100
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The case 4 was investigated by creating 

additionnal control points in between 

the few last data points. This approach 

only returned good results when the last 

datas were relatively well aligned 

within each others. As a 5th case, it was 

experimented to impose the value of the 

s span and duplicate the last data (s, 0) 

as in the third approach. This gave good 

results as long as the span estimation 

was well made, which is not necessirely 

easy. As in case 3, the robustness of the 

fit is excellent. However, the precision 

of the value of s settles the quality of 

the drag results. Several combinations 

of these methods were tried to find the 

best compromise between the precision of the drag results and the robustness of the code, 

notably: case 4 + case 3, case 4 + case 1, case 4 + case 2, case 4 + case 5... It was established 

through trial and error on various spanload data that the case 3 was a good compromise. It 

allows for good robustness of the fit and the precision of drag results, which is usually within 

±2 drag counts, is satisfactory for conceptual design purposes. The robustness of the curve-

fittings is good, as shown on various problematic tip load data in figure 3.10.  

Figure 3.10 Tip spanload distribution for various wings (Y axis confidential) 

Case 4: Add Points Between Data

y  = s
s

Γ

Figure 3.9 Tip data : Impose span 

Γ

s

Case 5: Impose s span

Figure 3.8 Tip data : Add spanload data 
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3.2.3 Curve-Fitting the Data 

Once the lift distribution data points have been obtained for the whole wing span, a method 

based on the minimization of the Chi-square (Χ2) is used to find the An Fourier coefficients 

that will fit best the lift data. Since the actual coordinate system is planar, the total normal 

force over the unfolded wing can be defined by Kutta-Joukowski.  

 

2
_ ( ) ( ) 4 sin( )s

s s n s

N c
v v s A n

c
θ ρ θ ρ θ× = Γ = 

   (3.6)
 

 

By making the following substitution into (3.6): 

21

2s ref sN V S Cnρ= ×      (3.7) 

 

the equation of the normal force coefficients is obtained. 

 

_

8
( ) sin( )s

s n s

Cn c s
A n

cc
θ θ× = 

    (3.8) 

 

The Chi “X” can be defined by the local error between a given function ƒ(An, θs) and its 

target values, as illustrated on the following figure. 

 

 

 

 

 

 

 

 

Figure 3.11 Chi (Χ) of a function to its related data 
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Therefore, for a given number of data points i, the An Fourier coefficients that fit best the 

target data are the one that minimizes the total value of X2 for the whole spanload. 
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c
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 ×
 Χ = −
 
 
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and X2 is minimum when 

2

0
nA

∂Χ =
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By substitution of (3.8) and (3.9) into (3.10), we have 
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and the An Fourier coefficients can be isolated. 

 

( ) ( )( )

8
sin( ) sin( ) sin( )

ii N i i n
i n i n m

s
n C n m A

cθθ θ θ    = ⋅ ⋅        
    

 (3.12) 

 

In the latest equation, m and n = 1,3,5… up to the number of An Fourier coefficients defining 

the series. (3.12) can therefore be rewritten in matrix format: 
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This equation has the [A] = [B] × [X] format, with [B] being a Vandermonde matrix. The 

value of matrix [X], containing the An coefficients, can be solved using a matrix inversion: 

 

[ ] [ ] [ ]1
X A B

−= ×
     (3.13)

 

 

This concludes the curve-fitting methodology. The [X] matrix contains a single column of 

A1, A3, A5… An coefficients defining the best possible fit of a Fourier series on the 

spanload data using a least-square method. 

 

The quality of the resulting fit varies depending on the number of An coefficients to fit. The 

more An coefficients there is, the more flexible the curve becomes. The number of 

coefficients cannot exceed the number of data points. However, it is not necessarily a good 

thing to use too much An coefficients since the resulting curve may become too sensitive and 

diverge on a single point as seen at y=0.98 on figure 3.12. 

 

 

Figure 3.12 Curve-fitting divergence at tip due to excessive number of An coefficients 
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On the other hand, a sufficient amount of An coefficients are needed to correctly represent 

subtle variations in the spanloading. Since a sharp spanload variation will have high values of 

( )/ y dy∂Γ ∂ , and therefore a high influence on induced drag, a certain refinement of the 

Fourier series is necessary to achieve good accuracy. 

 

 

Figure 3.13 Improper assessment of a quick variation in the spanloading at engine or kink  

position due to insufficient number of An coefficients 

 

After several experimentations on 6 different spanloads, it has been observed that fitting 

divergence starts occurring when 17-20 An coefficients are used. Also, trying to fit the same 

spanloads with 10 or less An coefficients results in poor accuracy or no fit at all. Therefore, it 

seams appropriate to use 15 An coefficients to define the lift distribution, as it is a good 

compromise between the accuracy of the drag calculations and the robustness of the curve-

fitting.  
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3.2.4 Induced Drag Formulation 

Now that the An coefficients that defines the lift distribution are availlable, equation (3.1) 

can be solved to obtain the complete induced drag of the wing. 

 

0
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4 sin( ) sin( )
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v nA n
Di sv A n s

π θ
ρ θ θ θ

θ
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2 2

0
4 sin( ) sin( )n ns v nA n A n

π
ρ θ θ θ= ⋅ ∂            (3.14)

 

and posing 2S s c= ⋅ : 

21

2i iD DDi qSC v SCρ= =
     (3.15)

 

 

The drag coefficient in planar system can be solved: 
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   (3.16)
 

 

The drag coefficient needs to be converted into the ESDU standards, in the non-planar 

coordinate system. Since the total drag remains constant, 
___

Di Di=  and (3.15) is used: 

 

i iD DqSC qSC=
     (3.17)

 

2
i iD D

s
C C

b
= ⋅

      (3.18)
 

 

where b  is the ESDU reference span and 
__

S b c= ⋅  is the ESDU reference area. The total 

induced drag coefficient of the wing can therefore be obtained. The only remaining step is to 

add a correction for the fuselage induced drag. 
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3.2.5 Fuselage Induced Drag Correction 

Several authors have investigated the effect of the lift over the fuselage on the induced drag 

of a wing. Notably, Zlotnick developed a theoretical methodology to quantify the effect of 

the fuselage on spanload distribution. However, the major point of interest for this research 

relies is Multhopp’s conclusions (ref. 114) obtained in 1941. 

 

“…it is expedient to apply a suitable reduction factor to the total air load distribution 

or, what is probably better, to subtract a little from the lift over the fuselage.”   

 

“The fuselage influences the wing chiefly through a change of flow velocity in 

quantity and direction at each wing section. In addition, it forms a fixed boundary, for 

all supplementary flows induced at the wing.” (Multhopp, 1941) 

 

From these allegations, it seams plausible to assume that a variation of lift over the fuselage 

will not affect the lift distribution over the wing, since the fuselage acts as a boundary. It also 

means that a simple way to correct the drag coefficient of the fuselage is to remove a little lift 

from it. Therefore, the fuselage drag correction is represented as follows: 

 

Γ

CDi body initial

Z or

CDi body corrected

CL body 

from CFD

CL body 

from Fourier

 

 

Figure 3.14 Fuselage drag correction 
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In the previous figure, it is showed that the real lift coefficient over the fuselage (blue) is not 

the same than the one predicted by the Fourier lift distribution (green). Considering the 

concepts brought by Multhopp, it can be assumed that the downwash angle over the fuselage 

will not change even if the fuselage lift coefficient is changed. Therefore, the corrected 

fuselage induced drag can be calculated by multiplying the ratio of the fuselage lift 

coefficients: 

      

___

_

_ _ ___

_

body real

body corrected body LLT

body LLT

CL
CDi CDi

CL
= ×     (3.19) 

The ESDU 
___

_body LLTCL  can be obtained from the integration of the lift distribution over the 

fuselage. Since the lift distribution is almost flat in this region, the integration can be 

approximated as following: 

( )___

_
2

centerline fuselage
Body LLT

CL CL Diameter
CL

b

+
= ×  (3.20) 

From the (3.8), the local 
___

CL  over the fuselage is defined by: 

 

___
216

( ) sin( )
s

s n s

CL c s
A n

c S
θ θ× =    (3.21) 

and θs is the position of the centerline and fuselage in s system. 

 

 

As for the 
___

_body realCL , it can be obtained from a CFD solution or from wind tunnel data as in 

(ref. 115). A compilation of the results showed in this last reference seem to highlight certain 

tendencies. For a tube-and-wing configuration with a fuselage of circular cross section 

having a maximum diameter of about 1/9 b :  

 

___

_ 0.52Body real WingBodyCL CL≈ ×  for low wing designs   (3.22) 

___

_ 0.65Body real WingBodyCL CL≈ ×  for high wing designs   (3.23) 

CL at 

CL at 

CL
fuselage

centerline 2x

Figure 3.15 Fuselage Lift 
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3.2.6 Total Wing-Body Induced Drag 

The total induced drag coefficient for the wing-body is the summation of the corrected drag 

of the fuselage and the drag of the wing alone. Recalling (3.16), the drag coefficient of the 

wing without the fuselage is obtained by solving the integration from the fuselage to the tip. 

The solution of this integration is the following, written in 4 terms for clarity, where “fus” is 

the integration boundary θs in polar coordinate in the s axis system. 
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 

     (3.26) 

 

and “Diameter” is the fuselage diameter. Note that n and m = 1,3,5… and n ≠ m. Therefore, 

for term 3 and 4, it is convenient to define n and m in a triangular matrix form: 
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By replacing the value of “Diameter” by 0 in (3.26), the drag coefficient of the full lift 

distribution is obtained. Consequently, the uncorrected induced drag coefficient of the 

fuselage is: 

____ ____ ____

_ _body LLT wing body wingCDi CDi CDi= −     (3.27) 

 

By applying (3.20), the fuselage lift coefficient is obtained and the corrected fuselage drag 

coefficient can be obtained from (3.19). Finally, the total corrected induced drag coefficient 

of the wing-body is: 

 

____ ____ ____

_ _wing body body corrected wingCDi CDi CDi= +    (3.28) 

 

The induced drag of an elliptical spanload of equivalent lift is used as a reference to compute 

the Oswald efficiency factor “e”. 

___
____

___elliptical

CL
CDi

ARπ
=      (3.29) 

 

and the Oswald efficiency factor is: 

____

_

____

wing body

elliptical

CDi
e

CDi
=      (3.30) 

 

This concludes the calculation of the induced drag of a single non-planar wing with 

correction for the fuselage. 
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3.3 Full Aircraft Induced Drag 

To compute the induced drag of any three lifting surfaces configuration, we simply apply the 

multiplane equation (2.52) and substitute the main wing drag by its value: 

 

    
22

3 2 32 3 1 3 131 1 2 12
_2 2

1 1 2 3 2 3 1 3

2 22
Triplane wing body

L L L L LL L L
Di Di

qb qb b qb b qb qb b

σ σσ
π π π π π

= + + + + +   (3.31) 

 

As in chapter 3, indices 1 and 3 respectively represent the canard and the horizontal 

stabilizer, as indices 2 refers to the main wing. The canard is displayed in pale blue in the 

figures. The σ factors are calculated according to the theory of chapter 2.7, allowing for 

individualization of each lifting surface’s drag and their mutual drag coefficients. The 

following figure illustrates, in the s coordinate system, a specified spanload distribution over 

a wing with winglets (L2 = 0.55) that has been unfolded to a planar surface, a lifting canard 

(L1 = 0.0275, b1 = 0.20s, h1 = 0.09s), a downlifting stabilizer (L3 = -0.055, b1 = 0.31s, h1 = 

0.15s) and the system’s equivalent elliptical spanload of span b . 

 

 

Figure 3.16 Example: Lift distributions of a 3 lifting surfaces configuration 
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3.4 Minimum Drag Spanloading 

The minimum induced drag lift distribution is obtained following Laurendeau’s method. The 

use of equation (2.53) returns the An Fourier coefficients defining the optimal lift distribution 

adimensionalized in relation to A1, which determines the total area under the spanload curve. 

The following figure illustrates the minimum induced drag spanloading for the same aircraft 

configuration defined in the preceding example, with the red line representing the real lift 

coefficient over the fuselage. 

 

Figure 3.17 Ideal lift distribution of a given 3 lifting surfaces configuration 

 

Once again, we evoke the question of the number of An coefficients to use to have proper 

representation of the spanload. At first, it seams convenient for programming reasons to use 

the same amount of An coefficients as for the curve-fitting method. However, as the gap 

between two lifting surfaces is reduced toward zero, the ideal spanload over the wing tends to 

show very sharp variations which cannot be properly assessed with only 15 An factors. 
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Figure 3.18 Ideal lift distribution for a three surfaces configuration with no gap 

 

In the last figure, 100 An coefficients were required to properly represent the ideal lift 

distribution. I must underline once again the importance of properly assessing the number of 

Fourier coefficients to use, as it is of 

primary importance to the accuracy of the 

drag calculations and the robustness of the 

code. In references such as (ref. 105) and 

(ref. 26), drag results and spanload 

distributions are published but the number 

of An coefficients is not mentioned. By 

comparing results obtained from 4 and 

100 An coefficients with figure 4.3.3 from 

page 73 of (ref. 108), we can observe that 

this aspect must not be overlooked. 
Figure 3.19 Ideal spanload error 

100 An

4 An corresponds 

to ref. 108 
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The A1 coefficient is particular, since it defines the area under the spanload curve. In a 

classical planar wing without consideration for the fuselage lift or winglets, the lift of the 

wing is directly proportional to A1 with equation (2.28). However, in this situation, we have 

2 planar lifting surfaces, a non-planar main wing and a specified lift over the fuselage. 

Therefore, the A1 coefficient needs to be properly scaled so that the total lift coefficient of 

the aircraft meets the requirement. The total lift coefficient of the aircraft is defined as 

following: 

___ ___ ___ ___ ___

_Aircraft Wing Body real Stabilizert CanardCL CL CL CL CL= + + +    (3.32) 

 

Considering that the wing is non-planar, the lift over a given wing section i is the vertical 

component of the normal force in relation with its local dihedral angle iδ , which is obtained 

from trigonometry using the data from the spanload sheet. 

 

_ _ cos( )i i
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Cl c Cn c

c c
δ× ×= ×     (3.33) 

1 1

1

tan i i
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i i

Cn Cn

Z Z
δ − +

+

 −=  − 
    (3.34) 

 

and Z(y) represent the height of the wing due to its dihedral at a given spanwise coordinate in 

the η coordinate system. It is believed that a proper mathematical representation of Z(y) 

would allow for an exact analytical solution of the lift coefficient. However, since such 

equation is not available, the A1 factor is computed numerically to meet the CL requirement. 



 

CHAPITRE 4  
 

RESULTS AND VALIDATION 

4.1 Validation Methodology 

The LLT induced drag code was first validated by comparing with Laurendeau’s results, 

without taking into account the fuselage, dihedral and winglets. This first test proves that 

LLT results are in concordance with Laurendeau’s results, which reduces the eventuality of 

an implementation error in the calculation of the interference factors.  

 

The second test is meant to validate the induced drag calculation for a single lifting surface 

with dihedral, winglets and fuselage. Several spanload distributions were analysed with a 

Bombardier in-house code named “CDI”. This software reads the same spanload sheets than 

LLT and makes use of both Multhopp (ref. 114) and Non-Linear Vortex Sheets (ref. 19) 

methods to compute the induced drag of a single wing with a correction for the fuselage. 

Therefore, CDI returns 2 results of induced drag. CDI has been validated in the past and 

constitutes a reliable source of comparison for the induced drag of a single lifting surface 

with fuselage, dihedral and winglets.  

 

The results from LLT were then compared with CFD for a DLR-F4 wing-body configuration. 

The code used is called FANSC; it is a structured multi-block finite volume Navier-Stokes 

solver developed by Bombardier. Detailed information about this code is available in (ref. 

83).  
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4.2 Comparison with Laurendeau’s Results 

The following figure compares LLT induced drag results with Laurendeau’s results taken 

from figure 4.2.1 of reference (ref. 108). The markers in the graph represent the validation 

data, while the colored lines show LLT results. The total aircraft CL is kept constant for all 

cases. 
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Figure 4.1 Comparison with Laurendeau’s figure 4.2.1 

 

It seems quite obvious that LLT results are perfectly matching the validation data. Therefore, 

it can be considered that the implementation of both codes give identical results. In this 

analysis, four An Fourier coefficients were used to compute the σ and σ* factors required for 

minimum induced drag calculation. 
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4.3 Comparison with CDI Software 

The following figure illustrates the six spanload cases used for validation with CDI. 

Case 1
Total CL = 0.45

Body CL = 0.04542 Ref Span = 1088.60

Ref Area = 147168.00

Ref Area = 166298.41

Ref Span = 1262.00Body CL = 0.07605

Total CL = 0.55
Case 2

Ref Area = 57746.00

Ref Span = 680.15Body CL = 0.05395

Total CL = 0.50
Case 3

Ref Area = 172800.00

Ref Span = 1286.00Body CL = 0.07941

Total CL = 0.55
Case 4

Ref Area = 57225.60

Ref Span = 678.82Body CL = 0.04805

Total CL = 0.55
Case 5

Ref Area = 173376.00

Ref Span = 1294.00Body CL = 0.07611

Total CL = 0.55
Case 6

 

Figure 4.2 Reference spanload distributions used for validation with CDI 
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Each one of these spanload distributions was obtained from a Navier-Stokes CFD solution 

for wing-body-winglets configurations. Every point of the raw spanload data corresponds to 

a cut plane directly taken from the CFD solution. It is important to mention that none of these 

spanloadings correspond to an actual “out-of-the-factory” Bombardier aircraft. After running 

both CDI and LLT codes for all of the six configurations, the following drag coefficients 

were obtained for wing-body-winglets configurations (Y axis confidential and removed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Results from CDI and LLT for a single wing with winglets and fuselage 

 

The results for all three methods usually differ one from each other of about one to two drag 

counts, which is excellent for rapid computation tools. A private communication with Eric 

Laurendeau allowed discussion of these results. The conclusion was that it would actually be 

difficult to say which method is the most accurate. However, a simple observation is obtained 

from these test cases: LLT shows good accuracy for the calculation of the induced drag of 

wing-body-winglets aircraft configurations, with a precision of about two drag counts. 

Induced Drag Coefficient obtained with Different Methods for 
Various Wings

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
Wing ID

MultHopp

Vortex Sheet

Lifting Line
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4.4 Comparison with FANSC 

The name “FANSC” stands for “Full Aircraft Navier-Stokes code”. It is a structured multi-

block finite volume solver which was developed in house at Bombardier Aerospace under a 

multi-year defense-industry joint research program. Reference (ref. 83) contains more 

information about the code’s flow solver, acceleration techniques, boundary conditions and 

turbulence models.  

 

In the scope of this work, FANSC was used to compute aerodynamic flow on a DLR-F4 

wing-body configuration. All required dimensions and geometry definition for the DLR-F4 

test case is available in reference (ref. 50). The results obtained from these simulations 

provided two validation methods for the LLT software.  

 

1. FANSC has a built-in induced drag calculation module, which provides a direct 

comparison source to validate LLT; 

2. It will be shown that pressure drag results obtained from Euler simulations can also 

provide a proper source of validation to compute the induced drag of an aircraft. This 

method could prove useful to decompose the CFD drag results of a more complex, more 

complete aircraft configuration in order to isolate the lift induced drag. 

 

Before starting any comparative analysis with LLT, FANSC’s results for the DLR-F4 wing-

body configuration were compared with wind-tunnel data coming from three different 

tunnels: NLR, ONERA and DRA. Walters documents the accuracy of these tunnels in 

reference (ref. 78). The following figure represents the drag polars coming from all three 

wind-tunnels, a FANSC Navier-Stokes solution and a FANSC Euler solution, on which a 

zero-lift drag coefficient (CDo) of 0.0175 has been added. The flow condition is the 

following: a Mach number of 0.600 and a Reynolds number of 3.0 E6.  
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Figure 4.4 Drag polars for DLR-F4. Results from FANSC, NLR, ONERA and DRA 

 

One can observe that both Navier-Stokes and Euler results are concordant with the wind-

tunnel data for lift coefficients between 0.3 and 0.55. However, for CL’s over 0.55 the Euler 

solution tends to underestimate the drag. This may be caused by the appearance of small 

shockwaves at higher CLs or to some boundary layer separation which Euler solutions 

cannot model. A close-up of the wing root in the Navier-Stokes solution confirms this 

hypothesis.   

Figure 4.5 Flow Separation at root 
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The following figures represent the meshes used for the Euler simulations and the resulting 

pressure plot. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 DLR-F4: Pressure plot and meshes used for FANSC Euler simulations 
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The following figures represent the meshes used for the Navier-Stokes simulations and the 

resulting pressure plot. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 DLR-F4 : Pressure plot and meshes used for Navier-Stokes simulations 
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As a last step before presenting the results, a method to obtain the Oswald efficiency factor 

“e” from a drag polar of pressure drag coefficients is presented. The objective of this 

approach consist in minimizing computational cost, since if the induced drag efficiency of an 

aircraft can be obtained from Euler simulations instead of Navier-Stokes, valuable 

computational time will be saved as an Euler solution can be obtained in a few minutes, 

while it takes several hours for Navier-Stokes. One could also mention the fact that creating a 

mesh for Euler simulation purpose is much simpler than creating a Navier-Stokes mesh. The 

following figure shows the drag polars obtained from FANSC Euler and Navier-Stokes 

analysis of the DLR-F4 configuration. Of course, since Euler simulation is non-viscous, a 

portion of the pressure and friction drag does not appear in the results, which explains the 

offset separating both polars. However, it can be observed that both polars follow the same 

path as the lift coefficient increases. In other words, even if the absolute value of CDp is 

different from Euler to Navier-Stokes solutions, the variation of CDp in function of the 

variation of CL is very similar for both computational methods. 

 

Pressure Drag Polars From FANSc 
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Figure 4.8 DLR-F4 pressure drag polars from Euler and Navier-Stokes solutions 
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Starting from this observation, the following assumptions are made: 

 

1. Assuming that the airflow is attached all over the aircraft (mostly); 

2. Assuming that there is no shockwave; 

3. Assuming that the Oswald factor “e” does not change for small variations of the CL. 

 

In these conditions, for a given lift coefficient, the pressure drag coefficient is defined by: 

 

2

aircraft aircraft

CL
CDp CDp CDi CDp

eARπ
= + = +            (4.1) 

 

If conditions 1 and 2 are respected, one can pose: 

 

CDp CDi

CL CL

δ δ
δ δ

=             (4.2) 

  

This equation means that if assumptions 1 and 2 are valid, the variation in pressure drag is 

equal to the variation of induced drag when the CL changes. Adding assumption 3 to this 

latest statement, the Oswald factor “e” can be solved by using two points on the drag polar. 

 

2 2

2 1
2 1

CL CL
CDp CDp

eAR eARπ π
− = −          (4.3) 

( )
2 2

1 2

1 2

CL CL
e

AR CDp CDpπ
−=

−
     (4.4) 

 

Of course, the drag polars should be computed at a Mach number sufficiently low to insure 

that no shockwave will appear. In this particular case, a Mach number of 0.600 was selected. 

Using this approach, the induced drag is obtained from an Euler solution, saving a lot of 

computational time. The following figure illustrates the value of the Oswald factor “e” 

obtained from the CDp polars, the FANSC induced drag module and the LLT software. 
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Figure 4.9 Oswald factor in function of lift coefficient obtained by several methods 

 

The results obtained from LLT and from FANSC’s induced drag module are quite consistent 

independently of the lift coefficient. The average error between those two codes is in the 

order of 0.2%. Somehow, LLT seams to compute Oswald factors that are slightly lower than 

the ones obtained from FANSC; a tiny variation that seems to constantly repeat itself 

independently of the CL. This similitude between these two codes was expected since 

FANSC’s induced drag module also uses a lifting line approach with a correction for the 

fuselage. The potential sources of errors in LLT will be discussed deeper in the next chapter 

of this work.  

 

Another interesting fact to observe here is the overall similarity in the results obtained from 

all three methods when the CL ranges from 0.45 to 0.55. Such lift coefficients correspond to 

the design cruise condition of the aircraft. This implies that the approach to determine the 

Oswald efficiency factor from pressure drag coefficient is actually quite accurate for cruise 
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cases. This makes sense since in cruise configuration, the airflow around the aircraft is 

mostly attached and the zero-lift drag coefficient of the aircraft remains mostly the same for 

these lift coefficients. These results seem to confirm the assumptions made before. However, 

further investigation should be made before jumping to conclusions. 

 

This concludes the validation of LLT for the single lifting surface cases. Results have shown 

to be accurate for wing-body-winglets configurations. Nevertheless, since induced drag 

results are available from LLT for multiple lifting surfaces configurations, it is deemed 

necessary to try to compare those numbers with the ones obtained by various authors. Even if 

this exercise does not constitute a solid validation of the method, it can still provide 

interesting information about the soundness of its results. 
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4.5 Multiple Lifting Surfaces: Comparison with Various Authors 

Without disposing of CFD or wind-tunnel data, a robust validation of LLT for the induced 

drag of multiple lifting surfaces is very difficult. Even if it has been show that LLT gives 

similar results than Laurendeau, Kroo and CDI, it does not validate the methodology for the 

drag results of more than one wing. Other authors such as Grasmeyer (ref. 60), Blackwell 

(ref. 99), Lamar (ref. 61), Henderson (ref. 102) and Löbert (ref. 72) have all published 

various methodologies for induced drag calculation, but none of them can constitute a solid 

comparison source since some of these methods analyze only one wing at the time, others 

don’t consider the fuselage or the winglets, or simply their methods are based on a variation 

of the lifting-line theory, which would directly result in very similar results than LLT. Feistal 

(ref. 82) have shown by experiments on a wing-canard combination (without fuselage) that 

the Prandtl-Munk theory overestimates the total induced-drag by about 10% for such 

configuration, finding supported analytically by Kroo in ref (ref. 26). However, since the lift 

distribution over the wing was not published, LLT cannot be used to confirm their results. 

Since the purpose of a validation consists in demonstrating the true robustness on an 

approach, only by comparing with solid data can LLT’s results be evaluated. 

 

A potential validation approach could consist in comparing LLT to CFD or wind-tunnel data 

obtained from literature. In order to perform a proper comparison, the data would have to 

include: 

 

1. Solutions for one, two and three lifting surfaces configurations with fuselage; 

2. The drag polar for a Mach number where no shockwaves can appear; 

3. The measurement of the lift over the fuselage; 

4. The lift distribution over all lifting surfaces. 

 

Using this data, the induced drag of the test model could be computed from the drag polar. 

Using the methodology presented in the previous section of this work. LLT would then 

compute the induced drag using the lift distribution over the wing, and using the relative lift 
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fraction over the canard, stabilizer and fuselage, the induced drag of the whole aircraft would 

be obtained and compared with source data. An effort has been deployed to find such data 

source. Notably, Ostowari (ref. 20) did wind-tunnel testing for a two and three lifting 

surfaces Learjet at transonic speeds. However, the spanload distribution is not published by 

the author, which does not allow LLT to compute proper induced drag values. 

 

Another publication coming from Sacco and Lanari (Piaggio Aero Industries, ref. 11) 

contained wind-tunnel data for the Piaggio P-180 Avanti aircraft, a three lifting surfaces light 

business jet. While the lift distribution over the wing is available in their work, it did not 

include either the drag polar for the whole aircraft or the induced drag. 

 

Finally, the reference (ref. 57) from Piperni contains both the spanload distribution and the 

drag polar obtained from CFD. However, the simulations were made at a high-cruise speed 

of Mach 0.80. At such speeds, shockwaves might appear at various places on the aircraft, 

which renders the methodology to obtain the Oswald factor from the drag polar unusable. 

 

Considering the absence of comparative data to validate LLT’s drag calculations for multiple 

lifting surfaces configurations, it was decided that such study would be left for someone else 

to work upon. However, an interesting investigation that can be done consist in comparing 

LLT’s ideal lift distribution obtained from Laurendeau’s method with the ideal spanloading 

obtained from other authors. 

 

The minimum induced drag spanloading computed from LLT is not necessarily the best 

spanload distribution for the overall performances of an aircraft. This subject was first 

brought forward by Prandtl in 1932 as discussed in the literature review (ref. 35). The best 

aircraft design is the one that maximizes performances for a given mission. To achieve such 

results, the designer has to make some trade-offs between various disciplines. The problem 

with the minimum induced drag spanloading is that it distributes a large amount of the loads 

near the tip of the wing; loads that induce a significant bending moment at the root of the 

wing resulting in increased structural weight. As discussed in chapter 2 of this work, a 
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compromise has to be made between wing weight and spanloading to maximize the overall 

performance of the design. In order to obtain LLT’s ideal spanload for a conventional 

configuration, the test case 3 (figure 4.2) was used since this spanload distribution is 

optimized for a 0.309 span downlifting tail. In order to estimate the downforce applied by the 

tail, the latest was iterated until the area under the ideal lift curve equaled the one under the 

input spanload. The following figure illustrates the total aircraft spanload distribution. 

 

 

Figure 4.10 Wing and tail spanloadings representing the Case 3 aircraft 

 

An example of the LLT outputs for this full-aircraft analysis is available in Annex I. 
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As a next step, the ideal lift distribution obtained from LLT is compared with the ones 

published by various authors. With the exception of the elliptical lift distribution, all the 

spanloads represented in the following figure have been scaled properly so that the total area 

under each curve is the same. This allows for a quick visual comparison between authors, but 

it does not mean that all wing represented here have the same lift coefficient, since some of 

them have dihedral and winglets while others are planar. 
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Figure 4.11 Ideal spanload distributions from various authors 

 

The references relating to these spanloads are the following: 

 

• Iglesias and Mason: Reference 109 (2001, p. 7) 

• Piperni: Reference 57 (2007, p. 14) 

• Jones: Reference 101 (1950, p. 14) 
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Observing these curves, it is interesting to see that LLT’s minimum drag spanload is very 

similar to the one obtained by Iglesias and Mason. Both these spanloads tend to follow an 

elliptical lift distribution until they get close to the fuselage, where the interference with the 

tail becomes influent.  

 

As of the three other curves, they tend to show a reduced loading near the tip to decrease 

wing weight, resulting in a more triangular spanload shape. As discussed before, such design 

compromise results in an aircraft weight reduction that justifies the increase in induced drag. 

The development of a methodology to convert LLT’s minimum drag spanloading into a more 

realistic triangular distribution could constitute an interesting research subject in the future. 

 

This concludes the validation of the LLT code, at least for what concerns this work. 
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CHAPITRE 5  
 

DISCUSSION 

5.1 Sources of Errors for LLT Induced Drag Calculation 

Several factors may affect the accuracy of LLT’s induced drag calculation. In order to keep 

this section relatively lightweight for the reader, sources of errors are discussed in a 

straightforward manner. For the few points that require additional development, subsections 

are added after this one to refine the discussion:  

 

1. The lifting line theory on which LLT bases its induced drag calculation is a planar 

method on the physical point of view. Even if non-planar wings can be analyzed by LLT, 

the method remains planar. Several authors have developed non-planar methods to refine 

the lifting line theory, but as the comparison with CDI showed, the influence of vortex 

roll-up on the induced drag calculation is minimal. Section 5.2 assesses this subject more 

deeply, but it seems apparent that the variation in results related to such approach is 

beneath calculation incertitude showed in figure 4.3. 

 

2. When calculating induced drag from a CFD Euler drag polar, the Mach number must be 

selected so that no shockwaves appear. Section 5.3 shows that any Mach number between 

0.30 and 0.6 can result in similar pressure and induced drag computation. 

 

3. When spanload data is imported for drag analysis, LLT adds dummy data to complete the 

definition of the spanload and curve-fits the data points using a least-square approach. 

The number of An Fourier coefficients influences the quality of the curve-fitting, 

especially at the tip, and therefore influences the drag results. Throughout this work, 15 

An factors were used. Section 5.4 shows graphically why such number allows achieving 

appropriate accuracy while insuring fit robustness. 
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4. As demonstrated in chapter 3, the curve-fitting is never perfect. This induces an error on 

the lift coefficient of the fitted Fourier series lift distribution, since the area under the 

fitted curve slightly differs from the lift coefficient obtained from CFD. There is also a 

possibility that the Euler solution for pressure drag differs from the Navier-Stokes 

solution. It is showed in section 5.5 that the CL and CDp errors induce very small 

variation on the calculated induced drag coefficient. 

  

5. The spanload data, as precise as it may be, comes from cut planes from a CFD solution. 

Therefore, it is not information-relevant to create a cut plane at the exact tip coordinate of 

the CFD model. Several methods to create the missing tip data have been tested in this 

research, which results in an imperfect location of the exact wingtip location. This 

problem has been assessed in a previous section of this work, but it might be the source 

of the fact that LLT gives smaller results than FANSC. If FANSC uses the last spanload 

data point as being the tip location, LLT will inevitably have a slightly longer span for 

the drag computation. Longer spans, even if it is only a fraction of an inch will result in a 

lesser induced drag calculation. 

 

6. In the case of a multiple lifting surfaces configuration, one must keep in mind that the lift 

distribution over the canard and the stabilizer is considered elliptical, which might not be 

the case for a real aircraft. However, only an exhaustive validation of LLT for multi-

surfaces cases could allow quantifying this error on the overall induced drag. 

 

7. The method proposed in this work does not include any compensation for the effect of 

the fuselage on the canard and stabilizer. Once again, only a complete validation could 

determine if such assumption would constitute a significant source of error. 

 

8. In the test case 5 (4.2) a special error occurs: the ideal lift distribution generates more 

drag than the initial spanload data, which makes no sense! This error is caused by the 

fuselage drag correction and is discussed is section 5.6. 
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5.2 Influence of the Vortex Roll-Up in Induced Drag Calculation 

The following authors have all invested efforts in the use of non-planar techniques for the 

computation of induced drag. Their conclusions are concordant one from each other: vortex 

roll-up has a very small influence on the induced drag coefficient of a given wing. Validation 

with CDI code also confirmed this fact. A suggestion for additional research is made 

concerning the vortex model used by LLT. It could be interesting to investigate the use of a 

different vortex model in the lifting line theory. Instead of using Biot-Savart vortices, 

Kaufmann (ref. 58), Rankine (ref. 7) or Hallock-Burnham (ref. 7) vortices could be used. 

This could allow removing the singularities at the tip of each wing currently present with the 

use of Biot-Savart. The following authors used vortex roll-up and achieved conclusions: 

 

• Kroo (ref. 18) proposes to compute induced drag with non-planar and deformed wakes 

using a lifting surface method. He concludes that the wake deformation has little effect 

on the induced drag of a single element wing, but introduces first order corrections to the 

induced drag of a multi-element lifting system. While lifting line theory predicts minimal 

induced drag with an elliptical wing planform, lifting surfaces does not. The real ideal 

wing is slightly more loaded to the tip, which results into a 1-2% drag reduction 

compared to the elliptical distribution. 

• Eppler (ref. 19) proposes to replace the free single vortices of a numerical lifting line by a 

vortex sheet model similar to CDI code. He obtains results of induced drag 1.3% smaller 

when including vortex roll-up to a theoretically ideal elliptical solution obtained by the 

classical lifting line theory. However, Eppler does not extend its study to the interaction 

between multiple lifting surfaces. 

• Mason (ref. 29) uses two different wake models on a close-couple slightly-staggered 

canard-wing fighter configuration and observes that the vortex roll-up can locally 

influence the induced velocities by an order of 10-20%. However, he concludes that 

vortex roll-up is not a critical element in the design process because the downwash fields 

are not very different for the two wake models, and the calculated value of the drag only 

varies by a few percent. This agrees with Kroo and Eppler’s results. 
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5.3 Influence of the Mach Number on the Pressure and Induced Drag 
Coefficients 

In order to investigate the influence of the Mach number on the induced drag and pressure 

drag computations, FANSC Euler simulations were performed for the DLR-F4 wing-body 

configuration at Mach numbers varying from 0.10 to 0.85. FANSC’s induced drag module 

was used to compute the induced drag coefficients. Pressure drag coefficients were also 

plotted to show that Mach numbers between 0.30 and 0.60 resulted in CDp values that can be 

assumed safe to compute the Oswald efficiency factor. However, these results are valid for 

the DLR-F4 configuration. At Mach = 0.60, it could be possible to observe shockwaves on a 

different aircraft design. What’s important to remember from this test is that lower Mach 

number in Euler solutions does not influence the Oswald factor calculation.  

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.2 0.4 0.6 0.8 1

D
ra

g
 C

o
ef

fi
ci

en
t 

(C
D

)

Mach Number (M)

FANSc Euler Computation of the Pressure and Induced 
Drag Coefficients in Function of the Mach Number for the 

DLR-F4 Configuration at CL = 0.5

CDp

CDi

 

Figure 5.1 Pressure and Induced Drag Coefficients in Function of Mach Number 
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5.4 Influence of the Number of An Coefficients on Induced Drag Calculation 

It has been mentioned several times in this research that the number of An Fourier 

coefficients play a significant role in the quality of the curve-fitting and the precision of the 

ideal lift distribution shape. If too few An factors are used, the shape of the minimum drag 

spanload is poorly represented (see figure 3.19) and the induced drag calculation of an input 

spanload looses accuracy. The more An factors are used, the more accurate the curve-fitting 

is, resulting in better drag calculation precision. However, if too many An coefficients are 

used, the curve-fitting loses its robustness and divergence of the drag result is observed. The 

following figure shows that induced drag results are robust between 12 and 17 An Fourier 

coefficients. Therefore, 15 coefficients were used throughout this work, since it seems to be a 

good compromise between accuracy and robustness. In the following figure, diverging 

results are not showed since they would exceed by far the graphic limits. 
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Figure 5.2 Influence of the Number of An Fourier Factors on LLT Accuracy 
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5.5 Influence of the CL and CDp Errors on Induced Drag Calculation 

The following figure is a copy of Figure 4.9 with two added data sources: one representing a 

CL error of +0.0001 and the other one a CDp error of +1 drag count. The sensitivity of the 

Oswald factor to such error is barely visible on the figure. Therefore, in order to induce a 

significant error on the induced drag results, the CL error from the curve-fitting or the CDp 

error from Euler CFD results would have to be quite significant. On the six test cases used 

before for validation, the average curve-fitting induced error on the CL is on the order of 

0.002, which results in a CDi error varying between more or less 1 drag count, changing 

from one case to another. For the CDp, the Euler solution seems to be consistent with Navier-

Stokes solutions for cruise lift coefficients as shown on Figure 4.3, considering attached 

flow. 
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Figure 5.3 Sensitivity of the Oswald Factor to CL and CDp Errors 
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5.6 Potential Major Error Related to Fuselage Drag Correction 

The Case 5 test spanload is particular in its shape: it has a very steep lift increase close to the 

fuselage. Since a sharp variation of the spanload profile will have high values of ( )/ y dy∂Γ ∂  

this particular region of the Case 5 wing generates a large amount of lift, lift variation, and 

therefore a large amount of induced drag according to the lifting-line theory. However, most 

of this drag is removed when the fuselage correction is applied. What happens with the 

minimum induced drag calculation for this case is that its spanload shape mostly follows an 

elliptical profile, resulting in a much smaller lift coefficient close to the fuselage. The 

application of the fuselage drag correction therefore results in a small drag removal for the 

ideal spanload. Looking at the overall situation, it seems that the fuselage drag correction 

removes so much drag to the Case 5 wing that its total induced drag is smaller than the one 

obtained from the ideal spanload for the same lift coefficient. Of course, if the fuselage drag 

correction is not applied to the drag calculation, this nonsense situation does not occur. This 

might show a potential flaw in the actual fuselage correction methodology. LLT has an 

option that allows the user to activate or deactivate the fuselage drag correction 

functionnality. 

 

It can be concluded that for for certain shapes of spanload distribution, the fuselage induced 

drag correction might not be applicable when the circulation gradiant is very large in 

proximity of the fuselage. Yet, such ambiguity in the fuselage drag correction could be 

corrected by CFD, by including additional correction factors for special spanload cases.  

More research could be made on this fuselage induced drag correction. A good support to 

this statement is supported by a simple question: how could such method be applied to a 

blended-wing-body design? 

 



 

CONCLUSION 

Throughout this research about the induced drag calculation of multiple lifting surfaces 

aircrafts, it has been shown that a lifting line approach can give accurate drag results for a 

wing-body-winglet configuration. However, a complete validation of the induced drag of 

multiple lifting surfaces could not be achieved since proper comparative data was not 

available according to author’s knowledge and resources. Nevertheless, it remains interesting 

to see how a 90 year old theory, once properly corrected, can achieve results similar to the 

ones obtained from today’s CFD tools. Several conclusions can be obtained from this work: 

 

1. The lifting line theory can be used to obtain proper calculation of the induced drag of a 

wing-body-winglet aircraft configuration within more or less 2 drag counts of precision 

over other methods. Such precision is achievable for realistic aircraft configurations with 

dihedral and fuselage, even if the methodology is planar and does not account for vortex 

roll-up, as long as a proper correction is imposed over the fuselage region; 

2. The fuselage drag correction approach used in this research seemed to work properly and 

allows for suitable induced drag calculation for standard spanload distributions. However, 

when the spanloading shows a steep lift increase near the fuselage, the validity of the 

correction methodology is questionable; 

3. The approach to obtaining Oswald efficiency factor from Euler CFD results shows good 

results when the flow is attached over the aircraft. Such methodology can therefore be 

considered an interesting approach for further work on induced drag since it allows for 

much simpler CFD solutions to be used as validation sources; 

4. When using curve-fitting of Fourier series to represent a lift distribution over a wing, one 

should consider using 15 “An” Fourier coefficients (up to A15) to insure fit robustness 

while conserving results accuracy. Special care must be taken to properly assess the 

wingtip region distribution since it has been shown to cause major problems in the 

implementation; 
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5. Laurendeau’s equations to determine the minimum induced drag lift distribution over the 

wing shows to be robust as long as certain constraints are respected by the user; 

6. The minimum induced drag spanload distribution over the wing is properly obtained 

according to Laurendeau’s methodology, though it does not represent a realistic 

spanloading for a multi-disciplinary optimized wing design; 

7. A software like LLT can give a designer a preliminary induced drag calculation of a new 

design without the need and cost of extensive CFD solutions. However, the complete 

induced drag results of two and three lifting surfaces configurations have not been 

validated in this work.  

 

It is the author’s belief that an interesting research project could be made using the software 

developed in this work. First, an in-depth validation of the induced drag of multiple lifting 

surfaces aircraft configuration is still required to insure the validity of LLT’s results. Such 

validation could be made by running Euler simulations on various 2 and 3 lifting surfaces 

designs. The Oswald efficiency factor could then be obtained using the methodology 

presented in chapter 4.4.  

 

Once validated, it could be interesting to integrate a correction factor to Laurendeau’s 

methodology so that the minimum induced drag lift distribution obtained from LLT 

resembles more to the ones used on real aircrafts. To achieve this, a possible approach could 

be to modify the A3 Fourier coefficient of the lift distribution in order to remove some lift 

near the tip region and add some closer to the fuselage. It would be interesting to study the 

induced drag of 2 and 3 lifting surfaces configurations using more triangular spanloading 

over the wing. Adding a third lifting surface to a conventional design could allow removing 

some load at the wing root, giving new opportunities to the designers. As the cost of fuel 

increases, designers have to explore several new design ideas to reduce drag and fuel 

consumption; this might just be one of them. With the current aerospace workforce aging 

rapidly and gradually passing-on the knowledge to a new generation of engineers, it seems 

more and more important to teach young designers to keep an open mind about these 

potential new solutions. 
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ANNEXE I 
 

LLT OUTPUTS FOR CASE 6 WING-BODY-WINGLET-TAIL AIRCRAFT 

 

   ****************************** 

   LLT: INDUCED DRAG ANALYSIS 

   ****************************** 

 

            Written by Antoine Moreau 

         Advanced Aerodynamics Dept. 

            May 2008 

 

 

AIRCRAFT CONFIGURATION SUMMARY (FRACTIONS OF WING SPAN) 

 

       WING CANARD  STAB. 

 SURFACE CONSIDERED?   ----  NO YES 

 FLOATING?     ----  NO NO 

 SPAN    b    =   ----  0.000 Confidential 

 HEIGHT FROM WING WL    =   ----  ---- Confidential 

 

 REALSPAN / REFSPAN :  bs/b  =   Confidential 

 INPUT SPANLOAD :                case6.spanload 
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LIFT COEFFICIENTS (BASED ON RFAREA) 

 

 TOTAL LIFT COEFFICIENT   CLTOT    =  Confidential 

 CANARD LIFT COEFFICIENT  CLC    =  Confidential 

 WING-BODY LIFT COEFFICIENT  CLWB     =  Confidential 

 STABILIZER LIFT COEFFICIENT  CLS     = Confidential 

 CFD BODY LIFT COEFFICIENT  CLBOD    =  Confidential 

 

 

  INDUCED DRAG COEFFICIENTS (BASED ON RFAREA) 

            INPUT  IDEAL 

 TOTAL CDI (LIFTING LINE THEORY) CDIND  =  Confidential Confidential 

 OSWALD FACTOR (BASED ON REF. AR) e         =  Confidential Confidential 

 CANARD CDI     CDINDC  =  Confidential Confidential 

 WING-WINGLET CDI    CDINDW  =  Confidential Confidential 

 STABILIZER CDI    CDINDS   =  Confidential Confidential 

 BODY CDI (CORRECTED)   CDINDB   =  Confidential Confidential 

 CORRECTION FOR BODY CDI  DCDINDB  =  Confidential Confidential 

 CANARD-WING MUTUAL DRAG  CDINDCW  =  Confidential Confidential 

 WING-STABILIZER MUTUAL DRAG CDINDCW  =  Confidential Confidential 

 CANARD-STABILIZER MUTUAL DRAG CDINDCW  =  Confidential Confidential 

 

 

  INPUT SPANLOAD An  IDEAL SPANLOAD An 

 

  A1   =  Confidential   A1   =  Confidential 

  A3  =  Confidential   A3  =  Confidential 

  A5   =  Confidential   A5   =  Confidential 

  A7  =  Confidential   A7   =  Confidential 

  A9  =  Confidential   A9   =  Confidential 

  A11  =  Confidential   A11 =  Confidential 

  A13  =  Confidential   A13  =  Confidential 

  A15  =  Confidential   A15 = Confidential
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