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ADAPTIVE SYSTEMS FOR HIDDEN MARKOV MODEL-BASED PATTERN
RECOGNITION SYSTEMS

Paulo Rodrigo CAVALIN

ABSTRACT

This thesis focuses on the design of adaptive systems (AS) for dealing with complex pattern

recognition problems. Pattern recognition systems usually rely on static knowledge to define

a configuration to be used during their entire lifespan. However, some systems need to adapt

to knowledge that may not have been available in the design phase. For this reason, AS are

designed to tailor a baseline pattern recognition system as required, and in an automated fash-

ion, in both the learning and generalization phases. These AS are defined here, using hidden

Markov model (HMM)-based classifiers as a case study.

We first evaluate incremental learning algorithms for the estimation of HMM parameters. The

main goal is to find incremental learning algorithms that perform as well as the traditional

batch learning techniques, but incorporate the advantages of incremental learning for designing

complex pattern recognition systems. Experiments on handwritten characters have shown that

a proposed variant of the Ensemble Training algorithm, which employs ensembles of HMMs,

can lead to very promising results. Furthermore, the use of a validation dataset demonstrates

that it is possible to achieve better performances than those of batch learning.

We then propose a new approach for the dynamic selection of ensembles of classifiers. Based

on the concept called “multistage organizations”, the main objective of which is to define a

multi-layer fusion function that adapts to individual recognition problems, we propose dy-

namic multistage organization (DMO), which defines the best multistage structure for each test

sample. By extending Dos Santos et al’s approach, we propose two implementations for DMO,

namely DSAm and DSAc. DSAm considers a set of dynamic selection functions to generalize

a DMO structure, and DSAc uses contextual information, represented by the output profiles

computed from the validation dataset. The experimental evaluation, considering both small

and large datasets, demonstrates that DSAc outperforms DSAm on most problems. This shows

that the use of contextual information can result in better performance than other methods.

The performance of DSAc can also be enhanced in incremental learning. However, the most

important observation, supported by additional experiments, is that dynamic selection is gen-

erally preferred over static approaches when the recognition problem presents a high level of

uncertainty.

Finally, we propose the LoGID (Local and Global Incremental Learning for Dynamic Selec-

tion) framework, the main goal of which is to adapt hidden Markov model-based pattern recog-

nition systems in both the learning and generalization phases. Given that the baseline system

is composed of a pool of base classifiers, adaptation during generalization is conducted by

dynamically selecting the best members of this pool to recognize each test sample. Dynamic
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selection is performed by the proposed K-nearest output profiles algorithm, while adaptation

during learning consists of gradually updating the knowledge embedded in the base classifiers

by processing previously unobserved data. This phase employs two types of incremental learn-

ing: local and global. Local incremental learning involves updating the pool of base classifiers

by adding new members to this set. These new members are created with the Learn++ algo-

rithm. In contrast, global incremental learning consists of updating the set of output profiles

used during generalization. The proposed framework has been evaluated on a diversified set

of databases. The results indicate that LoGID is promising. In most databases, the recognition

rates achieved by the proposed method are higher than those achieved by other state-of-the-art

approaches, such as batch learning. Furthermore, the simulated incremental learning setting

demonstrates that LoGID can effectively improve the performance of systems created with

small training sets as more data are observed over time.

Keywords: Pattern Recognition, Adaptive Systems, Ensembles of Classifiers, Incremental

Learning, Dynamic Selection, Hidden Markov Models



UN SYSTÈME ADAPTATIF BASÉ SUR LES HMM POUR LA RECONNAISSANCE
DE FORMES

Paulo Rodrigo CAVALIN

RÉSUMÉ

Cette thèse porte sur l’étude des systèmes adaptatifs pour la reconnaissance de formes. Habi-

tuellement les systèmes de reconnaissance reposent sur une connaissance statique du problème

à résoudre et cela pour la durée de vie du système. Cependant il y a des circonstances où la

connaissance du problème est partielle lors de l’apprentissage initial à l’étape de la conception.

Pour cette raison, les systèmes de classification adaptatifs de nouvelle génération permettent

au système de base de s’adapter à la fois en apprenant sur les nouvelles données et sont égale-

ment capables de s’adapter à l’environnement lors de la généralisation. Cette thèse propose

une nouvelle définition d’un système de reconnaissance adaptatif où les MMCs (Modèles de

Markov Cachés) sont considérés comme étude de cas.

La première partie de la thèse présente une évaluation des principaux algorithmes d’apprentis-

sage incrémental utilisés pour l’estimation des paramètres des MMCs. L’objectif de cette étude

est de dégager les stratégies d’apprentissage incrémental dont la performance en généralisation

se rapproche de cette obtenue avec un apprentissage hors-ligne (batch). Les résultats obtenus

sur le problème de la reconnaissance de chiffres et de lettres manuscrits montrent la supériorité

des approches basées sur les ensembles de modèles. De plus, nous avons montré l’importance

de conserver dans une mémoire à court terme des exemples utilisés en validation, ce qui permet

d’obtenir un niveau de performance qui peut même dépasser celui obtenu en mode batch.

La deuxième partie de cette thèse est consacrée à la formulation d’une nouvelle approche pour

la sélection dynamique des ensembles de classifieurs. Inspiré du concept de fusion appelé

« organisation multi-niveau » (multistage organizations), nous avons formulé une variante de

ce concept appelé DMO (dynamic multistage organization - DMO) qui permet d’adapter la

fonction de fusion dynamiquement pour chaque exemple de test à classer. De plus, le con-

cept DMO a été intégré à la méthode DSA proposée par Dos Santos et al pour la sélection

dynamique d’ensembles de classifieurs. Ainsi, deux nouvelles variantes, DSAm et DSAc, ont

été proposées et évaluées. Dans le premier cas (DSAm), plusieurs fonctions de sélection per-

mettent une généralisation de la structure DMO. Pour ce qui est de la variante DSAc, nous

utilisons l’information contextuelle (représentée par les profils de décisions des classifieurs de

base) acquise par le système et qui est associée à la base de validation conservée dans une mé-

moire à court terme. L’évaluation des deux approches sur des bases de données de petite et de

grande échelle ont montré que la méthode DSAc domine DSAm sur la plupart des cas étudiés.

Ce résultat montre que l’utilisation d’informations contextuelles permet une meilleure perfor-

mance en généralisation comparées aux méthodes non informées. Une propriété importante de

l’approche DSAc est qu’elle peut également servir pour apprendre de nouvelles données dans

le temps, une propriété très importante pour la conception de systèmes de reconnaissance adap-
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tatifs dans les environnements dynamiques caractérisés par un niveau important d’incertitude

sur le problème à résoudre.

Finalement, un nouveau framework appelé LoGID (Local and Global Incremental Learning for

Dynamic Selection) est proposé pour la conception d’un système de reconnaissance adaptatif

basé sur les MMC, et capable de s’adapter dans le temps durant les phases d’apprentissage de

généralisation. Le système est composé d’un pool de classifieurs de base et l’adaptation durant

la phase de généralisation est effectuée par la sélection dynamique des membres du pool les

plus compétents pour classer chaque exemple de test. Le mécanisme de sélection dynamique

est basé sur l’algorithme des K plus proches vecteurs de décision, tandis que l’adaptation durant

la phase d’apprentissage consiste à la mise à jour et à l’ajout de classifieurs de base dans

le système. Durant la phase d’apprentissage, deux stratégies sont proposées pour apprendre

incrémentalement sur des nouvelles données: l’apprentissage local et l’apprentissage global.

L’apprentissage incrémentale local implique la mise à jour du pool de classifieurs de base en

ajoutant des nouveaux membres à cet ensemble. Les nouveaux membres sont générés avec

l’algorithme Learn++. L’apprentissage incrémental global consiste à la mise à jour de la base

de connaissances composée des vecteurs de décisions qui seront utilisés en généralisation pour

la sélection dynamique des membres les plus compétents.

Le système LoGID a été validé sur plusieurs bases de données et les résultats comparés à

ceux publiés dans la littérature. En général, la méthode proposée domine les autres méthodes

incluant les méthodes d’apprentissage hors-ligne. Enfin, le système LoGID évalué en mode

adaptatif montre qu’il est en mesure d’apprendre de nouvelles connaissances dans le temps au

moment où les nouvelles données sont disponibles. Cette faculté d’adaptation est très impor-

tante également lorsque les données disponibles pour l’apprentissage sont peu nombreuses.

Mot-clés: Reconnaissance de formes, Systèmes adaptatifs, Ensemble de classifieurs, Appren-

tissage incrémental, Sélection dynamique de classifieurs, Modèles Markoviens



TABLE OF CONTENTS

Page

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 1 EVALUATION OF INCREMENTAL LEARNING ALGORITHMS FOR

HMM IN THE RECOGNITION OF ALPHANUMERIC CHARACTERS 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Hidden Markov Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 HMM-based Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Incremental Learning Algorithms for HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3.1 The amount of new data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3.2 The weight of the new data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3.3 Combining old and new information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 The Baseline System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Incremental Learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2.1 The Incremental Baum-Welch algorithm (IBW). . . . . . . . . . . . . . . . . 18

1.3.2.2 The Incremental Maximum-Likelihood algorithm (IML) . . . . . . . 19

1.3.2.3 Ensemble Training (ET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2.4 Ensemble Training Using Ensembles of HMMs (EN) . . . . . . . . . . 21

1.3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.3.1 Evaluation of training complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.3.2 Evaluation of recognition complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 2 DYNAMIC SELECTION APPROACHES FOR MULTIPLE CLASSI-

FIER SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Background theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Dynamic Selection (DS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Dos Santos et al’s approach (DSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Dynamic Multistage Organizations (DMO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Extending Dos Santos et al’s Approach to Implement DMO. . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 DSAm: introducing DMO and high-level decision making . . . . . . . . . . . . . . . 46

2.4.1.1 Consensus-based dynamic selection functions. . . . . . . . . . . . . . . . . . . 50

2.4.2 DSAc: enhancing dynamic selection by using contextual information . . . 53

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



XII

2.5.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.1.1 Evaluation of DSAc in an incremental learning scenario. . . . . . . . 67

2.5.1.2 Evaluation of DSAc against MLP and SVM at varied conditions 69

2.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 3 LOGID: AN ADAPTIVE FRAMEWORK COMBINING LOCAL AND

GLOBAL INCREMENTAL LEARNING FOR DYNAMIC SELECTION

OF ENSEMBLES OF HMMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 Incremental Learning (IL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.2 Dynamic Selection (DS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 The LoGID Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Learning Phase - Local and Global Incremental Learning . . . . . . . . . . . . . . . . 83

3.3.1.1 Local Incremental Learning - Updating the pool of base clas-

sifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.1.2 Global Incremental Learning - Updating the set of output pro-

files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.2 Generalization Phase - The KNOP Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.2.1 Computing output profiles using scores . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.2.2 KNORA-OP-Union: Dynamically defining the best EoC . . . . . . . 92

3.3.2.3 The switch mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4.1.1 Parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4.1.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4.1.3 Impact of the filtering mechanism on the size of DSel′ . . . . . . . . . 105

3.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

APPENDIX I THE IMPACT OF THE SIMILARITY MEASURE ON THE DSAC AP-

PROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



LIST OF TABLES

Page

Table 1.1 The number of states of digit HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 1.2 The number of states of uppercase letter HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 1.3 The use of the validation set by the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 1.4 A summary of the performances of the classifiers, in recognition

rates, after learning the whole training set. Rejection rates

correspond to the rate of samples that have been rejected. w. er.:

error rate used to define the rejection thresholds on the validation set . . . . . . . . 32

Table 2.1 Experimental setup. (NC: number of classes; Train, Opt, Val, and

Test: number of samples in these respective sets; NF: number of

features; NE: number of features in the ensemble, after applying the

RSS method; VM: validation method; KF: k-fold validation; HO:

hold-out validation). Each dataset of the methods using KF had ten

different re-samplings, with no overlapping among the sets . . . . . . . . . . . . . . . . . . . 58

Table 2.2 Error rates on small datasets using 1NN classifiers. Results in bold

present the best approach among static MO, DSA, DT, and the

proposed DSAm and DSAc, with K set to 30. Underlined results

represent the statistically-significant best method. Highlighted by *

are the proposed approaches. Between parentheses is the standard

deviation of each approach (×10−2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 2.3 Error rates on small datasets using DTree classifiers. Results in

bold present the best approach among static MO, DSA, DT, and

the proposed DSAm and DSAc, with K set to 30. Underlined results

represent the statistically-significant best method. Highlighted by *

are the proposed approaches. Between parentheses is the standard

deviation of each approach (×10−2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 2.4 The same evaluations in error rates as in Table 2.2, but considering

both 1NN and DTrees with large datasets. The standard deviation

in this case was multiplied by 10−3. In addition, we present the

evaluation of DTree classifiers created by bagging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



XIV

Table 2.5 Error analysis, in which we compare the results of the proposed

method DSAc with the best results published in the literature. The

second column represents the average over 30 replications . . . . . . . . . . . . . . . . . . . 66

Table 3.1 The databases considered in this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 3.2 The main parameters for each database. The training data are

equally distributed for all classes. Train, DSel, and Test: number of

samples in the training, dynamic selection, and test set, respectively;

Bl: number of blocks into which Train is divided for incremental

learning; C: number of classes; Feat: number of input features;

and CB: codebook size. θ , Tk, ϑmin, ϑmax, and Nmax: the main

parameters for LoGID, set by evaluations on the dynamic selection set. . . . . . 94

Table 3.3 A summary of the recognition rates on each database. NA:

not available; Other: a discriminant classifier like an Support

Vector Machine (SVM), a Neural Network (NN), or a Tree Model

(TM). Considering only the methods evaluated in this work, the

statistically significant best results (according to Kruskal-Wallis

method) are presented in bold. The best results in terms of

recognition rates, considering results published in the literature as

well, are underlined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Table I.1 Error rates on small datasets using 1NN classifiers, at zero-level

rejection. Results in bold present the best approach among static

MO, DSA, DT, and the proposed DSAm and DSAc, with K set

to 30. The underlined results represent the statistically significant

best method. Marked with asterisk (*) are the proposed approaches.

Between parentheses is the variance of each approach (×10−2) . . . . . . . . . . . . .118

Table I.2 The same error rate evaluations as in Table I.1, but with DTrees . . . . . . . . . . . . .119

Table I.3 The same error rate evaluations as in Table I.1, but considering both

1NN and DTrees with large datasets. The variance in this case was

multiplied by 10−3. In addition, we present the evaluation of DTree

classifiers created by bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120



LIST OF FIGURES

Page

Figure 0.1 General architecture of an adaptive system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.1 An overview of the isolated character recognition framework . . . . . . . . . . . . . . . 17

Figure 1.2 The recognition results of all the algorithms on the validation set,

for digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 1.3 The recognition results of all the algorithms on the test set, for digits . . . . . . . 28

Figure 1.4 Training complexity for digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 1.5 Recognition complexity for digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 1.6 The recognition results of all the algorithms on the validation set,

for uppercase letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 1.7 The recognition results of all the algorithms on the test set, for

uppercase letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 1.8 Training complexity for uppercase letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 1.9 Recognition complexity for uppercase letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 1.10 Error-reject analysis of batch learning (BL), ensemble training

(ET), ensemble training using EoHMMs (EN), and EN with a stop

criterion, for digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 1.11 Error-reject analysis of batch learning (BL), ensemble training

(ET), ensemble training using EoHMMs (EN), and EN with a stop

criterion, for uppercase letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.1 Dos Santos et al’s approach (DSA). The pool of classifiers is

organized into another pool of EoCs during the design phase.

During the operational phase, the EoC, which is dynamically

selected by λ , produces the final decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 2.2 (a) The sequence of stages processed by multistage organizations

(MO), for an example with five classifiers with binary outputs. In

this case, each member of layer 2 always provides one vote for

the final decision. (b) The same example with dynamic multistage



XVI

organization (DMO), whereas a member from layer 2 may provide

none, one, or more than one vote. (c) The same example using

Dos Santos et al’s approach (DSA), where only a single member

of layer 2 gives a vote. Class 1 is the right output in this example . . . . . . . . . . . 47

Figure 2.3 An overview of the DSAm approach. This method uses the set of

dynamic selection functions Λ to dynamically select a set of EoCs,

which results in a two-layer DMO structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 2.4 An overview of the DSAc approach. This method uses the

knowledge provided by Val (converted into the set of output

profiles Val′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 2.5 DSF ζ . For each test sample, we find K validation samples with

the most similar output profiles, to form the set ψi. The EoCs that

correctly classify the validation samples in Ψi are used to compose

the set C∗′′, which is then used to compute the final decision of DSAc . . . . . . 54

Figure 2.6 Evaluation of the parameter θ for the switch mechanism . . . . . . . . . . . . . . . . . . . . 60

Figure 2.7 Evaluation of DSAc on small datasets with 1NN classifiers, K
varying from 1 to 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 2.8 Evaluation of DSAc on small datasets with DTree classifiers, K
varying from 1 to 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 2.9 Evaluation of DSAc on large datasets with 1NN classifiers, K
varying from 1 to 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 2.10 Evaluation of DSAc on large datasets with DTree classifiers, K
varying from 1 to 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 2.11 Incremental evaluation of DSAc, with K = 30, using validation set

sizes from 10,000 to 180,000, on both NIST-digits-test1 and NIST-
digits-test2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 2.12 Incremental evaluation of DSAc (K = 30) with DTree classifiers on

NIST-digits-test1 using a control mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 2.13 Size of the validation set for the evaluation presented in Figure 2.12 . . . . . . . . 70

Figure 2.14 Evaluation of different sizes of the training set for NIST-digits,

using NIST-digits-test1. These experiments were replicated 15

times by resampling the training set each time (a single replication

for 180,000 samples, which corresponds to the entire dataset).



XVII

Note that the experiments are grouped by approach, e.g. DSAc,

MLP, and SVM, respectively, and for each approach, we evaluated

training sets with 5,000, 10,000, 15,000, 20,000, 25,000, and

180,000 samples, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 2.15 The same evaluations as in Figure 2.14, but using NIST-digits-test2 . . . . . . . . . 72

Figure 3.1 General overview of the LoGID architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 3.2 Overview of the KNOP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 3.3 Evaluation of different values for ϑmin and ϑmax on the dynamic

selection set of Japanese Vowels. The best recognition rates are

reached with ϑmin = 0.2 and ϑmax = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 3.4 Evaluation of different values for ϑmin and ϑmax on the dynamic

selection set of Arabic Digits. The best recognition rates are

reached with ϑmin = 0 and ϑmax = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 3.5 Evaluation of different values for ϑmin and ϑmax on the dynamic

selection set of NIST Letters. The best recognition rates are

reached with ϑmin = 0.2 and ϑmax = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 3.6 Evaluation of different values for ϑmin and ϑmax on the dynamic

selection set of NIST Digits. The best recognition rates are reached

with ϑmin = 0.2 and ϑmax = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 3.7 For Japanese Vowels, Nmax = 10 provides the best recognition rates

on the dynamic selection set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 3.8 For Arabic Digits, Nmax = 100 yields the best results on the

dynamic selection set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 3.9 For NIST Letters, Nmax = 60 yields the best results on the dynamic

selection set.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 3.10 For NIST Digits, three values for Nmax: 120, 160, and 200, yield

the best results on the dynamic selection set. The smallest value,

i.e. Nmax = 120, is the preferred one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Figure 3.11 Performance comparison for Japanese Vowels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Figure 3.12 Performance comparison for Arabic Digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Figure 3.13 Performance comparison for NIST Letters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102



XVIII

Figure 3.14 Performance comparison for NIST Digits in test1. . . . . . . . . . . . . . . . . . . . . . . . . . .103

Figure 3.15 Performance comparison for NIST Digits in test2. . . . . . . . . . . . . . . . . . . . . . . . . . .104

Figure 3.16 Comparison of the number of samples held in DSel′ with all the

samples observed, on Japanese Vowels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Figure 3.17 Comparison of the number of samples held in DSel′ with all the

samples observed, on Arabic Digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Figure 3.18 Comparison of the number of samples held in DSel′ with all the

samples observed, on NIST Letters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Figure 3.19 Comparison of the number of samples held in DSel′ with all the

samples observed, on NIST Digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106



LIST OF ABBREVIATIONS

1NN 1-nearest neighbor

ADS Ambiguity-guided dynamic selection

AS Adaptive system

BBL Block by block learning

BL Batch learning

CB Codebook size

CS Classifier selection

CSDS Class-strength dynamic selection

DS Dynamic Selection

DSA Dos Santos et al’s approach

DSAm Proposed approach implementing DMO with multiple dynamic selection func-

tions

DSAc Proposed approach implementing DMO with contextual information

DSC Dynamic selection of classifiers

DSEoC Dynamic selection of EoCs

DMO Dynamic multistage organizations

DT Decision template

DTree Decision tree

ED Eucledian distance



XX

EoC Ensemble of classifiers

EoHMM Ensemble of HMMs

ET Ensemble training

EN Ensemble training using ensembles of HMMs

EN_stop EN with a stop criterion

E-step Expectation step

GA Genetic algorithm

GSDS Global-strength dynamic selection

HMM Hidden Markov model

IBW Incremental Baum-Welch

IIL Instance by instance learning

IL Incremental learning

IML Incremental maximum-likelihood

KNN K-nearest neighbor

KNOP K-nearest output profiles

KNORA K-nearest oracles

LoGID Local and global incremental learning for dynamic selection

MDL Minimum description length

MDS Margin-based dynamic selection

MLP Multilayer perceptron



XXI

MO Multistage organization

MV Majority voting

M-step Maximization step

NA Not available

NIST National Institute of Standards and Technology

OP Output profile

OTM Oracle-based template matching

PVDS Pair of votes dynamic selection

RSS Random subspaces

SM Similarity measure

SVM Support vector machine

TL Topology learning

TM Template matching

VQ Vector quantization





LIST OF SYMBOLS

A The state probability distribution of an HMM

ai j The HMM probability of being at state Si at time t̄ −1, and at state j at time

t̄

αi, j,k Equality, or otherwise, of x̃i,test,k and x̃ j,val,k

B The observation symbol probability distribution of an HMM

b j(k) The HMM probability of observing symbol vk at state j

C Chapter 1: the number of classes

Chapters 2 and 3, and Appendix I: the pool of classifiers

Ct The pool of classifiers at time t

ck Chapter 1: a class

Chapters 2 and 3, and Appendix I: a classifier

C′
i A subset of classifiers extracted from C

C∗ The set the possible EoCs that can be formed with the classifiers in C

C∗′ A pool of ensembles of classifiers extracted from C∗

C′
k An ensemble of classifiers

C∗′′
i A set of EoC dynamically selected to recognize xi,test

C′′
i, j A dynamically selected EoC

cli The level of confidence of the voting provided by the ensemble C∗′′
i for xi,test

Dt A block of training data available at a given time t

di Final recognition decision for xi,test



XXIV

DISTt Distribution used by Learn++ at time t

DSel Dynamic selection set

DSel′ Output profiles computed from DSel

DSel′t Output profiles computed from Dt

δi, j Level of similarity between x̃i,test and x̃i,val

ε A small constant added to each parameter in λt−1

η The learning rate applied on Dt

η j,i Pair of votes given C′
j and xi,test

Frec The complexity factor computed for the recognition phase

Ftr The complexity factor computed for the training phase

γ j,i The value of ambiguity given C′
j and xi,test

ι j,i The value for global-strength given C′
j and xi,test

K Chapter 1: total of observation sequences processed by ensemble training

Chapter 2: the number of most similar validation output profiles computed

by DSAc

Chapter 3: the number of most similar validation output profiles computed

by KNOP

k An iteration step performed by Learn++

λ Chapter 1: an HMM

Chapters 2 and 3, and Appendix I: a dynamic selection function

λt Chapter 1: an HMM trained at time t

λ ′
t−1 A mathematical transformation involving λt−1 and φt



XXV

λc An HMM associated with features extracted from the columns of a character

image

λr An HMM associated with features extracted from the rows of a character

image

λi Chapters 2 and 3, and Appendix I: a dynamic selection function

λ̄t−1 A partial HMM computed from φt only

Λ A set of dynamic selection functions

Λi An HMM-based classifier

L∗
i, j The set of likelihoods produced by Λ j, for all classes

L The value of likelihood yielded by an HMM

mi The value of a margin given C∗′′
i and xi,test

mv j,i The class with the highest number of votes, given C′
j and xi,test

μ j,i The value of a margin, given C′
j and xi,test

M The number of classes

N Chapter 1: the number of states of an HMM

Chapters 2 and 3, and Appendix I: total number of base classifiers

Nmax Maximum size defined for the pool of classifiers

NB number of blocks of data

O Chapter 1: an observation sequence

Ot Chapter 1: one symbol from the set V

Oi Chapters 2 and 3, and Appendix I: the outputs yielded by base classifiers

given xi,test



XXVI

oi,k The output yielded by classifier ck given xi,test

O′′
i The set of outputs yielded by the ensemble C∗′′

i given xi,test

oi,k The output yielded by the EoC C′′
i,k given xi,test

Opt Optimization set

Ω The set of classes

ωi A class in the set Ω

p j Global performance of C′
j

p j,k Performance of C′
j for class ωk

π Initial state distribution of an HMM

πi Initial probability of an HMM for state i

φt HMM sufficient statistics computed from the observation of both Dt and λt−1

Ψi A temporary set containing the K most similar output profiles

S The set of HMM states

Si An HMM state

S∗i, j The set of scores produced by Λ j

t A time step in an incremental learning setting

t̄ A time step during the processing of an observation sequence by an HMM

T The length of an observation sequence

Tk The maximum number of iterations defined for Learn++

Test Test set



XXVII

Train Training set

T Ek Test set defined by Learn++ at iteration k

T Rk Training set defined by Learn++ at iteration k

T S Total number of training samples

θ A predefined threshold used by the switch mechanisms of DSAm, DSAc, and

KNOP

Θ j,i The value of class-strength given C′
j and xi,test

U Total number of EoCs in C∗′′
i

V The set of symbols that can be observed by an HMM

vi A symbol that can be observed by an HMM

v1i The most voted class, given xi,test

v2i The second most voted class, given xi,test

Val Validation set

Val′ Output profiles from the validation set

ϑ Threshold used by the filtering mechanism of DSAc

ϑmin Threshold used by the filtering mechanism of LoGID

ϑmax Threshold used by the filtering mechanism of LoGID

vk, j,i Number of votes for class ωk

xi An input feature vector

x̃i Output profile of xi

x j,dsel A sample in the dynamic selection set DSel



XXVIII

x̃ j,dsel Output profile of x j,dsel

xi,test The i-th test sample

x̃i,test Output profile of xi,test

x̃i,test,k The output produced by classifiers ck given xi,test

x j,val The j-th validation sample

x̃ j,val Output profile of x j,val

x̃ j,val,k The output produced by classifiers ck given x j,val

xk,train The k-th training sample

Wk The weighting factor for an observation sequence processed by ET

ζ Chapter 1: A set of HMMs

Chapter 2: The fusion function used by DSAc



INTRODUCTION

Over the past few decades, the development of pattern recognition (PR) systems has been a

subject of great interest at several research centers. Significant advances can be observed in

many application fields, such as speech recognition (O’Shaughnessy, 2008; Lu et al., 2010),

handwriting recognition (Cheriet et al., 2009; Su et al., 2009), face recognition (Zhao et al.,

2003; Tan et al., 2006; Zhang and Gao, 2009), signature verification (Bertolini et al., 2010;

Batista et al., 2011), and intrusion detection (Khreich et al., 2012), etc, for which various

systems have been proposed.

PR systems are designed to classify an input pattern in one of the classes of patterns of an

underlying problem (Duda et al., 2000). Input patterns generally present different types of

variability, putting major pressure on classification schemes to achieve the lowest possible

recognition error rates. For sample recognition, these systems generally rely on the knowledge

gained from processing a set of training samples and on the way such knowledge is used during

operation.

Normally, the design of PR systems relies mainly on batch learning (BL) settings. In other

words, training samples are processed off-line, and some hard-decisions are made based on the

results. First, a finite training dataset is acquired, assuming that the training data are adequate,

representative, and available in sufficient quantity. Then, these data are processed through

several iterations, until an “optimum” set of parameters for the system has been found. By

considering that set of parameters, the system is put into operation to carry out the recognition

of the test samples.

BL settings, though, might be suboptimal for many problems, especially more complex PR

problems. Owing to the lack of appropriate budget, staff, or schedule, it may be very difficult

to acquire a training set off-line that is adequate, representative, and contains sufficient samples.

Furthermore, there is no guarantee that all the necessary samples have been gathered to train

the system, even when abundant resources are available to acquire them. It is also possible that

unexpected test samples will be presented to the system during the recognition phase. As a
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result, there is likely to be be a great deal of uncertainty as to whether or not the system can

recognize samples correctly. BL may not provide the most suitable setting in this case, since

the system would have to be retrained to accommodate new knowledge according to changing

needs arising during operation. This would require all previous data to be stored somewhere to

be reprocessed during retraining, a costly process, given that data storage is memory consuming

and reprocessing is time consuming. In addition, retraining a system requires the supervision

of a pattern recognition expert, which is a costly maintenance activity.

Problem statement

Various solutions have been investigated to overcome the limitations of BL settings in dealing

with complex pattern recognition problems, prompted mainly by the possibility of new data

becoming available during operation and containing very important information with respect to

enhancing existing PR systems. Many adaptive methods have been proposed for this purpose,

with the expectation that they will deal better with complex recognition cases. The main goal is

that they be flexible enough to avoid reliance on hard-decisions made during the design phase,

and to adapt to important decisions made based on data that are observed over time.

In the literature, two types of adaptive approaches can be identified. The first comprises ap-

proaches designed to adapt classifiers at the learning level. The second involves approaches

that adapt classifiers at the generalization level. These methods are usually referred to as incre-

mental learning (IL) approaches (Polikar et al., 2001; Florez-Larrahondo, 2005; Mongillo and

Deneve, 2008) and dynamic selection (DS) approaches (Woods et al., 1997; Giacinto and Roli,

2001; Zhu et al., 2004; Soares et al., 2006), respectively.

The fundamental objective of IL algorithms is to accommodate new knowledge in an exist-

ing classification scheme. Such knowledge is intrinsically present in data that become avail-

able over time, e.g. after the system is put into operation. IL algorithms focus on processing

these data and updating existing classifiers without reliance on the data that have already been

processed, in order to avoid redundant and costly computations. Various methods have been

proposed for this purpose, many of which update the parameters of the classifiers directly
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(Mizuno et al., 2000; Florez-Larrahondo, 2005; Mongillo and Deneve, 2008). This method

might be negatively affected by problems such as catastrophic forgetting (Polikar et al., 2001),

since important information may be lost if existing parameters are changed. Recently, it has

been demonstrated that ensembles of classifiers (EoCs) may provide a viable solution to this

problem (Polikar et al., 2001; Yu-Shu and Yi-Ming, 2009; Ulas et al., 2009; Kapp et al., 2010).

In this case, new classifiers are appended to an existing pool of classifiers without the need to

change existing parameters.

The methods proposed for DS are aimed at defining the best classification scheme for a given

sample “on the fly”, e.g. during the operational phase. In this case, a pool of diverse classifiers

is usually generated off-line in the design phase. For the generalization, the best members from

that pool are selected to form a new classifier scheme for the recognition of each test sample.

This approach assumes that by generating a pool of classifiers that is diverse enough, a DS

algorithm can select the best classifiers for recognizing each test sample. This approach may

deal better with the variability of the test samples, owing to its ability to adapt the pool of

classifiers to each test case.

IL and DS approaches are used in distinct frameworks, that is, researchers generally aim to

define an adaptive method for either the learning or the generalization phase. Static selection

methods are often used to combine EoCs generated with IL settings, and EoCs created with BL

are usually considered for the DS methods. We believe that neither option is optimal, and that

EoCs generated with IL could be better exploited if they are combined dynamically during the

generalization phase, and DS algorithms could define better classification schemes if the pool

of classifiers also evolves over time to accommodate new knowledge. For this reason, the main

topic of this thesis is the integration of IL with DS algorithms into a single framework, so that

the classification scheme can be fully adapted to new data in both the learning and generaliza-

tion phases. Some researchers have been conducting related investigations (Gangardiwala and

Polikar, 2005; Muhlbaier et al., 2009), but to the best of our knowledge, no such integration

framework has been formalized and no extensive study of its behavior has ever been published

in the literature.
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Figure 0.1 General architecture of an adaptive system

The framework mentioned above can be formalized as an adaptive system (AS). A general

architecture for this concept is depicted in Figure 0.1. In this case, the baseline recognition

system is represented by the pool of classifiers C, composed of at least one member. The

learning and generalization levels of the AS are designed to adapt the classifiers in C to the

new data that are observed over time. At the learning level, C is updated to accommodate new

classifiers trained with the block of data Dt , presented at a given time t. At the generalization

level, the main idea is to select the best members of C for recognizing the i-th test sample

denoted as xi,test .

Objective and contributions

In this thesis, we focus on the definition of an AS. Specifically, our main goal is to define a

framework in which a pool of base classifiers can be adapted at both the learning and general-

ization levels, and to evaluate its behavior. To achieve this goal, this thesis investigates:

A. how to conduct adaptation at the learning level;
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B. how to conduct adaptation at the generalization level;

C. how to integrate these adaptations into a single framework.

We first present investigations related to the use of IL at the learning level, and to the use

of dynamic selection algorithms at the generalization level. Our aim is to evaluate which

techniques are the most appropriate for use in the adaptive framework. The focus then moves to

the integration of the best IL and DS algorithms for defining an AS, the proposal of a framework

that implements this type of system, and the evaluation of this framework.

Note that in this thesis we present a case study on hidden Markov models (HMMs). HMM-

based classifiers constitute a special family of classifiers that deals with observation sequences.

This type of classifier is promising for a very large number of applications, such as handwrit-

ing recognition (Gunter and Bunke, 2004), speech recognition (Najkar et al., 2010), and face

recognition (Kim et al., 2003).

In terms of our contributions, we present a study on IL algorithms for HMMs for the learning

level, taking into account the recognition of alphanumeric characters. This study considers

the HMM-based isolated character recognizer proposed in (Britto et al., 2003), for evaluating

four different IL algorithms on two isolated character recognition problems, i.e. isolated digits

and uppercase letters. This work allowed us to compare single classifier-based IL algorithms

against EoC-based algorithms. The latter have been shown to be promising, given that they

obtain results that are similar to those achieved by BL methods. Furthermore, we demonstrate

that storing samples in a validation set, i.e. a short-term memory, might be beneficial for

both improving performance and reducing complexity, since an algorithm for controlling the

inclusion of new members into the ensemble can be used.

The first contribution we propose for the generalization level is the concept called dynamic

multistage organization (DMO), which is an extension of the multistage organization concept,

inspired by dynamic selection of classifiers. In this case, a multistage structure is created for

each test sample, defining a fusion function that best exploits the diversity presented by the
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pool of base classifiers. We then propose two implementations for DMO: DSAm and DSAc.

The former uses a set of diverse DS functions to select a set of EoCs, which are then combined

to provide the final decision. The latter defines a set of EoCs by comparing the output profile

of the test sample with the output profiles of the samples stored in the validation set. The

most similar samples are used to indicate which EoCs are the best ones for recognizing the test

sample. Another important contribution of this work is an evaluation of DS methods against

static ones. Under a varied set of conditions, the performance of the DSAc approach has been

compared with those of Multilayer Perceptron (MLP) Neural Networks and Support Vector

Machines (SVMs). The results indicate that DS might be preferred over static selection when

the level of uncertainty is high, that is, when only small-size training sets are available, and that

the performance provided by DS may be worth the higher complexity presented by this type of

approach.

Finally, we show how our contributions achieve the main goal of this thesis, which is the defini-

tion of an AS represented by the LoGID (Local and Global Incremental Learning for Dynamic

Selection) framework. This framework considers the K-nearest output profiles (KNOP) algo-

rithm for conducting DS during generalization. This selection is performed by evaluating the

output profiles defined with the outputs of the base classifiers. For the learning level, a method

inspired by the Learn++ algorithm is used to update the pool of base classifiers. Two pruning

algorithms are also proposed to avoid excessive growth of the pool of base classifiers and the

set of output profiles respectively. Moreover, in this framework we propose the use of IL at

two different levels: local and global. Local IL consists of updating the pool of base classifiers,

while global IL consists of adapting the set of output profiles used by the DS algorithm. We

demonstrate that these types of IL can be complementary, providing better results when they

are combined.

Organization of this Thesis

This manuscript-based thesis is organized intro three chapters and one appendix.
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In Chapter 1, we present an evaluation of IL algorithms for the estimation of HMM parameters.

The main goal is to determine which IL algorithms can perform as well as the BL techniques,

but incorporate the advantages of IL in terms of designing complex pattern recognition sys-

tems. These algorithms are evaluated based on the recognition of alphanumeric characters.

The content of this chapter was published at the 11th International Conference on Frontiers

in Handwriting Recognition (Cavalin et al., 2008) and in Pattern Recognition (Cavalin et al.,

2009).

In Chapter 2, a new approach for dynamic selection of EoCs is proposed. For this concept,

called dynamic multistage organizations (DMO), we propose two implementations that extend

Dos Santos et al’s approach: DSAm and DSAc. Experimental evaluations on a varied set

of databases have demonstrated the effectiveness of these approaches. In addition, we have

demonstrated that the performance of DSAc can be enhanced in IL settings, and that DS is

generally preferred over static approaches when the recognition problem presents a high level

of uncertainty, e.g. when only small-size databases are available. The content of this chapter

was published at the 9th International Workshop on Multiple Classifier Systems (Cavalin et al.,

2010) and in the journal Neural Computing and Applications (Cavalin et al., 2011a). The

evaluation of complementary similarity measures that can be used with DSAc is presented in

Appendix I.

Chapter 3 presents the design of an AS represented by the LoGID framework for adapting

hidden Markov model-based pattern recognition systems during both the learning and gener-

alization phases. Adaptation during learning is achieved by considering two types of IL: local

and global. The former involves updating the pool of base classifiers by adding new members

to this set, created with the Learn++ algorithm. The latter consists of updating the set of output

profiles used by the proposed KNOP algorithm. Adaptation during generalization is conducted

by dynamically selecting the best members of this pool to recognize each test sample, using

KNOP. LoGID has been evaluated on a diversified set of databases. The results indicate that

the framework is promising, since in most databases the recognition rates achieved by the pro-

posed method are higher than those achieved by other state-of-the-art approaches, including
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BL methods. Furthermore, the simulated IL setting demonstrates that LoGID can effectively

improve the performance of systems created with small training sets as more data are observed

over time. This chapter has been submitted to Pattern Recognition (Cavalin et al., 2011b).

Finally, we present our main conclusions and discuss some possibilities for future work related

to this thesis.



CHAPTER 1

EVALUATION OF INCREMENTAL LEARNING ALGORITHMS FOR HMM IN

THE RECOGNITION OF ALPHANUMERIC CHARACTERS

In this chapter, we present an evaluation of incremental learning (IL) algorithms for the es-

timation of HMM parameters. Our main goal is to determine which IL algorithms perform

as well as the traditional BL techniques, while incorporating the advantages of IL for design-

ing complex pattern recognition systems. Experiments on handwritten characters have shown

that a proposed variant of the Ensemble Training algorithm, employing ensembles of HMMs,

can lead to very promising performance results. Furthermore, the use of a validation dataset

demonstrates that it is possible to achieve better performances than those of BL.

1.1 Introduction

The design of complex pattern recognition systems for recognizing handwriting or speech in-

volves the search for classifiers that produce high generalization performances (Duda et al.,

2000). The performance of a classifier comes from the accurate estimation of its parame-

ters, which can be generally adjusted by means of a training database and a learning algorithm

(Florez-Larrahondo, 2005; Gotoh et al., 1998; Mizuno et al., 2000; Polikar et al., 2001). In spite

of being possible to find in the literature different approaches for such an estimate, traditionally

a batch learning (BL) setting is used, which is somehow a standard procedure. Moreover, BL

is known to be very robust (Oliveira et al., 2002; Dong et al., 2005).

Basically, a BL approach consists of learning the parameters of a classifier from a completely-

available training dataset, and the learning algorithm is able to execute as many iterations on

the training set as necessary for tuning such parameters. After that process, the parameters

never change.

Despite its robustness, BL presents some drawbacks. First, the training database may not be a

good representation of the general problem to which the system is related, and the classifiers
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will perform poorly in generalization no matter how good the learning algorithm is. This prob-

lem could be solved by incorporating new information that is available through the execution

of the system to which the classifiers are associated, but there is no known way to do this unless

we train a new classifier using both the old and the new data, which is a process that requires

lots of time and memory when considering a BL setting.

An incremental learning (IL) setting, however, is promising for overcoming the shortcom-

ings found in BL approaches. IL consists of techniques that have originally been proposed

to enable classifiers to gather more information from unseen data, without having to access

previously-learned data. Although the term “incremental learning” has been used to refer to

different concepts in the literature, IL, in this paper, represents an algorithm with the following

characteristics: a) it is able to extract additional information from new data; b) it does not re-

quire access to the data used to train the existing classifiers; c) it preserves previously acquired

knowledge; and d) it is able to accommodate new classes that may be introduced by new data

(Polikar et al., 2001).

Although IL is meant to be as robust as BL in estimating parameters of classifiers, recent

research has suggested that generally IL performs worse than BL (Florez-Larrahondo, 2005;

Gotoh et al., 1998; Mizuno et al., 2000; Polikar et al., 2001). Since the performance of a learn-

ing algorithm, as stated by the no free-lunch theorem (Duda et al., 2000), is strictly dependent

on the problem to which it is applied, the main goal of this paper is to provide an evaluation of

IL algorithms in the recognition of isolated handwritten characters, by considering a state-of-

the-art HMM-based handwriting recognition system (Britto, 2001; Britto et al., 2003; Cavalin

et al., 2006). An HMM-based framework has been selected due to the potential of HMMs

for the handwriting recognition problem in general, and because the application field of IL

algorithms for this kind of system is vast. For instance, IL algorithms can be used to adapt

previously-learned HMMs to different shapes of characters. Yet, IL can be an important tool to

improve systems that use HMM-based frameworks to perform segmentation and recognition

at the same time, such as the first stage of the system presented in (Britto et al., 2003). In

that case, a two-step learning process can be performed to acquire knowledge for recognition



11

aspects first, and afterward for segmentation. But, we focus only on isolated character recog-

nition in order to reduce the scope of this research. Furthermore, the use of a large off-line

database, such as the NIST SD19 digits database, allows us to perform various simulations of

IL settings.

The remainder of this chapter is organized as follows. In Section 1.2 we present some back-

ground theory, such as a brief introduction to HMMs and HMM-based classifiers, and an

overview of IL techniques focused on HMMs. In Section 1.3, we describe the methodology

employed in this work, which includes the baseline system and the IL algorithms evaluated

experimentally. Next, in Section 1.4, we report the experimental evaluation and analyze the

corresponding results. Conclusions drawn from this work are described in Section 1.5.

1.2 General Theory

In this section we present all the theory and notation needed for a proper understanding of this

paper, including an introduction to HMMs, a brief explanation of HMM-based classifiers, and

an overview of IL techniques focused on HMMs.

1.2.1 Hidden Markov Models

HMMs are a modeling technique derived from Markov Models, which are stochastic processes

whose output is a sequence of states corresponding to some physical event. HMMs have the

observation as a probabilistic function of the states, i.e. the resulting model is a doubly em-

bedded stochastic process with an underlying stochastic process that is not observable (it is

hidden), but can only be observed through another set of stochastic processes that produce the

sequence of observations (Rabiner, 1989).

Mathematically, an HMM is characterized by the following components:

A. A set of states defined as S = {S1,S2, . . . ,SN}, where N denotes the number of states of the

model, and the state at time t̄ is defined as qt̄
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B. A set of observable symbols defined by V = {v1,v2, . . . ,vM}, where M denotes the number

of distinct observable symbols per state.

C. The state probability distribution A = {ai j}, where

ai j = P[qt̄+1 = S j|qt̄ = Si], 1 ≤ i, j ≤ N (1.1)

D. The observation symbol probability distribution in state j, B = {b j(k)}, where

b j(k) = P[observing vk at time t̄|qt̄ = S j], 1 ≤ j ≤ N, 1 ≤ k ≤ M (1.2)

E. The initial state distribution π = {πi},

πi = P[q1 = Si], 1 ≤ i ≤ N (1.3)

For convenience, the compact notation in the next equation represents an HMM.

λ = (A,B,π) (1.4)

Given an observation sequence O = O1 O2 . . . OT , where Ot is one symbol from V , and T is

the observation sequence length, λ is used to process the observation sequence O.

1.2.2 HMM-based Classifiers

HMMs are able to perform recognition tasks in pattern recognition systems. The most popular

approach for such tasks consists of creating a set of HMMs so that each class is represented by

an independent HMM. The classification of an unknown observation sequence O, into a class

c, can be carried out by computing which HMM outputs the highest likelihood related to O.

In detail, consider a C-class problem in which each class is represented by a single HMM λi,

where 1 ≤ i ≤ C. Suppose that L(O|λi) is the likelihood of O given λi (the likelihood can be
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easily computed by the Forward-Backward procedure or by the Viterbi algorithm (Rabiner,

1989)). In order to find c, the following equation must be used:

c = arg max L(O|λi), 1 ≤ i ≤C (1.5)

1.2.3 Incremental Learning Algorithms for HMMs

Incremental Learning is a topic with increasing interest in research involving HMMs and pat-

tern recognition systems. In the latter, HMMs are used to compose HMM-based classifiers,

in which each class is represented by one or more HMMs. IL of HMMs basically consists

of updating the HMM-based classifier when unseen data are available. Unseen data may be

represented by either a single observation sequence or a block of observation sequences.

The objective of the application of IL algorithms with HMMs is varied. IL can be used to

improve the parameters of an existing classifier by accommodating new chunks of data that are

available over time. It can also be used to adapt a classifier to new conditions, where the partial

preservation of old information is helpful, but the new knowledge is more important than the

old one. Also, it can be a way to deal with limited resources, where a large amount of data

cannot be either stored or processed at once.

The main idea of an IL for HMMs is the following. Suppose the learning method is receiving

a block of data Dt , at a given time t ≥ 1, given the current HMM λt−1. Incremental learning,

in this case, consists of computing the parameters of the new HMM λt , where:

λt = λ ′
t−1 (1.6)

In this case, λ ′
t−1 corresponds to a mathematical transformation involving both λt−1 and φt ,

where the latter represents the sufficient statistics computed from the observation of Dt and

λt−1.



14

The IL algorithms proposed in the literature essentially differ in three aspects: 1) the amount of

data accumulated in Dt ; 2) the weight of the data presented in Dt ; and 3) how the combination

of λt−1 and φt is performed. Each aspect is discussed in the remainder of this section.

1.2.3.1 The amount of new data

In considering that Dt can be composed of a single observation sequence, as in (Florez-

Larrahondo, 2005; Mizuno et al., 2000), or can be composed of a block of St samples, as

in (Gotoh et al., 1998), a given IL algorithm may present two different types of behavior.

On one hand, with a smaller number of samples in Dt the learning algorithm performs more

updates in λt−1, and consequently may converge very quickly. One drawback, however, is

that after learning a sufficient number of samples, this algorithm may be biased to its current

parameters. In other words, if a new sample is too different from those previously learned,

the information presented by the new sample may not be appropriately learned since low-

probability values are computed from this sample.

On the other hand, saving more observation sequences in Dt makes the algorithm less sensitive

to noise and variations in the data stream. But a block of data needs more memory and time to

be stored and processed than a single sample, because this approach is more complex than the

first one.

1.2.3.2 The weight of the new data

Another important aspect of IL algorithms is the weight of the unseen data presented in Dt .

In some cases, this data is used to add more knowledge to a given HMM, assuming that the

knowledge in Dt is complementary to the knowledge presented in all Dt ′ , where t ′ < t, thus the

weight of the new data must be the same as the previous data. In other cases, Dt presents some

data that is useful to transform the parameters of a given HMM from more generalized ones to

more specialized parameters, and the weight of the new data is greater than the weight of the

old data. The latter is generally referred to as adaptation (Digalakis, 1999; Chien et al., 1997).
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Generally, the use of a learning rate η on Dt (Mizuno et al., 2000; Stenger et al., 2001) allows

for explicitly changing the importance of the unseen data. The learning rate defines the behav-

ior of the algorithm in terms of conservatism and adaptation. The higher the value set for η ,

the more adaptive the algorithm to new data. Consequently, old data is forgotten very quickly.

Lower learning rates define an algorithm that gives as much importance to newer data as it does

to older ones, conserving the acquired knowledge as long as possible.

Some algorithms, though, employ an implicit learning rate scheme, where the weight of the

new data is defined by the IL algorithm itself. For example, in (Florez-Larrahondo, 2005)

all the samples have the same weight since φt stores sufficient statistics of all the samples

processed before time t. Furthermore, some weight for the unseen data might be computed by

taking into account some measure of performance, where samples with a higher performance

value will have higher weights.

1.2.3.3 Combining old and new information

The third issue involving IL algorithms for HMMs lies in the way λt−1 and φt are combined to

generate λ ′
t−1. Some solutions have been proposed for this objective, from which we identify

two distinct groups.

The first group consists of methods that compute λ ′
t−1 directly from λt−1. For instance, some

methods compute λ ′
t−1 by performing a partial expectation step (E-step) of the Baum-Welch

algorithm on λt−1 and φt (Florez-Larrahondo, 2005; Gotoh et al., 1998; Mizuno et al., 2000;

Digalakis, 1999; Neal and Hinton, 1993; Singer and Warmuth, 1997), and a maximization step

(M-step) after each time t. One shortcoming of this approach is that once one parameter in

λt−1 is set to zero, there is no way to re-estimate this parameter again. To work around that

problem, a small constant ε is added to each parameter in λt−1 (Florez-Larrahondo, 2005),

but this solution results in an imprecise estimate of parameters and additional evaluations are

required for finding the best value of ε . In (Baldi and Chauvin, 1994), a normalized-exponential

representation of HMM parameters was proposed, which avoids zero probabilities. However,

the latter never enables zero probabilities, which can also become an issue on the other hand.
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The second group consists of methods that estimate a partial HMM λ̄t−1, from φt , without

taking into account the knowledge stored in λt−1. Then, λ̄t−1 and λt−1 are combined to generate

λ ′
t−1. Such a combination can be done by merging both λ̄t−1 and λt−1 (Mackay, 1997; Davis

and Lovell, 2003), or by creating an Ensemble of HMMs (EoHMMs). Although we cannot find

in the literature a method based on the latter, Polikar’s Learn++ algorithm is suitable for this

objective and can be used with HMM-based classifiers as well (Polikar et al., 2001). This kind

of approach avoids the aforementioned zero-probability problem by processing unseen data

independently of previous knowledge, which allows for performing batch learning on each

block for creating λ̄t−1 from a randomly-defined initial HMM. This approach, though, may be

relatively time-consuming for creating a good estimate for λ̄t−1.

1.3 Methodology

Here we present the entire methodology employed in this work. Section 1.3.1 describes the

baseline isolated characters recognizer. In Section 1.3.2, we present the IL algorithms evalu-

ated in this work. And the methodologies proposed for complexity analysis are presented in

Section 1.3.3.

1.3.1 The Baseline System

The baseline system is the isolated character recognizer presented in (Britto, 2001; Britto et al.,

2003; Cavalin et al., 2006). This recognizer is divided into three modules: Pre-processing,

Feature Extraction, and Recognition (see Figure 1.1 for an overview of this system).

The Pre-processing module performs corrections of slant inclination in isolated characters.

The Feature Extraction module extracts two observation sequences based on a sliding-window

approach. One observation sequence is extracted in the horizontal direction, representing col-

umn observations, and the other one is extracted in the vertical direction, representing row

observations. Each discrete observation represents a 47-dimensional feature vector, which is

mapped by means of Vector Quantization (VQ).
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Figure 1.1 An overview of the isolated character recognition framework

The 47-dimensional feature vector combines both foreground and background information,

being represented by 34 and 13 features, respectively. From the 34 foreground features, 32

represent local information about the writing, observed from background-foreground transi-

tions. The other 2 features represent a global point of view about the writing in the frame from

which they are extracted. The 13 background features are based on a 13-configuration chain

code, representing concavity information.

The Recognition module combines both column and row likelihoods to classify the correspond-

ing image as one of the 10 classes of digits, or as one the 26 classes of uppercase letters. Note

that each class is represented by two HMMs λc and λr, being λc an HMM trained from column

observation sequences, and λr another HMM trained from row observation sequences. In this

case, logL(O|λ ) is represented by the following equation:

logL(O|λ ) = logL(O|λc)+ logL(O|λr) (1.7)

The system is described in (Britto, 2001; Britto et al., 2003; Cavalin et al., 2006) in greater

detail.
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Algorithm 1.1 The Incremental Baum-Welch algorithm

1: t = 0

2: Initialize sufficient statistics φt to zero.

3: for each new observation sequence do
4: t = t +1

5: Compute φt from Dt and λt−1

6: φt = φt +φt−1

7: Compute λ ′
t−1 by taking into account λt−1 and φt , using the re-estimation

procedure used by the traditional Baum-Welch algorithm.

8: λt = λ ′
t−1

9: end for

1.3.2 Incremental Learning algorithms

In this section, a brief description of four IL algorithms for HMMs is provided. Advantages

and disadvantages of each one are pointed out.

1.3.2.1 The Incremental Baum-Welch algorithm (IBW)

The Incremental Baum-Welch (IBW) algorithm is a straight-forward adaptation of the origi-

nal BL Baum-Welch algorithm to IL. First proposed in (Stenger et al., 2001) for continuous

HMMs, it was later adapted to discrete models in (Florez-Larrahondo et al., 2005).

The IBW algorithm consists of performing a partial E-step using just a single observation

sequence, and an M-step for each time step t. In other words, the values of ai j and b j(k),

respectively corresponding to the matrices A and B of an HMM, are updated at each time step t,

given λt−1 and Dt , where Dt is composed of a single observation sequence. See Algorithm 1.1

for detail.

This algorithm presents some worth noting aspects. In spite of only considering one observa-

tion sequence to update λt−1, sufficient statistics used in this algorithm represent information

computed from all the observed data, meaning that each sample has the same weight. More-
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Algorithm 1.2 The Incremental Maximum-Likelihood algorithm

1: Initialize sufficient statistics φt∀t to zero.

2: for t = 1,2, . . . ,T or until convergence do
3: Compute φt from Dt and λt−1

4: φt = φt +φt−1

5: Compute λ ′
t−1

6: λt = λ ′
t−1

7: end for

over, the addition of a constant ε in the matrices A and B, after doing step 8, was proposed to

avoid that some parameters receive a null value.

1.3.2.2 The Incremental Maximum-Likelihood algorithm (IML)

In (Gotoh et al., 1998), the Incremental Maximum-Likelihood (IML) algorithm, which updates

an existing HMM by considering a block of data, has been evaluated in an IL setting.

Since the main objective in the work was to speed up the learning process, the proposed IML

algorithm works by dividing an off-line training database into smaller blocks. Each iteration

of the algorithm processes a different block of data. Thus, given an initial HMM λ0, and the

blocks of data Dt ,1 ≤ t ≤ T drawn from the training set, this algorithm works according to

Algorithm 1.2.

For an IL setting, IML can be easily adapted, although T is not known a priori and the blocks

of data Dt are acquired over time. Such an adaptation results in an algorithm very similar to

Algorithm 1.1, where the main difference lies is their for loop, which is performed for new

blocks of observation sequences instead of individual sequences.

Despite not being explicitly mentioned by the authors, this algorithm also requires the addition

of a small constant ε to the matrices A and B after λt is computed. Otherwise, as stated before,

the information cannot be completely learned by this algorithm if never-seen observations are

present within the new observation sequences.
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1.3.2.3 Ensemble Training (ET)

Another interesting approach for IL, namely Ensemble Training (ET), was presented in (Mackay,

1997; Davis and Lovell, 2003). Although this algorithm has never been employed within an

IL setting (to our knowledge), this algorithm can be easily adapted to this kind of setting since

the parameters of the final HMM (i.e. the model used for the recognition) are independently

computed for each observation sequence. And despite being originally proposed to deal with

single observation sequences, this algorithm can also be easily extended to work with blocks

of observation sequences.

ET consists of independently doing the learning of each of the observation sequences from

the training set so that each sequence generates an HMM. After all the sequences are learned,

the corresponding models are merged to generate a single model representing the whole data.

Despite its original name, this method is not characterized as an EoHMMs method because

only a single HMM results from the application of this method.

In greater detail, ET works as follows. Suppose that K observation sequences are available for

training, and for each of these K observation sequences, one model λk = (Ak,Bk,πk) is esti-

mated by ET, resulting in the formation of K independent models estimated from the training

set. From these K models, the matrices A, B, and π , for the final HMM, are computed in the

following way:

ai j =
∑k Wkak

i j

∑k Wk
(1.8)

bi j =
∑k Wkbk

i j

∑k Wk
(1.9)

π i =
∑k Wkπk

i

∑k Wk
(1.10)
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where Wk is the weighting factor for each sequence. In this work we empirically defined that

Wk = 1/K, which indicates that each training sequence has the same weight.

A straight-forward way to adapt ET to work in an IL setting is by conserving a current HMM

λt−1, which corresponds to all data up to the time step t − 1. The re-estimation of A, B, and

π (the new current model λt), when new data is available, considers only λt−1 and the model

generated at time t (λ ′
t). One important aspect to assure that the older information is kept in λt

is to consider the weights of the previously-seen data, by accumulating both Wt−1 and W ′
t into

Wt . Suppose we are updating the model λt−1 = (At−1,Bt−1,πt−1) after observing the data Dt ,

thus we compute λt = (At ,Bt ,πt), given λ ′
t , by using the following equations:

at
i j =

Wt−1at−1
i j +W ′

ta′ti j

Wt−1 +W ′t
(1.11)

b
t
i j =

Wt−1bt−1
i j +W ′

tb′ti j

Wt−1 +W ′t
(1.12)

πt
i =

Wt−1πt−1
i +W ′

tπ ′t
i

Wt−1 +W ′t
(1.13)

Wt =Wt−1 +W ′
t (1.14)

The ET algorithm is very flexible because any learning algorithm can be used to generate the

HMM corresponding to the new data, including the original Baum-Welch algorithm.

1.3.2.4 Ensemble Training Using Ensembles of HMMs (EN)

In this section we propose an adaptation of the ET algorithm using EoHMMs, to which we

refer as EN for the sake of simplicity. Note that this approach is very similar to the algorithm
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presented in (Polikar et al., 2001), namely Learn++, but we consider this adaptation much

simpler.

Even though the merging of HMMs used by ET can reliably learn HMMs incrementally, the

main advantage of using EoHMMs is that the available set of parameters for acquiring knowl-

edge always increase when new data is available. This is very suitable to incorporate new

knowledge. Also, previously-acquired knowledge is never discarded in this case since an

HMM’s parameters never change once learned.

In this case, instead of having a current HMM λt−1, at a learning time t, this version of

ET has a current set of HMMs ζ = (λ1,λ2, . . . ,λt−1). After computing the partial HMM

λ ′
t , this is included in ζ , so that ζ = (λ1,λ2, . . . ,λt−1,λ ′

t), which is later converted to ζ =

(λ1,λ2, . . . ,λt−1,λt).

The likelihood of ζ can be easily computed by the sum rule, by considering the logarithmic

likelihood of each HMM contained in ζ . For example, after learning t blocks of data, the

likelihood of ζ , given an observation sequence O, can be computed by the following equation:

L(O|ζ ) =
t

∑
i=1

logL(O|λi) (1.15)

1.3.3 Complexity Analysis

In terms of complexity analysis, two independent factors might be important when considering

HMM-based classifiers: a) training complexity, and b) recognition complexity. The method-

ologies proposed to evaluate each factor are described in the remainder of this section.

1.3.3.1 Evaluation of training complexity

For measuring training complexity, we propose a methodology that is able to compare different

learning methodologies employed on the same training data, using the same classifier topology.
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Such a methodology is based on the number of samples in each block of data, and the total

number of iterations until convergence on each block.

Suppose NB is the number of blocks of data, Si corresponds to the number of samples in block

i, where 1 ≤ i ≤ NB, and Ii corresponds to the number of iterations to converge on block i. The

complexity factor of training Ftr for learning all data is defined by:

Ftr =
NB

∑
i
(Si × Ii) (1.16)

The complexity for estimating the parameters of a single sample is not taken into account by

this method. This information tends to be similar, for all algorithms, when the core of the

learning algorithms do not differ significantly. That is the case of the algorithms involved in

this work, which share the same re-estimation procedure (i.e., they are all based on the forward-

backward procedure). Furthermore, the average length of the training observation sequences,

and the total number of states of the classifiers, are not taken into account since the same

training set and the same classifier topology are used by all the learning algorithms evaluated

in this work.

1.3.3.2 Evaluation of recognition complexity

In order to compare the recognition complexity of different HMM-based classifiers, we propose

a method based on the total number of states in each classifier. This method can be easily

justified if we take into account that the time complexity of the Viterbi algorithm, for decoding

an observation sequence O of length T by an HMM with N states, is O(N2T ). Notice that the

Viterbi algorithm is a popular algorithm for computing likelihoods of observation sequences

given an HMM.

In the case of an HMM-based classifier, composed of C classes, we must compute the total

recognition for processing O by all the models that represent the classes. In considering the

notation presented in Section 1.2.2, suppose Ni is the number of states of λi, thus the complexity
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of the Viterbi algorithm for decoding O for class i is O(Ni
2T ). To compute the recognition

complexity factor Frec, of an HMM-based classifier, we can use the following equation:

Frec =
C

∑
i=1

Ni
2T (1.17)

In generalizing the complexity of the Viterbi algorithm to O(Ni
2), since T is unknown a priori

and irrelevant to compare the recognition complexity of the same test set by different HMM-

based classifiers, the equation for computing Frec can be reduced to:

Frec =
C

∑
i=1

Ni
2 (1.18)

Equation 1.18 can be easily adapted to compute the complexity of EoHMMs, which is useful

for the algorithm presented in Section 1.3.2.4. In considering that a class is represented by

more than one HMM, the complexity of each class can be computed by summing the squared

number of states of all HMMs related to the class.

1.4 Experimental Evaluation

The experimental evaluation consisted of evaluating the IL algorithms described in Section 1.3.2,

for the recognition of handwritten isolated digits and uppercase letters. The isolated character

recognition system presented in Section 1.3.1 was the baseline system. The algorithms are

compared to a BL setting, using the traditional Baum-Welch algorithm (see (Rabiner, 1989)

for details).

Each experiment used the same codebook of 256 symbols, whose codewords were computed

from the whole training set. The HMM states were optimized by Wang’s method (Wang, 1994),

by setting the number of states to the minimum possible value found in the training set. These

parameters were defined in previous research (Britto et al., 2003).
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The isolated digits were organized in 195,000 samples for training (equally distributed into

19,500 samples for each of the ten classes), 28,000 for validation (both from hsf_{0,1,2,3}),

and 60,089 samples for test (taken from hsf_7). See in Table 1.1 the number of states for each

HMM representing a class of digit.

Table 1.1 The number of states of digit HMMs

Digit # states Digit # states Digit # states Digit # states
col row col row col row col row

0 13 14 3 14 20 6 15 18 9 16 21

1 5 16 4 15 18 7 15 18

2 14 16 5 13 19 8 14 20

The uppercase letters were organized in 43,160 samples for training (equally distributed into

1,660 samples per class from the hsf_{0,1,2,3}), 11,941 images for validation from hsf_4, and

12,092 images for test from hsf_7 series. Table 1.2 shows the state configuration of the HMMs

representing uppercase letters.

Table 1.2 The number of states of uppercase letter HMMs

Letter # states Letter # states Letter # states Letter # states
col row col row col row col row

A 12 8 H 13 11 O 11 11 V 8 9

B 10 14 I 7 2 P 9 14 W 12 16

C 7 8 J 11 6 Q 15 20 X 17 12

D 11 9 K 18 15 R 15 13 Y 12 10

E 15 12 L 9 8 S 11 8 Z 16 11

F 11 11 M 12 14 T 11 9

G 18 15 N 10 13 U 6 8

We evaluated each algorithm in a simulated IL setting, in order to evaluate the evolution of

each algorithm when chunks of data are presented one at a time. The IL setting was simulated

by dividing the training databases into small blocks of data, with a homogeneous distribution

of samples per class. For isolated digits, the training set was divided into 19 blocks of 10,000

samples (1,000 samples per class), and one block of 5,000 samples (500 samples per class). For

uppercase letters, the training set was divided into 10 blocks of 4,316 samples (166 samples
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per class). The classifiers’ performances were evaluated on both the validation and test sets

after learning each block of data.

Note that the validation dataset is not directly used by most of the algorithms for learning

parameters, but this set was used to set some important configuration parameters for all of them.

For instance, all the algorithms consider the same numbers of states and the same codebook

for the HMMs, which were previously-defined by using a BL approach. Furthermore, IBW

and IML have a constant ε , whose value was set after evaluating several values by training

the system on the first data block and using the validation set for evaluation. And the same

evaluation was done for ET and EN, to find the number of iterations for computing λ ′
t (worth

noting that we also evaluated the use of the validation set to select the best models). Note that

for both digits and letters, ε was set equal to 0.00001 for IBW, and to 0.0001 for IML. For ET

and EN, we set 10 fixed iterations for digits, and 15 for letters. A complete list of the use of the

validation set by each algorithm can be found in Table 1.3 (note that the EN_stop is presented

and justified further in this section).

Table 1.3 The use of the validation set by the algorithms

algorithm Hold-out Number of Codebook Configuration Stop criterion

validation states parameters

BL X X X X X

IBW - X X X -

IML - X X X -

ET - X X X -

EN - X X X -

EN_stop - X X X X

Also, we evaluated the performances of each algorithm to generate classifiers by learning the

entire training set. The main objective was to check the differences in terms of performance

among the algorithms when all the data is used for training.

Note that the experiments were repeated five times (except for BL due to computational com-

plexity reasons), using different samples in each block. Consequently, the recognition rates

and graphic curves are represented by the average of the five runs.



27

��������	
��������

Figure 1.2 The recognition results of all the algorithms

on the validation set, for digits

Figures 1.2 and 1.3 demonstrate the performance of each learning algorithm for isolated digits,

on the validation and test sets respectively. These curves represent the performances of the

classifiers taking into account a progressive growth of the training set, which consisted of pre-

senting one block of data at a time to each learning algorithm. The blocks of data were created

by the aforementioned simulation of IL. The results of the same experiments, reproduced for

uppercase letters, are presented in Figures 1.6 and 1.7, on the validation and test sets respec-

tively. In Figures 1.4 and 1.5 we present a complexity analysis of training and recognition for

digits, and in Figures 1.8 and 1.9 we present the same analysis for uppercase letters.

For digits, BL presents the best overall performances, worth noting that EN has performances

very near the BL. ET performed slightly inferior to both BL and EN, but it was significantly bet-

ter than the other IL algorithms, e.g. IBW and IML. We see that the algorithms generally reach

the best performances after learning six or seven blocks of data, which correspond to about

70,000 training samples. Despite a small decrease in performance after learning more blocks,
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Figure 1.3 The recognition results of all the algorithms

on the test set, for digits

all the algorithms (apart from IML) remain with stable performance after learning 70,000 sam-

ples. IML presents a significant decrease in performance after learning eight blocks, which

suggests that a stop criterion must be employed with this algorithm to control its performance.

Moreover, note that ET remains stable after learning 50,000 samples, which indicates that this

algorithm reaches stable performances with less training samples than the other algorithms.

In terms of training complexity, BL is by far the most complex one, being around four times

slower than both ET and EN. In considering the small difference in terms of performance

among these algorithms, ET and EN are much more interesting algorithms when the resources

for training are limited. Besides, both ET and EN can run on a parallel architecture, thus the

training complexity can get an even more significant reduction.

In terms of recognition complexity, however, all the algorithms except EN present the same

complexity. The recognition complexity of EN always increases after learning new data. How-

ever, we can control the recognition complexity of EN by evaluating the error on the validation
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Figure 1.4 Training complexity for digits

Figure 1.5 Recognition complexity for digits

set. For example, the use of a stop criterion, where new HMMs are added to ζ only when the

error on the validation set decreases, is able to set a good performance-complexity trade-off for
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EN. By observing Figure 1.2, we could stop including new HMMs after learning six blocks,

and the performances remain at the same level of learning twenty blocks. But as we can see in

Figure 1.5, the recognition complexity of learning only six blocks is significantly lower than

the one of learning the whole training set.

��������	
��������

Figure 1.6 The recognition results of all the algorithms

on the validation set, for uppercase letters

The experiments on uppercase letters showed a different scenario. The performances of EN

surpassed the ones presented by BL. And ET presented performance almost as good as BL’s.

Again, both IBW and IML presented the worst performance. BL needed only four blocks of

data to reach a stable learning point, and EN required about seven blocks. ET, in this case, did

not present as stable performance as it did for digits. It is worth noting that the performance

presented by EN starts to decrease after learning nine blocks, meanwhile BL always remains

in a stable state.

Regarding complexity aspects, the same observed from digits is observed from letters. BL is

the most complex algorithm for learning, and EN the most complex algorithm for recognition.

We could, as mentioned before, stop including new HMMs to ζ when the error on the validation
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Figure 1.7 The recognition results of all the algorithms

on the test set, for uppercase letters

Figure 1.8 Training complexity for uppercase letters
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Figure 1.9 Recognition complexity for uppercase letters

set does not decrease. Thus, in this case we could stop it after learning seven blocks, which

would result in a significant decrease of recognition complexity and in better recognition rates.

In Table 1.4 a summary of the results of the algorithms for learning the entire training set is

presented. We also included the results of the EN algorithm with a stop criterion.

Table 1.4 A summary of the performances of the classifiers, in recognition rates, after

learning the whole training set. Rejection rates correspond to the rate of samples that have

been rejected. w. er.: error rate used to define the rejection thresholds on the validation set

Algorithm Digits Uppercase letters
Val Test Reject Val Test Reject

no rejection w. er.:0.5% no rejection w. er.: 1.0%
BL 98.94 ±0.00 97.88 ±0.00 9.27 90.64 ±0.00 92.69 ±0.00 46.00

IBW 98.49 ±0.10 97.27 ±0.08 - 81.68 ±4.97 84.29 ±4.79

IML 98.02 ±0.21 97.03 ±0.11 - 87.67 ±0.43 90.90 ±0.65 -

ET 98.77 ±0.02 97.73 ±0.01 9.63 90.10 ±0.05 92.57 ±0.12 42.09

EN 98.87 ±0.03 97.85 ±0.01 7.92 90.40 ±0.11 92.91 ±0.13 39.72

EN_stop 98.90 ±0.02 97.91 ±0.03 8.01 90.75 ±0.13 93.24 ±0.07 39.36
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For isolated digits the original EN algorithm is overperformed by a BL setting, where the latter

provided recognition rates on the validation set of 98.94%, and 97.88% on the test set. The

recognition rates presented by EN were 98.87% on the validation set, and 97.85% on the test

set. ET performed slightly worse than both EN and BL, presenting 98.77% on the validation

set, and 97.73% on the test set. IBW and IML were the worst algorithms in these experiments,

having the recognition rates of IBW 98.49% on the validation set and 97.27% on the test set,

and the recognition rates of IML 98.02% on the validation set and 97.03% on the test set.

The modified EN presented the best recognition rates, being 98.90% on the validation set, and

97.91% on the test set.

In the uppercase letter problem, the recognition rates presented by the classifiers designed

in a BL setting were 90.64% and 92.69%, on the validation set and the test set respectively.

EN performed better than BL, whose recognition rates were 90.40% on the validation set, and

92.91% on the test set. ET provided performances very close to BL, with 90.10% of recognition

rates on the validation set, and 92.57% on the test set. Similar to the experiments with digits,

IBW and IML were the worst algorithms, but in this case IBW performed worse than IML. The

latter presented recognition rates of 87.67% on the validation set, and 90.90% on the test set,

and the former presented only 81.68% on the validation set, and 84.29% on the test set. EN

employing a stop criterion presented the best performance again, with 90.75% of recognition

rates on the validation set, and 93.24% on the test set.

In order to provide a more complete evaluation of the algorithms, we also evaluated the rejec-

tion rates of the four best algorithms for each problem. For such an evaluation, we took the

best classifiers generated from the numerous runs of each algorithm.

Figure 1.10 shows the error-reject evaluation for isolated digits. We can see that both BL and

ET presented very similar reject rates, meaning that both algorithms presents similar reliability.

Also, both EN and its modified version presented similar reject curves too, being the algorithms

with the highest reliability in this problem.



34

Figure 1.10 Error-reject analysis of batch learning (BL), ensemble training (ET),

ensemble training using EoHMMs (EN), and EN with a stop criterion, for digits

Figure 1.11 shows the error-reject evaluation for uppercase letters. Note that despite providing

slight lower recognition rates than BL at the zero-level reject experiments, the ET algorithm

provided lower rejection rates for some error rates. The EN algorithm provided much lower

rejection rates than both BL and ET, which shows that the former is really a robust learning

approach. Furthermore, the EN algorithm with a stop criterion was able to present the same

rejection rates of EN.

Considering other methods applied on the same isolated digit dataset, we can find results vary-

ing from 99.16% to 99.37% (Oliveira et al., 2002; Oliveira and Sabourin, 2004; Milgram et al.,

2006; Radtke et al., 2006), using classifiers such as MLP and SVM, and ensembles of MLP as

well, in a BL setting. In spite of HMMs performing worse than other classifiers in this task,

some recent research with EoHMMs demonstrated that HMM-based classifiers, with improved

codebooks, the recognition rates can be increased from 98.00% (Britto, 2001) to 98.86% (Ko

et al., 2007). By considering the learning approaches presented in this work, we believe that
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Figure 1.11 Error-reject analysis of batch learning (BL),

ensemble training (ET), ensemble training using EoHMMs

(EN), and EN with a stop criterion, for uppercase letters

the performances of the latter can be enhanced further by employing the EN algorithm, since

the diversity of the HMMs in the ensemble will be increased significantly.

Considering the uppercase letter problem, our method also provides lower recognition rates

than some methods in the literature. We find results varying from 94.16% using ensemble of

KNN (Dos Santos et al., 2008), 95.00% and 95.98% using MLP and ensemble of MLP (Radtke,

2006), respectively, and 96.82% using SVM (Milgram et al., 2006). Notice that HMMs are

generally known to be less accurate than MLP and SVM in problems such as the recognition

of isolated digits and letters due to its greater sensitivity to noise. However, HMMs model

continuous signals, which make them a very interesting approach to model problems than can

be decomposed into relatively simpler problems, such as the recognition of numeral strings and

words, which can be decomposed into digits and letters. HMMs can be adjusted to segment

complex signals by means of training, instead of relying on heuristic approaches such as MLP

and SVM. Furthermore, the use of optimization methods, such as the ones used in (Ko et al.,
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2007), can lead to improve the accuracy of HMMs in isolated characters, which can also result

in much better performance in the aforementioned more complex problems.

1.5 Conclusions and Future Work

In this work we presented the evaluation of four different IL algorithms for HMMs, and com-

pared their performance with the traditional Baum-Welch algorithm in a BL setting. Two

handwritten isolated character recognition problems were considered.

The experiments showed that BL performs slightly better that IL algorithms for isolated digits,

but is outperformed by EN for uppercase letters, when a validation set is not used to control

learning. However, when a validation set is considered by the EN algorithm, this algorithm

can provide better performance than BL, and at the same time the recognition complexity of

EN can be reduced. These results indicate that it is possible to employ IL algorithms to design

complex pattern recognition systems, and reach higher reliability than BL algorithms. Further-

more, the use of external knowledge (e.g. validation) also seems to contribute to improve the

generalization performances of the classifiers.

We can pursue this work in several directions. One starting point is the investigation of other

methods for reducing the recognition complexity of EN, which can also result in increasing

performances. One promising approach is to employ both EN and ET algorithms in a single

IL framework. By doing that, we can set, for instance, a fixed number of HMMs for the EN

algorithm, where each one is learned using the ET algorithm. In theory, such a framework is

able to counter-balance the advantages and disadvantages of both EN and ET, and can provide

better performance than BL, with lower training complexity.

Another aspect to be investigated is how to decrease the use of the external knowledge (e.g.

the validation set) for ET and EN (see in Table 1.3 for which aspects these algorithms needed

validation). For example, the use of a k-fold cross-validation would be useful to determine the

number of iterations to train each block of data, for ET and EN, which is one of the configu-

ration parameters of these algorithms. Furthermore, topology learning could be employed to
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determine the best HMM topology from each block (Florez-Larrahondo, 2005). In addition,

we can also investigate techniques to optimize the codebooks from each block.

1.6 Discussion

In this chapter we demonstrate that ensembles of classifiers (EoCs) constitute a viable solution

to the definition of IL algorithms. Such algorithms can incorporate new knowledge by includ-

ing new members in an existent pool of classifiers. In this case, the parameters of existing

members remain static, keeping previously-learned knowledge intact. It is worth noting that

similar conclusions have been drawn in papers related to this work (Khreich et al., 2012).

However, there are some pitfalls to the static combination of classifiers used during general-

ization. For instance, some classifiers might be more competent than others in recognizing a

given test sample. Also, some classifiers may become obsolete over time, that is, they may

not be as competent as they were in the past for many test samples. For this reason, a better

solution might be to use dynamic selection (DS) during operation.

Even though a proof-of-concept using HMMs has been presented, EoC-based algorithms are

general and can be applied to other types of classifiers. Most algorithms dynamically select

classifiers by taking into account the input feature set. These approaches are restricted to

feature-based classifiers, however. They are not suitable for HMMs, since classifiers based on

these models rely on observation sequences instead of feature vectors of fixed size.

In the next chapter, we present investigations on DS algorithms that can select classifiers by

evaluating only the outputs yielded by the members of the pool of classifiers. These inves-

tigations are aimed at defining an adaptive framework that is suitable for a broader range of

classifiers.





CHAPTER 2

DYNAMIC SELECTION APPROACHES FOR MULTIPLE CLASSIFIER SYSTEMS

In this chapter, we propose a new approach for dynamic selection of ensembles of classifiers.

Based on the so called multistage organizations concept, the main objective of which is to de-

fine a multilayer fusion function adapted to each recognition problem, we propose dynamic

multistage organization (DMO), which defines the best multistage structure for each test sam-

ple. By extending Dos Santos et al’s approach, we propose two implementations for DMO,

namely DSAm and DSAc. While the former considers a set of DS functions to generalize a

DMO structure, the latter considers contextual information, as represented by the output pro-

files computed from the validation dataset, to perform this task. The experimental evaluation,

considering both small and large datasets, demonstrates that DSAc outperforms DSAm on most

problems, showing that the use of contextual information can achieve better performance than

other methods. In addition, the performance of DSAc can also be enhanced in IL. However,

the most important observation, supported by additional experiments, is that DS is generally

preferred over static approaches when the recognition problem presents a high level of uncer-

tainty.

2.1 Introduction

Over the past decades, Multiple Classifier Systems have emerged as a viable alternative to make

pattern recognition systems achieve lower and lower error rates. This kind of system can be

composed of either existing classifiers, aiming at enhancing their individual performances, or

classifiers constructed by an automatic method, to which we refer as ensembles of classifiers

(EoCs). In both cases, nonetheless, it is well-known that the set of classifiers must contain

members that are complementary and diverse (Brown et al., 2005; Dos Santos et al., 2006), so

that the combined classifiers outperform the best member of the set.

The task of finding the aforementioned complementary and diverse set of classifiers is not triv-

ial. Actually, the performance of the fusion function, which carries out the combination of the
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decisions provided by the base classifiers, may heavily depend on such a “good” set of classi-

fiers (Shipp and Kuncheva, 2002). For example, it has been shown that the performance of the

majority voting function, which is a widely used combination rule, significantly improves for

the case of negatively correlated classifiers (Kuncheva et al., 2003; Ruta and Gabrys, 2002).

However, to construct an EoC with negatively correlated classifiers remains a very unlikely sit-

uation in real-world classification problems, and their benefits remain out of reach. If existing

classifiers, to which we have no access to change their parameters, are included in the pool,

this task may become even less evident.

One way to enhance the use of multiple classifiers is to define a fusion scheme that takes greater

advantage of the diversity presented by the base classifiers, even though such a diversity is

not so apparent at first. In other words, we need to define a way to expand the limits of

the combination method, to better use the existing diversity of the pool of classifiers. One

interesting approach, named multistage organizations (MO), has been proposed in (Ruta and

Gabrys, 2002, 2005) for such an objective.

The main advantage of using MO relies on the ability to construct a multistage structure, which

represents the fusion function, that is adapted to each recognition problem. Such an adapta-

tion is achieved by defining the relationships between consecutive layers based on evidences

provided by the training data. Nevertheless, only a single structure is created, in an ad-hoc

fashion, for all the test samples. Due to its static nature, the method might not be able to handle

all the difficulties presented by complex recognition patterns, which supposedly has the same

drawback of static approaches to select classifiers.

To deal with those issues, we propose dynamic multistage organizations (DMO), inspired by

dynamic selection of classifiers. The main idea consists of defining the multistage structure

that best adapts to each test sample. In this case, not only the fusion function adapts to each

problem, but also, to each test sample. Such a structure also takes into account an automatic

weighting approach, which selects the best weight for each classifier output based on the cur-

rent test sample.
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One approach that is closely related to the idea of DMO is Dos Santos et al’s (DSA) approach

(Dos Santos et al., 2008). In this case, one EoC is dynamically selected, from a pool of EoCs,

by means of evaluating only the outputs yielded by the members of each ensemble. If we

can, for example, select more than one ensemble at a time, we can better generalize the DMO

concept, by implementing a two-stage DMO structure. Given these standpoints, we propose

two original frameworks based on DSA.

The first framework, named DSAm, consists of validating the DMO concept, in which we

exploit the use of a set of dynamic selection functions to create a DMO structure. In this case,

each function performs the selection of an EoC. Note that the main advantage of this method

lies on its simplicity. In the second framework, namely DSAc, we use contextual information

to find the best DMO structure based on problem-related knowledge. The evidences produced

by the validation set are taken into account in this case, whereas the structure is defined by

considering the most similar validation samples using case-based reasoning. The architecture

of DSAc is not only easily adaptable to different problems, but also is incremental-learning

ready.

This work aims at accomplishing two main objectives during the experimental evaluation. The

first objective is to evaluate both DSAc and DSAm against static methods, to observe whether

the proposed DMO concept can result in better performance or not. In addition, we aim at

evaluating the conditions under which dynamic selection might outperform static selection.

Given that in the literature dynamic selection methods are generally compared to static methods

for recognizing a given problem, in a single static condition in terms of recognition problem,

the goal of these experiments is to provide more insights related to which conditions a dynamic

selection approach might be more preferable than a static one. The NIST-digits database allows

us to simulate these different conditions, as explained later.

The remainder of this chapter is organized as follows. In Section 2.2, we describe static and

dynamic selections, providing more details about Dos Santos et al’s approach, to support the

content of the subsequent sections. In Section 2.3 we describe the proposed DMO concept
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with greater detail. Both DSAc and DSAm are described in Section 2.4, and in Section 2.5, we

present the experimental protocol and the results that were obtained. Finally, in Section 2.6,

we present conclusions and point out the future work.

2.2 Background theory

In this section, we present an overview of dynamic selection methods (DS), in which we also

describe Dos Santos et al’s approach (DSA) in detail.

2.2.1 Dynamic Selection (DS)

Suppose a multiple classifier system is composed of a pool of base classifiers, to which we

refer as C. The goal of dynamic selection is to find a subset of classifiers C′
i, where C′

i ⊂ C,

which is the best one, by considering all local criteria, to classify the test sample xi,test . Note

that, in static selection, a single subset C′, where C′ ⊂ C, is globally selected to recognize all

test samples.

In the literature, dynamic selection is divided into dynamic selection of classifiers (DSC),

where only a single classifier is selected for each test sample (Woods et al., 1997; Giacinto

and Roli, 2001; Zhu et al., 2004), and dynamic selection of ensembles of classifiers (DSEoC),

where an EoC is selected for each test sample (Dos Santos et al., 2008; Soares et al., 2006; Ko

et al., 2008).

Usually, the main goal of the systems for both DSC and DSEoC is to find the best subset of

classifiers C′
i to classify xi,test . This best set is generally associated with the highest level of

competence, which is computed by means of, for instance, K nearest neighbors (Woods et al.,

1997), clustering (Kuncheva, 2000), and multiple training datasets (Singh and Singh, 2005). In

order to compute the level of competence by using one of these methods, we must deal with

the following issues: a robust feature set must be defined for a desirable reliability, which is

not trivial; these approaches are very expensive in terms of computational complexity; and it is

not possible to use some types of base classifiers, such as human experts or HMMs, since they
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do not use feature vectors to conduct the classification task. The KNORA algorithm (Ko et al.,

2008), however, is an example of an approach that tries to overcome some of these issues. The

only information this method requires from the base classifiers is whether or not they correctly

classify a given validation sample. Nonetheless, KNORA also depends on a very robust feature

set to compute similarity between validation samples and the test sample.

A more general approach, though, is Dos Santos et al’s, which dynamically selects EoCs,

whose levels of competence are computed by using only the outputs of their members, based

on the extent of consensus. This property makes it a very general approach in terms of base

classifier and feature set. However, many sources of knowledge embedded in the structure of

DSA have not been exploited yet, for instance, the outputs produced by the base classifiers.

Thus, we believe the performance of this method can be improved, resulting in an approach

that is both robust and general at the same time. For the sake of completeness, in the remainder

of this section we present this method in greater detail.

2.2.2 Dos Santos et al’s approach (DSA)

The overall architecture of DSA is depicted in Figure 2.1. The main objective of this method

is to dynamically find the best EoC, whose members are a subset of C = {c1,c2, . . . ,cN}, to

recognize the test sample xi,test . This task is performed by considering only the recognition

outputs Oi = {oi,1, . . . ,oi,N} computed from C. Each output corresponds to a class label from

the set Ω = {ω1, . . . ,ωM}.

DSA is divided into two phases: the design phase and the operational phase.

During the design phase, which is performed off-line, it creates the architecture that supports

the dynamic selection of EoCs. In other words, the pool of EoCs C∗′ = {C′
1, . . . ,C′

W}, where

C′
j ⊂ C,1 ≤ j ≤ W , is created during this phase. Given that C∗′ is a subset of all possible

EoCs C∗, the main objective is to reduce the complexity for the operational phase since |C∗|
is much larger than |C∗′| and the time needed to find the best EoCs in considering C∗ would

be impractical in most applications. The pool C∗′ is generated by a search algorithm, which
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Figure 2.1 Dos Santos et al’s approach (DSA). The pool of classifiers is organized into

another pool of EoCs during the design phase. During the operational phase, the EoC,

which is dynamically selected by λ , produces the final decision

is a genetic algorithm in this work. Each individual is represented by a binary vector of N

positions, where each bit represents whether or not a classifier is selected as a member of an

EoC. The fitness function, which has to be minimized, uses the error rate on the optimization

set Opt, by applying the majority voting method on the EoCs assigned by each individual. In

order to avoid overfitting, each individual is also evaluated on the validation set Val, and the

best solutions are saved into an archive whose size is W . The archive is then used as C∗′.

Throughout the operational phase, the dynamic selection of the best EoC C′′
i is performed,

which consists of a member of the pool of EoCs C∗′, to recognize the test sample xi,test . After

the outputs Oi of the set of base classifiers C are computed, we check which member of the

pool of EoCs C∗′ is best to recognize xi,test . For each EoC, we apply the dynamic selection

function λ to evaluate whether it is the best ensemble or not. The best EoC is then stored in

C′′
i, the dynamically selected EoC. Finally, the ensemble that was dynamically selected is used

to compute the class with the highest number of votes, which is the final decision di.
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Note that λ can be related to one of the five functions described in Section 2.4.1.1. In this

work, λ is computed by taking into account the extent of consensus, as defined in Equation 2.2

(Dos Santos et al., 2008).

2.3 Dynamic Multistage Organizations (DMO)

The main inspiration for dynamic multistage organizations is multistage organizations (MO).

MO consists of structuring classifiers into relevant multistage layers. The outputs of the clas-

sifiers are reorganized into subsequent levels, and these outputs are re-evaluated at each level.

By structuring classifiers in multi-steps, the main premise is that the influence of individual

errors on the final error of the combined systems can be reduced, since the outputs are trans-

formed to another space corresponding to the fusion of some selected classifiers. Hence, given

the fact that both selection and fusion are conducted at the same time, the diversity among the

classifiers is better exploited, and the limits of majority voting error are widened.

The main advantage of MO is that the whole structure can be defined for a given problem.

For example, in (Ruta and Gabrys, 2002) a genetic algorithm is used to optimize the MO

structure given problem-related training data. Nonetheless, a single structure is defined for all

test samples, which, as a consequence, might not cover the different difficulties presented by

all test samples in a complex recognition problem. To deal with this issue, we propose DMO,

inspired by dynamic selection of classifiers.

DMO basically consists of defining the best multistage structure for each test sample. In this

case, the relationships between the outputs are dynamically defined, according to the current

test sample xi,test . It also takes into account a dynamic weighting approach for further im-

provements. Note that, instead of using the same structure to recognize all test samples, which

might be suboptimal, we define the structure that better models the relationships among the

base classifiers, according to the information provided by xi,test . By doing so, we may enhance

the overall performance of the system not only by using a multi-stage approach, but also by

using a dynamic approach that better fits the difficulties presented by each test sample.
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In order to illustrate DMO, we use a synthetic recognition example with five binary classifiers.

In Figure 2.2(a), we present a test sample, whose correct label is 1, being recognized by MO.

Suppose this MO structure has been considered optimal during the design phase. We can see,

though, that this structure does not correctly recognize this test sample. However, as shown in

Figure 2.2(b), by using a DMO approach, we might be able to define a MO structure specifically

for this test sample, which can correctly compute the correct class. In this case, given that an

EoC that provides the correct answer is selected twice (i.e. it has a heavier weight) to compose

the final layer, the correct answer is successfully computed.

One existing method that partially implements the DMO concept is Dos Santos et al’s approach

(see Section 2.2.2), as depicted in Figure 2.2(c). In this case, one EoC is dynamically selected,

from a pool of EoCs, by means of evaluating only the outputs yielded by the members of each

ensemble. If we can, for example, select more than one EoC at a time, we can better generalize

the DMO concept, by implementing a two-stage DMO structure. For this reason, we extend

the architecture of DSA to implement DMO.

2.4 Extending Dos Santos et al’s Approach to Implement DMO

We propose two methods to extend Dos Santos et al’s approach to implement a dynamic multi-

stage organization. These methods, named DSAm and DSAc respectively, are described in the

following sections.

2.4.1 DSAm: introducing DMO and high-level decision making

The first framework consists of adding two main extensions to DSA. We refer to this framework

as DSAm, since the use of multiple dynamic selection functions has enabled the implementation

of the first extension.

The first extension consists of characterizing the main DSA structure as dynamic multistage

organizations. Instead of selecting a single EoC, as in DSA, we now have to select a set of

EoCs. The main idea is to compose the second layer of a DMO structure by using this set of



47

(a) MO example (b) DMO example

(c) DSA example

Figure 2.2 (a) The sequence of stages processed by multistage organizations (MO), for an

example with five classifiers with binary outputs. In this case, each member of layer 2

always provides one vote for the final decision. (b) The same example with dynamic

multistage organization (DMO), whereas a member from layer 2 may provide none, one,

or more than one vote. (c) The same example using Dos Santos et al’s approach (DSA),

where only a single member of layer 2 gives a vote. Class 1 is the right output in this

example

EoCs. To achieve this task, we adapt some components of the operational phase. To recognize

xi,test we select the set of EoCs C∗′′
i = {C′′

i,1, . . . ,C
′′
iU}, as presented in Figure 2.3.

Algorithm 2.1 describes each step of the proposed method. Once the outputs of the base clas-

sifiers Oi are computed in step 2, we evaluate each EoC individually. By considering the set

of functions Λ = {λ1, . . . ,λU}, we evaluate each member of C∗′. The best EoCs, according to

Λ, form the set of dynamically selected EoCs C∗′′
i . Note that |C∗′′

i | =U , since each λk selects

an EoC, i.e. C′′
i,k. It is also worth noting that an EoC may be selected more than once, which

results in the automatic weighting approach demonstrated in Figure 2.2(b). In this case all the
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Figure 2.3 An overview of the DSAm approach. This method uses the set of dynamic

selection functions Λ to dynamically select a set of EoCs, which results in a two-layer

DMO structure

functions described in Section 2.4.1.1 are used to compose Λ, thus Λ = {λ1,λ2,λ3,λ4,λ5} and

|Λ|= 5. In the example presented in Figure 2.2(b), in contrast, we consider |Λ|= 3.

After C∗′′
i , the set of dynamically selected EoCs, is defined, the outputs of these EoCs O′′

i =

{o′′i,1, . . . ,o
′′
i,U} are computed (step 16 of Alg. 2.1). These outputs represent the majority voting

class computed from each member in C∗′′
i . Then, O′′

i is submitted to the switch module.

The proposed switch mechanism represents the second extension to DSA. This mechanism,

which is represented by steps 18 to 22 in Algorithm 2.1, is explained in detail in the following

paragraphs.

Despite the expected improvements that a dynamic multistage structure can bring to DSA, we

have no guarantee that this complex structure is really better than the pool of base classifiers.

In some cases, for example, the dynamically selected EoCs, i.e. C∗′′
i , might provide low-

confidence results, yielding a tie or the answers below some acceptable confidence level. Note
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Algorithm 2.1 DSAm. best_score(k) and score(k) j,i represent temporary variables to

compute the best EoC, for each of the five functions presented in Section 2.4.1.1

1: for each data point xi,test on Test do
2: Compute Oi = {o1, . . . ,oN} by considering C = {c1, . . . ,cN}
3: Initialize best_score(k), ∀λk in Λ
4: for each C′

j in C∗′ do
5: for each λk in Λ do
6: Compute score(k) j,i by considering λk.

7: if score(k) j,i is better than best_score(k) then
8: C′′

i,k =C′
j

9: best_score(k) = score(k) j,i
10: end if
11: end for
12: end for
13: for each λk in Λ do
14: o′′i,k = most voted class from C′′

i,k
15: end for
16: Compute mi from O′′

i = {o′′i,1, . . . ,o′′i,U} # see Equation 2.1
17: # Switch mechanism
18: if mi > θ then
19: di = most voted class from O′′

i
20: else
21: di = most voted class from C
22: end if
23: end for

that it is important to detect these cases to avoid random decisions, and select a better source of

knowledge, that may be the base classifiers. For this reason, we propose a switch mechanism.

Here is the main idea of the switch. First, we employ the concept of margin (Hansen et al.,

1997) (see Equation 2.1, where v1i and v2i are, respectively, the most voted and the second most

voted classes for xi,test) to identify whether or not the answers provided by C∗′′
i are confident

enough, as shown in step 18 of Algorithm 2.1. When the margin mi computed by the outputs

C∗′′
i is above the threshold θ , e.g. mi > θ , we consider that the dynamically selected EoCs are

reliable enough and simply use the most voted class in considering O′′
i as the final decision di

(step 19). In contrast, when mi ≤ θ , we switch to the pool of base classifiers and use Oi, i.e.
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the outputs of C, to compute the most voted class (step 21). This most voted class is used as the

final decision di. Note that one advantage of the switch mechanism is that instead of relying

on random guess, since in the case of a tie we would have to randomly pick one class as the

final decision, we use another source of knowledge that is embedded in the architecture of the

system to compute such a decision.

mi = v1i − v2i (2.1)

In the next section, we describe the dynamic selection functions that are used in step 6 of

Algorithm 2.1 to compute the corresponding score of each λk.

2.4.1.1 Consensus-based dynamic selection functions

The five functions involved in this work, are computed by taking into account the number of

votes for each class in Ω, provided by each candidate C′
i. We aimed at using only functions

which can compute the level of competence of each EoC based on the votes of the base classi-

fiers. One reason is to avoid the complexity of functions that compute regions of competence

based on evaluating distances between xi,test and prototypes in the feature space, as in (Woods

et al., 1997; Soares et al., 2006). Another reason is to enable this approach to deal with any

category of base classifier that can output votes.

In this section we use the following notation: vk, j,i is the number of votes for class ωk pro-

vided by C′
j given the test sample xi,test , p j is the global performance of C′

j, and p j,k is the

performance of C′
j for class ωk, both measured on the validation set Val; mv j,i represents the

majority voting class provided by C′
j given the sample xi,test , e.g. mv j,i = argmax vk, j,i ∀k. The

cardinality of C′
j is represented by |C′

j|.
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2.4.1.1.1 λ1: Ambiguity-guided dynamic selection (ADS)

This function is presented in (Dos Santos et al., 2008). It selects the solution whose outputs

produce the lowest ambiguity, represented by the number of classifiers in disagreement with

the majority voting class.

The ambiguity γ j,i, given C′
j and the test sample xi,test , can be computed by the minimization

of the following equation:

γ j,i =
∑k

1 vk, j,i

|C′ j| , where k �= mv j,i (2.2)

2.4.1.1.2 λ2: Margin-based dynamic selection (MDS)

This function selects the solution with the highest margin (Dos Santos et al., 2008). The margin

represents the difference between the majority voting and the second highest number of votes.

The main idea is to select the solution that produces the largest difference in number of votes

between the highest consensus and the second highest.

The maximization of the following equation, given C′
j and the sample xi,test , allows us to

dynamically select the most competent candidate by using the margin μ j,i:

μ j,i =
vk, j,i −maxl �=kvl, j,i

|C′ j| , where k = mv j,i (2.3)

2.4.1.1.3 λ3: Class-strength dynamic selection (CSDS)

This function weights the selection of the best solution (Dos Santos et al., 2008). In this case,

the margin, as described in Equation 2.3, is multiplied by p j,k. The main idea is to select

the candidate that provides the best trade-off between the margin and the performance for

recognizing the class with the highest number of votes.
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In considering the margin as μ j,i and the class performance as p j,k, the maximization of the

following equation leads us to find the most competent C′
j for xi,test by using CSDS:

Θ j,i = μ j,i ∗ p j,k, where k = mv j,i (2.4)

2.4.1.1.4 λ4: Pair of votes dynamic selection (PVDS)

We propose a new function aiming at selecting EoCs that concentrate their decisions on only

two classes. In this case, both values for margin and consensus might be very low, which

is counter-intuitive according to other DSFs such as ADS and MDS. However, we suppose

that these EoCs are likely to produce less random guesses and wrong decisions, since they

concentrate their decisions on reduced boundaries, e.g. only two classes.

In order to implement this idea, we simply sum the number of votes for the top-two classes,

and maximize this value. This is represented by η j,i. Given C′
j and the sample xi,test , η j,i can

be computed by using the following equation:

η j,i =
vk, j,i +maxl �=kvl, j,i

|C′ j| , where k = mv j,i (2.5)

2.4.1.1.5 λ5: Global-strength dynamic selection (GSDS)

This function is a modification of CSDS. In this case, we consider the global performance p j

of C′
j to weigh the value provided by the margin. The main supposition is that the global

performance is more robust than the performance to recognize a specific class to indicate the

most competent solution.

Given p j, C′
j, and xi,test , this function can be computed by maximizing the following equation:

ι j,i = μ j,i ∗ p j (2.6)
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Figure 2.4 An overview of the DSAc approach. This method uses the knowledge provided

by Val (converted into the set of output profiles Val′)

In the next section, we present the second method proposed in this work, whose main goal is

to replace these dynamic selection functions by a context-based approach.

2.4.2 DSAc: enhancing dynamic selection by using contextual information

Both DSA and DSAm dynamically select EoCs by considering dynamic selection functions

based on the extent of consensus. Despite that the extent of consensus is a well studied concept

in the literature (Hansen et al., 1997), only the outputs of the most voted and the second most

voted classes are used to select the ensemble. However, the information related to the other

classes is wasted, even though such information could help this task. In order to overcome this

drawback, we propose DSAc, which is depicted in Figure 2.4.

DSAc is inspired by both decision templates (Kuncheva et al., 2001) and the KNORA algorithm

(Ko et al., 2008). The main objective is to use the validation database, transformed into output

profiles, to point out which EoCs are the most competent to recognize the test sample xi,test .

An output profile is computed by transformation T in Equation 2.7, where xi ∈ ℜD, x̃i ∈ Z
N+,
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Figure 2.5 DSF ζ . For each test sample, we find K validation samples with the most

similar output profiles, to form the set ψi. The EoCs that correctly classify the validation

samples in Ψi are used to compose the set C∗′′, which is then used to compute the final

decision of DSAc

and N is the size of the pool of base classifiers C. Given that we know which EoC correctly

recognizes each validation sample, a DMO structure is defined by computing which validation

samples are the ones most similar to the test samples in considering the output profiles, and

composing the dynamically selected set of EoCs with the EoCs that correctly classify these

validation samples.

T : xi ⇒ x̃i, (2.7)

In greater detail, this approach works as follows. Consider the pool of EoCs C∗′, generated

during the design phase. For each test sample xi,test , we compute the best set of EoCs C∗′′
i,

composed of members from C∗′. Each EoC from C∗′ may appear several times in C∗′′
i, result-

ing in an automatic weighting approach. This task is achieved by considering the function ζ ,

which is depicted in Figure 2.5.

Algorithm 2.2 describes this method in detail. The first few steps represent the function ζ .

First, in step 3 we apply T on xi,test , resulting in x̃i,test . Next, as presented in step 4, we

compare x̃i,test to each output profile in Val′, which is a database containing the output profiles

of all validation samples in Val, e.g. x̃ j,val ∀x j,val ∈Val, computed in step 1. We compare these

samples in terms of similarity, and save the degree of similarity between x̃i,test and x̃ j,val in the

variable δi, j. Note that we use the similarity measure presented in Equation 2.8 to compute
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Algorithm 2.2 DSAc

1: Compute Val′ using transformation T on all samples in Val
2: for each data point xi,test in Test do
3: Compute Oi = {o1, . . . ,oN} by considering C = {c1, . . . ,cN}, and use trans-

formation T to compute x̃i,test
4: Find the K x̃ j,val most similar to x̃i,test and put into Ψi
5: C∗′′

i = /0

6: for each x̃ j,val in Ψi do
7: for each C′

k in C∗′ do
8: if C′

k correctly recognizes x j,val then
9: Insert C′

k into C∗′′
i (re-insert another instance if C′

k is already in the

pool)

10: end if
11: end for
12: end for
13: Compute mi from O′′

i
14: # Switch mechanism
15: if mi > θ then
16: di = most voted class from O′′

i
17: else
18: di = the label of the most similar x̃ j,val from Ψi
19: end if
20: end for

δi, j. The K most similar output profiles x̃ j,val , e.g. the validation samples related to the highest

values of δi, j, are stored in Ψi. Next, as shown in steps 7 to 11, for each sample in Ψi and each

member of the pool of EoCs C∗′, we compute if the EoC provides the correct recognition result

for this sample. In the case of a positive answer, this EoC is included in C∗′′
i, worth noting that

an EoC appears in C∗′′
i as many times as the number of samples that it correctly recognizes.

Finally, C∗′′
i is submitted to the switch mechanism DSAc.

Steps 15 to 19 in Algorithm 2.2 represent the switch module in Figure 2.4, which corresponds

to the previously mentioned switch mechanism. Similar to DSAm, it is computed whether the

margin mi, in considering the dynamically selected EoCs C∗′′
i, is above the threshold θ or not.

If mi > θ , then we use the most voted class indicated by C∗′′
i (step 16). Otherwise, we use the
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label of the most similar validation sample from Ψi (step 18). The main goal of this scheme is

to use contextual information also in the switch mechanism to avoid random decisions.

In order to compute the similarity of output profiles to perform step 4 in Algorithm 2.2, we

use the template matching measure. In considering two output profiles, this measure computes

how many classifiers will provide exactly the same output. We can implement this measure by

maximizing Equation 2.8, which depends on Equation 2.9.

δi, j =
∑N

k=1 αi, j,k

N
(2.8)

αi, j,k =

⎧⎨
⎩

1, if x̃i,test,k = x̃ j,val,k

0, otherwise
(2.9)

DSAc for Incremental Learning

One by-product of this approach is the ability to adapt to knowledge acquired over time. Such

a task is realized by simply adding more data to Val, and computing the corresponding output

profiles for Val′. In this case, we can conduct incremental learning without the need to change

the parameters of the base classifiers. As a consequence, this system can be used with virtually

any type of base classifier.

The computation time of the operational phase of DSAc, however, depends heavily on the size

of Val. Also, the application of this approach in an incremental scenario can slow down very

significantly the operational phase since the larger the size of Val, the slower is the recognition

module. Nevertheless, if we control the inclusion of new samples in Val by only injecting

those that provide really useful information, we might reduce very significantly the increase of

complexity resulting from incremental learning. For this reason, we present a control mecha-

nism to avoid continuously appending new samples to Val during incremental learning. This

mechanism works as follows.
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The control mechanism selects samples, to compose Val, only when they are below a threshold

ϑ , in considering the margin of the base classifiers, e.g. mi < ϑ . Note that mi is defined in

Equation 2.1. In this case, we suppose that only the samples that possess uncommon output

profiles are appended to Val, since the contrary is likely to result in the addition of redundant

samples. As a consequence, Val will only acquire new samples if uncommon samples are

observed.

2.5 Experiments

In this section we present a series of experiments with the following objectives. First, the main

goal is to compare the performance of the proposed approaches, i.e. DSAm and DSAc, against

existing methods. By comparing them against DSA, which provides the baseline architecture

for the proposed methods, we aim at observing the impact of the proposed enhancements. By

conducting the same comparisons against state-of-the-art static methods, on the other hand, we

can observe the advantages of dynamic methods over static ones.

The aforementioned static methods are the followings:

• All features: the original classifier with full representation space (all original features).

• Best from C: the best base classifier from C.

• MV all C: fusion of all base classifiers in C by majority voting (MV).

• DT all C: fusion of all base classifiers in C using decision templates (DT), by considering

template matching. The decision templates are computed by using Val′.

• Best from C∗′: the best EoC from C∗′.

All methods are evaluated using seven datasets, divided into two large and five small ones. The

small datasets represent problems with a different number of features, generally with a small

amount of samples. The datasets considered as small are: the DNA and Satimage datasets

provided by Project Stalog on www.niaad.liacc.up.pt/old/stalog; Feltwell dataset, which is a



58

Table 2.1 Experimental setup. (NC: number of classes; Train, Opt, Val, and Test:
number of samples in these respective sets; NF: number of features; NE: number of

features in the ensemble, after applying the RSS method; VM: validation method; KF:

k-fold validation; HO: hold-out validation). Each dataset of the methods using KF had ten

different re-samplings, with no overlapping among the sets

Problem NC Train Opt Val Test NF NE VM
DNA 3 2,232 318 318 318 180 45 KF

Feltwell 5 7,662 1,094 1,094 1,094 15 8 KF

Satimage 6 4,506 643 643 643 36 18 KF

Ship 8 1,780 255 255 255 11 6 KF

Texture 11 3,850 550 550 550 40 20 KF

Digits 10 5,000 10,000 10,000 t1 60,089 132 32 HO

t2 58,646

Letters 26 43,160 3,980 7,960 12,092 132 32 HO

multisensor remote-sensing dataset (Serpico et al., 1996); Ship, which is composed of forward-

looking infra-red ship images (Park and Sklansky, 1990); and Texture, available in the UCI

Machine Learning Repository. These databases, due to their sizes, are divided into ten folds,

each time seven folds are used for training, one for optimization, one for validation, and the

other one for testing. This process is repeated ten times for each replication, whereas each time

a different set of samples was used.

The large datasets represent two handwriting recognition problems, e.g. the recognition of

isolated digits and uppercase letters, extracted from the NIST-SD19 database. Two different

test sets are used to evaluate digit recognition: NIST-digits-test1 and NIST-digits-test2. For

both digits and letters, the original feature set is composed of 132 features, extracted from

concavities and contours (Oliveira et al., 2002). Table 2.1 presents a detailed description of

each database.

Given the large amount of training samples available in the NIST-digits database (in addition to

the training samples described in Table 2.1, there are 185,000 additional training samples), and

the use of a well studied feature set, we can reduce the size of the training set to increase the

level of uncertainty of the recognition problem, and simulate different conditions of uncertainty
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(or confusion, which is a term used interchangeably with uncertainty hereafter). Consequently,

this database does not only allow for simulating an incremental learning scenario, but also for

evaluating how an approach can behave at different degrees of confusion. For this reason, in

this section, we also aim at answering the following questions:

A. How can DSAc behave in an incremental learning scenario, by just appending new samples

to Val?

B. How dynamic selection, represented by DSAc, performs against static selection when the

size of Val ranges from small (high level of uncertainty) to high (low level of uncertainty)?

For all experiments, the following parameters were considered. For each dataset, 100 base

classifiers, with a pre-defined number of features, are generated from the baseline feature set,

based on the random subspaces (RSS) ensemble generation method (Ho, 1998). The base

classifiers can be considered weak classifiers in two aspects. First, the two different types

of classifiers, e.g. k-nearest neighbors classifiers with k = 1 (1NN), and C4.5 decision tree

(DTree) classifiers, can be considered very weak for many problems. Second, the reduced

number of features used by the RSS method (see Table 2.1 for the number of features used for

each problem) greatly contributes to weaken the performance of the classifiers.

To generate the pool of EoCs, a genetic algorithm (GA) is used, in an off-line fashion, to find an

archive with the 25 best solutions on Val, representing C∗′, guided by the optimization set Opt.

The following parameters were used in this work: population size: 128; number of generations:

1,000; probability of crossover: 0.8; probability of mutation: 0.01; one-point crossover and bit-

flip mutation (Dos Santos et al., 2008). The experiments are replicated 30 times, where in each

replication the archive provided by GA is generally different. The results represent the mean

error rates over the 30 replications. For each of the sets using k-fold validation, each replication

represents the mean over the ten re-samplings of each dataset.

For the large datasets, we also evaluated the method known as Bagging to generate the base

classifiers. We used the same scheme employed in (Dos Santos et al., 2008), where 100 DTree
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classifiers were generated by dividing the training set into 100 subsets of equal size, where the

samples for each set were randomly chosen, with no overlapping among the sets. DTree is

used as the base classifier given that Bagging works better with unstable classifiers.

The results are statistically validated by the Kruskal-Wallis nonparametric statistical test. We

test the equality among the mean values, using a confidence level of 95%. Dunn-Sidak correc-

tion is applied to critical values.

2.5.1 Results and discussion

The results from the evaluation of small datasets are presented in Tables 2.2 and 2.3, for 1NN

and DTrees, respectively. Results from the evaluation of large datasets are presented in Ta-

ble 2.4. In all tables, we present only the error rates of DSAc with K = 30. The impact of K

will described later.

Figure 2.6 Evaluation of the parameter θ for the switch mechanism

For both DSAm and DSAc, θ = 0, since this was the best value after preliminary evaluations as

shown in Figure 2.6. As demonstrated, the switch works very well as a tie-breaking mechanism
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Table 2.2 Error rates on small datasets using 1NN classifiers. Results in bold present

the best approach among static MO, DSA, DT, and the proposed DSAm and DSAc, with

K set to 30. Underlined results represent the statistically-significant best method.

Highlighted by * are the proposed approaches. Between parentheses is the standard

deviation of each approach (×10−2)

Method Dna Felt Sat Ship Text
Static selection

Oracle C 0.03 (-) 0.67 (-) 0.36 (-) 0.28 (-) 0.04 (-)

All features 26.30 (-) 12.35 (-) 9.84 (-) 11.24 (-) 1.13 (-)

Best from C 23.10 (-) 9.46 (-) 8.95 (-) 10.26 (-) 0.62 (-)

MV all C 6.87 (-) 10.44 (-) 8.59 (-) 9.94 (-) 1.11 (-)

Best from C∗′ 9.14 (1.60) 9.37 (2.09) 8.19 (2.89) 9.41 (1.66) 0.71 (1.74)

DT C 8.53 (-) 14.76 (-) 8.97 (-) 10.03 (-) 4.56 (-)

Dynamic selection
Oracle C∗′ 1.12 (0.86) 6.06 (2.46) 3.98 (0.83) 3.92 (1.40) 0.40 (0.24)

DSA 10.47 (3.17) 10.76 (4.90) 9.17 (0.99) 11.21 (3.48) 1.03 (0.34)

∗DSAm 5.57 (1.33) 9.35 (4.62) 7.61 (0.87) 8.80 (2.30) 0.93 (0.37)

∗DSAc 5.46 (0.26) 8.93 (0.30) 7.42 (0.31) 8.10 (0.38) 0.56 (0.10)

for both approaches. It is worth noting that when we increase the value of θ , the final error

rates also increase. This fact suggests that by relying more on the decisions provided by the

main structure of either DSAm or DSAc (note the higher the value of θ , the more often the

switch is used), and only using the base classifiers when a tie occurs, the final approach is more

reliable.

The error rates resulting from the evaluation of small databases show that both DSAm and

DSAc are very promising for problems presenting a high level of confusion. The only database

for which neither of the proposed methods resulted in the lowest error rates was the Feltwell

database, using DTree as base classifiers. On all the other databases, DSAc achieved the lowest

recognition rates.

For the large databases, DSAc yielded the lowest error rates on all databases. DSAm, in con-

trast, has performed poorly compared to other static methods. Note that DSAc uses the vali-

dation dataset to compute the DMO structure, and given the larger amount of training samples
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Table 2.3 Error rates on small datasets using DTree classifiers. Results in bold present

the best approach among static MO, DSA, DT, and the proposed DSAm and DSAc, with

K set to 30. Underlined results represent the statistically-significant best method.

Highlighted by * are the proposed approaches. Between parentheses is the standard

deviation of each approach (×10−2)

Method Dna Felt Sat Ship Text
Static selection

Oracle C 0.03 (-) 0.60 (-) 0.22 (-) 0.24 (-) 0.02 (-)

All features 6.85 (-) 16.81 (-) 14.17 (-) 10.92 (-) 7.56 (-)

Best from C 11.33 (-) 11.86 (-) 11.83 (-) 10.45 (-) 6.07 (-)

MV all C 5.05 (-) 11.86 (-) 8.64 (-) 6.80 (-) 2.56 (-)

Best from C∗′ 5.71 (1.30) 10.22 (2.11) 8.35 (1.01) 7.02 (1.59) 2.04 (2.60)

DT C 4.53 (-) 13.93 (-) 8.96 (-) 7.74 (-) 1.34 (-)

Dynamic selection
Oracle C∗′ 1.07 (0.92) 5.82 (3.94) 3.78 (0.78) 3.18 (1.76) 0.81 (0.24)

DSA 7.55 (2.47) 12.52 (5.28) 10.29 (2.16) 10.16 (4.38) 2.42 (0.82)

∗DSAm 4.07 (1.07) 10.77 (4.82) 7.42 (0.76) 5.89 (1.82) 2.13 (0.78)

∗DSAc 3.05 (0.34) 10.32 (0.41) 7.11 (0.30) 5.52 (0.45) 1.11 (0.17)

compared to the small datasets, we believe that this approach has been able to take better advan-

tage of the lower level of uncertainty of large problems, so that it reaches the best performance

in this evaluation. Given the better performance of DSAc over DSAm, hereafter, we pursue the

experimental evaluation by considering only the former for the sake of simplicity.

In order to provide a broader overview of the performance of DSAc, we show the impact of

the value of K, in a range between 1 and 30. Such an evaluation is presented in Figs. 2.7 and

2.8 for small problems, with 1NN and DTrees, respectively. In Figs. 2.9 and 2.10, we present

the same evaluation in large problems, with 1NN and DTrees, respectively. We observe that

the best value for this parameter is problem-dependent. Databases that generate higher error

rates, such as Feltwell, require high K values, and databases with very low error rates, such

as Texture, require very low K values. Consequently, even though by setting K = 30 DSAc

is able to perform well, this value could be adapted to either improve performance or reduce

complexity.
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Figure 2.7 Evaluation of DSAc on small datasets with

1NN classifiers, K varying from 1 to 30

Even though the main goal of this paper was to improve the performance of fusion functions,

in Table 2.5 we present a summary of the results presented by DSAc against the best results

reported in the literature for the same databases evaluated in this work. This table can provide

us an idea to what level of performance a multiple classifier system, using weak classifiers, can

attain by using a very robust combination approach.

In considering small databases, DSAc has been able to outperform the best results thus far pub-

lished in the literature, on all databases. It is worth noting that none of the methods presented

in Table 2.5 uses exactly the same experimental protocol, so this comparison is not as accurate

as for large databases. However, the use of data from the same database provides a good idea

on the difference in performance among the different methods.

For large databases, the error rates presented by DSAc are slightly higher than the lowest

error rates reported in the literature. However, the best results so far have been achieved by
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Figure 2.8 Evaluation of DSAc on small datasets with

DTree classifiers, K varying from 1 to 10

Figure 2.9 Evaluation of DSAc on large datasets with

1NN classifiers, K varying from 1 to 5
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Figure 2.10 Evaluation of DSAc on large datasets with

DTree classifiers, K varying from 1 to 5

Table 2.5 Error analysis, in which we compare the results of the proposed method

DSAc with the best results published in the literature. The second column represents

the average over 30 replications

Proposed method Literature
Database Average (Variance) Best result Method Result

DNA 3.05 (0.12) 2.88 EoC+DS (Dos Santos et al., 2008) 4.59

Feltwell 8.85 (0.12) 8.72 EoC+DS (Dos Santos et al., 2008) 11.50

Satimage 6.89 (0.11) 6.78 EoC+DS (Dos Santos et al., 2008) 8.64

Ship 5.51 (0.27) 5.32 EoC (Rheaume et al., 2002) 5.68

Texture 0.56 (0.01) 0.52 EoC+DS (Woods et al., 1997) 0.66

NIST-digits-test1 1.76 (0.02) 1.08 Single Classifier (Milgram et al., 2006) 0.63

NIST-digits-test2 3.31 (0.04) 3.28 EoC+SS (Radtke, 2006) 2.33

NIST-letters 3.89 (0.06) 3.87 SC (Milgram et al., 2006) 3.18

using strong classifiers, such as Support Vector Machines (SVM) (Milgram et al., 2006) and

Multilayer Perceptron (MLP) Neural Networks (Radtke, 2006), which generally deal very well

with large training sets. In this paper, we limited the scope of the work to consider only weak

classifiers and small training datasets in order to better observe the behavior of combination

approach in conditions that might generate a high level of confusion for the base classifiers.
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The results from the literature, in contrast, might have dealt with lower levels of confusion due

to the much larger amount of samples used for training.

As a consequence, the remainder of this section aims at comparing the performance of DSAc

against MLP and SVM, which are state-of-the-art static approaches, under the same conditions.

First, we evaluate what level of performance DSAc can reach if we incrementally learn the

information provided by the remaining training samples in the NIST-digits database. Next, we

retrain MLPs and SVMs at different levels of uncertainty, which are achieved by downsizing

the NIST-digits database, and compare their results against the ones produced by DSAc.

2.5.1.1 Evaluation of DSAc in an incremental learning scenario

In this section, we evaluate the impact of increasing the size of Val to improve the overall

performance of DSAc, by simulating an incremental scenario. Such a simulation consists of

gradually adding new samples to Val, as previously discussed in Section 2.4.2. We take advan-

tage of the large set of digits available in the NIST SD19 database, by increasing the size of

Val from 10,000 to 180,000 samples. Those are the remaining samples in the hsf_{1-3} series

of the database.

The results of these experiments are shown in Figure 2.11, considering both 1NN and DTrees

with RSS, and both NIST-digits-test1 and NIST-digits-test2. Note that these evaluations do not

only aim at evaluating the behavior of the approach in the incremental scenario, but also aim at

comparing the final results against the literature, since the best results thus far consider methods

that used all samples from this database. As a consequence, in the following paragraphs we

discuss the first topic, while the second topic is discussed afterwards.

Generally, the impact of the size of Val is more significant when the size of Val is relatively

small, and it tends to gradually converge with larger validation sets. Nevertheless, with any

increase in Val we can observe some improvement. This fact shows that the approach can

incrementally acquire knowledge by only increasing the size of this set, so that it can be a
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Figure 2.11 Incremental evaluation of DSAc, with K = 30, using validation set sizes from

10,000 to 180,000, on both NIST-digits-test1 and NIST-digits-test2

generic approach for incremental learning. This allows us to use a heterogeneous pool of

classifiers in the incremental learning process.

Figure 2.12 plots the results of the evaluation of different values for ϑ using the control mecha-

nism described in Section 2.4.2. Compared to the performance of the system using all 180,000,

we see that the control mechanism is able not only to maintain the performance of the system,

but also to reduce the final error rates. With ϑ = 40, the final error rates are reduced to about

1.1%. In addition, we demonstrate in Figure 2.13 this mechanism on the size of Val. The best

approach, represented by ϑ = 40, used only 25,948 samples in Val. Comparing with the use

of all 180,000 samples, we can reach better results by using only around 15% of this set and

drastically reduce the search space of DSAc for recognition.

The final results can be summarized as follows. With 1NN, the error rates have been reduced

from about 2.55% to about 1.78% on NIST-digits-test1, and from about 5.9% to about 4.2%

on NIST-digits-test2. With DTrees, the error rates decreased from about 1.75% to about 1.1%
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on NIST-digits-test1, and from about 4.6% to about 3.31% on NIST-digits-test2. Note that on

NIST-digits-test1, the best results reported in the literature are around 0.63% (Milgram et al.,

2006), using 132 features, 195,000 samples for training, and MLP as classifier. In this work we

could get very close (only 0.47% below) to these results by using weak classifiers, trained with

only 10,000 samples, of which the range of individual error rates is, for example with 1NN,

between 15.92% and 7.53%. Even though in the end we have used the same number of samples

to get these results, we have shown that our approach is able to improve weak classifiers to a

level which is comparable to the best classification methods in the literature, without changing

their parameters.

Figure 2.12 Incremental evaluation of DSAc (K = 30) with DTree classifiers on

NIST-digits-test1 using a control mechanism

2.5.1.2 Evaluation of DSAc against MLP and SVM at varied conditions

As demonstrated in the previous section, by using all the training samples provided by NIST-

digits, DSAc can attain a level of performance that is close to state-of-the-art classifiers such

as MLP and SVM, consisting of static approaches. However, the higher complexity of DSAc,
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Figure 2.13 Size of the validation set for the evaluation presented in Figure 2.12

in both the design and operational phases, might be a barrier for its application in the real

world. For this reason, the main goal of this section is to compare the proposed method,

which is a dynamic approach, against MLP and SVM, which are static approaches, under

various conditions created by downsizing the NIST-digits database. The idea is to observe under

which condition dynamic selection might be worth the higher complexity. As we previously

mentioned, such a downsizing allows for increasing the level of uncertainty of the problem by

simply reducing its training set, since the empirical lower-bound of the NIST-digits database is

known.

By using a setup similar to that described in the previous section, the training database was

reduced to these sizes: 5,000, 10,000, 15,000, 20,000, and 25,000. However, for each training

set, we did 15 different resamplings so that we could conduct 15 replications for each size of

the training set. The parameters for both SVM and MLP were set to the same as reported in

(Milgram, 2007), which were found as the best parameters for this database. Note that for

DSAc we conduct the incremental learning of Val. For MLP and SVM, in contrast, batch

learning is considered, since for each training set size, we retrain the classifiers. In addition, it



71

is worth noting that Val and Opt are merged together to define a single set of samples, which

is used as hold-out validation set by MLP and SVM.

Figure 2.14 Evaluation of different sizes of the training set for NIST-digits, using

NIST-digits-test1. These experiments were replicated 15 times by resampling the training

set each time (a single replication for 180,000 samples, which corresponds to the entire

dataset). Note that the experiments are grouped by approach, e.g. DSAc, MLP, and SVM,

respectively, and for each approach, we evaluated training sets with 5,000, 10,000,

15,000, 20,000, 25,000, and 180,000 samples, respectively

The main results are presented in Figure 2.14, for NIST-digits-test1, and Figure 2.15 NIST-

digits-test2. The most remarkable observation lies in the experiments using only 5,000 samples

for training. In this case, DSAc was significantly superior to both MLP and SVM, showing that

the proposed approach can deal better with a high level of uncertainty under these conditions.

However, this gap becomes narrower and narrower as we increase the size of the training set,

e.g. when we decrease the level of confusion. As a result, the main observation from these

experiments is that dynamic selection, despite generally presenting higher complexity than

static selection, may be the most recommended approach to attain high performance when the

level of confusion of the recognition problem is high. When the level of confusion is low, on
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the other hand, a static approach may work very well without all the complexity brought by

dynamic selection.

Figure 2.15 The same evaluations as in Figure 2.14, but using NIST-digits-test2

2.6 Conclusion and future work

In this paper we first proposed dynamic multistage organizations to enhance classifier fusion.

Based on Dos Santos et al’s approach, we first implemented DSAm to validate these concepts

by using multiple dynamic selection functions. Next, we extended DSAm to use the knowledge

provided by the output profiles of validation samples to create DMO, resulting in DSAc.

Experiments conducted on both small and large databases have confirmed that the proposed

DMO concept looks really promising in improving the use of multiple classifiers, since the

proposed enhancements have been effective in improving DSA. We also observed a significant

improvement in performance of DSAc over DSAm, due to the use of contextual information.

The use of simulated incremental learning scenario showed that we can improve the perfor-

mance of DSAc by only increasing the size of the validation set, without changing the parame-
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ters of the base classifiers. Although other classification approaches such as SVMs and MLPs

can present better performances than DSAc when large training sets are available, we demon-

strated that the proposed approach results in better performance when one can use only small

training databases, e.g.when the level of confusion for recognition is high.

As future work, many directions can be followed. The most important, in our opinion, is to

better investigate the observation that DSAc is better suited to problems presenting a high level

of uncertainty. We can evaluate, for example, the current system on other recognition prob-

lems. We can, as well, implement the system with other base classifiers and different methods

to generate the pool of base classifiers, to evaluate whether the system maintains the same be-

havior with a different baseline architecture or not. In addition, reducing the complexity of

DSAc is a key point to better justify its deployment in real-life systems. In this work we simply

performed a flat search on Val, but other more time-efficient methods can be investigated, for

instance some ideas proposed to reduce the complexity of 1NN classifiers (Cui et al., 2003) to

conduct the search for the most similar samples.

2.7 Discussion

In this chapter, we present DS approaches that can be used with various types of classifiers,

including HMM-based classifiers. This is possible because only the outputs yielded by the

members of the pool C are used to conduct the DS task. Consequently, promising ideas have

been presented for the definition of adaptive systems, which could be used in conjunction with

the ideas presented in Chapter 1.

In some ways, DSAc can be viewed as an AS. It can perform adaptation during the general-

ization phase by means of DS, and it can adapt the classifiers during learning by adding new

samples to its validation set. Nevertheless, the pool of base classifiers remains static during the

lifetime of the system as a whole. An AS should fully adapt to new sources of knowledge. To

achieve this task, we believe that the base classifiers need to be updated over time as well.
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In the next chapter, we present a framework designed to overcome the above issues and define a

robust AS. For this, we pursue the work presented in this chapter by including solutions to bet-

ter adapt the system in the learning phase. We also present ways to improve the generalization

level, in order to avoid reliance on hard-decisions made during the design phase.



CHAPTER 3

LOGID: AN ADAPTIVE FRAMEWORK COMBINING LOCAL AND GLOBAL

INCREMENTAL LEARNING FOR DYNAMIC SELECTION OF ENSEMBLES OF

HMMS

In this work, we propose the LoGID (Local and Global Incremental Learning for Dynamic

Selection) framework, the main goal of which is to adapt hidden Markov model-based pattern

recognition systems during both the generalization and learning phases. Given that the baseline

system is composed of a pool of base classifiers, adaptation during generalization is performed

through the dynamic selection of the members of this pool that best recognize each test sample.

This is achieved by the proposed K-nearest output profiles algorithm, while adaptation during

learning consists of gradually updating the knowledge embedded in the base classifiers, by

processing previously unobserved data. This phase employs two types of incremental learning:

local and global. Local incremental learning involves updating the pool of base classifiers by

adding new members to this set. The new members are created with the Learn++ algorithm.

Global incremental learning, in contrast, consists of updating the set of output profiles used

during generalization. The proposed framework has been evaluated on a diversified set of

databases. The results indicate that LoGID is promising. For most databases, the recognition

rates achieved by the proposed method are higher than those achieved by other state-of-the-art

approaches, such as batch learning. Furthermore, the simulated incremental learning setting

demonstrates that LoGID can effectively improve the performance of systems created with

small training sets as more data are observed over time.

3.1 Introduction

In the past, pattern recognition systems have relied extensively on off-line optimization to fine-

tune classifier parameters. Such an approach usually requires a training set large enough to

contain a number of different samples. These samples must represent most of the variability
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to be observed during recognition, otherwise the system will yield poor generalization results.

However, it may not always be possible to acquire such a training set off-line.

Moreover, without appropriate training data, classifier parameters might be poorly estimated,

resulting in a great deal of uncertainty1 during recognition. That is, the final recognition deci-

sion may be based on random guesses for some ‘difficult’ samples, i.e. samples that the current

classification scheme cannot recognize with enough confidence. It might be possible to over-

come this issue, however, if the classifiers incorporate new knowledge that becomes available

over time. This knowledge is represented by the data that are processed during operation of the

system. Presumably, the more data are observed, the better the estimate of the classifier param-

eters, and, consequently, the lower the degree of difficulty faced by these classifiers. On this

basis, various incremental learning (IL) algorithms have been proposed (Polikar et al., 2001;

Cavalin et al., 2009; Mongillo and Deneve, 2008).

The use of ensembles of classifiers (EoCs) (Rokach, 2010) in IL algorithms has been shown

to be effective. New classifiers, trained on new data, can be appended to an existing pool to

incorporate new knowledge without losing previous information (Polikar et al., 2001; Cavalin

et al., 2009; Yu-Shu and Yi-Ming, 2009; Ulas et al., 2009; Kapp et al., 2010). That new knowl-

edge is represented by the new classifiers, while the previous knowledge is embedded in the

existing ones. Although this method is suitable for a broad range of systems, and can be there-

fore applied to different types of classifiers, most of these algorithms rely on static methods

to combine classifiers during generalization. Static methods can be useful for dealing with

some issues, such as the negative effect of using small datasets for training. However, other

issues, such as high intra-class variability, call for a combination method that can select the

best classifiers for recognizing each test sample.

As demonstrated in (Cavalin et al., 2011a), the use of EoCs in dynamic selection may provide

better performance than static selection in settings involving a high level of uncertainty. The

1The terms uncertain, difficult, and confused are used, interchangeably, to refer to the same concept: the

recognition problem is ill-defined, i.e. there are not enough data to model classifiers to deal with a large feature

set, and these classifiers are likely to perform poorly during generalization.
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main approach, called the Dos Santos et al approach with Contextual Information (DSAc), can

be incrementally updated by appending new samples to its validation set. However, the pool of

classifiers remains static during this process, meaning that one module of the system is adapted

to new sources of knowledge, but its main components, the classifiers, remain static. Where

problems are ill-defined, for instance problems where there are not enough data for training,

an approach is required that is not only able to control a baseline recognition system during

generalization, but also to adapt the parameters of the system as new data are observed during

learning.

To address this issue, we propose a new framework called LoGID (Local and Global Incremental

Learning for Dynamic Selection), which integrates EoC-based incremental learning with a dy-

namic selection approach inspired by DSAc. The framework is designed to adapt a pool of base

classifiers to the data processed by the system at both the learning and generalization levels.

During generalization, the main idea is to select the best classifiers for recognizing each test

sample. During learning, the focus is to update the knowledge embedded in the classifiers,

using the data that become available over time. Given the structure of LoGID’s generalization

phase, the learning phase involves two different types of incremental learning:

a. Local: incremental learning of the pool of base classifiers;

b. Global: updating of the parameters of the dynamic selection algorithm based on newly-

observed data.

LoGID consists of the following components. For the generalization phase, we propose a

new mechanism for dynamic selection: K-nearest Output Profiles (KNOP), which combines

the completely dynamic architecture of the KNORA algorithm (Ko et al., 2008) and the more

general architecture of DSAc (more general because of its use of output profiles2). Local in-

cremental learning uses the Learn++ algorithm (Polikar et al., 2001) to incrementally generate

a diverse pool of classifiers. Given the KNOP architecture, global incremental learning is re-

2An output profile consists of a vector containing the outputs yielded by the base classifiers (Kuncheva et al.,

2001).
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alized by appending new samples to the dynamic selection dataset. It is worth noting that

we focus in this work on optimizing LoGID for classifiers based on hidden Markov models

(HMMs). This allows us to pursue the evaluations using the ensembles presented in (Cavalin

et al., 2009), and to observe the possible boost from using the proposed approach in incremen-

tal learning settings. However, LoGID can be adapted to other types of classifiers with minor

modifications.

The proposed method is evaluated on a varied set of databases, involving problems such as

handwriting recognition, speech recognition, and speaker identification. These databases vary

greatly in terms of the numbers of input features, classes, and training samples, which allow

us to evaluate the proposed approach on different types of HMM-related recognition problems,

each of which presents a different level of difficulty. During the evaluations, an incremental

learning scenario is simulated. The goal is to observe how the proposed method evolves as new

data are observed, and to observe its effect on the resulting recognition rates.

The remainder of this paper is organized as follows. Section 3.2 presents an overview of

incremental learning and dynamic selection. In section 3.3, the proposed LoGID approach is

described in greater detail. The experimental evaluation is presented in section 3.4, and the

conclusions and future work are discussed in section 3.5.

3.2 Related Work

In this section we present an overview of state-of-the-art approaches to both incremental learn-

ing and dynamic selection, which complements the description of the main motivation for this

work.

3.2.1 Incremental Learning (IL)

This type of learning involves the updating of an existing classifier, or pool of classifiers, which,

for the sake of simplicity, we refer to as a classification scheme. The main goal of IL is to
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incorporate the knowledge that is intrinsically present in previously unobserved chunks of data

into an existing system.

Ideally, an algorithm that conducts IL will meet the following requirements (Polikar et al.,

2001):

A. Incorporation of new knowledge into an existing classification scheme;

B. No loss of previous knowledge in the process; if there is a loss, the system is said to suffer

from catastrophic forgetting;

C. Reduction of the complexity overhead of batch learning (BL), the requirements of which,

in terms of memory and time, increase as the the size of the training set increases; if there

is no reduction, this type of algorithm would be meaningless.3

In the past, researchers have focused on developing algorithms to meet the above requirements,

for different types of classifiers. Most of these focus exclusively on single-classifier systems,

in an attempt to change the parameters of a given type of classifier directly (Mongillo and Den-

eve, 2008; Mizuno et al., 2000; Florez-Larrahondo et al., 2005). Many authors have proposed

one-pass versions of BL counterparts (Mizuno et al., 2000; Florez-Larrahondo et al., 2005).

However, given that BL algorithms generally rely on an appropriate number of training itera-

tions, one-pass training usually results in lower classifier performance. Also, many decisions

are required based on the current state of the classifier at a given time, potentially introducing

bias either through the current chunk of data or the current state of the classifier.

The issues associated with single classifier-based IL algorithms have drawn the attention of

many experts on this subject to the use of ensembles of classifiers (EoCs) (Polikar et al., 2001;

Cavalin et al., 2009; Yu-Shu and Yi-Ming, 2009; Ulas et al., 2009; Kapp et al., 2010). When

new data are available, new members can be appended to an existing pool of classifiers. Since

3Some authors maintain that the algorithm should use no previous data at all (Polikar et al., 2001), but this

constraint is often relaxed, since in many cases a global overview might be necessary for making certain decisions,

which may be aided by some data that have been stored, such as a validation set (Cavalin et al., 2009).
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the existing members had been trained on old data and the new members were trained on new

data, the new pool combines both old and new information. In this case, the new classifiers can

be trained with the same algorithms used for BL. Combining different types of classifiers into a

single pool can also be useful for enhancing the recognition capability of an EoC. Furthermore,

this approach does not suffer from catastrophic forgetting, since once a classifier has been

trained, its set of parameters remains the same. In addition, the knowledge modeled from

useless or noisy data can be filtered after enough training data have been observed, since each

classifier models a different time step of the learning process.

Nevertheless, the diversity of EoC members might be better exploited in many situations. Most

of the existing IL algorithms based on EoCs use a static approach to combine classifiers (Po-

likar et al., 2001; Cavalin et al., 2009; Ulas et al., 2009). This approach is suboptimal, how-

ever, since not all classifiers are useful for recognizing all the test samples. Dynamic selection

approaches, in contrast, may improve the potential of ensembles in IL. It has been previously

demonstrated that dynamic weighting of classifier outputs may result in better recognition rates

than static classifier combination (Gangardiwala and Polikar, 2005; Muhlbaier et al., 2009).

However, these approaches select classifiers by considering only local points of view, i.e. only

the information related to each classifier is used to weight their outputs. Therefore, a dynamic

selection approach based on the use of output profiles might be more appropriate for this prob-

lem, since it would evaluate the behavior of the base classifiers working together.

3.2.2 Dynamic Selection (DS)

A multiple classifier system is composed of a pool of base classifiers, which we refer to as C.

The dynamic selection of classifiers consists of finding a subset of classifiers C′
i , where C′

i ⊂C,

which contains the best members for recognizing the test sample xi,test (Ko et al., 2008; Woods

et al., 1997; Giacinto and Roli, 2001; Zhu et al., 2004; Dos Santos et al., 2008; Soares et al.,

2006). In the literature, the best subset of classifiers C′
i is generally associated with the highest

level of competence, which can be computed by, for instance, K nearest neighbors (Ko et al.,

2008; Woods et al., 1997), clustering (Kuncheva, 2000), multiple training datasets (Singh and
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Singh, 2005), or measures considering the outputs produced by the base classifiers (Dos Santos

et al., 2008).

Recently, instance-based DS approaches (Ko et al., 2008; Cavalin et al., 2011a, 2010) have

been proposed. These approaches are able not only to robustly select a classification scheme

dynamically, but also to allow for the parameters of the system to be adapted to new data, in

an IL setting, by including new samples in their dynamic selection set. As a consequence,

this type of method is promising not only for conducting DS, but also to be combined with an

EoC-based IL algorithm and define an adaptive framework which can: 1) conduct IL with the

base classifiers; 2) dynamically select the best classifiers to recognize each test sample; and 3)

improve the DS algorithm by appending new examples to the set of instances.

Among the existing instance-based methods, the DSAc approach stands out since it can be used

with different types of base classifiers and can be applied to different pattern recognition prob-

lems easily, owing to its use of output profiles. This approach compute the best classification

scheme for recognizing a test sample, which, in this case is a structure called dynamic multi-

stage organization, by evaluating the similarity between the output profile of the test sample and

that of each validation sample. The disadvantage of this method is that it depends on an off-line

optimization phase to generate a pool of EoCs. This dependency is suboptimal for designing

adaptive systems, since numerous computations should be performed to update the EoC pool

after a new member has been included. For this reason, we propose a new DS approach in

this work, called the K-nearest Output Profiles (KNOP), which is described in the next section.

This approach is designed to embed the steps used by the KNORA algorithm (Ko et al., 2008)

into the architecture of DSAc to define EoCs during the operational phase. KNORA is able to

define EoCs in a completely dynamic fashion. By combining the advantages of both the DSAc

and KNORA approaches, the proposed KNOP method can be used with various types of base

classifiers, can be easily adapted to different pattern recognition problems, and can define EoCs

in a completely dynamic fashion.
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3.3 The LoGID Framework

The main objective of our proposed framework, LoGID, is to adapt an EoC-based system

during both the learning and generalization phases to make it better able to deal with factors that

may lead to recognition uncertainty, such as small training sets. In other words, consider a pool

of classifiers C as the current state of the baseline system, the training data stream containing

labeled samples, and the test data consisting of unlabeled samples. Suppose that C has been

deployed and new chunks of training data become available over time. This framework is

designed to update the knowledge embedded in the base classifiers C whenever a block of

unprocessed training data, represented by Dt , is available at a given time t, and select the best

components for recognizing a given test sample xi,test .

�������� 	�����
������

��������
�����	�	
��

�

��������
�����	�	
��

�

��� �

��

��

��

��������

��
�

����������������

���	���
��
�����	�	
�����	��

�
�����

������������������

�
����		��

�
��������   

�
� � ����

�
���� ����

   
�!� ��� ���

"#$�
������
��$������

��%#�
�&

%����	%	���

��#��#���	�
�

�����

�
�	�
�&
��
�
'��

��	
�

������	

����
��
����
�
�
$
�����	�	
��

����

(	�
�������
��$������

Figure 3.1 General overview of the LoGID architecture.
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The LoGID framework is divided into two phases: learning and generalization. These phases

become active according to the data presented to the framework. A general overview of this

framework is depicted in Figure 3.1, and its main steps are formalized in Algorithm 3.1. The

generalization phase involves inputing the test sample xi,test to LoGID, as defined in step 2. In

this phase, the KNOP method is used to dynamically select the best EoC in step 5, containing

members of the pool of classifiers C, for recognizing xi,test . This task relies on comparing the

output profile of the test sample xi,test with the output profiles stored in the set DSel′, which

are related to the samples stored in the dynamic selection set DSel, as indicated in step 4.

Then, the final recognition is conducted (step 6). The learning phase is activated in step 8,

if a block of unprocessed training data Dt is presented to the framework. Note that using

the KNOP algorithm during generalization allows for conducting two types of incremental

learning during the learning phase: local and global. Local incremental learning consists of

updating the pool of classifiers C by discarding the classifiers considered the least useful, and

by appending new members to the pool, trained with the current block of data Dt , in steps

11 and 12, respectively. Global incremental learning involves updating the knowledge used

to conduct dynamic selection. In step 14, the set DSel′ is updated by including the output

profiles computed from the samples in Dt . In step 15, DSel′ is then filtered to remove irrelevant

samples.

In the remainder of this section, we present the learning and generalization phases in greater

detail.

3.3.1 Learning Phase - Local and Global Incremental Learning

During the learning phase, at a given time t, the previously unobserved block of data Dt is

processed by LoGID. The main goal here is to update the sources of knowledge used during

the generalization phase, which is explained in Section 3.3.2. First, local incremental learning

is conducted to update the pool of base classifiers C. Next, global incremental learning is

carried out to update the set of output profiles, DSel′.
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Algorithm 3.1 The main steps of the LoGID framework.

1: Input: C, the base classifiers, and either Dt , the unseen block of data, or xi,test ,

the test sample.

2: if xi,test is inputed then
3: # The generalization phase is called
4: Find the K output profiles in DSel′ which are the most similar to the output

profile of xi,test
5: Define the best EoC

6: Conduct the recognition of xi,test and provide the final decision

7: else
8: if Dt is inputed then
9: # The learning phase is called

10: # First, local incremental learning is conducted
11: Prune the least selected classifiers from C
12: Train new classifiers and add them to C
13: # Then, global incremental learning is done
14: Update DSel and DSel′
15: Filter DSel and DSel′
16: end if
17: end if

3.3.1.1 Local Incremental Learning - Updating the pool of base classifiers

In this module, new knowledge is introduced to the pool of classifiers C by appending to it a

new set of classifiers. In other words, if we suppose that Ct−1 corresponds to the current state

of C at a given time t, and that Ct corresponds to the newly generated set of classifiers, then C

is updated by concatenating Ct−1 with Ct , i.e. C =Ct−1 ∪Ct .

The new classifiers Ct are generated with the data provided by the current block Dt . For this

task, we consider the Learn++ algorithm (Polikar et al., 2001). This algorithm can create a set

of classifiers for each new block of data, using a distribution that weights the selection of a

sample from the current block of data Dt . The resulting EoC is likely to be diverse since sam-

ples that have not been previously observed, or samples that have not been properly modeled

in C, have a greater chance of being selected.
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Algorithm 3.2 Local incremental learning.

1: Input: C, the base classifiers, and Dt , the unseen block of data.

2: if N > Nmax then
3: By considering the control mechanism defined in Section 3.3.1.1.1, prune the

N −Nmax least used classifiers from C
4: end if
5: Call Algorithm 3.3 to update C
6: Output: the updated pool of classifiers C

Prior to the creation of the classifier pool Ct , a pruning method is used to eliminate from the

current pool C the members that are considered the least useful. This pruning is aimed at

avoiding the performance of useless computations during the recognition phase. To define the

usefulness of a classifier, the usage statistics of the pool C are computed on the block Dt .

The main steps of local incremental learning are presented in Algorithm 3.2. First, a predefined

threshold, denoted Nmax, is used to evaluate the size of C (steps 2 to 4). If N is larger than Nmax,

the least useful classifiers are removed from C (step 3). Then, Learn++ is called upon to create

the new set of classifiers Ct to update the pool of classifiers C (step 5).

3.3.1.1.1 Pruning the pool of base classifiers

To prune C, the predefined threshold Nmax and the usage statistics of the classifiers, computed

on Dt , are considered. If the size of C is above that threshold, i.e. N > Nmax, only the Nmax

most used classifiers are kept in C, while the remaining N −Nmax members are discarded.

The usage statistics of a classifier correspond the number of times this member of C has been

selected to conduct recognition during the generalization phase. To compute these statistics, a

validation step is conducted by taking into account the current pool of classifiers C, the block

of data Dt , and the KNOP algorithm (see Section 3.3.2). The samples in the set Dt are used

to validate the current state of C with the KNOP algorithm. That is, each sample in Dt is

recognized by the KNOP algorithm, and the number of times each classifier in C has been

used to compose the dynamically selected EoC is stored. After evaluating the entire set Dt , the



86

usage statistics of a classifier correspond to the total number of times it has been selected to

compose EoCs, considering all the EoCs that have been dynamically defined in this process.

Ultimately, we assume that the more often a base classifier is selected to recognize the samples

in Dt (i.e. the higher its value based on usage statistics), the more useful this classifier is. At

the same time, the classifiers that are used least should be replaced by new ones, trained with

samples from Dt .

3.3.1.1.2 The Learn++ algorithm

The Learn++ algorithm is used to update C with the newly generated classifiers Ct trained

with the data present in the block of data Dt . The algorithm processes this block over Tk

iterations, where Tk corresponds to the number of new classifiers to be generated at each time

t. During each iteration k, where 1 ≤ k ≤ Tk, a new classifier ck is created and put into C.

For each classifier ck, two disjoint subsets of Dt , denoted T Rk and V Lk, are considered as

training and validation subsets, respectively. The samples for T Rk and V Lk are chosen based

on the distribution DISTt . This distribution is first initialized uniformly, then updated based

on the performance of the current pool of classifiers to ensure that examples misclassified by

the current ensemble have a high probability of being sampled to compose the training set for

the next classifier. In an incremental learning setting, the examples with a high probability of

being subjected to error are those that are unknown, or are yet to be used to train the classifier.

The main steps of Learn++ are formalized in Algorithm 3.3. Each block of data Dt , at a given

time t, is associated with the distribution DISTt . At the beginning of each iteration k, i.e. in step

4, DISTt is updated according to current weights stored in wk. Next, in step 5, this distribution

is used to select two subsets of samples from Dt : T Rk and V Lk. These subsets are used as

training and hold-out validation sets respectively, to generate a new classifier ck during step 6.

The next steps consist of evaluating whether or not ck is a sufficiently accurate classifier, first

individually and then as a member of the pool C. Throughout step 7, the individual error rate εk

of this classifier is computed on Dt . If εk is above 1/2, ck is discarded and the algorithm jumps

back to step 3 (step 9). If ck is not discarded during the individual evaluation, this classifier is
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Algorithm 3.3 The Learn++ algorithm.

1: Input: the block of data Dt , the pool of classifiers C
2: Initialize w1(i) = 1/|Dt |
3: for k = 1 to Tk do
4: Set DISTt = wk/∑|Dt |

i=1 wk(i), so that DISTt is a distribution

5: Choose the subsets T Rk and V Lk from Dt , according to DISTt
6: Train a new classifier ck, providing it with T Rk for training and V Lk for vali-

dation

7: Considering ck, calculate its individual error rate εk on Dt
8: if εk > 1/2 then
9: Set k = k−1, discard ck and go to step 5.

10: else
11: Put ck in C
12: end if
13: Considering C, compute the composite error rate Ek on Dt
14: if Ek > 1/2 then
15: Set k = k−1, remove ck from C, and go to step 5.

16: end if
17: Set Bk = Ek/(1 − Ek) (normalized composite error), and

update the weights of the instances wk+1(i) = wk(i) ×{
Bk, if C provides the correct decision for the sample xi
1, otherwise

, where xi is

a sample from Dt .

18: end for
19: Output: the updated pool of classifiers C

added to the pool of classifiers C (step 11), and the composite error rate Ek of this updated pool

is computed on Dt (step 13). If Ek is above 1/2, ck is discarded (step 15) and the algorithm goes

back to step 3. Otherwise, ck is kept in C, and the algorithm keeps iterating until all Tk new

classifiers have been added to C. However, before jumping to the next iteration, the weights

wk are updated by considering the normalized composite error Bk (step 17). As a result, these

weights can be used to compute the distribution DISTt in the next iteration, which will in turn

be used in selecting the next training and validation subsets, T Rk+1 and V Lk+1 respectively.

Note that wk is initialized uniformly, as in step 2. For a detailed description of Learn++, see

(Polikar et al., 2001).
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3.3.1.2 Global Incremental Learning - Updating the set of output profiles

Global incremental learning involves updating the set of output profiles DSel′ to accommodate

new output profiles, when a new block of data Dt is available at a given time t. This process

is designed to improve the knowledge used by the KNOP algorithm (see Section 3.3.2) to

dynamically select EoCs.

This phase, formalized in Algorithm 3.4, consists of the following steps. First, the current set of

output profiles DSel′ is updated to incorporate the knowledge introduced by the new classifiers

in C, created with local incremental learning (steps 2 to 4). The outputs of these new classi-

fiers are computed from the corresponding sample stored in DSel. Second, the output profiles

computed from the current block of data Dt are appended to DSel′, and their corresponding

observation sequences are saved in DSel (steps 5 to 9). That is, for each sample x j,unseen in

Dt , the corresponding output profile x̃ j,unseen is added to DSel′t . Accordingly, x̃ j,unseen is added

to DSel′t . Then, DSel is concatenated with DSelt , and DSel′ is concatenated with DSel′t (steps

10 and 11). Finally, a filtering mechanism removes the samples that are considered the least

relevant from DSel′, and consequently from DSel (steps 12 to 18).

3.3.1.2.1 Filtering dynamic selection samples

The proposed mechanism keeps in DSel and DSel′ only the samples that belong to the “zone of

relevance”. This zone is computed by considering the normalized margin presented in Equa-

tion 3.1. Note that v1 j corresponds to the number of votes received by the winning class,

computed from the outputs yielded by C for the sample x̃ j,dsel in DSel′. Similarly, v2 j corre-

sponds to the number of votes received by the class placing second.

m j =
v1 j − v2 j

N
, where 0 ≤ m j ≤ 1 and N = |C| (3.1)

Two predefined thresholds, ranging from 0 to 1.0 and denoted ϑmin and ϑmax, define the “zone

of relevance”. If the normalized margin m j is within the region defined by ϑmin ≤ m j ≤ ϑmax,
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Algorithm 3.4 The global incremental learning algorithm.

1: Input: the block of data Dt , the pool of classifiers C, the current dynamic

selection set DSel, and the current set of output profiles DSel′
2: for each x j,dsel in DSel do
3: Update its corresponding output profile in DSel′, i.e. x̃ j,dsel , to store the

outputs of the new classifiers in C
4: end for
5: for each x j,unseen in Dt do
6: Compute x̃ j,unseen, i.e. the output profile of x j,unseen
7: Put x j,unseen in DSelt .
8: Put x̃ j,unseen in DSel′t .
9: end for

10: DSel = DSel ∪DSelt
11: DSel′ = DSel′ ∪DSel′t
12: for each x j,dsel in DSel do
13: Compute m j for x̃ j,dsel , using Equation 3.1

14: if not(ϑmin ≤ m j ≤ ϑmax) then
15: Remove x j,dsel from DSel.
16: Remove x̃ j,dsel from DSel′.
17: end if
18: end for
19: Output: the updated sets DSel and DSel′

the sample x̃ j,dsel is kept in DSel′. Otherwise, the sample is discarded. These thresholds define

the minimum and maximum margins that a sample in DSel′ must present. This mechanism

allows samples that present a larger than expected margin value, that is m j > ϑmax, to be ex-

cluded from DSel′. These may be redundant samples, and would negatively affect recognition

time. In addition, the mechanism is useful for excluding samples with too low a margin value,

i.e. m j < ϑmin. These samples could negatively affect recognition performance by introducing

noise.

3.3.2 Generalization Phase - The KNOP Algorithm

The generalization phase involves the application of the K-nearest Output Profiles (KNOP)

algorithm, depicted in Figure 3.2, to recognize each test sample xi,test . The main steps of this

algorithm are presented as Algorithm 3.5. First, the test sample xi,test is converted into an
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output profile, denoted as x̃i,test (step 2). In this work, an output profile contains the scores

yielded by all the HMM-based classifiers belonging to the pool C. In step 3, the output profiles

in DSel′ that are the K most similar to x̃i,test are stored in Ψi. Next, the samples in Ψi are used

to define the best ensemble C∗
i for recognizing xi,test (steps 5 through 11), where |C∗

i |=Ui. For

each sample in Ψi, if a classifier ck correctly recognizes this sample, it is added to C∗
i .

Dynamic Selection

Pool of

Classifiers

C

di

c’’i,1

c’’i,2

c’’i,Ui

cli > θ

o'’i,1

o'’i,2

o'’i,Ui

c1

c2

.
.
.

cN

testi
x
,

O’’i

The most similar output profile

Switch

No

Yes

DSel’ 

.
.
.

Find the

most similar

output profiles

KNORA-OP

Union

testi
x
,

~

C*i

Ψi

Figure 3.2 Overview of the KNOP approach

Before computing the final decision di, the switch mechanism is used (steps 12 to 18), the

main objective of which is to avoid relying on low-confidence decisions. In this case, if the

confidence level cli of the voting provided by the ensemble C∗
i is above the predefined threshold

θ , the decision made by this ensemble is considered as the final one. Otherwise, the label of

the most similar output profile in DSel′ represents di.

We describe the main modules of the KNOP algorithm in greater detail below.

3.3.2.1 Computing output profiles using scores

In this work, we have defined an output profile as the vector containing a concatenation of the

scores yielded by all the HMM-based classifiers in the pool C. The main goal is to compute
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Algorithm 3.5 Complete KNOP algorithm for HMMs.

1: for each data point xi,test in Test do
2: Compute x̃i,test using transformation T , as defined in Equation 3.2

3: Considering DSel′, find the K x̃ j,dsel most similar to x̃i,test and put into Ψi
4: C∗

i = /0

5: for each x̃ j,dsel in Ψi do
6: for each ck in C do
7: if KNORA-Union’s rules are satisfied then
8: Insert ck into C∗

i
9: end if

10: end for
11: end for
12: Compute cli from C∗

i using Equation 3.3

13: # Switch mechanism
14: if cli > θ then
15: di = most voted class from C∗

i
16: else
17: di = the label of the most similar x̃ j,dsel from DSel′
18: end if
19: end for

the similarity between the samples in the decision space, considering information related to

all classes. In this case, classifiers that do not conduct recognition with enough confidence for

some samples can still contribute to the similarity computation. This would not be possible

with output profiles formed only by the crisp label outputs, as in (Cavalin et al., 2011a).

Consider the HMM-based classifier c j as the set of HMMs Λ j = {λ j,1, . . . ,λ j,M}, where M

corresponds to the number of classes. Consider, too, the set of base classifiers as the set of N

HMM-based classifiers C = {Λ1, . . . ,ΛN}, and the following transformation:

T : xi ⇒ x̃i, (3.2)

Let L∗
i, j = {Li, j,1(O|λ j,1), . . . ,Li, j,M(O|λ j,M)} be the set of likelihoods produced by Λ j for all

classes, given xi,test . Also, consider the set of scores produced by Λ j for the same xi,test as
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S∗i, j = {Si, j,1, . . . ,Si, j,M}, where Si, j,k = Li, j,k(O|λ j,k)/∑M
l=1 Li, j,l(O|λ j,l). We denote an output

profile as x̃i = {S∗i,1, . . . ,S
∗
i,N}. Given that xi,test represents an observation sequence that is to be

processed by the HMMs, x̃i,test represents the vector of scores produced by all of the N ×M

HMMs in C for this observation sequence.

3.3.2.2 KNORA-OP-Union: Dynamically defining the best EoC

Consider x̃i,test to be the output profile of xi,test and DSel′ to contain the output profiles of

all samples in DSel, i.e. for each x j,dsel the corresponding x̃ j,dsel is stored in DSel′. The

dynamically selected ensemble C∗
i is computed in two steps. First, the K output profiles x̃ j,dsel

in DSel′ that are the most similar to x̃i,test , considering the Euclidean distance, are stored in Ψi.

Then, a selection algorithm inspired by the KNORA-OP-Union method (Batista et al., 2011)

uses the output profiles in Ψi to choose the best members belonging to C to compose the EoC

C∗
i .

The above selection algorithm works as follows. Let O= {o1, . . . ,oN} be the crisp label outputs

of the classifiers in C. Given the output profiles x̃ j,dsel stored in Ψi, suppose each x̃ j,dsel has

been correctly classified by a set of classifiers C′
j. Every classifier ci ∈C′

j must be contained in

the final ensemble C∗
i and should submit a vote on the sample x̃i,test . Note that a classifier may

be present in C∗
i more than once if it correctly classifies more than one sample in Ψi.

After C∗
i is computed, the final decision is evaluated by the switch mechanism.

3.3.2.3 The switch mechanism

The switch mechanism depends on the confidence level cli of the outputs of the dynamically

selected EoC C∗
i to recognize the test sample xi,test . This confidence level is computed using

Equation 3.3.

cli =
v1i − v2i

K ×N
(3.3)
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cli is based on the margin (Hansen et al., 1997) of the ensemble C∗
i , which is the difference

between the number of votes of the two classes with the most votes, i.e. v1i and v2i, given

xi,test and C∗
i . When the margin is high enough, C∗

i performs the recognition with a high level

of confidence. By analogy, when that margin is low, the confidence level of the EoC is low.

Consequently, the use of a threshold θ makes it possible to reject low confidence decisions

outputted by the ensemble and to rely on another source of knowledge. In other words, if the

confidence level is above the predefined threshold θ , i.e. cli > θ , the outputs of the members

of C∗
i provide the final decision. Otherwise, the switch uses the most similar output profile in

DSel′.

Note that the size of C∗
i is dependent on the cardinality of C, i.e. N. Given that this size might

change over time, in Equation 3.3 the margin is normalized by the maximum possible size for

C∗
i , i.e. K×N. In this case, a single continuous value for θ , in the 0 to 1 range, can be used for

pools of classifiers with different cardinalities.

3.4 Experiments

In this section, we present our experimental evaluation of the proposed LoGID approach. Since

the implementation of this framework focuses on HMMs, the experimental protocol includes

observation sequences extracted from four different databases. These databases are listed in

Table 3.1.

Table 3.1 The databases considered in this work

Database Problem Source
Japanese Vowels Voice recognition UCI (Frank and Asuncion, 2010)

Arabic Spoken Digits Speech recognition UCI (Frank and Asuncion, 2010)

Isolated Uppercase Letters Handwriting recognition NIST SD19

Isolated Digits Handwriting recognition NIST SD19

The parameters of the proposed approach are presented in Table 3.2 for each database. This

table also presents the number of features, the size of the datasets, and the number of classes for

each database. For NIST Letters and NIST Digits, the system proposed in (Britto et al., 2003)
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is implemented as the baseline recognition system, extracting features from both the columns

and the rows of the images. For the remaining databases, a single left-right HMM-based system

is considered (Rabiner, 1989). The number of states for each left-right HMM is computed with

Wang’s method (Wang, 1994). The value of K is set to 30 for the KNOP algorithm, since this

value worked well for many applications in (Cavalin et al., 2011a). It is worth noting that, two

distinct test sets are considered for the NIST Digits database, test1 being generally known to be

more difficult than test2. It is also worth noting that the Baum-Welch algorithm is used to train

the HMMs in local incremental learning. To train each HMM, the set T Rk is used to estimate

parameters and V Lk is used as a hold-out validation subset (see Algorithm 3.3).

Table 3.2 The main parameters for each database. The training data are equally

distributed for all classes. Train, DSel, and Test: number of samples in the training,

dynamic selection, and test set, respectively; Bl: number of blocks into which Train is

divided for incremental learning; C: number of classes; Feat: number of input features;

and CB: codebook size. θ , Tk, ϑmin, ϑmax, and Nmax: the main parameters for LoGID, set

by evaluations on the dynamic selection set.

Database Train DSel Test Bl C Feat CB Tk θ ϑmin ϑmax Nmax

Japanese 216 54 370 3 9 12 24 10 0.1 0.2 1.0 15

Arabic 5,500 1,100 2,200 10 10 13 64 10 0.0 0 1.0 100

Letters 43,160 11,941 12,092 10 26 47 256 5 0.3 0.2 0.8 100

Digits 180,000 10,000 test1 - 60,089 18 10 47 256 5 0.3 0.2 0.8 200

test2 - 58,646

Incremental learning settings are simulated by dividing the training sets into smaller chunks of

data, which are equally distributed according to the number of blocks defined in Table 3.2. The

block numbers have been empirically defined, with the aim of balancing them with a reasonable

number of samples for training.

For a better statistical evaluation, ten different replications are conducted for each dataset,

each of which considers a unique set of initialization parameters. The results are statistically

validated by the Kruskal-Wallis nonparametric statistical test, and equality among the mean

values is tested using a confidence level of 95%, with Dunn-Sidak correction applied to critical

values.
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3.4.1 Results

In this section, we first explain how the parameters have been set for the proposed method.

This task considers only the dynamic selection set DSel and the first training block D1. Next,

we present the results on the test sets, processing of all the training blocks Dt .

3.4.1.1 Parameter setting

In order to compute the best configuration for LoGID, the parameters Tk, θ , ϑmin, ϑmax, and

Nmax are evaluated with the following methodology:

A. Each parameter is evaluated in this sequence: Tk, θ , ϑmin and ϑmax, then Nmax

B. Suppose that, during the design of the system the only data available are those in the first

chunk of training data D1 and in the initial dynamic selection set DSel, the size of which

appears in Table 3.2. To set the configuration parameters, the performance is evaluated by

dividing DSel into two distinct subsets of equal size. The first subset is used to compute

the set of output profiles DSel′, and the second is used to evaluate the performance of the

system. This scheme is repeated by swapping the subsets, and the average recognition rate

represents the overall performance.

To evaluate the impact of Tk and θ , LoGID is implemented with no pruning of either the pool of

classifiers or the dynamic selection set. For the former, the following values were considered:

(3,5,10,15,20). The parameter θ is evaluated in the 0.0 to 1.0 range, with an interval of 0.1

between each evaluation. Owing to space constraints, only the best values for these parameters

are listed in Table 3.2.

The parameters ϑmin and ϑmax are evaluated by considering the following set of values (0,

0.2, 0.4, 0.6, 0.8, 1.0), and the results presented in Figures 3.3, 3.4, 3.5, and 3.6, for Japanese

Vowels, Arabic Spoken Digits, NIST Letters, and NIST Digits, respectively. The best values for

each database, in the same order, were: (0.2, 1.0), (0, 0.6), (0.2, 0.8), and (0.2, 0.8), for ϑmin
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and ϑmax respectively. Note that when two configurations yield similar results, the smallest

difference between ϑmin and ϑmax is considered as the best configuration. The smallest value

represents the narrowest region of relevance, so that fewer samples are kept in DSel′.

Figure 3.3 Evaluation of different values for ϑmin and ϑmax on the

dynamic selection set of Japanese Vowels. The best recognition

rates are reached with ϑmin = 0.2 and ϑmax = 1.0.

For each database, we evaluated a set of five different values for Nmax. These values are based

on empirically defined minimum and maximum sizes for C. The results are presented in Fig-

ures 3.7, 3.8, 3.9, and 3.10, for Japanese Vowels, Arabic Digits, NIST Letters, and NIST Digits,

respectively. The best value for each database, in the same order, is: 10, 100, 80, and 120. We

note that base classifier pruning works better on Japanese Vowels, with Nmax = 10, and on the

NIST Digits database, with Nmax = 120. On Arabic Spoken Digits, however, the best value for

Nmax is equal to the maximum size for C, i.e. 100. This means that the best option for this

database is not to prune.
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Figure 3.4 Evaluation of different values for ϑmin and ϑmax on the

dynamic selection set of Arabic Digits. The best recognition rates

are reached with ϑmin = 0 and ϑmax = 0.6.

Figure 3.5 Evaluation of different values for ϑmin and ϑmax on the

dynamic selection set of NIST Letters. The best recognition rates

are reached with ϑmin = 0.2 and ϑmax = 0.8.
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Figure 3.6 Evaluation of different values for ϑmin and ϑmax on the

dynamic selection set of NIST Digits. The best recognition rates

are reached with ϑmin = 0.2 and ϑmax = 0.8.

Figure 3.7 For Japanese Vowels, Nmax = 10 provides the best

recognition rates on the dynamic selection set.

3.4.1.2 Performance evaluation

In this section, after computing the best parameters for LoGID using only the first block of

data D1, we evaluate the performance on the test set. The results of the proposed method are

compared with:
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Figure 3.8 For Arabic Digits, Nmax = 100 yields the best results on

the dynamic selection set.

Figure 3.9 For NIST Letters, Nmax = 60 yields the best results on

the dynamic selection set.

• Batch learning: at each time t, a classifier trained with the current block of data and the

data from all previous blocks replaces the current classifier. This approach provides an

estimation of the empirical error bound on the pattern recognition problems, considering

the same learner;
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Figure 3.10 For NIST Digits, three values for Nmax: 120, 160, and

200, yield the best results on the dynamic selection set. The

smallest value, i.e. Nmax = 120, is the preferred one.

• Local IL: a partial implementation of LoGID. Local incremental learning alone is con-

ducted and the classifiers are statically combined during the generalization phase (we

consider the product of the likelihoods (Britto et al., 2003) produced by the HMMs to

be the fusion function). This approach mainly consists of the Learn++ algorithm, and

allows comparison of the proposed method with a well-known EoC-based incremental

learning algorithm (Polikar et al., 2001; Muhlbaier et al., 2009);

• Global IL: also a partial implementation of LoGID. The KNOP algorithm is used during

generalization and only global incremental learning is considered during learning. In

other words, an initial pool of classifiers is trained with the first training block, but this

pool remains static during the system’s lifetime. At the same time, however, new samples

are appended to DSel and DSel′, so that new knowledge is incrementally added to the

system. With this method, it is possible to evaluate how the dynamic selection algorithm

evolves in an incremental learning setting using a fixed pool of base classifiers.

The results obtained for Japanese Vowels are depicted in Figure 3.11. LoGID achieves the best

results on this database. Batch learning was the second best approach, but its final recognition
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rates were about 10% lower than those of LoGID. The lowest recognition rates were presented

by Local IL. Global IL performed slightly better than Local IL. However, the level of per-

formance of the former decreased after new blocks of data had been learned. This indicates

that global incremental learning works well for this problem only if it is combined with local

incremental learning.

We depict the results of the evaluation of Arabic Digits in Figure 3.12. For this database, Batch

learning achieved the second highest final recognition rates, at about 90.36%. However, this

method achieved the lowest recognition rates with small amounts of data. This demonstrates

that Batch learning may not perform very well when the degree of uncertainty is high, i.e. when

only a small training set is available. LoGID, in contrast, demonstrated its ability to adapt to

different levels of confusion. With both small and large training sets, the proposed approach

yields the best performance.

Figure 3.11 Performance comparison for Japanese Vowels.

The performance comparison for NIST Letters is presented in Figure 3.13. For this database,

LoGID also achieves the best final recognition rates, at about 94.10%. The second best method

was Batch learning, with 92.69% of recognition rates. The performance of LoGID with small
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Figure 3.12 Performance comparison for Arabic Digits.

Figure 3.13 Performance comparison for NIST Letters.

training sets, though, was worse than the performance of Batch learning. But after learning

the fifth block of data, LoGID began to present the best performance. Local IL (at 90.24%)
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and Global IL (at 90.57%) performed similarly. The latter, however, achieves better recog-

nition rates with fewer training data, showing that the dynamic selection may result in better

performance when the level of uncertainty is high.

The performance comparison for NIST Digits in test1 is presented in Figure 3.14. LoGID

achieved the best recognition rates on this database, at about 98.84%. Global IL yielded the

second best result, at 98.53%. We observe that the performance of both LoGID and Global

IL evolves significantly after learning the first few blocks of data, indicating that global incre-

mental learning plays an important role in addressing this problem. The results presented by

Local IL were the worst. Given that LoGID performed better that Global IL, though, we con-

clude that local incremental learning works well for this problem when combined with global

incremental learning. This is similar to what we observed with the Japanese Vowels database.

Figure 3.14 Performance comparison for NIST Digits in test1.

Figure 3.15 presents the performance comparison for NIST Digits in test2. LoGID yields the

best final recognition rates, at 96.91%, followed by Local IL, at 94.14%. The latter demon-

strated its ability to work well on this problem, yielding the best performance with a small

amount of data, i.e. when only the first block is learned. Nonetheless, LoGID surpassed the
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performance of Local IL after learning two blocks. This shows that the use of EoCs for incre-

mental learning is promising, and that the adaptation procedure applied by LoGID is capable

of improving the use of multiple classifiers even more.

Figure 3.15 Performance comparison for NIST Digits in test2.

Figure 3.16 Comparison of the number of samples held in DSel′
with all the samples observed, on Japanese Vowels.
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Figure 3.17 Comparison of the number of samples held in DSel′
with all the samples observed, on Arabic Digits.

3.4.1.3 Impact of the filtering mechanism on the size of DSel′

To demonstrate the impact of the filtering mechanism described in section 3.3.1.2.1, we com-

pare the size of DSel′ that results from processing each block of data Dt with the total number

of samples observed by the system, i.e. the sum of all samples in {D1,D2, . . . ,Dt}. This com-

parison is depicted in Figures 3.16, 3.17, 3.18, and 3.19 for Japanese Vowels, Arabic Digits,

NIST Letters, and NIST Digits, respectively.

We see that the filtering mechanism works effectively on all databases. On NIST Letters and

NIST Digits, after all the training data have been observed, only 13% and 4% of all the sam-

ples observed were kept in DSel′, respectively. On the Japanese Vowels and Arabic Digits

databases, 74.25% and 91.6% of the samples were kept in DSel′ respectively. These results

show that the mechanism works better when a significant number of samples has been ob-

served. When more training samples are observed, it might be easier for the proposed filtering

mechanism to define compact clusters of samples and keep only those samples that are really

useful for recognition. Clearly, a larger training set allows for a better estimate of the bound-

aries in the decision space.
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Figure 3.18 Comparison of the number of samples held in DSel′
with all the samples observed, on NIST Letters.

Figure 3.19 Comparison of the number of samples held in DSel′
with all the samples observed, on NIST Digits.

It is also interesting to note that the use of this mechanism can also successfully replace samples

that are no longer considered useful. In Figure 3.18, for example, we see that there is no

increase in the size of the dynamic selection set during the learning of blocks 1 to 3. We see,

though, that a considerable number of samples is observed and that the performance of the

system improves, as shown in Figure 3.13. Therefore, the definition of the zone of relevance
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is not only useful for avoiding the excessive growth of the dynamic selection set, but also to

define a region that can help re-evaluate previously stored samples.

3.4.2 Discussion

In Table 3.3 we present the final recognition rates achieved by the proposed method, the other

methods evaluated in this paper, and the results published in the literature. By considering only

the methods evaluated in this work, we could claim that the performance of LoGID is promis-

ing. These experiments have demonstrated that the LoGID framework can perform better than

Learn++, which is a state-of-the-art algorithm for incremental learning (Polikar et al., 2001;

Muhlbaier et al., 2009). In this paper, Learn++ corresponds to the Local IL approach. This

approach has been outperformed by our framework in all the databases considered here. The

results also indicate that LoGID is better than using Global IL alone, represented by the KNOP

algorithm. This demonstrates that the full adaptation conducted by the framework, i.e. the

combination of both local and global incremental learning, can lead to higher recognition rates

than the use of only one of these types of incremental learning. To enrich this overview of per-

formance, we complement these results by including the evaluation of ensembles created with

the use of Learn++ on the entire training set (like the AdaBoost algorithm). This evaluation

was aimed at comparing LoGID with ensembles created in a batch learning setting. Given that

LoGID yielded better recognition rates than these ensembles, the results of which are provided

in the Batch/Learn++ column of Table 3.3, we can conclude that the proposed approach can

also perform better than both ensembles and single classifiers trained with batch learning.
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When we consider the results published in the literature, we observe that there is a gap between

the recognition rates achieved by LoGID and those achieved by state-of-the-art methods, es-

pecially for the NIST database. However, the best results from the literature are presented by

systems that consider discriminant classifiers, such as Support Vector Machines and Neural

Networks. These classifiers are trained in batch learning settings, considering the entire train-

ing database for setting parameters. LoGID is used in an incremental learning setting, and

its parameters are computed by taking into account only the first block of data (a very small

training set), and so it is not easy to compare our results with the results of those classifiers

since both the type of base classifier and the learning setting are different. The comparison is

fairer, though, if we consider only HMM-based methods. On the NIST Digits database, the

recognition rates yielded by LoGID are very close to those of the best HMM-based methods

(Ko et al., 2009a,b). On the test1 set, the latter methods present recognition rates of about

98.88% and 98.86%, respectively, while LoGID achieves about 98.84%. This indicates that

our approach has been able to move very close to the upper bound of NIST Digits database.

In other words, the performance of LoGID was similar to that of the best batch learning meth-

ods. Furthermore, LoGID presents the best recognition rates on the remaining two databases,

which indicates that the proposed adaptive framework can perform even better than the best

state-of-the-art methods on various pattern recognition problems.

3.5 Conclusion

In this paper we proposed the LoGID approach, which consists of a framework for the adap-

tation of a pool of base classifiers during two phases: learning and generalization. During

generalization, the KNOP algorithm considers a set of output profiles to select the best classi-

fiers for recognizing each test sample. By considering the Learn++ algorithm to generate a set

of diverse members to update the current pool of classifiers, we defined the local incremental

learning module. Global incremental learning is achieved by updating the dynamic selection

set, and the corresponding output profiles, used by the KNOP algorithm.
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Experiments have been carried out on four different databases. These databases consist of two

handwriting recognition problems, i.e. the recognition of isolated digits and isolated uppercase

letters, as well as two speech recognition problems. The results demonstrated that LoGID

can effectively take advantage of the data presented in both the learning and the generalization

phases to better generate and use a pool of classifiers. The base classifiers controlled by LoGID

achieve better performance than the classifiers generated and used by other types of approach,

such as batch learning and static selection. In addition, the mechanism proposed to control the

increase in memory required by the baseline system have proved to be useful in most problems.

Future work might involve the validation of LoGID with other classifiers. As demonstrated

by some experiments, LoGID has been able to create a pool of HMMs that could surpass the

upper bound reached by the best HMM-based systems in the literature. Consequently, it may

be of interest to try other types of base classifiers on problems where we know HMMs may

not be the best choice as the base classifier. In addition, we should also focus on reducing the

overall complexity of the KNOP algorithm. Some ideas proposed to reduce the complexity of

instance-based classifiers are useful in this regard (Cui et al., 2005).



CONCLUSION

This thesis has focused on the design of adaptive systems (AS), the main goal of which is to

adapt a baseline pattern recognition system to different conditions in both the learning and gen-

eralization phases. Such adaptations are achieved through the observation of data that become

available over time. For this purpose, we presented a series of investigations related to both in-

cremental learning (IL) and dynamic selection (DS), and to the integration of both into a single

framework, called LoGID. These investigations resulted in the contributions described below.

The first contribution consists of an evaluation of IL algorithms for HMMs applied for the

recognition of alphanumeric characters. This study demonstrates the effectiveness of ensemble

of classifier (EoC)-based algorithms in IL settings. The ensembles are able to yield a perfor-

mance that is comparable to that of batch learning (BL) algorithms. In addition, we empirically

demonstrate the benefits of saving samples to a short-term memory, represented by the vali-

dation set. This memory is useful both for improving the recognition performance and for

avoiding the use of useless classifiers, which may negatively affect recognition time.

Then, we presented various investigations related to DS algorithms, the main goal being to

evaluate algorithms that could be integrated with EoC-based IL algorithms, pursuant to our

previous research on IL. We focused on methods that could select classifiers by evaluating only

their outputs, so that these algorithms would be suitable for a broad range of classifiers. This

work resulted in the proposal of the DMO concept, and two implementations for it: the methods

denoted DSAm and DSAc. Experimental evaluations on several databases demonstrate that the

DMO concept is promising, since both DSAm and DSAc have been able to perform better than

other approaches in the literature. The latter presented the best recognition rates, owing to its

use of output profiles. Furthermore, DSAc is IL-ready, and is suitable for composing an AS.

Also, we have demonstrated that DS might be preferred over static methods such as SVMs

and MLP when the degree of recognition uncertainty is high, due, for instance, to the use of

small-size training sets.
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Finally, we focused on the full definition of an AS by proposing the LoGID framework. During

the generalization phase, we proposed the use of the KNOP algorithm to select an EoC based

on finding the output profiles that are the most similar to the test sample output profile, the for-

mer being computed from a DS set. This scheme allows two types of IL to be conducted during

the learning phase: local and global. The former consists of updating the pool of classifiers,

by incorporating into it new members trained with the current block of data and by removing

the least relevant ones. The latter involves the addition of the most relevant output profiles,

also computed from the current block of data, to the set of output profiles used by KNOP.

Experiments on a diverse set of databases demonstrate the effectiveness of the proposed frame-

work. In most problems, the approach has been able to reach or surpass the upper bound of the

best HMM-based methods in the literature. Moreover, the individual evaluation of local and

global IL has shown the effectiveness of combining the two schemes to improve the overall

recognition performance of the system.

Future Work

In future work, several directions can be followed, among them:

• Evaluation of the use of other types of classifiers with LoGID. Although in this thesis

we present a case study on HMMs, this framework is general and can be adapted to

other types of classifiers. So, it would be interesting to evaluate the behavior of such

a framework with other configurations. With classifiers such as SVMs and MLPs, we

investigate how closely the performance of LoGID can approach the upper bound of

some databases, for instance, the NIST Digits and NIST Letters databases.

• Performance improvement. It will be important to pursue our investigation on methods

that could improve the recognition performance of the proposed framework. In the case

of dynamic selection, for example, we could look at ways to better use the information

provided by output profiles, such as additional similarity measures. We could also study

different ways in which EoCs can be dynamically defined.
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• Reduction of complexity. In the proposed LoGID framework, both the learning and gen-

eralization phases are demanding in terms of computation time. Consequently, an effort

should be made to reduce this complexity. Indexing the output profile set may be one

way to achieve this.

• Evaluation of other schemes for pruning classifiers and output profiles. Such pruning

is directly related to the previous topic. Good pruning results in complexity reduction

without performance degradation. In this regard, the use of zones of relevance has been

shown to be promising for selecting of the most relevant output profiles. One interesting

way to enhance this mechanism would be the dynamic definition of zones of relevance.

This would lead to the definition of a mechanism that adapts based on the data that are

observed. In terms of the pool of classifiers, a better approach could be global evaluation

of the pool, as a global view might provide a better idea of which classifiers are really

useful and which are not.





APPENDIX I

THE IMPACT OF THE SIMILARITY MEASURE ON THE DSAC APPROACH

In this appendix, we present our evaluation of additional similarity measures (SMs) for the

DSAc approach (see Chapter 2). These measures are used to compare the level of similarity

between two output profiles. The main idea of this research is to verify the impact of each SM

on the recognition performance achieved by DSAc.

In our evaluation, we implemented three different versions of DSAc, each using a different SM.

One version considered template matching as the SM, as originally proposed in Chapter 2. The

other two considered the Euclidean distance and the proposed oracle-based template matching,

respectively. For a better understanding of the three SMs, see Section I.1.

All three versions of DSAc were experimentally evaluated using the protocol described in

Section 2.5. The results are described and discussed in Section I.2.

I.1 Similarity measures (SMs)

From here on, we use the following additional notations: x̃i,test,k and x̃ j,val,k represent the output

of the kth classifier for xi,test and x j,val , respectively. In addition, for each x j,val , the set of flags

CCj = {cc j,1,cc j,2, . . . ,cc j,W}, where each cc j,k is a binary value, shows whether or not C′
k has

correctly classified x j,val . In other words, cc j,k = 1 if C′
k correctly classifies x j,val , otherwise,

cc j,k = 0.

The three different SMs we consider are described below. Note that they are individually used

by ζ , to perform step 4 in Algorithm 2.2.
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I.1.1 Euclidean distance (ED)

This SM simply computes the Euclidean distance between the output profile of x̃i,test and each

x̃ j,val ∀ j. To implement this measure, we have to minimize the following equation:

EDi, j =

√√√√ N

∑
k=1

(x̃i,test,k − x̃ j,val,k)2 (I.1)

I.1.2 Template matching (TM)

In considering two output profiles, this SM computes how many classifiers provide exactly

the same output. Given that a class index generally has no mathematical meaning in pattern

recognition problems, this SM might be more accurate than ED because it computes only the

number of identical outputs. We can implement this measure by maximizing Equation I.2,

which depends on Equation I.3.

T Mi, j =
∑N

k=1 αi, j,k

N
(I.2)

αi, j,k =

⎧⎨
⎩

1, if x̃i,test,k = x̃ j,val,k

0, otherwise
(I.3)

I.1.3 Oracle-based template matching (OTM)

In considering that each x̃ j,val is related to the correct class label correct j,val , we compute the

number of classifiers that produce the correct class label for x̃ j,val and provide the same output

as x̃i,test . In this case, only the classifiers that produce the correct output for the validation

sample are taken into account. Equation I.4, which has to be maximized, computes this SM

mathematically.

OT Mi, j =
∑N

k=1 β j,i,k

∑N
k=1 γ j,k

(I.4)

βi, j,k =

⎧⎨
⎩

1, if x̃i,test,k = x̃ j,val,k and x̃ j,val,k = correct j,val

0, otherwise
(I.5)
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γ j,k =

⎧⎨
⎩

1, if x̃ j,val,k = correct j,val

0, otherwise
(I.6)

These SMs result in three different versions of DSAc:

A. DSAc
ED, where δi, j = 1−EDi, j;

B. DSAc
T M, where δi, j = TMi, j;

C. DSAc
OT M, where δi, j = OTMi, j.

I.2 Experiments

In this section, we present our evaluation of the different versions of DSAc, as described in the

previous section, considering the experimental protocol presented in Section 2.5. This protocol

takes into account seven distinct databases, divided into both small and large datasets, and two

different classifiers: 1-Nearest Neighbors (1NN) and Decision Trees (DTrees).

In Table I.1 we present the results on the small datasets, considering 1NN classifiers as the

base classifier. With this configuration, DSAc
OT M achieved the lowest error rates on three out

of the five small databases: Dna, with 5.22%; Satellite, with 7.01%; and Ship, with 7.82%. In

contrast, DSAc
ED achieved the best results for the Feltwell database, with an error rate of 8.85%,

and DSAc
T M was the best method for the Texture database, yielding an error rate of 0.56%.

These results demonstrate that oracle-based template matching may be a better alternative as

an SM in this context, since the version of DSAc with this measure presented the lowest error

rates on the majority of the databases. However, the other measures may also result in the best

performance depending on the problem.

The error rates achieved with the evaluation of small datasets with DTree classifiers are pre-

sented in Table I.2. DSAc
OT M yielded the lowest error rates on the Feltwell and Texture

databases, with 10.11% and 0.89%, respectively. DSAc
ED was the best method on the Satellite

and Ship databases, yielding error rates of 6.89% and 5.51%, respectively. Finally, on the Dna
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Table I.1 Error rates on small datasets using 1NN classifiers, at zero-level rejection.

Results in bold present the best approach among static MO, DSA, DT, and the proposed

DSAm and DSAc, with K set to 30. The underlined results represent the statistically

significant best method. Marked with asterisk (*) are the proposed approaches. Between

parentheses is the variance of each approach (×10−2)

Method Dna Felt Sat Ship Text
Static selection

Oracle C 0.03 (-) 0.67 (-) 0.36 (-) 0.28 (-) 0.04 (-)

All features 26.30 (-) 12.35 (-) 9.84 (-) 11.24 (-) 1.13 (-)

Best from C 23.10 (-) 9.46 (-) 8.95 (-) 10.26 (-) 0.62 (-)

MV all C 6.87 (-) 10.44 (-) 8.59 (-) 9.94 (-) 1.11 (-)

Best from C∗′ 9.14 (2.57) 9.37 (4.39) 8.19 (8.39) 9.41 (2.75) 0.71 (3.02)

DTT M C 8.53 (-) 14.76 (-) 8.97 (-) 10.03 (-) 4.56 (-)

DTOT M C 7.11 (-) 12.89 (-) 9.48 (-) 10.16 (-) 0.67 (-)

DTED C 12.70 (-) 14.75 (-) 9.27 (-) 11.27 (-) 4.88 (-)

MO 5.70 (1.89) 9.74 (22.49) 8.01 (0.55) 9.00 (4.93) 0.98 (0.15)

Dynamic selection
Oracle C∗′ 1.12 (0.75) 6.06 (19.05) 3.98 (0.70) 3.92 (1.96) 0.40 (0.06)

DSA 10.47 (10.10) 10.76 (24.02) 9.17 (0.99) 11.21 (12.12) 1.03 (0.12)

∗DSAm 5.57 (1.77) 9.35 (21.39) 7.61 (0.77) 8.80 (5.30) 0.93 (0.14)

Versions of DSAc

∗DSAc
T M 5.46 (0.07) 8.93 (0.09) 7.42 (0.10) 8.10 (0.15) 0.56 (0.01)

∗DSAc
OT M 5.22(0.06) 8.90 (0.08) 7.01 (0.05) 7.82 (0.19) 0.60 (0.01)

∗DSAc
ED 8.52 (0.01) 8.85 (0.12) 7.49 (0.14) 8.11 (0.16) 0.81 (0.02)

database, the best performance was achieved by DSAc
T M, producing error rates of 3.05%. The

difference between the best two results, though, is very small in some cases. For example,

on the Ship database, the error rates achieved by DSAc
ED are only 0.01% higher than those of

DSAc
T M. Thus, despite this difference, we can say that the two methods performed similarly on

that database. Consequently, with this type of classifier, we observe a behavior that is similar

to that observed with 1NN classifiers. That is, there is no single measure that we can assume

will be the best for these databases. The measure has to be defined based on the problem and

on the configuration for DSAc.

The evaluation for large databases is presented Table I.3. In this case, DSAc
T M yielded the

lowest error rates on the NIST Digits databases, considering all types of base classifiers and
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Table I.2 The same error rate evaluations as in Table I.1, but with DTrees

Method Dna Felt Sat Ship Text
Static selection

Oracle C 0.03 (-) 0.60 (-) 0.22 (-) 0.24 (-) 0.02 (-)

All features 6.85 (-) 16.81 (-) 14.17 (-) 10.92 (-) 7.56 (-)

Best from C 11.33 (-) 11.86 (-) 11.83 (-) 10.45 (-) 6.07 (-)

MV all C 5.05 (-) 11.86 (-) 8.64 (-) 6.80 (-) 2.56 (-)

Best from C∗′ 5.71 (1.70) 10.22 (4.45) 8.35 (1.02) 7.02 (2.54) 2.04 (6.77)

DTT M C 4.53 (-) 13.93 (-) 8.96 (-) 7.74 (-) 1.34 (-)

DTOT M C 5.80 (-) 14.02 (-) 10.94 (-) 7.94 (-) 1.19 (-)

DTED C 5.39 (-) 14.13 (-) 9.16 (-) 8.65 (-) 2.30 (-)

MO 4.02 (1.02) 11.20 (25.09) 7.76 (0.61) 6.20 (4.21) 2.20 (0.58)

Dynamic selection
Oracle C∗′ 1.07 (0.85) 5.82 (15.52) 3.78 (0.62) 3.18 (3.09) 0.81 (0.06)

DSA 7.55 (6.11) 12.52 (27.90) 10.29 (4.69) 10.16 (19.21) 2.42 (0.67)

DSAm 4.07 (1.15) 10.77 (23.28) 7.42 (0.58) 5.89 (3.34) 2.13 (0.61)

Versions DSAc

∗DSAc
T M 3.05 (0.12) 10.32 (0.17) 7.11 (0.09) 5.52 (0.21) 1.11 (0.03)

∗DSAc
OT M 3.59 (0.11) 10.11 (0.12) 6.93 (0.10) 5.66 (0.22) 0.89 (0.01)

∗DSAc
ED 3.12 (0.13) 10.24 (0.24) 6.89 (0.11) 5.51 (0.27) 1.86 (0.09)

ensemble generation methods. The error rates on test1 considering 1NN with RSS, DTree with

RSS, and DTree with Bagging were: 2.37%, 1.76%, and 2.98%, respectively. These results

were followed by those yielded by DSAc
ED, the error rates of which, in the same order, were:

2.43%, 4.64%, and 3.98%. On test2, the error rates yielded by DSAc
T M, in the same order,

were: 5.34%, 4.36%, and 6.17%. On the NIST Letters database, DSAc
OT M achieves the best

performance, also considering all types of base classifiers and ensemble generation methods.

The error rates yielded by that method were: 4.10%, 3.98%, and 5.36%. Note that DSAc
T M

presented the second best results with DTree classifiers, while DSAc
ED was the second best

method with 1NN classifiers. These results indicate that on larger databases we may observe

some stability regarding the choice of the SM. The same measure may be the best choice for

various configurations of DSAc. This stability is likely to be a result of the use of larger training

sets.
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I.2.1 Discussion

The results presented in this section reveal some interesting clues about how to improve the

DSAc performance. We have demonstrated that choosing an adequate SM may have an impact

on the recognition performance of this approach. In this regard, we observe that there is no

single SM that works best for all the databases considered in this work. As a consequence, the

evaluation of different measures might be important for optimizing the DSAc approach for each

recognition problem, depending on the base classifier and the ensemble generation method.

Nonetheless, we observe that some stability can be gained with larger databases, so that a single

SM may present the same behavior across different configurations for DSAc. In contrast,

on the small datasets such stability is not evident since for each of these databases the best

method with 1NN and DTree classifiers is generally not the same. On the large databases,

though, a single SM seems to work best for all types of base classifiers and ensemble generation

methods. We can see this on both the NIST Digits and NIST Letters databases, where the use

of template matching as an SM always produces the best performance on the first, and oracle-

based template matching always results in the best performance on the second, independently

of the type of base classifier or the type of ensemble generation method used.

I.3 Conclusion and Future Work

In this appendix, we presented our evaluation of alternative SMs to be used in the DSAc ap-

proach. These measures are designed for the computation of the degree of similarity between

two different output profiles. In addition to template matching, which was proposed and eval-

uated in Chapter 2, we also evaluated the use of Euclidean distance and oracle-based template

matching SMs. As a result, three different versions of DSAc were proposed, each using one of

these SMs: DSAc
ED, DSAc

T M, and DSAc
OT M.

Experiments conducted on small and large databases, and considering various types of base

classifiers and ensemble generation methods, allowed us to observe the behavior of each ver-

sion of DSAc under varied conditions. The results demonstrate that the use of both the Eu-
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clidean distance and the oracle-based template matching SMs might result in a positive impact

on the performance of DSAc. Defining the best measure is dependent on the database, and, in

some cases, on the base classifier and ensemble generation method as well. On large databases,

though, we observe that a single SM may be defined to be used with different DSAc configu-

rations, owing to the stability gained after large training sets have been processed.

Given the results reported in this appendix, we believe that pursuing these investigations on

alternative methods for computing similarity is promising. In this context, other measures

could be evaluated using the same idea as presented here, that is, the definition of a different

version of DSAc for each measure. However, it might be also interesting to investigate other

mechanisms for computing similarity. For example, inspired by the idea of multiple classifier

systems, combining multiple SMs could take advantage of the diversity introduced by these

different measures, resulting in a better estimation of the degree of similarity between two

output profiles.
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