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FOREWORD

Now virtue is concerned with passions and actions, in which excess is a form
of failure, and so is defect, while the intermediate is praised and is a form of
success; and being praised and being successful are both characteristics of virtue.
Therefore virtue is a kind of mean, since, as we have seen, it aims at what is
intermediate. Aristotle, Nicomachean Ethics, Book II

Engineering is the art of creating valuable processes. It is not merely the direct application

of mathematical formulas, nor is it a synthesis of observations and measurement. Rather the

method is analogous to construction, where the experimental data are the bricks and the mathe-

matical techniques the mortar. As far as engineering is concerned, the method is without merit

if it doesn’t have practical value, and the data are just a collection of artifacts until they are

analyzed and their nature understood. The method is not to be evaluated based on a restricted

set of criteria, but as whole. From the balance between the conceptual and the factual emerges

the value of the method.

The engineering research presented in this thesis focuses on image processing, and is the result

of pursuing such balance. Now, the techniques we apply in engineering must have context

to be of any use. Hence, neither the proposed segmentation algorithms nor the registration

method we describe can be considered to constitute definitive solutions to the image processing

problem in its most fundamental meaning. Hopefully, by formalizing these techniques within

their respective context, and by seeking to balance the conceptual and the factual, an important

subset of problems can be solved.





AVANT-PROPOS

Or, la vertu a rapport à des affections et à des actions dans lesquelles l’excès est
erreur et le défaut objet de blâme, tandis que le moyen est objet de louange et de
réussite, double avantage propre à la vertu. La vertu est donc une sorte de juste
milieu en ce sens qu’elle vise le moyen. Aristote, Éthique à Nicomaque, Livre II

L’ingénierie est l’art de créer des processus utiles. Il ne n’agit donc pas de la simple application

de formules mathématiques, ni d’une synthèse de mesures et d’observations. Plutôt, la méthode

s’apparente à une construction où les données expérimentales sont les briques et les techniques

mathématiques composent le mortier. En ingénierie, la méthode n’est rien si elle ne mène pas

à une application pratique ; les données ne sont qu’une collection de faits si elles ne sont pas

analysées et comprises. Ainsi, la méthode ne sera-t-elle pas jugée qu’en fonction d’un seul

critère précis, fut-il théorique ou pratique, mais en fonction de ses performances générales. De

l’équilibre entre le conceptuel et le factuel se dégage la valeur de la méthode.

Les travaux de recherche présentés dans cette thèse s’intéressent au traitement des images et

sont le fruit d’une telle poursuite de l’équilibre. Bien sûr, la technique se doit également d’être

encrée dans son contexte. Ainsi, ni les méthodes de segmentation proposées, ni la méthode de

recalage décrite ne prétendent résoudre le problème du traitement des images en son sens le

plus fondamental. Néanmoins, ces méthodes ont été formalisées consciencieusement, en dosant

le mieux possible l’apport théorique et l’apport pratique, de façon à résoudre un sous-ensemble

intéressant de problèmes.





À Nadine,

pour son soutien inconditionnel
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DIFFERENTIAL GEOMETRY METHODS FOR BIOMEDICAL IMAGE
PROCESSING: FROM SEGMENTATION TO 2D/3D REGISTRATION

David RIVEST-HÉNAULT

ABSTRACT

This thesis establishes a biomedical image analysis framework for the advanced visualization

of biological structures. It consists of two important parts: 1) the segmentation of some struc-

tures of interest in 3D medical scans, and 2) the registration of patient-specific 3D models

with 2D interventional images. Segmenting biological structures results in 3D computational

models that are simple to visualize and that can be analyzed quantitatively. Registering a 3D

model with interventional images permits to position the 3D model within the physical world.

By combining the information from a 3D model and 2D interventional images, the proposed

framework can improve the guidance of surgical intervention by reducing the ambiguities in-

herent to the interpretation of 2D images.

Two specific segmentation problems are considered: 1) the segmentation of large structures

with low frequency intensity nonuniformity, and 2) the detection of fine curvilinear structures.

First, we directed our attention toward the segmentation of relatively large structures with low

frequency intensity nonuniformity. Such structures are important in medical imaging since they

are commonly encountered in MRI. Also, the nonuniform diffusion of the contrast agent in

some other modalities, such as CTA, leads to structures of nonuniform appearance. A level-set

method that uses a local-linear region model is defined, and applied to the challenging problem

of segmenting brain tissues in MRI. The unique characteristics of the proposed method permit

to account for important image nonuniformity implicitly. To the best of our knowledge, this is

the first time a region-based level-set model has been used to perform the segmentation of real

world MRI brain scans with convincing results.

The second segmentation problem considered is the detection of fine curvilinear structures in

3D medical images. Detecting those structures is crucial since they can represent veins, ar-

teries, bronchi or other important tissues. Unfortunately, most currently available curvilinear

structure detection filters incur significant signal lost at bifurcations of two structures. This

peculiarity limits the performance of all subsequent processes, whether it be understanding

an angiography acquisition, computing an accurate tractography, or automatically classifying

the image voxels. This thesis presents a new curvilinear structure detection filter that is ro-

bust to the presence of X- and Y-junctions. At the same time, it is conceptually simple and

deterministic, and allows for an intuitive representation of the structure’s principal directions.

Once a 3D computational model is available, it can be used to enhance surgical guidance. A

2D/3D non-rigid method is proposed that brings a 3D centerline model of the coronary arteries

into correspondence with bi-plane fluoroscopic angiograms. The registered model is overlaid

on top of the interventional angiograms to provide surgical assistance during image-guided

chronic total occlusion procedures, which reduces the uncertainty inherent in 2D interven-
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tional images. A fully non-rigid registration model is proposed and used to compensate for any

local shape discrepancy. This method is based on a variational framework, and uses a simulta-

neous matching and reconstruction process. With a typical run time of less than 3 seconds, the

algorithms are fast enough for interactive applications.

Keywords: Segmentation, 2D/3D registration, registration, level-set, local-linear region model,

variational framework, vessel detection, curvilinear structures, brain tissues, cardiology, coro-

nary arteries, MAPCA, CT, CTA, MRI, MRA, fluoroscopy, angiography



MÉTHODES DE GÉOMÉTRIE DIFFÉRENTIELLE POUR LE TRAITEMENT DES
IMAGES BIOMÉDICALES : DE LA SEGMENTATION AU RECALAGE 2D/3D

David RIVEST-HÉNAULT

RÉSUMÉ

Cette thèse introduit une plate-forme d’imagerie biomédicale pour la visualisation avancée de

structures biologiques. Elle est constituée de deux principaux types d’opérations : 1) la seg-

mentation de quelques structures d’intérêt dans des images 3D ; et 2) le recalage d’un modèle

3D de structures biologiques propres à un patient avec l’imagerie interventionnelle 2D. Le fait

de segmenter une structure biologique en 3D résulte en un modèle discret qui soit simple à

visualiser et à comprendre. Ce dernier peut également être analysé et mesuré de façon infor-

matisée. En contrepartie, recaler un modèle 3D avec les images interventionnelles permet de

situer celui-ci dans le monde physique et donc de le positionner par rapport aux autres objets

de la salle d’opération. En combinant l’information d’un modèle 3D et celle des images inter-

ventionnelles 2D, la plate-forme proposée vise à améliorer le guidage chirurgical en réduisant

les ambiguïtés inhérentes à l’interprétation des images 2D.

En ce qui a trait à la segmentation, deux problèmes spécifiques sont considérés : 1) les struc-

tures présentant des variations d’intensité de basse fréquence ; et 2) la détection de structures

curvilinéaires fines. Premièrement, nous nous sommes concentrés sur la segmentation de struc-

tures larges présentant des variations d’intensité de basse fréquence. De telles structures sont

importantes dans le contexte de l’imagerie médicale puisqu’elles se retrouvent fréquemment,

notamment en imagerie par résonance magnétique (IRM). De même, en angiographie, il est

possible qu’une diffusion non-uniforme de l’agent de contraste résulte en des structures présen-

tant de telle variation d’intensité. Nous avons donc défini une méthode par surfaces de niveaux

utilisant une modélisation localement linéaire des intensités de régions et appliqué cette mé-

thode au problème de la segmentation de ces structures. Il est démontré que les caractéristiques

propres à cette méthode permettent de prendre en compte de façon implicite la non-uniformité

de l’intensité des structures dans les IRM. Ainsi, au meilleur de notre connaissance, cette mé-

thode est la première utilisant les surfaces de niveaux à atteindre des résultats convaincants

pour la segmentation des tissus cérébraux dans les IRM.

Le deuxième problème de segmentation considéré consiste en la détection et la segmentation

des structures curvilinéaires fines dans les images tridimensionnelles. En imagerie médicale, la

détection de ces structures est cruciale puisque ces dernières peuvent représenter des veines, des

artères, des bronches ou d’autres classes importantes de tissus. Malencontreusement, la plupart

des méthodes présentement disponibles produisent un signal fortement atténué à la rencontre de

deux structures formant un carrefour. Cette singularité peut donc réduire la performance d’un

traitement subséquent tel que : l’étude automatisée d’une image d’angiographie, le calcul de la

trajectoire des vaisseaux, ou l’étiquetage automatique des pixels composant l’image. La pré-

sente thèse introduit un nouveau filtre de vaisseaux qui est robuste à la présence de carrefours

en X ou en Y apparaissant le long des structures. En même temps, il reste conceptuellement
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simple, déterministe et il permet une représentation intuitive des directions principales de la

structure de l’image.

Une fois qu’un modèle 3D discret a été créé, celui-ci peut être utilisé afin d’améliorer le gui-

dage chirurgical. Aussi, une méthode de recalage non-rigide 2D/3D est proposée pour amener

un modèle des artères coronaires en correspondance avec des images de fluoroscopie biplan.

Le modèle ainsi recalé est superposé sur les images interventionnelles afin de favoriser un

meilleur guidage chirurgical durant les interventions percutanées pour les opérations d’occlu-

sions totales chroniques. De ce fait, l’incertitude inhérente aux images bidimensionnelles s’en

trouve amoindri. Une méthode de recalage complètement non-rigide est définie et permet de

réduire de façon localisée toute différence de forme. Cette nouvelle méthode, fondée sur le cal-

cul variationnel, met en scène un processus d’appariement et de reconstruction simultanés afin

de calculer la transformation. Grâce à un temps de calcul généralement sous les trois secondes,

l’algorithme reste assez rapide pour être utilisé de façon interactive.

Mots-clés: Segmentation, recalage 2D/3D, recalage, level-set, modèle de région localement

linéaire, méthode variationnelle, détection de vaisseaux sanguin, structures curvilinéaire, tis-

sus cérébraux, cardiologie, artères coronaires, artères collatérales aorto-pulmonaires majeures

(MAPCA), CT-scan, CTA, IRM, ARM, fluoroscopie
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INTRODUCTION

In recent decades, medical imaging had a fundamental impact in almost every branch of

medicine. With in vivo techniques to image patient tissues, practitioners are able to accurately

diagnose an even broader range of conditions, study the structure and the functions of human

brain, perform sophisticated laparoscopic interventions on a daily basis, and make detailed

surgical plans before entering the operating room. The development of non-invasive imaging

procedures, such as magnetic resonance imaging and ultrasound, makes it ethically possible to

study healthy subjects, enabling scientists to acquire a deeper understanding of the living body.

But this sophistication is not in itself sufficient to surmount all the medical hurdles. As the

world’s population is getting older, the increase in prevalence of aging-associated diseases

represents a major medical challenge. The causes of many of those conditions, such as the

Alzheimer’s disease and dementia, are still only partially understood. More prospective and

retrospective studies are needed if neurologists are to sharpen their expertise and to gain a better

understanding of the causes and characteristics of those conditions. New imaging devices allow

to observe an always increasing range of biophysical phenomena, but analyzing the acquired

images requires time and energy, which puts a practical bound on how much information we

can extract from them.

An aged population is also more at risk of developing vascular disorders. In fact, heart diseases

are now the leading causes of mortality in Canada, where they account for 32% of all deaths

(Fondation des maladies du coeur, 2008), a situation similar to that in the USA (36.3% of

deaths) (AHA News, 2008; Rosamond et al., 2008; Kung et al., 2008) and in the rest of the

world (30% of deaths) (World Health Organization, 2008). But vascular problems are not

only an issue among the elderly. Heart diseases are among the most commonly encountered

congenital disorders, and, among them, are the principal cause of death. In many of those cases,

the well being of the patient depends on the outcome of a complex surgical procedure. The

always improving imaging tools consistently help to make routine ambitious clinical protocols,

but many challenges still lay on the way to risk-free intervention.

While modern medical imaging modalities permit to gain fabulous insight about the patients

inner structures, the interpretation and study of medical images remains tedious, complex, and

error prone. In some circumstances, the targeted tissues might be poorly visible, or adjacent

structures might be hard to discriminate. In other cases, accurately delineating the structures

of interest manually might be too time consuming to be of practical use. The problem of

accurately positioning the image information within the physical world is also of the highest
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importance in many clinical situations. Notwithstanding those various difficulties, recognizing

and extracting high level information from medical images is key to gaining a better under-

standing of a patient inner structures, and, ultimately, will foster the emergence of innovative

treatments.

The objective of this thesis is to establish a biomedical image analysis framework for ad-

vanced visualization and surgical guidance. It consists of two main parts: 1) the creation of 3D

patients-specific models by segmenting some structures of interest in 3D medical scans, and 2)

the registration of patient-specific 3D models with other medical images. Image segmentation

is concerned with the accurate and repeatable delineation of biological structures in medical

images. Such techniques are highly valuable since the segmented image regions constitute a

computational model of some important patient structures, and thus enable scientists and prac-

titioners to study the morphology of the tissues in a detailed and quantitative way. Similarly

to a road map, a 3D model can also serve as a reference during surgical intervention planning

and execution. But it is also possible to envision more sophisticated applications for such 3D

model. This model can also serve during the operation to enhance the interventional image. If

the 3D model is carefully aligned and warped on top of the interventional images, it will com-

plement those images, and reveals critical information that is not directly available from the

interventional methodology. We refer to such alignment and warping process as 2D/3D model

to feature image registration, and this constitutes the second part of our framework. Since a

2D/3D registration process positions the 3D model with respect to the interventional image,

and thus with respect to the physical world, it creates a convincing and intuitive geometrical

reference that can significantly reduce the ambiguity inherent to the guidance of percutaneous

interventions.

At the practical level, two broad types of applications were targeted for the evaluation of the

performance of the proposed methods: 1) brain morphological studies, and 2) vascular in-

terventions. The study of brain morphology is a fundamental part of many researches on

Alzheimer’s disease and dementia. At the image processing level, it is often required to dis-

cern between the three main tissue classes. In the past few years, this segmentation problem

formed an almost canonical benchmark for general purpose and specialized image segmenta-

tion algorithms, and thus presented an interesting opportunity to test an important constituent

of our framework. In what concerns the vascular interventions, two specific clinical situations

were considered. In work done in collaboration with Ste-Justine Hospital, we were interested

in segmenting two types of complex vascular structures, major aorto-pulmonary arteries and

coronary arteries, in order to ease surgical planning. The assumption being that a 3D model of
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the structure is easier to visualize and understand than the full scan. The 2D/3D registration and

surgical guidance aspect of framework described here was developed in great part in collabo-

ration with Siemens Corporate Research. There, it was question of registering a model of the

coronary arteries with interventional fluoroscopy. Clinically speaking, this can help to reduce

ambiguities during one of the most delicate type of non-invasive heart surgeries: percutaneous

intervention of chronic total occlusion of a coronary artery. In the following paragraphs, we

briefly cover the specific problems that were tackled in this research, and discuss their relative

importance. As it will be possible to recognize, the research presented here encompass a large

variety of methods and a broad range of practical applications. While this rather large field of

view might seem unnecessary at first, we feel that it was essential to clearly demonstrate the

theoretical benefits of all proposed image processing approaches.

Segmenting large, relatively uniform, structures in 3D medical scans has many practical ap-

plications in biomedical analysis, especially when the exact shape of some tissue is of great

interest. Perhaps one of the most striking example of such application is the segmentation of

brain tissues in magnetic resonance imaging. In morphological neurological studies, an impor-

tant task is to separate the white matter from the gray matter and cerebrospinal fluid. Having

those structures segmented greatly facilitates the study of the brain morphology and helps to

characterize many conditions and pathologies. Unfortunately, various limitations of the acqui-

sition device result in images that are corrupted by different types of noise. Imperfections in

the radio frequency coil cause low frequency wave-like interfering patterns to appear and re-

sults in non-uniform voxel intensity recordings even for uniform structures. This characteristic

of the image is very challenging for most automatic segmentation algorithms since the correct

segmentation depends on local feature of the images: no global threshold would produce an

acceptable segmentation. This does not imply that the problem cannot be solved by an auto-

matic process, only that a capable method would need to consider more involved processes and

features. But what type of process and what kind of features would permit to segment such

structures that might be relatively uniform locally, but where the intensity could present large

variation from one region of the image to the other, even for the same class of tissues? The

solution that is proposed in this thesis is to compute local linear models of the image intensity,

which are robust to low frequency non-uniformity, and to use those models to guide the seg-

mentation process. This idea, based on a differential geometry formulation of the problem, has

been implemented within the level-set active contour framework. This algorithm was able to

generate, to the best of our knowledge, the best published results for this category of algorithms

on the publicly available IBSR database.
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After having defined our method for the segmentation of large structures, we attempted to

adapt this framework to another vastly different problem that is clinically relevant: the seg-

mentation of vascular structures. During work done in collaboration with Ste-Justine Hospital

and also with Siemens Corporate Research, it soon appeared that the proposed region based

active contour method was of limited use in what concerns the segmentation of very fine tubu-

lar structures. The reason of this limitation is twofold. On one side, the viscosity term used in

most active contour schemes causes a bias against all small or narrow structures. On the other

side, the recorded voxel intensities for very fine structures become dominated by the partial

volume effect, which makes regional pixel intensity modelling ineffective at those locations.

Those two aspects of the fine tubular structure segmentation problem call for a method that

is more specific than the proposed active contour scheme. Fine tubular, or curvilinear, struc-

tures can be detected by analyzing the local contrast around each voxel position: if a structure

is present, one would expect little intensity variation in one direction, and much larger inten-

sity variation in the other directions. As it would be discussed in chapter 1, many approaches

of this type were proposed in the literature, but most of them are ineffective when the target

structure present bifurcations or crossings. This brings the following question: is it possible to

define a generic image filter that would detect fine curvilinear structures in 3D medical images

without excluding bifurcations? In our research, we investigated a new computational model

that uses finite differences and a spherical sampling scheme to this end. The results is a new

curvilinear structure detection method that is both more specific and more sensitive than the

existing method. This new technique has been demonstrated on MRI and CT scan for the de-

tection of different curvilinear structures, and is not tied to any specific 3D imaging modality

or biological structures.

This new curvilinear detection method can be used standalone to segment simple tubular struc-

ture, or it can complement the segmentation generated by a more general purpose algorithm.

For example, for the segmentation of a pulmonary artery tree, the main vessels could be seg-

mented by an active contour method, and the fine ramification by the curvilinear detection

method proposed. If the structure of interest is approximately tubular and reasonably salient,

the two segmentation results can be merged and will integrate gracefully. Thus, the two meth-

ods can be perceived as complimentary. We believe that in a clinical situation, those two

techniques can be used together to segment a large variety of vascular structures.

Segmenting tissues in medical images permits to clearly distinguish the target structures from

the background elements and ease various morphological studies. In fact, the segmentation

result can essentially be regarded as a patient-specific 3D model of the anatomical structures
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of interest. If we are to consider the domain of image-based surgical assistance, this brings

the question of quantitatively relating the virtual 3D model with the interventional images, and

thus with the physical world. That is, how to position the 3D model with respect to the patient

body and surgical instruments in the operative room?

Let us assume that during a certain surgical procedure, the interventional biplane fluoroscope

has been dutifully calibrated, then it is reasonable to admit that the visualized image are an ac-

curate geometric representation of the scene and that they can be used to guide the surgical op-

eration. Unfortunately, although the interventional images might be correct, there are situations

where they are too limited to unambiguously guide the procedure. For example, the visibility

of some structures of interest might depends on the presence of a toxic contrast agent, which,

for patient safety sake, might only be injected parsimoniously into a human body. In other

situation, the 2D nature of the interventional image can make it very challenging to correctly

understand the 3D geometry of the target structures. In such cases, displaying a 3D model of

the patient structures on top of, or along with, the interventional images can certainly help the

practitioner building a more accurate mental image of the patient body, in less time. However,

the 3D model needs to be carefully aligned within the scene in order to minimize the observed

inter-modality discrepancy and to constitute a coherent representation of the whole scene. Us-

ing the calibration of the apparatus as a starting point and the 2D and 3D images features, it

is possible to convincingly align the 3D model with the 2D interventional images, a process

known as a 2D/3D registration. In mathematical optimization terms, the 2D/3D registration

problem is generally considered as well posed if only rigid, affine, or other restricted paramet-

ric transformation models are considered. Nevertheless, the rotational nature of the problem

makes it strongly non-linear, and thus hard to minimize. In addition, various patient move-

ments, such as respiration and the beating of the heart, can significantly deform the structures

of interest during the course of the intervention. This makes it very important to non-rigidly

deform the 3D patient model to preserve visual consistency. This, however, is a hard ill-posed

problem. Since, surgical guidance is considered, there is also the question of computational

complexity. Indeed, it is hard to believe that the surgeon would place an intervention on hold

to accommodate a slow registration algorithm. Thus, the question is: is it possible to create a

2D/3D non-rigid registration process that is fast enough to be used during an intervention? The

algorithm defined in this thesis takes benefit of a differential geometry formulation to tackle

this challenge. This allows the proposed approach to compute a non-rigid 2D/3D registration

in typically less than 3 seconds on contemporary commodity hardware. The method has been

tested on datasets from 5 patients with cardiac disorders with good results. Thus, its capability,

performance and speed makes this method suitable for intra-operative usage.
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Taken together, the level-set segmentation method, the curvilinear structure detection tech-

nique, and the 2D/3D registration algorithm defined in this thesis form a segmentation and reg-

istration framework that is useful in the context of general biological structure visualization,

with a special emphasis on vascular interventions. Taken individually, they allow to perform

their own range of specific task, as described in the following chapters. Nonetheless, before

developing the theoretical aspect of this research further, it is essential to consider the clinical

context of the work, and to highlight the challenges arising at the practical level. Then, the

research problems that are considered can be stated and discussed more formally. Finally, an

outline of this thesis is presented.

0.1 Clinical context

The practical value of any computerized biomedical analysis tool will strongly depends on the

specific characteristics of the problem considered. It is therefore necessary to precise the ap-

plication domains of the research, both in clinical and in biomedical image analysis terms. As

introduced earlier, during the course of our research, we were interested in brain tissue imaging

and also in two severe vascular conditions: residual major aorto-pulmonary collateral arteries

(MAPCAs) in pediatric cardiology, and chronic total occlusion (CTO) of the coronary arter-

ies in adults. In the case of brain imaging, the modality of choice is the magnetic resonance

imaging (MRI). In what concerns vascular conditions, the pre operative assessment modality

of choice is generally the computerized tomography (CT), a technology that uses X-rays to

generate a 3D image of the vascular structures. These CT scans are used to analyze the prob-

lematic structures at the diagnostic, planning and surgical levels. In the following paragraphs

we expose those various pathological conditions and discuss the challenges associated with the

imaging modalities involved in both their study and treatments.

The morphology of the human brain changes widely during the lifespan of an individual (Sakai

et al., 2011). In fact, neurologists have observed than the accumulation of memories and

experiences are linked with physiological changes in the brain tissues. While in the past this

knowledge could only be acquired from the study of post-mortem organs, the advance of MRI

in recent decades made it possible to acquire in-vivo images of a patient’s brain with virtually

no risk for the health of either the patient or the practitioners. The acquisition of multiple

snapshots of the brain of an individual at different points in time, in a longitudinal study, allows

to appreciate how brain development is related with morphological changes with an interesting

accuracy. While some of those morphological changes are part of the normal aging process,
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others are linked with the progressions of divers neurological conditions such as Alzheimer’s

disease, dementia with Lewy bodies, or Parkinson disease.

Although these aging-related neurological disorders are widespread among the elderly, their

complex pathophysiological mechanisms are still only poorly understood. As a result, few

treatments exist for those conditions (Venneri, 2007). Brain volumetric studies permit to sup-

port diagnostic, help monitor the progress of the condition, and permit to gain knowledge

about the structural aspects of the diseases. (Bozzali et al., 2008) In a brain volumetric study,

the volume and shape of the various brain structures are analyzed and compared. This allows

to localize abnormalities, and to quantify the change in volume of the various brain tissues on

a voxel-to-voxel basis. The validity and accuracy of the study thus depends on the availability

of good quality segmentations of a number of brain scans.

Most brain volumetric studies use T1-weighted MRI as the input modality. Such images

present a high soft tissues contrast that, in the best case scenario, allows to clearly identify

the boundaries between the congregation of neurons, or gray matter (GM), the interconnec-

tions, or white matter (WM), and the cerebrospinal fluid (CSF). Brain tissues segmentation is

generally performed initially using a manual or semi-automatic method (Bozzali et al., 2008).

When a segmentation becomes available for a certain patient, registration based approaches

can then be used to capture relatively small changes.1 Unfortunately, T1-weighted MR images

are generally corrupted by low-frequency intensity non-uniformities, caused by imperfection

in the radio-frequency coil of the MRI apparatus (van Leemput et al., 1999). This defect, often

referred to as the bias field of the system, makes it difficult to clearly distinguish between the

different brain tissue classes. In addition, the limited resolution available from the imaging

technology implies that more than one tissue class might be present in a single voxel. This so-

called partial volume effect blurs the boundaries between the different tissues and complicates

the task of the neurologists further. The presence of the bias field and the partial volume effect

makes it difficult to obtain accurate and repeatable brain segmentation, which in turn can limit

the accuracy of brain volumetric studies.

Theses difficulties call for the development of automatic brain tissue segmentation methods that

would be more repeatable and requires less effort than the manual or semi-manual methods.

However, designing a method that is appropriated for this task is especially challenging because

of the presence of intensity non-uniformity. In the worst cases, the voxel representing the white

1Registration-based brain tissue segmentation is a rapidly evolving field with always improving methods able

to cope with larger and larger variations. However, the problem of producing good initial segmentations is still of

interest in the definition of atlases, for immature brains, and for brains with abnormalities.
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matter in a certain image region are darker than the voxel representing gray matter in another

image region, a situation that would confuse most classical segmentation algorithms. In such

case, the voxel intensities need to be interpreted locally: on a T1-weighted image, white matter

voxels are always lighter than surrounding gray matter voxels, in a certain neighbourhood,

even if than is not true for all the voxels over the complete image domain. In addition, the

bias field induced variation is generally smooth and of low frequency. This suggests that an

appropriate segmentation method could use a region model capable of taking into account such

characteristics. Also, since the different biological structures are mostly continuous, a certain

degree of spacial coherence can be taken into account. In summary, a segmentation method

that is robust to progressive change in the intensity of the structures to segment and that can

enforce a certain spacial coherence could help to produce repeatable and accurate brain tissue

segmentations.

(a) (b) (c)

WM

CSF

GM

180213180

171

177

Figure 0.1 Sample brain tissue segmentation. a) expert segmentation, b) intensity

non-uniformity in a white matter region, the numbers indicate the intensity level, and

c) one case where WM voxels are darker than GM voxels.

The problem of segmenting structures with intensity variation is frequently encountered in

medical imaging, and from a broader perspective, this thesis focuses on researching computa-

tional tools for diagnosis and surgical planning and guidance. As such, it is our goal to propose

methods that are applicable to a large set of medical situations. Consequently, we did not re-

strict ourselves to brain volumetric studies as an application, and we also address the topic of

surgical guidance in vascular interventions. Specifically, we were interested in two other clin-

ical problems: the treatment of MAPCAs, and chronic total occlusions (CTO) of the coronary

arteries.
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MAPCAs, although part of normal embryonic development, are often harmful after birth, and

are associated with severe cyanotic congenital heart defects, such as the tetralogy of Fallot or

pulmonary atresia with ventricular septal defect. In tetralogy of Fallot, the pulmonary artery

(see Figure 0.2) can be severely atrophied, or even be absent, which prevents oxygen-poor

blood from being re-oxygenated by passing through the lung, as is normally the case (see Fig-

ure 0.3). Instead, minimal circulation is ensured by one or more MAPCAs directly linking

the aorta to the lungs. As the normal function of the aorta is to deliver oxygen-rich blood to

the circulatory system, the oxygenation process is inefficient. The treatment of such a condi-

tion generally requires one or more delicate surgical interventions. During the unifocalization

procedure, the MAPCAs are consolidated in a way that reconstruct a functional pulmonary

vascular bed. In addition, any potential secondary irrigation paths are shut in order to restore

a normal blood flow. The shape and disposition of the MAPCAs are complex and vary widely

from one individual to another. Some vessels can also be very small. Therefore, good surgical

planning is crucial to the success of the operation.

Figure 0.2 Pulmonary vessels, heart, and lungs. Frontal (left) and dorsal (right) views.

Illustrations taken from Gray (1918).

Although analysis of blood flow is usually performed using 2D fluoroscopy with targeted con-

trast agent injection using catheters (see Figure 0.4), understanding the complex geometry of

MAPCAs requires a 3D CT angiography (CTA) in the vast majority of cases. Generally CTA,

and not magnetic resonance angiography, is favored in these cases, because its higher spatial

resolution makes it possible to capture smaller vessels. In addition, because of the CTA’s much

shorter acquisition time, it might not be necessary to sedate the patient, and so avoid the risk

of harm to fragile pediatric patients.
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Figure 0.3 Normal blood flow through the heart. The aorta is highlighted in red and the

pulmonary artery in blue. Illustration adapted from Yaddah (2006).

Figure 0.4 X-ray angiography of MAPCAs. Contrast agent injection in the aorta clearly

demonstrate the passage of the blood through collateral arteries. Lateral (left) and frontal

(right) views.

The 3D information gathered by the CTA scan makes it possible to resolve most geometric am-

biguities with good precision and helps to determine the dimensions of the structures, enabling

the physician to prescribe the most appropriate treatment. However, since the 3D volume is

dense, the structures of interest cannot be visualized directly. Hounsfield units (HU) to inten-

sity and HU to opacity mappings are generally used to generate a selective visualization that
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better highlights the structures. Still, it may not be possible to distinguish the structures that are

of interest from other structures with similar tissue characteristics using this basic technique.

In addition, in some situations an incomplete representation or a poor visualization might result

from the uneven propagation of the contrast agent, partial volume effect, or motion artifacts,

for example. A high quality patient specific model can be created from the 3D scan which

captures the geometry of all the structures of interest and removes any distracting background

(see Figure 0.5). Such a model can facilitate the practitioner’s understanding of the patient

geometry, which is key to the success of the procedure.

Figure 0.5 CTA scan of a young child with MAPCAs. Volume rendering (left), volume

rendering with transparent soft tissues (middle), and 3D presentation of the segmented

aorta and attached MAPCAs (right).

MAPCA procedures are usually highly invasive. Surgical guidance is achieved using mono-

or biplane fluoroscopy with periodic contrast agent injection. The fluoroscopic images are ac-

quired on-demand, rather than continuously, to minimize patient exposure to X-rays. These 2D

images are difficult to interpret and can be geometrically ambiguous. As a result, the surgeon

regularly needs to refer to the 3D model during the intervention, but establishing correspon-

dence between the 3D model and the 2D images can be challenging. Keeping the 3D model

aligned with the interventional image would help the surgical navigation process, thereby de-

creasing the risk and possibly reducing patient exposure to X-rays and contrast agent. However,

the creation of an accurate patient specific 3D model is difficult and time consuming, and align-

ing it with the interventional images is a challenging correspondence problem. These issues

were important factors in our decision to undertake this research.

Other vascular conditions bring different but related challenges. Specifically, we also address

the problem of surgical guidance during the treatment of chronic total occlusions (CTO) of the
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Figure 0.6 The coronary arteries. As presented by Gray (1918) (left and middle), and a

top view of the volume rendering of a CTA scan.

coronary arteries. CTO is the result of a severe accumulation of plaque in the coronary arteries

(see Figure 0.6), and are characterized by very low perfusion level over a period longer than

three months (Gade and Wong, 2006). This type of lesion is encountered in 15% to 30% of

the patients referred for coronary angiography and the presence of CTO is the most powerful

predictor of referral for coronary bypass surgery (Grantham et al., 2009). CTO has been re-

ferred to as the final frontier in interventional cardiology (Stone et al., 2005). The treatment

of CTO generally involves minimally invasive (laparoscopic) percutaneous coronary interven-

tion (PCI). Compared to MAPCAs interventions, although the clinical context is very different,

there are many similarities to be found at the image processing level. X-ray fluoroscopy with

direct contrast injection is the modality of choice for the guidance of percutaneous coronary

interventions. This modality has two major drawbacks: the limited depth perception inherent

in 2D images, and the fact that the contrast agent is quickly washed away by the circulating

blood. Furthermore, some parts of the coronary arteries are almost totally blocked in CTO.

As a results, the contrast agent cannot reach the distal segments of the vessel, making them

almost invisible on interventional imagery, as illustrated in Figure 0.7. This situation makes

the surgical procedure particularly hazardous, because the practitioner has to guess the position

and shape of the arteries, and move the catheter along with great care, so as not to perforate the

vessel.

In contrast to X-ray fluoroscopy with direct contrast agent injection, CTA with intravenous

contrast injection has different imaging characteristics, and it is often possible to segment the

coronary arteries on the 3D scan. Providing precise geometric information can help the physi-

cian to make a more accurate diagnosis and prepare a better surgical plan. The extracted model

can also serve as a reference during the intervention. However, aligning the artery model with
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the interventional images is difficult to achieve, either mentally or with a computational tool.

In addition, the coronary artery geometry is altered by both the respiration and heart beat of

the patient. Since the CTA is usually acquired under a breath hold and the intervention is per-

formed under free breathing conditions, non-rigid registration is essential to obtaining a good

fit between the model and the interventional images. At the image processing level, some of

the challenges in the PCI of CTO are similar to those that arise in the treatment of MAPCAs.

In both cases, it is crucial to gain an understanding of the geometry of the complex structures

of interest. Also relating this geometry to the interventional images is key to the success of the

procedure, but performing such a quasi-intermodal registration is a difficult correspondence

problem.

Figure 0.7 Biplane fluoroscopy of a left coronary artery with CTO

0.2 Problem statement

Multiple problems arise during visualization of complex anatomical structures in the context of

diagnostic and surgical guidance. From an engineering point of view, it is possible to discern

problems at three different levels: 1) clinical, 2) medical imaging, and 3) image processing, as

summarized in Figure 0.8.

At the clinical level, the practitioner needs to gather the information that is necessary to ac-

complish his task. So, it is question of observing and measuring the physical world. Problems

arising at this level depend only on the physical condition of the patient and on the clinical

protocol, and are not tied to a specific imaging modality. In this research, we considered vastly
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Figure 0.8 Summary of the research problems discussed in section 0.2

different clinical situations. Although they first seem unrelated, we will see later that they share

a common set of problems at the image processing level. Specifically, in brain morphological

studies, two important questions arise at the clinical level: a) How can the shape of internal

anatomical structures be quantified? b) How can the geometry of complex structures be visu-

alized and understood. One way to answer those questions is to delineate the different brain
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tissue classes in a 3D scan. Once this is done, a 3D computational can be created, visualized

and studied quantitatively.

It is obvious that the two questions presented above are equally important in the context of

surgical planning and guidance since dimensioning a biological structure and understanding

its shape is important in order to prepare a good surgical plan. However, considering the

fact that vascular interventions are generally guided by X-rays raises other crucial questions:

a) How can the geometrical uncertainty inherent in limited interventional imagery (e.g. 2D

fluoroscopy) be reduced during the guidance of surgical procedures? b) Are all structures of

interest visible on the interventional images? If not, how can those structures be visualized

during surgical procedures? c) Is it possible to provide surgical guidance with less X-ray irra-

diation and contrast agent injection, hence optimizing the benefit–risk ratio? In a difficult case,

it is critical that the practitioner has access to the best possible information to maximize the

chance of a successful procedure. In summary, the practitioner must be able to conceive an ac-

curate mental image of the target structures, and, during the procedure, appropriate navigation

guidance must be used to provide live update about the position and shape of the structures.

Various radiological techniques are available that readily offer partial answers to many of these

questions. Ideally, the imaging modalities would have infinite temporal and spatial resolution,

very high contrast, and would provide the same level of information to the practitioner as direct

inspection. In practice, however, because of equipment quality and theoretical limitations, the

situation is more complex. This means that problems arising at the medical imaging level inter-

fere with the ability of radiologists to extract the information needed by the practitioner from

the images. MRI is the modality of choice for brain imaging since it has better soft tissue con-

trast than the alternatives. However, the limited precision of the radio frequency coils results

in the presence of a significant bias field affecting the image intensity and the partial volume

effect blurs the boundary between tissue classes. In addition, a whole head scan is generally

performed, which makes discriminating the different brain tissues tedious. In what concerns

the two vascular conditions discussed above, CTO and MAPCAs interventions, CTA is used to

capture the 3D geometry of the structure of interest before the procedure. This modality makes

it possible to accurately capture the patient anatomy in 3D, with some limitations. First of all,

since the 3D scans are dense, individualizing a specific structure is difficult. In addition, back-

ground structures can have the same appearance as the structures of interest, and the intensity

of the structures of interest can be affected by many factors, for example a) the dispersion of

the contrast agent, b) the partial volume effect, c) motion artifacts, d) the presence of noise,

and e) the precision of the imaging device. Finally, a more fundamental problem is that the
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shape and position of the structures change with patient respiration and cardiac cycle. Because

of this, the images of the structure observed in the operating room will ineluctably be different

that what can be seen on the CT.

In treatment of MAPCAs and CTO, surgical guidance is commonly ensured using X-ray flu-

oroscopy with direct contrast agent injection, a modality that also have important limitations.

In practice, for vascular interventions, the visibility of the structures of interest depends on a

contrast agent that is quickly washed away by circulating blood. Moreover, some physical con-

ditions of the patient can make parts of the structures of interest invisible under fluoroscopy,

as in CTO. This situation can be precarious because the surgeons has to guess the position and

shape of the structure during the intervention. The fact that X-ray fluoroscopy is inherently 2D

and has very little depth information is significant: this further complicates the interpretation

of the geometry during the procedure. This problem can be alleviated by comparing the inter-

ventional images with the pre-operative CTA, but since the shape and position of the structures

change with patient respiration and cardiac cycle, this is not a trivial task. Without doubt, these

problems can be addressed in different way. In the future, it is possible that more sophisticated

non invasive operational modalities, such as ultrasound or MRI devices, but with higher spatial

resolution, faster acquisition time, and better tissue discrimination properties, would appear

and improve the guidance process with very low risk for the patients. However, these new

modalities might not be available in all clinical setting, where the current duo of CTA and X-

ray fluoroscopy is now well established. In addition, the fact that X-ray fluoroscopy is the most

widespread interventional modality ensures that it will remain relevant for many years. In this

respect, solutions at the image processing level are more likely to have a short term impact, and

fundamental advances might well be appropriate with the new modalities, when they become

available.

The problems related to the visualization of the structures in the 3D scans can be addressed by

an appropriate segmentation method, assuming reasonable calibration of the intrinsic parame-

ters of the apparatus. However, the definition of a segmentation method is made more complex

by limitations of the medical imaging modalities and by fundamental image processing prob-

lems associated with the chosen imaging modalities. For example, extracting the structure of

interest from any 3D scan is difficult, because background structures can have the same in-

tensity. Also, various factors can alter the spatial distribution of the intensity of the structure

in the volume: dispersion of the contrast agent, partial volume effect, motion artifact, noise,

and the intrinsic precision of the imaging device. In what concerns MR brain imaging, the

presence of a bias field constitutes the main challenge. This problem is probably not to be
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resolved in hardware anytime soon since some of newer MR technologies, such as device with

array detectors or the use stronger static field, actually result in a stronger bias field. For vas-

cular structures, especially MAPCAs, the exact shape and position of the structures can vary

significantly from one patient to another. At a higher abstraction level, image segmentation is

a challenging problem in any practical application. At the same time, this process is essential

since it is equivalent to extracting the relevant information from a huge set of data points in

order to get an understanding of the physical world depicted by the image. In this problem, it

is needed to delineate structures that have a nonuniform appearance over the image domain,

variable sizes and various saliency characteristics. These issues are common to most 3D med-

ical imaging applications. For instance, in MAPCAs the intensity of the aorta varies with the

dispersion of the contrast agent, while in brain MRI the intensity of the volume varies because

of limitations in the imaging device, but in both cases the challenge is to segment complex

structures with a spatially variant intensity. In addition, many medical imaging segmentation

problems are strongly multiscalar in nature. The fact that the structures under observation can

be close to other unrelated structures adds to the challenge as well. For example, with MAP-

CAs, the aorta is many times larger than the smaller arteries. It is also close to other salient

structures, such as the chambers of the heart, which are also filled with contrast agent.

At this point it is important to recognize that the potential impact of 3D medical image seg-

mentation goes beyond the context of discussed clinical situations. The problem of observing

and quantifying the shape of anatomical structures is crucial in many areas of medicine. For

example, 3D segmentation methods can be used to capture patient geometry for the design of

prosthesis, also segmented guts or airways allow to generate virtual endoscopy, thereby easing

the diagnostic of cancer, and 3D models of the brain tissues are quantified and analyzed in

cross-sectional and longitudinal studies on human brain aging. In vascular interventions, a pa-

tient specific 3D geometric model could certainly serve as a useful reference before and during

the procedure.

In what concerns surgical interventions guidance, this task is made complex by many of the

problems revealed earlier. The information provided during the intervention by the ubiquitous

X-ray fluoroscopy is incomplete, due to its 2D nature, and its quality varies over time. For

some complex pathologies, like CTO, portions of the structures of interest may be invisible un-

der X-ray fluoroscopy, because they cannot be reached by the flow of the contrast agent. Given

adequate knowledge of the geometry of the structure, perhaps obtained using the segmentation

method discussed in the above paragraph, those problems could be addressed by registering a

3D model of the structure with the interventional images. In turn, the computed registration
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transformation could be used to overlay the 3D model on top of the 2D images, producing

enhanced imagery. This combined imagery can facilitate the guidance of surgical intervention

since this enable the practitioner to see a reference geometric model in the same frames as the

interventional images, which reduce ambiguities in the interpretation of the fluoroscopy. Al-

though both CTA and fluoroscopy use X-rays as the imaging source, these two modalities differ

greatly in nature: the former is a reconstructed image, while the latter is a projective image.

This quasi-intermodality makes finding correspondences between the images a difficult task.

In addition, patient respiration and heartbeat can cause significant shape difference between

the 3D model and the 2D images. Using a non-rigid registration method makes it possible

to compensate for the discrepancy, but finding its transformation parameters is a challenging

inverse problem.

This thesis focuses on the definition of a visualization and surgical guidance framework that is

composed of two important parts: 1) the creation of a 3D patient specific model by segmenting

a 3D scan, and 2) the registration of this model with 2D interventional fluoroscopies. As

discussed above, the definition of such a framework comes with its own set of image processing

problems, which represent the main research issues considered in this thesis. In what concern

the definition of a segmentation method appropriated for complex biological structures with

spatially variant intensity levels, the main hurdles are as follows:

i. No single segmentation algorithm is suited to all situations, as the structures of inter-

est are characterized by a wide variability in shape and size, and integrating multiple

strategies is required;

ii. The structures of interest can be close, both spatially and in intensity, to other background

structures;

iii. The saliency of the structures of interest vary on the image domain.

For the registration of the 3D model with the interventional images, the principal challenges

are as follows:

iv. making quasi intermodal correspondence requires an accurate and efficient strategy;

v. 2D/3D non-rigid registration is an ill posed inverse problem;

vi. The shape and position of the structures vary in time.
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Specifically, we proposed to tackle these problems on three fronts. First, generic image seg-

mentation techniques are investigated in order to identify the best methods for segmenting

vascular structures with spatially varying intensity. Second, since the generic segmentation

methods generally fail at segmenting the smaller vascular structures, localized techniques spe-

cialized for the task of detecting and segmenting small blood vessels are considered. Last, but

not least, 2D/3D registration methods applicable in context of surgical guidance are researched.

By addressing these image processing problems, this research is aimed at defining methods

that are applicable in a clinical setting, and that provide solutions to interventional challenges.

0.3 Outline of the thesis

The next chapter presents a review of state-of-the-art methods that are relevant to the defini-

tion of the proposed framework. After, based on this literature review, the objectives of the

presented research are defined, and the proposed general methodology is exposed in chapter 2.

The three following chapters present the manuscripts written in response to specific research

problematic. The manuscript defining our new method for the segmentation of anatomical

structures with spatially varying intensity is presented in chapter 3. A curvilinear structure

detection filter for vessel detection in 3D scans is described in chapter 4. The method pro-

posed for 2D/3D non-rigid registration of 3D models with live fluoroscopy is the subject of

chapter 5. A global discussion is presented in chapter 6, and finally, we summarize the work

accomplished in the thesis in a general conclusion.





CHAPTER 1

LITERATURE REVIEW

This chapter presents a review of state-of-the-art methods related to the proposed 3D medical

image segmentation and 2D/3D registration framework for the guidance of surgical procedures.

This chapter is divided into three sections that are in line with the three biomedical imaging

problems exposed in the introduction. The first section starts with a focus on generic medi-

cal image segmentation methods, then covers methods specific to the delineation of vascular

structures and finish brain tissues segmentation methods. The second section covers methods

specific to the detection and segmentation of fine vessel-like structures. Finally, the last section

reviews 2D/3D registration techniques that are related to the context of surgical guidance.

1.1 Medical imaging segmentation

A rich literature on image segmentation has emerged in the past 25 years, framed around a va-

riety of mathematical paradigms. Among the methods that have had the most notable influence

on the field, we note the snakes method (Kass et al., 1988), based on differential geometry and

a variational framework; the level-set and fast marching methods (Osher and Sethian, 1988;

Sethian, 1996), which take advantage of implicit representations of continuous functions; the

graph cut methods (Greig et al., 1989; Roy and Cox, 1998; Boykov et al., 2001; Kolmogorov,

2004), involving a type of combinatorial optimization; the random walkers (Grady, 2006) and

power watershed methods (Couprie et al., 2011), rooted in graph and probability theory; and

methods based on probabilistic and non parametric clustering, such as the mean shift algorithm

(Comaniciu and Meer, 2002), the MPM-MAP algorithm (Marroquín et al., 2002), and a regres-

sion of a Gaussian Mixture Model (Greenspan et al., 2006). The more fundamental work of

Mumford and Shah (1989) contributed to our understanding of the segmentation problem.

In this research, the level-set method was selected as the basis for the proposed segmentation

algorithm for several reasons: 1) its generality, 2) its suitability for 2D and 3D implementation,

3) its elegant formulation, and 4) its reasonable speed. In addition, level-set methods have pre-

viously been proposed for vascular structure segmentation in medical imaging (Lorigo et al.,

2001; Vasilevskiy and Siddiqi, 2002; van Bemmel et al., 2003; Manniesing et al., 2006a). The

rest of this section gives background information regarding the most common level-set mod-

els, then presents specialized methods for the segmentation of vascular structure, and finally,

describes other type of methods that have been proposed in the context of brain tissues seg-

mentation. (Manniesing et al., 2006a)
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1.1.1 The level-set method

Osher and Sethian (1988) introduced the level-set method to implicitly solve variational prob-

lems occurring in the context of the modeling of fluid dynamics. With their implicit represen-

tation, an interface is represented using a surface of higher order, that is, a 3D surface is used

to represent a 2D curve and a 4D hypersurface is used to represent a 3D surface — see Fig. 1.1.

(a) (b)

Figure 1.1 A simple level-set function. (a) a set of 2D curves, and (b) its level-set

representation.

Formally, a set of curves C = ∂ω partitioning a domain Ω into two subdomains ω and Ω \ω

is defined by the 0 level of an implicit level-set function φ , defined as follows:

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
+D(x,∂ω)> 0, x ∈ ω

0, x ∈ ∂ω

−D(x,∂ω)< 0, x ∈ Ω\ω,

where D(x,∂ω) is the Euclidean distance from a point x ∈ Ω and the curve boundary ∂ω . It

is commonly considered that the level-set function φ can evolve with respect to an artificial

time variable t, and so we note that φ(x) = φ(x, t) and φ0(x) = φ(x, t = 0). In the level-set

framework, the essential equation describing the evolution of the implicit function φ is

∂φ

∂ t
+v ·∇φ = 0 ,

where v is a problem specific speed function (Osher and Sethian, 1988; Sethian, 1999).

For practical purposes, with any level-set method, an image segmentation is obtained by: 1) ini-

tializing the level-set function φ to be a arbitrary surface defined on the image domain, 2) com-
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puting the Euler-Lagrange conditions of the selected energy functional, and 3) minimizing the

derived Euler-Lagrange conditions. A sample minimization process is depicted in Figure 1.2.

Two important elements compose any segmentation method and must be distinguished: 1) the

structure model, and 2) the delineation mechanism. It is clear that a framework such as the

level-set method provides that delineation mechanism. However, devising a practical segmen-

tation method requires a set of hypotheses regarding the problem to solve in order to define

the structure model. In this respect, most level-set based segmentation methods consider two

broad classes of features: edges and region statistics.

(a) (b)

(c) (d)

Figure 1.2 Evolution of the level-set during a segmentation. (a) initialization, (b) after

50 iterations; (b) after 100 iterations; (b) final contour, after 300 iterations.

The edge-based geodesic active contour method of Caselles et al. (1997) can be considered as

an evolution of the snake method (Kass et al., 1988) implemented within the level-set frame-

work. The energy functional they consider is

FGAC(u,C) =
∫ 1

0
|C′(s)|2 ds+

∫ 1

0
g(|∇u(C(s))|)2 ds,

where s ∈ [0,1] is the curve parameter, and the function g is some monotonally decreasing

function of the image gradient designed to attract the curve toward the edges, for example

g = 1/(1+ |∇(G ∗ u)|2), G ∗ u being the convolution of the input image with some Gaussian

filter. The first term seeks to ensure the smoothness of the curve, while the second term is
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minimal when the curve lays over an image edge. A limitation of this technique in the context

of the segmentation of difficult medical images, such as CT scans, is that weak edges can lead

to contour leakage, and in turn to an incorrect segmentation. It is worth noting that Lee and

Seo (2006) introduced an optimal formulation of this method, also Malladi and Sethian (1996)

previously proposed a related segmentation method.

The active contour without edge of Chan and Vese (2001) makes it possible to solve a restricted

formulation of the Mumford and Shah (1989) problem, and so is considered a region-based

method. The authors impose the following restriction on the segmentation problem: 1) the

number of region is assumed to be known, 2) no steep changes in intensity occur within a

region, and 3) the intensity of the region can be considered uniform. Using the previously in-

troduced notation, and letting u− and u+ be real numbers representing the mean pixel intensity

of the region defined by φ < 0 and φ > 0 respectively, their energy functional for binary image

segmentation is

FACC(u,C) =
∫

φ<0
(u−−u0)

2 dx+
∫

φ>0
(u+−u0)

2 dx+ν |C|,

where u represents the input image, ν is a free parameter, and |C| is the length of the partitioning

curve. This last term ensure that the boundary is smooth and as short as possible. The first

two terms are minimal when the curve delineates two regions of constant intensity. With this

method, it is possible to partition an image into approximately constant regions, which limits

its use in many practical problems.

Vese and Chan (2002) refined their model by assuming smooth regions instead of constant-

value regions. Assuming that u− and u+ are now region representatives that vary spatially, the

energy function becomes:

FACS(u,C) =
∫

φ<0
(u−−u0)

2 dx+
∫

φ>0
(u+−u0)

2 dx

+μ
∫

φ<0
|∇u−|2 dx+μ

∫
φ>0

|∇u+|2 dx+ν |C|,

where ν is an additional free parameter. The first two terms are minimal when the smoothly

varying region model fits the region intensity perfectly. This model is more general than the

previous one, but is still oriented toward the segmentation of constant intensity regions. The

next two terms favor more uniform region models. A very similar model has been indepen-

dently proposed in (Tsai et al., 2001). Since the computation of the smooth formulation of
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the active contour without edge is relatively costly, various enhanced formulations have been

proposed to speed up the computation process (Vese, 2003; Zhang, 2005, 2006).

More specialized level-set region models have emerged in the literature. Gao and Bui (2004,

2005) proposed decoupling the smoothing process from boundary optimization, which allowed

for more powerful smoothing. Hongmei and Mingxi (2006) modified the smooth Chan and

Vese level-set formulation to use anisotropic diffusion instead of a damped Poisson equation.

Statistical interpretation of the Mumford and Shah (1989) functional made it possible to devise

methods using more complex statistical regional models such as Gaussian (Brox and Weickert,

2004), linear (Bui et al., 2005), or non-parametric (Kim et al., 2002, 2005). Other authors seek

to reunite the edge- and region-based approaches and have proposed hybrid methods (Paragios

and Deriche, 2002, 2005; Kimmel, 2003). More recently, (Liu, 2006) introduced a local median

region model that is capable of robustly representing smoothly varying regions. A Gaussian

version of this method was proposed in (Liu et al., 2007), and a related region-scalable method

relying on Gaussian regions is described in detail in (Li et al., 2008b). In this work, the au-

thors compare their method with the piecewise-smooth version of the Chan and Vese level-set

method. They demonstrate that, while the two methods compute similar results, theirs is sig-

nificantly faster.

Researchers have also proposed solutions to the challenges posed by boundary evolution itself.

Gomes and Faugeras (2000) proposed a differential equation formulation that preserves the

shape of the embedding surface during the evolution of the contours. Li et al. (2005a) pro-

posed a different formulation, which also helps to preserve the shape of the level-set function.

The Phase Fields method (Rochery et al., 2005; Peng et al., 2008) is an alternative level-set for-

mulation that does not require the assumption of any specific shape for the embedding function.

Their formulation is also useful for defining higher-order energy terms driving the evolution

of the boundary toward network-like objects, such as roads in a satellite image (Peng et al.,

2008). Sundaramoorthi and Yezzi (2007); Sundaramoorthi et al. (2009) introduced Sobolev

active contours, which allows for the definition of non-shrinking or length increasing contour

models. Nain et al. (2004) proposed a shape driven active contour flow for the segmentation of

elongated structures. Rivest-Hénault et al. (2010b) proposed a practical level-set formulation

for length increasing contours based on the detection of high curvature regions.

The large variety of level-set methods discussed in the literature gives us the scope to envi-

sion many practical applications. However, no method has the best performance in all cases.

Devising a usable tool that enables the segmentation of structures composed of heterogeneous

regions requires that the technique be adapted to the context of a specific problem.
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1.1.2 Level-set segmentation of vascular structures

Some authors have proposed level-set methods specifically designed for the segmentation of

vascular structures. The CURVES method of Lorigo et al. (2001) is based on the geodesic

active contour of (Caselles et al., 1997), but its smoothing term considers only the local min-

imal curvature, rather than the total curvature. As a result, longitudinal structures are only

smoothed along their axes, which prevents them from collapsing on themselves. CURVES is

an edge-based method, and so must be initialized close to the desired boundaries.

van Bemmel et al. (2003) combined a formulation similar to CURVE with region-based image

terms. Specifically, in addition to an edge based term, they proposed using Gaussian intensity

models and the output of Frangi’s vesselness filter as region representatives. For their applica-

tion, however, they did not find the latter term beneficial. Nevertheless, their level-set model

allowed for the accurate segmentation of arteries and veins in MRA scans. Manniesing et al.

(2006a) proposed a similar model for the segmentation of cerebral vasculature in CT angiog-

raphy. An interesting aspect of this work is that the authors focus on analysis of the intensity

level (in Hounsfield Units) of the structure of interest before defining a Gaussian statistical

region model computed on a pre-processed image.

Since these methods use a Gaussian intensity model to represent region intensity, bones, instru-

ments and other salient structures must be masked in a pre processing step in order to compute

a practical model of the background. Furthermore, in the context of vasculature segmentation

in angiography, the intensity of the structures of interest depends on the presence of a contrast

agent, which might be unevenly distributed. Also, the partial volume effect can significantly

affect the intensity level of smaller structures. To remedy these difficulties, we propose using

a spatially varying region model (Rivest-Hénault et al., 2010a), which is inferred on the basis

of user-provided seed points. This model has been applied to the segmentation of the aorta and

attached MAPCAs in pediatric cardiology. In comparison to the CURVES model, it allows

segmentation of a larger proportion of the structures of interest — see Figure II-5. A related

method was proposed shortly after this one by Gao et al. (2010) and is available as part of the

3DSlicer medical imaging software1.

1.1.3 Brain tissue segmentation

Brain tissue MRI segmentation is an almost canonical problem in the field of biomedical im-

age analysis. The main challenge comes from the intensity non-uniformity effect, known as the

1www.slicer.org
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1.3 Comparison between the segmentation results obtained by the method in

(Rivest-Hénault et al., 2010a), images (a)-(c) and (g)-(i), and those obtained using the

CURVE equation with a balloon propagation term, images (d)-(f) and (j)-(l). Top row:

dataset 1, bottom row: dataset 2. The gap indicated by an arrow in (h) and (k) is caused by

the presence of a catheter.

bias field, that confuse most classical automatic segmentation methods. This bias field usually

present itself as a low frequency wave-like interfering pattern and must be taken into account

one way or the other if an algorithm is to produce convincing results on brain MRI. Since it

was proposed in this thesis to define a segmentation method that is robust to such progres-

sive intensity change, it is essential to covers this important problem. In fact, the local-linear

level-set segmentation method presented latter, in chapter 3, was found to be very effective in

segmenting brain tissues in MR images, and so brain imaging is the main application in that

chapter. Consequently, the state-of-the-art methods that have been proposed for this task are

briefly presented in the following paragraphs. Most methods devised for brain tissue segmen-

tation belong to the clustering category. However, a few of the recently proposed methods

are based on an active contour framework, and so are more related to the method presented in

chapter 3.
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Early attempts at automatic brain tissue segmentation involved using generic clustering meth-

ods (Worth, 1996) such as MAP (Geman and Geman, 1984), Maximum Likelihood Classi-

fication (Duda et al., 2000), and Fuzzy C-means (Hall et al., 1992). The MAP method has

been made adaptive and bias-field aware in (Rajapakse and Kruggel, 1998), which resulted in

a significant improvement of the results. An Expectation Maximization (EM) method that uses

Markov Random Field (MRF) for spatial consistency has been proposed by van Leemput et al.

(1999), and might be regarded as one of the first truly effective automatic brain tissue segmen-

tation methods. Marroquín et al. (2002) proposed a related probabilistic approach, which they

claim is more robust to errors in the posterior marginal approximation of the MRF. The related

FAST method by Zhang et al. (2001) is freely available in the FMRIB Software library. Other

clustering methods proposed for the automatic segmentation of brain tissues include: EM clas-

sification using various Gaussian Mixture Models (Cuadra et al., 2005; Greenspan et al., 2006;

Ferreira, 2007), different bias-field aware Fuzzy C-means methods (Pham and Prince, 1999,

2004; Siyal and Yu, 2005; Bazin and Pham, 2007), classification schemes based on mean-shift

clustering (Comaniciu and Meer, 2002; Jimenez-Alaniz et al., 2006; Mayer and Greenspan,

2009), and SVM classification methods (Akselrod-Ballin et al., 2006). In general, methods

that include some sort of bias-field modeling outperform the others when used on real-world

MRI datasets. Spacial consistency also needs to be considered in the segmentation process, as

the expert reference segmentations tend to be relatively homogeneous in a given region.

Level-set active contours handle topological changes naturally and favor spatially consistent

solutions, two characteristics that make them attractive for the automatic segmentation of brain

tissues. Early proposals (Vese and Chan, 2002; Li et al., 2005b; Angelini et al., 2007) used

constant region models that neglected the bias field and were of limited use on real MR im-

ages. A user-guided scheme has also been proposed by Gao et al. (2010), but it is not suitable

in the context of automatic segmentation. A local region model has been proposed by Li et al.

(2008b) and applied to automatic brain segmentation in (Li et al., 2008a). However, although

the authors present impressive results, their method has not been extensively tested on publicly

available databases. Also, their method does not exploit the fact that the intra-scan intensity

non-uniformity might be different for each class of tissues (van Leemput et al., 1999). In sum-

mary, the level-set formulation is attractive in the context of automatic brain tissues segmen-

tation, but current methods need to be formally evaluated. In addition, more accurate region

models might lead to better performances.
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1.2 Vessel detection filters

Vessel detection and segmentation is a challenging task for a variety of reasons: the structures

are small and complex, their observed shape can vary, pathologies may be present that affect

their geometry, and contrast is limited in medical imaging, to name a few. At the same time,

automatic vessel detection has many potential clinical applications. For example, it can help

diagnose vascular disease by highlighting regions with arteriogenesis or stenosis, and facilitate

surgical mapping and guidance. Because of the complexity of the structures of interest, many

dedicated algorithms have been proposed in the literature. The vessel detection filter meth-

ods constitute one type of approach that is of interest. Theses methods use local features to

compute a vesselness measure, which represent the level to which a pixel belongs to the vessel

class. The application of a vessel detection filter on a 3D scan highlights vessel-like struc-

tures and discards the background, providing enhanced visualization. Vessel detection filters

are also a basic building block in many complex medical image processing applications (van

Bemmel et al., 2003; Sundar et al., 2006; Ruijters et al., 2009; Schneider and Sundar, 2010).

In this section, we cover the most important vessel detection methods that can be found in the

literature. In addition, dedicated vessel segmentation methods that use related local features

are briefly described.

Vessel segmentation methods rely on a variety of techniques to optimize a particular global

criterion. This category includes level-set methods (Vasilevskiy and Siddiqi, 2002; van Bem-

mel et al., 2003; Law and Chung, 2009), graph cuts methods (Schaap et al., 2009b), particle

filters (Florin et al., 2005; Wörz et al., 2009), Bayesian methods (Lesage et al., 2009b), and

vessel template matching and tracking methods (Noordmans and Smeulders, 1998; Krissian

et al., 2006; Wörz and Rohr, 2007; Friman et al., 2010). A common aspect to all these meth-

ods is that they incorporate some sort of vessel-specific local indicator in their definition. Flux

operators are the basis of (Vasilevskiy and Siddiqi, 2002; Law and Chung, 2009), Frangi’s ves-

selness filter is used in (van Bemmel et al., 2003), and Schaap et al. (2009b) use local intensity

modeling. Various local parametric shape models are also used to describe the structures: the

circle (Lesage et al., 2009b; Krissian et al., 2006), the ellipse (Florin et al., 2005; Krissian

et al., 2006), the cylinder (Wörz and Rohr, 2007; Wörz et al., 2009), and a user selectable

cross-section in (Noordmans and Smeulders, 1998).

Vessel segmentation methods can be considered specific, in the sense that they require either

some prior knowledge on the part of the user or an initialization procedure, usually in the form

of seed points. In contrast, vessel detection filters are usually applied to a significant proportion
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of an input volume in voxels and result in a vesselness image highlighting the structure of

interest.

1.2.1 Analysis of the Hessian

Certainly the most popular vessel detection filters are those based on the eigenanalysis of the

Hessian matrix (Lesage et al., 2009a). For bright tubular structures in 3D scans, the main

hypothesis is that the image intensity is mostly uniform in one direction and presents sharp

maxima in the other two. Let us define the Hessian matrix H(x) as the symmetric positive-

semidefinite matrix of all second order derivatives at a particular voxel location x. The three

eigenvectors of H(x) give the principal direction of the second order image intensity variation

around x, and the three eigenvalues indicate the modulus of the variation in those directions.

The eigenvalues are interesting descriptors of the local structure and were used in (Lorenz

et al., 1997; Sato et al., 1998; Frangi et al., 1998) to define various vessel detection criteria.

Lorenz et al. (1997) defines a measure of line-structure-ness using the three eigenvalues |λ1| ≤
|λ2| ≤ |λ3|, ordered by absolute magnitude value, as follows:

L =
|λ3|+ |λ2|

2|λ1| . (1.1)

There is no upper bound to L and it will tend to infinity as λ1 approaches 0, as is the case for

the center of vessels and other uniform structures.

A more convenient criterion is proposed by Sato et al. (1998), who sort the eigenvalues by

signed value (λ1 > λ2 > λ3) and define their vesselness measure as follows:

VS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
− λ 2

1

2(α1λ2)2

)
λ2 �= 0, λ1 ≤ 0

exp
(
− λ 2

1

2(α2λ2)2

)
λ2 �= 0, λ1 > 0

0 λ2 = 0

,

where α1 and α2 are parameters that can be different for positive and negative value of λ1.

They motivate this choice by arguing that λ1 can be slightly positive in the vicinity of a vessel

stenosis.

Frangi et al. (1998) argued that the previously defined criteria are not strict enough to efficiently

discard interfering structures. They introduced a vesselness measure that uses two indicators

RB and RA to distinguish blob-like and plate-like structures respectively, plus a second order
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structureness term S that accounts for the saliency of the structure. These indicators are

defined as follows:

RB =
|λ1|√
λ2λ3

, RA =
|λ2|
|λ3| , S =

√
∑
j≤3

λ 2
j

Based on these expressions, they define their vesselness measure as follows:

VF =

⎧⎨
⎩0 if λ2 > 0 or λ3 > 0

(1− exp
(
−R2

A

2α2

)
)exp

(
−R2

B

2β 2

)
(1− exp

(
−S 2

2c2

)
) otherwise

,

where α , β and c are free parameters. Frangi’s vesselness measure is more discriminative than

Sato’s, but at the same time its performance with very small vessels is reduced. In addition,

this method is very sensitive to the presence of vessel junction.

In practice, the second order derivatives of the Hessian matrix are computed using a combina-

tion of Gaussian filters. This gives us the opportunity to compute vessels appearing at different

scales using the framework of Lindeberg (1996), which is exactly what is proposed in (Lorenz

et al., 1997; Sato et al., 1998; Frangi et al., 1998).

1.2.2 Optimally oriented flux

Vessel detection filters based on flux operators are conceptually different. In particular, Law

and Chung (2008) consider the total flux passing through a circle positioned perpendicularly

to the vessel direction to define their vessel detection measure. Their flux operator, oriented in

the ρ̂ direction and computed for a radius r, is defined as follows:

OOF(x,r) =
∫

∂Sr

((
v(x+h) · ρ̂

)
ρ̂

)
· n̂ dA,

where v is the input image gradient, dA is the infinitesimal area on ∂Sr, n̂ is the outward unit

normal to ∂Sr at position h, and h = r. A fast method for computing the optimal direction ρ̂

and for estimating the integral is presented in (Law and Chung, 2008). The detection of vessels

at multiple scales is performed by computing the OOF for many r values. The authors argue

that their method is better than the Hessian-based approach for detecting vessels located close

together, because scaling the integrating circle does not blur the structure, as it does with the

scale-space framework of Lindeberg (1996).
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1.2.3 Polar intensity profile

Qian et al. (2009) highlighted the fact that most vessel detection filters are plagued by the

assumption of a single vessel direction per voxel. As a result, the vesselness signals of those

filters incur high loss at vessel bifurcations. The authors address this problem by proposing

a new vesselness measure based on polar intensity profile. The intensity profile they consider

is as follows: for an image I voxel at position x, the intensity profile in a certain direction

θ = (ψ ,φ) is the profile of all voxel intensities along a ray released at x, oriented in θ and with

a length r. This 1D intensity profile is computed in many directions. The hypothesis is that

the intensity profile has low variability in the direction of a vessel, and high variability in the

other directions. They compute a polar intensity profile by dividing the sphere volume into 3D

sectors defined by directions θ ± (Δψ,Δφ) and radius coordinates [0,r]. Practically speaking,

the 3D sectors Sθ are composed of many sampling points u. For each 3D sector, an intensity

variation metric is computed:

Dev(x,θ) =
1

|#Sθ | ∑
u∈Sθ

(I(u)− I(x))2,

where |#Sθ | is the cardinality of the sampling point set for sector Sθ . From there, they define the

probability pv(x,θ) of having small intensity variation within the discretized orientation region

Sθ as pv(x,θ) = cexp(−βDev(x,θ)), where c and β are positive real valued parameters. An

entropy based measure, v(x), is defined to evaluate the tightness of the polar intensity profile:

v(x) = exp(−τH(pv)) = exp

(
τ
∫

pv(x,θ) log pv(x,θ) dθ

)
.

Since this quantity gives little information about the saliency of the structure, they also propose

a measure for a locally bright structure, which is:

b(x) = 1− exp

⎛
⎝−

μ2
(

ISθmin
(x)

)
2γ

⎞
⎠ .

Here, μ2
(

ISθmin
(x)

)
is the mean intensity within the region with the minimum deviation. Fi-

nally, their [0,1] normalized polar profile vesselness measure is

PPV(x) = b(x)v(x) .
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This measure has very good performance at vessel bifurcations, but we have found it sensitive

to the presence of interfering structures in our experiments — see chapter 4.

To summarize, vessel detection filters are valuable medical imaging processing techniques,

and they serve as a basis for many more advanced methods (van Bemmel et al., 2003; Sundar

et al., 2006; Ruijters et al., 2009; Schneider and Sundar, 2010). However, the performance

of the most commonly encountered Hessian-based vessel detection filters is limited at vessel

junctions because of an implicit single vessel assumption that is built into the method. The

oriented flux operator and the polar intensity profile vesselness filter perform better in this

respect, but, as pointed out above, our experiments (presented in chapter 4) show that they are

sensitive to the presence of interfering structures. In addition, the polar intensity profile of

(Qian et al., 2009) cannot easily be saved and reused in a subsequent application — at least not

without satisfying a huge memory requirement. Overall, there seems to be a difficult trade-off,

between sensitivity and discrimination power with existing vessel detection methods.

1.3 2D/3D registration of medical imaging

Registering medical image modalities consists in placing two datasets in the same reference

frame. In 2D/3D registration one modality is generally a 3D pre-intervention CT or MR scan

and the 2D modality is almost always some sort of x-ray radiography. For example, in Fig-

ure. 1.4 the transformation T that best aligns the 3D modality reference point (C) with that of

the biplane c-arm gantry (X) needs to be computed. In the case of non-rigid registration, not

only does there need to be compensation for differences in position and orientation, but the

shape discrepancy must also be taken into account.

The registration process generally involves computing the transformation of one dataset into the

other by minimizing a particular certain energy function. So, the registration of two medical

images involves three main elements: 1) a transformation model, 2) an image comparison

strategy, and 3) an optimization algorithm. In the specific context of the 2D/3D registration

of medical imaging for intervention guidance, there is an inherent dimensionality problem

that must be accounted for by the image comparison strategy. In addition, when considering

the registration of CTA or MRA with X-ray fluoroscopy, the process can be considered as

quasi-intermodal or intermodal, which means that the intensity level of the two images cannot

be compared directly. In this respect, the most critical aspect of any method for the 2D/3D

registration of medical imaging for intervention guidance is the image comparison strategy.
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Figure 1.4 Geometry of a 2D/3D imaging system

1.3.1 Types of 2D/3D registration methods

It is possible to classify the various 2D/3D registration methods that have been described in the

literature essentially by inspecting two of their most important characteristics: 1) what is the

basis for comparison, and 2) what is the dimensionality of the comparison domain 2. The ba-

sis for comparison refers to the abstractions that are actually compared during the registration

process. We consider two classes of basis for comparison for both the 2D and 3D modalities:

image bases and model bases. An image basis involves simply the input images, either the 2D

fluoroscopies or the 3D volume, with or without pre processing with some low level filter, such

as a gradient or vesselness filter. In contrast, a model basis is composed of some features of

interest. For the 2D modality, this basis could be, for example, the thresholding of a vesselness

filter response or the result of a structure identification process. For the 3D modality, the basis

could consist of a 3D segmentation of the structures of interest, a centerline representation or a

more complex model. The dimensionality of the comparison domain refers to the dimension of

the similarity measurement space. The comparison domain is either 2D or 3D. Bidimensional

comparison domains are associated with projective methods. The key aspect of these methods

is that the 3D representation is projected onto the 2D imaging planes as part of the comparison

process. The 3D to 2D projection can be simulated X-ray fluoroscopies, called digitally recon-

structed radiographs, or a maximum intensity projection. The methodology is reversed when

a 3D comparison domain is chosen. With reconstruction methods, it is the 2D image features

2More complex classification scheme are also possible, see (Maintz and Viergever, 1998; Lester and Arridge,

1999; Markelj et al., 2012).
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Table 1.1 Categories of 2D/3D registration methods

Baisis for comparison
Comparison domain Representative work

2D modality 3D modality
Image Image 2D (projection) (Birkfellner et al., 2009)

Image Image 3D (reconstruction) (Tomazevic et al., 2006)

Image Model 2D (projection) (Turgeon et al., 2005;

Ruijters et al., 2009)

Model Model 2D (projection) (Benameur et al., 2003;

Groher et al., 2009)

Model Model 3D (reconstruction) (Zheng et al., 2009)

that are projected into the 3D space by applying a stereographic reconstruction algorithm. The

back-projection strategy also leads to 3D comparison, and it consists of measuring the error

by directly considering the 3D projection line associated with a 2D point, with no attempt to

reconstruct a specific 3D position.

The comparison basis can be different for the 2D and 3D modalities. Also, the dimensionality

of the comparison domain is relatively independent of the basis for comparison, although some

configurations are more intuitive than others. It is thus possible to classify most proposed

2D/3D registration methods into five classes, as presented in Table 1.1.

The other important aspects of the registration methods mostly derive from the basis for com-

parison and domain selected. Nevertheless, they may have a critical impact on the overall

performance of the method. The comparison metric is a function that makes it possible to mea-

sure the distance between modality representatives. This can be a mutual information measure

in the case of image-based registration, or the Euclidean distance for model-based methods.

The transformation model selected determines the maximal precision that can be achieved by

a registration method. Generally, the maximum possible precision increases with the model

complexity (Lester and Arridge, 1999). However, added complexity can result in more local

minima on the optimization surface, which in turn calls for powerful optimization algorithms.

Below, we describe some of the most interesting registration methods that are relevant for the

2D/3D registration of medical imaging for cardiac interventions guidance.

1.3.2 Image-to-image methods

Image-to-image projective 2D/3D registration methods are the most frequently encountered

methods in the literature (Markelj et al., 2012). They involve projecting the volumetric infor-

mation onto the 2D imaging plane. In general, the physical properties of the imaged tissues, as
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well as the characteristics of the imaging source, are modeled and encoded into the projection

algorithm. In this case, the projected volume results in a synthetic X-ray fluoroscopic image

called a Digitally Reconstructed Radigraph (DRR), which is very similar to a real 2D fluoro-

scopic image (Hipwell et al., 2003). Other projection algorithms, such as maximum intensity

projection, have been considered by some authors (Kerrien et al., 1999). In this category of

registration methods, the two principal research directions have been the efficient creation of

high-quality DRRs (Khamene et al., 2006), and the definition of the best performing compari-

son metrics (Liao et al., 2006; Birkfellner et al., 2009).

A related registration technique is the image-to-image reconstruction-based 2D/3D registration

method of Tomazevic et al. (2006), in which a synthetic volume is reconstructed using multiple

2D angiography images acquired with a 3D rotational X-ray device, and the filtered back-

projection technique of Grass et al. (1999). An asymmetric multifeature mutual information

measure is then minimized to compute the registration. A variation of this technique consists

of applying a gradient filter on the input image in order to produce a more selective basis

for the similarity criterion (Markelj et al., 2008). Approaches of this nature are limited by

the necessity of interrupting the intervention procedure to process for rotational acquisition.

In addition, they have only been demonstrated on high contrast bone datasets. Nevertheless,

development in the field of 3D rotational X-ray techniques are likely to make image-to-image

reconstruction-based 2D/3D registration methods more attractive in the future.

A limitation that is common to most image-to-image 2D/3D registration methods is that the

contrast in the projection image is lower than the input volume, which limits potential applica-

tions to 3D scans with highly contrasted structures: bones in (Khamene et al., 2006; Tomazevic

et al., 2006; Birkfellner et al., 2009), and cerebral structures in MRA in (Hipwell et al., 2003).

To remedy this difficulty, DRRs can be generated by considering only: a) the subset of the 3D

volume corresponding to the structures of interest (Turgeon et al., 2005), b) a realistic mesh

model (Aouadi and Sarry, 2008), or c) a reference CT atlas (Hurvitz and Joskowicz, 2008). The

creation of such a volumetric model makes it necessary to segment the 3D volume before the

registration, but this also makes it possible to produce more highly contrasted DRRs that en-

able registration of images of soft tissue structures; for example, coronary arteries in (Turgeon

et al., 2005).

1.3.3 Model-to-image methods

The problem of the 2D/3D registration of a 3D model of the aorta and attached MAPCAs

has been addressed by our team in Julien Couet and et al. (2012). In this research, DDRs
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were generated using a fast wobbled splatting technique (Birkfellner et al., 2005). A problem

that generally occurs with this method is that a flies screen-lika pattern might appears on the

DRRs because of the magnification induced by the simulated imaging system. We proposed to

alleviate this problem by using a triangle convolution filter, which under certain circumstances

is equivalent to using a 3D image upsampled by trilinear interpolation (Cosman, 2000). The

minimization is driven by an improved hill climbing algorithm. This method resulted in a target

registration error of less than 2.060±2.712mm on a difficult real-world MAPCAs dataset. The

main drawback of this method is that the relatively high computational time required makes it

more suitable for off-line applications.

Registration methods based on the projection of full volumes or dense models on the 2D imag-

ing plane always involve relatively high computational cost. This places a practical limit on the

complexity of the registration transformation models considered. As such, the results reported

for many 2D/3D registration methods are limited to rigid transformation (Hipwell et al., 2003;

Turgeon et al., 2005; Khamene et al., 2006; Tomazevic et al., 2006; Aouadi and Sarry, 2008;

Markelj et al., 2008; Birkfellner et al., 2009) or a parametric approach with a small number of

parameters (Hurvitz and Joskowicz, 2008). With a simpler 3D model, the computational cost

is greatly reduced. Ruijters et al. (2009) introduced a projective model-to-image 2D/3D regis-

tration method for the alignment of coronary arteries centerline model with live fluoroscopies.

Their method is faster those in the preceding categories, but still requires several seconds per

frame with only a rigid transformation model.

1.3.4 Model-to-model methods

Model-to-model 2D/3D registration methods are potentially much faster during the optimiza-

tion step. Feldmar et al.describe a framework for the registration of points, lines, and surfaces

in (Feldmar et al., 1994, 1995, 1997). The registration transformation is first approximated

using geometrical analysis and is refined in a second step involving the Iterative Closest Point

(ICP) algorithm. They present results obtained on a variety of datasets, including brain vascu-

lature. Their method requires user interaction at the initialization level, which is a limitation

for some applications, and they do not clearly describe how the features are extracted from

the various images. More recently, Benameur et al. (2003) proposed a method of the registra-

tion of a deformable 3D mesh model of the vertebra with radiographic images. In this work,

the features are automatically extracted in 2D using Canny’s edge detector. The registration

parameters are computed using a gradient descent approach following an initial alignment step.
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An efficient model-to-model 2D/3D registration method for coronary artery centerline model

alignment with x-ray images have been proposed by Sundar et al. (2006). This method is based

on a Distance Transform (DT) of the 2D features on the image plane, a concept previously

introduced by Paragios et al. (2003) in the context of 2D/2D registration. The main advantages

of this method are its relatively large capture range and its computational efficiency. Indeed,

by using the DT of the 2D image, the projection error of the 3D model can be evaluated

directly, without the need to estimate matched point as in (Feldmar et al., 1995). In this work,

the 2D features are extracted using a thresholding of the digitally subtracted angiography. A

related method has been proposed by Duong et al. (2009), relies on semi-automatic vessel

centerline extraction on the 2D images using a vesselness measure and the Fast Marching

method (Sethian, 1999).

A graph based non-rigid 2D/3D method for the registration of a vessel centerline in the one-

view scenario is presented in (Groher et al., 2009). These authors use a thinning procedure to

extract graphs in both the 2D and 3D images, and they propose an original length preserving

criterion to ensure the geometrical plausibility of the computed non-rigid registration. How-

ever, the high computational time involved makes this method impractical for live applications.

An efficient graph-based method has been proposed by Liao et al. (2010), who propose using

DT and a thin plate spline deformation model (Bookstein, 1989) to greatly reduce the compu-

tational cost. However, their method use features specific to the aorta, and so is not suitable for

all applications.

The remaining class of 2D/3D registration methods consist of the reconstruction-based model-

to-model techniques of Zheng et al. (2006, 2009). In these works, the authors focus on con-

structing a bone surface model from a limited number of 2D X-ray images. Feature points are

extracted in the 2D images, and then matched using a non-rigid iterative process. The final

reconstruction requires an accurate statistical shape model that is deformed as a function of the

established correspondences. Hence, the practicability of the method is limited by the avail-

ability of a suitable statistical shape model, and it is still not clear that such a model can be

constructed for soft tissue structures that are subject to large variations in shape. Also, at about

2 minutes per reconstruction, the computational cost of this method is relatively high.

Two essential, but somewhat conflicting qualities, of 2D/3D non-rigid registration methods in

the context of cardiac intervention guidance are accuracy and speed. The maximal accuracy of

a method depends on the transformation model considered. In the context of cardiac interven-

tion, the pre operative CTA is acquired under a breath-hold, whereas the interventional images

are acquired in a free breathing condition. This results in significant shape differences between
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the two datasets and makes the use of a non-rigid deformation model indispensable. However,

using such a model increase the complexity of the problem, and usually results in high com-

putational time, which can make the method impractical. We could not find a method in the

literature that completely solves the problem of guidance in challenging cardiac interventions.





CHAPTER 2

OBJECTIVES AND GENERAL METHODOLOGY

2.1 Objectives of the research

As discussed in the introduction, the general objective of this thesis is to define a biomedical

image analysis framework for advanced visualization and surgical guidance. This framework

consists of two important parts: 1) the creation of 3D patients-specific models by segment-

ing some structures of interest in 3D medical scans, and 2) the registration of patient-specific

3D models with interventional fluoroscopy for intervention guidance. The literature review

presented in the previous chapter highlights some of the limitations of the current medical im-

age segmentation and registration methods. The presented limitations suggest that a common

challenge in biomedical imaging is: how to adapt to local structure variation while preserving

consistency? In this respect, localized methods based on differential geometry that permit a

better adaptivity to the image characteristics have been researched.

Specifically, with level-set segmentation method there is always a trade-off between precision

capture range. For example, edge-based active contour models (Caselles et al., 1997; Lorigo

et al., 2001) are driven toward the nearest maxima of the gradient modulus image. Therefore,

they need to be initialized relatively close to the structure of interest. On the other side, formu-

lations based on constant region model have little dependency (Chan and Vese, 2001) 1 on the

initial position of the contour, but the constant region model strongly limit their performance

with most real world images. It can be hypothesized that a more flexible local region model

could provide a more balanced trade-off between the capture range and the precision of the

method. A first specific objective of this thesis is thus:

Specific Objective 1

To define a segmentation model that is robust to low frequency changes in the intensity

of the voxels corresponding to the structures of interest.

The literature indicates that global segmentation techniques, such as the region-based level-set

methods, are not suitable for the segmentation of very fine vascular structure with a cross-

section that can be as small as one or two voxels in diameter. In this context, vessel detection

filters can complement another segmentation model (Manniesing et al., 2006b). Unfortunately,

1Or even no dependency in the case of Rochery et al. (2005).
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the most popular existing vessel detection filters (Sato et al., 1998; Frangi et al., 1998) suffer

from high signal loss in regions close to bifurcations. In contrast, newer methods might not

be discriminative enough to be useful on thoracic CTA volumes. Therefore, a second specific

objective of this thesis is:

Specific Objective 2

To devise a vessel detection filter for the segmentation of fine vascular structures that is

robust to the presence of bifurcations and has good discriminative capacity.

It is believed that the combination of a global segmentation method with local structure descrip-

tors would make it possible to efficiently and accurately segment many vascular structures. The

segmented structures can serve at the diagnostic and surgical planning stage, where they would

permit a better understanding of the geometry. However, mentally mapping this information

to the structure observed on the interventional images is difficult, time-consuming, and error

prone. In addition, the uneven quality of the X-ray fluoroscopy, and the structure deformations

caused by body functions further complicate this task. To alleviate this problem, a solution

is to register a 3D patient-specific model of the structures of interest with the interventional

images. Overlying the model on top of the 2D X-ray images significantly reduce ambiguities

in their interpretation. The literature shows that many 2D/3D registration methods have been

proposed for similar tasks in related contexts. Nevertheless, no method has been found that

is capable of providing a non-rigid registration fast enough to be used during the operation.

In this respect, it is not necessary to perform the registration in realtime, a method that run in

interactive time would allows to perform many updates during the course of a procedure, after

the contrast agent has been injected. Hence, the third specific objective considered is:

Specific Objective 3

To propose an efficient 2D/3D non-rigid registration methodology for the guidance of

complex procedures.

The three proposed specific objectives offer a two-step framework for enhanced surgical guid-

ance consisting in 1) segmenting the structure in the pre-operative CTA or MRI scan, and 2)

registering this patient specific model with the interventional images. The achievement of the

proposed objectives is however not straightforward, and specific considerations are needed at

each stage. As such, the next section section discuss the proposed methodology and the specific

challenges encountered.
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2.2 General methodology

The general methodology considered is directly tied to the specific objectives defined above,

and thus consists of three principal parts: 1) large structure segmentation using the level-set

method, 2) vessel detection and segmentation based on local image structure analysis, and

3) 2D/3D registration for the guidance of surgical procedures. We favored methods based on

differential geometry because of their elegant formulation, deep roots in the literature, and long

term relationship with computer graphics. At the practical level, they tend to produce smooth

outputs that are in accordance with the organic nature of medical images. Each step is briefly

outlined here, and is the subject of a complete chapter later.

2.2.1 Large structures segmentation using the level-set method

The segmentation of structures with spatially variant intensity has been identified as a particu-

larly problematic case. Its is also an important problem, because such structures can be found

in most real world medical images. Hence, a segmentation model is defined that is robust to

small changes in the intensity of the voxels corresponding to the structures of interest, a task

that is directly linked to the realization of the first specific objective of this thesis. During our

research, we investigated the potential of optimization algorithms, acting at a global level, to

obtain a segmentation of some anatomical structures. Methods in this category include the

geometrically motivated level-set and graph-cut methods, along with their various refinements,

and also clustering methods such as the fuzzy C-means and Expectation Maximization algo-

rithms. Our research converged to the level-set approach, which is based on a compelling

variational framework, because it has been successfully used for the segmentation of some

vascular structures and brain tissues.

As stated in the first objective, our focus was on methods that could efficiently deal with some

intensity nonuniformity in the intensity of the voxels representing the structure. At the time we

started this research, level-set methods using a localized region model have just been proposed

for tackling similar problems. This idea has a great potential: while the contour defined by

the level-set still acts at a global scale, the statistical regional model is localized and permits a

certain adaptation to the local image contrast. The work presented in chapter 3 pushes this idea

further by defining a local-linear model. Not only is fitness of the voxel intensities tested by

this new functional, but the fitness of the voxel intensities spatial derivatives is tested as well.

This opens the way to model image regions with significant gradients, and is an idea that could

certainly be used for the segmentation of vascular structure. However, we found that our new

local-linear level-set method demonstrated better potential for use in brain tissue MRI.
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Our specific objective, in the context of automatic brain tissue segmentation, is to partition a

T1-weighted MRI scan of the head into three different classes: the nerve connections (white

matter or WM), the congregations of neurons (gray matter or GM), and the cerebrospinal fluid

(CSF), without user intervention. It is generally assumed that the skull and other background

structures have previously been removed using another method. Defining an accurate method

to automatically segment brain tissues is a difficult task, principally because the intensity of the

pixels describing each class is not constant, and can vary significantly from one region of the

scan to another. The main sources of intrascan intensity nonuniformity (INU) are limitations of

the imaging device itself, such as imperfections in the radio frequency coils. This phenomenon

is commonly referred to as the bias field of the MRI system.

Over the years, two main avenues of research have been explored to find solutions to the bias

field problem: 1) producing unbiased MR images, and 2) developing segmentation methods

that are as resilient as possible to the presence of INU. In the first case, both retrospective

and prospective methods have been proposed. However, the retrospective methods are lim-

ited in the bias field for which they can compensate, and the prospective method are still not

been adopted in most current clinical workflows. Consequently, the development of a resilient

segmentation method is of interest to practitioners. In the literature, most methods developed

to the automatically segment brain tissues are based on clustering methods (EM, MPM-MAP,

GMM, fuzzy C-means, Mean Shift, to name a few) designed to explicitly compensate for a bias

field that varies slowly. The results produced by the best methods are certainly an improvement

over the basic technique, but all methods are limited when applied to lower quality scans with

high INU.

In this thesis, we propose a more geometrically oriented method defined in a variational frame-

work. This approach allows us to exploit the spatial consistency of the tissues during the

segmentation. Resilience to the presence of a moderate level of INU is implemented implicitly

by the use of the local-linear region model briefly introduced above. Our new regional energy

formulation is, however, more complex than existing models, and finding a gradient direction

that guarantees that the energy is minimized requires a significant amount of computation. For

practical purposes, an approximation is used to significantly reduce the computational com-

plexity. This approximation is presented in appendix I, and a validity condition is provided.

An experimental validation study has been conducted using both synthetic and clinical MRI

data of brain tissues, and detailed results are presented in chapter 3 of this thesis.

The work described here meets the goal of defining a segmentation model that is robust to

small changes in the intensity of the structures of interest. The main contribution of this work
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are: definition of a new local-linear region model for the level-set method, and derivation of a

computationally efficient approximate flow for the minimization of the level-set energy func-

tional. This model is applied to the problem of automatically segmenting brain tissues in MRI

in chapter 3. However, in the context of this thesis, we are also interested in applications re-

lated to vascular structure segmentation. Accordingly, work on related level-set segmentation

models for vascular structures segmentation have been done, as is briefly outlined in chapter 1

and presented in Appendix II. A limitation of many global segmentation methods, such as the

one presented here, is that they are generally sensitive to the presence of adjacent structures

with similar intensity characteristics. We argue that the use of a structure-specific local indica-

tor could help to achieve better results in those cases. The definition of such an indicator is the

subject of the next section.

2.2.2 Vessel detection and segmentation

Global segmentation methods are generally good at delineating large structures. They are

usually less successful in segmenting very fine structures, along which the intensity can vary

rapidly, or structures very close to other tissues with similar voxel intensity. One way to over-

come this difficulty is to use a highly localized indicator to detect the structures of interest.

Devising such a vessel detection filter for the segmentation of fine vascular structures has been

defined as the second specific objective of this thesis.

The visualization of various curvilinear structures in 3D CTA or MRI volumes is of the utmost

importance in medical imaging. These structures can represent veins, arteries, bronchi, or other

structures crucial to physiological functions. By isolating curvilinear structures from the rest

of the volume, automatic vessel detection filters can help practitioners visualize the full length

of the vessel. These filters are regularly used as a basic building block of many medical image

processing applications, such as vessel tracking, segmentation, and image-guided surgery.

With vessel detection filters, the idea is to define functions acting at the pixel level which esti-

mates the degree of membership of a pixel in some geometrical or statistical model. Using suf-

ficiently localized features, it is possible to design functions that are robust to a global change

in contrast, or in other words, to design functions that are capable of detecting the desired struc-

tures that appear at various intensity levels. Two important qualities of a vessel detection filter

are specificity, which is the ability to remove background structures, and sensitivity, which is

the ability to detect all parts of the structures of interest. The most used operators in this cate-

gory are those based on analysis of the Hessian matrix. However, because they implicitly rely

on the assumption of on a single vessel per voxel, they tend to suffer from large signal loss at
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vessel junctions. Also, the limited information carried by the Hessian matrix is not sufficient

to discriminate against all background structures. Consequently, the sensitivity and specificity

characteristics of the existing methods are not ideal.

In chapter 4, we define a vessel detection filter based on the analysis of a set of second order

differences computed in many directions, which we refer to as a structure ball. The definition

of this new geometric construction was inspired by recent advances in the processing of high

angular resolution diffusion imaging in neurology, which allows for a more accurate tracking

of brain tissue fibers. With this structures, it is possible to represent single curvilinear struc-

tures as well as X- and Y-bifurcations. Analysis of the shape of the structure ball gives us the

ability to define vessel membership measures that do not depend on the single vessel assump-

tion. In this research, a new vesselness — or curvilinear structure — measure is proposed. A

straightforward method is also presented to fix the parameters of the filter, which makes the

filter simple to use. Finally, the filter has been applied to scans from two different medical

imaging modalities, found to have better sensitivity and specificity characteristics than existing

filters.

The main contribution of this work is the definition of a new local structure descriptor, and its

use for the detection of curvilinear structures in 3D medical imaging volumes. This part of

the thesis methodology enable us to meet our second specific objective, which is to devise a

vessel detection filter for the segmentation of fine vascular structures. The proposed method is

relatively simple to understand and implement, and is a significant improvement over previous

existing techniques. Its potential to produce automatic segmentation of the coronary arteries

is also demonstrated. We can speculate that the integration of the proposed method into a

more general segmentation framework, such as the level-set method, could make it possible to

segment more complex vascular structures.

2.2.3 2D/3D registration for the guidance of surgical procedures

Once a 3D model of the patient structures has been created, it can be used to improve diag-

nosis and surgical planning. However, with the appropriate computational tool, it could also

help with interventional guidance by augmenting the 2D imagery with the 3D geometry seg-

mented from CTA acquisition. A 3D patient specific model aligned and overlaid on the 2D

interventional images, constitutes an accurate reference for the surgeon, and greatly reduces

the ambiguities inherent in the interpretation of the 2D images. To this end, in the third part of

this research, we propose an efficient 2D/3D non-rigid registration methodology for the guid-

ance of complex procedures, which is the third specific objective of this research. Specifically,



47

we were interested in registering 3D coronary artery models with live fluoroscopy for the guid-

ance of cardiac intervention, with an emphasis on percutaneous coronary interventions (PCI)

of chronic total occlusions (CTO).

The guidance of PCI is a subject that is well represented in the literature. Nonetheless, aligning

the 3D geometry with the 2D interventional images has proved to be challenging for various

reasons: difficulties in making accurate quasi-intermodal correspondences between images of

different dimensionalities, differences in the apparent shape of the structures in CTA and flu-

oroscopy, computational problems when finding the optimal registration transformation, and

the high runtime of the algorithms, to name a few. It is possible to classify most approaches

that have been proposed for this task in two main categories: image-based and model-based

approaches. The former considers the alignment of a substantial portion of the CTA voxels

with the interventional images, while the latter makes use of a simplifying model of the struc-

ture, generally a centerline model. The image-based approach often involve using measures

based on signal theory, such as the normalized cross-correlation, and is, generally speaking,

reputed as the most accurate. However, there is an high computational cost associated with

the projection of the voxels on the interventional planes, and this cost limits the complexity of

the transformation model that can practically be computed. Therefore, most published image-

based methods are limited to rigid transformations. As the 3D planning image is generally ac-

quired under a breathold, there are significant shape changes as compared to the intraoperative

images acquired under free breathing. This makes it important to use an affine or a non-rigid

registration method to achieve more convincing registrations. In this respect, the lower com-

putational cost associated with model-based approaches is a decisive advantage. Nevertheless,

the use of affine and non-rigid transformation models is not well documented in the literature.

Furthermore very little work as been published regarding the optimization of the cost-functions

used in the registration process.

In chapter 5 we present a new method for the non-rigid 2D/3D registration of coronary artery

models with live fluoroscopy for guidance of cardiac interventions. A model-to-model pro-

jective approach is proposed, which is composed of two main steps. In the first step, the pa-

rameters of a global transformation model — translation only, rigid, or affine — are estimated

by minimizing an energy function, and provide the initial alignment. The three transformation

models are used in sequence to minimize the risk of finding local minima. The performance of

nine different general purpose optimizers to minimize the corresponding energy function have

been evaluated. In the second step, a fully non-rigid reconstruction and registration process

is defined based on a variational framework. This process allows the 3D centerline model to
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snap onto adjacent structures, increasing confidence in the registration process and compen-

sating for deformations caused by respiration and heartbeat. The method was tested on five

clinical datasets, including one CTO dataset and another dataset with a significant build-up of

plaque. With total runtime typically under 3s for non-rigid registration, the method is reason-

ably fast and can be used to enhance surgical intervention guidance by displaying a deformed

and aligned 3D model alongside the interventional images.

The contribution of the method presented in this section is fourfold: 1) a 2D/3D rigid mono-

plane alignment formulation is adapted for affine alignment with biplane datasets, 2) many

local and global optimizers are evaluated and compared for the task of estimating the parame-

ters of the various transformation models, 3) a new efficient 2D/3D fully non-rigid registration

formulation based on a variational framework is proposed and evaluated on difficult simulated

and clinical dataset, and 4) two multiframe formulations are presented, and pave the way to-

ward 3D+t modeling. This multifaceted contribution allows to enhance surgical guidance by

using a 3D model of the patient structure, and meets the third specific objective of this thesis.

It is important to note that image-based techniques are more appropriate in some situations, for

example when it is difficult to create a centerline model of a 3D structure. Work on this aspect

of the problem has been carried out, and has been briefly introduced in the literature review

(Julien Couet and et al., 2012).
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Abstract

Real world magnetic resonance imaging of the brain is affected by intensity nonuniformity

(INU) phenomena which make it difficult to fully automate the segmentation process. This

difficult task is accomplished in this work by using a new method with two original features:

(1) each brain tissue class is locally modeled using a local linear region representative, which

allows us to account for the INU in an implicit way and to more accurately position the region’s

boundaries; and (2), the region models are embedded in the level set framework, so that the

spatial coherence of the segmentation can be controlled in a natural way. Our new method has

been tested on the ground-truthed IBSR database and gave promising results, with Tanimoto

indexes ranging from 0.61 to 0.79 for the classification of the white matter, and from 0.72 to

0.84 for the gray matter. To our knowledge, this is the first time a region-based level set model

has been used to perform the segmentation of real world MRI brain scans with convincing

results.

Keywords: IBSR, brain scan, image segmentation, level set, active contours, local linear

approximations.

3.1 Introduction

Magnetic resonance imaging (MRI) is a well established and non-invasive means of acquiring

high-resolution images of the brain of a live subject. Its precision and good soft tissue contrast

permit the discrimination of the nerve connections (white matter or WM) from the congrega-

tions of neurons (gray matter or GM) and cerebrospinal fluid (CSF). Analysis of the spatial

distribution of those tissues are used to support the diagnosis of various brain illness such
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as Alzheimer’s disease (Venneri, 2007), dementia with Lewy bodies and Parkinson’s disease

(Bozzali et al., 2008).

Segmentation of the WM, GM and CSF on a T1-weighted MRI scan is often a prerequisite for

such an analysis. As a typical MRI scan involves dozens of high-resolution slices, manual seg-

mentation of the data is tedious and costly. In today’s context, where qualified workmanship

is scarce and expensive, the automated segmentation of magnetic resonance (MR) images is

becoming increasingly relevant. Furthermore, unsupervised methods become efficient tools for

automatic segmentation and may have the added benefit of greatly reducing user bias in studies

(Vaidyanathan et al., 1997). The major difficulties that arise with the automated segmentation

of brain tissues using T1 MR images are related to the fact that image intensities are not con-

stant for each tissue classes. During acquisition, the observed volume is discretized into voxels

of significant finite dimension. This leads to a partial volume effect (PVE) since the signal

produced by all the tissues present inside a voxel will be averaged, and so the recorded voxel

intensities will not, in general, correspond to a single tissue class. In addition, limitations of

the imaging device, such as imperfections in radio frequency (RF) coils, result in field inhomo-

geneities, which can lead to intra-scan intensity nonuniformity (INU) (Mason and Rothman,

2002; Belaroussi et al., 2006). This phenomenon is often referred to as the bias field of the

MRI system. Finally, inter-scan variability may arise from inappropriate normalization and

various other sources of noise may blur the images or displace voxels. Among those sources

of uncertainty, the most problematic are PVE and INU. Various difficulties that can occur with

MR images are shown in Fig. 3.1.

Although attempts were made to automatically segment MRI brain tissues twenty years ago,

the results, in real-world conditions, have only started to become convincing in the last few

years. Early segmentation methods where often based on simple clustering techniques and

produced discontinuous results with a granulous aspect in the presence of INU and noise. A

key aspect of many recent techniques is the notion of spatial coherence, which refers to the a

priori knowledge that structures of interest are continuous in nature. Therefore, recognizing

that the probable class of any voxel is related in some way to the classes of its neighbors

permits to define powerful methods giving segmentation results of more natural appearance.

Approaches which are the most relevant to ours are presented below.

3.1.1 State-of-the-art techniques and their limitations

A great deal of effort has been expended to produce unbiased MR images over the past 15 years.

In 1998, Sled et al. proposed, in a now classical paper, a retrospective nonparametric method
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for INU correction by estimating a slowly varying bias field (Sled et al., 1998). Today, bias

field correction remains a very active research topic and more refined methods have emerged

(Belaroussi et al., 2006; Manjón et al., 2007). There are, however, situations where such

preprocessing techniques have not proved to be beneficial (Ferreira, 2007). Another avenue is

the development of prospective methods that attempt to prevent INU artifacts from appearing

during the image formation process. Deoni et al. presented a method (Deoni et al., 2006)

that enables the creation of synthetic scans devoid of RF artifacts. While their results show

great potential, this kind of acquisition is not yet part of routine clinical workflow, nor can this

method be used for the a posteriori correction of an existing dataset. It is therefore desirable

to develop segmentation methods that are as resilient as possible to INU.

In 1999, van Leemput et al. (van Leemput et al., 1999) published one of the first effective

approaches to reliable brain tissues segmentation. They proposed using an EM algorithm to

find a four-class partition (WM, GM, CSF and “other”) of observed data. Their method relies

on a Markov random field (MRF) for spatial coherence, and is initialized using a template.

Marroquin et al. (Marroquín et al., 2002) take a similar probabilistic approach. Their main

contribution is the definition of a variant of the expectation maximization (EM) algorithm,

called MPM-MAP, which is more robust to error in the approximation of the posterior marginal

of the MRF. Another related method, the FAST algorithm available in the FMRIB Software

Library, is due to Zhang et al.(Zhang et al., 2001).

Other authors have used GMMs (Gaussian mixture models) with more than four components

in order to account for PVE (Cuadra et al., 2005). Ferreira da Silva (Ferreira, 2007) proposed

using a Dirichlet process to find the best N-components GMM and using the N3 tool to com-

pensate for the INU. His method automatically estimates the number of components in the

mixture model.

Some disadvantages of the parametric methods are that they all make relatively strong assump-

tions about the form of the underlying distribution, and they do not cope well with overlapping

distributions. Also, imposing a spatial coherence is often an issue (Marroquín et al., 2002).

Greenspan et al. (Greenspan et al., 2006) introduce a model which takes advantage of a GMM

with many components to model both the intensity and position of the tissues. Their method is

initialized using a K-means procedure.

Non-parametric clustering techniques have also received a great deal of attention for the seg-

mentation of MR brain scans. Siyal and Yu proposed using a modified version of the fuzzy

C-means (FCM) (Siyal and Yu, 2005). Their technique, dubbed the intelligent fuzzy C-means
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(IFCM), takes advantage of a modified objective function which accounts for the bias field.

This technique is very simple and gives good results. Recently, a method that uses a mod-

ification of the FCM algorithm inside a three steps process has been introduced by Sikka et

al.(Sikka et al., 2009) and gives good results. However, spatial consistency is handled in a

separated process from segmentation. The classic work of Pham and Prince also benefits from

the fuzzy framework (Pham and Prince, 1999, 2004).

Bazin and Pham (Bazin and Pham, 2007) embedded the FCM algorithm in an interesting

topology-preserving framework. Their model is initialized with a template which defines the

brain topology. This template then evolves, in a topology-preserving fashion, by iterating steps

of thinning, class membership evaluation and dilation. The main drawback of this technique

is the cost of a good topological template: manual editing may be required. Also, this method

will not give good results if the topology of the brain scan does not fit the template well.

An alternative non-parametric approach is presented in (Jimenez-Alaniz et al., 2006). The au-

thors start by clustering the data using a version of the mean shift (MS) algorithm (Comaniciu

and Meer, 2002). Those clusters are then classified with the help of probability templates.

However, no mechanism is provided to counterbalance the INU effect. A related, but dif-

ferent MS-based procedure which does not rely on any template is presented in (Mayer and

Greenspan, 2009). From another perspective, wavelet-based segmentation technique, such as

the one proposed by Zhou and Ruan (Zhou and Ruan, 2007) are starting to emerge.

Variational segmentation methods using active contours have gained momentum in the last few

years. Chan and Vese’s Active Contour Without Edges was the first variational region-based

model to become popular. They provide a model for the piecewise constant and the piecewise

smooth cases (Vese and Chan, 2002). Subsequently, interesting segmentation models have

been proposed by many researchers (Tsai et al., 2001; Gao and Bui, 2005; Paragios, 2006).

Very few authors have used level set based models to segment MR brain images, although

some examples can be found (Gao and Bui, 2005; Vese and Chan, 2002; Angelini et al., 2007).

Unfortunately, INU is not well handled by their constant tissues model and they do not provide

detailed results on the well known Brainweb or IBSR dataset.

Recently, some authors have introduced level set methods for brain tissues segmentation which

benefit from localized region models and presented impressive results (Li et al., 2005b, 2008b,a).

Nevertheless, the performance of level set-based methods for brain MRI segmentation is still

scarcely documented, and those methods would benefit from more thorough evaluations on
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well known datasets. Moreover, the flexibility of the active contour variational framework

allows for the definition of other, and hopefully even more accurate, segmentation models.

(a) (b)

Figure 3.1 Two consecutive sample slices from the IBSR, subject 5_8: (a) slice no.15,

and (b) slice no.16, enhanced for visualization purposes. Area A and area B in (a) are of

about the same intensity, even though they represent different classes (GM and CSF).

Area A is dark because of the PVE. (b) shows a low frequency wave effect over the brain

domain, which can be attributed to the bias field. Because of this, area C is significantly

lighter than the surrounding area.

3.1.2 The need for a more comprehensive model

From the above discussion, it appears that the spatial coherence of the results is still an issue.

Active contour schemes allow for the inclusion of a regularization parameter which controls

the viscosity of the contour and which may lead to more natural results. Of these tools, the

level set method is one of the best available, for the following reasons: its generality allows a

large variety of energy terms to be represented; it automatically handles topological changes;

and it is relatively simple to implement.

Many segmentation methods rely on some kind of template for the inclusion of prior knowl-

edge. That knowledge may be misleading when the brain scan shows an atypical structure,

such as with infant brain data or a brain with tumor data. Also, the production of an appro-

priate template may be expensive. Given equivalent performance, the method which uses the

simplest template will generally be considered superior.

It seems clear that INU must be taken into account, since all the most successful methods

include a way of modeling the bias field. However, all the methods reviewed use an explicit

model for the bias field. This adds to the model complexity, and may conflict with the rest of

the segmentation process.
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In this paper, we present a new, fully unsupervised algorithm for the segmentation of MR brain

images. This new algorithm takes advantage of the level set method to control the spatial

coherence of the segmentation. An original local linear region representative is used to model

various classes. This type of region representative, introduced in (Rivest-Hénault and Cheriet,

2007) and based on the work of (Brox, 2005; Liu, 2006; Li et al., 2008b), makes it possible to

closely follow the low frequency INU within a region. Our method offers several advantages

over other classical level set methods, such as the piecewise smooth model of Chan and Vese

(Vese and Chan, 2002): 1) Not only is fitness of the voxel intensities tested by our functional,

but the fitness of the voxel intensities spatial derivatives are tested as well. This is a valuable

segmentation cue for images with significant gradient. In this respect, a level set method may

require fewer iterations to reach its final position; 2) As the model is defined locally for each

node, a fast narrow band implementation is possible; and 3) As our model has a local statistical

definition, it is not necessary to use another model to define the region’s representatives outside

their original domain.

The method presented in this paper is related to a few recent state-of-the-art methods (Rosen-

hahn et al., 2007; Brox and Cremers, 2009; Li et al., 2008b; Brox et al., 2010). Among them,

the work of Li et al.(Li et al., 2008b) is perhaps the closest. However, there are important

distinctions: 1) While Li et al.presented a generic segmentation tool, we have focused on the

definition of a method for brain tissue segmentation in particular. This has implications for

the initialization procedure, as well as for the treatment of the outliers; 2) Li et al.proposed a

purely functional formulation of the segmentation problem, whereas ours is probabilistically

motivated; 3) Our method benefits from a local linear region model, different from that of Li et

al.; 4) Finally, we present results obtained on both simulated and real-world, well-established

datasets.

3.1.3 Organization of this paper

Section 3.2 gives details of our new method. Section 3.3 presents experimental results on

synthetic and natural images, and, finally, section 3.4 discusses the proposed model.

3.2 A local linear level set approach to MRI segmentation

3.2.1 Formulation of the problem

Let Ω ∈R be the image domain, R ⊂ Ω a certain image region and P(I | R) the assumed distri-

bution model of the pixels in a region R. It is assumed that all the image pixels on the domain
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Ω ∈ R are independent and that the observed noise is random. The maximum a posteriori

segmentation of the image then consists in the set {R̂}N
k=1 of N regions that maximizes the

problem:

{R̂k}N
k=1 =arg max

Rk∈Ω
P
({Rk}N

k=1 | I
)

or

{R̂k}N
k=1 =arg max

Rk∈Ω
P
(
I | {Rk}N

k=1

)
P
({Rk}N

k=1

)
using Bayes’ rule (Ben Ayed et al., 2006). The above problem can be converted into a negative

log-likelihood minimization problem, as follows:

{R̂k}N
k=1 =arg min

Rk∈Ω
E
[{Rk}N

k=1

]
where the energy E

[{Rk}N
k=1

]
is given by:

E
[{R̂k}N

k=1

]
= (3.1)

N

∑
k=1

[∫
x∈Rk

− logP(I(x) | Rk)dx− logP(Rk)

]
.

This energy now depends on suitable probability functions P(I | R) and P(R).

3.2.2 Local linear region model

Here, we propose a new segmentation model that uses linear approximations as the region

representatives, and which shares some similarities with the work by Bui et al. (Bui et al.,

2005). However, as pioneered by (Liu, 2006; Mory et al., 2007; Li et al., 2008b; Brox and

Cremers, 2009), we choose to compute a local approximation of the model for each pixel

position, instead of computing one global model.
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Using the above probabilistic notation and neglecting the normalization term, we introduce the

following probability of a given pixel in a certain image region:

P(I | R) = exp

(
−α

(I − [a+bx+ cy])2

σ2
e

)
(3.2)

· exp

(
−μ

[
(Ix −b)2

σ2
eb

+
(Iy − c)2

σ2
ec

])
,

which assumes a Gaussian distribution of the error (Gudbjartsson and Patz, 1995). Here, I

is an image pixel located at coordinates {x,y}, Ix and Iy are its first derivative in the x and y

directions, a, b and c are the parameters of the linear model (a+bx+cy = 0) used as the local

region representative, and α > 0 and μ ≥ 0 are free parameters used to balance the terms. The

various σ values are defined as the standard deviation of the error of each term.

A practical concern which appears when using (3.2) for image segmentation is that the edges

induce gradients that are not part of any image object. This is not desirable, since the edges Ix

and Iy are no longer representative of the region. A straightforward way to handle this situation

is to use another function to relax the gradient term when the edge probability is high. The

resulting probability density function is as follows:

P(I | R) = exp

(
−α

(I − [a+bx+ cy])2

σ2
e

)
(3.3)

· exp

(
−μ ·g(I)

[
(Ix −b)2

σ2
eb

+
(Iy − c)2

σ2
ec

])
.

where g(I) is a monotonically decreasing function of the source image gradient, as in the

Geodesic Active Contour model (Caselles et al., 1997). In this paper, we use the function

g(I) = 1
1+|∇I| , suggested by (Kass et al., 1988). The relaxation function g(I) was absent of

the model presented in (Rivest-Hénault and Cheriet, 2007) leading to computation of irrelevant

region representatives around salient edges.

The energy (3.1) is hard to minimize when the σ terms are not constant. In order to circumvent

this problem, a strong, but generally accepted assumption is that the errors have the same

standard deviation everywhere. Based on that assumption, the maximum a posteriori energy

can be computed with

P(I|R) = e−α(I−[a+bx+cy])2 · e−μg(I)[(Ix−b)2+(Iy−c)2]. (3.4)
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Regional parameters a, b, and c are unknown and to be estimated from the data at each voxel

location.

A local estimate of those parameters can be computed by minimizing the following negative

log-likelihood function for a region defined by a windowing function W and centered at a voxel

location x0:

EW

[
{̂Rk}N

k=1

]
=
∫

x∈Rk

− logP(I(x) | Rk)W (x)dx (3.5)

with

W (x) =

⎧⎨
⎩1, if maxd |x−x0|< w

0, otherwise

where d is a dimensional index and w is the half-window size. This problem has a unique

solution in most practical situations. The resolution of (3.5) is covered in the next section.

3.2.3 Segmentation using the level set method

The level set formalism (Osher and Sethian, 1988) has been used to implement our segmenta-

tion method. Within this framework, a domain is partitioned in up to two phases using a level

set function, φ(x). By definition, φ(x)> 0 over ω ⊆ Ω, φ(x)< 0 over Ω\ω and φ(x) = 0 on

∂ω , the boundary between ω and Ω\ω . A partitioning curve C is then represented by ∂ω and

its position can be modified by updating φ(x). The rest of this section describes a two-phase

implementation of our local linear segmentation algorithm within the level set framework.

Within the level set framework, the local energy function (3.5) with P(I(x) | Rk),k ∈ {−,+}
defined by (3.4) can be reformulated as follows:

FW (x,ai,bi,ci,φ) =

α
∫

W
(a−+b−x+ c−y−u0)

2(1−H(φ))dx

+α
∫

W
(a++b+x+ c+y−u0)

2H(φ)dx

+μ
∫

W
g(u0)[(b−− ∂u0

∂x
)2 +(c−− ∂u0

∂y
)2](1−H(φ))dx

+μ
∫

W
g(u0)[(b+− ∂u0

∂x
)2 +(c+− ∂u0

∂y
)2]H(φ)dx, (3.6)
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where u0 = I (the input image), H(φ) is the Heaviside step function and i = {+,−}. The

indices + and - denote variables which apply to the phase φ(x)> 0 and φ(x)< 0 respectively.

To compute a+, b+, and c+, we optimize the parameter of this functional so that

∂FW

∂a+
= 0,

∂FW

∂b+
= 0,

∂FW

∂c+
= 0. (3.7)

Omitting the φ parameter of the H(φ) function, (3.7) expands to the following system of linear

equations:

a+

∫
W

Hdx+b+

∫
W

xHdx+ c+

∫
W

yHdx (3.8a)

=
∫

W
u0Hdx

a+

∫
W

xHdx+b+

∫
W
(x2 +

μg(u0)

α
)Hdx (3.8b)

+ c+

∫
W

xyHdx =
∫

W
(xu0 +

μg(u0)

α

∂u0

∂x
)Hdx

a+

∫
W

yHdx+b+

∫
W

xyHdx+ (3.8c)

c+

∫
W
(y2 +

μg(u0)

α
)Hdx =

∫
W
(yu0 +

μg(u0)

α

∂ u0

∂y
)Hdx,

or, using matrix notation,

A ·θ = B, (3.9)

where θ = (a+,b+,c+)T , A =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
W

H ∑
W

xH ∑
W

yH

∑
W

xH ∑
W
(x2 +

μg(u0)

α
)H ∑

W
xyH

∑
W

yH ∑
W

xyH ∑
W
(y2 +

μg(u0)

α
)H

⎞
⎟⎟⎟⎟⎟⎟⎠ ,
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and

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
W

u0H(φ)

∑
W
(xu0 +

μg(u0)

α

∂u0

∂x
)H(φ)

∑
W
(yu0 +

μg(u0)

α

∂u0

∂y
)H(φ)

⎞
⎟⎟⎟⎟⎟⎟⎠ .

The expressions for a−, b−, c− can be deduced from the above, but using (1−H(φ)) instead

of H(φ). It can be of interest to note that, when μ = 0, (3.9) is equivalent to the least squares

fitting of a plane using the Moore-Penrose pseudoinverse.

The system of linear equations (3.9) is solvable in most practical situations, however spe-

cial care must be taken to handle the few limiting cases where the system becomes under-

determined. In all cases, reasonable assumptions can be made to set the value of a+, b+, and

c+. Let us denote by NW the number of voxels where H > 0 inside a window W . The limiting

cases are as follows: 1) NW = 0, then ∑W H = 0, a valid solution being θ = 0. 2) NW = 1,

a single voxel can be assimilated to a plane with parameters a+ = u0, b+ = 0 and c+ = 0.

3) NW ≥ 2, but the y values are constant, i.e. all voxels lie on a line parallel to the x axis, a

solution being to fix b+ = 0 and to ignore (3.8b). 4) The same as case 3, but replacing x by

y and b+ by c+ and (3.8b) by (3.8c). 5) All voxels lie on a line passing through the origin,

i.e. yi = kxi with k ∈ R. This is very unlikely to occur numerically because of the definition of

the grid, and has been ignored in our implementation. However, it could be possible to add the

condition c+ = kb+ to the linear system. Case 1 is of limited interest, since it corresponds to the

situation where no valid voxel lies inside the window W , and, thus, the window W is centered

in a location where the level set function is always negative and far away from the segmenta-

tion boundaries. Cases 2–5 can be handled by careful programming. In all other situations,

(3.9) is solvable using classical techniques. It is also possible to derive explicit expressions for

parameters ai, bi and ci. Therefore, they are fully defined and their values depend only on φ(x)

and on the input image.

We now introduce a functional which can be used for a two-phase segmentation of an image

with the level set method, as in (Chan and Vese, 2001). Using equations (3.1) and (3.4), our
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new model’s functional is written as follows:

F(ai,bi,ci,φ) =

α
∫
(a−+b−x+ c−y−u0)

2(1−H(φ))dx

+α
∫
(a++b+x+ c+y−u0)

2H(φ)dx

+μ
∫

g(u0)[(b−− ∂u0

∂x
)2 +(c−− ∂u0

∂y
)2](1−H(φ))dx

+μ
∫

g(u0)[(b+− ∂u0

∂x
)2 +(c+− ∂u0

∂y
)2]H(φ)dx

+ν
∫

|∇H(φ)|dx. (3.10)

This functional is composed of three terms. The first is for the error between the linear approx-

imation and the source image. The second measures the difference in the gradient between our

region approximation and that of the source image. The third term accounts for the description

length and is a regulator. The regional parameters ai, bi and ci vary in function of the position

and are computed as previously described. Their values depend on φ , and therefore, should be

considered as embedded in the above functional.

Starting from some initial position, the segmentation boundaries are to be optimized up to a

local minima using an approximate gradient descent method. The level set evolution equation

is written as

∂φ

∂ t
=δ (φ)

[
ν∇ ·

(
∇φ

|∇φ |
)
+α(a−+b−x+ c−y−u0)

2

+g ·μ

[
(b−− ∂u0

∂x
)2 +(c−− ∂u0

∂y
)2

]
(3.11)

−α(a++b+x+ c+y−u0)
2

− g ·μ

[
(b+− ∂u0

∂x
)2 +(c+− ∂u0

∂y
)2

]]
.

This equation is derived from the partial derivative of (3.10) by respect to φ , but neglecting

small terms that are proportional to the ratio between the length of the contour and the area of

the region. Similar approaches have been proposed by (Brox, 2005; Rosenhahn et al., 2007).

For a more detailed description of the approximation, the reader is referred to the Appendix.

Since, the values of the regional parameters ai, bi and ci depend on φ , they need to be updated at

each iteration. This can be done directly by replacing these terms by their explicit formulation,

or by solving (3.9) at each iteration.
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When compared to the smooth Active Contour Without Edge model (Chan and Vese, 2001), it

is expected that our new local linear segmentation model will give more accurate results when

applied to the segmentation of an image with a significant gradient. For a simple example, see

Fig. 3.2.

Figure 3.2 Our local linear model B with its local linear approximations, successfully

segmented the shape. The piecewise smooth model A was not able to discern the darkest

part of the shape from the background.

3.2.4 Extension to a 4 phase model

As the brain tissues are to be classified in three classes (WM, GM and CSF), the model has to

be extended to the 3-phase case, at a minimum. The approach presented in (Vese and Chan,

2002) takes advantage of coupled curve evolution and allows for the representation of up to

2p phases using p level set functions. In the 4-phase case, two LSFs evolve together. Let the

functions u++, u+−, u−+, u−−, constitute the restriction of u on the four phases. They are

defined as follows:

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u++(x), if φ1(x)> 0 and φ2(x)> 0

u+−(x), if φ1(x)> 0 and φ2(x)< 0

u−+(x), if φ1(x)< 0 and φ2(x)> 0

u−−(x), if φ1(x)< 0 and φ2(x)< 0

(3.12)

In our experiments, we take advantage of 3 or 4 phases, depending on the data. When only

three phases are needed, one of them, u−−, will remain empty. With this notation, the level set
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evolution function for φ1 is described by the equation

∂φ1(x)
∂ t

= δ (φ1)

[
ν∇ ·

(
∇φ

|∇φ |
)

−H(φ2) ·
(

α[(a+++b++x+ c++y−u0)
2

− (a−++b−+x+ c−+y−u0)
2]

+g ·μ

[
(b++− ∂u0

∂x
)2 +(c++− ∂u0

∂y
)2

− (b−+− ∂u0

∂x
)2 − (c−+− ∂u0

∂y
)2

])

− (1−H(φ2)) ·
(

α[(a+−+b+−x+ c+−y−u0)
2

− (a−−+b−−x+ c−−y−u0)
2]

+g ·μ

[
(b+−− ∂u0

∂x
)2 +(c+−− ∂u0

∂y
)2

− (b−−− ∂u0

∂x
)2 − (c−−− ∂u0

∂y
)2

])]
(3.13)

It is possible to deduce the equation for
∂φ2(x)

∂ t by swapping φ1 and φ2 and by rearranging the

signs of the region errors.

3.2.5 Outliers rejection

Whenever an isolated region shrinks until it becomes sufficiently small, the error terms of

(3.11) approach zero for this region, because the statistics are computed locally. This prevents

this region from collapsing on itself, even if it shows very little contrast with its surrounding. It

can be argued that in the case where few samples are available, the local statistics are not good

representatives of regions. To circumvent this problem, we introduce a simple form of outliers

rejection: whenever the number of sample n < Wmin inside a window W , the errors terms of

(3.11), (ai +bix+ ciy−u0)
2, (bi − ∂u0

∂x )
2 and (ci − ∂u0

∂y )
2 are replaced by a large constant K for

this region. In this work, we used K = max(u0)
2 = 2552. This has the effect of making the

region collapse on itself and letting the surrounding regions compete for the available space.

3.2.6 Implementation issues

In practice, the Heaviside and Dirac functions of the curve evolution equations must be reg-

ularized. For example, a common choice (Li et al., 2006) of a finite support regularization
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is

Hε(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if z <−ε

1 if z > ε

1
2(1+

z
ε +

1
π sin(πz

ε )) otherwise

(3.14)

δε(z) =

⎧⎨
⎩0 if abs(z)> ε

1
2ε (1+ cos(πz

ε )) otherwise

where ε is the regularization parameter. In this paper, we chose to use only a slightly regular-

ized version of the Heaviside function, and we fixed ε = 1 for all our experiments.

The use of local operations in (3.8) is computationally expensive. However, as it was noticed in

(Tsai et al., 2001), the values for a,b and c change slowly through time, so they need not to be

computed at every iteration. In this work, we update them every 25 ≈ w/3 iterations (see sec

3.2.10), which works well in practice: the results obtained this way are very similar to those

obtained while updating the a,b and c at every iteration.

3.2.7 3D extension of the model

As our model is based on the level set methodology, it is easily expandable to multidimensional

cases. Two possibilities are described here. The first is to use 3D surfaces to represent the

segmentation boundaries, but to continue to compute 2D local linear region representatives for

each slice. This is potentially useful for volumes where the mean intensity of the bias field

varies greatly from one slice to another. A 3D surface can be represented using a 3D level set

function, without much added difficulties (Sethian, 1999) and will ensure a certain degree of

3D smoothness.

A second possibility is again to use 3D surfaces to represent the segmentation boundaries, but

to use 3D instead of 2D local linear models. If the volume is affected by a single bias field,

this would exploit the 3D nature of the data better. In this case, the most significant change is

the use of a multidimensional linear approximation, with d + 1 components, for the regions’

representatives in the functionals (3.10) and (3.6). Equation (3.3) is replaced by

P(I | R) = exp

(
−α

(I − [a+bx+ cy+dz])2

σ2
e

)

· exp

(
−μ ·g(I)

[
(Ix −b)2

σ2
eb

+
(Iy − c)2

σ2
ec

+
(Iz −d)2

σ2
ed

])
,
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and (3.10)–(3.6) are adjusted accordingly. The region representatives are actually computed in

the same way as in (3.7) and the LSF evolution is a natural extension of (3.11).

In both cases, if the data are anisotropic, special care should be taken when computing the

derivative of (3.11) numerically. We think that the use of a 3D implementation is to be recom-

mended because that enforces an inter-slice spatial coherence. However, in this paper, we have

chosen a slice-by-slice implementation because of time constraints.

3.2.8 Computational cost

All the operations in (3.11) are linear in the number of pixels, n, and are then performed in

time O(n). The integrals of (3.8) at each pixel location are evaluated in time O(n ·m2) where m

is the size of the window. Other operations of (3.8) are linear in n. Overall, the computational

time for our algorithm is then O(n)+O(n ·m2)+O(k) = O(n ·m2) per iteration. However,

as there is no global image operation, a good acceleration is expected from a narrow band

implementation. For a typical 256×256×60 IBSR volume processed with a window size of

w = 71, our running times on an Intel core 2.00GHz Ubuntu Linux laptop are around 40s for

the FCM initialization and about 30 minutes per volume for our algorithm implemented in

Matlab. If the window size is increased to w = 91, the running time of our algorithm increases

to 33 minutes.

3.2.9 Initialization by Fuzzy C-means clustering

Level set segmentation models which use smooth region representatives are well known to

fall into a local minimum if initialized far from the desired solution. In order to converge to

a valuable local minimum, we propose to use the classical Fuzzy C-means (FCM) clustering

algorithm with 3 clusters to provide an initialization point for our segmentation model. In this

paper, we fixed the FCM’s fuzziness parameter to 3 and we use the Matlab implementation of

the algorithm.

The labels associated with the three FCM clusters have to be set carefully, as a function of the

data. When segmenting a simulated brain scan, we used WM, GM, and CSF. However, when

segmenting a real-world brain scan, we used WM, GM, and DG (dark gray). An additional par-

tition which represents CSF is then created by thresholding: the 5% darker voxels are labeled

CSF. This procedure can be motivated by the data. For the simulated scans, the number of

voxels forming the WM, GM, and CSF classes are comparable. By contrast, for the real-world

IBSR 20 normal brain dataset, the CSF class only accounts for 0.9–2.1% of the total number
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of voxels, and such a small representation is not well handled by the FCM algorithm. Also, we

found that the voxel intensity of the GM class in a real-world scan expresses as much as twice

the variance as that of the WM class. This encouraged us to use two clusters, GM and DG, to

represent the gray matter when segmenting real-world scans. Please refer to sec. 3.3 for more

details on the datasets.

Different standalone versions of the FCM algorithm were used for the segmentation of MR

brain data with some success. The principal difficulties in the approach seem to come from a

lack of spatial coherence. This is a particular aspect that we want to address with our level set

model.

3.2.10 Overview of our new segmentation model

The principal steps of our algorithm are set out in Algorithm 3.1. It is worth noting that a fully

3D implementation is used for the FCM initialization. In contrast, the local level set model was

implemented in slice-by-slice fashion, each slice being processed independently.

Algorithm 3.1 Automatic segmentation of brain tissues

1: Load the MR brain scan data into SCAN.

2: Partition SCAN using the FCM algorithm, store the result in CLUSTERS.

3: Label each voxel according to the class of CLUSTERS for which its FCM membership

value is the highest.

4: Label the darker voxels as CSF (if needed, see sec. 3.2.9).

5: Set PHI1 and PHI2 according to (3.12).

6: Perform region optimization with our local linear model by evolving PHI1 and PHI2 with

(3.13). This iterative procedure stops when no point on PHI1 or PHI2 changes sign during

an iteration.

The value of the various parameters for our model have to be handpicked by trial and error

on test images. However, once the model parameters have been adjusted for a specific task,

the segmentation results are robust to a small perturbation of these values. Therefore, most of

the parameters where fixed for all the experiments in section 3.3. These values are: α = 1,

μ = 50, ν = 1×10−3 ×2552 and Wmin =
5
3w. We adjusted the parameter w in function of the

database. Its value was set to w = 71 in all our experiments except the last one where we used

w = 91. The behavior of our method when the value of some parameters change is illustrated

in Fig. 3.3.
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(a) (b)

Figure 3.3 Results obtained on a slice of IBSR subject 4_8 keeping all parameters fixed,

and changing: (a) the window size; and (b) the ν value. Details for the Tanimoto

coefficient are presented in Sec. 3.3.2.

3.3 Experimental validation

3.3.1 Synthetic Data

The BrainWeb MR simulator (Collins et al., 1998) was used to generate synthetic MR brain

scans with a level of noise ranging from 0% to 9% and with a INU level of 0%, 20% or

40%. Those data were obtained from the BrainWeb Database at the McConnell Brain Imaging

Centre of the Montreal Neurological Institute, McGill University. The synthetic scans used in

our experiments were the 8-bit 181×217×60 voxel brain-only data.

In our experiments, we have used scans with slices 1.0mm thick for comparison purpose with

(van Leemput et al., 1999; Marroquín et al., 2002). We also have used slices 3.0mm thick,

because they are more similar to the IBSR real data that we also used. The 3.0mm slices are

significantly harder to segment, because of an increased PVE which blurs the voxels.

In the literature, the preferred performance index computed for this database is the Dice index,

which is defined as D(k) = 2·Vp∩g(k)
Vp(k)+Vg(k)

, where Vp∩g(k) is the number of pixels classified as

class k by both the proposed method and ground-truth segmentation, and Vp(k) and Vg(k) are

the number of pixels classified as k by either the proposed method or the ground-truth method.

Qualitative assessment of the results indicates that our method is capable of giving very good

results in most situations, even in the presence of a large INU. See Fig 3.4 for a sample result.

The global performance indices computed on our results on the BrainWeb database are shown

in Fig 3.5 and 3.6 and are compared with the standard FCM algorithm that we used as our

initialization.
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For the 1mm datasets, Fig. 3.5, it can be seen that, our model compares well with the others

((van Leemput et al., 1999; Marroquín et al., 2002)), especially for high level of noise and

INU. As for the 3mm datasets, Fig. 3.6 clearly show that our method greatly improves the

precision of the segmentation over the FCM initialization when the INU level is high. This

is important because typical real MR brain scans tend to present high level of INU while the

presence of other kind of noise remains low. The comparison with the FCM algorithm, used

for initialization, demonstrates the improvement of the results due to the level set optimization.

3.3.2 Real Data

The ground-truthed Internet Brain Segmentation Repository (IBSR) database 20 normal MR

brain data sets and their manual segmentation1 presents various levels of difficulty, is freely

available online and has previously been used many times in published studies (Worth, 1996).

The ground-truth segmentation was performed by a trained investigator using the semi-automated

intensity contour mapping algorithm described in (Kennedy et al., 1989). From the available

data format, the 8-bit 256×256×64 voxel brain-only data files were used in our experiments.

Slice are 3.0mm or 3.1mm thick, depending on the subject.

We tested our new segmentation model on the 20 subjects in the database using the same set

of parameters that was selected during the experiment on the synthetic dataset, which is a

indication of the robustness of our algorithm. For those scans, however, we used a four-class

segmentation model, as discussed in sec. 3.2.9. At the end of the procedure, voxels in the DG

class where converted to the GM class. Prior to the application of our algorithm, we applied a

simple normalization algorithm (Johnston et al., 1996), as it is common practice with real data

(Mayer and Greenspan, 2009).

The standard performance index used with the IBSR is the Tanimoto coefficient, defined as

T (k) = Vp∩g(k)
Vp∪g(k)

, where Vp∩g(k) is the number of pixels classified as class k by both the proposed

method and ground-truth segmentation, and Vp∩g(k) is the number of pixels classified as k by

either methods. Note that, even if both performance indices range from 0 to 1, T (k) < D(k),

save for the extreme cases.

Figure 3.7 shows a sample of our results. Again, a qualitative assessment indicates that our

method leads to a satisfactory segmentation. The performance indices obtained for each subject

1Provided by the Center for Morphometric Analysis at Massachusetts General Hospital, available at

http://www.cma.mgh.harvard.edu/ibsr/.
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Table 3.1 Average Tanimoto index for various segmentation methods on the IBSR 20

normal brain scan, based on published data. FCM+t is our initialization. The dagger (†)

indicates works that do not provide individual results for this dataset.

Method WM GM CSF

Akselrod-Ballin et al. (Akselrod-Ballin et al., 2006)† 0.669 0.680 0.346

Tissue tracking (Melonakos et al., 2007)† 0.658 0.624 -

Ferreira da Silva (Ferreira, 2007)† 0.735 0.675 -

IFCM (Siyal and Yu, 2005)† 0.724 0.750 -

MPM-MAP (Marroquín et al., 2002) 0.682 0.657 0.227

Dual-front (Li et al., 2005b) 0.670 0.739 -

FMRIB FAST (Zhang et al., 2001) 0.648 0.556 -

MFC (Pham and Prince, 2004) 0.712 0.586 -

MS-edge (Jimenez-Alaniz et al., 2006) 0.628 0.594 0.210

AMS (Mayer and Greenspan, 2009) 0.688 0.686 0.140

CGMM (Greenspan et al., 2006)† 0.660 0.680 -

FCM (Worth, 1996) 0.567 0.473 0.058

Manual (Worth, 1996) 0.832 0.876 -

FCM+t 0.701 0.753 0.176

Local Linear 0.726 0.795 0.263

are summarized in Fig. 3.8, and average results are shown in Table 3.12. Results labeled FCM+t

correspond to our initialization method. Our average and individual results clearly indicate

that our method expresses less variance than the others, while at the same time they are more

precise.

By comparing the curves FCM+t and Local-Linear in Fig. 3.8, it can be seen that our local

linear model makes it possible to improve on our initialization on difficult subjects, e.g. 16_3,

by up to 0.07 points for both the WM and the GM. However, on easier subjects, e.g. 205_3,

the benefit of our local linear model is less significant for the WM: our initialization procedure

already provides relatively good results. This suggests that the INU effect is not as strong

for those volumes. Nevertheless, the application of our method resulted in an appreciable

improvement of the segmentation score for the GM with all subjects.

Our results show that most of the CSF regions located in the internal part of the brain are

mainly under-segmented (see Fig. 3.7 for some examples). This can be explained by the very

large variance expressed by the CSF regions, which makes their segmentation very challenging.

2Please take note that the average result for Ferreira da Silva (Ferreira, 2007) has been computed from the

published results graph showing 13 results out of 20 brain scans, and so is not directly comparable with ours.

Similarly, results from (Greenspan et al., 2006) where obtained using 18 out of 20 brain scans.
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Table 3.2 Average Dice index for various segmentation methods on the newer IBSR 18

normal brain scan, based on published data. FCM+t is our initialization.

Method WM GM CSF

KVL (van Leemput et al., 1999) 0.857 0.786 0.164

CGMM (Greenspan et al., 2006) 0.847 0.789 0.219

FCM+t 0.874 0.900 0.296

Local Linear 0.886 0.918 0.344

Also, our initialization procedure labels some pixels on the brain circumference as CSF, and

our method has a tendency to expand them.

We have also tested our algorithm, without any pre-processing, on the newer, higher resolution

IBSR database with slices 1.5mm thick (Worth, 1996). For this experiment, we set w = 91.

The average Dice indices that we have obtained are shown in Table 3.2, and they compare

favorably with those reported in (van Leemput et al., 1999) and (Greenspan et al., 2006). The

general behavior of our method on the newer dataset is similar to that observed on the classic

IBSR dataset. Sample results are shown in Fig. 3.10.

3.4 Discussion and conclusions

Our new segmentation algorithm succeeded in outperforming state-of-the-art results on real-

world MR brain scan databases. To our knowledge, this is the first time that a level set method

has been used for the automatic segmentation of MRI brain tissues with convincing results.

Desirable characteristics of our method include: 1) its simplicity, i.e. there is no need to

register a sophisticated brain template; 2) its level set implementation, which allows use of the

spatial coherence of the voxels to achieve more natural clusters; and 3) its local linear region

representatives, which allows moderate-level INU to be taken into account.

During our experiments, we found that our method neither under- nor over-segments the WM,

on average. However, we noted that it has a tendency to over-segment the WM around the

thalamus and to under-segment it around the pons and the medulla oblongata (e.g. Fig. 3.9).

In those regions, the global intensity level of the voxels does not seem to provide enough

information for the best segmentation. This limitation suggests that the use of some spatial

prior may be required to achieve a segmentation quality that matches those of the experts.

However, in order to keep the method generic when using such prior knowledge, care should

be taken not to bias the results toward a template. This is a subject for further research.
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It has been observed that some of the segmentation results presented in this section have an

irregular contour, despite the curvature term in (3.11). This is primarily related to the fact that

the parameter ν has been set to a small value. This leads, from our experience, to the results

that best match the expert segmentations. The performance of the algorithm with respect to the

value of ν is depicted on Fig. 3.3. Visually, the regularity of the contour grow with ν .

All the simulated and real-world scans used in this work were 1.5T, which is representative of

today’s clinical environment. In contrast, the increased popularity of ultra high-field imaging

may results in additional challenges. In particular, an increased magnetic field is associated

with more pronounced RF coils-induced inhomogeneity and a stronger bias field. Other au-

thors handle this case explicitly and have presented interesting results on images acquired with

field as high as 7T (Li et al., 2008a). On the other hand, with our method if the INU level passes

a certain threshold, the global initialization scheme depicted in sec. 3.2.9 may provide initial

contours that are too far from the desired segmentation, which would compromise the final

results. A localized initialization scheme may be more appropriate. It may also be advisable

to use the proposed method in conjunction with some prospective or retrospective correction

methods, such as (Sled et al., 1998; Deoni et al., 2006), for the most difficult cases. Neverthe-

less, the proposed method will likely remain relevant for some time due to the large amount of

standard-field MRI scans that have been already recorded and because the 1.5T scanners are

commonly used today.

A slice-by-slice implementation has been used throughout this work with satisfactory results.

Most of the time, segmentation is consistent from one slice to another. However, because the

quality of the segmentation is only linked to the distribution of the voxel intensities on each

individual slice, it is possible that the quality of the result will vary greatly from one slice to the

other if the dataset has large inter-slice intensity variability e.g. IBSR subject 5_8. This effect

can be minimized using several strategies. On the one hand, it may be possible to use a better

normalization method during volume acquisition. On the other hand, a fully 3D implementa-

tion of the local linear model, which is planned in future work, may also improve slice-to-slice

coherence. Because such an implementation will treat the segmentation boundaries as 3D sur-

faces, it will ensure a certain level of inter-slice spatial coherence. Also, it is expected that

this will lead to a faster convergence rate. Finally, a fast narrow band implementation of our

method will make it possible to embed it in a real-world application.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.4 Sample segmentations obtained with our method on the BrainWeb synthetic

scans with a noise level of 3%. Rows 1 and 2: slices are 1mm thick and INU is 40%.

Rows 3 and 4: slices are 3mm thick and INU is 20%. Columns, from left to right: input

data, reference object used by the simulator, our results, and the difference between our

results and the reference. Slices 3mm thick are significantly harder to segment due to

increased PVE.
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(a) WM, INU=0% (b) GM, INU=0%

(c) WM, INU=40% (d) GM, INU=40%

Figure 3.5 Results obtained on the 1mm BrainWeb data for various noise level. Top

row: INU=0%, bottom row: INU=40%.

(a) WM, INU=40% (b) GM, INU=40%

Figure 3.6 Results obtained on the 3mm BrainWeb data, INU=40%.



73

Figure 3.7 Sample segmentation for the IBSR dataset (Worth, 1996). Left: input data.

Middle: reference segmentations. Right: our results.
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Figure 3.8 Performance index for the 20 normal brain of the IBSR.

Above: WM, below: GM.
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Figure 3.9 Sample result for subject 17_3 of the IBSR database. Top row: input image,

reference segmentation, and our result. The two bottom rows illustrate the progression of

our local linear model: initialization, after 30 iterations, and our final result. The zoom

corresponds to the region selected in the top row.

Figure 3.10 Sample segmentation for the newer IBSR dataset (Worth, 1996). Left: input

data. Middle: reference. Right: our results.
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Abstract

Curvilinear structure detection filters are crucial building blocks in many medical image pro-

cessing applications, where they are used to detect important structures, such as blood vessels,

airways, and other similar fibrous tissues. Unfortunately, most of these filters are plagued

by an implicit single structure direction assumption, which results in a loss of signal around

bifurcations. This peculiarity limits the performance of all subsequent processes, such as un-

derstanding an angiography acquisitions, computing an accurate segmentation or tractography,

or automatically classifying image voxels. This paper presents a new 3D curvilinear structure

detection filter based on the analysis of the structure ball, a geometric construction representing

second order differences sampled in many directions. The structure ball is defined formally,

and its computation on a discreet image is discussed. A contrast invariant diffusion index

easing voxel analysis and visualization is also introduced, and different structure ball shape

descriptors are proposed. A new curvilinear structure detection filter is defined based on the

shape descriptors that best characterize curvilinear structures. The new filter produces a vessel-

ness measure that is robust to the presence of X- and Y-junctions along the structure by going

beyond the single direction assumption. At the same time, it stays conceptually simple and

deterministic, and allows for an intuitive representation of the structure’s principal directions.

Sample results are provided for synthetic images and for two medical imaging modalities.

Keywords: Vessel detection, vesselness, vascular system, angiography, CT, CTA, MRI, TOF

MRA.

4.1 Introduction

The visualization and study of curvilinear structures is of the utmost importance in medical

imaging, where such structures indicate the presence of veins, arteries, bronchi, fibers or other
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important functional structures in 3D medical images. Arteriogenesis and stenosis are of par-

ticular interest to physicians since they can reveal many severe conditions. Automatic detection

of curvilinear structure is also an important component in many medical imaging applications,

such as: vessel tracking (Schneider and Sundar, 2010), segmentation (van Bemmel et al., 2003)

and analysis (Frangi et al., 2001), and image-guided surgery (Ruijters et al., 2009; Rivest-

Hénault et al., 2012).

Different types of curvilinear structure detection approaches have been proposed in the litera-

ture, mostly within the context of blood vessel detection in medical imaging. The most well

known is certainly Frangi’s method (Frangi et al., 1998, 2001), which belong to the Hessian

analysis category (Lorenz et al., 1997; Sato et al., 1998; nero C. and P., 2003; Manniesing

et al., 2006b). The assumption is that when a voxel belongs to a salient cylindrical region,

the smallest eigenvalue of its Hessian matrix is much smaller than the other two, in term of

absolute values. Application of these filters to a 3D image results in the output of a smooth

vesselness measure for each voxel. These methods are conceptually simple, easy to implement,

and reasonably fast, which probably explains their popularity.

Different methods exploit phase congruency models to detect lines, roof edges, or other struc-

tures. A recent article by Obara et al. (Obara et al., 2012) introduced the phase congruency

tensor model for the detection of curvilinear features in 2D images. Their method is based

on the analysis of the application of the log-Gabor quadrature filter (Field, 1987) applied in

many directions, and achieves brightness- and contrast-invariant detection. Other local curvi-

linear structure detection operator include those based on the Beamlet transform (Berlemont

and Olivo-Marin, 2010), and line integral (Yuan et al., 2011). The flux operator, defined as the

integral of the image gradient perpendicular to an arbitrary surface, as been used for the de-

tection of various shapes in medical imaging (Vasilevskiy and Siddiqi, 2002; Law and Chung,

2009). In particular, the spherical flux operator (Bouix et al., 2005; Law and Chung, 2009), and

the more specific oriented flux operator (Law and Chung, 2008) are used for vessel segmenta-

tion. An interesting aspect of these operators is that they are often used with complementary

geometric methods such as the level-set and minimal path methods (Sethian, 1999; Cohen

and Kimmel, 1997; Vasilevskiy and Siddiqi, 2002; Benmansour et al., 2009; Law and Chung,

2010).

Explicit modeling of the vessel structure has also been proposed. In this case, a certain shape,

usually a cylinder with a circular (Friman et al., 2010), Gaussian (Noordmans and Smeulders,

1998; Wörz and Rohr, 2007), or elliptical (Krissian et al., 2006) cross-section, is fitted to

neighboring pixels using an optimization process. Because of the computational cost involved,
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these approaches have mostly been limited to tracking, where the number of voxel tested is

smaller than in full volume processing. Nevertheless, their performance for interactive vessel

segmentation is well demonstrated (Schaap et al., 2009a).

A limitation common to the above approaches is that they make the implicit assumption that

a single structure is present locally, which limits the performance at fibers crossing or vessel

junction (Lorenz et al., 1997; Frangi et al., 1998; Sato et al., 1998; Law and Chung, 2008;

Friman et al., 2010; Obara et al., 2012). An ad hoc criterion is used in (Friman et al., 2010)

to detect junctions during tracking, but this approach does not seem applicable for general

whole volume vessel detection. The method recently introduced in (Wong et al., 2012) has

been designed to handle bifurcations naturally, but so far is limited to interactive vessel lumen

segmentation applications. The local line integral approach of Yuan et al. (Yuan et al., 2011)

does not assume a single dominant direction, and gives good results around bifurcations on 2D

images. A probabilistic formulation was proposed by Qian et al. in (Qian et al., 2009) to over-

come the single structure limitation. Instead of computing image derivatives with a convolution

operator, as in the Hessian-based methods, they consider a spherical intensity profile, sampled

at many angles and radii. Vessel detection is performed using an information theory criterion.

The response of the filter is improved at vessel junctions, but we have found it prone to struc-

tural noise in proximity to other structures, such as 3D surfaces. The edge-based approach

of Lemaitre et al. (Lemaitre et al., 2011) uses a bridging process to complement the missing

junction. It is however, limited to 2D images. Machine learning-based methods can also give

promising results, but their specialized feature set limits them to very specialized applications,

such as coronary artery segmentation (Zheng et al., 2011).

The challenges faced by curvilinear structure detection methods share some similarities with

those faced by the diffusion imaging community. In this field, the Gaussian diffusion tensor

(Basser and Pierpaoli, 1996) has been found to be limited in the representation of the fiber

crossings that occur in brain tissues (Wiegell et al., 2000). Recently, this problem has been

partly solved with HARDI and Q-Ball imaging (Tuch, 2004). In these procedures, the diffusiv-

ity characteristic of the tissues is probed using as many as 321 gradient directions (Descoteaux

et al., 2009). The visualization and analysis of these rich datasets is challenging, but many so-

lutions have been proposed (Frank, 2002; Descoteaux et al., 2007; Aganj et al., 2010), and now

Q-Ball and HARDI imaging are becoming more common. We believe that a similar approach

is attractive for vessel detection.

In this paper, we define a new vesselness measure based on structure ball analysis. The struc-

ture ball (SBall) is a construction made by evaluating second order numerical difference in
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many directions. Since it does not assume any specific distribution, it allows for the repre-

sentation of structure crossings and junctions. The added complexity makes the analysis more

difficult than in Hessian-based vessel detection. Thus, in addition to the introduction and defi-

nition of the structure ball, the definition of a contrast-invariant structure diffusivity index, and

the definition of criteria for vessel detection are the main contributions of this work. The result-

ing vesselness measurement has good behavior at junctions, and, at the same time, has good

discriminative power. In addition, the algorithm can output structural information that can be

useful in a potential subsequent visualization, tracking or segmentation step. This methodol-

ogy is detailed in the next section. Experiments on synthetic and clinical images are presented

in section 4.3. Finally, section 5.7 includes a discussion and provides our conclusion.

4.2 Methodology

Detecting curvilinear structures in 3D intensity images, such as CTA with blood pool contrast

injection or time-of-flight (TOF) magnetic resonance angiography (MRA) in medical imaging,

requires assuming a certain set of hypotheses regarding their nature. The structures of interest

depicted in the 3D images are assumed to be mostly curvilinear with roughly circular cross-

sections. They might also join or cross each other in certain locations. Although it is not strictly

necessary, we restrict the discussion to the cases where at most two vessels are present in one

voxel location. This is reasonable in the context of vessel-like structure detection, where X-, T-

or Y-shaped bifurcations are much more common than star-like patterns. Since it is assumed

that no functional imaging is available, any directional information regarding the underlying

tissues must be inferred from the structural image voxels.

The proposed vessel detection filter makes use of a directional second order difference operator,

computed in many directions and at every pixel location, to capture the intensity characteristic

of an image. Here, the main assumption is that for a bright vessel on a darker background, the

second order derivative will have a high absolute value in directions perpendicular to the vessel

direction, and a very small value in the parallel direction (Frangi et al., 1998; Sato et al., 1998).

As will be discussed in the following sections, the situation is slightly more complex at junc-

tions. In this work, the SBall is defined as the set of all directional differences, as presented in

section 4.2.1. In section 4.2.2, we propose to represent this rich directional information using

band-limited spherical harmonics (SH). Using SH provides additional regularity, slightly re-

duces the volume of the data, and makes it possible to compute quantities that are independent

of the exact sampling directions. In its raw form, the SBall is difficult to visualize, since the

principal direction of an underlying vessel, indicated by a very small second derivative, is ob-
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scured by the predominance of the large values, as depicted in Fig. 4.2. The contrast invariant

diffusivity index proposed in section 4.2.3 enhances visualization, and simplifies our under-

standing of SBall structures. This diffusivity index might also be useful in subsequent tracking

or segmentation processes, potentially similar to those in (Descoteaux et al., 2009; Descoteaux

and Deriche, 2008; Law and Chung, 2009). Section 4.2.4 presents SBall shape descriptors

that are potentially useful for the detection of curvilinear structures. Then, in section 4.2.5,

the best descriptors are combined and used to define a smooth vesselness measure that is very

discriminative, but also takes into account the potential presence of vessel junctions. Finally,

multiscale integration is discussed in section 4.2.6, and section 4.2.7 consist of a discussion on

parameter selection.

4.2.1 The structure ball: a local structure model

Let I ⊂ R
3 be the image under consideration. The local structure around the voxel at spatial

position x is inferred by numerically computing the directional second order difference in N

different directions. The set of all these directional differences constitutes the SBall. The

following simple difference scheme is used:

D2[I,x,v] =
I(x−hv)−2I(x)+ I(x+hv)

h2
, (4.1)

where v = (vx,vy,vz) ∈ R
3,‖v‖ = 1 is a unit vector, and h is the step size. Since the image

values at I(x ± hv) do not generally correspond to grid points, an image interpolator must

be used. Throughout this work, a trilinear interpolator has been used, but other choices are

possible (Meijering et al., 1999).

The set of sampled directions constituting the SBall are defined by the vertices of an N-order

tessellation of the icosahedron. At each tessellation level, the triangles of the previous level are

subdivided into four parts, as depicted in Fig. 4.1. Because the icosahedron and the D2[I,x,v]

operator are symmetrical, only the vertices from the north hemisphere are necessary. This

results in {6,21,81,321} sampling directions for tessellation of order 0 to 3. This choice of

sampling directions results in more evenly spaced directional vectors than simply subdivid-

ing the spherical coordinate axis, and is the most common choice in Q-Ball imaging (Frank,

2002; Tuch, 2004; Descoteaux et al., 2007). Hessian-based methods infer the image structure

direction with 6 directional second order filters (Sato et al., 1998; Frangi et al., 1998, 2001;

nero C. and P., 2003; Manniesing et al., 2006b). Thus, in order to provide superior directional

accuracy, the rest of the discussion is focused on sampling icosahedrons of order 1 or more.
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(a) (b)

Figure 4.1 a) Surface defined by a first order subdivision of the icosahedron.

b) Subdivision pattern — Each triangle (solid lines) is divided into four (dashed lines).

For discreet images, the step size h in (4.1) needs to be adjusted as a function of the number

of sampling directions. We use two conditions: 1) h ≥ √
3, which ensures that the differen-

tiation step is at least one full voxel in all directions, and 2) the number of sampled voxels

must be greater than or equal to twice the number of sampling directions, in order to avoid

redundancy. Let us denote by VM the set of all sampling directions defined by the M-order tes-

sellation of the icosahedron, and by N (VM,h) the set of all pixels used by the interpolator in

all applications of (4.1) for a certain choice of VM and step size h. Obviously, the cardinality of

that set, |N (VM,h)|, depends on the choice of interpolator. For a linear interpolator, we have

N (Vm,h) ⊆ {y ∀ v ∈ VM and y ∈ I if |y− (x+hv)| < 1} for some x. The second criterion is

thus |N (VM,h)| ≥ 2|VM|. Taking into account the two criteria, we found h = {√3,2.62,5.01}
for icosahedron orders N = {1,2,3} respectively. Thus, there is a trade-off between spatial and

angular resolution.

4.2.2 Band-limited spherical harmonics representation

Keeping track of the 21 or more measurements of (4.1) can be tedious and is not memory

efficient. In addition, the discreet nature of the SBall makes it difficult to estimate quantities at

any arbitrary angle. In this context, spherical harmonics (SH) are used as a smooth, continuous,

and compact (for N ≥ 1) representation of the SBall. SH form the basis for functions on

the unit sphere, which can be considered as the spherical analog to the regular Fourier basis.

The SH basis are increasingly used in HARDI imaging (Descoteaux et al., 2007), engineering

(Garboczi, 2002), and in computer graphic (Sloan, 2008). The SH functions, denoted by Y m
l ,

are defined as follows (Descoteaux et al., 2007):

Y m
l (θ ,φ) =

√
2l +1

4π

(l −m)!

(l +m)!
Pm

l (cosθ)eimφ , (4.2)
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(1) (2) (3) (4) (5) (6)

Figure 4.2 Illustration of the shape of the SBall and DBall for various configurations.

Top row: Center slices of different low-resolution 11×11×7 volumes. Second row:
SBall representation of the center voxels — see section 4.2.1. Third row: Corresponding

DBalls – see section 4.2.3. Bottom row: DBall grids. The DBalls are scaled by their

vesselness value. Small spheres indicate voxels with vesselness < 0.1.

where θ ∈ [0,π] is the elevation angle, φ ∈ [0,2π] is the azimuth and Pm
l is an associated

Legendre polynomial (see, for example, (Garboczi, 2002; Aganj et al., 2010) for a listing). As

the SBall structure is real and symmetrical, a modified basis with those properties can be used

(Descoteaux et al., 2007):

Yj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
√

2 ·Re(Y m
k ) if − k ≤ m < 0

Y 0
k if m = 0
√

2 · Img(Y m
k ) if 0 < m ≤ k

, (4.3)
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with the index j defined as j := j(k,m) = (k2 + k + 2)/2+m for k = 0,2,4, . . . , l, and m =

−k, . . . ,0, . . . ,k. A function defined on the unit sphere can then be approximated by:

S(θ ,φ) =
R

∑
j=1

c jYj(θ ,φ) (4.4)

where R = (l + 1)(l + 2)/2 depends on the order l of the SH basis chosen to represent the

signal. Thus R = 1,6,15,28, . . . for l = 0,2,4,6, . . .. There are various means of estimating the

coefficients c j defining the approximation (Frank, 2002; Descoteaux et al., 2007). In this paper,

the method of Descoteaux et al. (Descoteaux et al., 2007) has been used, and is summarized

here for the sake of completeness. Let S be the N×1 vector representing the N sampled values

of D2[I,x,v] at an image location x, and C be the R×1 vector of the c j coefficients. Building

the matrix B as follows:

B =

⎛
⎜⎜⎝

Y1(θ1,φ1) Y2(θ1,φ1) . . . YR(θ1,φ1)
...

...
. . .

...

Y1(θN ,φN) Y2(θN ,φN) . . . YR(θN ,φN)

⎞
⎟⎟⎠ ,

with (θi, φi) corresponding to the spherical coordinate defined by the ith vertex of VM, we have

the linear system S = BC. This linear system is either well constrained or over constrained

when N > R, and so the order M of the sampling icosahedron must be chosen considering the

order l of the SH representation (since R is a function of l). The coefficients are computed

using least squares fitting (Descoteaux et al., 2007) :

C = (BTB)−1BTS, (4.5)

In HARDI, an SH basis of order 8 or more is commonly used (Descoteaux et al., 2007).

Whereas in this case the brain fibers can be arranged in very complex patterns (Wiegell et al.,

2000; Frank, 2002), the vessel structures to be detected by the method proposed in this paper

are usually simpler. An SH basis of order 4 has been found to adequately represent a signal

that presents up to 3 principal orientations, and is assumed to be appropriate for our curvilinear

structure detection method. Since an SH of order 4 has 15 coefficients, the estimation (4.5)

requires the use of a sampling icosahedron of order 1 or more so that the problem of estimating

the SH coefficients is overconstrained.
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4.2.3 Contrast-invariant diffusivity index

In an ideal context, a voxel traversed by a single vessel is characterized by an SBall with a high

amplitude everywhere, except in one direction where its amplitude is small, or even zero. This

intuitive description has the disadvantage of being contrast-dependent, in the sense that it is

sensitive to a rescaling of the image intensity, which complicates the definition of a robust de-

scriptor. In addition, the raw SBalls are difficult to visualize, since the most probable structural

directions are hidden behind the large amplitude regions that characterize the vessel’s cross-

sectional directions. So, we define a contrast-invariant diffusivity index, which is maximal in

the most probable direction, as follows:

D(x) = exp

(
−
( x

S∗
)2
)
, (4.6)

where γ ∈ R, and S∗ = average[S(θ ,φ)]. For computational efficiency, the approximation

S∗ ≈ 1
N ∑i[D(θi,φi)] has been used throughout this paper. Also, we slightly abuse the nota-

tion, and use D(θ ,φ)≡ D [S(θ ,φ)]. The non linear mapping introduced in (4.6) also helps to

limit the influence of nearby outliers structures, such as bones, that might result in very high

second derivative values. Indeed, D(θ ,φ)≈ 0 when S(θ ,φ)≥ 3S∗. In the sections below, we

denote by DBall the application of (4.6) on all the directions of an SBall. This mapping is

demonstrated in Fig. 4.2.

4.2.4 Geometric descriptors

In this section, a set of geometric descriptors that can be used to discriminate curvilinear struc-

ture voxels from background voxels is proposed. The definitions presented here are related to

concepts previously introduced in (Frangi et al., 1998; Sato et al., 1998; Bouix et al., 2005; Law

and Chung, 2008) and also to those in (Basser and Pierpaoli, 1996; Frank, 2002; Tuch, 2004).

However, they have been adapted to the SBall structure, and the single direction assumption

has been dropped. Instead, the key hypothesis in this section is that, when a voxel is traversed

by one or two vessels, its SBall presents a related number of strong minima. Furthermore, it

is assumed that the main structural directions can be well represented on a plane cutting the

SBall at a certain angle. This assumption is reasonable when the curvature of the underlying

structure is not very high compared to its radius, which is usually the case, for example, with

blood vessel in medical imaging.
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4.2.4.1 Ratio descriptors

For curvilinear structures, it is clear that value of the SBall is large, on average, with some

regions of low value, indicating the presence of vessels (see Fig. 4.2). So, the ratio of minimum

to average values of the SBall is a good indicator of the presence of one or two vessels in

the surrounding area. Another possibility would be to consider the ratio of the minimum to

maximum values. In addition, since the evaluation of the minimal SBall value is likely to be

noisy when the structural direction is not perfectly aligned with the sampling direction, we also

consider squaring the ratios. This reduces the sensitivity for small ratio values, and increase it

for large ones. Let

D̄ = averagei( |D(θi,φi)| )
D+ = max

i
( |D(θi,φi)| ) (4.7)

D− = min
i
( |D(θi,φi)| )

be the average SBall value, the minimal value, and the maximal value respectively. We define

our ratio descriptors as:

D−

D̄
,

D−

D+
,

(
D−

D̄

)2

, and

(
D−

D+

)2

. (4.8)

Since D− ≤ D̄ ≤ D+, the ratios are always in the [0,1] range. These descriptors are indications

of how close the structure is to a ball. However, they do not accurately discern a curvilinear

structure from a disk-shaped ball.

4.2.4.2 Oriented bounding box

From Fig. 4.2, it is clear that the aspect of the oriented bounding box (OBB) of a DBall offers

a good indication of the presence of one or two vessels in the surrounding area. Let v1, v2, and

v3 be the three dimensions of the OBB, such that |v1| ≥ |v2| ≥ |v3| ≥ 0 (see Fig. 4.3). If one

vessel is present, |v1|≫ |v2| ≥ |v3| is observed. If there are two vessels, only one direction is

small. So, we define our bounding box aspect descriptor function as follows:

OBB =
v3

v1
. (4.9)
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4.2.4.3 Fractional anisotropy

Generalized fractional anisotropy (GFA) was proposed by Tuch in (Tuch, 2004) as an extension

of Basser and Pierpaoli’s fractional anisotropy (Basser and Pierpaoli, 1996), and was used to

ease the visualization of the Q-Balls. This measure is as follows:

GFA(x) =

√
σ2(x)

RMS(x)
, (4.10)

where σ2(x) and RMS(x) represent the variance and root mean square value of the ball cen-

tered at x. The main idea is that a strongly anisotropic structure has a large variance, and a

constant function has no variance. Similar concepts were used by Frank for defining his frac-

tional multi-fiber index (Frank, 2002). Because vessels are strongly anisotropic, GFA can be

used as a vessel indicator on the SBall or the DBall. For this reason, we propose to compute

GFA on both structures for curvilinear structure detection. We denote by GFAS GFA computed

on the SBall values, and by GFAD GFA computed using the DBall values.

Nonetheless, GFA can also be high for other anisotropic structures. For this reason, we propose

a more discriminative planar fractional anisotropy (PFA) measure, computed along the largest

circle of the DBall. This new descriptor is defined as follows:

PFA =

√∫
w⊥v3

(D(w)− D̄)2 dw∫
w⊥v3

(D(w))2 dw
, (4.11)

where the integral is defined on the circle that is perpendicular to the smallest oriented bound-

ing box direction, v3, as depicted in Fig. 4.3. Here, D̄ denotes the mean value along the same

circle. As this formulation is defined continuously, the values between the sampling icosahe-

dron directions must be interpolated. This can be done using the SH representation introduced

in section 4.2.2. Numerically, the PFA descriptor is computed by sampling along the great

circle defined by v3. It can be shown that both GFA and the PFA are always in the [0,1] range.

4.2.4.4 Flux

The descriptors introduced up to now have two limitations for vessel detection: 1) they cannot

discriminate between a bright structure on a dark background, or the converse, and 2) they

give no indication of the saliency of the structure. Flux-based descriptors can be used for this

purpose.
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v1 v2
v3

v3

w

Figure 4.3 Oriented bounding box of a DBall (left), and computation of the A (x)
function on the circle defined by the v3 vector (right).

In a vector field, the spherical flux is defined as the integral of the vector quantity that flows

out of a spherical surface, in the directions perpendicular to this surface. This quantity has

been used in many imaging applications, including vessel detection (Bouix et al., 2005) and

segmentation (Vasilevskiy and Siddiqi, 2002; Law and Chung, 2009). Considering the structure

of the SBall induced by (4.1) in section 4.2.1, the spherical flux is well approximated, for a

sphere of radius of r = h/2, by:

SFlux(x)≈ 1

2

∫ ∫
S(θ ,φ)cos(θ)dθ dφ . (4.12)

Normalizing this flux by the sphere surface 4πr2, and recognizing that the mean of a function

is given, up to a scale factor, by the first SH term in (4.4), we found the following:

NSFlux(x) =
1

4πr2
SFlux(x) =

1

4
√

π
c1, (4.13)

where c1 is the first coefficient in (4.4). The scale factor
√

4π derives from the normalization

used in (4.2). This means that, if we have the SH decomposition of the SBall, then the normal-

ized spherical flux at this position has already been computed. The function NSFlux is negative

for a bright vessel on a darker background, and positive otherwise. In addition, its modulus is

an indication of the structure’s saliency.

The optimally oriented flux (OOF) was introduced by Law and Chung (Law and Chung, 2008)

as an enhancement to the spherical flux. In their formulation, they consider only the flux

passing through the great circle perpendicular to a direction defined by a vector p, as opposed

to the whole sphere surface, as in (4.12). The vector p∗ optimizing the oriented flux is found

analytically, and the associated flux quantity is used for curvilinear structure detection.
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The oriented flux can easily be computed for any direction using the SBall SH representation,

by quickly computing its Funk–Radon transform (FRT). For a spherical point p = (θ ,φ), the

FRT is the great circle integral of the signal on the circle defined by the plane passing through

the origin with normal vector p. In the SBall context, the FRT is thus equivalent to the oriented

flux, up to one multiplicative constant. Descoteaux et al. show that the FRT G [S ] of a function

represented using SH basis is (Descoteaux et al., 2007):

G [S ](p) =
R

∑
j=1

2πPl jc jYj(p).

So, it is possible to compute the oriented flux in any direction by a simple summation. Un-

fortunately, finding the maximum on an SH basis analytically is actually not possible (Aganj

et al., 2010), and doing so numerically would cause an additional computational burden. Nev-

ertheless, we have included the following version of a normalized oriented flux descriptor for

comparison purposes:

NOFlux(x,q) =
1

4π

R

∑
j=1

2πPl jc jYj(q), (4.14)

where q is the normalized spherical coordinate direction corresponding to v3 (see section 4.2.4.2).

The derivation of the normalization factor (1/4π) is similar to that in (4.13).

4.2.5 Vesselness measure

The proposed geometric descriptors are compared using a set of 14 different patterns repre-

senting curvilinear structures (6 patterns from Fig. 4.2) and other interfering shapes (8 patterns

from Fig. 4.4). The computed values are presented in Table 4.1 for the curvilinear structure

configurations (including bifurcations) and in Table 4.2 for the interfering shapes. As we knew

intuitively, all the proposed contrast-invariant indicators are suitable for discerning the near

spherical configuration (Config. 11) from the six curvilinear configurations presented. How-

ever, it appears that the (D−/D̄)
2

ratio was the most sensitive with respect to the other patterns

associated with the spherical figure (Configs. 12, 13, and 14). The two disk-like patterns (Con-

figs. 7 and 8) associated with planar surfaces can be distinguished from the curvilinear structure

patterns using the PFA. In this case, the PFA is the only descriptor that gives a response that is

significantly different for the planar structures than for the curvilinear structures. We found the

GFAS, GFAD, and OBB descriptors less attractive because they do not produce significantly

different output for the interfering patterns. The computed flux (NSFlux and NOFlux) was

generally lower for the interfering pattern than for the curvilinear structures, but, because the



90

�

�

�
�

(7)

(8)
(9)(10) �

�
�

�

(11)

(12)

(13)

(14)

(7) (8) (9) (10)

(11) (12) (13) (14)

Figure 4.4 DBall representation for some interfering patterns. Top row: Volume

rendering of the test images. Other rows: DBall representation for the marked voxel

positions. The numbering continues from Fig. 4.2.

flux is mostly representative of the local contrast, it is difficult to determine the significance of

this observation. In our setting, we did not find a significant difference between the NSFlux

and NOFlux descriptors. We could not identify any shape descriptors that had a clear discrim-

inative power against sharp corners and sharp edge patterns (Configs. 9 and 10), although the

PFA is reduced in the latter case. We argue that this is not too problematic in the context of

medical imaging, since these configurations are not found in a large proportion of the voxels in

biological images.

Based on these observations, we chose three complementary shape descriptors for our new

vesselness measure. The ball descriptor B(x) = (D−/D̄)
2

makes it possible to discriminate

ball-like structures, the planar anisotropy descriptor A (x) = PFA(x) enables detection of disk

shapes, and, finally, the flux operator F (x) = NSFlux(x) is used to cancel very low contrast

structures. Our vesselness measure for detecting bright structures against a darker background
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Table 4.1 Values of the proposed shape descriptors computed on the six vessel voxel

configurations presented in Fig. 4.2.

SBall descriptors DBall descriptors Flux

Config. D−
D̄

D−
D+

(
D−
D̄

)2 (
D−
D+

)2
GFAS OBB GFAD PFA NSFlux NOFlux

1 0.000 0.000 0.000 0.000 0.250 0.293 0.397 0.419 -12.752 -14.145

2 0.295 0.251 0.087 0.063 0.216 0.306 0.372 0.380 -10.328 -11.645

3 0.199 0.155 0.040 0.024 0.282 0.219 0.428 0.265 -12.798 -12.228

4 0.102 0.084 0.010 0.007 0.241 0.253 0.380 0.289 -12.798 -13.223

5 0.000 0.000 0.000 0.000 0.268 0.278 0.419 0.388 -12.334 -14.056

6 0.000 0.000 0.000 0.000 0.308 0.262 0.470 0.391 -11.971 -14.022

Min. 0.000 0.000 0.000 0.000 0.216 0.219 0.372 0.265 -12.798 -14.145

Max. 0.295 0.251 0.087 0.063 0.308 0.306 0.470 0.419 -10.328 -11.645

Table 4.2 Values of the proposed shape descriptors computed on the eight non vessel

voxel configurations presented in Fig. 4.4. Values in bold are significantly different from

the vessel voxel configuration in Table 4.1. The criteria for significant difference is either

twice the maximum value in Table 4.1 or half the minimum value.

SBall descriptors DBall descriptors Flux

Config. D−
D̄

D−
D+

(
D−
D̄

)2 (
D−
D+

)2
GFAS OBB GFAD PFA NSFlux NOFlux

7 0.000 0.000 0.000 0.000 0.503 0.188 0.597 0.041 -11.477 -13.752

8 0.000 0.000 0.000 0.000 0.503 0.188 0.597 0.041 -4.865 -5.829

9 0.225 0.139 0.050 0.019 0.461 0.530 0.592 0.508 -9.639 -13.811

10 0.000 0.000 0.000 0.000 0.479 0.341 0.519 0.149 -7.934 -9.088

11 0.942 0.915 0.888 0.838 0.035 1.000 0.048 0.048 -8.782 -8.599

12 0.451 0.329 0.203 0.108 0.307 0.428 0.476 0.442 -4.452 -5.625
13 0.560 0.462 0.314 0.213 0.183 0.380 0.315 0.305 -5.799 -6.747

14 0.735 0.675 0.540 0.456 0.092 0.580 0.161 0.170 -7.250 -7.694

combines the three measures previously defined in a smooth function, as follows:

V (x) =

⎧⎨
⎩0 if F (x)> 0

V (x) otherwise
, (4.15)

with

V (x) =exp

(−(B(x))2

2β 2

)
·
(

1− exp

(
−(A (x))2

2α2

))

·
(

1− exp

(
−(F (x))2

2γ2

))
. (4.16)

The vesselness is zero if the voxel is, on average, darker than the surrounding area, as indicated

by a positive spherical flux. Obviously, this condition can be reversed to detect a dark structure
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on a brighter background. The vesselness measure is close to zero if the structure apears like

a ball (B(x) ≈ 1), or a disk (A (x) ≈ 0), or has very low contrast (F (x) ≈ 0), and is close to

unity otherwise.

4.2.6 Multiscale integration

The size of the structures that can be captured by an SBall is limited by the step size of the

difference operator h in (4.1). We envision two possibilities for detecting the structures of

variable scales: 1) scaling the sampling icosahedron and the step size h, and 2) embedding the

SBall analysis in a scale-space framework. Since the former approach appears less practical, as

the computational time required by an accurate implementation will increase with the square

of the scale of the structure, we develop the latter idea here, using the scale-space formalism

of Lindeberg (Lindeberg, 1996). Within this framework, structures of scale σ are detected by

using the following scale-normalized second order differences instead of the one defined in

(4.1):

D2
σ [I,x,v] = σ2D2[Iσ ,x,v] , (4.17)

where Iσ = I ∗G(σ) is the input image convolved with a Gaussian filter G(σ) of σ standard

deviation. With this formulation, the only other quantity that needs to be renormalized is the

net flux, as computed in (4.13). Flux is a first order quantity, and requires a different scale

normalization than a second order quantity, as in (4.17) (Lindeberg, 1996):

Fσ (x) =
1

σ
NSFlux(x) (4.18)

By assuming a discreet range of scales σi, and by denoting by Vσ j(x) the vesselness response

for some scale σ j, we define the multiscale vesselness response as

Vmulti(x) = max
i

Vσi(x) . (4.19)

The response of Vσ j(x) and Vmulti(x) across a range of scale is shown in Fig. 4.5.

4.2.7 Parameter selection

The two first terms of V (x) in (4.16) are independent of the overall image contrast, and so the

parameters β and α can be fixed with only geometrical considerations. The last term does

depend on the image contrast. This dependency can be mitigated by using a value γ = ξ ·F ∗,
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Figure 4.5 Multiscale response for simple cylindrical patterns with radii of

{0.5,1.0, . . . ,3.5} voxels in a 16×16×66 volume. From top to bottom: Synthetic input

volume, intensity of the vesselness signal along the line defined by {y = 8,z = 8} for

scales σ = {0.25,0.75,2.00}, and maximal intensity along the same line across the scales

σ = {0.25,0.50,0.75,1.00,1.50,2.00}.

which is a multiple of the maximal absolute value F ∗ = max |F (x)| for the whole image.
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In an interactive framework, another strategy might be to fix this value based on the contrast

observed in certain used-specified regions.

In this paper, parameters β , α , and γ were set by assuming a loss of signal ε for the curvilinear

structure configurations presented in Table 4.1 with the higher B or the lower A or F sig-

nals (Bmax = 0.098, Amin = 0.265 and Fmin = −10.328). Also, F ∗ = −12.798, and so we

searched β , α , and ξ , such that:

ε = exp

(−B2

2β 2

)

ε = 1− exp

(
−A 2

2α2

)

ε = 1− exp

(
− F 2

2(ξ ·F ∗)2

)
,

where F ∗ is the maximum spherical flux value in Table 4.1. Reasonable values for ε are in the

[ 3
√

0.50,1.00] range. Using ε = 0.95, we found β = 0.272, α = 0.108 and ξ = 0.330. A ε value

closer to 1.0 will provide better sensitivity at the expense of discrimination, and vice-versa for

a lower ε value.

4.3 Experimental results

The proposed SBall vessel detection filter has been implemented in C++ as a multithreaded

ITK filter. A version of this code will be made freely available for research purposes following

publication.

Parameters β , α , and ξ were kept constant for all the experiments, which is an indication of

the robustness of the method. In addition, an order 1 sampling icosahedron has been used in

all cases. Because of its larger difference step h, which induces some smoothing, the scale σ

for the proposed filter in the multiscale configuration is not directly comparable to the scale

of Frangi (Frangi et al., 1998) or Sato (Sato et al., 1998) filters. Since, for an order 1 sam-

pling icosahedron h =
√

3 ≈ 2, we used the equivalence s = 2σ , where s is Frangi’s or Sato’s

operating scale.

4.3.1 Experiments on synthetic images

Two synthetic images were used to assess the performance of the proposed method. The vol-

umes in this section were generated by drawing the structures in an initial volume with 10×
as the indicated resolution, and then scaling it down to the desired size. Consequently, these
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images are realistic with respect to the partial volume effect observed in medical imaging. The

results are also compared with other established methods, those of Frangi (Frangi et al., 1998),

Sato (Sato et al., 1998), and Qian (Qian et al., 2009). In all cases, the parameters have the

values recommended by the authors in the original publications. We also compare our method

with a flux operator, which is the last term in (4.16), and including the thresholding in (4.15).

Finally, the images in this sections were processed at scales σi ∈ {0.25,0.50,0.75,1.00}.

The first test volume represents a 98× 32× 12, I(x) ∈ [0.0,1.0], fish bone like structure, that

as been designed to test the performance of the method in the presence of vessels joining at

various angles (θ ∈ [22.5,90]deg). This test volume is depicted in Fig. 4.6 along with its DBall

representation for some key regions. The scalar response of each filter is depicted in Fig. 4.7.

Figure 4.6 Multiscales response for simple 3D vessel pattern at various angles. Top row:

Synthetic input volume and median slice of the structure. Bottom row: Details of the

DBalls for the three highlighted areas.

In all cases, the intensity has been normalized so that the maximum vesselness computed by a

filter equals 1.0.

The second volume, of size 98× 32× 12 voxels and intensity I(x) ∈ [0.0,1.0], has been de-

signed to test the specificity of the vesselness filter. It includes a block, a thin plate, spheres

with radii of r ∈ [0.75,3.00] voxels, and a cylinder with a radius of 1 voxel. These structural

noise patterns are meant to represent the various interfering structures that might be present in

medical images, such as bones or membranes. The test volume, and the vesselness response

on the median slice for the five tested filters are presented in Fig. 4.8.
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Figure 4.7 Vesselness filter responses for the slice in Fig. 4.6 for 5 different filters. From
top to bottom: SBall, Frangi’s filter, Sato’s filter, Qian’s filter, and the Flux filter.

From what can be seen from the fish bone pattern in Fig. 4.7, the proposed vesselness filter

is better at preserving the connectivity at vessel junctions than either Frangi’s or Sato’s filter.

However, Qian’s filter and the Flux filter show no sign of signal drop at junctions, and there

is even a slight signal increase for Qian’s filter. Nevertheless, the results presented in Fig. 4.8

suggest that Qian’s filter, the Flux filters, and also Sato’s filter are much less specific than the

two others: they detect the interfering patterns with an intensity that is comparable to that of

cylinder detection. The proposed method and Frangi’s filter give better results on this volume,

and our SBall filter seems to be the best at specificity. Overall, it appears that there is some

trade-off between the ability to detect vessels at junctions and filter specificity, and we found

that our proposed filter offers the best compromise.

In order to quantitatively assess the performance of each filter, True Positive Rate (TPR) and

False Positive Rate (FPR) curves have been plotted. Assuming a known true segmentation
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Figure 4.8 Vesselness filter responses for the median slice of the structural noise test

volume. Left to right and top to bottom: Test volume, and the vesselness for the SBall,

Frangi’s filter, Sato’s filter, Qian’s filter, and Flux filter.

T (x) ∈ {0,1} and some classification threshold t, the TPR and FPR are given by:

TPR =
(V (x)≥ t)∧T (x)

#{T (x) == 1} , FPR =
(V (x)< t)∧T (x)

#{T (x) == 0} ,

where # denotes the cardinality of a set. The curves are then obtained by computing the TPR

and FPR for many values in the t ∈ [0.0,1.0] range, in terms of normalized vesselness. In-

tuitively, the TPR can be regarded as the hit rate, that is, the number of voxels that correctly

identify the target structure. The FPR can be interpreted as the false alarm rate, or the number

of times a filter signals an unwanted structure. For these simple synthetic images, the true

segmentations have been assumed to correspond to I(x)> 0.5.

The quantitative results are found in Fig.4.9 for the fish bone pattern, and in Fig. 4.10 for the

structural noise patterns. The four graphs presented here tend to corroborate the observations

made from the vessel filter intensity images. In fact, with a level of ε = 0.95, we found that

the proposed filter is better than the others at almost any given classification threshold for the

two test volumes. So, on average, its hit rate of our filter is very high, being only second to the

Flux operator, while its false alarm rate is lower than the others, although we acknowledge that

Frangi’s filter false alarm rate is also low.
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Figure 4.9 True Positive Rate (left), and False Positive Rate (right) for the fish bone

image as a function of the classification threshold.
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Figure 4.10 True Positive Rate (left), and False Positive Rate (right) for the structural

noise image as a function of the classification threshold.

4.3.2 Experiments on clinical images

The proposed vessel detection filter has been tested on two vastly different clinical datasets: one

time-of-flight magnetic resonance angiography (TOF-MRA) scan, and one cardiac computer-

ized tomography angiography (CTA) scan. For comparison, we also included results obtained

with Frangi’s and Sato’s filters.

A 86×152×74 region of a TOF-MRA scan1, selected to highlight the filters’ differences, has

been processed at scales σi ∈ {0.25,0.50,0.75,1.00}. The results for the three vessel detection

1The TOF-MRA scan tested is distributed with the MRIcroGL visualization software, both of which are freely

available on the Internet.
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filters are shown in Fig. 4.11. The performance of all three filters was relatively good on this

dataset. There are few notables differences, however, as indicated by the arrows in Fig. 4.11:

A) The connectivity at this vessel junction is better preserved by the proposed filter than by

Frangi’s. Sato’s filter has a slightly better response, but it merged all three vessels into one

blob. B) With the proposed filter, the two vessels are discernible, whereas with the other two

filters they are fused. C) Sato’s filter has the best response for very small vessels, but it also

presents the highest signal for unwanted structures (D). For small vessels, the SBall filter, is

however significantly better than Frangi’s filter.

The performance of the vessel detection filters was also assessed on a more challenging CTA

scan. This dataset was made available by Dr. Nagib Dahdah of Ste-Justine Hospital in Mon-

treal. It was acquired on a sane subject after enlightened consent has been given, and af-

ter review by the hospital’s ethics board. Compared to the other clinical dataset, this scan

has less contrast, is more noisy, and presents a larger variety of anatomical structures. Be-

cause of the greater image noise, we processed the image at higher scales. Consequently, the

same set of scales was used for the proposed SBall filter, for Frangi’s and for Sato’s filter

(si = σi ∈ {0.75,1.00,1.50,2.00}). To make the coronary arteries easier to see, the non-heart

structures that are far away from the myocardium have been manually masked. The results are

presented in Fig. 4.12.

We also found that the proposed filter preserved the junctions of this dataset better than Frangi’s

filter (A), while having good ability to segment smaller vessels (B and D) and keep the vessels

separated (C). The discriminating performance of our SBall filter is also significantly higher

than Sato’s, which detects many unwanted structures (E). However, in at least one difficult

location (F) Sato’s filter resulted in improved connectivity at a junction. Overall, we found that

the proposed filter is superior for small vessel detection, for keeping the structure clear, and for

background discrimination.

4.4 Discussion and conclusion

The new curvilinear structure detection filter proposed in this paper was motivated by recent

advances in HARDI image processing. By analyzing the values of a difference operator ap-

plied in many directions, our new filter is able to achieve a high level of discriminations while

offering good performance at vessel junctions. The SBalls form the basis of the vessel detec-

tion filter are represented using spherical harmonics. This provides a natural way to interpolate

the SBall value in any direction, a property that was, in fact, used in the definition of the ves-

selness measure A (x) in (4.11). At the same time, when combined with our contrast invariant
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Figure 4.11 Vessel detection in a cropped clinical TOF–MRA volume. Left column:

sagital anterior view, and right column: lateral left view.Top to bottom: Proposed,

Frangi’s, and Sato’s vesselness filter response. The arrows indicate some regions of

interest. See the text for a discussion.

diffusivity index, the SH coefficient can be used to provide a rich visualization of the image

structure, as in Fig. 4.2 and 4.6. We believe that their reasonable memory footprint will lead
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Figure 4.12 Vessel detection in a cropped clinical cardiac CTA volume. Left column:

axial superior view, and right column: sagital anterior view.Top to bottom: vesselness

response for the SBall filter, Frangi’s filter, and Sato’s filter. The arrows indicate some

regions of interest. See the text for a discussion.

to applications where the SBall will provide directional information to a tracking or segmen-

tation process. Moreover, our analysis of the SBall is not limited to the vesselness measure.

Other quantities can be derived from it, such as the flux and the oriented flux. The proposed
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SBall vesselness filter has also been integrated into the scale-space framework of Lindeberg

(Lindeberg, 1996) for multiscale vessel detection.

Experiments on three different synthetic images demonstrate the performance of the SBall ves-

sel detection filter. In the first, we showed that the multiscale integration of the filter provides

an appropriate framework for detecting vessels within a reasonable range of size without fa-

voring any particular scale. In the second and third experiments, we showed, both qualitatively

and quantitatively, that the SBall filter provides the best balance between sensitivity and dis-

criminative power. Comparisons are provided with the two classic filters of Frangi and Sato as

well as with the newer Qian filter.

Finally, the performance of the SBall vessel detection filter has been assessed on two clinical

medical images from different imaging modalities: TOF-MRA and CTA. In this case, the re-

sults were compared to those of Frangi’s filter and Sato’s filter. The findings in this section

tends to corroborate those in the experiment with synthetic images. In summary, the SBall fil-

ter performs better than the other filters at preserving vessel junctions and small vessels, while

having good resilience to the presence of unwanted structures. Building on these encouraging

results, future work will be directed toward integration of the SBall into tracking and segmen-

tation methods. We also encourage other researchers to test our code on their own datasets.
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Abstract

A 2D/3D non-rigid registration method is proposed that brings a 3D centerline model of the

coronary arteries into correspondence with bi-plane fluoroscopic angiograms. The registered

model is overlaid on top of interventional angiograms to provide surgical assistance during

image-guided chronic total occlusion procedures, thereby reducing the uncertainty inherent

in 2D interventional images. The proposed methodology is divided into two parts: global

structural alignment and local non-rigid registration. In both cases, vessel centerlines are auto-

matically extracted from the 2D fluoroscopic images, and serve as the basis for the alignment

and registration algorithms. In the first part, an energy minimization method is used to estimate

a global affine transformation that aligns the centerline with the angiograms. The performance

of nine general purpose optimizers has been assessed for this problem, and detailed results

are presented. In the second part, a fully non-rigid registration method is proposed and used

to compensate for any local shape discrepancy. This method is based on a variational frame-

work, and uses a simultaneous matching and reconstruction process to compute a non-rigid

registration. With a typical run time of less than 3 seconds, the algorithms are fast enough

for interactive applications. Experiments on five different subjects are presented and show

promising results.

Keywords: 2D/3D Registration, X-ray fluoroscopy, computed tomography, image-guided

interventions, interventional cardiology, chronic total occlusions
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5.1 Introduction

X-ray fluoroscopy is the modality of choice for the guidance of percutaneous coronary inter-

ventions (PCI) of chronic total occlusions (CTO). During these procedures, crossing CTOs

using a guidewire is particularly hazardous, since the occlusion blocks the propagation of the

contrast agent, and makes the occluded portion of the vessel invisible under fluoroscopy. In

addition to the contrast issue, the projective nature of fluoroscopy results in ambiguities in the

interpretation of 3D structures that further complicates the interventional procedure. Similar

challenges arise in a vast array of minimally invasive procedures (Peters, 2006; Peters and

Cleary, 2008).

Current pre-interventional planning routinely includes the acquisition of a computed tomog-

raphy angiography (CTA), or other 3D imaging modality, which is used to reduce visual un-

certainty. The performance characteristics of CTA with blood pool contrast injection enables

the calcifications causing the CTOs to be clearly distinguished, as opposed to what can be per-

ceived with interventional X-ray fluoroscopy with direct contrast agent injection. This makes

CTA a highly valuable tool at the planning stage, but establishing correspondence between

these data and the interventional images can prove difficult.

To address this issue, a 3D model can be extracted pre-procedure from the acquired volume,

aligned with the 2D fluoroscopic views, and overlaid on top of the live images, thereby aug-

menting the interventional images. However, achieving this alignment is a challenge in itself,

mainly because finding intermodal correspondence is a non trivial problem, and also because

of the non linear aspect of the underlying optimization problem. Furthermore, a simple rigid

transformation might not be sufficient to provide a satisfying 2D/3D registration. Since the 3D

planning image is acquired under a breathold, there are significant shape changes as compared

to the intraoperative images acquired under free breathing. This makes it extremely impor-

tant to use a non-rigid registration method while aligning the preoperative model with the live

intraoperative images. This is, however, a difficult ill-posed inverse problem. Nevertheless,

2D/3D registration methods have the potential to greatly reduce the uncertainty relative to in-

terventional X-ray angiography, and to do so with only minimal modification to the existing

clinical flows. The development of such methods is the main objective of this paper, and its

most significant contribution.

From a broader perspective, 2D/3D registration methods have numerous applications in fields

such as neurology (Hipwell et al., 2003), orthopaedics (Benameur et al., 2003), and cardiology

(Ruijters et al., 2009). The associated body of literature is expanding rapidly, as is apparent in
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the thorough review of techniques recently published by Markelj et al. (Markelj et al., 2012).

Below, the techniques most closely related to the one presented in this paper are discussed.

The maximal precision that can potentially be achieved by a registration process is directly

linked to the complexity of the transformation model involved. Many 2D/3D registration ap-

proaches consider only a rigid transformations model (Feldmar et al., 1997; Turgeon et al.,

2005; Truong et al., 2009; Ruijters et al., 2009), or a slightly more flexible affine model (Tsin

et al., 2009). In general, this is appropriate for rigid structures, such as bones, or to provide an

initial alignment of the modalities, but might prove insufficient to account for the shape changes

of flexible structures. Consequently non-rigid deformation models have been proposed for

2D/3D registration (Groher et al., 2009; Metz et al., 2009; Liao et al., 2010). In (Groher et al.,

2009), the transformation model is strongly constrained by a length conservation term. The

method has mostly been demonstrated on synthetic examples, and its computational complex-

ity, resulting in a computational time of around 5 min, makes it impractical in an interventional

setting. The approach by Metz et al. (Metz et al., 2009) requires the acquisition of 4D CTA,

that allows for the use of a 3D+t model for cardiac motion. However, it does not account for

shape changes occurring through respiratory movement, and the acquisition of a 4D CTA is

not possible in most interventions, which is a major shortcoming of this approach. Interesting

results are presented in the paper by Liao et al. (Liao et al., 2010), but their technique makes

use of features specific to the abdominal aorta.

In a clinical setting, one or two fluoroscopic planes are used for intervention guidance. Some

authors (Bouattour et al., 2005; Groher et al., 2009; Duong et al., 2009) have investigated the

monoplane scenario, but the reported errors are large in the out-of-plane direction. This lack

of accuracy seriously limits confidence in the registration process. Biplane acquisition greatly

reduces the ambiguity associated with these interventions, which is why this paper focuses on

the alignment and registration of a 3D model with two fluoroscopic images. In our experience

of five vastly different clinical sites located in Canada, Germany and the Netherlands, we have

observed that biplane acquisitions are now performed on a daily basis for complex cardiac

interventions. Thus, the proposed methodology is practical in many clinical situations.

The method presented in this paper is designed to non-rigidly align a preoperative 3D centerline

model of the coronary arteries with two intraoperative fluoroscopic images to visually augment

the interventional images. It is composed of two steps: 1) a global transformation model is

calculated to provide an initial rigid or affine alignment, and 2) a fully non-rigid model is used

to compute the final registration. To estimate the global alignment parameters, a formulation

derived from (Sundar et al., 2006) is used. This formulation benefits from distance maps
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(Fabbri et al., 2008; Paragios et al., 2003) to measure the discrepancies between the projections

of the 3D model and features automatically extracted from the 2D images. Such formulations

have less computational complexity than those based on point matching approaches (Stewart,

2006; Truong et al., 2009) or on digitally reconstructed radiographs (Prümmer et al., 2006;

Souha Aouadi, 2007). A contribution of this paper is to generalize the cost function defined in

(Sundar et al., 2006) to cover the affine and biplane case.

The optimization surface in 2D/3D registration problems can be highly non-linear for several

reasons: the discretization of the image, the complexity of the structures to be registered, and

the use of a rigid or affine transformation model. As a result, the minimization of the cost func-

tion is challenging. As we know that no single optimization method outperforms all the others,

it is hard to understand why only one or two optimization algorithms have been evaluated in

most related works (Turgeon et al., 2005; Sundar et al., 2006; Ruijters et al., 2009). In addi-

tion, work published by Lau and Chung (Lau and Chung, 2006) suggests that global optimizers

might perform better than the more popular local optimizers for a related 2D/3D registration

problem. An important contribution of this work is thus to present a rigorous comparison

between seven local and two global optimizers. The data were gathered using one realistic

simulated case and five clinical cases; 2D and 3D errors are reported as well as runtime mea-

surements. The results presented here can help implementers choose the best algorithm for

their application. A similar study, but for intensity-based 2D/3D registration, is presented in

(van der Bom et al., 2011).

Work recently published by Ruijters et al. (Ruijters et al., 2009) shares some similarities with

the proposed 2D/3D alignment method. Their registration method makes use of the distance

transform of the projection of a 3D centerline and of the output of the Frangi vesselness filter

(Frangi et al., 1998) to compute the cost associated with a certain pose. The optimization is

carried out with either a Powell optimizer or a stochastic optimizer. There are, however, a few

important differences between the approaches. While they specifically avoid 2D segmentation,

we propose using a very recent 2D segmentation algorithm (Schneider and Sundar, 2010). By

doing so, it is possible to precompute the distance transform on the 2D images, instead of

computing the distance transform of the projection of the 3D centerline for a certain pose at

each iteration. This can lead to an improvement of up to 2 orders of magnitude in registration

time. Nonetheless we acknowledge that computing the automatic 2D segmentation incurs some

small overhead. We also make use of the affine transformation model in addition to the rigid

one, and present a more thorough evaluation using additional optimizers. Finally, (Ruijters

et al., 2009) does not consider non-rigid registration.
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The 2D/3D registration method can also be used to capture the motion of the structure of in-

terest across a sequence of frames (Blondel et al., 2006; Tsin et al., 2009). The demonstration

of the suitability of the proposed global registration method in this multiframe setting is an-

other contribution of this work. With respect to the non-rigid registration method, our main

contribution is the formulation of this problem as a simultaneous matching, reconstruction and

registration problem, that can, on modern hardware, be solved fast enough to be used intraop-

eratively during CTO procedures.

The rest of this paper is organized as follows. Section 5.2 presents the practical system con-

sidered here and other background information. The global alignment method is described

in section 5.3. The proposed non-rigid registration method is introduced in section 5.4. Ex-

periments with both the global alignment method and the non-rigid registration method are

presented in section 5.5. Finally, a discussion and the conclusion are presented in section 5.7.

5.2 Background Information

A 3D centerline representation of a coronary artery tree, segmented (Gülsün and Tek, 2008)

from a pre-operative CTA volume, is to be non-rigidly registered to 2 simultaneous fluoro-

scopic images. Starting from the default 3D location, computed from the calibration of the

apparatus, the 3D alignment of the centerline is progressively refined using translation-only

motions, a rigid transformation, and an affine transformation. Lastly, a non-rigid transforma-

tion is computed and provides the final registration.

The geometry of the system under consideration is represented schematically in Fig. 5.1 and

is described using five coordinate systems (CS). The 3D centerline representing the coronary

tree is described with respect to U , and a CS C is centered at the reference point of the 3D

imaging device. The 3D centerline itself is described by using a set of S segments composed

of Qs control points xs,q ∈R
3 forming an undirected acyclic graph. In term of 2D angiography,

X is the reference CS of the biplane C-arm, and CSs P1 and P2 are centered on the 2D imaging

planes. The transformations between C and U , and between X and {P1,P2}, are known from the

calibration of the apparatus, and are encoded in the rigid transformation matrices C, P1 and P2

respectively. The projective geometry of the two X-ray planes is also assumed to be available,

and is encoded in the projection operators Ψ1 and Ψ2 that map a 3D point in homogeneous

coordinates x = [x,y,z,1]T to a 2D point x′ = [x,y] on the corresponding fluoroscopic plane.

The vessels are automatically segmented from the input fluoroscopic images, using the method

proposed in (Schneider and Sundar, 2010), and represented as a binarization Bn(i, j) of the in-
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Figure 5.1 Geometry of the imaging system. Labeled frames represent coordinate

systems. Dashed lines and bold symbols represent transformation matrices.

put image. Bn(i, j) = 1, if the input image pixel at location (i, j)∈ {0, . . . ,W −1}×{0, . . . ,H−
1} corresponds to some structure of interest, and Bn(i, j) = 0 otherwise. It is assumed that the

two fluoroscopic images are the same size W ×H ∈ N
2. For the sake of completeness, the

automatic segmentation method in (Schneider and Sundar, 2010) is briefly outlined here: 1)

an input fluoroscopic image is processed using the Hessian-based Sato vesselness filter (Sato

et al., 1998); 2) seed points are generated by sparsely sampling a thresholding of the vessel-

ness measure; 3) starting from those points, fibers are generated by integrating along the first

eigenvector of the Hessian matrix computed at each pixel location; and 4) the fiber bundles

are iteratively thinned to extract the centerlines of the vessels. The default parameters of this

method have been used without modification throughout this paper. Examples of outputs are

presented in Fig. 5.21.

1All 3D centerline projections presented in this work are color-coded as follows: if the 3D centerline is locally

parallel to the view plane, it is green; if it is perpendicular, it is red. A linear interpolation is used for intermediary

situations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2 Input data. a) curved slice from a CT volume; b) 3D centerlines; c) and d)

fluoroscopic angiograms from 2 different points of view; e) and f) segmentation of the

fluoroscopic images; and g) and h) distance transforms of the segmentations.

5.3 Translational, rigid, and affine alignment

In a typical clinical setting, the transformation that aligns the 3D coronary centerlines from

the CTA acquisition to the images of the same structures on the biplane fluoroscopy can only

be measured approximately, since the position of the patient cannot be controlled with a high

degree of accuracy. A transformation T, that is a mapping between the two imaging modality

coordinate systems, can be estimated by a calibration of the apparatus, and refined by taking

into account the geometry of the structures of interest. Starting from the initial conditions, the

improved alignment transformation is computed using a minimization process to estimate the

parameters of a global translational or rigid transformation model. From that point, an affine

transformation model can also be used to deform the 3D centerline in order to compensate for

the shape discrepancy between the CTA and the biplane X-rays. A technique, inspired by (Sun-

dar et al., 2006), but extended to cover the biplane case and the use of affine transformations,

is proposed for this purpose.

Formally, the total distance between the projection of the 3D centerline and the vessel center-

lines segmented on each fluoroscopic plane is to be minimized. Let χ(x) = T ·C ·x be an affine

transformation operator that maps a point x = [x,y,z,1]T , relative to U , to the X coordinate sys-

tem. Also, let Πn(x) = Ψn ·Pn ·x be a projection that maps a point from X to the fluoroscopic
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plane Pn. We define the energy

EGlobal(χ) =
2

∑
n=1

∑
s,q

DBn(Πn(χ(xs,q))) (5.1)

as the quantity that needs to be minimized. Here, DBn(x) is the distance between a 2D point and

the closest point where Bn(i, j) = 1. The distance DBn(x) for each image position is computed

beforehand, by creating the distance transform of each Bn(i, j) segmentation, as presented in

Fig. 5.2.

Optimizing the 12 values of T directly is both ineffective and inefficient, and so a parametric

approach has been used. The translation-only, rigid, or affine transformations TT , TR, and

TA are represented using the parameter sets T ∈ R
3, R ∈ R

6, A = R
12 respectively. The

mappings from the parametric to the matrix representations of the Ts are defined as follows

(Shoemake and Duff, 1992):

TT (T ) =MT (T
3

1 ) ,

TR(R) =MT (R
3
1) ·MR(R

6
4) , and (5.2)

TA(A ) =MT (A
3

1 ) ·MR(A
6

4 )

·MR(A
12

10 ) ·MS(A
9

7 ) ·
(
MR(A

12
10 )

)T
,

where S
j

i is the subset containing the elements with indices {i, . . . , j} of S and

MT (T ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,MS(S ) =

⎡
⎢⎢⎢⎢⎣

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

and (5.3)

MR(θ) =

⎡
⎢⎢⎢⎢⎣

cycz, czsxsy − cxsz, sxsz + cxczsy, 0

cysz, sxsysz + cxcz, cxsysz − czsx, 0

−sy, cysx, cxcy, 0

0, 0, 0, 1

⎤
⎥⎥⎥⎥⎦ ,

where cx = cos(θx) and sx = sin(θx). The transformation matrices TT , TR, and TA are re-

centered in such a way that any change in the rotation parameters induces a motion that ap-

pears to occur around the origin of the U coordinate system, as opposed to the origin of C.
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This operation does not influence the energy function (5.1), but is usually beneficial for the op-

timizers. Intuitively, this is because such re-centering reduces the distance, in parameter space,

associated with a rotation or a scaling operation that appears to occur at the centroid of the CT

volume. The final definition of T is then

T = C ·TJ ·C−1 , (5.4)

where C is the transformation from U to C, and J ∈ {T,R,A}, depending on the transformation

model chosen.

Any non-derivative general purpose optimization algorithm can be used to minimize (5.1). In

this work, 7 local (L) and 2 global (G) algorithms have been tested for this purpose. These

algorithms are briefly described here:

Best Neighbor (L): At each iteration, a step in all principal directions of the parameter space is

considered. The best move is applied, and a new iteration begins. When no move improves the

solution, the step is halved.

Nelder-Mead2 (L): A classic numerical optimization method that minimizes an m-dimensional

function by evaluating the function value at the m+ 1 vertices of a general simplex (or poly-

tope). At each iteration, the vertex with the worst value is replaced by another one using a

reflection operation followed by either an expansion or a contraction operation (Nelder and

Mead, 1965).

Sbplx3 (L): This method decomposes the problem in a low-dimensional subspace, and uses the

Nelder-Mead algorithm to perform the search (Rowan, 1990).

Cobyla (L): The Constrained Optimization BY Linear Approximation method works by con-

structing linear-approximations of the cost function and constraints using m+ 1 vertex sim-

plexes, and minimizes this approximation. The radius of the simplex is progressively reduced,

while maintaining a regular shape (Powell, 1994, 1998).

Bobyqa (L): Each iteration of the Bound Optimization BY Quadratic Approximation method

use a quadratic approximation of the cost function F constructed, typically by considering

2Also known as Downhill Simplex.
3The name of the original author’s implementation is Subplex, the name of the NLopt (Johnson, 2012) imple-

mentation is Sbplx.
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2m+ 1 interpolation point. The trust region is progressively reduced until there is no further

improvement (Powell, 2009).

Powell-Brent (L): At each iteration, a succession of exact 1D line optimizations is performed

using Brent’s method. The solution is updated using Powell’s method of conjugate search

directions (Powell, 1964; Brent, 1973).

Praxis (L): Brent’s PRincipal-AXIS method is a refinement of Powell’s method of conjugate

search directions (Brent, 1973).

Differential Evolution (G): This is a population-based stochastic global optimization method,

the main feature of which is the use of the vector of the difference between pairs of individuals

as the basis for the population evolution (Storn and Price, 1997).

Direct (G): This global optimization algorithm is designed for problems with finite bound

constraints, as is the case here. The parameter space is systematically and deterministically

searched by dividing it into smaller and smaller hyperrectangles (Jones et al., 1993).

The free parameters of each algorithm have been adjusted in accordance with the recommenda-

tions of their original author or implementer. The implementations of the following algorithms

are taken from the NLopt library (Johnson, 2012): Praxis, SBPLX, Cobyla, Bobyqa, and Direct.

The performance of these optimizers is discussed in detail in section 5.5. In order not to change

the nature of the problem, generous bounds have been fed to the optimizers: ±200mm for the

translation parameters, ±45deg for the rotation parameters, [0.5,1.5] for the scale parameters,

and ±360deg for the scale-rotation parameters (A 12
10 in (5.2)).

The same set of stopping criteria was used for all the optimizers, except Differential Evolution.

Specifically, the optimizers were allowed to run until, after one optimization step: 1) the value

of the cost function was reduced by less than 1e−14; or 2) the value of the optimized parameter

changed less than 1e−4mm for the translation parameters, 1e−5rad for the rotation parameters,

and 1e−7 for the scaling parameters. The parameter tolerances have an intuitive interpretation.

For example, a difference in translation of 1e−4mm corresponds to a maximal displacement

of 1/2000 of a pixel on an image plane. As to the Differential Evolution optimizer, since

the convergence of stochastic algorithms is not regular, we decided to let the optimizer run

until it had evaluated the cost function 100,000 times4, that corresponds to a median run of

approximately 10s.

41,000,000 times, in the case of simulation.
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Starting from the default patient position, the alignment is progressively refined by considering

1) translations only, 2) rigid transformations, and 3) affine transformations.

5.3.1 Multi frame alignment

The global alignment method can be expanded to cover the multi-frame scenario. In this case,

the crucial hypothesis is that because of the temporal continuity, the estimated alignment trans-

formation would only change little from one frame to the other. The global energy function

can then be re-defined for a sequence of F biplane frames:

EMulti(χ f ) =
F

∑
f=1

2

∑
n=1

∑
s,q

Dn(Πn(χ f (xs,q)))

+ γ
F−1

∑
f=1

D(χ f ,χ f+1) , (5.5)

where γ is a free parameter, and χ f is defined in a way similar to χ , but with a different

transformation matrix T f for each time point. The most delicate part of this energy function is

the definition of the inter-frame distance D(χ f ,χ f+1) since it is well known that the space of

rigid, and affine, transformation matrices is not linear. The rigid transformation space can be

locally linearized for small changes in orientation (Boisvert et al., 2008; Pennec and Thirion,

1997), as is assumed to be the case here. Using this framework, a rigid transformation is

represented by a translation vector�t and a rotation vector �r, defined as the product of a unit

vector �n and a rotation angle θ , such that�r = θ�n. The translation vector simply corresponds

to the translational part of the transformation matrix, and the mapping between the rotation

matrix R and the rotation vector�r is given by (Boisvert et al., 2008):

θ = arccos

(
Trace(R)−1

2

)
and⎛

⎜⎝ 0 −nz ny

nz 0 −nx

−ny nx 0

⎞
⎟⎠=

R−RT

2sin(θ)
.

Using this representation, the inter-frame distance is defined as follows (Boisvert et al., 2008):

D(χ f ,χ f+1) = Nα(T−1
f+1 ·T f ) . (5.6)
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with

Nα(R) = ‖�r‖2 +‖α�t‖2 . (5.7)

Here, the transformations T f have the same meaning as the transformations T defined in the

previous section. Also, α is a real number that balances the respective contributions of the

rotation and translation parts. It was set to 0.05, in accordance with the recommendation in

(Boisvert et al., 2008).

Defining a linear distance between affine transformation matrices is more involved and re-

quires complex computation (Arsigny et al., 2006). Since it is assumed in this work that rigid

transformations capture the major part of the transformation, we decided to regularize only the

rigid part of the transformation and leave the remaining affine parameters unconstrained. For-

mally, in the case of affine transformations, the transformations T f in the regularizer definition

are composed using the parameters A 6
1 only, whereas the full set of 12 parameters is used to

compose the transformations χ f in the energy definition.

This energy function can be useful for tracking the alignment transformation over a sequence

of frames, or, if γ → ∞, for computing an average transformation using, for example, three

adjacent frames. As with the single frame energy, the transformations χ f are progressively

refined by sequentially increasing the complexity of the transformation models.

5.4 Non-rigid registration

Global affine transformation models cannot entirely compensate for the inter-modal shape dis-

crepancy caused by breathing and by the beating of the heart. A non-rigid registration method

is now introduced, that can greatly improve the visual correspondence between the 3D coro-

nary tree centerlines and the two calibrated fluoroscopic images. The aim of this method is to

be automatic, in the sense that it does not require the user to identify correspondences.

The non-rigid transformation is represented as a set r of 3D translation vectors rs,q that are to

be applied to the corresponding centerline points xs,q in CS U . Thus, a registered point x̄s,p

is computed using x̄s,q = xs,q + rs,q. An energy function is defined to measure the quality of a

solution:

ENR(r) = EImage(r)+EInternal(r) . (5.8)
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An iterative minimization process is used to minimize (5.8), and, starting from the position

rs,q = [0,0,0]T | ∀{s,q}, the transformations rs,q are progressively refined by following a gra-

dient descent approach. This results in a smooth motion of the registered centerline, as can be

seen in Fig 5.3.

Figure 5.3 Progression of a non-rigid registration. From left to right: sample input

image, and position of the centerline after 0, 50, 350, and 1200 iterations. This

corresponds to subject 4 in Table 5.3. See also the related video file, as described in
section 5.6.

5.4.1 Image energy

A matching and reconstruction process is used to calculate a reconstructed point x̂s,q for ev-

ery point xs,q in the 3D centerline model. The matching is performed on each fluoroscopic

plane separately. Starting from the projection x′ of x̄s,q on an image plane n, a search on

the corresponding segmentation image Bn is performed in the directions that are perpendic-

ular to the projection of the centerline – see Fig. 5.4-a) for an illustration. This direction is

computed, at every location, based on the partial derivatives
(

∂ x′
∂x ,

∂x′
∂ y

)
. As a result, at most

two matching points, x′′n,a and x′′n,b, are identified on each fluoroscopic plane n ∈ {1,2}. The

pair (x′′1,i,x
′′
2,i) , i ∈ a,b that best satisfies the epipolar constraint is kept. For this purpose, the

following quantity is considered:

d(x′′1,i,x
′′
2,i) = d(x′′1,i,e2,i)+d(x′′2,i,e1,i) , (5.9)

where d(x′′n,i,em,i) is the Euclidean distance between point x′′n,i and the epipolar line induced

by x′′m,i, {n,m} ∈ {1,2}, with n �= m. The pair minimizing (5.9) is then used to calculate a re-

constructed 3D point x̂s,p using the projective geometry of the system (Hartley and Zisserman,

2004). If only one point x′′n,i is found on an image plane, it is retained by default.

Searching for matching points in directions that are locally perpendicular to the projection

of the centerline is an important aspect of this process. Since it is known a priori that the
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global alignment of the structures is correct, the perpendicular search direction prevents many

unrealistic matches, compared to a nearest-point approach. This is especially important when

the 2D automatic segmentation is not perfect. For example, when the 3D projection results in a

curve that is longer that the 2D curve that has been automatically segmented, taking the nearest

point would result in a significant shortening of the curve from its tip. In contrast, considering

the perpendicular direction considerably reduces this effect, because no match would be found

at the tip of the 3D centerline projection.

The quality of the reconstruction cannot be guaranteed and an indicator function H(xs,p) �→
{0,1} is used to reject outliers. H(xs,p) = 0 if: 1) no matching point is found in any image

planes; 2) the 2D distance between x′ and x′′n is greater than Max2D; and 3) the 3D distance

between xs,p and x̂s,p is greater than Max3D. Otherwise, H(xs,p) = 1. Here, Max2D and Max3D

are thresholding functions. More complex kernels, such as Huber functions, could be integrated

in the proposed scheme, but this possibility has not been explored. Their values were fixed to

Max2D = 50 pixels and Max3D = 6mm.

The image energy in (5.8) is defined as the sum of the squared error between the reconstructed

points x̂s,p and the centerline point, for all valid points, as follows:

EImage(r) = ∑
s,q

H(xs,q)(x̂s,q − (xs,q + rs,q))
2

= ∑
s,q

H(xs,q)(x̂s,q − x̄s,q)
2 . (5.10)

This energy is at its minimum when all the registered centerline points are at the same position

as the reconstructed points.
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Figure 5.4 a) Matching of a point from the centerline x′ with a point from the 2D

structure. Points x′′a and x′′b are identified as potential candidates. b) Creation of 3

myocardium constraints (k1, k2, and k3) at a junction.
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5.4.2 Internal energy

Regularizers are used to keep the registered centerline visually coherent and geometrically

plausible. The following three internal energy terms are considered for this purpose:

EInternal = EDisp(r)+ESmooth(r)+EMyocard(r) (5.11)

= μ ∑
s,q

|rs,q|2 +ν ∑
s,q

|ṙs,q|2 +λ ∑
{i, j}∈K

( |ri − r j|
|xi −x j|

)2

,

where μ , ν , and λ are energy-balancing free parameters. The first term, EDisp(r), is minimal

when the displacement owing to the non-rigid transformations is small. This regularizer is

necessary to minimize 3D out-of-plane motions that are only poorly constrained by a pair

of 2D angiograms. The second, ESmooth(r), is used to ensure smoothness over each vessel

segment. In this section, ṙs,q and r̈s,q represent, respectively, the first and second derivatives

of the translation vector r for the position (s,q) with respect to the segment parameter. At

segment junctions, Neumann boundary conditions, ṙs,q = [0,0,0]T , are assumed.

With only the first two internal energy terms, the centerline model is flexible, and the motions

of the vessels are independent of each other, except at junction nodes. In reality, the vessel

motions are mechanically constrained not only by their own specific rigidity, but also because

they are attached to the myocardium. In this respect, EMyocard(r) is intended to act as a mini-

malist model of the myocardium constraint, and is used to ensure a certain degree of rigidity at

the vessel branches as it prevents small segments from collapsing onto bigger ones. This con-

straint is modeled by using artificial links around the junction of three segments, as depicted

in Fig. 5.4-b). Let Ds be a distance parameter, with its value set to three times the average

diameter of the vessels present at the junction. The node on each segments that is at a distance

Ds from the junction is joined to the corresponding node of the other segments. In a way that

is analogous to a mechanical spring, with each link generating a force that is proportional to

its displacement ratio if it is either expanded or compressed during the registration process. In

(5.11), K is defined as the set of all pairs of node {i, j} that have been linked together.

5.4.3 Energy minimization

The complete energy function is defined using (5.8), (5.10), and (5.11), and it is minimized by

computing its Euler-Lagrange equations and following a gradient descent approach. Starting
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from the point where rs,p = [0,0,0]T | ∀{s, p} at iteration z = 0, the resulting discretized update

equation is

rz+1
s,q = rz

s,q + ε

[
H(xs,q)(x̂z

s,q − x̄z
s,q) (5.12)

−μrz
s,q +ν r̈z

s,q +λ ∑
{i}∈Ks,q

(rz
i − rz

s,q)

]
,

where the numerical step ε is a small constant and Ks,q ⊂ K is the possibly empty set of

constraints acting on node (s,q). Equation (5.12) is evaluated iteratively until the total dis-

placement stagnates. More formally, the total displacement is denoted Δz ≡ ∑s,q |rz
s,q|, and the

stopping criterion is defined, for z > β , as Δz −Δz−β < ζ Δβ . An example of the progression

of Δz is shown in Fig. 5.5. As we can deduce from the shape of the curve, the final result is not

very sensitive to the specific values of β and ζ . In practice, we used β = 100 and ζ = 0.001.
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Figure 5.5 Total displacement of the centerline as a function of the number of iterations

— see section 5.4.3 for details.

5.4.4 Parameter selection

The three parameters μ , ν , and λ govern the behavior of (5.12) and must be selected for a

specific task. Starting from a certain parameter set (μ = 0.10, ν = 10.0, λ = 1.0), some in-

sight about the behavior of method can be acquired by varying each value individually, and

by computing the mean 2D projection error and the 3D error (described in section 5.5). This

methodology has been applied to the patient 4 of the clinical dataset, following an affine align-
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ment, and also to a dateset with synthetic deformations (see section 5.5.1). The former depicts

a RCA, and the latter, a LCA. The results are presented in Fig. 5.7.

Figure 5.6 Illustration of the behavior of parameter λ in the non-rigid registration

method: (left) λ = 0, (right) λ = 0.3.

Parameter μ constrains the overall displacement, and the 2D error curves suggest that the com-

puted error increases with its value. However, the 3D error curve clearly indicates a minimum

when μ has a value in the 0.05–0.10 range. In addition, we found that the convergence rate

increases with μ . For example, the registration used to produce the graph in Fig. 5.7-(top

left) converged in 4880, 3320, and 1100 iterations with μ = {0.001,0.01,0.1}, respectively.

Parameter ν controls the rigidity of the model. In this case, the 2D projection error suggests

using a value in the 0.50–2.00 range. However, the 3D error curve shows that higher values

might result in more accurate registration. We thus choose to use a values of ν = 10.0, which

appears to be a good trade-off between the 2D and 3D error curves. Parameter λ balances the

myocardium constraint, and helps to preserve the general integrity of the global shape. With

the clinical RCA dataset, it was found that high value can overly constrain the motion, which

results in increased errors. However, with the simulated LCA dataset, the situation appears

almost inversed, as λ values of up to 10.0 are clearly beneficial. We believe that this situation

can be explained by the differences in the nature of the deformations that affects the LCA and

RCA datasets. A value λ = 0.5 was selected because it represents a good trade-off in the error

measures, and because it improves the visual appearance in many cases, as depicted in Fig. 5.6.

It might be better to use a different value for LCA and RCA datasets, but this idea was not pur-
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sued here. Finally, the parameters were thus fixed to the following values in all subsequent

experiments: μ = 0.05, ν = 10.0, and λ = 0.5, unless stated otherwise.

Clinical data (RCA) Simulation data (LCA)
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Figure 5.7 Mean 2D and 3D error after non-rigid registration. For each graph, one of the

parameters was varied, while the others two were kept fixed. The default parameter values

are: μ = 0.1, ν = 10.0, and λ = 1.0. The x-axis scales are logarithmic.

5.5 Experimental results

The algorithms were implemented in C++ within a proprietary prototyping environment that

allows us to show an overlay of the 3D centerline model on the live fluoroscopy images during

interventions. All global optimizers are single threaded. The non-rigid registration method is

partly multithreaded using OpenMP. Run time given are for an i7 Q820 Quad Core Intel CPU.

Presented run times don’t account for 2D image segmentation. On average, this operation has a

run time 0.200s per image, with a standard deviation of 0.088s. Experiments on both simulated

and clinical data are presented.
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5.5.1 Simulations

The proposed alignment and registration methods have been tested on a set of simulations. This

has allowed us to characterize the performance of the various algorithms in a somewhat ideal

scenario, and also to evaluate the 3D registration error, which is not possible using clinical

data. The centerline was registered with a pair of digitally reconstructed radiographs (DRR),

of size 512× 512 pixels with a resolution of 0.345 pixel/mm, that were generated as follows:

1) the coronary arteries segmented in the CT volume were projected onto the simulated flu-

oroscopic planes using the technique presented in (Julien Couet and et al., 2012), and 2) the

inverse of the resulting projections was subtracted from the reference background images. This

process is illustrated in Fig. 5.8, and is similar to that proposed in (Turgeon et al., 2005). The

simulations were used in the three scenarios described below. Since all the transformations are

known during the simulation, all the 3D errors presented in this section are exact point-to-point

errors. It should be noted that this style of error will penalize the compression or expansion

of a segment, even when this produces no visual effect. It is thus more strict than most TRE

formulations. The 2D error is computed as described in section 5.5.2, using the projection of

the true centerline as the reference segmentation.

5.5.1.1 Dependence on the initial solution

The centerline is registered with a pair of DRRs, starting from different initial positions. This

serves to quantify the sensitivity of the global alignment methods to a perturbation of the initial

position, and equally, to a miscalibration of the C, P1, P2 or T rigid transformation matrices.

The selected initial positions are as follows: Let T0 be the transformation given by the cal-

ibration of the apparatus. Then, the 12 initial points are T0 displaced by ±αmm along the

three principal axes, and T0 rotated by ±βdeg around the three principal axes. We used:

α ∈ 10∗{0,1, . . .6}mm, and β ∈ 3.75∗{0,1, . . .6}deg. The RMS error was computed for all

results with the same level of perturbation (translation or rotation). The results depicted in

Fig. 5.9 show that all algorithms presented are satisfactory when the rotational perturbation is

less than 10 deg. Except for the Neder-Mead and the Differential Evolution algorithms, the er-

ror level increases rapidly past this threshold. All the algorithms in Fig. 5.9 seem to be able to

recover from perturbations of up to 30mm in translation. At higher level, only the Differential

Evolution and the Best Neighbor algorithms give consistent results, although the latter is less

accurate. The Neder-Mead algorithm is more accurate and has a capture range of 50mm, which

makes it a practical choice. The error curves for the Cobyla, Bobyqa, Praxis, and Direct algo-
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Figure 5.8 Creation of the DRRs: The coronaries segmented in the CT volume are

projected onto a simulated radiographic plane (a); this image is then substracted from a

real contrast-free angiography (b) to produce the final DRR (c). In one experiment,

Gaussian noise is added (d), here with σ = 50.

rithms were removed, because they were significantly higher, which impaired the interpretation

of the graphs.

5.5.1.2 Robustness to image noise

Various amounts of Gaussian noise with variance σ ∈ {5,10, . . .60} were added to the fluoro-

scopic images, in order to assess the impact of image quality on the performance of the method.

Each optimizer was run from 13 initial positions for each noise level (as above, with α = 5mm,
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Figure 5.9 Performance of the optimizers with respect to a perturbation of the initial

position. Bottom row: missing points represent RMS error > 3mm.

and β = 7.5deg, plus T0). For each noise level, the RMS errors are presented in Fig. 5.10. The

results of this test tend to demonstrate that the proposed methodology is not really sensitive to

the presence of Gaussian noise in the fluoroscopies. The 2D and 3D error level shows very lit-

tle correlation with the amount of added noise, even at levels as high as σ = 60 that are seldom

observed in a clinical setting. This is an indication of the good performance of the selected 2D

segmentation algorithm. In this test, the Neder-Mead and the Differential Evolution algorithms

gave the most accurate and most consistent results. Again, the error curves for the Cobyla,

Bobyqa, Praxis, and Direct algorithms were removed, because they were significantly higher.
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Figure 5.10 Performance of the optimizers with respect to the standard deviation of the

input DRR noise. Gaussian white noise model with σ ∈ [0,60].

5.5.1.3 Non-rigid deformation

In these simulations, the centerline was deformed using a 3 × 3 × 3 node thin plate spline

(TPS) deformation model (Bookstein, 1989) covering the CT-scanned region. Each TPS node

is moved toward the center node by a factor depending on the deformation parameter ξ . The

9 left nodes were shifted by a factor of ξ , the 9 center nodes, by 0.5ξ , and the 9 right nodes

by 2ξ . Sample images are shown in Fig. 5.11. The non-rigid registration algorithm was tested

for deformation levels ξ ∈ {0.020,0.025, . . . ,0.060}, which resulted in mean and maximum

3D displacements of the centerline of [1.209−3.638]mm and [2.472−7.416]mm respectively.

The nondeformed centerline curve was used as the initial solution, and no global alignment
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was performed before applying the non-rigid registration algorithm. A quantitative evaluation

is presented in Fig. 5.12. It was found that this algorithm gives good results up to the level

ξ = 0.045. At this point, it reduces the average 3D error from 2.721mm to 1.198mm, which is

qualitatively significant (Fig. 5.11). As will be demonstrated in the next sections, this level of

performance is appropriate in a clinical scenario.
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Figure 5.11 Sample non-rigid registration with simulated data. Top row: initial position;

bottom row: final position.

5.5.2 Clinical data

Five datasets were used for the experiments presented in the following sections. Each dataset

includes one CTA scan acquired at end-diastole (datasets 1 and 3) or end-systole (datasets 2,

4, and 5), and one biplane X-ray fluoroscopy recording. The two modalities are temporally



126

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.02  0.025  0.03  0.035  0.04  0.045  0.05  0.055  0.06

M
ea

n 
3D

 e
rr

or
 (m

m
)

Deformation level ξ

Registration
Baseline

Figure 5.12 Residual 3D error with respect to the simulated non-rigid deformation level.

Baseline correspond to the initial solution error.

aligned using ECG gating, and the coronary arteries were semi-automatically segmented in

the CTA by a specialist using the technique described in (Gülsün and Tek, 2008). The mean

3D inter-point distances of the segmented centerlines were in the [1.36−1.60]mm range. The

angiograms image the left coronary arteries (LCA) in three cases and the right coronary artery

(RCA) in the other two. The image size is 512× 512 in all cases, and the image resolution

is {0.345,0.279,0.279,0.216,0.279}mm/pixel for dataset 1 to 5, respectively. The acquisition

rate is 15 fps. Standard Siemens C-Arm calibration matrices were used. Although this is not a

requirement of the method, matrices P1 and P2 were kept constant during acquisition (they are

different for each dataset). The CTA and fluoroscopy exams had been prescribed to the patient

for the treatment of a coronary disease.

The assessment of the performance of the alignment and registration algorithm was quantified

using the mean 2D projection error.

Err(χ , x̄s,q) =
1

2M

2

∑
n=1

∑
s,q

DSn(Πn(χ(xs,q))) , (5.13)

where M is the total number of points in the 3D centerline model. Also, DSn is the distance

transform of the reference 2D segmentation Sn, which was obtained by manual tracing on top

of the corresponding fluoroscopy image.

5.5.3 Global alignment: evaluation of the performance of the optimizers

The performance of the nine optimizers in minimizing the global alignment energy (5.1) and

in producing good quality 2D/3D alignment, were assessed using the following experimental



127

setup. For each of the five patient datasets, three pairs of fluoroscopic images were considered:

the images temporally aligned with the CTA acquisition, and the previous and next adjacent

frames. Temporal alignment helps to minimize the observable differences between the two

modalities, thereby reducing the risk of failing a registration. This is reasonable clinically, as

it would allow the registration matrix to be updated approximately once every second, in order

to improve surgical guidance. Also, to test the robustness of the optimizers, 13 different initial

points were used for the initialization. Let T0 be the transformation given by the calibration of

the apparatus. The 13 initial points are T0, T0 displaced by ±5mm along the three principal

axes, and T0 rotated by ±7.5deg around the three principal axes. A total of 5 ∗ 3 ∗ 13 = 195

experiments were thus conducted for each optimizer tested. As discussed in section 5.3, (5.1) is

minimized by successively using: 1) translation-only transformation, 2) rigid transformation,

and 3) affine transformation.

The mean residual energies left after minimizing with each of the three transformation models

are presented in Table 5.1, along with the measured mean 2D projection error. In addition,

per patient box-and-whisker plots of the mean 2D error are displayed in Fig. 5.14, and sample

results are shown in Fig. 5.13.

The total computational time needed to successively estimate the translational, rigid, and affine

alignments is reasonable for all local optimizers with median values of 105 ms or less, as can

be seen in Fig 5.15. In all cases, the total time was under 1 s. The method is thus suitable

for an interactive application with any of the local optimizers since the alignment appears to

be computed almost instantaneously at the push of a button. In addition, the very short com-

putational time of the Neder-Mead optimizer allows us to envision real time application. The

computational time is much higher with the two global optimizers, as presented in Table 5.2.

This means that they are only usable in an offline low-interaction setting.

A look at the average values of Table 5.1 reveals that the best algorithms for minimizing the

energy function with the affine transformation model are the following: Differential Evolution,

Neder-Mead, Powell-Brent, Best Neighbor, Sbplx, and Direct. When the mean 2D projec-

tion error is considered, the order changes slightly: Differential Evolution, Powell-Brent, Best

Neighbor, Sbplx, Neder-Mead, and Direct. The difference can probably be attributed to the dis-

crepancy between the automatic segmentation used in the alignment process, and the manual

segmentation used for computing the error. Nevertheless, the performance of the top ranking

algorithms appears to be satisfying. The relatively poor performance of the Bobyqa and Cobyla

algorithms might be an indication that the shape of the energy function is not well represented

by their quadratic and linear models, respectively. The Praxis method appears to be the least
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(g) (h) (i)

Figure 5.13 Sample output obtained with the affine transformation model using nine

different optimizers on the Patient 3 dataset. The values in brackets indicate the residual

energy of (5.1). a) Best Neighbor [31.86], b) Differential Evolution [29.87],

c) Neder-Mead [30.70], d) Direct [31.69], e) Bobyqa [34.90], f) Cobyla [36.21],

g) Praxis [59.68], h) Sbplx [31.39], and i) Powell-Brent[30.65]. Note that, although only

one fluoroscopy plane is shown, the biplane pair was used. The arrows indicate some

regions of interest.

appropriate local optimizer for this problem. The box-and-whisker plots in Fig. 5.14 indicate

that the performance of the optimizers varies from one dataset to another, even though the pre-
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viously discussed observation hold. Thus, the alignment results can probably be boosted by

using two or more optimizers in parallel.

The Differential Evolution algorithm was found to be the best performer in term of both the

residual energy and the mean 2D error. However, the gains in mean 2D error were marginal

for a computational time that is about 100 times that of the local algorithms. Still, the median

value of the computational time of that optimizer, just under 11 s, might be reasonable for ap-

plications that are not time critical. In general, it can be noted that the global optimizers only

rarely lead to lower energy or error figures than the best-performing local optimizers. This is

an indication that the latter actually finds solutions that are close to the global optimum. It is

also worth noting that Fig. 5.14 shows an interesting characteristic of the global optimizers, in

that they generally succeed in avoiding the worst solutions. However, because the computa-

tional time of the global optimizers is several orders of magnitude larger than that of the local

optimizers, we found that they are less appropriate in our setting.

The sample image in Fig. 5.13 shows that there is a good correlation between the residual en-

ergy and the perceived visual correspondence. Nevertheless, even with the best alignment with

the affine transformation model, a relatively large discrepancy exists between the projected

centerline and the 2D fluoroscopies. This can probably be attributed to the presence of non

affine deformation in the dataset due to the inaccuracy of the temporal alignment between the

modalities, and to the shape change induced by the patient’s position change during the various

acquisitions steps.

5.5.4 Comparison of the global alignment method with non-rigid registration

In this section, detailed global alignment results obtained using the Best Neighbor optimizer

are presented and compared with those obtained after non-rigid registration. In all cases, the

centerline model was registered with the fluoroscopic frames that are gated in the same cardiac

phase used for the CT reconstruction. The results after translational, rigid, affine, and non-

rigid registration are shown for the dataset from three patients in Fig. 5.3 and 5.16. The mean

projection error of the centerline on the two fluoroscopic planes with respect to 2D manual

segmentations has also been calculated (in millimeters). Results are presented in Table 5.3. The

computational times needed for the non-rigid registration were in the range [730−3 300] ms,

with an average of 1 591 ms.

The mean 2D projection errors and their standard deviations decrease, or stay approximately

constant, as the complexity of the model increases. However, the relative contribution of the
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Table 5.1 RMS residual energy and resulting 2D error, in function of the

transformation model.

Optimizer
Translation Rigid Affine

energy mm energy mm energy mm

Best Neighbor 29.98 4.10 22.01 3.56 16.20 2.63

Differential Evolution 29.57 4.05 20.23 3.90 13.69 2.43

Neder-Mead 29.74 4.03 21.24 3.76 15.42 2.78

Direct 29.73 4.07 23.85 3.76 17.38 2.85

Bobyqa 31.20 4.67 22.58 3.55 20.51 3.29

Cobyla 30.12 4.03 22.90 3.43 22.39 3.37

Praxis 46.24 6.75 38.46 5.78 32.90 5.38

Sbplx 30.00 4.15 22.22 3.65 16.69 2.74

Powell-Brent 30.23 4.16 18.05 3.58 15.79 2.60

Note: the values presented above correspond to the RMS results over

195 experiments for each optimizer.

rigid, affine, and non-rigid transformation model varies from one dataset to another. This can

be explained by the nature of the deformation presented by each individual case, which is

linked to the patient’s position, the interval between the CTA and 2D fluoroscopy acquisitions,

and the acquisition protocol. Also, patient respiration can cause significant non-rigid heart

deformation. The accuracy of the temporal alignment by ECG gating is also important, since

the beating of the heart is a significant source of non-rigid deformation. The maximal error

also tends to decrease with model complexity, but it sometimes stays stable. In those cases, the

performance of the registration algorithm might be limited by an incomplete 2D segmentation,

as computed by the automatic segmentation method (Schneider and Sundar, 2010). In fact,

in regions where little or no information is available, the non-rigid registration method should

alter the centerline as little as possible. This characteristic is desirable in situations where parts

of the structure are poorly visible on the X-ray fluoroscopic images, as is sometimes the case

with CTO. For an example, see Fig. 5.16–bottom rows: the centerline is well aligned over and

under the CTO, but there is little deformation where the contrast is poor.

5.5.5 Global alignment in the multi frame scenario

Another potentially useful scenario, beyond the alignment of a centerline with a biplane pair,

is the alignment of a centerline with a temporal sequence of frames from biplane angiography.

The performance of the global alignment method in the multi-frames scenario is demonstrated
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Figure 5.14 Mean 2D error, per optimizer, and per patient, after alignment with the

affine transformation model. Each box-and-whisker point correspond to the results of 39

experiments. The boxes represent the first, second, and third quartiles. The whiskers

indicate the 5th and the 95th percentiles.

Table 5.2 Total computational time for the two global optimizers.

Optimizer Min Q1 Median Q3 Max

Differential Evolution 6 065 9 177 10 898 11 239 17 079

Direct 81.51 248.4 35 418 84 451 2.604e5

Total computational time, in millisecond, when aligning the 3D

centerline using the translation only, rigid, and affine transforma-

tion models, successively. Q1 and Q3 correspond to the first and

third quartiles respectively.

using a sequence of 11 biplane frames from the Patient 1 LCA dataset. Global alignments were

computed using the rigid and affine transformation models. The inter-frame regularization

parameters γ in (5.5) varied between 0.0 and 1.0. The Best Neighbor optimizer was used in
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Figure 5.15 Total computational time, in millisecond, for all local optimizers, when

aligning the 3D centerline using the translation only, rigid, and affine transformation

models, successively. The boxes represent the first, second, and third quartiles. The

whiskers indicate the 5th and the 95th percentiles.

Table 5.3 Mean residual 2D projection error, in mm, calculated after rigid, affine and

non-rigid registration for five patients.

Subject
Translation Rigid Affine Non-Rigid

mean std max mean std max mean std max mean std max

L
C

A

1 3.248 3.547 15.661 1.168 1.149 7.031 1.174 1.155 7.031 0.663 0.742 7.031

2 5.734 4.945 18.621 5.352 4.830 17.959 2.241 2.879 14.440 1.537 1.969 14.440

3 2.430 2.325 14.398 1.731 1.588 8.700 1.204 1.088 7.886 0.838 0.856 7.886

R
C

A 4 2.653 2.565 10.205 2.558 2.458 10.037 2.210 2.376 9.190 1.049 1.281 8.243

5 3.161 2.701 11.701 2.627 2.286 10.259 2.627 2.286 10.259 1.380 1.333 7.251

this case since it was found to be the most effective at minimizing the cost function (5.5).

Sample results obtained are shown in Fig. 5.17. Computational times were 39 s, 89 s, and 91 s,

for the experiments presented in the top, middle, and bottom row respectively. As anticipated, it

was found that using the affine transformation model led to better qualitative results than using

the rigid one. Using regularization (γ = 0.1) also improved the results when using the affine

transformation model. With large regularization values, γ > 1.0, the stiffness of the model
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Figure 5.16 From left to right: input image, rigid alignment, affine alignment, and

non-rigid registration. Both biplane images are shown in all cases. Top and bottom rows

correspond to Patients 1 and 2 in Table 5.3, respectively. The arrows indicate some

regions of interest.

increases, and the optimizers cannot find a local minima that is far from the initial position.

Preliminary investigation suggests that domain specific optimizers might achieve better results,

e.g. by allowing the parameters to change in a coordinated manner. Nevertheless, we found

that the current setup was appropriate for tracking the alignment transformations of the LCA

during most of the cardiac cycle. Experiments on the RCA datasets did not lead to convincing
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results. In fact, even though the global alignment procedure works, the amount of non-rigid

deformation sustained by the RCA during the cardiac cycle renders the affine model ineffective

except when the CTA and X-ray acquisition are in close temporal alignment.

Figure 5.17 Registration over a sequence of frames. Top row) rigid transformation

model [γ = 0.1, E∗
Multi = 120.284]; middle row) affine transformation model [γ = 0,

E∗
Multi = 119.356]; and bottom row) affine transformation model + regularization [γ = 0.1,

E∗
Multi = 116.905]. The arrows indicate some regions of interest, E∗

Multi corresponds to the

first righthand term of (5.5).

5.5.6 Semiautomatic tracking of the right coronary artery.

In this experiment, a semiautomatic procedure based on the proposed non-rigid registration

method has been used to track the RCA. Starting from the gated frame, global alignment and

non-rigid registration are performed. This deformed centerline model is then used by the op-

erator as the initial model and position for the next pair of fluoroscopic frames. This process

is repeated for all frames over one cardiac cycle, as presented in Fig. 5.18 and in the attached

video. As can be seen, this procedure permits successful tracking of the RCA during one car-

diac cycle. Because this experiment has been conducted before the simulation study, a slightly

different set of parameters was used: μ = 0.05, ν = 5.0, and λ = 0.1. The required amount of

time is about 15 minutes, which is reasonable in an offline setting.



135

5.6 Multimedia Material

Three videos illustrating the method are available at www.synchromedia.ca/reg2D3D. They

present: 1) an iterative update of the non-rigid registration; 2) the full alignment and registration

progress; and 3) the tracking of an RCA artery using non-rigid registration.

Figure 5.18 Tracking the RCA. From left to right: at the gated frame, and at +4, +6, +8,

and +10 frames. The initial curve is green/red, and the registered curve is blue.

5.7 Discussion and conclusion

A new 2D/3D registration method has been proposed, and applied to the problem of register-

ing a 3D centerline model of the coronary arteries with a pair of fluoroscopic images. The

methodology is divided into two main parts: 1) global alignment, and 2) non-rigid registration.

In the first part, an energy depending on a global transformation model (translation-only, rigid,

or affine) is defined. Nine general purpose optimization algorithms have been used to minimize

this energy, which results in an estimation of the 2D/3D alignment transformation parameters.

Based on the experiments on clinical data, it appears that the following local optimizers give

good results in a short time (median < 105 ms, max < 950 ms): Neder-Mead, Powell-Brent,

Best Neighbor, and Sbplx. Considering also the simulation results, the Neder-Mead algorithm

was the best overall performer. The two global optimizers only rarely led to major improve-

ments in the result and required a computational time orders of magnitude higher. Disregarding

computational time, the Differential Evolution algorithm generally returned the best solution.

When using a local optimizer, the alignment time was consistently under 1 s, which makes the

method suitable for use during an intervention. The advantage of using an affine transformation

instead of a rigid transformation is dependent on the nature of the dataset and can be significant

in some cases. Overall, it was found that the global alignment procedure is appropriate for use

on both LCA and RCA datasets, when the 3D and 2D modalities are temporally aligned using

ECG gating. The experiment on the dataset from a CTO patient demonstrates the benefit of the
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proposed method when applied to similar clinical cases. The proposed method can also help

with intervention guidance by augmenting the 2D imagery with the 3D geometry segmented

from a CTA acquisition, thereby greatly reducing the ambiguities inherent in the interpretation

of the 2D images.

As for non-rigid registration, the proposed method uses a robust reconstruction strategy to com-

pute the forces used to deform the 3D model. Regularization terms limit the total displacement

of the segments, ensure that the displacements are smooth, and help preserve the relative ori-

entation of the branches, making the non-rigid registration results plausible. The regularizers

included in the deformation model enable the elegant management of regions with missing data

(e.g. Patient 2 in Fig. 5.16) by deforming the centerline a minimum amount to ensure coherence

with the rest of the structure. No excessive deformation or straightening will occur. Experi-

ments on five different patients were presented with promising results. The total computational

time, which was generally below 3 s, is acceptable for interactive applications. Nonetheless,

better numerical algorithms with faster computational time will be researched. The proposed

non-rigid registration method will make the centerline snap to adjacent 2D structures when

started from an appropriate initial point, making interpretation of the 2D images easier, espe-

cially for difficult low contrast CTO cases. This also makes it possible to present an updated

3D model alongside the operational images to provide an improved perception of the 3D space.

Finally, experiments using multiple X-ray biplane angiography frames have also been pre-

sented. It was found that the multiframe global alignment method works well on LCA datasets,

and the proposed interframe regularizer leads to improved results. A non-rigid semiautomatic

tracking procedure has been devised to handle cases with more non-rigid deformation, such

as with non-temporally aligned RCA datasets, and applied to one such dataset. The semi-

automatic method required approximately 15 min of interaction for a sequence covering one

heart beat, which seems reasonable for practical offline applications. Future work will focus

on automating this non-rigid method for tracking coronary arteries.
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CHAPTER 6

DISCUSSIONS

The general objective of this thesis was to define a framework for 3D segmentation in med-

ical imaging scans and alignment of the segmented structure model with interventional fluo-

roscopy for intervention guidance. In this context, our proposed general methodology covers

three important aspects of this intervention guidance framework, all of which are complemen-

tary. Chapter 3 presented our work on the definition of a new local-linear level-set method

for the segmentation of large structures with spatially varying intensity. Chapter 4 introduced

a new local structure model and defined an image filter for the detection of small curvilinear

structures. Finally, 2D/3D registration of centerline models with live fluoroscopies was the

subject of chapter 5. All this work has been published as independent journal articles, in order

to disseminate them as widely as possible. However, it is interesting to note how well those

individual studies fit together in the proposed general framework. Below, we discuss the place

occupied by each one in that framework, and highlight the strengths and weaknesses of the

proposed techniques.

6.1 A level-set method using local-linear region models for the segmentation of struc-

tures with spatially varying intensity

In chapter 3, we defined a level-set method that uses a local-linear region model. With this new

region-based formulation, not only is the fitness of voxel intensities tested, but the fitness of

the spatial derivatives of the voxel intensities is tested as well. Our method has the potential

model image regions with local gradients, something that was not possible with previously

defined models — see figure 3.2 on p.61. Futhermore, this region model has been justified

probabilistically, and is shown to be appropriate when low-frequency image gradients play a

significant role in the definition of the various image regions. To illustrate value of the model,

picture a long hall, where only the end closest to us is lit: the brightness of light reflected on

the wall slowly diminishes as we look further down the hall. In this picture, it would generally

make more sense to segment the walls, the floor, and the ceiling rather that to partition the

image in bright and dark regions. Our model would allow to correctly segment this image, and

it allows to segment tissues in the same way. Since the method makes use of the local image

gradients during the evolution of the level-set, special attention must be paid to the presence

of image noise. For example, the local gradient could be estimated using Sobel’s operator or a

denoising filter might be used on the image before starting the segmentation process. However,
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embedded into our definition of the method is an edge indicator function, which tends to 0 as

the image gradient increases and limits the potential damage that could be caused by spurious

noise. This method has been defined in an article published by Elsevier in the journal Magnetic

Resonance Imaging, and is the main contribution of this article.

The derivation of the Euler-Lagrange equation of the proposed energy functional for segmenta-

tion with local-linear region models results in a relatively complex level-set evolution equation.

Not only does this complicate the implementation of the method, but integral terms signifi-

cantly slow down the computational process. Consequently, we have derived a fast approx-

imate flow for the minimization of the proposed level-set functional, which approximatively

halves the computational time. This is another important contribution of this article.

Because of its proprieties, the benefits of our local-linear method appear more clearly in the

segmentation of tissues in MRI. This is why we tackled the challenging problem of segmenting

brain tissues in MRI in our research.

6.2 Brain tissues segmentation in MRI

MR images are subject to various electromagnetic perturbations, which appears as low fre-

quency differences in imaging intensity occurring on the target domain, and causing what it is

known as a bias field. Even though it is possible to visualize and even quantify the bias field

by imaging an object with constant MR properties, the complex relationship between the bias

field and the imaged object makes it difficult to compensate for its effect retrospectively. To

further complicate the issue, the literature indicates that the bias field can affect each class of

brain tissues differently. In fact, this significant source of intra-scan intensity nonuniformity

(INU) has made automatic brain tissue segmentation a challenging task.

Since our new local-linear level-set method uses a different model for each region, its appears

particularly well suited for the segmentation of brain tissues with a significant amount of INU.

In the experiments presented, this method was found to be very successful at segmenting the

complex 1.5 Tesla scans from the IBSR database, with Tanimoto indexes ranging from 0.61 to

0.79 for the classification of white matter, and from 0.72 to 0.84 for gray matter. As indicated

in chapter 3, these results are significantly higher than other published results on the same

database, which means that the definition of an automatic method for brain tissue segmentation

in MRI scans with significant INU levels is another important contribution of this research. It

is also worth noting that, to the best of our knowledge, this is the first time a region-based

level-set model has been used to perform the segmentation of real world MRI brain scans
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with convincing results. Finally, we plan to assess the performance of the method for the

segmentation of other biological structures in the future. However, it might be interesting to

note that the local-linear level-set method has already been proved useful to segment other type

of shapes in a widely different context (Rivest-Hénault et al., 2011).

6.3 Accurate local structure modeling and vessel detection using structure balls

A major problem in the segmentation of vascular structures in CTA or MRA scans of the chest

is segmenting the very fine distal vessel segments, which can be less than one or two voxels

in diameter. Global techniques, such as level-set or graph-based methods, are generally in-

effective for two main reasons: 1) their regulation (smoothing) term penalizes regions with a

thin profile, and 2) the partial volume effect in the scan distorts the vessel intensity observed,

which confuses the algorithm. Two principal types of approach can be found in the literature to

segment these difficult structures: tracking approaches, and local detection approaches. Track-

ing approaches are generally more accurate, but they usually require a user to indicate starting

points and to indicate the approximate vessel diameter. In contrast, vessel detection approaches

are more general in that they are able to automatically detect most vessels of a given volume

in one step. Unfortunately, most existing vessel detection methods return poor results around

vessel bifurcations, which can be problematic if the vessel detection signal is to be used by a

subsequent process.

To address this issue, we have defined a new local vessel indicator based on the analysis of a

second order difference operator applied in many directions, a geometric construction that we

call a structure ball. This construction is entirely novel in the context of vessel detection, and

its definition in chapter 4 is the main contribution of this work. In addition, many supporting

techniques have been introduced, and which also represent significant contributions. A visually

appealing technique for the visualization of the image structure makes it possible to directly

inspect the structure ball’s behavior for any given image region, which in turn provides insight

into the filter mechanisms involved and could certainly help in devising subsequent tracking or

segmentation methods. In addition, a compact representation of the structure ball using spher-

ical harmonics (SH) is provided, which allows the data to be stored in a memory efficient way.

This SH representation is also a natural means of interpolating angular information. Various

shape descriptors adapted to the detection of blood vessels are proposed and computed on rep-

resentative vessel and non vessel patterns. Analysis of the response of those shape descriptors

has allowed us to define a vessel detection function that is specific to the vessel pattern, as well

as being robust to the presence of bifurcations along the vessels.
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In a paper that has been submitted for publication in IEEE Transactions on Image Processing,

the resulting vessel detection filter has been compared with state-of-the-art methods on both

synthetic and real medical images. Based on this comparison, we find that the benefits of

this new approach are the following: better sensitivity and specificity characteristics, improved

separation of adjacent structures, and the ability to represent vessel junctions. Since similar

vessel detection techniques have been used as a building block in many segmentation, tracking,

and 2D/3D registration methods, the impact of this improved method is potentially significant,

as better vessel detection may enhance the final results.

6.4 2D/3D registration of centerline models with X-ray angiography using global trans-

formation models

Once the structures of interest have been segmented in 3D, and a 3D centerline model has been

created from this segmentation, it is possible to enhance navigation guidance by accurately

aligning the centerline model with the structures visible on the interventional fluoroscopies.

Unfortunately, the appropriate 2D/3D registration methods that could be found in the litera-

tures are too slow, with computational times in the order of few minutes, or too inaccurate to

be used during an intervention. In research carried out in collaboration with Siemens Corporate

Research (SCR), we developed a novel method for non-rigid 2D/3D registration of coronary

artery models with live fluoroscopy that is accurate and fast enough to enhance cardiac inter-

vention guidance. This method is composed of two steps: 1) global alignment using a rigid or

an affine transformation method, and 2) non-rigid registration. This work has been formally

evaluated, and our findings are soon to appear in IEEE Transactions on Medical Imaging (in

press). In addition, the method has been implemented in C++ within the Siemens Inspace

imaging platform. Because the optimization problems involved in the first global alignment

step and in the non-rigid registration step differ significantly, we have broken down our dis-

cussion into two parts. The first step follows below, and the second step is the subject of the

following section.

Most of the literature on 2D/3D registration was developed around the registration of rigid

anatomical structures, such as bones, which probably explains why rigid transformation models

are most often used. When deformable structures are considered, such simple transformation

models are limited, and can be incapable of generating a convincing registration. For example,

the coronary arteries undergo significant shape change during the cardiac cycle, and any small

temporal miss alignment between the CT acquisition and the X-ray angiography would impact

the registration results. In addition, CT is acquired under a breath hold, while fluoroscopy is
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generally acquired in a free breathing state, a difference that is known to increase the shape dis-

similarities observed. This makes it very important to use a transformation model that is more

flexible than the rigid transformation model. In our research, we began by using transformation

models of increasing complexity to compute the initial alignment of the centerline model with

biplane fluoroscopy: translation, rigid, and affine. We found that the contribution of the affine

model to the final alignment varies from one dataset to another, but can be significant in some

cases. This is probably related to the temporal alignment of the modalities and to the breathing

style of the patient.

At the processing level, when compared to existing rigid methods, adding the affine transform

is significant since the added complexity generally involves much more effort from the opti-

mizer, and slows down the process. Our method remedies this problem by using a cost function

that can be computed extremely rapidly. In fact, we use the distance transform of the coronary

arteries segmented in 2D on the X-ray fluoroscopies. These distance transforms need only to

be computed once per image, and can be precomputed. This makes evaluating the cost function

simply a matter of picking values in a look-up table.

It has also been suggested in the literature that the optimizer chosen to minimize the alignment

cost function might have a significant impact on the final result. Surprisingly, most authors

have only reported the results they have obtained with one or two optimizers. This means that

our evaluation of the performance of nine general purpose optimizers for estimating the align-

ment parameters is also an important contribution of this research. This evaluation revealed

significant differences between the optimizers. The Neader-Mead algorithm (also known as

the downhill simplex) was the best overall performer, with the lowest computational cost and

results that were close to the best. For offline applications, our experiments suggest that a

global method, such as the differential evolution, could generate slighter better results and

be less sensitive to the initial position, at the expense of a computational time several orders

higher.

6.5 Non-rigid 2D/3D registration of centerline models with X-ray angiography

The affine alignment method discussed above is, in many cases, an improvement over rigid

methods. However, there are still many situations where the computed affine transformation

is not sufficient to convincingly overlay the 3D centerline model on the 2D fluoroscopies. We

proposed a new efficient non-rigid 2D/3D registration method that can be used to compensate

for the remaining shape discrepancies after the initial affine alignment. Compared with the few

other non-rigid techniques published in the literature, this method is unique, in that it is not
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tied to the registration of any one type of structure and it has a short runtime. In this respect,

our principal contribution is certainly the definition of a non-rigid registration method as a

simultaneous matching, reconstruction, and registration problem, that can, on modern general

purpose hardware, be solved fast enough to be used intraoperatively during CTO procedures.

In our experiments, typical runtimes were under 3 s. In tests conducted using both synthetic

and real world images, we found that the non-rigid method is able to compensate for relatively

high differenced in position, up to 6mm in some cases, which is significant, since this is many

times the diameter of imaged coronary arteries. Also, experiments have shown that the method

is robust to the presence of Gaussian noise and segmentation errors.

6.6 Improved surgical guidance using 2D/3D registration

In a typical CTO scenario involving percutaneous coronary intervention, the practitioner will

periodically turn on the X-ray beam and inject contrast agent in order to evaluate the position

of the instrument with respect to the target structures. Because both the X-rays and the con-

trast agent are harmful in large doses, the medical team tries to minimize patient exposure to

these agents. In this context, the non-rigid 2D/3D registration method proposed in this the-

sis can used to compute the transformation necessary to overly a patient-specific model on

the interventional imagery, thereby improving surgical guidance by continuously presenting

an accurate representation of the patient structures in the same reference frame as the surgical

instruments. For improved accuracy, the registration method makes it possible to periodically

update the transformation of the 3D centerline model, for example after every fluoroscopy ac-

quisition. This scenario has been presented to a radiologist at CHU Ste-Justine Hospital, and

has been tested at a Siemen’s clinical test site located in The Netherlands. In both cases, we

received enthusiastic encouragement.

The periodic updating of the centerline model can be quite fast, and the speed of the algorithm

can be considered as interactive. On a laptop with an Intel i7 Q820 processor running at

1.73 GHz, the total registration time was typically less than 3 seconds plus 280 milliseconds

per image for the precomputed 2D segmentation and distance transform. If we consider that

fluoroscopies for surgical guidance are typically acquired at a rate of 15 frames per second

(fps), a soft real time algorithm would require a processing time of less than 66.7 millisecond

for each frame1. In this respect, the proposed algorithm is not real time, but, a closer look shows

that it is not far from this target. Indeed, the 2D segmentation algorithm used to pre-process

the fluoroscopies is already parallelized, and running this algorithm on a dedicated workstation

1This would introduce a lag of up to 66.7 ms into the visualization pipeline, which is probably acceptable.
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with better, more recent, commodity processors (e.g. 4× Intel Xeon E3-1290 v2 at 3.7 GHz)

could easily reduce the computational time by a factor of 8, at a meager estimated cost of 35

milliseconds. Since some image filtering is involved with this algorithm, it is also likely that

a fast GPU implementation will also help. For the alignment with the global transformation

models, the median runtimes are already quite low on the i7 laptop with a single-threaded

C++ implementation. The translational transform takes about 5 milliseconds to compute, the

rigid one 10 milliseconds, and the affine one 30 milliseconds, for a total of 45 milliseconds for

the full sequence. In this case, using a dedicated workstation and an efficient multi-threaded

implementation would allow to create a margin of safety for the worst cases.

In terms of the non-rigid step, reducing the computational time from about 3 seconds to a small

fraction of a second would require much more effort. However, the question is: is real time

2D/3D non-rigid registration really needed? In a clinical setting, the most obvious application

for a continuously morphing model is to provide some sort of visual feedback that temporally

interpolates the position of the structure between the periodic fluoroscopy acquisitions. In

this case, the strategy could be to create a 3D+t model before the procedure, and define a

robust registration and interpolation method to synchronize this 3D+t model with the acquired

fluoroscopies during the operation. A semi-automatic technique to create such a 3D+t model

has been demonstrated in chapter 5. However, work is still needed to define the registration and

interpolation method required to convincingly overlay the dynamic model on the interventional

images. Integration of such a technique with a non-invasive instrument tracking device has

the potential to define a new guidance standard. Such a system could potentially decrease

interventional risks, and reduce patient exposure to X-rays and contrast agent.

6.7 Application for MAPCAs procedure

A similar navigation guidance framework has been proposed in collaboration with partners

from CHU Ste-Justine Hospital. First, we proposed a different, but related level-set based

method for the segmentation of the aorta and attached major aorto-collateral arteries (MAP-

CAs). The main feature of the method is that it benefits from user-provided seed points to pre

compute a spatially varying region intensity model. When compared with the level-set method

with local-linear region model presented in chapter 3, the main advantage of this new method

is that it needs less computational time, and only the structure of interest is modeled. The lat-

ter difference helps prevent a very uneven background from interfering with the segmentation

of the structures in thoracic CTA. This work has been implemented in C++ using Siemens’s
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Xip platform and ITK and was presented at SPIE Medical Imaging 2010. For the sake of

completeness, this article is also presented in Appendix II.

The 3D segmented model has also been used in a navigation guidance framework in pediatric

cardiology. In this respect, a 3D model-to-image registration strategy for registering this model

with intervational fluoroscopies has been proposed by one of my colleagues, Julien Couet, and

an article on this method has been recently presented at SPIE Medical Imaging 2012 (I am

one of the coauthors of this article). In addition, the method has been presented to a group

of clinicians and researchers at CHU Ste-Justine Hospital and was received enthusiastically.

This image-based registration method is more computationally intensive than the model-to-

model method presented in chapter 5, and its transformation model is less flexible. However,

since the MAPCAs are mostly affected by respiration, a motion that causes slower and less

dramatic shape changes than the beating of the heart, a simple rigid transformation model

gave satisfactory results for this problem, and contributed to keeping the computational time at

an acceptable level. This second application demonstrates the versatility of similar enhanced

image-guided navigation frameworks.



GENERAL CONCLUSION

This thesis presented new methods for the segmentation and 2D/3D registration of medical

images. The common denominator of the methods presented is the key idea of localization,

and the use of differential geometry. By taking into account the information available in the

neighborhood of each 2D or 3D image pixel, it was possible to define methods that produce

better results on difficult real world images. We believe that together these methods constitute

a step forward in the establishment of diagnostic, surgical planning and guidance frameworks.

Both the proposed local-linear level-set segmentation method and the proposed vessel detection

filter are robust to local changes in the intensity of the voxels corresponding to the structures

of interest, a problem associated with the limitations of the imaging equipment, and also with

the propagation of the contrast agent in blood vessels. Further more, our newly introduced

vessel detection filter makes it possible to automatically extract curvilinear structures, even in

low contrast regions of 3D CTA and MRA scans. Last, but not least, the proposed 2D/3D

non-rigid registration method enable the 3D information of a 3D CTA scan to be overlaid on

2D interventional images, which partly remedies to the limitations of X-ray fluoroscopy, and

enhances surgical intervention guidance.

At the clinical level, the contributions of this thesis allow us to envision many possibilities. The

automatic brain tissue segmentation algorithm based on level-set and local-linear region models

has the potential to reduce human interaction in morphological studies, thereby increasing their

reproducibility. Closer to our original application context, the proposed level-set methods have

the potential to greatly facilitate the segmentation of the vascular structures in difficult pediatric

CTA scans. The proposed vessel detection filter is a significant improvement over existing

techniques, and is suitable for the segmentation of smaller vessels. A hybrid formulation,

using local region model and vessel detection, could certainly be devised to bring together the

benefits of these two complementary methods, allowing practitioners to produce accurate, and

repeatable segmentations, and do so more quickly.

The non-rigid 2D/3D method for the registration of coronary arteries with live fluoroscopy

offers a practical solution for the guidance of difficult laparoscopic cardiac interventions. Based

on the results presented, it is possible to conceive of similar 2D/3D registration methods that

could serve for guidance in other procedures, as has been discussed in the previous chapter.

In addition, the results obtained pave the way to the creation of future 3D+t patient specific

models that could be continuously updated during an intervention. It is our fervent hope that
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such technologies will reduce the risk for the patient and increase the success rate of difficult

interventions.

Summary of contributions

In this section, we briefly highlight the major contributions of this thesis.

1. A new local-linear level-set model has been introduced and is, to the best of our knowl-

edge, the first level-set method that is capable of segmenting regions with significant and

potentially local gradients. The performance of this new model has been assessed on two

very different problems: automatic brain tissue segmentation and document image bina-

rization. For both applications, it was the first time that a level-set method was used and

formally evaluated for this task with convincing results on publicly available databases.

2. The structure ball, a novel local structure model for 3D graylevel images, has been de-

fined and used in the context of curvilinear structure detection. The resulting image filter

is the first of its kind that allies strong discrimination characteristics with the possibility

to take into account more than one local structure directions. In the presented exper-

iments, this new curvilinear structure detection filter is an improvement over the well

known Frangi’s filter (Frangi et al., 1998) in every aspects.

3. A complete and practical 2D/3D non-rigid registration method for the alignment of 3D

patient specific centerline models with biplane angiography has been introduced. With

a typical runtime of less than 3 seconds, this method is, to the best of our knowledge,

the first 2D/3D non-rigid registration method that is fast enough to be used interactively

during cardiac interventions. It has been implemented in Siemens Inspace medical imag-

ing platform, and tested at an experimental clinical site located in The Netherlands with

promising results.

Articles in peer reviewed journals

1. D. Rivest-Hénault and M. Cheriet, “Vessel detection filter via structure-ball analysis”.

(Submitted) IEEE Transactions on Image Processing.

2. D. Rivest-Hénault, H. Sundar and M. Cheriet, “Non-Rigid 2D/3D Registration of Coro-

nary Artery Models with Live Fluoroscopy for Guidance of Cardiac Interventions”. In

IEEE Transactions on Medical Imaging, Volume 31, Number 8, August 2012, Pages

1557–1572. http://dx.doi.org/10.1109/TMI.2012.2195009.



147

3. D. Rivest-Hénault and M. Cheriet, “Unsupervised MRI segmentation of brain tissues us-

ing a local linear model and level set”. In Elsevier Magnetic resonance imaging, Volume

29, Number 2, February 2011, Pages 243–259. http://dx.doi.org/10.1016/j.mri.2010.08.

007.

4. D. Rivest-Hénault, Reza Farrahi Moghaddam and M. Cheriet, “A local linear level set

method for the binarization of degraded historical document images”. In International

Journal on Document Analysis and Recognition, Volume 15, Number 2, 2012, Pages

101–124. http://dx.doi.org/10.1007/s10032-011-0157-5.

Articles in conference proceedings with a reading committee

1. J. Couet, D. Rivest-Hénault, J. Miró, C. Lapierre, L. Duong and M. Cheriet, “Intensity-

based 3D/2D registration for percutaneous intervention of major aorto-pulmonary col-

lateral arteries”. In SPIE Medical Imaging 2012. (San Diego, February 4–9 2012). SPIE

Publishing.

2. D. Rivest-Hénault, C. Lapierre, S. Deschênes and M. Cheriet, “Length increasing active

contour for the segmentation of small blood vessels.” In 20th International Conference

on Pattern Recognition (ICPR 2010). (Istanbul, August 23–26 2010). IEEE Computer

Society.

3. D. Rivest-Hénault, L. Duong, C. Lapierre, S. Deschênes and M. Cheriet, “Semi-automatic

segmentation of major aorto-pulmonary collateral arteries (MAPCAs) for image guided

procedures.” In SPIE Medical Imaging 2010. (San Diego, February 13–18 2012). SPIE

Publishing.

4. R. Farrahi Moghaddam, D. Rivest-Hénault, I. Bar-Yosef and M. Cheriet, “A unified

framework for the restoration of bleed-through problem in double-sided document im-

ages based on the level set approach.” In 10th International Conference on Document

Analysis and Recognition (ICDAR 2009). (Barcelona, July 26–29 2009), pp. 441–445.

IEEE Computer Society.

5. R. Farrahi Moghaddam, D. Rivest-Hénault and M. Cheriet, “Restoration of highly de-

graded characters with minimum prior information using a level set approach enhanced

with multi-level classifiers.” In 10th International Conference on Document Analysis

and Recognition (ICDAR 2009). (Barcelona, July 26–29 2009), pp. 828–832. IEEE

Computer Society.



148

6. D. Rivest-Hénault and M. Cheriet, “Image segmentation using level set and local lin-

ear approximations.” In International Conference on Image Analysis and Recognition

(ICIAR 2007). (Montreal, August 22–24), pp. 234–245. Springer Lecture Notes in

Computer Science (LNCS).

Internship at Siemens corporate research

I did a seven months internship at Siemens Corporate Research (SCR). During that time I

developed the method presented in chapter 5. In addition to this work, I implemented and

improved a novel visualization method for 3D medical CT scan in Siemens Inspace platform

using C++ and OpenGL. The method makes a 2D rendering of a 3D medical scan by slicing

it in a way that eases the visualization of complex anatomical structures, such as the coronary

arteries.

Open source vessel detection filter

A C++/ITK code implementing the vessel detection filter described in (Rivest-Hénault and

Cheriet, 2012) is now freely available on the web.

DIBCO’2009 Contest

Third best performing document image binarization algorithm out of 43 algorithms submitted

by 35 international teams at the DIBCO’09 document image binarization contest held under

the framework of ICDAR 2009.

Paper reviewing

I reviewed scientific papers for the following journals and conferences:

• IEEE Transactions on Medical Imaging

• International Conference on Information science, signal processing and their applica-

tions, ISSPA2012

• International Conference on Document Analysis and Recognition. ICDAR 2009 and

2011.



APPENDIX I

EULER-LAGRANGE EQUATION FOR LOCAL LINEAR STATISTICS

In this section, we derive the Euler-Lagrange equation for functional (3.10) and we describe

the approximation that has been used in this paper. Empirical evidences of the validity of the

approximation are also presented.

Let Mi be a membership function defined as M+ = H(φ) and M− = (1−H(φ)). The functional

that we want to minimize is given by (3.10) and can be re-written as follows:

F(ai,bi,ci,φ) = ∑
i∈+,−

∫
Mi(x)Fi(x,ai,bi,ci,φ)dx

+ν
∫

|∇H(φ)|dx,

with

Fi(x,ai,bi,ci,φ) = α(ai(x)+bi(x)x+ ci(x)y−u0(x))
2

+μg(u0(x))

[(
bi(x)− ∂u0

∂x
(x)
)2

+

(
ci(x)− ∂u0

∂y
(x)
)2
]
.

Neglecting the viscosity term, since it is independent of the region statistics, we compute the

Euler-Lagrange equation

∂

∂φ

[
∑

i∈{+,−}
Mi(x)Fi(x,ai,bi,ci,φ)

]
= 0,

which terms expand to

∂

∂φ
Mi(x)Fi(x,ai,bi,ci,φ) = (I.1)

∂Mi(x)
∂φ

Fi(x,ai,bi,ci,φ)︸ ︷︷ ︸
Usual term

+Mi(x)
∂Fi(x,ai,bi,ci,φ)

∂φ︸ ︷︷ ︸
Supplementary term

.

As it will be discussed below, the usual term is the only one used in this paper for the mini-

mization of our functional. The supplementary term contain finer information and have been
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neglected in our implementation. For the usual term, it is easy to see that

∂M+(φ(x2))

∂φ(x2)
= +δ (φ) and

∂M−(φ(x2))

∂φ(x2)
=−δ (φ),

where δ (φ) = ∂H(φ)
∂φ , so that this term expands to

δ (φ)

(
α(a−+b−x+ c−y−u0)

2

+g ·μ

[
(b−− ∂u0

∂x
)2 +(c−− ∂u0

∂y
)2

]
−α(a++b+x+ c+y−u0)

2

−g ·μ

[
(b+− ∂u0

∂x
)2 +(c+− ∂u0

∂y
)2

])
,

which, omitting the viscosity term, corresponds exactly to the result presented in the level set

equation (3.11).

We are then left with the second supplementary right hand term. With the abbreviation

Fi1(ai,bi,ci,φ) = (ai(x)+bi(x)x+ ci(x)y−u0(x))
2,

Fi2(ai,bi,ci,φ) =

(
bi(x)− ∂u0

∂x
(x)
)2

,

Fi3(ai,bi,ci,φ) =

(
ci(x)− ∂u0

∂y
(x),

)2

,

we compute

∂

∂φ
Fi(ai,bi,ci,φ) =α

∂

∂φ
Fi1 +μg(u0)

∂

∂φ
Fi2 +μg(u0)

∂

∂φ
Fi3,
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which leads to

∂

∂φ
Fi1 =

∂

∂φ
(ai(x)+bi(x)x+ ci(x)y−u0(x))

2

=2 · (ai(x)+bi(x)x+ ci(x)y−u0(x)) · ∂

∂φ
(ai(x)+bi(x)x+ ci(x)y),

∂

∂φ
Fi2 =

∂

∂φ

(
bi(x)− ∂u0

∂x
(x)
)2

=2 ·
(

bi(x)− ∂u0

∂x
(x)
)
· ∂bi(x)

∂φ
,

∂

∂φ
Fi3 =

∂

∂φ

(
ci(x)− ∂u0

∂y
(x),

)2

=2 ·
(

ci(x)− ∂u0

∂y
(x),

)2

· ∂ci(x)
∂φ

.

It is then needed to compute the values for
∂ai(x)

∂φ ,
∂bi(x)

∂φ , and
∂ci(x)

∂φ . This can be done by solving

A
∂θ

∂φ
=

∂B
∂φ

− ∂A
∂φ

θ ,

where A, θ , and B have the same definition than in (3.9),

∂A
∂φ

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
W

δ ∑
W

xδ ∑
W

yδ

∑
W

xδ ∑
W
(x2 +

μg(u0)

α
)δ ∑

W
xyδ

∑
W

yδ ∑
W

xyδ ∑
W
(y2 +

μg(u0)

α
)δ

⎞
⎟⎟⎟⎟⎟⎟⎠

and
∂B
∂φ

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
W

u0δ

∑
W
(xu0 +

μg(u0)

α

∂u0

∂x
)δ

∑
W
(yu0 +

μg(u0)

α

∂u0

∂y
)δ

⎞
⎟⎟⎟⎟⎟⎟⎠ .

It can be noted that this problem expresses the same particularities as (3.9).

As one can see values for the
∂ai(x)

∂φ ,
∂bi(x)

∂φ , and
∂ci(x)

∂φ are proportional to sums over the contour

while those for the ai, bi, and ci are proportional to sums over region domains. This suggests

that in (I.1) the influence of the supplementary term may be small by comparison to that of the

usual term. A similar assumption has been made by Rosenhahn et al.(Rosenhahn et al., 2007).
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Figure-A I-1: Energy level in function of the number of iterations during the

segmentation of a BrainWeb image with the exact and approximate implementation.

This hypothesis has been verified empirically by comparing the behavior of the exact min-

imization flow, based on (I.1), and the approximate minimization flow, as given by (3.13).

Fig. I-1 shows the progression of the energy while segmenting an image from the BrainWeb

dataset with 3% of noise and 40% INU. It appears that the two methods converge smoothly to

a very similar energy level. The exact minimization flow converge a bit faster at the beginning,

but its computational cost is much higher. In fact, for a four phase implementation, computing

the exact flow requires performing roughly twice the number of convolutions and solving three

times has many linear systems. The approximate flow is also simpler to implement.
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Abstract

Manual segmentation of pre-operative volumetric dataset is generally time consuming and

results are subject to large inter-user variabilities. Level-set methods have been proposed

to improve segmentation consistency by finding interactively the segmentation boundaries

with respect to some priors. However, in thin and elongated structures, such as major aorto-

pulmonary collateral arteries (MAPCAs), edge-based level set methods might be subject to

flooding whereas region-based level set methods may not be selective enough. The main con-

tribution of this work is to propose a novel expert-guided technique for the segmentation of the

aorta and of the attached MAPCAs that is resilient to flooding while keeping the localization

properties of an edge-based level set method. In practice, a two stages approach is used. First,

the aorta is delineated by using manually inserted seed points at key locations and an automatic

segmentation algorithm. The latter includes an intensity likelihood term that prevents leakage

of the contour in regions of weak image gradients. Second, the origins of the MAPCAs are

identified by using another set of seed points, then the MAPCAs’ segmentation boundaries are

evolved while being constrained by the aorta segmentation. This prevents the aorta to interfere

with the segmentation of the MAPCAs. Our preliminary results are promising and constitute

an indication that an accurate segmentation of the aorta and MAPCAs can be obtained with

reasonable amount of effort.

Keywords: CTA, segmentation, level-set, MAPCAs, aorta
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1 Introduction

In certain severe cases of tetralogy of Fallot or of pulmonary atresia, lung perfusion relies to-

tally or in part on one or more major aorto-pulmonary collateral arteries (MAPCAs), which

is not desirable and may require surgical interventions in the months following birth. Exami-

nation of those arteries is difficult, however, because they show significant variation in shape,

position and number. In addition, pediatric cardiology requires high accuracy: diameter of

the aorta may be as small as 7 mm and that of the MAPCAs even smaller. Hopefully, recent

computed tomography angiography (CTA) systems now routinely offer a resolution sufficient

for the visualization of such structures (Hayabuchi et al., 2008). A 3D geometric model of the

structures of interest created from a segmentation of the dataset could expose precious topolog-

ical information to the experts yielding more confidence in diagnostics and easing the planning

of surgical procedures. However, the high precision CTA datasets that are needed tend to be

large and tedious to work with. Also, the result of a manual segmentation process may vary

greatly in function of the expert skills and of the amount of work involved. On the other hand,

due to both the large geometric variability and the small tubular shape of the structure of in-

terest the development of automatic segmentation methods is challenging. In this paper, we

presented a workflow that allows the user to control each step of segmentation, and our prelim-

inary work on a method to prevent flooding using a two stages approach (aorta and MAPCAs).

This will eventually be incorporated to a dedicated user interface, providing a mean to achieve

accurate segmentation of difficult structures.

2 Related work

To our knowledge, this work is among the first that targets vessel malformations for paedi-

atric cardiology, where the anatomic structures of interest are relatively small and are very

challenging to segment. Although no work found that focus on MAPCAs segmentation, aorta

segmentation received great interest from the community. Recently, Išgum et al.(Išgum et al.,

2009) proposed an aorta segmentation on CT scans method that is based on the registration

of multiple atlases. This method is, however, not applicable to the segmentation of abnormal

structures and its application to the segmentation of scans of very young patients may be prob-

lematic. Another interesting method for aorta segmentation, but on 4D MR volume, has been

published by Zhao et al.(Zhao et al., 2009). During its initialization step, this method takes

benefit from a fast marching level-set method (Sethian, 1999) and of a vessel enhancement

filter(Frangi et al., 1998). Because of the limitation of the vessel enhancement filter at Y junc-
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Figure-A II-1: In this example, a weak edge cause an active contour to leak. From left to

right: input data and user defined seed points, after 500 iterations, and after 900 iterations.

tion(Qian et al., 2009) and of the importance of the partial volume effect for small structure,

this method does not seem to be appropriated for MAPCAs segmentation.

Still, vessel segmentation in general is a very active topic and received a great deal of at-

tention in the last few years. Most relevant to this paper are level-set based methods. By

example, van Bemmel et al.(van Bemmel et al., 2003) used a level-set method for arteries–

veins separation on blood pool agent MRI. Also, Manniesing et al.(Manniesing et al., 2006a)

proposed a similar level-set method for the segmentation of cerebral vasculature. Both use

a level-set function of the form: φt = −F(1− εκ)|∇φ |, with F representing various external

forces combined multiplicatively. The contour evolution will stall if any of the force in F

equal 0 or if (1− εκ) = 0 therefore preventing competition between the forces. As a result,

those methods will have difficulties to segment regions that are located far from initialization

seeds(Manniesing et al., 2006a) or in presence of spurious details. Also, because those methods

use a Gaussian intensity model to represent the background, it is required to mask the bones,

instruments and other salient structures as a pre-processing step. Another level-set method for

the segmentation of cerebral vasculature, is the CURVES method from Lorigos et al.(Lorigo

et al., 2001), it will be discussed in the next section. Other forms of level-set based segmenta-

tion methods with different behaviour have also been proposed in recent years(Chan and Vese,

2001; Paragios and Deriche, 2002; Kim et al., 2005; Cremers et al., 2007).

3 Method

First, the active contour framework on which our approach is based is introduced in the follow-

ing paragraphs. After, the methodology that has been used to segment the aorta and attached

MAPCAs is described in section 3.2.
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Figure-A II-2: Sample evolution of our active contour method (II.4) for the segmentation

of the MAPCAs in dataset #2. The aorta was pre-segmented and added to the volume

rendering for clarity. From left to right: at initialization and after 25, 50, 100, 150, 200

and 250 iterations.

3.1 Active contour framework

Our segmentation algorithms are inspired from the CURVES method (Lorigo et al., 2001)

from which they inherit the ability to regularize 1D curves in 3D. This level set based method

assumes that the best positions for the boundaries are indicated by strong image gradients, and

in this respect is similar to the geodesic active contour method(Caselles et al., 1997). Within

the level set framework, a set of boundaries is represented implicitly by the zero level of a

3D function φ(x) : Ω ⊂ R
3 �→ R. Regions where φ(x) < 0 indicate voxels belonging to the

structure of interest. Starting from an arbitrary surface, CURVES achieves a segmentation by

evolving φ by respect to an artificial time variable, t:

φt =
∂φ(x, t)

t
= δε(φ)

(
λ (∇φ(x, t),∇2φ(x, t))+ρ

g′

g
∇φ(x, t) ·H ∇I(x)

|∇I(x)| + γg(|∇I(x)|)
)
,

(II.1)

where I(x) represents the intensity of the voxel located in x, H is the Hessian matrix and

λ (∇φ(x, t),∇2φ(x, t)) is defined as the smallest principal curvature of φ(x). Also, g(|∇I|) is a

monotonically decreasing edge indicator function such that g(|∇I|)→ 0 as |∇I|→∞. A typical

choice is g(z) = 1
1+z2 (Caselles et al., 1997). The regularized Delta function δε(φ) limits the

evolution around the zero level of φ . The first term of (II.1) is a regularization term that tends to

smooth the boundaries, the second is a data advection term that attracts the boundaries toward

the edges and the third term is a balloon force that tends to inflate the volume1.

1It is worth noting that although the balloon term is not part of the CURVES formulation(Lorigo et al., 2001),

this term does appear in the original geodesic active contour formulation(Caselles et al., 1997) on which CURVES

is based.
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Since weak edges may cause this algorithm to fail to delineate correctly the structures, as shown

on Figure II-1, an estimation of the expected voxel intensity is considered. This is taken into

account by replacing the balloon term by a new one in the boundaries evolution equation, as

follows:

φt = δε(φ)

(
λ (∇φ(x, t),∇2φ(x, t))+ρ

g′

g
∇φ(x, t) ·H ∇I(x)

|∇I(x)| − γg(|∇I(x)|) f (I(x))
)
. (II.2)

The purpose of this new term is to attract the moving boundary toward regions that have voxel

intensities similar to the intensities of the voxels located inside the boundaries and to repulse it

otherwise. In this work, f is defined as:

f (z) = exp

(
−(z− Ī)2

s2

)
.

Here, s is a parameter that accounts for the standard deviation of the intensity and Ī is a local

estimation of the intensity of the structure to segment and is computed from the voxels lying

inside the boundaries at initialization, i.e. where φt=0(x) < 0, using local weighted average

operations(Rivest-Hénault and Cheriet, 2007; Li et al., 2008b; Brox and Cremers, 2009):

Ī(x) =
Kσ ∗ (Hε(φ)I)

Kσ ∗Hε(φ)
, with Hε(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 z <−ε

1
2 +

1
2 sin(πz/(2ε)) |z| ≤ ε

1 z > ε

, (II.3)

Kσ is a Gaussian kernel with standard deviation σ and ∗ denotes the convolution operator.

The parameter ε of the Hε(z) function account for the ambiguity of the contour position and

is set to the distance separating two adjacent voxels. Equation (II.2) requires that Ī be defined

anywhere on the image domain. Therefore, the estimation for Ī be must be extended to regions

where φ >= 0. A simple method is to use the values of the closest point where φ < 0. Finally,

ρ and γ are free parameters.

It can also be useful to include an additional advection force that would push the boundaries

away from a certain object. This can be done by adding a new force to (II.2), as follows:

φt = δε(φ)

(
λ (∇φ(x, t),∇2φ(x, t))+ρ

g′

g
∇φ(x, t) ·H ∇I

|∇I| (II.4)

− γg(I) f (I)−βh(d(x))
∇φ(x, t)
|∇φ(x, t)| ·∇d(x)

)
.
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Here, d(x) : Ω �→ R is the distance transform of a certain object in Ω, h(d) is a function that

limits the reach of this advection force and β is a free parameter. In this work, this force is

used to push the MAPCAs boundaries away from the aorta. Also, we set h(d) = exp(−d2/k).

For an example evolution of an active contour by using (II.4), see Figure II-2.

3.2 Description of our approach

It is desired to segment the aorta and the attached MAPCAs in CTA volumes by finding the

surface that best separates those structures from the volumetric dataset. The proposed method

is composed of two semi-automatic stages. In the first stage, a) several key points are placed

inside the aorta by a user by clicking on MPR views of the volume, and b) the aorta is delineated

automatically by using a segmentation algorithm described below. In the second stage, a)

seed points indicating the origin of the MAPCAs are placed close to the segmented aorta by

the user, and b) the final segmentation of the aorta and of the attached MAPCAs is obtained

automatically by using the second segmentation algorithm described below. Also, it is worth

noting that, as a pre-processing step, spherical masks were manually placed at places where

the aorta or a MAPCA entered the heart in order to prevent the active contour to fill the heart

chambers.

In the first stage, a user is required to place small spheres of radius r inside the aorta. After,

the fast marching method(Sethian, 1999) (FMM) is used to create an initial level set function

φ . Voxels inside the spheres are given negative values and those outside positive values. The

level set function φ is then evolved using (II.2) until the maximum boundary displacement is

smaller than a certain value or until stopped by the user. This process results in a segmentation

of the aorta, as shown on Figure II-3.

In the second stage, the user place small spheres, also of radius r, indicating the junction of

the MAPCAs and of the aorta. Then, a level set function is created as described earlier and

the segmentation of the MAPCAs is produced by using (II.4). For an example, see Figure II-4

This algorithm takes benefit from the volume describing the aorta in two ways: 1) starting

from the aorta, the FFM is used to create an advection field that is used to push the MAPCAs

segmentation boundaries away from the aorta; and 2) the aorta volume is subtracted from the

domain of the MAPCAs level set function. This prevents the aorta voxel to interfere with the

MAPCAs segmentation.
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Figure-A II-3: Aorta segmentation in dataset #1. From left to right: 1) an MPR view of

the input data with seed points and the resulting aorta segmentation highlighted, 2–3) a

volume rendering view of the segmented aorta viewed from 2) the anteroposterior

direction, and 3) from the mediolateral direction.

Figure-A II-4: MAPCAs segmentation in dataset #1. From left to right: 1) an MPR view

of the input data with seed points and the resulting aorta segmentation highlighted, 2–3) a

volume rendering view of the segmented aorta and attached MAPCAs viewed from 2) the

anteroposterior direction, and 3) the mediolateral direction.

4 Experimentation and results

The algorithms were implemented in C++ using ITK2 and the XipBuilder framework3. For

a 256× 256× 110 voxels volume, computation times were evaluated at around 30 sec for the

aorta segmentation and around 1 min for the MAPCAs segmentation using our single threaded

implementation on a AMD X2 6000+ CPU.

The parameters of our method must be selected based on prior knowledge or hand picked by

trial and errors. The radius of the seeds points, r was set to 1.5mm, the approximate radius

2Available from the Insight Software Consortium at http://www.itk.org
3Available from Siemens at https://collab01a.scr.siemens.com/xipwiki/index.php/XipBuilder
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(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Figure-A II-5: Comparison between the segmentation results obtained by the proposed

method, images (a)-(c) and (g)-(i), and those obtained by using the CURVE equation with

the propagation term (II.1), as described in section 4, images (d)-(f) and (j)-(l). Top row:

dataset #1, bottom row: dataset #2. The gap indicated by an arrow in (h) and (k) is caused

by the presence of a catheter.

Figure-A II-6: Comparison between the segmented pre-operative 3D data and a frame

from a 2D+t angiographic acquisition for dataset #1. Those images are from the same

patient than in Figures II-3 and II-4.
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of the smallest MAPCA. The parameters ρ , γ and s of (II.2) and (II.4) depend on the contrast

of the dataset. In our case, all voxel intensities were normalized between 0 and 1 and the

parameters were set as follows: ρ = 5, γ = 2 and s∈ [0.04,0.05]. Finally, in (II.4) the parameter

β was set to 0.1 ·ρ and k was set to 10mm, which corresponds approximately to the diameter

of the aorta.

An example segmentation of the aorta can be seen in Figure II-3 and an example segmentation

of the four MAPCAs attached to this aorta is shown in Figure II-4. For comparison purpose, a

2D angiographic view of the same structures is presented on Figure II-6.

In order to illustrate the benefits of our approach, the same two datasets have been segmented

by using the CURVES level-set equation (II.1) in place of (II.2) and (II.4) in the methodology

described in section 3.2. The same seed points were also used to initialize both steps. It

should be noted that this differs from the methodology introduced by Lorigo et al.(Lorigo

et al., 2001). The parameters of (II.1) have been selected in order to maximize the extend of

parts of the MAPCAs that could be segmented while keeping leakage at a minimum. Those

comparisons are presented on Figure II-5. Four MAPCAs originating from the descending

aorta were identified in dataset #1 (top row, in Figure II-5). By using the proposed method, all

four appeared to be correctly segmented. Also, the contour was able to propagate itself far into

the lungs’ vessel. Most of the segmented vessels were well separated from the others. When

using the modified CURVES equation, it was also possible to segment the four MAPCAs in

region close to the aorta, but the length of the vessels that was segmented was much smaller.

In this case, the level-set propagation was stop by hand, but more iterations caused to contour

to leak. The dataset #2 (bottom row, in Figure II-5) was more difficult to segment because the

scan was less contrasted than for dataset #1. In this case, two MAPCAs also originating from

the descending aorta were identified. By using the proposed method, it was possible to segment

the two MAPCAs. On the contrary, it was not possible to obtain satisfactory results by using

the modified CURVES method. As it can be seen on Figure II-5-(j), the contour started to leak

close to the aorta.

4.1 Discussion

The segmentation of MAPCAs on CTA is challenging. Those vessels are of very small size,

diameters of 1-3mm being frequent. Because of this, their apparent intensity in CTA is affected

by partial volume effect. Moreover, the origin, size and shape of the MAPCAs vary greatly

from one case to the other. Our preliminary results indicate that our technique is able to deliver

accurate segmentation results for this difficult task. In all cases, the active contours were less



162

subject to leakage when using (II.2) or (II.4) instead of (II.1). That can be explained by our

driving term, f (I(x)), that limits the propagation of the contour to regions that have intensities

similar to that of the seeds points. As a result, it is possible to perform more iterations without

experimenting leakage. In fact, when using (II.2) or (II.4) the propagation of the contour

stopped by itself. Also, it is worth noting that our model is able to take benefit from regional

intensity information for the structures of interest while it does not required a modelization of

the background. Therefore, it is not needed to mask the bone or the instruments prior to the

segmentation. As for our two-step approach, one of its advantages is that the segmentation of

the aorta in the first step permits the creation of an advection field that can be used to support

the segmentation of the MAPCAs. This has the potential to help to segment very small vessels.

The evaluation of the benefit of this aspect is to be done in a future communication. Another

advantage is that our approach allows to use different sets of parameters for the segmentation

of the aorta and for the segmentation of the MAPCAs. However, we did not take advantage of

this possibility in our experiments.

In future work, this segmentation method will be integrated in an image-guided navigation

framework. We plan to take advantage of the segmented aorta and MAPCAs to create patient-

specific 3D models that will be registered with 2D angiographic sequences, as Figure II-6

suggests. We hope that such registration would provide valuable information to complement

the 2D angiography during surgical procedures by offering depth indications and temporal

consistency.

5 Conclusion

The level set method is an interesting framework for the integration of various segmentation

principles that can lead to high quality segmentation results. However, in the case of the seg-

mentation of thin elongated structures in CTA volumes of paediatric patients, classical seg-

mentation methods may not be directly usable due to practical problems. A new two stages

semi-automatic technique for the segmentation of the aorta and attached MAPCAs has been

presented. In the first stage, the aorta is segmented by using seed points placed by a user and

a new level set formulation that includes local estimations of the intensity of the structures to

segment. In the second stage, the boundary delineating the aorta is frozen and the attached

MAPCAs are segmented. A particularity of this algorithm is that it takes advantage of an ad-

vection force that tends to push the MAPCAs boundaries away from the aorta. Preliminary

results indicate that our technique is able to deliver accurate and repeatable segmentation re-

sults for the aorta and attached MAPCAs.
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